
GENERAL REFERENCE
VOLUME 1

Object- Oriented Software

NemTEpT"
GENERAl REFERENCE
Volume 1

NeXTSTEP Developer's Library
NeXT Computer, Inc.

Addison-Wesley Publishing Company
Reading, Massachusetts· Menlo Park, California· New York· Don Mills, Ontario
Wokingham, England· Amsterdam· Bonn· Sydney· Singapore· Tokyo· Madrid
San Juan· Paris· Seoul· Milan· Mexico City· Taipei

Release 3

NeXT and the publishers have tried to make the information' contained in this manual as accurate and
reliable as possible, but assume no responsibility for errors or omissions. They disclaim any warranty
of any kind, whether express or implied, as to any matter whatsoever relating to this manual, including
without limitation the merchantability or fitness for any particular purpose. In no event shall NeXT or
the publishers be liable for any indirect, special, incidental, or consequential damages arising out of
purchase or use of this manual or the information contained herein. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to
notify the purchaser.

NeXTSTEP General Reference Copyright © 1990-1992 by NeXT Computer, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher or copyright owner. Printed in the United States of
America. Published simultaneously in Canada.

NeXTSTEP 3.0 Copyright © 1988-1992 by NeXT Computer, Inc. All rights reserved. Certain portions of the
software are copyrighted by third parties. U.S. Pat. Nos. 5,146,556; 4,982,343. Other Patents Pending.

NeXT, the NeXT logo, NeXTSTEP, Application Kit, Database Kit, Digital Webster, Indexing Kit, Interface
Builder, Mach Kit, Netlnfo, Netlnfo Kit, Phone Kit, 3D Graphics Kit, and Workspace Manager are
trademarks of NeXT Computer, Inc. PostScript and Display PostScript are registered trademarks of Adobe
Systems, Incorporated. Novell and NetWare are registered trademarks of Novell, Inc. ORACLE is a
registered trademark of Oracle Corp. PANTONE is a registered trademark of Pantone, Inc. SYBASE is a
registered trademark of Sybase, Inc. UNIX is a registered trademark of UNIX Systems Laboratories, Inc.
All other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 [or, if applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-861.

PANTONE@* Computer Video simulations used in this product may not match PANTONE-identified solid
color standards. Use current PANTONE Color Reference Manuals for accurate color.

*Pantone, Inc.'s check-standard trademark for color.

This manual describes NeXTSTEP Release 3.

Written by NeXT Publications.

This manual was designed, written, and produced on NeXT computers. Proofs were printed on a NeXT
400 dpi Laser Printer and NeXT Color Printer. Final pages were transferred directly from a NeXT optical
disk to film using NeXT computers and an electronic imagesetter.

34 5 6 78·9 10-CR5-96959493
Third printing, November 1993

ISBN 0-201-62220-3

Contents

Volume 1:

Introduction

1-1 Chapter 1: Root Class
1-3 Introduction
1-5 Classes
1-39 Types and Constants

2-1 Chapter 2: Application Kit
2-5 Introduction
2-17 Classes
2-865 Protocols
2-911 Functions
2-979 Types and Constants
2-1049 Other Features

3-1 Chapter 3: Common Classes and Functions
3-3 Introduction
3-7 Classes
3-43 Functions
3-103 Types and Constants

Volume 2:

Chapter 4: Database Kit
Chapter 5: Display PostScript
Chapter 6: Distributed Objects
Chapter 7: Indexing Kit
Chapter 8: Interface Builder
Chapter 9: Mach Kit
Chapter 10: MIDI Driver API
Chapter 11: Netlnfo Kit
Chapter 12: Networks: Novell NetWare
Chapter 13: Phone Kit
Chapter 14: Preferences
Chapter 15: Run-Time System
Chapter 16: Sound
Chapter 17: 3D Graphics Kit
Chapter 18: Video
Chapter 19: Workspace Manager

Appendices

Appendix A: Data Formats
Appendix B: Default Parameters
Appendix C: Keyboard Event Information
Appendix D: System Bitmaps
Appendix E: Details of the DSP

Suggested Reading

Glossary

Index

Introduction

This manual describes the application programming interface (API) for the
NeXTSTEPTM development environment. It's part of a collection of manuals called
the NeXTSTEP Developer's Library, which offer assistance to developers creating
applications for NeXTSTEP computers. Some of the other manuals in the library are
listed on the back cover.

The two volumes of the General Reference provide detailed descriptions of all the
N eXTSTEP software kits and of all the classes, functions, operators, and other
programming elements th3;t make up the API. The first volume covers the root Object class,
Application KifM, and other common classes and functions. The second volume covers
more specialized kits, like Database KifM, Phone KifM, and 3D Graphics KifM. Most
programmers will use the Application Kit and one or more of the other kits, depending on
the kind of application they're developing.

The information in these volumes is supplemented by on-line release notes (in the
lNextLibrary/Docnmentation/NextDev/ReleaseNotes directory) that you can access
through the Digital Librarian application. The release notes provide last-minute
information about the latest release of the software.

The Mach operating system is documented in another Developer s Library manual,
NeXTSTEP Operating System Software. For the most part, you don't have to be familiar
with Mach to use the Application Kit and other software documented here.

However, this manual does assume that you're familiar with the NeXTSTEP user interface,
with the C programming language, and with the Objective C extensions to C. Objective C
is documented in NeXTSTEP Object-Oriented Programming and Objective C. The user
interface is described and explained in NeXTSTEP User Interface Guidelines.

Intro-1

Using Documented API

The API described in this manual provides all the functionality you need to make full use
of NeXTSTEP software. If you have questions about using the API, this documentation
and the NeXT Technical Support Department can help you use it correctly. If a feature in
the API doesn't work as described, it's considered a bug which NeXT will work to fix. If
API features change in future releases, these changes will be described in on-line release
notes and printed documentation.

Undocumented features are not part of the API. If you use undocumented features, you run
several risks. First, your application may be unreliable, because undocumented features
won't work the way you expect them to in all cases. Second, NeXT Technical Support can't
provide full assistance in fixing problems that arise, other than to recommend that you use
documented API. Finally, your application may be incompatible with future releases, since
undocumented features can and will change without notice.

Precompiled Header Files

Intro-2

Throughout this manual, you'll find cross references to the header files where NeXTSTEP
API is declared. All these header files are located in subdirectories of the
/NextDeveloperlHeaders directory.

When programming, you typically import the header files that declare the API you're using.
For example, to use the NXPhoneCall class, you'd import NXPhoneCall.h:

#import <phonekit/NXPhoneCall.h>

However, for most of NeXTSTEP API, there's a simpler and more efficient path. Some of
the software kits have a master header file that imports all the other header files required by
that kit. Matched to the master header file is a parsed and precompiled version of all the
header files it directly or indirectly includes. By importing the master file, you get the
header files in their precompiled form. This saves the compiler several steps, and a great
deal of time. It's much more efficient than importing individual header files for each part
of the API you use.

The following table lists the master files that correspond to precompiled versions of the
header files.

Header File

appkitlappkit.h

3 Dkitl3Dkit.h

dbkitldbkit.h

Contents

Application Kit, Sound KifM
, all the common classes, and

most of the common functions

3D Graphics Kit

Database Kit

All three of these files also include the root Object class (through the normal process of
Objective C inheritance).

How the Manual Is Organized

Each chapter of the General Reference is devoted to a separate software kit or a separate
group of functionally related classes and functions. The chapters are:

• Chapter 1, "Root Class," describes the Object class, the class that stands at the root of
almost all Objective C inheritance hierarchies. It's the one class that all other classes
inherit from and the class that all N eXTSTEP software kits are based upon.

• Chapter 2, "Application Kit," describes the basic software for writing interactive
applications-applications that use windows, draw on the screen, and respond to user
actions on the keyboard and mouse. The Application Kit contains the fundamental
building blocks for the NeXTSTEP user interface.

• Chapter 3, "Common Classes and Functions," describes an assortment of classes and
functions that aid applications in managing data and resources. These facilities are used
by a wide variety of applications and range from storage allocators and hashing routines
to error handling and language localization aids.

• Chapter 4, "Database Kit," describes a software kit that enables applications to
communicate with database servers, such as those provided by Oracle or Sybase, using
a high-level entity-relationship model. The kit provides record management, buffering,
and modeling services, as well as user-interface objects for displaying and editing data.

Intro-3

Intro-4

• Chapter 5, "Display PostScript®," describes the NeXTSTEP implementation of the
Display PostScript Client Library. The Client Library is mainly documented by Adobe
Systems, Inc. (see "Suggested Reading" at the end of Volume 2), but NeXTSTEP has
extended the Library in various ways. This chapter documents those extensions.

• Chapter 6, "Distributed Objects," describes how Objective C messages can be sent
between remote objects-objects in different tasks or in different threads of the same
task. A distributed objects architecture makes it possible to have different applications
cooperate on a single project at run time or to split an application into various
independent processes.

• Chapter 7, "Indexing KiC ," describes a set of tools for manipulating large or small
amounts of data-especially for retrieving data items, based on their contents, from a
large store. Among other things, the Indexing Kit can be used to build flat-file databases
or to create applications (like Digital LibrarianTM) that search for text in collections of
files or database records.

• Chapter 8, "Interface Builder™,'' describes the programming interface to Interface
Builder, the application that enables you to design an application graphically on-screen.
The chapter shows how to use this API to augment Interface Builder's standard set of
tools. You can create loadable palettes containing your own custom objects and provide
custom inspectors and editors for these objects. With this API, you'll be able to adapt
Interface Builder to any number of highly specific uses. For a tutorial on creating a
simple loadable palette and inspector, see the NeXTSTEP Development Tools and
Techniques manual.

• Chapter 9, "Mach KifM," describes an Objective C interface to a part of the Mach
operating system. A portion of this interface is used by the distributed objects
architecture documented in Chapter 6.

• Chapter 10, "MIDI," describes the functions that control the MIDI (Musical Instrument
Digital Interface) device driver. The device driver manages the flow of MIDI data to and
from an external device, such as a synthesizer, digital piano, or another computer.

• Chapter 11, "Netlnfo KifM," describes a software kit that's used to build network
management applications.

• Chapter 12, "Networks: Novell® NetWare:," contains information on using Novell
NetWare to connect NeXTSTEP machines.

• Chapter 13, "Phone KifM
," describes how to hook up your application to a telephone line,

to make and answer calls, and to transmit and receive information during a call. When
the phone line is an ISDN (Integrated Services Digital Network) line, data can be
transmitted and received, without using a modem, at 64 kilobits per second per channel.

• Chapter 14, "Preferences," describes the programming interface to the Preferences
application. With this interface, you can add new display modules to the application and
thus extend the choices that Preferences presents to the user.

• Chapter 15, "Run-Time System," describes the run-time system for the Objective C
language. For the most part, you don't have to be concerned with the API documented
in this chapter unless you're developing interfaces to the run-time system other than
Objective C. However, some run-time functions may be generally useful within
Objective C programs.

• Chapter 16, "Sound," describes the Sound Kit and sound functions that permit
applications to record, play, display, and manipulate sounds. It also includes the API to
the sound driver.

• Chapter 17, "3D Graphics Kit," describes an Objective C interface for using Interactive
RenderMan™. The 3D Graphics Kit works within the drawing context provided by the
Application Kit, but sets up its own compatible context for rendering, manipulating, and
allowing users to manipulate three-dimensional images.

• Chapter 18, "Video Class," describes the NXLive Video View class. An
NXLive Video View can display live video images on-screen and record images for
video display.

• Chapter 19, "Workspace Manager™,'' describes how you can augment Workspace
Manager's standard set of contents inspectors with those of your own creation. For
example, Workspace Manager comes with inspectors that show the contents of files in
Rich Text Format® (RTF) and Tag Image File Format (TIFF), but doesn't necessarily
provide inspectors for the data formats you'll be using in the application you write.
U sing the API and techniques described in this chapter, you can create content
inspectors for those formats.

• Appendix A, "Data Formats," describes the standard data formats supported by
NeXTSTEP. These formats permit different applications to exchange data through
the pasteboard.

Intro-5

• Appendix B, "Default Parameters," lists the standard default parameters that affect
NeXTSTEP software. Most default parameters record user preferences-for example,
what font to use in menus. Some make hidden behavior visible-for example, by
recording all PostScript output to the Window Server-and are therefore useful during
debugging. Default parameters are read and written using functions documented in
Chapter 3.

• Appendix C, "Keyboard Event information," describes the keyboard codes for
NeXTSTEP encoding.

• Appendix D, "System Bitmaps," shows the bitmap images that are available with
the system.

• Appendix E, "Details of the DSP," lists technical information about the DSP (digital
signal processor).

How the Chapters Are Organized

Intro-6

Each chapter begins by listing three pieces of information of chapter-wide significance:

Library:

Header File Directory:

Import:

The library that contains all the software described in the
chapter. An "_s" at the end of the library name indicates
that the library is shared. Code from a shared library isn't
incorporated into your program. Instead, the library is
mapped into the address space of your application when
your application runs.

The directory or directories where the API described in
the chapter is declared.

The header file that, directly or indirectly, includes all the
header files required for using the kit. By importing this
one header file, you get precompiled versions of all the
header files it includes. This dramatically reduces the
time required to compile an application. See
"Precompiled Header Files" above.

After these three headings, the chapter is divided into a few standard sections:

Introduction

The introduction gives a broad overview of the software documented in the chapter. It
describes the facilities available in the kit and how the various pieces fit together. It may
also contain information about how to use particular methods and functions.

Classes

This section contains a full specification for each class defined in the kit. Classes are
presented alphabetically. The structure of a class specification is described under
"Classes" below.

Protocols

This section describes both formal protocols (those declared using the @protocol
directive) and informal ones (those declared as categories). Protocol specifications
resemble class specifications and are described under "Protocols" below.

Functions

Functions (and macros resembling functions) are documented next. The format for
function descriptions is explained under "Functions" below.

Types and Constants

This section describes the defined types, symbolic constants, enumerations, structures,
unions, and global variables that are provided as part of the kit. This API supports the
classes and functions defined in the kit. See "Types and Constants" below for a
description of the formats.

Other Features

If a kit has features that are not fully documented in the preceding sections, this section
has notes explaining them. For example, the Application Kit chapter includes notes on
how to advertise a service.

Intro-7

Intro-8

Classes

Information about a class is presented under the following headings shown in bold. The
text accompanying each bold item describes the content of that particular section of the
class specification.

Inherits From:

Conforms To:

Declared In:

The inheritance hierarchy for the class. For example:

Panel : Window : Responder : Object

The first class listed (Panel, in this example) is the class's
superclass. The last class listed is always Object, the root
of all NeXTSTEP inheritance hierarchies. The classes
between show the chain of inheritance from Object to the
superclass. (This particular example shows the
inheritance hierarchy for the Menu class of the
Application Kit.)

The formal protocols that the class conforms to. These
include both protocols the class adopts and those it
inherits from other adopting classes. If inherited, the
name of the adopting class in given in parentheses. For
example:

IXPostingExchange
IXPostingOperations
IXCursorPositioning (lXBTreeCursor)

(This particular example is from the IXPostingCursor
class, a subclass of IXBTreeCursor in the Indexing Kit.)

The header file that declares the class interface. For
example:

video/NXLive Video View.h

(This example is from the NXLive Video View class,
which is declared in the video subdirectory of
lNextDeveloperlHeaders.)

Class Description

This section gives a general description of the class. It explains how the class fits into
the overall design of the kit and how your application can make use of it. A class
description often has information relevant to the way particular methods should be used.

Instance Variables

This section shows the instance variables declared for the class (exclusive of any private
instance variables). For example, here are the instance variables declared in the List
common class:

id *dataPtr;
unsigned int numElements;
unsigned int maxElements;

It then gives a short explanation for each variable.

dataPtr The data managed by the List object (the array of objects).

numElements

maxElements

The actual number of objects in the array.

The total number of objects that can fit in currently allocated
memory.

Instance variables that are for the internal use of the class are neither listed nor
explained. These internal variables all begin with an underscore ("_") to prevent
collisions with names that you might choose for instance variables in a subclass you
define, or they are marked @private in the interface file.

Adopted Protocols

If the class adopts any protocols, the names of the methods declared in the protocols are
listed next. These methods are normally not documented elsewhere in the class
specification. Refer to the protocol specification for a complete description of these
methods, their arguments, and their return types.

Intro-9

Intro-10

Method Types

Next, the methods the class declares and implements are listed by name and grouped
by type. For example, methods used to draw are listed separately from methods used
to handle events. This directory includes all the principal methods defined in the class
(except those declared in adopted protocols) and a few that are inherited from other
classes. Inherited methods are followed by the name of the class where they're
defined; they're included in the directory to let you know which inherited methods you
might commonly use with instances of the class and where to look for a description of
those methods.

Class Methods
Instance Methods

A detailed description of each method defined in the class follows the classification by
type. Methods that are used by class objects are presented first followed by methods that
are used by instances. The descriptions within each group are ordered alphabetically by
method name.

Each description begins with the syntax of the method's arguments and return values,
continues with an explanation of the method, and ends, where appropriate, with a list of
other related methods. Where a related method is defined in another class, it's followed
by the name of the other class within parentheses. For example, here's a method
description from the Window class:

gState
- (int)gState

Returns the PostScript graphics state object associated with the Window.

See also: - gState (View)

Internal methods used to implement the class aren't listed in the specification. Since you
shouldn't override any of these methods, or use them in a message, they're excluded
from both the method directory and the method descriptions. However, you may
encounter them when looking at the call stack of your program from within the
debugger. A private method is easily recognizable by the underscore ("_") that begins
its name.

Methods Implemented by the Delegate

If a class lets you define another object-a delegate-that can intercede on behalf of
instances of the class, the methods that the delegate can implement are described in a
separate section. These are not methods defined in the class; rather, they're methods that
you can define to respond to messages sent from instances of the class.

If you define one of these methods, the delegate will receive automatic messages to
perform it at the appropriate time. For example, if you define a
windowDidBecomeKey: method for a Window's delegate, the delegate will receive
windowDidBecomeKey: messages whenever the Window becomes the key window.
Messages are sent only if you define a method that can respond.

In essence, this section documents an informal protocol. But because these methods are
so closely tied to the behavior of a particular class, they're documented with the class
rather than in the "Protocols" section.

Some class specifications have separate sections with titles such as "Methods
Implemented by the Superview" or "Methods Implemented by the Owner." These are
also informal protocols. They document methods that can or must be implemented to
receive messages on behalf of instances of the class.

Protocols

The protocols section documents both formal and informal protocols. Formal protocols
are those that are declared using the @protocol compiler directive. They can be
formally adopted and implemented by a class and tested by sending an object a
conformsTo: message.

Some formal protocols are adopted and implemented by classes in the NeXTSTEP
software kits. However, many formal protocols are declared by a kit, but not implemented
by it. They list methods that you can implement to respond to kit-generated messages.

A few formal protocols are implemented by a kit, but not by a class that's part of the
documented API. Rather, the protocol is implemented by an anonymous object that the kit
supplies. The protocol lets you know what messages you can send to the object.

Like formal protocols, informal protocols declare a list of methods that others are invited
to implement. If an informal protocol is closely associated with one particular class-for
example, the list of methods implemented by the delegate-it's documented in the class
description. Informal protocols associated with more than one class, or not associated with
any particular class, are documented with the formal protocols in this section.

Intro-11

Intro-12

Protocol information is organized into many of the same sections as described above for a
class specification. But protocols are not classes and therefore differ somewhat in the kind
of information provided. The sections of a protocol specification are shown in bold below:

Adopted By:

Incorporates:

A list of the NeXTSTEP classes that adopt the
protocol. Many protocols declare methods that
applications must implement and so are not adopted
by any NeXTSTEP classes.

Some protocols are implemented by anonymous objects
(instances of an unknown class); the protocol is the only
information available about what messages the object can
respond to. Protocols that have an implementation
available through an anonymous object generally don't
have to be reimplemented by other classes.

Other protocols that the protocol being described
incorporates by reference. One protocol incorporates
others by listing them within.angle brackets:

@protocol biathlon <skiing, shooting>

The protocol specification doesn't describe methods
declared in incorporated protocols. See the specification
for the incorporated protocol for a description of its
methods.

An informal protocol can't be formally adopted by a class and it can't formally incorporate
another protocol. So its description begins with information about the category where
it's declared:

Category Of: The class that the category belongs to. Informal protocols
are typically declared as categories of the Object class.
This gives them the widest possible scope.

Both formal and informal protocols include a cross reference to a header file in
lNextDeveloperlHeaders:

Declared In: The header file where the protocol is declared.

Following this introductory information, the protocol specification is divided into only a
small number of sections:

Protocol Description
Category Description

First, there's a short description of the protocol (or the category of an informal protocol).
This description includes information on the purpose of the protocol and whether or not
you might need to implement it.

Method Types

If the protocol includes enough methods to warrant it, they're divided by type and
presented just as the methods of a class are.

Class Methods
Instance Methods

The main part of a protocol specification is the description of the methods it declares.
Since these methods aren't necessarily implemented, the descriptions focus on the intent
of the method. If the protocol is adopted by any NeXTSTEP classes, there may also be
notes on how particular classes implement the methods.

Intro-13

Intro-14

Functions

Related functions are grouped together and the groups are arranged alphabetically by the
name of the first function in each. There are cross references so that you can look up any
function and find the group where it's documented.

The description of each function group is divided into a number of standard sections:

SUMMARY A brief description of the purpose of the functions.

DECLARED IN The header file where the functions are declared. If the header file is
included in a master header file that has been precompiled, it's always
more efficient to import the master file than to directly import the header
file that declares the functions. If there is a master header file, it's listed
at the beginning of the chapter under "Import."

SYNOPSIS A prototype of the functions, showing their names, return types,
argument types, and calling sequence.

DESCRIPTION A description of the functions and how to use them.

If relevant, the following sections may also be present:

EXAMPLES Example code showing how the functions are used.

RETURN A statement or restatement of what each function returns.

EXCEPTIONS The exceptions that the functions might potentially raise.

SEE ALSO References to other functions or to other parts of the NeXTSTEP API.

Types and Constants

The "Types and Constants" section is divided into the following parts:

Defined Types

Types that are defined with the typedef compiler directive.

Symbolic Constants

Constants that are defined with the #define preprocessor directive. Function-like
macros are documented in the "Functions" section.

Enumerations

Constants that are defined with enum, excluding those that are members of a
defined type.

Structures

Structures and unions, excluding those that are defined types.

Globals

Global variables.

Within these subsections, each element of the API is presented in a way reminiscent of the
function descriptions:

DECLARED IN The header file where the type, constant, structure, or global variable
is declared.

SYNOPSIS The declaration of the type, enumerated constants, structure, or global
variable, or a table listing symbolic constants. Private fields of a
structure-those that begin with an underscore-are not shown. Fields
of a structure that are shown but are not in bold should not be accessed
or modified in application code.

DESCRIPTION A description of each part of the public API.

SEE ALSO References to other parts of the API

Intro-15

Conventions

Intro-16

Where this manual discusses functions, methods, or other programming elements, it makes
special use of ellipsis, square brackets [], and bold and italic fonts.

Bold denotes words or characters that are to be taken literally (typed as they appear). Italic
denotes words that represent something else or can be varied. For example, the syntax

print expression

means that you follow the word print with any expression.

Square brackets [] mean that the enclosed elements are optional, except when the brackets
are bold [], in which case they're to be taken literally. The exceptions are few and will be
clear from the context. For example,

pointer [filename]

means that you specify a pointer with or without a file name after it, but

[receiver message]

means that you specify a receiver and a message enclosed in square brackets.

Ellipsis (...) indicates that the previous element may be repeated. For example:

Syntax

pointer ...

pointer [, pointer] ...

pointer [filename ...]

pointer [, filename] ...

Allows

One or more pointers

One or more pointers separated by commas

A pointer optionally followed by one or more file names

A pointer optionally followed by a comma and one or
more file names separated by commas

1 Root Class

1-3 Introduction

1-5 Classes
1-6 Object

1-39 Types and Constants
1-41 Defined Types
1-44 Symbolic Constants

1-1

1 Root Class

Library:

Header File Directory:

Import:

IN extDeveloperlHeaders/obj c

objc/Object.h,
appkitlappkit.h,
dbkitldbkit.h,
3Dkitl3Dkit.h, or
the interface file of any class that inherits from Object

Introduction

In the Objective C language, new classes are created as subclasses of an existing class:

@interface NewClass : OldClass

But not every class can be a subclass. The inheritance hierarchy has to start somewhere.
There has to be at least one root class, a class that doesn't inherit from any other class:

@interface RootClass

Theoretically, there can be many different root classes, a separate one for each project or
kit perhaps, or one for each group of closely related classes. However, in practice, all
Objective C inheritance hierarchies are rooted in the same class-the Object class. As you
look at the inheritance diagrams for the various software kits documented in this book,
you'll notice that each one begins with the Object class. For example, the figure on the next
page shows the Object class and part of the Application Kit inheritance hierarchy.

Root Class 1-3

Object ~ :::~nder r ~~:::ion
L Pasteboard L View ------ Text

Figure 1-1. Some Application Kit Classes

Because all classes inherit from the Object class, it can define only general properties that
all objects share. These shared properties are the ones that connect objects to the run-time
system and enable them to behave as objects. For example, the Object class gives all
objects the ability to identify their class and to find which method to use in response to a
message. It provides class objects with methods to create new instances, and instances with
methods to forward messages and archive and copy themselves. In short, the Object class
defines what it is to be an Objective C object.

It's precisely for this reason that Object is used as the universal root class. There's no point
in reinventing object-oriented behavior each time you develop a new class. It's better to
declare a new class as a subclass of Object, or of another class that inherits from Object.

The Object class is the root class used by all NeXTSTEP software kits and the one that
should be used in all NeXTSTEP applications. However, NeXTSTEP includes one other
root class for a special purpose. The NXProxy class, described in Chapter 6, "Distributed
Objects," defines an object that can stand in for, and assume the identity of, another object,
one located in a remote process. By sending messages to the proxy, an application can in
fact communicate with the remote object. NXProxy is a root class only because proxy
objects need to behave differently from all other objects; they can't inherit typical object
behavior. Except for special cases like this, all ordinary objects should inherit from the
Object class.

1-4 Chapter 1: Root Class

Classes

Object

Inherits From: none (Object is the root class)

Declared In: objc/Object.h

Class Description

Object is the root class of all ordinary Objective C inheritance hierarchies; it's the one class
that has no superclass. From Object, other classes inherit a basic interface to the run-time
system for the Objective C language. It's through Object that instances of all classes obtain
their ability to behave as objects.

Among other things, the Object class provides inheriting classes with a framework for
creating, initializing, freeing, copying, comparing, and archiving objects, for performing
methods selected at run-time, for querying an object about its methods and its position in
the inheritance hierarchy, and for forwarding messages to other objects. For example, to
ask an object what class it belongs to, you'd send it a class message. To find out whether
it implements a particular method, you'd send it a respondsTo: message.

The Object class is an abstract class; programs use instances of classes that inherit from
Object, but never of Object itself.

Initializing an Object to Its Class

Every object is connected to the run-time system through its isa instance variable, inherited
from the Object class. isa identifies the object's class; it points to a structure that's
compiled from the class definition. Through isa, an object can find whatever information
it needs at run time-such as its place in the inheritance hierarchy, the size and structure of
its instance variables, and the location of the method implementations it can perform in
response to messages.

Because all objects directly or indirectly inherit from the Object class, they all have this
variable. The defining characteristic of an "object" is that its first instance variable is an isa
pointer to a class structure.

The installation of the class structure-the initialization of isa-is one of the
responsibilities of the alloc, allocFromZone:, and new methods, the same methods that

1-6 Chapter 1: Root Class

create (allocate memory for) new instances of a class. In other words, class initialization
is part of the process of creating an object; it's not left to the methods, such as init, that
initialize individual objects with their particular characteristics.

Instance and Class Methods

Every object requires an interface to the run-time system, whether it's an instance object or
a class object. For example, it should be possible to ask either an instance or a class about
its position in the inheritance hierarchy or whether it can respond to a particular message.

So that this won't mean implementing every Object method twice, once as an instance
method and again as a class method, the run-time system treats methods defined in the root
class in a special way:

Instance methods defined in the root class can be performed both by instances
and by class objects.

A class object has access to class methods-those defined in the class and those inheritied
from the classes above it in the inheritance hierarchy-but generally not to instance
methods. However, the run-time system gives all class objects access to the instance
methods defined in the root class. Any class object can perform any root instance method,
provided it doesn't have a class method with the same name.

For example, a class object could be sent messages to perform Object's respondsTo: and
perform:with: instance methods:

SEL method = @selector(riskAll:);

if ([MyClass respondsTo:method])
[MyClass perform:method with:self];

When a class object receives a message, the run-time system looks first at the receiver's
repertoire of class methods. If it fails to find a class method that can respond to the
message, it looks at the set of instance methods defined in the root class. If the root class
has an instance method that can respond (as Object does for respondsTo: and
perform:with:), the run-time system uses that implementation and the message succeeds.

Note that the only instance methods available to a class object are those defined in the root
class. If MyClass in the example above had reimplemented either respondsTo: or
perform:with:, those new versions of the methods would be available only to instances.
The class object for MyClass could perform only the versions defined in the Object class.
(Of course, if MyClass had implemented respondsTo: or perform:with: as class methods
rather than instance methods, the class would perform those new versions.)

Classes: Object 1-7

Interface Conventions

The Object class defines a number of methods that other classes are expected to override.
Often, Object's default implementation simply returns self. Putting these "empty" methods
in the Object class serves two purposes:

• It means that every object can readily respond to certain standard messages, such as
awake or ioit, even if the response is to do nothing It's not necessary to check (using
respondsTo:) before sending the message.

• It establishes conventions that, when followed by all classes, make object interactions
more reliable. These conventi(~ms are explained in full under the method descriptions.

Sometimes a method is merely declared in the Object class; it has no implementation, not
even the empty one of returning self. These "unimplemented" methods serve the same
purpose-defining an interface convention-as Object's "empty" methods. When
implemented, they enable objects to respond to system-generated messages.

Instance Variables

Class isa;

isa A pointer to the instance's class structure.

Method Types

Initializing the class + initialize

Creating, copying, and freeing instances
+ alloc
+ allocFromZone:
+ new
-copy
- copyFromZone:
-zone
-free
+ free

Initializing a new instance - init

1-8 Chapter 1: Root Class

Identifying classes + name
+ class
- class
+ superclass
- superclass

Identifying and comparing instances
- isEqual:
-hash
- self
-name
- printForDebugger:

Testing inheritance relationships
- isKindOf:
- isKindOfClassN amed:
- isMemberOf:
- isMemberOfClassNamed:

Testing class functionality - respondsTo:
+ instancesRespondTo:

Testing for protocol conformance
+ conformsTo:
- conformsTo:

Sending messages determined at run time
- perform:
- perform:with:
- perform: with: with:

Forwarding messages - forward::
- performv::

Obtaining method information - methodFor:

Posing

Enforcing intentions

Error handling

Dynamic loading

+ instanceMethodFor:
- descriptionForMethod:
+ descriptionForlnstanceMethod:

+ poseAs:

- notlmplemented:
- subclassResponsibility:

- doesN otRecognize:
- error:

+ finishLoading:
+ startUnloading

Classes: Object 1-9

Archiving

Class Methods

alloc

+ alloc

- read:
- write:
- startArchiving:
- awake
- finishUnarchiving
+ setVersion:
+ version

Returns a new instance of the receiving class. The isa instance variable of the new object
is initialized to a data structure that describes the class; memory for all other instance
variables is set to O. A version of the init method should be used to complete the
initialization process. For example:

id newObject = [[TheClass allocl initl;

Other classes shouldn't override alloc to add code that initializes the new instance. Instead,
class-specific versions of the init method should be implemented for that purpose. Versions
of the new method can also be implemented to combine allocation and initialization.

Note: The alloc method doesn't invoke allocFrornZone:. The two methods work
independently.

See also: + allocFrornZone:, - init, + new

allocFromZone:

+ allocFrornZone:(NXZone *)zone

Returns a new instance of the receiving class. Memory for the new object is allocated from
zone.

The isa instance variable of the new object is initialized to a data structure that describes
the class; memory for its other instance variables is set to O. A version of the init method
should be used to complete the initialization process. For example:

id newObject = [[TheClass allocFromZone:someZonel initl;

The allocFrornZone: method shouldn't be overridden to include any initialization code.
Instead, class-specific versions of the init method should be implemented for that purpose.

1-10 Chapter 1: Root Class

When one object creates another, it's often a good idea to make sure they're both allocated
from the same region of memory. The zone method can be used for this purpose; it returns
the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocFromZone: [self zone]] init] i

See also: + alloc, - zone, - init

class

+ class

Returns self. Since this is a class method, it returns the class object.

When a class is the receiver of a message, it can be referred to by name. In all other cases,
the class object must be obtained through this, or a similar method. For example, here
SomeClass is passed as an argument to the isKindOf: method:

BOOL test = [self isKindOf: [SomeClass class]] i

See also: - name, - class

conformsTo:

+ (BOOL)conformsTo:(Protocol *)aProtocol

Returns YES if the receiving class conforms to aProtocol, and NO if it doesn't.

A class is said to "conform to" a protocol if it adopts the protocol or inherits from another
class that adopts it. Protocols are adopted by listing them within angle brackets after the
interface declaration. Here, for example, MyClass adopts the imaginary
AffiliationRequests and Normalization protocols:

@interface MyClass : Object <AffiliationRequests, Normalization>

A class also conforms to any protocols that are incorporated in the protocols it adopts or
inherits. Protocols incorporate other protocols in the same way that classes adopt them.
For example, here the AffiliationRequests protocol incorporates the Joining protocol:

@protocol AffiliationRequests <Joining>

When a class adopts a protocol, it must implement all the methods declared in the protocol
(and in any protocols incorporated in the protocol it adopts). In the example above,
MyClass must implement the methods in the AffiliationRequests, Joining, and
Normalization protocols. When this convention is followed and all the methods in adopted
protocols are in fact implemented, the conformsTo: test for a set of methods becomes
roughly equivalent to the respondsTo: test for a single method.

Classes: Object 1-11

However, this method judges conformance solely on the basis of the formal declarations in
source code, as illustrated above. It doesn't check to see whether the methods declared in
the protocol are actually implemented. It's the programmer's responsibility to see that
they are.

The Protocol object required as this method's argument can be specified using the
@protocolO directive:

BOOL canJoin = [MyClass conformsTo:@protocol(Joining)]

The Protocol class is documented in Chapter 15, "Run-Time System."

See also: - conformsTo:

descriptionForlnstanceMethod:

+ (struct objc_method_description *)

descriptionForlnstanceMethod:(SEL)aSelector

Returns a pointer to a structure that describes the aSelector instance method, or NULL if
the aSelector method can't be found. To ask the class for a description of a class method,
or an instance for the description of an instance method, use the descriptionForMethod:
instance method.

See also: - descriptionForMethod:

finishLoading:

+ finishLoading:(struct mach_header *)header

Implemented by subclasses to integrate the class, or a category of the class, into a running
program. A finishLoading: message is sent immediately after the class or category has
been dynamically loaded into memory, but only if the newly loaded class or category
implements a method that can respond. header is a pointer to the structure that describes
the modules that were just loaded.

Once a dynamically loaded class is used, it will also receive an initialize message.
However, because the finishLoading: message is sent immediately after the class is loaded,
it always precedes the initialize message; which is sent only when the class receives its first
message from within the program.

A finishLoading: method is specific to the class or category where it's defined; it's not
inherited by subclasses or shared with the rest of the class. Thus a class that has four
categories can define a total of five finishLoading: methods, one in each category and one
in the main class definition. The method that's performed is the one defined in the class or
category just loaded.

1-12 Chapter 1: Root Class

There's no default finishLoading: method. The Object class declares a prototype for this
method, but doesn't implement it.

See also: + startUnloading

free

+ free

Returns nil. This method is implemented to prevent class objects, which are "owned" by
the run-time system, from being accidentally freed. To free an instance, use the instance
method free.

See also: - free

initialize

+ initialize

Initializes the class before it's used (before it receives its first message). The run-time
system generates an initialize message to each class just before the class, or any class that
inherits from it, is sent its first message from within the program. Each class object receives
the initialize message just once. Superclasses receive it before subclasses do.

For example, if the first message your program sends is this,

[Application new]

the run-time system will generate these three initialize messages,

[Object initialize];

[Responder initialize];

[Application initialize];

since Application is a subclass of Responder and Responder is a subclass of Object. All
the initialize messages precede the new message and are sent in the order of inheritance,
as shown.

If your program later begins to use the Text class,

[Text instancesRespondTo:someSelector]

the run-time system will generate these additional initialize messages,

[View initialize];

[Text initialize];

Classes: Object 1-13

since the Text class inherits from Object, Responder, and View. The instancesRespondTo:
message is sent only after all these classes are initialized. Note that the initialize messages
to Object and Responder aren't repeated; each class is initialized only once.

You can implement your own versions of initialize to provide class-specific initialization
as needed.

Because initialize methods are inherited, it's possible for the same method to be invoked
many times, once for the class that defines it and once for each inheriting class. To prevent
code from being repeated each time the method is invoked, it can be bracketed as shown in
the example below:

+ initialize

if (self == [MyClass class])
/* put initialization code here */

return self;

Since the run-time system sends a class just one initialize message, the test shown in the
example above should prevent code from being invoked more than once. However, if for
some reason an application also generates initialize messages, a more explicit test may be
needed:

+ initialize

static BOOL tooLate = NO;
if (!tooLate) {

/* put initialization code here */

tooLate = YES;

return self;

See also: - init, - class

instanceMethodFor:

+ (IMP)instanceMethodFor:(SEL)aSelector

Locates and returns the address of the implementation of the aSelector instance method.
An error is generated if instances of the receiver can't respond to aSelector messages.

1-14 Chapter 1: Root Class

This method is used to ask the class object for the implementation of an instance method.
To ask the class for the implementation of a class method, use the instance method
methodFor: instead of this one.

instanceMethodFor:, and the function pointer it returns, are subject to the same
constraints as those described for methodFor:.

See also: - methodFor:

instancesRespondTo:

+ (BOOL)instancesRespondTo:(SEL)aSelector

Returns YES if instances of the class are capable of responding to aSelector messages, and
NO if they're not. To ask the class whether it, rather than its instances, can respond to a
particular message, use the respondsTo: instance method instead of
instancesRespondTo: .

If aSelector messages are forwarded to other objects, instances of the class will be able to
receive those messages without error even though this method returns NO.

See also: - respondsTo:, - forward::

name

+ (const char *)name

Returns a null-terminated string containing the name of the class. This information is often
used in error messages or debugging statements.

See also: - name, + class

new

+ new

Creates a new instance of the receiving class, sends it an init message, and returns the
initialized object returned by init.

As defined in the Object class, new is essentially a combination of alloc and init. Like
alloc, it initializes the isa instance variable of the new object so that it points to the class
data structure. It then invokes the init method to complete the initialization process.

Classes: Object 1-15

· Unlike alloc, new is sometimes reimplemented in subclasses to have it inyoke a class­
specific initialization method. If the init method includes arguments, they're typically
reflected in the new method as well. For example:

+ newArg: (int)tag arg: (struct info *)data

return [[self alloc] initArg:tag arg:data]i

However, there's little point in implementing a new .•. method if it's simply a shorthand for
alloc and init .•• , like the one shown above. Often new ••• methods will do more than just
allocation and initialization. In some classes, they manage a set of instances, returning the
one with the requested properties if it already exists, allocating and initializing a new one
only if necessary. For example:

+ newArg: (int)tag arg: (struct info *)data

id theInstancei

if (theInstance = findTheObjectWithTheTag(tag)

return theInstancei

return [[self alloc] initArg:tag arg:data] i

Although it's appropriate to define new new ••• methods in this way, the alloc and
allocFromZone: methods should never be augmented to include initialization code.

See also: - init, + alloc, + allocFromZone:

poseAs:

+ poseAs:aClassObject

Causes the receiving class to "pose as" its superclass, the a Class Object class. The receiver
takes the place of aClassObject in the inheritance hierarchy; all messages sent to
aClassObject will actually be delivered to the receiver. The receiver must be defined as a
subclass of aClassObject. It can't declare any new instance variables of its own, but it can
define new methods and override methods defined in the superclass. The poseAs: message

/

should be sent before any messages are sent/to aClassObject and before any instances of
aClassObject are created.

This facility allows you to add methods to an existing class by defining them in a subclass
and having the subclass substitute for the existing class. The new method definitions will
be inherited by all subclasses of the superclass. Care should be taken to ensure that this
doesn't generate errors.

1-16 Chapter 1: Root Class

A subclass that poses as its superclass still inherits from the superdass. Therefore, none of
the functionality of the superclass is lost in the substitution. Posing doesn't alter the
definition of either class.

Posing is useful as a debugging tool, but category definitions are a less complicated and
more efficient way of augmenting existing classes. Posing admits only two possibilities
that are absent for categories:

• A method defined by a posing class can override any method defined by its superclass.
Methods defined in categories can replace methods defined in the class proper, but they
cannot reliably replace methods defined in other categories'. If two categories define the
same method, one of the definitions will prevail, but there's no guarantee which one.

• A method defined by a posing class can, through a message to super, incorporate the
superclass method it overrides. A method defined in a category can replace a method
defined elsewhere by the class, but it can't incorporate the method it replaces.

If successful, this method returns self. If not, it generates an error message and aborts.

setVersion:

+ setVersion:(int)aVersion

Sets the class version number to a Version, and returns self. The version number is helpful
when instances of the class are to be archived and reused later. The default version is O.

See also: + version

startUnloading

+ startUnloading

Implemented by subclasses to prepare for the class, or a category of the class, being
unloaded from a running program. A startUnloading message is sent immediately before
the class or category is unloaded, but only if the class or category about to be unloaded
implements a method that can respond.

A startUnloading method is specific to the class or category where it's defined; it isn't
inherited by subclasses or shared with the rest of the class. Thus a class that has four
categories can define a total of five startUnloading methods, one in each category and one
in the main class definition. The method that's performed is the one defined in the class or
category that will be unloaded.

Classes: Object 1-17

There's no default startUnloading method. The object class declares a prototype for this
method but doesn't implement it.

See also: + finishLoading:

superclass

+ superclass

Returns the. class object for the receiver's superclass.

See also: + class, - superclass

version

+ (int)version

Returns the version number assigned to the class. If no version has been set, this will be O.

See also: + setVersion:

Instance Methods

awake

-awake

Implemented by subclasses to reinitialize the receiving object after it has been unarchived
(by read:). An awake message is automatically sent to every object after it has been
unarchived and after all the objects it refers to are in a m~able state.

The default version of the method defined here merely returns self.

A class can implement an awake method to provide for more initialization than can be done
in the read: method. Each implementation of awake should limit the work it does to the
scope of the class definition, and incorporate the initialization of classes farther up the
inheritance hierarchy through a message to super. For example:

- awake

[super awake];
/* class-specific initialization goes here */

return self;

All implementations of awake should return self.

1·18 Chapter 1: Root Class

Note: Not all objects loaded from a nib file (created by Interface Builder) are unarchived;
some are newly instantiated. Those that are unarchived receive an awake message, but
those that are instantiated do not. See the Interface Builder documentation in NeXTSTEP
Development Tools for more information.

See also: - read:, - finishUnarchiving, - awakeFromNib (NXNibNotification protocol
in the Application Kit), -loadNibFile:owner: (Application class in the Application Kit)

class

- class

Returns the class object for the receiver's class.

See also: + class

conformsTo:

- (BOOL)conformsTo: (Protocol *)aProtocol

Returns YES if the class of the receiver conforms to aProtocol, and NO if it doesn't. This
method invokes the conformsTo: class method to do its work. It's provided as a
convenience so that you don't need to get the class object to find out whether an instance
can respond to a given set of messages.

See also: + conformsTo:

copy

-copy

Returns a new instance that's an exact copy of the receiver. This method cr¢ates only one
new object. If the receiver has instance variables that point to other object&' the instance
variables in the copy will point to the same objects. The values of the instalJ:te variables
are copied, but the objects they point to are not.

This method does its work by invoking the copyFromZone: method and specifying that
the copy should be allocated from the same memory zone as the receiver. If a subclass
implements its own copyFromZone: method, this copy method will use it to copy
instances of the subclass. Therefore, a class can support copying from both methods just
by implementing a class-specific version of copyFromZone:.

See also: - copyFromZone:

Classes: Object 1-19

copyFromZone:

- copyFromZone:(NXZone *)zone

Returns a new instance that's an exact copy of the receiver. Memory for the new instance
is allocated from zone.

This method creates only one new object. If the receiver has instance variables that point
to other objects, the instance variables in the copy will point to the same objects. The
values of the instance variables are copied, but the objects they point to are not.

Subclasses should implement their own versions of copyFromZone:, not copy, to define
class-specific copying.

See also: - copy, - zone

descriptionForMethod:

- (struct objc_method_description *)descriptionForMethod:(SEL)aSelector

Returns a pointer to a structure that describes the aSelector method, or NULL if the
aSelector method can't be found. When the receiver is an instance, aSelector should be an
instance method; when the receiver is a class, it should be a class method.

The objc_method_description structure is declared in objclProtocol.h, and is mostly
used in the implementation of protocols. It includes two fields-the selector for the method
(which will be the same as aSelector) and a character string encoding the method's return
and argument types:

struct objc_method_description
SEL namej

char *typesj
} j

Type information is encoded according to the conventions of the @encodeO directive, but
the string also includes information about total argument size and individual argument
offsets. For example, if descriptionForMethod: were asked for a description of itself, it
would return this string in the types field:

A{objc_method_description=:*}12@8:12:16

This records the fact that descriptionForMethod: returns a pointer ('A') to a structure
(" { ... }") and that it pushes a total of 12 bytes on the stack. The structure is called
"objc_method_description" and it consists of a selector (':') and a character pointer ('*').
The first argument, self, is an object ('@') at an offset of 8 bytes from the stack pointer, the
second argument, _cmd, is a selector (':') at an offset of 12 bytes, and the third argument,
aSelector, is also a selector but at an offset of 16 bytes. The first two arguments-self for

1 ~20 Chapter 1: Root Class

the message receiver and _cmd for the method selector-are passed to every method
implementation but are hidden by the Objective C language.

The type codes used for methods declared in a class or category are:

Meaning Code

id '@'

Class '#'
SEL '.'
void 'v'
char 'c'
unsigned char 'C'
short 's'
unsigned short 'S'
int 'i'
unsigned int 'I'
long '1'
unsigned long 'L'
float 'f'
double 'd'
char * '*'

any other pointer 'A'

an undefined type '1'
a bitfield 'b'
begin an array '['
end an array ']'
begin a union 'C
end a union ')'
begin a structure '{'
end a structure '}'

The same codes are used for methods declared in a protocol, but with these additions for
type modifiers:

const 'r'
in 'n'
inout 'N'
out '0'

bycopy '0'
oneway 'V'

See also: + descriptionForlnstanceMethod:, - descriptionForClassMethod:
(Protocol class in the Run-Time System), - descriptionForlnstanceMethod (Protocol
class in the Run-Time System)

Classes: Object 1-21

doesNotRecognize:

- doesNotRecognize:(SEL)aSelector

Handles aSelector messages that the receiver doesn't recognize. The run-time system
invokes this method whenever an object receives an aSelector message that it can't respond
to or forward. This method, in tum, invokes the error: method to generate an error
message and abort the current process.

doesNotRecognize: messages should be sent only by the run-time system. Although
they're sometimes used in program code to prevent a method from being inherited, it's
better to use the error: method directly. For example, an Object subclass might renounce
the copy method by reimplementing it to include an error: message as follows:

- copy

[self error:" %s objects should not be sent '%s' messages\n",
[[self class] name], sel_getName(_cmd)];

This code prevents instances of the subclass from recognizing or forwarding copy
messages-although the respondsTo: method will still report that the receiver has access
to a copy method.

(The _cmd variable identifies the current selector; in the example above, it identifies the
selector for the copy method. The sel_getNameO function returns the method name
corresponding to a selector code; in the example, it returns the name "copy".)

See also: - error:, - subclassResponsibility:, + name

error:

- error:(const char *)aString, ...

Generates a formatted error message, in the manner of printfO, from aString followed by
a variable number of arguments. For example:

[self error: "index %d exceeds limit %d\n", index, limit];

The message specified by aString is preceded by this standard prefix (where class is the
name of the receiver's class):

"error: class "

This method doesn't return. It calls the run-time _error function, which first generates the
error message and then calls abortO to create a core file and terminate the process.

See also: - subclassResponsibility:, - notImplemented:, - doesNotRecognize:

1-22 Chapter 1: Root Class

finish U narchiving

- finishUnarchiving

Implemented by subclasses to replace an unarchived object with a new object if necessary.
A finishUnarchiving message is sent to every object after it has been unarchived (using
read:) and initialized (by awake), but only if a method has been implemented that can
respond to the message.

The finishUnarchiving message gives the application an opportunity to test an unarchived
and initialized object to see whether it's usable, and, if not, to replace it with another object
that is. This method should return nil if the un archived instance (self) is OK; otherwise, it
should free the receiver and return another object to take its place.

There's no default implementation of the finishUnarc~iving method. The Object class
declares this method, but doesn't define it.

See also: - read:, - awake, - startArchiving:

forward::

- forward:(SEL)aSelector :(marg.:-Jist)argFrame

Implemented by subclasses to forward messages to other objects. When an object is sent
an aSelector message, and the run-time system can't find an implementation of the method
for the receiving object, it sends the object a forward:: message to give it an opportunity
to delegate the message to another receiver. (If the delegated receiver can't respond to the
message either, it too will be given a chance to forward it.)

The forward:: message thus allows an object to establish relationships with other objects
that will, for certain messages, act on its behalf. The forwarding object is, in a sense, able
to "inherit" some of the characteristics of the object it forwards the message to.

A forward:: message is generated only if the aSelector method isn't implemented by the
receiving object's class or by any of the classes it inherits from.

An implementation of the forward:: method has two tasks:

• To locate an object that can respond to the aSelectormessage. This need not be the same
object for all messages.

• To send the message to that object, using the performv:: method.

Classes: Object 1-23

In the simple case, in which an object forwards messages to just one destination (such as
the hypothetical friend instance variable in the example below), a forward:: method could
be as simple as this:

- forward: (SEL)aSelector : (marg_list)argFrame

if ([friend respon9sTo:aSelector])

return [friend performv:aSelector :argFrame] ;

[self doesNotRecognize:aSelector] ;

argFrame is a pointer to the arguments included in the original aSelector message. It's
passed directly to performv:: without change. (However, argFrame does not correctly
capture variable arguments. Messages that include a variable argument list-for example,
messages to perform Object's error: method-cannot be forwarded.)

(Note that in the example forward:: returns unchanged the value returned by performv::.
Since forward:: returns a pointer, specifically an id, the aSelector method must also be one
that returns a pointer (or void). Methods that return other types cannot be reliably
forwarded.)

Implementations of the forward:: method can do more than just forward messages.
forward:: can, for example, be used to consolidate code that responds to a variety of
different messages, thus avoiding the necessity of having to write a separate method for
each selector. A forward:: method might also involve several other objects in the response
to a given message, rather than forward it to just one.

The default version of forward:: implemented in the Object class simply invokes the
doesNotRecognize: method; it doesn't forward messages. Thus, if you choose not to
implement forward::, unrecognized messages will generate an error and cause the task to
abort.

See also: - performv::, - doesNotRecognize:

free

-free

Frees the memory occupied by the receiver and returns nil. Subsequent messages to the
object will generate an error indicating that a message was sent to a freed object (provided
that the freed memory hasn't been reused yet).

1-24 Chapter 1: Root Class

Subclasses must implement their own versions of free to deallocate any additional memory
consumed by the object-such as dynamically allocated storage for data, or other objects
that are tightly coupled to the freed object and are of no use without it. After performing
the class-specific deallocation, the subclass method should incorporate superclass versions
of free through a message to super:

- free {
[companion free];
free (privateMemory) ;
Vffi_deallocate(task_self(), sharedMemory, memorySize);
return [super free];

If, under special circumstances, a subclass version of free refuses to free the receiver, it
should return self instead of nil. Object's default version of this method always frees the
receiver and always returns nil. It calls object_deallocateO to accomplish the
deallocation.

hash

- (unsigned int)hash

Returns an unsigned integer that's derived from the id of the receiver. The integer is
guaranteed to always be the same for the same id.

See also: - isEqual:

init

-init

Implemented by subclasses to initialize a new object (the receiver) immediately after
memory for it has been allocated. An init message is generally coupled with an alloc or
allocFromZone: message in the same line of code:

id newObject = [[TheClass alloc] init];

An object isn't ready to be used until it has been initialized. The version of the init method
defined in the Object class does no initialization; it simply returns self.

Subclass versions of this method should return the new object (self) after it has been
successfully initialized. If it can't be initialized, they should free the object and return nil.
In some cases, an init method might free the new object and return a substitute. Programs
should therefore always use the object returned by init, and not necessarily the one returned
by alloc or allocFromZone:, in subsequent code.

Classes: Object 1-25

Every class must guarantee that the init method returns a fully functional instance of the
class. Typically this means overriding the method to add class-specific initialization code.
Subclass versions of init need to incorporate the initialization code for the classes they
inherit from, through a message to super:

- init

[super init];

/* class-specific initialization goes here */

return self;

Note that the message to super precedes the initialization code added in "the method. This
ensures that initialization proceeds in the order of inheritance.

Subclasses often add arguments to the init method to allow specific values to be set. The
more arguments a method has, the more freedom it gives you to determine the character of
initialized objects. Classes often have a set of init ... methods, each with a different number
of arguments. For example:

- init;

- initArg: (int)tag;

- initArg: (int)tag arg: (struct info *)data;

The convention is that at least one of these methods, usually the one with the most
arguments, includes a message to super to incorporate the initialization of classes higher
up the hierarchy. This method is the designated initializer for the class. The other init ...
methods defined in the class directly or indirectly invoke the designated initializer through
messages to self. In this way, all init ... methods are chained together. For example:

- init

return [self initArg:-l];

- initArg: (int)tag

return [self initArg:tag arg:NULL];

- initArg: (int)tag arg: (struct info *)data

[super init. . .];

/* class-specific initialization goes here */

1-26 Chapter 1: Root Class

In this example, the initArg:arg: method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated initializer.
This method should begin by sending a message to super to perform the designated
initializer of its superclass. Suppose, for example, that the three methods illustrated above
are defined in the B class. The C class, a subclass of B, might have this designated
initializer:

- initArg: (int)tag arg: (struct info *)data arg:anObject

[super initArg:tag arg:data] ;

/* class-specific initialization goes here */

If inherited init .•• methods are to successfully initialize instances of the subclass, they must
all be made to (directly or indirectly) invoke the new designated initializer. To accomplish
this, the subclass is obliged to cover (override) only the designated initializer of the
superclass. For example, in addition to its designated initializer, the C class would also
implement this method:

- initArg: (int)tag arg: (struct info *)data

return [self initArg:tag arg:data arg:nil];

This ensures that all three methods inherited from the B class also work for instances of the
C class.

Often the designated initializer of the subclass overrides the designated initializer of the
superclass. If so, the subclass need only implement the one init •.. method.

These conventions maintain a direct chain of init ... links, and ensure that the new method
and all inherited init ..• methods return usable, initialized objects. They also prevent the
possibility of an infinite loop wherein a subclass method sends a message (to super) to
perform a superclass method, which in tum sends a message (to self) to perform the
subclass method.

This init method is the designated initializer for the Object class. Subclasses that do their
own initialization should override it, as described above.

See also: + new, + alloc, + allocFromZone:

Classes: Object 1-27

isEqual:
- (BOOL)isEqual:anObject

Returns YES if the receiver is the same as anObject, and NO if it isn't. This is determined
by comparing the id of the receiver to the id of anObject.

Subclasses may need to override this method to provide a different test of equivalence. For
example, in some contexts, two objects might be said to be the same if they're both the
same kind of object and they both contain the same data:

- (BOOL)isEqual:anObject

if (anObject == self
return YES;

if ([anObject isKindOf: [self class]]) {
if (!strcmp(stringData, [anObject stringData])

return YES;

return NO;

isKindOf:
- (BOOL)isKindOf:aClassObject

Returns YES if the receiver is an instance of aClassObject or an instance of any class that
inherits from aClassObject. Otherwise, it returns NO. For example, in this code
isKindOf: would return YES because, in the Application Kit, the Menu class inherits from
Window:

id aMenu = [[Menu alloc] init];
if ([aMenu isKindOf: [Window class]]

When the receiver is a class object, this method returns YES if aClassObject is the Object
class, and NO otherwise.

See also: - isMemberOf:

1-28 Chapter 1: Root Class

isKindOfClassNamed:
- (BOOL)isKindOfClassNamed:(const char *)aClassName

Returns YES if the receiver is an instance of aClassName or an instance of any class that
inherits from aClassName. This method is the same as isKindOf:, except it takes the class
name, rather than the class id, as its argument.

See also: - isMemberOfClassNamed:

isMemberOf:
- (BOOL)isMemberOf:aClassObject

Returns YES if the receiver is an instance of aClassObject. Otherwise, it returns NO. For
example, in this code, isMemberOf: would return NO:

id aMenu = [[Menu alloc] init]i
if ([aMenu isMernberOf: [Window class]])

When the receiver is a class object, this method returns NO. Class objects are not
"members of' any class.

See also: - is Kind Of:

isMemberOfClassNamed:

- (BOOL)isMemberOfClassNamed:(canst char *)aClassName

Returns YES if the receiver is an instance of aClassName, and NO if it isn't. This
method is the same as isMemberOf:, except it takes the class name, rather than the class
id, as its argument.

See also: - isKindOfClassNamed:

methodFor:
- (lMP)methodFor:(SEL)aSelector

Locates and returns the address of the receiver's implementation of the aSelector method,
so that it can be called as a function. If the receiver is an instance, aSelector should refer
to an instance method; if the receiver is a class, it should refer to a class method.

Classes: Object 1-29

aSelector must be a valid, nonNULL selector. If in doubt, use the respondsTo: method to
check before passing the selector to methodFor:.

IMP is defined (in the objc/objc.h header file) as a pointer to a function that returns an id
and takes a variable number of arguments (in addition to the two "hidden" arguments-self
and _cmd-that are passed to every method implementation):

typedef id (*IMP) (id , SEL, ...);

This definition serves as a prototype for the function pointer that methodFor: returns. It's
sufficient for methods that return an object and take object arguments. However, if the
aSelector method takes different argument types or returns anything but an id, its function
counterpart will be inadequately prototyped. Lacking a prototype, the compiler will
promote floats to doubles and chars to ints, which the implementation won't expect. It
will therefore behave differently (and erroneously) when called as a function than when
performed as a method.

To remedy this situation, it's necessary to provide your own prototype. In the example
below, the declaration of the test variable serves to prototype the implementation of the
isEqual: method. test is defined as pointer to a function that returns a BOOL and takes an
id argument (in addition to the two "hidden" arguments). The value returned by
methodFor: is then similarly cast to be a pointer to this same function type:

BOOL (*test) (id , SEL, id);

test = (BOOL (*) (id , SEL, id)) [target rnethodFor:@selector(isEqual:)];

while !test(target / @selector(isEqual:) I sorneObject)) {

In some cases, it might be clearer to define a type (similar to IMP) that can be used both for
declaring the variable and for casting the function pointer methodFor: returns. The
example below defines the EqualIMP type for just this purpose:

typedef BOOL (*EqualIMP) (id , SEL, id);

EqualIMP test;

test = (EqualIMP) [target rnethodFor:@selector(isEqual:)];

while !test(target / @selector(isEqual:) I sorneObject))

1-30 Chapter 1: Root Class

Either way, it's important to cast methodFor:'s return value to the appropriate function
type. It's not sufficient to simply call the function returned by methodFor: and cast the
result of that call to the desired type. This can result in errors.

Note that turning a method into a function by obtaining the address of its implementation
"unhides" the self and _cmd arguments.

See also: + instanceMethodFor:

name

- (const char *)name

Implemented by subclasses to return a name associated with the receiver.

By default, the string returned contains the name of the receiver's class. However, this
method is commonly overridden to return a more object-specific name. You should
therefore not rely on it to return the name of the class. To get the name of the class, use the
class name method instead:

const char *classname = [[self class] name] i

See also: + name, + class

notlmplemented:

- notImplemented:(SEL)aSelector

U sed in the body of a method definition to indicate that the programmer intended to
implement the method, but left it as a stub for the time being. aSelector is the selector for
the unimplemented method; notImplemented: messages are sent to self. For example:

- methodNeeded

[self notImplemented:_cmd] i

When a methodNeeded message is received, notImplemented: will invoke the error:
method to generate an appropriate error message and abort the process. (In this example,
_cmd refers to the methodNeeded selector.)

See also: - subclassResponsibility:, - error:

Classes: Object 1-31

perform:
- perform:(SEL)aSelector

Sends an aSelector message to the receiver and returns the result of the message. This is
equivalent to sending an aSelector message directly to the receiver. For example, all three
of the following messages do the same thing:

id myClone [anObj ect copy];

id myClone = [anObject perform:@selector(copy)];
id myClone = [anObject perform:sel_getUid(lcopy")];

However, the perform: method allows you to send messages that aren't determined until
run time. A variable selector can be passed as the argument:

SEL myMethod = findTheAppropriateSelectorForTheCurrentSituation();
[anObject perform:myMethod];

aSelector should identify a method that takes no arguments. If the method returns anything
but an object, the return must be cast to the correct type. For example:

char *myClass;
myClass = (char *) [anObject perform:@selector(name)];

Casting generally works for pointers and for integral types that are the same size as pointers
(such as int and enum). Whether it works for other integral types (such as char, short, or
long) is machine dependent. Casting doesn't work if the return is a floating type (float or
double) or a structure or union. This is because the C language doesn't permit a pointer
(like id) to be cast to these types.

Therefore, perform: shouldn't be asked to perform any method that returns a floating type,
structure, or union, and should be used very cautiously with methods that return integral
types. An alternative is to get the address of the method implementation (using
methodFor:) and call it as a function. For example:

SEL aSelector @selector(backgroundGray);

float aGray = ((float (*) (id, SEL))
[anObject methodFor:aSelector]) (anObject, aSelector);

See also: - perform:with:, - perform:with:with:, - methodFor:

1-32 Chapter 1: Root Class

perform:with:

- perform:(SEL)aSelector with:anObject

Sends an aSelector message to the receiver with anObject as an argument. This method is
the same as perform:, except that you can supply an argument for the aSelector message.
aSelector should identify a method that takes a single argument of type id.

See also: - perform:, - perform:with:afterDelay:canceIPrevious: (Application Kit
Object Additions)

perform :with:with:

- perform:(SEL)aSelector
with:anObject
with:anotherObject

Sends the receiver an aSelector message with anObject and anotherObject as arguments.
This method is the same as perform:, except that you can supply two arguments for the
aSelector message. aSelector should identify a method that can take two arguments of
type id.

See also: - perform:

performv::

- performv:(SEL)aSelector :(marg_list)argFrame

Sends the receiver an aSelector message with the arguments in argFrame. performv::
messages are used within implementations of the forward:: method. Both arguments,
aSelector and argFrame, are identical to the arguments the run-time system passes to
forward::. They can be taken directly from that method and passed through without
change to performv::.

performv:: should be -restricted to implementations of the forward:: method. Because it
doesn't restrict the number of arguments in the aSelector message or their type, it may seem
like a more flexible way of sending messages than perform:, perform:with:, or
perform:with:with:. However, it's not an appropriate substitute for those methods. First,
it's more expensive than they are. The run-time system must parse the arguments in
argFrame based on information stored for aSelector. Second, in future releases,
perform v:: may not work in contexts other than the forward:: method.

See also: - forward::, - perform:

Classes: Object 1-33

pri ntForDebugger:

- (void)printForDebugger:(NXStream *)stream

Implemented by subclasses to write a useful description of the receiver to stream. Object's
default version of this method provides the class name and the hexadecimal address of the
receiver, formatted as follows:

<classname: Oxaddress>

Debuggers can use this method to ask objects to identify themselves.

read:

- read:(NXTypedStream *)stream

Implemented by subclasses to read the receiver's instance variables from the typed stream
stream. You need to implement a read: method for any class you create, if you want its
instances (or instance of classes that inherit from it) to be archivable.

The method you implement should unarchive the instance variables defined in the class in
a manner that matches they way they were archived by write:. In each class, the read:
method should begin with a message to super:

- read: (NXTypedStream *)stream

[super read: stream] ;

/* class-specific code goes here */

return self;

This ensures that all inherited instance variables will also be unarchived.

All implementations of the read: method should return self.

After an object has been read, it's sent an awake-message so that it can reinitialize itself,
and may also be sent a finishUnarchiving message.

See also: - awake, - finishUnarchiving, - write:

respondsTo:

- (BOOL)respondsTo:(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can respond to aSelector
messages, and NO if it doesn't. The application is responsible for determining whether a
NO response should be considered an error.

1-34 Chapter 1: Root Class

Note that if the receiver is able to forward the aSelector message to another object, it will
be able to respond to the message (albeit indirectly), even though this method returns NO.

See also: - forward::, + instancesRespondTo:

self

- self

Returns the receiver.

See also: + class

startArchiving:

- startArchiving:(NXTypedStream *)stream

Implemented by subclasses to prepare an object for being archived-that is, for being
written to the typed stream stream. A startArchiving: message is sent to an object just
before it's archived-but only if it implements a method that can respond. The message
gives the object an opportunity to do anything necessary to get itself, or the stream, ready
before a write: message begins the archiving process.

There's no default implementation of the startArchiving: method. The Object class
declares the method, but doesn't define it.

See also: - awake, - finishUnarchiving, - write:

subclassResponsibility:

- subclassResponsibility:(SEL)aSelector

U sed in an abstract class to indicate that its subclasses are expected to implement aSelector
methods. If a subclass fails to implement the method, it will inherit it from the abstract
superclass. That version of the method generates an error when it's invoked. To avoid the
error, subclasses must override the superclass method.

For example, if subclasses are expected to implement doSomething methods, the
superclass would define the method this way:

- doSomething

[self subclassResponsibility:_cmd]i

Classes: Object 1·35

When this version of doSomething is invoked, subclassResponsibility: will-by in tum
invoking Object's error: method-abort the process and generate an appropriate error
message.

(The _cmd variable identifies the current method selector, just as self identifies the current
receiver. In the example above, it identifies the selector for the doSomething method.)

Subclass implementations of the aSelector method shouldn't include messages to super to
incorporate the superclass version. If they do, they'll also generate an error.

See also: - doesNotRecognize:, - notImplemented:, - error:

superclass

- superclass

Returns the class object for the receiver's superclass.

See also: + superclass

write:

- write:(NXTypedStream *)stream

Implemented by subclasses to write the receiver's instance variables to the typed stream
stream. You need to implement a write: method for any class you create, if you want to be
able to archive its instances (or instances of classes that inherit from it).

The method you implement should archive only the instance variables defined in the class,
but should begin with a message to super so that all inherited instance variables will also
be archived:

- write: (NXTypedStream *)stream

[super write: stream] ;

/* class-specific archiving code goes here */

return self;

All implementations of the write: method should return self.

During the archiving process, write: methods may be performed twice, so they shouldn't
do anything other than write instance variables to a typed stream.

See also: - read:, - startArchiving:

1-36 Chapter 1: Root Class

zone

- (NXZone *)zone

Returns a pointer to the zone from which the receiver was allocated. Objects created
without specifying a zone are allocated from the default zone, which is returned by
NXDefaultMallocZoneO.

See also: + allocFromZone:, + alloc, + copyFromZone:

Classes: Object 1-37

Types and Constants

The objc.h header file defines the principal data types for the Objective C language.
Because it's imported by Object.h, and Object.h is indirectly imported whenever you use
an Objective C class, its definitions are always available.

Other, lesser used, types and constants are documented in Chapter 15, "Run-Time System."

1-40 Chapter 1: Root Class

Defined Types

BOOl

DECLARED IN objc/objc.h

SYNOPSIS typedef char BOOL;

DESCRIPTION This type carries the basic boolean distinction between YES and NO (true and false).

Class

DECLARED IN objc/objc.h

SYNOPSIS typedef struct objc_class *Class;

DESCRIPTION Class is the data type for class objects. The objc_c1ass structure it refers to holds
information compiled from the class definition; details of its contents can be found in
Chapter 15, "Run-Time System."

Every object has an isa instance variable of this type, which enables the object to identify
its class.

Class objects can also be assigned to type id. But just as instances of a class can be
statically typed by using the class name, class objects can be more particularly typed with
the Class data type.

Types and Constants: BOOL 1-41

id

DECLARED IN objc/objc.h

SYNOPSIS typedef struct objc_object {
Class isa;

} *id;

DESCRIPTION The id data type designates an Objective C object of any class. All objects, including both
instances and class objects, can be assigned to this type.

IMP

DECLARED IN objc/objc.h

SYNOPSIS typedefid (*IMP) (id, SEL, ...);

DESCRIPTION This is the data type returned by Object's methodFor: method to identify a method
implementation. It's defined as a pointer to a function that returns an id and takes an object
(self) and a selector (_cmd) as its first two arguments.

SEL

DECLARED IN objc/objc.h

SYNOPSIS typedef struct objc_selector *SEL;

DESCRIPTION The SEL type identifies method selectors. Valid SEL values are assigned only by the
run-time system. They are never O.

1·42 Chapter 1: Root Class

STR

DECLARED IN objc/objc.h

SYNOPSIS typedef char *STR;

DESCRIPTION This type is a rarely used shorthand for a character string. It's mainly of historical interest.

Types and Constants: STR 1-43

SYl11bolic Constants

Boolean Constants

DECLARED IN objc/objc.h

SYNOPSIS YES
NO

(BOOL)1
(BOOL)O

DESCRIPTION YES and NO are the standard values assigned to BOOL variables.

Empty Objects

DECLARED IN objc/objc.h

SYNOPSIS nil
Nil

(id)O
(Class)O

DESCRIPTION nil is the common notation for a NULL object. Nil is sometimes used for a NULL class
object, but nil typically serves this purpose as well.

1-44 Chapter 1: Root Class

2 Application Kit

2-5 Introduction
2-6 Application Kit Classes and Protocols
2-8 Encapsulating an Application
2-8 General Drawing and Event Handling
2-8 Menus and Cursors
2-8 Grouping and Scrolling Views
2-9 Controlling an Application
2-9 Text and Fonts
2-9 Graphics and Color
2-10 Printing and Faxing
2-10 Accessing the File System
2-10 Sharing Data with Other Applications
2-10 Spell-Checking
2-11 J oumaling and Help
2-11 Application Kit Functions
2-11 Drawing and Graphic Geometry
2-12 Images
2-12 Colors
2-13 Text, Fonts, and Characters
2-13 Windows and Screen Devices
2-13 Attention Panels
2-14 Events
2-14 The File System and Operating Environment
2-14 Pasteboard Functions
2-14 Archiving
2-15 Named Objects
2-15 Services, Data Links, and Remote Messages

2-1

2-15 Error Handling and Debugging
2-16 Allocating Memory

2-17 Classes
2-18 ActionCell
2-26 Application
2-74 Box
2-83 Button
2-98 ButtonCell
2-120 Cell
2-150 ClipView
2-161 Control
2-180 Font
2-191 FontManager
2-203 FontPanel
2-209 Form
2-220 FormCell
2-226 Listener
2-244 Matrix
2-282 Menu
2-291 MenuCell
2-295 NXBitmaplmageRep
2-314 NXBrowser
2-345 NXBrowserCell
2-350 NXCachedlmageRep
2-353 NXColorList
2-360 NXColorPanel
2-369 NXColorPicker
2-373 NXColorWell
2-380 NXCursor
2-387 NXCustomlmageRep
2-390 NXDataLink
2-401 NXDataLinkManager
2-414 NXDataLinkPanel
2-419 NXEPSlmageRep
2-426 NXHelpPanel
2-438 NXlmage
2-473 NXlmageRep
2-482 NXJ ournaler
2-488 NXPrinter

2-2

2-503 NXSelection
2-508 NXSpellChecker
2-516 NXSpellServer
2-523 NXSplitView
2-528 Object Additions
2-530 OpenPanel
2-534 PageLayout
2-542 Panel
2-547 Pasteboard
2-560 PopUpList
2-568 PrintInfo
2-583 PrintPanel
2-589 Responder
2-598 SavePanel
2-607 Scroller
2-616 ScrollView
2-626 SelectionCell
2-630 Slider
2-637 SliderCell
2-652 Speaker
2-665 Text
2-736 TextField
2-748 TextFieldCell
2-755 View
2-803 Window

2-865 Protocols
2-866 NXChangeSpelling
2-867 NXColorPickingCustom
2-870 NXColorPickingDefault
2-875 NXDraggingDestination
2-879 NXDraggingInfo
2-883 NXDraggingSource
2-885 NXIgnoreMisspelledWords
2-887 NXNibN otification
2-889 NXPrinting U serInterface
2-891 NXReadOnlyTextStream
2-894 NXRTFDErrorHandler
2-895 NXSelectText
2-897 NXServicesRequests
2-899 NXWorkspaceRequestProtocol

2-3

2-4

2-911 Functions

2-979 Types and Constants
2-980 Defined Types
2-1015 Symbolic Constants
2-1043 Global Variables

2-1049 Other Features
2-1050 Services
2-1050 Providing a Service
2-1051 How a Service Is Advertised
2-1051
2-1053
2-1055
2-1055
2-1056
2-1056
2-1058
2-1058
2-1059

How to Implement a Service
Fields in a Service Specification
Specifying Services Dynamically

U sing Services
Registering Types
Validating Services Dynamically
How a Service Is Invoked
Invoking a Service Programmatically

Examples of Services

2 Application Kit

Library:

Header File Directory: IN extDeveloperlHeaders/appkit

Import: appkit/appkit.h

Introduction

The Application Kit defines a set of Objective C classes and protocols, C functions, and
assorted constants and data types that are used by virtually every NeXTSTEP application.
The pith of the Kit are the tools it provides for implementing a graphical, event-driven
user interface:

• The Application Kit provides classes-most notably Window and View-that make
drawing on the screen exquisitely succinct. Much of the unromantic work that's
involved in drawing-communicating with hardware devices and screen buffers,
clearing areas of the screen before drawing, coordinating overlapping drawing areas­
is taken care of for you, letting you concentrate on the much more gratifying task of
supplying code that simply draws. And even this task is assisted by many of the other
classes and a number of C functions that provide drawing code for you.

Application Kit 2-5

• The Application Kit makes event handling extremely simple. The Responder class,
from which many of the Kit's classes inherit, defines a mechanism by which the user's
actions are passed to the objects in your application that can best respo~d to them. The
Application class, which inherits from Responder, establishes the low-level connections
that makes this system possible. It provides methods that inform your application of
watershed events, such as when the user makes the application active and inactive, and
when the user logs out or turns off the computer.

By using these tools, you bless your application with a look and feel that's similar to other
applications, making it easier for the user to recognize and use.

Application Kit Classes and Protocols

The Application Kit is large; it comprises more than 50 classes and protocols. Figure 1
shows the inheritance hierarchy of the Application Kit classes. The following sections
briefly describe the topics that the Kit addresses through its classes and protocols. Within
the descriptions, class and protocol names are highlighted as they're introduced for easy
identification.

2-6 Chapter 2: The Application Kit

~
~
~

~
~
~.

~

N
.:...

."
cO'
c ..
(D

N
I
~

~
"'0
I--' (S.
~ ,....
o
::s

~ ...,.
o
r;.;-
oo
00
(1)
00

Object

NXColorPicker
NXColorList

NXCursor NXBitmaplmageRep
NXlmage -{ NXEPSlmageRep
NXlmageRep NXCustomlmageRep

Font
FontManager

NXCachedlmageRep

Menu ------

NXHelpPanel
NXDataLinkPanel
FontPanel
PrintPanel
PageLayout

PopUpList

SavePanel Open Panel

Printlnfo -t Window Panel ----------~ NXColorPanel

---I- Responder Application

Pasteboard View ------or-

NXDataLink
NXDataLinkManager
NXSelection

Speaker

Control

Box
NXSplitView
ScroliView
ClipView

Listener L Text

NXJournaler SelectionCell =--1
NXBrowserCell

FormCell

Cell ActionCell -{ ButtonCell
TextFieldCell
SliderCell

NXSpeliChecker
NXSpeliServer

NXColorWell
NXBrowser
Matrix Form

~ B~n Scroller
Slider

- TextField

MenuCell

Encapsulating an Application

The central class of the Application Kit is Application. Every application that uses the
Application Kit is given a single Application object, known to your program as NXApp,
that keeps track of the application's windows and menus, controls the main event loop, lets
you open NeXT Interface Builder files (with support from the NXNibNotification
protocol), and maintains information regarding printing, languages, screens, color support,
and soon.

General Drawing and Event Handling

The Window and View classes are the centerpieces of drawing. More specifically,
Windows represent rectangular areas on the screen in which the user works. To the extent
that everything the user does is directed to a Window, an application's set of Windows is
the application. Views are areas within Windows that perform your application's drawing.

Panel is a subclass of Window that you use to display transient, global, or pressing
information. For example, you would use a Panel, rather than an instance of Window, to
display error messages, or to query the user for a response to remarkable or unusual
circumstances.

The Responder class defines the responder chain, an ordered list of objects that respond to
user events. When the user clicks the mouse or presses a key, an event is generated and
passed up the responder chain in search of an object that can respond to it.

Menus and Cursors

The Menu, MenuCell, and NXCursor classes define the look and behavior of the menus
and cursors that your application displays to the user.

Grouping and Scrolling Views

The Box, ScrollView, and NXSplit View classes provide graphic accoutrements to some
other View or collection of Views. A Box groups some number of other Views, and lets
you draw a border around the entire group. NXSplitView lets you "stack" Views vertically,
apportioning to each View some amount of a common territory; a sliding control bar lets
the user redistribute the territory among Views. ScrollView, and its helper Clip View,
provide a scrolling mechanism as well as the graphic objects that let the user initiate and
control a scroll.

2-8 Chapter 2: The Application Kit

Controlling an Application

The Control and Cell classes, and their subclasses, define an easily recognized set of
buttons, sliders, and browsers that the user can manipulate graphically to control some
aspect of your application. Just what a particular control affects is up to you: When a
control is "touched," it sends a certain message to a specific object. This is the targeted
action paradigm; for each Control, you define both the target (an object) and the action (the
message that's sent to that object).

A Cell completes the implementation of a Control. In general, for each Control there is a
corresponding Cell; thus a button comprises a Button and a ButtonCell, a slider is a Slider
and SliderCell, and so on.

Text and Fonts

Most applications display text in some form. The Text and TextField classes make this
presentation as straightforward and simple as possible. The size of the Text class is
daunting at first, but for simple text presentation only a handful of methods are actually
needed (or you can use the streamlined TextField class). More complicated text-based
applications, such as word processors, can take advantage of the Text class' more
sophisticated features, such as rulers and break tables.

The Font and FontManager encapsulate and manage different font families, sizes, and
variations. The Font class defines a single object for each distinct font; for efficiency, these
objects, which can be rather large, are shared by all the objects in your application.

The FontPanel class defines the font-specification panel that's presented to the user.

Graphics and Color

The NXlmage, NXlmageRep, and the other image representation classes encapsulate
graphic data, allowing you to easily and efficiently access images stored in files on the disk.
The presentation of an image is greatly influenced by the hardware that it's displayed on.
For example, a particular image may look good on a color monitor, but may be too "rich"
for monochrome. Through the image classes, you can group representations of the same
image, where each representation fits a specific type of display device-the decision of
which representation to use can be left to the NXImage class itself.

Color is incorporated and supported by NXColorPanel, NXColorList, NXColorPicker,
and NXColorWell. These are mostly interface classes: They define and present Panels and
Views that allow the user to select and apply colors. The NXColorPicking protocol lets
you extend the standard Colors panel.

Introduction 2-9

The four standard color formats-RGB, CMYK, HSB, and grayscale-are recognized by
the color classes. You can also tell the classes to recognize custom representations.

Printing and Faxing

The NXPrinter, PrintPanel, PageLayout, and PrintInfo classes work together to provide
the means for printing and faxing the information that your application displays in its
Windows and Views. For more control, the View and Window classes and the
NXPrintingUserlnterface protocol define methods that can fine-tune the printing and
faxing mechanism.

Accessing the File System

The Application Kit doesn't provide a class that defines objects to correspond to files on the
disk. However, the OpenPanel and SavePanel provide a convenient and familiar user
interface to the file system.

Sharing Data with Other Applications

The Pasteboard class defines a repository for data that's copied from your application,
making this data available to any application that cares to use it. This is the familiar
cut-copy-paste mechanism. The NXServicesRequest protocol uses the Pasteboard to
communicate data that's passed between applications by a registered service.

The Listener and Speaker classes provide a more specific communication between
separate applications in which one application (using a Speaker) provides data to which the
other (through a Listener) is programmed to respond.

Finally, an intimate link between applications can be created through the NXDataLink,
NXDataLinkManager, NXDataLinkPanel, and NXSelection classes. Through these
classes, multiple applications can share the same data. A change to the data in one
application is seen immediately in all others that display that data.

Spell-Checking

The NXSpellServer class lets you define a spell-checking facility and provide it as a
service to other applications. To connect your application to a spelling checker, you use the
NXSpellChecker class. The NXSelectText, NXIgnoreMisspelledWords, and
NXChangeSpelling protocols support the spell-checking mechanism.

2-10 Chapter 2: The Application Kit

Journaling and Help

The NXJournaler class provides an interactive recording and playback environment in
which you can run your application. During recording, events are noted, time-stamped, and
stored. The joumaled "script" can then be played back; your application will run itself to
the delight of the assembled throng.

The NXHelpPanel class is the central component of the NeXTSTEP help system. It
provides a panel that displays_ the text and illustrations that constitute your application's
help information, and it associates user-interface objects with specific passages of that text.

Application Kit Functions

The "Functions" section, later in this chapter, describes the functions (and function-like
macros) that are provided by the Application Kit. Many of the functions are auxiliary to
the Kit's classes in that they augment or are superceded by one or more classes. Of the rest,
some functions provide information or functionality that can't be gotten elsewhere, while
some others are convenient but not necessarily the only way to address a particular topic.

The following sections don't attempt to describe what individual functions do-the names
of the functions are fairly descriptive in themselves-they merely list the functions as they
fall into broad categories.

Drawing and Graphic Geometry

These functions draw standard interface accoutrements, or examine and manipulate
graphic regions.

• NXDrawButtonO, NXDrawGrayBezelO, NXDrawGrooveO, NXDrawWhiteBezelO,
NXDrawTiledRectsO, NXFrameRectO, NXFrameRectWith WidthO

• NXAttachPopUpListO, NXCreatePopUpListButtonO

• NXRectClipO, NXRectClipListO, NXRectFillO, NXRectFillListO,
NXRectFillListWithGraysO, NXEraseRectO, NXHighlightRectO

• NXSetRectO, NXOffsetRectO, NXInsetRectO, NXlntegralRectO, NXDivideRectO

• NXMouselnRectO, NXPointInRectO, NXlntersectsRectO, NXContainsRectO,
NXEqualRectO, NXEmptyRectO

• NXUnionRectO, NXIntersectionRectO

Introduction 2-11

• NX_XO, NX_ Yo, NX_ WIDTHO, NX_HEIGHTO, NX_MAXXO, NX_MAXYO,
NX_MIDXO, NX_MIDYO

• NXFindPaperSizeO

Images

These functions access image data (note, however, that they're superceded by NXImage
and related classes).

• NXCopyBitsO
• NXCopyBitmapFromGstateO

Colors

Since there isn't a class that represents individual colors, these function are indispensable
for dealing with color.

• NXSetColorO

• NXColorListN ameO, NXColorNameO, NXFindColorNamedO

• NXReadPixelO

• NXEqualColorO

• NXChangeRedComponentO, NXChangeGreenComponentO,
NXChangeBlueComponentO, NXChangeCyanComponentO,
NXChangeMagentaComponentO, NXChange YellowComponentO,
NXChangeBlackComponentO, NXChangeHueComponentO,
NXChangeSaturationComponentO, NXChangeBrightnessComponentO,
NXChangeGrayComponentO, NXChangeAlphaComponentO

• NXConvertColorToRGBAO, NXConvertColorToCMYKAO,
NXConvertColorToHSBAO, NXConvertColorToGray AlphaO,
NXConvertColorToRGBO, NXConvertColorToCMYKO, NXConvertColorToHSBO,
NXConvertColorToGrayO

• NXConvertRGBAToColorO, NXConvertCMYKAToColorO,
NXConvertHSBAToColorO, NXConvertGray AlphaToColorO,
NXConvertRGBToColorO, NXConvertCMYKToColorO, NXConvertHSBToColorO,
NXConvertGrayToColorO

2-12 Chapter 2: The Application Kit

• NXRedComponentO, NXGreenComponentO, NXBlueComponentO,
NXCyanComponentO, NXMagentaComponentO, NXYellowComponentO,
NXBlackComponentO, NXHueComponentO, NXSaturationComponentO,
NXBrightnessComponentO, NXGrayComponentO, NXAlphaComponentO

Text, Fonts, and Characters

These functions let you query and manipulate various aspects of displayed text.

• NXReadWordTableO, NXWrite WordTableO
• NXScanALineO, NXDrawALineO
• NXFieldFilterO, NXEditorFilterO
• NXTextFontInfoO
• NXOrderStringsO, NXDefaultStringOrderTableO

Windows and Screen Devices

Through these functions you can access the Window Server's windows (the devices that
underlie Window objects) and retrieve information that aids in matching a Window object
to the attributes of the screen upon which it's placed.

• NXColorSpaceFromDepthO, NXBPSFromDepthO,
NXNumberOfColorComponentsO, NXGetBestDepthO

• NXConvertWinNumToGlobalO, NXConvertGlobalTo WinNumO

• NXCountWindowsO, NXWindowListO

• NXGetWindowServerMemoryO

• NXSetGStateO, NXCopyCurrentGStateO

Attention Panels

Attention panels are much easier to create through the following functions rather than by
creating individual Panel objects.

• NXRunAlertPanelO, NXRunLocalizedAlertPanelO, NXGetAlertPanelO,
NXFreeAlertPanelO

Introduction 2-13

Events

These functions let you query for events and provide some control over the events that your
application manufactures.

• NXGetOrPeekEventO
• NXU serAbortedO, NXResetU serAbortO
• NXBeginTimerO, NXEndTimerO
• NXJoumalMouseO
• NXPingO

The File System and Operating Environment

These functions provide information about the user, manipulate file names, and play the
system beepy

• NXHomeDirectoryO, NXUserN ameO
• NXCompleteFilenameO
• NXExpandFilenameO
• NXBeepO

Pasteboard Functions

These functions access data on the pasteboard:

• NXCreateFileContentsPboardTypeO, NXCreateFilenamePboardTypeO
• NXGetFileTypeO, NXGetFileTypesO
• NXReadColorFromPasteboardO, NXWriteColorToPasteboardO

Archiving

The archiving functions let you read and write individual items (rather than entire objects)
from and to files.

• NXReadPointO, NXWritePointO, NXReadRectO, NXWriteRectO, NXReadSizeO,
NXWriteSizeO

• NXReadColorO, NXWriteColorO

2-14 Chapter 2: The Application Kit

Named Objects

These functions let you refer to objects by name.

• NXGetNamedObjectO, NXGetObjectNameO, NXNameObjectO, NXUnnameObjectO

Services, Data Links, and Remote Messages

These functions assist the services system, data links, and aid in getting data into and from
a remote message (a message passed between applications).

• NXSetServicesMenultemEnabledO, NXIsServicesMenuItemEnabledO
• NXUpdateDynamicServicesO
• NXPerformServiceO
• NXFrameLinkRectO, NXLinkFrameThicknessO
• NXCopyInputDataO, NXCopyOutputDataO
• NXRemoteMethodFromSelO, NXResponsibleDelegateO
• NXPortFromNameO, NXPortNameLookupO

Error Handling and Debugging

These functions help you respond to errors and to debug your application.

• NXDefaultTopLevelErrorHandlerO, NXSetTopLevelErrorHandlerO,
NXTopLevelErrorHandlerO

• NXLogErrorO

• NXRegisterErrorReporterO, NXRemoveErrorReporterO, NXReportErrorO

• NX_ASSERTO

• NX_PSDEBUG

Introduction 2-15

Allocating Memory

These functions let you allocate and free memory. The "chunk" functions are used,
principally, by the Text class.

• NX_MALLOCO, NX_REALLOCO, NX_FREEO

• NX_ZONEMALLOCO, NX_ZONEREALLOCO

• NXChunkMallocO, NXChunkReallocO, NXChunkGrowO, NXChunkCopyO,
NXChunkZoneMallocO, NXChunkZoneReallocO, NXChunkZoneGrowO,
NXChunkZoneCopyO

2-16 Chapter 2: The Application Kit

Classes

ActionCel1

Inherits From:

Declared In:

Class Description

Cell : Object

appkitl ActionCell.h

An ActionCell defines an active area inside a Control (an instance of Control or one of its
subclasses). As a Control's active area, an ActionCell does three things: it performs
display of text or an icon; it provides the Control with a target and an action; and it handles
mouse (cursor) tracking by properly highlighting its area and sending action messages to
its target based on cursor movement. You can set an ActionCell's Control only by sending
the drawSelf:in View: message to the ActionCell, passing the Control as the argument for
the in View: keyword of the method.

ActionCell implements the target object and action method as defined by its superclass,
Cell. As a user manipulates a Control, ActionCell's trackMouse:inRect:otView: method
(inherited from Cell) updates its appearance and sends the action message to the target
object with the Control object as the only argument.

A single Control may have more than one ActionCell. An integer tag is used to identify an
ActionCell; this is important for Controls that contain more than one ActionCell. Note,
however, that no checking is done by the ActionCell object itself to ensure that the tag is
unique. See the Matrix class for an example of a subclass of Control that contains multiple
ActionCells.

Many of the methods that define the contents and look of an ActionCell, such as setFont:
and setBordered:, are reimplementations of methods inherited from Cell. They're
subclassed to ensure that the ActionCell is redisplayed if it's currently in a Control.

2-18 Chapter 2: Application Kit

Instance Variables

int tag;

id target;

SEL action;

tag

target

action

Method Types

Configuring an ActionCell

Manipulating ActionCell values

Displaying

Target and action

Assigning a tag

Archiving

An integer used to identify the ActionCell.

The object that is sent the ActionCell's action.

The message that the ActionCell sends to its target.

- setEnabled:
- setBezeled:
- setBordered:
- setAlignment:
- setFloatingPointF ormatleftright
- setFont
- setlcon:

- double Value
- floatValue
- intValue
- setStringValue:
- setString ValueN oCopy:shouldFree:
- string Value

- drawSelf:in View:
- controlView

- setAction:
- action
- setTarget
- target

- setTag:
-tag

- write:
-read:

Classes: ActionCe!1 2-19

Instance Methods

action
- (SEL)action

Returns the ActionCell's action method. Keep in mind that the argument of an action
method sent by an ActionCell is its associated Control (the object returned by
controIView).

See also: - setAction:, - target, - controlView

controlView

- controlView

Returns the Control in which the ActionCell was most recently drawn. In general, your
code should use the object returned by this method only to (indirectly) redisplay the
ActionCell. For example, the subclasses of ActionCell defined by the Application Kit
invoke this method in order to send the Control a message such as updateCelllnside:.

The Control in which an ActionCell is drawn is set automatically by the drawS elf: in View:
method. You can't explicitly set the Control.

See also: - drawS elf: in View:

doubleValue
- (double)double Value

Returns the ActionCell's contents as a double-precision floating point number. If the
ActionCell is being edited when this message is received, editing is validated first.

See also: - setDoubleValue: (Cell), - floatValue, - intValue, - stringValue,
- validateEditing (Control)

2-20 Chapter 2: Application Kit

drawSelf:in View:

- drawSelf:(const NXRect *)cellFrame inView:controlView

Displays the ActionCell. Sets the ActionCell's Control to controlView and performs
drawing if and only if controlView is a Control object (an instance of Control or a subclass
thereof). You must lock focus on the Control before invoking this method (Control's
display method automatically performs this).

See also: - drawS elf: in View: (Cell)

floatValue

- (float)floatValue

Returns the ActionCell's contents as a single-precision floating point number. If the
ActionCell is being edited when this message is received, editing is validated first.

See also: - setFloatValue: (Cell), - doubleValue, - intValue, - stringValue,
- validateEditing (Control)

intValue

- (int)intValue

Returns the ActionCell's contents as an integer. If the ActionCell is being edited when this
message is received, editing is validated first.

See also: - setlntValue: (Cell), - doubleValue, - floatValue, - stringValue,
- validateEditing (Control)

read:

- read:(NXTypedStream *)stream

Reads the ActionCell from the typed stream stream. Returns self.

See also: - write:

Classes: ActionCel! 2-21

setAction:

- setAction:(SEL)aSelector

Sets the ActionCell's action method to aSelector. The argument of an action method
sent by an ActionCell is its associated Control (the object returned by controIView).
Returns self.

See also: - action, - setTarget:, - controlView, - sendAction:to: (Control)

setAlignment:

- setAlignment:(int)mode

If the ActionCell is a text Cell (type NX_TEXTCELL), this sets its text alignment to mode,
which should be NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED. If
it's currently in a Control view, the ActionCell is redisplayed or marked as needing
redisplay. Returns self.

See also: - alignment (Cell)

setBezeled:

- setBezeled:(BOOL)jfag

Adds or removes the ActionCell's bezel, according to the value ofjfag. Adding a bezel will
remove the ActionCell's border, if any. If it's currently in a Control view, the ActionCell is
redisplayed or marked as needing redisplay. Returns self.

See also: - isBezeled (Cell), - setBordered:

setBordered:

- setBordered:(BOOL)jlag

Adds or removes the ActionCell's border, according to the value ofjlag. The border is
black and has a width of 1.0. Adding a border will remove the ActionCell's bezel, if any.
If it's currently in a Control view, the ActionCell is redisplayed or marked as needing
redisplay. Returns self.

See also: - isBordered (Cell), - setBezeled:

2-22 Chapter 2: Application Kit

setEnabled:

- setEnabled:(BOOL)jlag

Enables or disables the ActionCell's ability to receive mouse events, according to the value
ofjlag. If it's currently in a Control view, the ActionCell is redisplayed or marked as
needing redisplay. Returns self.

See also: - isEnabled (Cell)

setFloatingPointFormat:left:right:

- setFloatingPointFormat:(BOOL)autoRange
left:(unsigned int)leftDigits
right:(unsigned int)rightDigits

Sets the ActionCell's floating point format as described in the Cell class specification for
the setFloatingPointFormat:left:right: method. If it's currently in a Control view, the
ActionCell is redisplayed or marked as needing redisplay. Returns self.

See also: - setFloatingPointFormat:left:right: (Cell)

setFont:

- setFont:fontObject

If the ActionCell is a text Cell (type NX_TEXTCELL), this sets its Font tofontObject. In
addition, if it's currently in a Control view, the ActionCell is redisplayed or marked as
needing redisplay. Returns self.

See also: - font (Cell)

setlcon:

- setlcon:(const char *)iconName

Sets the ActionCell's icon to iconName and sets its Cell type to NX_ICONCELL. If it's
currently in a Control view, the ActionCell is redisplayed or marked as needing redisplay.
Returns self.

See also: - setlcon: (Cell)

Closses: ActionCell 2-23

setStringValue:

- setStringValue:(const char *)aString

Sets the ActionCell's contents to a copy of aString. If it's currently in a Control view, the
ActionCell is redisplayed or marked as needing redisplay. Returns self.

See also: - setStringValueNoCopy:shouldFree:, - setStringValue: (Cell),
- stringValue, - doubleValue, - floatValue, - intValue

setStringValueNoCopy:shouldFree:

- setStringValueNoCopy:(char *)aString shouldFree:(BOOL)jlag

Sets the ActionCell's contents to a aString. Ifjlag is YES, aString will be freed when the
ActionCell is freed. If it's currently in a Control view, the ActionCell is redisplayed or
marked as needing redisplay. Returns self.

See also: - setStringValue:, - setStringValueNoCopy:shouldFree: (Cell),
- stringValue, - doubleValue, - floatValue, - intValue

setTag:

- setTag:(int)anlnt

Sets the ActionCell's tag to anlnt. The tag can be used to identify the ActionCell in a
Control that contains multiple Cells (Matrix, for example). Returns self.

See also: - tag, - setTag: (Control)

setTarget:

- setTarget:anObject

Sets the ActionCell's target to anObject. This is the object that is sent the ActionCell's
action method. Returns self.

See also: - target, - setAction:

2-24 Chapter 2: Application Kit

stringValue

- (const char *)stringValue

Returns the ActionCell's contents as a string. If the ActionCell is being edited when this
message is received, editing is validated first.

See also: - setStringValue:, - stringValue (Cell), - validateEditing (Control),
- doubleValue, - floatValue, - intValue

tag

- (int)tag

Returns the ActionCell's tag. The tag can be used to identify the ActionCell in a Control
that contains multiple Cells (Matrix, for example).

See also: - setTag:, - tag (Control)

target

- target

Returns the ActionCell's target, the object that is sent the ActionCell's action method.

See also: - setTarget:, - action

write:

- write: (NXTypedStream *)stream

Writes the ActionCell to the typed stream stream. Returns self.

See also: - read:

Classes: ActionCel! 2-25

Application

Inherits From: Responder: Object

Declared In: appkitl Application.h

Class Description

The Application class provides the central framework of your application's execution.
Every application must have exactly one object that is an instance of Application (or of a
custom subclass of Application). Project Builder automatically inserts into the main file
(the file that contains the mainO function) code that creates that object and stores it as the
global variable NXApp. The automatically generated code then loads your application's
nib file, and starts the event loop by sending a run message to NXApp.

Creating the Application object connects the program to the Window Server and initializes
its PostScript environment. The Application object maintains a list of all the Windows that
the application uses, so it can retrieve any of the application's Views.

The Application object's main task is to receive events from the Window Server and
distribute them to the proper Responders. The Application object handles a system event
itself. It translates a Window event into a message forwarded to the affected Window
object. A key-down event that occurs while the Command key is pressed is translated into
a commandKey: message, and every Window has an opportunity to respond to it. Other
keyboard and mouse events are sent to the Window associated with the event; the Window
then distributes them to the objects in its View hierarchy.

In general, it's neater and cleaner to separate the code that embodies your program's
functionality into a number of custom objects. Usually those custom objects are subclasses
of Object. Methods defined in your custom objects can be invoked from a small dispatcher
object without being closely tied to the Application object. It is rarely necessary to create
a custom subclass of Application. You will need to do so only if you need to provide your
own special response to messages that are routinely sent to the Application object. If you
do create a custom subclass of Application, it's the object representing your custom class
that gets the name NXApp and receives the run message.

The Application object can be assigned a delegate that responds on its behalf to notification
messages addressed to the Application object. For a few of these notification methods, if
you have created a subclass of Application and it implements the method but the delegate
doesn't, that message is sent to self (and thus to a subclass method). Where that is true, it's
noted in the method's description in "Methods Implemented by the Delegate," below.

2-26 Chapter 2: Application Kit

Since an application must have one and only one Application object, you must use new to
create it. You can't use alloc, allocFromZone:, or init to create or initialize an Application
object.

When your application is launched, its main nib file (if it has one) is loaded; the objects
stored in the nib file are unarchived. When unarchived, each gets an awake message and
then a finishUnarchiving message. Note that some objects in the nib file-for example,
objects represented by the proxy Custom View object-are simply referenced, not archived.
Those objects don't get the awake or finishUnarchiving messages. Instead, they're
instantiated through the alloc and init mechanism.

Instance Variables

char *appName;
NXEvent currentEvent;
id windowList;
id keyWindow;
id main Window;
id delegate;
int *hiddenList;
int hidden Count;
const char *hostName;
DPSContext context;
int contextNum;
id appListener;
id appSpeaker;
port_t replyPort;
NXSize screenSize;
short running;
struct _appFlags {

unsigned int hidden: 1;
unsigned int autoupdate: 1 ;
unsigned int active: 1;

} appFlags;

appName

currentEvent

The name of your application; used by the defaults system
and the application's Listener object

The event most recently retrieved from the event queue

Classes: Application 2-27

windowList

keyWindow

mainWindow

delegate

hiddenList

hiddenCount

hostName

context

contextNum

appListener

appSpeaker

replyPort

screenSize

running

appFlags.hidden

appFlags.autoupdate

appFlags. active

Method Types

Initializing the class

A List containing all the Windows to which the
Application has access

The Window that receives keyboard events

The Window that receives menu commands and action
messages from a Panel

The object that responds to notification messages

The List of Windows belonging to the Application at the
time the Application was hidden

The number of Windows referred to by hiddenList

The name of the machine running the Window Server

The Display PostScript context connected to the Window
Server

A number identifying the application's Display PostScript
context

The Application object's Listener

The Application object's Speaker

A general purpose reply port for the Application object's
Speakers

The size of the screen that this application is running on

The nested level of run and runModalFor:

YES if the Application's Windows are currently hidden

YES if the Application object is to send an update
message to each Window after an event has been
processed

YES if the Application is the active application

+ initialize
+ alloc
+ allocFromZone:

Creating and freeing instances + new
- free

2-28 Chapter 2: Application Kit

Setting up the application

Responding to notification

Changing the active application

Running the event loop

+ workspace
-loadNibFile:owner:
-loadNibFile:owner:withN ames:
-loadNibFile:owner:withN ames:fromZone:
- 10adNibSection:owner:
- 10adNibSection:owner:withN ames:
-loadNibSection:owner:withNames:fromHeader:
- 10adNibSection:owner:withN ames :fromZone:
-loadNibSection:owner:withN ames:fromHeader:

frornZone:
-appName
- setMainMenu:
-mainMenu

- application WillLaunch:
- applicationDidLaunch:
- applicationDidTerminate:

- activeApp
- becomeActiveApp
- activate:
- activateS elf:
- isActive
- resignActiveApp
- deactivateS elf

-run
- isRunning
- stop:
- runModalFor:
- stopModal
- stopModal:
- abortModal
- beginModaISession:for:
- runModalSession:
- endModalSession:
- delayedFree:
- sendEvent:

Classes: Application 2-29

Getting and peeking at events - currentEvent
- getNextEvent:
- getNextEvent:waitFor:threshold:
- peekAndGetNextEvent:
- peekNextEvent:into:
- peekNextEvent:into:waitFor:threshold:

Journaling - setlournalable:
- isJournalable
- masterJ ournaler
- slaveJournaler

Handling user actions and events
- applicationDefined:

. - hide:
- isHidden
- unhide
-unhide:
- unhide WithoutActivation:
-powerOff:
- powerOffIn:andSave:
- rightMouseDown:
- unmounting:ok:

Sending action messages - sendAction:to:from:
- tryToPerform:with:
- calcTargetForAction:

Remote messaging - setAppListener:
- appListener
- setAppSpeaker:
- appSpeaker
- appListenerPortName
- replyPort

Managing Windows - appIcon
- findWindow:
- getWindowNumbers:count:
-keyWindow
- main Window
- make WindowsPerform:inOrder:
- setAutoupdate:
- update Windows
- windowList
- miniaturizeAll:
- preventWindowOrdering

2-30 Chapter 2: Application Kit

Managing the Windows menu - setWindowsMenu:
- windowsMenu
- arrangeInFront:
- addWindowsItem:title:filename:
- change WindowsItem:title:filename:
- remove WindowsItem:
- update WindowsItem:

Managing Panels - showHelpPanel:
- orderFrontDataLinkPanel:

Managing the Services menu - setServicesMenu:
- servicesMenu
- registerServicesMenuSendTypes:andRetumTypes:

Managing screens

Querying the application

Reporting current languages

Using files

Responding to devices

Printing

Color

Terminating the application

Assigning a delegate

- validRequestorForSendType:andRetumType:

- mainScreen
- colorScreen
- getScreens:count:
- getScreenSize:

- context
- focusView
-hostName

- systemLanguages

- openFile:ok:
- openTempFile:ok:
- fileOperationCompleted:

-mounted:
- unmounted:

- setPrintInfo:
- printInfo
- runPageLayout:

- orderFrontColorPanel:
- setImportAlpha:
- doesImportAlpha

- terminate:

- setDelegate:
- delegate

Classes: Application 2-31

Class Methods

alloc

This method cannot be used to create an Application object. Use new instead. The method
is implemented only to prevent you from using it; if you do use it, it generates an error
message.

See also: + new

allocFromZone:

This method cannot be used to create an Application object. Use new instead. The method
is implemented only to prevent you from using it; if you do use it, it generates an error
message.

See also: + new

initialize

+ initialize

Registers defaults used by the Application class. You never send this message directly; it's
sent for you when your application starts. Returns self.

new

+ new

Creates a new Application object and assigns it to the global variable NXApp. A program
can have only one Application object, so this method just returns NXApp if the Application
object already exists. This method also makes a connection to the Window Server, loads
the PostScript procedures the application needs, and completes other initialization. Your
program should generally invoke this method as one of the first statements in mainO; this
is done for you if you create your application with Interface Builder. Returns the
Application object.

See also: - run

2-32 Chapter 2: Application Kit

workspace
+ (id <NXWorkspaceRequestProtocol>)workspace

Returns an object representing the Workspace Manager. Your code can send it a message
asking it to do such things as open a file. The Workspace Manager responds to the
NXWorkspaceRequest protocol. Here's an example of asking the Workspace Manager for
the icon for the file x.draw:

NXImage *i = [[Application workspace] getIconForFile:"x.draw"] i

Instance Methods

abortModal
- (void)abortModal

Aborts the modal event loop by raising the NX_abortModal exception, which is caught by
runModalFor:, the method that started the modal loop. Since this method raises an
exception, it never returns; runModalFor:, when stopped with this method, returns
NX_RUNABORTED. This method is typically invoked from procedures registered with
DPSAddTimedEntryO, DPSAddPortO, or DPSAddFDO. Note that you can't use this
method to abort modal sessions, where you control the modal loop and periodically invoke
runModalSession: .

See also: - runModalFor:, - runModaISession:, - endModaISession:, - stopModal,
- stopModal:

activate:
- (int)activate:(int)contextNumber

Makes the application identified by contextNumber the active application. The argument
contextNumber is the PostScript context number of the application to be activated.
Normally, you shouldn't invoke this method; the Application Kit is responsible for proper
activation. Returns the PostScript context number of application that was previously
active.

See also: - isActive, - activateSelf:, - deactivateSelf

Classes: Application 2-33

activateSelf:

- (int)activateSelf:(BOOL)jlag

Makes the receiving application the active application. Ifjlag is NO, the application is
activated only if no other application is currently active. No~ally, this method is invoked
withjlag set to NO. When the Workspace Manager launches an application, it deactivates
itself, so activateSelf:NO allows the application to become active if the user waits for it to
launch, but the application remains unobtrusive if the user activates another application. If
jlag is YES, the application will always activate. Regardless of the setting ofjlag, there
may be a time lag before the application activates; you should not assume that the
application will be active immediately after sending this message.

Note that you can make one of your Windows the key window without changing the active
application; when you send a makeKeyWindow message to a Window, you simply ensure
that the Window will be the key window when the application is active.

You should rarely need to invoke this method. Under most circumstances the Application
Kit takes care of proper activation. However, you might find this method useful if you
implement your own methods for interapplication communication. This method returns the
PostScript context number of the previously active application.

See also: - activeApp, - activate:, - deactivateS elf, - makeKeyWindow (Window)

activeApp

- (int)activeApp

Returns the active application's PostScript context number. If no application is active,
returns zero.

See also: - isActive, - activate:

addWindowsltem:title:filename:

- addWindowsltem:a Window
title: (const char *)aString
filename: (BOOL)isFilename

Adds an item to the Windows menu corresponding to the Window a Window. If isFilename
is NO, aString appears literally in themenu. If isFilename is YES, aString is assumed to
be a converted name with the name of the file preceding the path (the way Window's

2-34 Chapter 2: Application Kit

setTitleAsFilename: method shows a title). If an item for aWindow already exists in the
Windows menu, this method has no effect. You rarely invoke this method because an item
is placed in the Windows menu for you whenever a Window's title is set. Returns self.

See also: - chang eWindows Item:t itle:file name: , - setTitle: (Window),
- setTitleAsFilename: (Window)

applcon

- applcon

Returns the Window object that represents the application in the Workspace Manager
(containing the application's title and icon).

applicationDefined:

- applicationDefined:(NXEvent *)theEvent

Invoked when the application receives an application-defined (NX_APPDEFINED) event.
This is a vehicle in which you provide whatever response you want, by overriding the
default definition in a subclass or defining this method in the delegate. Returns self.

appl ication DidLau nch:

- (int)applicationDidLaunch:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName has
launched. This is one of the messages the Application will receive if it has previously sent
the Workspace Manager the message beginListeningForApplicationStatusChanges.

If the delegate implements the method app:applicationDidLaunch:, that message is sent
to it. If the delegate doesn't implement it, the method is handled by the Application
subclass object (if you created one). The return is an arbitrary integer; your application
defines and interprets it. If you neither provide a delegate method nor override in a
subclass, the default definition simply returns O.

See also: - app:applicationDidLaunch: (Application delegate method),
- beginListeningFor ApplicationStatusChanges (NXWorkspaceRequest protocol)

Classes: Application 2-35

applicationDidTerminate:

- (int)applicationDidTerminate:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName has
terminated. This is one of the messages the Application will receive if it has previously
sent the Workspace Manager the message
beginListeningFor ApplicationStatusChanges.

If the delegate implements the method app:applicationDidTerminate:, that message is
sent to it. If the delegate doesn't implement it, the method is handled by the Application
subclass object (if you created one). The return is an arbitrary integer; your application
defines and interprets it. If you neither provide a delegate method nor override in a
subclass, the default definition simply returns O.

See also: - app:applicationDidTerminate: (Application delegate method),
- beginListeningFor ApplicationStatusChanges (NXWorkspaceRequest protocol)

applicationWiliLaunch:

- (int)application WillLaunch:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName is
about to launch. This is one of the messages the Application will receive if it has previously
sent the Workspace Manager the message
beginListeningFor ApplicationStatusChanges.

If the delegate implements the method app:application WillLaunch:, that message is sent
to it. If the delegate doesn't implement it, the method is handled by the Application
subclass object (if you created one). The return is an arbitrary integer; your application
defines and interprets it. If you neither provide a delegate method nor override in a
subclass, the default definition simply returns O.

See also: - app:application WillLaunch: (Application delegate method),
- beginListeningFor ApplicationStatusChanges (NXWorkspaceRequest protocol)

appListener

- appListener

Returns the Application object's Listener-the object that will receive messages sent to
the port that's registered for the application's name. If you don't send a setAppListener:
message before your application starts running, an instance of Listener is created for you.
(Note, however, that to communicate with the Workspace Manager to do such things as
open files, you should send messages to the object that represents the Workspace Manager,

2-36 Chapter 2: Application Kit

returned by the workspace class method; it responds to the NXWorkspaceRequest
protocol.)

See also: - setAppListener:, - appListenerPortName, - run, + workspace

appListenerPortName

- (const char *)appListenerPortName

Returns the name used to register the Application object's Listener. The default is the same
name that's returned by the Application object's appName method. If a different name is
desired, this method should be overridden. Messages sent by name to
appListenerPortName will be received by your Application object.

See also: - checklnAs: (Listener), - appName, NXPortFromNameO

appName

- (const char *)appName

Returns the name under which the Application object has been registered for defaults. This
name is also used for messaging unless the messaging name was changed by overriding
appListenerPortName.

See also: - appListenerPortName

appSpeaker

- appSpeaker

Returns the Application object's Speaker. You can use this object to send messages to
other applications.

See also: - setSendPort: (Speaker)

arrangelnFront:

- arrangelnFront:sender

Arranges all of the windows listed in the Windows menu in front of all other windows.
Windows associated with the application but not listed in the Windows menu are not
ordered to the front. Returns self.

See also: - removeWindowsltem:, - makeKeyAndOrderFront: (Window)

Classes: Application 2-37

becomeActiveApp

- becomeActiveApp

Sends the appDidBecomeActive: message to the Application object's delegate. This
method is invoked when the application is activated. You never send a becomeActiveApp
message directly, but you can override this method in a subclass. Returns self.

See also: - activateSelf:, - appDidBecomeActive: (delegate method)

beginModaISession:for:

- (NXModalSession *)beginModaISession:(NXModaISession *)session

for: the Window

Prepares the application for a modal session with the Window. In other words, prepares the
application so that mouse events get to it only if they occur in the Window. If session is
NULL, an NXModalSession is allocated; otherwise the given storage is used. (The sender
could declare a local NXModalSession variable for this purpose.) the Window is made the
key window and ordered to the front.

beginModaISession:for: should be balanced by endModaISession:. If an exception is
raised, beginModaISession:for: arranges for proper cleanup. Do not use NX_DURING
constructs to send an endModalSession: message in the event of an exception. Returns the
NXModalSession pointer that's used to refer to this session.

See also: - runModaISession:, - endModalSession:

calc TargetFor Action:

- calcTargetForAction:(SEL)theAction

Returns the first object in the responder chain that responds to the message theAction. The
message isn't actually dispatched. Note that this method doesn't test the value that the
responding object would return should the message be sent; specifically, it doesn't test to
see if the responder would return nil. Returns nil if no responder is found.

See also: - sendAction:to:from:

2·38 Chapter 2: Application Kit

changeWindowsltem:title:filename:

- changeWindowsItem:a Window
title: (const char *)aString
filename: (BOOL)isFilename

Changes the item for aWindow in the Windows menu to aString. If aWindow doesn't have
an item in the Windows menu, this method adds the item. If isFilename is NO, aString
appears literally in the menu. If isFilename is YES, aString is assumed to be a converted
name with the file's name preceding the path (the way Window's setTitleAsFilename:
places a title). Returns self.

See also: - addWindowsItem:title:filename:, - setTitle: (Window),
- setTitleAsFilename: (Window)

colorScreen

- (const NXScreen *)colorScreen

Returns the screen that can best represent color. This method will always return a screen,
even if no color screen is present.

See also: NXBPSFromDepthO

context

- (DPSContext)context

Returns the Application object's Display PostScript context.

currentEvent

- (NXEvent *)currentEvent

Returns a pointer to the last event the Application object retrieved from the event queue. A
pointer to the current event is also passed with every event message.

See also: - getNextEvent:waitFor:threshold:, - peekNextEvent:waitFor:threshold:

Classes: Application 2-39

deactivateSelf

- deactivateSelf

Deactivates the application if it's active. Normally, you shouldn't invoke this method; the
Application Kit is responsible for proper deactivation. Returns self.

See also: - activeApp, - activate:, - activateS elf:

delayedFree:

- delayedFree:theObject

Frees theObject by sending it the free message after the application finishes responding to
the current event and before it gets the next event. If this method is performed during a
modal loop, theObject is freed after the modal loop ends. Returns self.

See also: - perform:with:afterDelay:canceIPrevious: (DelayedPerform informal
protocol)

delegate

- delegate

Returns the Application object's delegate.

See also: - setDelegate:

doeslmportAlpha

- (BOOL)doeslmportAlpha

Reports whether the application imports colors that include a value for alpha (opacity), and
includes an opacity slider in its ColorPanel. The default is YES.

See also: - setImportAlpha:

endModalSession:

- endModaISession:(NXModaISession *)session

Cleans up after a modal session. The argument session should be from a previous
invocation of beginModaISession:for:.

See also: - runModaISession:, - beginModaISession:for:

2·40 Chapter 2: Application Kit

fileOperationCompleted:
- (int)fileOperationCompleted: (int)operation

Notification from the Workspace Manager that the file operation identified by operation has
completed. The argument is the integer returned by the method that requested the file
operation, to wit performFileOperation:source:destination:files:options: (part of
NXWorkspaceRequest protocol).

If the delegate implements the method app:fileOperationCompleted:, that message is
sent to it. If the delegate doesn't implement it, the method is handled by the Application
subclass object (if you created one). The return is an arbitrary integer; your application
defines and interprets it. If you neither provide a delegate method nor override in a
subclass, the default definition simply returns O.

findWindow:
- findWindow:(int)windowNum

Returns the Window object that corresponds to the window number windowNum. This
method is of primary use in finding the Window object associated with a particular event.

See also: - windowNum (Window)

focusView

-focusView

Returns the View whose focus is currently locked, or nil if no View's focus is locked.

See also: -lockFocus (View)

free

-free

Closes all the Application object's windows, breaks the connection to the Window Server,
and frees the Application object.

Classes: Application 2-41

getNextEvent:
- (NXEvent *)getNextEvent:(int)mask

Gets the next event from the Window Server and returns a pointer to its event record. This
method is similar to getNextEvent:waitFor:threshold: with an infinite timeout and a
threshold of NX_MODALRESPTHRESHOLD.

See also: - getNextEvent:waitFor:threshold, - run, - runModalFor:, - currentEvent

getNextEvent:waitFor:threshold:

- (NXEvent *)getNextEvent:(int)mask
waitFor:(double)timeout
threshold: (int) level

Gets the next event from the Window Server and returns a pointer to its event record. Only
events that match mask are returned; getNextEvent:waitFor:threshold: goes through the
event queue, starting from the head, until it finds an event matching mask. Events that are
skipped are left in the queue. Note that getNextEvent:waitFor:threshold: doesn't alter
the window event masks that determine which events the Window Server will send to the
application.

If an event matching the mask doesn't arrive within timeout seconds, this method returns a
NULL pointer.

You can use this method to short circuit normal event dispatching and get your own events.
For example, you may want to do this in response to a mouse-down event in order to track
the mouse while it's down. In this case, you would set mask to accept mouse-dragged,
mouse-entered, mouse-exited, or mouse-up events.

level determines what other procedures should be performed when the event queue is
examined. These might include procedures to deal with timed-entries, procedures to
handle messages received on ports, or procedures to read new data from files. Any such
procedure that needs to be called will be called if its priority (specified when the procedure
is registered) is equal to or higher than level.

In general, modal responders should pass NX_MODALRESPTHRESHOLD for level. The
main run loop uses a threshold of NX_BASETHRESHOLD, allowing all procedures
(except those registered with priority 0) to be checked and invoked if needed.

See also: - peekNextEvent:waitFor:threshold:, - run, - runModalFor:

2-42 Chapter 2: Application Kit

getScreens:count:

- getScreens:(const NXScreen **)list count:(int *)numScreens

Gets screen information for every screen connected to the system. A pointer to an array of
NXScreen structures is placed in the variable indicated by list, and the number of
NXScreen structures in that array is placed in the variable indicated by numScreens. The
list of NXScreen structures belongs to the Application object; it should not be altered or
freed. Returns self.

getScreenSize:

- getScreenSize:(NXSize *)theSize

Gets the size of the main screen, in units of the screen coordinate system, and places it in
the structure pointed to by theSize. Returns self.

getWindowNumbers:count:

- getWindowNumbers:(int **)list count:(int *)num Windows

Gets the window numbers for all the Application object's Windows. A pointer to a
non-NULL-terminated array ofints is placed in the variable indicated by list. The number
of entries in this array is placed in the integer indicated by numWindows. The order of
window numbers in the array is the same as their order in the Window Server's screen list,
which is their front-to-back order on the screen. The application is responsible for freeing·
the "list array when done. Returns self.

See also: NXWindowListO

hide:

- hide:sender

Collapses the application's graphics-including all its windows, menus, and panels-into
a single small window. The hide: message is usually sent using the Hide command in the
application's main Menu. Returns self.

See also: - unhide:

Classes: Application 2-43

hostName

- (const char *)hostName

Returns the name of the host machine on which the Window Server that serves the
Application object is running. This method returns the name that was passed to the
receiving Application object through the NXHost default; this name is set either from its
value in the defaults database or by providing a value for NXHost through the command
line. If a value for NXHost isn't specified, NULL is returned.

isActive

- (BOOL)isActive

Returns YES if the application is currently active, and, NO if it isn't.

See also: - activateSelf:, - activate:

isHidden

- (BOOL)isHidden

Returns YES if the application is currently hidden, and NO if it isn't.

isJournalable

- (BOOL)isJournalable

Returns YES if the application can be journaled, and NO if it can't. By default, applications
can be joumaled. Journaling is handled by the NXJoumaler class.

See also: - setJournalable:

isRunning

- (BOOL)isRunning

Returns YES if the application is running, and NO if the stop: method has ended the main
event loop.

See also: - run, - stop:, - terminate:

2-44 Chapter 2: Application Kit

keyWindow

-keyWindow

Returns the key Window, that is, the Window that receives keyboard events. If there is no
key Window, or if the key Window belongs to another application, this method returns nil.

See also: - mainWindow, - isKeyWindow (Window)

loadNibFile:owner:

-loadNibFile:(const char *)filename owner:anOwner

Loads interface objects from a NeXT Interface Builder (nib) file. The argument anOwner
is the object that appears as the "File's Owner" in Interface Builder's File window. The
objects and their names are read from the specified nib file into storage allocated from the
default zone.

Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages; other objects are instantiated
and are sent an init message.

Returns non-nil if the file filename is successfully opened and read, and nil otherwise.

Invoking loadNibFile:owner: is equivalent to invoking
loadNibFile:owner:withNames:fromZone: when the additional argument values
indicate that names should also be loaded and that memory should be allocated from the
default zone.

See also: - loadNibFile:owner:withNames:fromZone:, NXDefaultMallocZoneO,
- awake (Object), - init (Object)

loadNibFile:owner:withNames:

- loadNibFile:(const char *)filename
owner:anObject
withNames:(BOOL)flag

Loads interface objects from a NeXT Interface Builder (nib) file. The argument anOwner
is the object that appears as the "File's Owner" in Interface Builder's File window. The
objects are read from the specified interface file into storage allocated from the default
zone. When flag is YES, the objects' names are also loaded. Names must be loaded if you
use NXGetNamedObjectO to get at the objects, but are not otherwise required.

Classes: Application 2-45

Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages; other objects are instantiated
and are sent an init message.

Returns non-nil if the file filename is successfully opened and read.

Invoking loadNibFile:owner:withNames: is equivalent to invoking
loadNibFile:owner:withNames:fromZone: when zone specifies that memory should be
allocated from the default zone.

See also: -loadNibFile:owner:withNames:fromZone:, NXDefaultMallocZoneO,
- awake (Object), - init (Object)

loadNibFile:owner:withNames:fromZone:

-loadNibFile:(const char *)filename
owner:anOwner
withNames:(BOOL)flag
fromZone:(NXZone *)zone

Loads interface objects from a NeXT Interface Builder (nib) file. The argument anOwner
is the object that appears as the "File's Owner" in Interface Builder's File window. The
objects are read into memory allocated from zone. Whenflag is YES, the objects' names
are also loaded. Names must be loaded if you use NXGetNamedObjectO to get at the
objects, but are not otherwise required. Objects that were archived in the nib file (standard
objects from an Interface Builder palette) are sent finishUnarchiving and awake
messages; other objects are instantiated and are sent an init message.

Returns non-nil if the file filename is successfully opened and read.

See also: - awake (Object), - init (Object)

loadNibSection:owner:

-loadNibSection:(const char *)name owner:anOwner

Loads interface objects and their names from the source identified by name. To find the
source, the method searches as follows:

• First, for a section named name within the __ NIB segment of the application's
executable file. (This is where earlier versions of Interface Builder routinely put nib
sections, but not where Project Builder puts them now, so the section will be here only
if the applications was compiled by an earlier version of Interface Builder.)

2-46 Chapter 2: Application Kit

• Second, if no such section exists, the method searches certain language directories
within the main bundle for a file with name name and type "nib," and-if it finds one­
loads the interface objects from there. It searches the language directories that the user
specified for this application, or (if none) those specified by the user's default language
preferences (see systemLanguages).

• Third, if there's no file named name in the main bundle's relevant language directories,
it looks for a file with name name and type "nib" in the main bundle (but outside the
".lproj" directories).

The argument an Owner is the object that corresponds to the "File's Owner" object in
Interface Builder's File window. The loaded objects are allocated memory from the
default zone.

Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages; other objects are instantiated
and are sent an init message.

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner: is equivalent to invoking
loadNibSection:owner:withNames:fromZone: when the additional arguments
indicate that names should also be loaded and that memory should be allocated from
the default zone.

See also: - NXDefaultMallocZoneO, + mainBundle (NXBundle),
- getPath:forResource:ofrype: (NXBundle), - awake (Object), - init (Object)

loadNibSection:owner:withNames:

-loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)jlag

Loads interface objects and their names from the source identified by name. The source
may be a section within the executable file, or a file within the application bundle, as
described above for the loadNibSection:owner: instance method.

The argument an Owner is the object that corresponds to the "File's Owner" object in
Interface Builder's File window. The loaded objects are allocated memory from the default
zone. Whenjlag is YES, the objects' names are also loaded. Names must be loaded if you
use NXGetNamedObjectO to get at the objects, but are not otherwise required.

Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages; other objects are instantiated
and are sent an init message.

Classes: Application 2-47

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner:withNames is equivalent to invoking
loadNibSection:owner:withNames:froniZone: when the additional argument indicates
that memory should be allocated from the default zone.

See also: NXDefaultMallocZoneO, - awake (Object), - init (Object)

loadNibSection:owner:withNames:fromHeader:

-loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)jlag
fromHeader:(const struct mach_header *)header

Loads interface objects from a section within a dynamically loaded object file-that is,
from a file other than those in the application's main bundle. The argument header
identifies the file, as returned by the function objc_loadModuleO. The argument name
identifies a named section within the file's __ NIB segment. When no such file exists, the
method searches the executable file's bundle, first within its language subdirectories, as
described above for the loadNibSection:owner: instance method.

The argument anOwner is the object that corresponds to the "File's Owner" object in
Interface Builder's File window. Memory for the loaded objects is allocated from the
default zone. Whenjlag is YES, the objects' names are also loaded. Names must be loaded
if you use NXGetNamedObjectO to get at the objects, but are not otherwise required.

Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages; other objects are instantiated
and are sent an init message.

A class can use this method in its finishLoading class method to load interface data objects
required by the class but stored separately (for example, because the same interface objects
are also used by other classes).

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner:withNames:fromHeader: is equivalent to invoking
loadNibSection:owner:withNames:fromHeader:fromZone: when the additional
arguments indicate that names should also be loaded and that memory should be allocated
from the default zone.

See also: NXDefaultMallocZoneO, - awake (Object), - init (Object)

2-48 Chapter 2: Application Kit

loadNibSection:owner:withNames:fromHeader:fromZone:

-loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)jlag
fromHeader:(const struct mach_header *)header
fromZone:(NXZone *)zone

Loads interface objects from a section within a dynamically loaded object file-that is,
from a file other than those in the application's main bundle. The argument header
identifies the file, as returned by the function objc_loadModuleO. The argument name
identifies a named section within the file's __ NIB segment. When no such file exists, the
method searches the executable file's bundle, first within its language subdirectories, as
described above for the loadNibSection:owner: instance method.

The argument anOwner is the object that corresponds to the "File's Owner" object in
Interface Builder's File window. Memory for the loaded objects is allocated from the zone
specified by zone. Whenjlag is YES, the objects' names are also loaded. Names must be
loaded if you use NXGetNamedObjectO to get at the objects, but are not otherwise
required. Objects that were archived in the nib file (standard objects from an Interface
Builder palette) are sent finishUnarchiving and awake messages; other objects are
instantiated and are sent· an init message.

A class can use this method in its finishLoading class method to load interface data objects
required by the class but stored separately (for example, because the same interface objects
are also used by other classes).

Returns non-nil if the section is successfully opened and read.

See also: - loadNibSection:owner:withNames:fromZone:, - awake (Object),
- init (Object)

loadNibSection:owner:withNames:fromZone:

-loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)jlag
fromZone:(NXZone *)zone

Loads interface objects and their names from the source identified by name. The source
may be a section within the executable file, or a file within the application bundle, as
described above for the loadNibSection:owner: instance method.

Classes: Application 2·49

The argument anOwner is the object that corresponds to the "File's Owner" object in
Interface Builder's File window. Whenflag is YES, the objects' names are also loaded.
Names must be loaded if you use NXGetNamedObjectO to get at the objects, but are not
otherwise required. Memory for the loaded objects is allocated from the zone specified by
zone. Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages; other objects are instantiated
and are sent an init message.

Returns non-nil if the section or file is successfully opened and read, and nil otherwise.

See also: -loadNibSection:owner:withNames:fromHeader:fromZone:,
- awake (Object), - init (Object)

mainMenu
-mainMenu

Returns the Application object's main Menu.

mainScreen
- (const NXScreen *)mainScreen

Returns the main screen. If there is only one screen, that screen is returned. Otherwise,
this method attempts to return the key window's screen. If there is no key window, it
attempts to return the main menu's screen. If there is no main menu, this method returns
the screen that contains the screen coordinate system origin.

See also: - screen (Window)

mainWindow
- main Window

Returns the main Window. This method returns nil if there is no main window, if the main
window belongs to another application, or if the application is hidden.

See also: - keyWindow, - isMain Window (Window)

2-50 Chapter 2: Application Kit

makeWindowsPerform:inOrder:

- makeWindowsPerform:(SEL)aSelector inOrder:(BOOL)jlag

Sends the Application object's Windows a message to perform the aSelector method. The
message is sent to each Window in tum until one of them returns YES; this method then
returns that Window. If no Window returns YES, this method returns nil.

Ifjlag is YES, the Application object's Windows receive the aSelector message in the
front-to-back order in which they appear in the Window Server's window list. Ifjlag is NO,
Windows receive the message in the order they appear in the Application object's window
list. This order generally reflects the order in which the Windows were created.

The method designated by aSelector can't take any arguments.

masterJournaler

- master J ournaler

Returns the Application object's master journaler. Journaling is handled by the
NXJournaler class.

See also: - slaveJournalar:

miniaturizeAII:

- miniaturizeAll:sender

This method miniaturizes all of the receiver's application windows. Returns self.

mounted:

- (int)mounted:(const char *)fullPath

Invoked by the Workspace Manager when the device identified by fullPath has completed
mounting. You shouldn't directly send a mounted: message. This is one of the messages
the Application will receive if it has previously sent the Workspace Manager the message
beginListeningForDeviceStatusChanges.

If the delegate implements the method app:mounted:, that message is sent to it. If the
delegate doesn't implement it, the method is handled by the Application subclass object (if
you created one). The return value is an arbitrary integer; your application defines and
interprets it. If you neither provide a delegate method nor override in a subclass, the default
definition simply returns O.

See also: - unmounting:ok:, - unmounted:

Classes: Application 2-51

openFile:ok:

- (int)openFile:(const char *)fullPath ok:(int *)flag

Responds to a remote message requesting the application to open a file. openFile:ok: is
typically sent to the application from the Workspace Manager, although an application can
send it directly to another application. The Application object's delegate is queried with
appAcceptsAnotherFile: and if the result is YES, it's sent an app:openFile:type:
message. If the delegate doesn't respond to either of these messages, they're sent to the
Application object (if it implements them).

The variable pointed to by flag is set to YES if the file is successfully opened, NO if the file
is not successfully opened, and -1 if the application does not accept another file. Returns
zero.

See also: - app:openFile:type: (delegate method), - openTempFile:ok:,
- openFile:ok: (Speaker)

openTempFile:ok:

- (int)openTempFile:(const char *)fullPath ok:(int *)flag

Same as the openFile:ok: method, but app:openTempFile:type: is sent. Returns O.

See also: - app:openTempFile:type: (delegate method),
- openTempFile:ok: (Speaker)

orderFrontColorPanel:

- orderFrontColorPanel:sender

Displays the color panel. Returns self.

orderFrontDataLinkPanel:

#import NXDataLinkPanel.h
- orderFrontDataLinkPanel:sender

Displays the data link panel. It does this by sending an orderFront: message to the shared
instance of NXDataLinkPanel (if need be, creating a new one). Returns self.

2-52 Chapter 2: Application Kit

peekAndGetNextEvent:
- (NXEvent *)peekAndGetNextEvent:(int)mask

This method is similar to getNextEvent:waitFor:threshold: with a zero timeout and a
threshold of NX_MODALRESPTHRESHOLD.

See also: - getNextEvent:waitFor:threshold, - run, - runModaIFor:,
- currentEvent, - peekNextEvent:into:

peekNextEvent:into:

- (NXEvent *)peekNextEvent:(int)mask into:(NXEvent *)eventPtr

This method is similar to peekNextEvent:into:waitFor:threshold: with a zero timeout
and a threshold of NX_MODALRESPTHRESHOLD.

See also: - peekNextEvent:into:waitFor:threshold, - run, - runModaIFor:,
- currentEvent

peekNextEvent:into:waitFor:threshold:
- (NXEvent *)peekNextEvent:(int)mask

into:(NXEvent *)eventPtr
waitFor:(float)time~ut

threshold: (int)level

This method is similar to getNextEvent:waitFor:threshold: except the matching event
isn't removed from the event queue nor is it placed in currentEvent; instead, it's copied
into storage pointed to by eventPtr.

If no matching event is found, NULL is returned; otherwise, eventPtr is returned.

See also: - getNextEvent:waitFor:threshold:, - run, - runModaIFor:,
- currentEvent

powerOff:
- powerOff:(NXEvent *)theEvent

A powerOff: message is generated when a power-off event is sent from the Window
Server. As a general rule, only the Workspace Manager and login window should respond
to this event. If the application was launched by the Workspace Manager, this method does
nothing; instead, the Application object will wait for the powerOftln:andSave: message
from the Workspace Manager. If the application wasn't launched from the Workspace

Classes: Application 2-53

Manager, this method sends the delegate a powerOff: message, assuming there's a delegate
afld it implements the method. Applications that are not launched from the Workspace
Manager are not fully supported, and are not guaranteed any amount of time after receiving
this message. However, applications launched from the Workspace Manager can request
additional time before shutdown from within the app:powerOffin:andSave method.
Returns self.

See also: - app:powerOffin:andSave: (delegate method), - powerOffin:andSave:

powerOffln :andSave:

- (int)powerOffin:(int)ms andSave:(int)aFlag

You never invoke this method directly; it's sent from the Workspace Manager. The
delegate or your subclass of Application will be given the chance to receive the
app:powerOffin:andSave message. The aFlag parameter has no particular meaning and
can be ignored. This method raises an exception, so it never returns.

See also: - app:powerOffin:andSave: (delegate method)

preventWindowOrdering

- preventWindowOrdering

Suppresses the usual window ordering behavior entirely. Most applications will not need
to use this method since the Application Kit support for dragging will call it when dragging
is initiated.

printlnfo

- printInfo

Returns the Application object's global PrintInfo object. If none exists, a default one
is created.

2-54 Chapter 2: Application Kit

registerServicesMenuSendTypes:andReturnTypes:

- registerServicesMenuSendTypes:(const char *const *)sendTypes
andReturnTypes:(const char *const *)returnTypes

Registers pasteboard types that the application can send and receive in response to service
requests. If the application has a Services menu, a menu item is added for each service
provider that can accept one of the specified send types or return one of the specified return
types. This method should typically be invoked at application startup time or when an
object that can use services is created. It can be invoked more than once; its purpose is to
ensure that there is a menu item for every service that the application may use. The
individual items will be dynamically enabled and disabled by the event handling
mechanism to indicate which services are currently appropriate. An application (or object
instance that can cut or paste) should register every possible type that it can send and
receive. Returns self.

See also: - validRequestorForSendType:andReturnType: (Responder),
- readSelectionFromPasteboard: (Object method),
- writeSelectionToPasteboard:types: (Object method)

removeWindowsltem:

- remove WindowsItem:a Window

Removes the item for aWindow in the Windows menu. Note that this method doesn't
prevent the item from being automatically added again, so you must use Window's
setExciudedFrom WindowsMenu: method if you want the item to remain excluded from
the Windows menu. Returns self.

See also: - changeWindowsItem:title:filename:,
- setExciudedFrom WindowsMenu: (Window)

replyPort

- (port_t)replyPort

Returns the Application object's reply port. This port is allocated for you automatically by
the run method, and is the default reply port which can be shared by all the Application
object's Speakers.

See also: - setReplyPort: (Speaker)

Classes: Application 2-55

resignActiveApp
- resignActiveApp

This method is invoked immediately after the application is deactivated. You never send
resignActiveApp messages directly, but you could override this method in your
Application object to notice when your application is deactivated. Alternatively, your
delegate could implement appDidResignActive:. Returns· self.

See also: - deactivateSelf:, - appDidResignActive: (delegate method)

rightMouseDown:
- rightMouseDown:(NXEvent *)theEvent

Pops up the main Menu. Returns self.

run
-run

Initiates the Application object's main event loop. The loop continues until a stop: or
terminate: message is received. Each iteration through the loop, the next available event
from the Window Server is stored, and is then dispatched by sending the event to the
Application object using sendEvent:

A run message should be sent as the last statement from mainO, after the application's
objects have been initialized. Returns self if terminated by stop:, but never returns if
terminated by terminate:.

See also: - runModalFor:, - sendEvent:, - stop:, - terminate:,
- appDidlnit: (delegate method)

runModalFor:
- (int)runModaIFor:theWindow

Establishes a modal event loop for theWindow. Until the loop is broken by a stopModal,
stopModal:, or abortModal message, the application won't respond to any mouse,
keyboard, or window-close events unless they're associated with theWindow. If

2·56 Chapter 2: Application Kit

stopModal: is used to stop the modal event loop, this method returns the argument passed
to stopModal:. If stopModal is used, it returns the constant NX_RUNSTOPPED. If
abortModal is used, it returns the constant NX_RUNABORTED. This method is
functionally similar to the following:

NXModalSession session;
[NXApp beginModalSession:&session for:theWindow];
for (;;) {

if ([NXApp runModalSession:&session] != NX_RUNCONTINUES)

break;

[NXApp endModalSession:&session];

See also: - stopModal, - stopModal:, - abortModal, - runModalSession:

runModalSession:

- (int)runModaISession:(NXModalSession *)session

Runs a modal session represented by session, as defined in a previous invocation of
beginModaISession:for:. A loop using this method is similar to a modal event loop run
with runModaIFor:, except that with this method the application can continue processing
between method invocations. When you invoke this method, events for the Window of this
session are dispatched as normal; this method returns when there are no more events. You
must invoke this method frequently enough that the window remains responsive to events.

If the modal session was not stopped, this method returns NX_RUNCONTINUES. If
stopModal was invoked as the result of event procession, NX_RUNSTOPPED is returned.
If stopModal: was invoked, this method returns the value passed to stopModal:. The
NX_abortModal exception .raised by abortModai isn't caught.

See also: - beginModaISession:, - endModalSession, - stopModal:, - stopModal,
- runModalFor:

runPageLayout:

- runPageLayout:sender

Brings up the Application object's Page Layout panel, which allows the user to select the
page size and orientation. Returns self.

Classes: Application 2-57

sendAction:to:from:

- (BOOL)sendAction:(SEL)aSelector to:aTarget from:sender

Sends an action message to an object. If aTarget is nil, the Application object looks for an
object that can respond to the message-that is, for an object that implements a method
matching aSelector. It begins with the first responder of the key window. If the first
responder can't respond, it tries the first responder's next responder and continues
following next responder links up the Responder chain. If none of the objects in the key
window's responder chain can handle the message, the Application object attempts to send
the message to the key Window's delegate.

If the delegate doesn't respond and the main window is different from the key window,
NXApp begins again with the first responder in the main window. If objects in the main
window can't respond, the Application object attempts to send the message to the main
.window's delegate. If still no object has responded, NXApp tries to handle the message
itself. If NXApp can't respond, it attempts to send the message to its own delegate.

Returns YES if the action is applied; otherwise returns NO.

sendEvent:

- sendEvent:(NXEvent *)theEvent

Sends an event to the Application object. You rarely send sendEvent: messages directly
although you might want to override this method to perform some action on every event.
sendEvent: messages are sent from the main event loop (the run method). sendEvent is
the method that dispatches events to the appropriate responders; the Application object
handles application events, the Window indicated in the event record handles window
related events, and mouse and key events are forwarded to the appropriate Window for
further dispatching. Returns self.

See also: - setAutoupdate:

servicesMenu

- servicesMenu

Returns the Application object's Services menu. Returns nil if no Services menu has been
created.

See also: - setServicesMenu:

2-58 Chapter 2: Application Kit

setAppListener:

- setAppListener:aListener

Sets the Listener that will receive messages sent to the port that's registered for the
application. If you want to have a special Listener reply to these messages, you must either
send a setAppListener: message before the run message is sent to the Application object,
or send this message from the delegate method appWilllnit:, so that aListener is properly
registered. This method doesn't free the Application object's previous Listener object.
Returns self.

See also: - appListenerPortName, - appWilllnit: (delegate method)

setAppSpeaker:

- setAppSpeaker:aSpeaker

Sets the Application object's Speaker. If you don't send a setAppSpeaker: message before
the Application object initializes, a default Speaker is created for you. This method doesn't
free the Application object's previous Speaker object.

See also: - app Willlnit: (delegate method)

setAutoupdate:

- setAutoupdate:(BOOL)flag

Turns on or off automatic updating of the application's windows. (Until this message is
sent, automatic updating is not enabled.) When automatic updating is on, an update
message is sent to each of the application's Windows after each event has been processed.
This can be used to keep the appearance of menus and panels synchronized with your
application. Returns self.

See also: - update Windows

setDelegate:

- setDelegate:anObject

Sets the Application object's delegate. The notification messages that a delegate can expect
to receive are listed at the end of the Application class specification. The delegate doesn't
need to implement all the methods. Returns self.

See also: - delegate

Classes: Application 2·59

setlmportAlpha:

- setImportAlpha:(BOOL)flag

Determines whether your application will accept translucent colors in objects it receives.
This affects colors imported by the View method acceptsColor:atPoint:, or by
NXColorPanel's dragColor:withEvent:from View:. It has no effect on internal
programmatic manipulations of colors.

A pixel may be described by its color (values for red, blue, and green) and also by its
opacity, measured by a coefficient called alpha. When alpha is 1.0, a color is completely
opaque and thus hides anything beneath it. When alpl,la is less then 1, the effective color is
derived partly from the color of the object itself and partly from the color of whatever is
beneath it. Whenflag is YES, the application accepts a color that includes an alpha
coefficient, and forces an alpha value of 1.0 for a source where alpha was not specified. In
addition, when flag is YES, a ColorPanel opened within the application includes an opacity
slider.

When the Application has received a setImportAlpha: message withflag set to NO, all
imported colors are forced to have an alpha value of NX_NOALPHA, and there's no
opacity slider in the ColorPanel. The default state is NO, do not import alpha.

This method has the same effect as the NXColorPanel method setShowAlpha:. The only
difference is that you can invoke setImportAlpha: even before an NXColorPanel has been
instantiated. Since the two methods set the same internal flag, each can reverse the effect
of the other.

Returns self.

See also: - doeslmportAlpha, - does Show Alpha (NXColorPanel), - setS how Alpha:
(NXColorPanel)

setJournalable:

- setJournalable:(BOOL)jlag

Sets whether the application is journalable. Returns self. Journaling is handled by the'
NXJournaler class.

See also: - isJournalable

2-60 Chapter 2: Application Kit

setMainMenu:

- setMainMenu:aMenu

Makes aMenu the Application object's main menu. Returns self.

See also: - mainMenu

setPrintlnfo:

- setPrintInfo:inJo

Sets the Application object's global PrintInfo object. Returns the previous PrintInfo object,
or nil if there was none.

See also: - printInfo

setServicesMenu:

- setServicesMenu:aMenu

Makes aMenu the Application object's Services menu. Returns self.

See also: - servicesMenu

setWindowsMenu:

- setWindowsMenu:aMenu

Makes aMenu the Application object's Windows menu. Returns self.

See also: - windowsMenu

showHelpPanel:

- showHelpPanel:sender

Shows the application's Help panel. If no Help panel yet exists, the method first creates a
default Help panel. If the delegate implements app:willShowHelpPanel:, notifies it.
Returns self.

Classes: Application 2-61

slaveJournaler

- slaveJ ournaler

Returns the Application object's slave journaler. Journaling is handled by the NXJournaler
class.

See also: - masterJournalar:

stop:

- stop:sender

Stops the main event loop. This method will break the flow of control out of the run
method, thereby returning to the mainO function. A subsequent run message will restart
the loop.

If this method is applied during a modal event loop, it will break that loop but not the main
event loop. Returns self.

See also: - terminate:, - run, - runModaIFor:, - runModalSession:

stopModal

-stopModal

Stops a modal event loop. This method should always be paired with a previous
runModalFor: or beginModaISession:for: message. When runModalFor: is stopped
with this method, it returns NX_RUNSTOPPED. This method will stop the loop only if
it's executed by code responding to an event. If you need to stop a runModalFor: loop
from a procedure registered with DPSAddTimedEntryO, DPSAddPortO, or
DPSAddFDO, use the abortModal method. Returns self.

See also: - stopModal:, - runModaIFor:, - runModaISession:, - abortModal

stopModal:

- stopModal:(int)returnCode

Just like stopModal except argument returnCode allows you to specify the value that
runModalFor: will return. Returns self.

See also: - stopModal, - runModaIFor:, - abortModal

2-62 Chapter 2: Application Kit

systemLanguages
- (const char *const *)systemLanguages

Returns a list of the names of languages in order of the user's preference. If your
application will respond to the user's language preference, this method is the way to
discover what the preferences are. The return is a NULL-terminated list of pointers to
NULL-terminated strings.

If the user has recorded preferences specific to the application now in use, the method
returns them. If the user has recorded no preferences for the application, but has recorded
a global preference, the method returns the list of global preferences. (Note that just
because the user has recorded a preference doesn't mean than the language files are in fact
installed on the host that is executing the application.) If this method returns NULL, the
user has no language preference.

terminate:

- terminate:sender

Terminates the application. (This is the default action method for the application's Quit
menu item.) Each use of terminate: invokes appWillTerminate: to notify the delegate
that the application will terminate. If app Will Terminate: returns nil, terminate: returns
self; control is returned to the main event loop, and the application isn't terminated.
Otherwise, this method frees the Application object and calls exitO to terminate the
application. Note that you should not put final cleanup code in your application's mainO
function; it will never be executed.

See also: - stop, - appWillTerminate: (delegate method), exitO

tryToPerform:with:
- (BOOL)tryToPerform:(SEL)aSelector with:anObject

Aids in dispatching action messages. The Application object tries to perform the method
aSelector using its inherited Responder method tryToPerform:with:. If the Application
object doesn't perform aSelector, the delegate is given the opportunity to perform it using
its inherited Object method perform:with:. If either the Application object or the
Application object's delegate accept aSelector, this method returns YES; otherwise it
returns NO.

See also: - tryToPerform:with: (Responder), - respondsTo: (Object),
- perform:with: (Object)

Classes: Application 2-63

unhide

- (int)unhide

Responds to an unhide message sent from Workspace Manager. You shouldn't invoke this
method; invoke unhide: instead. Returns zero.

See also: - unhide:

unhide:

- unhide:sender

Restores a hidden application to its former state (all of the windows, menus, and panels
visible), and makes it the active application. This method is usually invoked as the result
of double-clicking the icon for the hidden application. Returns self.

See also: - hide:, - unhideWithoutActivation:, - activateSelf:

un hideWithoutActivation:

- unhide WithoutActivation:sender

Unhides the application but doesn't make it the active application. You might want to
invoke activateSelf:NO after invoking this method to make the receiving application
active if there is no active application. Returns self.

See also: - hide:, - activateS elf:

unmounted:

- (int)unmounted:(const char *)fuIlPath

Invoked by the Workspace Manager when it has completed unmounting the device
identified by fullPath. You shouldn't directly send an unmounted: message. This is one
of the messages the Application will receive if it has previously sent the Workspace
Manager the message beginListeningForDeviceStatusChanges.

If the delegate implements the method app:unmounted:, that message is sent to it. If the
delegate doesn't implement it, the method is handled by the Application subclass object (if
you created one). The return is an arbitrary integer; your application defines and interprets
it. If you neither provide a delegate method nor override in a subclass, the default definition
simply returns o.
See also: - mounted:, - unmounting:ok:

2-64 Chapter 2: Application Kit

unmounting:ok:
- (int)unmounting:(const char *)fullPath ok:(int *)flag

Invoked and sent to all active applications when the Workspace Manager has received a
request to unmount the device identified by fullPath. This serves to warn applications that
may be making use of the device. You shouldn't directly send unmounting:ok: messages.

The method sets flag to point to YES to indicate that the Application assents to unmounting,
and NO if it objects.

If the delegate implements the method app:unmounting:, that message is sent to it, and
flag is set to whatever the delegate returns. If the delegate doesn't implement
app:unmounting:, the method is handled by the Application subclass object (if you
created one). The default behavior is to close all files on the device, and if the current
working directory is on the device, to change the current working directory to the user's
home directory.

The return value is an arbitrary integer; your application defines and interprets it. If you
neither provide a delegate method nor override in a subclass, the default definition simply
returns O.

updateWindows
- update Windows

Sends an update message to the Application object's visible Windows. When automatic
updating has been enabled, this method is invoked automatically in the main event loop
after each event. An application can also send update Windows messages at other times to
have Windows update themselves.

If the delegate implements app WiIlUpdate:, that message is sent to the delegate before the
windows are updated. Similarly, if the delegate implements appDidUpdate:, that message
is sent to the delegate after the windows are updated. Returns self.

See also: - setAutoupdate:, - appWillUpdate: (delegate method),
- appDidUpdate: (delegate method)

updateWindowsltem:
- update Windowsltem:aWindow

Updates the item for a Window in the Windows menu to reflect the edited status of a Window.
You rarely need to invoke this method because it is invoked automatically when the edited
status of a Window is set. Returns self.

See also: - change Windowsltem:titIe:filename:, - setDocEdited: (Window)

Classes: Application 2-65

".,

validRequestorForSendType:andReturnType:

- validRequestorForSendType:(NXAtom)sendType
andReturnType:(NXAtom)returnType

Passes this message on to the Application object's delegate, if the delegate can respond (and
isn't a Responder with its own next responder). If the delegate can't respond or returns nil,
this method returns nil, indicating that no object was found that could supply type Sent data
for a remote message from the Services menu and accept back typeReturned data. If such
an object was found, it is returned.

Messages to perform this method are initiated by the Services menu.

See also: - validRequestorForSendType:andReturnType: (Responder),
- registerServicesMenuSendTypes:andReturnTypes:,
- writeSelectionToPasteboard:types: (Object),
- readSelectionFromPasteboard: (Object)

windowList

- windowList

Returns the List object used to keep track of all the Application object's Windows,
including Menus, Panels, and the like. In the current implementation, this list also contains
global (shared) Windows.

windowsMenu

- windowsMenu

Returns the Application object's Windows menu. Returns nil if no Windows menu has
been created.

2-66 Chapter 2: Application Kit

Methods Implemented by the Delegate

app:applicationDidLaunch:

- app:sender applicationDidLaunch:(const char *)appName

Implement this method to respond to an applicationDidLaunch: message sent from the
Workspace Manager to sender (an Application object), informing it that an application
named appName has launched. This is one of the messages the Application will receive if
it has previously sent the Workspace Manager the message
beginListeningFor ApplicationStatusChanges.

See also: - applicationDidLaunch:

app:applicationDidTerminate:

- app:sender applicationDidTerminate:(const char *)appName

Implement this method to respond to an applicationDidTerminate: message sent from the
Workspace Manager to sender (an Application object), informing it that an application
named appName has terminated. This is one of the messages the Application will receive
if it has previously sent the Workspace Manager the message
beginListeningFor ApplicationStatusChanges.

See also: - applicationDidTerminate:

app:applicationWiIILaunch:

- app:sender applicationWillLaunch:(const char *)appName

Implement this method to respond to an application WillLaunch: message sent from the
Workspace Manager to sender (an Application object), informing it that an application
named appName is about to launch. This is one of the messages the Application will
receive if it has previously sent the Workspace Manager the message
beginListeningFor ApplicationStatusChanges.

See also: - application WillLaunch:

Classes: Application 2-67

app:fileOperationCompleted:

- app:sender fiieOperationCompieted:(int)operation

Sent to the delegate when sender (an application) has completed the file operation identified
by operation. The argument is the integer returned by the method that requested the file
operation: performFileOperation:source:destination:fiies:options: (part of
NXWorkspaceRequest protocol).

app:mounted:

- app:sender mounted: (const char *)fullPath

Implement this method to respond to a mounted: message sent from the Workspace
Manager to sender (an Application object), informing it that a device (for example a floppy
disk or an optical disk) has been mounted. This is one of the messages the Application will
receive if it has previously sent the Workspace Manager the message
beginListeningForDeviceStatusChanges.

See also: - mounted:

app:openFile:type:

- (int)app:sender
openFile:(const char *)filename
type:(const char *)aType

Invoked from within openFile:ok: after it has been determined that the application can
open another file. The method should attempt to open the file of type type and name
filename, returning YES if the file is successfully opened, and NO otherwise. (Although a
file's type may by convention be reflected in its name, type is not a synonym for extension.
filename should not exclude part of the name just because it can sometimes be inferred from
type.)

This method is also invoked from within openTempFile:ok: if neither the delegate nor the
Application subclass responds to app:openTempFile:type:

See also: - openFile:ok:, - openTempFile:ok:, -app:openFileWithoutUI:type:,
- app:openTempFile:type:

2-68 \ Chapter 2: Application Kit'

app:openFileWithoutUI:type:

- (NXDataLinkManager *)app:sender
openFile WithoutUI: (const char *)filename
type:(const char *)type

Sent to the delegate when sender (an Application) requests that the file of type type and
name filename be opened as a linked file. The file is to be opened without bringing up its
application's user interface; that is, work with the file will be under programmatic control
of sender, rather than under keyboard control of the user.

Returns a pointer to the NXDataLinkManager that will coordinate data flow between the
two applications.

See also: - app:openFile:type:

app:openTempFile:type:

- (int)app:sender
openTempFile:(const char *)filename
type:(const char *)aType

Invoked from within openTempFile:ok: after it has been determined that the application
can open another file. The method should attempt to open the file filename with the
extension aType, returning YES if the file is successfully opened, and NO otherwise.

By design, a file opened through this method is assumed to be temporary; it's the
application's responsibility to remove the file at the appropriate time.

See also: - openFile:ok:, - openTempFile:ok:

app:powerOffln:andSave:

- app:sender powerOffln:(int)ms andSave:(int)aFlag

Invoked from the powerOffln:andSave: method after the Workspace Manager receives a
power-off event. This method is invoked only if the application was launched from the
Workspace Manager. The argument ms is the number of milliseconds to wait before
powering down or logging out. The argument aFlag has no particular meaning at this time,
and can be ignored. You can ask for additional time by sending the
extendPowerOffBy:actual: message to the Workspace Manager from within your
implementation of this method. The Workspace Manager will power the machine down (or
log out the user) as soon as all applications terminate, even if there's time remaining on the
time extension.

See also: - extendPowerOfmy:actual: (Speaker)

Classes: Application 2-69

app:unmounted:

- app:sender unmounted:(const char *)fullPath

Implement this method to respond to an unmounted: message sent from the Workspace
Manager to sender (an Application object), informing it that the device identified by
fullPath has been unmounted. This is one of the messages the Application will receive if
it has previously sent the Workspace Manager a beginListeningForDeviceStatusChanges
message.

See also: - unmounted, - app:mounted:

app:unmounting:

- (int)app:sender unmounting:(const char *)fullPath

Invoked when the device mounted at fullPath is about to be unmounted. This method is
invoked from unmounting:ok: and is invoked only if the application was launched from
the Workspace Manager. The Application object or its delegate should do whatever is
necessary to allow the device to be unmounted. Specifically, all files on the device should
be closed and the current working directory should be changed if it's on the device.

See also: - unmounting:ok:, - app:unmounted:

app:wiIIShowHelpPanel:

- app:sender willShowHelpPanel:panel

Implement this to respond to notice that sender (an Application) has received a
showHelpPanel: message and is about to put up the Help panel identified by panel. The
return value doesn't matter.

See also: - showHelpPanel:

appAcceptsAnotherFile:

- (BOOL)appAcceptsAnotherFile:sender

Invoked from within Application'S openFile:ok: and openTempFile:ok: methods, this
method should return YES if it's okay for the application to open another file, and NO if
isn't. If neither the delegate nor the Application object responds to the message, then the
file shouldn't be opened.

See also: - openFile:ok:, - openTempFile:ok:

2-70 Chapter 2: Application Kit

appDidBecomeActive:

- appDidBecomeActive:sender

Implement to respond to notification sent from the Workspace Manager immediately after
the Application becomes active.

See also: - applicationDidLaunch:

appDidHide:

- appDidHide:sender

Invoked immediately after the application is hidden.

See also: - hide:, - unhide:, - appDidUnhide: (delegate method)

appDidlnit:

- appDidlnit:sender

Invoked after the application has been launched and initialized, but before it has received
its first event. The delegate or the Application subclass can implement this method to
perform further initialization.

See also: - app Willlnit: (delegate method)

appDidResignActive:

- appDidResignActive:sender

Invoked immediately after the application is deactivated.

See also: - becomeActiveApp, - resignActiveApp

appDidUnhide:

- appDidUnhide:sender

Invoked immediately after the application is unhidden.

See also: - hide:, - unhide:, - appDidHide: (delegate method)

Classes: Application 2-71

appDidUpdate:

- appDidUpdate:sender

Invoked immediately after the Application object updates its Windows.

See also: - updateWindows, - updateWindowsItem:, - appWillUpdate:
(delegate method)

application Defined:

- applicationDefined:(NXEvent *)theEvent

Invoked when the application receives an application-defined (NX_APPDEFINED) event.
See the description of this method under "Instance Methods," above.

appWillinit:

- app Willlnit:sender

Invoked before the Application object is initialized. This method is invoked before the
Application object has initialized its Listener and Speaker objects and before any
app:openFile:type: messages are sent to your delegate. The Application object's Listener
and Speaker objects will be created for you immediately after invoking this method if they
have not been previously created.

See also: - appDidlnit: (delegate method), - appListener, - appSpeaker

appWiliTerminate:

- app WillTerminate:sender

Invoked from within the terminate: method immediately before the application
terminates. If this method returns nil, the application is not terminated, and control is
returned to the main event loop. If you want to allow the application to terminate, you
should put your clean up code in this method and return'non-nil.

See also: - terminate:

2-72 Chapter 2: Application Kit

appWiliUpdate:

- app WillUpdate:sender

Invoked immediately before the Application object updates its Windows.

See also: - updateWindows, - updateWindowsltem:, - appDidUpdate:
(delegate method)

powerOff:

- powerOff:(NXEvent *)theEvent

Invoked from· the powerOff: Application method only if the application wasn't launched
from the Workspace Manager. Only applications launched from the Workspace Manager
are fully supported, so your application isn't guaranteed any amount of processing time
after this message is received. This notification is provided mainly for the use of alternate
login window programs.

See also: - powerOff:, - powerOffin:andSave:

Classes: Application 2-73

Box

Inherits From: View: Responder: Object

Declared In: appkitIBox.h

Class Description

A Box object is a simple View that can do two things: It can draw a border around itself
and it can title itself. You use a Box to group, visually, some number of other Views. These
other Views are added to the Box through the typical subview-adding methods, such as
addSubview: and replaceSubview:with:.

A Box contains a content area, a rectangle set within the Box's frame in which the Box's
subviews are displayed. The size and location of the content area depends on the Box's
border type, title location, the size of the font used to draw the title, and an additional
measure that you can set through the setOffsets:: method. When you create a Box, a
instance of View is created and added (as a sub view of the Box object) to fill the Box's
content area. If you replace this content view with a View of your own, your View will be
resized to fit the content area. Similarly, as you resize a Box its content view is
automatically resized to fill the content area.

The Views that you add as subviews to a Box are actually added to the Box's content
view-View's subview-adding methods are redefined by Box to ensure that a subview is
correctly placed in the view hierarchy. However, you should note that the subviews method
isn't redefined: It returns a List containing a single object, the Box's content view.

Instance Variables

id cell;

id contentView;

NXSize offsets;

NXRect borderRect;

NXRect titleRect;

2-74 Chapter 2: Application Kit

struct _bFlags {
unsigned int borderType:2;
unsigned int titiePosition:3;

} hFiags;

cell

contentView

offsets

borderRect

titleRect

bFlags.borderType

bFlags. titlePosition

Method Types

Initializing and freeing

Setting the border and title

The cell that draws the Box's title.

The Views that fills the Box's content area.

Offsets of the content view from the Box's border.

The Box's border rectangle.

The rectangle in which the title cell is drawn.

A constant describing the Box's border type.

A constant describing the position of the Box's title.

- initFrame:
- free

- setBorderType:
- borderType
- setTitlePosition:
- titlePosition
- setTitle:
- title
- setFont:
-font
- cell

Setting and placing the content view
- setContentView:
- content View
- setOffsets::
- getOffsets:

Putting Views in the Box - addSubview:
- replaceSubview:with:

Resizing the Box - setFrameFromContentFrame:
- sizeTo::
- sizeToFit

Classes: Box 2-75

Drawing the Box

Archiving

Instance Methods

addSubview:

- addSubview:a View

- drawS elf: :

- awake
-read:
- write:

Adds a View to the Box. This is done by forwarding the addSubview:a View message to the
Box's content view. Note that this means aView's location and size are reckoned within the
content view's coordinate system. After invoking this method, you should send the Box a
sizeToFit message. Returns self.

awake

-awake

Lays out the Box during the unarchiving process so that it can be displayed. You should
never invoke this method directly.

borderType

- (int)borderType

Returns the Box's border type, one of NX_LINE, NX_GROOVE, NX_BEZEL, or
NX_NOBORDER. By default, a Box's border type is NX_GROOVE.

See also: - setBorderType:

cell

- cell

Returns the cell used to display the Box's title.

2-76 Chapter 2: Application Kit

contentView

- content View

Returns. the Box's content view. The content view is created automatically when the Box
is created, and resized as the Box is resized (you should never send frame-altering messages
directly to a Box's content view). You can replace it with a View of your own through the
setContentView: method.

See also: - setContentView:

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Fills the Box's background with opaque, light gray (NX_LTGRAY) paint, then draws the
object's title, border, and its subviews (you can't change the background color short of
creating your own Box subclass). You never invoke this method directly; it's invoked by
the display methods inherited from the View class. Returns self.

font

-font

Returns the Font object used to draw the Box's title. By default, the Font is the 12.0 point
system font (NXSystemFont).

See also: - setFont:

free

-free

Frees the Box and all its subviews.

getOffsets:

- getOffsets:(NXSize *)theSize

Returns, by reference in theSize, the horizontal and vertical distances between the Box's
border and its content area, measured in the Box's coordinate system. The default is 5.0 in
both dimensions. Returns self.

See also: - setOffsets::

Classes: Box 2-77

initFrame:

- initFrame:(const NXRect *)frameRect

The designated initializer for the Box class, this method initializes the Box with the
following values:

Attribute

frame
title
border type
title position
font
offsets

Value

frameRect
"Title"
NX_RIDGE
NX_ATTOP
12.0 point NXSystemFont
5.0 in both dimensions

In addition, the Box's content view is automatically created and added as the Box's single
subview, and the Box identifies itself as an opaque View. Returns self.

read:

- read:(NXTypedStream *)stream

Reads the Box from the typed stream stream. Returns self.

See also: - write:

replaceSubview:with:

- replaceSubview:oldView with:new View

Replace oldView with new View in the subview list of the Box's content view. This method
does nothing and returns nil if oldView isn't a subview of the content view or if newView
isn't a View. Otherwise, this method returns oldView.

See also: - addSubview:

2-78 Chapter 2: Application Kit

setBorderType:

- setBorderType:(int)aType

Sets the border type to aType, which must be NX_LINE, NX_GROOVE, NX_BEZEL, or
NX_NOBORDER (a Box's default border type is NX_GROOVE). If the size of the new
border is different from that of the old border, the content view is resized to absorb the
difference. The Box isn't redisplayed. Returns self.

See also: - borderType

setContentView:

- setContentView:a View

Sets the Box's content view to aView, resizing the View to fit within the Box's current
content area. The old content view is returned.

See also: - contentView

setFont:

- setFont:fontObj

SetsfontObj as the Font object used to draw the Box's title. By default, the title is drawn
using the 12.0 point system font (NXSystemFont). If the size of the new Font is different
from that of the old Font, the content view is resized to absorb the difference. The Box isn't
redisplayed. Returns self.

See also: + newFont:size: (Font)

setFrameFromContentFrame:

- setFrameFromContentFrame:(const NXRect *)contentFrame

Places the Box so its content view lies on contentFrame, reckoned in the coordinate system
of the Box's superview. Returns self.

See also: - setOffsets::, - setFrame: (View)

Classes: Box 2-79

setOffsets: :

- setOffsets:(NXCoord)horizontal :(NXCoord)vertical

Sets the horizontal and vertical distance between the border of the Box and its content view.
The horizontal value is applied (reckoned in the Box's coordinate system) fully and equally
to the left and right sides of the Box. The vertical value is similarly applied to the top and
bottom. Returns self

Unlike changing a Box's other attributes, such as its title position or border type, changing
the offsets doesn't automatically resize the content view. In general, you should send a
sizeToFit message to the Box after changing the size of its offsets. This causes the content
view to remain unchanged while the Box is wrapped around it.

setTitle:

- setTitle:(const char *)aString

Sets the title to aString. By default, a Box's title is "Title". After invoking this method you
should send a sizeToFit message to the Box to ensure that it's wide enough to accommodate
the length of the title. Returns self.

See also: - title, - setFont:

setTitlePosition:

- setTitlePosition:(int)aPosition

Sets the title position to aPosition, which can be one of the values listed in the following
table. The default position is NX_ATTOP.

Value

NX_NOTITLE
NX_ABOVETOP
NX_ATTOP
NX_BELOWTOP
NX_ABOVEBOTTOM
NX_ATBOTTOM
NX_BELOWBOTTOM

Meaning

The Box has no title
Title positioned above the Box's top border
Title positioned within the Box's top border
Title positioned below the Box's top border
Title positioned above the Box's bottom border
Title positioned within the Box's bottom border
Title positioned below the Box's bottom border

If the new title position changes the size of the Box's border area, the content view is resized
to absorb the difference. The Box isn't redisplayed. Returns self.

See also: - getTitlePosition:

2-80 Chapter 2: Application Kit

sizeTo:;

- sizeTo:(NXCoord)width :(NXCoord)height

Resizes the Box to width and height. The Box's content view is resized accordingly; if the
new width or height of the Box leaves no room for the content view (after subtracting the
room needed to accommodate the border, title, and offsets), the respective dimension of the
content view will be zero. Returns self.

sizeToFit

- sizeToFit

Resizes and moves the Box's content view so that it just encloses its subviews. The Box
itself is then moved and resized to wrap around the content view. The Box's width is
constrained so its title will be fully displayed.

You should invoke this method after:

• Adding a subview (to the content view).
• Altering the size or location of such a sub view.
• Setting the Box's offsets.
• Setting the Box's title.

The mechanism by which the content view is moved and resized depends on whether the
object responds to its own sizeToFit message: If it does respond, then that message is sent
and the content view is expected to be so modified. If the content view doesn't respond, the
Box moves and resizes the content view itself.

Returns self.

title
- (const char *)titIe

Returns the Box's title. By default, a Box's title is "Title".

See also: - setTitle:

Classes: Box 2-81

titlePosition
- (int)titlePosition

Returns a constant representing the title position. See the description of setTitlePosition:
for a list of the title position constants.

See also: - setTitlePosition:

write:
- write:(NXTypedStream *)stream

Writes the Box to the typed stream stream. Returns self.

See also: - read:

2-82 Chapter 2: Application Kit

Button

Inherits From: Control: View : Responder: Object

Declared In: appkitlButton.h

Class Description

Button is a subclass of Control that intercepts mouse-down events and sends an action
message to a target object when it's clicked or pressed. By virtue of its ButtonCell, Button
is a two-state Control-it's either "off' or "on"-and it displays its state depending on the
configuration of the ButtonCell. Button acquires other attributes of ButtonCell. The state
is used as the value, so Control methods like setIntValue: actually set the state (the
methods setState: and state are provided for more conceptually accurate setting of the
state). The Button can send its action continuously and display highlighting in several
different ways. What's more, a Button can have a key equivalent that's eligible for
triggering whenever the Button's Panel or Window is key.

Button and Matrix both -provide a Control View needed to display a ButtonCell object.
However, while Matrix requires you to access the ButtonCells directly, most of Button's
methods are covers for identically declared methods in ButtonCell. The only ButtonCell
methods that don't have covers relate to the font used to display the key equivalent, and to
specific methods for highlighting or showing the Button's state (these last are usually set
together with Button's setType: method).

Creating a Subclass of Button

The initFrame:icon:tag:target:action:key:enabled: method is the designated initializer
for Buttons that initially display only icons. Buttons that initially display only text have the
designated initializer initFrame:text: tag: target: action:key: enabled: . Override one or
both of these methods if you create a subclass of Button that performs its own initialization.

In particular, if you want to use a custom B uttonCell subclass with your subclass of Button,
you have to override the setCellClass: method as well as the designated initializers, as
described in "Creating New Controls" in the Control class specification.

See the ButtonCell class specification for more on Button's behavior.

Classes: Button 2-83

Instance Variables

None declared in this class.

Method Types

Setting Button's Cell class

Initializing a Button

Setting the Button type

Setting the state

Setting the repeat interval

Setting the titles

Setting the icons

+ setCellClass:

- init
- initFrame:
- initFrame:icon:tag:target:action:key:enabled:
- initFrame:title:tag:target:action:key:enabled:

- setType:

- setState:
- state

- setPeriodicDelay:andInterval:
- getPeriodicDelay:andInterval:

- setTitle:
- setTitleNoCopy:
- title
- setAltTitle:
- altTitle

- setlcon:
- setlcon:position:
-icon
- setAltIcon:
- altIcon
- setlmage:
-image
- setAltlmage:
-altImage
- setIconPosition:
- iconPosition

Modifying graphic attributes - setTransparent:
- isTransparent
- setBordered:
- isBordered

Displaying the Button - display
- highlight:

2-84 Chapter 2: Application Kit

Setting the key equivalent - setKeyEquivalent:
- key Equivalent

Handling events and action messages

Setting the Sound

Class Methods

setCeliClass:

+ setCellClass:classld

- acceptsFirstMouse
- performClick:
- performKeyEquivalent:

- setSound:
- sound

Configures the Button class to use instances of classld for its Cells. classld should be the
id of a subclass of ButtonCell, obtained by sending the class message to either the Cell
subclass object or to an instance of that subclass. The default Cell class is ButtonCell.
Returns self.

If this method isn't overridden by a subclass of Button, then when it's sent to that subclass,
Button and any other subclasses of Button that don't override the methods mentioned
below will use the new Cell subclass as well. To safely set a Cell class for your subclass of
Button, override this method to store the Cell class in a static id. Also, override the
designated initializer to replace the Button subclass instance's Cell with an instance of the
Cell subclass stored in that static id. See "Creating New Controls" in the Control class
specification's class description for more information.

Instance Methods

acceptsFirstMouse

- (BOOL)acceptsFirstMouse

Returns YES. Buttons always accept the mouse-down event that activates a Window,
regardless of whether the Button is enabled.

Classes: Button 2-85

altlcon

- (const char *)altIcon

Returns the name of the NXlmage that appears on the Button when it's in its alternate state,
or NULL if there is no alternate icon or the NXImage has no name. This NXImage is
displayed only for Buttons that highlight or show their alternate state by displaying their
alternate contents (as opposed to simply lighting or pushing in).

See also: - setAltIcon:, - setIconPosition:, - altImage, - icon, - image, - setType:

altlmage

- altlmage

Returns the NXImage that appears on the Button when it's in its alternate state, or nil if
there is no alternate NXImage. This Button only displays its alternate NXImage if it
highlights or shows its alternate state by displaying its alternate contents.

See also: - setAltlmage:, - setIconPosition:, - altIcon, - image, - icon, - setType:

altTltle

- (const char *)altTitle

Returns the string that appears on the Button when it's in its alternate state, or NULL if
there isn't one. The alternate title is only displayed if the Button highlights or shows its
alternate state by displaying its alternate contents.

See also: - setAltTitle:, - title, - setType:

display

- display

Displays the Button. This method is overridden from View so that
displayFromOpaqueAncestor::: is invoked if the Button is not opaque. Returns self.

See also: - is Opaque (Cell), - isTransparent, - setTransparent:

2-86 Chapter 2: Application Kit

getPeriodicDelay:andl nterval:

- getPeriodicDelay:(float *)delay andlnterval:(float *)interval

Returns self, and by reference the delay and interval periods for a continuous Button. delay
is the amount of time (in seconds) that a continuous Button will pause before starting to
periodically send action messages to the target object. interval is the amount of time (also
in seconds) between those messages.

See also: - setContinuous: (Control), - setPeriodicDelay:andlnterval:

highlight:

- highlight:(BOOL)flag

If the highlight state of the cell is not equal to flag, the Button is highlighted and the
highlight state of the cell is set to flag. Highlighting may involve the Button appearing
"pushed in" to the screen, displaying its alternate title or icon, or lighting. This method
issues a flush Window message after highlighting the Button. Returns self.

See also: - setType:

icon

- (const char *)icon

Returns the name of the NXlmage that appears on the Button when it's in its normal state,
or NULL if there is no such NXlmage or the NXlmage doesn't have a name. A Button that
doesn't display its alternate contents to highlight or show its alternate state will always
display its normal icon.

See also: - setlcon:, - setIcon:position:, - setIconPosition:, - image, - altIcon,
- altImage, - setType:

icon Position

- (int)iconPosition

Returns the position of the icon (if any) on the Button. See setIconPosition: for the list
of positions. '

See also: - setIconPosition:, - setIcon:position:

Classes: Button 2-87

image

-image

Returns the NXImage that appears on the Button when it's in its normal state, or nil if there
is no such NXImage. This NXImage is always displayed on a Button that doesn't change
its contents when highlighting or showing its alternate state.

See also: - setlmage:, - setlconPosition:, - icon, - altimage, - altlcon, - setType:

init

-init

Initializes and returns the receiver, a new Button instance, with a frame origin of (0, 0) and
width and height of 50 units each. The new instance is enabled and displays the default title
"Button" centered in its frame, but has no icon, tag, target, action, or key equivalent
associated with it. The new Button is bordered, and is of type NX_MOMENTARYPUSH.
One of the more specific initializers is usually used to initialize a Button.

See also: - initFrame: title:tag:target: action: key: enabled: ,
- initFrame:icon:tag:target:action:key:enabled:, - initFrame:, - setType:

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new Button instance, with default parameters in the
given frame. The new instance is enabled and displays the default title "Button" centered
in its frame, but has no icon, tag, target, action, or key equivalent. The new Button is
bordered, and is of type NX_MOMENTARYPUSH. One of the more specific initializers
is usually used to initialize a Button.

See also: - initFrame:title:tag:target: action:key: enabled: ,
- initFrame:icon:tag:target:action:key:enabled:, - initFrame:, - setType:

2-88 Chapter 2: Application Kit

initFrame:icon:tag:target:action:key:enabled:
- initFrame:(const NXRect *)frameRect

icon:(const char *)iconName
tag: (int)anlnt
target:anObject
action: (SEL)aSe lector
key: (unsigned short)charCode
enabled: (BOOL)flag

Initializes and returns the receiver, a new Button instance that displays an icon. frameRect
is the rectangle defining the Button's position and size in its superview. iconName is the
name of an NXImage that will be used for the Button's icon. anlnt is set as the Button's
tag. anObject is set as the target, which will be sent aSelector when the Button is clicked
or pressed. charCode is the new Button's key equivalent. flag determines whether the
Button is enabled or not. The new Button is bordered, and is of type
NX_MOMENTARYPUSH.

This method is the designated initializer for Buttons that display icons. A Button that
displays an icon can be configured to also display a title with the setTitle: and
setIconPosition: methods.

See also: - setTitle:, - setIconPosition:, - setType:

initFrame:title:tag:target:action:key:enabled:
- initFrame:(const NXRect *)frameRect

title:(const char *)aString
tag: (int)anlnt
target:anObject
action: (SEL)aSelector
key:(unsigned short)charCode
enabled: (BOOL)flag

Initializes and returns the receiver, a new Button instance that displays a text string. The
arguments and operation of this method are identical to those of
initFrame:icon:tag:target:action:key:enabled:, except that aString is the title that the
Button will display instead of the name of an icon. The new Button is bordered, and is of
type NX_MOMENTARYPUSH.

Classes: Button 2-89

This method is the designated initializer for Buttons that display text. A Button that
displays an icon can be configured to also display an icon with the setlcon:position:
method, or a combination of setlcon: or setlmage: and setlconPosition:.

See also: - setlcon:, - setlmage:, - setlconPosition:, - setType:

isBordered

- (BOOL)isBordered

Returns YES if the Button has a border, NO otherwise. A Button's border isn't the single
line of most other Controls' borders; instead, it's a raised bezel ("bezel" usually refers to a
depressed bezel, as seen on FormCells, for example). You shouldn't use the setBezeled:
method with a Button.

See also: - setBordered:

isTransparent

- (BOOL)isTransparent

Returns YES if the Button is transparent, NO otherwise. A transparent Button never draws
itself, but it receives mouse-down events and tracks the mouse properly.

See also: - setTransparent:

keyEqu iva lent

- (unsigned short)keyEquivalent

Returns the key equivalent char~cter of the Button, or 0 if one hasn't been defined.

See also: - setKeyEquivalent:, - performKeyEquivalent:

performClick:

- performClick:sender

Highlights the Button, sends its action message to the target object, then unhighlights the
Button. Invoke this method when you want the Button to behave exactly as if the user had
clicked it with the mouse.

See also: - performKeyEquivalent:

2-90 Chapter 2: Application Kit

performKeyEquivalent:

- (BOOL)performKeyEquivalent:(NXEvent *)theEvent

If the character in theEventmatches the Button's key equivalent, simulates the user clicking
the Button by sending performClick: to self, and returns YES. Otherwise, does nothing
and returns NO.

The Button won't perform the key equivalent if there's a modal panel present that the
Button isn't on.

See also: - keyEquivalent, - performClick:

setAltlcon:

- setAltlcon:(const char *)iconName

Sets the Button's alternate icon by name; iconName is the name of the NXImage to be
displayed. Doesn't display the Button even if autodisplay is on. Returns self.

A Button's alternate icon is only displayed if the Button highlights or shows its alternate
state by changing its contents.

See also: - altIcon, - setIconPosition:, - setAltImage:, - setIcon:, - setImage:,
+ findlmageNamed: (NXImage), - setType:, - setAutodisplay: (View)

setAltlmage:

- setAltImage:altImage

Sets the Button's alternate icon by id; altImage is the NXImage to be displayed.
Returns self.

A Button displays its alternate NXImage only if it highlights or displays its alternate state
by using its alternate contents.

See also: - altImage, - setIconPosition:, - setAltIcon:, - setImage:, - setIcon:,
- setType:

Classes: Button 2 .. 91

setAltlitle:

- setAltTitle:(const char *)aString

Sets the title that the Button displays in its alternate state to aString. Returns self.

The alternate title is shown only if the Button changes its contents when highlighting or
displaying its alternate state.

See also: - altTitle:, - setTitle:, - setType:

setBordered:

- setBordered:(BOOL)jlag

Ifjlag is YES, the Button displays a border; if NO, the Button doesn't display a border. A
Button's border is not the single line or most other Controls' borders; instead, it's a raised
bezel ("bezel" usually refers to a depressed bezel, as seen on FormCells, for example). This
method redraws the Button if the bordered state changes. Returns self.

See also: - isBordered

setlcon:

- setIcon:(const char *)iconName

Sets the Button's icon by name; iconName is the name of the NXlmage to be displayed.
Redraws the Button's inside and returns self.

A Button's icon is displayed when the Button is in its normal state, or always if the Button
doesn't highlight or show state by changing its contents.

See also: - setIcon:position:, - icon, - setIconPosition:, - setImage:, - setAltIcon:,
- setAltImage:, + findlmageNamed: (NXlmage), - setType:

setlcon:position:

- setIcon:(const char *)iconName position:(int)aPosition

Combines setIcon: and setIconPosition: into one message. Returns self.

See also: - setIcon:, - setIconPosition:

2·92 Chapter' 2: Application Kit

setlconPosition:

- setIconPosition:(int)aPosition

Sets the position of the icon when a Button simultaneously displays both text and an icon.
aPosition can be one of the following constants:

NX_TITLEONLY
NX_ICONONLY
NX_ICONLEFT
NX_ICONRIGHT
NX_ICONBELOW
NX_ICONABOVE
NX_ICONOVERLAPS

title only (no icon on the Button)
icon only (no text on the Button)
icon is to the left of the text
icon is to the right of the text
icon is below the text
icon is above the text
icon and text overlap (text drawn over icon)

If the position is top or bottom, the alignment of the text will be changed to
NX_CENTERED. This behavior can be overridden with a subsequent setAlignment:
method. Redraws the Button's inside and returns self.

See also: - iconPosition, - setIcon:position:, - setAlignment: (Control)

setlmage:

- setImage:image

Sets the Button's icon by id; image is the NXImage to be displayed. Redraws the Button's
inside and returns self.

A Button's icon is displayed when the Button is in its normal state, or all the time for a
Button that doesn't change its contents when highlighting or displaying its alternate state.

See also: - image, - setIconPosition:, - setIcon:, - setAltImage:, - setAltlcon:,
- setType:

setKeyEquivalent:

- setKeyEquivalent:(unsigned short)charCode

Sets the key equivalent character of the Button, and redraws the Button's inside if there is
no icon or alternate icon set for the Button. The key equivalent isn't displayed if the icon
position is set to NX_TITLEONLY, NX_ICONONLY or NX_ICONOVERLAPS; that is,
the Button must display both its title and its "icon" (the key equivalent in this case), and
they must not overlap. Returns self.

Classes: Button 2-93

To display a key equivalent on a Button, set the image and alternate image to nil, then set
the key equivalent, and then set the icon position.

See also: - keyEquivalent, - setIconPosition:, - performKeyEquivalent:,
- setImage:, - setAltImage:

setPeriodicDelay:andlnterval:

- setPeriodicDelay:(float)delay andlnterval:(float)interval

Sets the message delay and interval for the Button. These two values are used if the Button
is configured (by a setContinuous: message) to continuously send the action message to
the target object while tracking the mouse. delay is the amount of time (in seconds) that a
continuous Button will pause before starting to periodically send action messages to the
target object. interval is the amount of time (also in seconds) between those messages.
Returns self.

The maximum value allowed for both the delay and the interval is 60.0 seconds.

See also: - getPeriodicDelay:andlnterval:, - setContinuous (Control)

setSound:

- setSound:soundObject

Sets the Sound played when the Button is pressed, and whenever the cursor re-enters the
Button while tracking. Returns self.

See also: - sound

setState:

- setState:(int)anlnt

Sets the Button's state to anlnt and redraws the Button. 0 is the normal or "off' state, and
any nonzero number is the alternate or "on" state. Returns self.

See also: - state

2-94 Chapter 2: Application Kit

setlitle:
- setTitle:(const char *)aStrin~

Sets the title displayed by the Button when in its normal state to aString. This title is always
shown on Buttons that don't use their alternate contents when highighting or displaying
their alternate state. Redraws the Button's inside and returns self.

See also: - setTitleNoCopy:, - title, - setAItTitle:, - setType:

setlitleNoCopy:
- setTitleNoCopy:(const char *)aString

Similar to setTitle: but doesn't make a copy of aString. Returns self.

See also: - setTitle:

setTransparent:
- setTransparent:(BOOL)jiag

Sets whether the Button is transparent, and redraws the Button ifjiag is NO. Returns self.

A transparent Button tracks the mouse and sends its action, but doesn't draw. A transparent
Button is useful for sensitizing an area on the screen so that an action gets sent to a target
when the area receives a mouse click.

See also: - isTransparent

setType:
- setType:(int)aType

Sets the way the Button highlights while pressed, and how it shows its state. Redraws the
Button and returns self. The types available are for the most common Button types, which
are also accessible in Interface Builder; you can configure different behavior with
ButtonCell's setHighlightsBy: and setShowsStateBy: methods. aType can be one of
seven constants:

NX_MOMENTARYPUSH (the default): While the Button is held down it's shown as
lit, and also "pushed in" to the screen if the Button is bordered. This type of Button is
best for simply triggering actions, as it doesn't show its state; it always displays its
normal icon or title. This option is called "Momentary Push" in Interface Builder's
Button Inspector.,

Classes: Button 2-95

NX_MOMENTARYCHANGE: While the Button is pressed, the alternate icon or
alternate title is displayed. This type always displays its normal title or icon (that is, it
doesn't display its state). The miniaturize button in a window's title bar is a good
example of this type of Button. This option is called "Momentary Change" in Interface
Builder's Button Inspector.

NX_PUSHONPUSHOFF: Holding the Button down causes it to be shown as lit, and
also "pushed in" to the screen if the Button is bordered. The Button displays itself as lit
while in its alternate state. This option is called "Push On/Push Off' in Interface
Builder's Button Inspector.

NX_ONOFF: Highlights while pressed by lighting, and stays lit in its alternate state.
This option is called "On/Off' in Interface Builder's Button Inspector.

NX_ TOGGLE: Highlighting is performed by changing to the alternate title or icon
"pushing in." The alternate state is shown by displaying the alternate title or icon. This
option is called "Toggle" in Interface Builder's Button Inspector.

NX_SWITCH: A variant of NX_ TOGGLE that has no border, and that has a default
icon called "switch" and an alternate icon called "switchH" (these are identical to the
"NXswitch" and "NXswitchH" system bitmaps). This type of Button is available as a
separate palette item in Interface Builder.

NX_RADIOBUTTON: Like NX_SWITCH, but the default icon is "radio" and the
alternate icon is "radioH" (identical to the "NXradio" and "NXradioH" system
bitmaps). This type of Button is available as a separate palette item in Interface Builder.

There is no constant for Interface Builder's "Momf-ntary Light" type; you can set this
programmatically as follows:

[[myButton cell] setHighlightsBy:NX_CHANGEGRAY I NX_CHANGEBACKGROUND] i

[[myButton cell] setShowsStateBy:NX_NONE] i

See also: - setType: (ButtonCell), - setHighlightsBy: (ButtonCell),
- setShowsStateBy: (ButtonCell)

sound
-sound

Returns the Sound played when the Button is pressed, and whenever the cursor re-enters
the Button while tracking.

See also: - setSound:

2-96 Chapter 2: Application Kit

state
- (int)state

Returns the Button's state, either 0 for normal or "off," or 1 for alternate or "on."

See also: - setState:

title
- (const char *)title

Returns the title displayed on the Button when it's in its normal state, or always if the
Button doesn't use its alternate contents for highlighting or displaying the alternate state.
Returns NULL if there is no title.

See also: - setTitle:, - altTitle, - setType:

Classes: Button 2-97

ButtonCel1

Inherits From: ActionCell : Cell: Object

Declared In: appkitIB uttonCell.h

Class Description

ButtonCell is a subclass of ActionCell used to implement the user interface devices of
push buttons, switches, and radio buttons, as well as any area of the screen that should send
a message to a target when clicked. ButtonCells are used by the Button and Matrix
subclasses of Control. Matrix is specifically used to hold sets of ButtonCells to create
groups of switches or radio buttons.

A ButtonCell is a two-state Cell; it's either "off' or "on," and can be configured to display
the two states differently, with a separate title and/or icon (named NXImage) for either
state. The two states are more often referred to as "normal" and "alternate." A ButtonCell's
state is also used as its value, so Cell methods that set the value (setIntValue: and so on)
actually set the ButtonCell's state to "on" if the value provided is non-zero (or non-null for
strings), and to "off' if the value is zero or null. Similarly, methods that retrieve the value
return 1 for the "on" or alternate state (an empty string in the case of stringValue), or 0 or
NULL for the "off' or normal state. Unlike Button, ButtonCell doesn't have setState: or
state methods; you have to use setIntValue: or a related method.

A ButtonCell sends its action message to its target once if it's View is clicked and it gets
the mouse-down event, but can also send the action message continuously as long as the
mouse is held down with the cursor inside the ButtonCell. The ButtonCell can show that
it's being pressed by highlighting in several ways, for example, a bordered ButtonCell can
appear pushed into the screen, or the icon or title can change to an alternate form while the
ButtonCell is pressed.

A ButtonCell can also have a key equivalent (like a Menu item). If the Window or Panel
that the ButtonCell's View is on is the key window, then it gets the first chance to receive
events related to key equivalents. This is used quite often in modal panels that have an
"OK" Button with a Return sign on them. Usually a ButtonCell displays a key equivalent
as its icon; if you ever set an icon for the ButtonCell, the key equivalent remains, but
doesn't get displayed.

For more information on ButtonCell's behavior, see the Button and Matrix class
specifications.

2-98 Chapter 2: Application Kit

Instance Variables

char *altContents;

union _icon {

struct _hmap {
id normal;
id alternate;

} bmap;

struct _ke {

} ke;

} icon;

id sound;

id font;
float descent;

struct _hcFlagsl {
unsigned int pushIn: 1 ;
unsigned int changeContents: 1;
unsigned int changeBackground: 1 ;
unsigned int changeGray: 1;
unsigned int lightByContents: 1;
unsigned int lightByBackground: 1;
unsigned int lightByGray: 1 ;
unsigned int hasAlpha: 1 ;
unsigned int bordered: 1 ;
unsigned int iconOverlaps: 1 ;
unsigned int horizontal: 1;
unsigned int bottomOrLeft: 1;
unsigned int iconAndText: 1;
unsigned int lastState: 1;
unsigned int iconSizeDiff: 1 ;
unsigned int iconIsKeyEquivalent: 1;

} bcFlagsl;

struct _hcFlags2 {
unsigned int key Equivalent: 8;
unsigned int transparent: 1 ;

} bcFlags2;

unsigned short periodicDelay;

unsigned short periodicInterval;

Classes: ButtonCe!! 2·99

altContents

icon.bmap.normal

The contents shown when the ButtonCell is in its alternate
state: a string for a text ButtonCell, an NXlmage for an
icon-only ButtonCell.

The icon for a ButtonCell that displays both a title and an
icon.

icon.bmap.alternate The alternate icon for a ButtonCell that displays both a
title and an icon.

icon.ke.font Font used to draw the key equivalent.

icon.ke.descent The descent of descenders in the key equivalent font.

sound The Sound played when the ButtonCell gets a
mouse-down event.

bcFlagsI.pushln If 1, a bordered ButtonCell appears to push into the screen
when pressed.

bcFlags I.changeContents If 1, the ButtonCell shows its alternate state by displaying
its alternate icon and title.

bcFlags1.changeBackground If 1, the ButtonCell shows its alternate state by swapping
the light gray and white pixels in its background.

bcFlags I.changeGray If 1, the ButtonCell shows its alternate state by swapping
its light gray and white pixels.

bcFlags I.lightByContents If 1, the ButtonCell highlights while pressed by
displaying its alternate icon and title.

bcFlags1.lightByBackground If 1, the ButtonCell highlights by swapping the light gray
and white pixels in its background.

bcFlags I.lightByGray If 1, the ButtonCell shows its highlighting by swapping its
light gray and white pixels.

bcFlags1.hasAlpha 1 if the ButtonCell's icon has alpha values (transparent
pixels).

bcFlagsI.bordered 1 if the ButtonCell has a raised bezel border.

bcFlags I.iconOverlaps 1 if the icon overlaps the title.

bcFlags I.horizontal 1 if the icon is to one side of title.

bcFlagsI.bottomOrLeft 1 if the icon is on the left or bottom.

bcFlags I.iconAndText 1 if the ButtonCell has both an icon and a title.

bcFlagsI.lastState The state of the ButtonCell when last drawn.

bcFlags I.iconSizeDiff 1 if the alternate icon is a different size than the
normal icon.

2-100 Chapter 2: Application Kit

bcFlagsl.iconIsKeyEquivalent 1 if the key equivalent is drawn as the icon.

bcFlags2.keyEquivalent The key equivalent character.

bcFlags2.transparent 1 if the ButtonCell doesn't draw itself at all.

periodicDelay

periodicInterval

Method Types

The delay before sending the first action message by a
continuous ButtonCell.

The interval at which a continuous ButtonCell sends
its action.

Initializing, copying, and freeing a ButtonCell
- init
- initTextCell:
- initlconCell:
- copyFrornZone:
-free

Determining component sizes - calcCellSize:inRect:
- getDrawRect:
- getTitleRect:
- getlconRect:

Setting the titles - setTitle:
- setTitleNoCopy:
- title
- setAltTitle:
- altTitle
- setFont:

Setting the icons - setlcon:
-icon
- setAltlcon:
- altlcon
- setlmage:
- image
- setAltImage:
- altImage
- setlconPosition:
- iconPosition

Setting the Sound - setSound:
- sound

Classes: ButtonCe!! 2-101

Setting the state - setDouble Value:
- double Value
- setFloatValue:
- floatValue
- setlntValue:
- intValue
- setStringValue:
- setStringValueNoCopy:
- string Value

Setting the repeat interval - setPeriodicDelay:andInterval:
- getPeriodicDelay: andInterval:

Tracking the mouse - trackMouse:inRectofView:

Setting the key equivalent - setKeyEquivalent
- setKeyEquivalentFont
- setKeyEquivalentFontsize:
- keyEquivalent

Setting parameters - setParameter:to:
- getParameter:

Modifying graphic attributes - setBordered:
- isBordered

Modifying display behavior

Simulating a click

Displaying the ButtonCell

Archiving

2-102 Chapter 2: Application Kit

- setTransparent:
- isTransparent
- isOpaque

- setType:
- setHighlightsBy:
- highlightsB y
- setShowsStateBy:
- showsStateBy

- performClick:

- drawInside:in View:
- drawS elf: in View:
- highlight in View: lit

- read:
- write:

Instance Methods

altlcon
- (const char *)altIcon

Returns the name of the NXImage that appears on the ButtonCell when it's in its alternate
state, or NULL if there is no alternate icon or the NXImage has no name. This NXImage
is displayed only for ButtonCells that highlight or show their alternate state by displaying
their alternate contents (as opposed to simply lighting or pushing in).

See also: - setAltIcon:, - setIconPosition:, - altImage, - icon, - image, - setType:

altlmage
- altImage

Returns the NXImage that appears on the ButtonCell when it's in its alternate state, or nil
if there is no alternate NXImage. This ButtonCell only displays its alternate NXImage if it
highlights or shows its alternate state by displaying its alternate contents.

See also: - setAltImage:, - setIconPosition:, - altIcon, - image, - icon, - setType:

altlitle
- (const char *)altTitle

Returns the string that appears on the ButtonCell when it's in its alternate state, or NULL
if there isn't one. The alternate title is only displayed if the ButtonCell highlights or shows
its alternate state by displaying its alternate contents.

See also: - setAItTitle:, - title, - setType:

calcCeIISize:inRect:
- caIcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns self, and by reference in theSize the minimum width and height required for
displaying the ButtonCell in aRect. This minimum size is the larger of the sizes required
for displaying the normal contents or the alternate contents, plus any space needed to
display a border.

See also: - getDrawRect:, - getIconRect:, - getTitleRect:

Classes: ButtonCdl 2-103

copyFromZone:

- copyFrornZone:(NXZone *)zone

Allocates, initializes, and returns a copy of the receiving ButtonCell. The copy is allocated
from zone and is given the same data as the receiver.

doubleValue

- (double)double Value

Returns 0.0 if the ButtonCell is in its normal state, 1.0 if the it's in its alternate state.

See also: - setDouble Value:, - floatValue, - intValue, - stdngValue

drawlnside:inView:

- drawlnside:(const NXRect *)aRect inView:controlView

Draws the inside of the ButtonCell (the title, icon, and their background, but not the border)
in aRect within controlView. aRect should be the same rectangle passed to
drawSelf:in View:. The PostScript focus must be locked on controlView when this
message is sent. This method is invoked by drawS elf: in View: and by the Control classes'
drawCelllnside: method. It's provided so that when a ButtonCell's state is set (with
setIntValue:, for example), a minimal update of the ButtonCell's visual appearance can
occur. Returns self.

If you subclass ButtonCell and override drawSelf:in View:, you must also override this
method. However, you are free to override only this method and not drawSelf:in View: if
your subclass doesn't draw outside the area that ButtonCell draws in.

See also: - drawlnside:inView: (Cell), - drawSelf:inView:, -lockFocus (View)

drawSelf:inView:

- drawSelf:(const NXRect *)cellFrame in View:controlView

Displays the ButtonCell in cellFrame within controlView. The PostScript focus must be
locked on controlView when this message is sent. Draws the border of the ButtonCell if
necessary, then invokes drawlnside:inView:. Returns self.

See also: - drawlnside:inView:, -lockFocus (View)

2-104 Chapter 2: Application Kit

floatValue

- (float)f1oatValue

Returns 0.0 if the ButtonCell is in its normal state, 1.0 if it's in its alternate state.

See also: - setFloatValue:, - doubleValue, - intValue, - stringValue

free

-free

Frees the memory used by the ButtonCell and returns nil.

getDrawRect:

- getDrawRect:(NXRect *)theRect

Returns self and, by reference in theRect the bounds of the area into which the title and icon
(not including the border) are drawn. You must pass the bounds of the ButtonCell in
theRect (the same bounds calculated by calcCellSize:inRect: and passed to
drawSelf:inView:). This method assumes that the ButtonCell is being drawn in a flipped
View.

See also: - getIconRect:, - getTitleRect:, - calcCellSize:inRect:

getlconRect:

- getlconRect:(NXRect *)theRect

Returns self and, by reference in theRect, the bounds of the area into which the icon of the
ButtonCell will be drawn. This will be the larger of the bounds for the normal and the
alternate icons. If the ButtonCell has no icon, then theRect will be completely zeroed. You
must pass the bounds of the ButtonCell in theRect (the same bounds calculated by
calcCellSize:inRect: and passed to drawSelf:inView:). This method assumes that the
ButtonCell is being drawn in a flipped View. Returns self.

See also: - getTitleRect:, - getDrawRect:, - calcCellSize:inRect:

Classes: ButtonCe!! 2-105

getParameter:
- (int)getParameter:(int)aParameter

Returns the value of one of the frequently accessed flags for a ButtonCell. See
setParameter:to: for a list of the parameters and corresponding methods. Since the
parameters are also accessible through normal querying methods, you shouldn't need to use
this method often.

See also: - setParameter:to:

getPeriodicDelay:andlnterval:
- getPeriodicDelay:(float *)delay andlnterval:(float *)interval

Returns self, and by reference the delay and interval periods for a continuous ButtonCell.
delay is the amount of time (in seconds) that a continuous ButtonCell will pause before
starting to periodically send action messages to the target object. interval is the amount of
time (also in seconds) between those messages.

See also: - setContinuous: (Cell), - setPeriodicDelay:andlnterval:

getlitleRect:
- getTitleRect:(NXRect *)theRect

Returns self and, by reference in theRect a copy of the bounds of the area into which the
ButtonCell's title will be drawn. This will be the larger of the bounds for the normal and
the alternate titles. If the ButtonCell has no title, then theRect will be completely zeroed.
You must pass the bounds of the ButtonCell in theRect (the same bounds calculated by
calcCellSize:inRect: and passed to drawSelf:inView:). This method assumes that the
ButtonCell is being drawn in a flipped View.

See also: - getlconRect:, - getDrawRect:, - calcCeIlSize:inRect:

2-106 Chapter 2: Application Kit

highlight:inView:lit:

- highlight: (const NXRect *)ceIlFrame
in View: control View
lit:(BOOL)flag

Displays the ButtonCell in cellFrame if its highlight state is not equal to flag. The
PostScript focus must be locked on controlView when this method is invoked. If flag is
YES, the ButtonCell is displayed as highlighted. How this is done depends on how the
ButtonCell has been configured; see the description of setHighlightsBy: for the possible
manners of highlighting. This method does nothing if the ButtonCell is disabled or
transparent. Returns self.

See also: -lockFocus (View)

highlightsBy

- (int)highlightsBy

Returns the logical OR of flags that indicate the way the ButtonCell highlights when it gets
a mouse-down event. See setHighlightsBy: for the list of flags.

See also: - setHighlightsBy:, - showStateBy, - setShowsStateBy:

icon

- (const char *)icon

Returns the name of the NXlmage that appears on the ButtonCell when it's in its normal
state, or NULL if there is no such NXlmage or the NXlmage doesn't have a name. A
ButtonCell that doesn't display its alternate contents to highlight or show its alternate state
will always display its normal icon.

See also: - setIcon:, - setIcon:position:, - setIconPosition:, - image, - altIcon,
- altlmage, - setType:

icon Position

- (int)iconPosition

Returns the position of the ButtonCell's icon (if any). See setIconPosition: for a list of the
valid positions.

See also: - setIconPosition:

Classes: ButtonCe!! 2-107

image

- image

Returns the NXImage that appears on the ButtonCell when it's in its normal state, or nil if
there is no such NXImage. This NXImage is always displayed on a ButtonCell that doesn't
change its contents when highlighting or showing its alternate state.

See also: - setImage:, - setIconPosition:, - icon, - altlmage, - altlcon, - setType:

init

- init

Initializes and returns the receiver, a new text ButtonCell, with the title "Button" aligned in
the center. The new ButtonCell is enabled, but has no icon, tag, target, action, or key
equivalent associated with it. The new ButtonCell is bordered, and is of type
NX_MOMENTARYPUSH.

See also: - initIconCell:, - initTextCell:

initlconCell:

- initIconCell:(const char *)iconName

Initializes and returns the receiver, a new ButtonCell instance that displays an icon.
iconName is the name of an NXImage that will be used for the Button's icon. The new
ButtonCell is enabled, bordered, and is of type NX:..MOMENTARYPUSH.

This is the designated initializer for ButtonCells that display icons.

See also: - initTextCell:, - init

in it TextCell:

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new ButtonCell instance that displays a title. aString
is the title that will be used; it will be displayed in the user's default system font (as set with
the Preferences application), 12.0 point size, and aligned in the center. The new ButtonCell
is enabled, is bordered, and is of type NX_MOMENTARYPUSH.

This is the designated initializer for ButtonCells that display titles.

See also: - initIconCell:, - init

2-108 Chapter 2: Application Kit

intValue

- (int)intValue

Returns 0 if the ButtonCell is in its normal state, 1 if in its alternate state.

See also: - setlntValue:, - doubleValue, - ftoatValue, - stringValue

isBordered

- (BOOL)isBordered

Returns YES if the ButtonCell has a border, NO if not. A ButtonCell's border isn't the
single line of most other Cells' borders; instead, it's a raised bezel ("bezel" usually refers
to a depressed bezel, as seen on FormCells, for example).

See also: - setBordered:

isOpaque

- (BOOL)isOpaque

Returns YES if the ButtonCell draws over every pixel in its frame, NO if not. The
ButtonCell is opaque only if it is not transparent and if it has a border.

See also: - isBordered, - setBordered:, - isTransparent, - setTransparent:

isTransparent

- (BOOL)isTransparent

Returns YES if the ButtonCell is transparent, NO if not. A transparent ButtonCell never
draws anything, but it does receive mouse-down events and track the mouse properly.

See also: - setTransparent:, - isOpaque

keyEquivalent

- (unsigned short)keyEquivalent

Returns the key equivalent character of the ButtonCell, or 0 if one hasn't been set.

See also: - setKeyEquivalent:, - setKeyEquivalentFont:,
- setKeyEquivalentFont:size:

Classes: ButtonCe!! 2-109

perform Click:

- performClick:sender

If this ButtonCell is contained in a Control, therrinvoking this method causes the
ButtonCell to act as if the user had clicked it.

read:

- read:(NXTypedStream *)stream

Reads the ButtonCell from the typed stream stream. Returns self.

See also: - write:

setAltlcon:

- setAltIcon:(const char *)iconName

Sets the ButtonCell's alternate icon by name; iconName is the name of the NXImage to be
displayed. Has the ButtonCell redrawn if possible, and returns self.

A ButtonCell's alternate icon is only displayed if the ButtonCell highlights or shows its
alternate state by changing its contents.

See also: - altIcon, - setIconPosition:, - setAltImage:, - setIcon:, - setImage:,
+ findlmageNamed: (NXImage), - setType:

setAltlmage:

- setAltImage:altlmage

Sets the Button's alternate icon by id; altlmage is the NXImage to be displayed. Has the
ButtonCell redrawn if possible, and returns self.

A ButtonCell displays its alternate NXImage only if it highlights or displays its alternate
state by using its alternate contents.

See also: - altlmage, - setIconPosition:, - setAltIcon:, - setImage:, - setIcon:,
- setType:

2-110 Chapter 2: Application Kit

setAltlitle:
- setAltTitle:(const char *)aString

Sets the title that the ButtonCell displays in its alternate state to aString. Doesn't display
the ButtonCell even if autodisplay is on in the ButtonCell's View. Returns self.

The alternate title is shown only if the ButtonCell changes its contents when highlighting
or displaying its alternate state.

See also: - aItTitle:, - setTitle:, - setType:

setBordered:

- setBordered:(BOOL)flag

If flag is YES, the ButtonCell displays a border; if NO, the If flag is YES, the ButtonCell
displays a border; if NO, the ButtonCell doesn't display a border. A ButtonCell's border is
not the single line or most other Cells' borders; instead, it's a raised bezel ("bezel" usually
refers to a depressed bezel, as seen on FormCells, for example). Your code shouldn't use
setBezeled: with a ButtonCell. This method redraws the ButtonCell if the bordered state
changes. Returns self.

See also: - isBordered

setDoubleValue:

- setDouble Value: (double)aDouble

If aDouble is 0.0, sets the ButtonCell's state to ° (the normal state); if aDouble is nonzero,
sets it to 1 (the alternate state). Returns self.

See also: - doubleValue, - setFloatValue:, - setlntValue:, - setStringValue:

setFloatValue:

- setFloatValue:(float)aFloat

If aDouble is 0.0, sets the ButtonCell's state to ° (the normal state); if aDouble is nonzero,
sets it to 1 (the alternate state). Returns self.

See also: - floatValue, - setDoubleValue:, - setlntValue:, - setStringValue:

Classes: ButtonCel1 2-111

setFont:

- setFont:fontObject

Sets the Font used to displaying the title and alternate title. Does nothing if the cell has no
title or alternate title. Returns self.

If the ButtonCell has a key equivalent, its Font is not changed, but the key equivalent's Font
size is changed to match the new title Font.

See also: - setKeyEquivalentFont:, - setKeyEquivalentFont:size:

setHighlightsBy:

- setHighlightsBy:(int)aType

Sets the way the ButtonCell highlights itself while pressed, and returns self. aType can be
the logical OR of one or more of the following constants:

NX_PUSHIN (the default): The ButtonCell "pushes in" when pressed if it has a border.

NX_NONE: The ButtonCell doesn't change. This flag is ignored if any others are set
in aType.

NX_CONTENTS: The ButtonCell displays its alternate icon and/or title.

NX_CHANGEGRAY: The ButtonCell swaps the light gray and white pixels on the its
background and icon.

NX_CHANGEBACKGROUND: Same as NX_CHANGEGRAY, but only background
pixels are changed.

If both NX_CHANGEGRAY and NX_CHANGEBACKGROUND are specified, both are
recorded, but which behavior is used depends on the ButtonCell's icon. If there is no icon,
or if the icon has no alpha (tranparency) data, NX_CHANGEGRAY is used. If the icon
does have alpha data, NX_CHANGEBACKGROUND is used; this allows the gray/white
swap of the background to show through the icon's transparent pixels.

See also: - highlightsBy, - setShowsStateBy:, - showsStateBy

2-112 Chapter 2: Application Kit

setlcon:

- setlcon:(const char *)iconName

Sets the Button's icon by name; iconName is the name of the NXImage to be displayed.
Redraws the Button's inside and returns self.

A ButtonCell's icon is displayed when the ButtonCell is in its normal state, or always if the
ButtonCell doesn't highlight or show state by changing its contents.

See also: - setlcon:position:, - icon, - setlconPosition:, - setlmage:, - setAltlcon:,
- setAltlmage:, + findlmageNamed: (NXImage), - setType:

setlcon Position:

- setlconPosition:(int)aPosition

Sets the position of the icon when a ButtonCell simultaneously displays both text and an
icon. aPosition can be one of the following constants:

NX_TITLEONLY
NX_ICONONLY
NX_ICONLEFT
NX_ICONRIGHT
NX_ICONBELOW
NX_ICONABOVE
NX_ICONOVERLAPS

title only (no icon on the Button)
icon only (no text on the Button)
icon is to the left of the text
icon is to the right of the text
icon is below the text
icon is above the text
icon and text overlap (text drawn over icon)

If the position is top or bottom, the alignment of the text will be changed to
NX_CENTERED. This behavior can be overridden with a subsequent setAlignment:
method. Redraws the Button's inside and returns self.

See also: - iconPosition, - setAlignment: (ActionCell)

setlmage:

- setlmage:image

Sets the Button's icon by id; image is the NXImage to be displayed. Redraws the Button's
inside and returns self.

A ButtonCell's NXImage is displayed when the ButtonCell is in its normal state, or all the
time for a ButtonCell that doesn't change its contents when highlighting or displaying its
alternate state.

See also: - image, - setlconPosition:, - setlcon:, - setAltlmage:, - setAltlcon:,
- setType:

Classes: ButtonCell 2-113

setlntValue:

- setIntValue:(int)anlnt

Sets the ButtonCell's state to 1 if anlnt is nonzero, 0 otherwise. Returns self.

See also: - intValue, - setDouble Value:, - setFloatValue:, - setStringValue:

setKeyEquivalent:

- setKey Equivalent: (unsigned short)charCode

Sets the key equivalent character of the ButtonCell. Has the ButtonCell redrawn if needed.
The key equivalent isn't displayed if the icon position is set to NX_TITLEONLY,
NX_ICONONLY or NX_ICONOVERLAPS. Returns self.

The key equivalent isn't displayed on a ButtonCell that has an icon. To make sure it gets
displayed, set the image and alternate image to nil before using this method.

See also: - keyEquivalent, - setKeyEquivalentFont:, - setKeyEquivalentFont:size:,
- performKeyEquivalent: (Button, Matrix classes)

setKeyEquivalentFont:

- setKeyEquivalentFont:jontObject

Sets the Font used to draw the key equivalent, and has the ButtonCell redrawn if possible.
Does nothing if there is already an icon associated with this ButtonCell. The default Font
is the same as that used to draw the title. Returns self.

See also: - setKeyEquivalentFont:size:

setKeyEqu ivalentFont:size:

- setKeyEquivalentFont:(const char *)JontName size:(float)JontSize

Sets by name and size the font used to draw the key equivalent, and has the ButtonCell
redrawn if possible. Does nothing if there is already an icon associated with this
ButtonCell. The default Font is the same as that used to draw the title. Returns self.

See also: - setKeyEquivalentFont:

2-114 Qhapter 2: Application Kit
r

setParameter:to:
- setParameter:(int)aParameter to:(int)value

Sets the value of one of a number of frequently accessed flags for a ButtonCell to value,
and returns self. You don't normally need to use this method since all of these flags can be
set through specific methods (for example, setEnabled:, setHighlightsBy:, and so on).
The following table lists each constant used to identify a parameter with the methods for
setting and retrieving the value for that parameter:

Parameter Constant

NX_CELLDISABLED
NX_CELLSTATE
NX_CELLHIGHLIGHTED
NX_CELLEDITABLE
NX_BUTTONINSET
NX_CHANGECONTENTS
NX_CHANGEBACKGROUND
NX_CHANGEGRAY
NX_LIGHTBYCONTENTS
NX_LIGHTB YB ACKGROUND
NX_LIGHTBYGRAY
NX_PUSHIN
NX_OVERLAPPINGICON
NX_ICONHORIZONTAL
NX_ICONONLEFTORBOTTOM
NX_ICONISKEYEQUIVALENT

Equivalent Methods

setEnabled:, isEnabled
setState:, state
highlight: in View:lit:, isHighlighted
setEditable:, isEditable
(none-see below)
setShowsStateBy:, showsStateBy
setShowsStateBy:, showsStateBy
setShowsStateBy:, showsStateBy
setHighlightsBy:, highlightsBy
setHighlightsBy:, highlightsBy
setHighlightsBy:, highlightsBy
setHighlightsBy:, highlightsBy
setlconPosition:, iconPosition
setlconPosition:, iconPosition
setlconPosition:, iconPosition
(see below)

NX_BUTTONINSET is the inset of the ButtonCell's ic.on from its frame. You can find out
if a ButtonCell's icon is its key equivalent by checking that both the image and altlmage
methods return nil, and that the keyEquivalent method returns a nonzero value. Your code
should never set the NX_ICONISKEYEQUIVALENT parameter; always use the
setKeyEquivalent: method, removing the ButtonCell's icon if necessary.

See also: - getParameter:, - setKeyEquivalent:

Classes: ButtonCell 2-115

setPeriodicDelay:andlnterval:

- setPeriodicDelay:(float)delay andlnterval:(float)interval

Sets the message delay and interval for the ButtonCell. These two values are used if the
ButtonCell has been set-by a setContinuous: message-to continuously send its action
message to its target object while tracking the mouse. delay is the amount of time (in
seconds) that a continuous ButtonCell will pause before starting to periodically send action
messages to the target object. interval is the amount of time (also in seconds) between
those messages. Returns self.

The maximum value allowed for both delay and the interval is 60.0 seconds.

See also: - getPeriodicDelay:andlnterval:, - setContinuous: (Cell)

setShowsStateBy:

- setShowsStateBy:(int)aType

Sets the way the ButtonCell indicates its alternate state. aType should be the logical OR of
one or more of the following constants:

NX_NONE (the default): The ButtonCell doesn't change. This flag is ignored if any
others are set in a Type .

NX_CONTENTS: The ButtonCell displays its alternate icon and/or title.

NX_CHANGEGRAY: The ButtonCell swaps the light gray and white pixels on its
background and icon.

NX_CHANGEBACKGROUND: Same as NX_CHANGEGRAY, but only the
background pixels are changed.

If both NX_CHANGEGRAY and NX_CHANGEBACKGROUND are specified, both are
recorded, but the actual behavior depends on the ButtonCell's icon. If there is no icon, or
if the icon has no alpha (tranparency) data, NX_CHANGEGRAY is used. If the icon exists
and has alpha data, NX_CHANGEBACKGROUND is used; this allows the gray/white
swap of the background to show through the icon's transparent pixels.

See also: - showsStateBy, - setHighlightsBy:, - highlightsBy

2-116 Chapter 2: Application Kit

setSound:

- setSound:aSound

Sets the Sound that will be played when the mouse goes down in the ButtonCell, and
whenever the cursor re-enters the ButtonCell while tracking. Be sure to link against the
Sound Kit if you use a Sound object. Returns self.

See also: - sound

setStringValue:

- setStringValue:(const char *)aString

Sets the ButtonCell's state to 1 if aString is non-null (even if the string is empty), 0
otherwise. Returns self.

See also: - setStringValueNoCopy:, - stringValue

setStringValueNoCopy:

- setStringValueNoCopy:(const char *)aString

Sets the ButtonCell's state to 1 if aString is non-null (even if the string is empty), 0
otherwise. Returns self.

See also: - setStringValue:, - stringValue, - setDoubleValue:, - setFloatValue:,
- setlntValue:

setlitle:

- setTitle:(const char *)aString

Sets the title displayed by the ButtonCell when in its normal state to aString. This title is
always shown on ButtonCells that don't use their alternate contents when highighting or
displaying their alternate state. Redraws the Button's inside and returns self.

See also: - setTitleNoCopy:, - title, - setAltTitle:

setlitleNoCopy:

- setTitleNoCopy:(const char *)aString

Similar to setTitle: but does not make a copy of aString. Returns self.

See also: - setTitle:

Classes..: ButtonCell 2-117

setTransparent:

- setTransparent:(BOOL)jlag

Sets whether the ButtonCell is transparent. Returns self.

A transparent ButtonCell never draws, but does track the mouse and send its action
normally. A transparent ButtonCell is useful for sensitizing an area on the screen so that
an action gets sent to a target when the area receives a mouse click.

See also: - is Transparent, - is Opaque

setType:

- setType:(int)aType

Sets the way the ButtonCell highlights while pressed, and how it shows its state. Redraws
the ButtonCell if possible and returns self. aType can be one of the following constants (as
described in the Button class specification's setType: method description):

NX_MOMENTARYPUSH
NX_MOMENTARYCHANGE
NX_PUSHONPUSHOFF
NX_ONOFF
NX_TOGGLE
NX_SWITCH
NX_RADIOBUTTON

See also: - setType: (Button), - setHighlightsBy:, - setShowsStateBy:

showsStateBy

- (int)showsStateBy

Returns the logical OR of flags that indicate the way the ButtonCell shows its alternate
state. See setShowsStateBy: for the list of flags.

See also: - setShowsStateBy:, - highlightsBy, - setHighlightsBy:

sound

-sound

Returns the Sound played when the ButtonCell gets a mouse-down event, and whenever
the cursor re-enters the ButtonCell while tracking.

See also: - setSound:

2-118 Chapter 2: Application Kit

stringValue

- (const char *)stringValue

Returns "" (an empty string) if the ButtonCell's state is 1 (the alternate state), or NULL if
the state is 0 (the normal state).

See also: - setStringValue:, - setStringValueNoCopy:, - doubleValue, - floatValue,
- intValue

title

- (const char *)title

Returns the title displayed on the Button when it's in its normal state, or always if the
Button doesn't use its alternate contents for highlighting or displaying the alternate state.
Returns NULL if there is no title.

See also: - setTitle:, - setTitleNoCopy:

trackMouse:inRect:oNiew:

- (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
ofView:controlView

Tracks the mouse by starting the Sound (if any) and sending trackMouse:inRect:ofView
to super with the same arguments. When super's method returns, stops the Sound if
needed and returns YES if the mouse Button went up with the cursor in the cell, NO
otherwise. This method returns if the cursor leaves the bounds of the ButtonCell.

See also: - trackMouse:inRect:ofView: (Cell)

write:

- write:(NXTypedStream *)stream

Writes the receiving ButtonCell to the typed stream stream. Returns self.

See also: - read:

Classes: ButtonCe!! 2-119

Cell

Inherits From: Object

Declared In: appkitiCell.h

Class Description

The Cell class provides a mechanism for displaying text or icons (that is, named
NXImages) in a View without the overhead of a full View subclass. In particular, it
provides much of the functionality of the Text class by providing access to a shared Text
object used by all instances of Cell in an Application. Cells are also extremely useful for
placing titles or icons at various locations in a custom subclass of View.

Cell is used heavily by the Control classes to implement their internal workings. Some
subclasses of Control (notably Matrix) allow multiple Cells to be grouped and to act
together in some cooperative manner. Thus, with a Matrix, a group of radio buttons can be
implemented without needing a View for each button (and without needing a Text object
for the text on each button).

The Cell class provides primitives for displaying text or an. icon, editing text, formatting
floating point numbers, maintaining state, highlighting, and tracking the mouse. It has
several subclasses: SelectionCell, NXBrowserCell, and ActionCell (which in tum has the
subclasses ButtonCell, SliderCell, TextFieldCell, and FormCell). Cell's
trackMouse:inRect:ofView: method supports the target object and action method used to
implement controls. However, Cell implements targetlaction features abstractly, deferring
the details of implementation to subclasses of ActionCell.

The initlconCell: method is the designated initializer for Cells that display icons. The
initTextCell: method is the designated initializer for Cells that display text. Override one
or both of these methods if you implement a subclass of Cell that performs its own
initialization. If you need to use target and action behavior, you may prefer to override
ActionCell, which provides the default implementation of this behavior.

For more information on how Cell is used, see the Control class specification.

2-120 Chapter 2: Application Kit

Instance Variables

char *contents;

id support;

struct _cFlagsl {
unsigned int state: 1;
unsigned int highlighted: 1;
unsigned int disabled: 1 ;
unsigned int editable: 1;
unsigned int type:2;
unsigned int freeText: 1 ;
unsigned int alignment:2;
unsigned int bordered: 1;
unsigned int bezeled: 1 ;
unsigned int selectable: 1;
unsigned int scrollable: 1;
unsigned int entryType:3;

} cFlagsl;
struct _cFlags2 {

unsigned int continuous: 1;
unsigned int actOnMouseDown: 1;
unsigned int floatLeft:4;
unsigned int floatRight:4;
unsigned int auto Range: 1 ;
unsigned int actOnMouseDragged: 1;
unsigned int no Wrap: 1;
unsigned int dontActOnMouseUp: 1;

} cFlags2;

contents

support

cFlags l.state

cFlags l.highlighted

cFlags I.disabled

cFlags l.editable

cFlags1.type

The string for a text Cell; the image name for an icon Cell.

The Font for a text Cell; the NXImage for an icon Cell.

The state of the Cell (0 or 1).

cFlags l.freeText

True if the Cell is highlighted.

True if the Cell is disabled.

True if the text in the Cell is editable.

The type of the Cell.

True if the Cell should free contents when freeing
the Cell.

Classes: Cell 2-121

cFlags l.alignment

cFlags 1. bordered

cFlags 1. bezeled

cFlags 1. selectable

cFlags l.scrollable

cFlags l.entryType

cFlags2.continuous

cFlags2.actOnMouseDown

cFlags2.floatLeft

cFlags2.floatRight

cFlags2.autoRange

cFlags2.actOnMouseDragged

cFlags2.no Wrap

cFlags2.dontActOnMouseUp

Method Types

The text alignment of the Cell.

True if the Cell has a solid border.

True if the Cell has a bezeled border.

True if the text is selectable.

True if the text is scrollable.

Data type accepted when the user types in a text Cell.

True if the Cell sends its action continuously to target
while control is active.

True if the Cell sends its action on a mouse-down.

Digits to left of decimal when text is floating-point
number.

Digits to right of decimal when text is floating-point
number.

True if the Cell autoranges decimal places when text is
floating point number.

True if the Cell sends its action every time the mouse
changes position.

True if the Cell wraps text by character, false if by word.

True if the Cell does not send its action on a mouse-up
event.

Initializing, copying, and freeing a Cell
- init
- initIconCell:
- initTextCell:
- copyFromZone:
-free

Determining component sizes - calcCellSize:
- calcCellSize:inRect:
- calcDrawInfo:
- getDrawRect:
- getIconRect:
- getTitleRect:

2-122 Chapter 2: Application Kit

Setting the Cell's type - setType:
-type

Setting the Cell's state - setState:
- incrementS tate
- state

Enabling and disabling the Cell - setEnabled:
- isEnabled

Setting the icon

Setting the Cell's value

Interacting with other Cells

Modifying text attributes

Editing text

- setIcon:
-icon

- setDouble Value:
- double Value
- setFloatValue:
- float Value
- setIntValue:
- intValue
- setStringValue:
- setString ValueNoCopy:
- setStringValueNoCopy:shouldFree:
- string Value

.:... takeDouble ValueFrom:
- takeFloatValueFrom:
- takeIntValueFrom:
- takeStringValueFrom:

- setAlignment:
- alignment
- setFont:
-font
- setEditable:
- isEditable
- setS electable:
- isSelectable
- setScrollable:
- isScrollable
- setTextAttributes:
- setWrap:

- edit: in View: editor:delegate: event:
- endEditing:
- select:in View: editor: deleg£lte: start: length:

Classes: Cell 2-123

Validating input - setEntryType:
- entryType
- isEntry Acceptable:

Formatting data - setFloatingPointFormatleftright

Modifying graphic attributes - setBezeled:
- isBezeled
- setBordered:
- isBordered
-isOpaque

Setting parameters - setParameter:to:
- getParameter:

Displaying - controlView
- drawlnside:inView:
- drawSelf:in View:
- highlight: in View: lit
- isHighlighted

Target and action - setAction:
- action
- setTarget
- target
- setContinuous:
- isContinuous
- sendActionOn:

Assigning a tag - setTag:
-tag

Handling keyboard alternatives - keyEquivalent

Tracking the mouse

Managing the cursor

Archiving

2-124 Chapter 2: Application Kit

+ prefersTracking UntilMouseUp
- mouseDownFlags
- getPeriodicDelay:andlnterval:
- trackMouse:inRectofView:
- startTrackingAtin View:
- continueTracking:atin View:
- stopTracking:atin View:mouseIsUp:

- resetCursorRectin View:
!

- read:
- write:
- awake

Class Methods

prefersTrackin"gUntilMouseUp

+ (BaaL)prefersTrackingUntilMouseUp

Returns NO by default. Override this method to return YES if the Cell's View should allow
it, after a mouse-down event, to track mouse-dragged and mouse-up events even if they
occur outside the Cell's frame. For example, this method is overridden by SliderCell to
ensure that a SliderCell in a Matrix doesn't stop responding to user input (and its neighbor
start responding) just because its knob isn't dragged in a perfectly straight line.

See also: - trackMouse:inRect:ofView:

Instance Methods

action

- (SEL)action

Returns a null selector. This method is overridden by Action Cell and subclasses that
actually implement a target object and action method.

See also: - setAction:, - target

alignment

- (int)alignment

Returns the alignment of text in the Cell. The return value can be one of three constants:
NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

See also: - setAlignment:

awake

-awake

Used during unarchiving to initialize static variables for the Cell class. Returns self.

See also: - read:

Classes: Cell 2-125

calcCeliSize:

- calcCellSize:(NXSize *)theSize

Returns by reference the minimum width and height required for displaying the Cell. This
method invokes calcCeIlSize:inRect: with the rectangle argument set to a rectangle with
very large width and height. Override this method if that isn't the proper way to calculate
the minimum width and height required for displaying the Cell. Returns self.

See also: - calcCellSize:inRect:

calcCeIiSize:inRect:

- calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns by reference the minimum width and height required for displaying the Cell in the
given rectangle. If it's not possible to fit, the width and/or height could be bigger than the
ones of the provided rectangle. The computation is done by trying to size the Cell so that
it fits in the rectangle argument (for example, by wrapping the text). If a choice must be
made between extending the width or height of aRect to fit text, the height will be extended.
Returns self.

See also: - calcCellSize:

calcDrawlnfo:

- calcDrawlnfo:(const NXRect *)aRect

Does nothing and returns self. Objects using Cells generally maintain a flag that informs
them if any of their Cells has been modified in such a way that the location or size of the
Cell should be recomputed. If so, calcSize is automatically invoked before displaying the
Cell; that method invokes Cell's calcDrawlnfo: for each Cell.

See also: - calc Size (Matrix)

continueTracking:at:inView:

- (BOOL)continueTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)currentPoint
in View:a View

Determines whether or not the Cell should keep tracking the mouse based on the positions
provided. Returns YES if it can keep tracking, NO if should not. This method is invoked
by trackMouse:inRect:ofView: as the mouse is dragged around inside the Cell. lastPoint

2-126 Chapter 2: Application Kit

and currentPoint should be in aView's coordinate system. By default, this method returns
YES when the Cell is continuous (that is, when it should continually send action messages
while the mouse is pressed or dragged). This method is often overridden to provide more
sophisticated tracking behavior.

See also: - trackMouse:inRect:ofView:, - startTrackingAt:in View:,
- stopTracking:at:in View:rnouseIsUp:

controlView

- controlView

Returns nil. This method is implemented abstractly, since Cell doesn't record the View in
which it's drawn. This method is overridden by ActionCell and its subclasses, which use
the control View as the only argument in the action message when it's sent to the target.

See also: - controlView (ActionCell), - drawS elf: in View:, - drawlnside:in View:

copyFromZone:

- copyFrornZone:(NXZone *)zone

Allocates, initializes, and returns a copy of the receiving Cell. The copy is allocated from
zone and is assigned the same contents as the receiver. When you subclass Cell, override
this method to send the message

[super copyFromZone:zone];

then copy each of the subclass's unique instance variables separately in that same zone.

See also: - copy (Object)

doubleValue

- (double)double Value

Returns the receiving text Cell's value as a double-precision floating point number, by
converting its string contents to a double using the standard C function atofO. Returns 0.0
if the Cell isn't a text Cell.

See also: - setDoubleValue:, - floatValue, - intValue, - stringValue, - type

Classes: Cell 2-127

drawlnside:inView:

- drawlnside:(const NXRect *)cellFrame in View:a View

Draws the "inside" of the Cell. For the base Cell class, it's the same as drawSelf:inView:
except that it doesn't draw the bezel or border if there is one. cellFrame should be the frame
of the Cell (that is, the same as the cellFrame passed to drawSelf:inView:), not the
rectangle returned by getDrawRect:. The PostScript focus must be locked on a View when
this method is invoked. If the Cell's highlight flag is YES, then the Cell is highlighted (by
swapping light gray and white throughout cellFrame; see the description of the Display
PostScript operator compositerect for a description of highlighting). Returns self.

drawlnside:inView: is usually invoked from the Control class's drawCelllnside: method
and is used to cause minimal drawing to be done in order to update the value displayed by
the Cell when the contents is changed. This becomes more important in more complex
Cells such as ButtonCell and SliderCell.

All subclasses of Cell which override drawSelf:in View: must override
drawlnside:inView:. drawlnside:inView: should never invoke drawSelf:inView:, but
drawS elf: in View: can-and often does-invoke drawlnside:in View:.

See also: - drawSelf:inView:, -lockFocus (View), - highlight:inView:lit:,
- isHighlighted, compositerect (Display PostScript operator)

drawSelf:inView:

- drawSelf:(const NXRect *)cellFrame in View:a View

Displays the contents of a Cell in a given rectangle of a given view. Your code must lock
the focus on a View before invoking this method. It draws the border or bezel (if any), then
invokes drawlnside:inView:. A text Cell displays its text in the rectangle by using a
global Text object. An icon Cell displays its icon centered in the rectangle if it fits in the
rectangle, or by setting the icon origin on the rectangle origin if it doesn't fit. Nothing is
displayed for a Cell of type NX_NULLCELL. Override this method if you want a display
that is specific to your own subclass of Cell. Returns self.

See also: - drawlnside:inView:, -lockFocus (View)

2-128 Chapter 2: Application Kit

edit:in View:editor:delegate:event:

- edit:(const NXRect *)aReet
in View:a View
editor: textObjeet
delegate:anObjeet
event:(NXEvent *)theEvent

Begins editing of a Cell's text by using the Text object textObjeet in response to an
NX_MOUSEDOWN event. aReet must be the one you have used when displaying the
Cell. theEvent is the NX_MOUSEDOWN event. anObjeet is made the delegate of the Text
object textObjeet used for the editing: it will receive messages such as
t~xtDidEnd:endChar:, textWillEnd, textDidResize, textWillResize, and others sent by
the Text object while editing. If the receiver isn't a text Cell, no editing is performed,
otherwise the Text object is sized to aReet and its superview is set to a View, so that it exactly
covers the Cell. Then it's activated and editing begins. It's the responsibility of the
delegate to end the editing, remove any data from textObjeet and invoke endEditing: on
the Cell in the textDidEnd:endChar: method. Returns self.

See also: - endEditing:, Text class (Methods Implemented by the Delegate)

endEditing:

- endEditing:textObjeet

Ends editing begun with edit:in View: editor: delegate:event: or
select:in View: editor: delegate: start:length: . Usually this method is invoked by the
textDidEnd:endChar: method of the object you are using as the delegate for the Text
object (most often a Matrix or TextField). This method should remove the Text object from
the view hierarchy and sets its delegate to nil. Returns self.

See also: - edit:inView:editor:delegate:event:,
- select:in View: editor: delegate:start:length:, - textDidEnd:endChar: (Text class
delegate method)

entryType

- (int)entryType

Returns the type of data allowed in the Cell. See setEntryType: for the list of valid types.

See also: - setEntryType:

Classes: Cell 2-129

floatValue

- (float)floatValue

Returns the receiving text Cell's value as a single-precision floating point number, by
converting its string contents to a double using the C function atofO and then casting the
result to a float. Returns 0.0 if the receiver isn't a text Cell.

See also: - setFloatValue:, - doubleValue, - intValue, - stringValue, - type

font

-font

Returns the Font used to display text in the Cell. Returns nil if the receiver isn't a text Cell.

See also: - setFont:, - type

free

-free

Frees the memory used by the Cell and returns nil. If the Cell's contents was set by copy
(the default), then the contents is also freed.

getDrawRect:

- getDrawRect:(NXRect *)theRect

Given the bounds of the Cell in theRect, this method changes it to be the rectangle into
which the Cell would draw its "insides" (everything but a bezel or border), and returns it
by reference. In other words, this method calculates the rectangle which is touched by
drawlnside:inView:. However, your code should not use the rectangle returned by this
method as the argument to drawlnside:inView:. Returns self.

See also: - getIconRect:, - getTitleRect:, - drawlnside:in View:

2-130 Chapter 2: Application Kit

getlconRect:

- getlconRect:(NXRect *)theRect

Given the bounds of the Cell in theRect, this method changes it to be the rectangle into
which the Cell would draw its icon, and returns it by reference. If the Cell doesn't draw an
icon, theRect is untouched. Your code should not use the rectangle returned by this method
as the argument to drawlnside:inView:. Returns self.

See also: - getDrawRect:, - getTitleRect:, - drawlnside:inView:

getParameter:

- (int)getParameter:(int)aParameter

Returns the value of one of the frequently accessed flags for a Cell. See setParameter:to:
for a list of the parameters and corresponding methods. Since the parameters are also
accessible through methods such as isEnabled and isHighlighted, you shouldn't need to
use this method often.

See also: - setParameter:to:

getPeriodicDelay:andlnterval:

- getPeriodicDelay:(float*)delay andlnterval:(float*)interval

Returns by reference two values: the amount of time (in seconds) that a continuous button
will pause before starting to periodically send action messages to the target object, and the
interval (also in seconds) at which those messages are sent. Periodic messaging behavior
is controlled by Cell's sendActionOn: and setContinuous: methods. (By default, Cell
sends the action message only on mouse up events.) Override this method to return your
own values. Returns self.

See also: - setContinuous:, - sendActionOn:

getTitleRect:

- getTitleRect:(NXRect *)theRect

Returns self, and, by reference in theRect, the rectangle into which the text will be drawn.
If this Cell doesn't draw any text, theRect is untouched. Your code should not use the
rectangle returned by this method as the argument to drawlnside:inView:. Returns self.

See also: - getDrawRect:, - getlconRect:, - drawlnside:in View:

Classes: Cell 2-131

highlight:inView:lit:

- highlight:(const NXRect *)cellFrame
in View:a View
lit: (BOOL)jlag

If the Cell's highlight status is different fromjlag, sets the Cell's highlight status to jlag and,
ifjlag is YES, highlights the rectangle cellFrame in aView. Your code must lock focus on
a View before invoking this method. This method composites with NX_HIGHLIGHT
inside the bounds of cellFrame. Override this method if you want more sophisticated
highlighting behavior in a Cell subclass. Returns self.

Note that the highlighting that the base Cell class does will not appear when printed
(although subclasses like TextFieldCell, SelectionCell, and ButtonCell can print
themselves highlighted). This is because the base Cell class is transparent, and there is no
concept of transparency in printed output.

See also: - isHighlighted, - drawSelf:inView:, - drawlnside:inView:

icon

- (const char *)icon

Returns the name of the icon currently used by the Cell, if any, or NULL if the receiver isn't
an icon Cell.

See also: - setIcon:, - title

incrementState

- incrementState

Adds 1 to the state of the Cell, wrapping around to 0 from the maximum value (which, for
the Cell class, is 1). Returns self.

Subclasses may want to change the meaning of this method (to create multi state Cells, for
example). Remember that if you want the visual appearance of the Cell to reflect a change
in state, you must invoke drawSelf:inView: after altering the state. Your
drawSelf:in View: implementation must draw the different states in different ways, since
the default implementation doesn't do so.

See also: - setState:, - drawSelf:inView:

2-132 Chapter 2: Application Kit

init
- init

Initializes and returns the receiver, a new Cell instance, as type NX_NULLCELL. This
method is the designated initializer for cells without either text or an icon.

See also: - initIconCell:, - initTextCell:, - setIcon:, - setText:

initlconCell:
- initIconCell:(const char *)iconName

Initializes and returns the receiver, a new icon Cell instance (that is, its type is
NX_ICONCELL). The icon is set to an NXImage with the name iconName. If iconName
is NULL or an image for iconName is not found, the Cell will be initialized with a default
icon, "NXsquare 16". This method is the designated initializer for Cells that display an
icon. If the Cell later has text assigned, its type will automatically change.

See also: - icon, - setIcon:, - initTextCell:, - setText:, - init,
- findImageFor: (NXImage), - name (NXImage)

initTextCell:
- initTextCell:(const char *)aString

Initializes and returns the receiver, a new text Cell instance, (that is, its type is
NX_TEXTCELL). The string value is set to aString, or "Cell" if aString is NULL. This
method is the designated initializer for text Cells.

See also: - title, - setTitle:, - initIconCell:, - setIcon:, - init

intValue
- (int)intValue

Returns the receiving text Cell's value as an integer, by converting its string contents to an
int using the C function atoiO. Returns 0 if the receiver isn't a text Cell.

See also: - setIntValue:, - double Value, - floatValue, - stringValue, - type:

Classes: Cell 2-133

isBezeled

- (BOOL)isBezeled

Returns YES if the Cell draws itself with a bezeled border, NO otherwise. The default is
NO.

See also: - setBezeled:, - isBordered

isBordered

- (BOOL)isBordered

Returns YES if the Cell draws itself surrounded by a I-pixel black frame, NO otherwise.
The default is NO.

See also: - setBordered:, - isBezeled

isContinuous

- (BOOL)isContinuous

Returns YES if the Cell continuously sends its action message to the target object when
tracking. This usually has meaning only for subclasses of Cell that implement instance
variables and methods for target/action functionality, such as ActionCell; certain Control
subclasses, specifically Matrix, send a default action to a default target even if the Cell
doesn't have a target and action.

See also: - setContinuous:, - target, - action

isEditable

- (BOOL)isEditable

Returns YES if text in the Cell is editable (and therefore also selectable), NO otherwise.
The default is NO.

See also: - setEditable:, - isS electable

2-134 Chapter 2: Application Kit

isEnabled

- (BOOL)isEnabled

Returns YES if the Cell is enabled, NO otherwise. The default is YES. A Cell's enabled
status is used primarily in event handling and display: It affects the behavior of methods
for mouse tracking and text editing, by allowing or disallowing changes to the Cell within
those methods, and only allows the Cell to highlight or set a cursor rectangle if it's enabled.
You can still affect many Cell attributes programmatically (setState:, for example, will still
work).

See also: - setEnabled:, - trackMouse:inRect:otView:

isEntry Acceptable:

- (BOOL)isEntryAcceptable:(const char *)aString

Tests whether aString matches the Cell's entry type, as set by the setEntryType: method.
Returns YES if aString is acceptable by the receiving Cell, NO otherwise. For example, a
text Cell of type NX_INTTYPE accepts strings that represent integers, but not floating
point numbers or words. If aString is NULL or empty, this method returns YES.

This method is invoked by Form, Matrix, and other Controls to see if a new text string is
acceptable for this Cell. This method doesn't check for overflow. It can be overridden to
enforce specific restrictions on what the user can type into the Cell.

See also: - setEntryType:

isHighlighted

- (BOOL)isHighlighted

Returns YES if the Cell is highlighted, NO otherwise.

See also: - highlight:in View: lit:

isOpaque

- (BOOL)isOpaque

Returns YES if the Cell is opaque (that is, if it draws over every pixel in its frame), NO
otherwise. The base Cell class is opaque if and only if it draws a bezel. Subclasses that
draw differently should override this based on how they perform their drawing.

See also: - setBezeled:

Classes: Cell 2-135

isScrollable

- (BOOL)isScrollable

Returns YES if typing past an end of the text in the Cell will cause the Cell to scroll to
follow the typing. The default return value is NO.

See also: - setScrollable:

isSelectable

- (BOOL)isSelectable

Returns YES if the text in the Cell is selectable, NO otherwise. The default is NO.

See also: - setSelectable:, - isEditable

keyEquivalent

- (unsigned short)keyEquivalent

Returns 0, as Cell provides no support for key equivalents. Subclasses can implement key
equivalents, and can override this method to return the key equivalent for the receiver.

See also: - setKeyEquivalent: (ButtonCell), - keyEquivalent (ButtonCell)

mouseDownFlags

- (int)mouseDownFlags

Returns the flags (for example, NX_SHIFTMASK) that were set when the mouse went
down to start the current tracking session. This method is only valid during tracking. It
doesn't work if the target of the Cell initiates another Cell tracking loop as part of its action
method (as does PopUpList).

See also: - sendActionOn:

read:

- read:(NXTypedStream *)stream

Reads the Cell from the typed stream stream.

See also: - write:, - awake

2-136 Chapter 2: Application Kit

resetCursorRect:in View:

- resetCursorRect:(const NXRect *)cellFrame inView:aView

If the receiver is a textCell, then a cursor rectangle is added to aView (with
addCursorRect:cursor:). This allows the cursor to change to an I-beam when it passes
over the Cell. Override this method to change the cursor for an icon Cell, or to provide a
different cursor for a text Cell.

See also: - addCursorRect:cursor: (View, Control)

select:inView:editor:delegate:start:length:

- select:(const NXRect *)aRect
in View:a View
editor: a TextObject
delegate:anObject
start: (int)selStart
length: (int)selLength

Uses aTextObj to select text in the Cell identified by selStart and selLength, which will be
highlighted and selected as though the user had dragged the cursor over it. This method is
similar to edit:in View: editor: delegate: event: , except that it can be invoked in any
situation, not only on a mouse-down event.

See also: - edit:in View: editor: delegate: event:

sendActionOn:

- (int)sendActionOn:(int)mask

Resets flags to determine when the action is sent to the target while tracking. Can be any
logical combination of:

NX_MOUSEUPMASK
NX_MOUSEDOWNMASK
NX_MOUSEDRAGGEDMASK
NX_PERIODICMASK

The default is NX_MOUSEUPMASK. You can also use the setContinuous: method to
tum on the flag corresponding to NX_PERIODICMASK (cftags2.continuous) or

Classes: Cell 2-137

NX_MOUSEDRAGGEDMASK (cflags2.actOnMouseDragged), whichever is
appropriate to the given subclass of Cell.

This method returns an event mask built from the old flags.

See also: - setContinous:

setAction:

- setAction:(SEL)aSelector

Does nothing. This method is overridden by Action Cell and its subclasses, which actually
implement the target object and action method. It is also overriden by NXBrowserCell to
provide access to its NXBrowser's action method. Returns self.

See also: - action, - setTarget:

setAlignment:

- setAlignment:(int)mode

Sets the alignment of text in the Cell. mode should be one of three constants:
NX_LEFTALlGNED, NX_CENTERED, or NX_RlGHTALlGNED. Returns self.

See also: - alignment, - setWrap:

setBezeled:

- setBezeled:(BOOL)jlag

If.flag is YES, then the Cell draws itself surrounded by a bezel; if NO, it doesn't.
setBordered: and setBezeled: are mutually exclusive. Returns self.

See also: - isBezeled, - setBordered:

setBordered:

- setBordered:(BOOL)jlag

If."flag is YES, then the Cell draws itself surrounded by a I-pixel black frame; if NO, it
doesn't. setBordered: and setBezeled: are mutually exclusive. Returns self.

See also: - isBordered,- setBezeled:

2-138 Chapter 2: Application Kit

setContinuous:

- setContinuous:(BOOL)jlag

Sets whether a Cell continuously sends its action message to the target object when
tracking. Normally, this method will set the continuous (cflags2.continuous) or the
mouse-dragged flag (cflags2.actOnMouseDragged), depending on which setting is
appropriate to the subclass implementing it. In the base Cell class, this method sets the
continuous flag. These settings usually have meaning only for ActionCell and its
subclasses which implement the instance variables and methods that provide target/action
functionality. Some Control subclasses, specifically Matrix, send a default action to a
default target when a Cell doesn't provide a target or action.

See also: - is Continuous, - sendActionOn:

setDoubleValue:

- setDouble Value: (double)aDouble

Sets the contents of the Cell to the string value representing the double-precision floating
point number aDouble, ignoring the entry type of the Cell. Does nothing if the receiver
isn't a text Cell. Returns self.

See also: - doubleValue, - setFloatValue:, - setIntValue:, - setStringValue:,
- entryType, - type

setEditable:

- setEditable:(BOOL)jlag

Ifjlag is YES, then the text is made both editable and selectable. Ifjlag is NO, and the text
was not selectable before editing was last enabled (that is, before this message was last sent
with an argument of YES), then the text is returned to not being selectable. Returns self.

See also: - isEditable, - setSelectable:, - edit:in View:editor:delegate:event:

setEnabled:

- setEnabled:(BOOL)jlag

Sets the enabled status of the Cell. A Cell's enabled status is used primarily in event
handling and display: It affects the behavior of methods for mouse tracking and text
editing, by allowing or disallowing changes to the Cell within those methods, and only

Classes: Cell 2-139

allows the Cell to highlight or set a cursor rectangle if it's enabled. Many Cell attributes
can still be altered programmatically (setState:, for example, will still work). Returns self.

See also: - isEnabled

setEntryType:

- setEntryType:(int)aType

This method sets the data format allowed in the Cell. aType is one of these seven constants,
allowing only the corresponding numeric string values to be entered:

NX_ANYTYPE
NX_INTTYPE
NX_FLOATTYPE
NX_DOUBLETYPE
NX_POSINTTYPE
NX_POSFLOATTYPE
NX_POSDOUBLETYPE

No restrictions
Integer values
Single-precision floating point values
Double-precision floating point values
Positive integer values
Positive single-precision floating point values
Positive double-precision floating point values

If the receiver isn't a text Cell, it's converted to type NX_TEXTCELL, in which case its
font is set to the user's system font at 12.0 point, and its string value is set to "Cell" (even
for text Cells that display numbers).

The entry type is checked by the isEntry Acceptable: method. That method is used by
Controls that contain editable text (such as Matrix and TextField) to validate that what the
user has typed is correct. If you want to have a custom Cell accept some specific type of
data (other than those listed above), override the isEntry Acceptable: method to check for
the validity of the data the user has entered.

See also: - entryType, - isEntryAcceptable:, - setFloatingPointFormat:left:right:

setFloatingPointFormat:left:right:

- setFloatingPointFormat:(BOOL)autoRange
left:(unsigned int)leftDigits
right:(unsigned int)rightDigits

Sets whether floating-point numbers are autoranged, and sets the sizes of the fields to the
left and right of the decimal point. leftDigits specifies the maximum number of digits to
the left of the decimal point, and rightDigits specifies the number of digits to the right (the
fractional digit places will be padded with zeros to fill this width). However, if a number
is too large to fit its integer part in leftDigits digits, as many places as are needed on the left
are effectively removed from rightDigits when the number is displayed.

2-140 Chapter 2: Application Kii

If autoRange is YES, leftDigits and rightDigits are simply added to form a maximum total
field width for the Cell (plus 1 for the decimal point). The fractional part will be padded
with zeros on the right to fill this width, or truncated as much as possible (up to removing
the decimal point and displaying the number as an integer). The integer portion of a number
is never truncated-that is, it is displayed in full no matter what the field width limit is.

leftDigits must be between ° and 10. rightDigits must be between ° and 14. If leftDigits
is 0, then the default printfO formatting applies. If rightDigits is 0, then the decimal and
the fractional part of the floating-point number are truncated (that is, the floating-point
number is printed as if it were an integer). If the entry type of the Cell isn't already
NX_FLOATTYPE, NX_POSFLOATTYPE, NX_DOUBLETYPE, or
NX_POSDOUBLETYPE, it's set to NX_FLOATTYPE. Returns self.

See also: - setEntryType:

setFloatValue:

- setFloatValue:(float)aFloat

Sets the contents of the Cell to the string value representing the single-precision floating
point number aFloat, ignoring the entry type of the Cell. Does nothing if the receiver isn't
a text Cell. Returns self.

See also: - floatValue, - setDoubleValue:, - setlntValue:, - setStringValue:,
- entryType, - type

setFont:

- setFont:fontObject

Sets the Font to be used when displaying text in the Cell. Does nothing if the receiver isn't
a text Cell. Returns self.

See also: - font

setlcon:

- setlcon:(const char *)iconName

Sets the Cell's icon to iconName (an NXlmage object with that name). iconName is stored
as the Cell's contents, and the NXlmage is stored as its support. If the Cell isn't an icon
cell, it's converted; if the Cell was a text Cell, the text string is freed if necessary. If
iconName is NULL or an empty string, or if an image can't be found for iconName, the Cell
has its icon set to the standard system bitmap "NXsquare 16".

Classes: Cell 2-141

If you specify a name for which an image can't be found, no change is made. Your code
can verify that the icon was properly changed by comparing the values returned by the type
or icon methods before and after invoking setlcon:. Returns self.

See also: - icon, - findlmageNamed (NXlmage), - initlconCell:

setlntValue:

- setIntValue:(int)anlnt

Sets the contents of the Cell to the string value representing the integer anlnt. Does nothing
if the receiver isn't a text Cell. This method ignores the entry type of the Cell. Returns self.

See also: - intValue, - setDoubleValue:, - setFloatValue:, - setStringValue:, - type,
- entryType

setParameter:to:

- setParameter:(int)aParameter to:(int)value

Sets the value of one of the Cell's parameters to value, and returns self. You don't normally
use this method, since these parameters can be set using specific methods such as
setEditable:. In this method, the parameters is identified by aParaineter, a symbolic
constant defined in the header file appkitlCell.h. The following table lists these constants
with the corresponding methods for setting and getting the value of the related parameters:

Parameter Constant Equivalent Methods

NX_CELLDISABLED setEnabled:, isEnabled
NX_ CELLHIGHLIGHTED highlightln View:lit:, isHighlighted
NX_CELLSTATE setState:, incrementS tate , state
NX_ CELLEDITABLE setEditable:, isEditable

Use of this method is discouraged as it could produce unpredictable results in subclasses.
It's much safer to invoke the appropriate parameters-specific method.

See also: - getParameter:

setScroliable:

- setScrollable:(BOOL)jlag

Sets whether the Cell will scroll to follow typing while being edited. Returns self.

See also: - isScrollable, - edit:in View:editor:delegate:event:

2-142 Chapter 2: Application Kit

setSelectable:

- setSelectable: (BaaL)flag

Ifflag is YES, then the text is made selectable but not editable. If NO, then the text is static
(neither editable nor selectable). To make text in a Cell both selectable and editable, send
it a setEditable: message. Returns self.

See also: - isSelectable:, - isEditable, - edit:inView: editor: delegate: event:

setState:

- setState:(int)value

Sets the state of the Cell to 0 if value is 0, to 1 otherwise. Returns self.

See also: - state, - incrementState

setStringValue:

- setStringValue:(const char *)aString

Copies aString as the receiver's contents. If the receiver isn't a text Cell, this method
converts it to that type, setting its font to the user's system font at 12 points. Returns self.

If the receiver was an icon Cell, the NXlmage for that icon is not freed; your code should
retrieve it beforehand and free it after ~ending this message.

If floating point formatting has been set (with setFloatingPointParameters:left:right:)
and the entry type of the Cell is a floating point number type, then the string is tested to
determine whether it represents a floating point number; if so, the string is displayed
according to that floating point format.

See also: - setStringValueNoCopy:, - setStringValueNoCopy:shouldFree:,
- stringValue, - setDouble Value:, - setFloatValue:, - setIntValue:,
- setFloatingPointFormat:left:right:

setStringValueNoCopy:

- setStringValueNoCopy:(const char *)aString

Similar to setStringValue: but doesn't make a copy of aString. The Cell records that it
doesn't have to dispose of its contents when it receives a free message. Note that if a string

Classes: Cell 2-143

is set this way, floating-point formatting can't be applied (since a shared string can't be
altered). Returns self.

See also: - setStringValue:, - setStringValueNoCopy:shouldFree:, - stringValue

setStringValueNoCopy:shouldFree:

- setStringValueNoCopy:(char *)aString shouldFree:(BOOL)jlag

Similar to setStringValueNoCopy:, but the sender can specify injlag if the contents should
be freed when the Cell receives a free message. Note that if a string is set this way,
floating-point formatting isn't applied. Returns self.

If the contents was already the same string as aString (the same pointer, not the same string
value), the free-contents flag can't be set set to YES. That is, you can't set a string as
non-freeable and later change it to be freeable by reinvoking this method with that same
string; you can, however, change it from freeable to nonfreeable.

See also: - setStringValue:, - setStringValueNoCopy:, - stringValue

setTag:

- setTag:(int)anlnt

Does nothing. This method is overridden by ActionCell and its subclasses·to support
Controls with multiple Cells (Matrix and Form). Override this method to provide a way to
identify Cells. Returns self.

See also: - tag, - findCellWithTag: (Matrix, Menu classes)

setTarget:

- setTarget:anObject

Does nothing. This method is one of several overridden by ActionCell and subclasses to
implement target/action functionality. Returns self.

See also: - setAction:, - target, - action, ActionCell

2-144 Chapter 2: Application Kit

setTextAttributes:
- setTextAttributes:textObject

Invoked just before any drawing or editing occurs in the Cell. This method is intended to
be overridden. If you do override this method you must include this line first:

[super setTextAttributes:textObject];

If you don't, you risk inheriting drawing attributes from the last Cell which drew any text.
You should invoke only the setBackgroundGray: and setTextGray: Text instance
methods. Don't set any other parameters in the Text object.

This method normally returns textObject. If you want to substitute some other Text object
to draw with (but not edit, since editing always uses the window's field editor), you can
return that object instead of textObject and it will be used for the draw that caused
setTextAttributes: to be invoked.

TextFieldCell, a subclass of ActionCell, allows you to set the grays without creating your
own subclass of Cell. You only need to subclass Cell to control the gray values if you don't
want all the functionality (and instance variable usage) of an ActionCell.

The default values for text attributes are as follows. If the Cell is enabled, its text gray will
be NX_BLACK, otherwise it will be NX_DKGRAY. If the Cell has a bezel, then its
background gray will be NX_ WHITE, otherwise it will be NX_LTGRAY. The Text object
does not paint the background gray before drawing; it only uses the background gray to
erase characters while editing. The Cell class does paint the NX_ WHITE background
when it draws a bezeled Cell, but doesn't paint any background otherwise (that is,
it's transparent).

Note that most of the other text object attributes can be set with Cell methods (setFont:,
setAlignment:, setWrap:) so you need only override this method if you need to set the
gray values. Returns self.

setType:
- setType:(int)aType

Sets the type of the Cell. aType should be NX_ TEXTCELL, NX_ICONCELL, or
NX_NULLCELL. If aType is NX_TEXTCELL and the receiver isn't currently a text Cell,
then the font is set to the user's system font in 12.0 point; its string value is set to "Cell".
If aType is NX_ICONCELL and the receiver isn't an icon Cell, then the icon set to the
default, "NXsquare 16".

See also: - type, - init, - initlconCell:, - initTextCell:, - setlcon:, - setText:

Classes: Cell 2-145

setWrap:

- setWrap:(BOOL)flag

Ifflag is YES, text will be wrapped to word breaks. Ifflag is NO, it will be truncated. The
default is YES. This setting has effect only when displaying text, not when editing, and
only applies to Cells whose alignment is NX_LEFTALIGNED (centered and right-aligned
text always wraps to word breaks).

See also: - setAlignment:

startTrackingAt:inView:

- (BOOL)startTrackingAt:(const NXPoint *)startPoint inView:aView

This method is invoked from trackMouse:inRect:ofView: the first time the mouse appears
in the Cell needing to be tracked. Override to provide implementation-specific tracking
behavior. This method should return YES if it's OK to track based on this starting point,
and only if the Cell is continuous; otherwise it should return NO.

See also: - trackMouse:inRect:ofView:, - continueTracking:at:in View:,
- stopTracking:at:in View:mouseIsUp:, - isContinuous, - mouseDownFlags

state

- (int)state

Returns the state of the Cell (0 or 1). The default is O.

See also: - setState:, - incrementState

stopTracking:at:inView:mouselsUp:

- stop Tracking: (const NXPoint *)lastPoint
at:(const NXPoint *)stopPoint
in View:a View
mouseIsUp:(BOOL)flag

Invoked from trackMouse:inRect:ofView: when the mouse has left the bounds of the
Cell, or the mouse button has gone up. flag is YES if the mouse button went up to cause
this method to be invoked. The default behavior is to do nothing and return self. This
method is often overridden to provide more sophisticated tracking behavior.

See also: - trackMouse:inRect:ofView:, - startTrackingAt:inView:,
- continueTracking:at:in View:

2-146 Chapter 2: Application Kit

stringValue

- (const char *)stringValue

Returns the contents of the Cell as a string.

See also: - setStringValue:, - double Value, - ftoatValue, - intValue

tag
- (int)tag

Returns -1. This method is overridden by ActionCell and its subclasses to support
multiple-Cell controls (Matrix and Form). Override this method if you want to use tags to
identifiy Cells. Returns self.

See also: - setTag:, - findCellWithTag: (Matrix, Menu classes)

takeDoubleValueFrom:

- takeDouble ValueFrom:sender

Sets the Cell's double-precision floating point value to the value returned by sender's
double Value method. sender must be of a class that implements the double Value method.
Returns self.

This method can be used in action messages between Cells. It permits one Cell (the sender)
to affect the value of another Cell (the receiver). For example, a TextFieldCell can be made
the target of a SliderCell, which will send it a takeDouble ValueFrom: action message.
The TextFieldCell will get the return value of the SliderCell' s double Value method, tum it
into a text string, and display it.

See also: - takeDoubleValueFrom: (Control), - setDoubleValue:

takeFloatValueFrom:

- takeFloatValueFrom:sender

Sets the Cell's single-precision floating-point value to the value returned by sender's
ftoatValue method. sender must be of a class that implements the ftoatValue method.
Returns self.

This method is similar to takeDouble ValueFrom: except it works with floats rather
than doubles.

See also: - takeFloatValueFrom: (Control), - setFloatValue:

Classes: Cell 2-147

takelntValueFrom:

- takelntValueFrom:sender

Sets the Cell's integer value to the value returned by sender's intValue method. sender
must be of a class that implements the intValue method. Returns self.

This method is similar to takeDouble ValueFrom: except it works with ints rather
than doubles.

See also: - takelntValueFrom: (Control), - setlntValue:

takeStringValueFrom:

- takeStringValueFrom:sender

Sets the Cell's string value to the value returned by sender's stringValue method. sender
must be of a class that implements the stringValue method. Returns self.

This method is similar to takeDouble ValueFrom: except it works with strings rather
than doubles.

See also: - takeStringValueFrom: (Control), - setStringValue:

target

- target

Returns nil. This method is one of those overridden by ActionCell and subclasses to
implement target/action functionality.

See also: - setTarget:, - action, ActionCell

trackMouse:inRect:ofView:

- (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
ofView:a View

Invoked by a Control to initiate the tracking behavior of a Cell. It's generally not
overridden since the default implementation invokes other Cell methods that can be
overridden to handle specific events in a dragging session. Returns YES if the mouse goes
up in cellFrame, NO otherwise.

2-148 Chapter 2: Application Kit

This method first invokes startTrackingAt:in View:. If that method returns YES, then as
mouse-dragged events are intercepted, continue Tracking: at: in View: is invoked, and,
finally, when the mouse leaves the bounds or if the mouse button goes up,
stopTracking:at:in View:mouseIsUp: is invoked (if cellFrame is NULL, then the bounds
are considered infinitely large). You usually override one or more of these methods to
respond to specific mouse events.

If the other tracking methods are insufficient for your needs, override this method directly.
It's this method's responsibility to invoke aView's sendAction:to: method when
appropriate (before, during, or after tracking) and to return YES if and only if the mouse
goes up within the Cell during tracking. If the Cell's action is sent on a mouse down event,
then startTrackingAt:in View: is invoked before the action is sent and the mouse is tracked
until it goes up or out of bounds. If the Cell sends its action periodically, then the action is
sent periodically to the target even if the mouse isn't moving (although
continueTracking:at:in View: is only invoked when the mouse changes position). If the
Cell's action is sent on a mouse dragged event, then continueTracking:at:inView: is
invoked before the action is sent. The state of the Cell is incremented (with
incrementS tate) before the action is sent and after stopTracking:at:in View: is invoked
when the mouse goes up.

See also: - startTrackingAt:in View:, -.:. continueTracking:at:in View:,
- stopTracking:at: :in View:mouseIsUp:

type
- (int)type

Returns the type of the Cell, which can be either NX_NULLCELL, NX_ICONCELL or
NX_TEXTCELL.

See also: - setType:

write:
- write:(NXTypedStream *)stream

Writes the Cell to the typed stream stream. Returns self.

See also: - read:

Classes: Cell 2-149

ClipVievv

Inherits From: View : Responder: Object

Declared In: appkitiClip View.h

Class Description

A Clip View object lets you scroll a document that may be larger than the Clip View's frame
rectangle, clipping the visible portion of the document to the frame. The document, which
must be a View object, is called the ClipView's document view. A ClipView's document
view, which is set through the setDocView: method, is the ClipView's only sub view. You
can set the cursor that's displayed when the mouse enters a Clip View's frame (in other
words, when it's poised over the document view) through the setDocCursor: method.

When the Clip View is instructed to scroll its document view, it copies as much of the
previously visible document as possible, unless it received a setCopyOnScroll:NO
message. The Clip View then sends its document view a message to either display or mark
as invalid the newly exposed region(s) of the ClipView. By default it will invoke the
document view's display:: method, but if the ClipView received a
setDisplayOnScroll:NO message, it will invoke the document view's invalidate::
method.

The ClipView sends its superview (usually a ScrollView) a reflectScroll: message
whenever the relationship between the Clip View and the document view has changed. This
allows the superview to update itself to reflect the change-for example, the ScrollView
class uses this method to change the position of its scrollers when the user causes the
document to autoscroll.

You don't normally use the ClipView class directly; it's provided primarily as the scrolling
machinery for the ScrollView class. However, you might use the Clip View class to
implement a class similar to ScrollView.

2-150 Chapter 2: Application Kit

Instance Variables

float background Gray;
id docView;
id cursor;

backgroundGray

docView

The gray value used to fill the ClipView's background.

The ClipView's document view.

cursor The cursor that's used within the ClipView's frame.

Method Types

Initializing the class + initialize

Initializing and freeing a Clip View
- initFrame:
-free

Modifying the frame rectangle - moveTo::
- rotateTo:
- sizeTo::

Modifying the coordinate system
- rotate:
- scale::
- setDrawOrigin::
- setDrawRotation:
- setDrawSize::
- translate::

Managing component Views - doc View
- setDocView:
- getDocRect:
- getDoc VisibleRect:
- resetCursorRects
- setDocCursor:

Modifying graphic attributes and displaying
- backgroundGray
- setBackgroundGray:
- backgroundColor
- setBackgroundColor:
- drawS elf: :

Classes: Clip View 2-151

Scrolling - autoscroll:
- constrainS croll:
- rawScroll:
- setCopyOnScroll:
- setDisplayOnScroll:

Coordinating with other Views - descendantFlipped:
- descendantFrameChanged:

Archiving - awake
- read:
- write:

Class Methods

initialize

+ initialize

Sets the current version of the ClipView class. You never invoke this method directly; it's
sent for you when the application starts. Returns self.

Instance Methods

autoscroll:

- autoscroll:(NXEvent *)theEvent

Performs automatic scrolling of the document. You never invoke this method directly;
instead, the Clip View's document view should send autoscroll: to itsel(while inside a
modal event loop initiated by a mouse-down event when the mouse is dragged outside the
ClipView's frame. The View class implements autoscroll: to forward the message to the
View's superview; thus is the message forwarded to the ClipView.

Returns nil if no scrolling occurs; otherwise returns self.

See also: - autoscroll: (View)

awake

-awake

You never invoke this method directly; it's invoked automatically after the ClipView has
been read from an archive file. Returns self.

2-152 Chapter 2: Application Kit

backgroundColor

- (NXColor)backgroundColor

Returns the color of the Clip View's background. If the background gray value has been set
but no color has been set, the color equivalent of the background gray value is returned. If
neither value has been set, the background color of the Clip View's window is returned.

See also: - backgroundGray, - setBackgroundColor:, - setBackgroundGray:,
- backgroundColor (Window), NXConvertGrayToColorO

backgroundGray

- (float)backgroundGray

Returns the gray value of the ClipView's background. If no value has been set, the gray
value of the ClipView's window is returned.

See also: - background Color, - setBackgroundGray:, - backgroundGray (Window)

constrainScroll:

- constrainScroll:(NXPoint *)newOrigin

Ensures that the document view is not scrolled to an undesirable position. This method is
invoked by the private method that all scrolling messages go through before it invokes
rawScroll: or scroIlClip:to:. The default implementation keeps as much of the document
view visible as possible. You may want to·override this method to provide alternate
constraining behavior. newOrigin is the desired new origin of the Clip View's bounds
rectangle, given in ClipView's coordinate system. Returns self.

See also: - rawScroll:

descendantFlipped:

- descendantFlipped:sender

Changes the Clip View's coordinate system orientation (unflipped or flipped) to match that
of the document view. You never invoke this method directly; it's invoked automatically
when the document view's orientation changes. Returns self.

Classes: Clip View 2-153

descendantFrameChanged:

- descendantFrameChanged:sender

Notifies the Clip View that its document view has been resized or moved. The Clip View
may then scroll and/or redisplay the document view, and the Clip View may also notify its
superview to reflect the changes in the scroll position. You never invoke this method
directly, nor should you override it in a subclass. Returns self.

See also: - moveTo:: (View), - sizeTo:: (View), - reftectScroll: (ScrollView),
- notifyAncestorWhenFrameChanged: (View), - setDocView:

docView

- docView

Returns the ClipView's document view.

See also: - setDoc View:

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Overrides View's drawSelf:: method to fill the portions of the Clip View that aren't covered
by opaque portions of the document view. If a color value has been set and the Clip View
is drawing itself on a color screen, the Clip View draws its background with the color value,
otherwise it draws its background using its gray value. Returns self.

See also: - backgroundColor:, - backgroundGray:, - drawSelf:: (View)

free

-free

Frees the Clip View and its subviews.

2-154 Chapter 2: Application Kit

getDocRect:

- getDocRect:(NXRect *)aReet

Returns, by reference in aReet, the smallest rectangle that encloses both the document
view's frame and the ClipView's frame. The origin of the rectangle is always set to that of
the document view's frame.

The document rectangle is used in conjunction with the ClipView's bounds rectangle to
determine values for any indicators of relative position and size between the Clip View and
the document view. The ScrollView uses these rectangles to set the size and position of the
Scrollers' knobs. Returns self.

See also: - refiectScroll: (Scroll View)

getDocVisibleRect:

- getDocVisibleRect:(NXRect *)aReet

Returns, by reference in aReet, the portion of the document view that's visible within the
ClipView. The visible rectangle is given in the document view's coordinate system. Note
that this rectangle doesn't reflect the effects of any clipping that may occur above the
Clip View itself. To get the portion of the document view that's guaranteed to be visible,
send it a getVisibleRect: message. Returns self.

See also: - getVisibleRect: (View)

initFrame:

- initFrame:(const NXRect *)frameReet

Initializes the Clip View, which must be a newly allocated Clip View instance. The
Clip View's frame rectangle is made equivalent to that pointed to by frameReet. This
method is the designated initializer for the Clip View class, and can be used to initialize a
ClipView allocated from your own zone. By default, clipping is enabled, and the ClipView
is set to opaque. A Clip View is initialized without a document view. Returns self.

moveTo::

- moveTo:(NXCoord)x :(NXCoord)y

Moves the origin of the Clip View's frame rectangle to (x, y) in its superview's coordinates.
Returns self.

Classes: Clip View 2-155

rawScroll:

- rawScroll:(const NXPoint *)newOrigin

Performs scrolling of the document view. This method sets the ClipView's bounds
rectangle origin to newOrigin. Then it copies as much of the previously visible document
as possible, unless it received a setCopyOnScroll:NO message. It then sends its document
view a message to either display or invalidate the newly exposed region(s) of the Clip View.
By default it will invoke the document view's display:: method,. but if the ClipView
received a setDisplayOnScroll:NO message, it will invoke the document view's
invalidate:: method. The rawScroll: method doesn't send a refiectScroll: message to its
superview; that message is sent by the method that invokes rawScroll:. Note also that
while the ClipView provides clipping to its frame, it doesn't clip to the update rectangles.

This method is used by a private method through which all scrolling passes, and is invoked
if the Clip View's superview does not implement the scrollClip:to: method. If the
Clip View's superview does implement scrollClip:to:, that method should invoke
rawScroll:. This mechanism is provided so that the Clip View's superview can coordinate
scrolling of multiple tiled ClipViews. (Note that ScrollView doesn't implement the
scrollClip:to: method.) Returns self.

read:

- read:(NXTypedStream *)stream

Reads the Clip View and its document view from the typed stream stream. Returns self.

See also: - write:

resetCursorRects

- resetCursorRects

Resets the cursor rectangle for the document view to the bounds of the Clip View.
Returns self.

See also: - setDocCursor:, - addCursorRect:cursor: (View)

rotate:

- rotate:(NXCoord)angle

Disables rotation of the ClipView's coordinate system. You also should not rotate the
ClipView's document view, nor should you install a ClipView as a subview of a rotated
view. The proper way to rotate objects in the document view is to perform the rotation in
your document view's drawSelf:: method. Returns self.

2-156 Chapter 2: Application Kit

rotateTo:

- rotateTo:(NXCoord)angle

Disables rotation of the ClipView's frame rectangle. This method also disables ClipView's
inherited rotateBy: method. Returns self.

See also: - rotate:

scale::

- scale:(NXCoord)x :(NXCoord)y

Rescales the Clip View's coordinate system by a factor of x for its x-axis, and by a factor of
y for its y-axis. Since the document view's coordinate system is measured relative to the
ClipView's coordinate system, the document view is redisplayed and a refiectScroll:
message may be. sent to the ClipView's superview. Returns self.

See also: - refiectScroll: (ScrollView)

setBackgroundColor:

- setBackgroundColor:(NXColor)color

Sets the color of the ClipView's background. This color is used to fill the area inside the
ClipView that's not covered by opaque portions of the document view. If no background
gray has been set for the Clip View, this method sets it to the gray component of the color.
Returns self.

See also: - background Color, - backgroundGray, - setBackgroundGray,
NXGrayComponentO

setBackgroundGray:

- setBackgroundGray:(ftoat)value

Sets the gray value of the ClipView's background. This gray is used to fill the area inside
the Clip View that's not covered by opaque portions of the document view. value must lie
in the range from 0.0 (black) to 1.0 (white). Returns self.

See also: - background Color, - backgroundGray, - setBackgroundColor

Classes: Clip View 2-157

setCopyOnScroll:

- setCopyOnScroll:(BOOL)flag

Determines whether visible portions of the document view will be copied when scrolling
occurs. Ifflag is YES, scrolling will copy as much of the document as possible to scroll the
View, allowing the document view to update only the newly exposed portions of itself. If
flag is NO, the document view is responsible for redrawing its entire visible portion. This
should only rarely be changed from the default value (YES). Returns self.

setDisplayOnScroll:

- setDisplayOnScroll:(BOOL)flag

Determines whether the results of scrolling will be immediately displayed. If flag is YES,
the results of scrolling will be immediately displayed. Ifflag is NO, the Clip View is marked
as invalid but isn't displayed. This should only rarely be changed from the default setting
of YES. Returns self.

See also: - rawScroll:, - display:: (View), - invalidate:: (View)

setDocCursor:

- setDocCursor:anObj

Sets the cursor to be used inside the ClipView's bounds. anObj should be an NXCursor
object. Returns the old cursor.

setDocView:

- setDocView:aView

Sets aView as the ClipView's document view. A ClipView can have only one document
view; invoking this method removes the previous document view, if any. This method
initializes the document view with notify AncestorWhenFrameChanged: YES and
notifyWhenFlipped:YES messages. The origin of the document view's frame is initially
set to be coincident with the origin of the ClipView's bounds. If the ClipView is contained
within a ScrollView, you should send the ScrollView the setDoc View: message and have
the ScrollView pass this message on to the Clip View. Returns the old document view, or
nil if there was none.

See also: - setDocView: (ScrollView)

2-158 Chapter 2: Application Kit

setDrawOrigin::

- setDrawOrigin:(NXCoord)x :(NXCoord)y

Overrides the View method so that changes in the Clip View's coordinate system are
reflected in the displayed document view. This method may redisplay the document view,
and a refiectScroll: message may be sent to the ClipView's superview. Returns self.

See also: - setDrawOrigin:: (View)

setDrawRotation:

- setDrawRotation:(NXCoord)angle

Disables rotation of the ClipView's coordinate system. The proper way to rotate objects in
the document view is to perform the rotation in your document view's drawS elf: : method.
Returns self.

See also: - rotate:

setDrawSize::

- setDrawSize:(NXCoord)width :(NXCoord)height

Overrides the View method so that rescaling of the ClipView's coordinate system is
reflected in the displayed document view. This method may redisplay the document view,
and a refiectScroll: message may be sent to the ClipView's superview. Returns self.

See also: - setDrawSize:: (View)

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Overrides the View method so that resizing of the ClipView's frame rectangle is reflected
in the displayed document view. This method may redisplay the document view, and a
refiectScroll: message may be sent to the ClipView's superview. Returns self.

See also: - sizeTo: : (View)

Classes: Clip View 2-159

translate::

- translate:(NXCoord)x :(NXCoord)y

Overrides the View method so that translation of the ClipView's coordinate system is
reflected in the displayed document view. This method may redisplay the document view,
and a refiectScroll: message may be sent to the ClipView's superview. Returns self.

See also: - translate:: (View)

write:

- write:(NXTypedStrearn *)stream

Writes the Clip View and its document view to the typed stream stream. Returns self.

See also: - read:

Methods Implemented by a ClipView's Superview

reflectScroll:

- refiectScroll: a Clip View

Notifies the ClipView's superview that either the ClipView's bounds rectangle or the
document view's frame rectangle has changed, and tha~ any indicators of the scroll position
need to be adjusted. ScrollView implements this method to update its Scroller.

scroIiClip:to:

- scrollClip:aClipView to:(const NXPoint *)newOrigin

Notifies the ClipView's superview that the ClipView needs to set its bounds rectangle
origin to newOrigin. The ClipView's superview should then send the ClipView the
rawScroll: message. This mechanism is provided so that the ClipView's superview can
coordinate scrolling of multiple tiled Clip Views. Note that the default delegate is the
ClipView's ScrollView, and doesn't respond to this method.

See also: - rawScroll: (ClipView)

2-160 Chapter 2: Application Kit

Control

Inherits From: View: Responder: Object

Declared In: appkitiControl.h

Class Description

Control is an abstract superclass that provides three fundamental features for implementing
user interface devices. First, as a subclass of View, Control allows the on-screen
representation of the device to be drawn. Second, it receives and responds to
user-generated events within its bounds by overriding Responder's mouseDown: method
and providing a position in the responder chain. Third, it implements the sendAction:to:
method to send an action message to the Control's target object. Subclasses of Control
defined in the Application Kit are Button, Form, Matrix, NXBrowser, NXColorWell,
Slider, Scroller, and TextField.

Target and Action

Target objects and action methods provide the mechanism by which Controls interact with
other objects in an application. A target is an object that a Control has effect over. The
target class defines an action method to enable its instances to respond to user input. An
action method takes only one argument: the id of the sender. The sender may be either
Control that sends the action message or another object that the target should treat as the
sender. When it receives an action message, a target can return messages to the sender
requesting additional information about its status. Control's sendAction:to: asks the
Application object, NXApp, to send an action message to the Control's target object. The
method used for this is Application's sendAction:to:from:. You can also set the target to
nil and allow it to be determined at run time. When the target is nil, the Application object
must look for an appropriate receiver. It conducts its search in a prescribed order, by
following the responder chain until it finds an object that can respond to the message:

• It begins with the first responder in the key window and follows nextResponder links
up the responder chain to the Window object. After the Window object, it tries the
Window's delegate.

• If the main window is different from the key window, it then starts over with the first
responder in the main window and works its way up the main window's responder chain
to the Window object and its delegate.

Classes: Control 2-161

• Next, it tries to respond itself. If the Application object can'trespond, it tries its own
delegate. NXApp and its delegate are the receivers of last resort.

Control provides methods for setting and using the target object and the action method.
However, these methods require that a Control have an associated subclass of Cell that
provides a target and an action, such as ActionCell and its subclasses.

Target objects and action methods demonstrate the close relationship between Controls and
Cells. In most cases, a user interface device consists of an instance of a Control subclass
paired with one or more instances of a Cell subclass. Each implements specific details of
the user interface mechanism. For example, Control's mouseDown: method sends a
trackMouse:inRect:ofView: message to a Cell, which handles subsequent mouse and
keyboard events; a Cell sends a Control a sendAction:to: message in response to particular
events. Control's drawSelf:: method is implemented by sending a drawSelf:inView:
message to the Cell. As another example, Control provides methods for setting and
formatting its contents; these methods send corresponding messages to Cell, which actually
owns the contents.

See the ActionCell class specification for more on the implementation of target and
action behavior.

Creating New Controls

Since Control uses the Cell class to implement most of its actual functionality, you can
usually implement "a unique user interface device by creating a subclass of Cell or
ActionCell rather than Control. A Control subclass doesn't have to use a Cell subclass to
implement itself; Scroller and NXColorWell don't. However, such subclasses have to take
care of details that Cell would otherwise handle. Specifically, they have to override
methods designed to work with a Cell. What's more, they cannot be used in a Matrix-a
subclass of Control designed specifically for managing multi-cell arrays such as
radio buttons.

The initFrame: method is the designated initializer for the Control class. Override this
method if you create a subclass of Control that performs its own initialization.

If your new Control uses a custom subclass of Cell, you'll probably also want to override
Control's setCellClass: class method. Since Objective C does not support class variables,
if you create a subclass of, for example, Button, and send setCellClass: to your subclass
object to use a custom Cell, then all Buttons created after that will also use that Cell class.
There are two ways to circumvent this problem. One is to reset the Cell class each time you
create an instance of your Control subclass. The other is to override setCellClass: to store
its own Cell class in a global variable and to use that in its initFraQle: method as follows
(note that in the initialize method MyCellSubClass checks itself to prevent its subclasses
from inheriting a method that initializes them incorrectly):

2-162 Chapter 2: Application Kit

static id myStoredCellClass;

+ initialize

1* Class initialization code. *1
if (self == [MyCellSubclass class])

myStoredCellClass = [MyCellSubclass class]; II Default class

return self;

+ setCellClass:classId

myStoredCellClass
return self;

classId;

- initFrame: (NXRect *)frameRect

id oldCell;

[super initFrame:frameRect];

oldCell = [self setCell: [[myStoredCellClass alloc] init]];
[oldCell free];

1* other initialization code *1

return self;

Instance Variables

int tag;
id cell;
struct _conFlags {

unsigned int enabled: 1 ;
unsigned int editingValid: 1;
unsigned int ignoreMultiClick: 1;
unsigned int calcSize: 1;

} conFlags;

Classes: Control 2-163

tag

cell

conFlags.enabled

conFlags.editing Valid

conFlags.ignoreMulti Click

conFlags .calcSize

Method Types

Identifies the Control; used by View's findViewWithTag:
method.

The Control's Cell (if it has only one).

YES if the Control is enabled; relevant for multi-cell
controls only.

YES if editing has been validated.

YES if the Control ignores double- or triple-clicks.

YES if the cell should recalculate its size and location
before drawing.

Initializing and freeing a Control

Setting the Control's Cell

- initFrame:
- free

+ setCellClass:
- setCell:
- cell

Enabling and disabling the Control
- isEnabled
- setEnabled:

Identifying the selected Cell - selectedCell
- selectedTag

Setting the Control's value - setFloatValue:
- floatValue
- setDouble Value:
- double Value
- setIntValue:
- intValue
- setStringValue:
- setStringValueNoCopy:
- setString ValueNoCopy:shouldFree:
- string Value

Interacting with other Controls - takeDouble ValueFrom:
- takeFloat ValueFrom:
- takeIntValueFrom:
- takeStringValueFrom:

2-164 Chapter 2: Application Kit

Formatting text

Managing the field editor

Managing the cursor

Resizing the Control

- setAlignment:
- alignment
- setFont:
-font
- setFloatingPointFormat:left:right:

- abortEditing
- currentEditor
- validateEditing

- resetCursorRects

- calcSize
- sizeTo::
- sizeToFit

Displaying the Control and Cell - drawCell:
- drawCellInside:
- drawS elf: :
- selectCell:
- update
- updateCell:
- updateCellInside:

Target and action - setAction:
- action
- setTarget:
- target
- setContinuous:
- isContinuous
- sendAction:to:
- sendActionOn:

Assigning a tag - setTag:
-tag

Tracking the mouse - ignoreMultiClick:
- mouseDown:
- mouseDownFlags

Archiving -read:
- write:

Classes: Control 2-165

Class Methods

setCeliClass:

+ setCellClass:classld

This abstract method does nothing. It's implemented by subclasses of Control, which use
this method to set the class of their Cells. Returns self.

Instance Methods

abortEditing

- abortEditing

Terminates and discards any editing of text displayed by the receiving Control. Returns
self, or nil if no editing was going on in the receiving Control. This method doesn't
redisplay the old value of the Control.

See also: - endEditingFor: (Window), - validateEditing

action

- (SEL)action

Returns the action message sent by the Control's Cell, or the default action message for a
Control with multiple Cells (such as a Matrix or Form). To retrieve the action message, this
method sends an action message to the Cell. For Controls with multiple Cells, it's better
to get the action message for a particular Cell using:

someAction = [[theControl selectedCell] action];

See also: - setAction:, - target, - sendAction:to:

alignment

- (int)alignment

Returns the alignment mode of the text in the Control's Cell. The return value can be one
of three constants: NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED.

See also: - setAlignment:

2-166 Chapter 2: Application Kit

calcSize

- calcSize

Recomputes any internal sizing information for the Control, if necessary, by invoking its
Cell's calcDrawlnfo: method. This method doesn't actually draw. It can be used for more
sophisticated sizing operations as well (for example, Form). calcSize is automatically
invoked whenever the Control is displayed and something has changed; you need never
invoke it. Returns self.

See also: - calc Size (Matrix, Form), - sizeToFit

cell

- cell

Returns the Control's Cell. You should use selected Cell in the action method of the target
of the Control, since a Control may have multiple Cells.

See also: - selected Cell

currentEditor

- currentEditor

If the receiving Control is being edited (that is, has a Text object acting as its editor, and is
the first responder in its Window), this method returns the Text object being used to perform
that editing. If the Control isn't being edited, this method returns nil.

See also: - abortEditing, - validateEditing

doubleValue

- (double)doubleValue

Returns the value of the Control's selected Cell as a double-precision floating point number.
If the Control contains many cells (for example, Matrix), then the value of the currently
selected Cell is returned. If the Control is in the process of editing the affected Cell, then
validateEditing is invoked before the value is extracted and returned.

See also: - setDoubleValue:, - f1oatValue, - intValue, - stringValue

Classes: Control 2-167

drawCell:

- drawCell:aCell

If aCell is the cell used to implement this Control, then the Control is displayed. This
method is provided primarily to support a consistent set of methods between Controls with
single and multiple Cells, since a Control with multiple Cells needs to be able to draw a
single Cell at a time. Returns self.

See also: - updateCell:, - drawCelllnside:, - updateCelllnside:,
- drawCell: (Matrix)

drawCelilnside:

- drawCelllnside:aCell

Draws the inside of a Control (the area within a bezel or border). This method invokes
Cell's drawlnside:inView: method. drawCelllnside: is used by setStringValue: and
similar content-setting methods to provide a minimal update of the Control when its value
is changed. Returns self.

See also: - drawCell:, - drawlnside:in View: (Cell), - drawCelllnside: (Matrix),
- updateCelllnside:

drawSelf::

- drawS elf: (const NXRect *)rects :(int)rectCount

Draws the Control. This method invokes the drawSelf:inView: method of the Control's
Cell. You must override this method if you have a Control with multiple Cells.
Returns self.

See also: - drawSelf:in View: (Cell)

floatValue

- (float)floatValue

Returns the value of the Control's selected Cell as a single-precision floating point number.
See doubleValue for more details.

See also: - setFloatValue:, - double Value, - intValue, - stringValue

2-168 Chapter 2: Application Kit

font
-font

Returns the Font object used to draw the text (if any) of the Control's Cell.

See also: - setFont:

free
-free

Frees the memory used by the Control and its Cells. Aborts editing if the text of the Control
was currently being edited. Returns nil.

See also: - free (View)

ignoreMultiClick:
- ignoreMultiClick:(BOOL)jlag

Sets the Control to ignore multiple clicks ifjlag is YES. By default, double-clicks (and
higher order clicks) are treated the same as single clicks. You can use this method to
"deb ounce" a Control, so that it won't inadvertently send its action message twice when
double-clicked. Returns self.

initFrame:
- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Control, by setting the value pointed
to by frameRect as its frame rectangle. Makes the new instance an opaque View. Since
Control is an abstract class, messages to perform this method should appear only in
subclass methods; that is, there should always be a more specific designated initializer for
the subclass. initFrame: is the designated initializer for the Control class.

intValue
- (int)intValue

Returns the value of the Control's selected Cell as an integer (see double Value for
more details).

See also: - setlntValue:, - double Value, - floatValue, - stringValue

Classes: Control 2-169

isContinuous

- (BOOL)isContinuous

Returns YES if the Control's Cell continuously sends its action message to its target during
mouse tracking.

See also: - setContinuous:

isEnabled

- (BOOL)isEnabled

Returns YES if the Control is enabled, NO otherwise.

See also: - setEnabled:

mouseDown:

- mouseDown:(NXEvent *)theEvent

Highlights the Control, and sends trackMouse:inRect:ofView: to the Control's Cell (or
whichever Cell the mouse event occured in if the Control has multiple Cells). This method
is- invoked when the mouse button goes down while the cursor is within the bounds of the
Control. The Control's Cell tracks the cursor until it goes outside the bounds, at which time
the Control is unhighlighted. If the cursor goes back into the bounds, then the Control
highlights again and its Cell starts tracking again. This behavior continues until the mouse
button goes up. If it goes up with the cursor in the Control, the state of the Control is
changed, and the action message is sent to the target with sendAction:to:. If the mouse
button goes up with the cursor outside the Control, no action message is sent. Returns self.

See also: - trackMouse:inRect:ofView: (Cell), - sendAction:to:

mouseDownFlags

- (inOmouseDownFlags

Returns the event flags (for example, NX_SHIFTMASK) that were in effect at the
beginning of mouse tracking. The flags are valid only in the action method invoked upon
the Control's target.

See also: - mouseDownFlags (Cell), - sendAction:to:

2-170 Chapter 2: Application Kit

read:

- read:(NXTypedStream *)stream

Reads the Control from the typed stream stream. Returns self.

resetCursorRects

- resetCursorRects

Reestablishes the cursor rectangles for the Control's Cell (or Cells). If the Cell displays
text, and the text in the Cell is selectable, then resetCursorRect:in View: is sent to the Cell.
resetCursorRect:inView: in tum, sends addCursorRect:cursor: back to the Control, so
that the cursor will change to an I-beam when it enters the Cell's rectangle. Returns self.

See also: - resetCursorRect:inView: (Cell), - addCursorRect:cursor: (View)

selectCell:

- selectCell:aCell

If aCell is a Cell of the receiving Control and is unselected, this method selects aCell and
redraws the Control. Returns self.

selectedCell

- selected Cell

Returns the Control's selected Cell. The target of the Control should use this method when
it wants to get the Cell of the sending Control. Note that even though the cell method will
return the same value for Controls with only a single Cell, it's strongly suggested that this
method be used since it will work for Controls with either a single or multiple Cells.

See also: - sendAction:to:, - selectedCell (Matrix)

selectedTag

- (int)selectedTag

Returns the tag of the Control's selected Cell. This is equivalent to:

myTag = [[theControl selectedCell] tag];

Classes: Control 2-171

Returns -1 if there is no selected Cell. The Cell's tag can be set with ActionCell's setTag:
method. You should only use the setTag: and tag methods in conjunction with
findViewWithTag:. When you set the tag of a Control with a single Cell in Interface
Builder, it sets both the tags of both Control and Cell as a convenience.

See also: - sendAction:to:

sendAction:to:

- sendAction:(SEL)theAction to:theTarget

Sends a sendAction:to:from: message to NXApp, which in tum sends a message to
theTarget to perform theAction. sendAction:to:from: adds the Control as theAction's only
argument. If theAction is NULL, no message is sent. sendAction:to: is invoked primarily
by Cell's trackMouse:inRect:ofView:

If the Target is nil, NXApp looks for an object that can respond to the message by following
the responder chain, as detailed in the class description.

Returns nil if no object that responds to theAction could be found; otherwise returns self.

See also: - action, - target, - trackMouse:inRect:ofView: (Cell),
- sendAction:to:from: (Application)

sendActionOn:

- (int)sendActionOn:(int)mask

Uses mask to record the events that cause sendAction:to: to be invoked during tracking of
the mouse, which is performed in Cell's trackMouse:inRect:ofView:. Returns the old
event mask.

See also: - sendAction:to:, - sendActionOn: (Cell),
- trackMouse:inRect:ofView: (Cell)

setAction:

- setAction:(SEL)aSelector

Makes aSelector the Control's action method. If aSelector is NULL, then no action
messages will be sent from the Control. Returns self.

See also: - action, - setTarget:, - sendAction:to:

2-172 Chapter 2: Application Kit

setAlignment:

- setAlignment:(int)mode

Sets the alignment mode of the text in the Control's Cell, or of all the Control's Cells if it
has more than one, and redraws the Control. mode should be one of:
NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED. Returns self.

See also: - alignment

setCell:

- setCell:aCell

Sets the Cell of the Control to be cell. Use this method with great care as it can irrevocably
damage your Control; specifically, you should only use this method in initializers for
subclasses of Control. Returns the old Cell.

setContinuous:

- setContinuous:(BOOL)flag

Sets whether the Control will continuously send its action message to its target as the mouse
is tracked. Returns self.

See also: - setContinuous: (ButtonCell, SliderCell), - sendActionOn:

setDoubleValue:

- setDouble Value: (double)aDouble

Sets the value of the Control's selected Cell to be aDouble (a double-precision floating
point number). If the affected Cell is being edited, that editing is aborted and the value
being typed is discarded in favor of aDouble. If autodisplay is on, then the Cell's inside
(the area within a bezel or border) is redrawn. Returns self.

See also: - doubleValue, - setFloatValue:, - setlntValue:, - setStringValue:,
- abortEditing, - drawlnside:inView: (Cell), - isAutodisplay (View),
- setAutodisplay: (View)

Classes: Control 2-173

setEnabled:

- setEnabled:(BOOL)jlag

Sets whether the Control is active or not (that is, whether it tracks the mouse and sends its
action to its target). Ifjlag is NO, any editing is aborted. Redraws the entire Control if
autodisplay is on. Subclasses may want to override this to redraw only a portion of the
Control when the enabled state changes (Button and Slider do this). Returns self.

See also: - setEnabled: (Cell), - isAutodisplay (View), - setAutodisplay: (View)

setFloatValue:

- setFloatValue:(float)aFloat

Same as setDouble Value:, but sets the value as a single-precision floating point number.
Returns self.

See also: - f1oatValue, - setDoubleValue:, - setIntValue:, - setStringValue:

setFloatingPointFormat:left:right:

- setFloatingPointFormat:(BOOL)autoRange
left:(unsigned)leftDigits
right: (unsigned) rig htD ig its

Sets the autoranging and floating point number format of the Control's Cell, so that at most
leftDigits are displayed to the left of the decimal point, and rightDigits to the right. If the
Control has more than one Cell, they're all affected. See the description of this method in
the Cell class specification for more detail. This method doesn't redraw the Control.
setFloatingPointFormat:left:right: affects only subsequent invocations of
setFloatValue:. Returns self.

See also: - setFloatingPointFormat:left:right: (Cell)

setFont:

- setFont:fontObject

Sets the Font object used to draw the text (if any) in the Control's Cell, or in all the Cells if
the Control has more than one. You only need to use this method if you don't want to use
the user's default system font (as set by the user in the Preferences application). If
autodisplay is on, then the inside of the Cell is redrawn. Returns self.

See also: - font, - isAutodisplay (View), - setAutodisplay: (View)

2-174 Chapter 2: Application Kit

setlntValue:

- setlntValue:(int)anlnt

Same as setDoubleValue:, but sets the value as an integer. Returns self.

See also: - intValue, - setDoubleValue:, - setFloatValue:, - setStringValue:

setStringValue:

- setStringValue:(canst char *)aString

Same as setDoubleValue:, but sets the value as a string by copying it from aString.
Returns self.

See also: - stringValue, - setStringValueNoCopy:,
- setStringValueNoCopy:shouldFree:, - setDoubleValue:, - setFloatValue:,
- setlntValue:

setStringValueNoCopy:

- setStringValueNoCopy:(canst char *)aString

Like setStringValue:, but doesn't copy the string. Returns self.

See also: - stringValue, - setStringValue:, - setStringValueNoCopy:,
- setStringValueNoCopy:shouldFree:, - setDoubleValue:, - setFloatValue:,
- setlntValue:

setStringValueNoCopy:shouldFree:

- setStringValueNoCopy:(char *)aString shouldFree:(BOOL).flag

Like setStringValueNoCopy:, but lets you specify whether the string should be freed
when the Control is freed. Returns self.

See also: - stringValue, - setStringValue: - setStringValueNoCopy:,
- setDoubleValue:, - setFloatValue:, - setlntValue:

Classes: Control 2-175

setTag:
- setTag:(int)anlnt

Makes anlnt the receiving Control's tag. Doesn't affect the Control's Cell. Returns self.

See also: - tag, - selectedTag, - findViewWithTag: (View), - setTag: (Cell)

setTarget:
- setTarget:anObject

Sets the target for the action message of the Control's Cell. Returns self.

If anObject is nil, then when an action message is sent, NXApp looks for an object that
can respond to the message by following the responder chain, as detailed in the
class description.

See also: - target, - setAction:, - sendAction:to:

sizeTo::
- sizeTo:(NXCoord)width :(NXCoord)height

Changes the width and the height of the Control's frame. Redisplays the Control if
autodisplay is on. Returns self.

See also: - isAutodisplay (View), - setAutodisplay: (View)

sizeToFit
- sizeToFit

Changes the width and the height of the Control's frame so that they are the minimum
needed to contain the Cell. If the Control has more than one Cell, then you must override
this method. Returns self.

See also: - sizeToFit (Matrix), - sizeToCells (Matrix)

2-176 Chapter 2: Application Kit

stringValue

- (const char *)stringValue

Returns the value of the Control's selected Cell as a string. If the Control is in the process
of editing the affected Cell, then validateEditing is invoked before the value is extracted
and returned.

See also: - setStringValue:, - doubleValue, - ftoatValue, - intValue

tag

- (int)tag

Returns the receiving Control's tag (not the tag of the Control's Cell).

See also: - setTag:, - selectedTag, - tag (Cell)

takeDoubleValueFrom:

- takeDouble ValueFrom:sender

Sets the double-precision floating-point value of the receiving Control's selected Cell to the
value obtained by sending a double Value message to sender. Returns self.

This method can be used in action messages between Controls. It permits one Control (the
sender) to affect the value of another Control (the receiver) by invoking this method in an
action message to the receiver. For example, a TextField can be made the target of a Slider.
Whenever the Slider is moved, it will send a takeDouble ValueFrom: message to the
TextField. The TextField will then get the Slider's floating-point value, tum it into a text
string, and display it, thus tracking the value of the Slider.

See also: - setDoubleValue:, - doubleValue

takeFloatValueFrom:

- takeFloatValueFrom:sender

Sets the single-precision floating-point value of the receiving Control's selected Cell to the
value obtained by sending a ftoatValue message to sender. Returns self.

See takeDouble ValueFrom: for an example.

See also: - setFloatValue:, - ftoatValue

Classes: Control 2-177

takelntValueFrom:
- takelntValueFrom:sender

Sets the integer value of the receiving Control's selected Cell to the value returned by
sending an intValue message to sender. Returns self.

See takeDouble ValueFrom: for an example.

See also: - setIntValue:, - intValue

takeStringValueFrom:

- takeStringValueFrom:sender

Sets the character string of the receiving Control's selected Cell to a string obtained by
sending a stringValue message to sender. Since this is an action method, there is no
alternate like takeStringValueFrom:noCopy:. Returns self.

See takeDouble ValueFrom: for an example.

See also: - stringValue, - setStringValue:

target
- target

Returns the target for the action message of the Control's cell, or the Control's target for a
Control with multiple Cells. If nil, then any action messages sent by the Control will be
sent up the responder chain, as detailed in the Class Description.

See also: - setTarget:, - action, - sendAction:to:

update

- update

If autodisplay is enabled, sends a display message to itself. Otherwise it simply sets a flag
indicating that the Control needs to be displayed. This method also makes sure that
calcSize is performed. Returns self.

See also: - updateCell:, - updateCelllnside:

2-178 Chapter 2: Application Kit

updateCell:

- updateCell:aCeli

If aCeli is a Cell used to implement this Control, and if autodisplay is on, then draws the
Control's Cell; otherwise, sets the needsDisplay and calc Size flags to YES. Returns self.

See also: - update, - updateCelllnside:, - isAutodisplay (View),
- setAutodisplay: (View)

updateCelilnside:

- updateCelllnside:aCeli

If aCeli is a Cell used to implement this Control, and if autodisplay is on, draws the inside
portion of the Cell; otherwise sets the needsDisplay flag to YES. Returns self.

See also: - update, - updateCell:, - isAutodisplay (View), - setAutodisplay: (View)

validateEditing

- validateEditing

Causes the value of the Control's selected Cell to be set to the value of the field being
edited, if any. "Being edited" does not necessarily mean that a user is typing; if a field (for
example, a TextField object) has the application's global Text object acting in its place as
first responder, then the field is considered as being edited. This method is invoked
automatically from stringValue, intValue, and other similar methods, so that a partially
edited field's actual value will be correctly returned by those methods. Returns self.

This method doesn't end editing; to do that, invoke Window's endEditingFor: or
abortEditing.

See also: - endEditingFor: (Window), - abortEditing

write:

- write:(NXTypedStream *)stream

Writes the Control to the typed stream stream.

See also: - read:

Classes: Control 2-179

Font

Inherits From:

Declared In:

Class Description

Object

appkitIFont.h

The Font class provides objects that correspond to PostScript fonts. Each Font object
records a font's name, size, style, and matrix. When a Font object receives a set message,
it establishes its font as the current font in the Window Server's current graphics state.

For a given application, only one Font object is created for a particular PostScript font.
When the Font class object receives a message to create a new object for a particular font,
it first checks whether one has already been created for that font. If so, it returns existing
object; otherwise, it creates a new object and returns it. To implement this sharing of Font
objects, the Font class provides special instantiation methods (the new ..• methods,
userFixedPitchFontOfSize:matrix:, and so on); use these methods, not alloc or
allocFromZone: .

This sharing Font objects minimizes the number of objects created. It also implies that no
one object in your application can know whether it has the only reference to a particular
Font object. Thus, Font objects shouldn't be freed; Font's free method simply returns self.

Instance Variables

char *name;
float size;
int style;
float *matrix;
int fontNum;
NXFacelnfo *facelnfo;
id otherFont;
struct _fFlags {

unsigned int isScreenFont: 1;
} fFlags;

2-180 Chapter 2: Application Kit

name

size

style

matrix

fontNum

faceInfo

otherFont

fFlags.isScreenFont

Method Types

Initializing the Class object

The font's name.

The font's size.

The font's style.

The font's matrix.

The user object referring to this font.

The font's face information.

The associated screen font for this font.

True if the font is a screen font.

+ initialize
+ useFont:

Creating and freeing a Font object

Querying the Font object

+ newFont:size:
+ newFontsize:matrix:
+ newFontsize:style:matrix:
+ boldSystemFontOfSize:matrix:
+ userFixedPitchFontOfSize:matrix:
+ userFontOfSize:matrix:
+ systemFontOfSize:matrix:
-free

- displayName
- familyName
-name
-fontNum
- getWidthOf:
- hasMatrix
- matrix
- metrics
- pointSize
- readMetrics:
- screenFont
- style

Classes: Font 2-181

Setting the font

Archiving

Class Methods

allocFromZone:

- set
- setStyle:
+ setU serFixedPitchFont:
+ setU serFont:

- awake
- finish U narchi ving
- read:
- write:

+ allocFromZone:(NXZone *)zone

Creates an uninitialized Font object in the specified zone. Don't use this method to create
a Font; instead, use newFont:size: or one of the other Font creation methods listed in
"Method Types" above.

See also: + newFont:size:style:matrix:, + newFont:size:matrix:, + newFont:size:

boldSystemFontOfSize:matrix:

+ boldSystemFontOfSize:(float)JontSize matrix:(const float *)JontMatrix

Returns the Font object representing the bold system font of size JontSize and matrix
JontMatrix. The bold system font is used for text in attention panels, window titles, and so
on. IfJontSize is 0, the size as recorded in the Preferences application's General
Preferences display is used. JontMatrix can be NX_IDENTITYMATRIX or
NX_FLIPPEDMATRIX. (See newFont:size:style:matrix: for more information on
font matrices.)

This method raises the NX_unavailableFont exception if a suitable Font object can't
be found.

See also: + systemFontOfSize:matrix:, + userFixedPitchFontOfSize:matrix:,
+ userFontOfSize:matrix:

2-182 Chapter 2: Application Kit

initialize

+ initialize

Initializes the Font class object. The class object receives an initialize message before it
receives any other message. You never send an initialize message directly.

See also: + initialize (Object)

newFont:size:

+ newFont:(const char *)fontName size:(float)fontSize

Returns a Font object for fontfontName of sizefontSize. This method invokes the
newFont:size:style:matrix: method with the style set to 0 and the matrix set to
NX_FLIPPEDMATRIX.

See also: + newFont:size:style:matrix:, + newFont:size:matrix:

newFont:size:matrix:

+ newFont:(const char *)fontName
size: (float)fontSize
matrix: (const float *)fontMatrix

Returns a Font object for fontfontName of sizefontSize. This method invokes the
newFont:size:style:matrix: method with the style set to O.

See also: + newFont:size:style:matrix:, + newFont:size:

newFont:size:style:matrix:

+ newFont:(const char *)fontName
size:(float)fontSize
style: (int)fontStyle
matrix: (const float *)fontMatrix

Returns a Font object for fontfontName, of sizefontSize, and matrixfontMatrix. fontStyle
is currently ignored. If an appropriate Font object was previously created, it's returned;
otherwise, a new one is created and returned. If an error occurs, this method returns nil.
This is the designated new ... method for the Font class.

There are two constants available for the fontMatrix parameter:

• NX_IDENTITYMATRIX. Use the identity matrix.

Classes: Font 2-183

• NX_FLIPPEDMATRIX. Use a flipped matrix. (Appropriate for a flipped View like the
Text object.)

TheJontStyle parameter is stored in the Font object, and is preserved by the FontManager's
convertFont: method, but is not used by the Application Kit. It can be used to store
application-specific font information.

Note: If this method is invoked from a subclass (through a message to super), a new
object is always created. Thus, your subclass should institute its own system for
sharing Font objects.

See also: + newFont:size:matrix:, + newFont:size:

setUserFixedPitch Font:

+ setUserFixedPitchFont:(Font *)aFont

Sets the fixed-pitch font that's used by default in the application. This method is intended
for an application that wants to override the default fixed-pitch font as recorded in the
Preferences application's General Preferences display.

See also: + userFixedPitchFontOfSize:matrix:, + setUserFont:

setUserFont:

+ setUserFont:(Font *)aFont

Sets the standard font that's used by default in the application. This method is intended for
an application that wants to override the default standard font as recorded in the Preferences
application's General Preferences display.

See also: + userFontOfSize:matrix:, + setUserFixedPitchFont:

systemFontOfSize:matrix:

+ systemFontOfSize:(float)JontSize matrix:(const float *)JontMatrix

Returns the Font object representing the system font of sizeJontSize and matrixJontMatrix.
The system font is used for text in attention panels, menus, and so on. IfJontSize is 0, the
size as recorded in the Preferences application's General Preferences display is used.
JontMatrix can be NX_IDENTITYMATRIX or NX_FLIPPEDMATRIX. (See
newFont:size:style:matrix: for more information on font matrices.)

2-184 Chapter 2: Application Kit

This method raises the NX_unavailableFont exception if a suitable Font object can't be
found.

See also: + boldSystemFontOfSize:matrix:, + userFixedPitchFontOfSize:matrix:,
+ userFontOfSize:matrix:

useFont:

+ useFont:(const char *)fontName

Registers that the font identified by fontName is used in the document. Returns self.

The Font class object keeps track of the fonts that are being used in a document. It does
this by registering the font whenever a Font object receives a set message. When a
document is called upon to generate a conforming PostScript language version of its text
(such as during printing), the Font class provides the list of fonts required for the
% %DocumentFonts comment. (See Document Structuring Conventions by Adobe
Systems Inc.)

The useFont: method augments this system by providing a way to register fonts that are
included in the document but not set using Font's set method. For example, you might set
a font by executing the setfont operator within a function created by pswrap. In such a
case, make sure to pair the use of the font with a useFont: message to register the font with
the Font class object.

See also: - set

userFixedPitchFontOfSize:matrix:

+ userFixedPitchFontOfSize:(float)fontSize matrix:(const float *)fontMatrix

Returns the Font object representing the application's fixed-pitch font of sizefontSize and
matrixfontMatrix. IffontSize is 0, the size as recorded in the Preferences application's
General Preferences display is used. fontMatrix can be NX_IDENTITYMATRIX or
NX_FLIPPEDMATRIX. (See newFont:size:style:matrix: for more information on font
matrices.)

This method raises the NX_unavailableFont exception if a suitable Font object can't be
found.

See also: + setUserFixedPitchFont:, + boldSystemFontOfSize:matrix:,
+ systemFontOfSize:matrix:, + userFontOfSize:matrix:

Classes: Font 2-185

userFontOfSize:matrix:

+ userFontOfSize:(float)fontSize matrix:(const float *)fontMatrix

Returns the Font object representing the application's standard font of size fontSize and
matrixfontMatrix. IffontSize is 0, the size as recorded in the Preferences application's
General Preferences display is used. fontMatrix can be NX_IDENTITYMATRIX or
NX_FLIPPEDMATRIX. (See newFont:size:style:matrix: for more information on
font matrices.)

This method provides an easy way to determine the user's font preference, which you can
use to initialize new documents.

userFontOfSize:matrix: raises the NX_unavailableFont exception if a suitable Font
object can't be found.

See also: + setUserFixedPitchFont:, + boldSystemFontOfSize:matrix:,
+ systemFontOfSize:matrix:, + userFixedPitchFontOfSize:matrix:

Instance Methods

awake

-awake

Reinitializes the Font object after it's been read in from a stream.

An awake message is automatically sent to each object of an application after all objects
of that application have been read in. You never send awake messages directly. The awake
message gives the object a chance to complete any initialization that read: couldn't do.
If you override this method in a subclass, the subclass should send this message to
its superclass:

[super awake] ;

Returns self.

See also: - read:, - write:, - finishUnarchiving

displayName

- (const char *)displayName

Returns the full name of the font. For example, the font named
"Futura-CondExtraBoldObl" returns the display name "Futura Condensed Extra Bold
Oblique".

See also: - familyName, - name

2-186 Chapter 2: Application Kit

familyName
- (const char *)familyName

Returns the name of the font's family. For example, the font named
"Futura-CondExtraBoldObl" returns the family name "Futura".

See also: - displayName, - name

finishUnarchiving

- finishUnarchiving

A finishUnarchiving message is sent after the Font object has been read in from a stream.
This method checks if a Font object for the particular PostScript font already exists. If so,
self is freed and the existing object is returned.

See also: - read:, - write:, - awake

fontNum
- (int)fontNum

Returns the PostScript user object that corresponds to this font. The Font object must set
the font in the Window Server before this method will return a valid user object. Sending
a Font object the set message sets the font in the Window Server. The fontNum method
returns 0 if the Font object hasn't previously received a set message or if the font couldn't
be set.

See also: - set, DPSDefineUserObjectO

free
-free

Has no effect. Since only one Font object is allocated for a particular font, and since you
can't be sure that you have the only reference to a particular Font object, a Font object
shouldn't be freed.

getWidthOf:
- (float)getWidthOf:(const char *)string

Returns the width of string using this font. This method has better performance than the
Window Server routine PSstringwidthO.

Classes: Font 2-187

hasMatrix

- (BOOL)hasMatrix

Returns YES if the Font object's matrix is different from the identity matrix,
NX_IDENTITYMATRIX; otherwise, returns NO.

See also: + newFont:size:style:matrix:, - matrix

matrix

- (const float *)matrix

Returns a pointer to the matrix for this font.

See also: - hasMatrix

metrics

- (NXFontMetrics *)metrics

Returns a pointer to the NXFontMetrics record for the font. See the header file
appkitJafm.h for the structure of an NXFontMetrics record.

See also: - readMetrics:

name

- (const char *)name

Returns the font's name, as would be used in a PostScript language program.

See also: - displayName, - familyName

pointSize

- (float)pointSize

Returns the size of the font in points.

2-188 Chapter 2: Application Kit

read:

- read:(NXTypedStream *)stream

Reads the Font object's instance variables from stream. A read: message is sent in
response to archiving; you never send this message.

See also: - write:, - read: (Object)

readMetrics:

- (NXFontMetrics *)readMetrics:(int)flags

Returns a pointer to the NXFontMetrics record for this font. The flags argument determines
which fields of the record will be filled in. flags is built by ~Ring together constants such
as NX_FONTHEADER, NX_FONTMETRICS, and NX_FONTWIDTHS. See the header
file appkit/afm.h for the complete list of constants and for the structure of the
NXFontMetrics record.

See also: - metrics

screen Font

- screenFont

Provides the screen font corresponding to this font. If the receiver represents a printer font,
this method returns the Font object for the associated screen font (or nil if one doesn't
exist). If the receiver represents a screen font, it simply returns self.

set

-set

Makes this font the current font in the current graphics state. Returns self.

When a Font object receives a set message, it registers with the Font class object that its
PostScript font has been used. In this way, the Application Kit, when called upon to
generate a confonning PostScript language document file, can list the fonts used within a
document. (See Document Structuring Conventions by Adobe Systems Inc.) If the
application uses fonts without sending set messages (say through including an EPS file),
such fonts must be registered by sending the class object a useFont: message.

See also: + useFont:

Classes: Font 2-189

setStyle:
- setStyle:(int)aStyle

Sets the Font's style. Setting a style isn't recommended but is minimally supported-a
Font object's style isn't interpreted in any way by the Application Kit. You can use it for
your own non-PostScript language font styles (a drop-shadow style, for example).

Be very careful using this method since it causes the Font to stop being shared. You must
reassign the pointer to the Font to the return value of setStyle:.

font = [font setStyle:12];

Returns self.

See also: - style

style
- (int)style

Returns the style of the font. For Font objects created by the Application Kit, this method
returns O.

See also: - setStyle:

write:
- write:(NXTypedStream *)stream

Writes the Font object's instance variables to stream. A write: message is sent in response
to archiving; you never send this message directly.

See also: - read:, - write: (Object)

2-190 Chapter 2: Application Kit

FontManager

Inherits From: Object

Declared In: appkitIFontManager.h

Class Description

The FontManager is the center of activity for font conversion. It accepts messages from
font conversion user-interface objects (such as the Font menu or the Font panel) and
appropriately converts the current font in the selection by sending a changeFont: message
up the responder chain. When an object receives a changeFont: message, it should query
the FontManager (by sending it a convertFont: message), asking it to convert the font in
whatever way the user has specified. Thus, any object containing a font that can be changed
should respond to the changeFont: message by sending a convertFont: message back to
the FontManager for each font in the selection.

To use the FontManager, you simply insert a Font menu into your application's menu. This
is most easily done with Interface Builder, but, alternatively, you can send a getFontMenu:
message to the FontManager and then insert the menu that it returns into the application's
main menu. Once the Font menu is installed, your application automatically gains the
functionality of both the Font menu and the Font panel.

The FontManager's delegate can restrict which font names will be appear in the FontPanel.
See "Methods Implemented by the Delegate" near the end of this class specification for
more information.

The FontManager can be used to convert a font or find out the attributes of a font. It can
also be overridden to convert fonts in some application-specific manner. The default
implementation of font conversion is very conservative: The font isn't converted unless all
traits of the font can be maintained across the conversion.

Classes: FontManager 2-191

Instance Variables

id panel;
idmenu;
SEL action;
int whatToDo;
NXFontTraitMask traitToChange;
id selFont;
struct _fmFlags {

unsigned int multipleFont: 1 ;
unsigned int disabled: 1;

} fmFlags;

panel

menu

action

whatToDo

traitToChange

selFont

fmFlags.multipleFont

fmFlags.disabled

Method Types

Creating the FontManager

Converting fonts

2-192 Chapter 2: Application Kit

The Font panel.

The Font menu.

The action to send.

What to do when a convertFont: message is received.

The trait to change if whatToDo ==
NX_CHANGETRAIT.

The font of the current selection.

True if the current selection has multiple fonts.

True if the Font panel and menu are disabled.

+ new

- convertFont:
- convertWeight:of:
- convert:toFace:
- convert:toFamily:
- convert:toSize:
- convert:toHaveTrait:
- convert:toNotHaveTrait:
- findFont:traits:weight:size:
- getFamily:traits : weight: size: ofFont:

Setting parameters

Querying parameters

Target and action methods

Assigning a delegate

Archiving the FontManager

Class Methods

alloc

- setAction:
+ setFontPanelFactory:
+ setFontManagerFactory:
- setSeIFont:isMultiple:
- setEnabled:

- action
- availableFonts
- getFontMenu:
- getFontPanel:
- is Multiple
- selFont
- isEnabled

- modifyFont:
- addFontTrait:
- removeFontTrait:
- modifyFontViaPanel:
- orderFrontFontPanel:
- sendAction

- setDelegate:
- delegate

- finish U narchi ving

Disables the inherited alloc method to prevent multiple FontManagers from being created.
There's only one FontManager object for each application; you access it using the new
method. Returns an error message.

See also: + new

allocFromZone:

Disables the inherited allocFromZone method to prevent multiple FontManagers from
being created. There's only one FontManager object for each application; you access it
using the new method. Returns an error message.

See also: + new

Classes: FontManager 2-193

new

+ new

Returns a FontManager object. An application has no more than one FontManager object,
so this method either returns the previously created object (if it exists) or creates a new one.
This is the designated new method for the FontManager class.

setFontManagerFactory:

+ setFontManagerFactory:classld

Sets the class object that will be used to create the font manager; thus allowing you to
specify a class of your own. When the FontManager class object receives a new message,
it creates an instance of the specified class, if no instance already exists. If no class has been
specified, the new method creates an instance of the FontManager class.

As a consequence of this implementation, your class shouldn't implement the new method.
Instead, initialization code should be place in the init method.

The setFontManagerFactory: method must be invoked before your application's main
nib file is loaded. Returns self.

See also: - setFontPanelFactory:

setFontPanelFactory:

+ setFontPanelFactory:classld

Sets the class object that's used to create the FontPanel object when the user chooses the
Font Panel command from the Font menu and no such panel has yet been created. Unless
you use this method to specify another class, the FontPanel class will be used. Returns self.

See also: - setFontManagerFactory:

Instance Methods

action

- (SEL)action

Returns the action that's sent to the first responder when the user selects a new font from
the Font panel or from the Font menu.

See also: - setAction:

2-194 Chapter 2: Application Kit

addFontTrait:

- addFontTrait:sender

Causes the FontManager's action message (by default, changeFont:) to be sent up the
responder chain. When the responder replies with a convertFont: message, the font is
converted to add the trait specified by sender.

Before the action message is sent up the responder chain, the FontManager sets its
traitToChange variable to the value returned by sending sender a selected Tag message.
The FontManager also sets its whatToDo variable to NX_ADDTRAIT. When the
convertFont: message is received, the FontManager converts the supplied font by sending
itself a convert:toHaveTrait: message.

See also: - removeFontTrait:, - convertFont:, - convert:toHaveTrait:,
- selectedTag (Control)

avaiiableFonts

- (char **)avaiiableFonts

Returns by reference a NULL-terminated list of NULL-terminated PostScript font names
of all the fonts available for use by the Window Server. The returned names are suitable
for creating new Fonts using the newFont:size: class method of the Font class. The fonts
are not in any guaranteed order, but no font name is repeated in the list. It's the sender's
responsibility to free the list when finished with it.

See also: + newFont:size: (Font)

convert:toFace:

- convert:fontObJ toFace:(const char *)typeface

Returns a Font object whose traits are the same as those of fontObJ except as specified by
typeface. If the conversion can't be made, the method returnsfontObJ itself. This method
can be used to convert a font, or it can be overridden to convert fonts in a different manner.

See also: - convert:toFamily:, - convert:toSize:, - convert:toHaveTrait:,
- convert:toNotHaveTrait:, - convertWeight:of:

Classes: FontManager 2-195

convert:toFamily:

- convert:JontObj toFamily:(const char *)Jamily

Returns a Font object whose traits are the same as those ofJontObj except as specified by
Jamily. If the conversion can't be made, the method returnsJontObj itself. This method can
be used to convert a font, or it can be overridden to convert fonts in a different manner.

See also: - convert:toFace:, - convert:toSize:, - convert:toHaveTrait:,
- convert:toNotHaveTrait:, - convertWeight:of:

convert:toHave Trait:

- convert:JontObj toHaveTrait:(NXFontTraitMask)traits

Returns a Font object whose traits are the same as those ofJontObj except as altered by the
addition of the traits specified by traits. Of course, conflicting traits (such as
NX_CONDENSED and NX_EXPANDED) have the effect of turning each other off. If the
conversion can't be made, the method returns JontObj itself. This method can be
overridden to convert fonts in a different manner.

See also: - convert:toNotHaveTrait:, - convert:toFace:, - convert:toSize:,
- convert:toFamily:, - convertWeight:of:

convert:toNotHaveTrait:

- convert:JontObj toNotHaveTrait:(NXFontTraitMask)traits

Returns a Font object whose traits are the same as those ofJontObj except as altered by the
removal of the traits specified by traits. If the conversion can't be made, the method returns
JontObj itself. This method can be overridden to convert fonts in a different manner.

See also: - convert:toHaveTrait:, - convert:toFace:, - convert:toSize:,
- convert:toFamily:, - convertWeight:of:

convert:toSize:

- convert:JontObj toSize:(float)size

Returns a Font object whose traits are the same as those ofJontObj except as specified by
size. If the conversion can't be made, the method returnsJontObj itself. This method can
be used to convert a font, or it can be overridden to convert fonts in a different manner.

See also: - convert:toFace:, - convert:toFamily:, - convert:toHaveTrait:,
- convert:toNotHaveTrait:, - convertWeight:of:

2-196 Chapter 2: Application Kit

convertFont:

- convertFont:JontObj

ConvertsJontObj according to the user's selections from the Font panel or menu.
Whenever an object receives a changeFont: message from the FontManager, it should
send a convertFont: message for each font in its selection.

This method determines what to do to the JontObj by checking the whatToDo instance
variable and applying the appropriate conversion method. Returns the converted font.

convertWeight:of:

- convertWeight:(BOOL)upFlag of:JontObj

Attempts to increase (ifupFlag is YES) or decrease (if upFlag is NO) the weight of the font
specified by JontObj. If it can, it returns a new font object with the higher (or lower) weight.
If it can't, it returns JontObj itself. By default, this method converts the weight only if it
can maintain all of the traits of the originalJontObj. This method can be overridden to
convert fonts in a different manner.

See also: . - convert:toHaveTrait:, - convert:toNotHaveTrait:, - convert:toFamily:

delegate

- delegate

Returns the FontManager's delegate.

See also: - setDelegate:

findFont:traits:weight:size:

- findFont:(const char *)Jamily
traits: (NXFontTraitMask)traits
weight: (int)weight
size: (float)size

If there's a font on the system with the specifiedJamily, traits, weight, and size, then it's
returned; otherwise, nil is returned. If NX_BOLD or NX_UNBOLD is one of the traits,
weight is ignored.

Classes: FontManager 2-197

finishUnarchiving

- finish Unarchiving

Finishes the unarchiving task by instantiating the one application-wide instance of the
FontManager class if necessary.

getFa m ily:traits:weight:size:ofFont:

- getFamily:(const char **)Jamily
traits:(NXFontTraitMask *)traits
weight:(int *)weight
size:(float *)size
ofFont:JontObj

For the given font objectJontObj, copies the font family, traits, weight, and point size
information into the storage referred to by this method's arguments.

getFontMenu:

- getFontMenu:(BOOL)create

Returns a menu suitable for insertion in an application's menu. The menu contains an item
that brings up the Font panel as well as some common accelerators (such as Bold and
Italic). If the create flag is YES, the menu is created if it doesn't already exist.

See also: - getFontPanel:

getFontPanel:

- getFontPanel: (BOOL)create

Returns the FontPanel that will be used when the user chooses the Font Panel command
from the Font menu. If the create flag is YES, the FontPanel is created if it doesn't
already exist.

Unless you've specified a different class (by sending a setFontPanelFactory: message to
the FontManager class before creating the FontManager object), an object of the FontPanel
class is returned.

See also: - getFontMenu:

2-198 Chapter 2: Application Kit

isEnabled

- (BOOL)isEnabled

Reports whether the controls in the Font panel and the commands in the Font menu are
enabled or disabled.

See also: - setEnabled:

isMultiple

- (BOOL)isMultiple

Returns whether the currently selected text has multiple fonts.

See also: - setSeIFont:isMultiple:

modifyFont:
- modifyFont:sender

Causes the FontManager's action message (by default, changeFont:) to be sent up the
responder chain. When the responder replies with a convertFont: message, the font is
converted in a way specified by the selectedTag of the sender of this message. The Larger,
Smaller, Heavier, and Lighter commands in the Font menu invoke this method.

See also: - addFontTrait:, - removeFontTrait:

modifyFontViaPanel:

- modifyFontViaPanel:sender

Causes the FontManager's action message (by default, changeFont:) to be sent up the
responder chain. When the receiver replies with a convertFont: message, the
FontManager sends a panelConvertFont: message to the FontPanel to complete the
conversion.

This message is almost always sent by a Control in the Font panel itself. Usually, the panel
uses the FontManager's convert routines to do the conversion based on the choices the
user has made.

See also: - panelConvertFont: (FontPanel)

Classes: FontManager 2-199

orderFrontFontPanel:

- orderFrontFontPanel:sender

Sends orderFront: to the FontPanel. If there's no Font panel yet, a new message is sent to
the FontPanel class object, or to the object you specified with the FontManager's
setFontPanelFactory: class method.

removeFontTrait:

- removeFontTrait:sender

Causes the FontManager's action message (by default, changeFont:) to be sent up the
responder chain. When the responder replies with a convertFont: message, the font is
converted to remove the trait specified by sender.

Before the action message is sent up the responder chain, the FontManager sets its
traitToChange variable to the value returned by sending sender a selectedTag message.
The FontManager also sets its whatToDo variable to NX_REMOVETRAIT. When the
convertFont: message is received, the FontManager converts the supplied font by sending
itself a convert:toNotHaveTrait: message.

See also: - convertFont:, - convert:toHaveTrait:, - selectedTag (Control)

selFont

- selFont

Returns the last font set with setSeIFont:isMultiple:.

If you receive a changeFont: message from the FontManager and want to find out what
font the user has selected from the Font panel, use the following (assuming
theFontManager is the application's FontManager object):

selectedFont ='[theFontManager convertFont: [theFontManager selFont]]

See also: - setSeIFont:isMultiple:, - modifyFont:

sendAction

- sendAction

Sends the FontManager's action message (by default, changeFont:) up the responder
chain. The sender is always the FontManager object regardless of which user-interface
object initiated the sending of the action. The whatToDo and possibly traitToChange
variables should be set appropriately before sending a sendAction message.

2·200 Chapter 2: Application Kit

You rarely, if ever, need to send a sendAction message or to override this method. The
message is sent by the target/action messages sent by different user-interface objects that
allow users to manipulate the font of the current text selection (for example, the Font panel
and the Font menu).

See also: - setAction:

setAction:

- setAction:(SEL)aSeiector

Sets the action that's sent when the user selects a new font from the Font panel or from the
Font menu. The default is changeFont:.

See also: - sendAction

setDelegate:

- setDelegate:anObject

Sets the FontManager's delegate. The delegate can restrict which font names appear in the
Font panel.

See also: - delegate

setEnabled:

- setEnabled:(BOOL)jlag

Sets whether the controls in the Font panel and the commands in the Font menu are enabled
or disabled. By default, these controls and commands are enabled. Even when disabled,
the Font panel allows the user to preview fonts. However, when the Font panel is disabled,
the user can't apply the selected font to text in the application's main window.

You can use this method to disable the user interface to the font selection system when its
actions would be inappropriate. For example, you might disable the font selection system
when your application has no document window.

See also: - isEnabled

Classes: FontManager 2-201

setSelFont: isM ultiple:

- setSelFont:fontObj isMultiple:(BOOL)jlag

Sets the font that the Font panel is currently manipulating. An object containing a
document should send this message every time its selection changes. If the selection
contains multiple fonts,jlag should be YES.

An object shouldn't send this message as part of its handling of a changeFont: message,
since doing so will cause subsequent convertFont: messages to have no effect. This is
because if you are converting a font based on what is set in the Font panel and you reset
what's in the panel (by sending a setSeIFont:isMultiple: message), the FontManager can
no longer sensibly convert the font since the information necessary to convert it has
been lost.

See also: - selFont, - isMultiple

Methods Implemented by the Delegate

fontManager:willlncludeFont:

- (BOOL)fontManager:sender willlncludeFont:(const char *)fontName

Responds to a message informing the FontManager's delegate that the FontPanel is about
to include fontName in the list displayed to the user. fontName is the name of the font, for
example "Helvetica-Narrow-Bold". If this method returns NO, the font isn't added;
otherwise, it is.

A delegate that implements this method can receive multiple
fontManager:willlncludeFont: messages whenever the Font panel needs updating, such
as when the user selects a different family name to determine which typefaces are available.
For each typeface within that family, the delegate will receive notification. Consequently,
your implementation of this method shouldn't take long to execute.

2-202 Chapter 2: Application Kit

FontPanel

Inherits From: Panel: Window: Responder: Object

Declared In: appkitIFontPanel.h

Class Description

The FontPanel is a user-interface object that displays a list of available fonts, letting the
user preview them and change the font used to display text. The actual changes are made
through conversion messages sent to the FontManager. There is only one FontPanel object
for each application.

In general, you add the facilities of the FontPanel (and of the other components of the font
conversion system: the FontManager and the Font menu) to your application through
Interface Builder. You do this by dragging a Font menu into one of your application's
menus. At runtime, when the user chooses the Font Panel command for the first time, the
FontPanel object will be created and hooked into the font conversion system. You can also
create (or access) the FontPanel through either of the new ••. methods.

A FontPanel can be customized by adding an additional View object or hierarchy of View
objects (see setAccessoryView:). If you want the FontManager to instantiate a panel
object from some class other than FontPanel, use the FontManager's
setFontPanelFactory: method.

Instance Variables

id faces;

id families;

id preview;
id current;

id size;

id sizes;

id manager;
id selFont;

NXFontMetrics *seIMetrics;

int curTag;

Classes: FontPanel 2-203

id accessoryView;

id setButton;
id separator;

id sizeTItle;

char *lastPreview;
struct _fpFlags {

unsigned int multipleFont: 1 ;
unsigned int dirty: 1 ;

} fpFlags;

faces

families

preview

current

size

sizes

manager

selFont

selMetrics

curTag

accessory View

currentBox

setButton

separator

sizeTitle

lastPreview

fpFlags.multipleFont

fpFlags.dirty

Method Types

Creating a FontPanel

2-204 Chapter 2: Application Kit

The Typeface browser.

The Family browser.

The preview field.

The current font field.

The Size field.

The Size browser.

The FontManager object.

The font of the current selection.

The metrics of selFont.

The tag of the currently displayed font.

The application-customized area.

The box displaying the current font.

The Set button.

The line separating buttons from upper part of panel.

The title over the Size field and Size browser.

The last font previewed.

True if selection has multiple fonts.

True if panel was updated while not visible.

+ new
+ newContent:style:backing:buttonMask:defer:

Setting the font - panelConvertFont
- setPanelFontisMultiple:

Configuring the FontPanel - accessoryView
- setAccessoryView:
- setEnabled:
- isEnabled
- works WhenModal

Editing the FontPanel's fields - textDidGetKeys:isEmpty:
- textDidEnd:endChar:

Displaying the FontPanel - orderWindow:relativeTo:

Resizing the FontPanel - windowWillResize:toSize:

Class Methods

alloe

Disables the inherited alloc method to prevent multiple FontPanels from being created.
There's only one FontPanel object for each application; you access it through either of the
new ... methods. Returns an error message.

See also: + new, + newContent:style:backing:buttonMask:defer:

alioeFromZone:

Disables the inherited allocFromZone method to prevent multiple FontPanels from being
created. There's only one FontPanel object for each application; you access it through
either of the new •.• methods. Returns an error message.

See also: + new, + newContent:style:backing:buttonMask:defer:

new

+ new

Returns a FontPanel object by invoking the
newContent:style:backing:buttonMask:defer: method. An application has no more
than one Font panel, so this method either returns the previously created object (if it exists)
or creates a new one.

See also: + new

Classes: FontPanel 2-205

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing:(int)buJferingType
buttonMask:(int)mask
defer: (BOOL).flag

Returns a FontPanel object. An application has no more than one Font panel, so this
method either returns the previously created object (if it exists) or creates a new one. The
arguments are ignored. This is the designated new •.• method of the FontPanel class.

See also: + new

Instance Methods

accessoryView

- accessoryView

Returns the application-customized View set by setAccessoryView:.

See also: - setAccessoryView:

isEnabled

- (BOOL)isEnabled

Reports whether the Font panel's Set button is enabled.

See also: - setEnabled:

orderWindow:relativeTo:

- orderWindow:(int)place relativeTo:(int)otherWin

Repositions the panel in the screen list and updates the panel if it was changed while not
visible. place can be one of:

NX_ABOVE
NX_BELOW
NX_OUT

If it's NX_OUT, the panel is removed from the screen list and otherWin is ignored. If it's
NX_ABOVE or NX_BELOW, otherWin is the window number of the window that the Font

2-206 Chapter 2: Application Kit

Panel is to be placed above or below. If otherWin is 0, the panel will be placed above or
below all other windows.

See also: - orderWindow:relativeTo: (Window),
- makeKey AndOrderFront: (Window)

panelConvertFont:

- panelConvertFont:JontObj

Returns a Font object whose traits are the same as those of JontObj except as specified by
the users choices in the Font Panel. If the conversion can't be made, the method returns
JontObj itself. The FontPanel makes the conversion by using the FontManager's methods
that convert fonts. A panelConvertFont: message is sent by the FontManager whenever
it needs to convert a font as a result of user actions in the Font panel.

setAccessoryView:

- setAccessoryView:a View

Customizes the Font panel by adding a View above the action buttons at the bottom of the
panel. The FontPanel is automatically resized to accommodate a View.

a View should be the top View in a view hierarchy. If a View is nil, any existing accessory
view is removed. If a View is the same as the current accessory view, this method does
nothing. Returns the previous accessory view or nil if no accessory view was previously
set.

See also: - accessoryView

setEnabled:

- setEnabled:(BOOL)jiag

Sets whether the Font panel's Set button is enabled (the default state). Even when disabled,
the Font panel allows the user to preview fonts. However, when the Font panel is disabled,
the user can't apply the selected font to text in the application's main window.

You can use this method to disable the user interface to the font selection system when its
actions would be inappropriate. For example, you might disable the font selection system
when your application has no document window.

See also: - isEnabled

Classes: FontPanel 2-207

setPaneIFont:isMultiple:

- setPanelFont:fontObj isMultiple:(BOOL)jlag

Sets the font that the FontPanel is currently manipulating. This message should only be
sent by the FontManager. Do not send a setPaneIFont:isMultiple: message directly.

textDidEnd:endChar:

- textDidEnd:textObject endChar:(unsigned short)endChar

A textDidEnd:endChar: message is sent to the FontPanel object when editing is
completed in the Size field. This method updates the Size browser and the preview field.

See also: - textDidGetKeys:isEmpty:, - textDidEnd:endChar: (Text)

textDidGetKeys:isEmpty:

- textDidGetKeys:textObject isEmpty:(BOOL)jlag

A textDidGetKeys:isEmpty: message is sent to the FontPanel object whenever the Size
field is typed in or emptied.

See also: - textDidEnd:endChar:, - textDidGetKeys:isEmpty: (Text)

windowWilIResize:toSize:

- windowWillResize:sender toSize:(NXSize *)frameSize

Keeps the FontPanel from being sized too small to accommodate the browser columns and
accessory view.

See also: - windowWillResize:toSize: (Window)

worksWhenModal

- (BOOL)worksWhenModal

Returns whether the FontPanel will operate while a modal panel is displayed within the
application. By default, this method returns YES.

See also: - worksWhenModal (Panel)

2-208 Chapter 2: Application Kit

Form

Inherits From: Matrix: Control: View: Responder: Object

Declared In: appkitIForm.h

Class Description

A Form is a Matrix that contains titled entries into which a user can type data values.
fRere's an example:

Entries are indexed starting with zero at the top. Each item in the Form, including the title,
is a FormCell. A mouse click a FormCell (that is, on the title or in the entry area) starts text
editing in that entry. If the user presses the Return or Enter key while editing an entry, the
action of the entry is sent to the target of the entry, or-if the entry doesn't have an action­
the Form sends its action ito its target. If the user presses the Tab key, the next entry in the
Form is selected; if the user presses Shift-Tab, the previous entry is selected.

For more information, see the FormCell and Matrix class specifications.

Instance Variables

None declared in this class.

Classes: Form 2·209

Method Types

Setting Form's Cell class

Initializing a Form

Laying out the Form

Assigning a tag

Finding indices

Modifying graphic attributes

Setting item titles

Setting item values

Editing text

Resizing the Form

Displaying

Target and action

2-210 Chapter 2: Application Kit

+ setCellClass:

- initFrame:

- addEntry:
- addEntry:tag:target:action:
- insertEntry:at:
- insertEntry:at:tag:target:action:
- removeEntry At:
- setInterline:

- setTag:at:

- findIndexWithTag:
- selectedIndex

- setBezeled:
- setBordered:
- setFont:
- setTitleFont:
- setTextFont:
- setTitleAlignment:
- setTextAlignment:

- setTitle:at:
- titleAt:

- setDouble Value: at:
- double ValueAt:
- setFloatValue:at:
- floatValueAt:
- setIntValue:at:
- intValueAt:
- setStringValue:at:
- string ValueAt:

- selectTextAt:

- calcSize
- setEntryWidth:
- sizeTo::
- sizeToFit

- drawCellAt:

- setAction:at:
- setTarget: at:

Class Methods

setCellClass:

+ setCellClass:classld

Configures the Form class to use instances of classld for its Cells. classld should be the id
of a subclass of FormCell, obtained by sending the class message to either the FormCell
subclass object or to an instance of that subclass. The default Cell class is FormCell.
Returns self.

"Creating New Controls" in the Control class specification has more information on how
to safely set the Cell class used by a subclass of Control.

See also: - initFrame:

Instance Methods

addEntry:

- addEntry:(const char *)title

Adds a new item with aString as the title to the bottom of the receiving Form and returns
the FormCell created. The new FormCell has no tag, target, or action, but is enabled and
editable. Does not redraw the Form even if autodisplay is on.

See also: - addEntry:tag:target:action:

addEntry:tag:target:action:

- addEntry:(const char *)title
tag: (int)anlnt
target: an Object
action: (SEL)aSelector

Adds a new item with aString as the title to the bottom of the receiving Form and returns
the FormCell created. The FormCell's tag is set to anlnt, it action to aSelector, and its target
to anObject. The new FormCell is enabled and editable. Does not redraw the Form even
if autodisplay is on.

See also: - addEntry:

Classes: Form 2·211

calcSize

- calcSize

Calculates the size and layout of the Form based on the sizes of its Cells and their title
portions. Your code should invoke this method before drawing if it modifies any of the
Cells in the Form in such a way that the size of the Cells or the size of the title part of the
Cells has changed. This method is automatically invoked before any drawing is done after
a setTitle:at:, setFont:, setBezeled: or some other similar Form method has been invoked.

See also: - validateSize: (Matrix)

doubleValueAt:

- (double)double ValueAt:(int)index

Returns the value of the entry at position index as a double-precision floating point number.
Form does not override Control's doubleValue method; your code should never use that
method with a Form.

See also: - setDoubleValue:at:, -ftoatValueAt:, - intValueAt:, - stringValueAt:,
- doubleValue (Control)

drawCellAt:

- drawCellAt:(int)index

Displays the FormCell at the specified index in the Form.

findlndexWithTag:

- (int)findlndexWithTag:(int)aTag

Returns the index of the Cell with the corresponding tag, -1 otherwise.

See also: - findCellWithTag: (Matrix)

2-212 Chapter 2: Application Kit

floatValueAt:
- (float)floatValueAt:(int)index

Returns the value of the entry at position index as a single-precision floating point number.
Form does not override Control's float Value method; your code should never use that
method with a Form.

See also: - setFloatValue:at:, - doubleValueAt:, - intValueAt:, - stringValueAt:,
- floatValue (Control)

initFrame:
- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Form, with default parameters in the
given frame. The new Form has no entries. Newly created entries will have the following
default characteristics: titles will be right aligned, text will be left justified with bezeled
borders, entry background color will be white, text color black, fonts will be the user's
chosen system font in 12.0, the interline spacing will be 1.0, and the actions will be NULL.
This method is the designated initializer for Form; override it if you create a subclass of
Form that performs its own initialization.

Note that Form doesn't override the Matrix class's designated initializers
initFrame:mode:cellClass:numRows:numCols: or
initFrame:mode:prototype:numRows:numCols:. Don't use those methods to initialize
a new instance of Form.

See also: - initFrame: (Matrix), - initFrame:mode:cellClass:numRows:numCols:,
- initFrame:mode:prototype:numRows:numCo)s:

insertEntry:at:
- insertEntry:(const char *)title at:(int)index

Inserts an item with the title title at position index in the Form. The item at the top of the
form has an index of 0. The new FormCell has no tag, target, or action. Returns the
FormCell used to implement the entry. Returns the newly inserted FormCell. Does not
redraw the Form even if autodisplay is on.

See also: - insertEntry:at:tag:target:action:, - addEntry:,
- addEntry:tag:target:action:, - removeEntry At:

Classes: Form 2~213

insertEntry:at:tag:target:action:

- insertEntry:(const char *)title
at: (int) index
tag: (int)anlnt
target:anObject
action: (SEL)aSelector

Inserts a new entry with the given title at position index. The tag, target, and action of the
corresponding entry are set to the given values. Returns the newly inserted ForniCell.
Does not redraw the Form even if autodisplay is on.

See also: - insertEntry:at:, - addEntry:, - addEntry:tag:target:action:,
- removeEntry At:

intValueAt:

- (int)intValueAt:(int)index

Returns the value of the entry at position index as an integer. Form does not override
Control's intValue method; your code should never use that method with a Form.

See also: - setIntValue:at:, - doubleValueAt:, - ftoatValueAt:, - stringValueAt:,
- intValue (Control)

removeEntryAt:

- removeEntryAt:(int)index

If index is a valid position in the Form, removes the entry there and frees it. Note that if
you use Matrix's removeRowAt:andFree: method to remove an entry, the widths of the
titles in the entries will not be readjusted; your code should use this method instead. Does
not redraw the Form even if autodisplay is on. Returns self.

See also: - addEntry:, - insertEntry:at:

selectTextAt:

- selectTextAt: (int) index

If index is a valid position in the Form, begins text editing on the item at that position.
Returns the FormCell selected.

2·214 Chapter 2: Application Kit

selectedlndex

- (int)selectedlndex

Returns the index of the currently selected entry if any, -1 otherwise. The currently
selected entry is the one being edited or, if none of the entries is being edited, then it's the
entry that was last edited.

setAction:at:

- setAction:(SEL)aSelector at:(int)index

Sets the action of the FormCell at position index to aSelector. Returns self.

See also: - action (ActionCell), - setTarget:at:

setBezeled:

- setBezeled:(BOOL)jlag

If jlag is YES, all Cells in the Form are set to show a bezel around their editable text and
are redrawn; ifjlag is NO, Cells in the Form have no bezel. A bezel is mutually exclusive
with a border, and invoking this method with NO as the argument will not remove a border.
Returns self.

See also: - isBezeled (Cell), - setBordered:

setBordered:

- setBordered:(BOOL)jlag

If jlag is YES, all Cells in the Form are set to show a I-pixel black border around their
editable text and are redrawn; ifjlag is NO, Cells in the Form have no border. A border is
mutually exclusive with a bezel, and invoking this method with NO as the argument will
not remove a bezel. Returns self.

See also: - isBordered (Cell), - setBezeled:

Classes: Form 2-215

setDoubleValue:at:

- setDoubleValue:(double)aDouble at:(int)index

Sets the value of the item at position index to aDouble and redraws that item. Form does
not override Control's setDoubleValue: method; your code should never use that method
with a Form.

See also: - doubleValueAt:, - setFloatValue:at:, - setIntValue:at:,
- setStringValue:at:, - setDoubleValue: (Control)

setEntryWidth:

- setEntryWidth:(NXCoord)width

Sets the width of all the entries (including the title part). Doesn't redisplay the Form. You
should invoke sizeToFit after invoking this method. Returns self.

See also: - sizeToFit

setFloatValue:at:

- setFloatValue:(float)aFloat at:(int)index

Sets the value of the item at position index to aFloat and redraws that item. Form does
not override Control's setFloatValue: method; your code should never use that method
with a Form.

See also: - floatValueAt:, - setDoubleValue:at:, - setlntValue:at:,
- setStringValue:at:, - setFloatValue: (Control)

setFont:

- setFont:fontObject

Sets the Font used to draw both the titles and the editable text in the Form. It's generally
best to keep the title Font and the text Font the same (or at least the same size); therefore,
this method is preferred to setTitleFont: and setTextFont:. Redraws the Form if
autodisplay is on. Returns self.

See also: - setTitleFont:, - setTextFont:

2-216 Chapter 2: Application Kit

setlntValue:at:
- setlntValue:(int)anInt at:(int)index

Sets the value of the item at position index to anInt and redraws that item. Form does
not override Control's setlntValue: method; your code should never use that method
with a Form.

See also: - intValueAt:, - setDoubleValue:at:, - setFloatValue:at:,
- setStringValue:at:, - setlntValue: (Control)

setlnterline:
- setlnterline:(NXCoord)spacing

Sets the space between items in the Form to spacing. Does not redraw the matrix even if
autodisplay is on. Returns self.

setStringValue:at:
- setStringValue:(const char *)aString at:(int)index

Sets the value of the item at position index to aString and redraws that item. Form does
not override Control's setStringValue: method; your code should never use that method
with a Form.

See also: - stringValueAt:, - setFloatValue:at:, - setDoubleValue:at:,
- setStringValue:at:, - setStringValue: (Control)

setTag:at:
- setTag:(int)anInt at:(int)index

Sets the tag of the FormCell at position index to anInt. Returns self.

See also: - tag (ActionCell)

setTarget:at:
- setTarget:anObject at:(int)index

Sets the target of the FormCell at position index to anObject. Returns self.

See also: - target (ActionCell), - setAction:at:

Classes: Form 2-217

setTextAlignment:
- setTextAlignment:(int)mode

Sets the alignment mode for the editable text in the Form. mode can be one of three
constants: NX_LEFTALIGNED,NX_CENTERED, or NX_RIGHTALIGNED. The
default is left aligned. Redraws the Form if autodisplay is on, and returns self.

See also: - setTitleAlignment:

setTextFont:
- setTextFont:fontObject

Sets the Font used to draw the editable text in the Form to fontObject. Redraws the Form
if autodisplay is on, and returns self.

See also: - setFont:, - setTitleFont:

setlitle:at:
- setTitle:(const char *)aString at:(int)index

Changes the title of the entry at position index to aString.

See also: - titleAt:

setlitleAlignment:
- setTitleAlignment:(int)mode

Sets the alignment mode for titles in the Form. mode can be one of three constants:
NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED. The default is
right aligned. Redraws the Form if autodisplay is on, and returns self.

See also: - setTextAlignment:

setlitleFont:
- setTitleFont:fontObject

Sets the Font used to draw the titles in the Form. to fontObject Redraws the Form if
autodisplay is on, and returns self.

See also: - setFont:, - setTextFont:

2-218 Chapter 2: Application Kit

sizeTo::
- sizeTo:(NXCoord)width :(NXCoord)height

Resizes the entry width to reflect width, then resizes the Form to width and height. Doesn't
redraw the Form. Returns self.

See also: - sizeToFit

sizeToFit

- sizeToFit

Adjusts the width of the Form so that it's the same as the width of the entries. Adjusts the
height of the Form so that it will exactly contain all the Cells. Doesn't redraw the Form.
Returns self.

See also: - sizeTo::, - setEntryWidth:

stringValueAt:

- (const char *)stringValueAt:(int)index

Returns the value of the entry at position index as a string. Form does not override
Control's stringValue method; your code should never use that method with a Form.

See also: - setStringValue:at:, - doubleValueAt:, - ftoatValueAt:, - intValueAt:,
- stringValue (Control)

titleAt:

- (const char *)titleAt:(int)index

Returns the title of the entry at position index.

See also: - setTitle:at:

Classes: Form 2-219

Forl11Cel1

Inherits From: ActionCell : Cell: Object

Declared In: appkitIFormCell.h

Class Description

This class is used to implement entries in a Form. It displays a title within itself, and allows
editing only in the remaining (right-hand) portion of the Cell.

See the Form class specification for more on the use of FormCell.

Instance Variables

NXCoord titleWidth;
id titleCell;
NXCoord titleEndPoint;

titleWidth

titleCell

titleEndPoint

Method Types

The width of the title portion; if -1, width is calculated as
needed.

The Cell used to draw the title.

The coordinate that separates the title from the text area.

Initializing, copying, and freeing a FormCell
- init
- initTextCell:
- copyFromZone:
-free

Determining a FormCell's size - calcCellSize:inRect:

Enabling the FormCell - setEnabled:

2-220 Chapter 2: Application Kit

Modifying the title

Modifying graphic attributes

Displaying

Managing cursor rectangles

Tracking the mouse

Archiving

Instance Methods

calcCeliSize: inRect:

- setTitle:
- title
- setTitleFont
- titleFont
- setTitleAlignment:
- titleAlignment
- setTitle Width:
- titleWidth:
- title Width

-isOpaque

- draw Inside: in View:
- drawSelf:in View:

- resetCursorRectin View:

- trackMouse:inRectofView:

-read:
- write:

- calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Calculates the size of the FormCell assuming it's constrained to fit within aRect. Returns
the size in the Size .

copyFromZone:

- copyFrornZone:(NXZone *)zone

Creates and returns a copy of the receiving FormCell instance allocated from zone.

drawlnside:in View:

- drawlnside:(const NXRect *)cellFrame inView:controlView

Draws only the text inside the FormCell (not the bezel or the title of the FormCell). If you
create a subclass of FormCell and override drawSelf:in View:, you must implement this
method as well. Returns self.

See also: - drawSelf:in View:

Classes: FormCell 2-221

drawSelf:inView:

- drawSelf:(const NXRect *)cellFrame inView:controlView

Has the FormCell's title Cell drawn, then draws the editable text portion of the FormCell.
returns self.

See also: - drawlnside:in View:

free

-free

Frees the storage used by the FormCell and returns nil.

init

-init

Initializes and returns the receiver, a new instance of FormCell, with its contents set to an
empty string ("") and its title set to "Field", right -aligned.

See also: - initTextCell:

initTextCell:

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of FormCell, with its contents set to the
empty string ("") and its title set to aString. The font for both title and text is the user's
chosen system font in 12.0 point, and the text area is drawn with a bezel. This method is
the designated initializer for FormCell.

See also: - init

isOpaque

- (BOOL)isOpaque

Returns YES if the FormCell is opaque, NO otherwise. If the FormCell has a title, then it's
not opaque (since the title field is not opaque).

See also: - isOpaque (Cell)

2-222 Chapter 2: Application Kit

read:
- read:(NXTypedStream *)stream

Reads the FormCell from the typed stream stream. Returns self.

See also: - write:

resetCursorRect:inView:
- resetCursorRect:(const NXRect *)cellFrame inView:controlView

Adds a cursor rectangle to control View (with addCursorRect:cursor:), allowing the
cursor to change to an I-beam when it passes over the text portion of the FormCell.

See also: - addCursorRect:cursor: (View, Control)

setEnabled:
- setEnabled:(BOOL)jiag

Ifjiag is YES, the FormCell accepts mouse clicks; if NO, it doesn't.

See also: - is Enabled (Cell)

setlitle:
- setTitle:(const char *)aString

Sets the title of the FormCell to aString.

See also: - title

setlitleAlignment:
- setTitleAlignment:(int)mode

Sets the alignment of the title. mode can be one of three constants: NX_LEFTALIGNED,
NX_CENTERED, or NX_RIGHTALIGNED.

See also: - titleAlignment

Classes: FormCel1 2-223

setlitleFont:
- setTitleFont:fontObject

Sets the Font used to draw the title of the FormCell.

See also: - setFont:

setlitleWidth:
- setTitle Width: (NXCoord)width

Sets the width of the title field to width. If width is -1, the title field's width is always
calculated when needed. Use this method only if the FormCell's title isn't going to change,
or if your code always resets the title width when it resets the title.

See also: - title Width, - title Width:

title
- (const char *)title

Returns the title of the FormCell.

See also: - setTitle:

titleAlignment
- (int)titleAlignment

Returns the alignment of the title, which will be one of the following:
NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

See also: - setTitleAlignment:

titleFont
- titleFont

Returns the Font used to draw the title of the FormCell.

See also: - setTitleFont:

2-224 Chapter 2: Application Kit

titleWidth
- (NXCoord)title Width

If the width of the title has already been set, then that value is returned. Otherwise, it's
calculated and returned.

See also: - setTitleWidth:, - titleWidth:

titleWidth:

- (NXCoord)titleWidth:(const NXSize *)aSize

If the title width has been set, then it's returned. Otherwise, the width is calculated
constrained to aSize. aSize may be NULL, in which case the width is calculated
without constraint.

See also: - setTitleWidth:, - titleWidth:

trackMouse:inRect:ofView:

'- (BaaL)trackMouse:(NXEvent*)event
inRect:(const NXRect*)aRect
ofView:controlView

Causes editing to occur. Returns YES if the mouse goes up in the FormCell, NO otherwise.

See also: - trackMouse:inRect:ofView: (TextFieldCell)

write:

- write:(NXTypedStream *)stream

Writes the receiving FormCell to the typed stream stream. Returns self.

See also: - read:

Classes: FormCell 2-225

Listener

Inherits From: Object

Declared In: appkitlListener .h

Class Description

The Listener class, with the Speaker class, supports communication between applications
through Mach messaging. Mach messages are the standard way of performing remote
procedure calls (RPCs) in the Mach operating system. The Listener class implements the
receiving end of a remote message, and the Speaker class implements the sending end.

Remote messages are sent to ports, which act something like mailboxes for the tasks that
have the right to receive the messages delivered there. Each Listener corresponds to a
single Mach port to which its application has receive rights. Since a port has a fixed size­
usually there's room for only five messages in the port queue-when the port is full, a new
message must wait for the Listener to take an old message from the queue.

To initiate a remote message, you send an Objective C message to a Speaker instance. The
Speaker translates it into the proper Mach message protocol and dispatches it to the port of
the receiving task. The Mach message is received by the Listener instance associated with
the port. The Listener verifies that it understands the message, that the Speaker has sent the
correct parameters for the message, and that all data values are well formed-for example,
that character strings are null-terminated. The Listener translates the Mach message back
into an Objective C message, which it sends to itself. It's as if an Objective C message sent
to a Speaker in one task is received by a Listener in another task.

Delegation

The Listener methods that receive remote Objective C messages simply pass those
messages on to a delegate. The Listener's job is just to get the message and find another
object to respond to it.

The setDelegate: method assigns a delegate to the Listener. There's no default delegate,
but before the Application object gets its first event, it registers a Listener for the
application and makes itself the Listener's delegate. You can register your own
Listener (with Application's setAppListener: method) in start-up code, and when
you send the Application object a run message, the Application object will become
the Listener's delegate.

2-226 Chapter 2: Application Kit

If an object has its own delegate when it becomes the Listener's delegate, the Listener looks
first to its delegate's delegate and only then to its own delegate when searching for an object
to entrust with a remote message. This means that you can implement the methods that
respond to remote messages in either the Application object's delegate or in the Application
object. (You can also implement the methods directly in a Listener subclass, or in another
object you make the Listener's delegate.)

Setting Up a Listener

Two methods, checkInAs: and usePrivatePort, allocate a port for the Listener:

• With the checkInAs: method, the Listener's port is given a name (usually the name of
the application) and is registered with the network name server. This makes the port
publicly available so that other applications can find it. Applications get send rights to
a public port through the NXPortFromNameO function.

• Alternatively, the Listener's port can be kept private (with the usePrivatePort method).
Send rights to the port can then be doled out only to selected applications.

Once allocated, the port must be added (with the addPort method) to the list of those that
the client library monitors. A procedure will automatically be called to read Mach
messages from the port queue and begin the Listener's process of transforming the Mach
message back into an Objective C message. The procedure is called between events,
provided the priority of getting remote messages is at least as high as the priority of getting
the next event.

A Listener is typically set up as follows:

myListener = [[Listener alloc] init];
[myListener setDelegate:someOtherObject];

/*

* Sets the object responsible for handling

* messages received.
*/

[myListener checkInAs:"portname"];
/* or [myListener usePrivatePort] */

[myListener addPort];
/*

* Now, between events, the client library
* will check to see if a message has arrived

* in the port queue.
*/

[myListener free];
/* When we no longer need the Listener. */

Classes: Listener 2-227

2-228

An application may have more than one Listener and Speaker, but it must have at least one
of each to communicate with the Workspace Manager and other applications. If your
application doesn't create them, a default Listener and Speaker are created for you at
start-up before Application's run method gets the first event.

If a Listener is created for you, it will be checked in automatically under the name returned
by Application's appListenerPortName method. Normally, this is the name assigned to
the application at compile time. The port will also be added to the list of those the client
library monitors, so the Listener will be scheduled to receive messages asynchronously.

Remote Methods

The Listener and Speaker classes implement a number of methods that can be used to send
and receive remote messages. You can add other methods in Listener and Speaker
subclasses. The msgwrap program can be used to generate subclass definitions from a list
of method declarations. Most programmers will use msgwrap instead of manually
subclassing the Listener class. See the man page for msgwrap for details.

Some remote methods, especially those with the prefix "msg", are designed to allow an
application to run under program control rather than user control. By implementing these
methods, you'll permit a controlling application to run your application in conjunction with
others as part of a script.

Argument Types

Remote messages take two kinds of arguments-input arguments, which pass values from
the Speaker to the Listener, and output arguments, which are used to pass values back from
the Listener to the Speaker. The Listener sends return information back to the Speaker in
a separate Mach message to a port provided by the Speaker. The Speaker reformats this
information so that it's returned by reference in variables specified in the original
Objective C message.

A method can take up to NX_MAXMSGPARAMS arguments. Arguments are constrained
to a limited set of permissible types. Internally, the Listener and Speaker identify each
permitted type with a unique character code. Input argument types and their identifying
codes are listed below. Note that an array of bytes counts as a single argument, even though
two Objective C parameters are used to refer to it-a pointer to the array and an integer that
counts the number of bytes in the array. A character string must be null-terminated.

Category Type Character Code

integer (int) i
double (double) d
character string (char *) c
byte array (char *), (int) b
receive rights (port) (port_t) r
send rights (port) (port_t) s

Chapter 2: Application Kit

There's a matching output argument for each of these categories. Since output arguments
return information by reference, they're declared as pointers to the respective input types:

Category Type Character Code

integer (int *) I
double (double *) D
character string (char **) C
byte array (char **), (int *) B
receive rights (port) (port_t *) R
send rights (port) (port_t *) S

The validity of all input parameters is guaranteed for the duration of the remote message.
The memory allocated for a character string or a byte array is freed automatically after the
Listener method returns. If you want to save a string or an array, you must copy it. When
the amount of input data is large, you can use the NXCopylnputDataO function to take
advantage of the out-of-line data feature of Mach messaging. This function is passed the
index of the argument to be copied (the combination of a pointer and an integer for a byte
array counts as a single argument) and returns a pointer to an area obtained through the
vm_allocateO function. This pointer must be freed with vm_deallocateO, rather than
freeO. Note that the size of the area allocated is rounded up to the next page boundary, and
so will be at least one page. Consequently, it is more efficient to mallocO and copy amounts
up to about half the page size.

The application is responsible for deallocating all port parameters received with the
port_deallocateO function when they're no longer needed.

Return Values

All remote methods return an int that indicates whether or not the message was
successfully transmitted. A return of 0 indicates success.

The Listener methods that receive remote messages use the return value to signal whether
they're able to delegate a message to another object. If a method can't entrust its message
to the delegate (or the delegate's delegate), it returns a value other than O. If, on the other
hand, it's successful in delegating the message, it passes on the delegate's return value as
its own. In general, delegate methods should always return O.

The Listener doesn't pass the return value back to the Speaker that initiated the remote
message. However, if the Speaker is expecting return information from the Listener-that
is, if the remote message has output arguments-a nonzero return causes the Listener to
send an immediate message back to the Speaker indicating its failure to find a delegate for
the remote message. The Speaker method then returns -1.

Note that the return value indicates only whether the message got through; it doesn't say
anything about whether the action requested by the message was successfully carried out.
To provide that information, a remote message must include an output argument.

Classes: Listener 2-229

Instance Variables

char *portName;
port_t listenPort;
port_t signaturePort;
id delegate;
int timeout;
int priority;

portName

listenPort

signaturePort

delegate

timeout

priority

Method Types

Initializing the class

The name under which the port is registered.

The port where the Listener receives remote messages.

The port used to authenticate registration.

The object responsible for responding to remote messages
received by the Listener.

How long, in milliseconds, that the Listener will wait for
its return results to be placed in the port queue of the
sending application.

The priority level at which the Listener will receive
messages.

+ initialize

Initializing a new Listener instance

Freeing a Listener

Setting up a Listener

2-230 Chapter 2: Application Kit

- init

- free

- addPort
- removePort
- checkInAs:
- usePri vatePort
- checkOut
- listenPort
- signaturePort
-:- portN arne
- setPriority:
- priority
- setTimeout:
- timeout
+ run

Providing for program control - msgCalc:
- msgCopy AsType:ok:
- msgCutAsType:ok:
- msgDirectory:ok:
- msgFile:ok:
- msgPaste:
- msgPosition:posType:ok:
- msgPrint:ok:
- msgQuit:
- msgSelection:length:asType:ok:
- msgSetPosition:posType:andSelect:ok:
- msg Version: ok:

Receiving remote messages - messageReceived:
- performRemoteMethod:paramList:
- remoteMethodFor:

Assigning a delegate - setDelegate:
- delegate
- setServicesDelegate:
- servicesDelegate

Archiving - read:
- write:

Class Methods

initialize

+ initialize

Sets up a table that instances of the class use to recognize the remote messages they
understand. The table lists the methods that can receive remote messages and specifies the
number of parameters for each along with their types. An initialize message is sent to the
class the first time it's used; you should never invoke this method.

run

+ run

Sets up the necessary conditions for Listener objects to receive remote messages if they're
used in applications that don't have an Application object and a main event loop. In other
words, if an application doesn't send a run message to the Application object,

[NXApp run];

Classes: Listener 2-231

it will need to send a run message· to the Listener class

[Listener run] i

for instances of the class to work. This method never returns, so your application will
probably need to be dispatched by messages to its Listener instances.

Instance Methods

addPort

- addPort

Enables the Listener to receive messages by adding its port to the list of those that the client
library monitors. The Listener will then be scheduled to receive messages between events.
Returns self.

See also: - removePort, DPSAddPortO

checklnAs:

- (int)checklnAs:(const char *)name

Allocates a port for the Listener, and registers that port as name with the Mach network
name server. This method also allocates a signature port that's used to protect the right to
remove name from the name server. This method returns 0 if it successfully checks in the
application with the name server, and a Mach error code if it doesn't. The Mach error code
is most likely to be one of those defined in the header files servers/netname_defs.h and
machlkern_return.h

See also: - usePrivatePort, - checkOut

checkOut

- (int)checkOut

Removes the Listener's port from the list of those registered with the network name server.
This makes the port private. This method will always be successful and therefore always
returns O.

See also: - checklnAs:

2·232 Chapter 2: Application Kit

delegate
- delegate

Returns the Listener's delegate. The default delegate is nil, but just before the first event
is received, the Application object is made the delegate of the Listener registered as the
Application object's Listener. The delegate is expected to respond to the remote messages
received by the Listener, although it may do this by sending messages to another object.

See also: - setDelegate:, - setAppListener: (Application)

free
-free

Frees the Listener object and deallocates its listen port and its signature port. If the
Listener's port is registered with the network name server, it is unregistered.

init

- init

Initializes a newly allocated Listener instance. The new instance has no port name, its
priority is set to NX_BASETHRESHOLD, its timeout is initialized to 30,000 milliseconds,
its listen port and signature port are both PORT_NULL, and it has no delegate. Returns
self.

See also: - setPriority:, - setTimeout:, - setDelegate:, - checklnAs:

listen Port

- (port_t)listenPort

Returns the port at which the Listener receives remote messages. This port is never set
directly, but is allocated by either checklnAs: or usePrivatePort. It's deallocated by the
free method. The Listener caches this port·as its listenPort instance variable.

See also: - checklnAs:, - usePrivatePort

Classes: Listener 2-233

messageReceived:

- messageReceived:(NXMessage *)msg

Begins the process of translating a Mach message received at the Listener's port into an
Objective C message. This method verifies that the Mach message is well formed, that it
corresponds to an Objective C method understood by the Listener, and that the method's
arguments agree in number and type with the fields of the Mach message.

messageReceived: messages are initiated whenever a Mach message is to be read from the
Listener's port; you shouldn't initiate them in the code you write. Returns self.

See also: - performRemoteMethod:paramList:

msgCalc:

- (int)msgCalc:(int *)flag

Receives a remote message to perform any calculations that are necessary to bring the
current window up to date. The method you implement to respond to this message should
set the integer specified by flag to YES if the calculations will be performed, and to NO if
they won't.

msgCopyAsType:ok:

- (int)msgCopyAsType:(const char *)aType ok:(int *)flag

Receives a remote message requesting the application to copy the current selection to the
pasteboard as aType data. aType should be one of the standard pasteboard types defined in
appkitJPasteboard.h. The method you implement to respond to this request should set the
integer referred to by flag to YES if the selection is copied, and to NO if it isn't.

msgCutAsType:ok:

- (int)msgCutAsType:(const char *)aType ok:(int *)flag

Receives a remote message requesting the application to delete the current selection and
place it in the pasteboard as aType data. aType should be one of the standard pasteboard
types defined in appkitlPasteboard.h. The method you implement to respond to this
request should set the integer referred to by flag to YES if the requested action is carried
out, and to NO if it isn't.

2-234 Chapter 2: Application Kit

msgDirectory:ok:

- (int)msgDirectory:(char *const *)fullPath ok:(int *)flag

Receives a remote message asking for the current directory. The method you implement to
respond to this message should place a pointer to the full path of its current directory in the
variable specified by fullPath. The integer specified by flag should be set to YES if the
directory will be provided, and to NO if it won't.

The current directory is application-specific, but is probably best described as the directory
the application would show in its Open panel were the user to bring it up.

msgFile:ok:

- (int)msgFile:(char *const *)fullPath ok:(int *)flag

Receives a remote message requesting the application to provide the full pathname of its
current document. The current document is the file displayed in the main window.

The method you implement to respond to this request should set the pointer referred to by
fullPath so that it points to a string containing the full pathname of the current document.
The integer specified by flag should be set to YES if the pathname is provided, and to NO
if it isn't.

msgPaste:

- (int)msgPaste:(int *)flag

Receives a remote message requesting the application to replace the current selection with
the contents of the pasteboard, just as if the user had chosen the Paste command from the
Edit menu. The method you implement to respond to this message should set the integer
referred to by flag to YES if the request is carried out, and to NO if it isn't.

msgPosition:posType:ok:

- (int)msgPosition:(char *const *)aString
posType:(int *)anlnt
ok:(int *)flag

Receives a remote message requesting a description of the current selection.

The method you implement to respond to this request should describe the selection in a
character string and set the pointer referred to by aString so that it points the description.

Classes: Listener 2-235

The integer referred to by anlnt should be set to one of the following constants to indicate
how the current selection is described:

NX_TEXTPOSTYPE As a character string to search for

NX_REGEXPRPOSTYPE As a regular expression to search for

NX_LINENUMPOSTYPE As a colon-separated range of line numbers, for example
"10: 12"

NX_ CHARNUMPOSTYPE As a colon-separated range of character positions, for
example "21 :33"

NX_APPPOSTYPE As an application-specific description

The integer referred to by flag should be set to YES if the requested information is provided
in the other two output arguments, and to NO if it isn't.

msgPrint:ok:

- (int)msgPrint:(const char *)fuliPath ok:(int *)flag

Receives a remote message requesting the application to print the document whose path is
fuliPath. The method you implement to respond to this request should set the integer
referred to by flag to YES if the document is printed, and to NO if it isn't. The document
file should be closed after it's printed.

msgQuit:

- (int)msgQuit:(int *)flag

Receives a remote message for the application to quit. The method you implement to
respond to this message should set the integer specified by flag to YES if the application
will quit, and to NO if it won't.

msgSelection:length:asType:ok:

- (int)msgSelection:(char *const *)bytes
length:(int *)numBytes
asType:(const char *)aType
ok:(int *)flag

2·236 Chapter 2: Application Kit

Receives a remote message asking the application for its current selection as aType data.
aType will be one of the following standard data types for the pasteboard (or an
application-specific type):

NXAsciiPboardType
NXPostScriptPboardType
NXTIFFPboardType
NXRTFPboardType
NXSoundPboardType
NXFilenamePboardType
NXTabularTextPboardType

The method you implement to respond to this request should set the pointer referred to by
bytes so that it points to the selection and also place the number of bytes in the selection in
the integer referred to by numBytes. The integer referred to by flag should be set to YES if
the selection is provided, and to NO if it's not.

msgSetPosition:posType:andSelect:ok:

- (int)msgSetPosition:(const char *)aString
posType:(int)anlnt
andSelect: (int)se lectFlag
ok:(int *)flag

Receives a remote message requesting the application to scroll the current document (the
one displayed in the main window) so that the portion described by aString is visible.
aString should be interpreted according to the anlnt constant, which will be one of
the following:

NX_ TEXTPOSTYPE aString is a character string to search for.

NX_REGEXPRPOSTYPE aString is a regular expression to search for.

NX_LINENUMPOSTYPE aString is a colon-separated range of line numbers, for
example "10: 12" .

NX_ CHARNUMPOSTYPE aString is a colon-separated range of character positions,
for example "21 :33".

NX_APPPOSTYPE aString is an app~ication-specific description of a portion
of the document.

The msgSetPosition:posType:andSelect:ok: method you implement should set the
integer referred to by flag to YES if the document is scrolled, and to NO if it isn't. If
selectFlag is anything other than 0, the portion of the document described by aString
should also be selected.

Classes: Listener 2-237

msgVersion:ok:

- (int)msgVersion:(char *const *)aString ok:(int *)flag

Receives a remote message requesting the current version of the application. The method
you implement to respond to this request should set the pointer referred to by aString so
that it points to a string containing current version information for your application. The
integer specified by flag should be set to YES if version information is provided, and to
NO if it's not.

performRemoteMethod:paramList:

- (int)performRemoteMethod:(NXRemoteMethod *)method
paramList:(NXParam Value *)params

Matches the data received in the Mach message with the corresponding Objective C
method and sends the Objective C message to self. The Listener method that receives the
message will then try to delegate it to another object. method is a pointer to the method
structure returned by remoteMethodFor: and params is a pointer to the list of arguments.

The msgwrap program automatically generates a performRemoteMethod:paramList:
method for a Listener subclass. Each Listener subclass must define its own version of
the method.

performRemoteMethod:paramList: messages are initiated when the Listener reads a
Mach message from its port queue.

See also: - remoteMethodFor:, msgwrap(8) UNIX manual page

portName

- (const char *)portName

Returns the name under which the Listener's port (the port returned by the listenPort
method) is registered with the network name server.

See also: - checklnAs:, -listenPort, - appListenerPortName (Application)

priority

- (int)priority

Returns the priority level for receiving remote messages.

See also: - setPriority:

2-238 Chapter 2: Application Kit

read:

- read:(NXTypedStream *)stream

Reads the Listener from the typed stream stream. Returns self.

See also: - write:

remoteMethodFor:

- (NXRemoteMethod *)remoteMethodFor:(SEL)aSelector

Looks up aSelector in the table of remote messages the Listener understands and returns a
pointer to the table entry. A NULL pointer is returned if aSelector isn't in the table.

Each Listener subclass must define its own version of this method and send a message to
super to perform the Listener version. The msgwrap program produces subclass method
definitions automatically. The version of the method produced by msgwrap uses the
NXRemoteMethodFromSelO function to do the look up.

remoteMethodFor: messages are initiated automatically when the Listener reads a Mach
message from its port queue.

See also: - performRemoteMethod:paramList:, msgwrap(8) UNIX manual page

removePort

- removePort

Removes the Listener's port from the list of those that the client library monitors. Remote
messages sent to the port will pile up in the port queue until they are explicitly read; they
won't be read automatically between events.

See also: - addPort

servicesDelegate

- servicesDelegate

Returns the Listener's services delegate, the object that will respond to remote messages
sent from the Services menus of other applications. The services delegate should
contain the methods that a service-providing application uses to provide services to
other applications.

See also: - setServicesDelegate:

Classes: Listener 2·239

setDelegate:
- setDelegate:anObject

Sets the Listener's delegate to anObject. The delegate is expected to respond to the remote
messages received by the Listener. However, if anObject has a delegate of its own at the
time the setDelegate: message is sent, the Listener will first check to see if that object can
handle a remote message before checking anObject. In other words, the Listener
recognizes a chain of delegation.

The delegate assigned by this method will be overridden if the Listener is registered as the
Application object's appListener and the assignment is made before the Application
object is sent a run message. Before getting the first event, the run method makes the
Application object the appListener's delegate.

See also: - delegate, - setAppListener: (Application)

setPriority:
- setPriority:(int)level

Sets the priority for receiving remote messages to level. Whenever the application is ready
to get another event, the priority level is compared to the threshold at which the application
is asking for the next event. For the Listener to be able to receive remote messages from
its port queue, the priority level must be at least equal to the event threshold.

Priority values can range from ° through 30, but three standard values are generally used:

NX_BASETHRESHOLD 1
NX_RUNMODALTHRESHOLD 5
NX_MODALRESPTHRESHOLD 10

These constants are defined in the appkitl Application.h header file.

• At a priority equal to NX_BASETHRESHOLD, the Listener will be able to receive
messages whenever the application asks for an event in the main event loop, but not
during a modal loop associated with an attention panel nor during a modal loop
associated with a control such as a button or slider.

• At a priority equal to NX_RUNMODALTHRESHOLD, the Listener will receive
remote messages in the main event loop and in the event loop for an attention panel, but
not during a control event loop.

• At a priority equal to NX_MODALRESPTHRESHOLD, remote messages are received
even during a control event loop.

The default priority level is NX_BASETHRESHOLD.

2-240 Chapter 2: Application Kit

A new priority takes effect when the Listener receives an addPort message. To change the
default, you must either set the Listener's priority before sending it an addPort message,
or you must send it a removePort message then another addPort message.

See also: - priority, - addPort

setServicesDelegate:

- setServicesDelegate:anObject

Registers anObject as the object within a service provider that will respond to remote
messages. This method returns self. As an example, consider an application called
Thinker that provides a ThinkAboutIt service that ponders the meaning of ASCII text it
receives on the pasteboard. Thinker would need to have something like the following in
the __ services section of its __ ICON segment in its Mach-O file:

Message: thinkMethod
Port: Thinker

Send Type: NXAsciiPboardType
Menu Item: ThinkAboutlt

To get this information in your Mach-O file you could put the above text in a file called
services. txt and then include the following line in your Makefile.preamble file:

LDFLAGS = -segcreate __ ICON __ services services. txt

Alternatively, if the services the application can provide are not known at compile time, the
application can build a services file at run time; see NXUpdateDynamicServicesO.

Then, in order to provide the ThinkAboutIt service you must implement a
thinkMethod:userData:error: method in an object which is the services delegate of a
Listener which is listening on the Thinker port. (If the application is named "Thinker", then
by default NXApp's Listener listens on this port.) Here is an example method that could
be used to provide the ThinkAboutIt service:

- thinkMethod: (id)pb

userData: (const char *)userData
error: (char **)msg

char *data;

int length;
char *const *s; /* We use s to go through types. */

char *const *types = [pb types];

for (s = types; *s; s++)

if (!strcmp(*s, NXAsciiPboardType)) break;

Classes: Listener 2-241

if (*s && [pb readType:NXAsciiPboardType
data:&data length:&length])

/* doSomething is your own method ... */
[self doSomething:data : length] ;

/* free the memory allocated by readType: ... */
Vffi_deallocate(task_self(), data, length);

/* now make msg point to an error string if */
/* anything went wrong, and return ... */
return self;

See also: - servicesDelegate,
- registerServicesMenuSendTypes:andReturnTypes: (Application),
- validRequestorForSendType:andReturnType: (Responder)

setlimeout:
- setTimeout:(int)ms

Sets, to ms milliseconds, how long the Listener will persist in attempting to send ·a return
message back to the Speaker that initiated the remote message. If ms is 0, there will be no
time limit. The default is 30,000 milliseconds. Returns self.

See also:. - timeout

signaturePort
- (port_t)signaturePort

Returns the port that's used to authenticate the Listener's port to the network name server.
This port is never set directly, but is allocated by checklnAs: and deallocated by free.

See also: - checklnAs:, - free, netname_check_inO, netname_check_outO

timeout
- (int)timeout

Returns the number of milliseconds the Listener will wait for a return message to the
Speaker to be successfully placed in the port designated by the Speaker. If it's 0, there's no
time limit.

See also: - setTimeout:

2-242 Chapter 2: Application Kit

usePrivatePort

- (int)usePrivatePort

Allocates a listening port for the Listener, but doesn't register it publicly. Other tasks can
send messages to this Listener only if they are explicitly given the address of the port in a
message; the port is not available through the Network Name Server. This method is an
alternative to checklnAs:. It returns 0 on success and a Mach error code if it can't allocate
the port. The error code will be one of those defined in machlkern_return.h.

See also: - checklnAs:

write:
- write:(NXTypedStream *)stream

Writes the Listener to the typed stream stream. Returns self.

See also: - read:

Classes: Listener 2·243

Matrix

Inherits From: Control: View: Responder: Object

Declared In: appkit/Matrix.h

Class Description

Matrix is a class used for creating groups of Cells that work together in various ways. It
includes methods for arranging its Cells in rows and columns, either with or without space
between them. The only restriction is that all Cells must be the same size. Cells in the
Matrix are numbered by row and columns, each starting with 0; for example, the top left
Cell would be at (0,0), and the Cell that's second down and third across would be at (1,2).
A Matrix can have many Cells of different classes, but usually uses only one type of Cell.
A Matrix can be set up to create new Cells by copying a prototype Cell, or by allocating
and initializing instances of a specific Cell class.

A Matrix adds to Control's target/action paradigm by allowing a separate target and action
for each of its Cells in addition to its own, and also by having an action that gets sent when
the user double-clicks a Cell, and which is sent in addition to the single-click action. If a
Cell doesn't have an action, the Matrix sends its own action to its own target. If a Cell
doesn't have a target, the Matrix sends the Cell's action to its own target. The double-click
action of a Matrix is always sent to the target of the Matrix.

Since the user might press the mouse button anywhere in the Matrix, and then drag the
mouse around, Matrix offers four "selection modes" which determine how Cells behave
when the Matrix is tracking the mouse:

NX_ TRACKMODE is the most basic mode of operation. All that happens in this mode is
that the Cells are asked to track the mouse with trackMouse:inRect:ofView: whenever the
mouse is inside their bounds. No highlighting is performed. An example of this mode
might be a "graphic equalizer" Matrix of sliders. Moving the mouse around causes the
sliders to move under the mouse.

NX_HIGHLIGHTMODE is a modification of TRACKMODE. In this mode, a Cell is
highlighted before it is asked to track the mouse, then unhighlighted when it is done
tracking. This is useful for multiple unconnected Cells which use highlighting to inform
the user that they are being tracked (like push-buttons and switches).

NX_RADIOMODE is used when you want no more than one Cell to be selected at a time.
It can be used to create a set of buttons of which one and only one is selected (there is the

2-244 Chapter 2: Application Kit

option of allowing no button to be selected). Any time a Cell is selected, the previously
selected Cell is unselected. The canonical example of this mode is a set of radio buttons.

NX_LISTMODE is the opposite of NX_TRACKMODE. Cells are highlighted, but don't
track the mouse. This mode can be used to select a range of text values, for example.
Matrix supports the standard multiple-selection paradigms of dragging to select, using the
shift key to make disjoint selections, and using the alternate key to extend selections.

The best way to learn about selection modes is to play with a Matrix in Interface Builder,
testing the Matrix interface with various options and Cell types. You can also create
minimal connections to Buttons that play sounds, setting the action to be performClick:,
which will cause the sounds to be played when you use the Matrix in Interface Builder's
test mode.

Instance Variables

id cellList;
id target;
SEL action;
id selectedCell;
int selectedRow;
int selectedCol;
int numRows;
int numCols;
NXSize cellSize;
NXSize intercell;
float background Gray;
float cellBackgroundGray;
id font;
id protoCell;
id cellClass;
id nextText;
id previousText;
SEL doubleAction;
SEL error Action;
id textDelegate;

Classes: Matrix 2-245

struct _mFlags {
unsigned int highlightMode: 1;
unsigned int radioMode: 1;
unsigned int listMode: 1;
unsigned int allowEmptySel: 1;
unsigned int autoscroll: 1;
unsigned int reaction: 1 ;
unsigned int selectionBy Rect: 1;

} mFlags;

cellList

target

action

selectedCell

selectedRow

selectedCol

numRows

numCols

cellSize

intercell

backgroundGray

cellBackgroundGray

font

protoCell

cellClass

nextText

previousText

doubleAction

2-246 Chapter 2: Application Kit

List of the Cells in the Matrix.

The object that is sent an action if a Cell doesn't have its
own action or its own target.

The message sent to the target of the Matrix if a Cell
doesn't have its own.

The selected Cell (if there's only one).

The row number of selected Cell.

The column number of selected Cell.

Number of rows in the Matrix.

Number of columns in the Matrix.

The size of each Cell in the Matrix (they're all the
same size).

Vertical and horizontal spacing between Cells.

The gray level drawn between Cell in the Matrix.

The gray level drawn as the background of each Cell.

The Font of text in the Cells of the Matrix.

A Cell instance copied to make new Cells.

The class of Cell used by the Matrix; not used if a
prototype is used.

The object whose text is selected when Tab is pressed.

The object whose text is selected when Shift-Tab is
pressed.

Action sent to the target of the Matrix on a double-click
in a Cell.

errorAction

textDelegate

mFlags.highlightMode

mFlags.radioMode

mFlags.listMode

mFlags.allowEmptySel

mFlags.autoscroll

mFlags.reaction

mFlags.selectionB y Rect

Method Types

Initializing the Matrix class

Message sent to the target when a bad value is entered in
a text field.

Delegate for Text object delegate methods.

True if selection mode is NX_HIGHLIGHTMODE.

True if selection mode is NX_RADIOMODE.

True if selection mode is NX_LISTMODE.

True if no selection is allowed in NX_RADIOMODE.

True if the Matrix auto-scrolls when in a ScrollView.

True if an action message caused the Cell that triggered
the action message to change.

True if a rectangle of Cells in the Matrix can be selected
by dragging the cursor.

+ initialize
+ setCellClass:

Initializing and freeing a Matrix - initFrame:
- initFrame:mode:cellClass:numRows:numCols:
- initFrame:mode:prototype:numRows:numCols:
-free

Setting the selection mode - setMode:
-mode

Configuring the Matrix - setEnabled:
- setEmptySelectionEnabled:
- isEmptySelectionEnabled
- setSelectionByRect:
- isSelectionByRect

Setting the Cell class - setCellClass:
- setPrototype:
- prototype

Classes: Matrix 2-247

· Laying out the Matrix - addCol
-addRow
- insertColAt:
- insertRow At:
- removeColAtandFree:
- removeRow At:andFree:
- makeCellAt::
- putCell:at:
- renewRows:cols:
- setCellSize:
- getCellSize:
- getCellFrame:at::
- setlntercell:
- getlntercell:
- cellCount
- getNumRows:numCols:

Finding Matrix coordinates - getRow:andCol:ofCell:
- getRow:andCol:forPoint:

Modifying individual Cells - setIcon:at::
- setState:at:
- setTitle:at::
- setTag:at:
- setTag:targetaction:at::

Selecting Cells - selectCell:
- selectCellAt::
- selectCellWithTag:
- setSelectionFrom:to:anchor:lit
- selectAll:
- selectedCell
- getSelectedCells:
- selectedCol
- selectedRow
- clearSelectedCell

Finding Cells - findCellWithTag:
- cellAt::
- cellList

2-248 Chapter 2: Application Kit

Modifying graphic attributes - setBackgroundColor:
- backgroundColor
- setBackgroundGray:
- backgroundGray
- setCellBackgroundColor:
- cellBackgroundColor
- setCellBackgroundGray:
- cellBackgroundGray
- setBackgroundTransparent:
- isBackgroundTransparent
- setCellBackgroundTransparent:
- isCellBackgroundTransparent
- setFont:
-font

Editing text in Cells - selectText:
- selectTextAt::

Setting Tab key behavior - setNextText:
- setPreviousText:

Assigning a Text delegate - setTextDelegate:
- textDelegate

Text object delegate methods - textWillChange:
- textDidChange:
- textDidGetKeys:isEmpty:
- textWillEnd:
- textDidEnd:endChar:

Resizing the Matrix and Cells - setAutosizeCells:
- doesAutosizeCells
- calcSize
- sizeTo::
- sizeToCells
- sizeToFit
- validateSize:

Scrolling - setAutoscroll:
- setScrollable:
- scrollCellTo Visible::

Classes: Matrix 2-249

Displaying - display
- drawSelf::
- drawCell:
- drawCellAt::
- drawCellInside:
- highlightCellAt: :lit:

Target and action - setTarget:
- target
- setAction:
- action
- setDoubleAction:
- doubleAction
- setErrorAction:
- errorAction
- setTarget: at::
- setAction:at::
- sendAction
- sendAction:to:
- sendAction:to:forAllCells:
- sendDoubleAction
- setReaction:

Handling event and action messages

Managing the cursor

Archiving

2·250 Chapter 2: Application Kit

- acceptsFirstMouse
- mouseDown:
- mouseDownFlags
- performKeyEquivalent:

- resetCursorRects

- read:
- write:

Class Methods

initialize

+ initialize

Initializes data for the Matrix class object.

setCeliClass:

+ setCellClass:classld

Configures the Matrix class to use instances of classld for its Cells. classld should be the
id of a subclass of Cell (usually ActionCell), obtained by sending the class message to
either the Cell subclass object or to an instance of that subclass. The default Cell class is
ActionCell. Returns self.

Your code should rarely need to invoke this method, since each instance of Matrix can be
configured to use its own Cell class (or a prototype that gets copied). The Cell class set
with this method is simply a fallback for Matrices initialized with initFrame:.

"Creating New Controls" in the Control class specification has more information on how
to safely set the Cell class used by a subclass of Control.

See also: - initFrame: ...

Instance Methods

acceptsFirstMouse

- (BOOL)acceptsFirstMollse

Returns NO if the selection mode of the Matrix is NX_LISTMODE, YES if the Matrix is
in any other selection mode. The Matrix does not accept first mouse in NX_LISTMODE
to prevent the loss of multiple selections.

See also: - mode

Classes: Matrix 2-251

action

- (SEL)action

Returns the default action of the Matrix. The returned method is used when a Cell with no
action receives an event which would ordinarily cause its action to be sent-normally a
mouse-up in the Cell. In such cases, the Matrix sends its action to its own target.

See also: - setAction:, - target, - action (ActionCell), - target (ActionCell)

addCol

- addCol

Adds a new column of Cells to the right of the existing columns, creating new Cells if
needed with makeCellAt::. Does not redraw even if autodisplay is on. Returns self.

If the number of rows or columns in the Matrix has been changed with renewRows:cols:,
then makeCellAt: is invoked only if new Cells are needed (since renewRows:cols: doesn't
free Cells, it just rearranges them). This allows you to grow and shrink a Matrix without
repeatedly creating and freeing the Cells.

See also: - insertCoIAt:, - makeCellAt::, - renewRows:cols:, - isAutodisplay (View)

addRow

-addRow

Adds a new row of Cells to the bottom of the existing rows, creating new Cells if needed
with makeCellAt::. Does not redraw even if autodisplay is on. Returns self.

If the number of rows or columns in the Matrix has been changed with renewRows:cols:,
then makeCellAt: is invoked only if new Cells are needed (since renewRows:cols: doesn't
free Cells, it just rearranges them). This allows you to grow and shrink a Matrix without
repeatedly creating and freeing the Cells.

See also: - insertRowAt:, - makeCellAt::, - renewRows:cols:, - isAutodisplay
(View)

backgroundColor

- (NXColor)backgroundColor

Returns the color used to draw the background (the space between the Cells).

See also: - setBackgroundColor:, - backgroundGray, - cellBackgroundColor

2-252 Chapter 2: Application Kit

backgroundGray

- (float)backgroundGray

Returns the gray level used to draw the background (the space between the Cells). If the
gray level is less than 0, then the background is transparent.

See also: - setBackgroundGray:, - backgroundColor, - cellBackgroundGray

calcSize

- calc Size

Your code should never invoke this method. It is invoked automatically by the system if it
has to recompute some size information about the Cells. It invokes calcDrawlnfo: on each
Cell in the Matrix. Can be overridden to do more if necessary (Form overrides calcSize,
for example). Returns self.

See also: - calc Size (Control, Form), - validateSize:

ceIlAt::

- cellAt:(int)row :(int)col

Returns the Cell at row row and column col, or nil if no such Cell exists.

See also: - getRow: and Col: of Cell:

celiBackgroundColor

- (NXColor)cellBackgroundColor

Returns the color used to fill the background of a Cell.

See'also: - setCellBackgroundColor:, - cellBackgroundGray, - background Color

celiBackgroundGray

- (float)cellBackgroundGray

Returns the gray value used to fill the background of a Cell before the Cell is drawn. If the
gray level is -1.0, then the Cell is transparent.

See also: - setCellBackgroundGray:, - cellBackgroundColor, - backgroundGray

Classes: Matrix 2-253

celiCount

- (int)cellCount

Returns the number of Cell positions in the Matrix (that is, the number of rows times the
number of columns).

See also: - cellList

cell List

- cellList

Returns a List object that contains the Cells of the Matrix. The Cells in the list are
row-ordered; that is, the first row of Cells appear first in the List, then the next row, and
soon.

clearSelectedCell

- clearS elected Cell

Deselects the selected Cell or Cells, and returns the previously selected Cell (the last of the
selected Cells if there were more than one). If the selection mode is NX_RADIOMODE
and empty selection is not allowed, this method won't deselect the selected Cell. Doesn't
redisplay the Matrix. It's often more convenient to use selectCellAt:: with a row and
column of (-1, -1), since this will clear the selected Cell and redisplay the Matrix.

See also: - selectCellAt::, - mode, - setEmptySelectionEnabled:

display

- display

Draws the Matrix. This method invokes displayFromOpaqueAncestor::: if any part of
the Matrix (either the space between Cells, or any Cell) is transparent, or display::: if the
entire Matrix is opaque. Returns self.

See also: - display::: (View), - displayFromOpaqueAncestor::: (View)

2-254 Chapter 2: Application Kit

doesAutosizeCelis

- (BOOL)doesAutosizeCells

Returns YES if Cells are resized proportionally to the Matrix when its size changes; the
inter-Cell spacing is kept constant. Returns NO if the inter-Cell spacing changes when the
Matrix is resized; the Cell size remains constant.

See also: - setAutosizeCells:

doubleAction

- (SEL)doubleAction

Returns the action sent by the Matrix to its target when the user double-clicks an entry.
Unlike NXBrowser, this method returns NULL if there is no double-click action. The
double-click action of a Matrix is sent after the appropriate single-click action (for the Cell
clicked or for the Matrix if the Cell doesn't have its own action). If there is no double-click
action and the Matrix doesn't ignore multiple clicks, the single-click action is sent twice.

See also: - setDoubleAction:, - action, - target, - sendDoubleAction,
- ignoreMultiClick: (Control)

drawCell:

- drawCell:aCell

If aCell is in the Matrix, then it's drawn. Does nothing otherwise. Returns self. This
method is useful for constructs like:

[aMatrix drawCell: [[aMatrix cellAt:aRow :aCol] setSornething:anArg]]];

See also: - drawCellAt::, - drawCelllnside:

drawCeIlAt::

- drawCellAt:(int)row :(int)col

Displays the Cell at (row, col) if it's in the Matrix. Does nothing otherwise. Returns self.

See also: - drawCell:, - drawCelllnside:

Classes: Matrix 2-255

drawCellinside:

- drawCelllnside:aCell

If aCell is in the Matrix, then its inside (usually all but a bezel or border) is drawn.

See also: - drawCell:, - drawCellAt::, - drawlnside:inView: (Cell)

drawSelf::

- drawSelf:(const NXRect *)reets :(int)reetCount

Displays the Cells in the Matrix which intersect any of the reets.

errorAction

- (SEL)errorAction

Returns the action sent to the target of the Matrix when the user enters an illegal value for
a Cell's type (as set by Cell's setEntryType: method and checked by Cell's
isEntry Acceptable: method).

See also: - setErrorAction:, - setEntryType: (Cell), - isEntryAccectable: (Cell)

findCeliWithTag:

- findCellWithTag:(int)anlnt

Returns the Cell which has a tag matching anlnt, or nil if no such Cell exists in the Matrix.

See also: - setTag:at::, - setTag: (ActionCell), - setTag:target:action:at::,
- selectCellWithTag:

font

-font

Returns the Font used to display text in the Cells of the Matrix, or nil if the Cells don't
contain text.

See also: - setFont:

2-256 Chapter 2: Application Kit

free

-free

Deallocates the storage for the Matrix and all its Cells, and returns nil.

getCeIiFrame:at::

- getCellFrame:(NXRect *)theRect
at: (int)row
: (int)col

Returns self, and by reference in theRect the frame of the Cell that would be drawn at the
specified row and col (whether or not it actually exists).

See also: - getCellSize:

getCeliSize:

- getCellSize:(NXSize *)theSize

Returns self, and by reference in the Size the width and the height of each Cell in the Matrix
(all Cells are the same size).

See also: - getCellFrame:at::, - getlntercell:

getlntercell:

- getlntercell:(NXSize *)theSize

Returns self, and by reference in theSize the vertical and horizontal spacing between Cells.

See also: - getCellSize:

getNumRows:numCols:

- getNumRows:(int *)rowCount numCols:(int *)coICount

Returns self, and, by reference in rowCount and colCount, the number of rows and columns
in the Matrix.

Classes: Matrix 2-257

getRow:andCol:forPoint:

- getRow:(int *)row
andCol:(int *)col
forPoint:(const NXPoint *)aPoint

Returns the Cell at aPoint in the Matrix. aPoint must be in the coordinate system of the
Matrix. If aPoint is outside the bounds of the Matrix or in an intercell spacing,
getRow:andCol:forPoint: returns nil. Also returns by reference in row and col the row
and column position of the Cell.

See also: - getRow: and Col: of Cell:

getRow:andCol:ofCell:

- getRow:(int *)row
andCol:(int *)col
ofCell:aCell

Returns by reference in row and col the row and column indices for the position of aCell
within the Matrix. Returns aCell if it's in the Matrix, nil otherwise.

See also: - getRow:andCol:forPoint:

getSelectedCells:

- getSelectedCells:(List *)aList

Adds to aList the Cells of the Matrix that are selected. If aList is nil, a new List object is
created and filled with the selected Cells. Your code may free the List object, but not the
Cells in the List. Returns self.

See also: - selected Cell

highlightCeIlAt::lit:

- highlightCellAt:(int)row
: (int)col
lit: (BOOL)jlag

Highlights or unhighlights the Cell at (row, col) in the Matrix by sending
highlight: in View:lit: to the Cell. The PostScript focus must be locked on the Matrix when
this message is sent. Returns self.

See also: - highlight:in View:lit: (Cell)

2-258 Chapter 2: Application Kit

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Matrix, with default parameters in the
given frame. The default font is the user's chosen system font in 12.0 point, the default Cell
size is 100.0 by 17.0 points, the default inter-Cell spacing is 1.0 point by 1.0 point, the
default background gray is -1 (transparent), and the default Cell background gray is also
-1. The new Matrix contains no rows or columns. The default mode is
NX_RADIOMODE.

See also: - initFrame:mode: ...

initFrame:mode:ceIIClass:numRows:numCols:

- initFrame:(const NXRect *)frameRect
mode: (int)aMode
cellClass:classld
numRows:(int)numRows
numCols:(int)numCols

Initializes and returns the receiver, a new insta{1ce of Matrix, inframeRect with numRows
rows and numCols columns. aMode is set as the tracking mode for the Matrix, and can be
one of four constants:

NX_TRACKMODE
NX_HIGHLIGHTMODE
NX_RADIOMODE
NX_LISTMODE

Just track the mouse inside the Cells
Highlight the Cell, then track, then unhighlight
Allow no more than one selected Cell
Allow multiple selected Cells

The behavior for these constants is more fully described in the class description. The new
Matrix creates and uses Cells of class classld, which should be the return value of a class
message sent to a subclass of Cell.

This method is the designated initializer for Matrices that add Cells by creating instances
of a Cell subclass.

See also: - initFrame:, - initFrame:mode:prototype:numRows:numCols:

Classes: Matrix 2-259

initFrame:mode:prototype:numRows:numCols:

- initFrame:(const NXRect *)frameRect
mode: (int)aMode
prototype:aCell
numRows:(int)numRows
numCols:(int)numCols

Initializes and returns the receiver, a new instance of Matrix, inframeRect with numRows
rows and numCols columns. aMode is set as the tracking mode for the Matrix, and can be
one of four constants:

NX_TRACKMODE
NX_HIGHLIGHTMODE
NX_RADIOMODE
NX_LISTMODE

Just track the mouse inside the Cells
Highlight the Cell, then track, then unhighlight
Allow no more than one selected Cell
Allow multiple selected Cells

The behavior for these constants is more fully described in the class description. The new
Matrix creates Cells by copying aCell, which should be an instance of a subclass of Cell.

This method is the designated initializer for Matrices that add Cells by copying an instance
of a Cell subclass.

See also: - initFrame:, - initFrame:mode:cellClass:numRows:numCols:

insertColAt:

- insertCoIAt:(int)col

Inserts a new column of Cells before col, creating new Cells with makeCellAt::. If col is
greater than the number of columns in the Matrix, enough columns are created to expand
Matrix to be col columns wide. This method doesn't redraw even if autodisplay is on. Your
code may need to use sizeToCells after sending this method to resize the Matrix to fit the
newly added Cells. Returns self.

If the number of rows or columns in the Matrix has been changed with renewRows:cols:,
then makeCellAt: is invoked only if new Cells are needed (since renewRows:cols: doesn't
free Cells, it just rearranges them). This allows you to grow and shrink a Matrix without
repeatedly creating and freeing the Cells.

See also: - addCol, - insertRowAt:, - sizeToCells, - makeCellAt::

2-260 Chapter 2: Application Kit

insertRowAt:

- insertRowAt:(int)row

Inserts a new row of Cells before row, creating new Cells with makeCeIlAt::. If row is
greater than the number of rows in the Matrix, enough rows are created to expand Matrix
to be row rows high. This method doesn't redraw even if autodisplay is on. Your code may
need to use sizeToCells after sending this method to resize the Matrix to fit the newly added
Cells. Returns self.

If the number of rows or columns in the Matrix has been changed with renewRows:cols:,
thenmakeCellAt: is invoked only ifnew Cells are needed (since renewRows:cols: doesn't
free Cells, it just rearranges them). This allows you to grow and shrink a Matrix without
repeatedly creating and freeing the Cells.

See also: - addRow, - insertColAt:, - sizeToCells, - makeCeIlAt::

isBackgroundTransparent

- (BOOL)isBackgroundTransparent

Returns YES if the Matrix background is transparent, NO otherwise.

See also: - setBackgroundTransparent:, - background Gray

isCellBackgroundTransparent

- (BOOL)isCeIlBackgroundTransparent

Returns YES if Cells in the Matrix have transparent backgrounds, NO otherwise.

See also: - setCeIlBackgroundTransparent:, - cellBackgroundGray

isEmptySelectionEnabled

- (BOOL)isEmptySelectionEnabled

Returns YES if it is possible to have no Cells selected in a radio-mode Matrix, NO
otherwise.

See also: - setEmptySelectionEnabled:

Classes: Matrix 2-261

isSelectionByRect

- (BOOL)isSelectionByRect

Returns YES if a rectangle of Cells in the Matrix can be selected by dragging the cursor,
. NO otherwise.

See also: - setSelectionFrom:to:anchor:lit:

makeCeIlAt::

- makeCellAt:(int)row :(int)col

Creates a new Cell at the specified location in the Matrix. If the Matrix has a prototype
Cell, it's copied to create the new Cell; if the Matrix has a Cell class set, it allocates and
initializes (with init) an instance of that class; if the Matrix has not had a Cell class set, the
default class, ActionCell, is used. The new Cell's font is set to the font of the Matrix
Returns the newly created Cell.

Your code should never invoke this method directly;jt's used by addRow and other
methods when a Cell must be created. It may be overridden to provide more specific
initialization of Cells.

See also: - addCol, - addRow, - insertCoIAt:, - insertRowAt:

mode

- (int)mode

Returns the selection mode of the Matrix. These modes are explained in the class
description.

See also: - setMode:, - initFrame:mode: ...

mouseDown:

- mouseDown:(NXEvent *)theEvent

Your code should never invoke this method, but you may override it to implement different
mouse tracking than Matrix does. The response of the Matrix depends on its selection
mode, as explained in the class description.

In any selection mode, a mouse-down in· an editable text Cell immediately enters text
editing mode. A double-click in any other kind of Cell sends the double-click action of the
Matrix (if there is one) in addition to the single-click action.

See also: - sendAction, - sendDoubleAction

2-262 Chapter 2: Application Kit

mouseDownFlags

- (int)mouseDownFlags

Returns the flags (for example, NX_SHIFTMASK) that were in effect at the mouse-down
event that started the current tracking session. Use this method if you want to access these
flags, but don't want the overhead of having to use sendActionOn: to add
NX_MOUSEDOWNMASK to every Cell to get them. This method is valid only during
tracking; it's not useful if the target of the Matrix initiates another tracking loop as part of
its action method (as a Cell that pops up a PopUpList does, for example).

See also: - sendActionOn: (Cell)

performKeyEquivalent:

- (BOOL)performKeyEquivalent:(NXEvent *)theEvent

If there is a Cell in the Matrix that has a key equivalent equal to the character in
theEvent->data.key.charCode, that Cell is made to react as if the user had clicked it by
highlighting, changing its state as appropriate, sending its action if it has one, and then
unhighlighting. Returns YES if a Cell in the Matrix responds to the key equivalent in
theEvent, NO if no Cell responds.

Your code should never send this message;· it is sent when the Matrix or one of its
superviews is the first responder and the user presses a key. You may want to override this
method to change the way key equivalents are performed or displayed, or to disable them
in your subclass.

prototype

- prototype

Returns the prototype Cell that is copied whenever a new Cell needs to be made, or nil if
there is none.

See also: - setPrototype:, - initFrame:mode:prototype:numRows:numCols:,
- makeCeIlAt::

putCell:at::

- putCell:newCell
at: (int) row
: (int)col

Replaces the Cell at (row, col) by newCell, and returns the old Cell at that position. Draws
the new Cell if autodisplay is on.

Classes: Matrix 2-263

read:

- read:(NXTypedStream *)stream

Reads the Matrix from the typed stream stream. Returns self.

See also: - write:

removeCoIAt:andFree:

- removeColAt:(int)col andFree:(BOOL)jlag

Removes the column at position col. If flag is YES then the Cells from that column are
freed. Doesn't redraw even if autodisplay is on. Your code should normally send
sizeToCells after invoking this method to resize the Matrix so it fits the reduced Cell count.
Returns self.

See also: - removeRowAt:andFree:, - addCol, - insertColAt:

removeRowAt:andFree:

- removeRowAt:(int)row andFree:(BOOL)flag

Removes the row at position row. If flag is YES then the Cells from that row are freed.
Doesn't redraw even if autodisplay is on. Your code should normally send sizeToCells
after invoking this method to resize the Matrix so it fits the reduced Cell count. Returns
self.

See also: - removeColAt:andFree:, - addRow, - insertRowAt:

renewRows:cols:

- renewRows:(int)newRows cols:(int)newCols

Changes the number of rows and columns in the Matrix. This method uses the same Cells
as before, creating new Cells only if the new size is larger; it never frees Cells. Doesn't
display the Matrix even if autodisplay is on. Your code should normally send sizeToCells
after invoking this method to resize the Matrix so it fits the changed Cell arrangement. This
method deselects all Cells in the Matrix. Returns self.

See also: - addRow, - addCol

2-264 Chapter 2: Application Kit

resetCursorRects

- resetCursorRects

Sends resetCursorRect:in View: to each Cell in the Matrix. Any Cell that has a cursor
rectangle to set up should send the message addCursorRect:cursor: back to the Matrix.
Returns self.

See also: - resetCursorRect:inView: (Cell), - addCursorRect:cursor: (View)

scroIiCeIIToVisible::

- scroIlCeIlToVisible:(int)row :(int)col

If the Matrix is in a scrolling View, then the Matrix will scroll to make the Cell at (row, col)
visible. Returns self.

See also: - scrollRectTo Visible: (View)

selectAII:

- selectAII:sender

If the mode of the Matrix is not NX_RADIOMODE, then all the Cells in the Matrix are
selected and highlighted, and the Matrix is redisplayed. The currently selected Cell is
unaffected. Editable text Cells are not affected. Returns self.

See also: - selectCell:, - selectCeIlAt::, - selectCeIlWithTag:, - selectText:

selectCell:

- selectCell:aCell

If aCell is in the Matrix, then the Cell is selected, the Matrix is redrawn, and the selected
Cell is returned. An editable text Cell's text is selected. Returns nil if the Cellis not in the
Matrix.

See also: - selectCeIlAt::, - selectCeIlWithTag:, - selectAII:, - selectText:

Classes: Matrix 2-265

selectCeIlAt::

- selectCellAt:(int)row :(int)col

Selects the Cell at the position in the Matrix denoted by (row, col). An editable text Cell's
text is selected. If either row or col is -1, then the current selection is cleared (unless the
Matrix is in NX_RADIOMODE and does not allow empty selection). Redraws the affected
Cells and returns self.

See also: - selectCell:, - selectCellWithTag:, - selectAll:, - selectText:

selectCellWithTag:

- selectCellWithTag:(int)an/nt

If the Matrix has a Cell whose tag is equal to an/nt, that Cell is selected. An editable text
Cell's text is selected. Returns self, or nil if there is no such Cell.

See also: - selectCell:, - selectCellAt::, - selectAll:, - selectText:

selectedCell

- selected Cell

Returns the currently selected Cell, or nil if no Cell is selected. If more than one Cell is
selected, returns the last selected Cell; that is, the Cell that is lowest and furthest to the right
in the Matrix.

See also: - getSelectedCells:

selectedCol

- (int)selectedCol

Returns the column number of the selected Cell, or -1 if no Cells are selected. If Cells in
multiple columns are selected, this method returns the number of the last column
containing a selected Cell.

See also: - selectedRow

2-266 Chapter 2: Application Kit

selectedRow

- (int)selectedRow

Returns the row number of the selected Cell, or -1 if no Cells are selected. If Cells in
multiple rows are selected, this method returns the number of the last row containing a
selected Cell.

See also: - selected Col

selectText:

- selectText:sender

If sender is the next Text object of the Matrix (as set with setNextText:), the text in the last
selectable text Cell (the one lowest and furthest to the right) is selected; otherwise, the text
of the first selectable text Cell is selected. Returns the Cell whose text was selected, the
Matrix if such a Cell wasn't found, and nil if the Cell was bound but wasn't enabled or
wasn't selectable.

See also: - selectTextAt::, - selectText: (TextField)

selectTextAt::

- selectTextAt:(int)row :(int)col

Select the text of the Cell at (row, col) in the Matrix, if there is such a Cell and its text is
selectable. Returns the Cell whose text was selected, the Matrix if such a Cell wasn't
found, and nil if the Cell was found but wasn't enabled or wasn't selectable.

See also: - selectText:, - selectText: (TextField)

sendAction

- sendAction

If the selected Cell has both an action and a target, its action is sent to its target. If the Cell
has an action but no target, its action is sent to the target of the Matrix. If the Cell doesn't
have an action, or if there is no selected Cell, the Matrix sends its action to its target.

See also: - sendDoubleAction, - sendAction:to:, - action, - target

Classes: Matrix 2-267

sendAction:to:

- sendAction:(SEL)theAction to:theTarget

If both theAction and theAction are non-null, sends theAction to theTarget. If theAction is
null, sends the action of the Matrix to its target. If theAction is nil, sends theAction to the
target of the Matrix. Returns nil if no target that responds to theAction could be found;
otherwise returns self.

Your code shouldn't normally invoke this method. It is used by event handling methods
such as Cell's trackMouse:inRect:ofView: to send an action to a target in response to an
event within the Matrix.

See also: - sendAction, - sendAction:to: (Control)

sendAction:to:forAIICells:

- sendAction:(SEL)aSelector
to:anObject
forAlICells:(BOOL)jlag

Iterates through the Cells in the Matrix, sending aSelector to anObject for each. aSelector
must represent a method that takes a single argument: the id of the current Cell in the
iteration. aSelector's return value must be a BOOL. Iteration begins with the Cell in the
upper-left comer of the Matrix, proceeding through all entries in the first row, then on to
the next. Returns self.

If aSelector returns NO for any Cell, this method terminates immediately and return self,
without sending the message for other Cells. If it returns YES, this method keeps sending/
the message. /

This method is not invoked to send action messages to target objects in response to
mouse-down events in the Matrix. Instead, you can invoke it if you want to have multiple
Cells in a Matrix interact with an object. For example you could use it to verify the titles
in a list of items, or to enable a series of radio buttons based on their purpose in relation to
anObject.

See also: - sendAction:to:

sendDoubleAction

- sendDoubleAction

If the Matrix has a double-click action, sends that message to the target of the Matrix. If
not, then if the selected Cell (as returned by selectedCell) has an action, that message is

2-268 Chapter 2: Application Kit

sent to the selected Cell's target. If the selected Cell also has no action, then the action of
the Matrix is sent to the target of the Matrix. This method only sends an action if the
selected Cell is enabled. Returns self.

Your code shouldn't invoke this method~ it's sent in response to a double-click event in the
Matrix. You may want to override it to change the search order for an action to send.

See also: - sendAction, - sendAction:to:, - ignoreMultiClick: (Control)

setAction:

- setAction:(SEL)aSelector

Sets the default action of the Matrix, the message sent for a Cell which has no action of its
own. The action of the Matrix is always sent to its target, never to the Cell's target.
Returns self.

See also: - action, - setDoubleAction, - setTarget:, - setAction:at::, - setTarget:at::

setAction:at::

- setAction:(SEL)aSelector
at: (int) row
: (int)col

Sets the action of the Cell at (row, col) to aSelector. Returns self.

See also: - setAction: (ActionCell)

setAutoscroll :

- setAutoscroll:(BOOL)flag

Ifflag is YES and the Matrix is in a scrolling View, it will be automatically scrolled
whenever a the mouse is dragged outside the Matrix after a mouse-down event within its
bounds. Returns self.

setAutosizeCells:

- setAutosizeCells:(BOOL)flag

If flag is YES, then whenever the Matrix is resized, the sizes of the Cells changes in
proportion, keeping the inter-Cell space constant; further, this method verifies that the Cell

Classes: Matrix 2-269

sizes and inter-Cell spacing add up to the exact size of the Matrix, adjusting the size of the
Cells and updating the Matrix if they don't. Ifflag is NO, then the inter-Cell space changes
when the Matrix is resized, with the Cell size remaining constant. Returns self.

See also: - doesAutosizeCells, - update (Control)

setBackgroundColor:

- setBackgroundColor:(NXColor)aColor

Sets the background color for the Matrix to aColor. This color is used to fill the space
between Cells or the space behind any non-opaque Cells. Doesn't redraw the Matrix even
if autodisplay is on. Returns self.

See also: - background Color, - setBackgroundGray:, - setCellBackgroundColor:,
- isAutodisplay (View)

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the background gray level for the Matrix to value. This gray level is used to draw the
inter-Cell space, or the space behind any non-opaque Cells. If the gray level is -1, the
background is transparent (that is, doesn't get drawn). Updates the Matrix if the
background gray level changes. Returns self.

See also: - background Gray, - setBackgroundColor:, - setCellBackgroundGray:,
- update (Control)

setBackgroundTransparent:

- setBackgroundTransparent:(BOOL)flag

Ifflag is YES, sets the background gray level of the Matrix to -1 (transparent). Ifflag is
NO, set the background gray level to NX_ WHITE.

See also: - isBackgroundTransparent, - setBackgroundGray:

2-270 Chapter 2: Application Kit

setCellBackgroundColor:

- setCellBackgroundColor: (NXColor)aColor

Sets the background color for the Cells in the Matrix to aColor. This color is used to fill
the space behind non:"opaque Cells. Doesn't redraw the Matrix even if autodisplay is on.
Returns self.

See also: - cellBackgroundColor, - setCellBackgroundGray:,
- setBackgroundColor:, - isAutodisplay (View)

setCellBackgroundGray:

- setCellBackgroundGray:(float)value

Sets the background gray level for the Cells in the Matrix to value. This gray level is used
to draw the space behind non-opaque Cells. If the gray level is -1, the Cell background is
transparent (that is, doesn't get drawn). Updates the Matrix if the Cell background gray
level changes. Returns self.

See also: - cellBackgroundGray, - setCellBackgroundColor:,
- setBackgroundGray:, - isAutodisplay (View)

setCellBackgroundTransparent:

- setCellBackgroundTransparent:(BOOL)flag

Ifflag is YES, sets the background gray level of Cells in the Matrix to -1 (transparent). If
flag is NO, set their background gray level to NX_ WHITE.

See also: - isCellBackgroundTransparent, - setCellBackgroundGray:

setCellClass:

- setCellClass:classld

Configures a single Matrix to use instances of classld when creating new Cells. classld
should be the id of a subclass of Cell, obtained by sending the class message to either the
Cell subclass object or to an instance of that subclass. The Cell class is that set with the
class method setCellClass:; the default Cell class is ActionCell. Returns self.

You only need to use this method with Matrices initialized with initFrame:, since the other
initializers allow you to specify an instance-specific Cell class or Cell prototype.

See also: + setCellClass:, - setPrototype:, - initFrame:

Classes: Matrix 2-271

setCeliSize:

- setCellSize:(const NXSize *)aSize

Sets the width and the height of each of the Cells in the Matrix to those in aSize. This may
change the size of the Matrix. Does not redraw the Matrix, even if autodisplay is on.

See also: - getCellSize:, - calcSize, - isAutodisplay (View)

setDoubleAction:

- setDoubleAction:(SEL)aSelector

Make aSelector the action sent to the target of the Matrix when the user double-clicks a
Cell. A double-click action is always sent after the appropriate single-click action; the
Cell's if it has one, otherwise the single-click action of the Matrix. Returns self.

If a Matrix has no double-click action set, then by default a double-click is treated as a
single-click. Setting a double-click action also sets allowMultiClick: to YES; be sure to
set the Matrix to ignore multiple-clicks if you later remove the double-click action.

See also: - doubleAction, - setAction:, - setTarget:, - ignoreMultiClick: (Control)

setEmptySelectionEnabled:

- setEmptySelectionEnabled:(BOOL)flag

Ifflag is YES, then the Matrix will allow one or zero Cells to be selected. Ifflag is NO,
then the Matrix will allow one and only one Cell (not zero Cells) to be selected. This setting
has effect only in NX_RADIOMODE.

This method replaces the allowEmptySel: method of NeXTSTEP Release 2.

See also: - isEmptySelectionEnabled

setEnabled:

- setEnabled:(BOOL)flag

Ifflag is YES, enables all Cells in the Matrix; if NO, disables all Cells. If autodisplay is
on, this redraws the entire Matrix. Returns self.

See also: - isEnabled, - setEnabled: (ActionCell), - isAutodisplay (View)

2-272 Chapter 2: Application Kit

setError Action:

- setErrorAction:(SEL)aSelector

Sets the action sent to the target of the Matrix when the user enters an illegal value in a text
Cell for that Cell's entry type (as set by Cell's setEntryType: method and checked by
Cell's isEntryAcceptable: method). Returns self.

See also: - errorAction, - setEntryType: (Cell), - isEntryAccectable: (Cell)

setFont:

- setFont:JontObject

Sets the Font for the Matrix to JontObject. This will cause all current Cells to have their
Font changed to JontObject as well as cause all future Cells to have that Font. If autodisplay
is on, this redraws the entire Matrix. Returns self.

See also: - font, - isAutodisplay (View)

setlcon:at::

- setIcon:(const char *)iconName
at: (int) row
: (int)col

Sets the icon of the Cell at (row, col) to the NXlmage with the name iconName. If
autodisplay is on, then the Cell is redrawn. Returns self.

See also: - setIcon: (ButtonCell, Cell), - isAutodisplay (View)

setl ntercell:

- setIntercell:(const NXSize *)aSize

Sets the width and the height of the space between Cells to those in aSize. Doesn't redraw
the Matrix, even if autodisplay is on. Returns self.

See also: - getIntercell:, - isAutodisplay (View)

Classes: Matrix 2-273

setMode:

- setMode:(int)aMode

Sets the selection mode of the Matrix. aMode can be one of four constants:

NX_TRACKMODE
NX_HIGHLIGHTMODE
NX_RADIOMODE
NX_LISTMODE

Just track the mouse inside the Cells
Highlight the Cell, then track, then unhighlight
Allow no more than one selected Cell
Allow multiple selected Cells

The behaviors associated with these constants are explained in the class description.

See also: - mode

setNextText:

- setNextText:anObject

Sets anObject as the object whose text is selected when the user presses Tab while editing
the last editable text Cell. anObject should respond to the selectText: message. If an Object
also responds to both selectText: and setPreviousText:, it's sent setPrevious: with the
receiving Matrix as the argument; this builds a two-way connection, so that pressing Tab in
the last text Cell selects anObject's text, and pressing Shift-Tab in anObject selects the last
text Cell of the Matrix. Returns self.

See also: - setPreviousText:, - selectText:

setPreviousText:

- setPreviousText:anObject

Sets anObject as the object whose text is selected when the user presses Shift-Tab while
editing the first editable text Cell. anObject should respond to the selectText: message.
Your code shouldn't need to use this method directly, since it's invoked automatically by
setNextText:. In deference to setNextText:, this method doesn't build atwo-way
connection. Returns self.

See also: - setNextText:, - selectText:

2-274 Chapter 2: Application Kit

setPrototype:
- setPrototype:aCell

Sets the prototype Cell that is copied whenever a new Cell needs to be made. aCell should
be an instance of a subclass of Cell. If a Matrix has a prototype Cell, it doesn't use its Cell
class object to create new Cells; if you want your Matrix to use its Cell class, invoke this
method with nil as the argument. The Matrix is considered to own the prototype, and will
free it when the Matrix is itself freed; be sure to make a copy of an instance that your code
may use elsewhere. Returns the old prototype Cell, or nil if there wasn't one.

If you implement your own Cell subclass for use as a prototype with a Matrix, make sure
your Cell does the right thing when it receives a copy message. For example, Object's copy
copies only pointers, not what they point to-sometimes this is what it should do,
sometimes not. The best way to implement copy when you subclass Cell is send copy to
super, then copy instance variable values (for example, title strings) into your subclass
instance individually. Also, be careful that freeing the prototype will not damage any of
the copies that were made and put into the Matrix (due to shared pointers that are freed,
for example).

See also: - prototype, - initFrame:mode:prototype:numRows:numCols:

setReaction:
- setReaction:(BOOL)flag

Sent to the Matrix by the target of an action message. If flag is NO, prevents the selected
Cell from changing back to its previous state; if YES, allows it to revert to its previous state
(to reflect unhighlighting, for example). Invoke this from an action method if the action
causes the Cell to change in such a way that trying to unhighlight it would be incorrect; for
example, if the Cell is deleted or its visual appearance completely changed by the action
method. Returns self.

setScroliable:
- setScrollable:(BOOL)flag

Sets all the Cells to be scrollable, so that the text they contain scrolls to remain in view if
the user types past the edge of the Cell. Returns self.

See also: - setScrollable: (Cell)

Classes: Matrix 2·275

setSelectionByRect:
- setSelectionByRect:(BOOL)flag

Ifflag is YES, a rectangle of Cells in the Matrix can be selected by dragging the cursor; if
flag is NO, such selection isn't possible.

See also: - isSelectionByRect, - setSelectionFrom:to:anchor:lit:

setSelectionFrom:to:anchor:lit:
- setSelectionFrom:(int)startPos

to: (int)endPos
anchor: (int)anchorPos
lit: (BOOL)flag

Programmatically selects a range of Cells. startPos, endPos, and anchorPos are Cell
positions, counting from 0 at the upper left Cell of the Matrix, rows before columns. For
example, the third Cell in the top row would be number 2.

startPos and endPos are used to mark where the user would have pressed the mouse button
and released it, respectively. anchorPos locates the "last selected Cell" with regard to
extending the selection by Shift- or Alternate-clicking. Finally, lit determines whether
Cells selected by this method are highlighted.

See also: - isSelectionByRect, - getSelectedCells:, - cellList

setState:at::
- setState:(int)value

at: (int) row
: (int)col

Sets the state of the Cell at row row and column col to value. For radio-mode Matrices, this
is identical to selectCeIlAt:: except that the state can be set to any arbitrary value. If
autodisplay is on, redraws the affected Cell; if the Matrix is in radio mode, the Cell is
redrawn regardless of the setting of auto display. Returns self.

See also: - setState: (Cell), - selectCeIlAt::, - isAutodisplay (View)

2-276 Chapter 2: Application Kit

setTag:at::

- setTag:(int)an/nt
at: (int) row
: (int)col

If there's a Cell at (row, col), sets that Cell's tag to an/nt and returns self.

See also: - setTag:target:action:at::, - setTag: (ActionCell)

setTag:target:action:at::

- setTag:(int)an/nt
target:anObject
action: (SEL)aSelector
at: (int) row
: (int)col

If there's a Cell at (row, col), sets that Cell's tag, target, and action to an/nt, anObject, and
aSelector, respectively. Returns self.

See also: - setTag:at::, - setTarget:at::, - setAction:at::

setTarget:

- setTarget:anObject

Sets the target object of the Matrix. This is the object to which actions will be sent for Cells
that don't have their own target. Returns self.

See also: - target, - action

setTarget:at::

- setTarget:anObject
at: (int) row
: (int)col

If there's a Cell at (row, col), sets that Cell's target to anObject and returns self.

See also: - setTag:target:action:at::, - setTarget:, - setTarget: (ActionCell)

Classes: Matrix 2-277

setTextDelegate:
- setTextDelegate:anObject

Sets the object to which the Matrix will forward messages from the field editor. These
messages include text:isEmpty:, textWillEnd:, textDidEnd:endChar:,
textWilIChange:, and textDidChange:. Returns self.

See also: - textDelegate, Text class delegate methods

setlitle:at::
- setTitle:(const char *)aString

at: (int) row
: (int)col

If there's a Cell at (row, col), sets that Cell's title to aString and returns self.

Note: Use this method only with Matrices that have Cells that respond to setTitle:. Not
all subclasses of Cell implement this method.

See also: - setTitle: (ButtonCell, FormCell)

sizeTo::
- sizeTo:(float)width :(float)height

Resizes the Matrix to width and height, but doesn't redraw it. If the Matrix has been set to
auto size its Cells, each Cell is resized proportionally to the change in size of the Matrix,
keeping the inter-Cell spacing constant; if the Matrix doesn't autosize, then the inter-Cell
spacing is adjusted, and the Cells remain the same size. If editing is going on in the Matrix,
it's aborted; after the Matrix is redrawn, the text is reselected to allow editing to continue.
Returns self.

See also: - sizeToCells, - sizeToFit, - setAutosizeCells:, - selectText:

sizeToCelis
- sizeToCells

Changes the width and the height of the Matrix frame so that it exactly contains the Cells.
Does not redraw the Matrix. Returns self.

See also: - sizeTo::, - sizeToFit

2-278 Chapter 2: Application Kit

sizeToFit

- sizeToFit

Changes the Cell size to accommodate the Cell with the largest contents in the Matrix, then
changes the width and the height of the Matrix frame so that it exactly contains the Cells.
Doesn't redraw the Matrix. Returns self.

See also: - sizeTo::, - sizeToCells, - calcCellSize: (Cell)

target

- target

Returns the target of the Matrix. This object receives action messages for Cells that don't
have their own target or action, and receives all double-click action messages.

See also: - setTarget:, - setTarget:at::, - action

textDelegate

- textDelegate

Returns the object that receives messages passed on by the Matrix from the field editor. The
field editor, as mentioned in the TextField class specification, is the Text object used to draw
text in all Cells in a Window.

See also: - setTextDelegate:

textDidChange:

- textDidChange:textObject

Passes this message on, with the same argument, to the Text delegate of the Matrix.
Override this method if you want your subclass of Matrix to act as the field editor's
delegate. Returns self.

See also: - textDidChange: (Text class delegate method)

Classes: Matrix 2-279

textDidEnd:endChar:

- textDidEnd:textObject endChar:(unsigned short)whyEnd

Invoked by textObject (the field editor) when text editing ends. Passes this message on,
with the same argument, to the Text delegate of the Matrix, then ends editing for the field
editor and checks whyEnd to see if an action key (Return or Tab) was pressed. If Return
was pressed, an action message is sent as explained in the sendAction method description.
If Tab was pressed, the next editable text Cell is selected, or if the current Cell is the last
one, selectText: is sent to the next text if there is one and it responds; failing that, the first
selectable text field in the Matrix is selected (that is, the selection cycles within a Matrix
with no next text). If Shift-Tab was pressed, a similar sequence is performed in reverse.
Returns the object sent the selectText: message.

You may want to override this method to interpret more characters (such as the Enter or
Escape keys) in ending editing.

See also: - sendAction, - setNextText:, - setPreviousText:,
- textDidEnd:endChar: (Text class delegate method)

textDidGetKeys:isEmpty:

- textDidGetKeys:textObject isEmpty:(BOOL)jlag

Passes this message on, with the same argument, to the Text delegate of the Matrix.
Override this method if you want your subclass of Matrix to act as the field editor's
delegate. Returns self.

See also: - textDidGetKeys:isEmpty: (Text class delegate method)

textWiliChange:

- (BOOL)textWillChange:textObject

Invoked automatically during editing to determine if it is OK to edit the selected text. This
method checks whether the Cell is editable and sends textWillChange: to the TextField's
Text delegate to allow it to respond. Returns YES if the text isn't editable; NO if the text
is editable but the Text delegate doesn't respond to textWillChange:; the text delegate's
return value for textWillChange: if the Text delegate responds to it.

See also: - setEditable: (Cell), - setTextDelegate:, - textWillChange: (Text class
delegate method)

2-280 Chapter 2: Application Kit

textWiliEnd:

- (BOOL)textWiIlEnd:textObject

Invoked automatically before text editing ends. Checks the text by sending
isEntryAcceptable: to the Cell being edited. If the entry isn't acceptable, sends the error
action to the target. This method is then passed on to the Text delegate with the same
argument. The return value is based on whether the entry is acceptable and on the return
value from the Text delegate. If the delegate responds to textWiIlEnd:, then the return
value is NO only if the entry is acceptable and the delegate returns NO. Otherwise the
return value is YES to indicate that editing shouldn't end, and this method generates a beep
(to indicate an error in the entry).

See also: - isEntryAcceptable: (Cell), - setTextDelegate:, - textWillEnd: (Text class
delegate method)

validateSize:

- validateSize:(BOOL)jlag

Ifjlag is YES, then the size information in the Matrix is assumed correct. Ifjlag is NO,
then calcSize will be invoked before any further drawing is done. Returns self.

See also: - calcSize

write:

- write:(NXTypedStream *)stream

Writes the receiving Matrix to the typed stream stream. Returns self.

See also: - read:

Classes: Matrix 2-281

Menu

Inherits From: Panel: Window : Responder: Object

Declared In: appkitlMenu.h

Class Description

A Menu is a Panel containing a column of MenuCells in a Matrix. Each MenuCell can be
configured to send its action message to a target, or to bring up a submenu. When the user
clicks a submenu item, the submenu is displayed on the screen, attached to its supermenu
so that if the user drags the supermenu, the submenu follows it. A submenu may also be
tom away from its supermenu, in which case it displays a close Button.

Exactly one Menu created by the application is designated as the main Menu for the
application (with Applications setMainMenu: method). This Menu is displayed on top of
all other windows whenever the application is active, and should never display a close
Button (because it shouldn't have a supermenu).

Many standard Menus are available in Interface Builder, with Menu items that are
initialized to work correctly without any additional effort on your part (the Edit, Windows,
and Services menus, for example). You can easily use Interface Builder to create other
Menu items that display the commands and perform the actions needed by your application.

See the MenuCell and Matrix class specificiations for more details.

Instance Variables

id supermenu;
id matrix;
id attachedMenu;
NXPoint lastLocation;
id reserved;

2-282 Chapter 2: Application Kit

struct _menuFlags {
unsigned int sizeFitted: 1;
unsigned int autoupdate: 1;
unsigned int attached: 1;
unsigned int torn Off: 1 ;
unsigned int wasAttached: 1;
unsigned int wasTornOff: 1;

} menuFlags;

supermenu

matrix

attachedMenu

lastLocation

reserved

menuFlags. sizeFitted

menuFlags.autoupdate

menuFlags.attached

menuFlags. tom Off

menuFlags. wasAttached

menuFlags. wasTomOff

Method Types

Creating a Menu zone

Initializing a new Menu

The Menu that this Menu is a submenu of.

The Matrix that contains the MenuCells.

The submenu currently attached to this Menu.

Reserved for use by NeXT.

Reserved for use by NeXT.

True if the Menu has been sized to fit the Matrix.

True if the Menu accepts automatic update messages.

True if the Menu is attached to its supermenu.

True if the Menu has been tom off of its supermenu.

True if the Menu is normally attached to its supermenu.

True if the Menu was tom off before tracking a
popped-up Menu.

+ setMenuZone:
+menuZone

- init
- initTitle:

Setting up the Menu commands - addltem:action:keyEquivalent:
- setltemList:

Finding Menu items

Building submenus

- itemList

- findCellWithTag:

- setSubmenu:forItem:
- submenuAction:

Classes: Menu 2-283

Managing Menu windows - moveTopLeftTo::
- windowMoved:
- getLocation:forSubmenu:
- sizeToFit
- close

Displaying the Menu - display
- setAutoupdate:
- update

Handling events - mouseDown:
- rightMouseDown:

Archiving - read:
- write:
- awake

Class Methods

menuZone

+ (NXZone *)menuZone

Returns the zone from which new Menus should be allocated. If there isn't one, creates and
returns a zone named "Menus." After invoking this method, you should allocate all new
Menus from this zone.

See also: - aHoe (Object), + setMenuZone:

setMenuZone:

+ setMenuZone:(NXZone *)zone

Sets to zone the zone from which new Menus should be allocated.

See also: - aHoe (Object), + menuZone:

2-284 Chapter 2: Application Kit

Instance Methods

addltem:action:keyEquivalent:

- addltem:(const char *)aString
action: (SEL)aSe lector
keyEquivalent: (unsigned short)charCode

Adds a new command named aString to the bottom of the receiving Menu and returns the
MenuCell created. The MenuCell's action method is set to aSelector, but its target is nil.
charCode is set as the MenuCell's key equivalent. The command name and key equivalent
aren't checked for duplications within the same Menu (or any other Menu); be sure to
assign them uniquely. The new MenuCell is enabled, but has no tag or alternate title; your
code may set these, but should never set a MenuCell's icon.

This method doesn't automatically redisplay the Menu. Upon the next display message,
the Menu is automatically sized to fit and displayed.

See also: - setSubmenu:forltem:

awake

-awake

Checks whether an unarchived Menu should have a close Button. Your code shouldn't
invoke this method; it's invoked by the read: method. Returns self.

See also: - read:

close

- close

Overrides Window's close method. Ensures that attached submenus are closed along
with the receiver.

See also: - close (Window)

Classes: Menu 2-285

display

- display

Overrides Window's display method so that the Menu is automatically sized to fit its
Matrix of items if needed. All Menu methods that change the appearance of the Matrix
delay resizing and displaying the Menu until it receives this message.

See also: - sizeToFit

findCeliWithTag:

- findCellWithTag:(int)aTag

Returns the MenuCell that has aTag as its tag, or nil if no such Cell can be found. If your
application uses MenuCell tages, each MenuCell should have a unique tag.

See also: - findCellWithTag: (Matrix), - setTag: (ActionCell)

getLocation:forSubmenu:

- getLocation:(NXPoint *)theLocation forSubmenu:aSubmenu

Returns the location in screen coordinates at which the lower-left comer of the receiving
Menu's submenu should be drawn. Menu invokes this method whenever it brings up a
submenu. By default, the submenu is to the right of its supermenu, with its title bar aligned
with the supermenu's. Your code need never directly use this method, but may override it
to cause the submenu to be attached at a different location.

See also: - submenuAction:

init

-init

Initializes and returns the receiver, a new instance of Menu, displaying the title "Menu".
All other features are as described in the initTitle: method below.

See also: - initTitle:

2·286 Chapter 2: Application Kit

initlitle:

- initTitle:(const char *)aTitle

Initializes and returns the receiver, a new instance of Menu, displaying the title a Title . The
Menu is positioned in the upper left comer of the screen, and has no command items. A
new Menu must receive an orderFront: message to be displayed on the screen; the
Application object takes care of this for standard Menus.

The Menu is created as ~ buffered window, of style NX_MENUSTYLE and button mask
NX_CLOSEBUTTON (though a Menu hides its close button until it's tom off from its
supermenu). All Menus have an event mask that excludes keyboard events, so they never
become the key window or main window.

See also: - addItem:action:keyEquivalent:, - init

itemList

- itemList

Returns the Matrix of MenuCells used by the Menu, which your code can use to add or
rearrange command items directly. Be sure to send sizeToFit after altering the Matrix, as
the Menu won't know that the Matrix has been altered.

See also: - setItemList:, - sizeToFit

mouseDown:

- mouseDown:(NXEvent *)theEvent

Overrides the Responder method to catch a mouse-down event instead of passing it along,
so that the Menu can track the mouse itself and manage display of its submenus properly.
MenuCell's trackMouse:inRect:ofView: sends this message. Returns self.

See also: - rightMouseDown:, - trackMouse:inRect:ofView: (MenuCell)

moveTopLeftTo::

- moveTopLeftTo:(NXCoord)x :(NXCoord)y

Moves the top left comer of the Menu to the position on the screen defined (in screen
coordinates) by x and y. This method is overriden from Window's to resize the Matrix if
needed before redisplaying the Menu at the new location.

See also: - moveTo:: (Window)

Classes: Menu 2-287

read:

- read:(NXTypedStream *)stream

Reads the Menu from the typed stream stream. Returns self.

See also: - awake, - write:

rightMouseDown:

- rightMouseDown:(NXEvent *)theEvent

Pops the menu up under the cursor position in theEvent. Before doing so, this method saves
the current state of the Menu (including selected cells, attached submenus, menu positions,
and so on). The menu is popped up with no Cells selected or submenus attached. The
Menu is tracked as for a mouseDown: event. On mouse-up, the Menu's state is restored
so that the original Menu arrangment on screen isn't changed. Returns self.

See also: - mouseDown:

setAutoupdate:

- setAutoupdate:(BOOL)flag

If flag is YES, the Menu will invoke the update action for each MenuCell whenever it
receives an update message-usually sent by the Application object when autoupdating of
windows is enabled. If NO, the Menu doesn't update its MenuCells on receiving an
update message.

See also: - update, - setAutoupdate: (Application), - setUpdateAction: (MenuCell)

setltem List:

- setItemList:aMatrix

Sets the Menu's Matrix of items to aMatrix. A following display message will size the
Menu to fit the new Matrix before drawing. Returns the old Matrix.

See also: - itemList, - display

2-288 Chapter 2: Application Kit

setSubmenu:forltem:

- setSubmenu:aMenu forltem:aCeli

Sets aMenu as the submenu of the receiver, controlled by the MenuCell aCeli. aCell's
target is set to aM enu, its action to submenuAction: and its icon to the arrow indicating
that it brings up a submenu. Doesn't remove aCell's key equivalent. If aMenu was on
screen, it won't be removed from the screen or moved until it's first brought up as a
submenu. Returns aCeli.

See also: - submenuAction:

sizeToFit

- sizeToFit

Sizes the Menu's Matrix to its MenuCells, so that all items fit in as small a rectangle as
possible, and then fits the Menu to the resized Matrix. Use this method after you've added
or altered items by sending messages directly to the Matrix. When the Menu is resized, its
upper left comer remains fixed. After performing any necessary resizing, this method
redisplays the Menu.

See also: - sizeToFit (Matrix), - display

submenuAction:

- submenuAction:sender

Action method sent to a submenu associated with an entry in a Menu. If sender's Window
is a visible Menu, the receiver attaches and displays itself as a submenu of the sender's
Menu; otherwise, does nothing. sender should be the Matrix containing the MenuCell that
brings up the submenu. Returns self.

See also: - setSubmenu:forltem:

update

- update

Updates the Menu's items. If the Menu has been set to autoupdate, this method gets the
update action method for each of its MenuCells and sends that method to the first of the
following that responds to it: the Menu's delegate, NXApp, or NXApp's delegate. If a
MenuCell's update action returns YES, that MenuCell is redrawn.

See also: - setAutoupdate: - setUpdateAction: (MenuCell)

Classes: Menu 2-289

windowMoved:
- windowMoved:(NXEvent *)theEvent

Overrides the Window method to implement tear-off Menu behavior. When a submenu is
torn off, the item selected in its supermenu is unhighlighted. The submenu is flagged as
detached, is moved to the appropriate window level, and displays its close Button.
Returns self.

See also: - windowMoved: (Window)

write:
- write:(NXTypedStream *)stream

Writes the receiving Menu to the typed stream stream. Returns self.

See also: - read:

2-290 Chapter 2: Application Kit

MenuCel1

Inherits From: ButtonCell : ActionCell : Cell: Object

Declared In: appkitlMenuCell.h

Class Description

MenuCell is a subclass of ButtonCell that appears in Menus. MenuCells draw their text
left-justified and show an optional key equivalent or submenu arrow on the right. See the
Menu class specification for more information. PopUpList is a subclass of Menu that uses
MenuCells for its entries.

Instance Variables

SEL updateAction;

updateAction

Method Types

Initializing a new MenuCell

Setting the update action

Checking for a submenu

Tracking the mouse

Setting user key equivalents

Archiving

Method to make the MenuCell reflect its applicability to
the application's state

- init
- initTextCell:

- setUpdateAction:forMenu:
- updateAction

- has Submenu

- trackMouse:inRectotView:

+ useU serKeyEquivalents:
- userKeyEquivalent

- read:
- write:

Classes: MenuCell 2-291

Class Methods

useUserKeyEquivalents:

+ useUserKeyEquivalents:(BOOL)fiag

Sets whether MenuCells conform to user preferences for key equivalents. Iffiag is YES,
then MenuCells replace their key equivalents with those in the user's defaults. If NO, the
key equivalents originally assigned to the MenuCells are used.

See also: - userKeyEquivalent

Instance Methods

hasSubmenu

- (BOOL)hasSubmenu

Return YES if the MenuCell brings up a submenu, NO otherwise.

See also: - setSubmenu:forItem: (Menu)

init

- init

Initializes and returns the receiver, a new instance of MenuCell, with the default
title "MenuItem".

See also: - initTextCell:

initTextCell:

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of MenuCell, with aString as its title.
This is the designated initializer for the MenuCell class; override this method if you create
a subclass of MenuCell that performs its own initialization. You should never use Cell's
initIconCell: with MenuCells.

See also: - init

2-292 Chapter 2: Application Kit

read:

- read:(NXTypedStream *)stream

Reads the MenuCell from the typed stream stream. Returns self.

See also: - write:

setUpdateAction:forMenu:

- setUpdateAction:(SEL)aSelector forMenu:aMenu

Sets the MenuCell's update action to aSelector, and sets aMenu to autoupdate. A
MenuCell's update action should be a method that takes one id, the MenuCell to be
updated, as the argument, and returns YES if the MenuCell needs to be redrawn, NO if it
doesn't. The update action should alter the MenuCell if needed to reflect its applicability
in the current state of the application. This may involve enabling or disable the MenuCell,
changing its title, or setting its state. The MenuCell's Menu sends the update action to the
first of the following that responds to it: the Menu's delegate, the Application object, or the
Application object's delegate. Returns self.

See also: - update (Menu), - setAutoupdate: (Menu),
- updateWindows: (Application)

trackMouse:inRect:ofView:

- (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
otView:controlView

Passes theEvent as the argument of a mouseDown: message to the receiver's Menu. Menus
handle all mouse tracking themselves.

See also: - mouseDown: (Menu)

updateAction

- (SEL)updateAction

Returns the update action used to update the receiver's state in response to an automatic
application update.

See also: - setUpdateAction:

Classes: MenuCell 2-293

userKeyEquivalent

- (unsigned short)user Key Equivalent

If the MenuCell class has been configured to use user key equivalents, returns the
user-assigned key equivalent for the receiving MenuCell.

See also: + useUserKeyEquivalents:

write:

- write:(NXTypedStream *)stream

Writes the receiving MenuCell to the typed stream stream. Returns self.

See also: - read:

2-294 Chapter 2: Application Kit

NXBitl11apll11ageRep

Inherits From: NXImageRep : Object

Declared In: appkitiNXBitmapImageRep.h

Class Description

An NXBitmapImageRep is an object that can render an image from bitmap data. The data
can be in Tag Image File Format (TIFF), or it can be raw image data. If it's raw data, the
object must be informed about the structure of the image-its size, the number of color
components, the number of bits per sample, and so on-when it's first initialized. If it's
TIFF data, the object can get this information from the various TIFF fields included with
the data.

Although NXBitmapImageReps are often used indirectly, through instances of the
NXImage class, they can also be used directly-for example to manipulate the bits of an
image as you might need to do in a paint program.

Setting Up an NXBitmaplmageRep

A new NXBitmapImageRep is passed bitmap data for an image-or told where to find it­
when it's first initialized:

• TIFF data can be read from a stream, from a file, or from a section of the __ TIFF
segment of the application executable. If it's stored in a section or a separate file, the
object will delay reading the data until it's needed.

• Raw bitmap data is placed in buffers, and pointers to the buffers are passed to the object.

An NXBitmapImageRep can also be created from bitmap data that's read from an existing
(already rendered) image. The object created from this data is able to reproduce the image.

Although the NXBitmapImageRep class inherits NXImageRep methods that set image
attributes, these methods shouldn't be used. Instead, you should either allow the object to
find out about the image from the TIFF fields or use methods defined in this class to supply
this information when the object is initialized.

Classes: NXBitmaplmageRep 2-295

TIFF Compression

TIFF data can be read and rendered after it has been compressed using anyone of the four
schemes briefly described below:

LZW

PackBits

JPEG

CCITTFAX

Compresses and decompresses without information loss, achieving
compression ratios of anywhere from 2: 1 to 3: 1. It may be somewhat
slower to compress and decompress than the PackBits scheme.

Compresses and decompresses without information loss, but may not
achieve the same compression ratios as LZW.

Compresses and decompresses with some information loss, but can
achieve compression ratios anywhere from 10: 1 to 100: 1. The ratio is
determined by a user-settable factor ranging from 1.0 to 255.0, with
higher factors yielding greater compression. More information is lost
with greater compression, but 15: 1 compression is safe for publication
quality. Some images can be compressed even more. JPEG
compression can be used only for images that specify at least 4 bits
per sample.

Compresses and decompresses 1 bit grayscale images using
international fax compression standards CCITT3 and CCITT4.

An NXBitmapImageRep can also produce compressed TIFF data for its image using any
of these schemes.

Instance Variables

None declared in this class.

Method Types

Initializing a new NXBitmapImageRep object

2-296 Chapter 2: Application Kit

- initFromSection:
- initFromFile:
- initFromStream:
- initData:fromRect:
- initData:pixels Wide:pixelsHigh: bitsPerSample:

samplesPerPixel:hasAlpha:isPlanar:colorSpace:
bytesPerRow: bitsPerPixel:

- initDataPlanes:pixels Wide:pixelsHigh:
bitsPerSample:samplesPerPixel:hasAlpha:
isPlanar:colorSpace: bytesPerRow: bitsPerPixel:

Creating a List of NXBitmapImageReps
+ newListFromSection:
+ newListFromSection:zone:
+ newListFromFile:
+ newListFromFile:zone:
+ newListFromStream:
+ new ListFromStream: zone:

Reading information from a rendered image
+ sizeImage:
+ sizeImage:pixels Wide:pixelsHigh: bitsPerSample:

samplesPerPixel:hasAlpha:isPlanar:colorSpace:

Copying and freeing an NXBitmapImageRep
- copyFrornZone:
-free

Getting information about the image
- bitsPerPixel
- samplesPerPixel
- bitsPerSample (NXImageRep)
- isPlanar
- numPlanes
- numColors (NXlmageRep)
- has Alpha (NXlmageRep)
- bytesPerPlane
- bytesPerRow
- colorSpace
- pixels Wide (NXImageRep)
- pixelsHigh (NXlmageRep)

Getting image data -data
- getDataPlanes:

Drawing the image -draw
- drawIn:
- drawAt: (NXImageRep)

Producing a TIFF representation of the image
- writeTIFF:
- writeTIFF:usingCompression:
- writeTIFF:usingCompression:andFactor:

Setting/checking compression types
+ getTIFFCompressionTypes:count:
+ localizedN ameForTIFFCompressionType:
- canBeCompressedU sing:
- getCompression:andFactor:
- setCompression:andFactor:

Classes: NXBitmaplmageRep 2-297

Checking unpacked data handling
+ setUnpackedImageDataAcceptable:
+ is UnpackedImageDataAcceptable

Archiving - read:
- write:

Class Methods

getTIFFCompressionTypes:count:

+ (void)getTIFFCompressionTypes:(const int **)list count:(int *)numTypes

Returns, by reference, an integer array representing all available compression types that can
be used when writing a TIFF image. The number of elements in list is represented by
numTypes. list belongs to the NXBitmapImageRep class; it shouldn't be freed or altered.

The following compression types are supported:

Constant

NX_TIFF _COMPRESSION_NONE
NX_TIFF _COMPRESSION_CCITTFAX3
NX_TIFF _COMPRESSION_CCITTFAX4
NX_TIFF _COMPRESSION_LZW
NX_TIFF _COMPRESSION_JPEG
NX_TIFF _COMPRESSION_NEXT
NX_TIFF _COMPRESSION_PACKBITS
NX_TIFF _COMPRESSION_OLDJPEG

Value

1
3
4
5
6
32766
32773
32865

Note that not all compression types can be used for all images:

Usage

1 bps images only
1 bps images only

Input only

Input only

NX_ TIFF _COMPRESSION_NEXT can be used only to retrieve image data. Because
future releases of NeXTSTEP may include other compression types, always use this
method to get the available compression types-for example, when you implement a user
interface for selecting compression types.

See also: + localizedNameForTIFFCompressionType:, - canBeCompressedUsing:

isUnpackedlmageDataAcceptable

+ (BOOL)isUnpackedlmageDataAcceptable

Returns YES if the NXBitmapImageRep class can accept unpacked image data. You can
set the value returned by this method through the setUnpackedlmageDataAcceptable:
class method.

See also: + setUnpackedlmageDataAcceptable:

2-298 Chapter 2: Application Kit

localizedNameForTIFFCompressionType:

+ (const char *)localizedNameForTIFFCompressionType:(int)compression

Returns a string containing the localized name for the compression type represented by
compression; returns NULL if compression is unrecognized. Compression types are listed
in the getTIFFCompressionTypes:count: class method description. When implementing
a user interface for selecting TIFF compression types, use the getTIFF. .. method to get the
list of supported compression types, then use this method to get the localized names for
each compression type.

The returned string belongs to the NXBitmapImageRep class; don't attempt to alter or
free it.

See also: + getTIFFCompressionTypes:count:

newListFromFile:

+ (List *)newListFromFile:(const char *)filename

Creates one new NXBitmapImageRep instance for each TIFF image specified in the
filename file, and returns a List object containing all the objects created. If no
NXBitmapImageReps can be created (for example, if filename doesn't exist or doesn't
contain TIFF data), nil is returned. The List should be freed when it's no longer needed.

Each new NXBitmapImageRep is initialized by the initFromFile: method, which reads
information about the image from filename, but not the image data. The data will be read
when it's needed to render the image.

See also: + newListFromFile:zone:, - initFromFile:

newListFromFile:zone:

+ (List *)newListFromFile:(const char *)filename zone:(NXZone *)aZone

Returns a List of new NXBitmapImageRep instances, just as newListFromFile: does,
except that the List object and the NXBitmapImageReps are allocated from memory
located in aZone.

See also: + newListFromFile:, - initFromFile:

Classes: NXBitmaplmageRep 2-299

newListFromSection:

+ (List *)newListFromSection:(const char *)name

Creates one new NXBitmapImageRep instance for each TIFF image specified in the name
section of the __ TIFF segment in the executable file or in the name file in the application
bundle, and returns a List object containing all the objects created. If not even one
NXBitmapImageRep can be created (for example, if the name section doesn't exist or
doesn't contain TIFF data), nil is returned. The List should be freed when it's no longer
needed.

Each new NXBitmapImageRep is initialized by the initFromSection: method, which reads
information about the image from the section, but doesn't read image data. The data will
be read when it's needed to render the image.

See also: + newListFromSection:zone:, - initFromSection:

newListFromSection:zone:

+ (List *)newListFromSection:(const char *)name zone:(NXZone *)aZone

Returns a List of new NXBitmapImageRep instances, just as newListFromSection: does,
except that the List object and the NXBitmapImageReps are allocated from memory
located in aZone.

See also: + newListFromSection:, - initFromSection:

newListFromStream:

+ (List *)newListFromStream:(NXStream *)stream

Creates one new NXBitmapImageRep instance for each TIFF image that can be read from
stream, and returns a List object containing all the objects created. If not even one
NXBitmapImageRep can be created (for example, if the stream doesn't contain TIFF data),
nil is returned. The List should be freed when it's no longer needed.

The data is read and each new object initialized by the initFromStream: method.

See also: + newListFromStream:zone:, - initFromStream:

2-300 Chapter 2: Application Kit

newListFromStream:zone:

+ (List *)newListFromStream:(NXStream *)stream zone:(NXZone *)aZone

Returns a List of new NXBitmaplmageRep instances, just as newListFromStream: does,
except that the NXBitmaplmageReps and the List object are allocated from memory
located in aZone.

See also: + newListFromStream:, - initFromStream:

setUnpackedlmageDataAcceptable:

+ (void)setUnpackedImageDataAcceptable:(BOOL)flag

Ifflag is YES, sets the receiver to accept unpacked image data.

See also: + isUnpackedImageDataAcceptable

sizelmage:

+ (int)sizeImage:(const NXRect *)reet

Returns the number of bytes that would be required to hold bitmap data for the rendered
image bounded by the reet rectangle. The rectangle is located in the current window and
is specified in the current coordinate system.

See also: + sizeImage:pixels Wide:pixelsHigh: bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:, - initData:fromRect:

sizelmage:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:

+ (int)sizeImage:(const NXRect *)reet
pixelsWide:(int *)width
pixelsHigh:(int *)height
bitsPerSample:(int *)bps
samplesPerPixel: (int *)spp
hasAlpha:(BOOL *)alpha
isPlanar:(BOOL *)eonjig
colorSpace:(NXColorSpace *)spaee

Classes: NXBitmaplmageRep 2-301

Returns the number of bytes that would be required to hold bitmap data for the rendered
image bounded by the reef rectangle. The rectangle is located in the current window and
is specified in the current coordinate system.

Every argument but reef is a pointer to a variable where the method will write information
about the image. For an explanation of the information provided, see the description of the
initDataPlanes: ••• method

See also: - initDataPlanes:pixels Wide:pixelsHigh: bitsPerSample:
samplesPerPixel:hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

Instance Methods

bitsPerPixel

- (int)bitsPerPixel

Returns the number of bits allocated for each pixel in each plane of data. This is normally
equal to the number of bits per sample or, if the data is in meshed configuration, the
number of bits per sample times the number of samples per pixel. It can be explicitly set
to another value (in the initData: •.• or initDataPlanes: ••• method) in case extra memory is
allocated for each pixel. This may be the case, for example, if pixel data is aligned on
byte boundaries.

Warning: Currently, an NXBitmapImageRep cannot render an image that has empty memory
separating pixel specifications.

bytesPerPlane

- (int)bytesPerPlane

Returns the number of bytes in each plane or channel of data. This will be figured from the
number of bytes per row and the height of the image.

See also: - bytesPerRow

bytes PerRow
- (int)bytesPerRow

Returns the minimum number of bytes required to specify a scan line (a single row of pixels
spanning the width of the image) in each data plane. If not explicitly set to another value
(in the initData: ••• or initDataPlanes: ••• method), this will be figured from the width of the

2-302 Chapter 2: Application Kit

image, the number of bits per sample, and, if the data is in a meshed configuration, the
number of samples per pixel. It can be set to another value to indicate that each row of data
is aligned on word or other boundaries.

Warning: Currently, an NXBitmaplmageRep can't render an image that has empty space at the end
of a scan line.

canBeCompressedUsing:

- (BOOL)canBeCompressedUsing:(int)compression

Tests whether the receiver can be compressed by compression type. Compression types are
defined in appkitltiff.h. This method returns YES if the receiver's data matches
compression; for example, if compression is NX_TIFF _COMPRESSION_CCITTFAX3,
then the data must be one bit-per-sample and one sample-per-pixel. It returns NO if the
data doesn't match compression or if compression is unsupported.

See also: + getTIFFCompressionTypes:count:

colorSpace

- (NXColorSpace)colorSpace

Returns one of the following enumerated values, which indicate how bitmap data is to be
interpreted:

NX_ OnelsBlackColorSpace
NX_ Onels WhiteColorSpace
NX_RGBColorSpace
NX_CMYKColorSpace

A gray scale between 1 (black) and 0 (white)
A gray scale between 0 (black) and 1 (white)
Red, green, and blue color values
Cyan, magenta, yellow, and black color values

See also: - numColors (NXlmageRep)

copyFromZone:

- copyFromZone:(NXZone *)zone

Returns a new NXBitmaplmageRep instance that's an exact copy of the receiver. The new
object is allocated from zone. It will have its own copy of the bitmap data, also allocated
from zone, unless the receiver merely references the data. In that case, both objects will
reference the same data.

See also: - copy (Object)

Classes: NXBitmaplmageRep 2-303

data

- (unsigned char *)data

Returns a pointer to the bitmap data. If the data is in planar configuration, this pointer will
be to the first plane. To get separate pointers to each plane, use the getDataPlanes: method.

See also: - getDataPlanes:

draw

- (BOOL)draw

Renders the image at (0.0, 0.0) in the current coordinate system on the current device using
the appropriate PostScript imaging operator. This method returns YES if successful in
producing the image, and NO if not.

See also: - drawAt: (NXlmageRep), - drawln:

drawln:

- (BOOL)drawln:(const NXRect *)rect

Renders the image so that it fits inside the rectangle referred to by recto The current
coordinate system is translated and scaled so the image will appear at the right location and
fit within the rectangle. The draw method is then invoked to render the image. This
method passes through the return value of the draw method, which indicates whether the
image was successfully drawn.

The coordinate system is not restored after it has been altered.

See also: - draw, - draw At: (NXlmageRep)

free

-free

Deallocates the NXBitmaplmageRep. This method will not free any bitmap data that the
object merely references-that is, raw data that was passed to it in a initData: ..• or
initDataPlanes: ••• message.

2-304 Chapter 2: Application Kit

getCompression:andFactor:

- (void)getCompression:(int *)compression andFactor:(float *)factor

Returns by reference the receiver's compression type and compression factor. Use this
method to get information on the compression type for the source image data. compression
represents the compression type used on the data, and corresponds to one of the values
returned by the class method getTIFFCompressionTypes:count:. factor is usually a
value between 0.0 and 255.0, with 0.0 representing no compression.

See also: + getTIFFCompressionTypes:count:, - setCompression:andFactor:

getDataPlanes:

- getDataPlanes:(unsigned char **)thePlanes

Provides bitmap data for the image separated into planes. thePlanes should be an array of
five character pointers. If the bitmap data is in planar configuration, each pointer will be
initialized to point to one of the data planes. If there are less than five planes, the remaining
pointers will be set to NULL. If the bitmap data is in meshed configuration, only the first
pointer will be initialized; the others will be NULL. Returns self.

Color components in planar configuration are arranged in the expected order-for example,
red before green before blue for RGB color. All color planes precede the coverage plane.

See also: - data, - isPlanar

init

Generates an error message. This method cannot be used to initialize an
NXBitmapImageRep. Instead, use one of the initFrom .•. or initData .•. methods.

See also: - initFromSection:, - initFromFile:, - initFromStream:,
- initDataPlanes: ... , - initData: •••

in itData :from Rect:

- initData:(unsigned char *)data fromRect:(const NXRect *)rect

Initializes the receiver, a newly allocated NXBitmapImageRep object, with bitmap data
read from a rendered image. The image that's read is located in the current window and is
bounded by the rect rectangle as specified in the current coordinate system.

Classes: NXBitmaplmageRep 2-305

This method uses PostScript imaging operators to read the image data into the data buffer;
the object is then created from that data. The object is initialized with information about
the image obtained from the Window Server.

If data is NULL, the NXBitmapImageRep will allocate enough memory to hold bitmap
data for the image. In this case, the buffer will belong to the object and will be freed when
the object is freed.

If data is not NULL, you must make sure the buffer is large enough to hold the image
bitmap. You can determine how large it needs to be by sending a sizelmage: message for
the same rectangle. The NXBitmapImageRep will only reference the data in the buffer; the
buffer won't be freed when the object is freed.

If for any reason the new object can't be initialized, this method frees it and returns nil.
Otherwise, it returns the initialized object (self).

See also: + sizelmage:

initData:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

_ initData:(unsigned char *)data
pixels Wide: (int)width
pixelsHigh:(int)height
bitsPerSample: (int)bps
samplesPer Pixel: (int)spp
hasAlpha: (BOOL)alpha
isPlanar:(BOOL)conjig
colorSpace:(NXColorSpace)space
bytesPerRow:(int)rowBytes
bitsPerPixel: (int)pixe lBits

Initializes the receiver, a newly allocated NXBitmapImageRep object, so that it can render
the image specified in data and described by the other arguments. If the object can't be
initialized, this method frees it and returns nil. Otherwise, it returns the object (self).

data points to a buffer containing raw bitmap data. If the data is in planar configuration
(conjig is YES), all the planes must follow each other in the same buffer. The
initDataPlanes: ••• method can be used instead of this one if there are separate buffers for
each plane.

If data is NULL, this method allocates a data buffer large enough to hold the image
described by the other arguments. You can then obtain a pointer to this buffer (with the

2-306 Chapter 2: Application Kit

data or getDataPlanes: method) and fill in the image data. In this case the buffer will
belong to the object and will be freed when it's freed.

If data is not NULL, the object will only reference the image data; it won't copy it. The
buffer won't be freed when the object is freed.

All the other arguments to this method are the same as those to initDataPlanes: See that
method for descriptions.

See also: - initDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:
samplesPerPixel:hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

initDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpace:bytesPerRow:bitsPerPixel:

- initDataPlanes:(unsigned char **)planes
pixels Wide: (int)width
pixelsHigh:(int)height
bitsPerSample:(int)bps
samplesPerPixel:(int)spp
hasAlpha:(BOOL)alpha
isPlanar:(BOOL)conjig
colorSpace:(NXColorSpace)space
bytesPerRow:(int)rowBytes
bitsPerPixel:(int)pixelBits

Initializes the receiver, a newly allocated NXBitmapImageRep object, so that it can render
the image specified in planes and described by the other arguments. If the object can't be
initialized, this method frees it and returns nil. Otherwise, it returns the object (self).

planes is an array of character pointers, each of which points to a buffer containing raw
image data. If the data is in planar configuration, each buffer holds one component-one
plane-of the data. Color planes are arranged in the standard order-for example, red
before green before blue for RGB color. All color planes precede the coverage plane.

If the data is in meshed configuration (conjig is NO), only the first buffer is read. The
initData: ... method can be used instead of this one for data in meshed configuration.

If planes is NULL or if it's an array of NULL pointers, this method allocates enough
memory to hold the image described by the other arguments. You can then obtain pointers
to this memory (with the getDataPlanes: or data method) and fill in the image data. In this
case, the allocated memory will belong to the object and will be freed when it's freed.

Classes: NXBitmaplmageRep 2-307

If planes is not NULL and the array contains at least one data pointer, the object will only
reference the image data; it won't copy it. The buffers won't be freed when the object
is freed.

Each of the other arguments (besides planes) informs the NXBitmapImageRep object
about the image. They're explained below:

• width and height specify the size of the image in pixels. The size in each direction must
be greater than O.

• bps (bits per sample) is the number of bits used to specify one pixel in a single
component of the data. All components are assumed to have the same bits per sample.

• spp (samples per pixel) is the number of data components. It includes both color
components and the coverage component (alpha), if present. Meaningful values range
from 1 through 5. An image with cyan, magenta, yell~w, and black (CMYK) color
components plus a coverage component would have an\spp of 5; a gray-scale image that
lacks a coverage component would have an spp of 1.

• alpha should be YES if one of the components counted in the number of samples per
pixel (spp) is a coverage component, and NO if there is no coverage component.

• config should be YES if the data components are laid out in a series of separate "planes"
or channels ("planar configuration"), and NO if component values are interwoven in a
single channel ("meshed configuration").

For example, in meshed configuration, the red, green, blue, and coverage values for the
first pixel of an image would precede the red, green, blue, and coverage values for the
second pixel, and so on. In planar configuration, red values for all the pixels in the image
would precede all green values, which would precede all blue values, which would
precede all coverage values.

• space indicates how data values are to be interpreted. It should be one of the following
enumerated values:

NX_ OneIsBlackColorSpace
NX_ OneIs WhiteColorSpace
NX_RGBColorSpace
NX_CMYKColorSpace

A gray scale between 1 (black) and 0 (white)
A gray scale between 0 (black) and 1 (white)
Red, green, and blue color values
Cyan, magenta, yellow, and black color values

• rowBytes is the number of bytes that are allocated for each scan line in each plane of
data. A scan line is a single row of pixels spanning the width of the image.

Normally, rowBytes can be figured from the width of the image, the number of bits per
pixel in each sample (bps), and, if the data is in a meshed configuration, the number of
samples per pixel (spp). However, if the data for each row is aligned on word or other
boundaries, it may have been necessary to allocate more memory for each row than there

2-308 Chapter 2: Application Kit

is data to fill it. rowBytes lets the object know whether that's the case. If rowBytes is 0,
the NXBitmapImageRep assumes that there's no empty space at the end of a row.

Warning: Currently, an NXBitmapImageRep cannot render an image that has empty space at the end
of a scan line.

• pixelBits informs the NXBitmapImageRep how many bit~ are actually allocated per
pixel in each plane of data. If the data is in planar configuration, this normally equals
bps (bits per sample). If the data is in meshed configuration, it normally equals bps times
spp (samples per pixel). However, it's possible for a pixel specification to be followed
by some meaningless bits (empty space), as may happen, for example, if pixel data is
aligned on byte boundaries. Currently, an NXBitmapImageRep cannot render an image
if this is the case.

If pixelBits is 0, the object will interpret the number of bits per pixel to be the expected
value, without any meaningless bits.

This method is the designated initializer for NXBitmapImageReps that handle raw image
data.

See also: - initData:pixelsWide:pixelsHigh: ...

initFromFile:

- initFromFile:(const char *)filename

Initializes the receiver, a newly allocated NXBitmapImageRep object, with the TIFF image
found in the filename file. This method reads some information about the image from
filename, but not the image itself. Image data will be read when it's needed to render the
image.

If the new object can't be initialized for any reason (for example,filename doesn't exist or
doesn't contain TIFF data), this method frees it and returns nil. Otherwise, it returns self.

This method is the designated initializer for NXBitmapImageReps that read image data
from a file.

See also: + newListFromFile:, - initFromSection:

initFromSection:

- initFromSection:(const char *)name

Initializes the receiver, a newly allocated NXBitmapImageRep object, with the TIFF image
found in the name section in the __ TIFF segment of the application executable or the name
file in the application bundle. This method reads some information about the image from

Classes: NXBitmaplmageRep 2-309

the section, but not the image itself. Image data is read only when it's needed to render the
image.

If the new object can't be initialized for any reason (for example, the name section doesn't
exist or doesn't contain TIFF data), this method frees it and returns nil. Otherwise, it
returns self.

This method is the designated initializer for NXBitmapImageReps that read image data
from the application's executable file or bundle.

See also: + newListFromSection:, - initFromFile:

initFromStream:

- initFromStream:(NXStream *)stream

Initializes the receiver, a newly allocated NXBitmapImageRep object, with the TIFF image
read from stream. If the new object can't be initialized for any reason (for example, stream
doesn't contain TIFF data), this method frees it and returns nil. Otherwise, it returns self.

This method is the designated initializer for NXBitmapImageReps that read image data
from a stream.

See also: + newListFromStream:

isPlanar

- (BOOL)isPlanar

Returns YES if image data is segregated into a separate plane for each color and coverage
component (planar configuration), and NO if the data is integrated into a single plane
(meshed configuration).

See also: - samplesPerPixel

numPlanes

- (int)numPlanes

Returns the number of separate planes that image data is organized into. This will be the
number of samples per pixel if the data has a separate plane for each component (isPlanar
returns YES) and 1 if the data is meshed (isPlanar returns NO).

See also: - isPlanar, - samplesPerPixel, - hasAlpha, - numColors (NXImageRep)

2-310 Chapter 2: Application Kit

read:

- read:(NXTypedStream *)stream

Reads the NXBitmaplmageRep from the typed stream stream.

See also: - write:

samplesPerPixel

- (int)samplesPerPixel

Returns the number of components in the data. It includes both color components and the
coverage component, if present.

See also: - hasAlpha, - numColors (NXlmageRep)

setCompression:andFactor:

- (void)setCompression:(int)compression andFactor:(float)factor

Sets the receiver's compression type and compression factor. compression is one of the
supported compression types listed in the getTiffCompressionTypes:count: class method
description. factor is a compression factor, usually between 0.0 (no compression) and
255.0 (maximum compression).

When an NXBitmaplmageRep is created, the instance stores the compression type and
factor for the source data. When the data is subsequently saved, write TIFF: tries to use
the stored compression type and factor. Use this method to change the compression type
and factor.

See also: + getTiffCompressionTypes:count:, - getCompression:andFactor:

write:

- write:(NXTypedStream *)stream

Writes the NXBitmapImageRep to the typed stream stream.

See also: - read:

Classes: NXBitmaplmageRep 2-311

writeTIFF:

- writeTIFF:(NXStream *)stream

Writes a TIFF representation of the image to stream. This method invokes
writeTIFF:usingCompression:andFactor: using the stored compression type and factor
retrieved from the initial image data or changed using setCompression:andFactor:. If the
stored compression type isn't supported for writing TIFF data (for example,
NX_TIFF _COMPRESSION_NEXT), the stored compression is changed to
NX_TIFF _COMPRESSION_NONE and the compression factor to 0.0 before invoking
writeTIFF:usingCompression:andFactor:

See also: - getCompression:andFactor:, - setCompression:andFactor:,
writeTIFF:usingCompression:andFactor:

writeTIFF:usingCompression:

- writeTIFF:(NXStream *)stream usingCompression:(int)compression

Writes a TIFF representation of the image to stream, compressing the data according to the
compression scheme. If compression is NX_TIFF _COMPRESSION_JPEG, the default
compression factor is used. This and the other compression constants are listed under the
next method.

See also: - writeTIFF:usingCompression:andFactor:

writeTIFF:usingCompression:andFactor:

- writeTIFF:(NXStream *)stream
using Compression: (int)compression
andFactor:(float)jactor

Writes a TIFF representation of the image to stream. If the stream isn't currently positioned
at location 0, this method assumes that it contains another TIFF image. It will try to append
the TIFF representation it writes to that image. To do this, it must read the header of the
image already in the stream. Therefore, the stream must be opened with
NX_READWRITE permission.

2-312 Chapter 2: Application Kit

The second argument, compression, indicates the compression scheme to use. It should be
one of the following constants:

NX_TIFF _COMPRESSION_NONE
NX_TIFF _COMPRESSION_LZW
NX_TIFF _COMPRESSION_PACKBITS
NX_TIFF _COMPRESSION_JPEG
NX_TIFF _COMPRESSION_CCITTFAX3
NX_TIFF _COMPRESSION_CCITTFAX4

No compression
LZW compression
PackBits compression
JPEG compression
CCITT Level 3 fax (1 bps data only)
CCITT Level 4 fax (1 bps data only)

The third argument, factor, is used in the JPEG scheme to determine the degree of
compression. Iffactor is 0.0, the default compression factor of 10.0 will be used.
Otherwise,factor should fall within the range 1.0-255.0, with higher values yielding
greater compression but also greater information loss.

The compression schemes are discussed briefly in the class description, above.

Classes;' NXBitmaplmageRep 2-313

NXBrovvser

Inherits From: Control: View: Responder: Object

Declared In: appkitJNXBrowser.h

Class Description

NXBrowser provides a user interface for displaying and selecting items from a list of data,
or from hierarchically organized lists of data such as directory paths. When working with
a hierarchy of data, the levels are displayed in columns, which are numbered from left to
right, beginning with O. Each column consists of a ScrollView or Clip View containing a
Matrix filled with NXBrowserCells. NXBrowser relies on a delegate to provide the data in
its NXBrowserCells. See the BrowserCell class description for more on its
implementation.

Browser Selection

An entry in an NXBrowser' s column can be either a branch node (such as a directory) or a
leaf node (such as a file). When the user selects a single branch node entry in a column, the
NXBrowser sends itself the add Column message, which messages its delegate to load the
next column. The user's selection can be represented as a character string, much like a
UNIX file's pathname; however, the separator can be set to any character, not just '/'. An
NXBrowser can be set to allow selection of multiple entries in a column, or to limit
selection to a singl~ entry. When set for multiple selection, it can also be set to limit
multiple selection to leaf nodes only, or to allow selection of both types of nodes together.

As a subclass of Control, NXBrowser has a target object and action message. Each time
the user selects one or more entries in a column, the action message is sent to the target.
NXBrowser also adds an action to be sent when the user double-clicks on an entry, which
allows the user to select items without any action being taken, and then double-:-click to
invoke some useful action such as opening a file.

User Interface Features

The user interface features of an NXBrowser can be changed in a number of ways.
Columns in an NXBrowser may have up and down scroll buttons, scroll bars, both, or
neither; the NXBrowser itself mayor may not have left and right scroll buttons or a scroll
bar. You generally shouldn't create an NXBrowser without scrollers; if you do, you must

2-314 Chapter 2: Application Kit

make sure the bounds rectangle of the NXBrowser is large enough that all its rows and
columns can be displayed. An NXBrowser's columns may be bordered and titled, bordered
and untitled, or unbordered and untitled. A column's title may be taken from the selected
entry in the column to its left, or may be provided explicitly by the NXBrowser or its
delegate. Interface Builder provides easier ways to set many of the user interface features
described previously.

NXBrowser's Delegate

NXBrowser requires a delegate to provide it with data for display. The delegate is
responsible for providing the data and for setting each item as a branch or leaf node,
enabled or disabled. It can also receive notification of events like scrolling and requests for
validation of columns that may have changed. You can implement one of three delegate
types-normal, lazy, or very lazy-depending on your needs for performance and memory
use. An NXBrowser can determine what type of delegate it has by which methods it
responds to. To implement a delegate, you implement the normal, lazy, or very lazy
methods described below. Two methods, browser:fillMatrix:inColumn: and
browser:getNumRowslnColumn:, are mutually exclusive; you can implement one or the
other, but not both.

A normal delegate loads an entire column of its NXBrowser at once, with the
browser:fillMatrix:inColumn: method. A normal delegate is useful for small sets of data,
since it can quickly load each set without much delay, and since each set takes up little
memory. A normal delegate creates all of the Cells in a column and fills them with
appropriate information, induding the title for the Cell, whether it's a node or a leaf, and
whether it's enabled or not.

Note: Though called "normal," a normal delgate is not really the most commonly useful.
As stated, it's primary useful for small, static sets of data. Lazy and very lazy delegates,
described below, are much more flexible, and often end up being easier to program, since
data only has to be accessed as it's needed by the NXBrowser.

A lazy delegate creates an entire column for an NXBrowser, but only fills the Cells in the
column as requested by the NXBrowser. It must implement both the
browser:fillMatrix:inColumn: and browser:loadCell:atRow:inColumn: methods.
When filling a column, it only needs to create the Cells, though it may actually fill them in
partially or completely, perhaps setting only the title in order to sort the items. A lazy
delegate is useful for fairly large sets of data that would take a long time to load completely.
For example, a file system would be well served by a lazy delegate; it could fill each column
with the names of all files in that directory, but only when the NXBrowser is about to
display a particular Cell would the delegate check whether the file for that Cell is actually
a directory (to set the Cell as a node or leaf), and whether the user has permission to access
that file or directory (to set the Cell as enabled or disabled).

Classes: NXBrowser 2-315

A very lazy delegate is responsible only for informing its NXBrowser how many items
are in a particular column and for loading each Cell on request, with the browser:
getNumRowslnColumn: and browser:loadCell:atRow:inColumn: methods. Very lazy
delegates make spare use of memory by not loading a Cell for an entry until it's about to be
displayed; this is useful for large, potentially open-ended data spaces that are already
sorted, or simply don't need to be sorted. A very lazy delegate is also a good candidate for
browsing a file system, provided that the file names can be loaded in the proper positions
in a browser column based on their ordering.

An NXBrowser's delegate is also useful for manipulating the datain the NXBrowser on the
request of another object. For example, a panel may have a browser with some buttons for
adding and deleting entries. Instead of having the entire column reloaded when an entry is
added or deleted, the delegate can directly access the NXBrower's Matrix for the selected
column, adding or removing Cells, and then invoking NXBrowser's displayColumn:
method to redraw that column only.

Instance Variables

id target;
id delegate;
SEL action;
SEL doubleAction;
id matrixClass;
id cellPrototype;
unsigned short pathSeparator;

target

delegate

action

doubleAction

matrixClass

2-316 Chapter 2: Application Kit

The object notified by NXBrowser when one or more
items are selected in a column.

The object providing the data which is browsed by the
NXBrowser.

The message sent to the target when one or more entries
are selected in a column.

The message sent to the target when an entry in the
NXBrowser is double-clicked.

The class used to instantiate the matrices in the columns
of NXBrowser; Matrix by default.

cellPrototype

pathSeparator

Method Types

A Cell that is copied to create new Cells in the
NXBrowser's Matrices; NXBrowserCell by default.

The character which separates the substrings of a path (see
getPath:ToColumn:, setPath:).

Initializing and freeing an NXBrowser
- initFrame:
-free

Setting the delegate - setDelegate:
- delegate

Target and action - setAction:
- action
- setTarget:
- target
- setDoubleAction:
- doubleAction
- sendAction

Setting component classes - setMatrixClass:
- setCellClass:
- setCellPrototype:
- cellPrototype

Setting NXBrowser behavior - setMultipleSelectionEnabled:
- isMultipleSelectionEnabled
- setBranchSelectionEnabled:
- isBranchSelectionEnabled
- setEmptySelectionEnabled:
- isEmptySelectionEnabled
- reuseColumns:
- setEnabled:
- acceptsFirstResponder
- acceptArrow Keys:andSendActionMessages:
- getTitleFromPreviousColumn:

Classes: NXBrowser 2·317

Configuring controls - useScrollBars:
- useScrollButtons:
- setHorizontalScrollButtonsEnabled:
- areHorizontalScrollButtonsEnabled
- setHorizontalScrollerEnabled:
- isHorizontalScrollerEnabled

Setting the NXBrowser' s appearance
- setMinColumn Width:
- minColumn Width
- setMax VisibleColumns:
- max VisibleColumns
- num Visible Columns
- firstVisibleColumn
-lastVisibleColumn
- lastColumn
- separateColumns:
- columnsAreSeparated

Manipulating columns - loadColumnZero
- isLoaded
- addColumn
- reloadColumn:
- displayColumn:
- displayAllColumns
- setLastColumn:
- selectAll:
- selectedColumn
-columnOf:
- validate VisibleColumns

Manipulating column titles - setTitled:
- isTitled
- setTitle:ofColumn:
- titleOfColumn:
- getTitleFrame:ofColumn:
- titleHeight
- drawTitle:inRect:ofColumn:
- clearTitlelnRect:ofColumn:

2-318 Chapter 2: Application Kit

Scrolling an NXBrowser - scrollColumnsLeftBy:
- scrollColumnsRightBy:
- scrollColumnTo Visible:
- scrollUpOrDown:
- scrollViaScroller:
- reflectScroll:
- updateScroller

Event handling - mouseDown:
-keyDown:
- doClick:
- doDoubleClick:

Getting Matrices and Cells - getLoadedCellAtRow:inColumn:
- matrixlnColumn:
- selectedCell
- getSelectedCells:

Getting column frames - getFrame:ofColumn:
- getFrame:oflnsideOfColumn:

Manipulating paths - setPathSeparator:
- setPath:
- getPath:toColumn:

Drawing - drawSelf::

Resizing the NXBrowser - sizeTo::
- sizeToFit

Arranging an NXBrowser's components
- tile

Instance Methods

acceptArrowKeys:andSendActionMessages:

- acceptArrowKeys:(BOOL)acceptFlag
andSendActionMessages: (BOOL)sendFlag

Sets NXBrowser handling of arrow key input. If acceptFlag is YES, then the keyboard
arrow keys move the selection whenever the NXBrowser or one of its subviews is the first
responder; if acceptFlag is NO, arrow key input has no effect. Further, if sendFlag is YES,
then when an arrow key is pressed, the NXBrowser's action message is sent as though the
user had clicked on the new selection; if sendFlag is NO, then arrow keys only move the
selection (if they are enabled). Returns self.

Classes: NXBrowser 2-319

This method replaces the acceptArrowKeys: method from NeXTSTEP Release 2.

See also: - acceptsFirstResponder

acceptsFirstResponder

- (BaaL)acceptsFirstResponder

Returns YES if the NXBrowser accepts arrow key input, NO otherwise. The default
setting is NO.

See also: - acceptArrowKeys:andSendActionMessages:

action

- (SEL)action

Returns the action sent to the target by the NXBrowser when the user makes a selection in
one of its columns.

See also: - setAction:, - doubleAction, - target

addColumn

-addColumn

Adds a column to the right of the last column in the NXBrowser and, if necessary, scrolls
the NXBrowser so that the new column is visible. Your code should never invoke this
method; it's invoked as needed by doClick: and keyDown: when the user selects a single
branch node entry in the NXBrowser, and by setPath: when it matches a path substring
with a branch node entry. Override this method if you need the NXBrowser to do any
additional updating when a column is added, but be sure to send this message to super.
Returns self.

See also: -loadColumnZero, - setPath:, - reload Column:

2-320 Chapter 2: Application Kit

areHorizontalScrollButtonsEnabled

- (BOOL)areHorizontaIScrollButtonsEnabled

Returns YES if horizontal scroll buttons are used by the NXBrowser and are enabled, NO
otherwise.

See also: - setHorizontaIScrollButtonsEnabled:, - isHorizontalScrollerEnabled,
- setHorizontalScrollerEnabled:

cell Prototype
- cellPrototype

Returns the NXBrowser's prototype Cell. This Cell is copied to create new Cells in the
columns of the NXBrowser.

See also: - setCellPrototype:

clearlitlelnRect:ofColumn:
- clearTitleInRect:(const NXRect *)aRect of Column: (int)column

Clears the title displayed in aRect above column. Your code shouldn't invoke this method
directly; it's sent whenever a column title needs to be cleared. You can override this method
if you draw your own column titles. aRect is in the NXBrowser's coordinate system.
Returns self.

columnOf:
- (int)columnOf:matrix

Returns the index of the column containing matrix; the leftmost (root) column is O. Returns
-1 if no column contains matrix.

See also: - matrixInColumn:

Closses: NXBrowser 2·321

columnsAreSeparated

- (BOOL)columnsAreSeparated

Returns YES if columns are separated by a bezeled bar; NO if they're separated by a black
line. If the NXBrowser is set to display column titles, its columns are automatically
separated by bezels.

See also: - separateColumns:, - setTitled:

delegate

- delegate

Returns the delegate of the NXBrowser, the object that provides data for the NXBrowser
and responds to certain notification messages.

See also: - setDelegate:

displayAIiColumns

- displayAlIColumns

Causes all columns currently visible in the NXBrowser to be redisplayed. This method is
useful for redisplaying the NXBrowser after manipulating it with display disabled in the
window (for instance, if Cells in some of the columns are deleted). Returns self.

See also: - display Column:

displayColumn:

- displayColumn:(int)column

Validates and displays column number column. column must already be loaded. This
method is useful for updating the NXBrowser after manipulating column with display
disabled in the window. Returns self.

See also: - display AIIColumns

2-322 Chapter 2: Application Kit

doClick:
- doClick:sender

Your code should never invoke this method. This is the action message sent to the
NXBrowser by a column's Matrix when a mouse-down event occurs in a column. It sets
the NXBrowser's last column to that of the Matrix where the click occurred, and removes
any columns to the right that were previously loaded in the NXBrowser. If a single branch
node entry is selected by the event, this method sends add Column to self to display the
corresponding data in the column to the right. It also sends the NXBrowser's action
message to its target. Returns self.

You may want to override this method to add specific behavior for mouse clicks.

See also: - action, - target, - doDoubleClick:

doDoubleClick:

- doDoubleClick:sender

Your code should never invoke this method. This is the action message sent to the
NXBrowser by a column's Matrix when a double-click occurs in a column. This method
simply sends the double-click action message to the target; if no double-click action
message is set, it sends the regular (single-click) action. Returns self.

You may want to override this method tp add specific behavior for double-click events.

See also: - doubleAction, - target, - doClick:

doubleAction
- (SEL)doubleAction

Returns the action sent by the NXBrowser to its target when the user double-clicks an entry.
If no double-click action message has been set, this method returns the regular
(single-click) action.

See also: - setDoubleAction:, - action, - target, - doDoubleClick:

Classes: NXBrowser 2-323

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the NXBrowser, loading column 0 if it has not been loaded. Override this method
if you change the way NXBrowser draws itself. Your code should never invoke this
method; it's invoked by the display method. Returns self.

See also: - display (View)

drawlitle:inRect:ofColumn:

- drawTitle:(const char *)title
inRect:(const NXRect *)aRect
of Column: (int)column

Your code should never invoke this method. It's invoked whenever the NXBrowser needs
to draw a column title. You may override it if you want your own column titles drawn.
Returns self.

firstVisibleColumn

- (int)firstVisibleColumn

Returns the index of the leftmost visible column.

See also: -lastVisibleColumn

free

-free

Frees the NXBrowser and all the objects it manages: ScrollViews, Matrices, Cells, scroll
Buttons, prototypes, and so on. Returns nil.

getFrame:ofColumn:

- (NXRect *)getFrame:(NXRect *)theRect of Column: (int)column

Returns a pointer to the rectangle (in NXBrowser coordinates) containing column; the
pointer is returned both explicitly by the method and by reference in theRect. The returned
rectangle includes the bezel area surrounding the column. If column isn't currently loaded

2-324 Chapter 2: Application Kit

or displayed, this method returns NULL, without changing the coordinates of the rectangle
represented in theRect. It also returns NULL if theRect is NULL.

See also: - getFrame:ofInsideOfColumn:

getFrame:oflnsideOfColumn:

- (NXRect *)getFrame:(NXRect *)theRect ofinsideOfColumn:(int)column

Returns a pointer to the rectangle (in NXBrowser coordinates) containing the "inside" of
column number column; the pointer is returned both explicitly by the method and by
reference in theRe ct. The "inside" is defined as the area in the column that contains the
Cells and only that area (that is, no bezels). If column isn't currently loaded or displayed,
this method returns NULL, without changing the coordinates of the rectangle represented
in theRect. It also returns NULL if theRect is NULL.

See also: - getFrame:ofColumn:

getLoadedCeIIAtRow:inColumn:

- getLoadedCeIlAtRow:(int)row inColumn:(int)column

Returns the Cell at row in column, if that column is currently in the NXBrowser. This
method creates and loads the Cell if necessary. It's the safest way to get a particular Cell
in a column, since lazy delegates don't load every Cell in a Matrix and very lazy delegates
don't even create all Cells until they're displayed. This method is preferred to the Matrix
method ceIlAt::. If the specified column isn't in the NXBrowser, or if row doesn't exist in
column, returns nil.

See also: - browser:loadCeIlAtRow:inColumn: (delegate method)

getPath:toColumn:

- (char *)getPath:(char *)thePath toColumn:(int)column

Returns a pointer to the string representing the path to column, both explicitly and by
reference in thePath. Before invoking this method, you must allocate sufficient memory to
accept the entire path string, and set thePath as a pointer to that memory. If column isn't
loaded or thePath is a null pointer, this method returns NULL.

The path is constructed by concatenating the string values in the selected Cells in each
column, preceding each with the path separator. For example, consider a path separator
"@'.' and an NXBrowser with two columns. If the selected Cell in the left column has the
string value "fowl" and the selected Cell in the right column has the string value "duck,"

Classes: NXBrowser 2-325

the resulting path is "@fowl@duck." If there is no selection in the NXBrowser, the path
will be '''' (an empty string-not "@"). The default pathSeparator is the slash
character ("/").

If multiple selection is enabled and there are multiple Cells selected, this method returns
the path of the last (that is, the lowest) Cell in the last column. Once the path is retrieved,
the selected Cells can all be retrieved with getSelectedCells:, and their titles used with the
path to manipulate the data they represent.

See also: - getSelectedCells:, - pathSeparator, - setPath:

getSelectedCells:

- getSelectedCells:(List *)aList

Fills the provided List with the Cells in the NXBrowser that are selected. The previous
contents of aList are not altered; your code should be sure aList is empty before invoking
this method. If aList is nil, this method creates a List from the zone of the Matrix
containing the Cells and returns it. Returns aList, or the created List.

See also: - selected Cell

getlitleFrame:ofColumn:

- (NXRect *)getTitleFrame:(NXRect *)theRect of Column: (int)column

Returns the rectangle (in NXBrowser coordinates) enclosing the title of column number
column, both explicitly and by reference in theRect. If the NXBrowser isn't displaying
titles or if the specified column isn't loaded, returns this method returns NULL.

getlitleFromPreviousColumn:

- getTitleFromPreviousColumn:(BOOL)flag

Ifflag is YES, sets the NXBrowser so that each column takes its title from the string value
in the selected Cell in the column to its left, leaving column 0 untitled; use
setTitle:ofColumn: to give column 0 a title. This method affects the receiver only when
it is titled (that is, when isTitled returns YES).

By default, the NXBrowser is set to get column titles from the previous column. Send this
message with NO as the argument if your delegate implements the

2-326 Chapter 2: Application Kit

browser: title Of Column: method or if you use the setTitle:ofColumn: method to set
all column titles. Returns self.

See also: - setTitled:, - setTitle:ofColumn:, - browser:titleOfColumn:
(delegate method)

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes a new instance of NXBrowser with a bounds of frameRect. The initialized
NXBrowser is set to have column titles, to get titles from previous columns, and to use
scrollbars. The minimum column width is set to 100 and the path separator is set to the
slash ("I") character. The NXBrowser is set not to clip. This method invokes the tile
method to arrange the components of the NXBrowser (titles, scroll bars, Matrices, and
so on).

isBranchSelectionEnabled

- (BOOL)isBranchSelectionEnabled

Returns YES if a branch node can be selected, NO otherwise.

See also: - setBranchSelectionEnabled:

isEmptySelectionEnabled

- (BOOL)isEmptySelectionEnabled

Returns YES if it is possible to have no Cells selected, NO otherwise.

See also: - setEmptySelectionEnabled:

isHorizontalScrollerEnabled

- (BOOL)isHorizontaIScrollerEnabled

Returns YES if the NXBrowser uses a horizontal Seroller (instead of Buttons), and if that
Scroller is enabled, NO otherwise.

See also: - setHorizontaIScrollerEnabled:, - setHorizontalScrollButtonsEnabled:

Classes: NXBrowser 2-327

isMultipleSelectionEnabled
- (BOOL)isMultipleSelectionEnabled

Returns YES if more than one leaf node can be selected, NO otherwise.

See also: - setMultipleSelectionEnabled:

isLoaded
- (BOOL)isLoaded

Returns YES if any of the NXBrowser's columns are loaded.

See also: -loadColumnZero, - setPath:

isTitled
- (BOOL)isTitled

Returns YES if the NXBrowser's columns are displayed with titles above them;
NO otherwise.

See also: - getTitleFromPreviousColumn:, - setTitled:

keyDown:

- keyDown:(NXEvent *)theEvent

Handles arrow key events. This method is invoked when the NXBrowser or one of its
subviews is the first responder. If the NXBrowser has been set to accept arrow keys, and
the key represented in theEvent is an arrow key, this method scrolls through the NXBrowser
in the direction indicated.

See also: - acceptArrowKeys:andSendActionMessages:, - acceptsFirstResponder,
- mouseDown:

lastColumn
- (int)lastColumn

Returns the index of the last loaded column in the NXBrowser.

See also: -lastVisibleColumn

2-328 Chapter 2: Application Kit

lastVisibleColumn

- (int)last Visible Column

Returns the index of the rightmost visible column. This may be less than the value returned
by lastColumn if the NXBrowser has been scrolled left.

See also: - firstVisibleColumn, -lastColumn

loadColumnZero

-loadColumnZero

Loads and displays data in column 0 of the NXBrowser, unloading any columns to the right
that were previously loaded. Invoke this method to force the NXBrowser to be loaded; for
example, after initializing the NXBrowser, when changing delegates, or when changing the
data set managed by the delegate You may want to override this method if you subclass
NXBrowser.

See also: - setPath:, - reloadColumn:

matrixlnColumn:
- matrixlnColumn:(int)column

Returns the Matrix found in column number column. Returns nil if column number column
isn't loaded in the NXBrowser.

maxVisibleColumns

- (int)maxVisibleColumns

Returns the maximum number of visible columns allowed. No matter how many loaded
columns the NXBrowser contains, or how large the NXBrowser is made (for example, by
resizing its window), it will never display more than this number of columns. If the number
of loaded columns can exceed the value returned by this method, the NXBrowser must
display left and right scroll buttons.

See also: - setMaxVisibleColumns:, - num VisibleColumns,
- setHorizontaIScrollerEnabled:, - setHorizontalScrollButtonsEnabled:

Classes: NXBrowser 2-329

minColumnWidth

- (int)minColumn Width

Returns the minimum width of a column in PostScript points (rounded to the nearest
integer). No column will be smaller than the returned value unless the NXBrowser itself is
smaller than that. The default setting is 100 points.

See also: - setMinColumn Width:

mouseDown:

- mouseDown:(NXEvent *)theEvent

Handles a mouse down in the NXBrowser's left or right scroll buttons. Override this
method if you need to to any special event processing. Returns self.

See also: - keyDown:

numVisibleColumns

- (int)num VisibleColumns

Returns the number of columns which can be visible at the same time in the NXBrowser
(that is, the current width, in columns, of the NXBrowser). This may be less than the
value returned by max Visible Columns if the window containing the NXBrowser has
been resized.

See also: - setMaxVisibleColumns:, - maxVisibleColumns:

reflectScroll :

- refiectScroll:clip View

This method updates scroll bars in the column containing clip View. Scroll bars are enabled
if a column contains more data than can be displayed at once and disabled if the column
can display all data. You should never need to invoke this method, but you may want to
override it. Returns self.

See also: - useScrollBars:

2-330 Chapter 2: Application Kit

reloadColumn:

- reloadColumn:(int)column

Reloads the previously loaded column number column by sending a message to the
delegate to update the Cells in its Matrix, then reselecting the previously selected Cell if it's
still in the Matrix. You should never send this message for a column that hasn't been loaded
(you can check for this with the lastColumn method). Redraws the column and returns
self.

See also: - lastColumn

reuseColumns:

- reuseColumns:(BOOL)flag

Sets whether the NXBrowser saves a column's Matrix and ClipView or ScrollView when
the column is removed, and whether it then reuses these subviews when the column is
reloaded. If flag is YES, the NXBrowser reuses columns for somewhat faster display of
columns as they are reloaded. Ifflag is NO, the NXBrowser frees columns as they're
unloaded, reducing average memory use. Returns self.

scroliColumnsLeftBy:

- scrollColumnsLeftBy:(int)shiftAmount

Scrolls the columns in the NXBrowser left by shift Amount columns, making higher
numbered columns visible. If shift Amount exceeds the number of loaded columns to the
right of the first visible column, then the columns scroll left to make the last loaded column
visible. Redraws and returns self.

See also: - scrollColumnsRightBy:

scrollColumnsRightBy:

- scrollColumnsRightBy:(int)shiftAmount

Scrolls the columns in the NXBrowser right by shiftAmount columns, making lower
numbered columns visible. If shift Amount exceeds the number of columns to the left of the
first visible column, then·the columns scroll right until column 0 is visible. Redraws and
returns self.

See also: - scrollColumnsLeftBy:

Classes: NXBrowser 2-331

scroliColumnToVisible:
- scrollColumnToVisible:(int)column

Scrolls the NXBrowser to make column number column visible. If there's no column in the
NXBrowser, this method scrolls to the right as far as possible. Redraws and returns self.

scrollUpOrDown:
- scrollUpOrDown:sender

Scrolls a column up or down. Your code shouldn't send this message; NXBrowser receives
it from a column's scroll buttons. You may want to override it to perform additional
updating. Returns self.

scroliViaScroller:

- scrollViaScroller:sender

Scrolls the NXBrowser' s columns left or right based on the position of the Scroller sending
the message. Your code shouldn't send this message, but you may want to override it.
Returns self.

selectAII:
- selectAII:sender

Selects all entries in the last column loaded in the NXBrowser if multiple selection is
allowed. Returns self.

See also: - setMultipleSelectionEnabled:

selectedCell

- selectedCell

If there is a selection, returns the last selected Cell. "Last," in this context, means furthest
to the right and lowest in the column.

See also: - getSelectedCells:

2·332 Chapter 2: Application Kit

selectedColumn
- (int)selectedColumn

Returns the column number of the rightmost column containing a selected Cell. This won't
be the last column if the selected Cell isn't a leaf. Returns -1 if no column in the
NXBrowser contains a selected Cell.

See also: -lastColumn

sendAction

- sendAction

Sends the NXBrowser's action to its target and returns self.

See also: - sendAction:to: (Control)

separateColumns:
- separateColumns:(BOOL)jiag

Ifjiag is YES, sets NXBrowser so that columns have bezeled borders separating them; if
NO, the borders are removed. When titles are set to display (by setTitled:), columns are
automatically separated. Redraws the NXBrowser and returns self.

See also: - setTitled:

setAction:
- setAction:(SEL)aSelector

Sets the action of the NXBrowser. aSelector is the selector for the message sent to the
.. NXBrowser's target when a mouse-down event occurs in a column of the NXBrowser.
Returns self.

See also: - action, - setDoubleAction:, - setTarget:, - doClick

Classes: NXBrowser 2-333

setBranchSelectionEnabled:

- setBranchSelectionEnabled:(BOOL)flag

Sets whether the user can select multiple branch and leaf node entries. If flag is YES and
multiple selection is enabled (by setMultipleSelectionEnabled:); then multiple branch
and leaf node entries can be selected. By default, a user can choose only multiple leaf node
entries when multiple entry selection is enabled. Returns self.

This method replaces the allowBranchSel: method from NeXTSTEP Release 2.

See also: - isBranchSelectionEnabled, - setMultipleSelectionEnabled:

setCeliClass:

- setCellClass:classld

Sets the class of Cell used when adding Cells to a Matrix in a column of the NXBrowser.
classld must be the value returned when sending the class message to NXBrowserCell or
a subclass of NXBrowserCell. Since an NXBrowser always has its Matrices copy
prototype Cells, this method simply makes a prototype, sends it an init message, and
records that prototype. Returns self.

You shouldn't use Control's class method setCellClass: with an NXBrowser.

See also: - setCellPrototype:

setCeliPrototype:

- setCellPrototype:aCell

Sets aCell as the Cell prototype copied when adding Cells to the Matrices in the columns
of NXBrowser. aCell must be an instance of NXBrowserCell or a subclass of
NXBrowserCell. Each Matrix gets its own copy of aCell to use as a prototype, and will
free that copy when the Matrix is freed. Returns the previous Cell prototype if aCell is an
instance of either NXBrowserCell or a subclass of NXBrowserCell; otherwise, returns nil.

You shouldn't use Control's class method setCellClass: with an NXBrowser.

See also: - cellPrototype, - setCellClass:

2-334 Chapter 2: Application Kit

setDelegate:

- setDelegate:anObject

Sets the delegate of the NXBrowser to anObject and returns self. If anObject is of a class
that implements the methods indicated in the class description for a normal, lazy, or very
lazy delegate, it's set as the NXBrowser's delegate; otherwise, the delegate is set to nil.
Returns self.

See also: - delegate

setDoubleAction:

- setDoubleAction:(SEL)aSelector

Sets the double-click action of the NXBrowser. aSelector is the selector for the action
message sent to the target when a double-click occurs in one of the columns of the
NXBrowser. Returns self.

See also: - doubleAction, - setAction:, - setTarget:, - doDoubleClick:

setEmptySelectionEnabled:

- setEmptySelectionEnabled:(BOOL)jlag

Ifjlag is YES, the NXBrowser can display without any Cells selected; ifjlag is NO, then
there must always be at least one Cell selected. By default, the setting is NO, and
NXBrowser selects the first item in the first column. Returns self.

See also: - isEmptySelectionEnabled, - setMultipleSelectionEnabled:

setEnabled:
- setEnabled:(BOOL)jlag

Enables the NXBrowser whenjlag is YES; disables it whenjlag is NO. Returns self.

See also: - isEnabled (Control)

Classes: NXBrowser 2·335

setHorizontalScrollButtonsEnabled:

- setHorizontaIScroIlButtonsEnabled:(BOOL)flag

Ifflag is YES, sets the NXBrowser to use left and right scroll buttons. Generally, you
should allow your NXBrowser to scroll horizontally unless your data is nonhierarchical,
thus limited to a single column, or restricted so that the NXBrowser will always display
enough columns for all data. Returns self.

This method, along with setHorizontaIScrollerEnabled:, replaces the
hideLeftAndRightScrollButtons: method from NeXTSTEP Release 2. In order to
completely remove horizontal scrolling Controls, invoke both methods with arguments
of NO.

See also: - setHorizontaIScrollerEnabled:, - areHorizontalScrollButtonsEnabled

setHorizontalScrollerEnabled:

- setHorizontaIScrollerEnabled:(BOOL)flag

Ifflag is YES, sets the NXBrowser to use a horizontal Scroller. Generally, you should
allow your NXBrowser to scroll horizontally unless your data is nonhierarchical, thus
limited to a single column, or restricted so that the NXBrowser will always display enough
columns for all data. Returns self.

This method, along with setHorizontaIScroIlButtonsEnabled:, replaces the
hideLeftAndRightScrollButtons: method from NeXTSTEP Release 2. In order to
completely remove horizontal scrolling Controls, invoke both methods with arguments
of NO.

See also: - setHorizontaIScroIlButtonsEnabled:,
- areHorizontalScrollButtonsEnabled

setLastColumn:

- setLastColumn:(int)column

Makes column number column the last column loaded and displayed by the NXBrowser.
Removes any columns to the right of column from the NXBrowser, and scrolls columns in
the NXBrowser to make the new last column visible if it wasn't previously. If column
number column isn't already loaded, this method does nothing. Returns self.

See also: - lastColumn

2-336 Chapter 2: Application Kit

setMatrixClass:
- setMatrixClass:classld

Sets the class of Matrix used when adding new columns to the NXBrowser. classld must
be the value returned by sending the class message to Matrix or a subclass of Matrix;
otherwise this method retains the previous setting for the NXBrowser's Matrix class.
NXBrowser initializes the Matrix of a new column with the initFrame:mode:prototype:
numRows:numCols: method. Returns self.

setMaxVisibleColumns:

- setMaxVisibleColumns:(int)columnCount

Sets the maximum number of columns that may be displayed by the NXBrowser.
Returns self.

To set the number of columns displayed in a new NXBrowser, first send it a
setMinColumn Width: message with a small argument (1, for example) to ensure that the
desired number of columns will fit in the NXBrowser's frame. Then invoke this method to
set the number of columns you want your NXBrowser to display. The minimum column
width may then be reestablished to its desired value.

See also: - maxVisibleColumns, - setMinColumn Width:

setMinColumnWidth:

- setMinColumn Width: (int)column Width

Sets the minimum width for each column to column Width. If the new minimum width is
different from the previous one, this method also redisplays the NXBrowser with columns
set to the new width. column Width is measured in PostScript points rounded to the nearest
integer. The default setting is 100. Returns self.

See also: - min Column Width

Classes: NXBrowser 2-337

setMultipleSelectionEnabled:

- setMultipleSelectionEnabled:(BOOL)jiag

Sets whether the user can select multiple entries in a column. Ifjiag is YES, the user can
choose any number of leaf entries in a column (or leaf and branch entries in a column if
enabled by setBranchSelectionEnabled:). By default, the user can choose just one entry
in a column at a time. Returns self.

This method replaces the allowMultiSel: method from NeXTSTEP Release 2.

See also: - isMultipleSelectionEnabled, - setBranchSelectionEnabled:

setPath:

- setPath:(const char *)aPath

Parses aPath-a string consisting of one or more substrings separated by the path
separator-and selects column entries in the NXBrowser that match the substrings. If the
first character in aPath is the path separator, this method begins searching for matches in
column 0; otherwise, it begins searching in the last column loaded. If no column is loaded,
this method loads column 0 and begins the search there. While parsing the current
substring, it tries to locate a matching entry in the search column. If it finds an exact match,
this method selects that entry and moves to the next column (loading the column if
necessary) to search for the next substring.

If this method finds a valid path (one in which each substring is matched by an entry in the
corresponding column), it returns self. If it doesn't find an exact match on a substring, it
stops parsing aPath and returns nil; however, column entries that it has already selected
remain selected.

Your code should never try to set a path or select items by sending Cell selection messages
to the Matrices in the NXBrowser' s columns. This bypasses every mechanism that allows
the NXBrowser to update its display and load columns and Cells properly.

See also: - getPath:toColumn, - pathSeparator, - setPathSeparator,
- browser:selectCell:inColumn: (delegate method)

setPathSeparator:

- setPathSeparator: (unsigned short)charCode

Sets the character used as the path separator; the default is the slash character ("/").
Returns self.

See also: - getPath:toColumn, - setPath:

2-338 Chapter 2: Application Kit

setTarget:
- setTarget:anObject

Sets the target of the NXBrowser. This is the object that will receive action messages when
the user clicks or double-clicks on items in the NXBrowser. Returns self.

See also: - target, - setAction:, - setDoubleAction:

setlitle:ofColum n:
- setTitle:(const char *)aString of Column: (int)column

Sets the title of column number column in the NXBrowser to aString. If column column
isn't loaded, this method does nothing. Returns self.

See also: - getTitleFromPreviousColumn:, - setTitled:,
- browser: Title Of Column: (delegate method)

setlitled:
- setTitled:(BOOL)flag

Ifflag is YES, columns display titles and are separated by bezeled borders. Returns self.

See also: - getTitleFromPreviousColumn:, - setTitle:ofColumn:,
- browser: TitleOf Column: (delegate method)

sizeTo::
- sizeTo:(NXCoord)width :(NXCoord)height

Resizes the NXBrowser to the new width and height. Usually sent by the NXBrowser's
Window. Override this method if your subclass of NXBrowser need to do any special
updating when resized. Returns self.

sizeToFit
- sizeToFit

Resizes the NXBrowser to contain all the columns and Controls displayed in it.
Returns self.

Classes: NXBrowser 2·339

target
- target

Returns the target for the NXBrowser's action message. This object receives action
messages when the user clicks or double-clicks on items in the NXBrowser.

See also: - setTarget:, - action, - setAction:, - doubleAction, - setDoubleAction:

tile
- tile

Arranges the various subviews of NXBrowser-Scrollers, columns, titles, and so on­
without redrawing. Your code shouldn't send this message. It's invoked any time the
appearance of the NXBrowser changes; for example, when scroll Buttons or scroll bars are
set, a column is added, and so on. Override this method if your code changes the
appearance of the NXBrowser (for example, if you draw your own titles above columns).
Returns self.

titleHeight

- (NXCoord)titleHeight

Returns the height of titles drawn above the columns of the NXBrowser. Override this
method if you display your own titles above the NXBrowser's columns.

titleOfColumn:

- (const char *)titleOfColumn:(int)column

Returns a pointer to the title string displayed above column number column. If that column
isn't loaded in the NXBrowser, returns NULL.

updateScrolier
- updateScroller

Updates the horizontal Scroller to reflect the position of the visible columns of the
NXBrowser. Returns self.

2-340 Chapter 2: Application Kit

useScroliBars:

- useScrollBars:(BOOL)flag

Sets NXBrowser to use scroll bars for its columns based on flag. If flag is YES and the
NXBrowser was previously set to use only scroll Buttons, this method causes the scroll
Buttons to display at the base of the scroll bars. By default, NXBrowser uses scroll bars
without Buttons; send useScrollButtons: to also have Buttons at the bottoms of the
Scrollers. This method redraws the NXBrowser. Returns self.

See also: - useScrollButtons:

useScroliButtons:

- useScrollButtons:(BOOL)flag

Sets the NXBrowser to use scroll Buttons for its columns based onflag. Ifflag is YES and
the NXBrowser was previously set to use scroll bars, this method causes scroll buttons to
display at the base of the scroll bars; otherwise the Buttons are displayed underneath each
column. To get only Buttons under the columns, send useScrollBars: with NO as the
argument, then send this message with YES as the argument. This method redraws the
NXBrowser. Returns self.

See also: - useScrollBars:

validateVisibleColumns

- validate VisibleColumns

Validates the columns visible in the NXBrowser by invoking the delegate method
browser:columnIsValid: for all visible columns. Use this method to confirm that the
entries displayed in each visible column are valid before redrawing.

See also: - browser:columnIsValid: (delegate method)

Classes: NXBrowser 2-341

Methods Implemented by the Delegate

browser:columnlsValid:

- (BOOL)browser:sender columnIsValid:(int)column

This method is invoked by NXBrowser's validateVisibleColumns method to determine
whether the contents currently loaded in column number column need to be updated. This
is useful for data sets that may change over time, such as files in a file system, or lists
from a shared set of data that others can change. Returns YES if the contents are valid;
NO otherwise.

See also: - browser:selectCell:inColumn: (delegate method)

browserDidScroll:

- browserDidScroll:sender

Notifies the delegate when the browser has finished scrolling horizontally. This can be
useful for aligning other user interface items with the columns of the browser (for example,
an icon path or a series of pop-up lists). Returns self.

See also: - browserDidScroll: (delegate method)

browser:fiIiMatrix:inColumn:

- (int)browser:sender
fillMatrix:matrix
inColumn:(int)column

Invoked by the NXBrowser to query a normal or lazy browser for the contents of column.
This method should create NXBrowserCells by sending addRow or insertRow At:
messages to matrix. The NXBrowser will resize them to fit in the Matrix-you can't
control the size of an NXBrowserCell. Returns the number of items in column.

A normal delegate should create each NXBrowserCell and send them the messages
setLoaded: and setLeaf:, and setEnabled: if necessary. A lazy delegate marks Cells as
loaded only when they are about to be displayed; however, it may create and partially fill
in information (such as the title), saving only the time-consuming operations for an actual
request to load an individual Cell.

If you implement this method, don't implement the delegate method
browser:getNumRowslnColumn:.

See also: - browser:loadCell:atRow:inColumn: (delegate method)

2·342 Chapter 2: Application Kit

browser:getNumRowslnColumn:

- (int)browser:sender getNumRowslnColumn:(int)column

Implemented by very lazy delegates, this method is invoked by the NXBrowser to ask the
delegate for the number of rows in column number column. This method allows the
NXBrowser to resize its scroll bar for a column without loading all the Cells in that column.
Returns the number of rows in column.

If you implement this method, don't implement the delegate method
browser:fillMatrix:inColumn: .

See also: - browser:loadCell:atRow:inColumn: (delegate method)

browser:loadCell:atRow:inColumn:

- browser:sender
load Cell: cell
atRow:(int)row
inColumn:(int)column

Implemented by lazy and very lazy delegates. This method loads the entry in the provided
NXBrowserCell cell for the specified row and column in the NXBrowser. The NXBrowser
will resize the Cell to fit in the Matrix-you can't control the size of an NXBrowserCell.
Returns self.

A lazy delegate should send a setLoaded: message to cell, as well as setLeaf:,
setStringValue: and setEnabled: messages if needed. A very lazy delegate should send
setLoaded:, setLeaf:, and setStringValue:messages to cell, and setEnabled: if needed.

See also: - browser:fillMatrix:inColumn: (delegate method),
- browser:getNumRowslnColumn: (delegate method)

browser:selectCell:inColumn:

- (BOOL)browser:sender
selectCell:(const char *)entry
inColumn: (int)column

Asks NXBrowser's delegate to validate and select an entry in column number column. This
method should load the Cell corresponding to entry if necessary, send it setLoaded: and
setLeaf: messages as needed to indicate its state, and send the column's Matrix a
selectCell: or selectCellAt:: message to select that Cell. If there is no Cell corresponding
to entry, the selection should be cleared by sending selectCellAt:: to the Matrix with -1

Classes: NXBrowser 2-343

and -1 as the arguments. Returns YES if the method successfully selects the Cell
corresponding to entry in column; NO otherwise.

If the delegate doesn't implement this method, the NXBrowser searches for entries by
scanning through the entire list of Cells in the column. This will always work properly for
NXBrowsers that browse static data. However, if the data can change while the
NXBrowser is in use (for example, if a new file is created or deleted), this method allows
the delegate to find that new data and add it to the column, or to find out that it no longer
exists (or that its status has changed) and mark it as disabled or remove the Cell altogether
with Matrix's removeRowAt:andFree: method (be sure to free the Cell).

See also: - browser:columnIsValid: (delegate method), - matrixInColumn:,
- selectCell: (Matrix), - selectCellAt:: (Matrix), - removeRowAt:andFree: (Matrix)

browser:titleOfColumn:

- (const char *)browser:sender titleOfColumn:(int)column

Invoked by NXBrowser to get the title for column from the delegate. This method is
invoked if the delegate implements it, but only when the NXBrowser is titled and has
received a getTitleFromPreviousColumn: message with NO as the argument. By default,
the NXBrowser makes each column title the string value of the selected Cell in the previous
column. Returns the string representing the title belonging above column.

See also: - getTitleFromPreviousColumn:, - setTitle:ofColumn:, - setTitled:

browserWiliScroll:

- browser WillScroll:sender

This method notifies the delegate when the browser is about to scroll horizontally. This can
be useful for hiding other user interface items to prepare for aligning them with the columns
of the browser (for example, an icon path or a series of pop-up lists). Returns self.

See also: - browserDidScroll: (delegate method)

2-344 Chapter 2: Application Kit

NXBro\NserCell

Inherits From: Cell: Object

Declared In: appkitINXBrowserCell.h

Class Description

NXBrowserCell is the subclass of Cell used by default to display data in the column
Matrices of NXBrowser. Many of NXBrowserCell's methods are designed to interact with
NXBrowser and NXBrowser' s delegate. The delegate implements methods for loading the
Cells in NXBrowser by setting their values and status. If your code needs access to a
specific NXBrowserCell, you can use the NXBrowser method
getLoadedCeIlAtRow:inColumn: .

You may find it useful to create a subclass of NXBrowserCell to alter its behavior and to
enable it to work with and display the type of data you wish to represent. Use NXBrowser's
setCellClass: or setCellPrototype: methods to have it use your subclass.

See the NXBrowser class specification for more details. In particular, the "Methods
Implemented by the Delegate" section describes how the NXBrowser's delegate interacts
with both NXBrowser and NXBrowserCells.

Instance Variables

None declared in this class.

Classes: NXBrowserCell 2-345

Method Types

Initializing an NXBrowserCell -' init

Determining component sizes

Accessing graphic attributes

- initTextCell:

- calcCellSize:inRect:

- isOpaque
+ branchIcon
+ branchIconH

Displaying - draw Inside: in View:
- drawSelf:in View:
- highlight: in View: lit:

Placing in browser hierarchy - setLeaf:
- isLeaf

Determining loaded status - setLoaded:
- isLoaded

Setting state - set
- reset

Class Methods

branchlcon

+ branchlcon

Returns the NXImage object named "NXMenuArrow". This is the icon displayed to
indicate a branch node in an NXBrowserCell. Override this method if you want your
subclass to display a different branch icon.

See also: - isLeaf

branchlconH

+ branchlconH

Returns the NXImage object named "NXMentiArrowH". This is the highlighted icon
displayed to indicate a selected branch node in an NXBrowserCell. Override this method
if you want your subclass to display a different branch icon.

See also: - isLeaf

2·346 Chapter 2: Application Kit

Instance Methods

calcCeIISize:inRect:
. - calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns self, and, by reference in theSize, the minimum width and height required for
displaying the NXBrowserCell in a given rectangle. Makes sure theSize remains large
enough to accommodate the branch arrow icon. If it isn't possible for the NXBrowserCell
to fit in aRect, the width or height returned in theSize could be bigger than those of the
rectangle. Returns self.

drawlnside:inView:

- drawlnside:(const NXRect *)celiFrame in View:a View

Draws the inside of the NXBrowserCell. Unlike other Cells, NXBrowserCell never draws
a border or bezel. Override this method to draw the cell differently. Returns self.

See also: - drawSelf:in View:

drawSelf:inView:

- drawSelf:(const NXRect *)celiFrame inView:aView

Draws the inside of the NXBrowserCell by invoking drawlnside:in View:. Unlike other
Cells, NXBrowserCell never draws a border or bezel. Returns self.

See also: - drawlnside:inView:

highlight:inView:lit:

- highlight: (const NXRect *)cellFrame inView:aView lit:(BOOL)lit

If the highlighted state would change, sets the NXBrowserCell's highlighted state to lit and
redraws it if needed within cellFrame in a View. Override this method to highlight the
NXBrowserCell differently. Returns self.

See also: - set, - reset, - highlight:in View: lit: (Cell)

Classes: NXBrowserCell 2-347

init

- init

Initializes and returns the receiver, a new NXBrowserCell instance, sets its title to
"BrowserItem" and returns self.

See also: - initTextCell:

initTextCell:

- initTextCell:(const char *)aString

Initializes the receiver, a new NXBrowserCell instance with aString as its title. Sets the
NXBrowserCell so it doesn't wrap text. This method is the designated initializer for the
NXBrowserCell class. Override this method if you create a subclass of NXBrowserCell
that performs its own initialization. Returns self.

See also: - init

isLeaf

- (BOOL)isLeaf

Determines whether the entry in the receiver represents a leaf node (such as a file) or branch
node (such as a directory). This method is invoked by NXBrowser to check whether to
display the branch icon in the Cell and, when an NXBrowserCell is selected, whether to
load a column to the right of the column containing the receiving Cell. Returns YES if the
cell represents a leaf, NO if the cell represents a branch.

See also: - setLeaf:

isLoaded

- (BOOL)isLoaded

Returns YES if the NXBrowserCell is loaded, NO if it isn't. Used by NXBrowser to
determine if a particular Cell is loaded in a column. When an NXBrowserCell is created,
this value is YES; however, if the NXBrowserCell is created by the NXBrowser, it sets the
value to NO so the delegate can properly set the loaded status. NXBrowser and its delegate
change the value returned by this method using the setLoaded: method to reflect the
current status of the cell.

See also: - setLoaded:, NXBrowser

2-348 Chapter 2: Application Kit

isOpaque

- (BOOL)isOpaque

Returns YES since an NXBrowserCell is always opaque.

reset

- reset

Sets the NXBrowserCell's state to 0 and sets the highlighted flag to NO. Does not display
the NXBrowserCell, even if autodisplay is on. Returns self.

See also: - set, - highlight: in View: lit

set

-set

Sets the NXBrowserCell's state to 1 and sets the highlighted flag to YES. Does not display
the NXBrowserCell, even if autodisplay is on. Returns self.

See also: - reset, - highlight:in View: lit

set Leaf:

- setLeaf:(BOOL)flag

Invoked by NXBrowser's delegate when it loads an NXBrowserCell. Ifflag is YES, the
NXBrowserCell is set to represent a leaf node; it will display without the branch icon.
When flag is NO, the NXBrowserCell is set to represent a branch node; it will display with
the branch icon. Does not display the NXBrowserCell, even if autodisplay is on.
Returns self.

See also: - isLeaf, - branchlcon, - branchlconH

setLoaded:

- setLoaded:(BOOL)flag

Sets the loaded status of the NXBrowser cell to flag. This method is invoked by
NXBrowser or its delegate to set the status of the NXBrowserCell. The delegate should
send the setLoaded: message with YES as the argument when it loads the cell.

See also: - isLoaded, NXBrowser delegate methods

Classes: NXBrowserCell 2·349

NXCachedlrnageRep

Inherits From: NXImageRep : Object

Declared In: appkitINXCachedImageRep.h

Class Description

An NXCachedImageRep is a rendered image in a window, typically a window that stays
off-screen. The only data that's available for reproducing the image is the image itself.
Thus an NXCachedImageRep differs from the other kinds of NXImageReps defined in the
Application Kit, all of which can reproduce an image from the information originally used
to draw it.

Instances of this class are generally used indirectly, through an NXImage object. An
NXCachedImageRep must be able to provide the NXImage with some information about
the image-so that the NXImage can match it to a display device, for example, or know
whether to scale it. Therefore, it's a good idea to use these inherited methods to inform the
NXCachedImageRep object about the image in the cache:

setNumColors:
setAlpha:
setPixelsHigh:
setPixels Wide:
setBitsPerSample:

These methods are all defined in the NXImageRep class.

Instance Variables

None declared in this class.

2-350 Chapter 2: Application Kit

Method Types

Initializing a new NXCachedImageRep

Freeing an NXCachedImageRep

Getting the representation

Drawing the image

Archiving

Instance Methods

copyFromZone:

- initFrom Window:rect:
- copyFromZone:

- free

- getWindow:andRect:

-draw

- read:
- write:

- copyFromZone:(NXZone *)zone

Returns a new instance of NXCachedImageRep that's an exact copy of the receiver.
Memory for the new instance is allocated from zone. Cached image reps are copied fully,
including their own copy of the image data.

See also: - copyFromZone: (NXImage)

draw
- (BOOL)draw

Reads image data from the cache and reproduces the image from that data. The
reproduction is rendered in the current window at location (0.0, 0.0) in the current
coordinate system.

It's much more efficient to reproduce an image by compositing it, which can be done
through the NXImage class. An NXBitmapImageRep can also be used to reproduce an
existing image.

This method returns YES if successful in reproducing the image, and NO if not.

See also: - drawln: (NXImageRep), - drawAt: (NXImageRep),
- initData:fromRect: (NXBitmapImageRep)

Classes: NXCachedlmageRep 2-351

free

-free

Deallocates the NXCachedImageRep.

getWindow:andRect:

- getWindow:(Window **)theWindow andRect:(NXRect *)theRect

Copies the id of the Window object where the image is located into the variable referred to
by the Window, and copies the rectangle that bounds the image into the structure referred to
by theRect. If theRect is NULL, only the Window id is provided. Returns self.

init

Generates an error message. This method cannot be used to initialize an
NXCachedImageRep. Use the initFrom Window:rect: method instead.

See also: - initFrom Window:rect:

initFromWindow:rect:

- initFromWindow:(Window *)aWindow rect:(const NXRect *)aRect

Initializes the receiver, a new NXCachedImageRep instance, for an image that will be
rendered within the aRect rectangle in a Window, and returns the initialized object. The
rectangle is specified in aWindow's base coordinate system. The size of the image is set
from the size of the rectangle.

You must draw the image in the rectangle yourself; there are no NXCachedImageRep
methods for this purpose.

read:

- read:(NXTypedStream *)stream

Reads the NXCachedImageRep from the typed stream stream.

write:

- write:(NXTypedStream *)stream

Writes the NXCachedImageRep to the typed stream stream.

2-352 Chapter 2: Application Kit

NXColorList

Inherits From:

Declared In:

Class Description

Object

appkitINXColorList.h

Instances of NXColorList are used to manage named lists of NXColors. Colors are added
to, looked up in, and removed from an NXColorList by name. NXColorPanel's list-mode
color picker uses instances of NXColorList for the standard PANTONE® Colors, the NeXT
colors, and any lists created by the user. An application can use NXColorList to manage
document-specific color lists, which may be added to an application's NXColorPanel using
its attachColorList: method.

An NXColorList manages colors in one of two ways. When managing a list such as the
PANTONE Colors, an NXColorList issues colors with persistent names. When managing
other color lists, such as the NeXT color list or a list created by the user, an NXColorList
issues colors without names.

NXColors generated with persistent names reference both the color name and color list
name. This reference remains even if the color is copied to another list and the user then
renames the color in the NXColorPanel. Lists that generate colors with persistent names
are considered immutable-attempts to change them at runtime will raise exceptions as
described in the list editing methods. The PANTONE Color list is currently the only
example of a list that issues colors with persistent names.

The Application Kit function NXSetColorO assures that colors with persistent names are
printed correctly regardless of the list from which they are selected. Say, for example, the
user has created a new color list in the color panel, copied a PANTONE Color into that list,
given that color a new name, then used the color from the new list in a document. When
that document is printed, the NXSetColorO function recognizes the color's persistent name
and references the PANTONE Color list to find the correct color value for the device.

An NXColorList saves and retrieves its colors from files with the extension" .elr". The
standard search path for the files for color lists include -!Library/Colors, -/.Next/Colors
(for historical reasons), !LocaILibrary/Colors, and lNextLibrary/Colors. NXColorList
reads color list files in several different-and undocumented-formats; NXColorList saves
color lists using typed streams API.

Classes: NXColorList 2·353

The files for color lists such as the PANTONE Colors provided with NeXTSTEP are stored
in file-wrappers. -This allows for localized and device-dependent versions of such lists.
Color lists created by the user from the NXColorPanel are saved as files in the directory
.... /Library/Colors. Color lists created for a document by an application may be saved in
the document's file package.

See also: - attachColorList:, - detachColorList: (NXColorPanel)

Instance Variables

None declared in this class.

Method Types

Initializing and freeing

Getting all color lists

Color list names

Managing colors by name

Generates persistent names

Editing

Number of colors

Saving to a file

Archiving

2-354 Chapter 2: Application Kit

- init
- initWithName:
- initWithName:fromFile:
- freeAndRemoveFile
-free

+ availableColorLists

+ findC'olorListN amed:
-name

- setColorNamed:color:
- colorN amed:
- nameOfColorAt:
- localizedN ameForColorN amed:
- removeColorNamed:

- generatesN amedColors

- isEditable

- colorCount

- saveTo:

- read:
- write:

Class Methods

avaiiableColorLists
+ (List *)avaiiableColorLists

Returns a List object of all NXColorLists found in the standard color list directories. This
list belongs to the NXColorList class and should not be cached by the caller. Color lists
created at run time are not included in this list unless they were saved into one of the
standard color list directories. This method is primarily for use by NXColorPanel.

The standard search path for color lists is discussed in the class description.

findColorListNamed:
+ findColorListNamed:(const char *)name

Returns the list with the name name; if the list doesn't exist, returns nil. name mustn't
include the ".clr" suffix. Color lists are searched for in the color list search path and
among the named, registered lists. The search path for color lists is discussed in the
class description.

See also: - initWithName:

Instance Methods

colorCount
- (unsigned)colorCoont

Returns the number of colors in the NXColorList.

colorNamed:
- (NXColor)colorNamed:(const char *)colorName

Returns the NXCoior associated with colorName. Raises the exception
NX_colorUnknown if colorName isn't in the NXColorList.

See also: - removeColorNamed:, - setColorNamed:color:

Classes: NXColorList 2-355

free

-free

Frees the NXColorList and its storage.

freeAndRemoveFile

- freeAndRemoveFile

Frees the NXColorList. If the list belongs to the user, this method also deletes the file from
which the list was created.

generatesNamedColors

- (BOOL)generatesNamedColors

Determines if the list generates colors with persistent names when its colorNamed: method
is invoked. Colors with persistent names maintain references to their source list and color
name, even if the user copies the color to another list and changes the name in the
NXColorPanel. If an NXColorList generates colors with persistent names, this behavior
can't be changed at runtime.

See also: - colorNamed:, - removeColorNamed:, - setColorNamed:color:

init

- init

Creates an unnamed NXColorList.

See also: - initWithName:, - initWithName:fromFile:

initWith Name:

- initWithName:(const char *)name

Creates and returns a new NXColorList. Also registers it under the specified name if the
name isn't in use already.

See also: - initWithName:fromFile:, - saveTo:

2-356 Chapter 2: Application Kit

initWithName:fromFile:

- initWithName:(const char *)name fromFile:(const char *)path

Creates and returns a new NXColorList. path should be the full path to the file for the color
list; name should be the name of the file for the color list (minus the ".elr" extension). This
method also registers the NXColorList under name if that name isn't already in use. This
method is the designated initializer for NXColorList.

See also: - initWithName:, - saveTo:

isEditable

- (BOOL)isEditable

Returns YES if the list doesn't generate colors with persistent names and if the user has
both read and write access to the file from which the NXColorList was initiated; returns
NO otherwise.

See also: - generatesNamedColors, - initWithName:fromFile:

localizedNameForColorNamed:

- (const char *)localizedNameForColorNamed:(const char *)colorName

Returns a name in the user's language of choice for the color associated with colorName.
The directory for a color list (such as PANTONE colors) should contain a ".lproj" directory
for each supported language. This method searches in the directory of the user's chosen
language for a ".strings" file containing translated color names.

This method raises an exception if colorN ame isn't in the list. If the color has no translation
for the user's chosen language, then colorName is returned.

name

- (const char *)name

Returns the name of the NXColorList.

See also: - initWithName:, - initWithName:fromFile:

Classes: NXColorList 2-357

nameOfColorAt:
- (const char *)nameOfColorAt:(unsigned)count

Returns the name associated with the NXCoior at count in the NXColorList.

read:
- read: (NXTypedStream *)stream

Reads the NXColorList from the specified stream. Returns self.

removeColorNamed:
- (void)removeColorNamed:(const char *)colorName

Removes the specified color. This method raises the exception NX_colorN otEditable if the
NXColorList generates named colors; it raises the exception NX_colorUnknown if
colorName isn't in the NXColorList.

See also: - generatesNamedColors, - isEditable

savelo:
- saveTo:(const char *)path

If path is a directory, saves the NXColorList in a file named listname .elr (where listname is
the name with which the NXColorList was initialized). If path ineludes a file name, this
method saves the file under that name. If path isn't specified, then this method saves the file
as -/Library/Colors in a file named listname .elr.

See also: - initWithName:, - initWithName:fromFile:

setColorNamed:color:
- (void)setColorNamed:(const char *)colorName color:(NXColor)color

Adds the NXCoior color to the list and associates it with the name colorName. If
colorName is already in the list, this method sets its NXCoior to color. This method raises
the exception NX_colorNotEditable if the NXColorList generates named colors; it raises
the exception NX_colorUnknown if colorName isn't in the NXColorList.

2-358 Chapter 2: Application Kit

write:

- write:(NXTypedStream *)stream

Writes the NXColorList to the specified stream. Returns self.

Methods Implemented by the Delegate

colorListDidChange:colorName:

- colorListDidChange:list colorName:(const char *)colorName

Indicates that a color in the NXColorList was changed. This method is invoked when the
list is first created or when the setColorNamed:color: or removeColorNamed: method
is invoked.

See also: - initWithName:fromFile:, - removeColorNamed:,
- setColorNamed:color:

Classes: NXColorList 2-359

NXColorPanel

Inherits From: Panel: Window : Responder: Object

Declared In: appkitINXColorPanel.h

Class Description

NXColorPanel provides a standard user interface for selecting color in an application. It
provides a number of standard color selection modes, and, with the
NXColorPickingDefault and NXColorPickingCustom protocols, allows an application to
add its own color selection modes. It allows the user to set swatches containing frequently
used colors. Once set, these swatches are displayed by NXColorPanel in any application
where it is used, giving the user color consistency between applications. NXColorPanel
enables users to capture a color anywhere on the screen for use in the active application,
and provides API for dragging colors between views in an application. NXColorPanel's
action message is sent to the target object when the user changes the current color.

An application has only one instance of NXColorPanel, the shared instance. Invoking the
sharedlnstance: method returns the shared instance of NXColorPanel, instantiating it if
necessary. You can also initialize an NXColorPanel for your application by invoking
Application's orderFrontColorPanel method.

You can put NXColorPanel in any application created with Interface Builder by adding the
"Colors ... " item from the Menu palette to the application's menu.

Color Mask and Color Modes

The color mask determines which of the color modes are enabled for NXColorPanel. This
mask is set before you initialize a new instance of NXColorPanel.
NX_ALLMODESMASK represents the logical OR of the other color mask constants: it
causes the NXColorPanel to display all standard color pickers. When initializing a new
instance of NXColorPanel, you can logically OR any combination of color mask constants
to restrict the available color modes.

2·360 Chapter 2: Application Kit

Mode

Grayscale-Alpha
Red-Green-Blue
Cyan-Yellow-Magenta-Black
Hue-Saturation-Brightness
TIFF image
Custom color lists
Color wheel
All of the above

Color Mask Constant

NX_GRAYMODEMASK
NX_RGBMODEMASK
NX_CMYKMODEMASK
NX_HSBMODEMASK
NX_CUSTOMPALETTEMODEMASK
NX_COLORLISTMODEMASK
NX_ WHEELMODEMASK
NX_ALLMODESMASK

The NXColorPanel's color mode mask is set using the class method setPickerMask:. The
mask must be set before creating an application's instance of NXColorPanei.

When an application's instance of NXColorPanel is masked for more than one color mode,
your program can set its mode by invoking the setMode: method with a color mode
constant as its argument; the user can set the mode by clicking buttons on the panel. Here
are the standard color modes and mode constants:

Mode

Grayscale-Alpha
Red-Green-Blue
Cyan-Yellow-Magenta-Black
Hue-Saturation-Brightness
TIFF image
Color lists
Color wheel

Color Mode Constant

NX_GRAYMODE
NX_RGBMODE
NX_CMYKMODE
NX_HSBMODE
NX_CUSTOMPALETTEMODE
NX_COLORLISTMODE
NX_BEGINMODE

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and
hue-saturation-brightness modes, the user adjusts colors by manipulating sliders. In the
custom palette mode, the user can load a TIFF file into the NXColorPanel, then select
colors from the TIFF image. In custom color list mode, the user can create and load lists
of named colors. The two custom modes provide PopUpLists for loading and saving files.
Finally, color wheel mode provides a simplified control for selecting colors; by default, it's
the initial mode when the NX_ALLMODESMASK constant is used to initialize the
NXColorPanei.

Associated Classes and Protocols

The NXColorList class provides an API for managing custom color lists. The
NXColorPanel methods attachColorList: and detachColorList: let your application add
and remove custom lists from the NXColorPanel's user interface.

Classes: NXColorPanel 2-361

The protocols NXColorPickingDefault and NXColorPickingCustom provide an API for
adding custom color selection to the user interface. The NXColorPicker class implements
the NXColorPickingDefault protocol; you can subclass NXColorPicker and implement the
NXColorPickingCustom protocol in your subclass to create your own user interface for
color selection.

See also: NXColorList, NXColorPicker, NXColorPickingDefault protocol,
NXColorPickingCustom protocol, NXColorWell

Instance Variables

None declared in this class.

Method Types

Creating a New NXColorPanel + sharedInstance:

Setting Color

Target and Action

Mode

Alpha

Picker settings

Accessory View

Color list management

Color dragging

Archiving

2·362 Chapter 2: Application Kit

- setColor:
- color

- setAction:
- setTarget:
- setContinuous:
- isContinuous

- setMode:
-mode

- alpha
- setShow Alpha:
- doesShow Alpha

+ setPickerMode:
+ setPickerMask:

- setAccessoryView:
- accessory View

- attachColorList:
- detachColorList:
- updateCustomColorList

+ dragColor: withEvent: from View:

-read:

Class Methods

alloc

Generates an error message. This method cannot be used to create NXColorPanel
instances. Use the sharedlnstance: class method instead.

See also: + sharedlnstance:

allocFromZone:

Generates an error message. This method cannot be used to create NXColorPanel
instances. Use the sharedlnstance: class method instead.

See also: + sharedlnstance:

dragColor:withEvent:from View:

+ (BOOL)dragColor:(NXColor)co!or
withEvent:(NXEvent *)theEvent
from View:controlView

Drags colors between views in an application. This method is usually invoked by the
mouseDown: method of controlView. The dragging mechanism handles all
subsequent events.

Because it is a class method, dragColor:withEvent:from View: can be invoked whether
or not the instance of NXColorPanel exists. Returns YES.

setPickerMask:

+ (void)setPickerMask:(int)mask

Accepts as a parameter one or more logically OR'd color mode masks (defined in the
header file appkitINXColorPanel.h). This determines which color selection modes will
be available in an application's NXColorPanel. This method only has an effect before
NXColorPanel is instantiated.

If you create a class that implements the color picking protocols (NXColorPickingDefault
and NXColorPickingCustom), you may want to give it a unique mask-one different from
those defined for the standard color pickers. To display your color picker, your application

Classes: NXColorPanel 2-363

will need to logically OR that unique mask with the standard color mask constants when
invoking this method.

See also: NXColorPicker class, NXColorPickingDefault protocol,
NXColorPickingCustom protocol

setPickerMode:

+ (void)setPickerMode:(int)mode

Sets the color panel's initial picker mode. The mode determines which picker will initially
be visible. This method may be called at any time, whether or not an application's
NXColorPanel has been instantiated.

See also: - setMode:, - setMode: (NXColorPicker)

sharedlnstance:

+ sharedlnstance:(BOOL)create

Returns the shared instance of NXColorPanel. If create is YES, this method creates, if
necessary, and returns the NXColorPanel. If create is NO and the shared instance exists,
this method returns it; if no instance of NXColorPanel exists, returns nil.

See also: - orderFrontColorPanel (Application)

Instance Methods

accessoryView
- accessoryView

Returns the NXColorPanel's accessory View.

See also: - setAccessoryView:

2·364 Chapter 2: Application Kit

attachColorList:

- attachColorList:theColorList

Notifies color pickers (objects that conform to the NXColorPickingDefault and
NXColorPickingCustom protocols) when a new NXColorList is added to the
NXColorPanel. Your application should use this method to add an NXColorList saved with
a document in its file package or in a directory other than NXColorList's standard search
directories. This method invokes attachColorList: on all color pickers in the application.

See also: - detachColorList:, NXColorList, NXColorPicker, NXColorPickingDefault
protocol, NXColorPickingCustom protocol

alpha

- (fioat)alpha

Returns the current alpha level of the NXColorPanel based on its opacity slider. If the
NXColorPanel has no opacity slider, returns 1.0 (opaque).

See also: - does Show Alpha, - setShow Alpha:

color

- (NXColor)color

Returns the color selected in the NXColorPanel.

See also: - setColor

detachColorList:

- detachColorList:theColorList

Notifies color pickers (objects that conform to the NXColorPickingDefault and
NXColorPickingCustom protocols) when an NXColorList is removed from the
NXColorPanel. Your application should use this method to remove an NXColorList
saved with a document in its file package or in a directory other than NXColorList's
standard search directories. This method invokes detachColorList: on all color pickers
in the application.

See also: - attachColorList:, NXColorList, NXColorPicker, NXColorPickingDefault
protocol, NXColorPickingCustom protocol

Classes: NXColorPanel 2-365

doesShowAlpha

- (BOOL)doesShowAlpha

Returns YES if the alpha (opacity) slider is currently displayed by the NXColorPanel; NO
if not. The opacity slider is independent of the currently selected color picker.

See also: - setShowAlpha

isContinuous

- (BOOL)isContinuous

Returns whether or not the NXColorPanel's color is being set continuously as the user
manipulates the color picker.

See also: - setContinuous:

mode

- (int)mode

Returns the current color picker mode for the NXColorPanel. The mode constants for the
standard color pickers are listed in the class description.

read:

- read:(NXTypedStream *)theStream

Reads the NXColorPanel from the typed stream theStream. Returns self.

setAccessoryView:

- setAccessoryView:a View

Sets the accessory View displayed in the NXColorPanel to a View. The accessory View can
be any custom View that you want to display with NXColorPanel, such as a View offering
color blends in a drawing program. The accessory View is displayed below the color picker
and above the color swatches in the NXColorPanel. The NXColorPanel automatically
resizes to accommodate the accessory View. Returns the previous accessory view, if there
was one; otherwise, returns nil.

See also: - accessoryView

2-366 Chapter 2: Application Kit

setAction:
- setAction:(SEL)aSelector

Sets the action of the NXColorPanel to aSelector. Returns self.

See also: - setTarget:

setColor:
- setColor:(NXColor)color

Sets the color setting of the NXColorPanel to color and redraws the panel. Returns self.

See also: - color

setContinuous:

- setContinuous:(BOOL)fiag

Sets the NXColorPanel to send the action message to its target continuously as the color of
the NXColorPanel is set by the user. Send this message withfiag YES if, for example, you
want to continuously update the color of the target. Returns self.

See also: - isContinuous

setMode:

- setMode:(int)mode

Sets the mode of the NXColorPanel if mode is one of the modes allowed by the color mask.
The color mask is set when you first create the shared instance of NXColorPanel for an
application. mode may be one of these symbolic constants, declared in the header file
appkitINXColorPanel.h:

NX_GRAYMODE
NX_RGBMODE
NX_CMYKMODE
NX_HSBMODE
NX_CUSTOMPALETTEMODE
NX_COLORLISTMODE
NX_ WHEELMODE

Classes: NXColorPanel 2-367

If you create a color picker-a class that implements the NXColorPickingDefault and
NXColorPickingCustom protocols-it should define a unique mode value that differs from
those for the standard color pickers.

Color modes and masks are described in the class description.

Returns self.

See also: - mode

setShowAlpha:

- setShowAlpha:(BOOL)jiag

Ifjiag is YES, sets the NXColorPanel to show alpha. Returns self.

See also: - doesShowAlpha

setTarget:

- setTarget:anObject

Sets the target of the NXColorPanel to anObject. The NXColorPanel' s target is the object
to which the action message is sent when the user selects a color. Returns self.

See also: - setAction:, - setContinuous:

updateCustomColorList

- updateCustomColorList

Updates the current custom color lists. This method sends each color picker an
updateColorList: message with a nil argument. Color pickers are objects conforming to
the NXColorPickingDefault and NXColorPickingCustom protocols.

2-368 Chapter 2: Application Kit

NXColorPicker

Inherits From:

Conforms To:

Declared In:

Class Description

Object

NXColorPickingDefault

appkitINXColorPicker.h

NXColorPicker is an abstract superclass that implements the NXColorPickingDefault
protocol. The NXColorPickingDefault and NXColorPickingCustom protocols define a
way to add color pickers-custom user interfaces for color selection-to the
NXColorPanel. The simplest way to implement a color picker is to create a subclass of
NXColorPicker that implements the NXColorPickingCustom protocol.

The NXColorPickingDefault protocol specification describes the details of implementing
a color picker and adding it to your application's NXColorPanel; you should tum there first
for an overview of how NXColorPicker works. This specification is provided to document
the specific behavior of NXColorPicker's methods.

Adopted Protocols

NXColorPickingDefault - initFromPickerMask:withColorPanel:
- provideNew Buttonlmage
- insertNewButtonlmage:in:
- viewSizeChanged:
- alphaControlAddedOrRemoved:
- insertionOrder
- attachColorList:
- detachColorList:
- updateColorList:
- setMode:

Classes: NXColorPicker 2-369

Instance Variables

id imageObject

NXColorPanel *colorPanel

BOOL continuous

imageObject

colorPanel

continuous

Object providing the ButtonCell image

Panel in which the color picker is installed

YES if color picker updates current color continuously

Instance Methods

alphaControlAddedOrRemoved:

- alphaControlAddedOrRemoved:sender

Does nothing and returns self.

attachColorList:

- attachColorList:colorList

Does nothing and returns self.

detachColorList:

- detachColorList:colorList

Does nothing and returns self.

i nsertionOrder

- (float)insertionOrder

Returns 0.4, a value that places NXColorPicker's ButtonCell first in the Matrix from which
the user selects color pickers.

See also: - insertNewButtonlmage:in:, - provideNewButtonlmage:

2-370 Chapter 2: Application Kit

insertNewButtonlmage:in:
- insertNewButtonlmage:new/mage in:newButtonCell

Sets new/mage as newButtonCell's image by invoking ButtonCell's setImage: method.
Returns self.

initFromPickerMask:withColorPanel:
- initFromPickerMask:(int)theMask withColorPanel:thePanel

Sets the color picker's color panel to thePanel and returns self. Override this method
to respond to the values in theMask or do other custom initialization. If you override
this method in a subclass, you should forward the message to super as part of
the implementation.

provideNewButtonlmage
- provideNewButtonlmage

Returns the NXImage that represents the NXColorPicker in the NXColorPanel's Matrix of
ButtonCells. This method attempts to load the image from a file named MyPickerClass.tiff
(where MyPickerClass is the name of your subclass of NXColorPicker) in the
MyPickerClass bundle of the application's ColorPicker directory. See "Color Picker
Bundles" in the NXColorPickingDefault protocol specification for a more complete
discussion of this bundle.

setMode:
- setMode:(int)mode

Does nothing and returns self. Override this method if your color picker has submodes to
set the mode of the color picker to mode.

updateColorList:

- updateColorList:colorList

Does nothing and returns self.

Classes: NXColorPicker 2·371

viewSizeChanged:

- viewSizeChanged:sender

Does nothing and returns self.

2-372 Chapter 2: Application Kit

NXCo1orWe11

Inherits From: Control: View: Responder: Object

Declared In: appkitINXColorWell.h

Class Description

NXColorWell is a Control for selecting and displaying a single color value. An example
of NXColorWell is found in NXColorPanel, which uses a well to display the current color
selection. NXColorWell is available from the Palettes panel of Interface Builder.

An application can have one or more active NXColorWells. You can activate multiple
NXColorWells by invoking the activate: method with NO as its argument. You can set the
same color for all active color wells by invoking the class method
activeWellsTakeColorFrom:. You can deactivate multiple wells using the class method
deactivateAllWells. When a mouse-down event occurs in an NXColorWell, it becomes
the only active well.

The mouseDown: method enables an instance of NXColorWell to send its color to another
NXColorWell or any other subclass of View that implements the NXDraggingDestination
protocol.

See also: NXColorPanel

Instance Variables

NXCoior color;

color The current color of the NXColorWell.

Classes: NXColorWell 2-373

Method Types

Initializing an NXColorWell - initFrame:

Multiple NXColorWells + active WellsTakeColorFrom:

Drawing

Handling events

Activating and enabling

Setting color

Borders

Target and action

Archiving

Class Methods

+ active WellsTakeColorFrom:continuous:
+ deactivateAllWells

- drawS elf: :
- drawWellInside:

- acceptsFirstMouse
- mouseDown:
- setContinuous:
- isContinuous

- activate:
- deactivate
- isActive
- setEnabled:

- setColor:
- color
- takeColorFrom:

- setBordered:
- isBordered

- setTarget:
- target
- setAction:
- action

-awake

activeWellsTakeColorFrom:

+ active WellsTakeColorFrom:sender

This method changes the color of all active NXColorWells by invoking their
takeColorFrom: method with sender as the argument. Returns the NXColorWell class
object.

See also: - activate:, + activeWellsTakeColorFrom:continuous:, - deactivate,
+ deactivateAllWells, - takeColorFrom:

2-374 Chapter 2: Application Kit

activeWellsTakeColorFrom:continuous:

+ active WellsTakeColorFrom:sender continuous: (BOOL)flag

If flag is YES, this method changes the color of all active NXColorWells that are
continuous; If NO, all active NXColorWells, continuous or not, change their color.
NXColorWells are updated by invoking their takeColorFrom: method with sender as the
argument. Use this method in a modal event loop with YES as flag if you want active
NXColorWells to continuously update to reflect the current color of sender. Returns the
NXColorWell class object.

See also: - activate:, - deactivate, + deactivateAllWells, - is Continuous,
- setContinuous:, - takeColorFrom:

deactivateAIiWelis

+ deactivateAllWells

Deactivates all currently active NXColorWells. Returns the NXColorWell class object.

See also: - activate:, - deactivate

Instance Methods

acceptsFirstMouse

- (BOOL)acceptsFirstMouse

Returns YES. NXColorWells by default accept mouse clicks.

action

- (SEL)action

Returns the action sent by the NXColorWell to its target.

activate:

- (int)activate:(int)exclusive

If exclusive is YES, this method activates the receiving NXColorWell and deactivates any
other active NXColorWells. If NO, this method activates the receiving NXColorWell and
keeps previously active NXColorWells active. Redraws the receiver. An active

Classes: NXColorWell 2-375

NXColorWell will have its color updated when the NXColorPanel's current color changes
(continuously, if set to do so).

This method returns the number of active NXColorWells.

See also: + activeWellsTakeColorFrom:, - deactivate, - isContinuous

awake

-awake

Performs additional initialization after the receiver is unarchived. Returns self.

color

- (NXColor)color

Returns the color of the NXColorWell.

See also: - acceptColor:atPoint, - setColor:, - takeColorFrom:

deactivate
- deactivate

Sets the NXColorWell to inactive and redraws it. Returns self.

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the entire NXColorWell, including its border. Returns self.

drawWellinside:

- drawWelllnside:(const NXRect *)insideRect

Draws the inside of the NXColorWell only, the area where the color is displayed.
Returns self.

2-376 Chapter 2: Application Kit

initFrame:

- initFrame:(const NXRect *)theFrame

Initializes and returns the receiver, a new instance of NXColorPanel within theFrame. By
default, the color is NX_COLORWHITE and the NXColorWell is bordered and inactive.
Returns self.

isActive

- (BOOL)isActive

Returns YES if the receiving NXColorWell is active, NO if not active.

See also: - activate:

isBordered

- (BOOL)isBordered

Returns YES if the receiving NXColorWell is bordered.

See also: - setBordered:

isContinuous

- (BOOL)isContinuous

Returns YES if the receiving NXColorWell will update its color and send its action
message to its target when the class receives the message
active WellsTakeColorFrom:sender continuous: YES.

See also: - setContinuous:

mouseDown:

- mouseDown:(NXEvent *)theEvent

Makes the receiver the only active NXColorWell if theEvent is on the border of the
NXColorWell; begins dragging the NXColorWell's color if theEvent is in the colored area
of the NXColorWell. When color dragging begins, this method lets the user drag the color
from the NXColorWell to another NXColorWell or to another View that implements the
NXDraggingDestination protocol. Returns self.

Classes: NXColorWell 2-377

You never invoke this method. It's sent when an NX_MOUSEDOWN event occurs within
the bounds of the NXColorWell.

See also: - activate, - deactivate, - isActive

setAction:

- setAction:(SEL) aSelector

Sets the action method of the NXColorWell. The action message is sent to the target by
NXColorWell's takeColorFrom: method. Returns self.

setBordered:

- setBordered:(BOOL)flag

If flag is YES,sets the NXColorWell to display its border. Redraws the receiver and
returns self.

setColor:

- setColor:(NXColor)color

Sets the color of the NXColorWell to color. Redraws the receiver and returns self.

setContinu'ous:

- setContinuous:(BOOL)flag

If flag is YES, the NXColorWell will update its color and sends its action message
to its target each time the class receives an activeWellsTakeColorFrom:sender
continuous:YES message. If NO, the NXColorWell won't be updated in response to this
message. Returns self.

See also: - is Continuous

2·378 Chapter 2: Application Kit

setEnabled:

- setEnabled:(BOOL)jiag

Ifjiag is YES, the receiving NXColorWell is enabled. If NO, the receiver is disabled.
An NXColorWell cannot be both disabled and active; enabling an NXColorWell doesn't
activate it. Returns self.

See also: - activate, - deactivate, - isActive

setTarget:

- setTarget:anObject

Sets the target of the NXColorWell to anObject. The action message is sent to the target
by NXColorWell's takeColorFrom: method. Returns self.

takeColorFrom:

- takeColorFrom:sender

Causes the receiving NXColorWell to set its color by sending a color message to sender.
Sends the NXColorWell's action message to its target and returns self.

See also: - color

target

- target

Returns the target of the NXColorWell. The action message is sent to the target by
NXColorWell's takeColorFrom: method. Returns self.

See also: - setTarget:

Classes: NXColorWel1 2-379

NXCursor

Inherits From:

Declared In:

Object

appkitINXCursor.h

Class Description

An NXCursor holds an image that can become the image that the Window Server can
display for the cursor. A set message makes the receiver the current cursor:

[myNXCursor set];

For automatic cursor management, an NXCursor can be assigned to a cursor rectangle
within a Window. When the Window is key and the user moves the cursor into the
rectangle, the NXCursor is automatically set to be the current cursor. It ceases to be the
current cursor when the cursor leaves the rectangle. The assignment is made using View's
addCursorRect:cursor: method, usually inside a resetCursorRects method:

- resetCursorRects

[self addCursorRect:&someRect cursor:theNXCursorObject];

return self;

This is the recommended way of associating a cursor with a particular region inside a
window. However, the NXCursor class provides two other ways of setting the cursor:

• The class maintains its own stack of cursors. Pushing an NXCursor instance on the
stack sets it to be the current cursor. Popping an NXCursor from the stack sets the next
NXCursor in line, the one that's then at the top of the stack, to be the current cursor.

• An NXCursor can be made the owner of a tracking rectangle and told to set itself when
it receives a mouse-entered or mouse-exited event.

The Application Kit provides two ready-made NXCursor instances and assigns them to
global variables:

NXArrow
NXIBeam

The standard arrow cursor
The cursor that's displayed over editable or selectable text

There's no NXCursor instance for the wait cursor. The wait cursor is displayed
automatically by the system, without any required program intervention.

2-380 Chapter 2: Application Kit

Instance Variables

NXPoint hotSpot;
struct _csrFlags {

unsigned int onMouseExited: 1;
unsigned int onMouseEntered: 1;

} cFlags;
id image;

hotSpot

cFlags.onMouseExited

cFlags.onMouseEntered

image

Method Types

The point in the cursor image whose location on the
screen is reported as the cursor's location.

A flag indicating whether to set the cursor when the
NXCursor object receives a mouse-exited event.

A flag indicating whether to set the cursor when the
NXCursor object receives a mouse-entered event.

The cursor image, an NXlmage object.

Initializing a new NXCursor object

Defining the cursor

Setting the cursor

Archiving

- init
- initFromlmage:

- setlmage:
- image
- setHotSpot:

-push
-pop
+ pop
- set
- setOnMouseEntered:
-'- setOnMouseExited:
- mouseEntered:
- mouseExited:
+ currentCursor

- read:
- write:

Classes: NXCursor 2-381

Class Methods

currentCursor

+ currentCursor

Returns the last NXCursor that received a set message.

See also: - set, - push, + pop, - mouseEntered:, - mouseExited:,

pop

+ pop

Removes the NXCursor at the top of the cursor stack, and sets the NXCursor that was
beneath it to be the current cursor. Returns self (the class object).

This method can be used in conjunction with the push method to manage a group of cursors
within a local context. Every push should be balanced by a subsequent pop. When the last
remaining cursor is popped from the stack, the Application Kit restores a cursor appropriate
for the larger context.

The pop instance method provides the same functionality as this class method.

See also: - push

Instance Methods

image

-image

Returns the NXImage object that supplies the cursor image for the receiving NXCursor, or
nil if no image has been set.

See also: - initFromlmage:, - setlmage:

init

-init

Initializes the receiver, a newly allocated NXCursor instance, by sending it an
initFromlmage: message with nil as the argument. This doesn't assign an image to the

2-382 Chapter 2: Application Kit

object. An image must then be set (with the setImage: method) before the cursor can be
used. Returns self.

See also: - setImage:, - initFromlmage:

initFromlmage:

- initFromlmage:image

Initializes the receiver, a newly allocated NXCursor instance, by setting the image it will
use to image, an NXImage object. The image must be at least 16 pixels wide by 16 pixels
high. If the image is smaller than 16-by-16, an error is generated when the application tries
to use the cursor, and the previous cursor remains in use. If the image is larger than
16-by-16, only the lower-left 16-by-16 pixels of the image will be displayed. The default
hot spot is at the upper left comer of the 16-by-16 square.

This method is the designated initializer for the class. Returns self.

See also: - setHotSpot:, - setImage:

mouseEntered:

- mouseEntered:(NXEvent *)theEvent

Responds to a mouse-entered event by setting the receiver to be the current cursor, but only
if enabled to do so by a previous setOnMouseEntered: message. This method does not
push the receiver on the cursor stack. Returns self.

See also: - setOnMouseEntered:

mouseExited:

- mouseExited:(NXEvent *)theEvent

Responds to a mouse-exited event by setting the receiver to be the current cursor, but only
if enabled to do so by a previous setOnMouseExited: message. This method does not push
the receiver on the cursor stack. Returns self.

See also: - setOnMouseExited:

Classes: NXCursor 2-383

pop

-pop

Removes the topmost NXCursor object, not necessarily the receiver, from the cursor stack,
and makes the next NXCursor down the current cursor. Returns self.

This method is a cover for the class method of the same name.

See also: + pop, - push

push

-push

Puts the receiving NXCursor on the cursor stack and sets it to be the Window Server's
cursor. Returns self.

This method can be used in conjunction with the pop method to manage a group of cursors
within a local context. Every push should be matched by a subsequent pop.

See also: + pop

read:

- read:(NXTypedStream *)stream

Writes the NXCursor, including the image, to stream. Returns self.

See also: - write:

set

-set

Makes the NXCursor the cursor displayed by the Window Server, and returns self. This
method doesn't push the receiver on the cursor stack.

setHotSpot:

- setHotSpot:(const NXPoint *)aPoint

Sets the point on the cursor that will be used to report its location. The point is specified
relative to a flipped coordinate system with an origin at the upper left comer of the cursor
image and coordinate units equal to those of the base coordinate system. The point should

2-384 Chapter 2: Application Kit

not have any fractional coordinates, meaning that it should lie at the corner of four pixels.
The point selects the pixel below it and to its right. This pixel is the one part of the cursor
image that's guaranteed never to be off-screen.

When the pixel selected by the hot spot lies inside a rectangle (say a button), the cursor is
said to be over the rectangle. When the pixel is outside the rectangle, the cursor is taken to
be outside the rectangle, even if other parts of the image are inside.

The default hot spot is at the upper left corner of the image-(O,O) in its flipped coordinate
system. Returns self.

setlmage:

- setlmage:image

Assigns a new cursor image to the receiving NXCursor, and returns self. image should be
an NXImage object for an image that's 16 pixels wide by 16 pixels high. If the image is
smaller than 16-by -16, an error is generated when the application tries to use the cursor, and
the previous cursor remains in use. If the image is larger than 16-by-16, only the lower-left
16-by-16 pixels of the image will be displayed.

Resetting the image of an NXCursor while it is the current cursor may have unpredictable
results.

See also: - image, - initFromlmage:

setOnMouseEntered:

- setOnMouseEntered:(BOOL)jlag

Determines whether the NXCursor should set itself to be the current cursor when it receives
a mouseEntered: event message. To be able to receive the event message, an NXCursor
must first be made the owner of a tracking rectangle by Window's
setTrackingRect:inside:owner:tag:left:right: method.

Cursor rectangles are a more convenient way of associating cursors with particular areas
within a window.

Returns self.

See also: - mouseEntered:, - setTrackingRect:inside:owner:tag:left:right: (Window)

Classes: NXCursor 2-385

setOnMouseExited:

- setOnMouseExited:(BOOL)jlag

Determines whether the NXCursor should set itself to be the current cursor when it receives
a mouseExited: event message. To be able to receive the event message, an NXCursor
must first be made the owner of a tracking rectangle by Window's
setTrackingRect:inside:owner:tag:left:right: method.

Cursor rectangles are a more convenient way of associating cursors with particular areas
within windows.

Returns self.

See also: - mouseExited:, - setTrackingRect:inside:owner:tag:left:right: (Window)

write:

- write:(NXTypedStream *)stream

Writes the NXCursor and its image to stream. Returns self.

See also: - read:

2-386 Chapter 2: Application Kit

NXCustol11ll11ageRep

Inherits From:

Declared In:

Class Description

NXlmageRep : Object

appkitINXCustomlmageRep.h

An NXCustomlmageRep is an object that uses a delegated method to render an image.
When called upon to produce the image, it sends a message to have the method performed.

Like most other kinds of NXlmageReps, an NXCustomlmageRep is generally used
indirectly, through an NXlmage object. To be useful to the NXlmage, it must be able to
provide some information about the image. The following methods, inherited from the
NXlmageRep class, inform the NXCustomlmageRep about the size of the image, whether
it can be drawn in color, and so on. Use them to complete the initialization of the object.

setSize:
setNumColors:
setAlpha:
setPixelsHigh:
setPixels Wide:
setBitsPerSample:

Instance Variables

SEL drawMethod;
id drawObject;

drawMethod

drawObject

The method that draws the image.

The object that receives messages to perform the
drawMethod.

Classes: NXCustomlmageRep 2·387

Method Types

Initializing a new NXCustomImageRep

Drawing the image

Archiving

Instance Methods

draw
- (BOOL)draw

- initDrawMethod:inObject:

-draw

- read:
- write:

Sends a message to have the image drawn. Returns YES if the message is successfully sent,
and NO if not. The message will not be sent if the intended receiver is nil or it can't respond
to the message.

See also: - drawAt: (NXImageRep), - drawln: (NXImageRep)

init

Generates an error message. This method cannot be used to initiali~e an
NXCustomImageRep. Use initDrawMethod:inObject: instead.

See also: - initDrawMethod:inObject:

initDrawMethod:inObject:

- initDrawMethod:(SEL)aSelector inObject:anObject

Initializes the receiver, a newly allocated NXCustomImageRep instance, so that it
delegates responsibility for rendering the image to anObject. When the
NXCustomImageRep receives a draw message, it will in tum send a message to anObject
to perform the aSelector method. The aSelector method should take only one argument,
the id of the NXCustomImageRep. It should draw the image at location (0.0, 0.0) in the
current coordinate system.

Returns self.

2-388 Chapter 2: Application Kit

read:
- read:(NXTypedStream *)stream

Reads the NXCustomImageRep from the typed stream stream.

See also: - write:

write:
- write:(NXTypedStream *)stream

Writes the NXCustomImageRep to the typed stream stream. The object that's delegated
to draw the image is not explicitly written.

See also: - read:

Classes: NXCustomlmageRep 2-389

NXDataLink

Inherits From: Object

Declared In: appkitINXDataLink.h

Class Description

An NXDataLink defines a single data link between a selection in a source document and a
dependent, dynamically updated selection in a destination document.

A data link is typically created when linkable data is copied to the pasteboard. First, an
NXSelection object describing the data is created. Then a link to that selection is created
using initLinkedToSourceSelection:managedBy:supportingTypes:count:. The link
can then be written to the pasteboard using write To Pasteboard: . Usually, after the link
has been written to the pasteboard (or saved to a file using writeToFile:) the link is freed
because it is generally of no further use to the source application.

Once the data and link have been written to the pasteboard, they can be added to a
destination document using the Paste and Link command. The implementation responding
to this command will paste the data as usual (with the possible exception that the linked
data will be pasted in a "display" format rather than a richer, editable format, since the data
is to be dependent on the source data rather than fundamentally editable). The destination
application will then read the link from the pasteboard using initFromPasteboard:, create
an NXSelection describing the linked data within the destination document, and will add
the link by sending addLink:at: to the document's link manager.

When the link is added to the destination document's link manager, it becomes a destination
link. At this time, the data links implementation establishes a connection with the source
document's link manager, which automatically creates a source link in the source
application; the source link refers to the source selection. Only applications that must
update destination links continuously need to be aware of when source links are created;
these applications can return YES in response to a
dataLinkManagerTracksLinkslndividuaUy: message, and then respond to
dataLinkManager:startTrackingLink: messages to receive notifications that source
links are created.

2·390 Chapter 2: Application Kit

A link that isn't managed by a link manager is a broken link. (Both source and destination
links have link managers.) All links are broken links when they are created. Links can be
explicitly broken (ensuring that they cause no updates) using the break method. Broken
links (that aren't former source links) can be hooked up as destination links with the
addLink:at: method. The disposition of a link (destination, source, or broken) can be
retrieved with the disposition method. Most of the messages defined by the NXDataLink
class can be sent to a link of any disposition, but some only make sense when sent to a link
with a specific disposition; these are so noted in their method descriptions.

Links of all dispositions (except links to files) maintain an NXSelection object referring to
the link's selection in the source document; this selection is returned by the
sourceSelection method. Links directly to files represent entire files rather than selections
in a document; these links are created with initLinkedToFile: and have no source
selection.

Source and destination links also maintain an NXSelection describing how the data is
presented in the destination document; this selection is returned by the
destinationSelection method.

Instance Variables

None declared in this class.

Method Types

Initializing a link

Exporting a link

Information about the link

- initFromFile:
- initFromPasteboard:
- initLinkedToFile:
- initLinkedToSourceSelection:managedBy:

supportwgTypes:count:
- copyFromZone:

- writeToPasteboard:
- saveLinkIn:
- writeToFile:

-manager
- disposition
- linkNumber

Classes: NXDataLink 2-391

Information about the link's source
- sourceAppName
- sourceFilename
- sourceS election
- openSource
- lastUpdateTime
- types

Information about the link's destination

Updating the link's data

Instance Methods

break

- break

- destinationAppN arne
- destinationFilename
- destinationS election

- sourceEdited
- updateDestination
- setUpdateMode:
- updateMode
- break

Breaks the link so the data referred to by its selection will not get updated. The link is
removed from its link manager and its destination selection is freed. The link itself is not
freed; if it wasn't formerly a source link it can be hooked back up again using
NXDataLinkManager's addLink:at: method. Alternatively, it can be explicitly freed
by the application if the application directly sent the break message, or freed by
Applications's delayedFree: method on receiving a dataLinkManager:didBreakLink:
notification that the link was broken. (This could happen in response to user input from the
data link panel.) Returns self if sent to a destination link, does nothing and returns nil if
sent to a broken link If sent to a source link, the message is forwarded to the destination
link; it then returns self if the link is successfully broken and nil otherwise.

2-392 Chapter 2: Application Kit

copyFromZone:

- copyFromZone:(NXZone *)zone

Returns a copy of the receiving data link allocated from zone. The copy is essentially
linked to the source data, but not hooked up to the destination document. The copy has a
copy of the receiver's source selection, has no destination selection, and its disposition
is NX_LinkBroken.

See also: - addLink:at: (NXDataLinkManager)

destinationAppName

- (const char *)destinationAppName

Returns the name (as returned by Application's appName method) of the application
containing the destination link.

See also: - sourceAppName

destination Filename

- (const char *)destinationFilename

Returns the file name of the destination document, as set by any of several
NXDataLinkManager methods for the destination document.

See also: - sourceFilename

destinationSelection

- (NXSelection *)destinationSelection

Returns the destination selection, which describes how the linked data is represented in the
destination document.

See also: - sourceSelection

Classes: NXDatoLink 2-393

disposition

- (NXDataLinkDisposition)disposition

Identifies the link as a source link, a destination link, or a broken link by returning one of
the following values:

NX_LinkInDestination
NX_LinkInSource
NX_LinkBroken

See also: - addLink:at: (NXDataLinkManager),
- dataLinkManager:startTrackingLink: (NXDataLinkManager delegate), - break

initFromFile:

- initFromFile:(const char *)jilename

Initializes a newly allocated NXDataLink instance fromjilename, a link that was
previously saved using the saveLinkln: or writeToFile: method. The new link is generally
used by adding it to a destination document's link manager with addLink:at:. Returns the
link if it is successfully initialized; otherwise frees the link and returns nil.

See also: - saveLinkln:, - writeToFile:, - addLink:at: (NXDataLinkManager)

initFromPasteboard:

- initFromPasteboard:(Pasteboard *)pasteboard

Initializes a newly allocated NXDataLink instance from the pasteboard pasteboard. The
new link is generally used by adding it to a destination document's link manager with
addLink:at: .

In order for this method to succeed, a link must have been placed on the pasteboard
using writeToPasteboard:, or the file name of a saved link (data of type
NXFilenamePboardType with an extension of NXDataLinkFilenameExtension) must be
on the pasteboard.

Returns the link if it is successfully initialized; otherwise frees the link and returns nil.

See also: - writeToPasteboard:, - saveLinkln:, - addLink:at: (NXDataLinkManager)

2-394 Chapter 2: Application Kit

initLinkedToFile:

- initLinkedToFile:(const char *)filename

Initializes anew ly allocated NXDataLink instance corresponding to the entire file filename.
The link is identified as a link to a file because it has no source selection. Returns the link
if it is successfully initialized; otherwise frees the link and returns nil.

See also: - addLink:at: (NXDataLinkManager), - writeToPasteboard:,
- sourceSelection

initLinkedToSourceSelection:managedBy:supportingTypes:count:

- initLinkedToSourceSelection:(NXSelection *)selection
managedBy:linkManager
supportingTypes:(const char *const *)newTypes
count: (int)numTypes

Initializes a newly allocated NXDataLink instance corresponding to a selection in the
source document described by selection. linkManager is the source document's link
manager. new Types is an array (with size numTypes) of pointers to the pasteboard types
that linkManager's delegate is willing to provide (by copyToPasteboard:at:
cheapCopyAllowed:) when a user of the link requests the data described by selection.

Typically, when the user uses the Copy command to copy linkable data, this method
should be invoked to create a link corresponding to the data. The new link should be
added to the pasteboard (by writeToPasteboard:) and immediately freed, since it will
usually be of no further use to the source document. Many links so placed on the
pasteboard will go unused and will simply be discarded when the pasteboard changes.
If state identifying selection must be saved in the source document, the link manager's
delegate should find out whether the selection is used by implementing
dataLinkManager:startTrackingLink: (to discover if the selection gets used) and the
Pasteboard owner's method pasteboardChangedOwner: (to discover when the
pasteboard has changed, precluding the use of a link that was placed there).

Returns the new link.

See also: - copy'roPasteboard:at:cheapCopy Allowed: (NXDataLinkManager
delegate), - dataLinkManager:startTrackingLink: (NXDataLinkManager delegate),
- pasteboardChangedOwner: (Pasteboard owner)

Classes: NXDataLink 2-395

lastUpdatelime

- (time_t)lastUpdateTime

Returns the last time the link was updated. A link could be updated for many reasons;
for example, a message could be sent to the source document's link manager telling it
that its document was saved, or the link could be brought up to date with an
updateDestination message.

See also: - setLinksVerifiedByDelegate: (NXDataLinkManager),
- documentSaved (NXDataLinkManager)

IinkNumber

- (NXDataLinkNumber)linkNumber

Returns a destination link's link-number, which may be useful in identifying the link. This
number is constant through the life of the document, and unique among the document's
links; it is not meaningful in source links.

manager

- (NXDataLinkManager *)manager

Returns the link's link manager, or nil if it doesn't have one. (For example, returns nil if
the link is broken.)

openSource

- openSource

Opens the document corresponding to the link's source selection. This message only has
meaning when sent to a destination link. Returns self if the source document is successfully
opened, nil otherwise.

See also: - app:openFile:type: (Application delegate),
- showSelection: (NXDataLinkManager delegate)

2-396 Chapter 2: Application Kit

saveLinkln:

- saveLinkln:(const char *)directoryName

Saves the link with a file name provided by the user. This method should be invoked
through the Publish Selection command. It runs the SavePanel to prompt the user for a
filename to save the link to. The SavePanel's initial directory is provided in directoryName.
It then writes the link using the writeToFile: method. Returns self if the link is successfully
saved; nil otherwise.

See also: - initFromFile:

setUpdateMode:

- setUpdateMode:(NXDataLinkUpdateMode)mode

Sets the link's update mode to mode, which must be one of the following values:

NX_ UpdateContinuously
NX_ Update WhenSourceSaved
NX_UpdateManually
NX_UpdateNever

A mode of NX_UpdateContinuously updates the link's destination data every
time a sourceEdited message is sent to the source link. A mode of
NX_UpdateWhenSourceSaved updates the link's destination data every time a
documentSaved (or related) message is sent to the source link's link manager. A
mode of NX_UpdateManually updates the link's destination data every time a
updateDestination message is sent to the destination link; this message can be sent
programmatically or by the data link panel. A mode of NX_ UpdateNever makes the link
never update; once a destination link has been set to this mode, it can't be set back to any
other mode until it is broken. (This mode is used for link buttons, for example.)

This message only has meaning when sent to a destination link or a broken link.
Returns self.

See also: - updateMode, - break

sourceAppName

- (const char *)sourceAppName

Returns the name (as returned by Application's appName method) of the application
containing the source link.

See also: - destinationAppName

Classes: NXDataLink 2-397

sourceEdited

- sourceEdited

Sent to a source link to inform it that the data referred to by its source selection has
changed. If the link's destination link has been set to update continuously, the destination
will be updated.

This message only has meaning if sent to a source link. An application will only know of
the source links that are being used in its document if the data link manager's delegate
tracks links individually and responds to dataLinkManager:startTrackingLink:
messages. However, an application doesn't need to track source links individually unless
it wishes to allow continuous updating.

Returns self unless the link's destination is set to continuously update and the update fails;
in this case, the method returns nil.

See also: - dataLinkManager:startTrackingLink: (NXDataLinkManager delegate)

sourceFilename

- (const char *)sourceFilename

Returns the file name of the source document, as set by any of several
NXDataLinkManager methods for the source document.

See also: - destinationFilename

sourceSelection

- (NXSelection *)sourceSelection

Returns the source selection, or nil if the link refers to an entire file (in which case the
source file can be retrieved from sourceFilename).

See also: - destinationSelection

types

- (const NXAtom *)types

Returns the pasteboard types that the source document can provide when the data for the
link's source selection is required.

See also: - copyToPasteboard:at:cheapCopy Allowed: (NXDataLinkManager
delegate)

2-398 Chapter 2: Application Kit

updateDestination
- updateDestination

Updates the data referred to by the link's destination selection. This message can be sent
to a source link or a destination link. If it's sent to a destination link, it will usually open
the source document if it isn't already open. If it is sent to a source link, it will usually
force the destination data to be immediately updated (which is generally less desirable
than sending the source link a sourceEdited message, since that would allow the update
to occur at the normal time). If the destination must be updated, it will be done by sending
a pasteFromPasteboard:at: or importFile:at: message to the destination link
manager's delegate.

See also: - pasteFromPasteboard:at: (NXDataLinkManager delegate)

updateMode

- (NXDataLinkUpdateMode)updateMode

Returns the link's update mode, which determines when the data referred to by the link's
destination selection will be updated. Possible return values are:

NX_ UpdateContinuously
NX_ Update WhenSourceSaved
NX_UpdateManually
NX_UpdateNever

A description of these values can be found in the method description for setU pdateMode:.

writeToFile:

- writeToFile:(const char *)filename

Writes the link into the file filename. This allows selections to be published by the file
system; the link can be read in later using initFromFile:. Returns self if the link is
successfully written, nil otherwise.

See also: - initLinkedToSourceSelection:managedBy:supportingTypes:count:,
- writeToPasteboard:, - saveLinkln:, - initFromFile:

Classes: NXDataLink 2-399

write ToPasteboard:

- writeToPasteboard:(Pasteboard *)pasteboard

Writes the link onto the pasteboard pasteboard, allowing other applications to paste both
copied data and the link referring to that data. When a link is written to a pasteboard, the
type NXDataLinkPboardType must be included in the pasteboard's types, either using
deciareTypes:num:owner: or addTypes:num:owner:. The link can be read in later using
initFromPasteboard:. Returns self if the link is successfully written, nil otherwise.

See also: - initLinkedToSourceSelection:managedBy:supportingTypes:couot:,
- writeToFile, - initFromPasteboard:

2-400 Chapter 2: Application Kit

NXDataLinkManager

. Inherits From:

Conforms To:

Declared In:

Class Description

Object

NXSenderIsInvalid

appkitJNXDataLinkManager .h

An NXDataLinkManager manages data linked from and into a document. If an application
supports data linking, a data link manager should be instantiated for every document the
application creates. A data link manager must be assigned a delegate that assists it in
keeping the document up-to-date; this delegate must implement some or all of the methods
listed in the "Methods Implemented by the Delegate" section of this class specification. In
addition, the delegate must keep the link manager informed of the state of the document,
sending it messages whenever the document is edited, saved, or otherwise altered.

Instance Variables

None declared in this class.

Method Types

Initializing and freeing a link manager
- initWithDelegate:
- initWithDelegate:fromFile:
-free

Adding and removing links - addLink:at:
- addLinkAsMarker:at:
- writeLinksToPasteboard:
- addLinkPreviously At:fromPasteboard:at:
- breakAllLinks

Classes: NXDataLinkManager 2·401

Informing the link manager of document status
- documentClosed
- documentEdited
- documentReverted
- documentSaved
- documentSavedAs:
- documentSavedTo:

Getting and setting information about the link manager
- filename
- isEdited
- setLinks VerifiedByDelegate:
- areLinks VerifiedB y Delegate
- delegate
- setInteracts With User:
- interactsWithUser

Getting and setting information about the manager's links
- setLinkOutlines Visible:

Instance Methods

addLink:at:

- areLinkOutlines Visible
- findDestinationLinkWithSelection:
- prepareEnumerationState:forLinksOIType:
- nextLinkU sing:

- addLink:(NXDataLink *)link at:(NXSelection *)selection

Adds the link link to the document, indicating that the data in the document described by
selection is dependent upon the link. This method is invoked as part of the Paste and Link
command to actually link in the data that was just pasted. It can also be used at other times;
for example, to link to files that are dragged into the document.

This method makes link a destination link and sets selection as link's destination selection.
When the link's source is modified, the link manager's delegate will be sent a
pasteFromPasteboard:at: or importFile:at: message with selection as an argument,
indicating that the destination data must be updated.

Returns self if the link is successfully added, nil if it isn't. There are several situations that
will result in failure to add the link, such as an inability to resolve the link to its source, so
it's important to check the return value of this method and undo the requested operation if
the linking fails.

2-402 Chapter 2: Application Kit

addLinkAsMarker:at:

- addLinkAsMarker:(NXDataLink *)link at:(NXSelection *)selection

Incorporates link into the document as a marker. This method is used to implement link
buttons that allow access to the link's source, but are never asked to receive data from the
source document. The link button in the destination document is described by selection.
This method adds the link and, upon success, sets its the link's update mode to
NX_ UpdateNever. Returns self upon success, nil otherwise.

The named images "NXLinkButton" and "NXLinkButtonH" can be used (through
NXImage's findlmageNamed: method) to represent ordinary and highlighted link buttons,
respectively. These images are shared, so you must copy them (using NXImage's copy
method) if you need to scale them to a different size.

See also: - addLink:at:

addLinkPreviouslyAt:fromPasteboard:at:

- (NXDataLink *)addLinkPreviouslyAt:(NXSelection *)oldSelection
fromPasteboard:(Pasteboard *)pasteboard
at:(NXSelection *)selection

Creates and adds a new destination link corresponding to the same source data as the link
described by the destination selection oldSelection. The new link's destination selection is
provided in selection. This method is useful if you paste data that is already linked. It's
similar to copying the old link and adding it using addLink:at:, except you specify the old
destination selection rather than the old link. Before invoking this method, the document's
links must be written to the pasteboard pasteboard using writeLinksToPasteboard:.
Returns the new link if it's successfully added, or nil if the link can't be added or no link
for oldSelection existed.

areLinkOutlinesVisible

- (BOOL)areLinkOutlinesVisible

Used to inform the link manager's delegate of whether link outlines should be
drawn around linked destination data. When the delegate receives a
dataLinkManagerRedrawLinkOutlines: message, it should query the link manager
with an areLinkOutlinesVisible message. If this message returns YES, the delegate
should call the NXFrameLinkRectO function to draw a distinctive link outline around
the dependent data.

See also: - setLinkOutlinesVisible:

Classes: NXDataLinkManager 2·403

areLinksVerifiedByDelegate

- (BOOL)areLinks VerifiedByDelegate

Return YES if the link manager's delegate will be asked to verify whether data based on
the delegate's source links needs to be updated. If so, the delegate should implement the
dataLinkManager:isUpdateNeededForLink: method. Returns NO by default, but the
application can change this by sending the link manager a setLinksVerifiedByDelegate:
message.

breakAIiLinks

- breakAllLinks

Breaks all the destination links in the document by sending each link a break message.
This method is typically invoked by the application's data link panel in response to user
input. Returns self.

See also: - break (NXDataLink), - pickedBreakAllLinks: (NXDataLinkPanel)

delegate

- delegate

Returns the data link manager's delegate, the object that will be sent messages to provide
source data, paste destination data, and help the data link manager keep links up-to-date.

See also: - initWithDelegate:

documentClosed

- documentClosed

An application should send this message to the link manager to inform it that the manager's
document has been closed. Returns self.

documentEdited

- documentEdited

An application should send this message to the link manager to inform it that the manager's
document has been edited. If the delegate doesn't track source links individually, this

2-404 Chapter 2: Application Kit

method marks all source links as dirty, indicating that the dependant destination data will
eventually need to be updated. Returns self.

See also: - dataLinkManagerTracksLinksIndividually: (NXDataLinkManager
delegate)

documentReverted

- documentReverted

An application should send this message to the link manager to inform it that the manager's
document has been reverted to the last saved copy. This method then restores the link
manager and its links to their last saved state (from the last time the link manager received
a documentSaved or documentSavedAs: message). Returns self.

documentSaved

- documentSaved

An application should send this message to the link manager to inform it that the manager's
document has been saved. This method stores the document's destination links and, if
necessary, initiates updates of other documents dependent upon the document's source
links. Returns self.

documentSavedAs:

- documentSavedAs:(const char *)path

An application should send this message to the link manager to inform it that the manager's
document has been saved as the file specified by the full pathname path. This method stores
the document's destination links. It also discards the manager's source links, since the
documents for those links are not dependent upon the newly saved file. Returns self.

documentSavedTo:

- documentSavedTo:(const char *)path

An application should send this message to the link manager to inform it that a copy of the
manager's document has been saved to the file specified by the full pathname path. This
method stores the appropriate link information along with the file, and returns self.

Classes: NXDataLinkManager 2-405

filename

- (const char *)filename

Returns the name of the file for the link manager's document. This is the name that was set
with the initWithDelegate:fromFile: or documentSavedAs: method.

findDestinationLinkWithSelection:

- (NXDataLink *)findDestinationLinkWithSelection:(NXSelection *)destSel

Returns the destination link for the selection destSel, or nil if the document has no link for
that selection. This method will tell you if the given selection is linked to a source.

free

-free

Notifies the link managers of dependent documents that the link manager is going away,
and frees the objects and storage held by the link manager.

init

-init

There is no need to call this method; use one of the other init .•. methods to initialize a newly
allocated NXDataLinkManager instance for a new document.

See also: . - initWithDelegate:fromFile:

in itWith Delegate:

- initWithDelegate:anObject

Initializes and returns a newly allocated NXDataLinkManager instance for a new
document. The link manager's delegate, specified by anObject, will be expected to provide
source data, paste destination data, and help the data link manager keep links up-to-date.
Before data in the document can be linked to, the document will have to be saved and the
link manager will have to be informed of the document's name by a documentSavedAs:
message.

See also: - initWithDelegate:fromFile:

. 2-406 Chapter 2: Application Kit

initWithDelegate:fromFile:

- initWithDelegate:anObject fromFile:(const char *)path

Initializes a newly allocated NXDataLinkManager instance for a new document. The link
manager's delegate, specified by anObject, will be expected to to provide source data, paste
destination data, and help the data link manager keep links up-to-date. The document's file
is specified by the full path path. The file must exist or initialization will fail.

See "Methods Implemented by the Delegate" at the end of this class specification for
information about the methods the delegate should implement to assist the link manager.

Returns the new link manager upon success; frees the allocated storage and returns nil if
initialization fails.

See also: - initWithDelegate:fromFile:

i nteractsWith User

- (BOOL) interacts With User

Returns YES if the link manager should display alert panels when problems with links
occur, NO if the displays are to be suppressed. This value is set with the
setInteractsWithUser: method; the default value is YES.

isEdited

- (BOOL)isEdited

Returns YES if the document has been edited since the last save, or NO if the file for the
document is up-to-date. The document's edited state is set by the documentEdited
method, and cleared by documentSaved and related methods.

nextLinkUsing:

- (NXDataLink *)nextLinkUsing:(NXLinkEnumerationState *)state

Returns the link manager's next link based on state. state must be initially prepared using
prepareEnumerationState:forLinksOrrype: to allow the caller to retrieve each of the
application's destination or source links in turn. This method return nil if there are no
more links.

Classes: NXDataLinkManager 2-407

prepareEnumerationState:forLinksOfType:

- prepareEnumerationState:(NXLinkEnumerationState *)state
forLinksOIType:(NXDataLinkDisposition)srcOrDest

Prepares the variable indicated by state to allow the application to retrieve each of the link
manager's links, one at a time, with later invocations of nextLinkUsing:. srcOrDest must
be either NX_LinkInDestination or NX_LinkInSource to indicate whether the
nextLinkUsing: method is to return the next destination link or the next source link,
respectively. Returns self if there is one or more links of the requested type, or nil if
there is none.

setlnteractsWithUser:

- setInteractsWithUser:(BOOL)jlag

Instructs the link manager as to whether it should display alert panels when problems with
links occur. Ifjlag is YES (the default value), alert panels will be displayed. Returns self.

See also: - interactsWithUser

setLin kOutli nes Visible:

- setLinkOutlines Visible: (BOOL)jlag

Sets the internal flag indicating to the link manager's delegate whether link outlines ought
to be displayed; this value can be returned by areLinkOutlines Visible.

If the link manager's delegate implements the dataLinkManagerRedrawLinkOutlines:
method, this message will be sent to the delegate and it should either display link outlines
using NXFrameLinkRectO or erase link outlines if they were previously displayed, based
on the return value of areLinkOutlinesVisible.

Returns self.

setLinksVerifiedByDelegate:

- setLinks VerifiedByDelegate:(BOOL)jlag

Sets whether the update status of links will be individually verified by the link manager's
delegate. If flag is YES, the delegate must implement the
dataLinkManager:isUpdateNeededForLink: method to tell the link manager if data
based on a source link needs to be updated.

2-408 Chapter 2: Application Kit

By default, the update status of an individual link isn't verified by the delegate, so the link
manager verifies a link based on its last update time. An example where this verification
could be incorrect might be a link to a database query; if the query itself doesn't change,
the link manager might return that data is up-to-date, even though the database referred to
by the query might have changed.

See also: - areLinksVerifiedByDelegate

writeLinksToPasteboard:

- writeLinksToPasteboard:(Pasteboard *)pasteboard

Writes all the link manager's links to the pasteboard pasteboard in preparation for an
invocation of addLinkPreviouslyAt:fromPasteboard:at:, which will expect to find one
link matching its specified selection.

The links are written with Pasteboard's addTypes:num:owner: method, which doesn't
change the pasteboard's owner or change count, using a private pasteboard type.

Methods Implemented by the Delegate

copyToPasteboard:at:cheapCopyAllowed:

- copyToPasteboard: (Pasteboard *)pasteboard
at:(NXSelection *)selection
cheapCopyAllowed:(BOOL)flag

Implemented by the link manager's delegate to supply the source data described by
selection on the pasteboard pasteboard. selection was previously provided by the
application when it created an NXDataLink using
initLinkedToSourceSelection:managedBy: .

Since the Pasteboard works lazily, the delegate doesn't have to provide all data
representations at this time; it simply has to declare the pasteboard types it's willing to
provide for selection. Normally, the delegate must put at least one representation on the
pasteboard in order to generate any of the specified types when one is requested. However,
if flag is YES, the system guarantees that no events will be processed by the application
before the delegate is requested to provide the specified data; in this case, the application
doesn't necessarily have to write any data representations to the pasteboard. This method
should return self upon success, or nil if the selection can't be resolved.

See also: - pasteFromPasteboard:at: (NXDataLinkManager delegate),
- deciareTypes:num:owner: (Pasteboard), - pasteboard:provideData:
(Pasteboard owner) .

Classes: NXDataLinkManager 2-409

createSelection

- (NXSelection *)createSelection

Never invoked by the system.

dataLinkManager:didBreakLink:

- dataLinkManager:(NXDataLinkManager *)sender
didBreakLink:(NXDataLink *)link

If this method is implemented by the delegate, it will be invoked to inform the delegate that
the destination link link was broken and thus data based on link's destination selection will
no longer be updated.

The link shouldn't be be sent a free message at this time, because the method that invoked
dataLinkManager:didBreakLink: may still reference the link. However, the link can be
freed with Application's delayedFree: method. Alternatively, the link could be kept
around for a while in order to allow the break operation to be undone; if this is requested,
the link could be re-added with addLink:at:.

See also: - break (NXDataLink), - destinationSelection (NXDataLink)

dataLinkManager:isUpdateNeededForLink:

- (BOOL)dataLinkManager:(NXDataLinkManager *)sender
isUpdateNeededForLink:(NXDataLink *)link

A delegate that sends a setLinksVerifiedByDelegate: message to the link manager
(indicating that the update status for individual links will be verified by the delegate) should
implement this method and return YES if the source data identified by link's source
selection has been modified since the link's last update time.

See also: - lastUpdateTime (NXDataLink)

dataLinkManager:startTrackingLink:

- dataLinkManager:(NXDataLinkManager *)sender
startTrackingLink:(NXDataLink *)link

Informs the delegate that another document has established a data link to the link manager's
document. The delegate need only implement this method if it returns YES in response to

2·410 Chapter 2: Application Kit

a dataLinkManagerTracksLinkslndividually: message. link is a newly added source
link; the data that it applies to is identified by link's source selection.

See also: - dataLinkManagerTracksLinkslndividually:

dataLinkManager:stopTrackingLink:

- dataLinkManager:(NXDataLinkManager *)sender
stopTrackingLink:(NXDataLink *)link

Informs the delegate that the former source link link is no longer linked to the document.
There are many reasons that a link might be removed; the destination document could get
closed, the link could be explicitly broken, or the destination application might have died.

See also: - dataLinkManagerTracksLinkslndividually:

dataLinkManagerCloseDocument:

- dataLinkManagerCloseDocument:(NXDataLinkManager *)sender

Never invoked by the system.

dataLinkManagerDidEditLinks:

- dataLinkManagerDidEditLinks:(NXDataLinkManager *)sender

Informs the delegate that link data has been modified. Since the link data is stored
alongside the document's data and should be considered part of the document, the delegate
should use this notification to mark the document as edited.

dataLinkManagerRedrawLinkOutlines:

- dataLinkManagerRedrawLinkOutlines:(NXDataLinkManager *)sender

If the delegate implements this method, it will be invoked any time the manager is
instructed to show or hide link outlines through setLinkOutlinesVisible:. This method
should query the link manager with areLinkOutlines Visible to find out if link outlines
should be displayed. If so, it should invoke NXFrameLinkRectO to draw a distinctive
outline around the linked data; otherwise it should display the data without outlines.

Classes: NXDataLinkManager 2·411

dataLinkManagerTracksLinkslndividually:

- (BOOL)dataLinkManagerTracksLinksIndividually:
(NXDataLinkManager *)sender

If the delegate implements this method it should return whether it's willing to track links
individually. If the delegate doesn't implement this method, links are not individually
tracked. If the delegate implements this method and returns YES, it should also implement
dataLinkManager:startTrackingLink: and dataLinkManager:stopTrackingLink: to
follow the links in use.

Many applications do not need to track links individually, but there are several situations
where it can be useful to know when a link is used. For example, the delegate may want to
individually track links in order to continually update destination documents each time
data for a link's source selection is modified; an individual link can be sent an
updateDestination message whenever a modification is made that affects the destination.

Additionally, many links may be placed on the pasteboard when data is copied, but few of
those links will actually ever get used. If the application must store selection-state
information in the document, it should only do so for selections (and their associated links)
that actually get used; this method is used to find out if the delegate wants to be informed
when a link gets used.

importFile:at:

- importFile:(const char *)jilename at:(NXSelection *)selection

If the application has added a link based on an entire file (that is, used addLink:at: to
incorporate a link created by initLinkedToFile:), the delegate must implement this method
to import the jilename file at the destination described by selection. This method should
return self upon success, or nil if the selection can't be resolved.

pasteFromPasteboard:at:

- pasteFromPasteboard:(Pasteboard *)pasteboard at:(NXSelection *)selection

If the application has added an ordinary destination link (that is, used addLink:at: to
incorporate a link created by initFromPasteboard: or a related method), the delegate must
implement this method to paste the updated data that has been made available on the
pasteboard. The destination for the data is described by selection, which was supplied to
the link manager as an argument to the addLink:at: method.

2-412 Chapter 2: Application Kit

The data is read from the pasteboard just as it is for any ordinary paste; see the Pasteboard
class specification for more information on reading data from a pasteboard. This method
should return self upon success, or nil if the selection can't be resolved.

setSelection:

- setSelection:(NXSelection *)selection

Never invoked by the system.

showSelection:

- showSelection:(NXSelection *)selection

In an application that serves as a link source, the delegate should implement this method to
show the source data for the specified selection selection. This method should scroll the
document so the selected data is visible. It might additionally highlight the selected data
using the function NXFrameLinkRectO with the argument isDestination set to NO. This
method should return self upon success, or nil if the selection can't be resolved.

windowForSelection:

- windowForSelection:(NXSelection *)selection

In an application that serves as a link source, the delegate should implement this method to
return the Window object for the given selection, or nil if the selection can't be resolved.

Classes: NXDataLinkManager 2·413

NXDataLinkPanel

Inherits From: Panel: Window: Responder: Object

Declared In: appkitINXDataLinkPanel.h

Class Description

An NXDataLinkPanel is a Panel that allows the user to inspect data links. The
NXDataLinkPanel functions primarily by sending messages to the current data link
manager (representing the current document) and to the current link (representing the
current selection if it's based on a data link). Thus, the panel should be informed, by a
setLink:andManager:isMultiple: message, any time the selection changes or a document
is created or activated. Since the selection may need to be tracked even before the panel is
created, this message can be sent either to the NXDataLinkPanel class or the single
instance.

The NXDataLinkPanel is generally displayed using Application's
orderFrontDataLinkPanel: method. An application's sole instance of NXDataLinkPanel
can be accessed with the new method.

Instance Variables

None declared in this class.

2-414 Chapter 2: Application Kit

Method Types

Returning the panel + new
+ new Content: style: backing: buttonMask:defer:

Keeping the panel up to date + setLink:andManager:isMultiple:
- setLink:andManager:isMultiple:
+ getLink: andManager:isMultiple:
- getLink:andManager:isMultiple:

Customizing the panel - setAccessoryView:
- accessory View

Responding to user input - pickedBreakAllLinks:
- pickedBreakLink:
- pickedOpenSource:
- pickedU pdateDestination:
- pickedUpdateMode:

Class Methods

alloc

Generates an error message. This method cannot be used to create NXDataLinkPanel
instances; use new instead.

allocFromZone:

Generates an error message. This method cannot be used to create NXDataLinkPanel
instances; use new instead.

getLink:andManager:isMultiple:

+ getLink:(NXDataLink **)link
andManager:(NXDataLinkManager * *)linkManager
isMultiple:(BOOL *)flag

Gets information about the NXDataLinkPanel's currently selected link. This method
returns the link in link, the link manager in linkManager, and the multiple selection status
in flag. Whenever a link is selected or deselected, this information must be set using
setLink:andManager:isMultiple:. Returns self.

Classes: NXDataLinkPanel 2-415

new

+ new

Returns the application's sole NXDataLinkPanel object, creating it if necessary.

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bujferingType
buttonMask:(int)mask
defer: (BOOL)flag

Initializes the NXDataLinkPanel object. You never invoke this method; use new instead.

setLink:andManager:isMultiple:

+ setLink:(NXDataLink *)link
andManager:(NXDataLinkManager *)linkManager
isMultiple:(BOOL)flag

Informs the NXDataLinkPanel of the current document and selection. This message
must be sent any time data based on a data link is selected or deselected, or when a
document (and therefore a new link manager) is activated. Since the state of the selection
always needs to be tracked, this message can be sent to either the NXDataLinkPanel
class or instance.

link is the currently selected link; it should be nil if no link is selected. linkManager is the
current link manager. flag should be YES if the panel is to indicate that more than one link
is selected. Returns self.

Instance Methods

accessoryView

- accessoryView

Returns the NXDataLinkPanel' s custom accessory view, set by setAccessory View:.

See also: - setAccessoryView:

2-416 Chapter 2: Application Kit

getLink:andManager:isMultiple:

- getLink:(NXDataLink **)link
andManager:(NXDataLinkManager **)linkManager
isMultiple:(BOOL *)flag

Returns information about the NXDataLinkPanel's currently selected link. This method
returns the link in link, the link manager in linkManager, and the multiple selection status
inflag. This method functions identically to the class method of the same name. Whenever
a link is selected or deselected, this information must be set using setLink:andManager:
isMultiple:. Returns the NXDataLinkPanel class.

pickedBreakAIiLinks:

- pickedBreakAllLinks:sender

Invoked when the user clicks the Break All Links button, this method puts up an attention
panel to confirm the user's action, and then sends a breakAllLinks message to the current
link manager, as set by setLink:andManager:isMultiple:. Returns self.

See also: - breakAllLinks (NXDataLinkManager)

pickedBreakLink:

- pickedBreakLink:sender

Invoked when the user clicks the Break Link button, this method puts up an attention panel
to confirm the user's action, and then sends a break message to the current link, as set by
setLink:andManager:isMultiple:. Returns self.

See also: - break (NXDataLink)

pickedOpenSource:

- pickedOpenSource:sender

Invoked when the user clicks the Open Source button, this method sends a openSource
message to the current link, as set by setLink:andManager:isMultiple:. Returns self.

See also: - openSource (NXDataLink)

Classes: NXDataLinkPanel 2-417

pickedUpdateDestination:

- pickedUpdateDestination:sender

Invoked when the user clicks the Update from Source button, this method sends a message
to the current link to verify and update the data source and then update the destination data.
Returns self.

See also: - updateDestination (NXDataLink), + setLink:andManager:isMultiple:

pickedUpdateMode:

- pickedUpdateMode:sender

Invoked when the user selects the update mode, this method sends a setUpdateMode:
message to the current link, as set by setLink:andManager:isMultiple:. Returns self.

See also: - setUpdateMode: (NXDataLink)

setAccessoryView:

- setAccessoryView:a View

Adds aView to the NXDataLinkPanel's view hierarchy. Applications can invoke this
method to add a View that contains their own controls. The panel is automatically resized
to accommodate a View. This method can be invoked repeatedly to change the accessory
view depending on the situation. If aView is nil, then the panel's current accessory view, if
any, is removed. Returns the old accessory view.

setLink:andManager:isMultiple:

- setLink:(NXDataLink *)link
andManager:(NXDataLinkManager *)linkManager
isMultiple:(BOOL)flag

Informs the NXDataLinkPanel of the current document and selection. This message must
be sent any time data based on a data link is selected or deselected, or when a document
(and therefore a new link manager) is activated. This method functions identically to the
class method of the same name; since the state of the selection always needs to be tracked,
this message can be sent to either the NXDataLinkPanel class or instance.

link is the currently selected link; it should be nil if no link is selected. linkManager is the
current link manager. flag should be YES if the panel is to indicate that more than one link
is selected. Returns the NXDataLinkPanel class.

2-418 Chapter 2: Application Kit

NXEPSll11ageRep

Inherits From: NXImageRep : Object

Declared In: appkitINXEPSImageRep.h

Class Description

An NXEPSImageRep is an object that can render an image from encapsulated PostScript
code (EPS). The size of the object is set from the bounding box specified in the EPS header
comments. Other information about the image should be supplied using inherited
NXImageRep methods.

Like most other kinds of NXImageReps, an NXEPSImageRep is generally used indirectly,
through an NXImage object.

Instance Variables

None declared in this class.

Method Types

Initializing a new NXEPSImageRep instance
- initFromSection:
- initFromFile:
- initFromStream:

Creating a List of NXEPSImageReps
+ newListFromSection:
+ newListFromSection:zone:
+ newListFromFile:
+ newListFromFile:zone:
+ newListFromStream:
+ newListFromStream:zone:

Classes: NXEPSlmageRep 2-419

Copying and freeing an NXEPSImageRep
- copyFrornZone:
-free

Getting the rectangle that bounds the image
- getBoundingBox:

Getting image data - getEPS :length:

Drawing the image - prepareGState
- drawIn:
-draw

Archiving - read:
- write:

Instance Methods

newListFromFile:

+ (List *)newListFromFile:(const char *)filename

Creates one new NXEPSImageRep instance for each EPS image specified in the filename
file, and returns a List object containing all the objects created. If no NXEPSImageReps
can be created (for example, iffilename doesn't exist or it doesn't contain EPS code or
data that can be filtered to EPS), nil is returned. The List should be freed when it's no
longer needed.

Each new NXEPSImageRep is initialized by the initFromFile: method, which reads a
minimal amount of information about the image from the header comments in the file. The
PostScript code will be read when it's needed to render the image.

The EPS format doesn't support more than one image per file. If filename contains EPS
code, the List returned will be a list of one.

See also: + newListFromFile:zone:, - initFromFile:

newListFromFile:zone:

+ (List *)newListFromFile:(const char *)filename zone:(NXZone *)aZone

Returns a List of new NXEPSImageRep instances, just as newListFromFile: does,
except that the NXEPSImageReps and the List object are allocated from memory
located in aZone.

See also: + newListFromFile:, - initFromFile:

2-420 Chapter 2: Application Kit

newListFromSection:

+ (List *)newListFromSection:(const char *)name

Creates one new NXEPSImageRep instance for each image specified in the name section
of the __ EPS segment in the executable file or in the name file in the application bundle,
and returns a List object containing all the objects created. If not even one
NXEPSImageRep can be created (for example, if the name section doesn't exist or it
doesn't contain EPS code or data that can be filtered to EPS), nil is returned. The List
should be freed when it's no longer needed.

Each new NXEPSImageRep is initialized by the initFromSection: method, which reads a
minimal amount of information about the image from the EPS header comments. The
PostScript code will be read only when it's needed to render the image.

The EPS format doesn't support more than one image per file. If the name section or file
contains EPS code, the List returned will be a list of one.

See also: + newListFromSection:zone:, - initFromSection:

newListFromSection:zone:

+ (List *)newListFromSection:(const char *)name zone:(NXZone *)aZone

Returns a List of new NXEPSImageRep instances, just as newListFromSection: does,
except that the List object and the NXEPSImageReps are allocated from memory
located in aZone.

See also: + newListFromSection:, - initFromSection:

newListFromStream:

+ (List *)newListFromStream:(NXStream *)stream

Creates one new NXEPSImageRep instance for each image that can be read from stream,
and returns a List object containing all the objects created. If not even one
NXEPSImageRep can be created (for example, if the stream doesn't contain EPS code or
data that can be converted to EPS), nil is returned. The List should be freed when it's no
longer needed.

The data is read and each new object initialized by the initFromStream: method.

See also: + newListFromStream:zone:, - initFromStream:

Classes: NXEPSlmageRep 2-421

newListFromStream:zone:

+ (List *)newListFromStream:(NXStream *)stream zone:(NXZone *)aZone

Returns a List of new NXEPSlmageRep instances, just as newListFromStream: does,
except that the List object and the NXEPSlmageReps are allocated from memory
located in aZone.

See also: + newListFromStream:, - initFromStream:

Instance Methods

copyFromZone:

- copyFromZone:(NXZone *)zone

Returns a new NXEPSlmageRep instance that's an exact copy of the receiver. The new
object will have its own copy of the image data. It doesn't need to be initialized. Both
object and data are allocated from zone.

See also: - copy (Object)

draw

- (BOOL)draw

Draws the image at (0.0, 0.0) in the current coordinate system on the current device. This
method returns YES if successful in rendering the image, and NO if not.

An NXEPSlmageRep draws in a separate PostScript context and graphics state. Before the
EPS code is interpreted, all graphics state parameters-with the exception of the CTM and
device-are set to the Window Server's defaults and the defaults required by EPS
conventions. If you want to change any of these defaults, you can do so by implementing
a prepareGState method in an NXEPSlmageRep subclass. The draw method invokes
prepareGState just before sending the EPS code to the Window Server. For example, if
you need to set a transfer function or halftone screen that's specific to the image,
prepareGState is the place to do it.

See also: - drawAt: (NXlmageRep), - drawIn:, - prepareGState

2·422 Chapter 2: Application Kit

drawln:

- (BOOL)drawln:(const NXRect *)rect

Draws the image so that it fits inside the rectangle referred to by recto The current
coordinate system is translated and scaled so the image will appear at the right location and
fit within the rectangle. The draw method is then invoked to produce the image. This
method returns the value returned by the draw method, which indicates whether the image
was successfully drawn.

The coordinate system is not restored after it has been altered.

See also: - draw, - draw At: (NXImageRep)

free

-free

Deallocates the NXEPSlmageRep.

getBoundingBox:

- getBoundingBox:(NXRect *)theRect

Provides the rectangle that bounds the image. The rectangle is copied from the
"%%BoundingBox:" comment in the EPS header to structure referred to by theRect.
Returns self.

getEPS:length:

- getEPS:(char **)theEPS length:(int *)numBytes

Sets the pointer referred to by theEPS so that it points to the EPS code. The length of the
code in bytes is provided in the integer referred to by numBytes. Returns self.

init

Generates an error message. This method can't be used to initialize an NXEPSImageRep.
Use one of the other init. .. methods instead.

See also: - initFromSection:, - initFromFile:, - initFromStream:

Classes: NXEPSlmageRep 2-423

initFromFile:

- initFromFile:(const char *)jilename

Initializes the receiver, a newly allocated NXEPSImageRep object, with the EPS image
found in the jilename file. Some information about the image is read from the EPS header
comments, but the PostScript code won't be read until it's needed to render the image.

If the new object can't be initialized for any reason (for example,jilename doesn't exist or
doesn't contain EPS code), this method frees it and returns nil. Otherwise, it returns self.

This method is the designated initializer for NXEPSImageReps that read EPS code from
a file.

See also: + newListFromFile:, - initFromSection:

initFromSection:

- initFromSection:(const char *)name

Initializes the receiver, a newly allocated NXEPSImageRep object, with the image found
in the name section in the __ EPS segment of the application executable or the name file in
the application bundle. Some information about the image is read from the EPS header
comments, but the PostScript code won't be read until it's needed to render the image.

If the new object can't be initialized for any reason (for example, the name section doesn't
exist or doesn't contain EPS code), this method frees it and returns nil. Otherwise, it
returns self.

This method is the designated initializer for NXEPSImageReps that read image data from
the __ BPS segment.

See also: + newListFromSection:, ~ initFromFile:

initFromStream:

- initFromStream:(NXStream *)stream

Initializes the receiver, a newly allocated NXEPSImageRep object, with the BPS image
read from stream. If the new object can't be initialized for any reason (for example, stream
doesn't contain EPS code), this method frees it and returns nil. Otherwise, it returns self.

This method is the designated initializer for NXEPSImageReps that read image data from
a stream.

See also: + newListFromStream:

2·424 Chapter 2: Application Kit

prepareGState
- prepareGState

Implemented by subclasses to initialize the graphics state before the image is drawn. The
draw method sends a prepareGState message just before rendering the EPS code. This
default implementation of the method does no initialization; it simply returns self.

See also: - draw

read:
- read:(NXTypedStream *)stream

Reads the NXEPSImageRep from the typed stream stream.

See also: - write:

write:
- write:(NXTypedStream *)stream

Writes the NXEPSImageRep to the typed stream stream.

See also: - read:

Classes: NXEPSlmageRep 2-425

NXHelpPanel

Inherits From: Panel: Window : Responder: Object

Declared In: appkitINXHelpPanel.h

Class Description

The NXHelpPanel class is the central component of the NeXTSTEP help system. It
provides the Help panel that displays the text and illustrations that constitute your
application's help information, and it stores associations of user-interface objects with
specific passages of that text.

Users can display the Help panel by choosing the Help command from an application's Info
menu. The panel employs the metaphor of a book: It displays a table of contents, body
text, and an index. Users can browse through the text by clicking entries in the table of
contents or index. The panel also supports hypertext-like help links, which appear as
diamond-shaped images within the text and allow the user to easily follow cross references.
By using the help cursor and clicking user-interface objects, the user can query the Help
panel for information associated with those objects.

Adding the standard help system facilities to your application is easy. The Add Help
Directory command in Project Builder supplies your application with a help directory and
populates it with simple table-of-contents and index files. Interface Builder's Menu palette
offers a Info submenu containing a preconfigured Help command. With this command and
the two files, your application can display the generic help text that's available to all
NeXTSTEP applications (for example, "Using the mouse" and "Sending a fax"). You can
then add help information (as well as table-of-contents and index entries) that are specific
to your application, and override any of the generic information your application inherits.

2-426 Chapter 2: Application Kit

The Help Text

An NXHelpPanel object looks in a language-specific directory within the application's file
package for the text that it will display. For example, if the user's language preference is
English, the panel searches for a directory named Help within the English.lproj directory
of the application's file package. It searches for two files: TableOfContents.rtf and
Index.rtfd. There may also be one or more files containing the body text that the Help
panel will display. The table-of-contents, index, and body files are interconnected by a
system of help links and help markers.

A help marker is a named position holder in the stream of text-in most cases, it's invisible
to users. A help link is a diamond-shaped button embedded in the text. Help links store a
file name and, optionally, a help marker name. When a user clicks a help link, the Help
panel displays the named file. If the help link also stores a marker name, the displayed file
is scrolled to the position of the marker, and the text is selected from the marker's position
to the end of the line.

The Text class provides the functionality for help links and markers, so this feature is
available outside the Help panel. You use Edit to create and modify help documents. Edit's
Help menu (accessible through the Format command) lets you insert links and markers and
make the normally invisible help markers visible. Also in Edit, you can inspect and modify
an existing help link or marker by holding down the Command key while clicking it.

Table-of-Contents and Index Files

The table-of-contents and index files are specially designed documents in Rich Text Format
(RTF). An NXHelpPanel object identifies these files by name (TableOfContents.rtf and
Index.rtfd) and processes them differently than it does other help files.

The table-of-contents file should contain one entry for each help text file in the help
directory. Each entry begins with a help link that stores the name of the destination file for
that entry. Following the link is the text of the entry, which may wrap and span several
lines. Although the table of contents in the Help panel looks like it's displayed by a Matrix,
it's actually displayed by a modified Text object. Thus, you can use the full generality of
RTF to format your table of contents.

The index file is structured similarly although there is no enforced one-to-one mapping.
Generally, the help link that begins an index entry stores both a file name and a marker
name, since an index entry usually points to a specific word or phrase within a file.

Classes: NXHelpPanel 2-427

Generic Help Files

The Help directory that Project Builder provides for a new application contains only
table-of-contents and index files; no other help files are present. However, if you run the
application, you'll find that its Help panel can display numerous help subjects, each of a
general nature. This is because NeXTSTEP applications have access to the generic help
information contained in lusrlliblNeXTSTEPlResourcesllanguage.lprojlHelp.store (a
compressed help directory).

When a help link is being resolved, the NXHelpPanel first looks for the specified file
within the appropriate Zanguage.lproj/Help directory of the application's file package. If
the file isn't found, it then searches in lusrlliblNeXTSTEPlResourcesllanguage.lprojl
Help.store. This search path is used for all links, whether they are in the table of contents,
index, or body text. (Be forewarned: Edit doesn't apply this search path to help links, so
if you open the table-of-contents or index files in Edit and click a help link, Edit will
complain that the file can't be found, unless it exists within the application's file package.)

If one of these generic help files is inappropriate for your application, you have two
remedies: You can remove the table-of-contents and index entries that refer to it, or you
can override the file with one that's more appropriate. By placing a file of the same name
and relative location within your application's Help directory, NXHelpPanel will display it
rather than the generic file. See "Structure of the Generic Help Directory" below for the
names and directory locations of the generic help files.

If you want to modify the generic file, use Interface Builder's Help Builder panel to display
the file, and then select the entire text and copy and paste it into a new document. Save the
document in your application's Help directory using the same name as shown in the Help
Builder panel. Be sure to resize the window to the same width as the original so that the
text will wrap to the same margins.

2-428 Chapter 2: Application Kit

Associating Help Text with Objects

The NXHelpPanel class stores associations between user-interface objects and help text.
When the user presses the Help modifier key (or, on older keyboards, . simultaneously
presses the Control and Alternate keys), a question mark cursor appears. If the user clicks
an object using this cursor, the Help panel displays the associated help text.

The easiest way to create these associations is with Interface Builder's Help Builder panel.
If your application has a Help directory containing the files TableOfContents.rtf and
Index.rtfd, the Help Builder panel will let you use them to display the application's help
files. By selecting an object in your application, displaying the appropriate help file in
the Help Builder panel, and clicking the Attach File to Selection button, you establish
the association.

You can also attach a help file to a user-interface object programmatically, by sending an
attachHelpFile:markerName:to: message to the NXHelpPanel class object. This method
takes a file name, a marker name, and an object id as its arguments. The detachHelpFrom:
message removes such an association.

Just as with help links, an NXHelpPanel searches both the application's file package and
the appropriate file in lusrlliblNeXTSTEPlResourcesllanguage.lproj in attempting to
find the file associated with a particular user-interface object.

Classes: NXHelpPanel 2-429

Hidden Files

Although in general there's a one-to-one relationship between table-of-contents entries and
files. in the Help directory, you can force a single table-of-contents entry to represent
multiple "hidden" files. This can be useful in reducing the overall length of the table of
contents. For example, Mail's Help panel contains a single entry, "Commands, buttons, and
panels," that's highlighted no matter which user-interface object has been queried for its
associated help information.

Hidden files can't be accessed from the table of contents; rather, the user must find them by
Help-clicking an object in the application's user interface, by using the Help Panel's Find
command, by using the Index, or by following a help link from some other file. However,
when a hidden file is displayed, the Help panel must select some entry in the table of
contents. In Mail, this entry is entitled "Commands, buttons, and panels."

Conversely, when the user selects such an table-of-contents entry, the Help panel must
display one of the files in the directory of hidden files; by convention, this file must be
named Prolog.rtfd. The prolog file for the "Commands, buttons, and panels" entry informs
users that they can get help on any command, panel, or button by Help-clicking that object.

The table of contents supplied by Project Builder contains the entry "Commands" that
corresponds to a directory of hidden files. Conceptually, these files exist in
lusrlliblNeXTSTEPlResourcesllanguage.lprojlHelp/Objects (in fact, they are contained
in a compressed file derived from this original directory structure). In your application, you
can add to (or override) these hidden files by creating an Objects subdirectory within your
application's Help directory and placing the new files there.

The Help panel's Find button searches through all the files that are connected to
table-of-contents entries, first looking in the application's Help directory and then in the
generic help material. If your table of contents has a link to the Objects subdirectory (in
other words, has the "Commands" entry, as provided by Project Builder), the hidden files
will be searched too. If you don't want some hidden file in the generic help material to
appear in your application's Help panel as the result of a Find operation, override the
file with an empty file of the same name. Since the file is empty, no search string will
ever be found in it, and it will effectively block the generic file of the same name from
being searched.

2-430 Chapter 2: Application Kit

Context-Sensitive Help

Your application can provide context-sensitive help; that is, the particular text displayed
when the Help menu command is chosen or when the user Help-clicks an object can depend
on the state of the application. Context-sensitive help requires the intervention of the
Application object's delegate.

If the Application object's delegate responds to the app:wiIlShowHelpPanel: message, it
receives such a message just before the Help panel is displayed. Within the implementation
of the app:wiIlShowHelpPanel: method, the delegate can specify which file will appear in
the panel:

- app:sender willShowHelpPanel:panel

char path[MAXPATHLEN + 1];

sprintf (path, II %s/%s ", [panel helpDirectory],

"Tasks/AddressingMail/CreatingAddressBook.rtfd");
[panel showFile:path atMarker:NULL];

return self;

The delegate must specify a fully qualified path since the NXHelpPanel object assumes that
a partial path is relative to the currently displayed help file.

Indexing Help Text

The 'Help panel's Find button makes use of Indexing Kit facilities to quickly locate files
containing the search string. (Note that the index discussed here is a binary file produced
by the Indexing Kit, not the Index.rtfd file that contains the textual index).

To create an index for your help files, in a Terminal window switch to the Help directory
you want indexed and then enter:

ixbuild -v

with no other arguments. The ixbuild program builds an index (named .index.store) for
the Help directory and its subdirectories.

If your application contains a directory of "hidden" help files, you must first make an index
of that directory before creating an index of the entire Help directory.

Classes: NXHelpPanel 2-431

Help Supplements

Since in NeXTSTEP some applications have the ability to load executable modules
dynamically (for example, a drawing program could allow the user to load a new drawing
tool), an NXHelpPanel object provides the ability to load supplemental help information.
When the application loads the module, it sends the NXHelpPanel object an
addSupplement:inPath: message to inform the object of the location of the new help
supplement. The NXHelpPanel object appends the contents of the supplement's
TableOfContents.rtfto the existing table of contents, so the supplement should have a title
that clearly sets it off from the main part of the table of contents, for example:

-PatternTool Supplement­

Pattern Options

Brick
Stucco
Wood
Tile
Custom

Resizing and Rotating

Blending Patterns

Index to Supplement

The supplement's index is only accessible from the table of contents; the Help panel's Index
button displays the main index.

Structure of the Generic Help Directory

As mentioned earlier, the generic help text provided in NeXTSTEP is contained in the
file lusrlliblNeXTSTEPlResourcesllanguage.lprojlHelp.store. This compressed file
was derived from a directory of help files. To override a generic help file, you'll need
its name and location in the original directory structure. The following listing provides
that information:

2-432 Chapter 2: Application Kit

Help
Index.rtfd
Objects

Menus
Main

ServicesMenu.rtfd
WindowsMenu.rtfd

Services
OtherService.rtfd

Windows
ArrangelnFront.rtfd
Close Window.rtfd
Miniaturize Window.rtfd
WindowN ame.rtfd

Panels
ColorsPanel.rtfd
FaxPanel.rtfd
FontPanel.rtfd
LinkInspectorPanel.rtfd
OpenPanel.rtfd
PageLayoutPanel.rtfd
PrintPanel.rtfd
SavePanel.rtfd
SpellingPanel.rtfd
Prolog.rtfd

TableOfContents .rtf
Tasks

Getting S tarted
AdjustBrite Volume.rtfd
ButtonsSlidersFields.rtfd
ChooseCommands.rtfd
ClickingHelp.rtfd
DetachSubmenu.rtfd
FindingHelp.rtfd
GettingHelpTopic.rtfd
Scrolling.rtfd
U singMouse.rtfd
WorkingWindows.rtfd

Reference
Curs or. rtfd

Classes: NXHelpPanei 2-433

Instance Variables

None declared in this class.

Method Types

Initializing and freeing

Attaching Help to objects

Setting click-for-help

Printing

Querying

Showing help

Class Methods

+ new
+ newForDirectory:
- addSupplement:inPath:
-free

+ attachHelpFile:markerN ame:to:
+ detachHelpFrom:

+ isClickForHelpEnabled
+ setClickForHelpEnabled:

- print:
- printPanel:

- helpDirectory
- helpFile

- showFile:atMarker:
- showHelpAttachedTo:

attachHelpFile:markerName:to:

+ attachHelpFile:(const char *)filename
markerName:(const char *)markerName
to: an Object

Associatesfilename and markerName with anObject. filename should be a path relative to
the Help directory. markerName is the name of a marker within the file specified by
filename. Returns self.

When anObject is Help-clicked, the Help panel displays the specified file, and the text is
scrolled so that the point marked by markerName is visible. (If markerName is NULL, the
file isn't scrolled.)

See also: - detachHelpFrom:

2-434 Chapter 2: Application Kit

detachHelpFrom:

+ detachHelpFrom:anObject

Removes any help information associated with anObject. Returns self.

See also: - attachHelpFile:markerName:to: '

isClickForHelpEnabled

+ (BOOL)isClickForHelpEnabled

Returns whether Help-clicking is enabled.

See also: + setClickForHelpEnabled:

new

+ new

Creates, if necessary, and returns the NXHelpPanel object. This method invokes the
newForDirectory: method, using "Help" as the single argument.

See also: + newForDirectory:

newForDirectory:

+ newForDirectory:(const char *)helpDirectory

Creates, if necessary, and returns the Help panel. If the panel is created, it loads the help
directory specified by helpDirectory. The help directory must reside in the main bundle. If
a Help panel already exists but has loaded a help directory other than helpDirectory, a
second panel will be created.

See also: + new

Classes: NXHelpPonel 2-435

setClickForHelpEnabled:

+ setClickForHelpEnabled:(BOOL)enabled

Sets whether Help-clicking is enabled. Normally most applications will leave this feature
enabled. However on keyboards without a Help key, the user must hold the Control and
Alternate modifiers while Help-clicking. Because some applications may depend upon the
simultaneous use of these modifiers, they may need a way to disable the click-for-help
feature. In this case, it is recommended that the application have a menu command to allow
the user to toggle whether click-for-help is enabled or whether these modifiers are passed
through for the application's use. The menu title should be "Disable Click for Help" and
should toggle with "Enable Click for Help". Returns self.

See also: + isClickForHelpEnabled

Instance Methods

addSupplement:inPath:

- addSupplement:(const char *)helpDirectory inPath:(const char *)supplementPath

Adds supplemental help by appending the supplement's TableOfContents.rtf file to the
existing table of contents. This method is designed to be used when an application
dynamically loads a resource that has its own help information. Returns self.

free

-free

Frees the NXHelpPanel and its storage.

helpDirectory

- (NXAtom)helpDirectory

Returns the absolute path of the currently loaded help directory.

See also: - helpFile

2-436 Chapter 2: Application Kit

helpFile

- (NXAtom)helpFile

Returns the path of the currently loaded help file relative to the current help directory.

See also: - helpDirectory

print:

- print:sender

Prints the currently displayed help text and returns self.

printPanel:

- printPanel:sender

This is the same as the print: method.

showFile:atMarker:

- showFile:(const char *)filename atMarker:(const char *)markerName

Causes the Help panel to display the help contained infilename. If markerName is
non-NULL, then the marker is sought in the file. If found, it's scrolled into view and the
text from the marker to the end of the line is highlighted. If the file is not a full path, then
it's assumed to be relative to the currently displayed help file. Returns self.

showHelpAttachedTo:

- (BOOL)showHelpAttachedTo:anObject

Causes the Help panel to display the help attached to anObject. Returns YES if the object
has help attached to it, NO if not.

Classes: NXHelpPanel 2-437

NXll11age

Inherits From:

Declared In:

Class Description

Object

appkitINXImage.h

An NXImage object contains an image that can be compo sited anywhere without first being
drawn in any particular View. It manages the image by:

• Reading image data from the application bundle, from a Pasteboard, or from an
NXStream.

• Choosing the representation that's appropriate for a particular data type.

• Keeping multiple representations of the same image.

• Choosing the representation that's appropriate for any given display device.

• Caching the representations it uses by rendering them in off-screen windows.

• Optionally retaining the data used to draw the representations, so that they can be
reproduced when needed.

• Compositing the image from the off-screen cache to where it's needed on-screen.

• Reproducing the image for the printer so that it matches what's displayed on-screen, yet
is the best representation possible for the printed page.

• Automatically using any filtering services installed by the user to convert image data
from unsupported formats to supported formats.

Defining an Image

An image can be created from various types of data:

• Encapsulated PostScript code (EPS)

• Bitmap data in Tag Image File Format (TIFF)

• Untagged (raw) bitmap data

• RenderMan Interface Bytestream code (RIB)

2-438 Chapter 2: Application Kit

• Other image data supported by an NXImageRep subclass registered with the
NXImage class

• Data that can be filtered to a supported type by a user-installed filter service

If data is placed in a file (for example, in an application bundle), the NXImage object can
access the data whenever it's needed to create the image. If data is read from a stream, the
NXImage object may need to retain the data itself.

Images can also be defined by the program, in two ways:

• By drawing the image in an off-screen window maintained by the NXImage object. In
this case, the NXImage maintains only the cached image.

• By defining a method that can be used to draw the image when needed. This allows the
NXImage to delegate responsibility for producing the image to some other object.

Image Representations

An NXImage object can keep more than one representation of an image. Multiple
representations permit the image to be customized for the display device. For example,
different hand-tuned TIFF images can be provided for monochrome and color screens, and
an EPS representation or a custom method might be used for printing. All representations
are versions of the same image.

An NXImage returns a List of its representations in response to a representationList
message. Each representation is a kind of NXImageRep object:

NXEPSImageRep An image that can be recreated from EPS data that's either
retained by the object or at a known location in the file system.

NXBitmapImageRep An image that can be recreated from bitmap or TIFF data.

N3DRIBImageRep An image that can be recreated from RIB data.

NXCustomImageRep An image that can be redrawn by a method defined in the
application.

NXCachedImageRep An image that has been rendered in an off-screen cache from
data or instructions that are no longer available. The image in
the cache provides the only data from which the image can be
reproduced.

You can define other NXImageRep subclasses for objects that render images from other types
of source data. You make a subclass known to NXImage by invoking the registerlmageRep:
class method. NXImage determines the data types that each subclass can support by
invoking its imageUnfilteredFileTypes and imageUnfilteredPasteboardTypes methods.

Classes: NXlmage 2-439

Choosing Representations

The NXImage object will choose the representation that best matches the rendering device.
By default, the choice is made according to the following set of ordered rules. Each rule is

. applied in turn until the choice of representation is narrowed to one.

1. Choose a color representation for a color device, and a gray-scale representation for a
monochrome device.

2. Choose a representation with a resolution that matches the resolution of the device, or if
no representation matches, choose the one with the highest resolution.

By default, any image representation with a resolution that's an integer multiple of the
device resolution is considered to match. If more than one representation matches, the
NXImage will choose the one that's closest to the device resolution. However, you can
force resolution matches to be exact by passing NO to the
setMatchedOnMultipleResolution: method.

Rule 2 prefers TIFF and bitmap representations, which have a defined resolution, over
EPS representations, which don't. However, you can use the
setEPSUsedOnResolutionMismatch: method to have the NXImage choose an EPS
representation in case a resolution match isn't possible.

3. If all else fails, choose the representation with a specified bits per sample that matches
the depth of the device. If no representation matches, choose the one with the highest
bits per sample.

By passing NO to the setColorMatchPreferred: method,. you can have the NXImage try
for a resolution match before a color match. This essentially inverts the first and second
rules above.

If these rules fail to narrow the choice to a single representation-for example, if the
NXImage has two color TIFF representations with the same resolution and depth-the one
that will be chosen is system dependent.

Caching Representations

When first asked to composite the image, the NXImage object chooses the representation
that's best for the destination display device, as outlined above. It renders the
representation in an off-screen window on the same device, then composites it from this
cache to the desired location. Subsequent requests to composite the image use the same
cache. Representations aren't cached until they're needed for compositing.

When ptinting, the NXImage tries not to use the cached image. Instead, it attempts to
render on the printer-using the appropriate image data, or a delegated method-the best
version of the image that it can. Only as a last resort will it image the cached bitmap.

2-440 Chapter 2: Application Kit

Image Size

Before an NXImage can be used, the size of the image must be set, in units of the base
coordinate system. If a representation is smaller or larger than the specified size, it can be
scaled to fit.

If the size of the image hasn't already been set when the NXImage is provided with a
representation, the size will be set from the data. The bounding box is used to determine
the size of an NXEPS ImageRep. The TIFF fields "ImageLength" and "Image Width" are
used to determine the size of an NXBitmapImageRep. The RiDisplayO parameters are
used to determine the size of an N3DRIBImageRep.

Coordinate Systems

Images have the horizontal and vertical orientation of the base coordinate system; they
can't be rotated or flipped. When composited, an image maintains this orientation, no
matter what coordinate system it's compo sited to. (The destination coordinate system is
used only to determine the location of a composited image, not its size or orientation.)

It's possible to refer to portions of an image when compo siting (or when defining
subimages), by specifying a rectangle in the image's coordinate system, which is identical
to the base coordinate system, except that the origin is at the lower left comer of the image.

Named Images

An NXImage object can be identified either by its id or by a name. Assigning an NXImage
a name adds it to a database kept by the class object; each name in the database identifies
one and only one instance of the class. When you ask for an NXImage object by name
(with the findlmageNamed: method), the class object returns the one from its database,
which also includes all the system bitmaps provided by the Application Kit. If there's no
object in the database for the specified name, the class object tries to create one by looking
(for historical reasons) in the __ ICON, __ EPS, and __ TIFF segments of the application's
executable file, and then in the application bundle.

If a section or file matches the name, an NXImage is created from the data stored there. You
can therefore create NXImage objects simply by including EPS or TIFF data for them
within the executable file, or in files inside the application's file package.

The job of displaying an image within a View can be entrusted to a Cell object. A Cell
identifies the image it's to display by the name of the NXImage object. The following code
sets myCell to display one of the system bitmaps:

id mYCell = [[Cell alloc] initlconCell: II NXswitch "] ;

Classes: NXlmage 2-441

Image Filtering Services

NXImage is designed to automatically take advantage of user-installed filter services for
converting unsupported image file types to supported image file types. The class method
imageFileTypes returns a list of all file types from which NXImage can create an instance
of itself. This list includes all file types supported by registered subclasses of
NXImageRep, and those types that can be converted to supported file types through a
user-installed filter service.

Instance Variables

char *name;

name The name assigned to the image.

Method Types

Initializing a new NXImage instance
- init
- initSize:
- initFromSection:
- initFromFile:
- initFromStream:
- initFromPasteboard:
- initFromImage:rect:
- copyFromZone:

Freeing an NXImage object - free

Setting the size of the image - setSize:
- getSize:

Referring to images by name - setName:
-name
+ findImageN amed:

2·442 Chapter 2: Application Kit

Specifying the image - useDrawMethod:inObject:
- useFromSection:
- useFromFile:
- 10adFromFile:
- use Representation:
- useCache WithDepth:
- 10adFromStream:
-lockFocus
- 10ckFocusOn:
- unlockFocus

U sing the image - composite:toPoint:
- composite:fromRecttoPoint:
- dissolve:toPoint
- dissolve:fromRecttoPoint:

Choosing which image representation to use
- setColorMatchPreferred:
- isColorMatchPreferred
- setEPSU sedOnResolutionMismatch:
- isEPSU sedOnResolutionMismatch
- setMatchedOnMultipleResolution:
- isMatchedOnMultipleResolution

Getting the representations - lastRepresentation
- bestRepresentation
- representationList
- removeRepresentation:

Determining how the image is stored
- setUnique:
- isUnique
- setDataRetained:
- isDataRetained
- setCacheDepthBounded:
- isCacheDepthBounded
- getImage:rect:

Classes: NXlmage 2-443

Determining how the image is drawn
- setFlipped:
- isFlipped
- setScalable:
- isScalable
- setBackgroundColor:
- backgroundColor
- drawRepresentation:inRect:
- recache

Assigning a delegate - setDelegate:
- delegate

Producing TIFF data for the image
- writeTIFF:
- writeTIFF:allRepresentations:
- writeTIFF:allRepresentations:usingCompression:

andFactor:

Managing NXImageRep subclasses

Testing image data sources

Archiving

Class Methods

canlnitFromPasteboard:

+ registerImageRep:
+ unregisterImageRep:
+ imageRepForFileType:
+ imageRepForPasteboardType:
+ imageRepForStream:

+ canInitFromPasteboard:
+ imageFileTypes
+ imagePasteboardTypes

- read:
- write:
- finishUnarchiving

+ (BOOL)canlnitFromPasteboard:(Pasteboard *)pasteboard

Tests whether NXImage can create an instance of itself from the data represented by
pasteboard. Returns YES if NXImage's list of registered NXImageReps includes a class
that can handle the data represented by pasteboard.

By default, this method returns YES if pasteboard's type is NXTIFFPboardType,
NXPostScriptPboardType, or NXFilenamePboardType (for file names with extension

2-444 Chapter 2: Application Kit

".tiff', ".tif', or ".eps"). Applications linked against libMedia_s.a also return YES if
pasteboard's type is N3DRIBPboardType or NXFilenamePboardType (for file names with
extension ".rib").

NXImage uses the NXImageRep class method imageUnfilteredPasteboardTypes to find
the class that can handle the data in pasteboard. When creating a subclass of NXImageRep
that accepts image data from a non-default pasteboard type, override the
imageUnfiiteredPasteboardTypes method to notify NXImage of the pasteboard types
your class supports.

See also: + imagePasteboardTypes, + imageRepForPasteboard:,
+ imageUnfilteredPasteboardTypes (NXImageRep), N3DRIBImageRep (3D Kit Classes)

findlmageNamed:

+ findlmageNamed:(const char *)name

Returns the NXImage instance associated with name. The returned object can be:

• One that's been assigned a name with the setName: method,
• One of the named system bitmaps provided by the Application Kit, or
• One that's been created and named by this method.

If there's no known NXImage with name, this method tries to create one by searching for
image data in the application's executable file and in the application bundle:

1. For historical reasons, it looks in the application executable. It looks first in the __ ICON
segment for a name section containing either Encapsulated PostScript code (EPS) or Tag
Image File Format (TIFF) data. It looks next for a section with TIFF data in the __ TIFF
segment if name includes a ".tiff' extension, or for a section containing EPS data in the
__ EPS segment if name includes a ".eps" extension. If name has neither extension, both
segments are searched, first after adding the appropriate extension to name, then for
name alone, without an extension. If it finds sections in both segments, it creates both
EPS and TIFF representations of the image.

2. Next, it searches for name files in the Iproj directories in the application's main bundle.
It searches for all file types (extensions) handled by all registered NXImageReps; by
default, the files searched for include those with the extension "tiff', "tif', and "eps" . It
searches the language directories that the user specified for this application, or (if none)
those specified by the user's default language preferences (see Application's
systemLanguages method).

3. Finally, if there's no file named name in the main bundle's relevant language directories,
it looks for name files in the main bundle (but outside the Iproj directories). Again, it
searches for all file types handled by all registered NXImageReps.

Classes: NXlmage 2-445

If a section or file contains data for more than one image, a separate representation is
created for each one. If an image representation can't be found for name, no object is
created and nil is returned.

The preferred way to name an image is to ask for a name without the extension, but to
include the extension on the section name or file name.

This method treats all images found in the __ ICON segment as application or document
icons, since the point of putting an image in that segment rather than in __ TIFF or __ EPS
is to advertise it to the Workspace Manager. The Workspace Manager requires icons to be
no more than 48 pixels wide by 48 pixels high. Therefore, an NXImage created from an
__ ICON section has its size set to 48.0 by 48.0 and is made scalable.

The image returned by this method should not be freed, unless it's certain that no other
objects reference it.

See also: - setName:, - name, + registerlmageRep, + imageFileTypes

imageFileTypes

+ (const char *const *)imageFileTypes

Returns a null-terminated array of strings representing file types for which a registered
NXImageRep exists. This list includes all file types supported by registered subclasses of
NXImageRep, and those types that can be converted to supported file types through a
user-installed filter service. The array returned by this method may be passed directly to
the OpenPanel's runModalForTypes: method. The returned array belongs to the system,
and should not be freed by the application.

File types are identified by extension. By default, the list returned by this method contains
"tiff', "tif', "eps", and, for applications that use the 3D Kit, "rib".

When creating a subclass of NXImageRep that accepts image data from non-default file
types, override the imageUnfilteredFileTypes method to notify NXImage of the file types
your class supports.

See also: + imageRepForFiletype:, + imageUnfilteredFileTypes (NXImageRep class)

imagePasteboardTypes

+ (const NXAtom *)imagePasteboardTypes

Returns a null-terminated list of pasteboard types for which a registered NXImageRep
exists. This list includes all pasteboard types supported by registered subclasses of

2-446 Chapter 2: Application Kit

NXImageRep, and those that can be converted to supported pasteboard types through a
user-installed filter service. The returned list belongs to the system, and should not be freed
by the application.

By default, the list returned by this method contains "NXPostScriptPboardType,"
"NXTIFFPboardType," and, for applications that use the 3D Kit, "N3DRIBPboardType."

When creating a subclass of NXImageRep that accepts image data from non-default
pasteboard types, override the imageUnfiiteredPasteboardTypes method to notify
NXImage of the pasteboard types your class supports.

See also: + imageRepForPasteboardtype:,
+ imageUnfiiteredPasteboardTypes (NXImageRep)

imageRepForFileType:

+ (Class)imageRepForFileType:(const char *)type

Returns the NXImageRep subclass that supports files of type. type represents the file
extension, which represents the type of data in the file. By default, this method returns the
NXBitmapImageRep class for a type of "tiff' or "tif' and the NXEPSImageRep class for a
type of "eps". If you create a subclass of NXImageRep that supports other file types, you
must override the NXImageRep imageUnfilteredFileTypes class method to return the
extensions representing those file types, then register your subclass using NXImage's
registerlmageRep: class method.

See also: + registerlmageRep:, - imageFileTypes,
- imageUnfiiteredFileTypes (NXImageRep)

imageRepForPasteboardType:

+ (Class)imageRepForPasteboardType:(NXAtom)type

Returns the NXImageRep subclass that supports pasteboards of type. By default, this
method returns NXBitmapImageRep for a type of NXTIFFPboardType and
NXEPSImageRep for a type of NXPostscriptPboardType. If type is
NXFilenamePboardType, this method returns the registered NXImageRep that supports
files with the extension of the file name on the pasteboard, either directly or through a
user-installed filter service. If no registered NXImageRep handles data of type, returns nil.

If you create a subclass of NXImageRep that supports other pasteboard types, you must
override the NXImageRep class method imageUnfiiteredPasteboardTypes to return the

Classes: NXlmage 2-447

extensions representing those pasteboard types, then register your subclass using
NXImage's class method registerlmageRep:.

See also: + registerlmageRep:, - imagePasteboardTypes,
- imageUnfilteredPasteboardTypes (NXImageRep class)

imageRepForStream:

+ (Class)imageRepForStream:(NXStream *)stream

Returns the NXImageRep subclass that can be instantiated from the data in stream. By
default, this method returns NXBitmapImageRep for a stream containing TIFF data,
NXEPSImageRep for a stream containing EPS data, and nil for a stream containing an
unsupported data type. stream must be seekable.

If you create a subclass of NXImageRep that supports other data types, you must override
the NXImageRep canLoadFromStream: class method to determine whether your
subclass can be instantiated from data in stream. You must also register your subclass using
NXImage's registerlmageRep: class method.

See also: + registerlmageRep:, - canLoadFromStream: (NXImageRep)

registerImageRep:

+ (void)registerlmageRep:imageRepCZass

Informs NXImage of the existence of a subclass of NXImageRep.

This method adds the class to NXImage's list of image reps without verifying the behavior
of imageRepCZass. When the application calls NXImage class methods such as
imageFileTypes, imagePasteboardTypes, and imageRepForFileType, the class checks
this list to find the types of image data it can support. imageRepCZass must implement the
methods imageUnfilteredFileTypes, imageUnfilteredPasteboardTypes, and
canLoadFromStream: to inform NXImage of the data types it supports.

This method may be invoked multiple times; imageRepCZass is added to NXImage's list of
image reps only the first time it is invoked.

See also: + imageFileTypes, + imagePasteboardTypes, + imageRepForFileType,
NXImageRep class description

2-448 Chapter 2: Application Kit

unregister ImageRep:

+ (void)unregisterlmageRep: imageRepClass

Informs NXImage of the resignation of a subclass of NXImageRep.

See also: + registerImageRep:

Instance Methods

background Color

- (NXColor)backgroundColor

Returns the background color of the rectangle where the image is cached. If no background
color has been specified, NX_COLORCLEAR is returned, indicating a totally
transparent background.

The background color will be visible when the image is composited only if the image
doesn't completely cover all the pixels within the area specified for its size.

See also: - setBackgroundColor:

bestRepresentation

- (NXImageRep *)bestRepresentation

Returns the image representation that best matches the display device with the deepest
frame buffer currently available to the Window Server.

See also: - representationList

composite:fromRect:toPoint:

- composite:(int)op
fromRect:(const NXRect *)aRect
toPoint:(const NXPoint *)aPoint

Composites the area enclosed by the aRect rectangle to the location specified by aPoint in
the current coordinate system. The op and aPoint arguments are the same as for
composite:toPoint:. The source rectangle is specified relative to a coordinate system that
has its origin at the lower left comer of the image, but is otherwise the same as the base
coordinate system.

Classes: NXlmage 2-449

This method doesn't check to be sure that the rectangle encloses only portions of the image.
Therefore, it can conceivably composite areas that don't properly belong to the image, if
the aRect rectangle happens to include them. If this turns out to be a problem, you can
prevent it from happening by having the NXImage cache its representations in their own
individual windows (with the setUnique: method). In this case, the window's clipping path
will prevent anything but the image from being composited.

Compositing part of an image is as efficient as compositing the whole image, but printing
just part of an image is not. When printing, it's necessary to draw the whole image and rely
on a clipping path to be sure that only the desired portion appears.

If successful in compo siting (or printing) the image, this method returns self. If not, it
returns nil.

See also: - composite:toPoint:, - setUnique:

composite:toPoint:

- composite:(int)op toPoint:(const NXPoint *)aPoint

Composites the image to the location specified by aPoint. The first argument, op, names
the type of compo siting operation requested. It should be one of the following constants:

NX_CLEAR
NX_COPY
NX_PLUSD
NX_PLUSL

NX_SOVER
NX_SIN
NX_SOUT
NX_SATOP

NX_DOVERNX_XOR
NX_DIN
NX_DOUT
NX_DATOP

aPoint is specified in the current coordinate system-the coordinate system of the currently
focused View-and designates where the lower left comer of the image will appear. The
image will have the orientation of the base coordinate system, regardless of the destination
coordinates.

The image is composited from its off-screen window cache. Since the cache isn't created
until the image representation is first used, this method may need to render the image before
compo siting .

When printing, the compositing methods do not composite, but attempt to render the same
image on the page that compo siting would render on the screen, choosing the best available
representation for the printer. The op argument is ignored

c

•

If successful in compo siting (or printing) the image, this method returns self. If not, it
returns nil.

See also: - composite:fromRect:toPoint:, - dissolve:toPoint:

2-450 Chapter 2: Application Kit

copyFromZone:

- copyFromZone:(NXZone *)zone

Returns a new instance of NXlmage that's an exact copy of the receiver. Memory for the
new instance is allocated from zone. Cached image reps are copied fully, the new NXlmage
has its own copy of the image data. Lazily allocated image reps are copied with only source
information (for example, file names); the image can be recreated from this source when
the NXlmage is asked to composite itself.

See also: - copyFromZone: (NXCachedlmageRep)

delegate

- delegate

Returns the delegate of the NXlmage object, or nil if no delegate has been set.

See also: - setDelegate:

dissolve:fromRect:toPoint:

- dissolve:(float)delta
fromRect:(const NXRect *)aRect
toPoint:(const NXPoint *)aPoint

Composites the aRect portion of the image to the location specified by aPoint, just as
composite:fromRect:toPoint: does, but uses the dissolve operator rather than composite.
delta is a fraction between 0.0 and 1.0 that specifies how much of the resulting composite
will come from the NXlmage. If the source image contains alpha, this operation may
promote the destination Window.

When printing, this method is identical to composite:fromRect:toPoint:. The delta
argument is ignored.

If successful in compositing (or printing) the image, this method returns self. If not, it
returns nil.

See also: - dissolve:toPoint:, - composite:fromRect:toPoint:

Classes: NXlmage 2-451

dissolve:toPoint:

- dissolve:(float)delta toPoint:(const NXPoint *)aPoint

Composites the image to the location specified by aPoint, just as composite:toPoint: does,
but uses the dissolve operator rather than composite. delta is a fraction between 0.0 and
1.0 that specifies how much of the resulting composite will come from the NXImage. If
the source image contains alpha, this operation may promote the destination Window.

To slowly dissolve one image into another, this method (or dissolve:fromRect:toPoint:)
needs to be invoked repeatedly with an ever-increasing delta. Since delta refers to the
fraction of the source image that's combined with the original destination (not the
destination image after some of the source has been dissolved into it), the destination image
should be replaced with the original destination before each invocation. This is best done
in a buffered window before the results of the composite are flushed to the screen.

When printing, this method is identical to composite:toPoint:. The delta argument
is ignored.

If successful in compositing (or printing) the image, this method returns self. If not, it
returns nil.

See also: - dissolve:fromRect:toPoint:, - composite:toPoint:

draw Representation:inRect:

- (BOOL)drawRepresentation:(NXImageRep *)imageRep
inRect:(const NXRect *)rect

Fills the specified rectangle with the background color, then sends the imageRep a drawln:
message to draw itself inside the rectangle (if the NXImage is scalable), or a draw At:
message to draw itself at the location of the rectangle (if the NXImage is not scalable). The
rectangle is located in the current window and is specified in the current coordinate system.

This method shouldn't be called directly; the NXImage uses it to cache and print its
representations. By overriding it in a subclass, you can change how representations appear
in the cache, and thus how they'll appear when composited. For example, your version of
the method could scale or rotate the coordinate system, then send a message to super to
perform this version.

This method returns the value returned by the drawln: or drawAt: method, which
indicates whether or not the representation was successfully drawn. When NO is returned,
the NXImage will ask another representation, if there is one, to draw the image.

2-452 Chapter 2: Application Kit

If the background color is fully transparent and the image is not being cached by the
NXImage, the rectangle won't be filled before the representation draws.

See also: - drawln (NXImageRep), - drawAt: (NXImageRep)

finishUnarchiving

- finish Unarchiving

Registers the name of the newly unarchived receiver, if it has a name, and returns nil. It
also returns nil if the receiving NXImage doesn't have a name. However, if the receiver has
a name that can't be registered because it's already in use, this method frees the receiver
and returns the existing NXImage with that name, thus replacing the unarchived object with
one that's already in use.

finishUnarchiving messages are generated automatically (by NXReadObjectO) after the
object has be unarchived (by read:) and initialized (by awake).

free

-free

Deallocates the NXImage and all its representations. If the object had been assigned a
name, the name is removed from the class database.

Images that are obtained through findlmageNamed: should not be freed unless it's certain
that no other part of the program has similarly obtained a reference to the same object.

See also: + findlmageNamed:

getImage:rect:

- getImage:(NXImage **)the/mage rect:(NXRect *)theRect

Provides information about the receiving NXImage object, if it's a subimage of another
NXImage. The parent NXImage is assigned to the variable referred to by the/mage, and
the rectangle where the receiver is located in that NXImage is copied into the structure
referred to by theRect.

If the receiver is not a subimage of another NXImage object (if it wasn't initialized by
initFromlmage:rect:), the variable referred to by the/mage is set to nil and the rectangle
is not modified.

Returns self.

See also: - initFromlmage:rect:

Classes: NXlmage 2-453

getSize:

- getSize:(NXSize *)theSize

Copies the size of the image into the structure specified by theSize. If no size has been set,
all values in the structure will be set to 0.0. Returns self.

See also: - setSize:

init

- init

Initializes the receiver, a newly allocated NXImage instance, but does not set the size of the
image. The size must be set, and at least one image representation provided, before the
NXImage object can be used. The size can be set either through a setSize: message or by
providing a representation that specifies a size.

See also: - initSize:, - setSize:

initFromFile:

- initFromFile:(const char *)filename

Initializes the receiver, a newly allocated NXImage instance, for the file filename. This
method initializes lazily: the NXImage doesn't actually open filename or create an image
representation from its data until an application attempts to composite or requests
information about the NXImage. (Use the method loadFromFile: to immediately create
an image representation for the data in a file.)

filename may be a full or relative pathname, and should include an extension that identifies
the data type in the file. The mechanism that actually creates the image representation for
filename will look for an NXImageRep subclass that handles that data type from among
those registered with NXImage. By default, the files handled are those with the extensions
"tiff', "tif', and "eps".

After finishing the initialization, this method returns self. However, if the new instance
can't be initialized, it's freed and nil is returned. Since this method doesn't actually create
an image representation for the data, your application should do error checking before
attempting to use the image; one way to do so is by invoking the lockFocus method to
check whether the image can be drawn.

2·454 Chapter 2: Application Kit

This method uses the useFromFile: method to register filename. It's equivalent to a
combination of init and useFromFile:.

See also: - useFromFile:, - initSize:, -loadFromFile:, -loadFromFile:,
+ imageRepForFileType:, + registerlmageRep

initFromlmage:rect:

- initFromlmage:(NXImage *)image rect:(const NXRect *)reet

Initializes the receiver, a newly allocated NXImage instance, so that it's a subimage for the
reet portion of another NXImage object, image. The size of the new object is set from the
size of the reet rectangle. Returns self.

Once initialized, the new instance can't be altered and will remain dependent on the original
image. Changes made to the original will also change the subimage.

Subimages should be used only as a way of avoiding composite:fromRect:toPoint: and
dissolve:fromRect:toPoint: messages. They permit you to divide a large image into
sections and a&Sign each section a name. The name can then be passed to those Button and
Cell methods that identify images by name rather than id.

See also: - getImage:rect:, - initSize:

initFromPasteboard:

- initFromPasteboard:(Pasteboard *)pasteboard

Initializes and returns the receiver, a newly allocated NXImage instance, from pasteboard.
pasteboard should be of a type returned by one of the registered NXImageRep's
imageUnfilteredPasteboardTypes methods; the default types supported are
NXPostscriptPboardType (NXEPSImageRep) and NXTIFFPboardType
(NXBitmapImageRep). If pasteboard is an NXFilenamePboardType, the file name should
have an extension returned by one of the registered NXImageRep' s
imageUnfilteredFileTypes methods; the default types supported are "tiff', "tif',
(NXBitmapImageRep) and "eps" (NXEPSImageRep).

If the data type on the pasteboard isn't supported by a registered NXImageRep, this method
frees the receiver and returns nil. Otherwise this method invokes initFromStream to
initialize the image.

See also: + registerlmageRep:

Classes: NXlmage 2-455

initFromSection:

- initFromSection:(const char *)name

Initializes the receiver, a newly allocated NXImage instance, on a resource name in the
application directory. This method initializes lazily: the NXImage doesn't actually create
a representation for the data in name until an application attempts to composite or requests
information about the NXImage. When it does create a representation for name, the
NXImage will look for data in the application's bundle.

For historical reasons, the mechanism that actually creates the image representation first
looks for name in the application's executable file. It looks for a section with TIFF data in
the __ TIFF segment if name includes a ".tiff' extension, or for a section containing EPS
data in the __ EPS segment if name includes a ".eps" extension. If name has neither
extension, both segments are searched, first after adding the appropriate extension to name,
then for name alone, without an extension. If it finds sections in both segments, it creates
both EPS and TIFF representations of the image.

Next, the mechanism searches for name files in the lproj directories in the application's
main bundle. It searches for all file types (extensions) handled by all registered
NXImageReps; by default, the files searched for include thilse with the extension "tiff',
"tif', and "eps". It searches the language directories that the user specified for this
application, or (if none) those specified by the user's default language preferences (see the
Application class systemLanguages method). If a file name is found with no extension,
the mechanism opens the file and looks for a registered subclass of NXImageRep that can
handle the data (using the NXImage imageRepForStream: class method).

If a section contains EPS or TIFF data for more than one version of the image, a
representation will be created and added to the NXImage for each image specified. If an
application bundle contains more than one file named name (each with a different
extension), a representation will be created and added to the NXImage for each file whose
data type is supported by a registered subclass of NXImageRep. The size of the NXImage
is set from image representation data.

After finishing the initialization, this method returns self. However, if the new instance
can't be initialized, it's freed and nil is returned.

This method uses the useFromSection: method to register name. It's equivalent to a
combination of init and useFromSection:.

See also: - useFromSection:, - initSize:

2-456 Chapter 2: Application Kit

initFromStream:

- initFromStream:(NXStream *)stream

Initializes the receiver, a newly allocated NXImage instance, with the image or images
specified in the data read from stream, and returns self. If the receiver can't be initialized
for any reason, it's freed and nil is returned.

Since this method must store the data read from the stream or render the specified image
immediately, it's less preferred than initFromSection: or initFromFile:, which can wait
until the image is needed.

The stream must be seekable and should contain image data recognizable to a registered
NXImageRep subclass. It's read using the loadFromStream: method, which will set the
size of the NXImage from information found in the representation data. This method is
equivalent to a combination of in it and loadFromStream:.

See also: -loadFromStream:, - initSize:, + registerlmageRep:,
+ imageRepForStream:, + canLoadFromStream: (NXImageRep)

initSize:

- initSize:(const NXSize *)aSize

Initializes the receiver, a newly allocated NXImage instance, to the size specified and
returns self. The size should be specified in units of the base coordinate system. It must be
set before the NXImage can be used.

This method is the designated initializer for the class (the method that incorporates the
initialization of classes higher in the hierarchy through a message to super). All other
init .•• methods defined in this class work through this method.

See also: - setSize:

isCacheDepthBounded

- (BOOL)isCacheDepthBounded

Returns YES if the depth of off-screen windows where the NXImage's representations are
cached is bounded by the application's default depth limit, and NO if the depth of the
caches can exceed that limit. The default is YES.

See also: - setCacheDepthBounded:, + defaultDepthLimit (Window)

Classes: NXlmage 2-457

isColorMatchPreferred

- (BOOL)isColorMatchPreferred

Returns YES if, when selecting the representation it will use, the NXImage first looks for
one that matches the color capability of the rendering device (choosing a gray-scale
representation for a monochrome device and a color representation for a color device), then
if necessary narrows the selection by looking for one that matches the resolution of the
device. If the return is NO, the NXImage first looks for a representation that matches the
resolution of the device, then tries to match the representation to the color capability of the
device. The default is YES.

See also: - setColorMatchPreferred:

isDataRetained

- (BOOL)isDataRetained

Returns YES if the NXImage retains the data needed to render the image, and NO if it
doesn't. The default is NO. If the data is available in a section of the application executable
or in a file that won't be moved or deleted, or if responsibility for drawing the image is
delegated to another object with a custom method, there's no reason for the NXImage to
retain the data. However, if the NXImage reads image data from a stream, you may want
to have it keep the data itself; for example, to render the same image on another device at a
different resolution.

See also: - setDataRetained:, -loadFromStream:

isEPSUsedOnResolutionMismatch

- (BOOL)isEPSUsedOnResolutionMismatch

Returns YES if an EPS representation of the image should be used whenever it's impossible
to match the resolution of the device to the resolution of another representation of the image
(a TIFF representation, for example). By default, this method returns NO to indicate that
EPS representations are not necessarily preferred.

See also: - setEPSUsedOnResolutionMismatch:

2-458 Chapter 2: Application Kit

isFlipped

- (BOOL)isFlipped

Returns YES if a flipped coordinate system is used when locating the image, and NO if it
isn't. The default is NO.

See also: - setFlipped:

isMatchedOnMultipleResolution

- (BOOL)isMatchedOnMultipleResolution

Returns YES if the resolution of the device and the resolution specified for the image are
considered to match if one is a multiple of the other, and NO if device and image resolutions
are considered to match only if they are exactly the same. The default is YES.

See also: - setMatchedOnMultipleResolution:

isScalable

- (BOOL)isScalable

Returns YES if image representations are scaled to fit the size specified for the NXImage.
If representations are not scalable, this method returns NO. The default is NO.

Representations created from data that specifies a size (for example, the "ImageLength"
and "Image Width" fields of a TIFF representation or the bounding box of an EPS
representation) will have the size the data specifies, which may differ from the size of the
NXImage.

See also: - setScalable:

isUnique

- (BOOL)isUnique

Returns YES if each representation of the image is cached alone in an off-screen window
of its own, and NO if they can be cached in off-screen windows together with other images.
A return of NO doesn't mean that the windows are, in fact, shared, just that they can be.
The default is NO.

See also: - setUnique:

Classes: NXlmoge 2-459

lastRepresentation

- (NXImageRep *)lastRepresentation

Returns the last representation that was specified for the image (the last one added with
methods like useCache WithDepth:, loadFromStream:, and initFromStream:). If the
NXImage has no representations, this method returns nil.

See also: - representationList, - bestRepresentation

loadFromFile:

- (BOOL)loadFromFile:(const char *)filename

Creates an image representation from the data read fromjilename and adds it to the
receiving NXImage's list of representations. This method is equivalent to mapping the file
to memory, then invoking loadFromStream:.

jilename may be a full or relative pathname, and should include an extension that identifies
the data type in the file. This method looks for an NXImageRep subclass that handles that
data type from among those registered with NXImage. By default, the files handled are
those with the extensions "tiff', "tif', and "eps". If the file name has no extension, or the
extension is one not recognized by one of the registered subclasses of NXImageRep, this
method opens a stream on the file and attempts to find a registered subclass of
NXImageRep that can handle the data in the stream. If a file containing TIFF or EPS data
includes more than one image, a separate representation is created for each one.

If the NXImage object doesn't retain image data (isDataRetained returns NO), the image
will be rendered in an off-screen window and the representations will be of type
NXCachedImageRep. If the data is retained, the representations will be of type
NXBitmaplmageRep or NXEPSImageRep, depending on the data.

If successful in creating at least one representation, this method returns YES. If not, it
returns NO.

See also: - initFromStream:, + registerlmageRep:, + imageRepForFileType:

loadFromStream:

- (BOOL)loadFromStream:(NXStream *)stream

Creates an image representation from the data read from stream and adds it to the receiving
NXImage's list of representations. The stream must be seekable, and the data must be of a

2-460 ChapteT2: Application Kit

type recognized by a registered NXImageRep. If the size of the NXImage hasn't yet been
set, it will be set from information found in the TIFF fields or from the EPS bounding box
comment. If the stream contains data specifying more than one image, a separate
representation is created for each one.

If the NXImage object doesn't retain image data (isDataRetained returns NO), the image
will be rendered in an off-screen window and the representations will be of type
NXCachedImageRep. If the data is retained, the representations will be of type
NXBitmapImageRep or NXEPSImageRep, depending on the data.

"'-

If successful in creating at least one representation, this method returns YES. If not, it
returns NO.

See also: - initFromStream:, + imageRepForStream:

lockFocus

- (BOOL)lockFocus

Focuses on the best representation for the NXImage, by making the off-screen window
where the representation will be cached the current window and a coordinate system
specific to the area where the image will be drawn the current coordinate system. The best
representation is the one that best matches the deepest available frame buffer; it's the same
object returned by the bestRepresentation method.

If the NXImage has no representations, lockFocus creates one with the
use Cache WithDepth: method, specifying the best depth for the deepest frame buffer
currently in use. To add additional representations, use Cache WithDepth: messages must
be sent explicitly.

This method returns YES if it's successful in focusing on the representation, and NO if not.
A successfullockFocus message must be balanced by a subsequent unlockFocus message
to the same NXImage. These messages bracket the code that draws the image.

lockFocus returns NO when the image can't be drawn; for example, because the file from
which it was initialized is non-existent, or the data in that file is invalid. In this case,
lockFocus will not have altered the current graphics state and should not be balanced by an
unlockFocus message (in this regard, the NXImage lockFocus method differs from that
of View).

See also: -lockFocusOn:, -lockFocus (View), - unlockFocus,
- useCacheWithDepth:, - bestRepresentation

Classes: NXlmage 2-461

lockFocusOn:

- (BOOL)lockFocusOn:(NXImageRep *)imageRep

Focuses on the imageRep representation, by making the off-screen window where it will be
cached the current window and a coordinate system specific to the area where the image
will be drawn the current coordinate system.

This method returns YES if it's successful in focusing on the representation, and NO if it's
not. A successfullockFocusOn: message must be balanced by a subsequent unlockFocus
message to the same receiver. These messages bracket the code that draws the image. The
useCache WithDepth: method will add a representation specifically for this purpose.
For example:

[myNXlmage useCacheWithDepth:NX_TwoBitGrayDepth] i

if ([myNXlmage lockFocusOn: [mylmage lastRepresentation]]) {
/* drawing code goes here */

[myNXlmage unlockFocus] i

If lockFocusOn: returns NO, it will not have altered the current graphics state and should
not be balanced by an unlockFocus message.

See also: -lockFocus, -lockFocus (View), - unlockFocus, -lastRepresentation

name

- (const char *)name

Returns the name assigned to the NXImage, or NULL if no name has been assigned.

See also: - setName:, + findlmageNamed:

read:

- read:(NXTypedStream *)stream

Reads the NXImage and all its representations from the typed stream stream.

See also: - write:

2-462 Chapter 2: Application Kit

recache

- recache

Invalidates the off-screen caches of all representations and frees them. The next time any
representation is composited, it will first be asked to redraw itself in the cache.
NXCachedImageReps aren't destroyed by this method.

If an image is likely not to be used again, it's a good idea to free its caches, since that
will reduce that amount of memory consumed by your program and therefore
improve performance.

Returns self.

removeRepresentation:

- removeRepresentation:(NXImageRep *)imageRep

Frees the imageRep representation after removing it from the NXImage's list of
representations. Returns self.

See also: - representationList

representationList

- (List *)representationList

Returns the List object containing all the representations of the image. The List belongs to
the NXImage object, and there's no guarantee that the same List object will be returned
each time. Therefore, rather than saving the object that's returned, you should ask for it
each time you need it.

See also: - bestRepresentation, - lastRepresentation

setBackgroundColor:

- setBackgroundColor:(NXColor)aColor

Sets the background color of the image. The default is NX_COLORCLEAR, indicating a
totally transparent background. The background color will be visible only for
representations that don't completely cover all the pixels within the image when drawing.
The background color is ignored for cached image representations (such as those created
with useCacheWithDepth:); such caches are always created with a white background.
This method doesn't cause the receiving NXImage to recache itself. Returns self.

See also: - background Color

Classes: NXlmage 2-463

setCacheDepthBounded:

- setCacheDepthBounded:(BOOL)flag

Determines whether the depth of the off-screen windows where the NXlmage's
representations are cached should be limited by the application's default depth limit. Ifflag
is NO, window depths will be determined by the specifications of the representations, rather
than by the current display devices. The default is YES. This method doesn't cause the
receiving NXlmage to recache itself. Returns self.

See also: - isCacheDepthBounded, + defaultDepthLimit (Window)

setColorMatchPreferred:

- setColorMatchPreferred:(BOOL)flag

Determines how the NXlmage will select which representation to use. Ifflag is YES, it first
tries to match the representation to the color capability of the rendering device (choosing a
color representation for a color device and a gray-scale representation for a monochrome
device), and then if necessary narrows the selection by trying to match the resolution of the
representation to the resolution of the device. Ifflag is NO, the NXlmage first tries to match
the representation to the resolution of the device, and then tries to match it to the color
capability of the device. The default is YES. Returns self.

See also: - isColorMatchPreferred

setDataRetained:

- setDataRetained:(BOOL)flag

Determines whether the NXlmage retains the data needed to render the image. The default
is NO. If the data is available in a section of the application executable or in a file that
won't be moved or deleted, or if responsibility for drawing the image is delegated to
another object with a custom method, there's no reason for the NXlmage to retain the
data. However, if the NXlmage reads image data from a stream, you may want to have it
keep the data itself. Generally, this is useful to redraw the image to a device of
different resolution.

If an image representation is created lazily (through the useFromFile: or useFromSection:
methods), the only data retained is the source name.

See also: - isDataRetained

2-464 Chapter 2: Application Kit

setDelegate:

- setDelegate:anObject

Makes anObject the delegate of the NXlmage. Returns self.

See also: - delegate

setEPSUsedOnResolutionMismatch:

- setEPSUsedOnResolutionMismatch:(BOOL)jlag

Determines whether EPS representations will be preferred when there are no
representations that match the resolution of the device. The default is NO. Returns self.

See also: - isEPSUsedOnResolutionMismatch

setFlipped:

- setFlipped:(BOOL)jlag

Determines whether the polarity of the y-axis is inverted when drawing an image. If flag is
YES, the image will have its coordinate origin in the upper left comer and the positive
y-axis will extend downward. This method affects only the coordinate system used to draw
the image, whether through a method assigned with the useDrawMethod:object: method
or directly by focusing on a representation. It doesn't affect the coordinate system for
specifying portions of the image for methods like composite:fromRect:toPoint: or
initFromlmage:rect:. This method doesn't cause the receiving NXlmage to recache itself.
Returns self.

See also: - isFlipped

setMatchedOnMultipleResolution:

- setMatchedOnMultipleResolution:(BOOL)jlag·

Determines whether image representations with resolutions that are exact multiples of the
resolution of the device are considered to match the device. The default is YES.
Returns self.

See also: - isMatchedOnMultipleResolution

Classes: NXlmage 2-465

setName:

- (BOOL)setName:(const char *)string

Sets string to be the name of the NXImage object and registers it under that name. If the
object already has a name, that name is discarded. If string is already the name of another
object or if the receiving NXImage is one of the system bitmaps provided by the
Application Kit, the assignment fails.

If successful in naming or renaming the receiver, this method returns YES. Otherwise it
returns NO.

See also: + findlmageNamed:, - name

setScalable:

- setScalable:(BOOL)jlag

Determines whether representations with sizes that differ from the size of the NXImage
will be scaled to fit. The default is NO.

Generally, representations that are created through NXImage methods (such as
useCache WithDepth: or initFromSection:) have the same size as the NXImage.
However, a representation that's added with the useRepresentation: method may have a
different size, and representations created from data that specifies a size (for example, the
"ImageLength" and "Image Width" fields of a TIFF representation or the bounding box of
an EPS representation) will have the size specified.

This method doesn't cause the receiving NXImage to recache itself when it is next
composited. Returns self.

See also: - isScalable

setSize:

- setSize:(const NXSize *)aSize

Sets the width and height of the image. The size referred to by aSize should be in units of
the base coordinate system. The size of an NXImage must be set before it can be used.
Returns self.

2-466 Chapter 2: Application Kit

The size of an NXImage can be changed after it has been used, but changing it invalidates
all its caches and frees them. When the image is next composited, the selected
representation will draw itself in an off-screen window to recreate the cache.

See also: - getSize:, - initSize:

setUnique:

- setUnique:(BOOL)flag

Determines whether each image representation will be cached in its own off-screen window
or in a window shared with other images. Ifflag is YES, each representation is guaranteed
to be in a separate window. Ifflag is NO, a representation can be cached together with other
images, though in practice it might not be. The default is NO.

If an NXImage is to be resized frequently, it's more efficient to cache its representations in
unique windows.

This method does not invalidate any existing caches. Returns self.

See also: - isUnique

unlockFocus

- unlockFocus

Balances a previous lockFocus or lockFocusOn: message. All successfullockFocus and
lockFocusOn: messages (those that return YES) must be followed by a subsequent
unlockFocus message. Those that return NO should never be followed by unlockFocus.

Returns self.

See also: - lockFocus, - lockFocusOn:

Classes: NXlmage 2-467

useCache WithDepth:

- (BOOL)useCache WithDepth:(NXWindowDepth)depth

Creates a representation of type NXCachedImageRep and adds it to the NXImage' s list of
representations. Initially, the representation is nothing more than an empty area equal to
the size of the image in an off-screen window with the specified depth. You must focus on
the representation and draw the image. The following code shows how an NXImage might
be created with the same appearance as a View.

id mylmage;
NXRect theRect;

[myView getBounds:&theRect];
mylmage = [[NXlmage alloc] initSize:&frameRect.size];

[mylmage useCacheWithDepth:NX_DefaultDepth] ;
if ([mylmage lockFocus]) {

[myView drawSelf:&theRect :1];
[mylmage unlockFocus] ;

depth should be one of the following enumerated values:

NX_DefaultDepth
NX_TwoBitGrayDepth
NX_EightBitGray Depth
NX_TwelveB itRGB Depth
NX_TwentyFourB itRGB Depth

If successful in adding the representation, this method returns YES. If the size of the image
has not been set or the cache can't be created for any other reason, it returns NO.

useDrawMethod:inObject:

- (BOOL)useDrawMethod:(SEL)aSelector inObject:anObject

Creates a representation of type NXCustomImageRep and adds it to the NXImage object's
list of representations. aSelector should name a method that can draw the image in the
NXImage object's coordinate system, and that takes a single argument, an
NXCustomImageRep. anObject should be the object that can perform the method.

This type of representation allows you to delegate responsibility for creating an image to
another object within the program.

2-468 Chapter 2: Application Kit

After invoking this method, you may need to explicitly set features of the newly created
NXCustomImageRep, such as size, number of colors, and so on. This is true in particular
if the NXImage has multiple image representations to choose from. A list of methods used
to complete initialization is found in the class specification for NXCustomImageRep. Use
NXImage's lastRepresentation method to access the newly created representation.

This method returns YES if it's successful in creating the representation, and NO if it's not.

useFromFile:

- (BOOL)useFromFile:(const char *)filename

Adds filename to the list of data sources used by the receiving NXImage. This method
initializes lazily: the NXImage doesn't actually open filename or create an image
representation from its data until an application attempts to composite or requests
information about the NXImage. (Use the method loadFromFile: to immediately create
an image representation for the data in a file.)

filename may be a full or relative pathname, and should include an extension that identifies
the data type in the file. The mechanism that actually creates the image representation for
filename will look for an NXImageRep subclass that handles that data type from among
those registered with NXImage. By default, the files handled are those with the extensions
"tiff', "tif', and "eps".

If a representation can be added to the NXImage, this method returns YES. If not, it returns
NO. In the current implementation, it may return YES even if the filename file doesn't exist
or contains bad data. To catch such cases, your application should check the value returned
by the lockFocus methods or implement the delegate method imageDidNotDraw:inRect:.
If filename contains TIFF or EPS data specifying more than one image, a separate
representation is added for each one.

See also: - initFromFile:, + registerlmageRep:, + imageUnfilteredFileTypes
(NXImageRep)

useFromSection:

- (BOOL)useFromSection:(const char *)name

Adds name to the list of data sources used by the receiving NXImage. This method
initializes lazily: the NXImage doesn't actually create a representation for the data in name
until an application attempts to composite or requests information about the NXImage.
When it does create a representation for name, the NXImage will look for data in the
application's bundle.

Classes: NXlmage 2-469

For historical reasons, the mechanism that actually creates the image representation first
looks for name in the application's executable file. It looks for a section with TIFF data in
the __ TIFF segment if name includes a ".tiff' extension, or for a section containing BPS
data in the __ BPS segment if name includes a ".eps" extension. If name has neither
extension, both segments are searched, first after adding the appropriate extension to name,
then for name alone, without an extension. If it finds sections in both segments, it creates
both BPS and TIFF representations of the image.

Next, the mechanism searches for name files in the Iproj directories in the application's
main bundle. It searches for all file types (extensions) handled by all registered
NXImageReps; by default, the files searched for include those with the extension "tiff',
"tif', and "eps". It searches the language directories that the user specified for this
application, or (if none) those specified by the user's default language preferences (see
Application's systemLanguages method). If a file name is found with no extension, the
mechanism opens the file and looks for a registered NXImageRep subclass that can handle
the data (using the NXImage's imageRepForStream: class method).

If a section contains EPS or TIFF data for more than one version of the image, a
representation will be created and added to the NXImage for each image specified. If an
application bundle contains more than one file named name (each with a different
extension), a representation will be created and added to the NXImage for each file whose
data type is supported by a registered subclass of NXImageRep. The size of the NXImage
is set from information taken from the TIFF fields or the BPS bounding box comment.

This method returns YES if a representation can be added to the NXImage, and NO if not.
In the current implementation, it may return YES even if the section matching name
contains bad data or no such section can be found.

See also: - initFromSection:

llseRepresentation:

- (BOOL)useRepresentation:(NXImageRep *)imageRep

Adds imageRep to the receiving NXImage object's list of representations. If successful in
adding the representation, this method returns YES. If not, it returns NO.

Any representation that's added by this method will belong to the NXImage and will be
freed when the NXImage is fret;d. Representations can't be shared among NXImages.

After invoking this method, you may need to explicitly set features of the new
representation, such as size, number of colors, and so on. This is true in particular if the
NXImage has multiple image representations to choose from. A list of methods used to
complete initialization is found in the class description for NXCustomImageRep.

See also: - representationList

2-470 Chapter 2: Application Kit

write:

- write:(NXTypedStream *)stream

Writes the NXImage and all its representations to the typed stream stream. Representations
created with useFromFile: or useFromStream: methods archive only the name of the data
source. Representations created with the loadFromFile: or loadFromStream: methods or
added via useRepresentation: method will archive the data for the image.

See also: - read:

writeTIFF:

- writeTIFF:(NXStream *)stream

Writes TIFF data for the representation that best matches the display device with the
deepest frame buffer to stream. This method is a shorthand for
writeTIFF:allRepresentations: with aflag of NO. Returns self.

writeTIFF:allRepresentations:

- writeTIFF:(NXStream *)stream aIlRepresentations:(BOOL)flag

Writes TIFF data for the representations to stream. If.fiag is YES, data will be written for
each of the representations. If flag is NO, data will be written only for the representation
that best matches the display device with the deepest" frame buffer. Returns self.

If stream is positioned anywhere but at the beginning of the stream, this method will append
the representation(s) it writes to the TIFF data it assumes is already in the stream. To do
this, it must be able to read the TIFF header from the stream. Therefore, the stream must
be opened for NX_READWRITE permission and must be seekable.

writeTIFF:allRepresentations:usingCompression:andFactor:

- writeTIFF:(NXStream *)stream
allRepresentations:(BOOL)flag
usingCompression:(int)compressionType
andFactor: (float)compressionF actor

Writes TIFF data for the representations to stream. Ifflag is YES, data will be written for
each of the representations. If flag is NO, data will be written only for the representation
that best matches the display device with the deepest frame buffer. The compression
arguments let you specify a type of compression and the compression amount. The

Classes: NXlmage 2-471

compression types are listed in the section "Types and Constants." compressionFactor
provides a hint for those compression types that implement variable comression ratios;
currently only JPEG compression uses compressionFactor. Returns self.

Method Implemented By The Delegate

imageDidNotDraw:inRect:

- (NXImage *)imageDidNotDraw:sender inRect:(const NXRect *)aRect

Implemented by the delegate to respond to a message sent by the sender NXImage when
the sender was unable, for whatever reason, to composite or lock focus on its image. The
delegate can return another NXImage to draw in the sender's place. If not, it should return
nil to indicate that sender should give up the attempt at drawing the image.

2-472 Chapter 2: Application Kit

NXll11ageRep

Inherits From: Object

Declared In: appkitINXImageRep.h

Class Description

NXImageRep is an abstract superclass; each of its subclasses knows how to draw an image
from a particular kind of source data. While an NXImageRep subclass can be used directly,
it's typically used through an NXImage object. An NXImage manages a group of
representations, choosing the best one for the current output device.

There are four subclasses defined in the Application Kit:

Subclass

NXBitmapImageRep
NXEPSImageRep
NXCustomImageRep
NXCachedImageRep

Source Data

Tag Image File Format (TIFF) and other bitmap data
Encapsulated PostScript code (EPS)
A delegated method that can draw the image
A rendered image, usually in an off-screen window

Another subclass, N3DRIBImageRep, is defined in the 3D Graphics Kit. It renders an
image from RenderMan Interface Bytestream (RIB) data. In applications that use the 3D
Kit, NXImage will automatically use N3DRIBImageRep to handle RIB data.

You can define other NXImageRep subclasses for objects that render images from other
types of source information. You make a subclass known to NXImage by invoking its
registerlmageRep: class method. The NXImageRep subclass informs NXImage of the
data types it can support through its imageUnfilteredFileTypes,
imageUnfiiteredPasteboardTypes, and canLoadFromStream: class methods. Once an
NXImageRep subclass is registered with NXImage, an instance of that subclass is created
anytime NXImage encounters the type of data handled by that subclass.

Instance Variables

NXSize size;

size The size of the image in screen pixels.

Classes: NXlmageRep 2-473

Method Types

Initializing

Checking data types

Setting the size of the image

Representation attributes

Drawing the image

Archiving

Class Methods

canlnitFromPasteboard:

- initFromPasteboard:

+ canInitFromPasteboard:
+ canLoadFromStream:
+ imageFileTypes
+ imagePasteboardTypes
+ imageUnfilteredFileTypes
+ imageUnfilteredPasteboardTypes

- setSize:
- getSize:

- setNumColors:
- numColors
- setAlpha:
- has Alpha
- setBitsPerSample:
- bitsPerSample
- setPixelsHigh:
- pixelsHigh
- setPixels Wide:
- pixels Wide
- setOpaque:
- isOpaque

-draw
- drawAt:
- drawIn:

- read:
- write:

+ (BOOL)canlnitFromPasteboard:(Pasteboard *)pasteboard

Returns YES if NXImageRep can handle the data represented by pasteboard. By default,
this method returns NO.

This method invokes the imageUnfilteredPasteboardTypes class method and checks the
list of types returned by that method against the data types in pasteboard. If it finds a match,
it returns YES. When creating a subclass of NXImageRep that accepts image data from a

2-474 Chapter 2: Application Kit

nondefault pasteboard type, you override the imageUnfilteredPasteboardTypes method
to assure that this method returns the correct response.

See also: + imageUnfilteredPasteboardTypes

canLoadFromStream:

+ (BOOL)canLoadFromStream:(NXStream *)stream

Tests whether the receiving class can initialize an instance of itself from stream. Returns
NO by default.

Override this method when·you create a subclass of NXImageRep that can initialize itself
from data in an NXStream. Your method should be able to seek in stream to determine
whether it contains valid data for creating an instance of the class. It should return YES if
there's a good chance that stream contains data of the type handled by the NXImageRep
subclass. It should return NO only if it is clear from examining stream that there is no data
that the NXImageRep subclass can handle. The determination should be able to be made
by looking at the first few characters in stream. Before returning, your method should
return the stream pointer to its initial position.

imageFileTypes

+ (const char *const *)imageFileTypes

Returns a null-terminated array of strings representing all file types supported by
NXImageRep. The list includes both those types returned by the
imageUnfilteredFileTypes class method and those that can be converted to a supported
type by a user-installed filter service. Don't override this method when subclassing
NXImageRep: it always returns a valid list for a subclass of NXImageRep that correctly
overrides the imageUnfilteredFileTypes method.

By default, the returned array is empty.

See also: + imageUnfilteredFileTypes

imagePasteboardTypes

+ (const NXAtom *)imagePasteboardTypes

Returns a null-terminated array representing all pasteboard types supported by
NXImageRep or one of its subclasses. The list includes both those types returned by the
imageUnfilteredPasteboardTypes class method and those that can be converted by a
user-installed filter service to a supported type. Don't override this method when

Classes: NXlmageRep 2-475

subclassing NXImageRep; it always return a valid list for a subclass of NXImageRep that
correctly overrides the imageUnfiiteredPasteboardTypes method.

By default, the returned array is empty.

See also: + imageUnfiitetedPasteboardTypes

imageU nfilteredFileTypes

+ (const char *const *)imageUnfiiteredFileTypes

Returns a null-terminated array of strings representing all file types (extensions) supported
by the NXImageRep. By default, the returned array is emtpy.

When creating a subclass of NXImageRep, override this method to return a list of strings
representing the file types supported. For example, NXBitmapImageRep implements the
following code for this method:

+ (const char *const *)imageUnfilteredFileTypes

static const char *const types[] = {"tiff", "tif", NULL};

return types;

If your subclass supports the types supported by its superclass, you must explicitly get the
array of types from the superclass and put them in the array returned by this method.

See also: + imageFileTypes, + imageRepForFileType: (NXImage)

imageU nfilteredPasteboardTypes

+ (const NXAtom *)imageUnfiiteredPasteboardTypes

Returns a null-terminated array representing all pasteboard types supported by the
NXImageRep. By default, the returned array is empty.

When creating a subclass ofNXImageRep, override this method to return a list representing
the pasteboard types supported. For example, NXBitmapImageRep implements the
following code for this method:

+ (const NXAtom *)imageUnfilteredPasteboardTypes

static NXAtom tiffTypes[2]={O, NULL};

if (!tiffTypes[O]) tiff Types [0] = NXTIFFPboardType;

return tiff Types;

2-476 Chapter 2: Application Kit

If your subclass supports the types supported by its superclass, you must explicitly get the
list of types from the superclass and add them to the array returned by this methoq:

See also: + imagePasteboardTypes, + imageRepForPasteboardType: (NXImage)

Instance Methods

bitsPerSample

- (int)bitsPerSample

Returns the number of bits used to specify a single pixel in each component of the data. If
the image isn't specified by pixel values, but is device-independent, the return value will be
NX_MATCHESDEVICE.

See also: - setBitsPerSample:

draw

- (BOOL)draw

Implemented by subclasses to draw the image at location (0.0, 0.0) in the current coordinate
system. Subclass methods return YES if the image is successfully drawn, and NO if it isn't.
This version of the method simply returns YES.

See also: - drawAt:, - drawIn:

drawAt:

- (BOOL)drawAt:(const NXPoint *)point

Translates the current coordinate system to the location specified by point and has the
receiver's draw method draw the image at that point.

This method returns NO without translating or drawing if the size of the image has not been
set. Otherwise, it returns the value returned by the draw method, which indicates whether
the image is successfully drawn.

The coordinate system is not restored after it has been translated.

See also: - draw, - drawIn:

Classes: NXlmageRep 2-477

drawln:

- (BOOL)drawln:(const NXRect *)rect

Draws the image so that it fits inside the rectangle referred to by recto The current
coordinate system is first translated to the point specified in the rectangle and is then scaled
so the image will fit within the rectangle. The receiver'sdraw method is then invoked to
draw the image.

This method returns NO without translating, scaling, or drawing if the size of the image has
not been set. Otherwise it returns the value returned by the draw method, which indicates
whether the image is successfully drawn.

The previous coordinate system is not restored after it has been altered.

See also: - draw, - draw At:

getSize:

- getSize:(NXSize *)theSize

Copies the size of the image to the structure referred to by theSize, and returns self. The
size is provided in units of the base coordinate system.

See also: - setSize:

basAlpba

- (BOOL)hasAlpha

Returns YES if the receiver has been informed that the image has a coverage component
(alpha), and NO if not.

See also: - setAlpha:

initFromPasteboard:

- initFromPasteboard:(Pasteboard *)pasteboard

Initializes the NXImageRep with data from the given pasteboard.

2-478 Chapter 2: Application Kit

isOpaque

- (BOOL)isOpaque

Returns YES if the receiver is opaque; NO otherwise. Use this method to test whether an
NXImageRep completely covers the area within the rectangle returned by getSize:. Use
the method setOpaque: to set the value returned by this method.

See also: - hasAlpha, - getSize:, - setOpaque:

numColors

- (int)numColors

Returns the number of color components in the image. For example, the return value will
be 4 for images specified by cyan, magenta, yellow, and black (CMYK) or any other four
components. It will be 3 for images specified by red, green, and blue (RGB), hue,
saturation, and brightness (HSB), or any other three components. And it will be 1 for
images that use only a gray scale. NX_MATCHESDEVICE is a meaningful return value
for representations that vary their drawing depending on the output device.

See also: - setNumColors:

pixelsHigh

- (int)pixelsHigh

Returns the height of the image in pixels, as specified in the image data. If the image isn't
specified by pixel values, but is device-independent, the return value will be
NX_MATCHESDEVICE.

See also: - setPixelsHigh:

pixelsWide

- (int)pixelsWide

Returns the width of the image in pixels, as specified in the image data. If the image isn't
specified by pixel values, but is device-independent, the return value will be
NX_MATCHESDEVICE.

See also: - setPixelsWide:

Classes: NXlmageRep 2·479

read:

- read:(NXTypedStream *)stream

Reads the NXImageRep from the typed stream stream.

See also: - write:

setAlpha:

- setAlpba:(BOOL)flag

Informs the NXImageRep whether the image has an alpha component. flag should be YES
if it does, and NO if it doesn't. Returns self.

See also: - basAlpba

setBitsPerSample:

- setBitsPerSample: (int)anlnt

Informs the NXImageRep that the image has anlnt bits of data for each pixel in each
component. If the image isn't specified by pixel values, but is device-independent, anlnt
should be NX_MATCHESDEVICE. Returns self.

See also: - bitsPerSample

setNumColors:

- setNumColors:(int)anlnt

Informs the NXImageRep that the image has anlnt number of color components. For color
images with cyan, magenta, yellow, and black (CMYK) components, anlnt should be 4, for
color images with red, green, and blue CRGB) components, it should be 3, and for images
that use only a gray scale, it should be 1. The alpha component is not included.
NX_MATCHESDEVICE could be a meaningful value, if the representation varies its
drawing depending on the output device. Returns self.

See also: - numColors

2-480 Chapter 2: Application Kit

setOpaque:

- setOpaque:(BOOL)jlag

Sets opacity of the NXImageRep's image.

setPixelsHigh:

- setPixelsHigh:(int)anlnt

Informs the NXImageRep that the data specifies an image anlnt pixels high. If the image
isn't specified by pixel values, but is device-independent, anlnt should be
NX_MATCHESDEVICE. Returns self.

See also: - pixelsHigh

setPixelsWide:

- setPixelsWide:(int)anlnt

Informs the NXImageRep that the data specifies an image anlnt pixels wide. If the image
isn't specified by pixel values, but is device-independent, anlnt should be
NX_MATCHESDEVICE. Returns self.

See also: - pixelsWide

setSize:

- setSize:(const NXSize *)aSize

Sets the size of the im~ge in units of the base coordinate system, and returns self. This
determines the size of the image when it's rendered; it's not necessarily the same as the
width and height of the image in pixels as specified in the image data.

See also: - getSize:

write:

- write:(NXTypedStream *)stream

Writes the NXImageRep to the typed stream stream.

See also: - read:

Classes: NXlmageRep 2-481

NXJournaler

Inherits From: Object

Declared In: appkitINXJ ournaler.h

Class Description

The NXJournaler class defines an object that lets an application record and play back events
and sounds, a process calledjournaling. By using an NXJournaler object, an application
can journal events flowing to one or more applications-including itself. Optionally, sound
can be recorded synchronously with the events. Later, the recorded events and sound can
be played back, reenacting the activities as they occurred during the recording. With
journaling, you can implement event-based macros or complete self-running
demonstrations for your application.

J ournaling is initiated by creating a new NXJ ournaler object and sending it a
setEventStatus:soundStatus:eventStream:soundfile: message. The status arguments
may have the values NX_STOPPED, NX_PLAYING, and NX_RECORDING. The event
stream argument is a stream to record to or play back from. If you're recording, any data
in the stream will be overwritten. It's not currently possible to add to the end of an
existing event stream. The sound file argument is the name of a sound file to record to or
play back from.

When recording, by default all events going to any application are captured. Sometimes,
you may not want certain applications to be recorded. For example, you might want to
prevent the application that's recording the journal from being recorded. There are two
ways to control this: with the defaults system and by sending a set.lournalable: message
to the Application object. Of the two, the defaults system is the more general.

To use the defaults system to control journaling, add this code to the initialize method of
the object that will be controlling the joumaling:

+ initialize

static NXDefaultsVector myDefaults
{"NXAllowJournaling" I "NO"} I

{NULL}} ;

NXRegisterDefaults([NXApp appName] I myDefaults);
return self;

2-482 Chapter 2: Application Kit

This will prevent the application that contains the object from being journaled unless a user
overrides the default for that application in the user's default database.

A user can also disallow journaling of any given application by adding an entry to the
defaults database for that application. This would be done by entering the following
command line in a Terminal window:

dwrite applicationName NXAllowJournaling NO

A less common way of allowing or disallowing joumaling in an application is to send a
setJournalable: message to the Application object. This allows more precise run-time
control over journaling in that application.

Event recording may be aborted by clicking the right mouse button while holding down the
Alternate key. (Note: For this to work, you must have the right mouse button enabled in
the Preferences application.) Event playback can be aborted by typing a character with any
key on the keyboard.

Instance Variables

N one declared in this class.

Method Types

Initializing and freeing an NXJ ournaler
~ init
-free

Controlling journaling - setEventStatus: soundStatus :eventStream: soundfile:
- getEventStatus:soundStatus:eventStream:soundfile:
- setRecordDevice:
- recordDevice

Identifying associated objects - speaker
-listener
- setDelegate:
- delegate

Classes: NXJournaler 2-483

Instance Methods

delegate

- delegate

Returns the NXJournaler's delegate.

See also: - setDelegate:

free

-free

Frees the NXJournaler. Send this message to an NXJournaler after you're completely done
with it.

getEventStatus:soundStatus:eventStream:soundfile:

- getEventStatus:(int *)eventStatusPtr
soundStatus:(int *)soundStatusPtr
eventStream:(NXStream **) streamPtr
soundfile:(char **)soundfilePtr

Provides status information about the NXJ ournaler. Values returned at eventStatusPtr and
soundStatusPtr can be NX_PLAYING, NX_RECORDING, or NX_STOPPED. streamPtr
is the address of a pointer to the event stream. soundfilePtr is the address of a pointer to the
name of the sound file. Any of the arguments may be NULL if you don't want that piece
of information. Returns self.

See also: - setEventStatus:soundStatus:eventStream:soundfile:

init

- init

Initializes a newly allocated NXJournaler object. The delegate of the new object is nil.
This is the designated initializer for an NXJournaler object. Returns self.

2-484 Chapter 2: Application Kit

listener

-listener

Returns the listener used by the NXJournaler to communicate with other applications.

See also: - speaker

record Device

- (int)recordDevice

Returns whether sound is recorded from the CODEC microphone or from the DSP. The
return value is either NX_CODEC or NX_DSP.

See also: - setRecordDevice:

setDelegate:

- setDelegate:anObject

Sets the delegate used by the NXJournaler. The delegate is sent the method
journalerDidEnd: when either playing or recording the journal finishes. If the journal was
aborted, the delegate will first receive the message journalerDidUserAbort:. Returns self.

See also: - delegate

setEventStatus:soundStatus:eventStream :soundfile:

- setEventStatus:(int)eventStatus
soundStatus: (int)soundStatus
eventStream:(NXStream *)stream
soundfile:(const char *)soundfile

Controls the recording and playback of events and sounds. This is the main control point
of the NXJournaler. The arguments eventStatus and soundStatus may be independently set
to NX_STOPPED, NX_PLAYING, NX_RECORDING. By setting eventStatus to
NX_RECORDING and soundStatus to NX_STOPPED, it's possible to record events
without the sound. By setting eventStatus to NX_PLAYING and soundStatus to
NX_RECORDING, it's possible to dub new sound over an existing event track.

The stream argument is the stream to record events to or playback events from. When
recording, any preexisting data in the stream will be overwritten. It's not currently possible
to record onto the end of an existing event stream.

I

Classes: NXJournaler 2-485

The soundfile argument is the name of the file to record sound to or playback sound from.

If you logically OR NX_NONABORTABLEMASK into eventStatus, journaling will be
made nonabortable.

See also: - getEventStatus:soundStatus:eventStream:soundfile:

setRecordDevice:

- setRecordDevice:(int)device

Sets whether sound is recorded from the CODEC microphone (the default device) or from
the DSP. The constants NX_CODEC and NX_DSP can be used to specify the device. The
recording from the DSP assumes that a peripheral is sending CD-quality data (stereo, 16-bit
linear, 44.1 kHz) to the DSP port. However, to save space, the data is reduced to a
22.05-kHz, mono sound.

See also: - recordDevice

speaker

- speaker

Returns the speaker used by the NXJournaler to communicate with the other applications.

See also: - listener

Methods Implemented By The Delegate

journalerDidEnd:

- journalerDidEnd:journaler

Responds to a message informing the delegate that recording or playback of the journal is
finished or has been aborted.

See also: - journalerDidUserAbort:

2-486 Chapter 2: Application Kit

journalerDidUserAbort:

- journalerDidUserAbort:journaler

Responds to a message informing the delegate that the user has aborted the recording or
playback session. A journalerDidUserAbort: message is sent when the NXJoumaler in
the controlling application receives notice from one of the controlled applications that the
user has generated an abort event during recording or playback. The delegate receives this
message just before the NXJoumaler stops the recording or playback.

See also: - journalerDidEnd:

Classes: NXJournaler 2-487

NXPrinter

Inherits From:

Declared In:

Class Description

Object

appkitINXPrinter.h

An NXPrinter describes the printing capabilities of a particular make or type of printer,
such as whether the printer can print in color, or whether it provides a particular font. In
addition, some NXPrinters represent actual printer devices that are available to the
computer for printing.

There are two ways to create an NXPrinter:

• If you want an abstract object that doesn't represent an actual printer but gives the
printing attributes of a type of printer, you use the newForType: class method, passing
a printer type (a string) as the argument. A list of printer types that are recognized by
the computer is available through the printerTypes:cllstom: class method.

• To find or create an NXPrinter that corresponds to an actual printer device, you use one
of the newForName: class methods, passing, at least, the name of a printer. A list of
printer names can be retrieved through the prdb_getO function.

Once you've gotten an NXPrinter, there's only one thing you can do with it: Retrieve
information regarding the object's type or regarding the actual printer that the object
represents (if it represents an actual printer). You can't change the information in an
NXPrinter, nor can you use an NXPrinter object to initiate or control a printing job.
In addition, NXPrinter instances are owned by the NXPrinter class; you never free
them directly.

Printer types are described in files written in the PostScript Printer Description (PPD)
format. The printer types that NeXT provides are in localized subdirectories of
/NextLibrarylPrinterTypes. When you create an NXPrinter object for a particular type,
the object reads the corresponding PPD file, manipulates the information it finds there, and
stores the data in named tables. Commonly needed items, such as whether a printer is color
or the size of the page on which it prints, are available directly through methods defined by
NXPrinter (methods such as is Color and pageSizeForPaper:). Any bit of information in
the PPD tables can be retrieved through more general methods such as stringForKey:
inTable:, as explained below.

2-488 Chapter 2: Application Kit

Note: To understand what the NXPrinter tables contain, you need to be acquainted with
the PPD file format. This is described in PostScript Printer Description File Format
Specification, version 4.0, available from Adobe Systems Incorporated. The rest of this
class description assumes a familiarity with the concepts and terminology presented in the
Adobe manual. A brief summary of the PPD format is given below; PPD terms defined in
the Adobe manual are shown in italic.

PPD Format

A PPD file statement, or entry, associates a value with a main keyword:

*mainKeyword: value

The asterisk is literal; it indicates the beginning of a new entry.

For example:

*ModelName: "MMimeo Machine"

*3dDevice: False

A main keyword can be qualified by an option keyword:

*mainKeyword optionKeyword: value

For example:

*PaperDensity Letter: "0.1"

*PaperDensity Legal: "0.2"
*PaperDensity A4: "0.3"

*PaperDensity B5: "0.4"

In addition, any number of entries may have the same main keyword with no option
keyword yet give different values:

*InkName: ProcessBlack/Process Black

*InkName: CustomColor/Custom Color
*InkName: ProcessCyan/Process Cyan
*InkName: ProcessMagenta/Process Magenta

*InkName: ProcessYellow/Process Yellow

Option keywords and values can sport translation strings. A translation string is a textual
description, appropriate for display in a user interface, of the option or value. An option or
value is separated from its translation string by a slash:

*Resolution 300dpi/300 dpi: " ... "
*InkName: ProcessBlack/Process Black

Classes: NXPrinter 2-489

, In the first example, the 300dpi option would be presented in a user interface as "300 dpi."
The second example assigns the string "Process Black" as the translation string for the
ProcessBlack value.

Entries that have an *OrderDependency or *UIConstraints main keyword are treated
specially by NXPrinter. Such entries take the following forms (the bracketed elements are
optional):

*OrderDependency: real section mainKeyword [optionKeyword]
*UIConstraint: mainKeywordl [optionKeywordl] mainKeyword2 [optionKeyword2]

There may be more than one UIConstraints entry with the same mainKeywordl or
mainKeywordlloptionKeywordl value. Below are some examples of *OrderDependency
and *UIConstraints entries:

*OrderDependency: 10 AnySetup *Resolution
*UIConstraint: *Option3 None *PageSize Legal

*UIConstraint: *Option3 None *PageRegion Legal

Explaining these entries is beyond the scope of this documentation; however, it's important
to note their forms in order to understand how they're represented in the NXPrinter tables.

NXPrinter Tables

NXPrinter defines a five key-value tables to store PPD information. The tables are
identified by string names, as given below:

String Name

PPD

PPDOptionTranslation

PPDArgumentTranslation

PPDOrderDependency

PPDUIConstraint

Contents

General information about a printer type. The table
contains the values for all entries in a PPD file except
those with *OrderDependency and *UIConstraints
main keywords. The values in this table don't include the
translation strings.

Option keyword translation strings.

Value translation strings.

*OrderDependency values.

*UIConstraints values.

There are two principle methods for retrieving data from the NXPrinter tables:

• stringForKey:inTable: returns the value for the first occurence of a given key in the
given table.

• stringListForKey:inTable: returns an array of values, one for each occurence of the
key.

2-490 Chapter 2: Application Kit

For both methods, the first argument is a string that names a key-which part of a PPD file
entry the key corresponds to depends on the table (as explained in the following sections).
The second argument names the table that you want to look in. The values that are returned
by these methods, whether singular or in an array, are always strings, even if the value
wasn't a quoted string in the PPD file.

The NXPrinter tables store data as ASCII text, thus the two methods described above are
sufficient for retrieving any value from any table. NXPrinter provides a number of other
methods, such as booleanForKey:inTable: and intForKey:inTable:, that retrieve single
values and coerce them, if possible, into particular data types. The coercion doesn't affect
the data that's stored in the table (it remains in ASCII format).

To check the integrity of a table, use the isKey:forTable: and statusForTable: methods.
The former returns a boolean that indicates whether the given key is valid for the given
table; the latter returns an error code that describes the general state of a table (in particular,
whether it actually exists).

Retrieving Values from the PPD Table

Keys for the PPD table are strings that name a main keyword or main keyword/option
keyword pairing (formatted as "mainKeywordloptionKeyword"). In both cases, you
exclude the main keyword asterisk. The following example creates an NXPrinter and
invokes stringForKey:inTable: to retrieve the value for an un-optioned main keyword:

/* Create an NXPrinter object for a printer type. */

NXPrinter *prType = [NXPrinter
newForType : "My _Mimeo_Machine"]

char *sValue [prType stringForKey:" 3dDevice" inTable:" PPD"] ;
/* sValue is "False". */

To retrieve the value for a main/option pair, you pass the keywords formatted as
"mainKeywordloptionKeyword" :

char *sValue = [prType stringForKey:"PaperDensity/A4"

inTable: "PPD"] i

/* sValue is "0.3". */

You can use stringForKey:inTable: to determine if a main keyword has options. If you
pass a main keyword (only) as the first argument to the method, and if that keyword has
options in the PPD file, the method returns NULL. If it doesn't have options, it returns the
value of the first occurence of the main keyword:

Classes: NXPrinter 2-491

char *sValue = [prType stringForKey:"PaperDensity" inTable:"PPD"];
/* sList is NULL */

char *sValue = [prType stringForKey:"InkName" inTable:"PPD"]i

/* sList is "ProcessBlack" */

To retrieve the values for all occurrences of an un-optioned main keyword, use the
stringListForKey:inTable: method:

char **sList = [prType stringListForKey:"InkName" inTable:"PPD"] i

/* sList[O] is "ProcessBlack",
sList[l] is "CustomColor",
sList[2] is "ProcessCyan", and so on. */

In addition, stringListForKey:inTable: can be used to retrieve all the options for a main
keyword (given that the main keyword has options):

char **sList = [prType stringListForKey:"PaperDensity"
inTable: "PPD"] ;

/* sList[O] is "Letter",
sList[l] is "Legal",
sList[2] is "A4" , and so on. */

Retrieving Values from the Option and Argument Translation Tables

A key to a translation table is like that to the PPD table: It's a main keyword or main/option
keyword pair (again excluding the asterisk). However, the values that are returned from the
translation tables are the translation strings for the option or argument (value) portions of
the PPD file entry. For example:

char *sValue = [prType stringForKey:"Resolution/300dpi"
inTable:"PPDOptionTranslation"] i

/* sValue is "300 dpi". */

char **sList [prType stringListForKey:"InkName"
inTable:"PPDArgumentTranslation"] ;

/* sList[O] is "Process Black",

sList[l] is "Custom Color",
sList[2] is "Process Cyan", and so on. */

As with the PPD table, requesting an array of strings for an un-optioned main keyword
returns the keyword's options (if it has any).

2-492 Chapter 2: Application Kit

Retrieving Values from the Order Dependency Table

As mentioned earlier, an order dependency entry takes this form:

*orderDependency: real section mainKeyword [optionK~yword]

These entries are stored in the PPDOrderDependency table. To retrieve a value from this
table, you always use stringListForKey:inTable:. The value that you pass as the key is,
again, a main keyword or main/option pair; however, these values correspond to the
mainKeyword and optionKeyword parts of an order dependency entry's value. As with the
other tables, the main keyword's asterisk is excluded. The method returns an array of two
strings that correspond to the real and section values for the entry. For example:

char **sList = [prType stringListForKey:"Resolution"
inTable:"PPDOrderDependency"]

/* sList[O] = "10", sList[l] = "AnySetup" */

Retrieving Values from the UIConstraints Table

Retrieving a value from the PPDUIConstraints table is similar to retrieving a value from
the PPDOrderDependency table: You always use stringListForKey:inTable: and the key
corresponds to elements in the entry's value. Given the following form (as described
earlier), the key corresponds to mainKeywordlloptionKeywordl:

*UIConstraint: mainKeywordl [optionKeywordl] mainKeyword2 [optionKeyword2]

The array that's returned by stringListForKey:inTable: contains the mainKeyword2 and
optionKeyword2 values (with the keywords stored as separate elements in the array) for
every *UIConstraints entry that has the given mainKeywordlloptionKeywordl value. For
example:

char **sList = [prType stringListForKey:"Option3/None"
inTable:"PPDUIConstraints"]

/* sList[O] = "PageSize", sList[l] = "Legal",
sList[2] = "PageRegion", sList[3] = "Legal" */

Note that the main keywords that are returned in the array don't have asterisks. Also, the
array that's returned always alternates main and option keywords. If a particular main
keyword doesn't have an option associated with it, the string for the option will be empty
(but the entry in the array for the option will exist).

Classes: NXPrinter 2-493

Instance Variables

const char *printerName;

const char *hostName;

const char *domainName;
const char *printerType;

printerName

hostName

domainName

printerType

Method Types

Finding an NXPrinter

Printer attributes

The printer's name.

The name of the printer's host computer.

The name of the printer's domain.

The name of the printer's type.

+ newForName:
+ newForName:host
+ newForName:hostdomain:includeUnavailable:
+ newForType:
+ printerTypes:custom:

-domain
-host
-name
-note
-type
- isReally APrinter

Retrieving specific information - acceptsBinary
- imageRectForPaper:
- pageSizeForPaper:
- isColor
- isFontAvailable:
- isValid
- languageLevel
- isOutputStackInReverseOrder

2-494 Chapter 2: Application Kit

Querying the NXPrinter tables - booleanForKey:inTable:
- dataForKey:inTable:length:
- floatForKey:inTable:
- intForKey:inTable:
- rectForKey:inTable:
- sizeForKey:inTable:
- stringForKey:inTable:
- stringListForKey:inTable:
- statusForTable:
- isKey:inTable:

Class Methods

newForName:

+ (NXPrinter *)newForName:(const char *)name

Returns the NXPrinter with the given name; returns the value returned by

[self newForName:name host:NULL domain:NULL includeUnavailable:NO]

See also: + newForName:host:domain:includeUnavaiiable:, + newForType:

newForName:host:

+ (NXPrinter *)newForName:(const char *)name host:(const char *)hostName

Returns the NXPrinter with the given name and host; returns the value returned by

[self newForName:name host:hostName domain:NULL

includeUnavailable:NO]

See also: + newForName:host:domain:includeUnavaiiable:, + newForType:

Classes: NXPrinter 2-495

newForName:host:domain:includeUnavailable:

+ (NXPrinter *)newForName:(const char *)name
host:(const char *)hostName
domain:(const char *)domain
includeUnavaiiable:(BOOL)includeFlag

Returns an NXPrinter that represents an actual printer with the given name, host, and
domain. If hostName or domainName is NULL, the first printer (with the given name)
found on any host or domain is used. If hostN ame is an empty string, the local host is used.
If includeFlag is NO, then the matching printer must be available for printing, otherwise
nil is returned. If the flag is YES, the availability of the printer is ignored.

See also: + newForType:

newForType:

+ (NXPrinter *)newForType:(const char *)type

Returns an NXPrinter object that contains information for the given type; the object doesn't
correspond to an actual printer. The type argument should be an element in the array
returned by printerTypes:custom:.

See also: + newForName:host:domain:includeUnavaiiable:, + printerTypes:custom:

printerTypes:custom:

+ (char **)printerTypes:(BOOL)normaIFlag custom:(BOOL)customFlag

Returns a pointer to an array of strings that give the names of the printer types that are
recognized by the computer. The flag arguments indicate whether to include normal printer
types, custom types, or both.

A printer type is represented by a PPD file (extension ".ppd"). This method searches for
normal PPD files directly, or in bundles, in the following directories:

IN extLibrary IPrinterTypes
-!Library IPrinterTypes
1H0stLibrary IPrinterTypes
!LocalLibrary IPrinterTypes

Custom PPD files are searched for in the "CustomPrinters" subdirectory (or bundles
therein) in each of the above.

See also: + newForType

2-496 Chapter 2: Application Kit

Instance Methods

acceptsBinary

- (BOOL)acceptsBinary

Returns YES if the NXPrinter accepts binary PostScript data. Otherwise returns NO.

booleanForKey:in Table:

- (BOOL)booleanForKey:(const char *)key inTable:(const char *)table

Returns a boolean value for the given key in the given table: YES is returned if the
value, which is stored as ASCII text, is "YES", "TRUE", or names a non-negative
integer. Otherwise, this returns NO. key should be formed as described in the class
description, above.

See also: - stringForKey:inTable:

dataForKey:inTable:length:

- (void *)dataForKey:(const char *)key
inTable:(const char *)table
length:(int *)bytes

Returns a pointer to untyped data for the given key in the given table. The length of the
data, in bytes, is returned by reference in bytes. key should be formed as described in the
class description, above.

See also: - stringForKey:inTable:

domain

- (const char *)domain

Returns the name of the domain in which the NXPrinter's printer entry resides. If the object
doesn't represent an actual printer, this returns a pointer to NULL.

See also: + newForName:host:domain:includeUnavailable:

Classes: NXPrinter 2-497

floatForKey: in Table:

- (float)floatForKey:(const char *)key inTable:(const char *)table

Returns a floating-point value for the given key in the given table; returns 0.0 if the value,
which is stored as ASCII text, can't be coerced to float. key should be formed as described
in the class description, above.

See also: - stringForKey:inTable:

free

Never invoke this method. NXPrinter objects are owned by the NXPrinter class-you
never free them yourself.

host

- (const char *)host

Returns the name of the host to which the printer is connected. If the object doesn't
represent an actual printer, this returns a pointer to NULL.

See also: + newForName:host:, + newForName:host:domain:inciudeUnavaiiable:

imageRectForPaper:

- (NXRect)imageRectForPaper:(const char *)paperType

Returns the printing rectangle-the area of the page that's available for printing-for the
named paper type. The selection of paper type names depends on the NXPrinter's type;
typical names include "Legal", "Letter", "A4", and "B5".

See also: - pageSizeForPaper:

init

You never invoke this method. To create anNXPrinter, use one of the newFor .•.
class methods.

2·498 Chapter 2: Application Kit

intForKey:in Table:

- (int)intForKey:(const char *)key inTable:(const char *)table

Returns an integer value for the given key in the given table; returns 0 if the value, which
is stored as ASCII text, can't be coerced to int. key should be formed as described in the
class description, above.

See also: - stringForKey:inTable:

isColor

- (BOOL)isColor

Returns YES if the NXPrinter can print in color. Otherwise returns NO.

isFontAvaiiable:

- (BOOL)isFontAvailable:(const char *)fontName

Returns YES if the named font is available to the NXPrinter; otherwise returns NO. Font
names are formed as in an invocation of Font's useFont: method; examples include
"Helvetica-Bold", "Times-Roman", and "Courier-BoldOblique".

isKey:inTable:

- (BOOL)isKey:(const char *)key inTable:(const char *)table

Returns YES if key is a key to table (which must name one of the NXPrinter tables listed
in the class description, above).

See also: - statusForTable:

isOutputStacklnReverseOrder

- (BOOL)isOutputStackInReverseOrder

Returns YES if the printer outputs pages in reverse page order, otherwise returns NO. By
being printed in reverse order, the pages in the resulting output stack will be in the correct
(first-to-Iast) order (assuming that the printer produces pages face-up).

Classes: NXPrinter 2-499

isReallyAPrinter

~ (BOOL)isReally APrinter

Returns YES if the NXPrinter corresponds to an actual printer device. Otherwise
returns NO.

isValid

~ (BOOL)isValid

Returns YES if the NXPrinter is valid-if its internal state matches physical reality.
Otherwise returns NO. This is important only for NXPrinters that correspond to
actual printers.

See also: - statusForTable:

languageLevel

- (int)languageLevel

Returns 1 or 2 as the NXPrinter recognizes the PostScript Language Level I or Level II.

name

- (const char *)name

Returns the name of the NXPrinter. If the object doesn't represent an actual printer, this
returns a pointer to NULL.

See also: + newForName:, + newForName:host:domain:incIudeUnavaiiable:

note

- (const char *)note

Returns the comment that's associated with the NXPrinter. If the object doesn't represent
an actual printer, this returns a pointer to NULL. The text for the note is set through the
PrintManager application.

2-500 Chapter 2: Application Kit

pageSizeForPaper:

- (NXSize)pageSizeForPaper:(const char *)paperType

Returns the size of the page for the named paper type. The selection of paper type names
depends on the NXPrinter's type; typical names include "Legal", "Letter", "A4", and "B5".

See also: - imageRectForPaper:

rectForKey:inTable:

- (NXRect)rectForKey:(const char *)key inTable:(const char *)table

Returns an NXRect for the given key in the given table. The individual fields are set to 0.0
if the value, which is stored as ASCII text, can't be fit into an NXRect structure. key should
be formed as described in the class description, above.

See also: - stringForKey:inTable:

sizeForKey:i n Table:

- (NXSize)sizeForKey:(const char *)key inTable:(const char *)table

Returns an NXSize for the given key in the given table. The individual fields are set to 0.0
if the value, which is stored as ASCII text, can't be fit into an NXSize structure. key should
be formed as described in the class description, above.

See also: - stringForKey:inTable:

statusForTable:

- (int)statusForTable:(const char *)table

Returns one of the following constants to indicate the status of the given table:

Constant Meaning

NX_PRINTERTABLEOK The table is valid.
NX_PRINTERTABLENOTFOUND The table doesn't exist in this NXPrinter.
NX_PRINTERTABLEERROR The table exists but is invalid.

See also: - is Valid

Classes: NXPrinter 2-501

stringForKey:inTable:

- (const char *)stringForKey:(const char *)key inTable:(const char *)table

Returns a pointer to the ASCII text that corresponds to key in the given table. If the table
contains more than one entry with this key, the value of the first entry is returned. A pointer
to NULL is returned if the table doesn't contain a key that precisely matches key. See the
class description, above, for more information on this method.

See also: - stringListForKey:inTable:

stringListForKey:inTable:

- (const char **)stringListForKey:(const char *)key inTable:(const char *)table

Returns a pointer to an array of strings; each string gives the ASCII text that corresponds
to an entry that has the given key in the given table. If key names a main keyword for which
there are (in the table) option keywords, the returned array contains the option keywords.
See the class description, above, for more information on this method.

Note that it's the invoker's responsibility to free the array that's returned by this method,
but not the contents of the array.

See also: - stringForKey:inTable:

type

- (const char *)type

Returns a string that names the NXPrinter's type.

See also: - newForType:, - newForName:

2-502 Chapter 2: Application Kit

NXSelection

Inherits From: Object

Declared In: appkitINXSelection.h

Class Description

The NXSelection class defines an object that describes a selection within a document. An
NXSelection is an immutable description; it may be held by the system or other documents,
and it cannot change over time.

Because a selection description can't be changed once it has been exported, it's a good idea
to construct general descriptions that can survive changes to a document and don't require
specific selection information to be stored in the document. This may be simple or
complex, depending upon the application. For example, a painting application might
describe a selection in an image as a simple rectangle. This description doesn't require that
any information be stored in the image's file, and the description can be expected to remain
valid through the life of the image. An object-based drawing application might describe a
selection as a list of object identifiers (though not ids), where an object identifier is unique
through the life of the document. Based on this list, a selection could be meaningfully
reconstructed, even if new objects are added to the document or selected objects are
deleted. Such a scheme doesn't require that any selection-specific information be stored in
the document's file, with the benefit that links can be made to read-only documents.

Maintaining a character-range selection in a text document is more problematic. A possible
solution is to insert a selection-begin and selection-end marker that refer to a specific
selection into the text stream. A selection description would then refer to a specific
selection marker. This solution requires that selection state information be stored and
maintained within the document. Furthermore, this information generally shouldn't be
purged from the document, because the document can't know how many references to the
selection exist. (References to the selection could be stored with documents on removable
media, like floppy disks.) This selection-state information should be maintained as long as
it refers to any meaningful data. For this reason, it's desirable to describe selection in a
manner that doesn't require that selection-state information be maintained in the document
whenever possible.

Classes: NXSelection 2-503

Three well-known selection descriptions can apply to any document: the empty selection,
the entire document, and the abstract concept of the current selection. NXSelection objects
for these selections are returned by the emptySelection, allSelection, and
currentSelection class methods.

Since an NXSelection may be used in a document that is read by machines with different
architectures, care should be taken to write machine-independent descriptions. For
example, using a binary structure as a selection description will fail on a machine where an
identically defined structure has a different size or is kept in memory with different byte
ordering. Exporting (and then parsing) ASCII descriptions is often a good solution. If
binary descriptions must be used, it is prudent to preface the description with a token
specifying the description's byte ordering.

It may also be prudent to version-stamp selection descriptions, so that old selections can be
accurately read by updated versions of an application.

Instance Variables

None declared in this class.

Method Types

Returning special Selections

Initializing a Selection

Copying a Selection

Describing a Selection

Comparing Selections

+ empty Selection
+ allSelection
+ currentS election

- initWithDescription:length:
- initWithDescriptionNoCopy:length:
- initFromPasteboard:

- copyFromZone:

- descriptionOtLength:

- isEqual:
- is WellKnownSelection

Writing the Selection to the Pasteboard
- writeToPasteboard:

2-504 Chapter 2: Application Kit

Class Methods

aliSelection

+ ailS election

Returns the shared instance of the well-known selection representing an entire document.

currentSelection

+ currentSelection

Returns the shared instance of the well-known selection representing the abstract concept
of the current selection. The current selection never describes a specific selection; it
describes a selection that may change frequently.

emptySelection

+ ernptySelection

Returns the shared instance of the well-known selection representing no data.

Instance Methods

copyFromZone:

- copyFrornZone:(NXZone *)zone

If the receiving NXSelection is a shared instance of a well-known selection, returns the
NXSelection. Otherwise, returns a copy of the NXSelection allocated from zone.

descriptionOfLength:

- (const void *)descriptionOfLength:(int *)count

Returns a pointer to the description of the selection and fills in the integer indicated by
count with the length (in bytes) of the description. The description was set with one of the
initWithDescription ••• methods when the selection was created.

Classes: NXSelection 2-505

initFrom Pasteboard:

- initFromPasteboard:(Pasteboard *)pasteboard

Initializes a newly allocated NXSelection instance from data on the specified pasteboard.
If the NXSelection can't be initialized for any reason (for example, if data of type
NXSelectionPboardType isn't found on the pasteboard) the new instance is freed and nil is
returned.

See also: - writeToPasteboard:

initWithDescription: length:

- initWithDescription:(const void *)description length:(int)count

Initializes a newly allocated NXSelection instance using a copy of the data indicated by
description, of length count, to describe the selection. If count is -1, description is assumed
to be null-terminated data. description can be in any format and of any length, but should
be architecture independent. It's a good idea to include version information in such a
description.

initWithDescriptionNoCopy:length:

- initWithDescriptionNoCopy:(const void *)description length:(int)count

Initializes a newly allocated NXSelection instance using the data indicated by description,
of length count, to describe the selection. The description will not be copied nor modified
by the NXSelection, and it ought to be persistent and unchanging. If count is -1,
description is assumed to be null-terminated data. description can be in any format and of
any length, but should be architecture independent. It's a good idea to include version
information in such a description.

isEqual:

- (BOOL)isEqual:otherSel

Compares the receiving NXSelection with another NXSelection, specified by otherSel.
Returns YES if they describe the same selection, and NO otherwise.

2-506 Chapter 2: Application Kit

isWeliKnownSelection

- (BOOL)isWellKnownSeiection

Returns YES if the NXSelection is one of the well-known selection types, and NO
otherwise. There are well-known selection types for an entire document, the current
selection, and for an empty selection.

See also: + allSeiection, + correntSeiection, + emptySeiection

write ToPasteboard:

- writeToPasteboard:(Pasteboard *)pasteboard

Writes the NXSelection to the pasteboard pasteboard. A copy of the selection can then be
retrieved by initializing a new NXSelection from the pasteboard using
initFromPasteboard: .

Classes: NXSelection 2-507

NXSpellChecker

Inherits From:

Declared In:

Class Description

Object

appkitINXSpellChecker.h

The NXSpellChecker class gives any application an interface to the NeXT spell-checking
service. To handle all its spell checking, an application needs only one instance of
NXSpellChecker. It provides a panel in which the user can record decisions about words
that are suspect. To check the spelling of a piece of text, the application:

• Includes in its user interface a menu item (or a button or command) by which the user
will request spell checking and makes the text available by way of an object that adopts
certain protocols.

• Creates an instance of the NXSpellChecker class and sends it a cbeckSpelling:of:
message.· The message's arguments identify the object to be checked and one of several
modes of checking.

Typical code to make use of NXSpellChecker might be:

[[NXSpellChecker sharedlnstance] checkSpelling:NX_CheckSpelling of:self]

The first argument of the cbeckSpelling:of: method defines the scope of checking: whether
the request is just to count words or actually to search for misspellings, and whether the
action applies to the entire text and where to start. The second argument is the object that
provides the text to be checked.

The application may choose to split a document's text into segments and check them
separately. This will be necessary when the text has segments in different languages. Spell
checking is invoked for one language at a time, so a document that contains portions in
three languages will require at least three checks.

The object that provides the text must adopt the following protocols (of which the first two
are mandatory, while the others are required only if you want to take advantage of functions
they provide):

2-508 Chapter 2: Application Kit

NXReadOnlyTextStream This is how the NXSpellChecker reads the text.

NXSelectText This is how the NXSpellChecker highlights a misspelled
word in the display.

NXChangeSpelling A message in this protocol is sent down the responder
chain when the user presses the Correct button.

NXIgnoreMisspelledWords When the object being checked responds to this protocol,
the spell server keeps a list of words that are acceptable in
the document, and enables the Ignore button in the
Spelling panel.

Dictionaries and Word Lists

The process of checking spelling makes use of three references:

• A dictionary registered with the system's spell-checking service. When the Spelling
panel first appears, by default it shows the dictionary for the user's preferred language.
The user may select a different dictionary from the list in the Spelling Panel.

• The user's "learn" list of correctly-spelled words in the current language. The
NXSpellChecker updates the list when the user presses the Learn or Forget buttons in
the Spelling panel.

• The document's list of words to be ignored while checking it. The NXSpellChecker
updates its copy of this list when the user presses the Ignore button in the Spelling panel.

A word is misspelled if none of these three accepts it. When the spelling server finds such
a word, it sends messages to the object being checked telling it to select the misspelled word
and scroll the document's display to make the selection visible.

Matching a List of Ignored Words with the Document It Belongs To

Notice that "object providing text to be checked" isn't quite the same as "document." In the
course of processing a document, an application might run several checks, based on different
parts or different versions of the text. But they'd all belong to the same document. The NX­
SpellChecker keeps a separate "ignored words" list for each document that it checks. How­
ever, when it receives a cbeckSpelling:of: message, it doesn't know to what document the
text belongs. To match "ignored words" lists to documents, each time the NXSpellChecker
starts a search, it asks the application for a spell client tag. The tag is an arbitrary integer
that lasts only while the application runs; it serves only to distinguish one document from
the others being checked, and to match each "ignored words" list to a document.

Classes: NXSpellChecker 2-509

When the application closes a document, it may choose to retrieve the "ignored words" list
and save it along with the document. To get back the right list, it sends the NXSpellChecker
an ignoredWordsForSpellDocument: message, using the document's tag to identify it.
When the application has closed a document, it should notify the NXSpellChecker that
the document's "ignored words" list can now be discarded by sending it a
closeSpellDocument: message, again using the tag to identify the document that
has closed.

Instance Variables

None declared in this class.

Method Types

Getting the NXSpellChecker + sharedInstance
+ sharedInstance:

Modifying the spelling panel - spellingPanel
- setAccessoryView:
- accessoryView
- setWordFieldValue:

Setting the language - setLanguage
-language:

Checking spelling - checkSpelling:of:
- checkSpelling:of:wordCount:

Managing ignored words - setIgnoredWordsForSpellDocument:
- ignoredWords:forSpellDocument:
- closeSpellDocument:

Class Methods

sharedlnstance

+ sharedlnstance

Returns an instance of the NXSpellChecker class. If the application has not yet asked for
an NXSpellChecker object, this method allocates and initializes a new instance. Invoking
sharedlntance has the same effect as invoking sharedlnstance: withflag set to YES.

See also: + sharedlnstance:

2-510 Chapter 2: Application Kit

sharedlnstance:

+ sharedlnstance:(BOOL)jlag

Returns an instance of the NXSpellChecker class. If an instance is already in existence, this
method simply returns it. When the application had not yet asked for an NXSpellChecker
object, ifjlag is YES, this method allocates and initializes a new instance. Whenjlag is
NO, the method does not create a new instance and returns nil.

Instance Methods

accessoryView

- accessoryView

Returns the customized View of the Spelling panel previously established by
setAccessoryView: .

See also: - setAccessoryView:

checkSpelling:of:

- (BOOL)checkSpelling:(NXSpellCheckMode)mode
of:(id <NXReadOnlyTextStream, NXSelectRange>)anObject

The first argument mode indicates the mode in which the spelling checker will operate, as
defined in the enumeration set NXSpellCheckMode. Values that can be used with
checkSpelling:of: are as follows:

NX_ CheckSpelling Checks spelling of the entire text stream, in sequence
from the current character offset to the end, then from
the start to the current character offset.

NX_CheckSpellingFromStart Checks spelling of the entire text stream, from start
to end.

NX_CheckSpellingToEnd Checks spelling from the current character offset to
the end of the text stream.

NX_CheckSpellinglnSelection Checks spelling in the selected portion of the
text stream.

The method returns YES when the check has found a misspelled word, NO when it has
searched the designated portion of the text without finding one.

See also: -checkSpelling:of:wordCount:, - currentCharacterOffset
(NXReadOnlyTextStream protocol).

Classes: NXSpellChecker 2-511

checkSpelling:of:wordCount:

- (B OOL)checkSpelling: (NXSpellCheckMode)mode
of:(id <NXReadOnlyTextStream, NXSelectRange>)anObject
wordCount:(int *)theCount

This method looks for a misspelled word and at the same time counts the number of words
scanned. mode indicates the mode of search or count, a member of the enumeration type
NXSpellCheckMode. Values that can be used with checkSpelling:of:wordCount: are as
follows:

NX_ CheckSpelling Checks spelling and counts words for the entire text
stream, in sequence from the current character offset
to the end, then from the beginning to the current
character offset.

NX_CheckSpellingFromStart Checks spelling and counts words for the entire text
stream, from start to end.

NX_ CheckSpellingToEnd Checks spelling and counts words from the current
character offset to the end of the text stream.

NX_ CheckSpellinglnSelection Checks spelling and counts words in the selected
portion of the text stream.

NX_CountWords Counts the number of words in the entire text stream;
doesn't check spelling.

NX_CountWordsToEnd Counts the number of words from the position
reported by current character offset to the end of the
text stream; doesn't check spelling.

NX_CountWordslnSelection Counts the number of words in the selected portion of
the text stream; doesn't check spelling.

theCount points to an integer where the receiver will put the number of words. If for some
reason the spelling checker is unable to count words, it puts -1 there.

The method returns YES when the check has found a misspelled word, NO when it has
searched the designated portion of the text without finding one.

See also: - checkSpelling:of:, - currentCharacterOffset (NXReadOnlyTextStream
protocol)

2-512 Chapter 2: Application Kit

closeSpeliDocument:

- closeSpellDocument:(int)tag

Notifies the NXSpellChecker object that the user has finished with the document identified
by tag. The NXSpellChecker can then discard the temporary list of ignorable words that it
compiled for this document. The argument identifies the document by a numeric tag,
previously returned by spellDocumentTag. Returns self.

See also: - spellDocumentTag (NXIgnoreMisspelledWords protocol)

ignoredWordsForSpellDocument:

- (char **)ignoredWordsForSpellDocument:(int)tag

Returns the list of ignored words that the spell checker has accumulated for the document
identified by the argument tag. The application may want to preserve the list of ignored
words so that they can be ignored in future checks of the same document. To preserve the
ignored word list, it should invoke this method after spelling has been checked but before
it sends a closeSpellDocument: message. The argument identifies the document by the tag
that spellDocumentTag returned previously.

See also: - spellDocumentTag (NXIgnoreMisspelledWords protocol)

language

- (const char *)language

Returns the character string that identifies the English name of the currently selected
language. If the application elects to temporarily override the current language (by
invoking setLanguage:), this method will be useful to record the current language so that
it can subsequently be restored. Otherwise, the application will not ordinarily needto use
this method.

See also: - setLanguage

Classes: NXSpellChecker 2-513

setAccessoryView:

- setAccessoryView:a View

Adds a View to the contents of the Spelling panel. An application can invoke this method
to add controls that extend the panel's functions. The Spelling panel is automatically
resized to accommodate a View. This method can be invoked repeatedly to change the
accessory View depending on the situation. When a View is nil, the effect is to remove any
accessory View that's already in the panel. Returns the former accessory view, or nil if
there was none.

See also: - accessoryView

setlgnoredWords:forSpeIIDocument:

- setlgnoredWords:(const char *const *)someWords forSpellDocument:(int)tag

Initializes the NXSpellChecker's list of acceptable words for the document identified by
tag. The first argument is an array of pointers to the words. The second argument identifies
the document for which the list is being maintained (described above in the section
"Matching a List of Ignored Words with the Document It Belongs To").

See also: - spellDocumentTag (NXIgnoreMisspelledWords protocol)

setLanguage:

- setLanguage:(const char *)aLanguage

Tells the NXSpellChecker object what language to use in subsequent spell check requests.
This method is needed only if the application sometimes overrides the language established
by the user's system defaults or by the user's choice of dictionary in the Spelling panel.
(That might be required while checking a document whose text is distributed among several
objects, each in a different language). Upon completion of the check in a different
language, the application should restore the default. To do so, before using setLanguage:,
use language to get the language previously in effect, and afterwards use setLanguage: to
restore it.

Setting a different language causes corresponding changes to the selected dictionary and to
the user's list of acceptable words. Suppose that "checker" is the id of an NXSpellChecker
instance, and the application sends the following messages:

[checker setLanguage:"French"]

[checker checkSpelling:how of: text ToBeChecked]

2-514 Chapter 2: Application Kit

During the check invoked by the second message, the spelling system refers to the French
dictionary rather than the dictionary selected in the Spelling panel, and adds "learned"
words to the user's French word list.

If aLanguage is NULL, sets the language to the first language for which there is a
dictionary from the list of languages returned by systemLanguages (which reports defaults
the user has set for the active application, and if none have been set, the user's global
language preference). Returns self when a language has been set, nil otherwise.

See also: - systemLanguages (Application)

spellingPanel

- spellingPanel

Returns the Panel in which the user can choose a dictionary or select actions with respect
to misspelled words. You will need to identify the Panel in order to bring it forward when
the user selects Spelling ••. in the application's Services menu. You may also need it if your
application elects to modify the panel with setAccessoryView:.

See also: - setAccessorYView:

Classes: NXSpellChecker 2-515

NXSpellServer

Inherits From: Object

Declared In: appkitINXSpellServer.h

The NXSpellServer class gives you a way to make your particular spelling checker a
service that's available to any application. A service is an application that declares its
availability in a standard way, so that any other applications that wish to use it can do so.
(See the discussion of "Services" under "Other Features," later in this chapter.)

The spelling checker bundled with NeXTSTEP makes itself available in this way. If you
build a spelling checker that makes use of the NXSpellServer class and list it as an available
service, then users of any application that makes use of NXSpellChecker or includes a
Services menu will see your spelling checker as one of the available dictionaries, along with
the one provided by NeXT.

To make use of NXSpellServer, you write a small program that creates an NXSpellServer
instance and a delegate that responds to messages asking it to find a misspelled word and
to suggest guesses for a misspelled word. Send the NXSpellServer registerLanguage:
messages to tell it the languages your delegate can handle.

The program that runs your spelling checker should not be built as an Application Kit
application, but as a simple program. Suppose you supply spelling checkers under the
vendor name "Acme." Suppose the file containing the code for your delegate is called
AcmeEnglishSpellChecker. Then the following might be your program's main:

void main ()

NXSpellServer *aServer = [[NXSpellServer alloc] init];

if ([aServer registerLanguage: "English" byVendor: "Acme"])
[aServer setDelegate: [AcmeEnglishSpellChecker new]];

[aServer run];

fprintf(stderr, "Unexpected death of Acme SpellChecker!\n");

else {

fprintf(stderr, "Unable to check in Acme SpellChecker.\n");

2-516 Chapter 2: Application Kit

Your delegate is an instance of a custom subclass. (It's simplest to make it a subclass of
Object, but that's not a requirement.) Given a text stream, your delegate must be able to
find a misspelled word by implementing the method speIlServer:findMisspelledWord:
length:inLanguage:inTextStream:startingAt:wordCount:countOnly:. Usually, this
method also reports the number of words it has scanned, but that isn't mandatory.

Optionally, the delegate may also suggest corrections for misspelled words. It does so by
implementing the method speIlServer:suggestGuessesForWord:inLanguage:

Service Availability Notice

When there's more than one spelling checker available, the user selects the one desired.
The application that requests a spelling check uses an NXSpellChecker object, and it
provides a Spelling Panel; in the panel there's a pop-up list of available spelling checkers.
Your spelling checker appears in that list if it has a service descriptor.

A service descriptor is an entry in a text file called services. Usually it's located within the
bundle that also contains your spelling checker's executable file. The bundle (or directory)
that contains the services file must have a name ending in ".service" or ".app". The system
looks for service bundles in the directories /Apps, /LocaIApps, and /NextApps.

A service availability notice has a standard format, illustrated in the following example for
the Acme spelling checker:

Spell Checker: Acme
Language: French
Language: English
Executable: franglais.daemon

The first line identifies the type of service; for a spelling checker, it must say "Spell
Checker:" followed by your vendor name. The next line contains the English name of a
language your spelling checker is prepared to check. The language should be one of those
registered with NeXT Developer Support. If your program can check more than one
language, use an additional line for each additional language. The last line of a descriptor
gives the name of the service's executable file. (It requires a complete path if it's in a
different directory.)

When there's a service descriptor for your Acme spelling checker and also a service
descriptor for the checker provided with NeXTSTEP, a user looking at the Spelling Panel's
pop-up list would see:

English (Acme)
English (NeXT)
French (Acme)

Classes: NXSpellServer 2-517

Illustrative Sequence of Messages to an NXSpeliServer

The act of checking spelling usually involves the interplay of objects in two classes: the
user application's NXSpellChecker (which responds to interactions with the user) and your
spelling checker's NXSpellServer (which provides the application interface for your
spelling checker). You can see the interaction between the two in the following list of steps
involved in finding a misspelled word.

• The user of an application selects a menu item to request a spelling check. The
application sends a message to its NXSpellChecker object. The NXSpellChecker in tum
sends a corresponding message to the appropriate NXSpellServer.

• The NXSpellServer receives the message asking it to check the spelling of a text stream.
It forwards the message to its delegate.

• The delegate searches for a misspelled word. If it finds one, it returns YES and identifies
the word's location in the text stream.

• The NXSpellServer receives a message asking it to suggest guesses for the correct
spelling of a misspelled word, and forwards the message to its delegate.

• As the delegate finds each possible correction, it sends an addGuess: message to the
NXSpellServer, causing it to append each new word to a list of guesses. When the
delegate method returns, the NXSpellServer returns the completed list to the
NXSpellChecker that initiated the request.

• The NXSpellServer doesn't know what the user does with the errors its delegate has
found or with the guesses its delegate has proposed. (Perhaps the user corrects the
document, perhaps by selecting a correction from the NXSpellChecker's display of
guesses; but that's outside the NXSpellServer's purview.) However, if the user presses
the Learn or Forget buttons (thereby causing the NXSpellChecker to revise the user's
word list), the NXSpellServer receives a notification of the word thus learned or
forgotten. It's up to you whether your spell checker acts on this information. If the user
presses the Ignore button, the NXSpellServer is not notified (but the next time that word
occurs in the text, the method islnUserDictionary:caseSensitive: will report YES
rather than NO).

• Once the NXSpellServer delegate has reported a misspelled word, it has completed its
search. Of course, it's likely that the user's application will then send a new message,
this time asking the NXSpellServer to check a text stream that is in fact the part of the
text it didn't get to earlier. /

2·518 Chapter 2: Application Kit

Method Types

Setting the delegate - setDelegate:
- delegate

- registerLanguage: by Vendor:

-run

Registering your service

Starting your service

Checking user dictionaries

Receiving alternatives

- isInUserDictionary:caseSensitive:

- addGuess:

Instance Methods

addGuess:

- addGuess:(const char *)guess

Appends a word to the list of possible corrections for a misspelled word. The delegate's
implementation of spellServer:suggestGuessesForWord:inLanguage: should invoke
this method in order to append each new guess that it finds to the list that the NXSpellServer
is compiling.

delegate

- delegate

Returns the NXSpellServer's delegate.

See also: - setDeiegate:

isln UserDictionary:caseSensitive:

- (BOOL)islnUserDictionary:(const char *)word caseSensitive:(BOOL)jlag

Reports whether a word is in the user's list of learned words, or the document's list of words
to ignore. The first argument is a word to be checked. The second is YES when the
comparison is to be case-sensitive.

Returns YES if the word is acceptable to the user.

Classes: NXSpellServer 2-519

registerLanguage:byVendor:

- (BOOL)registerLanguage:(const char *)language byVendor:(const char *)vendor

Notifies the NXSpellServer of a language your spelling checker can check. The argument
language is the English name of a language on NeXT's list of languages. The argument
vendor identifies the vendor (to distinguish your spelling checker from those that others
may offer for the same language). If your spelling checker supports more than one
language, it should invoke this method once for each language. Registering a
language/vendor combination causes it to appear in the Spelling Panel's pop-up labeled
"Dictionary". Returns YES when the language is registered, NO if for some reason it
can't be registered.

run

-run

Starts a loop in which the NXSpellServer awaits requests for its services. This loop
normally runs forever.

setDelegate:

- setDelegate:anObject

Appoints the object identified in the argument as the delegate of your NXSpellServer.
Since the delegate is where the real work is done, this is an essential step before your
program sends the NXSpellServer its run message. Returns the delegate.

See also: - delegate

Methods Implemented by the Delegate

The real work of checking is done not by the NXSpellServer but by its delegate. The
method sender:findMisspelledWord: ••• does the actual checking. The method sender:
suggestGuessesForWord: ••. is optional; if implemented, it supplies a list of possible
corrections for a misspelled word.

2·520 Chapter 2: Application Kit

speIIServer:didForgetWord:inLanguage:

- (void)spellServer:(NXSpellServer *)sender
didForgetWord:(const char *)word
inLanguage:(const char *)language

Notification to the NXSpellServer's delegate that the user has pressed Forget in an
NXSpellChecker's Spelling Panel (and presumably the NXSpellChecker has removed the
word from the user's list of acceptable words). If the delegate maintains a similar auxiliary
word list, it may wish to edit its list accordingly.

See also: - spellServer:didLearn Word:inLanguage:

speIIServer:didLearnWord:inLanguage:

- (void)spellServer:(NXSpellServer *)sender
didLearnWord:(const char *)word
inLanguage:(const char *)language

Notification to the NXSpellServer's delegate that the user has pressed Learn in an
NXSpellChecker's Spelling Panel (and presumably the NXSpellChecker has removed the
word from the user's list of acceptable words). If the delegate maintains a similar auxiliary
word list, it may wish to edit it accordingly.

See also: - spellServer:didForgetWord:inLanguage:

speIIServer:findMisspelledWord:length:inLanguage:inTextStream:
startingAt:wordCount:countOnly:

- (BOOL)spellServer:(NXSpellServer *)sender
findMisspelledWord:(int *)start
length:(int *)length
inLanguage:(const char *)language
inTextStream:(id <NXReadOnlyTextStream>)textStream
startingAt: (int)startPosition
wordCount:(int *)number
countOnly:(BOOL)jlag

Searches the text stream for a misspelled word. textStream identifies the text stream to be
checked. startPosition is the offset of the current character. language identifies the
language of the text stream.

Classes: NXSpellServer 2-521

start, length, and number are pointers to values that the method will set. The method
identifies a misspelled word by putting its offset in the text stream into start and its length
into length. These values (like startPosition) are the number of characters, which may be
less than the offset in bytes if the text stream contains multibyte characters .. The method
puts the number of words it has checked into number. Thus, number will contain the
number of words that precede the misspelled word, or the number of words in the entire text
end if no word is misspelled. If for some reason the method is unable to count words, it
should set number to -1.

When flag is YES, the method simply counts the words from startingPoint to the end of the
text stream, without checking their spelling.

When the method finds a misspelled word, it should then invoke the NXSpellServer's
method isInUserDictionary:caseSensitive: to discover whether the word is acceptable to
the user or to the document. It should end its search and return YES only if it has found a
word that is not acceptable to either of them.

Returns YES if a misspelled word has been found, and sets start and length to identify the
misspelling. Returns NO if the search reaches the end of the text stream without
encountering a misspelled word, or whenever flag is YES.

speIIServer:suggestGuessesForWord:inLanguage:

- (void)spellServer:(NXSpellServer *)sender
suggestGuessesForWord:(const char *)word
inLanguage:(const char *)language

Searches for words that (by whatever criterion it chooses to adopt) seem possible
corrections for the misspelled example it receives as word. For each candidate that it finds,
it sends an addGuess: message to the NXSpellServer object, which takes care of
accumulating the suggested words.

2-522 Chapter 2: Application Kit

NXSpl itVievv

Inherits From: View: Responder: Object

Declared In: appkitINXSplitView.h

Class Description

An NXSplitView object lets several Views share a region within a window. The
NXSplitView resizes its subviews so that each subview is the same width as the
NXSplitView, and the total of the subviews' heights is equal to the height of the
NXSplitView. The NXSplitView positions its subviews so that the first subview is at the
top of the NXSplitView, and each successive subview is positioned below. The user can
set the height of two subviews by moving a horizontal bar called the divider, which makes
one subview smaller and the other larger.

To add a View to an NXSplitView, you use the addSubview: View method. When the
NXSplitView is displayed, it checks to see if its subviews are properly tiled. If not, it
invokes the splitView:resizeSubviews: delegate method, allowing the delegate to specify
the heights of specific subviews. If the delegate doesn't implement a
splitView:resizeSubviews: method, the NXSplitView sends adjustSubviews to itself to
yield the default tiling behavior.

When a mouse-down occurs in an NXSplitView's divider, the NXSplitView determines the
limits of the divider's travel and tracks the mouse to allow the user to drag the divider
within these limits. With the following mouse-up, the NXSplitView resizes the two
affected subviews, informs the delegate that the subviews were resized, and displays the
affected Views and divider. The NXSplitView's delegate can constrain the travel of
specific dividers by implementing the splitView:getMinY:maxY:ofSubviewAt: method.

Instance Variables

id delegate;

delegate The object that receives notification messages from the
NXSplitView.

Classes: NXSplitView 2-523

Method Types

Initializing an NXSplitView

Handling Events

Managing component Views

Assigning a delegate

Instance Methods

acceptsFirstMouse

- initFrame:

- mouseDown:
- acceptsFirstMouse

- adjustSubviews
- resizeSubviews:
- dividerHeight
- drawSelf::
- drawDivider:
- setAutoresizeSubviews:

- delegate
- setDelegate:

- (BOOL)acceptsFirstMouse

Returns YES, thus allowing the NXSplitView to respond to the mouse event that made its
Window the key window.

See also: - acceptsFirstMouse (View)

adjustSubviews

- adjustSubviews

Adjusts the heights of the NXSplitView's subviews so the total height fills the
NXSplitView. The subviews are resized proportionally; the size of a subview relative to
the othersubviews doesn't change. This method is invoked if the NXSplitView's delegate
doesn't respond to a splitView:resizeSubviews: message. Returns self.

See also: - setDelegate:, - splitView:resizeSubviews: (delegate method),
- setFrame: (View)

delegate

- delegate

Returns the NXSplitView's delegate.

See also: - setDelegate:

2-524 Chapter 2: Application Kit

dividerHeight
- (NXCoord)dividerHeight

Returns the height of the divider. You can override this method to change the divider's
height, if necessary.

See also: - drawDivider:

drawDivider:
- drawDivider:(const NXRect *)aRect

Draws a divider between two of the NXSplitView's subviews. aRect describes the entire
divider rectangle in the NXSplitView's coordinates, which are flipped. The default
implementation composites a default image to the center of aRect; if you override this
method and use a different icon to identify the divider, you may want to change the height
of the divider. Returns self.

See also: - divider Height - composite:toPoint: (NXImage)

drawSelf::
- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the NXSplitView. You never invoke this method directly; it's invoked by the display
mechanism. Returns self.

See also: - drawDivider:, - resizeSubviews:, - display: (View)

initFrame:
- initFrame:(const NXRect *)frameRect

Initializes the NXSplitView, which must be a newly allocated NXSplitView instance,
setting its frame rectangle to the argument. The NXSplitView's coordinate system is
flipped, and it's set to autoresize its subviews. This method is the designated initializer for
the NXSplitView class. Returns self.

See also: - setAutoresizeSubviews: (View)

Classes: NXSplitView 2·525

mouseDown:

- mouseDown:(NXEvent *)theEvent

You never invoke this method; it's invoked when the user clicks in the NXSplitView.
Returns self.

See also: - splitView:getMinY:maxY:ofSubviewAt: (delegate),
- splitViewDidResizeSubviews: (delegate), - setFrame: (View)

resizeSubviews:

- resizeSubviews:(const NXSize *)oldSize

Ensures that the NXSplitView's sub views are properly sized to fill the NXSplitView. If the
delegate implements the splitView:resizeSubviews: method, that method is invoked to
resize the subviews; otherwise, the adjustSubviews method is invoked to resize the
subviews. In either case, this method then informs the delegate that the subviews were
resized. oldSize is the previous bounds rectangle size. Returns self.

See also: - splitView:resizeSubviews: (delegate), - adjustSubviews,
- splitViewDidResizeSubviews: (delegate), - resizeSubviews: (View)

setAutoresizeSubviews:

- setAutoresizeSubviews:(BOOL)jlag

Overrides View's setAutoresizeSubviews: method to ensure that automatic resizing of
subviews will not be disabled. You should never invoke this method. Returns self.

setDelegate:

- setDelegate:anObject

Makes anObject the NXSplitView's delegate. The notification messages that the delegate
can expect to receive are listed at the end of the NXSplitView class specifications. The
delegate doesn't need to implement all the delegate methods. Returns self.

See also: - delegate

2·526 Chapter 2: Application Kit

Methods Implemented by the Delegate

splitView:getMinY:maxY:ofSubviewAt:

- splitView:sender
getMin Y:(NXCoord *)minY
maxY:(NXCoord *)maxY
ofSubview At: (int)offset

Allows the delegate to constrain the y coordinate limits of a divider when the user drags the
mouse. This method is invoked before the NXSplitView begins tracking the mouse to
position a divider. When this method is invoked, the limits have already been set and are
stored in minY (the topmost limit) and maxY (the bottommost limit). You may further
constrain the limits by setting the variables indicated by minY and maxY, but you cannot
extend the divider limits. minYand maxY are specified in the NXSplitView's flipped
coordinate system. The divider to be repositioned is indicated by offset, an index that
counts the dividers from top to bottom starting with divider O.

See also: - mouseDown:

splitView:resizeSubviews:

- splitView:sender resizeSubviews:(const NXSize *)oldSize

Allows the delegate to specify custom sizing behavior for the subviews of the
NXSplitView. If the delegate implements this method, splitView:resizeSubviews: is
invoked after the NXSplitView is resized; otherwise, adjustSubviews is invoked to retile
the subviews. The old size of the NXSplitView is indicated by oldSize; the subviews
should be resized such that the sum of the heights of the subviews plus the sum of the
heights of the dividers equals the height of the NXSplitView's new frame. You can get the
height of a divider through the dividerHeight method.

See also: - adjustSubviews, - dividerHeight, - setFrame: (View)

splitViewDidResizeSubviews:

- splitViewDidResizeSubviews:sender

Informs the delegate that the sizes of some or all of the NXSplit View's subviews were
changed. This method is invoked when the NXSplitView resizes all its subviews because
its frame rectangle changed, and also after the NXSplitView resizes two subviews in
response to the repositioning of a divider.

See also: - resizeSubviews:, - mouseDown:

Closses: NXSplitView 2-527

Object Additions

Inherits From: none (Object is the root class.)

Declared In: appkitl Application.h

Class Description

The Application Kit adds one method, perform:with:afterDelay:canceIPrevious:, to the
root Object class. This method becomes part of the class for all applications that use the
Kit, but not for applications that don't.

Only this one method is described here. See Chapter 1, "Root Class," for a general
description of the Object class and the methods it defines.

Instance Methods

perform :with :afterDelay:canceIPrevious:

- perform: (SEL)aSelector
with:anObject
afterDelay:(int)ms
canceIPrevious:(BOOL).flag

Registers a timed entry to send an aSelector message to the receiver after a delay of at least
ms milliseconds, provided ms is 1 or greater. This method returns before the aSelector
message is sent. However, if ms is 0, a timed entry is not registered and the message is sent
immediately, before this method returns. In either case, it returns self.

The timed entry that this method registers can be called only after the application finishes
responding to the current event and is ready to get the next event. Therefore, program
activity could'delay the message well beyond ms milliseconds. The timed entry is
registered at a priority of NX_RUNMODALTHRESHOLD, which means that it can be
called when getting an event in the main event loop or in a modal event loop for an attention
panel, but not during a modal loop for a button, slider, or other control device.

2-528 Chapter 2: Application Kit

The aSelector method should not have a significant return value and should take a single
argument of type id; anObject will be the argument passed in the message.

Ifflag is YES and another perform:with:afterDelay:canceIPrevious: message is sent to
the same receiver to have it perform the same aSelector method, the first request to perform
the aSelector method is canceled. Thus successive
perform:with:afterDelay:canceIPrevious: messages can repeatedly postpone the
aSelector message.

Ifflag is NO, each perform:with:afterDelay:canceIPrevious: message will cause another
delayed aSelector message to be sent.

This method permits you to register an action in response to a user event (such as a click),
but delay it in case subsequent events alter the environment in which the action would be
performed (for example, if the click turns out to be double-click). It can also be used to
postpone a message that updates a display until after a number of changes have
accumulated, or to delay a free message to an object until after the application has finished
responding to the current event. (Application's delayedFree: method offers another way
to delay free messages.)

See also: - perform:with: (Object), - delayedFree: (Application class)

Cl4sses: Object Additions 2-529

OpenPanel

Inherits From: SavePanel : Panel: Window: Responder: Object

Declared In: appkitiOpenPanel.h

Class Description

The OpenPanel provides a convenient way for an application to query the user for the name
of a file to open. It can only be run modally. (The user should use the directory browser in
the Workspace for non-modal opens.) It allows you to specify the types of candidate files
whose names will appear in the OpenPanel, and then to filter-out unwanted file types.

Every application has one and only one OpenPanel, and the new method returns a pointer
to it. Do not attempt to create a new OpenPanel using the methods alloc or
allocFromZone; these methods are inherited from SavePanel, which overrides them to
return errors if used.

See the class description for SavePanel for more information.

Instance Variables

char **filterTypes;

filterTypes File types allowed to open

Method Types

Creating and Freeing an OpenPanel

Setting the OpenPanel class

Filtering files

2·530 Chapter 2: Application Kit

+ new
+ newContent:style: backing: buttonMask:defer:
- free

+ setOpenPanelFactory:

- allowMultipleFiles:

Querying the chosen files

Choosing directories

Running the OpenPanel

- filenames

- chooseDirectories:

- runModaIForDirectory:file:
- runModaIForDirectory:file:types:
- runModalForTypes:

Class Methods

new

+ new

Creates, if necessary, and returns the shared instance of OpenPanel. Each application has
just one instance of OpenPanel. This method is implemented to override the inherited new
method to assure that only one instance of OpenPanel is created in an application.

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bufferingType
buttonMask:(int)mask
defer: (BOOL)jlag

Don't use this method, invoke new instead. This method is implemented to override the
newContent:style: backing: buttonMask:defer: method inherited from SavePanel.
Returns self.

See also: + new

setOpenPanelFactory:

+ setOpenPanelFactory:class

Sets the class from which OpenPanel will be instantiated. class should be a subclass of
OpenPanel. An application must invoke this method before it creates the shared instance
of OpenPanel. When the new method is invoked, the object it returns will belong to class.

See also: + newContent:style: backing: buttonMask:defer:

Classes: OpenPanel 2·531

Instance Methods

allowMultipleFiles:

- allowMultipleFiles:(BOOL)flag

If flag is YES, then the user can select more than one file in the browser. If mUltiple files
are allowed, then the filename method-inherited from SavePanel-returns a non-NULL
value only if one and only one file is selected. By contrast, OpenPanel's filenames method
always returns the selected files, even if only one file is selected. A further distinction
between the two methods is that the inherited filename method always returns a
fully-specified path, while the filenames method doesn't; the names it returns are always
relative to the path returned by directory. Returns self.

See also: - directory, - filename (SavePanel), - filenames

chooseDirectories:

- chooseDirectories:(BOOL)flag

Sets the OpenPanel to get directory names from the user. Invoke this method before
running the panel. Ifflag is YES, the OpenPanel's filterTypes are ignored and only
directories will appear in the OpenPanel file browser. Ifflag is NO (the default), the
OpenPanel allows the user to select files or directories, and filterTypes are used.

See also: - runModaIForDirectory:file:types:

filenames

- (const char *const *)filenames

Returns a NULL terminated list of files (relative to the path returned by directory). This
list will be valid even if allowMultipleFiles is NO, in which case this method returns a
single entry. This is the preferred method to get the name or names of any files that the
user has chosen.

See also: - directory, - filename (SavePanel)

2-532 Chapter 2: Application Kit

free

-free

Frees the storage used by the shared OpenPanel object and returns nil. The next time new
is sent to the OpenPanel, it will be recreated. You probably never need to invoke this
method since there is one shared instance of the OpenPanel.

See also: + new

runModaIForDirectory:file:

- (int)runModaIForDirectory:(const char *)path file:(const char *)filename

Initializes the panel to the file specified by path and filename, then displays it and begins
its modal event loop. Invokes the superclass's corresponding method, which invokes
Application's runModalFor: method with self as the argument. Returns the constant
returned by the runModalFor: method, depending on the method used to stop the modal
event loop.

See also: - runModalFor: (Application), - runModaIForDirectory:file: (SavePanel)

runModaIForDirectory:file:types:

- (int)runModaIForDirectory:(const char *)path
file: (const char *)filename
types:(const char *const *)fileTypes

Loads the directory specified in path and optionally sets filename as the default file to open.
Iffilename is NULL, no default file is set. fileTypes is a NULL-terminated list of extensions
(not including the period) to be used to filter candidate files. If the first item in the list is a
NULL, then all ASCII files will be included.

Invokes the runModaIForDirectory:file: method and returns the value returned by
that method.

See also: - runModaIForDirectory:file:

runModalForTypes:

- (int)runModaIForTypes:(const char *const *).fileTypes

Invokes the runModaIForDirectory:file:types: method, using the last directory from
which a file was chosen as the path argument. Returns the value returned by that method.

See also: - runModaIForDirectory:file:types:

Closses: OpenPanel 2-533

PageLayout

Inherits From: Panel: Window: Responder: Object

Declared In: appkit/PageLayout.h

Class Description

PageLayout is a type of Panel that queries the user for information such as paper type and
orientation. This information is passed to the Application object's PrintInfo object, and is
later used when printing. The PageLayout panel is created, displayed, and run (in a modal
loop) when a runPageLayout: message is sent to the Application object. By default, this
message is sent up the responder chain when the user clicks the Page Layout menu item.

Each application can have but one PageLayout object. If you're creating a subclass of
PrintPanel, you should send your subclass' class object a new message (without invoking
alloc or allocFromZone:) before any runPageLayout: messages are sent to ensure that an
instance of your subclass is the unique PrintPanel object for your application.

You can add your own controls to the Page Layout panel through the setAccessoryView:
method. The panel is automatically resized to accommodate the View that you've added.
Note that you can't retrieve the PageLayout's settings through messages to the object. If
the controls that you add depend on the values of the existing controls (or vice versa), you
must subclass PageLayout and query or set these controls by sending messages to the
instance variables that represent them.

2-534 Chapter 2: Application Kit

Instance Variables

id applcon;
id height;
id width;
idok;
id cancel;
id orientation;
id scale;
id paperSizeList;
id layoutList;
id unitsList;
int exitTag;
id paperView;
id accessoryView;

appIcon

height

width

ok

cancel

orientation

scale

paperSizeList

layoutList

unitsList

exitTag

paperView

accessory View

The Button object with the Application's icon.

The Form object for paper height.

The Form object for paper width.

The OK Button object.

The Cancel Button object.

The portrait/landscape Matrix object.

The TextField for the scaling factor.

The Button object for the PopUpList of paper choices.

The Button object for the PopUpList of layout choices.

The Button object for the PopUpList of unit choices.

The tag of the Button object the user clicked to exit the
Panel.

The View used to display the size and orientation of the
selected paper type.

The optional View added by the application.

Classes: PageLayout 2-535

Method Types

Creating and freeing a PageLayout instance
+ new
+ newContentstyle: backing: buttonMask:defer:
-free

Running the PageLayout panel - runModal

Customizing the panel - setAccessoryView:
- accessory View

Updating the panel's display - pickedLayout:
- picked Orientation:
- pickedPaperSize:
- pickedUnits:
- textDidEnd:endChar:
- textWillChange:
- convertOldFactor:newFactor:
- pickedButton:

Communicating with the PrintInfo object
- readPrintInfo
- writePrintInfo

Class Methods

alloe

Generates an error message. This method cannot be used to create PageLayout instances;
use new instead.

alioeFromZone:

Generates an error message. This method cannot be used to create PageLayout instances;
use new instead.

2·536 Chapter 2: Application Kit

new

+ new

Returns the application's sole PageLayout object, creating it if necessary. This method is
invoked by Application's runPageLayout: method; by extension, it's invoked when the
user clicks the Page Layout menu item.

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)buJferingType
buttonMask:(int)mask
defer: (B OOL)jlag

Initializes the PageLayout object. You never invoke this method directly; use new instead.

Instance Methods

accessoryView

- accessoryView

Returns the custom accessory View set by setAccessoryView:.

See also: - setAccessoryView:

convertOldFactor:newFactor:

- convertOldFactor:(float *)old newFactor:(float *)new

The standard unit used to measure a paper's dimensions is a point (for example, the
PrintInfo object defines a paper's size in units of points). This method returns, by reference,
a value that expresses the ratio between a point and the currently chosen unit of
measurement. In general, both old and new are set to this value. The only time the values
returned in the arguments differ is when the unit of measurement is being changed.
Specifically, if you invoke this method from within pickedUnits:, old gives the old ratio
and new gives the new one. Returns self.

See also: - pickedUnits:

Classes: PageLayout 2-537

free

-free

Frees the PageLayout object and its contents, including the accessory View.

pickedButton:

- pickedButton:sender

The action of the OK and Cancel buttons, this method ends the Page Layout panel's modal·
run. If the OK button inspired this method, the height, width, and scale entries must be

. acceptable (they must hold positive numbers), otherwise the unacceptable entry is selected
and the panel isn't stopped. If the panel is being cancelled, then it's stopped regardless of
the entries' acceptability. If the panel is successfully stopped, the exitTag instance variable
is set to the sender's tag (NX_OKTAG or NX_CANCELTAG). Returns self.

picked Layout:

- pickedLayout:sender

Performed when the user selects an item from the Layout list. You can get the new layout
with the message

[[sender selectedCell] title]

Returns self.

pickedOrientation:

- pickedOrientation:sender

Performed when the user selects a page orientation from the PortraitiLandscape matrix.
This method updates the Width and Height fields, and redraws the paper view. You can get
the new orientation by sending the message

int orientation = [sender selectedCol]

and comparing the returned value to NX_LANDSCAPE and NX_PORTRAIT. Returns
self.

2-538 Chapter 2: Application Kit

pickedPaperSize:

- pickedPaperSize:sender

Performed when the user selects a paper size from the Paper Size list. This method updates
the Width and Height fields, redraws the paper view, and may switch the PortraitlLandscape
orientation. The following demonstrates how to retrieve the name of a paper size and an
NXSize describing the paper's dimensions from the paperSizeList instance variable:

const char *paperName = [[paperSizeList selectedCell] title];
const NXSize *paperSize = NXFindPaperSize(paperName);

Returns self.

pickedUnits:

- pickedUnits:sender

Performed when the user selects a new unit of measurement from the Units list. The height
and width fields are updated. Controls in the accessory view that express dimensions on
the page must be converted to the new unit of measurement. The ratios returned by
convertOldFactor:newFactor: method should be used to calculate the new values, as
shown below. In the example, a hypothetical PageLayout subclass uses a TextField
(myField) to display a value measured in the chosen units:

- pickedUnits:sender

float old, new;

/* At this point the units have been selected */
/* but not set. Get the conversion factors. */

[self convertOldFactor:&old newFactor:&new];

/* Set myField based on the conversion factors. */
[myField setFloatValue: ([myField floatValue] * new / old)] i

/* Set the selected units. */

return [super pickedUnits:sender];

Returns self.

See also: - convertOldFactor:newFactor:

Classes: PageLayout 2·539

readPrintlnfo

- readPrintInfo

Reads the Application's global PrintInfo object, and sets the values of the Page Layout
panel to those in the PrintInfo. This method is invoked from the runModal method; you
shouldn't need to invoke it yourself. Returns self.

See also: - writePrintInfo, - runModal

runModal

- (int)runModal

Reads the pertinent data from the PrintInfo object into the PageLayout object and then runs
the Page Layout panel in a modal loop. When the user clicks the Cancel or OK button the
loop is broken (from within the pickedButton: method), the panel is hidden, and, if the
button was OK, the new PageLayout values are written to the PrintInfo object. The method
returns the tag of the button that the user clicked to dismiss the panel (either NX_OKTAG
or NX_CANCELTAG).

This method is invoked by Application's runPageLayout method; an application is best
served by running the Page Layout panel from that method rather than invoking this one
directly.

See also: - runPageLayout (Application), - pickedButton:,
- stopModal (Application), - runModalFor: (Application)

setAccessoryView:

- setAccessoryView:a View

Adds a View to the PageLayout's view hierarchy. Applications can invoke this method to
add a View that contains their own controls. The panel is automatically resized to
accommodate a View. This method can be invoked repeatedly to change the accessory view
depending on the situation. If a View is nil, the panel's current accessory view, if any, is
removed. Returns the old accessory view.

See also: - accessoryView

2·540 Chapter 2: Application Kit

textDidEnd:endChar:

- textDidEnd:textObject endChar:(unsigned short)theChar

Performed when the user finishes typing in the Height or Width forms. The Paper Size list
and Orientation matrix may change. You can override this method to update other controls
you add to the panel. Returns self.

textWiliChange:

- (BOOL)textWiIlChange:textObject

You never invoke this method directly; it's invoked when the user types in a page size. This
method highlights the "Other" choice in the list of paper types. You can override this
method to update other controls you add to the panel.

See also: - setAccessoryView:, - textWillChange: (Text delegate)

writePrintlnfo

- writePrintlnfo

Writes the settings of the Page Layout panel to the Application object's global PrintInfo
object. This method is invoked when the user quits the Page Layout panel by clicking the
OK button. Returns self.

See also: - readPrintlnfo, - runModal

Classes: PageLayout 2-541

Panel

Inherits From: Window : Responder: Object

Declared In: appkitlPanel.h

Class Description

A Panel is a Window that serves an auxiliary function within an application; it contains
Views that give information to users and let users give instructions to the application.
Usually, the Views are Control objects of some sort-Buttons, Forms, NXBrowsers,
TextFields, Sliders, and so on. Menu is a sublcass of ~anel.

Panels behave differently from other Windows in only a small number of ways, but the
ways are important to the user interface:

• Panels pass Command key-down events to the objects in their view hierarchies. This
permits them to have keyboard alternatives.

• Panels aren't destroyed when closed; they're simply moved off-screen (taken out of
the screen list).

• On-screen Panels are removed from the screen list when the user begins to work in
another application, and are restored to the screen when the user returns to the
Panel's application.

• Panels have a light gray, rather than white, background in their content area.

To facilitate their intended roles in the user interface, some panels can be assigned
special behaviors:

• A panel can be precluded from becoming the key window until the user makes a
selection (makes a View the first responder) indicating an intention to begin typing.
This prevents key window status from shifting to the Panel unnecessarily.

• Palettes and similar panels can be made to float above standard windows and other
panels. This prevents them from being covered and keeps them readily available to
the user.

• A Panel can be made to work-to receive mouse and keyboard events-even when
there's an attention panel on-screen. This permits actions within the Panel to affect the
attention panel.

2·542 Chapter 2: Application Kit

Instance Variables

None declared in this class.

Method Types

Initializing a new Panel - init
- initContent:style:backing:buttonMask:defer:

Handling events - commandKey:
-keyDown:

Determining the Panel interface - setBecomeKeyOnly IfN eeded:
- doesBecomeKeyOnly IfNeeded
- setFloatingPanel:
- isFloatingPanel
- setWorks WhenModal:
- works WhenModal

Instance Methods

commandKey:

- (BOOL)commandKey:(NXEvent *)theEvent

Intercepts commandKey: messages being passed from Window to Window, and translates
them to performKeyEquivalent: messages for the Views within the Panel. This method
returns YES if any of the Views can handle the event as its keyboard alternative, and NO
if none of them can. A return value of NO continues the commandKey: message down
the Application object's list of Windows; a return value of YES terminates it.

The Application object initiates commandKey: messages when it gets key-down
events with the Command key pressed. The Panel also initiates them, but just to itself,
when it gets a key Down: event message. The argument, theEvent, is a pointer to the
key-down event.

Before any performKeyEquivalent: messages are sent, a Panel that's not on-screen
receives an update message. This gives it a chance to make sure that its Views are properly
enabled or disabled to reflect the current state of the application.

See also: - keyDown:, - performKeyEquivalent: (View)

Classes: Panel 2-543

doesBecomeKeyOnlylfNeeded

- (BOOL)doesBecomeKeyOnlyIfNeeded

Returns whether the Panel refrains from becoming the key window until the user clicks
within a View that can become the first responder. The default return value is NO.

See also: - setBecomeKeyOnlylfNeeded:

init
- init

Initializes the receiver, a newly allocated Panel object, by sending it an
initContent:style: backing: buttonMask:defer: message with default parameters, and
returns self.

The Panel will have a content rectangle of minimal size. The Window Server won't create
a window for the Panel until the Panel is ready to be displayed on-screen; the window will
be buffered. The Panel will have a title bar and close button, but no resize bar. Like all
Windows, it's initially placed out of the screen list. The Panel has no title.

See also: - initContent:style: backing: buttonMask:defer:

initContent:style:backing:buttonMask:defer:

- initContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bujferingType
buttonMask:(int)mask
defer: (BOOL)jlag

Initializes the receiver, a newly allocated Panel instance, and returns self.

This method is the designated initializer for this class. It's identical to the Window method
of the same name, except that it additionally initializes the receiver so that it will behave
like a panel in the user interface:

• The Panel's background color is set to be light gray.
• The Panel will hide when the application it belongs to is deactivated.
• The Panel won't be freed when the user closes it.

The new Panel is initially out of the Window Server's screen list. To make it visible, you
must display it (into the buffer) and then move it on-screen.

See also: - initContent:style:backing:buttonMask:defer: (Window)

2-544 Chapter 2: Application Kit

isFloatingPanel

- (BOOL)isFloatingPanel

Returns whether the Panel floats above standard windows and other panels. The default
is NO.

See also: - setFloatingPanel:

keyDown:

- keyDown:(NXEvent *)theEvent

Translates the key-down event into a commandKey: message for the Panel, thus
interpreting the event as a potential keyboard alternative. If the Panel has a button that
displays the Return symbol and the key-down event is for the Return key, it will operate
the button.

A Panel receives keyDown: event messages only when it's the key window and either:

• none of its Views is the first responder,

• none of the Views in its responder chain implements a key Down: method, or

• the Views in its responder chain that implement a keyDown: method include the
message [super keyDown:theEvent].

See also: - commandKey:

setBecomeKeyOnlylfNeeded:

- setBecomeKeyOnlyIfNeeded:(BOOL)flag

Sets whether the Panel becomes the key window only when the user makes a selection
(causing one of its Views to become the first responder). Since this requires the user to
perform an extra action (clicking in the View) before being able to type within the window,
it's appropriate only for Panels that don't normally require text entry. You should consider
setting this attribute only if (1) most of the controls within the Panel are not text fields, and
(2) the choices that can be made by entering text can also be made in another way (or are
only incidental to the way the panel is normally used). The default is NO. Returns self.

See also: - doesBecomeKeyOnlylfNeeded, - keyDown:

Classes: Panel 2-545

setFloatingPanel:

- setFloatingPanel:(BOOL)flag

Sets whether the Panel should be assigned to a window tier above standard windows. The
default is NO. It's appropriate for a Panel to float above other windows only if:

• It's oriented to the mouse rather than the keyboard-that is, it doesn't become the key
window (or becomes the key window only if needed),

• It needs to remain visible while the user works in the application's standard windows­
for example, if the user must frequently move the cursor back and forth between a
standard window and the panel (such as a tool palette) or the panel gives information
relevant to the user's actions within a standard window,

• It's small enough not to obscure much of what's behind it, and

• It doesn't remain on-screen when the application is deactivated.

All four of these conditions should be true for flag to be set to YES. Returns self.

See also: - isFloatingPanel

setWorksWhenModal:

- setWorksWhenModal:(BOOL)flag

Sets whether the Panel remains enabled to receive events and possibly become the key
window even when a modal panel (attention panel) is on-screen. This is appropriate only
for a Panel that needs to operate on attention panels. The default is NO. Returns self.

See also: - worksWhenModal

worksWhenModal
- (BOOL)worksWhenModal

Returns whether the Panel can receive keyboard and mouse events and possibly become
the key window, even when a modal panel (attention panel) is on-screen. The default is
NO.

See also: - setWorksWhenModal:

2-546 Chapter 2: Application Kit

Pasteboard

Inherits From: Object

Declared In: appkit/Pasteboard.h

Class Description

Pasteboard objects transfer data to and from the pasteboard server, pbs. The server is
shared by all running applications. It contains data that the user has cut or copied and may
paste, as well as other data that one application wants to transfer to another. Pasteboard
objects are an application's sole interface to the server and to all pasteboard operations.

Named Pasteboards

Data in the pasteboard server is associated with a name that indicates how it's to be used.
Each set of named data is, in effect, a separate pasteboard, distinct from the others. An
application keeps a separate Pasteboard object for each named pasteboard that it uses.
There are five standard pasteboards in common use:

General pasteboard

Font pasteboard

Ruler pasteboard

Find pasteboard

Drag pasteboard

The pasteboard that's used for ordinary cut, copy, and
paste operations. It holds the contents of the last selection
that's been cut or copied.

The pasteboard that holds font and character information
and supports the Copy Font and Paste Font commands.

The pasteboard that holds information about paragraph
formats in support of the Copy Ruler and Paste Ruler
commands.

The pasteboard that holds information about the current
state of the active application's Find panel. This
information permits users to enter a search string into the
Find panel, then switch to another application to conduct
the search.

The pasteboard that stores data to be manipulated as the
result of a drag operation.

Classes: Pasteboard 2-547

Each standard pasteboard is identified by a unique name designated by a global variable of
type NXAtom:

NXGeneralPboard
NXFontPboard
NXRulerPboard
NXFindPboard
NXDragPboard

You can also create private pasteboards by asking for a Pasteboard object with any other
name. The name of a private pasteboard can be passed to other applications to allow them
to share the data it holds.

The Pasteboard class makes sure there's never more than one object for each named
pasteboard. If you ask for a new object when one has already been created for the
pasteboard, the existing one will be returned to you.

Data Types

Data can be placed in the pasteboard server in more than one representation. For example,
an image might be provided both in Tag Image File Format (TIFF) and as encapsulated
PostScript code (EPS). Multiple representations give pasting applications the option of
choosing which data type to use. In general, an application taking data from the pasteboard
should choose the richest representation it can handle-rich text over plain ASCII, for
example. An application putting data in the pasteboard should promise to supply it in as
many data types as possible, so that as many applications as possible can make use of it.

Data types are identified by character strings containing a full type name. The following
global variables (of type NXAtom) are string pointers for the standard NeXT pasteboard
types. This list is not exhaustive; NeXTSTEP kits define some other data types that can
only be read by kit objects and are not intended for general purpose data interchange.

2-548 Chapter 2: Application Kit

Type Description

NXAsciiPboardType Plain ASCII text
NXPostScriptPboardType Encapsulated PostScript code (EPS)
NXTIFFPboardType Tag Image File Format (TIFF)
NXRTFPboardType Rich Text Format (RTF)
NXSoundPboardType The Sound object's pasteboard type
NXFilenamePboardType ASCII text designating a file name
NXTabularTextPboardType Tab-separated fields of ASCII text
NXFontPboardType Font and character information
NXRulerPboardType Paragraph formatting information
NXFileContentsPboardType A representation of a file's contents
NXColorPboardType NXCoior data
NXSelectionPboardType Describes a selection
NXDataLinkPboardType Defines a link between documents

Types other than those listed can also be used. For example, your application may keep
data in a private format that's richer than any of the types listed above. That format can
also be used as a pasteboard type.

Reading and Writing Data

Typically, data is written to the pasteboard using writeType:data:length: and read using
readType:data:length:. However, file contents and colors must be written using special
pasteboard methods:

• Data of NXFileContentsPboardType, representing the contents of a named file, must be
written using writeFileContents: and read using readFileContentsType:toFile:.

• NXCoior data should be written using the NXWriteColorToPasteboardO function,
and read using NXReadColorFromPasteboardO.

It's often convenient (and most memory-efficient) to prepare data for the pasteboard by
writing data to a memory stream through functions such as NXWriteO, NXPrintfO, and
NXPutcO. After the data has been written, the stream can be sent to the pasteboard server
using writeType:fromStream:.

Similarly, you can get a memory stream for the data received from the pasteboard server
via readTypeToStream: and use functions like NXGetcO, NXReadO, and NXScanfO to
parse it. Objects can be archived to and from the pasteboard server using typed streams.

Classes: Pasteboard 2-549

Errors

Except where errors are specifically mentioned in the method descriptions, any
communications error with the pasteboard server raises an NX_pasteboardComm
exception.

Instance Variables

id owner;

owner The object responsible for putting data in the pasteboard.

Method Types

Creating and freeing a Pasteboard object

Getting data in different formats

+ new
+newName:
+ newUnique
-free
- freeGlobally

+ newByFilteringFile:
+ newByFilteringData:of'Type:
+ new By FilteringTypesInPasteboard:
+ typesFilterableTo:

Referring to a Pasteboard by name

Writing data

Discerning types

2·550 Chapter 2: Application Kit

+ newName:
-name

- dec1areTypes:num:owner:
- addTypes:num:owner:
- writeType:data:length:
- writeType:fromStream:
- writeFileContents:

- types
- findAvailableTypeFrom:num:

Reading data - changeCount
- readType:data:length:
- readTypeToStream:
- readFileContentsType:toFile:
- deallocatePasteboardData:length:

Class Methods

alloc

Generates an error message. This method cannot be used to create Pasteboard instances.
Use new or newName: instead.

See also: + new, + newName:

allocFromZone:

Generates an error message. This method cannot be used to create Pasteboard instances.
Use new or newName: instead.

See also: + new, + newName:

new

+ new

Returns the Pasteboard object for the selection pasteboard by passing NXGeneralPboard to
the newName: method.

newByFilteringData:ofType:

+ newByFiiteringData:(NXData *)data ofType:(const char *)type

Creates and returns a new Pasteboard with a unique name that has, declared within it, data
of every type that can be provided by the available filter services from data. The returned
pasteboard also declares data of the supplied type type. No filter service is invoked until
the data is actually requested, so invoking this method is reasonably inexpensive.

Classes: Pasteboard 2-551

newByFilteri ng File:

+ newByFilteringFile:(const char *)filename

Creates and returns a new Pasteboard with a unique name that has, declared within it, data
of every type that can be provided by the available filter services from the filefilename. No
filter service is invoked until the data is actually requested, so invoking this method is
reasonably inexpensive.

newByFilteringTypeslnPasteboard:

+ newByFilteringTypeslnPasteboard:(Pasteboard *)pboard

Creates and returns a new Pasteboard with a unique name that has, declared within it, data
of every type that can be provided by the available filter services from the data on
pasteboard pboard. This process can be thought of as expanding the pasteboard, since the
new pasteboard generally will contain more representations of the data on pboard.

This method returns pboard if pboard is a pasteboard returned by one of the
newByFiltering ••. methods, so a pasteboard can't be expanded multiple times. This
method only returns the original types and the types that can be created as a result of a
single filter; the pasteboard will not have defined types that are the result of translation by
multiple filters.

No filter service is invoked until the data is actually requested, so invoking this method is
reasonably inexpensive.

newName:

+ newName:(const char *)name

Returns the Pasteboard object for the name pasteboard. A new object is created only if the
application doesn't yet have a Pasteboard object for the specified name; otherwise, the
existing one is returned. To get a standard pasteboard, name should be one of the
following variables:

NXGeneralPboard
NXFontPboard
NXRulerPboard
NXFindPboard
NXDragPboard

Other names can be assigned to create private pasteboards for other purposes.

2·552 Chapter 2: Application Kit

newUnique

+newUnique

Creates and returns a new Pasteboard with a name that is guaranteed to be unique with
. respect to other Pasteboards on the system. This method is useful for applications that
implement their own interprocess communication using pasteboards.

typesFilterable To:

+ (NXAtom *)typesFilterableTo:(const char *)type

Returns a niIlI-terminated array of NXAtoms indicating the types that data of type type can
be converted to by available filter services. The array contains the original type. The caller
is responsible for freeing the returned array.

Instance Methods

addTypes:num:owner:

- (int)addTypes:(const char *const *)newTypes
num:(int)numTypes
owner:newOwner

Adds additional types to the pasteboard. This method can be useful when multiple entities
(such as a combination of application and library methods) contribute data for a single copy
command. It should only be invoked after a declareTypes:num:owner: message has been
sent for the same data. The owner for the new types may be different from the owner(s) of
the previously declared data.

Returns the pasteboard's change count, or 0 in case of an error.

See also: - changeCount

changeCount

- (int)changeCount

Returns the current change count for the pasteboard. The change count is a system-wide
variable that increments every time the contents of the pasteboard changes (a new owner is
declared). By examining the change count, an application can determine whether the
current data in the pasteboard is the same as the data it last received.

An independent change count is maintained for each named pasteboard.

See also: - declareTypes:num:owner:

Classes: Pasteboard 2-553

deallocatePasteboardData:length:

- deallocatePasteboardData:(char *)data length:(int)numBytes

This method should be used to deallocate the memory returned by read Type: d,ata: length: .
Returns self if the memory is successfully deallocated, otherwise raises an
NX_appkitVMError exception.

declareTypes:num:owner:

- (int)deciareTypes:(const char * const *)newTypes
num:(int)numTypes
owner:newOwner

Prepares the pasteboard for a change in its contents by declaring the new types of data it
will contain and a new owner. This is the first step in responding to a user's copy or
cut command and must precede the messages that actually write the data. A
deciareTypes:num:owner: message is tantamount to changing the contents of the
pasteboard. It invalidates the current contents of the pasteboard and increments its
change count.

numTypes is the number of types the new contents of the pasteboard may assume, and
newTypes is an array of null-terminated strings that name those types. The types should be
ordered according to the preference of the source application, with the most preferred type
coming first (typically, the richest representation is first).

The new Owner is the object responsible for writing data to the pasteboard in all the types
listed in newTypes. Data is written using the writeType:data:length: method. You can
write the data immediately after declaring the types, or wait until it's required for a
paste operation. If you wait, the owner will receive a pasteboard:provideData: message
requesting the data in a particular type when it's needed. You might choose to write data
immediately for the most preferred type, but wait for the others to see whether they'll
be requested.

The newOwner can be NULL if data is provided for all types immediately. Otherwise, the
owner should be an object that won't be freed. It should not, for example, be the View that
displays the data if that View is in a window that might be closed.

Returns the pasteboard's change c.ount.

See also: - writeType:data:length:, - pasteboard:provideData:,
- addTypes:num:owner:, - change Count

2-554 Chapter 2: Application Kit

findAvaiiableTypeFrom:num:

- (const char *)findAvaiiableTypeFrom:(const char *const *)types
num:(int)numTypes

Scans the types defined by types (which is an array of size numTypes) and returns
the first type that matches a type declared on the pasteboard. A types or
findAvaiiableTypeFrom:num: message should be sent before reading any data from
the pasteboard.

free

-free

Frees the Pasteboard object. A Pasteboard object should not be freed if there's a chance
that the application might want to use the named pasteboard again; standard pasteboards
generally should not be freed at all.

freeGlobally

- freeGlobaUy

Frees the Pasteboard object and the domain for its name within the pasteboard server. This
means that no other application will be able to use the named pasteboard. A temporary,
privately named pasteboard can be freed when it's no longer needed, but a standard
pasteboard should never be freed globally.

name

- (NXAtom)name

Returns the name of the Pasteboard object.

See also: + newName:

readFileContentsType:toFile:

- (char *)readFileContentsType:(const char *)type toFile:(const char *)filename

Reads data representing a file's contents from the pasteboard, and writes it to the file
filename. Data of any file contents type should only be read using this method. type should
generally be specified; if type is NULL, a type based onfilename's extention (as returned

Classes: Pasteboard 2-555

by NXCreateFileContentsPboardTypeO) is substituted. If data matching type isn't found
on the pasteboard, data of type NXFileContentsPboardType is requested. Returns an
allocated string with the name of the file that the data was actually written to.

See also: - writeFileContents:

readType:data:length:

- readType:(const char *)dataType
data:(char **)theData
length:(int *)numBytes

Reads the dataType representation of the current contents of the pasteboard. data Type
should be one of the types returned by the types method. The data is read by setting the
pointer referred to by theData to the address of the data, and setting the integer referred to
by numBytes to the length of the data in bytes.

If the data is successfully read, this method returns self. It returns nil if the contents
of the pasteboard have changed (if the change count has been incremented by a
declareTypes:num:owner message) since they were last checked with the types
method. It also returns nil if the pasteboard server can't supply the data in time-for
example, if the pasteboard's owner is slow in responding to a pasteboard:provideData:
message and the interprocess communication times out. All other errors raise an
NX_pasteboardComm exception.

If nil is returned, the application should put up a panel informing the user that it was unable
to carry out the paste operation. It shouldn't attempt to use the pointer referred to by
theData, as it won't be valid.

The memory for the data that this method provides must eventually be freed by the caller
using deallocatePasteboardData:length:; you should not attempt to free the returned
memory using vm_deallocateO or freeO. For example:

char *data;
int length;

if ([myPasteboard readType:NXAsciiPboardType
data:&data length:&length])

/* Use the data here, keeping it for as long as necessary */
[myPasteboard deallocatePasteboardData:data length: length] ;

See also: - readTypeToStream:

2-556 Chapter 2: Application Kit

readType ToStream:

- (NXStream *)readTypeToStream:(const char *)dataType

Reads data from the pasteboard to a stream. This method uses the readType:data:length:
method to read data of the type data Type from the pasteboard. It then opens a stream on
the data, and returns the stream, or NULL if there is an error. Data returned with this
method must eventually be freed using

NXCloseMemory(theStream, NX_FREEBUFFER)

You should not free the data using deallocatePasteboardData:length:.

See also: - writeType:fromStream:

types

- (const NXAtom *)types

Returns the list of the types that were declared for the current contents of the pasteboard.
The list is an array of character pointers holding the type names, with the last pointer being
NULL. Each of the pointers is of type NXAtom.

Types are listed in the same order that they were declared. A types or
findAvaiiableTypeFrom:num: message should be sent before reading any data from
the pasteboard.

See also: - deciareTypes:num:owner:, - readType:data:length:,
- findAvaiiableTypeFrom:num:, NXUniqueStringO

writeFileContents:

- (BOOL)writeFileContents:(const char *)filename

Writes the contents of the file filename to the pasteboard, and declares the data to be of type
NXFileContentsPboardType and also of a type appropriate for the file's extention (as
returned by NXCreateFileContentsPboardTypeO when passed the files extention), if it
has one. Returns YES if the data from filename was successfully written to the pasteboard,
and NO otherwise.

See also: - readFileContentsType:toFile:

Classes: Pasteboard 2-557

writeType:data:length:
- writeType:(const char *)dataType

data:(const char *)theData
length: (int)numBytes

Writes data to the pasteboard server. dataType gives the type of data being written; it must
be a type that was declared in the previous deciareTypes:num:owner: message. theData
points to the data to be sent to the pasteboard server, and numBytes is the length of the data
in bytes.

A separate writeType:data:length: message is required for each data representation that's
written to the server.

This method returns self if the data is successfully written. It returns nil if an object in
another application has become the owner of the pasteboard. Any other error raises an
NX_pasteboardComm exception.

See also: - deciareTypes:num:owner:

writeType:fromStream:
- writeType:(const char *)dataType fromStream:(NXStream *)stream

Writes the type data Type to the pasteboard from the supplied stream stream. The stream
must be readable. If the stream is seekable, it is seeked back to the beginning before the
data is read; otherwise, data is read from the current position. In either case, all data to the
end of the stream is read.

This method returns self if the data is successfully written. It returns nil if an object in
another application has become the owner of the pasteboard. Any other error raises an
NX_pasteboardComm exception.

See also: - writeType:data:length:

2-558 Chapter 2: Application Kit

Method Implemented By The Owner

pasteboardChangedOwner:

- pasteboardChangedOwner:sender

Notifies a prior owner of the sender Pasteboard (and owners of representations on the
pasteboard) that the pasteboard has changed owners. This method is optional and need only
be implemented by pasteboard owners that need to know when they have lost ownership.
The owner is not able to read the contents of the pasteboard when responding to this
method. The owner should be prepared to receive this method at any time, even from
within the deciareTypes:num:owner: used to declare ownership.

pasteboard:provideData:

- pasteboard:sender provideData:(NXAtom)type

Implemented by the owner (previously declared in a deciareTypes:num:owner: message)
to provide promised data. The owner receives a pasteboard:provideData: message from
the sender Pasteboard when the data is required for a paste operation; type gives the type
of data being requested. The requested data should be written to sender using the
writeType:data:length: method.

pasteboard:provideData: messages may also be sent to the owner when the application is
shut down through Application's terminate: method. This is the method that's invoked in
response to a Quit command. Thus the user can copy something to the pasteboard, quit the
application, and still paste the data that was copied.

A pasteboard:provideData: message is sent only if type data hasn't already been
supplied. Instead of writing all data types when the cut or copy operation is done, an
application can choose to implement this method to provide the data for certain types only
when they're requested.

If an application writes data to the pasteboard in the richest, and therefore most preferred,
type at the time of a cut or copy operation, its pasteboard:provideData: method can
simply read that data from the pasteboard, convert it to the requested type, and write it back
to the pasteboard as the new type.

See also: - deciareTypes:num:owner:, - writeType:data:length:

Classes: Pasteboard 2-559

PopUpList

Inherits From: Menu: Panel: Window : Responder: Object

Declared In: appkitIPopUpList.h

Class Description

A PopUpList is a type of Menu that's used to make choices from a limited set of options,
usually in a specific context. The PopUpList is usually triggered to pop up by a Button, and
tracks the mouse like a Menu does until the user releases the mouse, at which time the
PopUpList sends its action message to its target and disappears. Depending on the type of
the PopUpList (see below), the title of the trigger Button is set to the title of the item
selected from the PopUpList. Though a PopUpList is a user-interface device and sends an
action message, it's not a Control class. The trigger that pops it up, however, is a Control;
it's nearly always a Button, but may be a Cell in a Matrix, or a subclass of View that
responds to the setTitle: and title messages.

There are actually two types of PopUpList: The pop-up list and the pull-down list. The
type is set with the changeButtonTitle: method. A pop-up list's trigger always displays
the item that was last selected, so a pop-up list is often used for selecting items from a
small- to medium-sized set of options (like the zoom factor for a document Window). It's
a useful alternative to a Matrix of radio Buttons or an NXBrowser when screen space is at
a premium; a zoom factor pop-up can easily be fit next to a scroll bar on the bottom of a
Window, for example. If there are very many items in the set of options, however, a pop-up
list can nearly fill the height of the screen; in this case it would be better to use an
NXBrowser, possibly in its own Panel.

A pull-down list is generally used for selecting actions in a very specific context, like the
"Operations" pull-down list in Interface Builder's Classes browser. It has a "title" item that
is always displayed on the trigger. When the actions only make sense in the context of a
particular display, a pull-down list can be used in that display to keep the related actions
nearby, and to keep them out of the way when that display isn't visible. This also helps
reduce clutter in Menus.

Using PopUpLists with Interface Builder

Interface Builder contains a palette item that looks like a pop-up list. This item is actually
a trigger Button for a PopUpList, which is the target of the Button. You can change the list
to be a pull-down list with Interface Builder's Button Inspector, which shows radio buttons
for selecting a pop-up or pull-down list instead of the usual Button options.

2-560 Chapter 2: Application Kit

If you create an outlet from some other object and connect it to the graphical PopUpList as
shown on the screen, you're actually connecting the outlet to the trigger Button. If you need
a connection directly to the PopUpList, you should reset the outlet at run-time. This can be
done in your Application delegate's appDidlnit: method, in the awake method of the
object containing the outlet, or preferably in the awakeFromNib method of the interface
module's "File's Owner" class (awakeFromNib is described in the NXNibNotification
protocol specification). For example, if the object has an outlet called popup:

- awakeFromNib

[super awakeFromNib];

if (! [popup isKindOf: [PopUpList class]]) popup

/* other setup code */

return self;

[popup target];

If you need connections to both the trigger Button and the PopUpList itself, create outlets
with names that distinguish the two, like popupButton and popupList, and only connect
popupButton in Interface Builder. The object's awakeFromNib or other such method can
then set the popupList outlet from popupButton's target.

Creating a PopUpList Programmatically

To create a PopUpList programmatically, simply allocate an instance, send it an init
message, and use the changeButtonTitle: method to configure the PopUpList as a pop-up
or pull-down list. Your code can then add whatever items are needed with the addltem:
method, or configure the PopUpList in other ways.

Once a PopUpList has been built, it must be attached to a trigger, which is usually a Button
(though it may also be a ButtonCell). There are two functions that attach a PopUpList to a
Button, as well as making the Button look like a pop-up or pull-down list by adding the
appropriate icon and setting other parameters. NXAttachPopUpListO attaches the
PopUpList to a Button or ButtonCell passed to the function.
NXCreatePopUpListButtonO creates and returns a Button that triggers the PopUpList
passed to it; your code can then add the Button to a View in your application.

Note: If you use NXAttachPopUpListO with a Button whose title doesn't appear in the
PopUpList, the PopUpList will add that title to the top of its list when the Button triggers
it. This is desirable for a pull-down list, since you won't have to add the title item to the
list yourself, but it should be avoided for pop-up lists. Specifically, this is not a reliable
means of adding items to the PopUpList; use addltem: for that.

Classes; PopUpList 2·561

Working with a PopUpList

PopUpList is actually a subclass of Menu that contains a Matrix of MenuCells (Menu's
itemList method can be used to get the Matrix from the PopUpList). When the
PopUpList's target is sent the action message, the sender of that message is actually the
Matrix. The trigger Button itself can't be accessed by the target of the PopUpList. To get
the PopUpList itself from the sending Matrix, the target can use View's window method
(since PopUpList is a kind of Window). If the target need specific Cells, it can ask the
Matrix directly for those with selectedCell, cellAt::, and other such methods.

If the title of a pull-down list needs to be changed, both the title of the trigger Button and the
title item of the PopUpList itself need to be changed. The easiest way to do this is to change
the Button's title, and to remove the title item from the pull-down list with removeltemAt:
(it's kept at position 0). When the PopUpList is next triggered by the Button, it will add the
Button's new title to the top of its list if that title isn't already in the list.

If you want to change the title of a pop-up list's trigger Button, be aware that this title
represents the selected item to the user, so your code will have to also change the selected
Cell in the PopUpList's Matrix. It can do this either by scanning for the title, or by changing
the selected Cell by position first, then getting that Cell's title to use as the title of the
trigger Button.

For more information, see the class specifications for Matrix, MenuCell, and Button

Instance Variables

None declared in this class.

Method Types

Initializing a PopUpList

Setting up the items

- init

- addItem:
- insertItem:at:
- removeItem:
- removeltemAt:
- indexOfItem:
- count

Interacting with the trigger Button
- changeButtonTitle:
- getButtonFrame:

2·562 Chapter 2: Application Kit

Activating the PopUpList

Getting the user's selection

Modifying the items

Target and action

Resizing the PopUpList

Instance Methods

action

- (SEL)action

-popUp:

- selectedltem

- setFont:
-font

- setAction:
- action
- setTarget:
- target

- size Window::

Returns the action sent to the PopUpList's target when an item is selected from the list.
This is actually the action message of the PopUpList's Matrix.

See also: - setAction:, - action (Matrix), - target

addltem:

- addItem:(const char *)title

Adds an item with the name title to the bottom of the PopUpList, and returns the MenuCell
created for that item (so a key equivalent can be added, for example). If an item with the
name title already exists in the PopUpList, this method does nothing and returns nil.

See also: - insertltem:at:, - removeItem:

changeButton Title:

- changeButtonTitle:(BOOL)jlag

If jlag is YES, then when a selection is made from the list, the title of the selected item
becomes the title on the Cell of the trigger that sent the popUp: message (nearly always a
Button, but sometimes a Matrix). This makes the Button appear to the user as a pop-up list,
with a small rectangular knob as the icon. Ifjlag is NO, then the Button's title doesn't
change, so that it appears to the user as a pull-down list, with a small inverted triangular
mark for an icon. The default is YES (that is, a pop-up list). Returns self.

Classes: PopUpList 2-563

count
- (unsigned int)count

Returns the number of items in the PopUpList. If the PopUpList is configured as a
pull-down list, this number includes the MenuCell that holds the pull-down list's title.

font
-font

Returns the Font used to draw the items in the PopUpList.

See also: - setFont:

getButtonFrame:
- getButtonFrame:(NXRect *)bFrame

Returns self, and by reference in bFrame the frame for the trigger that last popped up the
PopUpList. The origin of the frame is set to (0.0, 0.0), so this method effectively returns
the size of the trigger.

indexOfltem:
- (int)indexOntem:(const char *)title

Returns the index of the item with the name title, or -1 if no such item is in the PopUpList.

init
-init

Initializes and returns the receiver, a new instance of PopUpList. This method is the
designated initializer for PopUpList. PopUpList does not override the designated
initializers for Menu, Panel, or Window; your code should not use those methods with a
PopUpList. If you create a subclass of PopUpList that performs its own initialization, you
must override this method.

2-564 Chapter 2: Application Kit

insertltem :at:

- insertItem:(const char *)title at:(unsigned int)index

Inserts an item with the name title at position index in the PopUpList. The item with an
index of 0 is the one at the top. Returns the newly inserted MenuCell.

If an item with a title of title already exists in the PopUpList, it's removed and the new one
is added. This essentially moves title to a new position, though if the item removed was at
a position before index, the new item will actually be inserted at index + 1. If you want to
move an item, it's better to invoke removeItem: explicitly and then send insertltem:at:.

See also: - addItem:, - removeItemAt:

popUp:

- popUp:trigger

Pops up the PopUpList over the location of trigger, after resizing the PopUpList to be as
wide as trigger. This is the action method sent by the trigger object to the target PopUpList.
If the mouse goes up in an item of the PopUpList, the Matrix that displays the PopUpList's
entries sends the action message to the target. If the PopUpList is a pop-up type list (set
with changeButtonTitle:), trigger's title is set to the title of the selected item in the
PopUpList; trigger's icon is not altered by this method. Returns self.

This method works if and only if the following conditions are met. The Application
object's current event must be a mouse-down, and that mouse-down must have occurred
within trigger's frame; this method can therefore be effectively invoked only as a result of
a mouse-down occurring in trigger. trigger must also be either a subclass of View that
responds to the messages title and setTitle:, or a subclass of Matrix whose selected Cell
responds to title and setTitle:. If there are no items in the PopUpList and trigger's title is
NULL, this method does nothing.

If trigger's title isn't in the PopUpList, it's added as an item at the top before the PopUpList
pops up. The list pops up with the item having the same title as trigger (either a pop-up
list's selected item or the "title" item of a pull-down list) exactly over trigger if possible; if
this would cause part of the list to be off the top or bottom of the screen, the entire list is
shifted up or down so that it can fit on screen.

If any of the MenuCells in the PopUpList's Matrix bring up submenus (that is, have a Menu
as a target and submenuAction: as the action message), they are changed to simply be
title-displaying MenuCells, and will never bring up their submenus. Essentially, this means
that you can't create a hierarchical PopUpList with this class unless you completely
override this method.

See also: - setAction:, - setTarget:, - changeButtonTitle:

Classes: PopUpList 2-565

removeltem:

- removeItem:(const char *)title

Removes and returns the MenuCell with the name title. If there is no such MenuCell,
returns nil.

See also: - removeItemAt:

removeltemAt:

- removeItemAt:(unsigned int)index

Removes the MenuCell for the item at the specified index. Returns the MenuCell at that
location, or nil if there was no such MenuCell.

See also: - removeItem:

selectedltem
- (const char *)selectedItem

Returns the title of the item last selected by the user (the item that was highlighted when
the user released the mouse button), or NULL if for some re'ason there is no selected item.
It is possible for a pull-down list's selected item to be its title item.

The target of the PopUpList can get the title of the selected item in one of two ways. Since
the sender of the action message is actually the Pop UpList' s Matrix, the target can ask the
Matrix for its selected Cell, and then ask that Cell for its title. Also, the PopUpList is the
Matrix's Window, so the target can retrieve that and then send selectedItem to the
PopUpList. These two methods can be coded as follows:

item = [[sender selectedCell] title]; II sender is actually a Matrix

item = [[sender window] selectedltem]; II PopUpList is Matrix's Window

The first example is the preferred way to get the title.

See also: - selected Cell: (Matrix), - title (Cell)

setAction:

- setAction:(SEL)aSelector

Sets the action sent to the PopUpList's target when an item is selected. The action message
is actually sent by the Matrix containing the MenuCells that make up the PopUpList.
Returns self.

2-566 Chapter 2: Application Kit

A pull-down list does send its action if the mouse goes up in its title item.

See also: - action, - setAction: (Matrix), - setTarget:

setFont:
- setFont:fontObject

Sets the Font used to draw the PopUpList's items. The PopUpList does redraw itself, but
since it normally won't be on the screen when it receives this message, this shouldn't cause
any undesirable side-effects. Returns self.

See also: - font (Matrix)

setTarget:
- setTarget:anObject

Sets the object to which an action will be sent when an item is selected from the PopUpList.
The action is actually sent by the Matrix containing the MenuCells that make up the
PopUpList. Returns self.

See also: - target, - setTarget: (Matrix), - setAction:

sizeWindow::
- sizeWindow:(NXCoord)width :(NXCoord)height

Your code should never invoke this method, though you're free to override it. This method
is overridden from Menu because PopUpList needs to surround itself with a dark gray
border, and thus needs to be one pixel wider and taller than a Menu. It simply adds 1.0 to
each dimension and sends size Window:: to super. Returns self.

target
- target

Returns the object to which the action will be sent when an item is selected from the list.
The default value is nil, which causes the action message to be sent up the responder chain.
The target is actually sent the action by the PopUpList's Matrix.

See also: - setTarget:, - target (Matrix), - action

Classes: PopUpList 2-567

Printlnfo

Inherits From:

Declared In:

Object

appkitlPrintInfo.h

Class Description

A PrintInfo object stores information that's used during printing. The Application object
automatically creates a PrintInfo object that, by default, is used for all printing jobs (for that
application). You can create any number of additional PrintInfo objects; however, only one
can be "active" at a time, as set through Application's setPrintInfo: method. The currently
active PrintInfo object is returned through Application's printInfo method.

Although you can set a PrintInfo's attributes through the methods it provides, this is usually
the task of other objects, notably the PageLayout and PrintPanel objects. The View or
Window that's being printed may also supercede some PrintInfo settings. In particular, a
View or Window can supply the range of pages in the document and can provide its own
pagination mechanism through the knowsPagesFirst:last: and getRect:forPage: methods
(see the documentation of these methods in the View class for details).

If the printed View or Window doesn't supply a pagination, the PrintInfo's vertical and
horizontal pagination constants are used to trigger built-in pagination mechanisms:

Pagination Constant

NX_AUTOPAGINATION

NX_FITPAGINATION

NX_CLIPPAGINATION

Meaning

The image is diced into equal-sized rectangles and placed
in one column of pages.

The image is scaled to produce one column (horizontal) or
one row (vertical) of pages.

The image is clipped to produce one column or row
of pages.

Vertical and horizontal pagination needn't be the same. However, if either dimension is
scaled (NX_FITPAGINATION), the other dimension is scaled by the same amount to avoid
stretching the image. If both dimensions are scaled, the scaling factor that produces the
smallest image is used. Note that PrintInfo's scaling factor (as set through
setScalingFactor:) is independent of the scaling that's imposed by pagination and is
applied after the document has been paginated.

2·568 Chapter 2: Application Kit

The Printlnfo attributes that describe a size on a sheet of paper (the margins and the size of
the paper rectangle) are in points, where 72 points equals one inch.

Page numbers (firstPage, lastPage, and so on) are as they appear in the document. For
example, to print the first three pages of a document that contains pages numbered from 20
to 29, firstPage would be set to 20 and lastPage to 22.

Instance Variables

char *paperType;
NXRect paperRect;
NXCoord leftPageMargin;
NXCoord rightPageMargin;
NXCoord topPageMargin;
NXCoord bottomPageMargin;
float scalingFactor;
char pageOrder;
struct _pInfoFlags {

unsigned int orientation: 1 ;
unsigned int horizCentered: 1;
unsigned int vertCentered: 1 ;
unsigned int allPages: 1;
unsigned int horizPagination:2;
unsigned int vertPagination:2;
unsigned int printerIsOld: 1;
unsigned int reversePageOrder: 1;

} pInfoFlags;
int firstPage;
int lastPage;
int currentPage;
int copies;
char *outputFile;
DPSContext context;
short pagesPerSheet;
NXPrinter *printerObject;
id jobFeaturesTable;
const char *paperFeed;

Classes: Printlnfo 2-569

paperType

paperRect

leftPageMargin

rightPageMargin

topPageMargin

bottomPageMargin

scalingFactor

pageOrder

pInfoFlags.orientation

pInfoFlags.horizCentered

pInfoFlags. vertCentered

pInfoFlags .allPages

pInfoFlags.horizPagination

pInfoFlags. vertPagination

firstPage

lastPage

currentPage

copies

outputFile

context

pagesPerSheet

printerObject

jobFeaturesTable

paperFeed

2-570 Chapter 2: Application Kit

Type of paper.

Rectangle representing the paper's area.

Size of the left margin in points.

Size of the right margin in points.

Size of the top margin in points.

Size of the bottom margin in points.

Factor to scale image by.

Order of pages in document.

Landscape or portrait mode.

True if the image is centered horizontally on the page.

True if the image is centered vertically on the page.

True if all the pages are to be printed.

Horizontal pagination mode.

Vertical pagination mode.

Page number of the first page to print.

Page number of the last page to print.

Page number of the page currently being printed.

Number of copies to print.

File to spool to.

Spooling context.

The number of pages per sheet of paper.

The printer that the printing job will run on.

Table of additional printing job attributes.

Paper feed slot name.

Method Types

Initializing and freeing a PrintInfo instance
- init
-free

Defining the printing rectangle - setMarginLeftright:top:bottom:
- getMarginLeftright:top: bottom:
- setOrientation:andAdjust
- orientation
- setPaperRect:andAdjust:
- paperRect
- setPaperType:andAdjust
- paperType

Page range - setFirstPage:
- firstPage
- setLastPage:
-lastPage
- setAllPages:
- isAllPages
- currentPage

Pagination and scaling - setHorizPagination:
- horizPagination
- setVertPagination:
- vertPagination
- setScalingFactor:
- scalingFactor

Positioning the image on the page
- setHorizCentered:
- isHorizCentered
- setVertCentered:
- is VertCentered
- setPagesPerSheet
- pagesPerSheet

Closses: Printlnfo 2-571

Print job attributes

Specifying the printer

Spooling

Archiving

Class Methods

getDefaultPrinter

- initializeJ obDefaults
- setJ obFeature:to Value:
- valueForJobFeature:
- removeJobFeature:
- jobFeatures
- setPageOrder:
-pageOrder
- setReversePageOrder:
- reversePageOrder
- setCopies:
- copies
- setPaperFeed:
-paperFeed

+ setDefaultPrinter:
+ getDefaultPrinter
- setPrinter:
- printer

- setOutputFile:
- outputFile
- setContext:
- context

-read:
- write:

+ (NXPrinter *)getDefaultPrinter

Returns an NXPrinter object that corresponds to the user's default printer, as declared in
the defaults database. If the printer can't be found, nil is returned.

See also: + setDefauItPrinter:, - setPrinter:, - printer

2·572 Chapter 2: Application Kit

setDefaultPrinter:

+ setDefaultPrinter:(NXPrinter *)printer

Sets the user's default printer by writing the name and host of printer to the defaults
database. Unless a Printlnfo's printer is otherwise set (through setPrinter:) the default
printer is used for printing.

See also: + getDefaultPrinter, - setPrinter:, - printer

Instance Methods

context

- (DPSContext)context

Returns the Display PostScript context used for printing.

copies

- (int)copies

Returns the number of copies that will be printed.

currentPage

- (int)currentPage

Returns the page number of the page currently being printed. This method is valid only
while printing or faxing.

firstPage

- (int)firstPage

Returns the page number of the first page that will be printed, as set through setFirstPage:,
or MININT if the value hasn't been explicitly set. If all pages are being printed, the first
page value is ignored during printing. 'If the page order is reversed, this value gives the
page number of the last page that will be printed.

See also: - setFirstPage:, - setAIIPages:, - setPageOrder:

Classes: PrintInfo 2·573

free

-free

Frees the Printlnfo object.

getMarginLeft:right:top:bottom:

- getMarginLeft:(NXCoord *)leftMargin
right:(NXCoord *)rightMargin
top:(NXCoord *)topMargin
bottom:(NXCoord *)bottomMargin

Returns, by reference, the sizes of the four page margins measured in points.

See also: - setMarginLeft:right:top:bottom:

horizPagination

- (int)horizPagination

Returns a constant that represents the manner in which an image is distributed
horizontally among pages. See the class description, above, for a description of the
pagination constants.

See also: - setHorizPagination:

init

- init

Initializes the Printlnfo object after memory for it has been allocated through alloc or
allocFromZone:. Returns self.

2·574 Chapter 2: Application Kit

initializeJobDefaults
- initializeJ obDefaults

Called before each print job (specifically, before the Print panel is displayed), this method ~

initializes the following PrintInfo attributes:

Attribute

First page
Last page
Copies
Page order
Printer
Paper feed

isAIiPages

- (BOOL)isAlIPages

Value

MININT
MAXINT
1
First-to-last
The user's default printer
The default paper feed slot

Returns whether all pages will be printed. If NO, only those pages that fall within
[firstPage, lastPage] will be printed.

See also: - setAlIPages:

isHorizCentered

- (BOOL)isHorizCentered

Returns whether the image is centered horizontally on a page; if this returns NO, the image
is flush against the left margin. If the image spills over more than one page horizontally,
this value is ignored and the image is always set against the left margin.

is VertCentered

- (BOOL)is VertCentered

Returns whether the image is centered vertically on a page; if this returns NO, the image is
flush against the top margin. If the image spills over more than one page vertically, then
this value is ignored and the image is always set against the top margin.

See also: - setVertCentered:

Classes: Printlnfo 2-575

jobFeatures

- (const char **)jobFeatures

Returns a pointer to an array of pointers that contains the keys to the job features table, the
hash table that contains additional printing~job attributes. You would use these keys as
arguments to methods such as valueForJobFeature: and removeJobFeature:. It's the
caller's responsibility to free the pointer to the array, but not the pointers in the array.

See also: - setJobFeature:toValue:, - valueForJobFeature:, - removeJobFeature:

lastPage

- (int)lastPage

Returns the page number of the last page that will be printed, as set through setLastPage:,
or MAXINT if the value hasn't been explicitly set. If allpages are being printed, the last
page value is ignored during printing. If the page order is reversed, this value gives the
page number of the first page that will be printed.

See also: - setLastPage:, - setAIIPages:, - setReversePageOrder:

orientation

- (char)orientation

Returns the page orientation as NX_PORTRAIT or NX_LANDSCAPE.

See also: - set Orientation: andAdjust:, - setPaperType:andAdjust:,
- setPaperRect:andAdjust:

outputFile

- (const char *)outputFile

Returns the name of the file to which the generated PostScript code is sent. If this is NULL,
the code is written to a temporary file.

See also: - setOutputFile:

2·576 Chapter 2: Application Kit

pageOrder
- (char)pageOrder

Returns a constant that denotes the order in which pages are printed. See setPageOrder:
for the page order constants.

See also: - setPageOrder:

pagesPerSheet

- (short)pagesPerSheet

Returns the number of pages per sheet of paper.

paperFeed

- (const char *)paperFeed

Returns the name of the currently used paper feed slot.

See also: - setPaperFeed:

paperRect

- (const NXRect *)paperRect

Returns a pointer to a rectangle that gives the size of the paper, measured in points. Note
that the rectangle is useful only for its size field; the origin of the paper is always (0.0, 0.0).

paperType

- (const char *)paperType

Returns the paper type. If the type is unknown, an empty string is returned.

printer

- (NXPrinter *)printer

Returns the NXPrinter that's used for printing.

Classes: Printlnfo 2-577

read:

- read:(NXTypedStream *)stream

Reads the PrintInfo from the typed stream stream.

removeJobFeature:

- removeJobFeature:(const char *)key

Removes, from the job-features hash table, the element that corresponds to key.

See also: - jobFeatures, - setJobFeature:toValue:, - valueForJobFeature:

reversePageOrder

- (BOOL)reversePageOrder

Returns YES if the PrintInfo dictates that pages will be printed in reverse order (in other
words, if the ordering established through setPageOrder: is reversed).

See also: - setReversePageOrder:, - setPageOrder:

scalingFactor

- (float)scalingFactor

Returns the factor by which the image is scaled.

setAIiPages:

- setAIIPages:(BOOL)jlag

Sets whether all the pages of the document are to be printed (as opposed to a subset given
by the firstPage and lastPage values).

setContext:

- setContext:(DPSContext)aContext

Sets the Display PostScript context used for printing. This is normally done by the printing
machinery in View.

2-578 Chapter 2: Application Kit

setCopies:

- setCopies:(int)anlnt

Sets the number of copies that will be printed.

setFirstPage:

- setFirstPage:(int)anlnt

Sets the page number of the first page that will be printed.

setHorizCentered:

- setHorizCentered:(BOOL)flag

Sets whether the image is centered horizontally on a page; if flag is NO, the image is flush
against the left margin. If the image spills over more than one page horizontally, then flag
is ignored and the image is always against the left margin.

setHorizPagination:

- setHorizPagination:(int)mode

Sets the way in which a document is divided horizontally into pages. See the class
description, above, for the pagination constants that you can use as the argument to
this method.

setJobFeature:to Value:

- setJobFeature:(const char *)feature toValue:(const char *)value

Sets the value of the given job feature. The feature is added to the job-features hash table
if it isn't already present.

setLastPage:

- setLastPage: (int)anlnt

Sets the page number of the last page that will be printed.

Classes: Printlnfo 2-579

setMarginLeft:right:top:bottom:

- setMarginLeft:(NXCoord)lejtMargin
right: (NXCoord)rightMargin
top: (NXCoord) topMa rg in
bottom: (NXCoord)bottomMargin

Sets the margins. All margins are in points.

setOrientation:andAdjust:

- setOrientation:(char)mode andAdjust:(BOOL)flag

Sets the orientation or the page; mode should be either NX_PORTRAIT or
NX_LANDSCAPE.

Ifflag is NO, then only the orientation is affected. Ifflag is YES, the paper rectangle value
is updated to reflect the new orientation.

setOutputFile:

- setOutputFile:(const char *)aString

Sets the name of the file to which the generated PostScript code is sent. If aString is NULL,
the code is sent to a temporary file.

setPageOrder:

- setPageOrder:(char)mode

Sets the order in which pages are printed as one of these constants:

NX_DESCENDINGORDER
NX_SPECIALORDER
NX_ASCENDINGORDER
NX_UNKNOWNORDER

See also: - reversePageOrder, - pageOrder

setPagesPerSheet:

- setPagesPerSheet: (short)pageCount

Sets the number of pages of the document that are printed on a single sheet of paper. This
number is rounded up to a power of two when used by the system.

2-580 Chapter 2: Application Kit

setPaperFeed:

- setPaperFeed:(const char *)paperFeedSlot

Sets the paper feed slot by name. If paperF eedSlot is NULL (or an empty string), any paper
feed slot is acceptable; to choose the manual feed slot, set the name to "NXManual". Any
other name that you use must appear in the PPD table (as documented in the NXPrinter
class). Returns self.

See also: - setPaperFeed:

setPaperRect:andAdjust:

- setPaperRect:(const NXRect *)aRect andAdjust:(BOOL)flag

Sets the size of the paper, measured in points, that's to be used in printing. The origin of
the rectangle is always set to (O,O)-the origin field of aRect is ignored.

Ifflag is NO, then only the paper rectangle is changed. Ifflag is YES, the orientation and
paper type values are updated to reflect the new size.

setPaperType:andAdjust:

- setPaperType:(const char *)type andAdjnst:(BOOL)flag

Sets the name of the paper type.

If flag is NO, only the paper type is changed. If flag is YES, the paper rectangle and
orientation values are updated to reflect the new type (given that type is a recognized
paper type).

setPrinter:

- setPrinter: (NXPrinter *)aPrinter

Sets the printer that's used in subsequent printing jobs.

setReversePageOrder:

- setReversePageOrder:(BOOL)flag

Sets whether pages are printed in reverse order. This ordering is applied to the page order
mode set through setPageOrder:. Returns self.

See also: - reversePageOrder, - setPageOrder:

Classes: Printlnfo 2-581

setScal ing Factor:

- setScalingFactor: (float)aFloat

Sets the amount by which the document is scaled. Note that the scaling you set has no effect
if the document does its own pagination through View's knowsPagesFirst:last: method.

setVertCentered:

- setVertCentered:(BOOL)jiag

Sets whether the default implementation of placePrintRect:offset: in the View class
centers the image vertically on the page.

setVertPagination:

- setVertPagination:(int)mode

Sets the way in which a document is divided vertically into pages. See the class description,
above, for the pagination constants that you can use as the argument to this method.

valueForJobFeature:

- (const char *)valueForJobFeature:(const char *)feature

Returns the value for the given printing feature, as stored in the job-features table.

See also: - jobFeatures, - setJobFeature:toValue:, - removeJobFeature

vertPagi nation

- (int)vertPagination

Returns a constant that represents the manner in which an image is distributed vertically
among pages. See the class description, above, for a description of the pagination constants.

See also: - setVertPagination:

write:

- write:(NXTypedStream *)stream

Writes the Printlnfo to the typed stream stream.

2·582 Chapter 2: Application Kit

PrintPanel

Inherits From: Panel: Window : Responder: Object

Declared In: appkitlPrintPanel.h

Class Description

PrintPanel is a type of Panel that queries the user for infonnation about a print job, such as
which pages and how many copies to print. The PrintPanel is created, displayed, and run
(in a modal loop) when a printPSCode: message is sent to a View or Window, provided
that the sender of the message doesn't implement the shouldRunPrintPanel: method to
return NO (if the method isn't implemented, or if it returns YES, the Panel is brought up).

Each application can have but one PrintPanel object. If you're creating a subclass of
PrintPanel, you should send your subclass' class object a new message (without invoking
alloc or allocFromZone:) before any printPSCode: messages are sent to ensure that an
instance of your subclass is the unique PrintPanel object for your application.

Short of subclassing PrintPanel, you can augment it's display by adding a custom View
through the setAccessoryView: method. The Print panel is automatically resized to
accommodate the View that you add. Note, however, that you don't have to create controls
for special printer features. If a printer includes features in the "OpenUI" field of its
PostScript Printer Description (PPD) table, these features will be displayed in a separate
panel that's brought up when the user clicks the Print panel's Options button.

The Print panel lists the names of the printers that are available for printing. If only one
printer is available, the list isn't displayed.

Classes: PrintPanel 2-583

Instance Variables

id applcon;

id pageMode;
id firstPage;

id lastPage;

id copies;

idok;

id cancel;
id preview;

id save;

id printers;

id feed;
id resolutionList;

id name;

id note;

id status;

int exitTag;

id accessoryView;

id buttons;
id optionsButtons;

appIcon

pageMode

firstPage

lastPage

copies

ok

cancel

preview

save

printers

feed

resolutionList

2·584 Chapter 2: Application Kit

The Button containing the application's icon.

The Matrix of radio buttons indicating whether to print all
pages or a subset.

The Form indicating the first page to print.

The Form indicating the last page to print.

The TextField indicating how many copies to print.

The Print Button.

The Cancel Button.

The Preview Button.

Save Button.

The Matrix of available printers.

The PopUpList of paper feed options.

The PopUpList of resolution choices.

name

note

status

exitTag

accessory View

buttons

optionsB utton

Method Types

The TextField for the name of the currently chosen printer.

The TextField for the note for the currently chosen printer.

The TextField for the status of the requested operation.

The tag of the button the user clicked to exit the panel.

The optional View added by the application.

The Matrix of Print panel buttons.

The Matrix of Options panel buttons.

Creating and freeing a PrintPanel

Customizing the PrintPanel

Running the panel

Updating the panel's display

+ new
+ newContent:style: backing: buttonMask:defer:
-free

- setAccessoryView:
- accessoryView

-runModal
- pickedButton:

- pickedAllPages:
- textWillChange:

Communicating with the PrintInfo object

Class Methods

alloc

- updateFromPrintInfo
- finalWritePrintlnfo

Generates an error message. This method cannot be used to create PrintPanel instances;
use new instead.

allocFromZone:

Generates an error message. This method cannot be used to create PrintPanel instances;
use new instead.

Classes: PrintPanel 2-585

new

+ new

Returns the application's sole PrintPanel object, creating it if necessary. You rarely need to
invoke this method directly; the PrintPanel object is created automatically when
printPSCode: is sent to a View or Window.

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)buJferingType
buttonMask:(int)mask
defer: (BOOL)jlag

Initializes the PrintPanel object. You never invoke this method; use new instead.

Instance Methods

accessoryView

- accessoryView

Returns the PrintPanel' s accessory view.

See also: - setAccessoryView:

finalWritePrintlnfo

- finalWritePrintlnfo

Writes the values of the PrintPanel's printing attributes to the application's PrintInfo object.

See also: - updateFromPrintlnfo

free

-free

Frees the PrintPanel object and its contents, including the accessory view.

2-586 Chapter 2: Application Kit

pickedAIiPages:

- pickedAIIPages:sender

The target of the Pages radio buttons, this method updates the text that's displayed in the
From and To (pages) fields. By default, the fields are empty if the All radio button is clicked
and set to "first" and "last" if the FromITo button is clicked. These strings can only be
changed by overriding this method.

pickedButton:

- pickedButton:sender

The target of the Print, Cancel, Preview, Save, and Fax buttons, this method ends the Print
panel's modal run. If a button other than Cancel inspired this method, then the Print panel's
Copies field and the From and To (pages) fields must be acceptable (they must hold positive
numbers), otherwise the unacceptable entry is selected and the panel isn't stopped. If the
panel is being cancelled, it's stopped regardless of the entries' acceptability. Upon
successful dismissal, the exitTag instance variable is set to the tag of the button that the user
clicked to dismiss the panel (NX_OKTAG, NX_CANCELTAG, NX_PREVIEWTAG,
NX_SAVETAG, or NX_FAXTAG).

runModal

- (int)runModal

Reads the pertinent data from the Printlnfo object into the PrintPanel object and then runs
the Print panel in a modal loop. When the user clicks one of the buttons at the bottom of
the panel (Print, Cancel, Preview, Save, or Fax), the modal loop is broken (by the
pickedButton: method) and, if user didn't cancel the panel, the new Print information is
written to the PrintInfo object. This method returns the tag of the button that the user
clicked to dismiss the panel (NX_OKTAG, NX_CANCELTAG, NX_PREVIEWTAG,
NX_SAVETAG, or NX_FAXTAG).

This method is normally invoked from Window or View's printPSCode: method. You
should note that the feat that's requested by the user (printing, faxing, etc.) is performed by
printPSCode:. Furthermore, this method doesn't hide the Print panel after the modal loop
is broken; that, too, is left to printPSCode:.

Classes: Print Panel 2-587

setAccessoryView:

- setAccessoryView:a View

Adds aView to the PrintPanel's view hierarchy. Applications can invoke this method to add
a View that contains their own controls. The panel is automatically resized to accommodate
a View. This method can be invoked repeatedly to change the accessory view depending on
the situation. If aView is nil, then the panel's current accessory view, if any, is removed.
Returns the old accessory View.

See also: - accessoryView

textWiliChange:

- (BOOL)textWiIlChange:textObject

Inovoked when the user types in the From or To (pages) fields, this method ensures that the
correct Pages radio button is selected (From/To rather than All). If the To value is greater
than the From value, the Printlnfo obje,ct will be set to print pages in reverse order.

updateFromPri ntlnfo

- updateFromPrintlnfo

Reads the application's Printlnfo object, setting the initial values of this panel. This method
is invoked automatically when the PrintPanel receives a runModal message.

See also: - finalWritePrintlnfo

2·588 Chapter 2: Application Kit

Responder

Inherits From: Object

Declared In: appkitlResponder .h

Class Description

Responder is an abstract class that forms the basis of command and event processing in the
Application Kit. Most Kit classes inherit from Responder. When a Responder object
receives an event or action message that it can't respond to-that it doesn't have a method
for-the message is sent to its next responder. For a View, the next responder is usually its
superview; the content view's next responder is the Window. Each Window, therefore, has
its own responder chain. Messages are passed up the chain until they reach an object that
can respond.

Action messages and keyboard event messages are sent first to the first responder, the
object that displays the current selection and is expected to handle most user actions within
a window. Each Window object has its own first responder. Messages the first responder
can't handle work their way up the responder chain.

This class defines the methods and instance variable that pass event and action messages
along the responder chain.

Instance Variables

id nextResponder;

nextResponder The object that will be sent event messages and action
messages that the Responder can't handle.

Classes: Responder 2-589

Method Types

Freeing an instance -free

Setting the next responder - setNextResponder:
- nextResponder

Determining the first responder - acceptsFirstResponder
- becomeFirstResponder
- resignFirstResponder

Aiding event processing - performKeyEquivalent:
- tryToPerform:with:

Forwarding event messages

Services menu support

Help menu support

Archiving

Instance Methods

acceptsFirstResponder

- mouseDown:
- rightMouseDown:
- mouseDragged:
- dghtMouseDragged:
-mouseUp:
- rightMouseUp:
- mouseMoved:
- mouseEntered:
- mouseExited:
-keyDown:
-keyUp:
- flagsChanged:
- noResponderFor:

- validRequestorForSendType:andReturnType:

- helpRequested:

- read:
- write:

- (BOOL)acceptsFirstResponder

Returns NO to indicate that, by default, a Responder doesn't agree to become the first
responder.

Before making any object the first responder, the Application Kit gives it an QPportunity to
refuse by sending it an acceptsFirstResponder message. Objects that can display a

2-590 Chapter 2: Application Kit

selection should override this default to return YES. Objects that respond with this default
version of the method will receive mouse event messages, but no others.

See also: - makeFirstResponder: (Window)

becomeFirstResponder

- becomeFirstResponder

Notifies the receiver that it has just become the first responder for its Window. This default
version of the method simply returns self. Responder subclasses can implement their own
versions to take whatever action may be necessary, such as highlighting the selection.

By returning self, the receiver accepts being made the first responder. A Responder can
refuse to become the first responder by returning nil.

becomeFirstResponder messages are initiated by the Window object (through its
makeFirstResponder: method) in response to mouse-down events.

See also: - resignFirstResponder, - makeFirstResponder: (Window)

flagsChanged:

- f1agsChanged:(NXEvent *)theEvent

Passes the flags Changed: event message to the receiver's next responder.

free

-free

Frees the space used by a Responder instance and removes it from the hash table used to
locate help. Returns self.

helpRequested:

- helpRequested:(NXEvent *)eventPtr

Invoked by a Window instance when the user has clicked for help. The Window instance
sends this message to the first responder. The receiver shows its help panel if it has one,
and if not forwards the message to the next responder. If there is no next responder to
respond, the method executes NXBeepO. Your application should never invoke this
method directly. Returns self.

Classes: Responder 2-591

keyDown:

- keyDown:(NXEvent *)theEvent

Passes the keyDown: event message to the receiver's next responder.

keyUp:

- keyUp:(NXEvent *)theEvent

Passes the keyUp: event message to the receiver's next responder.

mouseDown:

- mouseDown:(NXEvent *)theEvent

Passes the mouseDown: event message to the receiver's next responder.

mouseDragged:

- mouseDragged:(NXEvent *)theEvent

Passes the mouseDragged: event message to the receiver's next responder.

mouseEntered:

- mouseEntered:(NXEvent *)theEvent

Passes the mouseEntered: event message to the receiver's next responder.

mouseExited:

- mouseExited:(NXEvent *)theEvent

Passes the mouseExited: event message to the receiver's next responder.

mouseMoved:

- mouseMoved:(NXEvent *)theEvent

Passes the mouseMoved: event message to the receiver's next responder.

2·592 Chapter 2: Application Kit

mouseUp:
- mouseUp:(NXEvent *)theEvent

Passes the mouseUp: event message to the receiver's next responder.

nextResponder

- nextResponder

Returns the receiver's next responder.

See also: - setNextResponder:

noResponderFor:

- noResponderFor:(const char *)eventType

Responds to an event message that has reached the end of the responder chain without
finding an object that can respond. When the event is a key down, noResponderFor:
generates a beep.

performKeyEquivalent:

- (BOOL)performKeyEquivalent:(NXEvent *)theEvent

Returns NO to indicate that, by default, the Responder doesn't have a key equivalent and
can't respond to key-down events as keyboard alternatives.

The Responder class implements this method so that any object that inherits from it can be
asked to respond to a performKeyEquivalent: message. Subclasses that define objects
with key equivalents must implement their own versions of performKeyEquivalent:. If
the key in theEvent matches the receiver's key equivalent, it should respond to the event
and return YES.

See also: - performKeyEquivalent: (View and Button)

read:

- read:(NXTypedStream *)stream

Reads the Responder from the typed stream stream. Returns self.

See also: - write:

Classes: Responder 2·593

resignFirstResponder

- resignFirstResponder

Notifies the receiver that it has been asked to relinquish its status as first responder for its
Window. This default version of the method simply returns self. Responder subclasses can
implement their own versions to take whatever action may be necessary, such as
unhighlighting the selection.

By returning self, the receiver accepts the change. By returning nil, the receiver refuses to
agree to the change, and remains the first responder.

A resignFirstResponder message is sent to the current first responder (through
Window's makeFirstResponder: method) when another object is about to be made the
new first responder.

See also: - becomeFirstResponder, - makeFirstResponder: (Window)

rightMouseDown:

- rightMouseDown:(NXEvent *)theEvent

Passes the rightMouseDown: event message to the receiver's next responder.

rightMouseDragged:

- rightMouseDragged:(NXEvent *)theEvent

Passes the rightMouseDragged: event message to the receiver's next responder.

rightMouseUp:

- rightMouseUp:(NXEvent *)theEvent

Passes the rightMouseUp: event message to the receiver's next responder.

setNextResponder:

- setNextResponder:aResponder

Makes aResponder the receiver's next responder.

See also: - nextResponder

2-594 Chapter 2: Application Kit

tryToPerform:with:

- (BOOL)tryToPerform:(SEL)anAction with:anObject

Aids in dispatching action messages. This method checks to see whether the receiving object
can respond to the method selector specified by anAction. If it can, the message is sent with
anObject as an argument. Typically, anObject is the initiator of the action message.

If the receiver can't respond, tryToPerform:with: checks to see whether the receiving
object's next responder can. It continues to follow next responder links up the responder
chain until it finds an object that it can send the action message to, or the chain is exhausted.

Even if the receiver can respond to anAction messages, it can "refuse" them by having its
implementation of the anAction method return nil. In this case, the message is passed on
to the next responder in the chain.

If successful in finding a receiver that doesn't refuse the message, tryToPerform: returns
YES. Otherwise, it returns NO.

This method is used (indirectly, through the sendAction:to:from: method) to dispatch
action mess!lges from Control objects. You'd rarely have reason to use it yourself.

See also: - sendAction:to:from: (Application)

validRequestorForSendType:andReturnType:

- validRequestorForSendType:(NXAtom)typeSent
andReturnType:(NXAtom)typeReturned

Implemented by subclasses to determine what services are available at any given time ..
In order to keep the Services menu current, the Application object sends
validRequestorForSendType:andReturnType: messages to the first responder with the
send and return types for each service method of every service provider. Thus, a Responder
may receive this message many times per event. If the receiving object can place data of
type typeSent on the pasteboard and receive data of type typeReturned back, it should return
self; otherwise it should return nil. The Application object checks the return value to
determine whether to enable or disable commands in the Services menu.

Responder's implementation of this method simply forwards the message to the next
responder, so by default this method returns nil. Like untargeted action messages,
validRequestorForSendType:andReturnType: messages are passed up the responder
chain to the Window, then to the Window's delegate, and finally to the Application object
and its delegate, until an object returns self rather than nil.

typeSent and typeReturned are pasteboard types. They're NXAtoms, so you can compare
them to the types your application can send and receive by comparing pointers rather than
comparing strings. Since this method will be invoked frequently, it must be as efficient
as possible.

Classes: Responder 2-595.

Either typeSent or typeReturned may be NULL. If typeSent is NULL, the service doesn't
require data from the requesting application. If typeReturned is NULL, the service doesn't
return data to the requesting application.

When the user chooses a menu item for a service, a writeSelectionToPasteboard:types:
message is sent to the Responder (if typeSent was not NULL). The Responder writes the
requested data to the pasteboard and a remote message is sent to the service. If the service's
typeRetumed is not NULL, it places return data on the pasteboard, and the Responder
receives a readSelectionFromPasteboard: message.

The following example demonstrates an implementation of the
validRequestorForSendType:andReturnType: method for an object that can send and
receive ASCII text. Pseudocode is in italics.

- validRequestorForSendType: (NXAtom)typeSent
andReturnType: (NXAtom)typeReturned

/*

* First, check to make sure that the types are ones
* that we can handle.
*/

if ((typeSent == NXAsciiPboardType I I typeSent == NULL) &&
(typeReturned == NXAsciiPboardType I I typeReturned == NULL)

/*

* If so, return self if we can
* what it wants and accept what

*/

if ((there is a selection) II
((the text is edi table) II

return self;

/*

* Otherwise, return the default.
*/

give the service
it gives back.

typeSent == NULL) &&
typeReturned == NULL)

return [super validRequestorForSendType:typeSent
andReturnType:typeReturned] ;

See also: - registerServicesMenuSendTypes:andReturnTypes: (Application),
- writeSelectionToPasteboard:types: (Application),
- readSelectionFromPasteboard: (Application)

2-596 Chapter 2: Application Kit

write:

- write:(NXTypedStream *)stream

Writes the receiving Responder to the typed stream stream. The next responder is not
explicitly written. Returns self.

See also: - read:

Classes: Responder 2-597

SavePanel

Inherits From: Panel: Window: Responder: Object

Declared In: appkitiSavePanel.h

Class Description

The SavePanel provides a simple way for an application to query the user for the name of
a file to use when saving a document or other data. It allows the application to restrict the
file name to have a certain file type, as specified by a file name extension. There is one and
only one SavePanel in an application and the new method returns a pointer to it.

Whenever the user actually decides on a file name, the message panelVaIidateFilenames:
is sent to the SavePanel's delegate (if it responds to that message). The delegate can then
determine whether that file name can be used; it returns YES if the file name is valid, or NO
if the SavePanel should stay up and wait for the user to type in a different file name. The
delegate can also implement a panel:filterFile:inDirectory: method to test that both the
file name and the directory are valid.

Instance Variables

idform;

id browser;

id okButton;

id accessoryView;
id separator;

char *filename;

char *directory;

const char **filenames;

char *requiredType;

2-598 Chapter 2: Application Kit

struct _spFlags {
unsigned int opening: 1 ;
unsigned int exitOk: 1 ;
unsigned int allowMultiple: 1;
unsigned int dirty: 1 ;
unsigned int invalidateMatrices: 1;
unsigned int filtered: 1;
spFlags;

unsigned short directorySize;

form

browser

okButton

accessory View

separator

filename

directory

filenames

requiredType

spFlags.opening

spFlags.exitOk

spFlags.allow Multiple

spFlags.dirty

spFlags.invalidateMatrices

spFlags.filtered

directorySize

The form in which the user types file names

The browser displaying the file hierarchy

The OK button

Application-customized area

The line separating the icon from the rest of the panel

The chosen file name

The directory of the chosen file

The list of chosen files

The type of file to save

Specifies whether file is being opened or saved

Exit status

Whether to allow multiple files

Dirty flag for invisible updates

Whether the matrices are valid

Whether types are filtered

Length of the directory string

Classes: SavePanel 2-599

Method Types

Creating and freeing a SavePanel

Setting the SavePanel class

Customizing the SavePanel

+ newContent: style: backing: buttonMask:defer:
- free

+ setSavePanelFactory:

- setAccessoryView:
- accessoryView
- setTitle:
- setPrompt:

Setting directory and file type - setDirectory:
- setRequiredFileType:
- requiredFileType

Handling file packages - doesTreatFilePackagesAsDirectories
- setTreatsFilePackagesAsDirectories:

Running the SavePanel - runModal
- runModaIForDirectory:file:

Reading save information - directory
- filename

Completing a partial filename - commandKey:

Action methods - cancel:
-ok:

Responding to user input - selectText:
- textDidGetKeys:isEmpty:
- textDidEnd:endChar:

Setting the delegate - setDelegate:
- delegate (Window)

Class Methods

alloe

+ alloc

Generates an error message. This method cannot be used to create SavePal1el instances.
Use the newContent:style: backing: buttonMask:defer: method instead.

See also: + newContent:style: backing: buttonMask:defer:

2-600 Chapter 2: Application Kit

allocFromZone:

+ allocFromZone:(NXZone *)zone

Generates an error message. This method cannot be used to create SavePanel instances.
Use the newContent:style: backing: buttonMask:defer: method instead.

See also: + newContent:style:backing:buttonMask:defer: .

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style: (int)aStyle
backing: (int)bufferingType
buttonMask:(int)mask
defer: (BOOL)jlag

Creates, if necessary, and returns a new instance of SavePanel. Each application shares just
one instance of SavePanel; this method returns the shared instance if it exists. A simpler
interface is available via the inherited method new, which invokes this method with all the
appropriate parameters.

See also: + setSavePanelFactory:

setSavePanelFactory:

+ setSavePanelFactory:class

Sets the class from which SavePanel will be instantiated. class should be a subclass of
SavePanel. If you want to use your own SavePanel subclass, your application must invoke
this method before it creates the shared instance of SavePanel, or else free the shared
instance before invoking this method. When the newContent:style: backing:
buttonMask:defer: method is invoked, the object it returns will belong to class.

See also: + newContent:style: backing: buttonMask:defer:

Instance Methods

accessoryView

- accessoryView

Returns the view set by setAccessoryView:.

See also: - setAccessoryView:

Classes: SavePanel 2·601

cancel:

- cancel:send~r

This method is the action message sent by the Cancel button to the SavePanel. Returns self.

commandKey:

- (BOOL)commandKey:(NXEvent *)theEvent

This method is used to accept command-key events. If theEvent contains a
Command-Space, the SavePanel will do file name completion; if it contains a Command-H,
the SavePaneljumps to the user's home directory. Other command-key events are ignored.
Returns YES.

directory

- (const char *)directory

Returns the path of the directory that the SavePanel is currently showing.

doesTreatFilePackagesAsDirectories

- (BOOL)doesTreatFilePackagesAsDirectories

Tests whether the SavePanel displays file packages to the user as directories. Returns YES
(the default) if the user is shown files and subdirectories within a file package. Returns NO
if the user is shown only file package names, with no indication that they are directories.

See also: - setTreatsFilePackagesAsDirectories:

filename

- (const char *)filename

Returns the filename-including the path to the file-that the SavePanellast accepted.

free

-free

Frees all storage used by the SavePanel.

2-602 Chapter 2: Application Kit

ok:

- ok:sender

This method is the action message sent by the OK button to the SavePanel.

requiredFileType

- (const char *)requiredFileType

Returns the last type set by setRequiredFileType:.

runModal

- (int)runModal

Displays the panel and begins its event loop. Invokes Application's runModalFor:
method with self as the argument. Returns the constant returned by that method, depending
on the method used to stop the modal event loop.

See also: - runModalFor: (Application)

runModaIForDirectory:file:

- (int)runModaIForDirectory:(const char *)path file:(const char *)filename

Initializes the panel to the file specified by path and name, then displays it and begins its
modal event loop. Invokes Application's runModalFor: method with self as the
argument. Returns the constant returned by that method, depending on the method used to
stop the modal event loop.

See also: - runModalFor: (Application)

selectText:

- selectText:sender

Advances the current browser selection one line when Tab is pressed (goes back one line
when Shift-Tab is pressed).

Classes: SavePanel 2-603

setAccessoryView:

- setAccessoryView:a View

aView should be the top View in a view hierarchy which will be added just above the OK
and Cancel buttons at the bottom of the panel. The panel is automatically resized to
accommodate a View. This method can be called repeatedly to change the accessory view
depending on the situation. If a View is nil, any accessory view in the panel will be
removed.

setDelegate:

- setDelegate:anObject

Makes anObject the SavePanel's delegate. Returns self.

setDirectory:

- setDirectory:(const char *)path

Sets the current path in the SavePanel browser. Returns self.

setPrompt:

- setPrompt:(const char *)prompt

Sets the title for the form field in which users type their entries into the panel. This title will
appear on all SavePanels (or all OpenPanels if the receiver of this message is an
OpenPanel) in your application. "File:" is the default prompt string. Returns self.

setRequiredFileType:

- setRequiredFileType:(const char *)type

Specifies the type, a file name extension to be appended to any selected files that don't
already have that extension; for example, "nib". type should not include the period that
begins the extension. Be careful to invoke this method each time the SavePanel is used for
another file type within the application. Returns self.

2·604 Chapter 2: Application Kit

setTreatsFilePackagesAsDirectories:

-setTreatsFilePackagesAsDirectories: (BOOL)jlag

Sets the SavePanel's behavior for displaying file packages to the user. Ifjlag is YES, the
user is shown files and subdirectories within a file package. If NO, the user is shown only
file package names, with no indication that they are directories.

See also: - doesTreatFilePackagesAsDirectories

setTitle:

- setTitle:(const char *)newTitle

Sets the title of the SavePanel to newTitle and returns self. By default, "Save" is the title
string. If a SavePanel is adapted to other uses, its title should reflect the user action that
brings it to the screen. .

textDidEnd:endChar:

- textDidEnd:textObject endChar:(unsigned short)endChar

Determines whether the key that ended text was Tab or Shift-Tab so that selectText: knows
whether to move forward or backwards. Returns self.

textDidGetKeys:isEmpty:

- textDidGetKeys:textObject isEmpty:(BOOL)jlag

Invoked by the Panel's text to indicate whether there is any text in the Panel. Disables the
OK button if there is no text in the Panel.

Methods Implemented by the Delegate

panel:compareFilenames::checkCase:

- (int)panel:sender
compareFilenames:(const char *)fileNamel :(const char *)fileName2
checkCase:(BOOL)jlag

Controls the ordering of files presented by the SavePanel. This method should return 1 if
fileNamel should precedefileName2, 0 if the two names are equivalent, and -1 iffileName2
should precede fileNamel.

Classes: SavePanel 2-605

Don't reorder file names in the SavePanellightly, since it may confuse the user to have files
in one SavePanel or OpenPanel ordered differently than those in other such panels or in the
Workspace Manager. SavePanel and OpenPanel's default behavior is to order files as they
are in the Workspace Manager file viewer. Note also that implementing this method will
reduce the operating performance of the panel.

panel:filterFile:inDirectory:

- (BOOL)panel:sender
filterFile:(canst char *)filename
inDirectory:(canst char *)directory

Sent to the panel's delegate. The delegate can then determine whether thatfilename can be
saved in the directory; it returns YES if the filename and directory are valid, or NO if the
SavePanel should stay up and wait for the user to type in a different file name or select
another directory.

panelValidateFilenames:

- (BOOL)paneIValidateFilenames:sender

Sent to the panel's delegate. The delegate can then determine whether the current file name
in the SavePanel can be used; it returns YES if the file name is valid, or NO if the SavePanel
should stay up and wait for the user to type in a different file name. The delegate can get
the file name in the SavePanel by sending a filename message back to sender.

2-606 Chapter 2: Application Kit

Seroller

Inherits From: Control : View : Responder: Object

Declared In: appkitiScroller.h

Class Description

The Scroller class defines a Control that's used by a ScrollView object to position a
document that's too large to be displayed in its entirety within a View. A Scroller is
typically represented on the screen by a bar, a knob, and two scroll buttons, although it may
contain only some of these. The knob indicates both the position within the document and
the amount displayed relative to the size of the document. The bar is the rectangular region
that the knob slides within. The scroll buttons allow the user to scroll in small increments
by clicking, or in large increments by Alternate-clicking. In discussions of the Scroller
class, a small increment is referred to as a "line increment" (even if the Scroller is oriented
horizontally), and a large increment is referred to as a "page increment," although a page
increment actually advances the document by one windowful. When you create a Scroller,
you can specify either a vertical or a horizontal orientation.

As a Control, a Scroller handles mouse events and sends action messages to its target
(usually its parent ScrollView) to implement user-controlled scrolling. The Scroller must
also respond to messag~s from a ScrollView to represent changes in document positioning.

Scroller is a public class primarily for programmers who decide not to use a ScrollView but
want to present a consistent user interface. Its use is not encouraged except in cases where
the porting of an existing application is made more straightforward. In these situations, you
initialize a newly created Scroller with initFrame:. Then, you use setTarget: (Control) to
set the object that will receive messages from the Scroller, and you use setAction: (Control)
to specify the message that will be sent to the target by the Scroller. When your target
receives a message from the Scroller, it will probably need to query the Scroller using the
hitPart and floatValue methods to determine what action to take.

The Scroller class has several constants referring to the parts of a Scroller. A scroll button
with an up arrow (or left arrow, if the Scroller is oriented horizontally) is known as a
"decrement line" button if it receives a normal click, and as a "decrement page" button if
it receives an Alternate-click. Similarly, a scroll button with a down or right arrow
functions as both an "increment line" button and an "increment page" button. The
constants defining the parts of a Scroller are as follows:

Classes: Scroller 2-607

Constant

NX_NOPART
NX_KNOB
NX_DECPAGE
NX_INCPAGE
NX_DECLINE
NX_INCLINE
NX_KNOBSLOT or
NX_JUMP

Instance Variables

float curValue;
float perCent;
int hitPart;
id target;
SEL action;
struct _sFlags {

Refers To

No part of the Scroller
The knob
The button that decrements a page (up, left arrow)
The button that increments a page (down, right arrow)
The button that decrements a line (up, left arrow)
The button that increments a line (down, right arrow)
The bar

unsigned int isHoriz: 1 ;
unsigned int arrowsLoc:2;
unsigned int partsUsable:2;

} sFlags;

curValue

perCent

hitPart

target

action

sFlags.isHoriz

sFlags.arrowsLoc

sFlags.partsUsable

2-608 Chapter 2: Application Kit

The position of the knob, from 0.0 (top or left position)
to l.0.

The fraction of the bar the knob fills, from 0.0 to 1.0.

Which part got the last mouse-down event.

The target of the Scroller.

The action sent to Scroller's target.

True if this is a horizontal Scroller.

The location of the scroll buttons within the Scroller.

The parts of the Scroller that are currently displayed.

Method Types

Initializing a Scroller

Laying out the Scroller

Setting Scroller values

Resizing the Scroller

Displaying

Target and action

Handling events

Archiving

Instance Methods

acceptsFirstMouse

- initFrame:

- ca1cRect:forPart:
- checkSpaceForParts
- setArrowsPosition:

- floatValue
- setFloatValue:
- setFloatValue::

- sizeTo::

- draw Arrow::
-drawKnob
- drawParts
- drawSelf::
- highlight:

- setAction:
- action
- setTarget:
- target

- acceptsFirstMouse
- hitPart
- mouseDown:
- testPart:
- trackKnob:
- trackScrollButtons:

- awake
- read:
- write:

- (BOOL)acceptsFirstMollse

Overrides inherited methods to ensure that the Scroller will receive the mouse-down event
that made its window the key window. Returns YES.

Classes: Scroller 2-609

action
- (SEL)action

Returns the action of the Scroller-in other words, the selector for the method the Scroller
will invoke when it receives a mouse-down event.

See also: - target, - setAction:

awake
-awake

Overrides Object's awake method to perform additional initialization. After a Scroller has
been read from an archive file, it will receive this message. You should not invoke this
method directly. Returns self.

See also: - read

calcRect:forPart:
- (NXRect *)calcRect:(NXRect *)aRect forPart:(int)partCode

Calculates the rectangle (in the Scroller's drawing coordinates) that encloses a particular
part of the Scroller. This rectangle is returned in aRect. partCode is NX_DECPAGE,
NX_KNOB, NX_INCPAGE, NX_DECLINE, NX_INCLINE, or NX_KNOBSLOT. This
method is useful if you override the drawArrow:: or drawKnob method. Returns aRect
(the pointer you passed it).

See also: - drawArrow::, - drawKnob

checkSpaceForParts
- checkSpaceForParts

Checks to see if there is enough room in the Scroller to display the knob and buttons and
sets sFlags.partsUsable to one of the following values:

Value

NX_SCROLLERNOPARTS
NX_SCROLLERONLYARROWS
NX_SCROLLERALLPARTS

Meaning

Scroller has no usable parts, only the bar.
Scroller has only scroll buttons.
Scroller has all parts.

This method is used by sizeTo::; you should not invoke this method yourself. Returns self.

See also: - sizeTo::

2-610 Chapter 2: Application Kit

drawArrow::

- drawArrow:(BOOL)upOrLeft :(BOOL)highlight

Draws a scroll button. If upOrLeft is NO, this method draws the down or right scroll button
(NX_INCLINE), depending on whether the Scroller is oriented vertically or horizontally.
If upOrLeft is YES, this method draws the up or left scroll button (NX_DECLINE). The
highlight state is determined by highlight. If highlight is YES, the button is drawn
highlighted, otherwise it's drawn normally. This method is invoked by drawSelf:: and
mouse-down events. It's a public method so that you can override it; you should not invoke
it directly. Returns self.

See also: - drawKnob, - caIcRect:forPart:

drawKnob

-drawKnob

Draws the knob. Don't send this message directly; it's invoked by drawSelf:: and
mouse-down events. Returns self.

See also: - drawArrow::, - caIcRect:forPart:

drawParts

...:.. drawParts

This method caches images for the various graphic entities composing the Scroller. It's
invoked only once by the first of either initFrame: or awake. You may want to override
this method if you alter the look of the Scroller, but you should not invoke it directly.
Returns self.

drawSelf::

- drawSelf:(const NXRect *)reets :(int)reetCount

This method draws the Scroller. It's used by the display methods, and you should not
invoke it directly. reets is an array of rectangles that need to be covered, with the first one
being the union of the subsequent rectangles. reetCount is the number of elements in this
array. Returns self.

See also: - display::: (View)

Classes: Scroller 2-611

floatValue

- (float)floatValue

Returns the position of the knob, a value in range 0.0 to 1.0. A value of 0.0 indicates that
the knob is at the top or left position within the bar, depending on the Scroller' s orientation.

See also: - setFloatValue::

highlight:

- highlight:(BOOL)flag

This method highlights or unhighlights the scroll button that the user clicked on. The
Scroller invokes this method while tracking the mouse, and you should not invoke it
directly. Ifflag is YES, the button is drawn highlighted, otherwise it's drawn normally.
Returns self.

See also: - drawArrow::

hitPart

- (int)hitPart

Returns the part of the Scroller that is causing the current action, typically the part that
received a mouse-down event. See the Scroller class description for possible values. This
method is typically invoked by the ScrollView to determine what action to take when the
ScrollView receives an action message from the Scroller.

See also: - action

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes a newly allocated Scroller with frame frameRect, which cannot be NULL. If
frameRect's width is greater than its height, a horizontal Scroller is created; otherwise, a
vertical Scroller is created. The Scroller is initially disabled. If the Scroller is a subview
of a ScrollView, its width and height are reset automatically by the ScrollView's tile
method; in this case, the width of vertical Scrollers and the height of horizontal Scrollers
are set to NX_SCROLLERWIDTH. This method is the designated initializer for the
Scroller class. Returns self.

See also: - setEnabled: (Control), - tile (ScrollView)

2-612 Chapter 2: Application Kit

mouseDown:

- mouseDown:(NXEvent *)theEvent

This method acts as a dispatcher when a mouse-down event occurs in the Scroller. It
determines what part of the Scroller was clicked, and invokes the appropriate methods
(such as trackKnob: or trackScrollButtons:). You should not invoke this method
directly. Returns self.

read:

- read:(NXTypedStream *)stream

Reads the Scroller from the typed stream stream, and sets all aspects of its state. Returns self.

See also: - write:, - awake

setAction:

- setAction:(SEL)aSeiector

Sets the action of the Scroller. When the user manipulates the Scroller, the Scroller sends
its action message to its target, which (if it's a ScrollView) will then query the Scroller to
determine how to respond. Returns self.

See also: - setTarget:, - action

setArrowsPosition:

- setArrowsPosition:(int)where

Sets the location of the scroll buttons within the Scroller to where, or inhibits their display,
as follows:

Value Meaning

NX_SCROLLARROWSMAXEND Buttons at bottom or right
NX_SCROLLARROWSMINEND Buttons at top or left
NX_SCROLLARROWSNONE No buttons

Returns self.

Classes: Scroller 2-613

setFloatValue:

- setFloatValue:(float)aFloat

Sets the position of the knob to aFloat, which is a value between 0.0 and 1.0. This method
is the same as setFloatValue:: except it doesn't change the size of the knob. Returns self.

See also: - setFloatValue::, - floatValue

setFloatValue::

- setFloatValue:(float)aFloat :(float)knobProportion

Sets the position and size of the knob. Sets the position within the bar to aFloat, which is
a value between 0.0 and 1.0. A value of 0.0 positions and displays the knob at the top or
left of the bar, depending on the orientation of the Scroller. The size of the knob is
determined by knobProportion, which is a value between 0.0 and 1.0. A value of 0.0 sets
the knob to a predefined minimum size, and a value of 1.0 makes the knob fill the bar.
Returns self.

See also: - setFloatValue:, - floatValue

setTarget:

- setTarget:anObject

Sets the target of the Scroller to anObject. The Scroller's target receives the action message
set by setAction: when the user manipulates the Scroller. Returns self.

See also: - target, - setAction:

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Overrides the default View method so the Scroller can check which parts can be drawn.
This method is typically invoked by tile (ScrollView), which sets the Scroller to a constant
width (or height, if the Scroller is horizontal) of NX_SCROLLERWIDTH. Returns self.

See also: - checkSpaceForParts, - tile (ScrollView)

2-614 Chapter 2: Application Kit

target

- target

Returns the Scroller' s target.

See also: - setTarget:, - action

testPart:

- (int)testPart:(const NXPoint *)thePoint

Returns the part of the Scroller that lies under thePoint. See the Scroller class description
for possible values.

trackKnob:

- trackKnob:(NXEvent *)theEvent

Tracks the knob and sends action messages to the Scroller's target. This method is invoked
when the Scroller receives a mouse-down event in the knob. You should not invoke this
method directly. Returns self.

See also: - mouseDown:, - action, - target

trackScrollButtons:

- trackScrollButtons:(NXEvent *)theEvent

Tracks the scroll buttons and sends action messages to the Scroller's target. This method
is invoked when the Scroller receives a mouse-down event in a scroll button. You should
not invoke this method directly. Returns self.

See also: - mouseDown:, - action, - target

write:

- write:(NXTypedStream *)stream

Writes the Scroller to the typed stream stream, saving all aspects of its state. Returns self.

See also: - read:

Classes: Scroller 2-615

ScrollVielN

Inherits From: View: Responder: Object

Declared In: appkitiScrollView.h

Class Description

A ScrollView object lets the user interact with a document that's too large to be shown in
its entirety within a View and must therefore be scrolled. The responsibility of a
ScrollView is to coordinate scrolling behavior between Scroller objects and a Clip View
object. Thus, the user may drag the knob of a Scroller and the ScrollView will send a
message to its Clip View to ensure that the viewed portion of the document reflects the
position of the knob. Similarly, the application can change the viewed position within a
document and the ScrollView will send a message to the Scrollers advising them of this
change.

The ScrollView has at least one subview (a ClipView object), which is called the content
view. The content view in turn has a sub view called the document view, which is the view
to be scrolled. When a ScrollView is created, it has neither a vertical nor a horizontal
scroller. If Scrollers are required, the application must send
setVertScrollerRequired: YES and setHorizScrollerRequired: YES messages to the
Scroll View; the content view is resized to fill the area of the ScrollView not occupied by
the Scrollers.

When the application modifies the scroll position within the document, it should send a
refiectScroll: message to the ScrollView, which will then query the content view and set
the Scroller(s) accordingly. The refiectScroll: message may also cause the ScrollView to
enable or disable the Scrollers as required.

Instance Variables

id vScroller;
id hScroller;
id contentView;
float pageContext;
float lineAmount;

2-616 Chapter 2: Application Kit

The vertical scroller.

The horizontal scroller.

The content view.

vScroller

hScroller

contentView

pageContext The amount from the previous page remaining in the
content view after a page scroll.

lineAmount The number of units to scroll for a line scroll.

Method Types

Initializing a ScrollView -:- initFrame:

Determining component sizes - getContentSize:
- getDoc VisibleRect:

Laying out the ScrollView + getContentSize:forFrameSize:horizScroller:
vertScroller: borderType:

+ getFrameSize:forContentSize:horizScroller:
vertScroller: borderType:

- resizeSubviews:
- setHorizScrollerRequired:
- set VertScrollerRequired:
- tile

Managing component View.s - setDoc View:
-docView
- 'setHorizScroller:
- horizScroller
- setVertScroller:
- vertScroller
- reflectScroll:

Modifying graphic attributes - setBorderType:
- borderType
- setBackgroundGray:
- backgroundGray
- setBackgroundColor:
- backgroundColor

Setting scrolling behavior - setCopyOnScroll:
- setDisplayOnScroll:
- setDynamicScrolling:
- setLineScroll:
- setPageScroll:

Classes: ScrollView 2-617

Displaying

Managing the cursor

Archiving

Class Methods

- drawS elf: :

- setDocCursor:

- read:
- write:

getContentSize:forFrameSize:horizScroller:vertScroller:borderType:

+ getContentSize:(NXSize *)cSize
forFrameSize:(const NXSize *)fSize
horizScroller:(BOOL)hFlag
vertScroller: (BOOL)v Flag
borderType:(int)aType

Calculates the size of a content view for a ScrollView with frame sizefSize. hFlag is YES
if the ScrollView has a horizontal scroller, and vFlag is YES if it has a vertical scroller.
aType indicates whether there's a line, a bezel, or no border around the frame of the
ScrollView, and is NX_LINE, NX_BEZEL, or NX_NOBORDER. The content view size
is placed in the structure specified by csize. If the ScrollView object already exists, you can
send it a getContentSize: message to get the size of its content view. Returns self.

See also: + getFrameSize:forContentSize: •.. , - getContentSize:

getFrameSize:forContentSize:horizScroller:vertScroller:borderType:

+ getFrameSize:(NXSize *)fSize
forContentSize:(const NXSize *)cSize
horizScroller:(BOOL)hFlag
vertScroller:(BOOL)vFlag
borderType: (int)aType

Calculates the size of the frame required for a ScrollView with a content view size cSize.
The calculated frame size is placed in the structure specified by fSize. hFlag is YES if the
ScrollView has a horizontal scroller, and vFlag is YES if it has a vertical scroller. aType
indicates whether there's a line, a bezel, or no border around the frame of the ScrollView,
and is NX_LINE, NX_BEZEL, or NX_NOBORDER. Returns self.

See also: + getContentSize:forFrameSize: •.. , - getContentSize:

2-618 Chapter 2: Application Kit

Instance Methods

backgroundColor

- (NXColor)backgroundColor

Returns the color of the content view's background.

See also: - setBackgroundColor:, - background Gray,
- backgroundColor (ClipView)

backgroundGray

- (ftoat)backgroundGray

Returns the gray value of the content view's background.

See also: - setBackgroundGray:, - backgroundColor, - backgroundGray (ClipView)

borderType

- (int)borderType

Returns a value that represents the type of border surrounding the ScrollView, one of
NX_NOBORDER, NX_LINE, NX_BEZEL, or NX_GROOVE.

See also: - setBorderType:

docView
. -docView

Returns the current document view.

See also: - setDocView:, - docView (ClipView)

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the ScrollView, but not its subviews. Returns self.

See also: - borderType, - display::: (View)

Classes: ScrollView 2-619

getContentSize:

- getContentSize:(NXSize *)theSize

Places the size of the ScrollView's content view in the structure specified by theSize.
theSize is specified in the coordinates of the ScrollView's superview. Returns self.

See also: + getContentSize:forFrameSize:horizScroller:vertScroller: borderType:

getDocVisibleRect:

- getDocVisibleRect:(NXRect *)aRect

Gets the visible portion of the document view by forwarding this message to the content
view. Returns the value returned by the forwarded message.

See also: - getDocVisibleRect: (Clip View) , - getVisibleRect: (View)

horizScrolier

- horizScroller

Returns the horizontal scroller, a Scroller object.

See also: - vertScroller

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes the ScrollView. The ScrollView's frame rectangle is made equivalent to that
pointed to by frameRect, which is expressed in the ScrollView's superview's coordinates.
This method installs a Clip View as the content view. Clipping is turned off (the ScrollView
relies on the content view for clipping), opacity is set to YES, and autoresizing is set to
YES. When created, the ScrollView has no Scrollers, and its content view fills its bounds
rectangle. This method is the designated initializer for the ScrollView class, and can be
used to initialize a ScrollView allocated from your own zone. Returns self.

See also: - setHorizScrollerRequired:, - setVertScrollerRequired:, - setLineScroll:,
- setPageScroll:

2-620 Chapter 2: Application Kit

read:

- read:(NXTypedStream *)stream

Reads the ScrollView from the typed stream stream. This method reads the ScrollView, its
scrollers, and its content view, which in tum causes the content view's document view to
be read. Returns self.

See also: - write:

reflectScroll:

- refiectScroll:c View

Moves, resizes, or disables the Scrollers when the document is auto scrolled or changes size.
Returns self.

resizeSubviews:

- resizeSubviews:(const NXSize *)oldSize

Overrides View's resizeSubviews: to retile the ScrollView. This method is invoked when
the ScrollView receives a sizeTo:: message. Returns self.

See also: - tile

setBackgroundColor:

- setBackgroundColor:(NXColor)color

Sets the color of the content view's background. This color is used to paint areas inside the
content view that aren't covered by the document view. Returns the content view.

See also: - background Color, - setBackgroundGray:,
- setBackgroundColor: (ClipView)

Classes: ScrollView 2-621

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the gray value of the content view's background. This gray is used to paint areas inside
of the content view that aren't covered by the document view. Returns the content view.

See also: - backgroundGray, - setBackgroundColor:,
- setBackgroundGray: (ClipView)

setBorderType:

- setBorderType:(int)aType

Determines the border type of the ScrollView. aType must be NX_NOBORDER,
NX_LINE, or NX_BEZEL. The default is NX_NOBORDER. Returns self.

See also: - borderType

setCopyOnScroll:

- setCopyOnScroll:(BOOL)jiag

Determines whether the bits on the screen will be copied when scrolling occurs. This
method simply invokes (and returns the value returned by) the content view's
setCopyOnScroll: method.

See also: - setCopyOnScroll: (ClipView)

setDisplayOnScroll :

- setDisplayOnScroll:(BOOL)jiag

Determines whether the results of scrolling will be immediately displayed. This
method simply invokes (and returns the value returned by) the content view's
setDisplayOnScroll: method.

See also: - setDisplayOnScroll: (ClipView), - display (View), - invalidate (View)

2-622 Chapter 2: Application Kit

setDocCursor:

- setDocCursor:anObj

Sets the cursor to be used inside the content view. Returns the old cursor.

See also: - setDocCursor: (ClipView)

setDocView:

- setDoc View:a View

Attaches the document view. Returns the old document view, or nil if there was none.

See also: - docView, - setDocView: (ClipView)

setDynamicScrolling:

- setDynamicScrolling:(BOOL)fiag

Determines whether dragging a scroller's knob will result in dynamic redisplay of the
document. Iffiag is YES, scrolling will occur as the knob is dragged. Iffiag is NO,
scrolling will occur only after the knob is released. By default, scrolling occurs as the knob
is dragged. Returns self.

setHorizScroller:

- setHorizScroller:anObject

Sets the horizontal scroller to anObject (which should be an instance of a subclass of
Scroller). This method sets the target of anObject to the ScrollView and sets anObject's
action to the ScrollView's private method that responds to the Scrollers and invokes the
appropriate scrolling behavior. To make the scroller visible, you must send a
setHorizScrollerRequired: YES message to the ScrollView. Returns the old scroller.

See also: - setVertScroller:

setHorizScrollerRequired:

- setHorizScrollerRequired:(BOOL)fiag

Adds or removes a horizontal scroller for the ScrollView. Iffiag is YES, the ScrollView
creates a new Scroller and shrinks its other subviews to accommodate it. Iffiag is NO, the
Scroller is removed from the ScrollView and the other subviews are resized to fill the

Classes: Serol/View 2-623

ScrollView. When a ScrollView is created, it doesn't have a horizontal scroller. Once a
Scroller is added, it will be enabled and disabled automatically by the ScrollView. This
method retiles and redisplays the ScrollView. Returns self.

See also: - tile

setLineScroll:

- setLineScroll: (float)value

Sets the amount to scroll the document view when the ScrollView receives a message to
scroll one line. value is expressed in the content view's coordinates. Returns self.

See also: - setPageScroll:

setPageScroll:

- setPageScroll:(float)value

Sets the amount to scroll the document view when the ScrollView receives a message to
scroll one page. value is the amount common to the content view before and after the page
scroll and is expressed in the content view's coordinates. Therefore, setting value to 0.0
implies that the entire content view is replaced when a page scroll occurs. Returns self.

See also: - setLineScroll:

setVertScroller:

- set VertScroller:anObject

Sets the vertical scroller to anObject (which should be an instance of a subclass of Scroller).
This method sets the target of anObject to the ScrollView and sets anObject's action to the
ScrollView's private method that responds to the Scrollers and invokes the appropriate
scrolling behavior. To make the scroller visible, you must send a
setHorizScrollerRequired:YES message to the ScrollView. Returns the old scroller.

See also: - setHorizScroller:

2-624 Chapter 2: Application Kit

setVertScrollerRequired:

- setVertScrollerRequired:(BOOL)jlag

Adds or removes a vertical scroller to the ScrollView. Ifjlag is YES, the ScrollView creates
a new Scroller and shrinks its other subviews to accommodate it. Ifjlag is NO, the Scroller
is removed from the ScrollView and the other subviews are resized to fill the ScrollView.
When a ScrollView is created, it doesn't have a vertical scroller. Once a Scroller is added,
it will be enabled and disabled automatically by the ScrollView. This method retiles and
redisplays the ScrollView. Returns self.

See also: - tile

tile

- tile

Determines the layout of the ScrollView by setting the sizes and locations of the object's
subviews. You rarely send a tile message directly; you may override it if you need to have
the ScrollView manage additional views. A tile message is sent whenever the ScrollView
is resized, or a vertical or horizontal scroller is added or removed. This method doesn't
redisplay the ScrollView. Returns self.

See also: - setVertScrollerRequired:, - setHorizScrollerRequired:,
- resizeSubviews:

vertScroller

- vertScroller

Returns the vertical scroller, a Scroller object.

See also: - horizScroller

write:

- write:(NXTypedStream *)stream

Writes the ScrollView to the typed stream stream. This method writes the ScrollView, its
scrollers, and its content view, which in tum causes the content view's document view to
be written. Returns self.

See also: - read:

Classes: Serol/View 2-625

SelectionCel1

Inherits From: Cell : Object

Declared In: appkitlSelectionCell.h

Class Description

SelectionCell is a subclass of Cell used to implement the visualization of hierarchical lists
of names. If the cell is a leaf, it displays its text only; otherwise it also displays a right
arrow, similar to the way MenuCell indicates submenus.

Instance Variables

None declared in this class.

Method Types

Initializing a SelectionCell - init
- initTextCell:

Determining component sizes - calcCellSize:inRect

Accessing graphic attributes - setLeaf:
- isLeaf
-isOpaque

Displaying - drawSelf:in View:
- draw Inside: in View:
- highlight in View: lit:

Archiving -awake

2-626 Chapter 2: Application Kit

Instance Methods

awake

-awake

Caches the arrow images if they aren't already, and returns the receiver, a newly un archived
instance of SelectionCell. You shouldn't invoke this method; it's invoked as part of the
read: method used to unarchive objects from typed streams.

See also: - read: (Cell)

calcCeIiSize:inRect:

- calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns by reference the minimum width and height required for displaying the
SelectionCell in aRect. Always leaves enough space for a menu arrow. Returns self.

drawlnside:inView:

- drawlnside:(const NXRect *)cellFrame inView:controlView

Displays the SelectionCell within cellFrame in controlView. You never invoke this method
directly; it's invoked by the drawSelf:: method of controlView. Override this method if
you create a subclass of SelectionCell that does its own drawing. Returns self.

See also: - drawSelf:in View:, -lockFocus (View)

drawSelf:inView:

- drawSelf:(const NXRect *)cellFrame inView:controlView

Simply invokes drawlnside:in View: since a SelectionCell has nothing to draw except its
insides. You never invoke this method directly; it's invoked by the drawSelf:: method of
controlView.

See also: - drawlnside:in View:

Classes: SelectionCell 2-627

highlight:inView:lit:

- highlight:(const NXRect *)cellFrame
in View:a View
lit: (BOOL)jlag

Sets the SelectionCell's highlighted state tojlag and redraws it within cellFrame in aView.
Returns self.

See also: - highlight: in View: lit: (Cell)

init

- init

Initializes and returns the receiver, a new instance of SelectionCell, with the default title
"Listltem". The new instance is set as a leaf.

See also: - initTextCell:, - setLeaf:

initTextCell:

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of SelectionCell, with aString as its
title. The new instance is set as a leaf. This method is the designated initializer for
SelectionCell; override this method if you create a subclass of SelectionCell that performs
its own initialization.

See also: - init, - setLeaf:

isLeaf

- (BaOL)isLeaf

Returns YES if the cell is a leaf, NO otherwise. If the cell is a leaf, it displays its text
only; otherwise, it also displays a right arrow like the one that MenuCell displays to
indicate submenus.

See also: - setLeaf:

2-628 Chapter 2: Application Kit

isOpaque

- (BOOL)isOpaque

Returns YES, since SelectionCells draw over all the pixels in their frames.

setLeaf:

- setLeaf:(BOOL)jlag

Ifjlag is YES, sets the Cell to be a leaf, if NO, sets it to be a branch. Leaf SelectionCells
display text only; branch SelectionCells also display a right arrow like that displayed by
MenuCell to indicate submenu entries. This method does not display the SelectionCell,
even if autodisplay is on. Returns self.

See also: - isLeaf:

Classes: SelectionCell 2-629

Slider

Inherits From: Control: View: Responder: Object

Declared In: appkitiSlider .h

Class Description

Slider is a type of Control with a sliding knob that can be moved to represent a value
between a minimum and a maximum. A Slider may be either horizontal or vertical, but its
minimum value is always at the left or bottom end of the bar, and the maximum at the right
or top. By default, a Slider is a continuous Control: it sends it action message to its target
continuously while the user drags its knob. To configure a Slider to send its action only
when the mouse is released, send setContinuous: with an argument of NO.

A Slider can be configured to display an image, a title, or both, in its bar behind its knob.
A Slider's title can be drawn in any gray level or color, and in any font available. A Slider's
value can be set programmatically with any of the standard Control value-setting methods,
such as setFloatValue:. For more information on the behavior of these methods in Slider,
see the SliderCell class specification.

Instance Variables

None declared in this class.

Method Types

Setting Slider's Cell Class

Initializing a new Slider

2-630 Chapter 2: Application Kit

+ setCellClass:

- initFrame:

Modifying a Slider's appearance

Setting value limits

Resizing the Slider

Handling events

Class Methods

setCeliClass:

+ setCellClass:classld

- setKnobThickness:
- knobThickness
- setImage:
- image
- setTitle:
- setTitleNoCopy:
- title
- setTitleCell:
- titleCell
- setTitleFont:
- titleFont
- setTitleColor:
- title Color
- setTitleGray:
- titleGray
- is Vertical

- setMin Value:
-minValue
- setMaxValue:
:- maxValue

- sizeToFit

- acceptsFirstMouse
- setEnabled:
- mouseDown:

Configures the Slider class to use instances of classld for its Cells. classld should be the
id of a subclass of SliderCell, obtained by sending the class message to either the SliderCell
subclass object or to an instance of that subclass. The default Cell class is SliderCell.
Returns self.

If this method isn't overridden by a subclass of Slider, then when it's sent to that subclass,
Slider and any other subclasses of Slider that don't override the methods mentioned below
will use the new Cell subclass as well. To safely set a Cell class for your subclass of Slider,
override this method to store the Cell class in a static id. Also, override the designated
initializer to replace the Slider subclass instance's Cell with an instance of the Cell subclass
stored in that static id. See "Creating New Controls" in the Control class specification for
more information.

Classes: Slider 2-631

Instance Methods

acceptsFirstMouse
- (BOOL)acceptsFirstMouse

Returns YES since Sliders always accept a mouse-down event that activates a Window,
whether or not the Slider is enabled.

image

-image

Returns the NXImage that the Slider displays in its bar, or nil if one hasn't been set.

See also: - setlmage:

initFrame:
- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Slider. The Slider will be horizontal
if frameRect is wider than it is high; otherwise it will be vertical. By default, the Slider is
continuous. After initializing the Slider, invoke the sizeToFit method to resize the Slider
to accommodate its knob. This method is the designated initializer for the Slider class.

See also: - sizeToFit, - isVertical, - is Continuous (Control),
- setContinuous: (Control)

isVertical
- (int)isVertical

Returns 1 if the Slider is vertical, 0 if it's horizontal, and -1 if the orientation can't be
determined (because the Slider hasn't been initialized, for example). A Slider is vertical if
its height is greater than its width.

knobThickness

- (NXCoord)knobThickness

Returns the thickness of the Slider's knob (that is, its extent along the bar's length) in the
Slider's coordinate system.

See also: - setKnobThickness:

2·632 Chapter 2: Application Kit

maxValue

- (double)maxValue

Returns the maximum valu~ of the Slider.

See also: - setMaxValue:, - minValue

minValue

- (double)min Value

Returns the minimum value of the Slider.

See also: - setMin Value:, - maxValue

mouseDown:

- mouseDown:(NXEvent *)theEvent

Tracks the mouse until a mouse-up event occurs, updating the knob's position to follow the
cursor as it's dragged. Returns self.

See also: - trackMouse:inRect:ofView: (SliderCell)

setEnabled:

- setEnabled:(BOOL)jiag

Ifjiag is YES, enables the Slider; if NO, disables the Slider. Redraws the interior of the
Slider if autodisplay is on and the enabled state changes. Returns self.

See also: - isEnabled (Control), - setAutodisplay: (View)

setlmage:

- setImage:image

Sets the NXlmage used as the Slider's bar. This method doesn't scale the NXlmage.
Returns self.

Classes: Slider 2-633

setKnobThickness:
- setKnobThickness:(NXCoord)aFloat

Sets the thickness of the Slider's knob (that is, its extent along the bar's length) in its own
coordinate system. aFloat must be greater than 0.0, and shouldn't be greater than the
Slider's length. If the knob thickness changes, the Slider's inside is redrawn. Returns self.

See also: - knobThickness

setMaxValue:
- setMaxValue:(double)aDouble

Sets the maximum value of the Slider to aDouble and returns self. If the maximum value
changes, the Slider's inside is redrawn to reposition the knob relative to the new maximum.

See also: - maxValue, - setMin Value:

setMinValue:
- setMinValue:(double)aDouble

Sets the minimum value of the Slider to aDouble and returns self. If the minimum value
changes, the Slider's inside is redrawn to reposition the knob relative to the new minimum.

See also: - min Value, - setMaxValue:

setTitle:

- setTitle:(const char *)aString

Sets the title drawn over the Slider's bar to aString. Returns self.

See also: - setTitleNoCopy:, - title

setTitleCell:
- setTitleCell:aCell

Sets the Cell used to draw the Slider's title. aCell should be an instance of TextFieldCell
(or of a subclass). Doesn't redraw the Slider; furthermore, a setTitle: message is required
to display a title, even if aCell already has a string value. Returns the old Cell.

See also: - titleCell, - setTitle:

2-634 Chapter 2: Application Kit

setlitleColor:
- setTitleColor:(NXColor)color

Sets the color used to draw the Slider's title, redraws the Slider's inside, and returns self.
The default is to draw in a gray level of 0.0 (NX_BLACK).

See also: - titleColor, - setTitleGray:, - titleGray

setlitleFont:
- setTitleFont:jontObject

Sets the Font used to draw the SliderCell's title and redraws the Slider's inside. The default
font is the default system font as set by the user (with the Preferences application), and its
size is 12.0 point. Returns self.

See also: - titleFont

setlitleGray:
- setTitleGray:(float)aFloat

Sets the gray value used to draw the Slider's title, redraws the Slider's inside, and returns
self. The default gray level is 0.0 (NX_BLACK).

See also: - title Gray, - setTitleColor:, - titleColor

setlitleNoCopy:
- setTitleNoCopy:(const char *)aString

Sets the title drawn over the Slider's bar to aString, but doesn't copy the string. Returns self.

See also: - setTitle:, - title

sizeToFit
- sizeToFit

The Slider is sized to fit its cell, and its width is adjusted so that its knob fits exactly in its
border. Returns self.

Classes: Slider 2-635

title
- (const char *)title

Returns the string used as the Slider's title. The title is drawn over the Slider's bar. Returns
self.

See also: - setTitle:

titleCel1
- titleCell

Returns the TextFieldCell used to draw the Slider's title. If the Slider doesn't have a title,
a new TextFieldCell is created and returned. This doesn't result in a title getting set.

See also: - setTitleCell:

titleColor
- (NXColor)titleColor

Returns the color used to draw the Slider's title. The default is to draw in a gray level of
0.0 (NX_BLACK). Returns self.

See also: - setTitleColor:, - titleGray, - setTitleGray:

titleFont
- titleFont

Returns the Font used to draw the Slider's title. The default font is the default system font
as set by the user (with the Preferences application), and its size is 12.0 point.

See also: - setTitleFont:

titleGray
- (float)titleGray

Returns the gray value used to draw the Slider's title. The default gray level is 0.0
(NX_BLACK). Returns self.

See also: - setTitleGray:, - title Color, - setTitleColor:

2-636 Chapter 2: Application Kit

SliderCel1

Inherits From: ActionCell : Cell: Object

Declared In: appkitiSliderCell.h

Class Description

SliderCell is a type of Cell used to assist the Slider class, and to build Matrices of sliders.
See the Slider class specification for an overview of how SliderCells work.

Instance Variables

double value;

double maxValue;

double min Value;
NXRect trackRect;

value

maxValue

minValue

trackRect

The current value of the SliderCell.

The maximum value of the SliderCell.

The minimum value of the SliderCell.

The tracking area of the SliderCell, inside the bezel.

Method Types

Initializing a new SliderCell - init

Determining component sizes - calcCellSize:inRect:
- getKnobRect:fiipped:

Setting value limits - setMin Value:
-minValue
- setMax Value:
-maxValue

Classes: SliderCell 2-637

Setting values - setDouble Value:
- double Value
- setFloatValue:
- floatValue
- setlntValue:
- intValue
- setStringValue:
- string Value

Modifying a SliderCell' s appearance
- setKnobThickness:
- knob Thickness
- setlmage:
-image
- setTitle:
- setTitleNoCopy:
- title
- setTitleCell:
- titleCell
- setTitleFont:
- titleFont
- setTitleColor:
- titleColor
- setTitleGray:
- titleGray
-isOpaque
- is Vertical

Displaying the SliderCell - drawS elf: in View:
- draw Inside: in View:
- drawBarInside:flipped:
-drawKnob
-drawKnob:

Modifying behavior - setEnabled:
- setContinuous:
- isContinuous
- setAltlncrementValue:
- altIncrementValue

2-638 Chapter 2: Application Kit

Tracking the mouse + prefersTrackingUntilMouseUp
- trackMouse:inRectofView:
- startTrackingAtin View:
- continueTracking:at:in View:
- stopTracking:atin View:mouseIsUp:

Archiving - read:
- write:
- awake

Class Methods

prefersTrackingUntilMouseUp

+ (BOOL)prefersTrackingUntilMouseUp

Returns YES so a SliderCell can track mouse-dragged and mouse-up events even if they
occur outside its frame. This ensures that a SliderCell in a Matrix doesn't stop responding
to user input (and its neighbor start) just because the knob isn't dragged in a perfectly
straight line. Override this method to allow a SliderCell to stop tracking if the mouse moves
outside its frame while tracking.

Instance Methods

altlncrementValue

- (double)altlncrement Value

Returns the amount that the SliderCell will alter its value when the user drags the knob one
pixel with the Alternate key held down. If the Alternate-dragging feature isn't enabled, this
method returns -1.0.

See also: - setAltlncrementValue:

awake

-awake

Retrieves the system images used to draw SliderCell knobs, and returns self. This message
is sent from the read: method; you never send it yourself.

See also: - read:

Classes: SliderCell 2·639

calcCeIISize:inRect:

- calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns self, and by reference in the Size the minimum width and height needed to draw the
SliderCell in aRect. If aRect too small to fit the knob and bezel, the width and height of
theSize are set to 0.0.

If the SliderCell hasn't had its tracking rectangle set, this method will determine from aRect
whether the SliderCell should be vertical or horizontal, and will set a vertical SliderCell's
height to aRect->size.height, a horizontal SliderCell's width to aRect->size.width, and the
other dimension of either type to the minimum SliderCell breadth.

If you draw your own knob on the SliderCell and that knob is not the same size as a standard
SliderCell knob, or if you draw the SliderCell itself differently, you should override this
method to take your knob's dimensions into account. You must also override
getKnobRect:flipped: and drawKnob:.

Note: It's usually wrong to invoke the inherited calcCellSize: method. Instead,
calcCellSize:inRect: should be used with a valid rectangle for displaying the SliderCell.

See also: - getKnobRect:flipped:, - draw Knob:

continueTracking:at:inView:

- (BOOL)continueTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)currentPoint
in View:controlView

Continues tracking by moving the knob to currentPoint. Always returns YES. Invokes
getKnobRect:flipped: to get the current location of the knob and draw Knob to draw the
knob at the new position based on currentPoint.

Override this method if you want to change the way positioning is done.

See also: - trackMouse:inRect:ofView:, - startTrackingAt:in View:,
- stopTracking:at:in View:mouseIsUp:

doubleValue

- (double)double Value

Returns the value of the SliderCell as a double-precision floating point number.

See also: - setDoubleValue:, - floatValue, - intValue, - stringValue

2-640 Chapter 2: Application Kit

drawBarlnside:flipped:

- drawBarInside:(const NXRect *)cellFrame ftipped:(BOOL)jlipped

Draws the SliderCell's background bar, but not the bezel around it or the knob. jlipped
indicates whether the View's coordinate system is flipped or not. Returns self.

Override this method if you want to draw your own slider bar. Note, however, that the
setImage: method allows you to conveniently customize the appearance of the SliderCell's
background.

See also: - drawInside:inView:, - drawSelf:inView:, - isFlipped (View), - setImage:,
-lockFocus (View)

drawlnside:inView:

- drawInside:(const NXRect *)cellFrame inView:controlView

Draws the SliderCell's background bar and knob, along with the background title, but not
the bezel. The PostScript focus must be locked on controlView when this message is sent.
Returns self.

See also: - drawBarInside:ftipped:, - drawKnob, - drawSelf:inView:,
-lockFocus (View)

drawKnob

-drawKnob

Calculates the rectangle in which the knob should be drawn and invokes drawKnob: to
actually draw the knob. The PostScript focus must be locked on the SliderCell's View
when this message is sent. You never override this method; override drawKnob: instead.

See also: - drawKnob:, -lockFocus (View)

drawKnob:

- drawKnob:(const NXRect*)knobRect

Draws the knob in knobRect. The PostScript focus must be locked on the SliderCell's View
when this message is sent.

Classes: SliderCell 2-641

Override this method and getKnobRect:flipped: if you want to draw your own knob. You
should also override calcCeIlSize:inRect: if your knob is of a different size from the
standard SliderCell knob.

See also: - drawKnob, - getKnobRect:flipped:, - caIcCeIlSize:inRect:, - isVertical,
-lockFocus (View)

drawSelf:inView:

- drawS elf: (const NXRect *)cellFrame in View:controlView

Draws the SliderCell background bar (including the bezel) and knob. The knob is drawn
at a position which reflects the current value of the SliderCell. This method doesn't invoke
drawlnside:inView:. The PostScript focus must be locked on controlView when this
message is sent. Returns self.

This method invokes calcCeIlSize:inRect: and centers the resulting sized rectangle in
cellFrame, draws the bezel, fills the bar with NX_LTGRAY if the cell is disabled, and 0.5
gray if not, then invokes drawKnob.

If, for example, you want a SliderCell that could be any size, you simply have
calcCeIlSize:inRect: return whatever size you deem appropriate, override
getKnobRect:ftipped: to return the correct rectangle to draw the knob in, and draw Knob:
so that an appropriate knob is drawn.

See also: - drawBarlnside:ftipped:, - drawKnob, -lockFocus (View)

floatValue

- (float)ftoatValue

Returns the value of the SliderCell as a single-precision floating point number.

See also: - setFloatValue:, - doubleValue, - intValue, - stringValue

getKnobRect:flipped:

- getKnobRect:(NXRect*)knobRect flipped:(BOOL)jlipped

Returns self, and by reference in knobRect the rectangle into which the knob will be drawn.
This rectangle is determined from the SliderCell's value in relation to its tracking rectangle
and its minimum and maximum values. jlipped indicates whether the SliderCell's View has
a flipped coordinate system.

2-642 Chapter 2: Application Kit

Override this method and drawKnob: if you want to draw your own knob. You should also
override calcCeIlSize:inRect: if your knob is of a different size from the standard
SliderCell knob (and be careful of setting the knob's width). Remember to take into
account the flipping of the View in vertical SliderCells; otherwise, your knob might appear
the correct distance from the wrong end.

See also: - drawKnob:, - calcCeIlSize:inRect:, - isVertical, - isFlipped (View)

image
-image

Returns the NXImage that the SliderCell displays as its background.

See also: - setImage:

init
- init

Initializes and returns the receiver, a new instance of SliderCell. Its value is set to 0.0,
minimum value to 0.0, and maximum value to 1.0. New SliderCells are continuous by
default.

This method is the designated initializer for SliderCell; override it if you create a subclass
of SliderCell that performs its own initialization. You shouldn't use Cell's designated
initializers, initIconCell: or initTextCell:, to initialize a SliderCell.

See also: - setMinValue:, - setMaxValue:, - setFloatValue:, - setContinuous:

intValue
- (int)intValue

Returns the value of the SliderCell as an integer.

See also: - setIntValue:, - doubleValue, - f1oatValue, - stringValue

isContinuous
- (BOOL)isContinuous

Returns YES if the action is sent to the target continuously as mouse-dragged events occur
while tracking, or on a mouse-up event; NO if the action is sent only on a mouse-up event.

See also: - setContinuous:

Classes: SliderCel! 2-643

isOpaque

- (BOOL)isOpaque

Returns YES, since a SliderCell always draw over every pixel in its frame.

See also: - is Opaque (Cell)

isVertical

- (int)isVertical

Returns 1 if the SliderCell is vertical, 0 if it's horizontal, and -1 if the orientation can't
be determined (because the SliderCell hasn't been drawn in a View, for example). A
SliderCell is vertical if its height is greater than its width.

knobThickness

- (NXCoord)knobThickness

Returns the thickness of the SliderCell's knob (that is, its extent along the bar's length) in
the SliderCell' s coordinate system.

See also: - setKnobThickness:

maxValue

- (double)maxValue

Returns the maximum value of the SliderCell.

See also: - setMaxValue:, - min Value

minValue

- (double)min Value

Returns the minimum value of the SliderCell.

See also: - setMinValue:, - maxValue

2-644 Chapter 2: Application Kit

read:

- read:(NXTypedStream *)stream

Reads the SliderCell from the typed stream stream. Returns self.

See also: - write:, - awake

setAltlncrementValue:

- setAltlncrementValue:(double)inc Value

Sets the amount that the SliderCell will alter its value when the user drags the knob one
pixel with the Alternate key held down. inc Value should be greater than 0.0, and less than
the SliderCell's maximum value; it can also be -1, in which case this feature is disabled.
Normally, you'll want to use this method with incValue less than 1.0, so the knob will move
more slowly than the mouse.

See also: - altlncrementValue, - maxValue

setContinuous:

- setContinuous:(BOOL)jlag

Ifjlag is YES, the SliderCell will send its action to its target continuously as mouse-dragged
events occur while tracking, or on a mouse-up event. If NO, the SliderCell will send its
action only on a mouse-up event. The default is YES. Returns self.

See also: - is Continuous

setDoubleValue:

- setDouble Value: (double)aDouble

Sets the value of the SliderCell to aDouble. Updates the SliderCell knob position to reflect
the new value and returns self.

See also: - doubleValue, - setFloatValue:, - setlntValue:, - setStringValue:

Classes: SliderCell 2-645

setEnabled:

-,setEnabled:(BOOL)jlag

If flag is YES, the SliderCell will become enabled; if NO, the SliderCell will become
disabled. A disabled SliderCell draws its non-image background in light gray. An enabled
SliderCell draws its non-image background in 50% gray.

See also: - isEnabled (ActionCell)

setFloatValue:

- setFloatValue:(float)aFloat

Sets the value of the SliderCell to aFloat. Updates the SliderCell knob position to reflect
the new value and returns self.

See also: - f1oatValue, - setDoubleValue:, - setIntValue:, - setStringValue:

setlmage:

- setImage:image

Sets the NXImage used as the SliderCell's background. This method doesn't scale the
NXImage. Returns self.

See also: - image

setlntValue:

- setIntValue:(int)anInt

Sets the value of the SliderCell to anInt. Updates the SliderCell knob position to reflect the
new value and returns self.

See also: - intValue, - setDoubleValue:, - setFloatValue:, - setStringValue:

setKnob Thickness:

- setKnobThickness:(NXCoord)aFloat

Sets the thickness of the SliderCell's knob (that is, its extent along the bar's length) in its own
coordinate system. aFloat must be greater than 0.0, and shouldn't be greater than the Slider's
length. If the knob thickness changes, the SliderCell's inside is redrawn. Returns self.

See also: - knob Thickness

2~646 Chapter 2: Application Kit

setMaxValue:

- setMaxValue:(double)aDouble

Sets the maximum value of the SliderCell to aDouble and returns self. If the maximum
value changes, the SliderCell's inside is redrawn to reposition the knob relative to the
new maximum.

See also: - maxValue, - setMin Value:

setMinValue:

- setMin Value: (double)aDouble

Sets the minimum value of the SliderCell to aDouble and returns self. If the minimum
value changes, the SliderCell's inside is redrawn to reposition the knob relative to the
new minimum.

See also: - min Value, - setMaxValue:

setStringValue:

- setStringValue:(const char *)aString

Parses aString for a floating point value. If a floating point value can be found, then the
SliderCell value is set and the knob position is updated to reflect the new value; otherwise,
does nothing. Returns self.

Note: SliderCell doesn't override the setStringValueNoCopy: or
setStringValueNoCopy:shouldFree: methods; you shouldn't use those methods with
a SliderCell.

See also: - stringValue, - setDoubleValue:, - setFloatValue:, - setIntValue:

setTitle:

- setTitle:(const char *)aString

Sets the title drawn over the SliderCell' s background to aString. Returns self.

See also: - setTitleNoCopy:, - title

Classes: SliderCell 2-647

setTItleCell:

- setTitleCell:aCell

Sets the Cell used to draw the SliderCell's background title. aCell should be an instance of
TextFieldCell (or of a subclass). Doesn't redraw the SliderCell; further, a setTitle: message
is required to display a title, even if aCell already has a string value. Returns the old Cell.

See also: - titleCell, - setTitle:

setTItleColor:

- setTitleColor:(NXColor)color

Sets the color used to draw the SliderCell's background title, redraws the SliderCell's
inside, and returns self. The default is to draw in a gray level of 0.0 (NX_BLACK).

See also: - titleColor, - setTitleGray:

setTItleFont:

- setTitleFont:jontObject

Sets the Font used to draw the SliderCell's background title and redraws the SliderCell's
inside. The default font is the default system font as set by the user (with the Preferences
application), and its size is 12.0 point. Returns self.

See also: - titleFont

setTItleGray:

- setTitleGray:(float)aFloat

Sets the gray value used to draw the SliderCell's background title, redraws the SliderCell's
inside, and returns self. The default gray level is 0.0 (NX_BLACK).

See also: - title Gray, - setTitleColor:

setTItleNoCopy:

- setTitleNoCopy:(const char *)aString

Sets the title drawn over the SliderCell's background to aString, but doesn't copy the string.
Returns self.

See also: - setTitle:, - title

2·648 Chapter 2: Application f.(it

startTrackingAt:in View:

- (BOOL)startTrackingAt:(const NXPoint *)startPoint inView:controlView

Begins a tracking session by moving the knob to startPoint. Always returns YES.

See also: - trackMouse:inRect:ofView:, - continueTracking:at:in View:,
- stopTracking:at:in View:mouseIsUp:

stopTracking:at:inView:mouselsUp:

- stopTracking:(coIist NXPoint *)lastPoint
at:(const NXPoint *)stopPoint
in View:controlView
mouseIsUp:(BOOL)jlag

Ends tracking by moving the knob to stopPoint. Returns self.

See also: - trackMouse:inRect:ofView:, - startTrackingAt:inView:,
- continueTracking:at:in View:

stringValue

- (const char *)stringValue

Returns a string representing the value of the SliderCell. The floating point format is
applied when generating the string representation.

See also: - setStringValue:, - doubleValue, - floatValue, - intValue,
- setFloatingPointFormat:left:right: (Cell)

title

- (const char *)title

Returns the string used as the SliderCell's background title. The title is drawn over the
SliderCell's background. Returns self.

See also: - setTitIe:

Classes: SliderCell 2·649

titleCel1
- titleCell

Returns the TextFieldCell used to draw the SliderCell. If the SliderCell doesn't have a title,
a new TextFieldCell is created and returned. This doesn't result in a title getting set.

See also: - setTitleCell:

titleColor
- (NXColor)titleColor

Returns the color used to draw the SliderCell's background title. The default is to draw in
a gray level of 0.0 (NX_BLACK). Returns self.

See also: - setTitleColor:, - titleGray

titleFont

- titleFont

Returns the Font used to draw the SliderCell's title. The default font is the default system
font as set by the user (with the Preferences application), and its size is 12.0 point.

See also: - setTitleFont:

titleGray
- (fioat)titleGray

Returns the gray value used to draw the SliderCell' s background title. The default gray
. level is 0.0 (NX_BLACK). Returns self.

See also: - setTitleGray:, - titleColor

2-650 Chapter 2: Application Kit

trackMouse:inRect:ofView:

- (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
otView:controlView

Tracks the mouse until it goes up or until it goes outside the cellFrame. If cellFrame is
NULL, then it tracks until the mouse goes up. Since SliderCell responds YES to
prefersTrackingUntilMouseUp, this method will be invoked with a NULL cellFrame.
Returns YES if the mouse goes up, NO otherwise.

If the SliderCell is continuous, then the action will be continuously sent to the target as the
mouse is dragged. If cellFrame isn't the same cellFrame that was passed to the last
drawSelf:inView:, then this method doesn't track.

See also: - startTrackingAt:in View:, - continueTracking:at:in View:,
- stopTracking:at:in View:mouseIsUp:, - setContinuous:

write:

- write:(NXTypedStream *)stream

Writes the receiving SliderCell to the typed stream stream. Returns self.

See also: - read:

Classes: SliderCell 2-651

Speaker

Inherits From:

Declared In:

Class Description

Object

appkitlSpeaker .h

The Speaker class, with the Listener class, puts an Objective C interface on Mach
messaging. Mach messages are the way that applications communicate with each other;
they're how remote procedure calls (RPCs) are implemented in the Mach operating system.

A remote message is initiated by sending a Speaker instance the very same Objective C
message you want delivered to the remote application. The Speaker translates the message
into the correct Mach message format and dispatches it to the receiving application's port.
A Listener in the receiving application reads the message from the port queue and translates
in back into an Objective C message, which it tries to delegate to another object.

If the Speaker expects information back from the Listener, it will wait to receive a reply.

Every application must have at least one Speaker and one Listener, if for no other reason
but to communicate with the Workspace Manager. If you don't create a Speaker in start-up
code and register it as the application's Speaker (with the setAppSpeaker: method), the
Application object, when it receives a run message, will create one for you.

For a general discussion of the Speaker-Listener interaction, see the Listener class. The
descriptions here add Speaker-specific information, but don't repeat any of the basic
information presented there. In particular, the discussion here doesn't explain the structure
of remote messages or the distinction between input and output argument types.

Sending Remote Messages

Before sending a remote message, it's necessary only to provide variables where output
information-information returned to the Speaker by the receiving application-can be
returned by reference, and to tell the Speaker which port to send the message to.

2-652 Chapter 2: Application Kit

The example below shows a typical use of the Speaker class:

int msgDelivered, fileOpened;
id mySpeaker = [[Speaker alloc] init];
port_t thePort = NXPortFromName("SomeApp", NULL);

/* Gets the public port for SomeApp */

if (thePort != PORT_NULL) {
[mySpeaker setSendPort:thePort];

/* Sets the Speaker to send its
* next message to SomeApp's port */

msgDelivered [mySpeaker openFile:"/usr/foo" ok:&fileOpened];
/* Sends the message, here a message

* to open the "/usr/foo" file. */

if (msgDelivered == 0)
if (fileOpened == YES)

else

[mySpeaker free]; /* Frees the Speaker
* when it's no longer needed. */

port_deallocate(task_self(), thePort);
/* Frees the application's

* send rights to the port. */

The NXPortFromNameO function returns the port registered with the network name
server under the name passed in its first argument. The second argument names the host
machine; when it's NULL, as in the example above, the local host is assumed.

To find the port of the Workspace Manager, the constant NX_ WORKSPACEREQUEST
can be passed as the first argument to NXPortFromNameO. For example:

port_t workspacePort;
workspacePort = NXPortFromName(NX_WORKSPACEREQUEST, NULL);

A Speaker can be dedicated to sending remote messages to a single application, in which
case its destination port may need to be set only once. Or a single Speaker can be used to
send messages to any number of applications, simply by resetting its port.

It's important to reset the destination port of the Speaker registered as the appSpeaker
before each remote message. The Application Kit uses the appSpeaker to keep in contact
with the Workspace Manager and so may reset its port behind your application's back.

Classes: Speaker 2-653

Return Values

Each method that initiates a remote message returns an int that indicates whether the
message was successfully transmitted or not.

• If the message couldn't be delivered to the receiving application, the return value will
be one of the Mach error codes defined in the mach/message.h.

• If the message was delivered, but the Listener didn't recognize it or couldn't delegate it
to a responsible object, the return value is -1.

• If the message was successfully delivered, recognized, and delegated, 0 is returned.

A Mach error code is also returned if the Speaker times out while waiting for a return
message.

Copying Output Data

The validity of all output arguments is guaranteed until the next remote message is sent.
Then the memory allocated for a character string or a byte array will be freed automatically.
If you want to save an output string or an array, you must copy it. When the amount of data
is large, you can use the NXCopyOutputDataO function to take advantage of the
out-of-line data feature of Mach messaging. This function is passed the index of the output
argument to be copied (the combination of a pointer and an integer for a byte array counts
as a single argument) and returns a pointer to an area obtained through the vm_allocateO
function. This pointer must be freed with vm_deallocateO, rather than freeO. Note that
the size of the area allocated is rounded up to the next page boundary, and so will be at least
one page. Consequently, it is more efficient to mallocO and copy amounts up to about half
the page size.

Note: The application is responsible for deallocating all ports received when they're no
longer needed.

Instance Variables

port_t sendPort;
port_t replyPort;
int sendTimeout;
int replyTimeout;
id delegate;

2-654 Chapter 2: Application Kit

sendPort

replyPort

sendTimeout

replyTimeout

delegate

Method Types

The port to which the Speaker sends remote messages.

The port where the Speaker receives return messages
from the Listener of the remote application.

How long the Speaker will wait for a remote message to
be delivered at the port of the receiving application.

How long the Speaker will wait, after a remote message
is delivered, to receive a return message from the other
application.

The Speaker's delegate, which is generally unused.

Initializing a new Speaker instance

Freeing a Speaker

Setting up a Speaker

Managing the ports

- init

-free

- setSendTimeout
- sendTimeout
- setReplyTimeout:
- replyTimeout

- setSendPort:
- sendPort
- setReplyPort:
- replyPort

Standard remote methods - openFile:ok:
- openTempFile:ok:

Providing for program control - msgCalc:
- msgCopy AsType:ok:
- msgCutAsType:ok:
- msgDirectory:ok:
- msgFile:ok:
-msgPaste:
- msgPosition:posType:ok:
- msgPrintok:
- msgQuit
- msgSelection:length:asType:ok:
- msgSetPosition:posType:andSelectok:
- msgVersion:ok:

Classes: Speaker 2-655

Sending remote messages

Assigning a delegate

Archiving

Instance Methods

delegate

- delegate

Returns the Speaker's delegate.

See also: - setDelegate:

free

-free

- performRemoteMethod:
- performRemoteMethod:with:length:
- selectorRPC:paramTypes: ...
- sendOpenFileMsg:ok:andDeactivateSelf:
- sendOpenTempFileMsg:ok:andDeactivateSelf:

- setDelegate:
- delegate

- read:
- write:

Frees the memory occupied by the Speaker object, but does not deallocate its ports.

init

- init

Initializes a newly allocated Speaker instance. The new object's sendTimeout and
replyTimeout are both set to 30,000 milliseconds, its sendPort and replyPort are both
PORT_NULL, and its delegate is nil. Returns self.

msgCalc:

- (int)msgCalc:(int *)flag

Sends a remote message asking the receiving application to perform any calculations
necessary to update its current window. flag points to an integer that will be set to YES if
the calculations will be performed, and to NO if they won't.

2-656 Chapter 2: Application Kit

msgCopyAsType:ok:

- (int)msgCopyAsType:(const char *)aType ok:(int *)flag

Sends a remote message asking the receiving application to copy its current selection to the
pasteboard as aType data. flag is the address of an integer that will be set to YES if the
selection is copied, and to NO if it isn't.

msgCutAsType:ok:

- (int)msgCutAsType:(const char *)aType ok:(int *)flag

Sends a remote message requesting the receiving application to delete the current selection
and put it in the pasteboard as aType data. flag points to an integer that will be set to YES
if the request is carried out, and to NO if it isn't.

msgDirectory:ok:

- (int)msgDirectory:(char *const *)fullPath ok:(int *)flag

Sends a remote message asking the receiving application for its current directory. See the
Listener class for information on the two arguments.

See also: - msgDirectory:ok: (Listener)

msgFile:ok:

- (int)msgFile:(char *const *)fullPath ok:(int *).flag

Sends a remote message asking the receiving application for its current document (the file
displayed in the main window). See the Listener class for information on the two
arguments.

See also: - msgFile:ok: (Listener)

msgPaste:

- (int)msgPaste:(int *)flag

Sends a remote message asking the receiving application to replace its current selection
with the contents of the pasteboard, just as if the user had chosen the Paste command in the
Edit menu. flag is the address of an integer that will be set to YES if the receiving
application will carry out the request, and to NO if it won't.

Classes: Speaker 2 .. 657

,!

msgPosition:posType:ok:

- (int)msgPosition:(char *const *)aString
posType:(int *)anlnt
ok:(int *)flag

Sends a remote message asking the receiving application for information about its current
selection. See the Listener class for information on the three arguments.

See also: - msgPosition:posType:ok: (Listener)

msgPrint:ok:

- (int)msgPrint:(const char *)fullPath ok:(int *)flag

Sends a remote message asking the receiving application to print the fullPath file, then
close it. flag points to an integer that will be set to YES if the file will be printed, and to
NO if it won't.

msgQuit:

- (int)msgQuit:(int *)flag

Sends a remote message requesting the receiving application to quit. flag points to an
integer that will be set to YES if the receiving application quits, and to NO if it doesn't.

msgSelection:length:asType:ok:

- (int)msgSelection:(char *const *)bytes
length:(int *)numBytes
asType:(const char *)aType
ok:(int *)flag

Sends a remote message asking the receiving application to provide its current selection as
aType data. See the Listener class for information on the four arguments.

See also: - msgSelection:length:asType:ok: (Listener)

2-658 Chapter 2: Application Kit

msgSetPosition:posType:andSelect:ok:

- (int)msgSetPosition:(const char *)aString
posType: (int)anlnt

andSelect:(int)sflag
ok:(int *)flag

Sends a remote message asking the receiving application to scroll its current document (the
one displayed in the main window) so that the portion represented by aString is visible. See
the Listener class for information on permitted argument values.

See also: - msgSetPosition:posType:andSelect:ok: (Listener)

msgVersion:ok:

- (int)msgVersion:(char *const *)aString ok:(int *)flag

Sends a remote message asking the receiving application for its current version. See the
Listener class for information on the arguments.

See also: - msgVersion:ok: (Listener)

openFile:ok:

- (int)openFile:(const char *)fullPath ok:(int *).flag

Sends a remote message requesting another application to open the fullPath file. Before
the message is sent, the sending application is deactivated to allow the application that will
open the file to become the active application.

If the Workspace Manager is sent this message, it will find an appropriate application to
open the file based on the file name extension. It will launch that application if necessary.

flag is the address of an integer that the receiving application will set to YES if it opens the
file, and to NO if it doesn't.

See also: - openFile:ok: (Application)

openTempFile:ok:

- (int)openTempFile:(const char *)fullPath ok:(int *)flag

Sends a remote message requesting another application to open a temporary file. The file
is specified by an absolute pathname, fullPath. Before the message is sent, the sending
application is deactivated to allow the application that will open the file to become the
active application.

Classes: Speaker 2·659

Using this method instead of openFile:ok: lets the receiving application know that it
should delete the file when it no longer needs it.

See also: - openTempFile:ok: (Application)

performRemoteMethod:

- (int)performRemoteMethod:(const char *)methodName

Sends a remote message to perform the methodName method. The method must be one
that takes no arguments. performRemoteMethod: is analogous to Object's perform:
method in that it permits you to send an arbitrary message. .

This method has the same return values as other methods that send remote messages: 0 on
success, a Mach error code if the message couldn't be delivered, and -1 if it was delivered
but wasn't understood or couldn't be delegated.

See also: - selectorRPC:paramTypes:

performRemoteMethod:with:length:

- (int)performRemoteMethod:(const char *)methodName
with:(const char *)data
length: (int)numBytes

Sends a remote message to perform the methodName method and passes it the data byte
array containing numBytes of data. This method is similar to Object's perform:with:
method in that it permits you to send an arbitrary message with one argument.

performRemoteMethod:with:length: has the same return values as other methods that
send remote messages: 0 on success, a Mach error code if the message couldn't be
delivered, and -1 if it was delivered but wasn't understood or couldn't be delegated.

See also: - selectorRPC:paramTypes:

read:

- read:(NXTypedStream *)stream

Reads the Speaker from the typed stream stream. The Speaker's send-port and reply-port
will both be PORT_NULL. Returns self.

See also: - write:

2-660 Chapter 2: Application Kit

replyPort
- (port_t)replyPort

Returns the port where the Speaker expects to receive return messages. If this method
returns PORT_NULL, the default, the Speaker will use the port returned by Application's
replyPort method.

See also: - replyPort (Application), - setReplyPort:

replylimeout
- (int)repJyTimeout

Returns how many milliseconds the Speaker will wait, after delivering a remote message
to another application, for a return message to arrive back from the other application.

See also: - setReplyTimeout:

selectorRPC:param Types:
- (int)selectorRPC:(const char *)methodName

paramTypes:(char *)params,

Sends a remote message to perform the methodName method with an arbitrary number of
arguments. This is the general routine for sending remote messages and is used by most of
the more specific Speaker methods. For example,an openFile:ok: message could be sent
as follows:

int msgDelivered, wasOKi

msgDelivered = [mySpeaker selectorRPC:"openFile:ok:"
paramTypes: "cI" , " /usr / foo" ,
&wasOK]

params is a character string, "cI" in the example above, that describes the arguments to the
method. Each argument is represented by a single character that encodes its type. (A single
character, "b" or "B", represents the two Objective C arguments of a byte array.) See the
Listener class for an explanation of these codes.

The actual arguments that will be passed to methodName are listed after params.

This method has the same return values as other methods that send remote messages: 0 on
success, a Mach error code if the message couldn't be delivered, -1 if it was delivered but
wasn't understood or couldn't be delegated, and NX_INCORRECTMESSAGE if the RPC
succeeds but the selector is not implemented at the other end.

Classes: Speaker 2-661

sendOpenFileMsg:ok:andDeactivateSelf:

- (int)sendOpenFileMsg:(const char *)fullPath
ok:(int *)flag
andDeactivateSelf: (BOO L)deactivateFirst

Initiates an openFile:ok: remote message, whiCh could also be initiated by sending an
openFile:ok: message directly to the Speaker. However, when a Speaker receives an
openFile:ok: message, it first deactivates the application in order to allow the receiving
application to become active when it opens the file.

In contrast, this way of sending an openFile:ok: remote message gives the sending
application control over whether it will deactivate before dispatching the message. If
deactivateFirst is YES, this method works just like openFile:ok:. If deactivateFirst is NO,
the sending application will remain the active application.

See also: - openFile:ok:

sendOpenTempFileMsg:ok:andDeactivateSelf:

- (int)sendOpenTempFileMsg:(const char *)fullPath
ok:(int *)flag
andDeactivateSelf: (BOO L)deactivateFirst

Initiates an openTempFile:ok: remote message, which could also be initiated by sending
an openTempFile:ok: message directly to the Speaker. However, when a Speaker receives
an openTempFile:ok: message, it first deactivates the application in order to allow the
receiving application to become active when it opens the file.

In contrast, this way of sending an openTempFile:ok: remote message gives the sending
application control over whether it will deactivate before dispatching the message. If
deactivateFirst is YES, this method works just like openTempFile:ok:. If deactivateFirst
is NO, the sending application will remain the active application.

See also: - openTempFile:ok:

sendPort

- (port_t)sendPort

Returns the port the Speaker will send remote messages to.

See also: - setSendPort:

2-662 Chapter 2: Application Kit

sendTimeout

- (int)sendTimeout

Returns how many milliseconds the Speaker will wait for its remote message to be
delivered to the port of the receiving application. The Speaker caches this value as its
send Timeout instance variable. If it's 0, there's no time limit.

See also: - setSendTimeout:

setDelegate:

- setDelegate:anObject

Makes anObject the Speaker's delegate. The default delegate is nil. However, before
processing the first event, Application's run method makes the Application object,
NXApp, the delegate of the Speaker registered as the appSpeaker. If there is no
appSpeaker, the run method creates one, registers it, and sets its delegate to be NXApp.

Unlike a Listener, a Speaker doesn't expect anything from its delegate.

See also: - delegate, - setAppSpeaker: (Application)

setReplyPort:

- setReplyPort:(port_t)aPort

Makes aPort the port where the Speaker receives return messages. If the Speaker sends a
remote message with output arguments, it will supply the receiving application with send
rights to this port, then wait for a return message containing the output data it requested.

If aPort is PORT_NULL, the Speaker will use a port supplied by the Application object in
response to a replyPort message. Since return messages are read from the port as they
arrive (synchronously), a number of different Speakers can share the same port.

At start-up, before the run method gets the application's first event, it sets the port of
the Speaker registered as the appSpeaker to the port returned by Application's
replyPort method.

See also: - replyPort, - replyPort (Application)

Classes: Speaker 2-663

setReplyTimeout:

- setReplyTimeout:(int)ms

Sets, to ms milliseconds, how long the Speaker will wait to receive a reply· from the
application it sent a remote message. The Speaker expects a reply when the remote
message it sends contains output arguments for information to be supplied by the receiving
application. If ms is 0, there will be no time limit; the Speaker will wait until a return
message is received or there's a transmission error. The default is 30,000 milliseconds.

See also: - replyTimeout

setSendPort:

- setSendPort: (port_t)aP ort

Makes aPort the port that the Speaker will send remote messages to. The default is
PORT_NULL. A single Speaker can send remote messages to a variety of applications
simply by setting a different port before each message.

The NXPortFromNameO function can be used to find the public port of another
application, as explained in the class description above.

See also: - sendPort

setSendTimeout: \

- setSendTimeout:(int)ms

Sets, to ms milliseconds, how long the Speaker will persist in attempting to deliver a
message to the port of the receiving application. If ms is 0, there will be no time limit; the
Speaker will wait until the message is successfully delivered or there's a transmission error.
The default is 30,000 milliseconds.

See also: - send Timeout

write:

- write:(NXTypedStream *)stream

Writes the receiving Speaker to the typed stream stream. Returns self.

See also: - read:

2-664 Chapter 2: Application Kit

Text

Inherits From:

Conforms To:

Declared In:

Class Description

View : Responder: Object

NXChangeSpelling
NXIgnoreMisspelledWords
NXReadOnlyTextStream
NXSelectText

appkitlText.h

The Text class defines an object that manages text. Text objects are used by the Application
Kit wherever text appears in interface objects: A Text object draws the title of a Window,
the commands in a Menu, the title of a Button, and the items in an NXBrowser. Your
application inherits these uses of the Text class when it incorporates any of these objects
into its interface. It can also create Text objects for its own purposes.

The Text class is unlike most other classes in the Application Kit in its complexity and
range of features. One of its design goals is to provide a comprehensive set of
text-handling features so that you'll rarely need to create a subclass. A Text object
can (among other things):

• Control the color of its text and background.
• Control the font and layout characteristics of its text.
• Control whether text is editable.
• Wrap text on a word or character basis.
• Write text to, or read it from, an NXStream as either RTF or plain ASCII data.
• Display graphic images within its text.
• Communicate with other applications through the Services menu.
• Let another object, the delegate, dynamically control its properties.
• Let the user copy and paste text within and between applications.
• Let the user copy and paste font and format information between Text objects.
• Let the user check the spelling of words in its text.
• Let the user control the format of paragraphs by manipulating a ruler.

Classes: Text 2-665

Interface Builder gives you access to Text objects in several different configurations, such
as those found in the TextField, Form, and ScrollView objects in the Palettes window.
These classes configure a Text object for a specific purpose. Additionally, all TextFields,
Forms, Buttons within the same window-in short, all objects that access a Text object
through associated Cells-share the same Text object, reducing the memory demands of an
application. Thus, it's generally best to use one of these classes whenever it meets your
needs, rather than create Text objects yourself. If one of these classes doesn't provide
enough flexibility for your purposes, use a Text object directly.

Plain and Rich Text Objects

When you create a Text object directly, by default it allows only one font, line height, text
color, and paragraph format for the entire text. You can set the default font used by new
Text instances by sending the Text class object a setDefaultFont: message. Once a Text
object is created, you can alter its global settings using methods such as setFont:,
setLineHeight:, setTextGray:, and setAlignment:. For convenience, such a Text object
will be called a plain Text object.

To allow multiple values for these attributes, you must send the Text object a
setMonoFont:NO message. A Text object that allows multiple fonts also allows multiple
paragraph formats, line heights, and so on. For convenience, such a Text object will be
called a rich Text object.

A rich Text object can use RTF (Rich Text Format) as an interchange format. Not all RTF
control words are supported: On input, a Text object ignores any control word it doesn't
recognize; some of those it can read and interpret it doesn't write out. These are the RTF
control words that a Text object recognizes.

2·666 Chapter 2: Application Kit

Control Word Read Write

\ansi yes (see note below)
\b yes yes
\cb yes yes
\cf yes yes
\colortbl yes yes
\dnn yes yes
\fin yes yes
\fn yes yes
\fonttbl yes yes
\fsn yes yes
\i yes yes
\lin yes yes
\margrn yes yes
\paperwn yes yes
\mac yes no
\margIn yes yes
\par yes yes
\pard yes no
\pca yes no
\qc yes yes
\ql yes yes
\qr yes yes
\sn yes no
\tab yes yes
\upn yes yes

Note: A Text object writes 8-bit characters in the NeXTSTEP encoding, which differs
somewhat from the ANSI character set. See the appendix "Keyboard Event Information"
for more details

In a Text object, each sequence of characters having the same attributes is called a run. (See
the NXRun structure at the end of this class specification for details.) A plain Text object
has only one run for the entire text. A rich Text object can have multiple runs. Methods such
as setSeIFont:, setSeIProp:to:, setSeIGray:, and alignSelCenter: let you programmatically
modify the attributes of the selected sequence of characters in a rich Text object. As ,
discussed below, the user can set these attributes by using the Font panel and the ruler.

Text objects are designed to work closely with various objects and services. Some of these
(such as the delegate or an embedded graphic object) require a degree of programming on
your part. Others (such as the Font panel, spelling checker, ruler, and Services menu) take
no effort other than deciding whether the service should be enabled or disabled. The
following sections discuss these interrelationships.

Classes: Text 2 .. 667

Notifying the Text Object's Delegate

Many of a Text object's actions can be controlled through an associated object, the Text
object's delegate. If it implements any of the following methods, the delegate receives the
corresponding message at the appropriate time:

textWillResize:
textDidResize:oldBounds:invalid:
textWillChange:
textDidChange:
textWillEnd:
textDidEnd:endChar:
textDidGetKeys:isEmpty:
textWillSetSel:toFont:
textWillConvert:fromFont:toFont:
textWillStartReadingRichText:
textWillFinishReadingRichText:
textWillWrite:paperSize:
textDidRead:paperSize:

So, for example, if the delegate implements the textWillChange: method, it will receive
notification upon the user's first attempt to alter the text. Moreover, depending on the
method's return value, the delegate can either allow or prohibit changes to the text. (See
the section titled "Methods Implemented by the Delegate" for more information.) The
delegate can be any object you choose, and one delegate can be used to control multiple
Text objects.

Adding Graphics to the Text

A rich Text object allows graphic to be embedded in the text. Each graphic is treated as a
single character: The text's line height and character placement are adjusted to
accommodate the graphic "character."

Graphics are embedded in the text in either of two ways: programmatically or directly
through user actions. The programmatic approach is discussed first.

In the programmatic approach, you add an object-generally a subclass of Cell-to the
text. This object will manage the graphic image by drawing it when appropriate. Although
Cell subclasses are commonly used, the only requirement is that the embedded object

2·668 Chapter 2: Application Kit

responds to these messages (see the section titled "Methods Implemented by an Embedded
Graphic Object" for more information):

highlight in View:lit:
drawSelf:in View:
trackMouse:inRectofView:
calcCellSize:
readRichText:for View:
writeRichText:forView:

You place the object in the text by sending the Text object a replaceSelWithCell: message.

A Text object displays a graphic in its text by sending the managing object a
drawS elf: in View: message. To record the graphic to a file or to the pasteboard, the Text
object sends the managing object a writeRichText:forView: message. The object must
then write an RTF control word along with any data (such as the path of a TIFF file
containing its image data) it might need to recreate its image. To reestablish the text
containing the graphic image from RTF data, a Text object must know which class to
associate with particular RTF control words. You associate a control word with a class
object by sending the Text class object a registerDirective:forClass: message. Thereafter,
whenever a Text object finds the registered control word in the RTF data being read from a
file or the pasteboard, it will create a new instance of the class and send the object a
readRichText:for View: message.

An alternate means of adding a image to the text is for the user to drag an EPS or TIFF file
icon directly into a Text object. The Text object automatically creates an object to manage
the display of the image. This feature requires a rich Text object that has been configured
to receive dragged images (see setGraphicslmportEnabled:).

Images that have been imported in this way can be written as RTFD documents, the file
format that Edit uses for text that contains images. RTFD documents use a file package, or
directory, to store the components of the document (the "D" stands for "directory"). (See
saveRTFDTo:removeBackup:errorHandler: and openRTFDFrom:.) The file package
has the name of the document plus a ".rtfd" extension. It always contains a file called
TXT.rtf for the text of the document, and one or more TIFF or EPS files for the images. A
Text object can serialize the information in an RTFD document to a stream (see
writeRTFDTo:) and deserialize it from a stream (see readRTFDFrom:).

Classes: Text 2-669

Cooperating with Other Objects and Services

Text objects are designed to work with the Application Kit's font conversion system. By
default, a Text object keeps the Font panel updated with the font of the current selection. It
also changes the font of the selection (for a rich Text object) or of the entire text (for a
default Text object) to reflect the user's choices in the Font panel or menu. To disconnect
a Text object from this service, send it a setFontPanelEnabled:NO message.

If a Text object is a subview of a ScrollView, it can cooperate with the ScrollView to display
and update a ruler that displays formatting information. The ScrollView retiles its subviews
to make room for the ruler, and the Text object updates the ruler with the format information
of the paragraph containing the selection .. The toggleRuler: method controls the display of
this ruler. Users can modify paragraph formats by manipulating the components of the ruler.

By means of the Services menu, a Text object can make use of facilities outside the scope of
its own application. By default, a Text object registers with the services system that it can
send and receive RTF and plain ASCII data. If the application containing the Text object has
a Services menu, a menu item is added for each service provider that can accept or return
these formats. To prevent Text objects from registering for services, send the Text class
object an exciudeFromServicesMenu: YES message before any Text objects are created.

Instance Variables

const NXFSM *breakTable;

const NXFSM *clickTable;

const unsigned char *preSeISmartTable;
const unsigned char *postSeISmartTable;

const unsigned char *charCategoryTable;

char delegateMethods;

NXCharFilterFunc charFilterFunc;
NXTextFilterFunc textFilterFunc;

NXTextFunc scanFunc;

NXTextFunc drawFunc;

id delegate;
int tag;

DPSTimedEntry cursorTE;

NXTextBlock *firstTextBlock;

NXTextBlock *lastTextBlock;
NXRunArray *theRuns;

NXRun typingRun;

2-670 Chapter 2: Application Kit

NXBreakArray *theBreaks;
int growLine;
int textLength;
NXCoord maxY;
NXCoord maxX;
NXRect bodyRect;
NXCoord borderWidth;
char clickCount;
NXSelPt spO;
NXSelPt spN;
NXSelPt anchorL;
NXSelPt anchorR;
float background Gray;
float textGray;
float selectionGray;
NXSize maxSize;
NXSize minSize;
struct _tFlags {

unsigned int changeState: 1;
unsigned int charWrap: 1;
unsigned int haveDown: 1;
unsigned int anchor IsO: 1;
unsigned int horizResizable: 1;
unsigned int vertResizable: 1 ;
unsigned int overstrikeDiacriticals: 1;
unsigned int monoFont: 1;
unsigned int disableFontPanel: 1;
unsigned int inClip View: 1;

} tFlags;
NXStream *textStream;

breakTable A pointer to the finite-state machine table that specifies
word and line breaks.

clickTable

preSelSmartTable

A pointer to the finite-state machine table that defines
word boundaries for double-click selection.

A pointer to the table that specifies which characters on
the left end of a selection are treated as equivalent to a
space.

Classes: Text 2-671

postSelSmartTable

charCategoryTable

delegateMethods

charFilterFunc

textFilterFunc

scanFunc

drawFunc

delegate

tag

cursorTE

firstTextB lock

lastTextBlock

theRuns

typingRun

theBreaks

growLine

textLength

maxY

maxX

2·672 Chapter 2: Application Kit

A pointer to the table that specifies which characters at the
right end of a selection are treated as equivalent to a space.

A pointer to the table that maps ASCII characters to
character classes. Entries are premultiplied by the size of
a finite-state machine table entry.

A record of the notification methods that the delegate
implements.

The function that checks each character as it's typed into
the text.

The function that checks the text that's being added to the
Text object.

The function that calculates the line of text.

The function that draws the line of text.

The object that's notified when the Text object is
modified.

The integer that the delegate uses to identify the
Text object.

The timed-entry number for the vertical bar that marks the
insertion point.

A pointer to the first record in a linked list of text blocks.

A pointer to the last record in a linked list of text blocks.

A pointer to the array of format runs. By default, theRuns
points to a single run of the default font.

The format run to use for the next characters entered.

A pointer to the array of line breaks.

The line containing the end of the growing selection.

The number of characters in the Text object.

The bottom of the last line of text. maxY is measured
relative to the origin of the bodyRect.

The widest line of text. maxX is accurate only after the
calcLine method is applied.

bodyRect

borderWidth

clickCount

spO

spN

anchorL

anchorR

backgroundGray

textGray

selectionGray

maxSize

minSize

tFlags.changeState

tFlags.charWrap

tFlags.haveDown

tFlags.anchorIsO

tFlags.horizResizable

tFlags. vertResizable

tFlags.overstrikeDiacriticals

tFlags.monoFont

tFlags.disableFontPanel

tFlags.inClip View

textS tre am

The rectangle the Text object draws text in.

Reserved for future use.

The number of clicks that created the selection.

The starting position of the selection.

The ending position of the selection.

The left anchor position.

The right anchor position.

The background gray value of the text.

The gray value of the text.

The gray value of the selection.

The maximum size of the frame rectangle.

The minimum size of the frame rectangle.

True if any changes have been made to the text since the
Text object became the first responder.

True if the Text object wraps words whose length exceeds
the line length on a character basis. False if such words
are truncated at the end of the line.

True if the left mouse button (or either button if their
functions haven't been differentiated) is down.

True if the anchor's position is at spO.

True if the Text object's width can grow or shrink.

True if the Text object's height can grow or shrink.

Reserved for future use.

True if the Text object uses one font for all its text.

True if the Text object doesn't update the Font panel
automatically.

True if the Text object is the subview of a Clip View.

The stream for reading and writing text.

Classes: Text 2-673

Adopted Protocols

NXChangeSpelling

NXIgnoreMisspelledWords

NXReadOnlyTextStream

NXSelectText

Method Types

Initializing the class object

- changeSpelling:

- spellDocumentTag

- openTextStream
- seekToCharacterAt:relativeTo:
- readCharacters:count:
- currentCharacterOffset
-isAtEOTS
- closeTextStream

- selectCharactersFrom:to:
- selectionCharacterCount
- readCharactersFromSelection:count:
- makeS election Visible

+ setDefaultFont:
+ getDefaultFont
+ excludeFromServicesMenu:
+ registerDirective:forClass:
+ initialize

Initializing a new Text object - initFrame:
- initFrame:text:alignment:

Freeing a Text object - free

Modifying the frame rectangle - setMaxSize:
- getMaxSize:
- setMinSize:
- getMinSize:
- setVertResizable:
- is VertResizable
- setHorizResizable:
- isHorizResizable
- sizeTo::
- sizeToFit
- resizeText::
-moveTo::

2-674 Chapter 2: Application Kit

Laying out the text - setMarginLeft:right:top: bottom:
- getMarginLeft: right: top: bottom:
- getMin Width:minHeight:max Width:maxHeight:
- setAlignment:
- alignment
- alignSelLeft:
- alignSelCenter:
- alignSelRight:
- setSelProp:to:
- changeTabStopAtto:
- calcLine
- setCharWrap:
-charWrap
- setNoWrap
- setParaStyle:
- defaultParaStyle
- calcParagraphStyle::
- setLineHeight:
- lineHeight
- setDescentLine:
- descentLine

Reporting line and position -lineFromPosition:
- positionFromLine:
- offsetFromPosition:
- positionFromOffset:

Classes: Text 2-675

Setting, reading, and writing the text
- setText:
- readText:
- startReadingRichText
- readRichText:
- readRichText:atPosition:
- readRTFDFrom:
- finishReadingRichText
- openRTFDFrom:
- saveRTFDTo:removeBackup:errorHandler:
- writeText:
- writeRichText:
- writeRichText:from:to:
- writeRTFDSelectionTo:
- writeRTFDTo:
- stream
- firstTextBlock
- getParagraph:start:end:rect:
- getSubstring:start:length:
- byteLength
- charLength
- textLength

Setting editability - setEditable:
- isEditable

Allowing multiple fonts and paragraph styles
- setMonoFont:
- isMonoFont

Editing the text - copy:
- copyFont:
- copyRuler:
- paste:
- pasteFont:
- pasteRuler:
-cut:
- delete: .
- clear:
- selectAll:
- selectText:

2~676 Chapter 2: Application Kit

Managing the selection - subscript:
- superscript:
- unscript:
- underline:
- showCaret
- hideCaret
- setSelectable:
- isSelectable
- selectError
- selectN ull
- setSel::
- getSel::
- replaceSel:
- replaceSel:length:
- replaceSel:length:runs:
- replaceSelWithRichText:
- replaceSelWithRTFD:
- scrollSelTo Visible

Setting the font - setFontPanelEnabled:
- isFontPanelEnabled
- changeFont:
- setFont:
-font
- setFont:paraStyle:
- setSelFont:
- setSelFontFamily:
- setSelFontSize:
- setSelFontStyle:
- setSeIFont:paraStyle:

Checking spelling - checkSpelling:
- showGuessPanel:

Managing the ruler - toggleRuler:
- isRulerVisible

Finding text - findText:ignoreCase: backwards: wrap:

Classes: Text 2-677

Modifying graphic attributes - setBackgroundGray:
- backgroundGray
- setBackgroundColor:
- backgroundColor
- setSelGray:
- selGray
- runGray:
- setSelColor:
- selColor
- runColor:
- setTextGray:
- textGray
- setTextColor:
- textColor

Reusing a Text object - renew Fonttextframe:tag:
- renewFontsize:style:textframe:tag:
- renew Runs: text frame: tag:
- windowChanged:

Displaying - drawSelf::
- setRetainedWhileDrawing:
- isRetainedWhileDrawing

Assigning a tag - setTag:
-tag

Handling event messages - acceptsFirstResponder
- becomeFirstResponder
- resignFirstResponder
- becomeKeyWindow
- resignKeyWindow
- mouseDown:
-keyDown:
- moveCaret

Handling graphics within the text

2-678 Chapter 2: Application Kit

+ registerDirective:forClass:
- replaceSelWithCell:
- setLocation:ofCell:
- getLocation:ofCell:
- setGraphicsImportEnabled:
- isGraphicsImportEnabled

U sing the Services menu

Setting tables and functions

Printing

Archiving

Assigning a delegate

Class Methods

+ excludeFromServicesMenu:
- validRequestorForSendType:andRetumType:
- readSelectionFromPasteboard:
- writeSelectionToPasteboard:types:

- setCharFilter:
- charFilter
- setTextFilter:
- textFilter
- setBreakTable:
- breakTable
- setPreSelSmartTable:
- preSelSmartTable
- setPostSelSmartTable:
- postSelSmartTable
- setCharCategoryTable:
- charCategoryTable
- setClickTable:
- clickTable
- setScanFunc:
- scanFunc
- setDrawFunc:
-drawFunc

- adjustPageHeightN ew:top: bottom: limit:

- read:
- write:

- setDelegate:
- delegate

excludeFromServicesMenu:

+ excludeFromServicesMenu:(BOOL)jlag

Controls whether Text objects will communicate with interapplication services through the
Services menu. By default, as each new Text instance is initialized, it registers with the
Application object that it's capable of sending and receiving the pasteboard types identified
by NXAsciiPboardType and NXRTFPboardType. If you want to prevent Text objects in
your application from registering for services that can receive and send these types, send
the Text class object an excludeFromServicesMenu: YES message. If, for example, your
application displays text but doesn't have editable text fields, you might use this method.

Classes: Text 2-679

Send an exciudeFromServicesMenu: message early in the execution of your application,
either before sending the Application object a run message or in the Application delegate's
app WillInit: method. Returns self.

See also: - validRequestorForSendType:andReturnType:,
- registerServicesMenuSendTypes:andReturnTypes: (Application)

getDefaultFont

+ getDefaultFont

Returns the Font object that corresponds to the Text object's default. Unless you've
changed the default font by sending a setDefaultFont: message, or taken advantage of the
NXFont parameter using defaults, getDefaultFont returns a Font object for a 12-point
Helvetica font with a flipped font matrix.

See also: + setDefauItFont:, - setFont:

initialize

+ initialize

Initializes the class object. The initialize message is sent for you before the class object
receives any other message; you never send an initialize message directly. Returns self.

See also: + initialize (Object)

registerDirective:forClass:

+ registerDirective:(const char *)directive forClass:class

Creates an association in the Text class object between the RTF control word directive and
class, a class object. Thereafter, when a Text instance encounters directive while reading a
stream of RTF text, it creates a new class instance. The new instance is sent a
readRichText:forView: message to let it read its image data from the RTF text.
Conversely, when a Text object is writing RTF data to a stream and encounters an object of
the class class, the Text object sends the object a writeRichText:forView: message to let
it record its representation in the RTF text. Thus, this method is instrumental in enabling a
Text object to read, display, and write an image within a text stream.

2-680 Chapter 2: Application Kit

An object of the class class must implement these methods:

highlight in View: lit
drawS elf: in View:
trackMouse:inRectofView:
calcCellSize:
readRichTextforView:
writeRichTextforView:

See the section titled "Methods Implemented by an Embedded Graphic Object" for more
information on these methods.

Returns nil if directive or class has already been registered; otherwise, returns self.

See also: - replaceSelWithCell:

setDefaultFont:

+ setDefaultFont:anObject

Sets the default font for the Text class object. The argument passed to this method is the id
of the Font object for the desired font. Since a Text object uses a flipped coordinate system,
make sure the Font object you specify uses a matrix that flips the y-axis of the characters.
Returns anObject.

See also: + getDefaultFont, - setLineHeight:, + newFont:size: (Font)

Instance Methods

acceptsFirstResponder

- (BaaL)acceptsFirstResponder

Assuming the text is selectable, returns YES to let the Text object become the first
responder; otherwise, returns NO. acceptsFirstResponder messages are sent for you; you
never send them yourself.

See also: - setSelectable:, - setDelegate:, - resignFirstResponder

Classes: Text 2-681

adjustPageHeightNew:top:bottom:limit:

- adjustPageHeightNew:(float *)newBottom
top: (float)oldTop
bottom: (float)oldBottom
limit: (float)bottomLimit

During automatic pagination, this method is performed to help lay a grid of pages over the
top-level view being printed. newBottom is passed in undefined and must be set by this
method. oldTop and oldBottom are the current values for the horizontal strip being created.
bottomLimit is the topmost value newBottom can be set to. If this limit is broken, the new
value is ignored. By default, this method tries to prevent the view from being cut in two.
All parameters are in the view's own coordinate system. Returns self.

alignment

- (int)alignment

Returns a value indicating the default alignment of the text. The returned value is equal to
one of these constants:

Constant

NX_LEFTALIGNED

NX_RIGHTALIGNED

NX_CENTERED

See also: - setAlignment:

alignSelCenter:

- alignSelCenter:sender

Alignment

Flush to left edge of the body Rect.

Flush to right edge of the bodyRect.

Each line centered between left and right edges of the
bodyRect.

Flush to left and right edges of the bodyRect; justified.
Not yet implemented.

Sets the paragraph style of one or more paragraphs so that text is centered between the left
and right margins. For a plain Text object, all paragraphs are affected. For a rich Text
object, only those paragraphs marked by the selection are affected. The sending object
passes its id as part of the alignSelCenter: message. The text is rewrapped and redrawn.
Returns self.

See also: - alignSeILeft:, - alignSeIRight:, - setSeIProp:to:, - setMonoFont:

2-682 Chapter 2: Application Kit

alignSelLeft:

- alignSelLeft:sender

Sets the paragraph style of one or more paragraphs so that text is aligned to the left margin.
For a plain Text object, all paragraphs are affected. For a rich Text object, only those
paragraphs marked by the selection are affected. The sending object passes its id as part of
the alignSelLeft: message. The text is rewrapped and redrawn. Returns self.

See also: - alignSeICenter:, - alignSeIRight:, - setSeIProp:to:, - setMonoFont:

alignSelRight:

- alignSelRight:sender

Sets the paragraph style of one or more paragraphs so that text is aligned to the right margin.
For a plain Text object, all paragraphs are affected. For a rich Text object, only those
paragraphs marked by the selection are affected. The sending object passes its id as part of
the alignSelRight: message. The text is rewrapped and redrawn. Returns self.

See also: - alignSeICenter:, - alignSeILeft:, - setSeIProp:to:, - setMonoFont:

backgroundColor

- (NXCo!or)backgroundColor

Returns the background color of the text.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- setTextGray:, - textGray, - setTextColor:, - textColor, - setSeIGray:, - selGray,
- setSelColor:

backgroundGray

- (float)backgroundGray

Returns the gray value of the text's background.

See also: - setBackgroundGray:, - setBackgroundColor:, - background Color,
- setTextGray:, - textGray, - setTextColor:, - textColor, - setSeIGray:, - selGray,
- setSelColor:

Classes: Text 2-683

becomeFirstResponder

- becomeFirstResponder

Lets the Text object know that it's becoming the first responder. By default, the Text object
always accepts becoming first responder. becomeFirstResponder messages are sent for
you; you never send them yourself. Returns self.

See also: - setDelegate:, - acceptsFirstResponder, - selectError

becomeKeyWindow

- becomeKeyWindow

Activates the caret if it exists. becomeKeyWindow messages are sent by an application's
Window object, which, upon receiving a mouse-down event, sends a becomeKeyWindow
message to the first responder. You should never directly send this message to a Text object.
Returns self.

See also: - showCaret, - hideCaret, - becomeKeyWindow (Window)

breakTable

- (const NXFSM *)breakTable

Returns a pointer to the break table, the finite-state machine table that the Text object uses
to determine word boundaries.

See also: - setBreakTable:

byteLength

- (int)byteLength

Returns th~ number of bytes used by the characters in the receiving Text object. The
number doesn't include the null terminator ('\0') that getSubstring:start:length: returns
if you ask for all the text in a Text object.

In a standard Text object, the number of bytes is equal to the number of characters (thus,
this method would return the same value as charLength or textLength). Subclasses of
Text that use more than one byte per character should override this method to return the
number of bytes used to store the text.

See also: - charLength, - textLength, - getSubstring:start:length:

2-684 Chapter 2: Application Kit

calcLine
- (int)calcLine

Calculates the array of line breaks for the text. The text will then be redrawn if autodisplay
is set.

This message should be sent after the Text object's frame is changed. These methods send
a calcLine message as part of their implementation:

- initFrame:textalignment - readText
-read: - renewFontsize:style:textframe:tag:
- renewFonttextframe:tag: - setFont
- renewRuns:text:frame:tag: - setParaStyle:
- setFontparaStyle: - setText:

In addition, if a vertically resizable Text object is the document view of a ScrollView, and
the ScrollView is resized, the Text object receives a calcLine message. Has no significant
return value.

See also: - readText:, - renewRuns:text:frame:tag:

calcParagraphStyle: :
- (void *)calcParagraphStyle:fontId :(int)alignment

Recalculates the default paragraph style given the Font'sfontId and alignment. The Text
object sends this message for you after its font has been changed; you will rarely need to
send a caIcParagraphStyle:: message directly. Returns a pointer to an NXTextStyle
structure that describes the default style.

See also: - defaultParaStyle

changeFont:
- changeFont:sender

Changes the font of the selection for a rich Text object. It changes the font for the entire
Text object for a plain Text object. sender must respond to the convertFont: message.

If the Text object's delegate implements the method, it receives a
textWillConvert:fromFont:toFont: notification message for each text run that's about to
be converted.

See also: - setFontPanelEnabled:

Classes: Text 2-685

changeTabStopAt:to:

- changeTabStopAt:(NXCoord)oldX to:(NXCoord)newX

Moves the tab stop from the receiving Text object's x coordinate oldX to the coordinate
newX. For a plain Text object, all paragraphs are affected. For a rich Text object, only those
paragraphs marked by the selection are affected. The text is rewrapped and redrawn.
Returns self.

See also: - setMonoFont:, - setSeIProp:to:

charCategoryTable

- (const unsigned char *)charCategoryTable

Returns a pointer to the character category table, the table that maps ASCII characters to
character categories.

See also: - setCharCategoryTable:

charFilter

- (NXCharFilterFunc)charFilter

Returns the character filter function, the function that analyzes each character the user
enters. By default, this function is NXEditorFilterO.

See also: - setCharFilter:

charLength

- (int)charLength

Returns the number of characters in a Text object. The length doesn't include the null
terminator ('\0') that getSubstring:start:length: returns if you ask for all the text in a Text
object. The charLength and textLength methods are identical; the related method
byteLength returns the length of the text in bytes, which, depending on the number of bytes
used to store a character, may return a larger value.

See also: - byteLength, - textLength, - getSubstring:start:length:

2-686 . Chapter 2: Application Kit

charWrap

- (BOOL)charWrap

Returns a flag indicating how words whose length exceeds the line length should be treated.
If YES, long words are wrapped on a character basis. If NO, long words are truncated at
the boundary of the bodyRect.

See also: - setCharWrap:

checkSpelling:

- checkSpelling:sender

Searches for a misspelled word in the text of the receiving Text object. The search starts at
the current selection and continues until it reaches a word suspected of being misspelled or
the end of the text. If a word isn't recognized by the spelling server or listed in the user's
local dictionary in /.NeXTlLocaIDictionary, it's highlighted. A showGuessPanel:
message will then display the Guess panel and allow the user to make-a correction or add
the word to the local dictionary. Returns self.

See also: - showGuessPanel:

clear:

- clear:sender

Provided for backward compatibility. Use the delete: method instead.

See also: - delete:

clickTable

- (const NXFSM *)clickTable

Returns a pointer to the click table, the finite-state machine table that defines word
boundaries for double-click selection.

See also: - setClickTable:

Classes: Text 2-687

copy:

- copy:sender

Copies the selected text from the Text object to the selection pasteboard. The selection
remains unchanged. The pasteboard receives the text and its corresponding run
information. The pasteboard types used are NXAsciiPboardType and NXRTFPboardType.

The sender passes its id as part of the copy: message. Returns self.

See also: - cut:, - paste:, - delete:, - copyFont:, - pasteFont:, - copyRuler:,
- pasteRuler:

copyFont:

- copyFont:sender

Copies font information for the selected text to the font pasteboard. If the selection spans
more than one font, the information copied is that of the first font in the selection. The
selection remains unchanged. The pasteboard type used is NXFontPboardType.

The sender passes its id as the argument of the copyFont: message. Returns self.

See also: - pasteFont:, - copyRuler:, - pasteRuler:, - copy:, - cut:, - paste:, - delete:

copyRuler:

- copyRuler:sender

Copies ruler information for the paragraph containing the selection to the ruler pasteboard.
The selection expands to paragraph boundaries.

The ruler controls a paragraph's text alignment, tab settings, and indentation. If the
selection spans more than one paragraph, the information copied is that of the first
paragraph in the selection. The pasteboard type used is NXRulerPboardType.

Once copied to the pasteboard, ruler information can be pasted into another object or
application that's able to paste RTF data into its document.

The sender passes its id as the argument of the copyRuler: message. Returns self.

See also: - pasteRuler:, - copyFont:, - pasteFont:, - copy:, - cut:, - paste:, - delete:

2-688 Chapter 2: Application Kit

cut:
- cut:sender

Copies the selected text to the pasteboard and then deletes it from the Text object. The
pasteboard receives the text and its corresponding font information.

If the Text object's delegate implements the method, it receives a
textDidGetKeys:isEmpty: message immediately after the cut operation. If this is the first
change since the Text object became the first responder (and the delegate implements the
method), a textDidChange: message is also sent to the delegate.

The sender passes its id as part of the cut: message. Returns self.

See also: - copy:, - paste:, - delete:, - textDidGetKeys:isEmpty:, - textDidChange:

defaultParaStyle
- (void *)defauItParaStyle

Returns by reference the default paragraph style for the text. The pointer that's returned
refers to an NXTextStyle structure. The fields of this structure contain default paragraph
indentation, alignment, line height, descent line, and tab information. The Text object's
default values for these attributes can be altered using methods such as setParaStyle:,
setAlignment:, setLineHeight:, and setDescentLine:.

See also: - setParaStyle:, - setAlignment:, - setLineHeight:, - setDescentLine:

delegate
- delegate

Returns the Text object's delegate.

See also: - setDelegate:

Classes: Text 2·689

delete:

- delete:sender

Deletes the selection without adding it to the pasteboard. The sender passes its id as part
of the delete: message.

If the Text object's delegate implements the method, it receives a
textDidGetKeys:isEmpty: message immediately after the delete operation. If this is the
first change since the Text object became the first responder (and the delegate implements
the method), a textDidChange: message is also sent to the delegate.

The delete: method replaces clear:. Returns self.

See also: - cut:, - copy:, - paste:, - textDidGetKeys:isEmpty:, - textDidChange:

descentLi ne

- (NXCoord)descentLine

Returns the default descent line for the Text object. The descent line is the distance from
the bottom of a line of text to the base line of the text.

See also: - setDescentLine:

drawFunc

- (NXTextFunc)drawFunc

Returns the draw function, the function that's called to draw each line of text.
NXDraw ALineO is the default draw function.

See also: - setDrawFunc:, - setScanFunc:

drawSelf::

- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the Text object. You never send a drawSelf:: message directly, although you may
want to override this method to change the way a Text object draws itself. Returns self.

See also: - drawSelf:: (View)

2-690 Chapter 2: Application Kit

findText:ignoreCase:backwards:wrap:

- (BOOL)findText:(const char *)string
ignoreCase:(BOOL) ignore Casejlag
backwards :(BOOL)backwardsjlag
wrap: (BOOL)wrapjlag

Searches for string in the text, starting at the insertion point. If ignoreCasejlag is YES, the
search is case-insensitive. If backwardsjlag is NO, the search proceeds forward through the
text. If wrapjlag is YES, upon reaching the end of the text, the search loops back to the
start. If the string is found, it's highlighted and-if the Text object is the document view
of a ScrollView-the selection is scrolled into view. Returns YES, if string is found,
NO otherwise.

This method searches for the literal string; regular expression substitutions and wildcard
characters aren't supported.

finishReadingRichText

- finishReadingRichText

Notifies the Text object that it has finished reading RTF data. The Text object responds by
sending its delegate a textWillFinishReadingRichText: message, assuming there is a
delegate and it responds to this message. The delegate can then perform any required
cleanup. Alternatively, a subclass of Text could put these cleanup routines in its own
implementation of this method. Returns self.

firstTextBlock

- (NXTextBlock *)firstTextBlock

Returns a pointer to the first text block. You can traverse this head of the linked list of text
blocks to read the contents of the Text object. In most cases, however, it's better to use the
getSubstring:start:length: method to get a substring of the text or the stream method to
get read-only access to the entire contents of the Text object.

See also: - getSubstring:start:length:, - stream

Classes: Text 2-691

font

-font

Returns the Font object for a plain Text object. For rich Text objects, the Font object for
the first text run is returned.

See also: - setFont:

free

-free

Releases the storage for a Text object.

See also: - free (View)

getLocation :ofCell:

- getLocation:(NXPoint *)origin ofCell:celi

Places the x and y coordinates of cell in the NXPoint structure specified by origin. The
coordinates are in the Text object's coordinate system. cell is a Cell object that's displayed
as part of the text.

Returns nil if the Cell object isn't part of the text; otherwise, returns self.

See also: - replaceSeIWithCell:, - setLocation:ofCell:, - calcCellSize: (Cell)

getLocation:ofView:

Unimplemented.

getMarginLeft:right:top:bottom:

- getMarginLeft:(NXCoord *)leftMargin
right:(NXCoord *)rightMargin
top:(NXCoord *)topMargin
bottom:(NXCoord *)bottomMargin

Calculates the dimensions of the Text object's margins and returns by reference these
values in its four arguments. Returns self.

See also: - setMarginLeft:right:top:bottom:

2-692 Chapter 2: Application Kit

getMaxSize:

- getMaxSize:(NXSize *)theSize

Copies the maximum size of the Text object into the structure referred to by theSize.
Returns self.

See also: - setMaxSize:, - getMinSize:

getMinSize:

- getMinSize:(NXSize *)theSize

Copies the minimum size of the Text object into the structure referred to by theSize.
Returns self.

See also: - setMinSize:, - getMaxSize:

getMinWidth:minHeight:maxWidth:maxHeight:

- getMinWidth:(NXCoord *)width
minHeight:(NXCoord *)height
maxWidth:(NXCoord)widthMax
maxHeight:(NXCoord)heightMax

Calculates the minimum width and height needed to contain the text. Given a maximum
width and height (widthMax and heightMax), this method copies the minimum width and
height to the addresses pointed to by the width and height arguments. This method
doesn't rewrap the text. To get the absolute minimum dimensions of the text, send a
getMin Width:minHeight:maxWidth:maxHeight: message only after sending a
calcLine message.

The values derived by this method are accurate only if the Text object hasn't been scaled.
Returns self.

See also: - sizeToFit

Classes: Text 2-693

getParagraph:start:end:rect:

- getParagraph:(int)prNumber
start:(int *)startPos
end:(int *)endPos
rect:(NXRect *)paragraphRect

Copies the positions of the first and last characters of the specified paragraph to the
addresses startPos and endPos. It also copies the paragraph's bounding rectangle into the
structure referred to by paragraphRect. A paragraph ends in a Return character; the first
paragraph is paragraph 0, the second is paragraph 1, and so on. Returns self.

See also: - getSubstring:start:length:, - firstTextBlock

getSel::

- getSel:(NXSeIPt *)start :(NXSeIPt *)end

Copies the starting and ending character positions of the selection into the addresses
referred to by start and end. start points to the beginning of the selection; end points to the
end of the selection. Returns self.

See also: - setSel::

getSubstring:start:length:

- (int)getSubstring:(char *)buf
start: (int)startP os
length: (int)numChars

Copies a substring of the text to a specified memory location. The substring is specified by
startPos and numChars. startPos is the position of the first character of the substring;
numChars is the number of characters to be copied. buf is the starting address of the memory
location for the substring. getSubstring:start:length: returns the number of characters
actually copied. This number may be less than numChars if the last character position is less
than startPos + numChars. Returns -1 if startPos is beyond the end of the text.

getSubstring:start:length: appends a null terminator ('\0') to the substring only if the
requested substring includes the end of the Text object's text.

See also: - textLength, - getSel::

2-694 Chapter 2: Application Kit

hideCaret
- hideCaret

Removes the caret from the text. The Text object sends itself hide Caret messages
whenever the display of the caret would be inappropriate; you rarely need to send a
hideCaret message directly. Occasions when the hideCaret message is sent include
whenever the Text object receives a resignKeyWindow, mouseDown:, or keyDown:
message. Returns self.

See also: - show Caret

initFrame:
- initFrame:(const NXRect *)frameRect

Initializes a new Text object. This method invokes the initFrame:text:alignment: method
with the size and location specified by frameRect. Text alignment is set to
NX_LEFTALIGNED. Returns self.

See also: - initFrame:text:alignment:

initFrame:text:alignment:
- initFrame:(const NXRect *)frameRect

text:(const char *)theText
alignment: (int)mode

Initializes a new Text object. This is the designated initializer for Text objects: If you
subclass Text, your subclass's designated initializer must maintain the initializer chain by
sending a message to super to invoke this method. See the introduction to the class
specifications for more information.

The three arguments specify the Text object's frame rectangle, its text, and the alignment
of the text. The frameRect argument specifies the Text object's location and size in its
superview's coordinates. A Text object's superview must be a flipped view that's neither
scaled nor rotated. The second argument, theText, is a null-terminated array of characters.
The mode argument determines how the text is drawn with respect to the bodyRect:

Classes: Text 2-695

Constant

NX_LEFTALIGNED

NX_RIGHTALIGNED

NX_CENTERED

Alignment

Flush to left edge of the body Rect.

Flush to right edge of the body Rect.

Each line centered between left and right edges of the
bodyRect.

Flush to left and right edges of the bodyRect; justified.
Not yet implemented.

The Text object returned by this method uses the class object's default font (see
setDefaultFont:) and uses NXEditorFilter() as its character filter. It wraps words whose
length exceeds the line length. It sets its View properties to draw in its superview, to be
flipped, and to be transparent For more efficient editing, you can send a setOpaque:
message to make the Text object opaque.

Text editing is designed to work in buffered windows only. In a nonretained or retained
window, editing text in a Text object causes flickering. (However, to get better drawing
performance without causing flickering during editing, see setRetainedWhileDrawing:).

Returns self.

See also: - initFrame:

isEditable

- (BOOL)isEditable

Returns YES if the text can be edited, NO if not. The default value is YES.

See also: - isSelectable, - setDelegate:

isFontPanelEnabled

- (BOOL)isFontPanelEnabled

Returns YES if the Text object will respond to the Font panel, NO if not. The default value
is YES.

See also: - setFontPanelEnabled:

2-696 Chapter 2: Application Kit

isGraphicslmportEnabled

- (BOOL)isGraphicslmportEnabled

Returns YES if the Text object will import TIFF and EPS images dragged into it by the user.
The default value is NO.

See also: ,- setGraphicslmportEnabled:

isHorizResizable

- (BOOL)isHorizResizable

Returns YES if the text can automatically change size horizontally, NO if not. The default
value is NO.

See also: - setVertResizable:, - isVertResizable, - setHorizResizable:

isMonoFont

- (BOOL)isMonoFont

Returns YES if the Text object permits only one font and paragraph style for its text, NO if
not. The default value is YES.

See also: - setMonoFont:

isRetainedWhileDrawing

- (BOOL)isRetainedWhileDrawing

Returns YES if the Text object automatically changes its window's buffering type from
buffered to retained whenever it redraws itself, NO if not.

See also: - setRetainedWhileDrawing:, - drawSelf::

isRu lerVisible

- (BOOL)isRulerVisible

Returns YES if the ruler is visible in the Text object's superview, a ScrollView; otherwise,
returns NO.

See also: - toggleRuler:

Classes: Text 2-697

isSelectable

- (BOOL)isSelectable

Returns YES if the text can be selected, NO if not. The default value is YES.

See also: - isEditable, - setDelegate:

is VertResizable

- (BOOL)isVertResizable

Returns YES if the text can automatically change size vertically, NO if not. The default
value is NO.

See also: - setVertResizable:, - setHorizResizable:, - isHorizResizable

keyDown:

- keyDown:(NXEvent *)theEvent

Analyzes key-down events received by the Text object. keyDown: first uses the Text object's
character filter function to determine whether the event should be interpreted as a command
to move the cursor or as a command to end the Text object's status as the first responder. If
the latter, the Text object's delegate is given an opportunity to prevent the change.

If the event represents a character that should be added to the text, the Text object sets up a
modal event loop to process it along with other key-down events as they're received. The
text is redrawn, and then keyDown: notifies the delegate that the text has changed. This
message is sent by the system in response to keyboard events. You never send this message,
though you may want to override it.

See also: - setCharFilter:, - setDelegate:, - getNextEvent:waitFor: (Application)

IineFromPosition:

- (int)lineFromPosition: (int)position

Returns the line number that contains the character at position. To get more information
about the contents of the Text object, use the stream returned by the stream method to read
the contents of the Text object.

See also: - positionFromLine:, - stream

2-698 Chapter 2: Application Kit

IineHeight

- (NXCoord)lineHeight

Returns the default line height for the Text object.

See also: - setLineHeight:

mouseDown:

- mouseDown:(NXEvent *)theEvent

Responds to mouse-down events. When a Text object that allows selection receives a
mouseDown: message, it tracks mouse-dragged events and responds by adjusting the
selection and autoscrolling, if necessary. You never send this message, though you may
want to override it.

See also: - setEditable:, - setDelegate:, - getNextEvent:waitFor: (Application)

moveCaret:

- moveCaret:(unsigned short)theKey

Moves the caret either left, right, up, or down if theKey is NX_LEFT, NX_RIGHT, NX_UP,
or NX_DOWN. If theKey isn't one of these four values, the caret doesn't move. Returns self.

See also: - keyDown:

moveTo::

- moveTo:(NXCoord)x :(NXCoord)y

Moves the origin of the Text object's frame rectangle to (x, y) in its superview's coordinates.
Returns self.

See also: - moveTo:: (View)

offsetFromPosition:

- (int)offsetFromPosition:(int)charPosition

Returns the byte offset corresponding to the character position charPosition in the Text
object's text. In the standard software release, where each character is represented by a
byte, a character's position and its byte offset are identical.

See also: - positionFromOffset:,...,.. positionFromLine:, -lineFromPosition:

Classes: Text 2-699

openRTFDFrom:

- (NXRTFDError)openRTFDFrom:(const char *)path

Opens the RTFD file package specified by path. The last element in the path must be the
name of the RTFD directory-for example, "/tmpIMyFile.rtfd"-not the name of the RTF
document within the directory. On success, the Text object's contents are replaced with the
text and images found in the file package, and the new contents are displayed.

See also: - readRTFDFrom:, - replaceSeIWithRTFD:, - writeRTFDSelectionTo:,
- writeRTFDTo:

paste:

- paste:sender

Places the contents of the selection pasteboard into the Text object at the position of the
current selection. If the selection is zero-width, the text is inserted at the caret. If the
selection has positive width, the selection is replaced by the contents of the pasteboard. In
either case, the text is rewrapped and redrawn.

Before the paste operation, a textDidChange: message is sent to the delegate, assuming
that this is the first change since the Text object became the first responder and that the
delegate implements the method. After the paste operation, the delegate receives a
textDidGetKeys:isEmpty: message, if it implements the method.

sender is the id of the sending object. paste: returns nil if the pasteboard can provide
neither NXAsciiPboardType nor NXRTFPboardType format types; otherwise, returns self.

See also: - copy:, - cut:, - delete:, - copyFont:, - copyRuler:, - pasteFont:,
- pasteRuler:, - textDidGetKeys:isEmpty:, - textDidChange:

pasteFont:

- pasteFont:sender

Takes font information from the font pasteboard and applies it to the current selection. If
the selection is zero-width, only those characters subsequently entered at the insertion point
are affected.

pasteFont: works only with rich Text objects (see setMonoFont:). Attempting to paste a
font into a plain Text object generates a system beep without altering any fonts.

Before the paste operation, a textDidChange: message is sent to the delegate, assuming
that this is the first change since the Text object became the first responder and that the

2· 700 Chapter 2: Application Kit

delegate implements the method. After the paste operation, the delegate receives a
textDidGetKeys:isEmpty: message, if it implements the method.

sender is the id of the sending object. After the font is pasted, the text is rewrapped
and redrawn. pasteFont: returns nil if the pasteboard has no data of the type
NXFontPboardType; otherwise, returns self.

See also: - copyFont:, - copyRuler:, - pasteRuler:, - copy:, - cut:, - delete:, - paste:,
- setMonoFont:, - textDidGetKeys:isEmpty:, - textDidChange:

pasteRuler:

- pasteRuler:sender

Takes ruler information from the ruler pasteboard and applies it to the paragraph or
paragraphs marked by the current selection. The ruler controls a paragraph's text
alignment, tab settings, and indentation.

pasteRuler: works only with rich Text objects (see setMonoFont:). Attempting to paste
a ruler into a plain Text object generates a system beep without altering any ruler settings.

Before the paste operation, a textDidChange: message is sent to the delegate, assuming
that this is the first change since the Text object became the first responder and that the
delegate implements the method. After the paste operation, the delegate receives a
textDidGetKeys:isEmpty: message, if it implements the method.

sender is the id of the sending object. After the ruler is pasted, the text is rewrapped and
redrawn. If the ruler is visible, it's also updated. pasteRuler: returns nil if the pasteboard
has no data of the type NXRulerPboardType; otherwise, returns self.

See also: - copyRuler:, - copyFont:, - pasteFont:, - copy:, - cut:, - delete:, - paste:,
- setMonoFont:- textDidGetKeys:isEmpty:, - textDidChange:

position From Line:

- (int)positionFromLine:(int)line

Returns the character position of the line numbered line. Each line is terminated by a
Return character, and the first line in a Text object is line 1. To find the length of a line, you
can send the positionFromLine: message with two successive lines, and use the difference
of the two to get the line length. To get more information about the contents of the Text
object, use the stream returned by the stream method to read the contents of the Text object.

See also: -lineFromPosition:, - stream

Classes: Text 2-701

position FromOffset:

- (int)positionFromOffset: (int) offset

Returns the character position corresponding to a byte offset into the Text object's text. The
character position is determined by counting characters from the beginning of the Text
object, with the first character designated as O. In the standard software release, where each
character is represented by a byte, a character's position and its byte offset are identical.

See also: - offsetFromPosition:, - positionFromLine:, -lineFromPosition:

postSelSmartTable

- (const unsigned char *)postSeISmartTable

Returns a pointer to the table that specifies which characters on the right end of a selection
are treated as equivalent to a space character.

See also: - setPostSeISmartTable:, - setPreSeISmartTable:, - preSelSmartTable

preSelSmartTable

- (const unsigned char *)preSeISmartTable

Returns a pointer to the table that specifies which characters on the left end of a selection
are treated as equivalent to a space character.

See also: - setPreSeISmartTable:, - setPostSeISmartTable:, - postSelSmartTable

read:

- read:(NXTypedStream *)stream

Reads the Text object in from the typed stream stream. A read: message is sent in response
to archiving; you never send this message directly. Returns self.

readRichText:

- readRichText:(NXStream *)stream

Reads RTF text from stream into the Text object and formats the text accordingly. The Text
object is resized to be large enough for all the text to be visible. Returns self.

See also: - writeRichText:

2-702 Chapter 2: Application Kit

readRichText:atPosition:

- readRichText:(NXStream *)stream atPosition:(int)position

Reads RTF text from stream into the Text object's text at position and formats the text
accordingly. You never send this message, but may want to override it to read special RTF
directives while the Text object is reading RTF data. Returns self.

readRTFDFrom:

- readRTFDFrom:(NXStream *)stream

Reads the RTFD data contained in stream. The Text object's contents are replaced with the
text and images found in the stream, and the new contents are displayed. Returns self if the
data is successfully read from the stream; otherwise, returns nil.

See also: - openRTFDFrom:, - replaceSeIWithRTFD:, - writeRTFDSelectionTo:,
- writeRTFDTo:

readSelectionFromPasteboard:

- readSelectionFromPasteboard:pboard

Replaces the current selection with data from the supplied Pasteboard object, pboard.
When the user chooses a command in the Services menu, a
writeSelectionToPasteboard:types: message is sent to the first responder. This message
is followed by a readSelectionFromPasteboard: message, if the command requires the
requesting application to replace its selection with data from the service provider.

See also: - writeSelectionToPasteboard:types:,
- validRequestorForSendType:andReturnTypes:

readText:

- readText:(NXStream *)stream

Reads new text into the Text object from stream. All previous text is deleted. The Text
object wraps and redraws the new text if autodisplay is enabled. This method doesn't affect
the object's frame or bounds rectangle. To resize the text rectangle to make the text entirely
visible, use the sizeToFit method. Returns self. This method raises an NX_textBadRead
exception if an error occurs while reading from stream.

See also: - setSel::, - setText:, - readRichText:, - sizeToFit

Classes: Text 2-703

renewFont:size:style:text:frame:tag:

- renewFont:(const char *)newFontName
size: (float)new F ontSize
style: (int)newFontStyle
text: (const char *)newText
frame:(const NXRect *)newFrame
tag: (int)newTag

Resets a Text object so that it can be reused to draw or edit another piece of text. If newText
is NULL, the new text is the same as the previous text. newTag sets the Text object's tag.
A font object is created with newFontName, newFontSize, and newFontStyle. This method
is a convenient cover for the renewRuns:text:frame:tag: method. Returns self.

See also: - renewRuns:text:frame:tag:, - setText:

renewFont:text:frame:tag:

- renewFont:newFontId
text: (const char *)newText
frame:(const NXRect *)newFrame
tag: (int)newTag

Resets a Text object so that it can be reused to draw or edit another piece of text. If newText
is NULL, the new text is the same as the previous text. newTag sets a Text object's tag. This
method is a convenient cover for the renewRuns:text:frame:tag: method. Returns self.

See also: - setText:

renewRuns:text:frame:tag:

- renewRuns:(NXRunArray *)newRuns
text: (const char *)newText
frame:(const NXRect *)newFrame
tag: (int)newTag

Resets a Text object so that it can be reused to draw or edit another piece of text. If newRuns
is NULL, the new text uses the same runs as the previous text. If newText is NULL, the new
text is the same as the previous text. newTag sets a Text object's tag. Returns self.

See also: - setText:

2-704 Chapter 2: Application Kit

replaceSel:

- replaceSel:(const char *)aString

Replaces the current selection with text from aString, a null-terminated character string,
and then rewraps and redisplays the text. Returns self.

See also: - replaceSel:length:

replaceSel: length:

- replaceSel:(const char *)aString length:(int)length

Replaces the current selection with length characters of text from aString, and then rewraps
and redisplays the text. Returns self.

See also: - replaceSel:

replaceSel:length:runs:

- replaceSel:(const char *)aString
length: (int) length
runs:(NXRunArray *)insertRuns

Replaces the current selection with length characters of text from aString, using insertRuns
to describe the run changes. Another way to replace the selection with multiple-run text is
with replaceSeIWithRichText:.

After replacing the selection, this method rewraps and redisplays the text. Returns self.

See also: - replaceSel:, - replaceSelWithRichText:

replaceSelWithCell :

- replaceSelWithCell:cell

Replaces the current'selection with the image provided by cell. This method works only
with rich Text objects. (See setMonoFont:.)

The image is treated like a single character. Its height and width are determined by
sending the Cell a calcCellSize: message. The height determines the line height of the line
containing the image, and the width sets the character placement in the line. The image is
drawn by sending the Cell a drawSelf:in View: message.

Classes: Text 2-705

After receiving a replaceSelWithCell: message, a Text object rewraps and redisplays its
contents. Returns self.

See also: - setMonoFont:, - calcCellSize: (Cell), - drawSelf:inView: (Cell)

replaceSelWith Rich Text:

- replaceSeIWithRichText:(NXStream *)stream

Replaces the current selection with RTF data from stream, assuming the Text object accepts
rich text (see setMonoFont:). A replaceSelWithRichText: message is sent in response to
pasting RTF data from the pasteboard.

After replacing the selection, this method rewraps and redisplays the text. Returns self.

See also: - replaceSel:, - replaceSel:length:runs:, - replaceSelWithRTFD:

replaceSelWithRTFD:

- replaceSeIWithRTFD:(NXStream *)stream

Replaces the current selection with RTFD data from stream, assuming the Text object
accepts rich text (see setMonoFont:). A replaceSelWithRTFD: message is sent in
response to pasting RTFD data from the pasteboard.

After replacing the selection, this method rewraps and redisplays the text. On error
replaceSelWithRTFD: returns nil; otherwise, returns self.

See also: - replaceSel:, - replaceSel:length:runs:, - replaceSelWithRichText:

replaceSelWith View:

Unimplemented.

resignFirstResponder

- resignFirstResponder

Asks the Text object's delegate for permission before letting the Text object cease being the
first responder. If the delegate's textWillEnd: method returns a nonzero value, the Text
object remains the first responder, the entire text becomes the selection, and this method
returns nil. Otherwise, resignFirstResponder returns self.

2-706 Chapter 2: Application Kit

resignFirstResponder messages are sent for you; you never send them yourself.

See also: - setDelegate:, - acceptsFirstResponder, - selectError

resignKeyWindow

- resignKeyWindow

Deactivates the caret when the Text object's window ceases to be the key window. A
Window, before it ceases to be the application's key window, sends this message to its first
responder. You should never directly send this message to a Text object. Returns self.

See also: - becomeKeyWindow

resize Text::

- resizeText:(const NXRect *)oldBounds :(const NXRect *)maxRect

Causes the superview to redraw exposed portions of itself after the Text object's frame has
changed in response to editing. You never send a resizeText:: message directly, but you
might override it. oldBounds can differ from bounds in origin.x and size. width and
size.height. Returns self.

runColor:

- (NXColor)runColor:(NXRun *)run

Returns the color of the specified text run. By definition, a run can have no more than
one color.

See also: - runGray:

runGray:

- (float)runGray:(NXRun *)run

Returns the gray value for the specified text run. By definition, a run can have no more than
one gray value.

See also: - runColor:

Classes: Text 2-707

saveRTFDTo:removeBackup:errorHandler:

- (NXRTFDError)saveRTFDTo:(const char *)path
removeBackup:(BOOL)jlag
errorHandler:handler

Saves the contents (text and images) of the Text object to the file package specified by path,
for example, Itext/Document.rtfd. The text and images are saved in separate files within
the file package, with the text file being named TXT.rtf.

The save operation proceeds in several steps: First, the document in memory is saved to a
temporary file package (using the above example, Itext/Document.rtfd#). Second, the
earlier version of the document-if one exists-is renamed as the backup
(/textIDocument.rtfd becomes Itext/Document.rtfd-). Then, the temporary file package
is renamed (/text/Document.rtfd# becomes Itext/Document.rtfd). Finally, ifjlag is YES,
the backup is deleted.

handler is an error handling object that implements the attemptOverwrite: method (see
the NXRTFDErrorHandler protocol specification for details). If the user doesn't have
search permission for a component of path, an attemptOverwrite: message is sent to the
error handler. If the error handler returns YES, the Text object will attempt to write the file;
otherwise, the save operation is aborted.

This method returns a value indicating its success or the reason for its failure:

Return Values

NX_RTFDErrorNone
NX_RTFDErrorSaveAborted,
NX_RTFDErrorU nableTo WriteFile,
NX_RTFDErrorUnableToCloseFile,
NX_RTFDErrorUnableToCreatePackage,
NX_RTFDErrorUnableToCreateBackup,
NX_RTFDErrorUnableToDeleteBackup,
NX_RTFDErrorUnableToDeleteTemp,
NX_RTFDErrorUnableToDeleteOriginal,
NX_RTFDErrorFileDoesntExist,
NX_RTFDErrorUnableToReadFile,
NX_RTFDErrorInsufficientAccess,
NX_RTFDErrorMalformedRTFD

See also: - openRTFDFrom:, - readRTFDFrom:, - writeRTFDTo:

2· 708 Chapter 2: Application Kit

scanFunc

- (NXTextFunc)scanFunc

Returns the scan function, the function that calculates the contents of each line of text given
the line width, font size, text alignment, and other factors. NXScanALineO is the default
scan function.

See also: - setScanFunc:, - setDrawFunc:

scroliSelTo Visible

- scrollSelTo Visible

Scrolls the text so that the selection is visible. This method works by invoking the
scrollRectTo Visible: method, which Text inherits from View. Returns self.

selColor

- (NXColor)seIColor

Returns the color of the selected text.

See also: - setSeIColor:, - setSeIGray:, - setBackgroundGray:, - backgroundGray,
- setTextGray:, - textGray

selectAII:

- selectAIl:sender

. Attempts to make a Text object the first responder and, if successful, then selects all of its
text. Returns self.

See also: - selectError, - setSel::

selectError

- selectError

Makes the entire text the selection and highlights it. The Text object applies this method if
the delegate requires the Text object to maintain its status as the first responder. You rarely
need to send a selectError message directly, although you may want to override it. To
highlight a portion of the text, use setSel::. Returns self.

See also: - setSel::, - setDelegate:, - selectAIl:

Classes: Text 2-709

selectNull
- selectNull

Removes the selection and makes the highlighting (or caret, if the selection is zero-length)
disappear. The Text object's delegate isn't notified of the change. The Text object sends a
selectNull message whenever it needs to end the current selection but retain its status as the
first responder; you rarely need to override this method or send selectNull messages
directly. Returns self.

See also: - setSel::, - selectError, - selectAll:, - getSel::

selectText:
- selectText:sender

Attempts to make a Text object the first responder and, if successful, then selects all of its
text. This method works by invoking the selectAll: method. Returns self.

See also: - selectAll:, - setSel::

selGray
- (float)seIGray

Returns the gray value of the selected text.

See also: - setSeIGray:, - setBackgroundGray:, - backgroundGray, - setTextGray:,
- textGray

setAlignment:
- setAlignment:(int)mode

Sets the default alignment for the text. mode can have these values (NX_LEFTALIGNED
is the default):

Constant

NX_LEFTALIGNED

NX_RIGHTALIGNED

NX_CENTERED

2-710 Chapter 2: Application Kit

Alignment

Flush to left edge of the bodyRect.

Flush to right edge of the bodyRect.

Each line centered between left and right edges of the
bodyRect.

Flush to left and right edges of the bodyRect; justified.
Not yet implemented.

setAlignment: doesn't rewrap or redraw the text. Send a calcLine message if you want the
text rewrapped and redrawn after you reset the alignment. Returns self.

See also: - alignment, - calcLine, - alignSeILeft:, - alignSeICenter:, - alignSelRight:

setBackgroundColor:

- setBackgroundColor: (NXColor)color

Sets color as the background color for the Text object. color is an NXCoior structure as
detined in appkitlcolor.h. If the Text object's window and screen allow it, this color is
displayed the next time the text is redrawn. A setBackgroundColor: message doesn't
cause the text to be redrawn. Returns self.

See also: - setBackgroundGray:, - backgroundGray:, - background Color,
- setTextGray:, - textGray, - setTextColor:, - textColor, - setSeIGray:, - selGray,
- setSelColor:

setBackgroundGray:

- setBackgroundGray: (float)value

Sets the gray value for the background of the text. value should lie in the range from 0.0
(indicating black) to 1.0 (indicating white). To specify one of the four pure shades of gray,
use one of these constants:

Constant

NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

Shade

White
Light gray
Dark gray
Black

A setBackgroundGray: message doesn't cause the text to be redrawn. Returns self.

See also: - backgroundGray:, - setBackgroundColor:, - background Color,
- setTextGray:, - textGray, - setTextColor:, - textColor, - setSeIGray:, - selGray,
- setSelColor:

setBreakTable:

- setBreakTable:(const NXFSM *)aTable

Sets the break table, the tinite-state machine table that the Text object uses to determine
word boundaries. Returns self.

See also: - breakTable

Classes: Text 2-711

setCharCategoryTable:
- setCharCategoryTable:(const unsigned char *)aTable

Sets the character category table, the table that maps ASCII characters to character
categories. Returns self.

See also: - charCategoryTable

setCharFilter:
- setCharFilter:(NXCharFilterFunc)aFunc

Sets the character filter function, the function that analyzes each character the user enters.
The Text object has two character filter functions: NXFieldFilterO and NXEditorFilterO.
NXFieldFilterO interprets Tab and Return characters as commands to end the Text object's
status as the first responder. NXEditorFilterO, the default filter function, accepts Tab and
Return characters into the text. Returns self.

See also: - charFilter

setCharWrap:

- setCharWrap:(BOOL)jtag

Sets how words whose length exceeds the line length should be treated. If YES, long words
are wrapped on a character basis. If NO, long words are truncated at the boundary of the
bodyRect. Returns self.

See also: - charWrap

setClickTable:
- setClickTable:(const NXFSM *)aTable

Sets the finite-state machine table that defines word boundaries for double-click selection.
Returns self.

See also: - clickTable

2-712 Chapter 2: Application Kit

setDelegate:

- setDelegate:anObject

Sets the Text object's delegate. In response to user input, the Text object can send the
delegate any of several notification messages. See the introduction to this class
specification for more information. Returns self.

See also: - delegate, - acceptsFirstResponder, - resignFirstResponder

setDescentLi ne:

- setDescentLine:(NXCoord)value

Sets the default descent line for the text. The descent line is the distance from the bottom
of a line of text to the base line of the text. setDescentLine: neither rewraps nor redraws
the text. Send a calcLine message if you want the text rewrapped and redrawn after you
reset the descent line. Returns self.

See also: - descentLine, - calcLine

setDrawFunc:

- setDrawFunc:(NXTextFunc)aFunc

Sets the draw function, the function that's called to draw each line of text.
NXDraw ALineO is the default draw function. Returns self.

See also: - drawFunc, - setScanFunc:

setEditable:

- setEditable:(BOOL)jlag

Sets whether the text can be edited. Ifjlag is YES, the text is editable; if NO, the text is
read-only. By default, text is editable.

Use setEditable: if you don't expect the text's edit status to change. If your application
needs to change the text's edit status repeatedly, have the text's delegate implement the
appropriate notification methods (see setDelegate:). Returns self.

See also: - isEditable, - setDelegate:

Classes: Text 2-713

setFont:

- setFont:fontObJ

Sets the font for the entire text. The entire text is then rewrapped and redrawn. Returns self.

See also: - setFont:paraStyle:, - setSelFont:

setFont:paraStyle:

- setFont:fontObJ paraStyle:(void *)paraStyle

Sets the font and paragraph style for the entire text. The text is then rewrapped and redrawn.
The paragraph style controls such features as tab stops and line indentation. Returns self.

See also: - setFont:, - setSeIFont:, - setParaStyle:

setFontPanelEnabled:

- setFontPaneIEnabled:(BOOL)jlag

This sets whether the Text object will respond to the changeFont: message issued by the
Font panel. If enabled, the Text object will allow the user to change the font of the selection
for a rich Text object. For a plain Text object, the font for the entire text is changed. If
enabled, the Text object also updates the Font panel's font selection information.
Returns self.

See also: - isFontPanelEnabled

setGraphicslmportEnabled:

- setGraphicslmportEnabled:(BOOL)jlag

Sets whether the Text object will import TIFF and BPS images dragged into it by the user.
By default, Text objects refuse to import such images.

See also: - isGraphicslmportEnabled

2-714 Chapter 2: Application Kit

setHorizResizable:

- setHorizResizable:(BOOL)jlag

Sets whether the text can change size horizontally. If flag is YES, the Text object's frame
rectangle can change in the horizontal dimension in response to additions or deletions of
text; if NO, it can't. By default, the Text object can't change size. Returns self.

See also: - setVertResizable:, - isVertResizable, - isHorizResizable

setLineHeight:

- setLineHeight:(NXCoord)vaiue

Sets the default minimum distance between adjacent lines. For a plain Text object, this will
be the same for all lines. For rich Text objects, line heights will be increased for lines with
larger fonts. Even if very small fonts are used, in no case will adjacent lines be closer than
this minimum. setLineHeight: neither rewraps nor redraws the text. Send a calcLine
message if you want the text rewrapped and redrawn after you reset the line height. If no
line height is set, the default line height will be taken from the default font. Returns self.

See also: -lineHeight, + setDefauItFont:, - calcLine

setLocation:ofCell:

- setLocation:(NXPoint *)origin of Cell: cell

Sets the x and y coordinates for the Cell object specified by cell. The coordinates are
contained in the structure referred to by origin and are interpreted as being in the Text
object's coordinate system.

This method is provided for programmers who want to write their own scan functions and
need a way to position Cell objects found in the text stream. Sending a setLocation:ofCell:
message to a Text object that uses the standard scan function will have no effect on the
placement of cell. Returns self.

See also: - getLocation:ofCell:, - replaceSelWithCell:

Classes: Text 2-715

setMarginLeft:right:top:bottom:

- setMarginLeft:(NXCoord)lejtMargin
right: (NXCoord) rightMa rg in
top: (NXCoord)topMargin
bottom: (NXCoord)bottomMargin

Adjusts the dimensions of the Text object's margins. Returns self.

See also: - getMarginLeft:right:top:bottom:

setMaxSize:

- setMaxSize:(const NXSize *)newMaxSize

Sets the maximum size of a Text object. This maximum size is ignored if the Text object
can't be resized. The default maximum size is {O.O, O.O}. Returns self.

See also: - getMaxSize:, - setMinSize:

setMinSize:

- setMinSize:(const NXSize *)newMinSize

Sets the minimum size of the receiving Text object. This size is ignored if the Text object
can't be resized. The default minimum size is {O.O, O.O}. Returns self.

See also: --' getMinSize:, - setMaxSize:

setMonoFont:

- setMonoFont:(BOOL)jlag

Sets whether the receiving Text object uses one font and paragraph style for the entire text.
By default, a Text object allows only one font and paragraph style. Messages to set the font,
line height, text alignment, and so on affect the entire text of such Text objects. Text pasted
into such Text objects assume their current font and alignment characteristics. A Text
object in this state is called a plain Text object.

By sending a setMonoFont:NO message, multiple fonts and paragraph styles can be
displayed in a Text object. Thereafter, font changes affect only the selected text, and
paragraph style changes affect only the paragraph or paragraphs marked by the selection.

2-716 Chapter 2: Application Kit

The font and alignment characteristics of pasted text are maintained. A Text object in this
state is called a rich Text object. Returns self.

See also: - isMonoFont, - alignSeILeft:, - setSeIProp:to:, - setFontPanelEnabled:

setNoWrap

-setNoWrap

Sets the Text object's breakTable and charWrap instance variables so that word wrap is
disabled. It also sets the text alignment to NX_LEFTALIGNED. Returns self.

See also: - setCharWrap:

setParaStyle:

- setParaStyle:(void *)paraStyle

Sets the paragraph style for the entire text. The text is then rewrapped and redrawn. The
paragraph style controls features such as tab stops and line indentation. Returns self.

See also: - setFont:, - set Font:paraStyle:, - setSelFont:

setPostSelSmartTable:

- setPostSeISmartTable:(const unsigned char *)aTable

Sets postSelSmartTable, the table that specifies which characters on the right end of a
selection are treated as equivalent to a space character. Returns self.

See also: - postSelSmartTable, - setPreSeISmartTable:, - preSelSmartTable

setPreSelSmartTable:

- setPreSeISmartTable:(const unsigned char *)aTable

Sets preSelSmartTable, the table that specifies which characters on the left end of a
selection are treated as equivalent to a space character. Returns self.

See also: - preSelSmartTable, - setPostSelSmartTable:

Classes: Text 2-717

setRetainedWhileDrawing:

- setRetainedWhileDrawing:(BOOL)jlag

Sets whether the Text object automatically changes its window's buffering type from
buffered to retained whenever it redraws itself. Drawing directly to the screen improves the
Text object's perceived performance, especially if the text contains numerous fonts and
formats. Rather than waiting until the entire text is flushed to the screen, the user sees the
text being drawn line-by-line.

The window's buffering type changes to retained only while the Text object is redrawing
itself-that is, only when the Text object's drawSelf ::method is invoked. In other cases,
such as when a user is entering text, the window's buffering type is unaffected. This method
is designed to work with Text objects that are in buffered windows; don't send a
setRetainedWhileDrawing: message to a Text object in a retained or nonretained window.
Returns self.

See also: - isRetainedWhileDrawing, - drawS elf: :

setScanFunc:

- setScanFunc: (NXTextFunc)aFunc

Sets the scan function, the function that calculates the contents of each line of text given the
line width, font size, type of text alignment, and other factors. NXScanALineO is the
default scan function. Returns self.

See also: - scanFunc, - setDrawFunc:

setSel::

- setSel:(int)start :(int)end

Makes the Text object the first responder and then selects and highlights a portion of the
text. start is the first character position of the selection; end is the last character position of
the selection. To create an empty selection, start must equal end. Use setSel:: to select a
portion of the text programmatically. Returns self.

See also: - selectAII:, - selectError, - selectNull, - getSel::

2-718 Chapter 2: Application Kit

setSelColor:
- setSeIColor:(NXColor)color

Sets the text color of the selected text, assuming the Text object allows more than one
paragraph style and font (see setMonoFont:). Otherwise, setSelColor: sets the text color
for the entire text. color is an NXColor structure as defined in the header file
appkitlcolor.h. After the text color is set, the text is redisplayed. Returns self.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- background Color, - setTextGray:, - textGray, - setTextColor:, - textColor,
- setSeIGray:, - selGray

setSelectable:
- setSelectable:(BOOL)jlag

Sets whether the text can be selected. By default, text is selectable. Returns self.

See also: - isS electable, - setEditable:

setSelFont:
- setSeIFont:font/d

Sets the font for the selection. The text is then rewrapped and redrawn. Returns self.

See also: - setSeIFontSize:, - setSeIFontStyle:, - setFont:

setSeIFont:paraStyle:
- setSelFont:fontId paraStyle:(void *)paraStyle

Sets the font of the current selection to that specified by font/D. The paragraph style is also
changed. Returns self.

See also: - setSeIFont:, - setSeIFontSize:, - setSelFontStyle:

Classes: Text 2-719

setSelFontFamily:

- setSeIFontFamily:(const char *)fontName

Sets the name of the font for the selection to fontName. The text is then rewrapped and
redrawn. Returns self.

See also: - setSeIFontSize:, - setSelFontStyle:

setSelFontSize:

- setSeIFontSize:(float)size

Sets the size of the font for the selection to size. The text is then rewrapped and redrawn.
Returns self.

See also: - setSeIFont:, - setSeIFontStyle:, - setFont:

setSelFontStyle:

- setSeIFontStyle:(NXFontTraitMask)traits

Sets the font style for the selection. The text is then rewrapped and redrawn. The Text
object uses the FontManager to change the various traits of the selected font. Returns self.

See also: - setSeIFont:, - setSeIFontSize:, - setFont:

setSelGray:

- setSeIGray:(float)value

Sets the gray value of the selected text, assuming the Text object allows more than one
paragraph style and font (see setMonoFont:). Otherwise, setSelGray: sets the gray value
for the entire text. value should lie in the range 0.0 (indicating black) to 1.0 (indicating
white). To specify one of the four pure shades of gray, use one of these constants:

Constant
NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

2-720 Chapter 2: Application Kit

Shade

White
Light gray
Dark gray
Black

After the gray value is set, the text is redisplayed. Returns self.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- background Color, - setTextGray:, - textGray, - setTextColor:, - textColor,
- selGray, - setSelColor:

setSeIProp:to:

- setSeIProp:(NXParagraphProp)prop to:(NXCoord)val

Sets the paragraph style for one or more paragraphs. For a plain Text object, all paragraphs
are affected. For a rich Text object, only those paragraphs marked by the selection are
affected. prop determines which property is modified, and val provides additional
information needed for some properties. These constants are defined for prop:

Constant

NX_LEFTALIGN

NX_RIGHTALIGN

NX_CENTERALIGN

NX_JUSTALIGN

NX_FIRSTINDENT

NX_LEFTMARGIN

NX_RIGHTMARGIN

Property Affected

Text alignment. Aligns the text to the left margin. val is
ignored.

Text alignment. Aligns the text to the right margin. val is
ignored.

Text alignment. Centers the text between the left and right
margins. val is ignored.

Not yet implemented.

Indentation of the first line. val specifies the number of
units (in the receiver's coordinate system) along the x axis
to indent.

Indentation of lines other than the first line. val specifies
the number of units (in the receiver's coordinate system)
along the x axis to indent.

Tab placement. val specifies the position on the x axis (in
the receiver's coordinate system) to add the new tab.

Tab placement. val identifies the tab to be removed by
specifying its position on the x axis (in the receiver's
coordinate system).

Left margin width. val gives the new width as a number
of units in the receiver's coordinate system.

Right margin width. val gives the new width as a number
of units in the receiver's coordinate system.

Classes: Text 2·721

setSeIProp:to: sets the left and right margins by performing the setMarginLeft:right:
top:bottom: method. For all other properties, it performs the setFont:parastyle: method.
After the paragraph property is set, the text is rewrapped and redrawn. Returns self.

See also: - alignSeICenter:, - alignSeILeft:, - alignSeIRight:, - setMonoFont:

setTag:
- setTag:(int)an/nt

Sets the Text object's tag value to an/nt. Returns self.

See also: - tag, - findViewWithTag:

setText:
- setText:(const char *)aString

Replaces the current text with the text referred to by aString. The Text object then wraps
and redraws the text, if autodisplay is enabled. This method doesn't affect the object's
frame or bounds rectangle. To resize the text rectangle to make the text entirely visible, use
the sizeToFit method. Returns self.

See also: - setSel::, - readText:, - readRichText:, - sizeToFit

setTextColor:
- setTextColor:(NXColor)color

Sets color as the text color for the entire text. color is an NXCoior structure as defined in
the header file appkitlcolor.h. If the Text object's window and screen allow it, this color is
displayed the next time the text is redrawn. setTextColor: doesn't redraw the text.
Returns self.

To set the color of selected text, use setSeIColor:.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- background Color, - setTextGray:, - textGray, - textColor, - setSeIGray:,
- selGray, - setSelColor:

2-722 Chapter 2: Application Kit

setTextFilter:

- setTextFilter: (NXTextFilterFunc)aFunc

Sets the text filter function, the function that analyzes text the user enters.

The text filter function is called with the following arguments:

NXTextFunc myTextFilter(id self, unsigned char *insertText,
int *insertLength, int position) i

This function may change the contents of the text to be inserted. The pointer to the new
text is returned, and the new length is written into the insertLength integer pointer. The
position is where the new text is to be inserted.

This filter is different from the character filter in that you're given where the text is to be
inserted and the new text that will be inserted. This enables you to write a filter to do
auto-indent, or a filter to allow only properly formatted floating· point numbers. The
character filter doesn't give enough context to determine exactly what the state of the Text
object is before and after the edit. Returns self.

See also: - textFilter

setTextGray:

-:- setTextGray:(float)value

Sets the gray value for the entire text. value should lie in the range 0.0 (indicating black)
to 1.0 (indicating white). To specify one of the four pure shades of gray, use one of
these constants:

Constant

NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

Shade

White
Light gray
Dark gray
Black

A setTextGray: message doesn't cause the text to be redrawn. Returns self.

See also: - setBackgroundGray:, - backgroundGray:, - setBackgroundColor:,
- background Color, - textGray, - setTextColor:, textColor, - setSeIGray:, selGray,
- setSelColor:

Classes: Text 2-723

setVertResizable:

- setVertResizable:(BOOL)jlag

Sets whether the text can change size vertically. If flag is YES, the Text object's frame
rectangle can change in the vertical dimension in response to additions or deletions of text;
if NO, it can't. By default, a Text object can't change size. Returns self.

See also: - isVertResizable, - setHorizResizable:, - isHorizResizable

showCaret

-showCaret

Displays the caret. The Text object sends itself showCaret messages whenever it needs to
redisplay the caret; you rarely need to send a showCaret message directly. Occasions
when the showCaret message is sent include whenever a Text object receives
becomeKeyWindow, paste:, or delete: messages. A showCaret message redisplays the
caret only if the selection is zero-width. If the Text object is not in a window, or the
window is not the key window, or the Text object is not editable, this method has no effect.
Returns self.

See also: - hideCaret

showGuessPanel:

- showGuessPanel:sender

Displays a panel that offers suggested alternate spellings for a word that's suspected of
being misspelled. The user can either accept one of the alternates, added the word to a local
dictionary in -1.NeXTlLocaIDictionary, or skip the word.

A word becomes a candidate for the Guess panel's actions by being selected as the result
of the Text object's receiving a checkSpelling: message. Returns self.

See also: checkSpelling:

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Sets the Text object's frame rectangle to the specified width and height in its superview's
coordinates. This method doesn't rewrap the text; to do that, send a calcLine message.
Returns self.

See also: - sizeTo:: (View)

2-724 Chapter 2: Application Kit

sizeToFit

- sizeToFit

Modifies the frame rectangle to completely display the text. This is often used with Text
objects in a ScrollView. The setHorizResizable: and setVertResizable: methods
determine whether the Text object will resize horizontally or vertically (by default, it won't
change size in either dimension). After receiving a calcLine message, a Text that is the
document view of a ScrollView sends itself a sizeToFit message. See calcLine for the
methods that send calcLine messages. Returns self.

See also: - setHorizResizable:, - setVertResizable:

startReadingRichText

- startReadingRichText

A startReadingRichText message is sent to the Text object just before it begins reading
RTF data. The Text object responds by sending its delegate a
textWillStartReadingRichText: message, assuming there is a delegate and it responds to
this message. The delegate can then perform any required initialization. Alternatively, a
subclass of Text could put these initialization routines in its own implementation of this
method. Returns self.

stream

- (NXStream *)stream

Returns a pointer to a read-only stream that allows you to read the contents of the Text
object. The returned stream is convenient for parsing the contents of the Text object or for
implementing text searching within a text editor. The stream is valid until the Text object
is edited. You shouldn't keep a copy of the stream (or free the stream) after you finish using
it. When you need the stream again, send another stream message to get a valid one.

See also: - getSubstring:start:length:, - firstTextBlock

subscript:

- subscript:sender

Subscripts the selection. The text is then rewrapped and redrawn. The text is subscripted
by 40% of the selection's font height. Returns self.

See also: - superscript:, - unscript:

Classes: Text 2-725

superscript:
- superscript:sender

Superscripts the selection. The text is then rewrapped and redrawn. The text is
superscripted by 40% of the selection's font height. Returns self.

See also: - subscript:, - unscript:

tag
- (int)tag

Returns the Text object's tag.

See also: - setTag:, - findViewWithTag:

textColor
- (NXColor)textColor

Returns an NXCoior structure that denotes the color used for drawing text.

See also: - setTextColor:

textFilter
- (NXTextFilterFunc)textFilter

Returns the text filter function, the function that analyzes text the user enters. By default,
this function is NULL.

See also: - setTextFilter:

textGray
- (float)textGray

Returns the gray value used to draw the text.

See also: - setTextGray:

2-726 Chapter 2: Application Kit

textLength

- (int)textLength

Returns the number of characters in a Text object. The length doesn't include the null
terminator ('\0') that getSubstring:start:length: returns if you ask for all the text in a
Text object.

The textLength and charLength methods are identical; the related method byteLength
returns the length of the text in bytes, which, depending on the number of bytes used to
store a character, may return a larger value.

See also: - byteLength, - charLength, - getSubstring:start:length:

toggleRuler:

- toggleRuler:sender

Controls the display of the ruler. This method has effect only if the receiving Text object
is a rich Text object (see setMonoFont:) and is a subview of a ScrollView. toggleRuler:
causes the ScrollView to display a ruler if one isn't already present, or to remove the ruler
if one is. When the ruler is displayed, its settings reflect the paragraph style of the
paragraph containing the selection.

sender is the id of the sending object. Returns nil if the receiver isn't a subview of a
ScrollView instance; otherwise, returns self.

See also: - isRulerVisible:, - copyRuler:, - pasteRuler:, - setMonoFont:

underline:

- underline:sender

Toggles the underline attribute of text. This method has effect only if the receiving Text
object can display multiple fonts and paragraph styles (see setMonoFont:).

underline: adds an underline to the selected text if one doesn't already exist or removes the
underline if it does. If the selection is zero-width, underline: affects the underline attribute
of text that's subsequently entered at the insertion point.

sender is the id of the sending object. Returns self.

See also: - setMonoFont:, - superscript:, - subscript:

Classes: Text 2-727

unscript:

- unscript:sender

Removes the subscript or superscript property of the current selection. The text is then
rewrapped and redrawn. Returns self.

See also: - subscript:, - superscript:

validRequestorForSendType:andReturnType:

- validRequestorForSendType:(NXAtom)sendType
andReturnType:(NXAtom)returnType

Responds to a message that the Application object sends to determine which items in the
Services menu should be enabled or disabled at any particular time. You never send a
validRequestorForSendType:andReturnType: message directly, but you might override
this method in a subclass of Text.

A Text object registers for services during initialization (however, see
excIudeFromServicesMenu:). Thereafter, whenever the Text object is the first
responder, the Application object can send it one or more validRequestorForSendType:
andReturnType: messages during event processing to determine which Services menu
items should be enabled. If the Text object can place data of type sendType on the
pasteboard and receive data of type returnType back, it should return self; otherwise it
should return nil. The Application object checks the return value to determine whether to
enable or disable commands in the Services menu.

Since an object can receive one or more of these messages per event, it's important that if
you override this method in a subclass of Text, the new implementation include no
time-consuming calculations.

See the description of validRequestorForSendType:andReturnType: in the Responder
class specification for more information.

See also: + excIudeFromServicesMenu:,
- registerServicesMenuSendTypes:andReturnTypes: (Application),
- readSelectionFromPasteboard:, - writeSelectionToPasteboard:,
- validRequestorForSendType:andReturnType: (Responder)

2-728 Chapter 2: Application Kit

windowChanged:

- windowChanged:new Window

Notifies the receiving Text object of a change in the identity of its Window. Generally, the
change is the result of the Text object (or one of its superviews) being removed from the
Window's view hierarchy. This method ensures that the caret is hidden whenever the
window changes. Returns self.

See also: - windowChanged: (View)

write:

- write:(NXTypedStream *)stream

Writes the Text object to the typed stream stream. A write: message is sent in response to
archiving; you never send this message directly. Returns self.

writeRichText:

- writeRichText:(NXStream *)stream

Writes the contents of the Text object as RTF data to stream. The margins, fonts,
superscripting/subscripting, text color, and text are written out in this format. Returns self.

See also: - writeText:, - readText:

writeRichText:from:to:

- writeRichText:(NXStream *)stream
from: (int)start
to: (int)end

Writes a portion of the text starting at position start to position end in RTF to stream.
Returns self.

See also: - writeText:, - rea:dText:

Classes: Text 2-729

writeRTFDSelectionTo:

- writeRTFDSelectionTo:(NXStream *)stream

Writes the Text object's selection to stream. If the selection consists of text and images
from files in an RTFD directory, this data is serialized into the stream. Returns self.

See also: - openRTFDFrom:, - readRTFDFrom:, - replaceSeIWithRTFD:,
- writeRTFDTo:

writeRTFDTo:

- writeRTFDTo:(NXStream *)stream

Writes the Text object's contents to stream. If the Text object is storing RTFD data (that is,
text and images) this data is serialized into the stream. The counterpart method,
readRTFDFrom:, can restore the Text object's contents from such serialized data.
Returns self.

See also: - openRTFDFrom:, - readRTFDFrom:, - replaceSeIWithRTFD:,
- writeRTFDSelectionTo:

writeSelectionToPasteboard:types:

- (BOOL)writeSelectionToPasteboard:pboard
types:(NXAtom *)types

Writes the current selection to the supplied Pasteboard object, pboard. types lists the data
types to be copied to the pasteboard. A return value of NO indicates that the data of the
requested types could not be provided.

When the user chooses a command in the Services menu, a
writeSelectionToPasteboard:types: message is sent to the first responder. This message
is followed by a readSelectionFromPasteboard: message if the command requires the
requesting application to replace its selection with data from the service provider.

See also: - readSelectionFromPasteboard:,
- validRequestorForSendType:andReturnType:

writeText:

- writeText:(NXStream *)stream

Writes the entire text to stream. If you want to write only the selected text to a stream, use
getSel:: (to determine the extent of the selection), getSubstring:start:length: (to retrieve

2-730 Chapter 2: Application Kit

the text within the selected region), and then NXWriteO to write the text to the stream.
Returns self.

See also: - writeRichText:, - readText:, - getSubstring:start:length:

Methods Implemented by the Delegate

textDidChange:

- textDidChange:sender

Responds to a message sent to the delegate after the first change to the text since the Text
object became the first responder. The delegate receives a textWillChange: message
immediately before receiving a textDidChange: message.

textDidEnd:endChar:

- textDidEnd:sender endChar:(unsigned short)whyEnd

Responds to a message informing the delegate that the Text object has relinquished first
responder status. whyEnd is the movement character (for example, Tab or Return) that
caused the Text object to cease being the first responder and is represented by constants
such as NX_TAB and NX_RETURN. (See "Types and Constants" for a complete list of
these constants.) The delegate can use this information to decide which other object should
become the first responder.

textDidGetKeys:isEmpty:

- textDidGetKeys:sender isEmpty:(BOOL)flag

Responds to a message sent to the delegate after each change to the text. flag indicates
whether the Text object contains any text after the change.

textDidRead:paperSize:

- textDidRead:sender paperSize:(NXSize *)paperSize

Responds to a message informing the delegate that the Text object will read the paper size
for the document.

Classes: Text 2-731

This message is sent to the delegate after the Text object reads RTF data, allowing the
delegate to modify the paper size. paperSize is the dimensions of the paper size specified
by the \paperw and \paperh RTF control words.

See also: - textWillWrite:paperSize:

textDidResize:oldBou nds: i nval id:

- textDidResize:sender
oldBounds:(const NXRect *)oldBounds
invalid:(NXRect *)invalidRect

Responds to a message informing the delegate that the Text object has changed its size.
oldBounds is the Text object's bounds rectangle before the change. invalidRect is the area
of the Text object's superview that should be redrawn if the Text object has become smaller.

textWiliChange:

- (BOOL)textWillChange:sender

Responds to a message sent upon the first user input since the Text object became the first
responder. The delegate's textWillChange: method can prevent the text from being
changed by returning YES. If the delegate allows the change, it immediately receives a
textDidChange: message after the change is made. If the delegate doesn't implement this
method, the change is allowed by default.

textWiIIConvert:fromFont:toFont:

- textWillConvert:sender
fromFont:from
toFont:to

Responds to a message giving the delegate the opportunity to alter the font that will be used
for the selection. The message is sent whenever the Font panel sends a changeFont:
message to the Text object. from is the old font that's currently being changed, to is the font
that's to replace from. This method returns the font that's to be used instead of the to font.

2· 732 Chapter 2: Application Kit

textWiliEnd:

- (BOOL)textWiIlEnd:sender

Responds to a message informing the delegate that the Text object is about to relinquish first
responder status. The delegate's textWillEnd: method can prevent the change by returning
YES. If the delegate prevents the change, the entire text becomes selected. If the delegate
doesn't implement this method, the change is allowed by default.

textWiliFinishReadingRichText:

- textWillFinishReadingRichText:sender

Responds to a message informing the delegate that the Text object has read RTF data, either
from the pasteboard or from a text file.

textWiliResize:

- textWillResize:sender

Responds to a message informing the delegate that the Text object is about to change its
size. The delegate's textWillResize: method can specify the maximum dimensions of the
Text object by using the setMaxSize: method.

If the delegate doesn't implement this method, the change is allowed by default.

textWiIISetSel:toFont:

- textWillSetSel:sender toFont:font

Responds to a message giving the delegate the opportunity to change the font that the Text
object is about to display in the Font panel. font is the font that's about to be set in the Font
panel. This method returns the real font to show in the Font panel.

textWiliStartReadingRichText:

- textWillStartReadingRichText:sender

Responds to a message informing the delegate that the Text object is about to read RTF
data, either from the Pasteboard or from a text file.

Classes: Text 2·733

textWiIIWrite:paperSize:

- textWillWrite:sender paperSize:(NXSize *)paperSize

Responds to a message informing the delegate that the Text object will write out the paper
size for the document.

As part of its RTF output, the Text object's delegate can write out a paper size for the
document. The delegate specifies the paper size by placing the width and height values (in
points) in the structure referred to by paperSize. Unless the delegate specifies otherwise,
the paper size is assumed to be 612 by 792 points (8 112 by 11 inches).

See also: - textDidRead:paperSize:

Methods Implemented By An Embedded Graphic Object

calcCeliSize:

- calcCeIlSize:(NXSize *)theSize

Responds to a message from the Text object by providing the graphic object's width and
height. The Text object uses this information to adjust character placement and line height
to accommodate the display of the graphic object in the text. See the Cell class
specification for one implementation of this method.

See also: - calcCellSize: (Cell)

drawSelf:inView:

- drawS elf: (const NXRect *)reet in View:view

Responds to a message from the Text object by drawing the graphic object within the given
rectangle and View. The supplied View is generally the Text object itself. See the Cell class
specification for one implementation of this method.

See also: - drawSelf:in View: (Cell)

highlight:inView:lit:

- highlight: (canst NXRect *)reet
in View: view
lit: (BOOL)jlag

Responds to a message from the Text object by highlighting or unhighlighting the graphic
object during mouse tracking. reet is the area within view (generally the Text object itself)

2-734 Chapter 2: Application Kit

to be highlighted. If flag is YES, this method should draw the graphic object in its
highlighted state; if NO, it should draw the graphic object in its normal state. See the Cell
class specification for one implementation of this method.

See also: - highlight: in View:lit: (Cell)

readRichText:forView:

- readRichText:(NXStream *)stream forView:view

Responds to a message sent by the Text object when it encounters an RTF control word
that's associated with the graphic object's class (see registerDirective:forClass:). The
graphic object should read its representation from the RTF data in the supplied stream. The
Text object passes its id as the view argument.

This method is the counterpart to writeRichText:forView:. In extracting the image data
from the stream, readRichText:forView: must read the exact number of characters that
writeRichText:forView: wrote in storing the image data to the stream.

See also: - writeRichText:forView:, - registerDirective:forClass:

trackMouse:inRect:ofView:

- (BOOL)trackMollse:(NXEvent *)theEvent
inRect:(const NXRect *)reet
ofView:view

Responds to a message from the Text object by tracking the mouse while it's within the
specified rectangle of the supplied View. theEvent is a pointer to the mouse-down event
that caused the Text object to send this message. reet is the area within view (generally the
Text object) where the mouse will be tracked. See the Cell class specification for one
implementation of this method.

See also: - trackMollse:inRect:ofView: (Cell)

writeRich Text:forView:

- writeRichText:(NXStream *)stream forView:view

Responds to a message sent by the Text object when it encounters the graphic object in the
text it's writing to stream. The graphic object should write an RTF representation of its
image to the supplied stream. The Text object passes its id as the view argument.

See also: - readRichText:forView:, - registerDirective:forClass:

Classes: Text 2-735

TextField

Inherits From: Control: View : Responder: Object

Declared In: appkitlTextField.h

Class Description

A TextField is a Control object that can display a piece of text that a user can select or edit,
and which sends an action message to its target if the user hits the Return key while editing.
A TextField can also be linked to other TextFields, so that when the user presses Tab or
Shift-Tab, the object assigned as the "next" or "previous" field gets a message to select
its text.

A TextField is a good alternative to a Text object for small regions of editable text, since
the display of the TextField is achieved by using a global Text object shared by objects all
over your application, which saves on memory usage. Each Window also has a Text object
used for editing of TextFields (and TextFieldCells in Matrices). A Window's global Text
object is called afield editor, since it's attached as needed to a TextField to perform its
editing. TextField allows you to specify an object to act as an indirect delegate to the field
editor; the TextField itself acts as the Text delegate if it needs to, then passes the delegate
method on to its own Text delegate.

Instance Variables

id nextText;
id previousText;
id textDeiegate;
SEL error Action;

nextText

previousText

2-736 Chapter 2: Application Kit

The object whose text is selected when Tab is pressed.

The object whose text is selected when Shift-Tab is pressed.

textDelegate

errorAction

Delegate for Text object delegate methods.

Message sent to the target when a bad value is entered in
the field.

Method Types

Initializing the TextField class + setCellClass:

Initializing a new TextField

Enabling the TextField

Setting user access to text

Editing Text

Setting Tab key behavior

- initFrame:

- setEnabled:

- setSelectable:
- isSelectable
- setEditable:
- isEditable

- selectText:

- setN extText:
- nextText
- setPreviousText:
- previousText

Assigning a Text delegate - setTextDelegate:
- textDelegate

Text object delegate methods - textWillChange:
- textDidChange:
- textDidGetKeys:isEmpty:
- textWillEnd:
- textDidEnd:endChar:

Setting the TextField's value - setFloatValue: (Control)
- floatValue (Control)
- setDouble Value: (Control)
- double Value (Control)
- setIntValue: (Control)
- intValue (Control)
- setStringValue: (Control)
- setStringValueNoCopy: (Control)
- setStringValueNoCopy:shouldFree: (Control)
- stringValue (Control)

Classes: TextField 2·737

Modifying graphic attributes - setTextColor:
- textColor

Target and action

Resizing a TextField

Handling events

Archiving

Class Methods

setCeliClass:

+ setCellClass:classld

- setTextGray:
- textGray
- setBackgroundColor:
- backgroundColor
- setBackgroundGray:
- backgroundGray
- setBackgroundTransparent:
- isBackgroundTransparent
- setBezeled:
- isBezeled
- setBordered:
- isBordered

- setErrorAction:
- errorAction

- sizeTo::

- acceptsFirstResponder
- mouseDown:

-read:
- write:

Configures the TextField class to use instances of classld for its Cells. classld should be
the id of a subclass of TextFieldCell, obtained by sending the class message to either the
Cell subclass object or to an instance of that subclass. The default Cell class is
TextFieldCell. Returns self.

For more on how to safely set a Cell class for your subclass ofTextField, see "Creating New
Controls" in the Control class specification.

2-738 Chapter 2: Application Kit

Instance Methods

acceptsFirstResponder

- (BOOL)acceptsFirstResponder

Returns YES if the TextField is editable or selectable, NO otherwise.

See also: ,- setEditable:, - setSelectable:

backgroundColor

- (NXColor)backgroundColor

Returns the color used to draw the background.

See also: - setBackgroundColor:, - backgroundGray

backgroundGray

- (float)backgroundGray

Returns the gray level used to draw the background. If the gray level is less than 0, then
the background is transparent.

See also: - setBackgroundGray:, - background Color

error Action

- (SEL)errorAction

Returns the action sent to the target of the TextField when the user enters an illegal value
for the Cell type (as set by Cell's setEntryType: method and checked by Cell's
isEntryAcceptable: method).

See also: - setErrorAction:, - setEntryType: (Cell), - isEntryAccectable: (Cell)

initFrame:

- initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of TextField, with default parameters in
the given frame. The string value is set to be empty (not NULL), and the TextField has no
target, action, error action, or Text delegate. The TextField is editable, drawn with a bezel,

Classes: TextField 2-739

a white background, and black text; the alignment is NX_LEFTALIGNED. The font is set
to the user's system font, and the font size is 12.0 point. This is the designated initializer
for the TextField class.

isBackgroundTransparent

- (BOOL)isBackgroundTransparent

Returns YES if the background of the TextField is transparent (that is, if the background
gray is less than 0).

See also: - setBackgroundTransparent:

isBezeled

- (BOOL)isBezeled

Returns YES if the text is drawn in a bezeled frame.

See also: - setBezeled:, - isBordered

isBordered

- (BOOL)isBordered

Returns YES if the text has a solid black border around it.

See also: - setBordered:, - isBezeled

isEditable

- (BOOL)isEditable

Returns YES if the text is editable and selectable, NO if the text is not editable (though it
may be selectable).

See also: - setEditable:, - isSelectable

2-740 . Chapter 2: Application Kit

isSelectable

- (BOOL)isSelectable

Returns YES if the text is selectable, NO otherwise. Selectable text isn't necessarily
editable.

See also: - setSelectable:, - isEditable

mouseDown:

- mouseDown:(NXEvent *)theEvent

Overrides the Control method to begin editing or select text if the TextField allows it. You
never invoke this method directly, but may override it to implement subclasses of the
TextField class. Returns self.

See also: - isEditable, - isSelectable

nextText

-nextText

Returns the object whose text is selected when the user presses Tab while editing the
TextField. If that object responds to the selectText: message, the current TextField is
deactivated and selectText: is send to the next text.

See also: - setNextText:, - previousText

previousText

- previousText

Returns the object that is selected when the user presses Shift-Tab while editing the
TextField. If that object responds to the selectText: message, the current TextField is
deactivated and selectText: is sent to the previous text.

See also: - setPreviousText:, - nextText

Classes: TextField 2-741

read:

- read:(NXTypedStream *)stream

Reads the TextField from the typed stream stream. Returns self.

See also: - write:

selectText:

- selectText:sender

Selects the entire contents of the receiving TextField if it is editable or selectable. If the
TextField isn't in a View hierarchy, it has no effect. Returns self.

See also: - isEditable, - isS electable

setBackgroundColor:

- setBackgroundColor:(NXColor)aColor

Sets the background color for the TextField. Returns self.

See also: - background Color, - setBackgroundGray:

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the gray level that will be used to draw the background. If value is less than 0.0, no
background will be drawn. If the TextField is editable, it should have a background gray
greater than or equal to 0.0. Returns self.

See also: - backgroundGray, - setBackgroundColor:

setBackgroundTransparent:

- setBackgroundTransparent:(BOOL)jlag

Ifjlag is YES, sets the background gray of the TextField to transparent (a negative value);
if NO, sets the background gray to NX_ WHITE. Returns self.

See also: - setBackgroundGray:

2·742 Chapter 2: Application Kit

setBezeled:

- setBezeled:(BOOL)flag

If flag is YES, the TextFieldCell is drawn with a bezel around the edge; if NO, nothing is
drawn around the text. Bezels and borders are mutually exclusive. If the current
background gray is transparent, it's changed to NX_ WHITE. Bezeled transparent
TextFields look rather strange, but if you want to have one, invoke setBackgroundGray:
with -1.0 after invoking setBezeled:.

See also: - isBezeled, - setBordered:, - setBackgroundGray:

setBordered:

- setBordered:(BOOL)flag

Ifflag is YES, a I-pixel black border will be drawn around the text; if NO, nothing is drawn
around the text. Borders and bezels are mutually exclusive. Does not affect the
background gray level or color. Returns self.

See also: - isBordered, - setBezeled:

setEditable:

- setEditable:(BOOL)flag

If flag is YES, then the text in the TextField is made both editable and selectable. If NO,
the text can't be edited, and is restored to its previous selectable state. For example, if a
TextField is set selectable but not editable, then made editable for a time, then made not
editable again, it will still be selectable. To guarantee that text will be neither editable nor
selectable, simply tum off selectability explicitly. Returns self.

See also: - isEditable, - setSelectable:

setEnabled:

- setEnabled:(BOOL)flag

Makes the TextField enabled (able to accept mouse clicks and keystrokes) according to
flag. Redraws the text of the cell if autodisplay is on and the enabled state changes. Returns
self.

See also: - isEnabled (Control)

Classes: TextField 2-743

setErrorAction:
- setErrorAction:(SEL)aSelector

Sets the action sent to the target of the TextField when the user enters an illegal value for
the Cell's entry type (as set by Cell's setEntryType: method and checked by Cell's
isEntry Acceptable: method). Returns self.

See also: - errorAction, - setEntryType: (Cell), - isEntryAccectable: (Cell)

setNextText:

- setNextText:anObject

Sets up anObject as the object whose text will be selected when the user presses Tab while
editing the TextField's text. anObject should respond to the selectText: message. If
anObject also responds to both selectText: and setPrevious:, it's sent setPreviousText:
with the receiving TextField as the argument; this builds a two-way connection, so that
pressing Tab in the TextField selects anObject's text, and pressing Shift-Tab in anObject
selects the TextField's text. Returns self.

See also: - nextText, - setPreviousText:, - selectText:

setPreviousText:

- setPreviousText:anObject

Sets up anObject as the object whose text will be selected when the user presses Shift:-Tab
while editing the TextField's text. anObject should respond to the selectText: message.
Your code shouldn't need to use this method directly, since it's invoked automatically by
setNextText:. In deference to setNextText:, this method doesn't build a two':'way
connection. Returns self.

See also: - previousText, - setNextText:, - selectText:

setSelectable:

- setSelectable:(BOOL)flag

Ifflag is YES; then the TextField is made selectable but not editable (use setEditable: to
make text both selectable and editable). If NO, then the text is made neither editable nor
selectable. Returns self.

See also: - isSelectable, - setEditable:

2·744 Chapter 2: Application Kit

setTextColor:
- setTextColor:(NXColor)aColor

Sets the color used to draw the text. Returns self.

See also: - textColor, - setTextGray:

setTextDelegate:
- setTextDelegate:anObject

Sets the object to which the TextField will pass along any messages from the field editor.
These messages include text:isEmpty:, textWillEnd:, textDidEnd:endChar:,
textWillChange:, and textDidChange:. Returns self.

See also: - textDelegate, Text delegate methods

setTextGray:
- setTextGray:(ftoat)value

Sets the gray level used to draw the text. Returns self.

See also: - textGray, - setTextColor:

sizeTo::
- sizeTo:(ftoat)width :(ftoat)height

Resizes the TextField to width and height, aborting any editing in the TextField. After
the TextField is resized, this method reselects all the text. Returns self.

textColor
- (NXColor)textColor

Returns the color used to draw the text. Returns self.

See also: - setTextColor:, - textGray

Classes: TextField 2-745

textDelegate

- textDelegate

Returns the object that receives messages passed on by the TextField from the field editor.

See also: - setTextDelegate:

textDidChange:

- textDidChange:textObject

Passes this message on, with the same argument, to the TextField's Text delegate. Override
this method if you want your subclass of TextField to act as the field editor '8 delegate.
Returns self.

See also: - textDidChange: (Text delegate)

textDidEnd:endChar:

- textDidEnd:textObject endChar:(unsigned short)whyEnd

Invoked by textObject (the field editor) when text editing ends. Passes this message on,
with the same argument, to the TextField's Text delegate, then ends editing for the field
editor and checks whyEnd to see if an action key (Return or Tab) was pressed. If Return
was pressed, the action message is sent to the target. If Tab was pressed, selectText: is sent
to the next text if there is one and it responds, or to self if not. If Shift-Tab was pressed,
selectText: is sent to the previous text if there is one and it responds, or to self if not.
Returns the object sent the selectText: message.

You may want to override this method to interpret more characters (such as the Enter or
Escape keys) in ending editing.

See also: - sendAction:to: (Control), - setNextText:, - setPreviousText:,
- textDidEnd:endChar: (Text delegate)

textDidGetKeys:isEmpty:

- textDidGetKeys:textObject isEmpty:(BOOL)jlag

Passes this message on, with the same argument, to the TextField's Text delegate. Override
this method if you want your subclass of TextField to act as the field editor's delegate.
Returns self.

See also: - textDidGetKeys:isEmpty: (Text delegate)

2-746 Chapter 2: Application Kit

textGray

- (float)textGray

Returns the gray level used to draw the text. Returns self.

See also: - setTextGray:, - textColor

textWiliChange:

- (BOOL)textWiIlChange:textObject

Invoked automatically during editing to determine if it is okay to edit the TextField. This
method checks whether the TextField is editable and sends textWillChange: to the
TextField's Text delegate to allow it to respond. Returns YES if the text isn't editable, NO
if the text is editable but the TextField' s Text delegate doesn't respond to text Will Change:,
and the text delegate's return value for textWillChange: if the TextField's Text delegate
responds to it.

See also: - setEditable:, - setTextDelegate:, - textWillChange: (Text delegate)

textWiliEnd:

- (BOOL)textWiIlEnd:textObject

Invoked automatically before text editing ends. Checks the text by sending
isEntryAcceptable: to the TextField's Cell. If the entry isn't acceptable, sends the error
action to the target. This method is then passed on to the TextField's Text delegate with the
same argument. The return value is based on whether the entry is acceptable and on the
return value from the TextField's Text delegate. If the delegate responds to textWiIlEnd:,
this method returns NO if the entry is acceptable and the delegate returns NO. Otherwise
this method returns YES to indicate that editing shouldn't end, and generates a beep to
indicate an error in the entry.

See also: - isEntry Acceptable: (Cell), - setTextDelegate:,
- textWillEnd: (Text delegate)

write:

- write:(NXTypedStream *)stream

Writes the receiving TextField to the typed stream stream. Returns self.

See also: - read:

Classes: TextField 2-747

TextFieldCel1

Inherits From:

Declared In:

ActionCell : Cell: Object

appkitlTextFieldCell.h

Class Description

A TextFieldCell is simply a text Cell that keeps track of it background and text colors.
Normally, the Cell class assumes white as the background when bezeled, and light gray
otherwise, and black text is always used. With TextFieldCell, you can specify those colors.

Instance Variables

float background Gray;

float textGray;

backgroundGray

textGray

Method Types

Initializing a new TextFieldCell

Copying a TextFieldCell

2-748 Chapter 2: Application Kit

The background gray level.

The text gray level.

-init
- initTextCell:

- copyFromZone:

Setting the TextFieldCell's value
- setFloatValue: (Cell)
- fioatValue (Cell)
- setDoubleValue: (Cell)
- double Value (Cell)
- setIntValue: (Cell)
- intValue (Cell)
- setStringValue: (Cell)
- setStringValueNoCopy: (Cell)
- setStringValueNoCopy:shouldFree: (Cell)
- stringValue (Cell)

Modifying Graphic Attributes - setTextColor:
- textColor

Displaying

Tracking the Mouse

Archiving

Instance Methods

backgroundColor

- setTextGray:
- textGray
- setBackgroundColor:
- backgroundColor
- setBackgroundGray:
- backgroundGray
- setBackgroundTransparent:
- isBackgroundTransparent
- setTextAttributes:
- setBezeled:
- isOpaque

- drawS elf: in View:
- draw Inside: in View:

- trackMouse:inRect:ofView:

- read:
- write:

- (NXColor)backgroundColor

Returns the color used to draw the background.

See also: - setBackgroundColor:, - backgroundGray

Classes: TextFieldCe!! 2·749

backgroundGray

- (float)backgroundGray

Returns the gray level used to draw the background. If the gray level is less than 0, then
the background is transparent.

See also: - setBackgroundGray:, - backgroundColor

copyFromZone:

- copyFromZone:(NXZone *)zone

Creates and returns a new TextFieldCell as a copy of the receiver, allocated from zone.

drawlnside:in View:

- drawlnside:(const NXRect *)celiFrame in View:controlView

Draws the inside of the TextFieldCell (the background and text, but not the bezel or border).
This method is invoked from drawSelf:in View: and also from Control and its subclasses'
drawCelllnside: method. If you subclass TextFieldCell, and you override
drawSelf:inView:, then you should override this method as well. Returns self.

See also: - drawSelf:in View:

drawSelf:inView:

- drawSelf:(const NXRect *)celiFrame inView:controlView

Draws the TextFieldCell's background,· text, and border or bezel. Returns self.

See also: - drawlnside:in View:

init

- init

Initializes and returns the receiver, a new instance of TextFieldCell, with the default title,
"Field". Other defaults are set as described in initTextCell: below.

See also: - initTextCell:

2-750 Chapter 2: Application Kit

in itTextCell:

- initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of TextFieldCell, with aString as its text.
The default text gray is NX_BLACK, and the default background gray is transparent
(-1.0). Its font is set to the user's system font, and the font size is 12.0 point.

This method is the designated initializer for TextFieldCell. Override this method if you
create a subclass of TextFieldCell that performs its own initialization. Note that
TextFieldCell doesn't override Cell's initIconCell: designated initializer; your code
shouldn't use that method to initialize an instance of TextFieldCell.

See also: - init

isBackgroundTransparent

- (BOOL)isBackgroundTransparent

Returns YES if the background of the TextFieldCell is transparent (that is, if the
background gray is less than 0).

See also: - setBackgroundTransparent:, - setBackgroundGray:

isOpaque

- (BOOL)isOpaque

Returns YES if the TextFieldCell draws over every pixel in its frame. This will be true if
the cell is bezeled, or if its background gray is not transparent.

See also: - setBezeled:, - setBackgroundGray:

read:

- read:(NXTypedStream *)stream

Reads the TextFieldCell from the typed stream stream. Returns self.

See also: - write:

Closses: TextFieldCell 2-751

setBackgroundColor:

- setBackgroundColor:(NXColor)aColor

Sets the background color for the TextFieldCell. Returns self.

See also: - background Color, - setBackgroundGray:

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the gray level that will be used to draw the background. If value is less than 0.0, no
background will be drawn. If the cell is editable, it should have a background gray greater
than or equal to 0.0. Returns self.

See also: - background Gray, - setBackgroundColor:

setBackgroundTransparent:

- setBackgroundTransparent:(BOOL)flag

Ifflag is YES, sets the background gray of the TextFieldCell to transparent (a negative
value); if NO, sets the background gray to NX_ WHITE. Returns self.

See also: - setBackgroundGray:

setBezeled:

- setBezeled:(BOOL)flag

If flag is YES, the TextFieldCell is drawn with a bezel around the edge; if NO, nothing is
drawn around the text. If the current background gray is transparent, it's changed to
NX_ WHITE. Bezeled transparent TextFieldCells look rather strange, but if you want to
have one, invoke setBackgroundGray: with -1.0 after invoking setBezeled:.

See also: - isBezeled (Cell), - setBackgroundGray:

2-752 Chapter 2: Application Kit

setTextAttributes:
- setTextAttributes:textObject

Used to set the attributes of the field editor when editing the TextFieldCell (see the
TextFieldCell class description). Sets the background and text colors or gray levels of
textObject to those of the TextFieldCell, and returns textObject. textObject should respond
to the messages setBackgroundGray:, setBackgroundColor:, setTextGray:, and
setTextColor:. You rarely need to override this method; you never need to invoke it.

If the TextFieldCell is disabled, then textObject's text color or gray level is brought toward
the background's brightness level by 0.333. For example, if the background gray is white,
and the text gray is dark gray, the disabled text gray would be light gray. If the background
color is black and the text color is red at 100% brightness, then the disabled text color would
be red at 66.7% brightness.

Note that if the TextFieldCell has a transparent background, textObject's background gray
isn't changed. Since a TextFieldCell's background is transparent by default, and the field
editor's background could be any gray level or color (depending on where it was last used),
this can cause ugly side effects. Editable TextFieldCells should use an opaque background
whenever possible in order to avoid this.

See also: - setTextGray:, - setBackgroundGray:, - setTextAttributes: (Cell)

setTextColor:
- setTextColor:(NXColor)aColor

Sets the color used to draw the text. Returns self.

See also: - textColor, - setTextGray:

setTextGray:
- setTextGray:(fioat)value

Sets the gray level used to draw the text. Returns self.

See also: - textGray, - setTextColor:

Classes: Tex/fieldCdl 2~753

textColor

- (NXColor)textColor

Returns the color used to draw the text. Returns self.

See also: - setTextColor:, - textGray

textGray

- (float)textGray

Returns the gray level used to draw the text. Returns self.

See also: - setTextGray:, - textColor

trackMouse:inRect:ofView:

- (BOOL)trackMouse:(NXEvent*)theEvent
inRect:(const NXRect*)aRect
ofView:controlView

Causes editing to occur, and increments the state of the TextFieldCell if its enabled and
the mouse goes up in its frame. Returns YES if the mouse goes up in the TextFieldCell,
NO otherwise.

See also: - trackMouse:inRect:ofView: (Cell)

write:

- write:(NXTypedStream *)stream

Writes the receiving TextFieldCell to the typed stream stream. Returns self.

See also: - read:

2-754 Chapter 2: Application Kit

Vie""

Inherits From: Responder: Object

Declared In: appkitlView.h

Class Description

View is an abstract class that provides its subclasses with a structure for drawing and
handling events. Any application that needs to display, print, or receive events must use
View objects.

To be displayed, a View must be placed in a Window. All the Views within a Window are
arranged in a hierarchy, with each View having a single superview and zero or more
subviews. Each View has its own area to draw in and its own coordinate system, expressed
as a transformation of its superview's coordinate system. A View can scale, translate, or
rotate its coordinates, flip the polarity of its y-axis, or use the same coordinate system as
its superview.

A View keeps track of its size and location in two ways: as a frame rectangle (expressed
in its superview's coordinate system) and as a bounds rectangle (expressed in its own
coordinate system). Both are represented by NXRect structures.

Instance Variables

NXRect frame;
NXRect bounds;
id superview;
id subviews;
id window;

Classes: View 2~ 755

struct __ vFlags {
unsigned int noClip: 1;
unsigned int translatedDraw: 1 ;
unsigned int drawlnSuperview: 1;
unsigned int alreadyFlipped: 1;
unsigned int needsFlipped: 1 ;
unsigned int rotatedFromBase: 1;
unsigned int rotatedOrScaledFromBase: 1;
unsigned int opaque: 1 ;
unsigned int disableAutodisplay: 1;
unsigned int needsDisplay: 1 ;
unsigned int validGState: 1;
unsigned int newGState: 1;

} vFlags;

frame

bounds

superview

sub views

window

vFlags.noClip

v Flags. translatedDraw

vFlags.drawInSuperview

vFlags.alreadyFlipped

v Flags.needsFlipped

v Flags.rotatedFromBase

The size and location of the View in its superview's
coordinate system.

The size and location of the View in its own coordinate
system.

The View's parent in the view hierarchy.

A list of the View's immediate children in the view
hierarchy.

The Window in which the View is displayed.

YES if drawing isn't clipped to the frame.

YES if the bounds rectangle origin isn't (0,0).

YES if the bounds origin equals the frame origin.

YES if the View's superview is flipped.

YES if the View is flipped.

YES if the View's coordinates are rotated from base
coordinates.

vFlags.rotatedOrScaledFromBase
YES if the View's coordinates are rotated or scaled from
base coordinates.

2-756 Chapter 2: Application Kit

vFlags.opaque YES if the View is opaque.

YES if automatic display is disabled. v Flags.disableAutodisplay

v Flags.needsDisplay

vFlags. validGState

vFlags.newGState

YES if the View has changed since it was last displayed.

YES if the View's graphics state is valid.

YES if the View has a new graphics state.

Method Types

Initializing and freeing View objects
- initFrame:
- init
-free

Managing the View hierarchy - addSubview:
- addSubview: :relativeTo:
- findAncestorSharedWith:
- isDescendantOf:
- opaqueAncestor
- removeFromSuperview
- replaceSubview:with:
- subviews
- superview
-window
- windowChanged:

Modifying the frame rectangle - frameAngle
- getFrame:
-moveBy::
-moveTo::
- rotateBy:
- rotateTo:
- setFrame:
- sizeBy::
- sizeTo::

Classes: View 2-757

Modifying the coordinate system
- bounds Angle
- drawlnSuperview
- getBounds:
- isFlipped
- isRotatedFromBase
- isRotatedOrScaledFromBase
- rotate:
- scale::
- setDrawOrigin::
- setDrawRota,tion:
- setDrawSize::
- setFlipped:
- translate::

Converting coordinates - centerScanRect
- convertPointfrom View:
- convertPointto View:
- convertPointFromSuperview:
- convertPointToSuperview:
- convertRectfrom View:
- convertRectto View:
- convertRectFromSuperview:
- convertRectToSuperview:
- convertSize:from View:
- convertSize:to View:

Notifying ancestor Views - descendantFlipped:
- descendantFrameChanged:
- notify AncestorWhenFrameChanged:
- notifyWhenFlipped:
- suspendNotify AncestorWhenFrameChanged:

Resizing subviews - resizeSubviews:
- setAutoresizeSubviews:
- setAutosizing:
- autosizing
- superviewSizeChanged:

Graphics state objects - allocateGState
- freeGState
- gState
- initGState
- renewGState
- notifyTolnitGState:

2-758 Chapter 2: Application Kit

Focusing - clipToFrame:
- doesClip
- setClipping:
- isFocus View
-lockFocus
- unlockFocus

Displaying -canDraw
- display
- display::
- display:::
- display FromOpaqueAncestor:::
- displayIfNeeded
- drawSelf::
- getVisibleRect:
- isAutodisplay
- setAutodisplay:
-isOpaque
- setOpaque:
- needsDisplay
- setNeedsDisplay:
- shouldDrawColor
-update

Scrolling - adjustScroll:
- autoscroll:
- ca1cUpdateRects::::
- invalidate::
- scrollPoint:
- scrollRectby:
- scrollRectTo Visible:

Managing the cursor - addCursorRectcursor:
- discardCursorRects
- removeCursorRectcursor:
- resetCursorRects

Assigning a tag - findViewWithTag:
-tag

Aiding event handling - acceptsFirstMouse
- hitTest
- mouse:inRect
- performKeyEquivalent
- shouldDelayWindowOrderingForEvent:

Classes: View 2-759

Dragging

Printing

- dragFile:fromRect slideBack:event
- dragImage: at offset event pasteboard: source: slideB ack:
- registerForDraggedTypes : count
- unregisterDraggedTypes

- printPSCode:
- faxPSCode:
- faxPSCode:toList:numberListsendAtwantsCover:

wantsNotify:wantsHires:faxName:
- copyPSCodeInside:to:
- writePSCodeInside:to:
- openSpoolFile:
- spoolFile:
- canPrintRIB

Setting up pages - knowsPagesFirst:last:
- getRect:forPage:
- placePrintRect:offset:
- heightAdjustLimit
- widthAdjustLimit

Writing conforming PostScript - beginPSOutput

Archiving

2· 760 Chapter 2: Application Kit

- beginPrologueBBox:creationDate:createdBy:
fonts :forWhom:pages : title:

- endHeaderComments
- endPrologue
- beginSetup
- endSetup
- adjustPage WidthNew:left:rightlimit:
- adjustPageHeightN ew:top: bottom: limit:
- beginPage:label: bBox:fonts:
- beginPageSetupRect:placement:
- drawSheetBorder::
- drawPageBorder::
- addToPageSetup
- endPageSetup
-endPage
- beginTrailer
- endTrailer
- endPSOutput

-awake
-read:
- write:

Instance Methods

acceptsFirstMouse

- (BOOL)acceptsFirstMouse

This returns YES if an initial mouse-down event in the View-an event that causes the
View's Window to become the key window-is sent to the View (through a mouseDown:
message). If only those mouse-downs that occur when the View's Window is already key
are sent, this returns NO (the default). The only way to change the default behavior is to
implement this method in a View subclass.

addCursorRect:cursor:

- addCursorRect:(const NXRect *)aRect cursor:anNXCursor

Creates a cursor rectangle, an area within the View that has its own cursor: When the user
moves the mouse within the rectangle specified by aRect, the cursor object that the mouse
controls changes to anNXCursor, which must be an NXCursor object. The rectangle is
given in the View's coordinate system; however, the rectangle isn't automatically clipped
to the View's frame-it's possible to create a cursor rectangle that extends beyond the View.
You should also note that cursor rectangles don't work well in rotated Views.

You never invoke this method directly from your application. It should only be used as part
of the implementation of the resetCursorRects method.

Returns self.

See also: - resetCursorRects

addSubview:

- addSubview:a View

Adds a View to the View's list of subviews such that new subview will be displayed on top
of its siblings. The receiving View is also made a View's next responder. Returns a View (or
nil if it isn't a View).

See also: - addSubview::relativeTo:, - subviews, - removeFromSuperview,
- setNextResponder: (Responder)

Classes: View 2-761

addSubview::relativeTo:

- addSubview:a View
: (int)place
relativeTo:otherView

Injects aView into the receiving View's list of subviews, such that it will be displayed
immediately above or below otherView, as place is NX_ABOVE or NX_BELOW. If
other View is nil (or isn't in the subview list), a View is added above or below all its siblings.
Returns aView (or nil if it isn't a View).

See also: - addSubview:, - subviews, - removeFromSuperview, - initFrame:,
- setNextResponder:

addToPageSetup

- addToPageSetup

Allows applications to add a scaling operator to the PostScript code generated when
printing; if you must add a scaling operator, this is the correct place to do so. This method
is invoked by printPSCode: and faxPSCode:. By default, this method simply returns self;
this method can be overridden by applications that implement their own pagination.

See also: - beginPageSetupRect:placement:

adjustPageHeightNew:top:bottom:limit:

- adjustPageHeightNew:(float *)newBottom
top: (float)oldTop
bottom: (float)oldBottom
limit: (float)bottomLimit

Adjusts page height for automatic pagination when printing the View. This method is
invoked by printPSCode: and faxPSCode: to set newBottom, which will be the new
bottom of the strip to be printed for the current page. oldTop and oldBottom are the current
values for the horizontal strip to be printed. bottomLimit is the topmost value newBottom
can be set to. If this limit is exceeded, newBottom is set to oldBottom. By default this
method tries to "not let the View be cut in two. All parameters are in the View's own
coordinate system. Returns self.

2· 762 Chapter 2: Application Kit

adjustPageWidthNew:left:right:limit:
- adjustPageWidthNew:(float *)newRight

left: (float)oldLejt
right: (float)oldRight
limit: (float)rightLimit

Adjusts page width for automatic pagination when printing the View. This method is
invoked by printPSCode: and faxPSCode: to set newRight, which will be the new right
edge of the strip to be printed for the current page. oldLeft and oldRight are the current
values for the vertical strip to be printed. rightLimit is the leftmost value newRight can be
set to. If this limit is exceeded, newRight is set to oldRight. By default this method tries to
not let the View be cut in two. All parameters are in the View's own coordinate system.
Returns self.

adjustScroll:

- adjustScroll:(NXRect *)newVisible

Allows you to correct the scroll position of a document. This method is invoked by a
ClipView immediately prior to scrolling its document view. You may want to override it to
provide specific scrolling behavior. new Visible will be the visible rectangle after the scroll.
You might use this for scrolling through a table as in a spreadsheet. You could modify
newVisible->origin such that the scroll would fall on column or row boundaries. Returns self.

allocateGState
- allocateGState

Explicitly tells the View to allocate a graphics state object. Graphics state objects are
Display PostScript objects that contain the entire state of the graphics environment. They
are used by the Application Kit as a caching mechanism to save PostScript code used for
focusing, purely as a performance optimization. You can allocate a graphics state object
for Views that will be focused on repeatedly, but you should exercise some discretion as
they can take a fair amount of memory. The graphics state object will be freed
automatically when the View is freed. Returns self.

See also: - freeGState

Classes: View 2-763

autoscroll:
- autoscroll: (NXEvent *)theEvent

Scrolls the View when the cursor is dragged to a position outside its superview. You invoke
this method from within a modal responder loop to cause scrolling to occur when the cursor
is outside the View's superview. The receiving View must be the document view of a
Clip View for this method to have any effect. theEvent->location must be in window base
coordinates. You can invoke this method repeatedly so that scrolling continues even when
there is no mouse movement. Returns nil if no scrolling occurs; otherwise returns self.

See also: - autoscroll: (ClipView), - beginModaISession:for: (Application)

autosizing
- (unsigned int)autosizing

Returns the View's autosizing mask. The mask is used to determine how the View is
automatically resized when its superview is resized. For the mask to have an effect, the
superview must be set to resize its subviews; this is done through the
setAutoresizeSubviews: method. The autosizing masks are listed under the
setAutosizing: method.

See also: - setAutosizing:, - setAutoresizeSubviews:

awake

-awake

Invoked after unarchiving to allow the View to perform additional initialization.
Returns self.

beg inPage: label :bBox:fonts:

- beginPage:(int)ordinaINum
label:(const char *)aString
bBox:(const NXRect *)pageRect
fonts:(const char *)fontNames

Writes a conforming Postscript page separator. This method is invoked by printPSCode:
and faxPSCode:.

ordinalNum specifies the page's position in the document's page sequence (from 1 through
n for an n-page document).

2-764 Chapter 2: Application Kit

aString is a string that contains no white space characters. It identifies the page according
to the document's internal numbering scheme. If aString is NULL, the ASCII equivalent
of ordinalNum is used.

pageRect is the rectangle enclosing all the drawing on the page about to be printed in the
default PostScript coordinate system of the page. If pageRect is NULL, "(atend)" is output
instead of a description of the bounding box, and the bounding box is output at the end of
the page.

fontNames is a string containing the names of the fonts used in this page. Each name should
be separated by a space. If the fonts used are unknown before the page is printed,
fontNames can be NULL. They will then be listed automatically at the end of the page
description. Returns self.

beginPageSetupRect:placement:

- beginPageSetupRect:(const NXRect *)aRect
placement: (const NXPoint *)location

Writes the page setup section for a page. This method is invoked by printPSCode: and
faxPSCode: after the starting comments for the page have been written. It outputs a
PostScript save, and generates the initial coordinate transformation to set this View up for
printing the aRect rectangle within the View. This method does a lockFocus on the View,
which must be balanced in endPage by an unlockFocus. The save output here should be
balanced by a PostScript restore in endPage. aRect is the rectangle in the View's
coordinates that is being printed. location is the offset in page coordinates of the rectangle
on the physical page. Returns self.

See also: - printPSCode, - endPage, - lockFocus, - addToPageSetup

beginPrologueBBox:creationDate:createdBy:
fonts:forWhom:pages:title:

- beginPrologueBBox:(const NXRect *)boundingBox
creationDate:(const char *)dateCreated
createdBy:(const char *)anApplication
fonts:(const char *)fontNames
forWhom:(const char *)user
pages: (int)numPages
title: (const char *)aTitle

Invoked by printPSCode: and faxPSCode: to write the start of a conforming
PostScript header.

Classes: View 2-765

boundingBox is the bounding box of the document. This rectangle should be in the default
PostScript coordinate system on the page. If it is unknown boundingBox should be NULL
and the system will accumulate it as pages are printed.

date Created is an ASCII string containing a human readable date. If date Created is NULL
the current date is used.

anApplication is a string containing the name of the document creator. If anApplication is
NULL then the string returned by Application's appName method is used.

fontNames is a string holding the names of the fonts used in the document. Names should
be separated by a space. If the fonts used are unknown before the document is printed,
fontNames should be NULL. In this case each font that is referenced by a findFont is
written in the trailer.

user is a string containing the name of the person the document is being printed for. If
NULL the login name of the user is used.

numPages specifies the number of pages in the document. If unknown at the beginning of
printing, numPages should have a value of -1. In this case the pages are counted as they are
generated and the resulting count is written in the trailer.

aTitle is a string specifying the title of the document. If a Title is NULL, then the title of the
View's Window is used. If the Window has no title, "Untitled" is output. Returns self.

See also: - appName (Application)

beginPSOutput
- beginPSOutput

Performs various initializations before actual PostScript generation begins. This method
makes the Display PostScript context stored in the Application object's global PrintInfo
object into the current context. This has the effect of redirecting all PostScript output from
the Window Server to the spool file or printer. This method is invoked by printPSCode:
and faxPSCode: just before any PostScript is generated. Returns self.

beginSetup

- beginSetup

Writes the beginning of the document setup section, which begins with a %%BeginSetup
comment and includes a %%PaperSize comment declaring the type of paper being used.
This method is invoked by printPSCode: and faxPSCode: at the start of the setup section
of the document, which occurs after the prologue of the document has been written, but
before any pages are written. This section of the output is intended for device setup or
general initialization code. Returns self.

2-766 Chapter 2: Application Kit

beginTrailer

- beginTrailer

Writes the start of a conforming PostScript trailer. This method is invoked by
printPSCode: and faxPSCode: immediately after all pages have been written.
Returns self.

boundsAngle

- (float)boundsAngle

Returns the angle of the View's bounds rectangle relative to its frame rectangle. If the
View's coordinate system has been rotated, this angle will be the accumulation of all
rotate: messages; otherwise, it will be 0.0.

See also: - rotate:, - setDrawRotation:

calcUpdateRects::: :

- (BOOL)calcUpdateRects:(NXRect *)reets
:(int *)reetCount
:(NXRect *)enclReet
:(NXRect *)goodReet

You invoke this method to generate update rectangles for a subsequent display invocation.
reets is an array of 3 rectangles, and reetCount will be set to the number of rectangles in
reets that have been filled in, which will be either 0, 1, or 3. enclReet is a rectangle that
contains the entire area subject to update, and goodReet is a rectangle that contains the area
that does not need to be updated. goodReet will be set to the intersection of goodReet and
enclReet, or to a rectangle with an origin and size of zero if they do not intersect. The
update rectangles are computed by finding the area in enclReet that isn't included in
goodReet. After the method invocation, if reetCount is 0, no update rectangles were
generated. If reetCount is 1, the area that needs to be updated is in rects[O]. If reetCount
is 3, the areas that need to be updated are in reets[l] and reets[2], and reets[O] is the same
as enclReet.

Returns YES if any update rectangles were generated (in other words, if reetCount is
greater than zero); otherwise returns NO.

See also: - scrollRect:by:, NXlntersectionRectO

Classes: View 2-767

canDraw

- (BOOL)canDraw

Informs you of whether drawing will have any result. You only need to send this message
when you want to do drawing, but are not invoking one of the display methods. You should
not draw or send the lockFocus: message if this returns NO. This method returns YES if your
View has a Window object, your View's Window object has a corresponding window on the
Window Server, and your Window object is enabled for display; otherwise it returns NO.

See also: - isDisplayEnabled (Window)

canPrintRIB

- (BOOL)canPrintRIB

Indicates whether the View can print RIB files.

centerScanRect:

- centerScanRect:(NXRect *)aRect

Converts the comers of a rectangle to lie on the center of device pixels. This is useful in
compensating for PostScript overscanning when the coordinate system has been scaled.
This routine converts the given rectangle to device coordinates, adjusts the rectangle to lie
in the center of the pixels, and converts the resulting rectangle back to the View's coordinate
system. Returns self.

clipToFrame:

- c1ipToFrame:(const NXRect *)frameRect

Allows the View to do arbitrary clipping during focusing. This method is invoked from
within the focusing mechanism if clipping is required. If you override this method, you
must use frameRect rather than the View's frame instance variable, because the origins may
not be the same due to focusing. The following example demonstrates clipping the View
to a circular region:

2-768 Chapter 2: Application Kit

- clipToFrame: (const NXRect *)frameRect

float x, y, radius;

II Center the circle and pick an appropriate radius

x = frameRect->origin.x + frameRect->size.width/2.0;
y = frameRect->origin.y + frameRect->size.height/2.0;
radius = frameRect->size.height/2.0;

II Create a circular clipping path
PSnewpath () ;

PSarc(x, y, radius, 0.0, 360.0);
PSclosepath() ;
PSclip() ;

return self;

If you override this method, you will probably need to send a setCopyOnScroll:NO to the
View's subviews to make them scroll properly. Returns self.

See also: - setCopyOnScroll: (ClipView)

convertPoint:from View:

- convertPoint:(NXPoint *)aPoint from View:a View

Converts a point from a View's coordinate system to the coordinate system of the receiving
View. If a View is nil, then this method converts from window base coordinates. Both
a View and the receiving View must belong to the same Window. Returns self.

convertPoint:to View:

- convertPoint:(NXPoint *)aPoint to View:a View

Converts a point from the receiving View's coordinate system to the coordinate system of
a View. If a View is nil, then this method converts to window base coordinates. Both a View
and the receiving View must belong to the same Window. Returns self.

Classes: View 2-769

convertPointFromSuperview:

- convertPointFromSuperview:(NXPoint *)aPoint

Converts a point from the coordinate system of the receiving View's superview to the
coordinate system of the receiving View. Returns self.

See also: - convertRectFromSuperview:, - convertPointToSuperview:

convertPointToSuperview:

- convertPointToSuperview:(NXPoint *)aPoint

Converts a point from the View's coordinate system to that of its superview. Returns self.

See also: - convertPointFromSuperview:, - convertPoint:from View:

convertRect:from View:

- convertRect:(NXRect *)aRect from View:a View

Converts aRect from aView's coordinate system to the coordinate system of the receiving
View. Both a View and the receiving View must belong to the same Window. Returns self.

convertRect:to View:

- convertRect:(NXRect *)aRect to View:a View

Converts aRect from the receiving View's coordinate system to the coordinate system of
a View. Both a View and the receiving View must belong to the same Window. Returns self.

convertRectFromSuperview:

- convertRectFromSuperview:(NXRect *)aRect

Converts aRect from the coordinate system of the receiving View's superview to the
coordinate system of the receiving View. Returns self.

See also: - convertRectToSuperview:

2-770 Chapter 2: Application Kit

convertRectToSuperview:

- convertRectToSuperview:(NXRect *)aReet

Converts aReet from the receiving View's coordinate system to the coordinate system of its
superview. Returns self.

See also: - convertRectFromSuperview:

convertSize:from View:

- convertSize:(NXSize *)aSize from View:a View

Converts aSize from the coordinate system of a View to the coordinate system of the
receiving View. Both a View and the receiving View must belong to the same Window.
Returns self.

See also: - convertSize:to View:

convertSize:to View:

- convertSize:(NXSize *)aSize toView:aView

Converts aSize from the receiving View's coordinate system to the coordinate system of
a View. Both a View and the receiving View must belong to the same Window. Returns self.

See also: - convertSize:from View:

copyPSCodelnside:to:

- copyPSCodelnside:(const NXRect *)reet to: (NXStream *)stream

Generates PostScript code for the View and all its subviews for the area indicated by reet.
The PostScript code is written to the NXStream stream. Returns self, assuming no
exception is raised in the generation of PostScript code. If an exception is raised, control
is given to the appropriate error handler, and this method does not return.

See also: NX_RAISEO

Classes: View 2-771

descendantFlipped:

- descendantFlipped:sender

Notifies the receiving View that sender, a View below the receiving View in the view
hierarchy, had its coordinate system flipped. A descendantFlipped: message is sent from
the setFlipped: method if a notifyWhenFlipped: YES message was previously sent to
sender.

View's default implementation of this method simply passes the message to the receiving
View's superview, and returns the superview's return value. View subclasses should
override this method to respond to the message as required. In the Application Kit,
Clip View overrides this method to keep its coordinate system aligned with its
document view.

See also: - notifyWhenFlipped:, - setFlipped:, - descendantFlipped: (ClipView)

descendantFrameChanged:

- descendantFrameChanged:sender

Notifies the receiving View that sender, a View below the receiving View in the view
hierarchy, was resized or moved. A descendantFrameChanged: message is sent from the
sizeTo:: and moveTo:: methods if a notify AncestorWhenFrameChanged: YES message
was previously sent to sender.

View's default implementation of this method simply passes the message to the receiving
View's superview, and returns the superview's return value. View subclasses should
override this method to respond to the message as required. In the Application Kit, the
Clip View class overrides this method to notify the ScrollView to reset scroller knobs when
the document view's frame is changed.

See also: - notifyAncestorWhenFrameChanged:, - sizeTo::, - moveTo::

discardCursorRects

- discardCursorRects

Removes the View's cursor rectangles. You never invoke this method directly; it's invoked
automatic all y before the View's cursor rectangles are reset. Returns self.

See also: - resetCursorRects, - discardCursorRects (Window)

2-772 Chapter 2: Application Kit

display

- display

Displays the View and its subviews. Returns self. This method is equivalent to:

display: (NXRect *)0 :0 :NO

See also: - display:::, - drawSelf::

display::

- display:(const NXRect *)reets :(int)reetCount

Displays the View and its subviews. The rectangles are specified in the receiving View's
coordinate system. Returns self. This method is equivalent to:

display:rects :rectCount :NO

See also: - display:::, - drawSelf::

display:::

- display: (const NXRect *)reets
: (int)reetCount

: (BOOL)dipFlag

Displays the View and its subviews by invoking the lockFocus, drawS elf: :, and
unlockFocus methods. reets is an array of drawing rectangles in the receiving View's
coordinate system; they're used to restrict what is displayed. reetCount is the number of
valid rectangles in reets (0, 1, or 3).

If reetCount is 3, then reets[O] should contain the smallest rectangle that completely
encloses reets[l] and reets[2], the two rectangles that actually specify the regions to be
displayed.

If reetCount is 1, reets[O] should specify the region to be displayed.

If reetCount is 0 or reets is NULL, the View's visible rectangle is substituted for reets[O]
and a value of 1 is used for reetCount.

In any case, the rectangles in reets are intersected against the visible rectangle.

This method doesn't display a subview unless it falls at least partially inside reets[O] if
reetCount is 1, or inside either reets[l] or reets[2] if reetCount is 3. When this method is
applied recursively to each subview, the drawing rectangles are translated to the subview's

Classes: View 2-773

coordinate system and intersected with its bounds rectangle to produce a new array. reets
and reetCount are then passed as arguments to each View's drawSelf:: method.

If elipFlag is YES, this method clips to the drawing rectangles. Clipping isn't done
recursively for each subview, however.

If this method succeeds in displaying the View, the flag indicating that the View needs to
be displayed is cleared. Returns self.

See also: - display, - display::, - drawSelf::, - needsDisplay, - update,
- displayFromOpaqueAncestor:::

displayFromOpaqueAncestor:::

- displayFromOpaqueAncestor:(const NXRect *)reets
: (int)reetCount
: (BOOL)clipFlag

Correctly displays Views that aren't opaque. This method searches from the View up the
View hierarchy for an opaque ancestor View. The rectangles specified by reets are copied
and then converted to the opaque View's coordinates and display::: is sent to the opaque
View. The third argument, clipFlag, is the sam~ as the third argument to display:::.

If the receiving View is opaque, this method has the same effect as display:::. Returns self.

See also: - display:::, - isOpaque, - setOpaque:

displaylfNeeded

- displaylfNeeded

Descends the View hierarchy starting at the receiving View and sends a display message to
each View that needs to be displayed, as indicated by each View's needsDisplay flag. This
is useful when you wish to disable display in the Window, modify a series of Views, and
then display only the ones whose appearance has changed. Returns self.

See also: - display, - needsDisplay

2-774 Chapter 2: Application Kit

doesClip

- (BOOL)doesClip

Returns YES (the default) if the drawing that's generated by the View is clipped to the
View's frame; otherwise returns NO.

See also: - setClipping:

dragFile:fromRect:slideBack:event:

- dragFile:(const char *)filename
fromRect:(NXRect *)reet
slideBack:(BOOL) aFlag
event:(NXEvent *)event

Allows a file icon to be dragged from the View to any application that accepts files. This
method only makes sense when invoked from within an implementation of the
mouseDown: method. The arguments are:

• filename is the complete name (including path) of the file to be dragged. If there is more
than one file to be dragged, you must separate the filenames with a single tab ('\t')
character.

• reet describes the position of the icon in the View's coordinates; the width and height of
reet must both be 48.0.

• aFlag indicates whether the icon should slide back to its position in the View if the file
is not accepted. If aFlag is YES and filename is not accepted and the user has not
disabled icon animation, the icon will slide back; otherwise it will not.

• event is the mouse-down event record (or a copy).

This method returns self if the View successfully initiated the file dragging session;
otherwise it returns nil.

See also: - draglmage:at:offset:event:pasteboard:source:slideBack:

Classes: View 2-775

draglmage:at:offset:event:pasteboard:source:slideBack:

- draglmage:anImage
at:(NXPoint *)location
offset:(NXPoint *)mouseOffset
event:(NXEvent *)theMouseDown
pasteboard:(Pasteboard *)pboard
source: source Object
slideBack:(BOOL)slideFlag

Instigates an image-dragging session. This method only makes sense when invoked from
within an implementation of the mouseDown: method. The arguments are

• anImage is the NXImage (contained within the View) that's being dragged.
• location is the NXImage' s origin in the View's coordinate system.
• mouseOffset gives the mouse's current location relative to the mouse-down location.
• theMouseDown is the mouse-down that started the whole thing going (see below).
• pboard is the Pasteboard that holds the data that the NXImage represents (see below).
• sourceObject is the object that receives NXDraggingSource messages.
• slideFlag determines whether the NXImage should slide back if it's rejected.

Before invoking this method, the View must place the data that's being dragged on the drag
pasteboard. To do this, it must get the pasteboard, declare the type of data that it's placing,
and then place the data:

/* You always use the NXDragPboard pasteboard when dragging. */

Pasteboard *pboard = [Pasteboard newName:NXDragPboardJ i

/* Declare the type of data and place it on the pasteboard. */
[pboard declareTypes: ... num: ... owner: ... J;
[pboard writeType: ... data: ... length: ... J i

/* Now invoke draglmage:.*/

[self dragImage: ... at: ... offset: ... event: .. .
pasteboard:pboard source: ... slideBack: ... Ji

This method returns self if the View successfully initiated the file dragging session;
otherwise it returns nil.

Warning: If you ask for events inside the mouseDown: method before invoking this method (if, for
example, you're making sure that the image is really being dragged before initiating a
dragging session), you must copy the mouse-down event before asking for more events.
You then pass the copy as the argument to the event: keyword of this method.

2· 776 Chapter 2: Application Kit

drawlnSuperview

- drawlnSuperview

Makes the View's coordinate system identical to that of its superview. This can reduce the
amount of PostScript code that's generated to focus on the View. After invoking this
method, the View's bounds rectangle origin is the same as its frame rectangle origin.

Although the View's superview may be flipped, the View's coordinate system won't be
flipped unless it receives a setFlipped: message. You should invoke drawlnSuperview
after creating the View and before applying any coordinate transformations to it.
Returns self.

See also: - setFlipped:

drawPageBorder::

- drawPageBorder:(float)width :(float)height

Allows applications that use the Application Kit pagination facility to draw additional
marks on each logical page. This method is invoked by beginPageSetupRect:placement:,
and the default implementation doesn't draw anything. Returns self.

drawSelf::

- drawSelf:(const NXRect *)reets :(int)reetCount

Implemented by subclasses to draw the View. Each View subclass must override this
method to draw itself within its frame rectangle. The default implementation of this
method does nothing.

This method is invoked by the display methods (display, display::, and display:::); you
shouldn't send a drawSelf:: message directly to a View.

reets is an array of rectangles indicating the region within the View that needs to be drawn.
reetCount indicates the number of rectangles in the reets array, which is either 1 or 3. If
reetCount is 1, then reets[O] specifies the region to be drawn. If reetCount is 3, then reets[O]
contains the smallest rectangle that completely encloses reets[1] and reets[2], the two
rectangles that actually specify the regions that need to be drawn. Note that if reetCount is
3, you can just draw the contents of reets[O] , or you can draw the contents of both reets[l]
and reets[2], but there's no need to draw all three rectangles. For optimum drawing
performance, you shouldn't draw anything that doesn't intersect with the reets rectangles,
although it is possible to draw the entire contents of the View and simply allow the contents
of the View to be clipped.

Classes: View 2-777

Your implementation of drawSelf:: doesn't need to invoke lockFocus; focus is already
locked on an object when it's told to draw itself. Returns self.

See also: - display, - display::, - display:::

drawSheetBorder::

- drawSheetBorder:(float)width :(float)height

Allows applications that use the Application Kit pagination facility to draw additional
marks on each printed sheet. This method is invoked by
beginPageSetupRect:placement:, and the default implementation doesn't draw anything.
Returns self.

endHeaderComments

- endHeaderComments

Writes out the end of a conforming PostScript header. It prints out the %%EndComments
line and then the start of the prologue, including the Application Kit's standard printing
package. The prologue should contain definitions global to a print job. This method is
invoked by printPSCode: and faxPSCode: after
beginPrologueBBox:creationDate:createdBy:fonts:forWhom:pages:title: and before
endPrologue. Returns self.

endPage

-endPage

Writes the end of a conforming PostScript page. This method is invoked after each page is
printed. It performs an unlockFocus to balance the lockFocus done in
beginPageSetupRect:placement:. It also generates a PostScript showpage and a restore.
Returns self.

See also: - beginPageSetupRect:placement:

endPageSetup

- endPageSetup

Writes the end of the page setup section, which begins with a %%EndPageSetup comment.
This method is invoked by printPSCode: and faxPSCode: just after
beginPageSetupRect:placement: is invoked. Returns self.

2-778 Chapter 2: Application Kit

endPrologue

- endPrologue

Writes out the end of the conforming PostScript prologue. This method is invoked by
printPSCode: and faxPSCode: after the prologue of the document has been written.
Applications can override this method to add their own definitions to the prologue.
For example:

- endPrologue

DPSPrintf (DPSGstCurrentContext () , "/littleProc {pop} def"};

return [super endPrologue];

endPSOutput

- endPSOutput

Ends a print job. This method is invoked by printPSCode: and faxPSCode:. It closes the
spool file (if any), and restores the old PostScript context so that further PostScript output
is directed to the Window Server. Returns self.

See also: - beginPSOutput

endSetup

-endSetup

Writes out the end of the setup section, which begins with a %%EndSetup comment. This
method is invoked by printPSCode: and faxPSCode: just after beginSetup is invoked.
Returns self.

endTrailer

- endTrailer

Writes the end of the conforming PostScript trailer. This method is invoked by
printPSCode: and faxPSCode: just after beginTrailer is invoked. Returns self.

See also: - begin Trailer

Classes: View 2-779

faxPSCode:
- faxPSCode:sender

Prints the View and all its subviews to a fax modem. If the user cancels the job, or if there
are any errors in generating the PostScript, this method returns nil; otherwise it returns self.

This method normally brings up the Fax panel before actually initiating printing, but if
sender implements a shouldRunPrintPanel: method, the View will invoke that method to
query sender. If sender then returns NO, then the Fax panel won't be displayed, and the
View will be printed using the last settings of the Fax panel.

See also: - printPSCode:, - shouldRunPrintPanel: (Object Additions)

faxPSCode:toList:numberList:sendAt:wantsCover:wantsNotify:
wantsHires:faxName:

- faxPSCode:sender
toList:(const char *const *)names
numberList:(const char *const *)numbers
sendAt:(time_t)time
wantsCover:(BOOL)coverFlag
wantsNotify:(BOOL)notifyFlag
wantsHires:(BOOL)hiresFlag
faxName:(const char *)string

Sets up a fax session according to the arguments, and then faxes the View (and all
its subviews).

findAncestorSharedWith:

- findAncestorSharedWith:a View

Returns the closest common ancestor in the View hierarchy shared by a Vzew and the
receiving View, or nil if there's no such ancestor. If aView and the receiving View are
identical, this method returns self.

See also: - isDescendantOf:

2-780 Chapter 2: Application Kit

findViewWithTag:
- findViewWithTag:(int)aTag

Returns the View's nearest descendant (including itself) that has the given tag, or nil if no
matching tag was found.

See also: - tag

frameAngle
- (float)frameAngle

Returns the angle of the View's frame relative to its superview's coordinate system.

See also: - rotateTo:, - rotateBy:

free
-free

Releases the storage for the View and all its subviews. This method also invalidates the
cursor rectangles for the View's window, frees the View's graphics state object (if any), and
removes the View from the view hierarchy; the View will no longer be registered as a
subview of any other View.

See also: + allocFromZone: (Object), - initFrame:

freeGState
- freeGState

Frees the graphics state object that was previously allocated for the View. Returns self.

See also: - allocateGState:

getBounds:
- getBounds:(NXRect *)theRect

Copies the View's bounds rectangle into the structure specified by theRect. Returns self.

See also: - boundsAngle

Classes: View 2· 781

getFrame:

- getFrame:(NXRect *)theRect

Copies the View's frame rectangle into the structure specified by theRect. The frame
rectangle is specified in the coordinate system of the View's superview. Returns self.

getRect:forPage:

- (BOOL)getRect:(NXRect *)theRect forPage:(int)page

Implemented by subclasses to determine the rectangle of the View to be printed for page
number page. You should override this method to fill in theRect with the coordinates of the
View (in its own coordinate system) that represent the page requested. The View will later
be told to display the theRect region in order to generate the image for this page. This
method is invoked by printPSCode: and faxPSCode: if the View's
knowsPagesFirst:last: method returns YES. The View should not assume that the pages
will be generated in any particular order.

This method returns YES if page is a valid page number for the View. It returns NO if page
is outside the View.

See also: - knowsPagesFirst:last:

getVisibleRect:

- (BOOL)getVisibleRect:(NXRect *)theRect

Gets the visible portion of the View. A rectangle enclosing the visible portion is placed in
the structure specified by theRect. This method returns YES if part of the View is visible,
and NO if none of it is.

Visibility is determined by intersecting the View's frame rectangle against the frame
rectangles of each of its ancestors in the view hierarchy, after appropriate coordinate
transformations. Only those portions of the View that lie within the frame rectangles of all
its ancestors can be visible.

If the View is in an off-screen window, or is covered by another window, this method may
nevertheless return YES. This method does not take into account any siblings of the
receiving View or siblings of its ancestors.

If the View is being printed, this method places the portion of the View that is visible on
the page being imaged in the structure specified by theRect.

See also: - isVisible (Window), - getDocVisibleRect: (ScrollView),
- getDocVisibleRect: (Clip View)

2· 782 Chapter 2: Application Kit

gState

- (int)gState

Returns the graphics state object allocated to the View. If no graphics state object has
been allocated, or if the View has not been focused on since receiving the allocateGState
message, this method will return O. Graphics state objects are not immediately allocated
by invoking the allocateGState method, but are done in a "lazy" fashion upon
subsequent focusing.

See also: - allocateGState, - lockFocus

heightAdjustLimit

- (float)heightAdjustLimit

Returns the fraction (between 0.0 and 1.0) of the page that can be pushed onto the next page
during automatic pagination to prevent items from being cut in half. This limit applies to
vertical pagination. This method is invoked by printPSCode: and faxPSCode:. By

. default, this method returns 0.2.

See also: - adjustPageHeightNew:top:bottom:limit:

hitTest:

- hitTest:(NXPoint *)aPoint

Returns the subview of the receiving View that contains the point specified by aPoint. The
lowest sub view in the View hierarchy is returned. Returns the View if it contains the point
but none of its subviews do, or nil if the point isn't located within the receiving View.

This method is used primarily by a Window to determine which View in the View hierarchy
should receive a mouse-down event. You'd rarely have reason to invoke this method, but
you might want to override it to have a View trap mouse-down events before they get to
its subviews.

aPoint is in the receiving View's superview's coordinates.

Classes: View 2-783

init
- init

Initializes the View, which must be a newly allocated View instance. This method does not
alter the default frame rectangle, which is all zeros. This method is equivalent to
initFrame:NULL. Note that if you instantiate a custom View from Interface Builder, it
will be initialized with the initFrame: method; initialization code in the init method will
not be performed. Returns self.

See also: - initFrame:

initFrame:
- initFrame:(const NXRect *)frameRect

Initializes the View, which must be a newly allocated View instance. The View's frame
rectangle is made equivalent to that pointed to by frameRect. This method is the designated
initializer for the View class, and can be used to initialize a View allocated from your own
zone. Programs generally use instances of View subclasses rather than direct instances of
the View class. Returns self.

See also: - init, + alloc (Object), + allocFromZone: (Object), + new (Object)

initGState
- initGState

Implemented by subclasses of View to initialize the View's graphics state. The View will
receive this message if you previously sent it a notifyTolnitGState: YES message. By
default this method simply returns self, but you can override it to send PostScript code to
initialize the View's graphics state. You could use this method to set a default font or line
width for the View. You should not use this method to send any coordinate transformations
or clipping operators.

See also: - allocateGState, - gState, - notifyTolnitGState:

invalidate::
- invalidate:(const NXRect *)rects :(int)rectCount

Invalidates the View and its subviews for later display. This message is sent to the View
after scrolling if the View is a subview of a ClipView and the View's parent ClipView
previously received a setDisplayOnScroll:NO message. You can override this method to

2-784 Chapter 2: Application Kit

optimize drawing performance by accumulating the invalid areas for later display. reets is
an array of rectangles in the receiving View's coordinate system, and reetCount is the
number of valid rectangles in reets.

If reetCount is 1, reets[O] specifies the region requiring redisplay. If reetCount is greater
than 1, then reets[O] contains the smallest rectangle that completely encloses the remaining
rectangles in the reets array, which specify the actual regions requiring redisplay.
Returns self.

See also: - rawScroll: (ClipView), - display, - display::, - display:::, - drawSelf::,
- setDisplayOnScroll: (ClipView)

isAutodisplay

- (BOOL)isAutodisplay

This method returns the View's automatic display status. After you change your data in such
a way that it is no longer accurately represented, you should invoke this method to test the
View's automatic display status. If automatic display is enabled, you should send a display
message to the View; otherwise you should send it a setNeedsDisplay:YES message.

See also: - update, - display, - setAutodisplay, - needsDisplay, - setNeedsDisplay:,
- displaylfNeeded

isDescendantOf:

- (BOOL)isDescendantOf:aView

Returns YES if a View is an ancestor of the receiving View in the view hierarchy or if it's
identical to the receiving View. Otherwise, this method returns NO.

See also: - superview, - subviews, - findAncestorSharedWith:

isFlipped

- (BOOL)isFlipped

Returns YES if the receiver uses flipped drawing coordinates or NO if it uses native
PostScript coordinates. By default, Views are not flipped.

See also: - setFlipped:

Classes: View 2· 785

isFocusView

- (BOOL)isFocusView

Returns YES if the receiving View is the View that's currently focused for drawing;
otherwise returns NO. In other words, returns YES if drawing commands will be drawn
into this View.

See also: -lockFocus

isOpaque

- (BOOL)isOpaque

Returns whether the View is opaque (as set through setOpaque:). Returns YES if the View
guarantees that it will completely cover the area within its frame when it draws itself;
otherwise returns NO.

See also: - setOpaque:, - opaqueAncestor, - displayFromOpaqueAncestor:::

isRotatedFromBase

- (BOOL)isRotatedFromBase

Returns YES if the receiving View or any of its ancestors in the View hierarchy have been
rotated; otherwise returns NO.

isRotatedOrScaledFromBase

- (BOOL)isRotatedOrScaledFromBase

Returns YES if the receiving View or any of its ancestors in the View hierarchy have been
rotated or scaled; otherwise returns NO.

knowsPagesFirst:last:

- (BOOL)knowsPagesFirst:(int *)firstPageNum last:(int *)lastPageNum

Indicates whether this View can return a rectangle specifying the region that must be
displayed to print a specific page. This method is invoked by printPSCode: and
faxPSCode:. Just before invoking this method, the first page to be printed is set to 1, and
the last page to be printed is set to the maximum integer size. You can therefore override this
method to change the first page to be printed, and also the last page to be printed if the View

2~ 786 Chapter 2: Application Kit

knows where its pages lie. If this method returns YES, the printing mechanism will later
query the View for the rectangle corresponding to a specific page using getRect:forPage:.

See also: - getRect:forPage:

lockFocus

- (BOOL)lockFocus

Locks the PostScript focus on the View so that subsequent graphics commands are applied
to the View. This method ensures that the View draws in the correct coordinates and to the
correct device. You must send this message to the View before you draw to it, and you must
balance it with an unlockFocus message to the View when you finish drawing. Returns
YES if the focus was already locked on the View, and NO if it wasn't.

lockFocus and unlockFocus are sent for you when you display the View with one of
the display methods; you don't have to include lockFocus or unlockFocus in your
drawSelf:: method.

See also: - display:::, - isFocusView, - unlockFocus

mouse:inRect:

- (BOOL)mouse:(NXPoint *)aPoint inRect:(NXRect *)aRect

Returns whether the cursor hot spot at the point specified by aPoint lies inside the rectangle
specified by aRect. aPoint and aRect must be expressed in the same coordinate system.

You should never use the NXPointInRectO function as a substitute for this method.

See also: - convertPoint:fromView:, NXMouseInRectO, NXPointInRectO

moveBy::

- moveBy:(NXCoord)deltaX :(NXCoord)deltaY

Moves the origin of the View's frame rectangle by (deltaX, deltaY) in its superview's
coordinates. This method works through the moveTo:: method. Returns self.

See also: - moveTo::, - sizeBy::

Classes: View 2-787

moveTo::

- moveTo:(NXCoord)x :(NXCoord)y

Moves the origin of the View's frame rectangle to (x, y) in its superview's coordinates. This
method may also send a descendantFrameChanged: message to the View's superview.
Returns self.

See also: - setFrame:, - sizeTo::, - descendantFrameChanged:

needsDisplay

- (BOOL)needsDisplay

Returns whether the View needs to be displayed to reflect changes to its contents. If
automatic display is disabled, the View will not redisplay itself automatically, so you can
invoke this method to determine whether you need to send a display message to the View.
The flag indicating that the View needs to be displayed is cleared by the display methods
when the View is displayed.

See also: - setNeedsDisplay:, - update, - setAutodisplay, - isAutodisplay, - display,
- displayIfNeeded

notifyAncestorWhenFrameChanged:

- notifyAncestorWhenFrameChanged:(BOOL)flag

Determines whether the receiving View will inform its ancestors in the view hierarchy
whenever its frame changes. Ifflag is YES, subsequent sizeTo:: and moveTo:: messages
to the View will send a descendantFrameChanged: message up the view hierarchy. If
flag is NO, no descendantFrameChanged: message will be sent to the View's ancestors.
The descendantFrameChanged: message permits Views to make any necessary
adjustments when a subview is resized or moved. Returns self.

See also: - descendantFrameChanged:, - sizeTo::, - moveTo::

notifyTolnitGState:

- notifyTolnitGState:(BOOL)flag

Determines whether the View will be sent initGStatemessages to allow it to initialize new
graphics state objects. Ifflag is YES, initGStatemessages will be sent to the View at the
appropriate time; otherwise, they will not. By default, the View is not sent messages to
initialize its graphics state objects. Returns self.

See also: - initGState

2-788 Chapter 2: Application Kit

notifyWhenFlipped:

- notifyWhenFlipped:(BOOL)flag

Determines whether the receiving View will inform its ancestors in the View hierarchy
whenever its coordinate system is flipped. Ifflag is YES, a setFlipped: message to the
View will send a descendantFlipped: message up the View hierarchy. Ifflag is NO, no
descendantFlipped: message will be sent to the View's ancestors. The
descendantFlipped: message permits Views to make any necessary adjustments when
the orientation of a subview's coordinate system is flipped. Returns self.

See also: - descendantFlipped:, - setFlipped:

opaqueAncestor

- opaqueAncestor

Returns the View's closest opaque ancestor (including the receiving View itself).

See also: - isOpaque, - displayFromOpaqueAncestor:::

openSpool File:

- openSpooIFile:(char *)filename

Opens the filename file for print spooling. This method is invoked by printPSCode: and
faxPSCode:; it shouldn't be directly invoked in program code. However, you can override
it to modify its behavior.

If filename is NULL or an empty string, the PostScript code is sent directly to the printing
daemon, npd, without opening a file. (However, if the Window is being previewed or
saved, a default file is opened in Itmp).

If filename is provided, the file is opened. The printing machinery will then write the
PostScript code to that file and the file will be printed (or faxed) using lpr.

This method opens a Display PostScript context that will write to the spool file, and sets the
context of the application's global Printlnfo object to this new context. It returns nil if the
file can't be opened; otherwise it returns self.

performKeyEquivalent:

- (BOOL)performKeyEquivalent:(NXEvent *)theEvent

Implemented by subclasses of View to allow them to respond to keyboard input. If the
View responds to the key, it should take the appropriate action and return YES. Otherwise,

Classes: View 2-789

it should return the result of passing the message along to super, which will pass the
message down the View hierarchy:

return [super perforrnKeyEquivalent:theEvent] ;

This method returns YES if the View or any of its subviews responds to the key; otherwise
it returns NO.

The default implementation of this method simply passes the message down the View
hierarchy and returns NO if none of the View's subviews responds to the key. theEvent
points to the event record of a key-down event.

See also: - commandKey: (Window and Panel)

placePrintRect:offset:

- placePrintRect:(const NXRect *)aRect offset:(NXPoint *)location

Determines the location of the rectangle being printed on the physical page. This method
is invoked by printPSCode: and faxPSCode:. aRect is the rectangle being printed on the
current page. This method sets location to be the offset of the rectangle from the lower left
comer of the page. All coordinates are in the default PostScript coordinate system of
the page.

By default, if the flags for centering are YES in the global PrintInfo object, this routine
centers the rectangle within the margins. If the flags are NO, it defaults to abutting the
rectangle against the top left margin. Returns self.

printPSCode:

- printPSCode:sender

Prints the View and all its subviews. If the user cancels the job, or if there are any errors in
generating the PostScript code, this method returns nil; otherwise it returns self.

This method normally brings up the PrintPanel before actually initiating printing, but if
sender implements a shouldRunPrintPanel: method, the View will invoke that method to
query sender. If sender's shouldRunPrintPanel: method returns NO, the PrintPanel will
not be brought up as part of the printing process, and the View will be printed using the last
settings of the PrintPanel.

See also: - faxPSCode:, - copyPSCodelnside:to:,
- shouldRunPrintPanel: (Object Additions)

2-790 Chapter 2: Application Kit

read:

- read:(NXTypedStream *)stream

Reads the View and its subviews from the typed stream stream. Returns self.

registerForDraggedTypes:count:

- registerForDraggedTypes:(const char *const *)pbTypes count:(int)count

Registers the Pasteboard types that the View will accept in an image-dragging session.
pbTypes is a pointer to an array of the types; count is the number of elements in the array.
Returns self.

Keep in mind that the values in the first argument are Pasteboard types, not file extensions
(you can't register for specific file extensions). For example, the following registers a View
as accepting files:

const char *fileType[] = {NXFilenamePboardType}i
[aView registerForDraggedTypes:fileType count:l]i

Note: Registering a View for dragged types automatically makes it a candidate destination
object during a dragging session. As such, it must implement some or all of the
NXDraggingDestination protocol methods. As a convenience, View provides default
implementations of these methods. See the NXDraggingDestination protocol description
for details.

See also: - unregisterDraggedTypes

removeCursorRect:cursor:

- removeCursorRect:(const NXRect *)aRect cursor:anNXCursor

Removes a cursor rectangle from the View. aRect and anNXCursor must match the values
that were specified when the cursor rectangle was added (through
addCursorRect:cursor:).

You rarely need to use this method; it's usually easier to use Window's
invalidateCursorRectsForView: method and let the resetCursorRects mechanism
restore the cursor rectangles. Returns self.

See also: - invalidateCursorRectsForView: (Window), - resetCursorRects

Classes: View 2-791

removeFromSuperview

- removeFromSuperview

Unlinks the View from its superview and its Window, removes it from the responder chain,
and invalidates its cursor rectangles. Returns self.

See also: - addSubview:

renewGState

- renewGState

Forces the View to reinitialize its graphics state object. This method is lazy; the graphics
state object isn't refreshed until the View actually draws. Returns self.

replaceSubview:with:

- replaceSubview:oldView with:new View

Replace oldView with newView in the View's subview list. This method does nothing and
returns nil if oldView is not a subview of the View or if new View is not a View. Otherwise,
this method returns oldView.

See also: - addSubview:

resetCursorRects

- resetCursorRects

Resets th~ View's cursor rectangles. Each View subclass that wants to include cursor
rectangles-areas in which the cursor is changed-must implement this method. The
implementation must contain invocations of addCursorRect:cursor:, the method that
defines the cursor rectangles and associates them with particular NXCursor objects. The
View must clip the cursor rectangles that it adds to ensure that they don't overlap the visible
rectangle. For example:

- resetCursorRects

NXRect visible;

if ([self getVisibleRect:&visible])
[self addCursorRect:&visible cursor:theCursor];

return self.

The default implementation does nothing. The value returned by this method is ignored.

2· 792 Chapter 2: Application Kit

You never invoke this method directly; it's invoked automatically when the View's
Window frame changes, or when the Window receives an
invalidateCursorRectsForView: message. Note that this method isn't invoked when the
View's frame changes (unless it changed because its Window was resized). If your
application changes a View's frame programmatically, through sizeBy:: or moveBy:: for
example, you should follow the frame-changing message with an
invalidateCursorRectsForView: message, as shown below:

/* Shrink the View's frame. */

[aView sizeBy:-10.0 :-10.0] i

/* Tell the Window that the View's cursor rects may have changed. */

[[aView window] invalidateCursorRectsForView:aView] i

/* Redisplay the Window. */

[[aView window] display] i

Invocations of this method aren't cumulative; before a resetCursorRects message is sent
to a particular View, the View's existing cursor rectangles are automatically discarded.

See also: - addCursorRect:, - invalidateCursorRectsForView: (Window)

resizeSubviews:

- resizeSubviews:(const NXSize *)oldSize

Informs the View's subviews that the View's bounds rectangle size has changed. This
method is invoked from the sizeTo:: method if the View has subviews and has received a
setAutoresizeSubviews: YES message. By default, this method sends a
superviewSizeChanged: message to each sub view. You should not invoke this method
directly, but you may want to override it to define a specific retiling behavior. oldSize is the
previous bounds rectangle size. Returns self.

See also: - sizeTo::, - setAutoresizeSubviews:, - superviewSizeChanged:

rotate:

- rotate:(NXCoord)angle

Rotates the View's drawing coordinates by angle degrees from its current angle of
orientation. Positive values indicate counterclockwise rotation; negative values indicate
clockwise rotation. The position of the coordinate origin, (0.0, 0.0), remains unchanged;
it's at the center of the rotation. Returns self.

See also: - translate::, - scale::, - setDrawRotation:

Classes: View 2-793

rotateBy:
- rotateBy:(NXCoord)deltaAngle

Rotates the View's frame rectangle by deltaAngle degrees from its current angle of
orientation. Positive values rotate the frame in a counterclockwise direction; negative
values rotate it clockwise. The position of the frame rectangle origin remains unchanged;
it's at the center of the rotation. Returns self.

See also: - rotateTo:

rotateTo:
- rotateTo:(NXCoord)angle

Rotates the View's frame rectangle to angle degrees in its superview's coordinate system.
The position of the frame rectangle origin remains unchanged; it's at the center of the
rotation. Returns self.

See also: - rotateBy:

scale::
- scale:(NXCoord)x :(NXCoord)y

Scales the View's coordinate system. The length of units along its x and y axes will be
equal to x and y in the View's current coordinate system. Returns self.

See also: - setDrawSize::, - translate::, - rotate:

scroll Point:
- scroIlPoint:(const NXPoint *)aPoint

Scrolls the View, which must be a ClipView's document view. aPoint is given in the
receiving View's coordinates. After the scroll, aPoint will be coincident with the bounds
rectangle origin of the Clip View, which is its lower left comer, or its upper left comer if the
receiving View is flipped. Returns self.

See also: - setDocView: (ClipView)

2-794 Chapter 2: Application Kit

scroIiRect:by:

- scroIlRect:(const NXRect *)aRect by:(const NXPoint *)delta

Scrolls the aRectrectangle, which is expressed in the View's drawing coordinates, by delta.
Only those bits which are visible before and after scrolling are moved. This method works
for all Views and does not require that the View's immediate ancestor be a ClipView or
ScrollView. Returns self.

scroll RectTo Visible:

- scroIlRectToVisible:(const NXRect *)aRect

Scrolls aRect so that it becomes visible within the View's parent ClipView. The receiving
View must be a Clip View's document view. This method will scroll the Clip View the
minimum amount necessary to make aRect visible. aRect is a rectangle in the receiving
View's coordinates. Returns self if scrolling actually occurs; otherwise returns nil.

See also: - setDocView: (ClipView)

setAutodisplay:

- setAutodisplay:(BOOL)flag

Enables or disables automatic display of the View. Ifjlag is YES, subsequent messages to
the View that would affect its appearance are automatically reflected on the screen. Ifflag
is NO, you must explicitly send a display message to reflect changes to the View. By
default, changes are automatically displayed. If automatic display is disabled, the View
will set a dirty flag which you can query with the needsDisplay method to determine
whether you need to send the View a display message. Returns self.

See also: - isAutodisplay, - needsDisplay, - setNeedsDisplay:, - display, - update,
- displayltNeeded

setAutoresizeSubviews:

- setAutoresizeSubviews:(BOOL)flag

Determines whether the resizeSubviews: message will be sent to the View upon receipt of
a sizeTo:: message. By default, automatic resizing of subviews is disabled. Returns self.

See also: - resizeSubviews:, - sizeTo::, - superviewSizeChanged:

Classes: View 2-795

setAutosizing:

- setAutosizing:(unsigned int)mask

Determines how the receiving View's frame rectangle will change when its superview's
size changes. Create mask by ~Ring the following together:

Flag

NX_NOTSIZABLE
NX_MINXMARGINSIZABLE
NX_ WIDTHSIZABLE
NX.-MAXXMARGINSIZABLE
NX_MINYMARGINSIZABLE
NX_HEIGHTSIZABLE
NX_MAXYMARGINSIZABLE

Returns self.

Meaning

The View does not resize with its superview.
The left margin between Views can stretch.
The View's width can stretch.
The right margin between Views can stretch.
The top margin between Views can stretch.
The View's height can stretch.
The bottom margin between Views can stretch.

See also: - sizeTo::, - resizeSubviews:, - setAutoresizeSubviews:

setClipping:

- setClipping:(BOOL)jlag

Determines whether drawing is clipped to the View's frame rectangle. Views are clipped
by default. When you know the View won't draw outside its frame, you can tum off
clipping to reduce the amount of PostScript code sent to the Window Server. You can also
use this method to enable clipping in a View that inherits from a subclass that disables
clipping. You should send a setClipping: message to the View before it first draws, usually
from the method that initializes the View. Returns self.

See also: -lockFocus, - drawlnSuperview, - initFrame:, - does Clip

setDrawOrigin::

- setDrawOrigin:(NXCoord)x :(NXCoord)y

Shifts the View's coordinate system so that (x, y) corresponds to the same point as the
View's frame rectangle origin. If the View's coordinates have been rotated or flipped, this
won't necessarily coincide with its bounds rectangle origin. Returns self.

See also: - translate::, - setDrawSize::, - setDrawRotation:

2·796. Chapter 2: Application Kit

setDrawRotation:

- setDrawRotation:(NXCoord)angle

Rotates the View's coordinate system around its frame rectangle origin so that angle
defines the relationship between the View's frame rectangle and its drawing coordinates.
Returns self.

See also: - rotate:, - setDrawOrigin::, - setDrawSize::

setDrawSize: :

- setDrawSize:(NXCoord)width :(NXCoord)height

Scales the View's coordinate system so that width and height define the size of the View's
frame rectangle in its own coordinates. If the View's drawing coordinates have been
rotated, the View's frame rectangle size won't necessarily be the same as its bounds
rectangle size. Returns self.

See also: - scale::, - setDrawOrigin::, - setDrawRotation:

setFlipped:

- setFlipped:(BOOL)jlag

Sets the direction of the View's y-axis. Ifjlag is YES, the View's origin will be its upper
left comer, and coordinate values will increase towards the bottom of the View. If jlag is
NO, the origin is the bottom left comer and values increase to the top; this is the default
configuration for a View.

Although a View is positioned in its superview's coordinate system, no View will have a
flipped coordinate system unless it receives a setFlipped: YES message of its own; it
doesn't inherit flipped coordinates from its superview.

This method may also send a descendantFlipped: message to the receiving View's
superview. Returns self.

See also: - notifyWhenFlipped:, - descendantFlipped:, - initFrame:, - isFlipped

Classes: View 2-797

setFrame:

- setFrame:(const NXRect *)frameRect

Repositions and resizes the View within its superview's coordinate system by assigning it
the frame rectangle specified by frameRect. Returns self.

See also: - initFrame:, - sizeTo::, - moveTo::

setNeedsDisplay:

- setNeedsDisplay:(BOOL)fiag

This method sets a flag indicating whether the View needs to be displayed. After the View
changes its internal state in such a way that it's no longer accurately reflected on the screen,
it should query itself with an isAutodisplay message. If automatic display is enabled, the
View should send a display message to itself. If automatic display is disabled, the View
should send a setNeedsDisplay: YES message to its~lf. This message has no effect if
automatic display is enabled. Returns self.

See also: - update, - setAutodisplay, - isAutodisplay, - needsDisplay:, - display:::,
- displaylfNeeded

setOpaque:

- setOpaque:(BOOL)fiag

Registers whether the View is opaque. If a View can guarantee that it will completely cover
the area within its frame (with opaque paint), it should send itself a setOpaque:YES
message (typically, as part of its initialization). Opaque Views make drawing in the view
hierarchy more efficient. Returns self.

See also: - isOpaque, - opaqueAncestor, - displayFromOpaqueAncestor:::

shouldDelayWindowOrderingForEvent:

- (BOOL)shouldDelayWindowOrderingForEvent:(NXEvent *)anEvent

Returns YES if the normal Window ordering and activation mechanism should be delayed
until the next mouse-up event. You never inovke this method directly; it's invoked
automatically for each mouse-down that's directed at the View. The default
implementation returns NO.

A View subclass that contains draggable images should implement this to return YES
(perhaps predicating the decision on the data in anEvent, the event record for the

2-798 Chapter 2: Application Kit

mouse-down itself). This allows the user to click on a draggable image without bringing
the View's Window to the front or making its application active. Note that this method
doesn't prevent this ordering and activation from occurring, it simply puts it off until the
user releases the mouse. To cause the ordering and activation to be skipped when the
mouse is released, the View should send a preventWindowOrdering message to the
Application object from within its implementation of mouseDown:. The
preventWindowOrdering message is sent automatically by View's draglmage: ..•
method-in other words, ordering and activation is prevented if the user actually drags the
clicked-on item.

shouldDrawColor

- (BOOL)shouldDrawColor

Returns whether the View should be drawn using color. If the View is being drawn to a
window and the window can't store color, this method returns NO; otherwise it returns YES.

sizeBy::

- sizeBy:(NXCoord)deltaWidth :(NXCoord)deltaHeight

Resizes the View by deltaWidth and deltaHeight in its superview's coordinates. This
method works by invoking the sizeTo:: method. Returns self.

See also: - sizeTo::, - moveBy::

sizeTo::

- sizeTo:(NXCoord)width :(NXCoord)height

Resizes the View's frame rectangle to the specified width and height in its superview's
coordinates. It may also initiate a descendantFrameChanged: message to the View's
superview. Returns self.

See also: - setFrame:, - moveTo::, - sizeBy::, - descendantFrameChanged:

spoolFile:

- spooIFile:(const char *)filename

Spools the generated PostScript file to the printer. This method is invoked by
printPSCode: and faxPSCode:. Returns self.

Classes: View 2· 799

subviews

- subviews

Returns the List object that contains the receiving View's subviews. You can use this List
to send messages to each View in the View hierarchy. You never modify this List directly;
use addSubview: and removeFromSuperview to add and remove Views from the View
hierarchy. If the View has no subviews (and never did), nil is returned. If it had subviews
that have all since been removed, an empty List is returned.

See also: - superview, - addSubview:, - removeFromSuperview

superview

- superview

Returns the View's superview. If the View hasn't a superview, nil is returned. When
applying this method recursively, you should check the return value against the content
View of the View's Window to avoid flying off the top of the View hierarchy.

See also: - window, - subviews, "' addSubview:, - removeFromSuperview

superviewSizeChanged:

- superviewSizeChanged:(const NXSize *)oldSize

Informs the View that its superview's size has changed. This method is invoked when the
View's superview has received a resizeSubviews: message. This method will automatically
resize the View according to the parameters set by the setAutosizing: message. You may
want to override this method to provide specific resizing behavior. oldSize is the previous
bounds rectangle size of the receiving View's superview. Returns self.

See also: - resizeSubviews:, - sizeTo::, - setAutoresizeSubviews:

suspendNotifyAncestorWhenFrameChanged:

- suspendNotify AncestorWhenFrameChanged:(BOOL)flag

Temporarily disables or reenables the sending of descendantFrameChanged: messages to
the View's superview when the View is sized or moved. You must have previously sent the
View a notify AncestorWhenFrameChanged: YES message for this method to have any
effect. These messages do not nest. Returns self.

See also: - descendantFrameChanged:, - notifyAncestorWhenFrameChanged:,
- sizeTo::, - moveTo::,

2-800 Chapter 2: Application Kit

tag
- (int)tag

Returns the View's tag, a integer that you can use to identify objects in your application.
By default, View returns (-1). You can override this method to identify certain Views. For
example, your application could take special action when a View with a given tag receives
a mouse event.

See also: - findViewWithTag:

translate::

- translate:(NXCoord)x :(NXCoord)y

Translates the origin of the View's coordinate system to (x, y). Returns self.

See also: - setDrawOrigin::, - scale::, - rotate:

unlockFocus

- unlockFocus

Balances an earlier lockFocus message to the same View. If the lockFocus method saved
the previous graphics state, this method restores it. Returns self.

See also: - lockFocus, - display:::

unregisterDraggedTypes

- unregisterDraggedTypes

Unregisters the View as a possible recipient of dragged-images.

See also: - registerForDraggedTypes:count:

update

- update

Invokes the proper update behavior when the contents of the View have been changed in
such a way that they are no longer accurately represented on the screen. If automatic
display is enabled, this method invokes display; otherwise this method sets a flag
indicating that the View needs to be displayed. Returns self.

See also: - setNeedsDisplay, - isAutoDisplay, - display, - displayIfNeeded

Classes: View 2-801

widthAdjustLimit

- (float)widthAdjustLimit

Returns the fraction (between 0.0 and 1.0) of the page that can be pushed onto the next page
during automatic pagination to prevent items from being cut in half. This limit applies to
horizontal pagination. This method is invoked by printPSCode: and faxPSCode:. By
default, this method returns 0.2.

See also: - adjustPageHeightNew:top:bottom:limit:

window

-window

Returns the View's Window.

See also: - superview

windowChanged:

- windowChanged:newWindow

Invoked when the Window the View is in changes (usually from nil to non-nil or vice
versa). This often happens due to a removeFromSuperview sent to the View (or some
View higher up the hierarchy from it). This method is especially important when the View
is the first responder in the Window, in which case this method should be overridden to
clean up any blinking carets or other first responder-dependent activity the View engages
in. Note that resignFirstResponder is NOT called when a View is removed from the View
hierarchy (since the View does not have the opportunity to reject resignation of the first
responder). This method is invoked before the window instance variable has been changed
to new Window. Returns self.

write:

- write:(NXTypedStream *)stream

Writes the View and its subviews to the typed stream stream. Returns self.

writePSCodelnside:to:

- writePSCodelnside:(const NXRect *)aRect to:pasteboard

Copies the portions of the View and its subviews that fall inside aRect and places the copy
on the given pasteboard. Returns self.

2-802 Chapter 2: Application Kit

Windo\N

Inherits From: Responder: Object

Declared In: appkitlWindow.h

Class Description

The Window class defines objects that manage and coordinate the windows that an
application displays on the screen. A single Window object corresponds to, at most, one
window. The two principle functions of a Window are to provide an area in which Views
can be placed, and to accept and distribute, to the appropriate Views, events that the user
instigates through actions on the mouse and keyboard.

Rectangles, Views, and the View Hierarchy

A Window is defined by ajrame rectangle that encloses the entire window, including its
title bar, resize bar, and border, and by a content rectangle that encloses just its content area.
Both rectangles are specified in the screen coordinate system. The frame rectangle
establishes the Window's base coordinate system. This coordinate system is always
aligned with and is measured in the same increments as the screen coordinate system (in
other words, the base coordinate system can't be rotated or scaled). The origin of a base
coordinate system is the bottom left corner of the Window's frame rectangle.

You create a Window (through one of the init: ... methods) by specifying, among other
attributes, the size and location of its content rectangle. The frame rectangle is derived
from the dimensions of the content rectangle.

When it's created, a Window automatically creates two Views: an opaquejrame view that
fills the frame rectangle and draws the border, title bar, resize bar, and background, and a
transparent content view that fills the content area. The frame view is a private object that
your application can't access directly. The content view is the "highest" accessible View
in the Window; you can replace the content view with a View of your own creation through
Window's set Content View: method.

You add other Views to the Window by declaring each to be a subview of the content view,
or a subview of one of the content view's subviews, and so on, through View's
addSubview: method. This tree of Views is called the Window's view hierarchy. When a

Classes: Window 2-803

Window is told to display itself, it does so by sending View-displaying messages to each
object in its view hierarchy. Because displaying is carried out in a determined order, the
content view (which is drawn first) may be wholly or partially obscured by its subviews,
and these subviews may be obscured by their subviews (and so on).

Event Handling

Mouse and keyboard events that are directed at a Window are automatically forwarded to
the object, however, a Window receives keyboard events only if it's the key window. If the
event affects the Window directly-resizing or moving it, for example-the Window
performs the appropriate operation itself and sends messages to its delegate informing it of
its intentions, thus allowing your application to intercede. Events that are directed at
specific Views within the Window are forwarded by the Window to the View.

The Window keeps track of the object that was last selected to handle keyboard events as
its first responder. The first responder is typically the View that displays the current
selection. In addition to keyboard events, the first responder is sent action messages that
have a user-selected target (a nil target in program code). The Window continually updates
the first responder in response to the user's mouse actions.

Each Window provides afield editor, a Text object that handles small-scale text-editing
chores. The field editor can be used by the Window's first responder to edit the text that it
displays. The getFieldEditor:for: method returns a Window's field editor.

Instance Variables

NXRect frame;
id contentView;
id delegate;
id firstResponder;
id lastLeftHit;
id lastRightHit;
id counterpart;
id fieldEditor;
int winEventMask;
int windowNum;
float backgroundGray;

2·804 Chapter 2: Application Kit

struct _wFlags{
unsigned int style:4;
unsigned int backing:2;
unsigned int buttonMask:3;
unsigned int visible: 1;
unsigned int isMain Window: 1;
unsigned int isKeyWindow: 1;
unsigned int isPanel: 1;
unsigned int hideOnDeactivate: 1 ;
unsigned int dontFree When Closed: 1;
unsigned int oneS hot: 1 ;

} wFlags;

struct _wFlags2{
unsigned int deferred: 1 ;
unsigned int docEdited: 1 ;
unsigned int dynamicDepthLimit: 1;

} wFlags2;

frame

contentView

delegate

firstResponder

lastLeftHit

lastRightHit

counterpart

fieldEditor

winEventMask

windowNum

backgroundGray

The Window's frame rectangle in screen coordinates.

The View that fills the Window's content area.

The object that receives notification messages.

The Responder object that receives keyboard events and
untargeted action messages sent to the Window.

The View in the Window's view hierarchy that most
recently received a left mouse-down event.

The View in the Window's view hierarchy that most
recently received a right mouse-down event.

The Window's miniwindow, or, if the Window is a
mini window, the Window it stands for.

The Text object that displays and edits text for the
Window.

The events the Window can receive from the Window
Server.

An integer that identifies the Window Server window
device that corresponds to this Window.

The shade of gray that fills the Window's background.

Classes: Window 2-805

wFlags.style

wFlags.backing

w Flags.buttonMask

The style of Window; whether it's plain, titled, a
miniwindow, or has a frame suitable for a menu.

The type of backing for the on-screen display; whether the
Window is retained, nonretained, or buffered.

A mask that indicates whether the Window has a close
button and miniaturize button.

wFlags.visible True if the Window is on-screen (if it's in the screen list).

wFlags.isMain Window True if the Windo.w is the main window.

wFlags.isKeyWindow True if the Window is the key window.

wFlags.isPanel True if the Window is a Panel.

wFlags.hideOnDeactivate True if the Window should be removed from the screen
when the application is deactivated.

wFlags.dontFreeWhenClosed True if the Window is not to be freed when closed.

wFlags.oneShot True if the Window Server should free the window
device for this object when the Window is removed from

w Flags2.deferred

the screen.

True if the Window Server shouldn't create a window
device for this object until it's placed on-screen.

wFlags2.docEdited True if the close button indicates that a displayed
document has been edited but not saved.

wFlags2.dynamicDepthLimit True if the Window has a depth limit that can change to
match the depth of the screen.

Method Types

Initializing a new Window instance
- init
- initContent: style: backing: buttonMask: defer:
- initContent: style: backing: buttonMask:

defer: screen:

Freeing a Window object -free

Computing frame and content rectangles

2·806 Chapter 2: Application Kit

+ getFrameRect:forContentRect: style:
+ getContentRect:forFrameRect: style:
+ minFrame Width:forStyle: buttonMask:

Accessing the frame rectangle - getFrame:
- getFrame:andScreen:
- setFrameUsingName:
- saveFrameUsingName:
+ removeFrameU singName:
- setFrameAutosaveN ame:
- frameAutosaveName
- setFrameFromString:
- saveFrameToString:

Accessing the content view - setContentView:
- contentView

Querying Window attributes

Window graphics

Window device attributes

The mini window

The field editor

-windowNum
- buttonMask
- style
- works WhenModal

- setTitle:
..;.. setTitleAsFilename:
- title
- setBackgroundColor:
- backgroundColor
- setBackgroundGray:
- backgroundGray

- setBackingType:
- backingType
- setOneShot:
- isOneShot
- setFree WhenClosed:

- counterpart
- setMiniwindowIcon:
- setMiniwindowlmage:
- setMiniwindowTitle:
- miniwindowlcon
- miniwindowlmage
- miniwindowTitle

- endEditingFor:
- getFieldEditor:for:

Classes: Window 2-807

Window status - makeKeyWindow
- make Key AndOrderFront:
- becomeKeyWindow
- isKeyWindow
- resignKeyWindow
- canBecomeKeyWindow
- becomeMain Window
- isMain Window
- resignMain Window
- canBecomeMain Window

Moving and resizing -moveTo::
- moveTo::screen:
- moveTopLeftTo::
- moveTopLeftTo::screen:
- dragFrom::eventNum:
- constrainFrameRect:toScreen:
- place Window:
- place Window: screen:
- place Window AndDisplay:
- sizeWindow::
- setMinSize:
- setMaxSize:
- getMinSize:
- getMaxSize:
- resizeFlags
- center

Ordering on and off screen - make Key AndOrderFront:
- orderFront:
- orderBack:
- orderOut:
- orderWindow:relativeTo:
- orderFrontRegardless
- isVisible
- setHideOnDeactivate:
- doesHideOnDeactivate

Converting coordinates - convertBaseToScreen:
- convertScreenToBase:

2-808 Chapter 2: Application Kit

Managing display

Screens and Window depths

Graphics state objects

Cursor management

- display
- displayIfNeeded
- disableDisplay
- isDisplayEnabled
- reenableDisplay
- flush Window
- flushWindowIfNeeded
- disableFlush Window
- reenableFlush Window
- isFlush WindowDisabled
- display Border
- useOptimizedDrawing:
- update

- screen
- bestScreen
+ defaultDepthLimi t
- setDepthLimit
- depthLimit
- setDynamicDepthLimit
- hasDynamicDepthLimit
- canStoreColor

- gState

- addCursorRectcursor:forView:
- removeCursorRectcursor:forView:
- invalidateCursorRectsForView:
- disableCursorRects
- enableCursorRects
- discardCursorRects
- resetCursorRects

Handling user actions and events
-close
- performClose:
- miniaturize:
- performMiniaturize:
- deminiaturize:
- setDocEdited:
- isDocEdited
- windowExposed:
- windowMoved:
- screenChanged:

Classes: Window 2-809

Setting the event mask - setEventMask:
- addToEventMask:
- removeFromEventMask:
- eventMask

Aiding event handling - getMouseLocation:
- setTrackingRect:inside:owner:tag:left:right:
- discardTrackingRect:
- makeFirstResponder:
- firstResponder
- sendEvent:
- rightMouseDown:
- commandKey:
- tryToPerform:with:
- setAvoidsActivation:
- avoidsActivation

Dragging - registerForDraggedTypes:count:
- unregisterDraggedTypes
- draglmage: at: offset:event:pasteboard: source: slideBack:

Services and Windows menu support

Assigning a delegate

. Printing

2·810 Chapter 2: Application Kit

- validRequestorForSendType:andReturnType:
- setExcludedFrom WindowsMenu:
- isExcludedFrom WindowsMenu

- setDelegate:
- delegate

- printPSCode:
- smartPrintPSCode:
- faxPSCode:
- smartFaxPSCode:
- openSpoolFile:
- spoolFile:
- copyPSCodelnside:to:
- knowsPagesFirst:last:
- getRect:forPage:
- placePrintRect:offset:
- heightAdjustLimit
- widthAdjustLimit
- beginPSOutput
- endPSOutput
- beginPrologueBBox:creationDate:

create dB y:fonts:forWhom:pages:title:
- endHeaderComments

Archiving

Class Methods

defaultDepthLimit

- endPrologue
- beginSetup
- endSetup
- beginPage:label:bBox:fonts:
- endPage
- beginPageSetupRect:placement:
- endPageSetup
- beginTrailer
- endTrailer

- read:
- write:
- awake

+ (NXWindowDepth)defaultDepthLimit

Returns the default depth limit for instances of Window. This will be the smaller of:

• The depth of the deepest display device available to the Window Server.
• The depth set for the application by the NXWindowDepthLimit parameter.

The value returned will be one of these NXWindowDepth values:

NX_ TwoBitGrayDepth
NX_EightBitGrayDepth
NX_ TwelveBitRGBDepth
NX_ TwentyFourBitRGBDepth

See also: - setDepthLimit:, - setDynamicDepthLimit:, - canStoreColor

getContentRect:forFrameRect:style:

+ getContentRect:(NXRect *)content
forFrameRect:(const NXRect *)frame
style: (int)aStyle

Calculates and returns, in content, the content rectangle for a Window with the given frame
rectangle and style. Both content andframe are in screen coordinates. See the style method
for a list of acceptable style values. Returns self.

See also: + getFrameRect:forContentRect:style:

Classes: Window 2-811

getFrameRect:forContentRect:style:

+ getFrameRect:(NXRect *)frame
forContentRect:(const NXRect *)content
style: (int)aStyle

Calculates and returns, inframe, the content rectangle for a Window with the given frame
rectangle and style. Bothframe and content are in screen coordinates. See the style method
for a list of acceptable style values. Returns self.

See also: + getContentRect:forFrameRect:style:

minFrameVVidth:forStyle:buttonMask:

+ (NXCoord)minFrameWidth:(const char *)aTitle
forStyle:(int)aStyle
buttonMask:(int)aMask

Returns the minimum width that a Window's frame rectangle must have for it to display all
of aTitle, given the specified style and button mask. See the style and buttonMask
methods for lists of acceptable style and button mask values.

removeFrameUsingName:

+ (void)removeFrameUsingName:(const char *)name

Removes the frame data named name from the application's defaults.

See also: - setFrameUsingName:, - setFrameAutosaveName:

Instance Methods

addCursorRect:cursor:forView:

- addCursorRect:(const NXRect *)aRect
cursor:anObject
forView:a View

Adds the rectangle specified by aRect to the Window's list of cursor rectangles and
returns self. aRect, which is taken in the Window's base coordinate system, must lie
within the Window's content rectangle. If it doesn't, the cursor rectangle isn't added
and nil is returned.

2-812 Chapter 2: Application Kit

You typically add cursor rectangles to View objects (through View's
addCursorRect:cursor: method) rather than to Windows.

See also: - addCursorRect:cursor: (View)

addToEventMask:

- (int)addToEventMask:(int)new Events

Adds newEvents to the Window's current event mask and returns the original event mask.
This method is typically used when an object sets up a modal event loop to respond to
certain events. The return value should be used to restore the Window's original event mask
when the modal loop done. See setEventMask: for a list of event mask constants.

See also: - setEventMask:, - eventMask, - removeFromEventMask:

avoidsActivation

- (BOOL)avoidsActivation

Returns YES if the Window's application doesn't become active when the user clicks in the
Window's content area. The default is NO. Note that clicking on the title bar will always
activate the Window's application.

See also: - setAvoidsActivation:

awake

-awake

You never invoke this method directly; it's invoked automatically after the Window has
been read from an archive file.

See also: - read:

backgroundColor

- (NXColor)backgroundColor

Returns the color of the Window's background when the object is displayed on a color
screen. The default is the color equivalent of NX_LTGRAY.

See also: - setBackgroundColor:, - setBackgroundGray:

Classes: Window 2-813

backgroundGray
- (float)backgroundGray

Returns the shade of gray of the Window's background when the object is displayed on a
monochrome screen. The default is NX_LTGRAY.

See also: .:.... setBackgroundGray:, - setBackgroundColor:

backingType

- (int)backingType

Returns the Window's backing type as one of the following constants:

NX_BUFFERED
NX_RETAINED
NX_NONRETAINED

See also: - setBackingType:

becomeKeyWindow

- becomeKeyWindow

You never invoke this method; it's invoked automatically when the Window becomes the
key window. The method sends becomeKeyWindow to the Window's first responder, and
sends windowDidBecomeKey: to the Window's delegate (if the respective objects can
respond). Returns self.

See also: - makeKeyWindow, - make Key AndOrderFront:

becomeMainWindow

- becomeMain Window

You never invoke this method; it's invoked automatically when the Window becomes the
main window. The method sends windowDidBecomeMain: to the Window's delegate (if
the delegate can respond). Returns self.

See also: - makeKeyWindow, - makeKey AndOrderFront:

2·814 Chapter 2: Application Kit

beginPage:label:bBox:fonts:

- beginPage:(int)ordinaINum
label:(const char *)aString
bBox:(const NXRect *)pageRect
fonts:(const char *)fontNames

Writes a PostScript page separator by forwarding the beginPage: ..• message to the
Window's frame view. You never invoke this method directly; it's invoked automatically
when printing or faxing the Window.

See also: - beginPage:labelbBox:fonts: (View)

beginPageSetupRect:placement:

- beginPageSetupRect:(const NXRect *)aRect
placement:(const NXPoint *)location

Writes the start of a PostScript page-setup section by forwarding the
beginPageSetupRect:placement: message to the Window's frame view. You never
invoke this method directly; it's invoked automatically when printing or faxing the Window.

See also: - beginPageSetupRect:placement: (View)

beginPrologueBBox:creationDate:createdBy:fonts:
forWhom :pages:title:

- beginPrologueBBox:(const NXRect *)boundingBox
creationDate:(const char *)dateCreated
createdBy:(const char *)anApplication
fonts:(const char *)fontNames
forWhom:(const char *)user
pages: (int)numPages
title: (const char *)aTitle

Writes the start of a PostScript prolog section by forwarding the beginPrologueBbox: •••
message to the Window's frame view. You never invoke this method directly; it's invoked
automatically when printing or faxing the Window.

See also: - beginPrologueBBox: •• (View)

Classes: Window 2·815

beginPSOutput

- beginPSOutput

Prepares the Window (and the application environment) for printing or faxing by
forwarding the beginPSOutput message to the Window's frame view. You never invoke
this method directly; it's invoked automatically when printing or faxing the Window.

See also: - beginPSOutput (View)

beginSetup

- beginSetup

Writes the start of a PostScript document-setup section by forwarding the beginSetup
message to the Window's frame view. You never invoke this method directly; it's invoked
automatically when printing or faxing the Window.

See also: - beginSetup (View)

beginTrailer

- beginTrailer

Writes the start of a PostScript document-trailer section by forwarding the beginTrailer
message to the Window's frame view. You never invoke this method directly; it's invoked
automatically when printing or faxing the Window.

See also: - beginTrailer (View)

bestScreen

- (const NXScreen *)bestScreen

Returns a pointer to the deepest screen that the Window is on, or NULL if the Window is
currently off-screen.

See also: - screen, - colorScreen (Application)

2-816 Chapter 2: Application Kit

buttonMask
- (int)buttonMask

Returns a mask that indicates which buttons appear in the Window's title bar. The return
value may include one or both of these constants:

NX_CLOSEBUTTONMASK
NX_MINIATURIZEBUTTONMASK

The button mask is set when the Window is initialized and is, thereafter, immutable.

See also: - initContent:style: backing: buttonMask: defer: screen:

canBecomeKeyWindow
- (BOOL)canBecomeKeyWindow

Returns YES if the Window can be made the key window, and NO if it can't, This method
is consulted when the Window tries to become the key window; the attempt is thwarted if
this method returns NO.

See also: - isKeyWindow, - makeKeyWindow

canBecomeMainWindow
- (BOOL)canBecomeMainWindow

Returns YES if the Window can be made the main window, and NO if it can't, This method
is consulted when the Window tries to become the main window; the attempt is thwarted if
this method returns NO.

See also: - isMainWindow, - makeKeyWindow

canStoreColor
- (BOOL)canStoreColor

Returns YES if the Window has a depth limit that allows it to store color values, and NO
if it doesn't,

See also: - depthLimit, - shouldDrawColor (View)

Classes: Window 2 .. 817

center

- center

Moves the Window to the center of the screen: The Window is placed dead-center
horizontally and placed somewhat above center vertically. Such a placement is consider to
carry a certain immediacy and importance, visually. You typically use this method to place
a Window-most likely an attention Panel-where the user can't miss it. This method is
invoked automatically when a Panel is placed on the screen by Application's
runModalFor: method. Returns self.

close

- close

Removes the Window from the screen. If the Window is set to be freed when it's closed
(the default), a free message is sent to the object.

Normally, this method is invoked by the Application Kit when the user clicks the Window's
close button. Note that this method doesn't cause windowWillClose: to be sent to the
Window's delegate (the message is sent when the user clicks the close button). You can
induce an invocation of the delegate method by simulating the user's action through the
performClose: method.

Returns nil.

See also: - performClose:, - setFreeWhenClosed:

commandKey:

- (BOOL)commandKey:(NXEvent *)theEvent

Responds to the Command key-down event passed as theEvent. You never invoke this
method directly; the Application object, upon receiving a Command key-down event, sends
a commandKey: message to each Window in the Window list until one of them returns
YES (signifying that the event was recognized and handled). The default implementation
of this method returns NO-instances of Window can't handle these events. (By contrast,
Panels can.)

You can create your own subclass of Window that responds to Command key-down events.
A typical subclass implementation of this method passes a performKeyEquivalent:
message down the view hierarchy:

2-818 Chapter 2: Application Kit

- (BOOL)commandKey: (NXEvent *)theEvent

if ([contentView performKeyEquivalent:theEvent]
return YES;

else
return NO;

See also: - performKeyEquivalent: (View), - commandKey: (Panel)

constrainFrameRect:toScreen:

- (BOOL)constrainFrameRect:(NXRect *)theFrame
toScreen:(const NXScreen *)screen

Modifies the rectangle pointed to by theFrame such that its top edge lies on the given
screen. If the Window is resizable, the rectangle's height is adjusted to bring the bottom
edge onto the screen as well. The rectangle's width and horizontal location are unaffected.
You shouldn't need to invoke this method yourself; it's invoked automatically (and the
modified frame is used to locate and set the size of the Window) whenever a titled Window
is placed on-screen or resized through size Window::.

You can override this method to prevent a particular Window from being constrained, or to
constrain it differently. The unconstrained frame rectangle is pointed to by theFrame; the
screen it wants to lie on is pointed to by screen. If your method modifies the rectangle, it
should return YES; otherwise, it should return NO.

contentView

- contentView

Returns the Window's content view, the highest accessible View object in the Window's
view hierarchy.

See also: - setContentView:

convertBaseToScreen:

- convertBaseToScreen:(NXPoint *)aPoint

Converts the point referred to by aPoint from the Window's base coordinate system to the
screen coordinate system. Returns self.

See also: - convertScreenToBase:

Classes: Window 2-819

convertScreenToBase:

- convertScreenToBase:(NXPoint *)aPoint

Converts the point referred to by aPoint from the screen coordinate system to the Window's
base coordinate system. Returns self.

See also: - convertBaseToScreen:

copyPSCodelnside:to:

- copyPSCodelnside:(const NXRect *)reet to:(NXStream *)stream

Generates PostScript code, in the manner ofprintPSCode:, for all the Views located inside
the reet portion of the Window. The rectangle is specified in the Window's base
coordinates. The PostScript code is written to stream.

Returns self (unless an exception is raised).

See also: - printPSCode:, - faxPSCode:

counterpart

- counterpart

Returns the Window's miniwindow or, if this Window is a miniwindow, the Window that it
represents. You can't set a Window's counterpart directly; a corresponding miniwindow is
created automatically the first time the Window is miniaturized. If the Window has not yet
been miniaturized, this method will return nil.

See also: - setMiniwindowlmage:, - setMiniwindowTitle:

delegate

- delegate

Returns the Window's delegate, or nil if it doesn't have one.

See also: - setDelegate:

2-820 Chapter 2: Application Kit

deminiaturize:

- deminiaturize:sender

Deminiaturizes the Window (which should be a miniwindow). You rarely need to invoke
this method; it's invoked automatically when a Window is deminiaturized by the user (by
double-clicking a miniwindow, or by choosing the Arrange in Front item in the Windows
menu). However, if you feel compelled to deminiaturize a Window programmatically, you
should note that the deminiaturize message is sent to the miniwindow, not the original
Window. The value passed as sender is ignored. Returns self.

See also: - miniaturize:

depthLimit

- (NXWindow Depth)depthLimit

Returns the depth limit of the Window as one of the following values:

NX_DefaultDepth
NX_ TwoBitGrayDepth
NX_EightBitGrayDepth
NX_ TwelveBitRGBDepth
NX_TwentyFourBitRGBDepth

If the return value is NX_DefaultDepth, you can find out the actual depth limit by sending
the Window class a defaultDepthLimit message.

See also: + defaultDepthLimit, - setDepthLimit:, - setDynamicDepthLimit:

disableCursorRects

- disableCursorRects

Disables all cursor rectangle management within the Window. Typically this method is
used when you need to do some special cursor manipulation, and you don't want the
Application Kit interfering. Returns self.

See also: - enableCursorRects

Classes: Window 2-821

disableDisplay
- disableDisplay

Disables View's display methods, thus preventing the Views in the Window's view
hierarchy from being displayed (note, however, that this doesn't disable Window's display
method). This permits you to alter or update the Views before displaying them again.

Displaying should be disabled only temporarily. Each disableDisplay message should be
paired with a subsequent reenableDisplay message. Pairs of these messages can be nested;
drawing won't be reenabled until the last (urinested) reenableDisplay message is sent or
until a display message is sent to the Window.

Returns self.

See also: - reenableDisplay, - isDisplayEnabled, - display, - display::: (View)

disableFlushWindow

- disableFlush Window

Disables the flush Window method for the Window. If the Window is a buffered window,
drawing won't automatically be flushed to the screen by the display methods defined in the
View class. This permits several Views to be displayed before the results are shown to
the user.

Flushing should be disabled only temporarily, while the Window's display is being
updated. Each disableFlush Window message should be paired with a subsequent
reenableFlush Window message. Message pairs can be nested; flushing won't be
reenabled until the last (unnested) reenableFlushWindow message is sent.

Returns self.

See also: - reenableFlush Window, - flush Window, - disableDisplay

discardCursorRects
- discardCursorRects

Removes all cursor rectangles from the Window, and returns self. This method is invoked
by resetCursorRects to remove existing cursor rectangles before resetting them. In
general, you wouldn't invoke it in the code you write, but might want to override it to
change its behavior.

See also: - resetCursorRects

2-822 Chapter 2: Application Kit

discardTrackingRect:

- discardTrackingRect:(int)trackNum

Removes the tracking rectangle identified by trackNum and returns self. The tag was
assigned when the tracking rectangle was created.

See also: - setTrackingRect:inside:owner:tag:left:right:

display

- display

Passes a display message down the Window's view hierarchy, thus redrawing all Views
within the Window, including the border, resize bar, and title bar. If displaying is disabled
for the Window, this method reenables it. Returns self.

See also: - display (View), - disableDisplay, - displaylfNeeded

displayBorder

- displayBorder

Redraws the Window's border, title bar, and resize bar, and returns self. You rarely need to
invoke this method yourself; a Window's border is automatically displayed when any of
the elements therein are changed-when the Window is resized or its title is changed,
for example.

See also: - display

displaylfNeeded

- displaylfNeeded

Sends a displaylfNeeded message down the Window's view hierarchy, thus redrawing all
Views that need to be displayed, including the Window's border, title bar, and resize bar.
This method is useful when you want to disable displaying in the Window, modify some
number of Views, and then display only the ones that were modified. Note that this method,
unlike display, doesn't reenable display if it's currently disabled. Returns self.

See also: - display, - displaylfNeeded (View), - setNeedsDisplay: (View),
- update (View)

Classes: Window 2-823

doesHideOnDeactivate
- (BOOL)doesHideOnDeactivate

Returns YES if the Window will be removed from the screen when its application is
deactivated, and NO if it will remain on-screen.

See also: - setHideOnDeactivate:

dragFrom::eventNum:

- dragFrom:(float)x
: (float)y
eventNum:(int)num

Lets the user drag a Window from a location other than the title bar.

Warning: This method has nothing to do with the image-dragging mechanism provided by the
draglrnage: .•• method and related protocols.

Normally, a Window can only be dragged by its title bar (if it has one). To provide some
other draggable area in the Window, you design a View that invokes this method when it
receives a mouse-down event. The first two arguments, (x, y), give the cursor's location in
base coordinates. The third argument, num, is the event number for the mouse-down event.
All three arguments should be taken from the mouse-down event record. The following .
example shows an implementation of mouseDown: that would allow the user to drag the
Window by clicking anywhere in the View:

- mouseDown: (NXEvent *)theEvent

[window dragFrom:theEvent->location.x :theEvent->location.y
eventNum:theEvent->data.mouse.eventNum] ;

return self;

The dragging itself is performed as usual: The View that invoked this method won't receive
the subsequent mouse-dragged and mouse-up events, they're intercepted and applied
directly to change the Window's location.

Returns self.

See also: - moveTo::

2-824 Chapter 2: Application Kit

draglmage:at:offset:event:pasteboard:source:slideBack:

- draglmage:anlmage
at:(NXPoint *)location
offset:(NXPoint *)initialOffset
event:(NXEvent *)event
pasteboard: (Pasteboard *)pboard
source:sourceD.bject
slideBack:(BOOL)slideFlag

Instigates an image-dragging session. You never invoke this method directly from your
application; it can only be invoked from within a View's implementation of the
mouseDown: method. Furthermore, View also implements the draglmage: ••• method;
you typically instigate an image-dragging session by sending this message to a View,
rather than a Window. The two methods are identical except for the interpretation of the
location argument: In Window's implementation, location is taken in the base 'coordinate
system. See the description of this method in the View class for the meanings of the other
arguments.

See also: - draglmage:at:offset:event:pasteboard:source:slideBack: (View)

enableCursorRects

- enableCursorRects

Reenables cursor rectangle management. Returns self.

See also: - disableCursorRects

endEditingFor:

- endEditingFor:anObject

Prepares the Window's field editor for a new editing assignment and returns self. The
argument is ignored by Window's default implementation.

If the field editor is the first responder, it resigns that status, passing it to the Window (even
if the field editor refuses to resign). This forces a textDidEnd:endChar: message to be
sent to the field editor's delegate. The field editor is then removed from the view hierarchy
and its delegate is set to nil.

Classes: Window 2-825

To conditionally end editing, first try to make the Window the first responder:

if ([my Window makeFirstResponder:myWindow])
[my Window endEditingFor:nil] i

This is the preferred way to verify all fields when an OK button is pressed in a panel, for
example.

See also: - getFieldEditor:for:

, endHeaderComments

- endHeaderComments

Writes the end of a PostScript comment section by forwarding the endHeaderComments
message to the Window's frame view. You never invoke this method directly; it's invoked
automatically when printing or faxing the Window.

See also: - endHeaderComments (VieW)

endPage

-endPage

Writes the end of a PostScript page separator by forwarding the endPage message to the
Window's frame view. You never invoke this method directly; it's invoked automatically
when printing or faxing the Window.

See'also: - endPage (View)

endPageSetup

- endPageSetup

Writes the end of a PostScript page-setup section by forwarding the endPageSetup
message to the Window's frame view. You never invoke this method directly; it's invoked
automatically when printing or faxing the Window.

See also: - endPageSetup (View)

2-826 Chapter 2: Application Kit

endPrologue

- endPro)ogue

Writes the end of a PostScript prolog section by forwarding the endPro)ogue message to
the Window's frame view. You never invoke this method directly; it's invoked
automatically when printing or faxing the Window.

See also: - endPro)ogue (View)

endPSOutput

- endPSOutput

Declares that printing or faxing is finished by forwarding the endPSOutput to the Window's
frame view. You never invoke this method directly; it's invoked automatically when
printing or faxing the Window.

See also: - endPSOutput (View)

endSetup

-endSetup

Writes the end of a PostScript document-setup section by forwarding the endSetup
message to the Window's frame view. You never invoke this method directly; it's invoked
automatically when printing or faxing the Window.

See also: - endSetup (View)

endTrailer

- end Trailer

Writes the end of a PostScript document-trailer section by forwarding the end Trailer
message to the Window's frame view. You never invoke this method directly; it's invoked
automatically when printing or faxing the Window.

See also: - endTrailer (View)

Classes: Window 2·827

eventMask

- (int)eventMask

Returns the current event mask for the Window. See setEventMask: for a list of the
possible contents of the mask.

See also: - setEventMask:, - addToEventMask:, - removeFromEventMask:

faxPSCode:

- faxPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view) to a fax
modem. A return value of nil indicates that there were errors in generating the PostScript
code or that the user canceled the job.

In the current user interface, faxing is initiated from within the Print panel. However, with
this method, you can provide users with an independent control for faxing a Window.

This method normally brings up the Fax panel before actually beginning printing. But if
sender implements a shouldRunPrintPanel: method, that method will be invoked to first
query whether to run the panel. If shouldRunPrintPanel: returns NO, the Fax panel won't
be displayed, and the Window will be printed using the previous settings of the panel.

See also: - smartFaxPSCode:, - printPSCode:,
- shouldRunPrintPanel: (Object Additions)

firstResponder

- firstResponder

Returns the Window's first responder.

See also: - makeFirstResponder:, - acceptsFirstResponder (Responder)

flushWindow

- flush Window

if the Window is buffered and flushing hasn't been disabled by disableFlush Window, this
flushes the off-screen buffer to the screen. This method is automatically invoked when you
send a display message to a Window or View. However, it has no effect if the display is
being directed to a printer or other device, rather than to the screen. Returns self.

See also: - display:: (View), - disableFlushWindow

2-828 Chapter 2: Application Kit

flushWindowlfNeeded
- flushWindowIfNeeded

Flushes the Window's off-screen buffer to the screen, provided that:

• The Window is a buffered window
• Flushing isn't currently disabled
• Some previous flush Window messages had no effect because flushing was disabled

You should use this method, rather than flush Window, to flush a Window after flushing has
been reenabled. Returns self.

See also: - flush Window, - disableFlush Window, - reenableFlush Window

frameAutosaveName
- (const char *)frameAutosaveName

Returns the name that's used to automatically save the Window's frame rectangle data in
the defaults system, as set through setFrameAutosaveName:. If the Window has an
autosave name, it's frame data is written as a default whenever the frame rectangle changes.

See also: - setFrameAutosaveName:

free
-free

Deallocates memory for the Window object and all that it surveys. This includes the Views
in its view hierarchy, its instance variables (including the field editor), and the Window
Server window device that it's associated with.

getFieldEditor:for:

- getFieldEditor:(BOOL)jlag for:anObject

Returns the field editor, the Window's communal Text object. The field editor is provided
as a convenience and can be used however your application sees fit. Typically, the field
editor is used by simple text-bearing objects-for example, a TextField object uses its
Window's field editor to display and manipulate text. The field editor can be shared by any
number of objects and so its state may be constantly changing. Therefore, it shouldn't be
used to display text that demands sophisticated Text object preparation (for this you should
create a dedicated Text object).

Classes: Window 2-829

A freshly created Window doesn't have a field editor; the only way to create a field editor
is to invoke this method with a flag value of YES. After a field editor has been created for
a Window, the flag argument is ignored.

The Window's delegate can supply the object that this method returns as the return value of
the windowWillReturnFieldEditor:toObject: delegate message (the Window is passed
as the first argument, anObject is passed as the second). However, note the following:

• If the Window's delegate is anObject, windowWillRetumFieldEditor:toObject:
isn't sent.

• The object returned by the delegate method doesn't become the Window's field editor.

If this method returns a non-nil value, it should be followed by an invocation of Window's
endEditingFor: method before the field editor is actually used.

See also: - endEditingFor:

getFrame:

- getFrame:(NXRect *)theRect

Returns the Window's frame rectangle by reference in theRect and returns self. The frame
rectangle is always reckoned in the screen coordinate system.

See also: - getFrame:andScreen:

getFrame:andScreen:

- getFrame:(NXRect *)theRect andScreen:(const NXScreen **)theScreen

Copies the Window's frame rectangle into the structure referred to by theRe ct. A pointer
to the screen where the Window is located is provided in the variable referred to by
the Screen. The frame rectangle is specified relative to the lower left comer of the screen.
However, if theScreen is NULL, the frame rectangle is specified in absolute coordinates
(relative to the origin of the screen coordinate system). Returns self.

See also: - getFrame:

2-830 Chapter 2: Application Kit

getMaxSize:

- getMaxSize:(NXSize *)aSize

Returns, by reference in aSize, an NXSize structure that gives the maximum size to which
the Window's frame can be sized by the user or by the setFrame: ••• methods. Note that this
constraint doesn't apply to sizeWindow:: or the placeWindow: .•• methods.

See also: - setMaxSize:, - setMinSize:, - getMinSize:

getMinSize:

- getMinSize:(NXSize *)aSize

Returns, by reference in aSize, an NXSize structure that gives the minimum size to which
the Window's frame can be sized by the user or by the setFrame: ••. methods. Note that this
constraint doesn't apply to sizeWindow:: or the placeWindow: ... methods.

See also: - setMinSize:, - setMaxSize:, - getMaxSize:

getMouseLocation:

- getMouseLocation:(NXPoint *)thePoint

Returns, by reference in thePoint, the current location of the mouse reckoned in the
Window's base coordinate system. Returns self.

See also: - currentEvent (Application)

getRect:forPage:

- (BOOL)getRect:(NXRect *)theRect forPage:(int)page

Implemented by subclasses to provide the rectangle to be printed for page number page. A
Window receives getRect:forPage: messages when it's being printed (or faxed) if its
knowsPagesFirst:last: method returns YES.

If page is a valid page number for the Window, this method should return YES after
providing (in the variable referred to by theRect) the rectangle that represents the page
requested. The rectangle should be specified in the Window's base coordinates.

If page is not a valid page number, this method should return NO. By default, it returns NO.

Classes: Window 2-831

The Window may receive a series of getRect:forPage: messages, one for each page that's
being printed. It shouldn't assume that the pages will be generated in any particular order.

See also: - knowsPagesFirst:last:, - printPSCode:

gState

- (int)gState

Returns the PostScript graphics state object associated with the Window.

hasDynamicDepthLimit

- (BOOL)hasDynamicDepthLimit

Returns YES if the Window's depth limit can change to match the depth of the screen it's
on, and NO if it can't.

See also: - setDynamicDepthLimit:

heightAdjustLimit

- (float)heightAdjustLimit

Returns the fraction of a page that can be pushed onto the next page to prevent items from
being cut in half. The limit applies to vertical pagination. By default, it's 0.2.

You never invoke this method directly; it's invoked during automatic pagination when
printing (or faxing) the Window. However, you can override it to return a different value.
The value returned should lie between 0.0 and 1.0 inclusive.

See also: - widthAdjustLimit

init

- init

Initializes the receiver, a newly allocated Window object, by passing default values to the
initContent:style:backing:buttonMask:defer: method. The initialized object is a plain,
buffered window, and has a default frame rectangle. Returns self.

See also: - initContent:style: backing: buttonMask:defer:

2-832 Chapter 2: Application Kit

initContent:style:backing:buttonMask:defer:

- initContent:(const NXRect *)contentRect
style: (int)aSty Ie
backing: (int) backing Type
buttonMask:(int)mask
defer: (BOOL)flag

Initializes the Window object and returns self. This method is the designated initializer for
the Window class.

The first argument, contentRect, specifies the location and size of the Window's content
area in screen coordinates. If a NULL pointer is passed for this argument, a default
rectangle is used.

The second argument, aStyle, specifies the Window's style. It can be:

NX_PLAINSTYLE
NX_ TITLED STYLE
NX_RESIZEBARSTYLE
NX_MENUSTYLE
NX_MINIWINDOWSTYLE
NX_MINIWORLDSTYLE
NX_TOKENSTYLE

You usually only create titled and resizable Windows. Menu style is used by the Menu
class; miniwindows, miniworld icons, and tokens (application icons) are created for you by
the Application Kit. Plain Windows lack interface accouterments and should very rarely
be created and displayed.

The third argument, backing Type , specifies how the drawing done in the Window is
buffered by the object's window device:

NX_BUFFERED
NX_RETAINED
NX_NONRETAINED

The fourth argument, mask, specifies whether the Window's title bar will sport a close or
resize button. You build the mask by joining (with the bitwise OR operator) the individual
masks for the buttons:

NX_CLOSEBUTTONMASK
NX_MINIATURIZEBUTTONMASK

The fifth argument, flag, determines whether the Window Server will create a window
device for the new object immediately. If flag is YES, it will defer creating the window
until the Window is ordered on-screen. All display messages sent to the Window or its

Classes: Window 2-833

Views will be postponed until the window is created, just before it's moved on-screen.
Deferring the creation of the window improves launch time and minimizes the virtual
memory load on the Server.

The Window creates an instance of View to be its default content view. You can replace it
with your own object by using the setContentView: method.

See also: - orderFront:, - setTitle:, - setOneShot:

initContent:style:backing:buttonMask:defer:screen:

- initContent:(const NXRect *)contentRect

style: (int)aStyle

backing: (int)buJfe ring Type
buttonMask:(int)mask
defer: (BOOL)jiag

screen: (canst NXScreen *)aScreen

Initializes the Window object and returns self. This method is equivalent to
initContent:style:backing:buttonMask:defer:, except that the content rectangle is
specified relative to the lower left comer of aScreen.

If aScreen is NULL, the content rectangle is interpreted relative to the lower left comer of
the main screen. The main screen is the one that contains the current key window, or, if
there is no key window, the one that contains the main menu. If there's neither a key
window nor a main menu (if there's no active application), the main screen is the one where
the origin of the screen coordinate system is located.

See also: - initContent:style: backing: buttonMask:defer:

invalidateCursorRectsForView:

- invalidateCursorRectsForView:a View

Marks the Window as having invalid cursor rectangles. If the Window is the key window,
the Application object will send it a resetCursorRects message to have it fix its cursor
rectangles before getting the next event. If the Window isn't the key window, it will receive
the message when it next becomes the key window. Returns self.

See also: - resetCursorRects

2-834 Chapter 2: Application Kit

isDisplayEnabled
- (BOOL)isDisplayEnabled

Returns YES if the display mechanism is currently disabled (because of a previous
disableDisplay message), and NO if it isn't.

See also: - disableDisplay, - reenableDisplay, - display::: (View)

isDocEdited
- (BOOL)isDocEdited

Returns YES if the Window's document has been edited, otherwise returns NO.

See also: - setDocEdited:

isExcludedFromWindowsMenu
- (BOOL)isExcludedFrom WindowsMenu

Returns YES if the Window is excluded from the application's Windows menu, and NO if
it isn't.

See also: - setExcludedFrom WindowsMenu:

isFlushWindowDisabled
- (BOOL)isFlushWindowDisabled

Returns YES if the Window's flushing ability has been disabled; otherwise returns NO.

See also: - disableFlushWindow, - reenableFlushWindow

isKeyWindow

- (BOOL)isKeyWindow

Returns YES if the Window is the key window for the application, and NO if it isn't.

See also: - isMain Window

Classes: Window 2-835

isMainWindow

- (BOOL)isMain Window

Returns YES if the Window is the main window for the application, and NO if it isn't.

See also: - isKeyWindow

isOneShot

- (BOOL)isOneShot

Returns YES if the window device that the Window manages is freed when it's removed
from the screen list, and NO if not. The default is NO.

See also: - setOneShot:

isVisible

- (BOOL)isVisible

Returns YES if the Window is on-screen (even if it's obscured by other Windows).

See also: - getVisibleRect: (View)

knowsPagesFirst:last:

- (BOOL)knowsPagesFirst:(int *)firstPageNum last:(int *)lastPageNum

Implemented by subclasses to indicate whether the Window knows where its own pages lie.
This method is invoked when printing (or faxing) the Window. Although it can be
implemented in a Window subclass, it should not be used in program code.

If this method returns YES, the Window will receive getRect:forPage: messages querying
it for the rectangles corresponding to specific pages. If it returns NO, pagination will be
done automatically. By default, it returns NO.

Just before this method is invoked, the first page to be printed is set to 1 and the last page
to be printed is set to the maximum integer size. An implementation of this method can set
firstPageNum to a different initial page (for example, a chapter may start on page 40), even
if it returns NO. If it returns YES, lastPageNum can be set to a different final page. If it
doesn't reset lastPageNum, the subclass implementation of getRect:forPage: must be able
to signal that a page has been asked for beyond what is available in the document.

See also: - getRect:forPage:, - printPSCode:

2-836 Chapter 2: Application Kit

makeFirstResponder:

- makeFirstResponder:aResponder

Makes aResponder the first receiver of keyboard events and action messages sent to the
Window. If aResponder isn't already the Window's first responder, this method first sends
a resignFirstResponder message to the object that currently is, and a
becomeFirstResponder message to aResponder. However, if the old first responder
refuses to resign, no changes are made.

The Application Kit uses this method to alter the first responder in response to
mouse-down events; you can also use it to explicitly set the first responder from within your
program. aResponder should be a Responder object~ typically, it's a View in the Window's
view hierarchy.

If successful in making aResponder the first responder, this method returns self. If not (if
the old first responder refuses to resign), it returns nil.

See also: - becomeFirstResponder (Responder), - resignFirstResponder (Responder)

makeKeyAndOrderFront:

- makeKey AndOrderFront:sender

Moves the Window to the front of the screen list (within its tier) and makes it the key
window. This method can be used in action message. Returns self.

See also: - orderFront:, - orderBack:, - orderOut:, - orderWindow:relativeTo:

makeKeyWindow

- makeKeyWindow

Makes the Window object the key window, and returns self.

See also: - becomeKeyWindow, - isKeyWindow

miniaturize:

- miniaturize:sender

Removes the Window from the screen list and displays its miniwindow counterpart
on-screen. If the Window doesn't have a miniwindow counterpart, one is created.

Classes: Window 2-837

A miniaturize: message is generated when the user clicks the miniaturize button in the
Window's title bar. This method has a sender argument so that it can be used in an action
message from a Control. It ignores this argument. Returns self.

See also: - deminiaturize:

miniwindowlcon
- (const char *)miniwindowIcon

Returns the name of the icon that's displayed in the Window's miniwindow.

See also: - setMiniwindowIcon:

miniwindowlmage
- (NXlmage *)miniwindowImage

Returns the NXlmage object that's displayed in the Window's miniwindow.

See also: - setMiniwindowImage:

miniwindowlitle
- (const char *)miniwindowTitie

Returns the title that's displayed in the Window's miniwindow.

See also: - setMiniwindowTitle:

moveTo::
- moveTo:(NXCoord)x :(NXCoord)y

Moves the Window by the lower left comer of its frame rectangle. The arguments are taken
in the screen coordinate system. Returns self.

See also: - dragFrom::eventNum:, - moveTopLeftTo::

2-838 Chapter 2: Application Kit

moveTo::screen:

- moveTo:(NXCoord)x :(NXCoord)y screen: (const NXScreen *)aScreen

Repositions the Window so that its lower left comer lies at (x, y) relative to a coordinate
origin at the lower left comer of aScreen. If aScreen is NULL, this method is the same as
moveTo::. Returns self.

moveTopLeftTo::

- moveTopLeftTo:(NXCoord)x :(NXCoord)y

Moves the Window by the top left comer of its frame rectangle. The arguments are taken
in the screen coordinate system. Returns self.

See also: - dragFrom::eventNum:, - moveTo::

moveTopLeftTo::screen:

- moveTopLeftTo:(NXCoord)x :(NXCoord)y screen:(const NXScreen *)aScreen

Repositions the Window so that its top left corner lies at (x, y) relative to a coordinate origin
at the lower left comer of aScreen. If aScreen is NULL, this method is the same as
moveTopLeftTo::. Returns self.

See also: - moveTo::

openSpool File:

- openSpooIFile:(char *)filename

Opens the filename file for print spooling. This method is invoked when printing (or faxing)
the Window; it shouldn't be used in program code. However, you can override it to modify
its behavior.

If filename is NULL or empty, PostScript code for the Window will be sent directly to the
printing daemon, npd, without opening a file. (However, if the Window is being previewed
or saved, a default file is opened in Itmp.)

If a filename is provided, the file is opened. The printing machinery will then write the
PostScript code to that file and the file will be printed using Ipr.

Classes: Window 2-839

This method opens a Display PostScript context that will write to the spool file, and sets
the context of the global PrintInfo object to this new context. It returns nil if the file can't
be opened.

See also: - printPSCode:

orderBack:

- orderBack:sender

Moves the Window to the back of its tier in the screen list. It may also change the key
window and main window. Returns self.

See also: - orderFront:, - orderOut:, - orderWindow:relativeTo:,
- makeKey AndOrderFront:

orderFront:

- orderFront:sender

Moves the Window to the front of its tier in the screen list. It may also change the key
window and main window. Returns self.

See also: - orderBack:, - orderOut:, - orderWindow:relativeTo:,
- makeKey AndOrderFront:

orderFrontRegardless

- orderFrontRegardless

Moves the Window to the front of its tier, even if the Window's application isn't active.
Normally a Window can't be moved in front of the key window unless the Window and the
key window are in the same application. You should rarely need to invoke this method; it's
designed to be used when applications are cooperating such that an active application (with
the key window) is using another application to display data.

See also: - orderFront:

2-840 Chapter 2: Application Kit

orderOut:

- orderOut:sender

Takes the Window out of the screen list. It may also change the key window and main
window. Returns self.

See also: - orderFront:, - orderBack:, - orderWindow:relativeTo:

orderWindow:relativeTo:

- orderWindow:(int)place relativeTo:(int)otherWin

Repositions the Window's window device in the Window Server's screen list. place can be
one of:

NX_ABOVE
NX_BELOW
NX_OUT

If it's NX_OUT, the window is removed from the screen list and otherWin is ignored. If
it's NX_ABOVE or NX_BELOW, otherWin is the window number of the window that the
receiving Window is to be placed above or below. If otherWin is 0, the receiving Window
will be placed above or below all other windows in its tier. Returns self.

See also: - orderFront:, - orderBack:, - orderOut:, - makeKeyAndOrderFront:

performClose:

- performClose:sender

Simulates the user clicking the close button by momentarily highlighting the button and
then closing the Window. If the Window's delegate or the Window itself implements
windowWillClose:, then that message is sent with the Window as the argument (only one
such message is sent; if both the delegate and the Window implement the method, only the
delegate will receive the message).

If the Window doesn't have a close button, then the method calls NXBeepO. Returns self.

See also: - performClick: (Button), - close, - performMiniaturize:

Classes: Window 2-841

performMiniaturize:

- performMiniaturize:sender

Simulates the user clicking the miniaturize button by momentarily highlighting the button
then miniaturizing the Window. If the Window doesn't have a miniaturize button, then this
method calls NXBeepO. Returns self.

See also: - performClick: (Button), - miniaturize:, - performClose:

placePrintRect:offset:

- placePrintRect:(const NXRect *)aRect offset:(NXPoint *)location

Determines the location of the rectangle being printed on the physical page. You never
invoke this method directly; it's automatically invoked when the Window is printed or
faxed. However, you can override it to change the way it places the rectangle.

aRect specifies the rectangle being printed on the current page; location is set by this
method to be the offset of the rectangle from the lower left comer of the page. All
coordinates are in the base coordinate system (that of the page itself).

By default, if the flags for centering are YES in the global PrintInfo object, this method
centers the rectangle within the margins. If the flags are NO, it abuts the rectangle against
the top and left margins.

See also: - getRect:forPage:, - printPSCode:

placeWindow:

- placeWindow:(const NXRect *)frameRect

Resizes and moves the Window. frameRect specifies the Window's new frame rectangle in
screen coordinates. The Window's frame view-but none of its other Views-is
automatically redisplayed at its new size and location. Returns self.

See also: - sizeWindow::, - moveTo::, - placeWindowAndDisplay:

2-842 Chapter 2: Application Kit

placeWindow:screen:
- placeWindow:(const NXRect *)frameRect screen:(const NXScreen *)aScreen

This is the same as place Window:, except that the frame rectangle is specified relative to
a coordinate origin at the lower left comer of aScreen. If aScreen is NULL, this method is
exactly the same as placeWindow:. Returns self.

See also: - placeWindow:, - placeWindowAndDisplay:

placeWindow AndDisplay:

- placeWindowAndDisplay:(const NXRect *)frameRect

This is the same as placeWindow:, except the Window's Views are redisplayed before the
Window is shown. Returns self.

See also: - place Window:

printPSCode:

- printPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view). A return
value of nil indicates that there were errors in generating the PostScript code or that the user
canceled the job.

This method normally brings up the Print panel before actually beginning printing. But if
sender implements a shouldRunPrintPanel: method, that method will be invoked to first
query whether to run the panel. If shouldRunPrintPanel: returns NO, the Print panel
won't be displayed, and the Window will be printed using the last settings of the panel.

See also: - smartPrintPSCode:, - faxPSCode:,
- shouldRunPrintPanel: (Object Methods)

read:
- read:(NXTypedStream *)stream

Reads the Window and its Views from the typed stream stream.

See also: - write:

Classes: Window 2-843

reenableDisplay

- reenableDisplay

Counters the effect of disableDisplay, reenabling View's display methods. Returns self.

See also: - disableDisplay, - isDisplayEnabled, - display::: (View)

reenableFlushWindow

- reenableFlush Window

Reenables the flush Window method for the Window after it was disabled through a
previous disableFlush Window message. Returns self.

See also: - disableFlush Window, - flush Window

registerForDraggedTypes:count:

- registerForDraggedTypes:(const char *const *)pbTypes count:(int)count

Registers the Pasteboard types that the Window will accept in an image-dragging session.
pbTypes is a pointer to an array of the types; count is the number of elements in the array.
Returns self.

Keep in mind that the values in the first argument are Pasteboard types, not file extensions
(you can't register for specific file extensions). For example, the following registers a
Window as accepting files:

const char *fileType[] = {NXFilenamePboardType}i
[aWindow registerForDraggedTypes:fileType count:l];

Note: Registering a Window for dragged types automatically makes it a candidate
destination object during a dragging session. As such, it must implement ~ome or all of the
NXDraggingDestination protocol methods. As a convenience, Window provides default
implementations of these methods (in general, the dragging destination methods are
forwarded to the Window's delegate). See the NXDraggingDestination protocol
description for details.

See also: - unregisterDraggedTypes

2·844 Chapter 2: Application Kit

removeCursorRect:cursor:forView:

- removeCursorRect:(const NXRect *)aRect
cursor:anObj
forView:a View

Removes a cursor rectangle from the Window. You never invoke this method; it's used
by View's removeCursorRect:cursor: method. To remove a cursor rectangle, use the
View method.

See also: - removeCursorRect:cursor: (View), - resetCursorRects (View)

removeFromEventMask:

- (int)removeFromEventMask:(int)oldEvents

Removes the event types specified by oldEvents from the Window's event mask, and
returns the old mask.

See also: - eventMask,- setEventMask:, - addToEventMask:

resetCursorRects

- resetCursorRects

Removes all existing cursor rectangles from the Window, then recreates the cursor
rectangles by sending a resetCursorRects message to every View in the Window's view
hierarchy. Returns self.

This method is typically invoked by the Application object when it detects that the key
window's cursor rectangles are invalid. In program code, it's more efficient to invoke
invalidateCursorRectsForView:, rather than this method, to fix invalid cursor rectangles.

See also: - invalidateCursorRectsForView:, - resetCursorRects (View)

resignKeyWindow

- resignKeyWindow

You never invoke this method; it's invoked automatically when the Window resigns key
window status. The method sends resignKeyWindow to the Window's first responder, and
sends windowDidResignKey: to the Window's delegate (if the respective objects can
respond). Returns self.

See also: - becomeKeyWindow

Classes: Window 2-845

resignMainWindow

- resignMain Window

You never invoke this method; it's invoked automatically when the Window resigns main
window status. The method sends windowDidResignMain: to the Window's delegate (if
the delegate can respond). Returns self.

See also: - becomeMain Window

resizeFlags

- (int)resizeFlags

Valid only while the Window is being resized, this method returns the flags field of the event
record for the mouse-down event that initiated the resizing session. The integer encodes,
as a mask, information such as which of the modifier keys was held down when the event
occurred. The flags are listed in dpsclientlevent.h. Because of its limited validity, this
method should only be invoked from within an implementation of the delegate methods
windowWillResize:toSize: or windowDidResize:.

rightMouseDown:

- rightMouseDown:(NXEvent *)theEvent

Responds to uncaught right mouse-down events by forwarding this message to the
Application object. By default, a right mouse-down event in a window causes the main
menu to pop up under the cursor. Returns the value returned by the Application object.

See also: - rightMouseDown: (Application)

saveFrameToString:

- (void)saveFrameToString:(char *)string

Saves the Window's frame rectangle data as a NULL-terminated ASCII string to the buffer
pointed to by string. The string can be stored as you see fit. and used later to set the
dimensions of a Window through the setFrameFromString: method. You should use the
constant NX_MAXFRAMESTRINGLENGTH to allocate the buffer.

See also: - setFrameFromString:, - saveFrameUsingName:

2-846 Chapter 2: Application Kit

saveFrameUsingName:

- (void)saveFrameUsingName:(const char *)name

Saves the Window's frame rectangle as a system default. With the companion method
setFrameUsingName:, you can save and reset a Window's frame over various launchings
of an application. The default is owned by the application, filed under the name

"Window Frame name"

See also: - setFrameUsingName:, - saveFrameToString:

screen

- (const NXScreen *)screen

Returns a pointer to the screen that the Window is on. If the Window is partly on one screen
and partly on another, the screen where most of it lies is the one returned.

See also: - bestScreen

screenChanged:

- screenChanged:(NXEvent *)theEvent

Invoked when the user releases the Window, having moved all or part of it to a different
screen. This method sends the delegate a windowDidChangeScreen: message (if the
delegate can respond) and returns self.

If the Window has a dynamic depth limit, this method will make sure that the depth limit
matches the new device. If the Window is on more than one screen, its depth limit will be
adjusted to match the deepest screen it's on.

See also: - bestScreen

sendEvent:

- seIidEvent:(NXEvent *)theEvent

Dispatches mouse and keyboard events sent to the Window by the Application object; you
never invoke this method directly.

Classes: Window 2-847

setAvoidsActivation:

- setAvoidsActivation: (BaaL)flag

Establishes whether the Window's application will become the active application when the
user clicks in the Window's content area. Ifflag is YES, the application won't become
active; ifflag is NO, it will. The default is NO. Note that clicking on the title bar will
always activate the Window's application.

See also: - avoidsActivation

setBackgroundColor:

- setBackgroundColor:(NXColor)color

Sets the color that fills the Window's content area when the Window is displayed on a color
screen. Returns self.

See also: - background Color

setBackgroundGray:

- setBackgroundGray:(float)value

Sets the shade of gray that fills the Window's content area when the Window is displayed
on a monochrome screen. value should lie in the range 0.0 (black) to 1.0 (white). Returns
self.

See also: - backgroundGray, - setBackgroundColor:

setBackingType:

- setBackingType:(int)backing

Sets the type of backing used by the Window's window device and returns self. This
method can only be used to switch a buffered Window to nonretained or vice versa; you
can't change the backing type of anonretained Window (a PostScript error is generated if
you attempt to do so).

See also: - backingType

2-848 Chapter 2: Application Kit

setContentView:

- setContentView:aView

Makes aView the Window's content view; the previous content view is removed from the
Window's view hierarchy and returned by this method. aView is resized to fit precisely
within the content area of the Window. You can transform the content view's coordinate
system, but you can't alter its size or location directly.

See also: - contentView

setDelegate:

- setDelegate:anObject

Makes anObject the Window's delegate, and returns self. A Window's delegate is given a
chance to respond to action messages that work their way up the responder chain to the
Window (through Application's sendAction:to:from: method). It can also respond to
notification messages sent by the Window.

See also: - delegate, - tryToPerform:with:, - sendAction:to:from: (Application)

setDepth Liin it:

- setDepthLimit:(NXWindow Depth)limit

Sets the depth limit of the Window to limit, which should be one of the following
enumerated values:

NX_ TwoBitGrayDepth
NX_EightBitGrayDepth
NX_ TwelveBitRGBDepth
NX_ TwentyFourBitRGBDepth

Returns self.

See also: - depthLimit, + defaultDepthLimit, - setDynamicDepthLimit:

setDocEdited:

- setDocEdited:(BOOL)jlag

Sets whether or not the document displayed in the Window has been edited but not saved.
Ifjlag is YES, the Window's close button will display a broken "X" to indicate that the

Classes: Window 2-849

document needs to be saved. Ifflag is NO, the close button will be shown with a solid "X".
The default is NO. Returns self.

See also: - isDocEdited

setDynamicDepthLimit:

- setDynamicDepthLimit: (BOOL)flag

Sets whether the Window's depth limit should change to match the depth of the display
device that it's on. Ifflag is YES, the depth limit will depend on which screen the Window
is on. Ifflag is NO, the Window will have the default depth limit. A different, and
nondynamic, depth limit can be set with the setDepthLimit: method. Returns self.

See also: - hasDynamicDepthLimit, + defauItDepthLimit, - setDepthLimit:

setEventMask:

- (int)setEventMask:(int)newMask

Assigns a new event mask to the Window; the original event mask is returned. The mask
tells the Window Server which types of events the Window wants to receive. It's formed
by joining the masks for individual events using the bitwise OR operator. The constants for
individual event masks are listed below. Those that are included in the default event mask
for a Window are marked with an asterisk.

NX_LMOUSEDOWNMASK*
NX_LMOUSEUPMASK*
NX_RMOUSEDOWNMASK*
NX_RMOUSEUPMASK*
NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK
NX_MOUSEENTEREDMASK*
NX_MOUSEEXITEDMASK*
NX_KEYDOWNMASK*
NX_KEYUPMASK*
NX_FLAGSCHANGEDMASK
NX_KITDEFINEDMASK*
NX_APPDEFINEDMASK*
NX_SYSDEFINEDMASK*
NX_CURSORUPDATEMASK
NX_TIMERMASK
NX_JOURNALEVENTMASK
NX_NULLEVENTMASK

2-850 Chapter 2: Application Kit

Miniwindows and application icons have the same default event mask as other Windows,
except that keyboard events are excluded. The default mask for a Menu includes only left
and right mouse-down, mouse-up, and mouse-dragged events and the kit-defined event.

See also: - eventMask, - addToEventMask:, - removeFromEventMask:

setExcludedFromWindowsMenu:

- setExcludedFrom WindowsMenu:(BOOL)flag

Sets whether the Window will be excluded from the Windows menu. If flag is YES, it
won't be listed in the menu. Ifflag is NO, it will be listed when it or its mini window is
on-screen. The default is NO. Returns self.

See also: - isExcludedFrom WindowsMenu

setFrameAutosaveName:

- (BOOL)setFrameAutosaveName:(const char *)name

Sets the name that's used to automatically save the Window's frame rectangle in the
defaults system. If name isn't NULL, the Window's frame is saved as a default (as
described in saveFrameUsingName:) each time the frame changes. Passing NULL as an
argument turns off this automation. A Window can have only one frame autosave name at
a time; if the Window already has an autosave name, the old one is replaced. If name is
already being used as an autosave name by a Window in this application, the name isn't set
and this method returns NO; otherwise returns YES.

See also: - setFrameUsingName:, + removeFrameUsingName:,
- saveFrameToString:, - setFrameFromString:

setFrameFromString:

- (void)setFrameFromString:(const char *)data

Sets the Window's frame rectangle by reading the frame rectangle data stored in data. The
data should have been previously stored through the saveFrameToString: method. The
frame is constrained according to the Window's minimum and maximum size settings.
This method causes a windowWillResize:toSize: message to be sent to the delegate.

See also: - saveFrameToString:

Classes: Window 2-851

setFrameUsingName:

- (BOOL)setFrameUsingName:(const char *)name

Sets the Window's frame rectangle by reading, from the defaults system, the rectangle data
stored in name. The frame is constrained according to the Window's minimum and
maximum size settings. This method causes a windowWillResize:toSize: message to be
sent to the delegate.

If name doesn't exist,. the frame isn't set and this method returns NO; otherwise returns YES.

See also: - setFrameAutosaveName:, + removeFrameUsingName:,
- saveFrameToString:, - setFrameFromString:

setFreeWhenClosed:

- setFreeWhenClosed:(BOOL)flag

Determines the Window's behavior when it receives a close message. Ifflag is NO, the
Window is just hidden (taken out of the screen list). Ifflag is YES, the Window is hidden
and then freed. The default for Windows is YES; the default for Panels and Menus is NO.
Returns self.

See also: - close, - free

setHideOnDeactivate:

- setHideOnDeactivate: (BOOL)flag

Determines whether the Window will disappear when the application is inactive. Ifflag is
YES, the Window is hidden (taken out of the screen list) when the application stops being
the active application. Ifflag is NO, the Window stays on-screen. The default for Windows
is NO; the default for Panels and Menus is YES. Returns self.

See also: - doesHideOnDeactivate:

setMaxSize:

- setMaxSize:(const NXSize *)aSize

Sets the maximum size to which the user can resize the Window's frame rectangle. Note
that this constraint isn't enforced when the Window is resized through the sizeWindow::
or placeWindow ••• methods. Returns self.

See also: - getMaxSize:, - setMinSize:, - getMinSize:

2-852 Chapter 2: Application Kit

setMinSize:

- setMinSize:(const NXSize *)aSize

Sets the minimum size to which the user can resize the Window's frame rectangle. Note
that this constraint isn't enforced when the Window is resized through the sizeWindow::
or place Window ••. methods. Returns self.

See also: - getMaxSize:, - setMinSize:, - getMinSize:

setMiniwindowlcon:

- setMiniwindowlcon:(const char *)name

Sets the image that's displayed by the Window's miniwindow. The named icon is searched
for using NXImage's findlmageNamed: class method. This method is guaranteed to work
only if it's invoked from within an implementation of the
windowWillMiniaturize:toMiniwindow: delegate method, or if the mini window is
currently visible.

See also: - setMiniwindowlmage:, - miniwindowIcon

setMiniwindowlmage:

- setMiniwindowlmage:image

Sets the image that's displayed by the Window's miniwindow. The argument should be an
NXImage object. This method is guaranteed to work only if it's invoked from within an
implementation of the windowWillMiniaturize:toMiniwindow: delegate method, or if
the mini window is currently visible.

See also: - setMiniwindowlcon:, - miniwindowlmage

setMiniwindowTItle:

- setMiniwindowTitle:(const char *)title

Sets the title of the Window's miniwindow. Normally, the miniwindow's title is taken,
often abbreviated, from that of the Window. This method is guaranteed to work only if it's
invoked from within an implementation of the windowWillMiniaturize:toMiniwindow:
delegate method, or if the mini window is currently visible. In the latter case, the
miniwindow's title is automatically redisplayed. Note that setting the Window's title
(through setTitle: or setTitleAsFilename:) will automatically reset the miniwindow's title
to that of the Window.

See also: - miniwindowTitle:, - setTitle, - setTitleAsFilename:

Classes: Window 2-853

setOneShot:

- setOneShot:(BOOL)jlag

Sets whether the window device that the Window object manages should be freed when it's
removed from the screen list (and another one created if it's returned to the screen). This
is appropriate behavior for Windows that the user might use once or twice but not display
continually. The default is NO. Returns self.

See also: - isOneShot

setTitle:

- setTitle:(const char *)aString

Sets the string that appears in the Window's title bar (if it has one). This also sets the title
of the Window's miniwindow. The new title is automatically displayed. Returns self.

See also: - title, - setTitleAsFilename:, - setMiniwindowTitle:

setTitleAsFilename:

. - setTitleAsFilename:(const char *)aString

Sets aString to be the title of the Window, but formats it as a pathname to a file. The file
name is displayed first, followed by an em dash and the directory path. The em dash is
offset by two spaces on either side. For example:

MyFile - /Net/server/group/home

This method also sets the title of the Window's miniwindow.

Returns self.

See also: - title, - setTitle:, - setMiniwindowTitle:

2·854 Chapter 2: Application Kit

setTrackingRect:inside:owner:tag:left:right:

- setTrackingRect:(const NXRect *)aRect
inside: (BOOL)insideFlag
owner:anObject
tag: (int)trackNum
left: (BOOL)leftDown
right: (BOOL)rightDown

Sets up a tracking rectangle in the Window. The arguments are:

• aRect is a pointer to the tracking rectangle specified in the Window's coordinate system.

• insideFlag is YES if the cursor starts off inside the rectangle, otherwise it's NO.

• anObject is the object, usually a View or an NXCursor, that will handle the
mouse-entered and mouse-exited events that are generated for the rectangle.

• trackNum is a tag you assign to identify the rectangle.

• If leftDown is YES, mouse-entered and mouse-exited events are generated only while
the left mouse button is down.

• If rightDown is YES, mouse events are generated only while the right button is down.

Returns self.

See also: - discardTrackingRect:

sizeWindow::

- sizeWindow:(NXCoord)width :(NXCoord)height

Resizes the Window so that its content area has the specified width and height in base
coordinates. The lower left comer of the window remains constant. Returns self.

See also: - place Window:

smartFaxPSCode:

- smartFaxPSCode:sender

This does for faxing what smartPrintPSCode does for printing. A return value of nil
indicates that there were errors in generating the PostScript code or that the user canceled
the job.

See also: - faxPSCode:, - smartPrintPSCode:

Classes: Window 2-855

smartPrintPSCode:

- smartPrintPSCode:sender

Prints the Window (all the Views in its view hierarchy including the frame view) on a single
sheet of paper. The image is centered horizontally and vertically, and the orientation of the
paper (portrait or landscape) is set to match the dimensions of the window. These settings
are temporary-they don't permanently affect the global PrintInfo object.

This method normally brings up the Print panel before actually beginning printing. But if
sender implements a shouldRunPrintPanel: method, that method will be invoked to first
query whether to run the panel. If shouldRunPrintPanel: returns NO, the Print panel
won't be displayed, and the Window will be printed using the last settings of the panel.

A return value of nil indicates that there were errors in generating the PostScript code or
that the user canceled the job.

See also: - printPSCode:, - smartFaxPSCode:

spoolFile:

- spooIFile:(const char *)filename

Spools the PostScript code infilename to the printer. This method is invoked automatically
when printing (or faxing) the Window.

See also: - openSpoolFile:

style

- (int)style

Returns one of the following values, indicating the Window's style:

NX_PLAINSTYLE
NX_ TITLED STYLE
NX_RESIZEBARSTYLE
NX_MENUSTYLE
NX_MINIWINDOWSTYLE
NX_MINIWORLDSTYLE
NX_TOKENSTYLE

A Window's style is set when the object is initialized. Once set, it can't be changed.

See also: - initContent:style: backing: buttonMask:defer:

2-856 Chapter 2: Application Kit

title

- (const char *)title

Returns the string that appears in the title bar of the window.

See also: - setTitIe:, - setTitleAsFilename:

tryToPerform:with:

- (BOOL)tryToPerform:(SEL)anAction with:anObject

Gives the Window's delegate a chance to respond to the action message before passing the
message up the responder chain. If a receiver for anAction is found, this method returns
YES. Otherwise, it returns NO.

See also: - tryToPerform:with: (Responder)

unregisterDraggedTypes

- unregisterDraggedTypes

Unregisters the Window as a possible recipient of dragged-images.

See also: - registerForDraggedTypes:count:

update

-update

The default implementation of this method does nothing more than send a
windowDidUpdate: message to the Window's delegate (if the delegate can respond) and
return self. A subclass can reimplement this method to perform specialized operations, but
should send an update message to super just before returning. For example, the Menu
class implements this method to disable and enable menu commands as appropriate.

A Window is automatically sent an update message before it's ordered into the screen list.
If the Application object has received a setAutoupdate: YES message, each visible
Window in the application is sent an update message after every event in the main event
loop. A Panel object that isn't visible is sent an update message as part of its
implementation of the commandKey: method.

You can manually cause an update message to be sent to all visible Windows through
Application's update Windows method.

See also: - updateWindows (Application), - setAutoupdate: (Application)

Classes: Window 2-857

useOptimizedDrawing:

- useOptimizedDrawing:(BOOL)jlag

Informs the Window whether to optimize focusing and drawing when Views are displayed.
The optimizations may prevent sibling subviews from being displayed in the correct
order-this matters only if the subviews overlap. You should always setjlag to YES if there
are no overlapping subviews within the Window. The default is NO. Returns self.

validRequestorForSendType:andReturnType:

- validRequestorForSendType:(NXAtom)typeSent
andReturnType:(NXAtom)typeReturned

Passes this message on to the Window's delegate, if the delegate can respond (and isn't a
Responder with its own next responder). If the delegate can't respond or returns nil, this
method passes the message to the Application object. If the Application object returns nil,
this method also returns nil, indicating that no object was found that could supply typeSent
data for a remote message from the Services menu and accept back typeReturned data. If
such an object was found, it is returned.

Messages to perform this method are initiated by the Services menu. It's part of the
mechanism that passes validRequestorForSendType:andReturnType: messages up the
responder chain.

See also: - validRequestorForSendType:andReturnType:
(Responder and Application)

widthAdjustLimit

- (float)widthAdjustLimit

Returns the fraction of a page that can be pushed onto the next page to prevent items from
being cut in half. The limit applies to horizontal pagination. By default, it's 0.2.

This method is invoked during automatic pagination when printing (or faxing) the Window;
it should not be used in program code. However, you can override it to return a different
value. The value returned should lie between 0.0 and 1.0 inclusive.

See also: - heightAdjustLimit

2-858 Chapter 2: Application Kit

windowExposed:

- windowExposed:(NXEvent *)theEvent

Invoked when a portion of the Window that was previously obscured is uncovered. This
method is only invoked if the Window's backing is nonretained. The Views in the
uncovered portion of the Window are redisplayed, and a windowDidExpose: message is
sent to the delegate. Returns self.

See also: - display: : (View), - setDelegate:

windowMoved:

- windowMoved:(NXEvent *)theEvent

Invoked when the user moves the Window. A windowDidMove: message is sent to the
delegate. Returns self.

See also: - dragFrom::eventNum:, - setDelegate:

windowNum

- (int)windowNum

Returns the window number of the Window's window device. Each window device in an
application is given a unique window number-note that this isn't the same as the global
window number assigned by the Window Server.

If the Window doesn't have a window device, the return value will be equal to or less than O.

See also: - initContent:style:backing:buttonMask:defer:, - setOneShot:,
NXConvertWinNumToGlobalO

worksWhenModal

- (BOOL)worksWhenModal

Returns YES if the Window is able to receive keyboard and mouse events when there's a
modal panel (an attention panel) on-screen. The default is NO. Only Panels should change
this default.

See also: - setWorksWhenModal: (Panel)

Classes: Window 2-859

write:
- write:(NXTypedStream *)stream

Writes the receiving Window to the typed stream stream, along with its content view and
miniwindow counterpart. The delegate and field editor are not explicitly written, but all
subviews of the content view will be.

See also: - read:

Methods Implemented by the Delegate

windowDidBecomeKey:

- windowDidBecomeKey:sender

Invoked when the sender Window becomes the key window.

windowDidBecomeMain:
- windowDidBecomeMain:sender

Invoked when the sender Window becomes the main window.

windowDidChangeScreen:
- windowDidChangeScreen:sender

Invoked when the user finishes moving the sender Window to a different screen.

See also: - screen Changed:

windowDidDeminiaturize:

- windowDidDeminiaturize:sender

Invoked when the user has double-clicked the sender Window's miniwindow counterpart,
returning the Window to the screen and hiding the mini window.

See also: - deminiaturize:, - windowDidMiniaturize:

2-860 Chapter 2: Application Kit

windowDidExpose:
- windowDidExpose:sender

Invoked when a previously obscured portion of the nonretained sender Window is
uncovered.

See also: - windowExposed:

windowDidMiniaturize:
- windowDidMiniaturize:sender

Invoked after the sender Window has been miniaturized (whether by the user or through the
performMiniaturize: or miniaturize: method).

See also: - windowWillMiniaturize:toMiniwindow:, - windowDidDeminiaturize:

windowDidMove:
- windowDidMove:sender

Invoked when the user finishes moving the sender Window.

See also: - windowMoved:

windowDidResignKey:
- windowDidResignKey:sender

Invoked when the sender Window resigns its status as key window.

windowDidResignMain:
- windowDidResignMain:sender

Invoked when the sender Window resigns its status as main window.

Classes: Window 2-861

windowDidResize:

- windowDidResize:sender

Invoked when the user finishes resizing the sender Window.

See also: - windowWillResize:toSize:, - getFrame:

windowDidUpdate:

- windowDidUpdate:sender

Invoked when the sender Window receives an update message.

See also: - update

windowWiliClose:

- windowWillClose:sender

Invoked just before the user (or the perform Close: method) closes the sender Window. If
this method returns nil, the Window isn't closed.

windowWiIIMiniaturize:toMiniwindow:

- windowWillMiniaturize:sender toMiniwindow:miniwindow

Invoked before the sender Window is miniaturized (whether by the user or through the
performMiniaturize: or miniaturize: method). The return value is ignored.

See also: - windowDidMiniaturize:, - miniaturize:

windowWiliMove:

- windowWillMove:sender

Invoked when the user clicks on the title bar of the sender Window. Note that this method
isn't sent when the user drags the Window by clicking in a Window-dragging View (as
defined by the dragFrom: :eventNum: method). The return value is ignored.

2-862 Chapter 2: Application Kit

windowWiIIResize:toSize:

- windowWillResize:sender toSize:(NXSize *)jrameSize

Invoked when the sender Window is being resized (whether by the user or through one of
the setFrame ••• methods). The second argument,jrameSize, contains the size (in screen
coordinates) that the Window will be resized to. To reset the size, simply set jrameSize
directly from this method. The Window's minimum and maximum size constraints will
already have been applied when this method is invoked.

If the user is resizing the Window, the delegate is sent a series of
windowWiIlResize:toSize: messages as the Window's outline is dragged. The Window's
outline will be displayed at the constrained size as set by this method.

See also: - windowDidResize:

windowWiIIReturnFieldEditor:toObject:

- windowWillReturnFieldEditor:sender toObject:client

Invoked when the sender Window's field editor is requested by client. If the delegate's
implementation of this method returns an object other than nil, the Window substitutes it
for the field editor and returns it to client.

See also: - getFieldEditor:for:

Classes: Window 2-863

· Protocols

NXChangeSpelling

Adopted By: Text

Declared In: appkitINXSpellChecker .h

Protocol Description

An object in the responder chain that can correct a misspelled word implements this
protocol.

See also: NXSpellChecker class

Instance Methods

changeSpelling:

- changeSpelling:sender

Replaces with a corrected version the selected word in the object whose text is being
checked. This message is sent by the NXSpellChecker instance to the object whose text is
being checked. To get the corrected spelling, the receive asks the sender for the string value
of its selected cell (visible to the user as the text field in the Spelling Panel). The method
replaces the selected portion of the text stream with the string that it gets from the
NXSpellChecker.

Returns self when the replacement is successful, and nil otherwise (for example, if the
selected text is in an object that is not editable).

2-866 Chapter 2: The Application Kit

NXColorPickingCustorn

Adopted By: no NeXTSTEP classes

Declared In: appkit/colorPicking.h

Protocol Description

Together with the NXColorPickingDefault protocol, NXColorPickingCustom provides a
way to add color pickers-custom user interfaces for color selection-to an application's
NXColorPanel. The NXColorPickingDefault protocol provides basic behavior for a color
picker. The NXColorPicker class adopts the NXColorPickingDefault protocol. The easiest
way to implement a color picker is to create a subclass of NXColorPicker and use it to
implement the NXColorPickingCustom protocol.

See also: NXColorPickingDefault, NXColorPicker (class)

Method Types

View management

Mode

Setting color

- provideNewView:

- supportsMode:
- currentMode

- setColor:

Protocols: NXColorPickingCustom 2-867

Instance Methods

currentMode
- (int)currentMode

Returns the current mode of the color picker. The returned value should be unique to your
color picker. Unique values for the standard color pickers are defined in NXColorPanel.h;
they are:

NX_GRAYMODE 0
NX_RGBMODE 1
NX_CMYKMODE 2
NX_HSBMODE 3
NX_CUSTOMPALETTEMODE 4
NX_COLORLISTMODE 5
NX_ WHEELMODE 6

If your color picker includes submodes, you should define a unique integer for each
submode. As an example, the slider picker has four values defined in the above list
(NX_GRAYMODE, NX_RGBMODE, NX_CMYKMODE, and NX_HSBMODE), one
for each of its submodes.

provideNewView:
- provideNewView:(BOOL)jirstRequest

This method returns a view containing the user interface for the color picker. This message
is sent to your color picker whenever the color panel attempts to display it. This may be
when the panel is first presented, when the user switches pickers, or when the picker is
switched through API. jirstRequest is YES only when this method is first invoked for your
color picker-you may use this opportunity to lazily load nib files, initialize the view and
perform any other custom initialization required for your picker. The View returned by this
method should be set to automatically resize both its width and height.

setColor:
- setColor:(NXColor)newColor

Sets the color of the color picker. This method is invoked on the current color picker each
time NXColorPanel's setColor: method is invoked. If newColor is actually different from
the color picker's color (as it would be if, for example, the user dragged a color into
NXColorPanel's color well) this method could be used to update the color picker's color to
reflect the change.

2-868 Chapter 2: The Application Kit

supportsMode:
- (BOOL)sopportsMode:(int)mode

Returns YES if the NXColorPicking protocol implementor supports the picking mode
represented by mode. This method is invoked when the NXColorPanel's is first
initialized-it is used to attempt to restore the user's previously selected mode. It is
also invoked by NXColorPanel's setMode: to find the color picker that supports a
particular mode.

Protocols: NXColorPickingCustom 2-869

NXColorPickingDefault

Adopted By: NXColorPicker

Declared In: appkiticolorPicking.h

Protocol Description

The NXColorPickingDefault protocol, together with the NXColorPickingCusom protocol,
provides API for adding color pickers-custom user interfaces for color selection-to an
application's NXColorPanel. The NXColorPickingDefault protocol provides basic
behavior for a color picker. The NXColorPickingCustom protocol provides
implementation-specific behavior.

The NXColorPicker class implements the NXColorPickingDefault protocol. The simplest
way to implement your own color picker is to create a subclass of NXColorPicker and
implement the NXColorPickingCustom protocol in that subclass. You can also implement
custom color selection by creating a subclass of another class such as View, and using that
subclass to implement the methods in this protocol and in NXColorPickingCustom.

Color Picker Bundles

A class that implements the NXColorPickingDefault and NXColorPickingCustom
protocols needs to be compiled and linked in an application's object file. However, your
application need not explicitly create an instance of this class. Instead, your application's
file package should include a directory named ColorPickers; within this directory you
should place a directory "MyPickerClass.bundle" for each custom color picker your
application implements. This bundle should contain all resources required for your color
picker: nib files, tiff files, and so on.

NXColorPanel will allocate and initialize an instance of each class for which a bundle is
found in the "ColorPickers" directory.

Color Picker Buttons

NXColorPanellets the user select a color picker from a Matrix of ButtonCells. The order
in which a color picker's ButtonCell appears in this Matrix is determined by the return
value of its insertion Order method.

See also: NXColorPickingCustom, NXColorPicker (class), NXColorPanel (class)

2·870 Chapter 2: The Application Kit

Method Types

Initialization

Button images

View management

Alpha control check

Order of button appearance

U sing color lists

Mode

- initFromPickerMask:withColorPanel:

- provideNewButtonImage
- insertNewButtonImage:in:

- viewSizeChanged:

- alphaControlAddedOrRemoved:

- insertionOrder

- attachColorList:
- detachColorList:
- updateColorList:

- setMode:

Instance Methods

alphaControlAddedOrRemoved:

- alphaControlAddedOrRemoved:sender

Invoked automatically when the NXColorPanel's opacity slider is added or removed; you
never invoke this method directly.

You can determine whether the slider is being added or removed by sending the
does Show Alpha message to sender. A return of YES means that the sender is displaying
the opacity (alpha) slider; NO means it isn't.

attachColorList:

- attachColorList:colorList

Tells the color picker to attach the given colorList (an NXColorList object). You never
invoke this method; it's invoked automatically by the NXColorPanel when its
attachColorList: method is invoked. Use this method if you implement a custom color
picker that manages NXColorLists. If the color picker isn't displaying colorList, it should
be added to the picker. This method ordinarily needs not do anything, since
NXColorPanel's list mode manages NXColorLists. Returns self.

See also: - attachColorList: (NXColorPanel), NXColorList class

Protocols: NXColorPickingDefault 2-871

detachColorList:
- detachColorList:colorList

Tells the color picker to detach the given colorList (an NXColorList object). You never
invoke this method; it's invoked automatically by the NXColorPanel when its
detachColorList: method is invoked. Use this method if you implement a custom color
picker that manages NXColorLists. If the color picker is displaying colorList, it should be
removed from the picker. This method ordinarily needs not do anything, since
NXColorPanel's list mode manages NXColorLists. Returns self.

initFrom PickerMask:withColorPanel:

- initFromPickerMask:(int)mask withColorPanel:appPanel

Notifies the color picker of the color panel's mask and initializes the color picker. This
method is sent by the NXColorPanel to all implementors of the color picking protocols
when the application's color panel is first initialized. In order for your color picker to
receive this message, it must have a bundle in your application's "ColorPickers" directory
(described in "Color Picker Bundles" in the Protocol Description).

mask is determined by the argument to the NXColorPanel method setPickerMask:. If no
mask has been set, mask is NX_ALLMODESMASK. If your color picker supports any
additional modes, you should invoke the setPickerMask: method when your application
intializes to notify the NXColorPanel class.

This method should examine the mask and determine whether it supports any of the modes
included there. You may also check the value in mask to enable or disable any subpickers
or optional controls implemented by your color picker. Your color picker may also retain
appPanel in an instance variable for future communication with the color panel.

This method is provided to initialize your color picker; however, much of a color picker's
initialization may be done lazily through the provideNewView: method. If your color
picker responds to any of the modes represented in mask, it should perform its initialization
and return self. Color pickers that do so will have their buttons inserted in the color panel
and will continue to receive messages from the panel as the user manipulates it. If the color
picker doesn't respond to any of the modes represented in mask, it should do nothing and
return nil.

See also: + setPickerMask: (NXColorPanel class), - provideNewView:

2·872 Chapter 2: The Application Kit

insertNewButtonlmage:in:

- insertNewButtonlmage:new/mage in:newButtonCeli

Sets new/mage as newButtonCell's image. buttonCeli is the ButtonCell object that displays
the color picker's representation in the NXColorPanel's picker Matrix-the control that lets
the user choose the picker to use. Implement this method to perform application-specific
manipulation of the image before it is inserted and displayed by the button cell.

See also: - insertionOrder, - provideNewButtonlmage:

insertionOrder

- (float)insertionOrder

Returns a float value representing the insertion order of the receiver's ButtonCell in the
NXColorPanel's picker Matrix-the control that lets the user choose the picker to use.
Values representing the insertion order of the standard color pickers are defined in the
header file appkitINXColorPanel.h. The standard color pickers used by NXColorPanel
have symbolic constants (defined in NXColorPanel.h) that determine their insertion order:

Constant

NX_ WHEEL_INSERTION
NX_SLIDERS_INSERTION
NX_CUSTOMPALETTE_INSERTION
NX_LIST _INSERTION

Value

(0.50)
(0.51)
(0.52)
(0.53)

Implement this method to place your color picker's ButtonCell in the desired position
relative to these default color pickers. For example, to place the ButtonCell for your
color picker between those for wheel and slider, implement a version of this method that
returns 0.505.

See also: - insertNewButtonlmage:in:, - provideNewButtonlmage

provideNewButtonlmage

- provideNewButtonlmage

This method should return an NXImage to represent the color picker in the NXColorPanel's
picker Matrix: the Matrix of ButtonCells from which the user selects a color picker.

See also: - insertNewButtonlmage:in:, - insertionOrder

Protocols: NXColorPickingDefault 2-873

setMode:

- setMode:(int)mode

Sets the mode of the color picker. This method is invoked by NXColorPanel's setMode:
method to ensure that all color pickers reflect the current mode-for example, upon color
picker initialization to ensure that all color pickers are restored to the mode the user left
them in the last time an NXColorPanel was used.

Most color picker's have only one mode, and thus don't need to do any work in this method.
An example of a color picker that uses this method is the slider picker, which can choose
from one of several submodes depending on the value of mode. Returns self.

updateColorList:

- updateColorList:colorList

Tells the color picker when a color list has been updated. This method is invoked when
NXColorPanel's updateCustomColorList: method is invoked. If colorList is visible in the
color picker, it should be updated; if colorList is nil, all color lists currently visible in the
color picker should be updated.

viewSizeChanged:

- viewSizeChanged:sender

Tells the color picker when the NXColorPanel's view size changes. sender is the sending
NXColorPanel. Use this method to perform special preparation when resizing the color
picker's view. Since this method is invoked only as appropriate, it is better to implement
this method than to override the method superviewSizeChanged: for the View in which
the color picker's user interface is contained.

See also: - provideNewView: (NXColorPickingCustom)

2-874 Chapter 2: The Application Kit

NXDraggingDestination

Adopted By: no NeXTSTEP classes

Declared In: appkitldrag.h

Protocol Description

The NXDraggingDestination protocol declares methods that the destination (or recipient)
of a dragged image must implement. The destination automatically receives
NXDraggingDestination messages as an image enters, moves around inside, and then exits
or is released within the destination's boundaries.

Note: In the text here and in the other dragging protocol descriptions, the term dragging
session is the entire process during which an image is selected, dragged, released, and is
absorbed or rejected by the destination. A dragging operation is the action that the
destination takes in absorbing the image when it's released. The dragging source is the
object that "owns" the image that's being dragged. It's specified as an argument to the
draglmage: •.• message, sent to a Window or View, that instigated the dragging session.

The Dragged Image

The image that's dragged in an image-dragging session is an NXImage object that
represents data that's put on the pasteboard. Although a dragging destination can access
the NXImage (through a method described in the NXDraggingInfo protocol), its primary
concern is with the pasteboard data that the NXImage represents-the dragging operation
that a destination ultimately performs is on the pasteboard data, not on the image itself.

Valid Destinations

Dragging isa visual phenomenon. To be an image-dragging destination, an object must
represent a portion of screen real estate; thus, only Windows and Views can be destinations.
Furthermore, you must announce the destination-candidacy of a Window or View by
sending it a registerForDraggedTypes:count: message. This method, defined in both
classes, registers the pasteboard types that the object will accept. During a dragging
session, a candidate destination will only receive NXDraggingDestination messages if the
pasteboard types for which it is registered matches a type that's represented by the image
that's being dragged.

Protocols: NXDraggingDestination 2-875

Although NXDraggingDestination is declared as a protocol, the Views and Window
subclasses that you create to adopt the protocol need only implement those methods that
are pertinent. (The View and Window classes provide private implementations for all of
the methods.) In addition, a Window or its delegate may implement these methods; the
delegate's implementation takes precedent.

The Sender of Destination Me$sages

Each of the NXDraggingDestination methods sports a single argument, sender, the object
that invoked the method. Within its implementations of the NXDraggingDestination
methods, the destination can send NXDraggingInfo messages to sender to get more
information on the current dragging session.

The Order of Destination Messages

The six NXDraggingDestination methods are invoked in a distinct order:

• As the image is dragged into the destination's boundaries, the destination is sent a
draggingEntered: message

• While the image remains within the destination, a series of draggingUpdated:
messages are sent.

• If the image is dragged out of the destination, draggingExited: is sent and the sequence
of NXDraggingDestination messages stops. If it re-enters, the sequence begins again
(with a new draggingEntered: message).

• When the image is released, it either slides back to its source (and breaks the sequence)
or a prepareForDragOperation: message is sent to the destination, depending on the
value that was returned by the most recent invocation of draggingEntered: or
draggingUpdated: .

• If the prepareForDragOperation: message returned YES, a performDragOperation:
message is sent.

• Finally, if performDragOperation: returned YES, concludeDragOperation: is sent.

2-876 Chapter 2: The Application Kit

Method Types

Before the image is released - draggingEntered:
- draggingUpdated:
- draggingExited:

After the image is released - prepareForDragOperation:
- performDragOperation:
- concludeDragOperation:

Instance Methods

conciudeDragOperation:

- conciudeDragOperation:(id <NXDraggingInfo>)sender

Invoked when the dragging operation is complete (but only if the previous
perfromDragOperation: returned YES). The destination implements this method to
perform any tidying up that it needs to do. This is the last message that's sent from sender
to the destination during a dragging session. The return value is ignored.

draggingEntered:

- (NXDragOperation)draggingEntered:(id <NXDraggingInfo>)sender

Invoked when the dragged image enters the destination. Specifically, the message is sent
when the hot spot on the cursor that's dragging the image enters any portion of the
destination's bounds rectangle (if it's a View) or its frame rectangle (if it's a Window).

The method must return a single NXDragOperation value that indicates which dragging
operation the destination will perform when the image is released. It should be one of the
operations specified in the value returned by sender's draggingSourceOperationMask
method. If none of the operations are appropriate, this method should return
NX_DragOperationNone (this is the default response if the method isn't implemented by
the destination). The dragging operation constants are listed in the "Types and Constants"
section of this chapter

See also: - draggingUpdated:, - draggingExited:, - prepareForDragOperation:

Protocols: NXDraggingDestination 2-877

draggingExited:

- draggingExited:(id <NXDraggingInfo>)sender

Invoked when the dragged image exits the destination (following, inversely, the geometric
specification given in the description of draggingEntered:). The return value is ignored.

draggingUpdated:

- (NXDragOperation)draggingUpdated:(id <NXDraggingInfo>)sender

Invoked periodically as the image is poised within the destination. The messages continue
until the image is either released or exits. The return value follows the same rules as that
for the draggingEntered: method. The default return value (if this method isn't
implemented by the destination) is the value returned by the previous draggingEntered:
message.

Only one destination at at time receives a sequence of draggingUpdated: messages. For
example, if the cursor is within the bounds of two overlapping Views that are both valid
destinations, the uppermost View receives these messages until the image is either released
or exits.

See also: - draggingExited:, - prepareForDragOperation:

performDragOperation:

- (BOOL)performDragOperation:(id <NXDraggingInfo>)sender

Invoked after the released image has been removed from the screen (but only if the previous
prepareForDragOperation: message returned YES). The destination should implement
this method to do the real work of importing the data represented by the image. If the
destination accepts the data, it returns YES, otherwise it returns NO. The default (if the
destination doesn't implement the method) is to return NO.

See also: - conciudeDragOperation:

prepareForDragOperation:

- (BOOL)prepareForDragOperation:(id <NXDraggingInfo>)sender

Invoked when the image is released (but only if the most recent draggingEntered: or
draggingUpdated: message returned an acceptable drag-operation value). The method
returns YES if it will perform the drag operation and NO if not.

See also: - performDragOperation:

2-878 Chapter 2: The Application Kit

NXDragginglnfo

Adopted By: no NeXTSTEP classes

Declared In: appkit/drag.h

Protocol Description

The NXDraggingInfo protocol declares methods that supply information about a dragging
session (see the NXDraggingDestination protocol for definitions of dragging terms). The
NXDraggingInfo methods are designed to be invoked from within an object's
implementation of the NXDraggingDestination protocol methods. An
NXDraggingInfo-conforming object is passed as the argument to each of the methods
defined by NXDraggingDestination; it is to this object that the NXDraggingInfo messages
should be sent. The Application Kit supplies an NXDraggingInfo object automatically
such that you never need to create a class that implements this protocol.

Method Types

Dragging-session information - isDraggingSourceLocal
- draggingSource
- draggingSourceOperationMask
- draggingDestination Window
- draggingPasteboard
- draggingSequenceNumber
- draggingLocation

Image information - draggedImage
- draggedImageCopy
- draggedImageLocation

Sliding the image - slideDraggedImageTo:

Protocols: NXDragginglnfo 2-879

Instance Methods

draggedlmage

- (NXlmage *)draggedlmage

Returns the NXlmage object that's being dragged. You shouldn't invoke this method after
the user has released the image, nor should you free the object that this method returns.

See also: - draggedlmageCopy, - draggedlmageLocation

draggedlmageCopy

- (NXlmage *)draggedlmageCopy

Returns a copy of the NXlmage object that's being dragged. You should only invoke this
method after the user has released the image, typically from within the destination's
implemenation of perform DragO per at ion:. You must free the NXlmage when you're
done with it.

See also: - draggedlmage, - draggedlmageLocation

draggedlmageLocation
- (NXPoint)draggedlmageLocation

Returns the current location of the dragged image's origin. The image moves in lockstep
with the cursor (the position of which is given by draggingLocation) but may be
positioned at some offset. The point that's returned is reckoned in the base coordinate
system of the destination object's Window.

See also: - draggedlmage, - draggingLocation

draggingDestinationWindow

- draggingDestination Window

Returns the destination object's Window.

2-880 Chapter 2: The Application Kit

draggingLocation

- (NXPoint)draggingLocation

Returns the current location of the cursor's hot spot, reckoned in the base coordinate system
of the destination object's Window.

See also: - draggedlmageLocation

dragging Pasteboard
- (Pasteboard *)draggingPasteboard

Returns the Pasteboard object that holds the data that the dragged image represents.

draggingSequenc~Number

- (int)draggingSequenceNumber

Returns an integer that uniquely identifies the current dragging session.

draggingSource

- draggingSource

Returns the source, or "owner," of the dragged image. However, this method returns nil if
the source isn't in the same application as the destination.

See also: - isDraggingSourceLocal

draggingSourceOperationMask

- (NXDragOperation)draggingSourceOperationMask

Returns the dragging operation mask declared by the dragging source (through its
draggingSonrceOperationMaskForLocal: method). The elements in the mask will be
one or more of the following:

NX_DragOperationCopy
NX_DragOperationLink
NX_DragOperationGeneric
NX_DragOperationPrivate

Protocols: NXDragginglnfo 2·881

If the user is holding down a modifier key during the drag, the NXDragOperation value that
corresponds to the key (as shown in the table below) is AND'ed with the source's mask.

Modifier Key

Control
Alternate
Command

isDraggingSourceLocal

NXDragOperation Value

NX_DragOperationLink
NX_DragOperationCopy
NX_DragOperationGeneric

- (BOOL)isDraggingSourceLocal

Returns YES if the source and destination objects are in the same application. Otherwise
returns NO.

slideDraggedlmageTo:

- slideDraggedlmageTo:(NXPoint *)screenPoint

Causes the image to move to the given location in the screen coordinate system. This
method should only be invoked from within the destination's implementation of
prepareForDragOperation:-in other words, after the user has released the image but
before it's removed from the screen.

2-882 Chapter 2: The Application Kit

NXDraggingSource
(informal protocol)

Category Of:

Declared In:

Object

appkitldrag.h

Category Description

The NXDraggingSource category declares methods that can (or must) be implemented by
the source object in a dragging session (see the NXDraggingDestination protocol for
definitions of dragging terms). This dragging source is specified as an argument to the
draglmage: ... message, sent to a Window or View, that instigated the dragging session.

Warning: See the documentation of the draglmage: ... method in either Window or View for a
warning regarding the mouse-down event that initiates a dragging session.

Of the methods declared below, only draggingSourceOperationMaskForLocal: must be
implemented. The other two methods are invoked only if the dragging source implements
them. All three methods are invoked automatically during a dragging session-you never
send an NXDraggingSource message directly to an object.

Method Types

Querying the source

Informing the source

Instance Methods

draggedlmage:beganAt:

- draggingSourceOperationMaskForLocal:

- draggedImage:beganAt
- draggedImage:endedAtdeposited:

- draggedlmage:(NXImage *)image beganAt:(NXPoint *)screenPoint

Invoked when the dragged image, given by image, is displayed but before it starts
following the mouse. The origin of the image is given by screenPoint, reckoned in screen
coordinates. This method isn't invoked if the dragging source doesn't provide an
implementation for it. The return value is ignored.

Protocols: NXDraggingSource 2-883

draggedlmage:endedAt:deposited:

- draggedlmage:(NXImage *)image
endedAt:(NXPoint *)screenPoint
deposited: (BOOL)didDeposit

Invoked after the dragged image has been released and the dragging destination has been
given a chance to operate on the data it represents. The image is given by image, the
location of the image's origin when it was released reckoned in screen coordinates, is given
by screenPoint. This method isn't invoked if the dragging source doesn't provide an
implementation for it. The final argument, didDeposit, indicates whether the destination
accepted the image. The return value is ignored.

draggingSourceOperationMaskForLocal:

- (NXDragOperation)draggingSonrceOperationMaskForLocal:(BOOL)isLocal

This is the only NXDraggingSource method that must be implemented by the source
object. It should return an NXDragOperation mask, built by OR'ing the applicable
constants listed below, that represents the operations that can be performed on the dragged
image's data. The isLocal flag indicates whether the candidate destination object (the
Window or View over which the dragged image is currently poised) is in the same
application as the source.

NXDragO,peration

NX_DragOperationNone
NX_DragOperationCopy
NX_DragOperationLink
NX_DragOperationGeneric
NX_DragOperationPrivate
NX_DragOperationAll

2-884 Chapter 2: The Application Kit

Meaning

No operation is possible.
The data represented by the image can be copied.
The data can be shared.
The operation can be defined by the destination.
Private source/destination negotiation.
Combines all the above.

NXlgnoreMisspelledWords

Adopted By: Text

Declared In: appkitINXSpellChecker.h

Protocol Description

This protocol permits an NXSpellChecker object to match the requests it receives with the
documents they belong to. The need arises because the list of ignored words is typically
attached to a document, but that's not the wayan NXSpeIIChecker receives its requests.

When the NXSpellChecker receives a request to check spelling, the request is made on
behalf of an object that contains a text stream. That object may represent a document's
entire text, or just part of it. Most applications permit the user to have several documents
open at once. The user may request several checks for the same document. During a
spelling check, the NXSpellChecker notes words that the user has accepted by clicking the
Ignore button in the Spell Panel. To make the ignored words feature more useful, the list
developed during the current check must be consolidated with ignored words noted in
previous checks.

The NXIgnoreMisspelledWords protocol specifies a method by which the NXSpellChecker
can ask the text it is checking, "What do you belong to?" The method spellDocumentTag
must return a tag that the NXSpellChecker can use to distinguish the documents being
checked. (See the discussion of "Matching a List of Ignored Words With the Document It
Belongs To" in the description of the NXSpellChecker class.) Once the NXSpellChecker
has a way to distinguish the various documents, it can append new ignored words to the
appropriate list. The application can then ask the NXSpellChecker to initialize its private
list of ignored words by copying them from a list stored with the document.

See also: - setIgnoredWords: (NXSpellChecker)

Protocols: NXIgnoreMisspelledWords 2-885

Instance Methods

speliDocumentTag

- (int)spellDocumentTag

Returns an arbitrary integer to identify the document (or other source) from which a text
stream comes, and to distinguish between alternative documents that may be open at the
same time.

/The tags returned by this method are needed only during the current session. The tag
doesn't need to reflect the name of the document or even whether the document has a name.
The tag should survive unchanged if the user renames the file during the course of the
session. The tag returned by this method is used as an argument to the methods
getIgnoredWordsForSpellDocument: and setIgnoredWords:forSpellDocument:.
For example, if myChecker is an NXSpellChecker instance and tStream is a text stream
being checked:

[myChecker getIgnoredWordsForSpellDocument: [tStream spellDocurnentTag]]

A tag of 0 is illegal.

2-886 Chapter 2: The Application Kit

NXNibNotification
(informal protocol)

Category Of: Object

Declared In: appkitl Application.h

Category Description

This informal protocol consists of a single method, awakeFromNib. It's implemented to
receive a notification message that's sent after objects have been loaded from an Interface
Builder archive.

Instance Methods

awakeFromNib

- awakeFromNib

Implemented to prepare an object for service after it has been loaded from an Interface
Builder archive-a so-called "nib file." An awakeFromNib message is sent to each object
loaded from the archive, but only if it can respond to the message, and only after all the
objects in the archive have been loaded and initialized. When an object receives an
awakeFromNib message, it's guaranteed to have all its outlet instance variables set.

When loadNibFile:owner: or a related method loads an Interface Builder archive into an
application, each custom object from the archive is first initialized with an init message
(initFrame: if the object is a kind of View). It's then more specifically initialized with the
properties that it was programmed to have in Interface Builder. This part of the
initialization process uses any setVariable: methods that are available (where variable is
the name of an instance variable). Finally, after all the objects are fully initialized, they
each receive an awakeFromNib message.

The order in which objects are loaded from the archive is not guaranteed. Therefore, it's
possible for a set Variable: message to be sent to an object before its companion objects
have been unarchived. For this reason, setVariable: methods should not send messages
to other objects in the archive. However, messages to other objects can safely be sent
from within awakeFromNib-when it's assured that that all the objects are unarchived
and fully initialized.

Protocols: NXNibNotijication 2-887

Typically, awakeFromNib is implemented for only one object in the archive, the
controlling or "owner" object for the other objects that are archived with it. For example,
suppose that a nib file contained two Views that must be positioned relative to each other
at run time. Trying to position them when either one of the Views is initialized (in a
setVariable: method) might fail, since the other View might not be unarchived and
initialized yet. However, it can be done in an awakeFromNib method:

- awakeFromNib

NXRect viewFrame;

[firstView getFrame:&viewFrame];
[secondView moveTo:viewFrame.origin.x + someVariable

:viewFrame.origin.y] ;

return self;

There's no default awakeFromNib method. The Application Kit declares a prototype for
this method, but doesn't implement it.

See also: -loadNibFile:owner:withNames:fromZone: (Application class)

2-888 Chapter 2: The Application Kit

NXPrintingUserlnterface
(informal protocol)

Category Of: Object

Declared In: appkitlView.h

Category Description

This informal protocol consists of one method, shouldRunPrintPanel:, which is
implemented by initiators of printing (and faxing) requests. Its return value indicates
whether the Print panel (or Fax panel) should be displayed to the user.

Instance Methods

shouldRu nPrintPanel:

- (BaaL)shouldRunPrintPanel:a View

Implemented to indicate whether the Print panel (or Fax panel) should be run before
printing (or faxing) begins. Running the panel means placing it on-screen so the user can
make choices about the print job, or possibly even cancel it. Not running the panel means
that the print job proceeds without user intervention.

Printing requests are initiated by sending a View or Window object a message to perform
one of these two methods:

printPSCode:
smartPrintPSCode:

(View and Window)
(Window only)

Each method takes an id argument, which usually identifies the initiator of the print request
(the object that sent the message). A shouldRunPrintPanel: message is sent back to
that object, if the object can respond to the message. The a View argument identifies the
View being printed-the View that received the printPSCode: message. If a Window
received the printPSCode: (or smartPrintPSCode:) message, a View is the frame view for
the Window.

If shouldRunPrintPanel: returns YES, the Print panel is run before printing begins. If it
returns NO, the Print panel is not run, and the previous settings of the panel are used. The
Print panel is also run if this method is not implemented.

Protocols: NXPrintingUserInterface 2-889 /

Requests to fax a View or a Window can be initiated (by users) from within the Print panel.
However, an application can bypass the Print panel using either of the following two
methods, which parallel the printing methods listed above:

faxPSCode:
smartFaxPSCode:

(View and Window)
(Window only)

Like the printing methods, these methods each take an id argument, and that argument is
sent a shouldRunPrintPanel: message if it can respond. However, in this case, the value
returned by shouldRunPrintPanel: indicates whether the Fax panel (not the Print panel)
should be run.

There's no default implementation of the shouldRunPrintPanel: method. The
Application Kit declares a prototype for this method, but doesn't define it. Therefore,
there's no reason to implement this method just to return YES. If it's not implemented, the
print and fax panels will be run by default.

See also: - printPSCode: (View and Window classes), - smartPrintPSCode: (Window
class), - faxPSCode: (View and Window classes), - smartFaxPSCode: (Window class)

2·890 Chapter 2: The Application Kit

NXReadOnlyTextStreal11

Adopted By: Text

Declared In: appkitlreadOnlyTextStream.h

Protocol Description

This is the protocol that a delegate of NXSpellServer uses to provide the text to be
spell-checked. An object that implements this protocol is one of the arguments to the
NXSpellChecker method that initiates a spell-checking session.

The data provided by NXReadOnlyTextStream must contain purely NeXTSTEP-encoding
characters-the spell checker doesn't support multiple byte characters. Since one byte in
the stream must equal one character, 16-bit entities (such as those in the KANJI system)
must be converted to obvious break characters (such as space) before being handed out by
this protocol. All formatting characters and other nontext characters should be completely
stripped out. Only the actual one-byte NeXTSTEP-encoded characters should come
through this protocol.

Note that an object that wants to use spell-checking may choose to break data up into lots
of little NXReadOnlyTextStreams. One example of this is when you have multiple
languages within a document in your application. You can return YES in the method
isAtEOTS (and stop returning characters via readCharacters:count:) whenever you
reach the end of one language and the beginning of another. You can then tell the
NXSpellChecker object to switch languages and start another spell checking session on
subsequent text.

Note that the currentCharacterOffset method should always return a value reflecting
either the position of the insertion point of the text, or the start of the selection in the text,
or, if neither of those exists, the start of the text. This means that the
NXReadOnlyTextStream is expected to be valid only for the duration of a single invocation
of checkSpelling:of:.

Protocols: NXReadOnlyTextStream 2-891

Method Types

Opening and closing the stream - openTextStream
- closeTextStream

Reading from the stream

Positiioning within stream

Instance Methods

close TextStream

- c10seTextStream

- readCharacters:count:

- seekToCharacterAt:relativeTo:
- currentCharacterOffset
-isAtEOTS

Closes the text stream, returns self. This method is invoked at the end of a spell-checking
session.

currentCharacterOffset

- (int)currentCharacterOffset

Returns, at the beginning of the spell-checking session, either the insertion point of the text,
or the start of the selection in the text, or, if neither of those exists, the start of the text on
the stream. The value returned by this method should be updated to reflect the new position
each time readCharacters:count: is invoked.

isAtEOTS

- (BOOL)isAtEOTS

Tests whether the receiver has reached the end of the text stream. Returns YES if it has,
NO if not.

openTextStream

- openTextStream

Opens the text stream, returns self. This method is invoked at the beginning of a
spell-checking session.

2·892 Chapter 2: The Application Kit

readCharacters:count:

- (int)readCharacters:(char *)buffer count: (int)count

Requests character data from the NXReadOnlyTextStream, beginning at the current
position. count is the number of characters requested. buffer represents the storage into
which those characters should be copied. This method returns the number of characters
actually placed on the stream, which may be less than count if the number of characters
remaining in the text is less than count.

seekToCharacterAt:relativeTo:

- (BOOL)seekToCharacter At: (int)offset relativeTo:(int)seekMode

Sets the current position for reading characters from the NXReadOnlyTextStream. offset
represents the number of characters to move, and may be negative if, for example, the seek
is from the end of a stream. seekM ode represents the position from which to begin the seek;
it should be one of the constants NX_StreamStart, NX_StreamCurrent, and
NX_StreamEnd. Returns YES if the current position was set successfully as specified.

Protocols: NXReadOnlyTextStream 2-893

NXRTFDErrorHandler

Adopted By: no NeXTSTEP classes

Declared In: appkitINXRTFDErrors.h

Protocol Description

This protocol contains one method, attemptOverwrite:. An object that implements this
method can intervene when a Text object has trouble saving an RTFD document.

Instance Methods

attemptOverwrite:
- (BOOL)attemptOverwrite:(const char *)filename

Notifies the receiver that the user is attempting to save an RTFD document in a location for
which the user doesn't have search permission. Returning YES allows the Text object to
complete the save operation; returning NO aborts it.

The Text class's saveRTFDTo:removeBackup:errorHandler: method takes an error
handling object as its third argument: This is the object that receives the
attemptOverwrite: message under the circumstances mentioned above. The error handler
can respond to such a message by displaying a panel that asks the user whether the file
should be written.

See also: - saveRTFDTo:removeBackup:errorHandler: (Text class)

2-894 Chapter 2: The Application Kit

NXSelectText

Adopted By: Text

Declared In: appkitINXSpellChecker.h

Protocol Description

This protocol must be implemented by an object whose text is to be checked, so that it can
respond to messages from an NXSpellChecker.

Instance Methods

makeSelection Visible

- (void)makeSelection Visible

Scrolls the view that contains the selection so that the selection is visible.

readCharactersFromSelection:count:

- (int)readCharactersFromSelection:(char *)buffer count: (int)count

Reads a substring from the selected portion of the text stream. The argument count is the
desired number of characters to read. The argument buffer is a pointer to the start of the
resulting character string. Returns the number of characters actually read (which may be
smaller than the number requested if the selected portion of the text stream is not that long).

selectCharactersFrom:to:

- (void)selectCharactersFrom: (int)start to: (int)end

Selects (that is, highlights in the document's display) the specified block of characters.
The arguments start and end are the number of characters from the start of the text
stream (which may differ from the number of bytes if the text stream includes multibyte
characters) .

Protocols: NXSelectText 2-895

selectionCharacterCount

- (int)selectionCharacterConnt

Returns the length (that is, the number of characters) of the portion of the text stream that
is currently selected.

2-896 Chapter 2: The Application Kit

NXServicesRequests
(informal protocol)

Category Of: Object

Declared In: appkitl Application.h

Category Description

This informal protocol consists of two methods, writeSelectionToPasteboard:types: and
readSelectionFromPasteboard:. The first is implemented to provide data to a remote
service, and the second to receive any data the remote service might send back. Both
respond to messages that are generated when the user chooses a command from the
Services menu.

Instance Methods

readSelectionFromPasteboard:

- readSelectionFromPasteboard:pboard

Implemented to replace the current selection with data read from the Pasteboard object
pboard. The data would have been placed in the pasteboard by another application in
response to a remote message from the Services menu. A readSelectionFromPasteboard:
message is sent to the same object that previously received a
writeSelectionToPasteboard:types: message.

There's no default readSelectionFromPasteboard: method. The Application Kit declares
a prototype for this method, but doesn't implement it.

See also: - writeSelectionToPasteboard:types:

writeSelectionToPasteboard:types:

- (BaaL)writeSelectionToPasteboard:pboard types: (NXAtom *)types

Implemented to write the current selection to the Pasteboard object pboard. The selection
should be written as one or more of the data types listed in types. After writing the data,
this method should return YES. If for any reason it can't write the data, it should return NO.

Protocols: NXServicesRequests 2-897

A writeSelectionToPasteboard:types: message is sent to the first responder when the user
chooses a command from the Services menu, but only if the receiver didn't return nil to a
previ<?us validRequestorForSendType:andReturnType: message.

After this method writes the data to the pasteboard, a remote message is sent to the
application that provides the service the user requested. If the service provider supplies
return data to replace the selection, the first responder will then receive a
readSelectionFromPasteboard: message.

There's no default writeSelectionToPasteboard:types: method. The Application Kit
declares a prototype for this method, but doesn't implement it.

See also: - validRequestorForSendType:andReturnType: (Responder class),
- readSelectionFromPasteboard:

2-898 Chapter 2: The Application Kit

NXWorkspaceRequestProtocol

Adopted By: No NeXTSTEP classes

Declared In: appkitiworkspaceRequest.h

Protocol Description

The NXWorkspaceRequestProtocol protocol is implemented by an object in the
Workspace Manager that responds to application requests to do such things as open files,
launch applications, and return file icons. This object is made available through
Application's workspace method. As an example, the following code uses the Workspace
Manager object to request that a file be opened in the Edit application:

[[Application workspace] openFile: l /tmp/README"
withApplication: I Edit"] i

Before NeXTSTEP Release 3, some of the functionality of the
NXWorkspaceRequestProtocol protocol was found in the Speaker and Listener classes.
New applications should be changed to send messages to the Workspace Manager object
rather than to Workspace Manager's Listener.

Many of the methods in the NXWorkspaceRequestProtocol protocol depend on the
existence of an Application object and its Speaker and/or Listener objects. This presents
no problem for NeXTSTEP applications, but other applications may have to create an
Application object and send it a run message in order to use these methods.

Protocols: NXWorkspaceRequestProtocol 2-899

Method Types

Opening files - openFile:
- openFile:withApplication:
- openFile:fromImage:at:in View:
- openFile:withApplication:andDeactivate:
- openTempFile:
- findString:inFile:

Manipulating applications - launchApplication:
-launchApplication:showTile:autolaunch:
- hideOtherApplications

Manipulating files - performFileOperation:source:destination:files:options:
- selectFile:inFile ViewerRootedAt:

Requesting information about files
- getIconForFile:
- getInfoForFile:application:type:
- getFullPathForApplication:
- getInfoForFileSystemAtisRemovable:is Writable:

·isUnmountable:description:type:

Requesting additional time before logout
- extendPowerOftBy:

Tracking changes to the file system
- fileSystemChanged
- didFileSystemChange

Updating registered services and file types
- findApplications

Tracking changes to the defaults database
- defaultsChanged
- didDefaultsChange

Tracking status changes for applications and devices
- beginListeningForApplicationStatusChanges
- endListeningForApplicationStatusChanges
- beginListeningForDeviceStatusChanges
- endListeningForDeviceStatusChanges

Animating an image - slideImage:from:to:

U nmounting a device - unmountAndEjectDeviceAt:

2-900 Chapter 2: The Application Kit

Instance Methods

beginListeningForApplicationStatusChanges

- (void)beginListeningFor ApplicationStatusChanges

Notifies Workspace Manager that the application wants to be notified of changes in the
status of all applications. After sending this message, the Application object's delegate will
receive the following messages when an application is launched or after one terminates:

app:application WillLaunch:
app:applicationDidLaunch:
app:applicationDidTerminate:

See also: - endListeningForApplicationStatusChanges

beginListeningForDeviceStatusChanges

- (void)beginListeningForDeviceStatusChanges

Notifies Workspace Manager that the application wants to be notified when various media
(usually optical or floppy disks) are mounted or unmounted. After sending this message,
the Application object's delegate will receive the follOWIng messages after a device is
mounted or unmounted:

app:mounted:
app:unmounted:

These methods complement the unmounting:ok: method, which is sent just before a
device is unmounted so that applications can end all their accesses to that device.

See also: - endListeningForDeviceStatusChanges

defaultsChanged

- (void)defaultsChanged

Informs Workspace Manager that the defaults database has changed. Workspace Manager
then reads all the defaults it is interested in and reconfigures itself appropriately. For
example, this method is used by the Preferences application to notify Workspace Manager
whether the user prefers to see hidden files.

See also: - didDefaultsChange

Protocols: NXWorkspaceRequestProtocol 2-901

didDefaultsChange

- (BOOL)didDefaultsChange

Returns whether a change to the defaults database has been registered with a
defaults Changed message, and clears the internal flag (for the sending application) that
indicates such a change.

didFileSystemChange

- (BOOL)didFileSystemChange

Returns whether a change to the file system has been registered with a file System Changed
message, and clears the internal flag (for the sending application) that indicates such a
change.

endListeningForApplicationStatusChanges

- (void)endListeningFor ApplicationStatusChanges

Notifies Workspace Manager that the application is no longer interested in notifications of
application launches and terminations.

See also: - beginListeningForApplicationStatusChanges

endListeningForDeviceStatusChanges

- (void)endListeningForDeviceStatusChanges

Notifies Workspace Manager that the application is no longer interested in notifications of .
the mounting and unmounting of devices (such as optical and floppy disks).

See also: - beginListeningForDeviceStatusChanges

2-902 Chapter 2: The Application Kit

extendPowerOffBy:

- (int)extendPowerOfmy:(int)requestedMs

Requests more'time before the power goes off or the user logs out. An application can send
this message in response to a powerOtlln:andSave: message that doesn't give the
application enough time to prepare for the impending shutdown.

requestedMs is how many additional milliseconds are needed, beyond the number given in
the powerOtlln:andSave: message. The actual granted number of additional milliseconds
is returned.

See also: - powerOtlln:andSave: (Application),
- app:powerOtlln:andSave: (Application delegate)

fileSystemChanged

- (void)fiieSystemChanged

Informs Workspace Manager that the file system has changed. Workspace Manager then
gets the status of all the files and directories it is interested in and updates itself
appropriately. This method is used by many objects that write or delete files. Even if this
method isn't invoked, Workspace Manager will note changes to the file system relatively
quickly if it is the active application.

See also: - didFileSystemChange

findApplications

- (void)findApplications

Instructs Workspace Manager to examine all applications in the normal places and update
its records of registered services and file types. This can be useful in an project building
application, for example.

findString:inFile:

- (BOOL)findString:(const char *)aString inFile:(const char *)jilename

Instructs Workspace Manager to open the filejilename (specified with a complete path),
with the string aString selected. The file is opened using the default application for its type.
The application that opens the file must implement the
msgSetPosition:posType:andSeiect:ok: message in its Listener's delegate to find
the selection.

Protocols: NXWorkspaceRequestProtocol 2-903

getFu IIPath ForApplication:

- (const char *)getFullPathForApplication:(const char *)appName

Returns the full path for the application appName, or NULL if appName isn't in one of
Workspace Manager's application directories. The returned string is valid until the next
message to a Speaker object; the application must copy it if it must be retained.

getlcon ForFile:

- (NXlmage *)getlconForFile:(const char *)fullPath

Returns a newly allocated NXlmage with the icon for the single file specified by fullPath,
or nil if there is an error.

See also: - getlnfoForFile:application:type:

getlnfoForFile:application:type:

- (BOOL)getlnfoForFile:(const char *)fullPath
application:(char **)appName
type:(NXAtom *)type

Retrieves information about the file specified by fullPath. After invoking this method, the
string pointed to by appName is set to the application Workspace Manager would use to
openfuliPath. This string should be freed by the caller. The NXAtom pointed to by type
will contain one of the following values or a file name extension such as "rtf' indicating the
file's type:

Value

NXPlainFileType
NXDirectoryFileType
NXApplicationFileType
NXFilesystemFileType
NXShellCommandFileType

ful/Path is a:

plain (untyped) file
directory
N eXTSTEP application
file system mount point
executable shell command

Returns YES upon success, NO otherwise.

See also: - getlconForFile:

2-904 Chapter 2: The Application Kit

getlnfoForFileSystemAt:isRemovable:isWritable:isUnmountable:
description:type:

- (BOOL)getInfoForFileSystemAt:(const char *)fuliPath
isRemovable~(BOOL *)removableFlag
isWritable:(BOOL *)writableFlag
isUnmountable:(BOOL *)unmountableFlag
description:(char **)description
type: (char **)jileSystemType

Describes the file system atfuliPath. Returns YES iffuliPath is a file system mount point,
or NO if it isn't. Upon success, description will describe the file system; this value can be
used in strings, but it shouldn't be depended upon by program logic. Example values for
description are "hard", "nfs", and "foreign". jileSystemType will indicate the file system
type; values could be "NeXT", "DOS", or other values.

hideOtherApplications

- (void)hideOther Applications

Hides all applications other than the sender. (Since the user can cause the same effect by
Command-double-clicking on an application's tile, a programmatic invocation of this
method is usually unnecessary.)

launchApplication:

- (BOOL)launchApplication:(const char *)appName

Instructs Workspace Manager to launch the application appName. appName need not be
specified with a full path and, in the case of an application wrapper, can be specified with
or without the" .app" extension. Returns YES if the application is successfully launched
or already running, and NO if it can't be launched.

See also: - launchApplication:showTile:autolaunch:

Protocols: NXWorkspaceRequestProtocol 2-905

launchApplication:showlile:autolaunch:
- (BOOL)launchApplication:(const char *)appName

showTile:(BOOL)showTile
autolaunch:(BOOL)autolaunch

Instructs Workspace Manager to launch the application appName. If showTile is NO,
Workspace Manager won't display a tile for the application. (The tile will exist, but it won't
be placed on the screen.) If autolaunch is YES, the NXAutoLaunch command line default
will be set as though the application were auto launched from the dock. This method is
provided to enable daemon-like apps that lack a normal user interface and for use by
alternative dock programs. Its use is not generally encouraged.

Returns YES if the application is successfully launched or already running, and NO if it
can't be launched.

See also: - launchApplication:

open File:

- (BOOL)openFile:(const char *)fullPath

Instructs Workspace Manager to open the file specified by fullPath using the default
application for its type. The sending application is deactivated before the request is sent.
Returns YES if the file is successfully opened, and NO otherwise.

See also: - openFile:withApplication:andDeactivate:, - openTempFile:

openFile:fromlmage:at:inView:

- (BOOL)openFile:(const char *)fullPath
fromlmage:(NXImage *)an/mage
at:(const NXPoint *)point
in View: (View *)a View

Instructs Workspace Manager to open the file specified by fullPath using the default
application for its type. Before opening the file, Workspace Manager will provide
animation to give the user feedback that the file is to be opened. To provide this animation,
an/mage should contain an icon for the file, and its image should be displayed at point,
specified in aView's coordinates.

The sending application is deactivated before the request is sent. Returns YES if the file is
successfully opened, and NO otherwise.

See also: - openFile:withApplication:andDeactivate:

2-906 Chapter 2: The Application Kit

openFile:withApplication:

- (BOOL)openFile:(const char *)fuliPath withApplication:(const char *)appName

Instructs Workspace Manager to open the file specified by fuliPath using the appName
application. appName need not be specified with a full path and, in the case of an
application wrapper, can be specified with or without the" .app" extension. The sending
application is deactivated before the request is sent. Returns YES if the file is successfully
opened, and NO otherwise.

See also: - openFile:withApplication:andDeactivate:

openFile:withApplication:andDeactivate:

- (BOOL)openFile:(const char *)fuliPath
withApplication:(const char *)appName
andDeactivate: (BOOL)flag

Instructs Workspace Manager to open the file specified by fuliPath using the appName
application. appName need not be specified with a full path and, in the case of an
application wrapper, can be specified with or without the ".app" extension. If appName is
NULL, the default application for the file's type is used. Ifflag is YES, the sending
application is deactivated before the request is sent, allowing the opening application to
become the active application. Returns YES if the file is successfully opened, and NO
otherwise.

See also: - app:openFile:type: (Application delegate)

openTempFile:

- (BOOL)openTempFile:(const char *)fuliPath

Instructs Workspace Manager to open the temporary file specified by fuliPath using the
default application for its type. The sending application is deactivated before the request
is sent. Using this method instead of one of the openFile: ..• methods lets the receiving
application know that it should delete the file when it no longer needs it. Returns YES if
the file is successfully opened, and NO otherwise.

See also: - openFile:withApplication:andDeactivate:

Protocols: NXWorkspaceRequestProtocol 2-907

performFileOperation:source:destination:files:options:

_ (int)performFil~Operation:(const char *)operation
source: (const char *)source
destination:(const char *)destination
files:(const char *)files
options: (const char *)options

Requests that the Workspace Manager perform some file operation, such as copying or
moving files. The files to be manipulated are specified by files. If more than one file is
specified, the files must be tab-delimited. This list is specified relative to the source
directory, source. The list can contain both files and directories; all of them must be directly
under source (not under one of its subdirectories). Some operations require a destination
directory, destination; otherwise it should be the empty string (""). The permissible values
for operation are as follows:

Operation

WSM_MOVE_OPERATION
WSM_COPY _OPERATION
WSM_LINK_OPERATION
WSM_COMPRESS_OPERATION
WSM_DECOMPRESS_OPERATION
WSM_ENCRYPT_OPERATION
WSM_DECRYPT_OPERATION
WSM_DESTROY _OPERATION
WSM_RECYCLE_OPERATION
WSM_DUPLICATE_OPERATION

Meaning

Move file to destination
Copy file to destination
Create link to file in destination
Compress file
Decompress file
Encrypt file
Decrypt file
Destroy file
Move file to recycler
Duplicate file in source directory

Note: WSM_ENCRYPT_OPERATION and WSM_DECRYPT_OPERATION might not
be available on all systems.

Returns a negative integer if the operation fails, 0 if the operation is performed
synchronously and succeeds, and a positive integer if the operation is performed
asynchronously. The positive integer is a tag that will be sent to the application using
the app:flleOperationCompleted: Application delegate method when the operation
completes.

2-908 Chapter 2: The Application Kit

selectFile:inFileViewerRootedAt:

- (BOOL)selectFile:(const char *)fullPath
. inFile ViewerRootedAt:(const char *)rootFullpath

Instructs Workspace Manager to select the file specified by fullPath. If a path is specified
by rootFullpath, a new file viewer is opened. If rootFullpath is an empty string (""), the
file is selected in the main viewer. Returns YES if the file is successfully selected, and NO
otherwise.

slidelmage:from:to:

- (void)slidelmage:(NXImage *)image
from: (const NXPoint *)fromPoint
to:(const NXPoint *)toPoint

Instructs Workspace Manager to animate a sliding image of image fromfromPoint to
toPoint, specified in screen coordinates.

unmountAndEjectDeviceAt:

- (BOOL)unmountAndEjectDeviceAt: (const char *)path

Unmounts and ejects the device at path. Returns YES if the device is successfully
unmounted or path is badly formed; returns NO otherwise.

Protocols: NXWorkspaceRequestProtocol 2-909

Functions

NXAlphaComponentO ~ See NXRedComponentO

NXAttachPopUpListO, NXCreatePopUpListButtonO

SUMMARY Set up a pop-up list

DECLARED IN appkitIPopUpList.h

SYNOPSIS void NXAttachPopUpList(id button, PopUpList *popUpList)
id NXCreatePopUpListButton(PopUpList *popUpList)

DESCRIPTION These functions make it easy to use the PopUpList class. NXCreatePopUpListButtonO
returns a new Button object that will activate the pop-up list specified by popUpList. The
new Button must then be added to the View hierarchy with View's addSubview: method.

NXAttachPopUpListO modifies button so that it activates popUpList. In addition, if
button already has a target and an action, then they are used whenever a selection is made
from the pop-up list. button must be either a Control that uses ButtonCell (or a subclass)
as its Cell class, or an actual ButtonCell.

RETURN NXCreatePopUpListButtonO returns a new Button object.

NXBeepO

SUMMARY Play the system beep

DECLARED IN appkitlpublic Wraps.h

SYNOPSIS void NXBeep(void)

DESCRIPTION This function plays the system beep. Users can select a sound to be played as the system
beep through the Preferences application.

2-912 Chapter 2: Application Kit

NXBeginlimerO, NXEndlimerO

SUMMARY Set up timer events

DECLARED IN appkitltimer.h

SYNOPSIS NXTrackingTimer *NXBeginTimer(NXTrackingTimer *timer, double delay,
double period)

void NXEndTimer(NXTrackingTimer *timer)

DESCRIPTION These functions start up and end a timed entry that puts timer events in the event queue at
specified intervals. They ensure that the modal event loop will get a stream of events even
if none are being generated by the Window Server.

NXBeginTimerO's delay argument specifies the number of seconds after which timer
events will begin to be added to the event queue; an event will then be added every period
seconds. The first argument, timer, is a pointer to an NXTrackingTimer structure, which is
defined in the header file appkitltimer.h. You don't have to initialize this argument. If you
pass a NULL pointer, memory will be allocated for the structure. Since timer events are
usually needed only within a modal event loop, it's generally better to declare the structure
as a local variable on the stack.

NXEndTimerO stops the flow of timer events. Its argument should be a pointer to the
NXTrackingTimer structure used by NXBeginTimerO. If memory had been allocated for
the structure, NXEndTimerO frees it.

RETURN NXBeginTimerO returns a pointer to the NXTrackingTimer structure it uses.

NXBlackComponentO ~ See NXRedComponentO

NXBlueComponentO ~ See NXRedComponentO

NXBPSFromDepthO ~ See NXColorSpaceFromDepthO

NXBrightnessComponentO ~ See NXRedComponentO

NXChangeAlphaComponentO ~ See NXChangeRedComponentO

NXChangeBlackComponentO ~ See NXChangeRedComponentO

Functions: NXBeginTimer() 2-913

NXChangeBlueComponentO ~ See NXChangeRedComponentO

NXChangeBrightnessComponentO ~ See NXChangeRedComponentO

NXChangeCyanComponent() ~ See NXChangeRedComponentO

NXChangeGrayComponentO ~ See NXChangeRedComponent()

NXChangeGreenComponent() ~ See NXChangeRedComponentO

NXChangeHueComponent() ~ See NXChangeRedComponent()

NXChangeMagentaComponentO ~ See NXChangeRedComponent()

NXChangeRedComponent(), NXChangeGreenComponent(),
NXChangeBlueComponent(), NXChangeCyanComponentO,
NXChangeMagentaComponent(), NXChangeYeliowComponent(),
NXChangeBlackComponent(), NXChangeHueComponent(),
NXChangeSaturationComponent(),
NXChangeBrightnessComponent(), NXChangeGrayComponent(),
NXChangeAlphaComponent()

SUMMARY Modify a color by changing one of its components

DECLARED IN appkitlcolor.h

SYNOPSIS NXColor NXChangeRedComponent(NXColor color, float red)
NXCoior NXChangeGreenComponent(NXColor color, float green)
NXCoior NXChangeBlueComponent(NXColor color, float blue)
NXCoior NXChangeCyanComponent(NXColor color, float cyan)
NXCoior NXChangeMagentaComponent(NXColor color, float magenta)
NXCoior NXChange YellowComponent(NXColor color, float yellow)
NXCoior NXChangeBlackComponent(NXColor color, float black)
NXCoior NXChangeHueComponent(NXColor color, float hue)
NXCoior NXChangeSaturationComponent(NXColor color, float saturation)
NXCoior NXChangeBrightnessComponent(NXColor color, float brightness)
NXCoior NXChangeGrayComponent(NXColor color, float gray)
NXCoior NXChangeAlphaComponent(NXColor color, float alpha)

2-914 Chapter 2: Application Kit

DESCRIPTION These functions alter one component of a color value and return the new color. The first
argument, color, is the color to be altered and the second argument is the new value for the
altered component. For example, the code below specifies a color with a greater red content
than the standard brown:

NXColor redBrown = NXChangeRedComponent(NX_COLORBROWN, 0.9) i

Note that the color argument is used as a reference for creating a new color value; it is not
itself changed.

Values passed for the altered component should lie between 0.0 and 1.0; out-of-range
values will be lowered to 1.0 or raised to 0.0. NX_NOALPHA can be passed to
NXChangeAlphaComponentO to remove any specification of coverage from the color.

RETURN These functions return an NXCoior structure that, except for the altered component,
represents a color identical to the one passed as an argument.

SEE ALSO NXRedComponentO, NXSetColorO, NXConvertRGBAToColorO,
NXConvertColorToRGBAO, NXEqualColorO, NXReadColorO

NXChangeSaturationComponentO -7 See NXChangeRedComponentO

NXChangeYeliowComponentO -7 See NXChangeRedComponentO

NXChunkCopy() -7 See NXChunkMaliocO

NXChunkGrowO -7 See NXChunkMalloc()

Functions: NXChangeSaturationComponent() 2-915

NXChunkMaliocO, NXChunkRealiocO, NXChunkGrowO,
NXChunkCopyO, NXChunkZoneMaliocO, NXChunkZoneRealiocO,
NXChunkZoneGrowO, NXChunkZoneCopyO

SUMMARY Manage variable-sized arrays of records

DECLARED IN appkitlchunk.h

SYNOPSIS NXChunk *NXChunkMalloc(int growBy, int initUsed)
NXChunk *NXChunkRealloc(NXChunk *pc)
NXChunk *NXChunkGrow(NXChunk *pc, int new Used)
NXChunk *NXChunkCopy(NXChunk *pc, NXChunk *dpc)
NXChunk *NXChunkZoneMalloc(int growBy, int initUsed, NXZone *zone)
NXChunk *NXChunkZoneRealloc(NXChunk *pc, NXZone *zone)
NXChunk *NXChunkZoneGrow(NXChunk *pc, int new Used, NXZone *zone)
NXChunk *NXChunkZoneCopy(NXChunk *pc, NXChunk *dpc, NXZone *zone)

DESCRIPTION A Text object uses these functions to manage variable-sized arrays of records. For general
storage management, use objects of the Storage or List class.

These functions are paired (for example, NXChunkZoneMallocO and
NXChunkMallocO): One function lets you specify a zone and one doesn't. Those
functions that don't take a zone argument operate within the default zone, as returned by
NXDefaultMallocZoneO. In all other respects, the two types of functions are identical. In
the following discussion, statements concerning one member of a function pair apply
equally well to the other member.

Arrays that are managed by these functions must have as their first element an NXChunk
structure, as defined in appkitlchunk.h:

typedef struct _NXChunk {
short growby;
int allocated;
int used;

NXChunk;

2-916 Chapter 2: Application Kit

/* Increment to grow by */
/* Number of bytes allocated */

/* Number of bytes used */

For example, assuming an account structure has been declared, an accountArray structure
is declared as:

typedef struct _accountArray
NXChunk chunki

account record[l]i
accountArraYi

The NXChunk structure stores three values: growby specifies how many additional bytes
of storage will be allocated when NXChunkReallocO is called; allocated stores the
number of bytes currently allocated for the array; and used stores the number of bytes
currently used by the array's elements.

Note: The values recorded in the NXChunk element don't take into account the size of the
NXChunk element itself. However, the functions described here preserve space for this
element. You don't need to take into account the size of the array's NXChunk when using
these functions.

Use NXChunkMallocO to initially allocate memory for the array. The amount of memory
allocated is equal to initUsed. If initUsed is 0, growby bytes are allocated. The array's
NXChunk element records the value of growby and the amount of memory allocated for the
array.

NXChunkReallocO increases the amount of memory available for the array identified by
the pointer pc. The amount of memory allocated depends on the value of the growby
member of the array's NXChunk element. If the value is 0, the space for elements is
doubled; otherwise the array's size increases by growby bytes. The allocated member of
the array's NXChunk element stores the new size of the array.

NXChunkGrowO increases the size of the array identified by the pointer pc by a specific
amount. The new Used argument specifies the array's new size in bytes. If the growby
member of the array's NXChunk element is 0, the array grows to the size specified by
newU sed. Otherwise, the array grows to the larger of growby and newU sed. In either case,
the size of the array changes only if the new size is larger than the old one.

NXChunkCopyO copies the array identified by the pointer pc to the array identified by the
pointer dpc and returns a pointer to the copy. Since the new array may be relocated in
memory, the returned pointer may be different than dpc.

RETURN Each function returns a pointer to an array's NXChunk element. NXChunkMallocO
returns a pointer to the newly allocated array, NXChunkReallocO and NXChunkGrowO
return pointers to the resized arrays, and NXChunkCopyO returns a pointer to the copy of
the array.

Functions: NXChunkMalloc() 2-917

NXChunkRealiocO -7 See NXChunkMaliocO

NXChunkZoneCopyO -7 See NXChunkMaliocO

NXChunkZoneGrowO -7 See NXChunkMaliocO

NXChunkZoneMaliocO -7 See NXChunkMaliocO

NXChunkZoneRealiocO -7 See NXChunkMaliocO

NXColorListNameO, NXColorNameO, NXFindColorNamedO

SUMMARY Associate colors with their names and their color lists

DECLARED IN appkitlcolor.h

SYNOPSIS const char *NXColorListName (NXColor color)
const char *NXColorName (NXColor color)
BOOL NXFindColorNamed (const char *colorList, const char *colorName,

NXCoior *color)

DESCRIPTION Use these functions to access named colors and named color lists. They're used in
conjunction with objects of the NXColorList class that generate colors with persistent
names. The documentation for NXColorList includes a complete description of persistent
color names and named NXColorLists.

NXColorListNameO looks for and returns the name of a color list from which a particular
color was taken. color represents the NXCoior whose source list name you're seeking. The
return value is a character string representing the name of the list from which the color was
taken; an empty string is returned if color isn't taken from a named list. This function can
be used to get the argument for NXColorList's findColorListNamed: method.

NXColorNameO returns the persistent name of a color. color is the NXCoior whose
persistent name you wish to find.

NXFindColorNamedO returns by reference the NXCoior associated with a particular
name in a particular list. colorList represents the name of the list in which you wish to
search; if colorList doesn't represent a NXColorList that generates colors with persistent
names, this method returns NO. colorName represents the name of the color you wish to
find. color returns the actual NXCoior associated with colorName in colorList.

2-918 Chapter 2: Application Kit

RETURN NXCo)orListNameO returns a character string representing the name of the list from
which the color was taken; an empty string is returned if the color isn't taken from a
named list.

NXCo)orNameO returns a character string representing the name of color: an empty string
is returned if color wasn't taken from a list that generates colors with persistent names.

NXFindColorNamedO returns YES if it finds colorName in colorList, NO if not.

SEE ALSO NXColorList class

NXColorNameO --7 See NXColorListName()

NXColorSpaceFromDepth(), NXBPSFromDepthO,
NXNumberOfColorComponentsO, NXGetBestDepth()

SUMMARY Get information about color space and window depth

DECLARED IN appkitlgraphics.h

SYNOPSIS NXColorSpace NXCo)orSpaceFromDepth(NXWindowDepth depth)
int NXBPSFromDepth(NXWindowDepth depth)
int NXNumberOfColorComponents(NXColorSpace space)
BOOL NXGetBestDepth(NXWindowDepth *depth, int numColors, int bps)

DESCRIPTION The first of these functions, NXCo)orSpaceFromDepthO, maps an enumerated value for
window depth into the corresponding enumerated value for color space. The depth
argument can be any of the following:

NX_ TwoBitGrayDepth
NX_EightBitGrayDepth
NX_TwelveBitRGBDepth
NX_TwentyFourB itRGB Depth

Functions: NXColorName() 2-919

The value returned will be one of the NXColorSpace values in this list:

NX_ OnelsBlackColorSpace
NX_ Onels WhiteColorSpace
NX_RGBColorSpace
NX_ CMYKColorSpace

NX_TwoBitGrayDepth and NX_EightBitGrayDepth map to NX_OnelsWhiteColorSpace.

The second function, NXBPSFromDepthO, extracts the number of bits per sample (bits
per pixel in each color component) from a window depth.

The third function, NXNumberOfColorComponentsO, similarly extracts the number of
color components from a color space. The value returned will be 1,3, or 4.

The fourth function, NXGetBestDepthO, finds the best window depth for an image with a
given number of color components, numColors, and a given bits per sample, bps. The depth
is returned by reference in the variable specified by depth. It will be one of the enumerated
values listed above. If the depth provided exactly matches the requirements of numColors
and bps, or is deeper than required, this function returns YES. If the depth isn't deep
enough for numColors and bps, but is the best available, it returns NO.

RETURN NXColorSpaceFromDepthO returns the color space that matches a given window depth.
NXBPSFromDepthO returns the number of bits per sample for a given window depth.
NXNumberOfColorComponentsO returns the number of color components in a given
color space. NXGetBestDepthO returns YES if it can provide a window depth deep
enough for numColors and bps, and NO if it can't.

2-920 Chapter 2: Application Kit

NXCompleteFilename()

SUMMARY Match an incomplete file name

DECLARED IN appkitlSavePanel.h

SYNOPSIS int NXCompleteFilename(char *path, int maxPathSize)

DESCRIPTION NXCompleteFilename is used by the SavePanel class to determine the number of files
matching an incomplete pathname. path is a pointer to a buffer containing an incomplete
pathname. maxPathSize is the size of the buffer (not the length of path).

RETURN This function returns the number of files that match the incomplete name. By reference,
path returns up to maxPathSize characters of the path to the first file matching the
incomplete name.

NXContainsRect() --7 See NXMouselnRectO

NXConvertCMYKAToColorO --7 See NXConvertRGBAToCoiorO

NXConvertCMYKToCoiorO --7 See NXConvertRGBAToCoiorO

NXConvertCoiorToCMYKO --7 See NXConvertColorToRGBAO

NXConvertColorToCMYKAO --7 See NXConvertCoiorToRGBAO

NXConvertColorToGrayO --7 See NXConvertColorToRGBAO

NXConvertColorToGrayAlphaO --7 See NXConvertCoiorToRGBAO

NXConvertColorToHSBO --7 See NXConvertCoiorToRGBAO

NXConvertCoiorToHSBAO --7 See NXConvertColorToRGBAO

NXConvertColorToRGBO --7 See NXConvertColorToRGBAO

Functions: NXCompleteFilenome() 2-921

NXConvertColorToRGBA(), NXConvertColorToCMYKA(),
NXConvertColorToHSBAO, NXConvertColorToGrayAlpha(),
NXConvertColorToRGBO, NXConvertColorToCMYKO,
NXConvertColorToHSB(), NXConvertColorToGray()

SUMMARY Convert a color value to its standard components

DECLARED IN appkitlcolor.h

SYNOPSIS void NXConvertColorToRGBA(NXColor color, float *red, float *green, float *blue,
float *alpha)

void NXConvertColorToCMYKA(NXColor color, float *cyan, float *magenta,
float *yellow, float *black, float *alpha)

void NXConvertColorToHSBA(NXColor color, float *hue, float *saturation,
float *brightness, float *alpha)

void NXConvertColorToGrayAlpha(NXColor color, float *gray, float *alpha)
void NXConvertColorToRGB(NXColor color, float *red, float *green, float *blue)
void NXConvertColorToCMYK(NXColor color, float *cyan, float *magenta,

float *yellow, float *black)
void NXConvertColorToHSB(NXColor color, float *hue, float *saturation,

float *brightness)
void NXConvertColorToGray(NXColor color, float *gray)

DESCRIPTION These functions convert a color value, color, to its standard components. The first argument
to each function is the NXColor data structure to be converted. Subsequent arguments
point to float variables where the component values can be returned by reference.

The conversion can be to any set of components that might be used to specify a color value:

• Red, green, and blue (RGB) components
• Cyan, magenta, yellow, and black (CMYK) components
• Hue, saturation, and brightness (HSB) components
• A single component for gray scale images

2-922 Chapter 2: Application Kit

A color initially specified by one set of components can be converted to another set.
For example:

NXColor color;
float hue, saturation, brightness;

color = NXConvertRGBToColor(0.8, 0.3, 0.15);
NXConvertColorToHSB(color, &hue, &saturation, &brightness);

The first four functions in the list above report the coverage component, alpha, included in
the color value, as well as the color components. The second four report only the color
components; they're macros and are defined on the corresponding functions, but ignore the
alpha argument.

The float values returned by reference will lie in the range 0.0 through 1.0. The value
returned for the coverage component will be NX_NOALPHA if color doesn't include a
coverage specification.

SEE ALSO NXConvertRGBAToColorO, NXSetColorO, NXEqualColorO, NXRedComponentO,
NXChangeRedComponentO, NXReadColorO

NXConvertGlobalToWinNumO ~ See NXConvertWinNumToGlobalO

NXConvertGrayAlphaToColorO ~ See NXConvertRGBAToCoiorO

NXConvertGrayToColorO ~ See NXConvertRGBAToCoiorO

NXConvertHSBAToCoiorO ~ See NXConvertRGBAToCoiorO

NXConvertHSBToColorO ~ See NXConvertRGBAToCoiorO

Functions: NXConvertGlobalTo WinNum() 2-923

NXConvertRGBAToColor(), NXConvertCMYKAToColor(),
NXConvertHSBAToColor(), NXConvertGray AlphaToColor(),
NXConvertRGBToColor(), NXConvertCMYKToColor(),
NXConvertHSBToColor(), NXConvertGrayToColor()

SUMMARY Specify a color value

DECLARED IN appkitlcolor.h

SYNOPSIS NXCoior NXConvertRGBAToColor(float red, float green, float blue, float alpha)
NXCoior NXConvertCMYKAToColor(float cyan, float magenta, float yellow, float black,

float alpha)
NXCoior NXConvertHSBAToColor(float hue, float saturation, float brightness,

float alpha)
NXCoior NXConvertGrayAlphaToColor(float gray, float alpha)
NXCoior NXConvertRGBToColor(float red, float green, float blue)
NXCoior NXConvertCMYKToColor(float cyan, float magenta; float yellow, float black)
NXCoior NXConvertHSBToColor(float hue, float saturation, float brightness)
NXCoior NXConvertGrayToColor(float gray)

DESCRIPTION These functions specify a color by its standard components and return an NXCoior
structure for the color. In the Application Kit, a color can be specified in any of four ways:

• By its red, green, and blue components (RGB)
• By its cyan, magenta, yellow, and black components (CMYK)
• By its hue, saturation, and brightness components (HSB)
• On a gray scale

No matter how they're specified, all color values are stored as the NXCoior data type. The
internal format of this type is unspecified; it should be set only through these functions or
as one of the constants defined for pure colors, such as NX_COLORORANGE or
NX_COLORWHITE.

The NXCoior structure includes provision for a coverage component, alpha, which can be
specified at the same time as the color. The first four functions listed above specify both
color and coverage. The last four specify only color; they're defined as macros that work
through the corresponding functions by passing NX_NOALPHA for the alpha argument.

2-924 Chapter 2: Application Kit

Except for NX_NOALPHA, all values passed for color and coverage components should
lie in the range 0.0 through 1.0; higher values will be reduced to 1.0 and lower ones raised
to 0.0.

RETURN Each of these functions and macros returns an NXColor structure for the color specified.

SEE ALSO NXConvertColorToRGBA(), NXSetColor(), NXEquaIColor(), NXRedComponent(),
NXChangeRedComponent(), NXReadColor()

NXConvertRGBToColorO ~ See NXConvertRGBAToCoiorO

NXConvertWinNumToGlobal(), NXConvertGlobalToWinNumO

SUMMARY Convert local and global window numbers

DECLARED IN appkitlpublic Wraps.h

SYNOPSIS void NXConvertWinNumToGlobal(int winNum, unsigned int *globaINum)
void NXConvertGlobalToWinNum(int globalNum, unsigned int *winNum)

DESCRIPTION These functions allow two or more applications to refer to the same window. In the rare
cases where this is necessary, the global window number, which has been automatically
assigned by the Window Server, is used rather than the local window number, which is
assigned by the application.

NXConvertWinNumToGlobal() takes the local window number and places the
corresponding global window number in the variable specified by globalNum. This global
number can then be passed to other applications that need access to the window.

To convert window numbers in the opposite direction, give the global number as an
argument for NXConvertGlobalToWinNumd. This function places the appropriate local
number in the variable specified by winNum.

Functions: NXConvertRGBToColor() 2-925

NXCopyBitsO, NXCopyBitmapFromGstateO

SUMMARY Copy an image

DECLARED IN appkitlgraphics.h

SYNOPSIS void NXCopyBits(int gstate, const NXRect *aRect, const NXPoint *aPoint)
void NXCopyBitmapFromGstate(int gstate, const NXRect * srcRect, const

NXRect * destRect)

DESCRIPTION NXCopyBitsO copies the pixels in the rectangle specified by aRectto the location specified
byaPoint. The source rectangle is defined in the graphics state designated by gstate. If
gstate is NXNullObject, the current graphics state is assumed. The aPoint destination is
defined in the current graphics state.

NXCopyBitmapFromGstateO copies the pixels in the rectangle srcRect to the rectangle
destRect. The source rectangle is defined in the graphics state designated by gstate. The
destination is defined in the current graphics state.

NXCopyCurrentGStateO ~ See NXSetGStateO

NXCopylnputData 0, NXCopyOutputData()

SUMMARY Save data received in a remote message

DECLARED IN appkit/Listener.h

SYNOPSIS char *NXCopy InputData(int parameter)
char *NXCopyOutputData(int parameter)

DESCRIPTION These functions each return a pointer to memory containing data passed from one
application to another in a remote message. NXCopylnputDataO is used for data received
by a Listener object, and NXCopyOutputDataO is used for return data received back by
a Speaker.

2-926 Chapter 2: Application Kit

Data received by a Listener in a remote message is guaranteed only for the duration of the
receiving application's response to the message. Return data passed back to a Speaker is
guaranteed only until the Speaker receives another return message. Therefore, you must
copy any data you wish to keep.

If the data is passed in-line (if it's not too large to fit within the Mach message), these
functions allocate memory for the data, copy it, and return a pointer to the copy. However,
it's likely that more memory will be allocated than is required for the copy. Both functions
use vrn_allocateO, which provides memory in multiples of a page.

Therefore, for in-line data, it's more efficient for you to allocate the memory yourself,
using rnallocO or NX_MALLOCO, then copy the data using a standard library function
like strcpyO.

For out-of-line data (data that's too large to fit within the Mach message itself, so that only
a pointer to it is passed), it's generally more efficient to use NXCopyInputDataO and
NXCopyOutputDataO to save a copy. Both functions ensure that the Listener or Speaker
won't free the out-of-line data. Both return a pointer to the data without actually copying it.

The memory returned by these functions should be freed using vrn_deallocateO, rather
than freeO.

The data to be saved is identified by parameter, an index into the list of parameters declared
for the Objective C method that sends or receives the remote message. Indices begin at 0,
and byte arrays count as a single parameter even though they're declared as a combination
of a pointer to the array and an integer that counts the number of bytes in the array.

The examples below illustrate how these functions are used. In the first, a Listener receives
a translateGaelic: :to Welsh: :ok: message, a fictitious message which requests the
receiving application to exchange Gaelic text for the equivalent Welsh version. If the
application needs to save the original text, it would copy it, using NXCopyInputDataO, in
the method it implements to respond to the message:

char *originalText;

- (int)translateGaelic: (char *)gaelicText

: (int)gaelicLength

tOWelsh: (char *)welshText

: (int *)welshLength

ok: (int *)flag

if gaelicLength >= Vffi-page_size

originalText = NXCopylnputData(O);

Functions:NXCopylnputData() 2-927

The application that sends a translateGaelic: :to Welsh: :ok: message would save
the returned text, using NXCopyOutputDataO, immediately after sending the
remote message:

char *newTexti
int newLengthi
int error, succeSSi

error = [mySpeaker translateGaelic:someText
:strlen(someText)
toWelsh:&newText
:&newLength
ok:&success]i

if (!error && success)
newText = NXCopyOutputData(l) i

RETURN Both functions return a pointer to memory containing data identified by the parameter
index, or a NULL pointer if the data can't be provided.

NXCopyOutputData() ~ See NXCopylnputData()

NXCountWindows(), NXWindowList()

SUMMARY Get information about an application's windows

DECLARED IN appkitipublicWraps.h

SYNOPSIS void NXCountWindows(int *count)
void NXWindowList(int size, int list[D

DESCRIPTION NXCountWindowsO counts the number of on-screen windows belonging to the
application; it returns the number by reference in the variable specified by count.

NXWindowListO provides an ordered list of the application's on-screen windows. It fills
the list array with up to size window numbers; the order of windows in the array is the same
as their order in the Window Server's screen list (their front-to-back order on the screen).
Use the count obtained by NXCountWindowsO to specify the size of the array for
NXWindowListO.

2-928 Chapter 2: Application Kit

NXCreateFileContentsPboardType(), NXCreateFilenamePboardType(),
NXGetFileType(), NXGetFileTypes()

SUMMARY Return file-related pasteboard types

DECLARED IN appkitlPasteboard.h

SYNOPSIS NXAtom NXCreateFileContentsPboardType(const char *fileType)
NXAtom NX CreateFilenamePboardType(const char *filename)
const char *NXGetFileType(const char *pboardType)
const char **NXGetFileTypes(const char *const *pboardTypes)

DESCRIPTION NXCreateFileContentsPboardTypeO returns an NXAtom to a pasteboard type
representing a file's contents based on the supplied stringfileType. fileType should
generally be the extension part of a file name. The conversion from a named file type to a
pasteboard type is simple; no mapping to standard pasteboard types is attempted.

NXCreateFilenamePboardTypeO returns an NXAtom to a pasteboard type representing
a file name based on the supplied string filename.

NXGetFileTypeO is the inverse of both NXCreateFileContentsPboardTypeO and
NXCreateFilenamePboardTypeO. When passed a pasteboard type as returned by those
functions, it returns the extension or file name from which the type was derived. It returns
NULL if pboardType isn't a pasteboard type created by those functions.

NXGetFileTypesO accepts a null-terminated array of pointers to pasteboard types and
returns a null-terminated array of the unique extensions and file names from the file-content
and file-name types found in the input array. It returns NULL if the input array contains no
file-content or file-name types. The returned array is allocated and must be freed by the
caller. The pointers in the return array point into strings passed in the input array.

NXCreatePopUpListButton() --7 See NXAttachPopUpList()

NXCyanComponent() --7 See NXRedComponent()

NXDefaultStringOrderTable() --7 See NXOrderStrings()

Functions: NXCreateFileContentsPboardType() 2-929

NXDefaultTopLeveIErrorHandler(), NXSetTopLeveIErrorHandler(),
NXTopLeveIErrorHandler()

SUMMARY Define an error handler

DECLARED IN appkitlerrors.h

SYNOPSIS void NXDefaultTopLevelErrorHandler(NXHandler *errorState)
NXTopLevelErrorHandler

*NXSetTopLeveIErrorHandler(NXTopLeveIErrorHandler * procedure)
NXTopLevelErrorHandler *NXTopLeveIErrorHandler(void)

DESCRIPTION This group of a function and two macros defines the top-level error handler. The top-level
handler is called when an exception is forwarded through the nested lower-level handlers
up to the top level. The hierarchy of error handlers is created by using any number of nested
NX_DURING ... NX_ENDHANDLER constructs.

If an application doesn't define its own top-level handler, by default it will use
NXDefaultTopLevelErrorHandlerO. This function is defined and used by the
Application Kit. Its only argument is a pointer to an NXHandler structure (as defined in the
header file objc/error.h). The appkitlerrors.h header file defines
NXDefaultTopLevelErrorHandlerO as being a global variable of type
NXTopLevelErrorHandler, which is defined as follows:

typedef void NXTopLevelErrorHandler(NXHandler *errorState);
extern NXTopLevelErrorHandler NXDefaultTopLevelErrorHandler;

NXDefaultTopLevelErrorHandlerO calls NXReportErrorO, which executes the
procedure defined to report the error that occurred. (See the description of
NXRegisterErrorReporterO in this chapter for details about NXReportErrorO.) If an
error occurred when an application's PostScript context was created or if its PostScript
connection is broken, NXDefaultTopLevelErrorHandlerO exits.

An application can override NXDefaultTopLevelErrorHandlerO by defining its own
top-level handler. This involves passing a pointer to an error-handling procedure to the
macro NXSetTopLevelErrorHandlerO. The new error-handling procedure must be of
type NXTopLevelErrorHandler, which means it must take a pointer to an NXHandler as its
only argument and it must return void.

2-930 Chapter 2: Application Kit

NXTopLevelErrorHandlerO returns a pointer to the current top-level handler. After a
new one has been set using NXSetTopLevelErrorHandlerO, subsequent calls to
NXTopLevelErrorHandlerO will return a pointer to the new top-level error handler.

The two macros, NXSetTopLevelErrorHandlerO and NXTopLevelErrorHandlerO, are
defined in the header file appkit/errors.h.

SEE ALSO NX_RAISEO (Common Functions), NXDefaultExceptionRaiserO (Common
Functions), NXRegisterErrorReporterO

NXDivideRect() ~ See NXSetRect()

NXDrawALine() ~ See NXScanALine()

NXDrawBitmap(), NXReadBitmap(), NXSizeBitmap()

SUMMARY Render and read bitmap images

DECLARED IN appkitlgraphics.h

SYNOPSIS void NXDrawBitmap(const NXRect *rect, intpixelsWide, intpixelsHigh, int bps, int spp,
int conjig, int mask, const void *datal, const void *data2, const void *data3,
const void *data4, const void *data5)

void NXReadBitmap(const NXRect *rect, intpixelsWide, intpixelsHigh, int bps, int spp,
int conjig, int mask, void *datal, void *data2, void *data3, void *data4, void *data5)

void NXSizeBitmap(const NXRect *rect, int *size, int *pixelsWide, int *pixelsHigh,
int *bps, int *spp, int *conjig, int *mask)

Warning: These functions are marginally obsolete. Most applications are better served
using the NXBitmapImageRep class to read and display bitmap images.

Functions: NXDivideRect() 2-931

DESCRIPTION The first of these functions, NXDrawBitmapO, renders an image from a bitmap, binary
data that describes the pixel values for the image. The second function, NXReadBitmapO,
reads the bitmap for a rendered image using information about the image obtained from
NXSizeBitmapO. NXReadBitmapO produces data that NXDrawBitmapO can use to
recreate the image. The third function, NXSizeBitmapO, supplies the information required
by NXReadBitmapO.

NXDrawBitmapO renders a bitmap image using an appropriate PostScript operator­
image, colorimage, or alphaimage. It puts the image in the rectangular area specified by
its first argument, reet; the rectangle is specified in the current coordinate system and is
located in the current window. The next two arguments, pixelsWide and pixelsHigh, give
the width and height of the image in pixels. If either of these dimensions is larger or smaller
than the corresponding dimension of the destination rectangle, the image will be scaled
to fit.

The remaining arguments to NXDrawBitmapO describe the bitmap data, as explained in
the following paragraphs.

bps is the number of bits per sample for each pixel and spp is the number of samples per
pixel. Multiplying these two values yields the number of bits used to specify each pixel.

A sample is data that describes one component of a pixel. In an RGB color system, the red,
green, and blue components of a color are specified as separate samples, as are the cyan,
magenta, yellow, and black components in a CMYK system. Color values in a gray scale
are a single sample. Alpha values that determine transparency and opaqueness are specified
as a coverage sample separate from color.

eonjig refers to the way data is configured in the bitmap. It should be specified as one of
two constants:

A separate data channel is used for each sample. The function
provides for up to five channels, datal, data2, data3, data4,
and data5.

Sample values are interwoven in a single channel; all values for
one pixel are specified before values for the next pixel.

Figure 2-2 illustrates these two ways of configuring data.

2-932 Chapter 2: Application Kit

r 9 b ex 9 b ex r 9 b ex

Meshed

Planar

Figure 2-2. Planar and Meshed Configurations

As shown in the illustration, color samples (rgb) precede the coverage sample (a) in
both configurations.

In NeXTSTEP, gray-scale windows store pixel data in planar configuration; color windows
store it in meshed configuration. NXDrawBitmapO can render meshed data in a planar
window, or planar data in a meshed window. However, it's more efficient if the image has
a depth (bps) and configuration (config) that matches the window.

mask specifies how the bitmap data is to be interpreted. It's formed by joining constants
for three kinds of information (using the bitwise OR operator):

Functions: NXDrawBitmap() 2-933

NX_ALPHAMASK Coverage (alpha) values are specified. If
NX_ALPHAMASK is present in mask, spp should be at
least 2-one more than the number of color components.

NX_COLORMASK Color samples are present. If NX_COLORMASK isn't
included in mask, a gray scale is assumed.

NX_MONOTONICMASK In a gray scale, NX_MONOTONICMASK indicates that
1 equals white and 0 equals black, as in the PostScript
model. If mask doesn't include
NX_MONOTONICMASK, the inverse scale is assumed
(1 equals black, 0 equals white). NeXTSTEP uses the
PostScript gray scale.

In a color system, NX_MONOTONICMASK indicates
that CMYK (cyan, magenta, yellow, black) samples are
specified. Its absence indicates RGB (red, green, blue)
samples. This permits the function to verify that the value
given for spp is correct. If NX_MONOTONICMASK is
present in mask, spp should be 4 (5 if alpha values are also
specified). If it isn't, spp should be 3 (4 if alpha values are
also specified).

The remaining arguments, datal through data5, specify the actual bitmap data. If config is
NX_MESHED, only datal is read. If config is NX_PLANAR, each argument should
specify a separate sample.

NXReadBitmapO gets bitmap data for an existing image. It uses the PostScript
readimage operator to read pixel values within the rectangle referred to by its first
argument, recto The rectangle is in the current window and is specified in the current
coordinate system. If the rectangle is rotated so that its sides are no longer aligned with the
screen coordinate system, NXReadBitmapO will read pixel values for the smallest
screen-aligned rectangle enclosing the rectangle specified by recto

NXReadBitmapO writes the bitmap data into the buffers specified by the datal, data2,
data3, data4, and data5 arguments. The number of actual buffers you must provide
depends on whether there's a separate channel for each sample (config) and on the number
of samples per pixel (spp). This information, as well as other information about the image,
should be obtained directly from the device using the NXSizeBitmapO function.

2-934 Chapter 2: Application Kit

When passed a pointer to a rectangle, NXSizeBitmapO gets values that NXReadBitmapO
needs to produce a bitmap for the rectangle. It yields values that can be passed directly to
NXReadBitmapO for the following parameters:

pixelsWide
pixelsHigh
bps
spp
config
mask

It also provides the size, in bytes, that will be required for each channel of bitmap data.
NXSizeBitmapO works through the currentwindowalpha and sizeimage operators. The
following paragraphs describe the kinds of information you could obtain from each of these
operators if you were to use them directly.

If currentwindowalpha returns 0, the image may include some transparent paint and
you'll need to obtain coverage values in addition to color values in the bitmap. Include
NX_ALPHAMASK in mask, and make sure the alpha component is counted in spp.

The sizeimage operator provides values for the p ixe Is Wide , pixelsHigh, and bps parameters
and for these device-dependent values:

• The number of color samples per pixel-l (gray scale), 3 (RGB), or 4 (CMYK). If
there's also an alpha component, you'll need to add 1 to this number to obtain spp.

• A boolean value that reflects whether samples are meshed within a single data channel.
If they're not meshed, the operator returns true in a multiproc parameter, indicating
that in the PostScript language multiple procedures would be required to read the
various samples.

Functions: NXDrawBitmap() 2-935

NXDrawButton(), NXDrawGrayBezel(), NXDrawGroove(),
NXDrawWhiteBezelO, NXDrawliledRects(), NXFrameRect(),
NXFrameRectWithWidthO .

SUMMARY Draw a bordered rectangle

DECLARED IN appkitlgraphics.h

SYNOPSIS void NXDrawButton(const NXRect *aRect, const NXRect *clipRect)
void NXDrawGrayBezel(const NXRect *aRect, const NXRect *clipRect)
void NXDrawGroove(const NXRect *aRect, const NXRect *clipRect)
void NXDrawWhiteBezel(const NXRect *aRect, const NXRect *clipRect)
NXRect *NXDrawTiledRects(NXRect *aRect, constNXRect *clipRect, const int *sides,

const float * grays, int count)
void NXFrameRect(const NXRect *aRect)
void NXFrameRectWithWidth(const NXRect *aRect, NXCoordframeWidth)

DESCRIPTION These functions draw rectangles with borders. NXDrawButtonO draws the rectangle used
to signify a button in the NeXTSTEP user interface, NXDrawTiledRectsO is a generic
function that can be used to draw different types of borders, and the other functions provide
ready-made bezeled, grooved, or line borders. These borders can be used to outline an area
or to give rectangles the effect of being recessed from or elevated above the surface of the
screen, as shown in Figure 2-3.

NXFrameRectO NXDrawButtonO NXDrawWhiteBezelO

NXFrameRectWithWidthO NXDrawG rooveO NXDrawGrayBezelO

Figure 2-3. Rectangle Borders

2-936 Chapter 2: Application Kit

Each function's first argument specifies the rectangle within which the border is to be drawn
in the current coordinate system. Since these functions are often used to draw the border
of a View, this rectangle will typically be that View's bounds rectangle. Some of the
functions also take a clipping rectangle; only those parts of aRect that lie within the clipping
rectangle will be drawn.

As its name suggests, NXDrawWhiteBezelO fills in its rectangle with white;
NXDrawButtonO, NXDrawGrayBezelO, and NXDrawGrooveO use light gray. These
functions are designed for rectangles that are defined in unscaled, unrotated coordinate
systems (that is, where the y-axis is vertical, the x-axis is horizontal, and a unit along either
axis is equal to one screen pixel). The coordinate system can be either flipped or unflipped.
The sides of the rectangle should lie on pixel boundaries.

NXFrameRectO and NXFrameRectWith WidthO draw a frame around the inside of a
rectangle in the current color. NXFrameRectO draws a frame with a width equal to 1.0 in
the current coordinate system; NXFrameRectWith WidthO allows you to set the width of
the frame. Since the frame is drawn inside the rectangle, it will be visible even if drawing
is clipped to the rectangle (as it would be if the rectangle were a View object). These
functions work best if the sides of the rectangle lie on pixel boundaries.

In addition to its aRect and clipRect arguments, NXDrawTiledRectsO takes three more
arguments, which determine how thick the border is and what gray levels are used to form
it. NXDrawTiledRectsO works through NXDivideRectO to take successive
1.0-unit-wide slices from the sides of the rectangle specified by the sides argument. Each
slice is then drawn using the corresponding gray level from grays. NXDrawTiledRectsO
makes and draws these slices count number of times. NXDivideRectO returns a pointer to
the rectangle after the slice has been removed; therefore, if a side is used more than once,
the second slice is made inside the first. This also makes it easy to fill in the rectangle inside
of the border.

In the following example, NXDrawTiledRectsO draws a bezeled border consisting of a
1.0-unit-wide white line at the top and on the left side, and a 1.0-unit-wide dark-gray line
inside a 1.0-unit-wide black line on the other two sides. The rectangle inside this border is
filled in using light gray.

int mySides []

float myGrays []

NXRect *aRecti

{NX_YMIN, NX_XMAX, NX_YMAX, NX_XMIN,
NX_YMIN, NX_XMAX}i

{NX_BLACK, NX_BLACK, NX_WHITE, NX_WHITE,
NX_DKGRAY, NX_DKGRAY}i

NXDrawTiledRects(aRect, (NXRect *)0, mySides, myGrays, 6);
PSsetgray(NX_LTGRAY) i

PSrectfill(aRect->origin.x, aRect->origin.y,
aRect->size.width, aRect->size.height) i

Functions: NXDrawButton() 2-937

As shown, mySides is an array that specifies sides of a rectangle; for example, NX_ YMIN
selects the side parallel to the x-axis with the smallest y-coordinate value. The constants
shown in mySides are described in more detail in the description of NXDivideRectO.
my Grays is an array that specifies the successive gray levels to be used in drawing parts of
the border.

RETURN NXDrawTiledRectsO returns a pointer to the rectangle that lies within the border.

SEE ALSO NXDivideRectO

NXDrawGrayBezelO -7 See NXDrawButtonO

NXDrawGrooveO -7 See NXDrawButtonO

NXDrawTiledRectsO -7 See NXDrawButtonO

NXDrawWhiteBezelO -7 See NXDrawButtonO

NXEditorFilterO -7 See NXFieldFilterO

NXEmptyRectO -7 See NXMouselnRectO

NXEndTimerO -7 See NXBeginTimerO

NXEqualColorO

SUMMARY' Test whether two colors are the same

DECLARED IN appkitlcolor.h

SYNOPSIS BOOL NXEqualColor(NXColor oneColor, NXColor anotherColor)

DESCRIPTION This function compares oneColor to anotherColor and returns YES if they are, in fact, the
same color. Two colors can be the same, yet be represented differently within the NXColor
structure. Therefore, NXColor structures should be compared only through this function,
never directly.

The coverage components of the NXColor structures are included in the comparison.

2-938 Chapter 2: Application Kit

RETURN This function returns YES if the two colors are visually identical, and NO if they're not.

SEE ALSO NXSetColorO, NXConvertRGBAToColorO, NXConvertColorToRGBAO,
NXRedComponentO, NXChangeRedComponentO, NXReadColorO

NXEqualRect() ~ See NXMouselnRect()

NXEraseRect() ~ See NXRectClipO

NXFieldFilter(), NXEditorFilter()

SUMMARY Filter characters entered into Text object

DECLARED IN appkitlText.h

SYNOPSIS unsigned short NXFieldFilter(unsigned short theChar, intflags, unsigned short charSet)
unsigned short NXEditorFilter(unsigned short theChar, intflags, unsigned short charSet)

DESCRIPTION These functions check each character the user types into a Text object's text. Use
NXFieldFilterO, the Text object's default character filter, when you want the user to be
able to move the selection from text field to field by pressing Return, Tab, or Shift-Tab. Use
NXEditorFilterO when you don't want Return, Tab, and Shift-Tab interpreted in this way.

NXFieldFilterO passes on values generated by alphanumeric keys directly to the Text
object for display. Values generated by Return, Tab, Shift-Tab, and the arrow keys are
remapped to constants that have a special meaning for the Text object. The Text object
interprets any of these constants as a movement command, a command to end the Text
object's status as first responder. Based on the key pressed, the Text object's delegate can
control which other object should become the first responder. NXFieldFilterO remaps to
o all other values less than Ox20 and any values generated in conjunction with the
Command key.

NXEditorFilterO is identical to NXFieldFilterO except that it passes on values
corresponding to Return, Tab, and Shift-Tab directly to the Text object.

Functions: NXEqualRect() 2-939

RETURN NXFieldFilterO returns 0 (NX_ILLEGAL), the ASCII value of the character typed, or a
constant the Text object interprets as a movement command. The constants are:

NX_RETURN
NX_TAB
NX_BACKTAB
NX_LEFT
NX_RIGHT
NX_VP
NX_DOWN

This function also returns 0 if a key is pressed while a Command key is held down.

NXEditorFilterO's return values are identical to those of NXFieldFilterO, except
that it also returns the values generated by Return, Tab, and Shift-Tab without first
remapping them.

NXFindColorNamedO -7 See NXColorListNameO

NXFindPaperSizeO

SUMMARY Find dimensions of specified paper type

DECLARED IN appkit/PageLayout.h

SYNOPSIS const NXSize *NXFindPaperSize(const char *paperName)

DESCRIPTION NXFindPaperSizeO returns a pointer to an NXSize structure containing the dimensions of
a sheet of paper of type paperName. The dimensions are given in points (72 per inch).
paperName is a character string that corresponds to one of the standard paper types used
by conforming PostScript documents. For example, it could be "Letter", "Legal", or "A4".
By providing the precise size of these types, this function helps programs adjust the
on-screen display to the page size of the document being displayed.

2-940 Chapter 2: Application Kit

NXFrameLinkRect(), NXLinkFrameThicknessO

SUMMARY Draw a distinctive outline around linked data

DECLARED IN appkitINXDataLinkManager.h

SYNOPSIS void NXFrameLinkRect(const NXRect *aRect, BaaL isDestination)
float NXLinkFrameThickness(void)

DESCRIPTION NXFrameLinkRectO draws a distinctive link outline just outside the rectangle specified
byaRect. To draw an outline around a destination link, isDestination should be YES,
otherwise it should be NO. NXLinkFrameThicknessO returns the thickness of the link
outline so that the outline can be properly erased by the application, or for other purposes.

NXFrameRectO ~ See NXDrawButtonO

NXFrameRectWithWidthO ~ See NXDrawButtonO

NXFreeAlertPanelO ~ See NXRunAlertPanelO

NXGetAlertPanelO ~ See NXRunAlertPanelO

NXGetBestDepthO ~ See NXColorSpaceFromDepthO

NXGetFileTypeO ~ See NXCreateFileContentsPboardTypeO

NXGetFileTypesO ~ See NXCreateFileContentsPboardTypeO

Functions: NXFrameLinkRect() 2-941

NXGetNamedObjectO, NXGetObjectNameO, NXNameObject(),
NXUnnameObjectO

SUMMARY Refer to objects by name

DECLARED IN appkitl Application.h

SYNOPSIS id NXGetNamedObject(const char *name, id owner)
const char *NXGetObjectName(id theObject)
int NXNameObject(const char *name, id theObject, id owner)
int NXUnnameObject(const char *name, id owner)

DESCRIPTION These functions permit programs that use the Application Kit to refer to objects by name.
Names are assigned with Interface Builder or with the NXNameObjectO function
described here. When you create an object with Interface Builder, Interface Builder assigns
it a default name that you can then edit or replace with a name of your own choosing.
Underscores shouldn't be used as part of a name.

To distinguish among different objects with the same name, each object can also be
assigned another object as an owner; the owner can be nil. By default, Interface Builder
assigns the Application object (NXApp) as the owner of a Window, and a View's Window
as the owner of that View.

NXGetNamedObjectO returns the object having the name and owner passed as
arguments, or nil if there is no such object. Only one object can be identified by a given
combination of a name and owner. NXGetObjectNameO takes an object and returns that
object's name.

NXNameObjectO assigns an object a name and owner. An object can be assigned
any number of different names and owners. However, if you attempt to assign a
combination of a name and owner already used to identify another (or the same) object,
the assignment fails.

NXUnnameObjectO disassociates an object from the combination of a name and owner.
Thereafter, NXGetNamedObjectO won't return the object when passed the name and
owner as arguments.

RETURN NXNameObjectO returns 1 if it successfully assigns a name to an object, and 0 if not.

NXUnnameObjectO returns 1 if it disassociates an object from the combination of name
and owner passed as arguments, and 0 if the name and owner weren't associated with an
object to begin with.

2-942 Chapter 2: Application Kit

NXGetObjectNameO -7 See NXGetNamedObjectO

NXGetOrPeekEventO

SUMMARY Access event record in event queue

DECLARED IN appkitl Application.h

SYNOPSIS NXEvent *NXGetOrPeekEvent(DPSContext context, NXEvent *anEvent, int mask,
double timeout, int threshold, int peek)

DESCRIPTION NXGetOrPeekEventO accesses an event record in an application's event queue and
returns a pointer to it. This function combines the facilities of DPSGetEventO and
DPSPeekEventO, but unlike these client library functions, it allows your application to be
journaled. Applications based on the Application Kit should use this function (or the
Application class methods such as getNextEvent: and peekNextEvent:into:) to access
event records.

The first argument, context, represents a PostScript execution context within the Window
Server. Virtually all applications have only one execution context, which can be returned
through Application's context method. Applications having more than one execution
context can use the constant DPS_ALLCONTEXTS to access events from all contexts
belonging to them.

The second argument, anEvent, is a pointer to an event record. If an event is found, its data
is copied into the storage referred to by this pointer.

mask determines the types of events sought. See "Types and Constants" for a list of event
type masks.

If an event matching the event mask isn't available in the queue, NXGetOrPeekEventO
waits until one arrives or until timeout seconds have elapsed, whichever occurs first. The
value of timeout can be in the range of 0.0 to NX_FOREVER. If timeout is 0.0, the routine
returns an event only if one is waiting in the queue when the routine asks for it. If timeout
is NX_ FOREVER, the routine waits until an appropriate event arrives before returning.

threshold is an integer in the range a to 31 that determines which other services may be
provided during a call to NXGetOrPeekEventO. Requests for services are registered by
the functions DPSAddTimedEntryO, DPSAddPort(), and DPSAddFDO. Each of these

Functions: NXGetObjectName() 2-943

functions takes an argument specifying a priority level. If this level is equal to or greater
than threshold, the service is provided before NXGetOrPeekEventO returns.

The last argument, peek, specifies whether NXGetOrPeekEventO removes the event
from the event queue. If peek is 0, NXGetOrPeekEventO removes the record from the
queue after making its data available to the application; otherwise, it leaves the record in
the queue.

RETURN If NXGetOrPeekEventO finds an event record that meets the requirements of its
parameters, it returns a pointer to it. Otherwise, it returns NULL.

SEE ALSO NXJournalMouseO, DPSGetEventO (Display PostScript),
DPSPeekEventO (Display PostScript), DPSDiscardEventO (Display PostScript)

NXGetWindowServerMemory()

SUMMARY Return the amount of memory being used by a context

DECLARED IN appkitl Application.h

SYNOPSIS int NXGetWindowServerMemory(DPSContext context, int *virtuaIMemory,
int *windowBackingMemory, NXStream *windowDumpStream)

DESCRIPTION NXGetWindowServerMemoryO calculates the amount of Window Server memory being
used at the moment by the given Window Server context. If NULL is passed for the
context, the current context is used. The amount of PostScript virtual memory used by the
current context is returned in the int pointed to by virtualMemory; the amount of window
backing store used by windows owned by the current context is returned in the int pointed
to by windowBackingMemory. The sum of these two numbers is the amount of the Window
Server's memory that this context is responsible for.

To calculate these numbers, NXGetWindowServerMemoryO uses the PostScript
language operators dumpwindows and vmstatus. It takes some time to execute; thus,
calling this function in normal operation is not recommended.

If a non-NULL value is passed in for windowDumpStream, the information returned from
the dumpwindows operator is echoed to the specified NXStream. This can be useful for
finding out more about which windows are using up your storage.

2-944 Chapter 2: Application Kit

RETURN Normally, NXGetWindowServerMemoryO returns O. If NULL is passed for context and
there's no current DPS context, this function returns-I.

NXGrayComponent() ~ See NXRedComponent()

NXGreenComponentO ~ See NXRedComponentO

NXHighlightRect() ~ See NXRectClipO

NXHomeDirectoryO, NXUserNameO

SUMMARY Get user's home directory and name

DECLARED IN appkitl Application.h

SYNOPSIS const char *NXHomeDirectory(void)
const char *NXUserName(void)

DESCRIPTION These functions return the user's home directory and name.

RETURN NXHomeDirectoryO returns a pointer to the full pathname of the user's home directory.
NXUserNameO returns a pointer to the user's name.

NXHueComponentO ~ See NXRedComponentO

NXlnsetRectO ~ See NXSetRect()

NXlntegralRect() ~ See NXSetRect()

NXlntersectionRect() ~ See NXUnionRect()

NXlntersectsRectO ~ See NXMouselnRect(

NXlsServicesMenultemEnabledO ~
See NXSetServicesMenultemEnabledO

Functions: NXGrayComponent() 2·945

NXJournalMouseO

SUMMARY Allow journaling during direct mouse tracking

DECLARED IN appkitINXJournaler.h

SYNOPSIS void NXJournalMouse(void)

DESCRIPTION This function lets an application that accesses the status of the mouse directly (by calling
functions such as PSstilldownO or PScurrentmouseO) participate in eventjournaling. If
your application tests the status of the mouse by analyzing event records received through
the Application Kit's normal distribution mechanism, you won't need to call this function.

For an application to be journaled, it must ask for events. If a routine in your application
bypasses the Kit's event distribution system to test the mouse's position or button status, it
must call NXJournalMouseO to ensure that its activities can be journaled. For example,
a routine that takes some action as long as the mouse button is depressed should call
NXJournalMouseO before testing the mouse:

do

NXJournalMouse() ;

PSstilldown (mouseDownEvent.data.mouse. eventNum, &stillDown);

/* Do some action */

while (stillDown);

NXJournalMouseO asks for a journal, mouse-up, or mouse-dragged event; sends a copy
to the journaler (if one is recording); and then discards the event.

Note: In the example above, releasing the mouse button causes the loop to exit. If the loop
didn't call NXJournalMouseO, the mouse-up event would remain in the event queue after
the loop exited. With the addition of NXJournalMouseO, this event is discarded. For most
applications, this difference is of no consequence.

SEE ALSO NXGetOrPeekEventO

NXLinkFrameThicknessO ~ See NXFrameLinkRectO

2-946 Chapter 2: Application Kit

NXLogErrorO

SUMMARY Write a formatted error string

DECLARED IN appkitlnextstd.h

SYNOPSIS void NXLogError(const char *format, ...)

DESCRIPTION NXLogErrorO writes a formatted string to the console or stderr, depending on whether
the application was launched from the Workspace Manager or a shell. NXLogErrorO calls
syslogO, which marks the message with the time of occurrence and the application's
process identification number. See the UNIX manual page for syslogO for more
information.

SEE ALSO NXRegisterErrorReporterO, NX_RAISEO (Common Functions),
NXDefaultExceptionRaiserO (Common Functions)

NXMagentaComponent() ~ See NXRedComponent()

NXMouselnRect(), NXPointlnRect(), NXlntersectsRect(),
NXContainsRect(), NXEqualRectO, NXEmptyRect()

SUMMARY Test graphic relationships

DECLARED IN appkit/graphics.h

SYNOPSIS BOOL NXMouselnRect(const NXPoint *aPoint, const NXRect *aRect, BOOLjlipped)
BOOL NXPointInRect(const NXPoint *aPoint, const NXRect *aRect)
BOOL NXlntersectsRect(const NXRect *aRect, const NXRect *bRect)
BOOL NXContainsRect(const NXRect *aRect, const NXRect *bRect)
BOOL NXEqualRect(const NXRect *aRect, const NXRect *bRect)
BOOL NXEmptyRect(const NXRect *aRect)

Functions: NXLogError() 2-947

DESCRIPTION These functions test the rectangles referred to by their arguments; they return YES if the
test succeeds and NO if it fails. The functions that take two arguments assume that both
arguments are expressed in the same coordinate system.

NXMouselnRectO is used to determine whether the hot spot of the cursor is inside a given
rectangle. It returns YES if the point referred to by its first argument is located within the
rectangle referred to by its second argument. If not, it returns NO. It assumes an unsealed
and unrotated coordinate system.

The hot spot is the point within the cursor image that's used to report the cursor's location.
It's situated at the upper left comer of a critical pixel in the cursor image, the one cursor
pixel that's constrained to always be on screen. NXMouselnRectO is designed to return
YES when this pixel is inside the r~tangle, and NO when it's not. Thus if the point referred
to by.aPoint lies along the upper or left edge of the rectangle, this function should return
YES. But if the point lies along the lower or right edge of the rectangle, it should return
NO. To make this determination, the function needs to know the polarity of the y-axis. The
third argument,jlipped, should be NO if the positive y-axis extends upward, and YES if the
coordinate system has been flipped so that the positive y-axis extends downward. (For
convenience, View's mouse:inRect: method automatically determines whether the
coordinate system is flipped.

NXPointInRectO performs the same test as NXMouselnRectO but assumes a flipped
coordinate system. If the coordinate system is unflipped, it gives the wrong result if the
point is coincident with the maximum or minimum y-coordinate of the rectangle. You
should use NXMouselnRectO when testing the cursor's location.

NXContainsRectO returns YES if aRect completely encloses bRect. Otherwise, it
returns NO.

NXlntersectsRectO returns YES if the two rectangles overlap, and NO otherwise.
Adjacent rectangles that share only a side are not considered to overlap.

, Ii's possible for NXlntersectsRectO to return NO even though the two rectangles include
some of the same pixels. This can happen when the rectangles don't have any area in
common, yet their outlines pass through some of the same pixels-for example, when they
share a side not at a pixel boundary. In the N eXTSTEP imaging model, any pixel an outline
passes through is treated as if it were inside the outline.

NXEqualRectO returns YES if the two rectangles are identical, and NO otherwise.

2-948 Chapter 2: Application Kit

NXEmptyRectO returns YES if the rectangle encloses no area at all-that is, if it has no
height or no width (or if its width or height is negative). If the height and width are both
positive, it returns NO.

SEE ALSO NXUnionRectO, NXSetRectO

NXNameObjectO ~ See NXGetNamedObjectO

NXNumberOfColorComponentsO ~ See NXColorSpaceFromDepthO

NXOffsetRectO ~ See NXSetRectO

NXOrderStrings(), NXDefaultStringOrderTable()

SUMMARY Provide table-driven string ordering service

DECLARED IN appkitlText.h

SYNOPSIS int NXOrderStrings(const unsigned char *stringl, const unsigned char *string2,
BOOL caseSensitive, int length, NXStringOrderTable *table)

NXStringOrderTable *NXDefauItStringOrderTable(void)

DESCRIPTION NXOrderStringsO returns a value indicating the ordering of the strings sl and s2, as
determined by the NXStringOrderTable structure table. If caseSensitive is NO, capital and
lowercase versions of a letter are considered to have identical rank. The comparison
considers at most the first length characters of each string. For convenience, you can pass
-1 for length if both strings are null-terminated. If table is NULL, the default ordering table
(as described below) is used. NXOrderStringsO returns 1,0, or-l depending on whether
sl is greater than, equal to, or less than s2 according to table.

When comparing strings that are visible to the user, you should generally use
NXOrderStrings(sl, s2, YES, -1, NULL) as a replacement for strcmp(sl, s2) and
NXOrderStrings(sl, s2, YES, n, NULL) as a replacement for strncmp(sl, s2, n).

Functions: NXNameObject() 2-949

NXOrderStringsO consults an NXStringOrderTable structure when comparing strings.
This structure is declared in appkitIText.h:

typedef struct {
unsigned char primary[256] i

unsigned char secondary[256] i

unsigned char primaryCI[256] i

unsigned char secondaryCI[256] i

NXStringOrderTablei

The first two arrays contain ordering information for case sensitive searches; the last two
are for case insensitive searches. NXOrderStringsO determines a character's rank by
using the character to index into the appropriate primary array. The value found at that
position determines the character's rank. For example, in the default ordering table the
value at the 'a' position is less than that at the 'b' position, but the values at the '0' and '0'
positions are identical. The secondary arrays provide additional ordering information for
ligature characters (such as 're' and 'fi'), in effect breaking the ligature apart for the
purposes of ordering. Thus, the two characters 'ae' and the single character 're' are given
equal rank.

NeXTSTEP provides a default order table, which you can obtain by calling
NXDefaultStringOrderTableO. If you want to create your own order table, it's best to
start with the default table and algorithmically modify it (perhaps in conjunction with the
NXCType routines such as NXIsAlphaO, which are described in Chapter 3, "Common
Classes and Functions"). In this way, you'll benefit from using character tables that have
already been localized. The entry at the ° position in each array must be 0.

RETURN NXOrderStringsO returns 1,0, or -1 depending on whether sl is greater than, equal to, or
less than s2 according to table. NXDefaultStringOrderTableO returns a pointer to the
default string order table.

NXPerformService()

SUMMARY Programmatically invokes a Services menu service

DECLARED IN appkitiListener.h

SYNOPSIS BOOL NXPerformService(const char *itemName, Pasteboard *pboard)

2-950 Chapter 2: Application Kit

DESCRIPTION NXPerformServiceO allows an application to programmatically invoke a service found in
its services menu. itemName is a Services menu item, in any language. If the requested
service is from a submenu of the Services menu, itemName must contain a slash (for
example, "Mail/Selection"). The Pasteboard pboard must contain the data required by
the service, and when the function returns, pboard will contain the data supplied by the
service provider.

RETURN Returns YES if the service is successfully performed, NO otherwise.

NXPing()

SUMMARY Synchronize the application with the Window Server

DECLARED IN appkitlgraphics.h

SYNOPSIS void NXPing(void)

DESCRIPTION NXPingO helps applications synchronize their actions with the actions of the Window
Server; it enables an application to respond smoothly to user events.

An application can generate PostScript code fasterthan the Window Server can interpret it.
An application can therefore "get ahead" of the Server-it can get events and respond to
them before its responses to previous events are displayed to the user. To the user, it appears
that the application is slow, or that there's discontinuity between an event and the response.

NXPingO causes the application to pause until the Window Server catches up. It flushes
the connection buffer so that all current PostScript code is sent to the Server and returns
only when all the code has been interpreted.

Waiting for the Window Server to catch up with the application is sometimes a good idea,
for two reasons:

• It lets the Server have full access to the CPU. The application stops competing with it
for system resources.

• It gives the application a chance to generate less, and more relevant, PostScript code. An
application won't fall even further behind the user while it waits for the Window Server
if it combines its responses to events or allows events to be coalesced in the event queue.

Functions: NXPing() 2-951

NXPingO is most typically used in a modal loop. In a tracking loop, it should be called just
before getting each new event (after all the PostScript code has been generated in response
to the last event). The following schematic for a mouseDown: method illustrates its use.
(Comments that would be replaced by code in any real method are shown in italic type.)

- mouseDown: (NXEvent *)thisEvent

BOOL shouldLoop = YES;
int oldMask = [window addToEventMask:NX_LMOUSEDRAGGEDMASK] ;

while (shouldLoop) {

/*

/*

* Draw in response to the event
*/

NXPing() ;
theEvent = [NXApp getNextEvent: (NX_LMOUSEUPMASK

I NX_LMOUSEDRAGGEDMASK)];

if (theEvent->type == NX_LMOUSEUP)

shouldLoop = NO;

* Replace dynamic drawing with a static display
*/

[window setEventMask:oldMask];
return self;

During the wait imposed by NXPingO, mouse-dragged (and mouse-moved) events will be
coalesced in the event queue. When the application next gets an event, it will be a more
up-to-date one than if NXPingO had not been used. Coalescing also serves to reduce the
total amount of PostScript code generated.

NXPingO also lets an application more efficiently group its responses to a number of
similar events. In the following example, the method that responds to key-down events uses
the peekNextEvent:into: method to take all available key-down events from the event
queue and display them at once. The use of NXPingO means that the example will be
invoked less often than it otherwise would. However, it will consolidate events into fewer
instructions for the Window Server.

- keyDown: (NXEvent *)theEvent

/*
* Check theEvent->data.key.charSet and
* theEvent->data.key.charCode and set up the array of

* characters to displayed
*/

2-952 Chapter 2: Application Kit

while (1)

/*

/* Peek at the next event */

NXEvent next;
theEvent = [NXApp peekNextEvent:NX_ALLEVENTS into:&next];

/* Break the loop if there is no next event */
if (! theEvent)

break;
/* Skip over key-up events */

else if (theEvent->type == NX_KEYUP
[NXApp getNextEvent:NX_KEYUPMASK];
continue;

/* Respond only to key-down events */

else if (theEvent->type == NX_KEYDOWN) {
/*

* Add the new character to the array to be displayed

*/
[NXApp getNextEvent:NX_KEYDOWNMASK];

/* Break the loop on all other event types */

else

break;

* Display the array of characters
*/

NXPing();

return self;

The wait imposed by NXPingO may mean that there are more key-down events in the event
queue each time this method is invoked. Since it's much more efficient for the application
to send fewer instructions to the Window Server to display longer strings, this delay helps
rather than hurts.

In the examples shown above, NXPingO is called just before the application is ready to get
another event. This is the most appropriate place for it, since it means that the response to
the last event will be complete-including the Window Server's part-before the response
to the next event begins. It might be noted that both NXPingO and the functions and
methods that get events flush the output buffer to the Window Server. However, the buffer
isn't flushed if it's empty, so calling NXPingO before getting an event doesn't cause an

. extra operation to be performed.

Functions: NXPing() 2-953

Using NXPingO has two negative consequences:

• It reduces the Window Server's throughput-the amount of PostScript code that it can
interpret in a given time period. This is mainly due to the increased communication
between the Server and the application.

• It reduces the granularity of the application's response to events. When events are
coalesced in the event queue, cursor movements are tracked at greater intervals.

Therefore, you should not use NXPingO in a simple event loop unless the time needed to
execute the PostScript code each event generates is longer than the time needed to complete
the loop.

Although NXPingO is most often used in modal loops, it's also appropriate to use it in
situations where information from the Window Server is needed before the application can
proceed. For example, you may want to call NXPingO before entering a section of code
that depends on previous PostScript instructions being executed without error. Since your
application won't get notified of any errors until the PostScript code is actually executed,
NXPingO allows it to wait for the notification before proceeding.

SEE ALSO DPSFlushO (Display PostScript)

NXPointlnRectO ~ See NXMouselnRectO

NXPortFromNameO, NXPortNameLookup()

SUMMARY Get send rights to an application port

DECLARED IN appkitlListener.h

SYNOPSIS port_t NXPortFromName(const char *name, const char *host)
port_t NXPortNameLookup(const char *name, canst char *host)

2-954 Chapter 2: Application Kit

DESCRIPTION NXPortFromNameO and NXPortNameLookupOboth return send rights to the port
that's registered with the Network Name Server under name for the host machine. If
host is a NULL pointer or an empty string, the local host is assumed. This is the most
common usage.

An application generally registers with the Network Name Server under the name it uses
for its executable file. For example, Digital Webster™ registers under "Webster" and Mail
under "Mail". To get the port for Workspace, you should use the name
NX_ WORKSPACEREQUEST. Note, however, that this port isn't available until the
application is fully initialized; requests for this port before Application's appDidlnit:
method is invoked will return PORT_NULL.

If no port is registered for the name application, NXPortNameLookupO returns
PORT_NULL. However, NXPortFromNameO tries to have host's Workspace Manager
launch the application. If the application can be launched and if it registers with the
Network Name Server, send rights to its port are returned. This strategy is almost always
successful for the local host. It's more problematic for a remote host, since the Workspace
Manager is normally protected from messages coming from other machines.

If, in the end, no port can be found for the name application, NXPortFromNameO, like
NXPortNameLookupO, returns PORT_NULL.

Applications should use these two functions, rather than the Mach netname_look_upO
function, to get send rights to a public port. Although both functions currently use
netname_look_upO to find the port, this may not always be true. In future releases,
Listener objects might "check in" with another server-such as the Bootstrap Server­
rather than the Network Name Server. In this case, the two functions described here will
continue to find and return the port associated with name, but netname_look_upO will not.

RETURN Both functions return send rights to the public port of the name application on the host
machine, or PORT_NULL if the port can't be found.

NXPortNameLookupO ---7 See NXPortFromNameO

NXReadBitmapO ---7 See NXDrawBitmapO

Functions: NXPortNameLookup() 2·955

NXReadColor(), NXWriteColor()

SUMMARY Read and write a color from a typed stream

DECLARED IN appkitlcolor.h

SYNOPSIS NXColor NXReadColor(NXTypedStream *stream)
void NXWriteColor(NXTypedStream * stream, NXColor color)

DESCRIPTION NXReadColorO reads a color from the typed stream, stream, and returns it.
NXWriteColorO writes a color value, color, to a typed stream. The stream can be
connected to a file, to memory, or to some other repository for data.

NXColor values should be read and written only using these functions. When a color is
written by NXWriteColorO and then read back by NXReadColorO, the color is
guaranteed to be the same. This cannot be guaranteed if NXColor structures are read and
written directly-for example, through standard C functions like freadO and fwriteO. The
internal format of an NXColor data structure is not specified and therefore may change in
future releases.

RETURN NXReadColorO returns the color value it reads.

EXCEPTIONS NXReadColorO raises an NX_newerTypedStream exception if the data it's expected to
read is not of type NXColor.

SEE ALSO NXSetColorO, NXConvertRGBAToColorO, NXConvertColorToRGBAO,
NXEqualColorO, NXRedComponentO, NXChangeRedComponentO

2-956 Chapter 2: Application Kit

NXReadColorFromPasteboard(), NXWriteColorToPasteboard()

SUMMARY Read and write NXColor data on the pasteboard

DECLARED IN appkitlcolor.h

SYNOPSIS NXColor NXReadColorFromPasteboard(id pasteboard)
void NXWriteColorToPasteboard(id pasteboard, NXColor color)

DESCRIPTION Use these functions to read and write NXColor data on a pasteboard

NXReadColorFromPasteboardO looks at pasteboard to see if it contains data of
NXColorPboardType. If it finds color, it then checks to see if the application can import
alpha, and, if not, removes any alpha component before returning the NXColof.

NXWriteColorToPasteboardO writes the NXColor color to the Pasteboard object
pasteboard.

RETURN NXReadColorFromPasteboardO returns the COIOf found on the pasteboard; if no color is
found, it returns NX_COLORBLACK.

SEE ALSO Pasteboard class, - doesImportAlpba (Application class)

NXReadPixelO

SUMMARY Read and write NXColor data on the pasteboard

DECLARED IN appkitlgraphics.h

SYNOPSIS NXColor NXReadPixel(const NXPoint * location)

DESCRIPTION NXReadPixelO returns the color of the pixel at the given location. The location argument
is taken in the current coordinate system-in other words, you must lock focus on the View
that contains the pixel that you wish to query, and then pass the coordinate for the pixel in
the View's coordinate system.

Functions: NXReadColorFromPasteboard() 2-957

NXReadPoint(), NXWritePoint(), NXReadRect(), NXWriteRect(),
NXReadSize(), NXWriteSize()

SUMMARY Read or write NeXTSTEP-defined data types to a typed stream

DECLARED IN appkit/graphics.h

SYNOPSIS void NXReadPoint(NXTypedStream *typedStream, NXPoint *aPoint)
void NXWritePoint(NXTypedStream *typedStream, const NXPoint *aPoint)
void NXReadRect(NXTypedStream *typedStream, NXRect *aRect)
void NXWriteRect(NXTypedStream *typedStream, const NXRect *aRect)
void NXReadSize(NXTypedStream *typedStream, NXSize *aSize)
void NXWriteSize(NXTypedStream *typedStream, const NXSize *aSize)

DESCRIPTION These functions read and write NXPoint, NXSize, or NXRect structures from and to an
open typed stream. They can be used within read: or write: methods for archiving
purposes.

NXReadPointO, NXReadSizeO, and NXReadRectO each take a typed stream as a first
argument and place the data read from the stream into the location specified by the second
argument.

NXWritePointO, NXWriteSizeO, and NXWriteRectO. write the data pointed to by their
second arguments to the typed streams.

EXCEPTIONS All six functions check whether the typed stream has been opened for reading or for writing
and raise a TYPEDSTREAM_FILE_INCONSISTENCY exception if the type isn't
correct. For example, if NXReadPointO is called and the stream was opened for writing,
the exception is raised.

The functions for reading raise a TYPEDSTREAM_FILE_INCONSISTENCY exception
if the data to be read is not of the expected type.

SEE ALSO NXOpenTypedStreamO (Common Functions), NXReadTypeO (Common Functions),
NXReadArrayO (Common Functions), NXReadObjectO (Common Functions)

2-958 Chapter 2: Application Kit

NXReadRectO ~ See NXReadPointO

NXReadSizeO ~ See NXReadPointO

NXReadWordTableO, NXWriteWordTable()

SUMMARY Read or write Text object's word tables

DECLARED IN appkitlText.h

SYNOPSIS void NXReadWordTable(NXZone *zone, NXStream *stream,
unsigned char **preSelSmart, unsigned char **postSelSmart,
unsigned char **charCategories, NXFSM **wrapBreaks, int *wrapBreaksCount,
NXFSM **clickBreaks, int *clickBreaksCount, BOOL *charWrap)

void NXWriteWordTable(NXStream *stream, const unsigned char *preSelSmart,
const unsigned char *postSelSmart, const unsigned char *charCategories,
const NXFSM *wrapBreaks, int wrapBreaksCount, const NXFSM *clickBreaks,
int clickBreaksCount, BOOL charWrap)

DESCRIPTION These functions read and write the Text object's word tables. Given stream, a pointer to a
stream containing appropriate data, NXReadWordTableO creates word tables in the
memory zone specified by zone. Conversely, given references to word table structures,
NXWriteWordTableO records the structures in the stream referred to by stream.

The word table arguments taken by these two functions are identical except for the degree
of indirection. For each table it will create, NXReadWordTableO takes the address of a
pointer. When the function returns, these pointers will point to the newly created tables.
On the other hand, NXWriteWordTableO takes a pointer to each table it will record to
the stream.

preSelSmart and postSelSmart refer to smart cut and paste tables. These tables specify
which characters preceding or following the selection will be treated as equivalent to a
space. wrapBreaks refers to a break table, the table that a Text object uses to determine
word boundaries for line breaks. wrapBreaksCount gives the number of elements in the
array of NXFSM structures that make up the break table. Similarly, clickBreaks and
clickBreaksCount refer to a click table, the table that determines word boundaries for word
selection. Finally, charWrap refers to a flag indicating whether words whose length
exceeds the Text object's line length should be wrapped on a character-by-character basis.

Functions: NXReadRect() 2-959

Word tables can be set through the defaults system. The global parameter
NXWordTablesFile determines which word table file an application will use. The value for
this parameter can be either a file name or the special values "English" or "e". The special
values cause built-in tables for those languages to apply.

EXCEPTIONS NXReadWordTableO raises an NX_ wordTablesRead exception if it's unable to open
stream. NXWriteWordTableO raises an NX_wordTablesWrite exception if it's unable to
open stream or if charCategories, wrapBreaks, or clickBreaks is NULL.

NXRectClipO, NXRectClipListO, NXRectFiIlO, NXRectFillListO,
NXRectFiliListWithGraysO, NXEraseRectO, NXHighlightRectO

SUMMARY Optimize drawing

DECLARED IN appkitlgraphics.h

SYNOPSIS void NXRectClip(const NXRect *aRect)
void NXRectClipList(const NXRect *rects, int count)
void NXRectFill(const NXRect *aRect)
void NXRectFillList(const NXRect *rects, int count)
void NXRectFillListWithGrays(const NXRect *rects, const float *grays, int count)
void NXEraseRect(const NXRect *aRect)
void NXHighlightRect(const NXRect *aRect)

DESCRIPTION These functions provide efficient ways to carry out common drawing operations on
rectangular paths.

NXRectClipO intersects the current clipping path with the rectangle referred to by its
argument, aRect, to determine a new clipping path. NXRectClipListO takes an array of
count number of rectangles and intersects the current clipping path with each of them.
Thus, the new clipping path is the graphic intersection of all the rectangles and the original
clipping path. Both functions work through the rectclip operator. After computing the new
clipping path, the current path is reset to empty.

2-960 Chapter 2: Application Kit

NXRectFillO fills the rectangle referred to by its argument with the current color.
NXRectFillListO fills a list of count rectangles with the current color. Both work through
the rectfill operator.

NXRectFillListWithGraysO takes a list of count rectangles and a matching list of count
gray values. The first rectangle is filled with the first gray, the second rectangle with the
second gray, and so on. There must be an equal number of rectangles and gray values. The
rectangles should not overlap; the order in which they'll be filled can't be guaranteed. This
function alters the current color of the current graphics state, setting it unpredictably to one
of the values passed in grays.

As its name suggests, NXEraseRectO erases the rectangle referred to by its argument,
filling it with white. It does not alter the current color.

NXHighlightRectO uses the compositerect operator to highlight the rectangle referred to
by its argument. Light gray becomes white, and white becomes light gray. This function
must be called twice, once to highlight the rectangle and once to unhighlight it; the
rectangle should not be left in its highlighted state. When not drawing on the screen, the
compositing operation is replaced by one that fills the rectangle with light gray.

SEE ALSO NXSetRectO, NXUnionRectO

NXRectClipListO ~ See NXRectClipO

NXRectFiliO ~ See NXRectClipO

NXRectFiliListO ~ See NXRectClipO

NXRectFiliListWithGraysO ~ See NXRectClipO

Functions: NXRectClipList() 2-961

NXRedComponent(), NXGreenComponent(), NXBlueComponent(),
NXCyanComponent(), NXMagentaComponent(),
NXVeliowComponent(), NXBlackComponent(), NXHueComponent(),
NXSaturationComponent(), NXBrightnessComponent(),
NXGrayComponent(), NXAlphaComponent()

SUMMARY Isolate one component of a color

DECLARED IN appkitlcolor.h

SYNOPSIS float NXRedComponent(NXColor color)
float NXGreenComponent(NXColor color)
float NXBlueComponent(NXColor color)
float NXCyanComponent(NXColor color)
float NXMagentaComponent(NXColor color)
float NXYellowComponent(NXColor color)
float NXBlackComponent(NXColor color)
float NXHueComponent(NXColor color)
float NXSaturationComponent(NXColor color)
float NXBrightnessComponent(NXColor color)
float NXGrayComponent(NXColor color)
float NXAlphaComponent(NXColor color)

DESCRIPTION Each of these functions takes an NXColor structure as an argument and returns the value of
one component of the color, as indicated by the function name.

RETURN Each function returns a component of the color passed as an argument. The function name
indicates which component is returned. NXAlphaComponentO returns NX_NOALPHA
if a coverage component is not specified for the color. Otherwise, all return values lie in
the range 0.0 through 1.0.

SEE ALSO NXChangeRedComponentO, NXSetColorO, NXConvertRGBAToColorO,
NXConvertColorToRGBAO, NXEqualColorO, NXReadColorO

2-962 Chapter 2: Application Kit

NXRegisterErrorReporter(), NXRemoveErrorReporterO,
NXReportError()

SUMMARY Specify an error reporter

DECLARED IN appkitierrors.h

SYNOPSIS void NXRegisterErrorReporter(int min, int max, NXErrorReporter *proc)
void NXRemoveError Reporter(int code)
void NXReportError(NXHandler * errorState)

DESCRIPTION These three functions set up an error reporting procedure, which typically includes writing
a message to stderr. When an error is raised (using NX_RAISEO), each of the nested error
handlers is notified successively until one can handle the error without forwarding it to the
next level. This handler executes its error handling code, which usually includes calling
NXReportErrorO.

NXReportErrorO's errorState argument contains information about the error, including
an error code that identifies the error. (The NXHandler structure is defined in the header
file objc/error.h.) NXReportErrorO uses this error code to search the codes for which
error reporters have been registered (see,below). When it finds a match, it calls the
corresponding procedure. If no matching error code is found, an unknown error code
message is written to stderr.

The Application Kit registers its error reporters in the initialize class method of the
Application object. Other applications that subclass Application will use these reporters by
default, but they can also define their own set of errors and a reporter. To create your own
range of error codes and corresponding error messages, call NXRegisterErrorReporterO.
Its first two arguments define the range of numbers you will use as error codes.
Applications that define their own reporter should begin their range at NX_APPBASE.
The third argument points to the procedure that matches an error code in that range with an
error message.

NXRemoveErrorReporterO removes the error reporter that had been assigned to the error
code passed in as its argument.

SEE ALSO NX_RAISEO (Common Functions), NXDefaultTopLevelErrorHandlerO

Functions: NXRegisterErrorReporter() 2-963

NXRemoteMethodFromSelO, NXResponsibleDelegate()

SUMMARY Match an Objective C method and a receiver to a remote message

DECLARED IN appkitiListener.h

SYNOPSIS NXRemoteMethod *NXRemoteMethodFromSel(SEL aSelector,
NXRemoteMethod *methods)

id NXResponsibleDelegate(id aListener, SEL aSelector)

DESCRIPTION These two functions are used within subclasses of the Listener class. When you define a
Listener subclass using the msgwrap utility, calls to these functions are generated
automatic all y.

NXRemoteMethodFromSelO looks up the aSelector method in a table of remote methods
that have been declared for the Listener subclass. The second argument, methods, is a
pointer to the beginning of the table. A pointer to the table entry for the aSelector method
is returned.

NXResponsibleDelegateO returns the id of the object that responds to aSelector remote
messages received by aListener. That object will be the Listener's delegate, or the delegate
of the Listener's delegate. A Listener normally entrusts the remote messages it receives to
its delegate, but if its delegate has a delegate of its own, the Listener defers to that object.
Thus if the Application object is the Listener's delegate, the Application object's delegate
will be given the first chance to respond to aSelector messages.

RETURN NXRemoteMethodFromSelO returns a pointer to the entry for the aSelector method in
a table of remote methods kept by a Listener subclass, or NULL if there is no entry for
the method.

NXResponsibleDelegateO returns the delegate that responds to aSelector remote
messages received by aListener. If the delegate of aListener's delegate can respond to
aSelector messages, the delegate of aListener's delegate is returned. If not and
aListener's delegate can respond to aSelector messages, aListener's delegate is returned.
If neither delegate responds to aSelector messages (or aListener doesn't have a delegate),
nil is returned.

NXRemoveErrorReporterO ~ See NXRegisterErrorReporter()

NXReportErrorO ~ See NXRegisterErrorReporterO

2-964 Chapter 2: Application Kit

NXResetUserAbortO --t See NXUserAbortedO

NXResponsibleDelegateO --t See NXRemoteMethodFromSelO

NXRunAlertPanelO, NXRunLocalizedAlertPanelO, NXGetAlertPanelO,
NXFreeAlertPanel ()

SUMMARY Create or free an attention panel

DECLARED IN appkitlPanel.h

SYNOPSIS int NXRunAlertPanel(const char *title, const char *msg, const char *defaultButton, const
char *alternateButton, const char *otherButton, ...)

int NXRunLocalizedAlertPanel(const char *table, const char *title, const char *msg,
const char *defaultButton, const char *alternateButton, const char *otherButton, ...)

id NXGetAlertPanel(const char *title, const char *msg, const char *firstButton,
const char *alternateButton, const char *otherButton, ...)

void NXFreeAlertPanel(id alertPanel)

DESCRIPTION NXRunAlertPanelO, NXRunLocalizedAlertPanelO and NXGetAlertPanelO all create
an attention panel that alerts the user to some consequence of a requested action; the panel
may also let the user cancel or modify the action. NXRunAlertPanelO and
NXRunLocalizedAlertPanelO create the panel and run it in a modal event loop;
NXGetAlertPanelO returns a Panel object that you can use in a modal session.

These functions take the same set of arguments. The first argument is the title of the panel,
which should be at most a few words long. The default title is "Alert". The next argument
is the message that's displayed in the panel. It can use printfO-style formatting characters;
any necessary arguments should be listed at the end of the function's argument list (after
the otherButton argument). For more information on formatting characters, see the UNIX
manual page for printfO.

There are arguments to supply titles for up to three buttons, which will be displayed in a
row across the bottom of the panel. The panel created by NXRunAlertPanelO must have
at least one button, which will have the symbol for the Return key; if you pass a NULL title
to the other two buttons, they won't be created. If NULL is passed as the defaultButton,
"OK" will be used as its title. The panel created by NXGetAlertPanelO doesn't have to
have any buttons. If you supply a title for firstButton, it will be displayed with the symbol
for the Return key.

Functions: NXResetUserAbort() 2-965

NXRunAlertPanelO not only creates the panel, it puts the panel on screen and runs it
using the runModalFor: method defined in the Application class. This method sets up a
modal event loop that causes the panel to remain on screen until the user clicks one of its
buttons. NXRunAlertPanelO then removes the panel from the screen list and returns a
value that indicates which of the three buttons the user clicked: NX_ALERTDEFAULT,
NX_ALERTALTERNATE, or NX_ALERTOTHER. (If an error occurred while
creating the panel, NX_ALERTERROR is returned.) For efficiency, NXRunAlertPanelO
creates the panel the first time it's called and reuses it on subsequent calls, reconfiguring it
if necessary.

NXGetAlertPanelO doesn't set up a modal event loop; instead, it returns a Panel that can
be used to set up a modal session. A modal session is useful for allowing the user to
interrupt the program. During a modal session, you can perform activities while the panel
is displayed and check at various points in your program whether the user has clicked one
of the panel's buttons.

To set up a modal session, send the Application object a beginModaISession:for: message
with the Panel returned by NXGetAlertPanelO as its second argument. When you want to
check if the user has clicked one of the Panel's buttons, use runModaISession:. To end the
modal session, use endModaISession:. When you're finished with the Panel created by
NXGetAlertPanelO, you must free it by passing it to NXFreeAlertPanelO.

RETURN NXRunAlertPanelO returns a constant that indicates which button in the attention panel
the user clicked.

NXRunLocalizedAlertPanelO ~ See NXRunAlertPanelO

NXSaturationComponentO ~ See NXRedComponentO

NXScanALineO, NXDrawALineO

SUMMARY Calculate or draw line of text (in Text object)

DECLARED IN appkitlText.h

SYNOPSIS int NXScanALine(id self, NXLayInfo *laylnfo)
int NXDrawALine(id self, NXLayInfo *laylnfo)

2-966 Chapter 2: Application Kit

DESCRIPTION A Text object calls the first two functions to calculate and draw a line of text. Each
function's first argument is the Text object itself. The second argument is an NXLayInfo
structure, as described in the "Types and Constants" section.

To determine the placement of characters in a line, NXScanALineO takes into account line
width, text alignment, font metrics, and other data from the Text object. It stores the results
of its calculations in global variables.

A Text object calls NXDraw ALineO to draw a line of text. The global variables set by
NXScanALineO provide NXDraw ALineO with the information it needs to draw each line
of text.

RETURN NXScanALineO returns 1 only if a word's length exceeds the width of a line and the Text
object's charWrap instance variable is NO. Otherwise, it returns O.

NXDraw ALineO has no significant return value.

NXSetColor()

SUMMARY Set the current color

DECLARED IN appkitlcolor.h

SYNOPSIS void NXSetColor(NXColor color)

DESCRIPTION This function uses PostScript operators to make color the current color of the current
graphics state. If color includes a coverage component (if NXAlphaComponentO returns
anything but NX_NOALPHA), it also sets the current coverage. However, coverage will
not be set when printing.

SEE ALSO NXEqualColorO, NXConvertRGBAToColorO, NXConvertColorToRGBAO,
NXRedComponentO, NXChangeRedComponentO, NXReadColorO

Functions: NXSetColor() 2-967

NXSetGState(}, NXCopyCurrentGState(}

SUMMARY Set or copy current graphics state object

DECLARED IN appkit/public Wraps.h

SYNOPSIS void NXSetGState(int gstate)
void NXCopyCurrentGState(int gstate)

DESCRIPTION These functions set the current PostScript graphics state.

NXSetGStateO is a C function cover for the PostScript setgstate operator. It sets the
current graphics state to that specified by gstate.

NXCopyCurrentGStateO takes a snapshot of the current graphic state and assigns it the
number gstate. Generally, a snapshot should be taken only when the current path is empty
and the current clip path is in its default state.

NXSetRectO, NXOffsetRect(}, NXlnsetRectO, NXlntegralRect(},
NXDivideRect(}

SUMMARY Modify a rectangle

DECL.ARED IN appkit/graphics.h

SYNOPSIS void NXSetRect(NXRect *aRect, NXCoord x, NXCoord y, NXCoord width,
NXCoord height)

void NXOffsetRect(NXRect *aRect, NXCoord dx, NXCoord dy)
void NXInsetRect(NXRect *aRect, NXCoord dx, NXCoord dy)
void NXIntegralRect(NXRect *aRect)
NXRect *NXDivideRect(NXRect *aRect, NXRect *bRect, NXCoord slice, int edge)

2-968 Chapter 2: Application Kit

DESCRIPTION These functions modify the aRect argument. It's assumed that all arguments are expressed
within the same coordinate system.

The first function, NXSetRectO, sets the values in the NXRect structure specified by its
first argument, aRect, to the values passed in the other arguments. It provides a convenient
way to initialize an NXRect structure.

The next two functions, NXOffsetRectO and NXlnsetRectO, are illustrated in Figure 2-4.

I

dy
,It

----'-----1

1
1
1

dx 1 dx dx .
1

I

1
1
1
1

----r----J I~

dy
.. ----t------------------J

I

dY

NXlnsetRectO NXOffsetRectO

Figure 2-4. Inset and Offset Rectangles

NXOffsetRectO shifts the location of the rectangle by dx along the x-axis and by dy along
the y-axis. NXlnsetRectO alters the rectangle so that the two sides that are parallel to the
y-axis are inset by dx and the two sides parallel to the x-axis are inset by dy.

NXlntegralRectO alters the rectangle so that none of its four defining values (x, y, width,
and height) have fractional parts. The values are raised or lowered to the nearest integer, as
appropriate, so that the new rectangle completely encloses the old rectangle. These
alterations ensure that the sides of the new rectangle lie on pixel boundaries, if the rectangle
is defined in a coordinate system that has its coordinate origin on the corner of four pixels
and a unit of length along either axis equal to one pixel. If the rectangle's width or height
is a (or negative), it's set to a rectangle with origin at (0.0, 0.0) and with a width and height.

Functions: NXSetRect() 2-969

NXDivideRectO divides a rectangle in two. It cuts a slice off the rectangle specified by
aRect to form a new rectangle, which it stores in the structure specified by bRect. The
rectangle specified by aRect is modified accordingly. The size of the slice taken from the
rectangle is indicated by slice; it's taken from the side of the rectangle indicated by edge.
The constants for edge can be:

NX_YMIN

NX_YMAX

The slice is made parallel to the y-axis, along the side with
the smallest x-coordinate values.

The slice is made parallel to the x-axis, along the side with
the smallest y-coordinate values.

The slice is made parallel to the y-axis, along the side with
the greatest x-coordinate values.

The slice is made parallel to the x-axis, along the side with
the greatest y-coordinate values.

RETURN NXSetRectO, NXOffsetRectO, NXlnsetRectO, and NXlntegralRectO have no
significant return values. NXDivideRectO returns a pointer to the new rectangle, bRect.

SEE ALSO NXUnionRectO, NXMouselnRectO

NXSetServicesMenultemEnabled(), NXlsServicesMenultemEnabled()

SUMMARY Determine whether an item is included in Services menus

DECLARED IN appkitlListener.h

SYNOPSIS int NXSetServicesMenultemEnabled(const char *item, BOOLflag)
BOOL NXIsServicesMenultemEnabled(const char * item)

DESCRIPTION NXSetServicesMenultemEnabledO is used by a service-providing application to
determine whether the Services menus of other applications will contain the item command
enabling users to request its services. Ifflag is YES, the Application Kit will build Services
menus for other applications that include the item command. Ifflag is NO, item won't

2-970 Chapter 2: Application Kit

appear in any application's Services menu. item should be the same character string entered
in the "Menu Item:" field of the services file.

Service-providing applications should let users decide whether the Services menus of other
applications they use should include the item command.

RETURN NXSetServicesMenuItemEnabledO returns 0 if it's successful in enabling or disabling
the item command, and a number other than 0 if not. NXIsServicesMenuItemEnabledO
returns YES if item is currently enabled, and NO if it's not.

NXSetTopLevelErrorHandlerO ~ See NXDefaultTopLevelErrorHandlerO

NXSizeBitmapO ~ See NXDrawBitmapO

NXTextFontlnfoO

SUMMARY Calculate font ascender, descender, and line height

DECLARED IN appkitlText.h

SYNOPSIS void NXTextFontlnfo(idfont, NXCoord *ascender, NXCoord *descender,
NXCoord *lineHeight)

DESCRIPTION NXTextFontlnfoO calculates, and returns by reference, the ascender, descender, and line
height values for the Font given by font.

NXTopLevelErrorHandlerO ~ See NXDefaultTopLevelErrorHandlerO

Functions: NXSetTopLevelErrorHandler() 2-971

NXUnionRect(), NXlntersectionRect()

SUMMARY Compute a third rectangle from two rectangles

DECLARED IN appkitlgraphics.h

SYNOPSIS NXRect *NXUnionRect(const NXRect *aRect, NXRect *bRect)
NXRect *NXlntersectionRect(const NXRect *aRect, NXRect *bRect)

DESCRIPTION NXUnionRectO figures the graphic union of two rectangles-that is, the smallest rectangle
that completely encloses both. It takes pointers to the two rectangles as arguments and
replaces the second rectangle with their union. If one rectangle has zero (or negative) width
or height, bRect is replaced with the other rectangle. If both of the rectangles have 0 (or
negative) width or height, bRect is set to a rectangle with its origin at (0.0, 0.0) and with 0
width and height.

NXlntersectionRectO figures the graphic intersection of two rectangles-the rectangle
that encloses any area they have in common. It takes pointers to the two rectangles as
arguments. If the rectangles overlap, it replaces the second one, bRect, with their
intersection. If the two rectangles don't overlap, bRect is set to a rectangle with its origin
at (0.0, 0.0) and with a 0 width and height. Adjacent rectangles that share only a side are
not considered to overlap.

Both functions assume that all arguments are expressed within the same coordinate system.

RETURN NXUnionRectO returns its second argument (bRect), a pointer to the union of the two
rectangles unless both rectangles have 0 (or negative) width or height, in which case it
returns a pointer to a NULL rectangle.

If the two rectangles overlap, NXlntersectionRectO returns its second argument
(bRect), a pointer to their intersection. If the rectangles don't overlap, it returns a pointer
to a NULL rectangle.

SEE ALSO NXlntersectsRectO

NXUnnameObject() ~ See NXGetNamedObjectO

2-972 Chapter 2: Application Kit

NXUpdateDynamicServices()

SUMMARY Re-register provided services

DECLARED IN appkitlListener.h

SYNOPSIS void NXUpdateDynamicServices(void)

DESCRIPTION NXUpdateDynamicServicesO is used by a service-providing application to re-register the
services it's willing to provide. To do this, you create a file with the extension ".service"
and place it in the application's path, or in /NextLibrary/Services,
/LocaILibrary/Services, or /Library/Services. The content of the file is identical to a
normal service file (see the "Other Features" section for a description of service file
format). You then call this function.

NXUserAbortedO, NXResetUserAbortO

SUMMARY Report user's request to abort

DECLARED IN appkitl Application.h

SYNOPSIS BOOL NXUserAborted(void)
void NXResetU ser Abort(void)

DESCRIPTION NXUserAbortedO returns YES if the user pressed Command-period since the application
last got an event in the main event loop, and NO if not. Command-period signals the user's
intention to abort an ongoing process. Applications should call this function repeatedly
during a modal session and respond appropriately if it ever returns YES.

NXResetUserAbortO resets the flag returned by NXUserAbortedO to NO. It's called in
the Application object's run method before getting each new event.

RETURN NXUserAbortedO returns YES if the user pressed Command-period, and NO otherwise.

Functions: NXUpdateDynamicServices() 2-973

NXUserName() ~ See NXHomeDirectory()

NXWindowList() ~ See NXCountWindows()

NXWriteColor() ~ See NXReadColor()

NXWriteColorToPasteboard() ~ See NXReadColorFromPasteboard()

NXWritePoint() ~ See NXReadPoint()

NXWriteRect() ~ See NXReadPoint()

NXWriteSize() ~ See NXReadPoint()

NXWriteWordTable() ~ See NXReadWordTable()

NXVeliowComponent() ~ See NXRedComponent()

SUMMARY Write an error message

DECLARED IN appkitlnextstd.h

SYNOPSIS void NX_ASSERT(int exp, char *msg)

DESCRIPTION This macro, which is defined in the header file appkitlnextstd.h, writes an error message
if the program was compiled with the NX_BLOCKASSERTS flag undefined and if exp is
false. The message msg is written to stderr if the application was launched from a terminal.
If the application was launched by the Workspace Manager, the message is written
using syslogO with the priority set to LOG_ERR. Normally, syslogO writes messages to
the Workspace Manager's console window. See the UNIX manual page for syslogO for
more information about this function and how to write messages to places other than the
console window.

If exp is true, no action is taken. Also, if the NX_BLOCKASSERTS flag is defined, a call
to NX_ASSERTO has no effect.

2-974 Chapter 2: Application Kit

NX_FREEO ~ See NX_MALLOCO

NX_HEIGHTO ~ See NX_XO

SUMMARY Allocate memory

DECLARED IN appkitlnextstd.h

SYNOPSIS type-name *NX_MALLOC(type-name *var, type-name, int num)
type-name *NX_REALLOC(type-name *var, type-name, int num)
void NX_FREE(void *pointer)

DESCRIPTION These macros allocate and free memory space by making calls to the standard C-library
functions malloeO, realloeO, and freeO. For more information about these functions, see
their UNIX manual pages.

NX_MALLOCO and NX_REALLOCO return a pointer of type type-name to the
argument var. The amount of memory these two functions allocate is determined by
multiplying num (which should be an int) by the number of bytes needed for the data type
type-name. NX_REALLOCO should be used to change the size of the object var, just as
realloeO would be used. These macros are shown below as they are defined in the header
file appkit/nextstd.h:

#define NX_MALLOC(VAR, TYPE, NUM) \
((VAR) = (TYPE *) malloc((unsigned) (NUM)*sizeof(TYPE)))

#define NX_REALLOC(VAR, TYPE, NUM) \
((VAR) = (TYPE *) realloc((VAR), (unsigned) (NUM)*sizeof(TYPE)))

NX_FREEO deallocates the space pointed to by pointer. It does nothing if pointer is
NULL. It's also defined in appkit/nextstd.h, as shown below:

#define NX_FREE(PTR) free ((PTR)) ;

RETURN NX_MALLOCO and NX_REALLOCO return pointers to the space they allocate or
NULL if the request for space cannot be satisfied.

Functions: NX_FREE() 2-975

NX_MAXXO --7 See NX_XO

NX_MAXYO --7 See NX_XO

NX_MIDXO --7 See NX_XO

NX_MIDYO --7 See NX_XO

SUMMARY Print the current PostScript context

DECLARED IN appkitlnextstd.h

SYNOPSIS void NX_PSDEBUG

DESCRIPTION NX_PSDEBUG prints the current Display PostScript context to the standard output device,
along with the class, object, and method in which the macro appears. This macro does
nothing if the application is compiled with NX_BLOCKPSDEBUG defined.

NX_REALLOCO --7 See NX_MALLOCO

NX_WIDTH() --7 See NX_X()

2-976 Chapter 2: Application Kit

NX_XO, NX_VO, NX_WIDTHO, NX_HEIGHTO, NX_MAXXO, NX_MAXVO,
NX_MIDXO, NX_MIDVO

SUMMARY Query an NXRect structure

~ECLARED IN appkit/graphics.h

SYNOPSIS NXCoord NX_X(NXRect *aReet)
NXCoord NX_ Y(NXRect *aReet)
NXCoord NX_ WIDTH(NXRect *aReet)
NXCoord NX_HEIGHT(NXRect *aReet)
NXCoord NX_MAXX(NXRect *aReet)
NXCoord NX_MAXY(NXRect *aReet)
NXCoord NX_MIDX(NXRect *aReet)
NXCoord NX_MIDY (NXRect *aReet)

DESCRIPTION These macros return information about the NXRect structure referred to by aReet. An
NXRect structure is defined by a point that locates the rectangle (x- and y-coordinates) and
an extent that determines its size (a width and height as measured along the x- and y-axes).

RETURN NX_XO and NX_YO return the x- and y-coordinates that locate the rectangle. These will
be the smallest coordinate values within the rectangle.

NX_HEIGHTO and NX_ WIDTHO return the width and height of the rectangle.

NX_MAXXO and NX_MAXYO return the largest x- and y-coordinates in the rectangle.
These are calculated by adding the width of the rectangle to the x-coordinate returned by
NX_XO and by adding the height of the rectangle to the y-coordinate returned by NX_YO.

NX_MIDXO and NX_MIDYO return the x- and y-coordinates that lie at the center of the
rectangle, exactly midway between the smallest and largest coordinate values.

SEE ALSO NXSetRectO

Functions: NX_X() 2·977

NX YO --7 See NX X() - -

NX_ZONEMALLOC(), NX_ZONEREALLOC()

SUMMARY Allocate zone memory

DECLARED IN appkitlnextstd.h

SYNOPSIS type-name *NX_ZONEMALLOC(NXZone zone, type-name *var, type-name, int num)
type-name *NX_ZONEREALLOC(NXZone zone, type-name *var, type-name, int num)

DESCRIPTION These macros allocate and free memory space by making calls to the functions
NXZoneMallocO and NXZoneReallocO. For more information about these functions, see
their descriptions in Chapter 3.

NX_ZONEMALLOCO and NX_ZONEREALLOCO return a pointer of type type-name
to the argument var allocated in zone. The amount of memory these two macros allocate
is determined by multiplying num (which should be an int) by the number of bytes needed
for the data type type-name. NX_ZONEREALLOCO should be used to change the size
of the object var, just as reallocO or NXZoneReallocO would be used. These macros are
shown below as they are defined in the header file appkitlnextstd.h:

#define NX_ZONEMALLOC(Z, VAR, TYPE, NUM) \
((VAR) = (TYPE *) NXZoneMalloc((Z), \
(unsigned) (NUM)*sizeof(TYPE)))

#define NX_ZONEREALLOC(Z, VAR, TYPE, NUM) \
((VAR) = (TYPE *) NXZoneRealloc((Z), (char *) (VAR) , \
(unsigned) (NUM)*sizeof(TYPE)))

RETURN NX_ZONEMALLOCO and NX_ZONEREALLOCO return pointers to the space they
allocate or NULL if the request for space cannot be satisfied.

NX_ZONEREALLOC() --7 See NX_ZONEMALLOCO

2-978 Chapter 2: Application Kit

Types and Constants

Defined Types

NXAcknowledge

DECLARED IN appkitIListener.h

SYNOPSIS typedef struct _NXAcknowledge {
msg_header_t header;
msg_type_t sequenceType;
int sequence;
msg_type_t errorType;
int error;

} NXAcknowledge

DESCRIPTION NXAcknowledge is the structure of a Listener acknowledgement message.

NXAppkitErrorTokens

DECLARED IN appkitlerrors.h

SYNOPSIS typedef enum _NXAppkitErrorTokens {

NX_longLine = NX_APPKIT_ERROR_BASE,
NX_DuIlSel,
NX_ wordTablesWrite,
NX_ wordTablesRead,
NX_textBadRead,
NX_textBadWrite,
NX_powerOff,
NX_pasteboardComm,
NX_mallocError,
NX_printingComm,
NX_abortModal,
NX_abortPrinting,
NX_illegaISelector,

2-980 Chapter 2: Application Kit

NX_appkitVMError,
NX_badRtIDirective,
NX_badRtfFontTable,
NX_badRtfStyleSbeet,
NX_newerTypedStream,
NX_tiffError,
NX_printPackageError,
NX_badRtfColorTable,
NX--.iournalAborted,
NX_draggingError,
NX_colorUnknown,
NX_colorBadIO,
NX_colorNotEditable,
NX_badBitmapParams,
NX_ windowServerComm,
NX_unavailableFont,
NX_PPDlncludeNotFound,
NX_PPDParseError,
NX_PPDlncludeStackOverflow,
NX_PPDlncludeStackUnderflow,
NX_rtfPropOverftow

} NXAppkitErrorTokens;

DESCRIPTION This enumeration defines the exceptions raised by the Application Kit. (See NX_RAISEO
for more information.) The constants are:

NX_IongLine
NX_nullSel
NX_ wordTables Write
NX_ wordTablesRead
NX_textBadRead
NX_textBadWrite
NX_powerOff
NX_pasteboardComm
NX_mallocError
NX_printingComm
NX_abortModal
NX_abortPrinting
NX_illegalSelector
NX_appkitVMError
NX_badRttDirective
NX_badRttFontTable
NX_badRtfStyleSheet

Text class: line longer than 16384 characters
Text class: operation attempted on empty selection
Error occurred while writing word tables
Error occurred while reading word tables
Text class: error reading from file
Text class: error writing to file
Power off exception
Communications problem with pbs server
malloc problem
Problem sending data to npd
abortModal message when not running modal
Printing aborted
Invalid selector passed to Application Kit
Error allocating or deallocating virtual memory
Invalid RTF directive
Invalid RTF font table
Invalid RTF style sheet

Types and Constants: NXAppkitErrorTokens 2-981

NX_newerTypedStream
NX_tiftError
NX_printPackageError
NX_badRtfColorTable
NXjoumalAborted
NX_draggingError
NX_colorUnknown
NX_colorBadIO
NX_colorN otEditable
NX_badBitmapParams
NX_ windowServerComm
NX_unavailableFont
NX_PPDIncludeN otFound

Version of typed stream more recent than software
Error with TIFF operation
Problem loading the print package
Invalid RTF color table
J oUlnaling session was terminated
Error messaging drag service
NXColorList: unknown color name or number
NXColorList: file read/write error
Attempt to change noneditable color list
Inconsistent set of bitmap parameters
Communications problem with the Window Server
No default font could be found
Include file in PPD file not found

NX_PPDParseError PPD parsing error
NX_PPDIncludeStackOverflow PPD include files nested too deep
NX_PPDIncludeStackUnderflow PPD include file nesting mismatched
NX_rtfPropOverflow RTF property stack overflow

NXBreakArray

DECLARED IN appkitiText.h

SYNOPSIS typedef struct _NXBreakArray {
NXChunk chunk;
NXLineDesc breaks[I];

} NXBreakArray;

DESCRIPTION An NXBreakArray holds line break information for a Text object. It's mainly an array of
line descriptors. Each line descriptor contains three fields:

1) Line change bit (sign bit); set jf this line defines a new height
2) Paragraph end bit (next to sign bit); set if the end of this line ends the paragraph
3) Number of characters in the line (low-order 14 bits).

If the line change bit is set, the descriptor is the first field of an NXHeightChange structure.
Since this record is bracketed by negative short values, the breaks array can be sequentially
accessed backwards and forwards.

2-982 Chapter 2: Application Kit

Since the structure's first field is an NXChunk structure, NXBreakArrays can be
manipulated using the functions that manage variable-sized arrays of records. See
NXChunkMallocO for more information.

NXCharArray

DECLARED IN appkitlText.h

SYNOPSIS typedef struct _NXCharArray {
NXChunk chunk;
wchar text[1];

} NXCharArray;

DESCRIPTION This structure holds holds the ,character array for the current line in the Text object. Since
the structure's first field is an NXChunk structure, NXCharArrays can be manipulated using
the functions that manage variable-sized arrays of records. See NXChunkMallocO for
more information.

NXCharFilterFunc

DECLARED IN appkitlText.h

SYNOPSIS typedef unsigned short (*NXCharFilterFunc)
(unsigned short charCode,
int flags,
unsigned short charSet);

DESCRIPTION The character filter function analyses each character the user enters in the Text object. See
setCharFilter: (Text class).

Types and Constants: NXCharArray 2-983

NXCharMetrics

DECLARED IN appkitlafm.h

SYNOPSIS typedef struct {
short charCode;
unsigned char numKernPairs;
unsigned char reserved;
float xWidth;
int name;
float bbox[4];
int kernPairlndex;

} NXCharMetrics;

DESCRIPTION An NXCharMetrics structure stores information on a character. The fields are:

charCode
numKernPairs
xWidth
name
bbox
kernPairIndex

NXChunk

DECLARED IN appkitlchunk.h

Character code, -1 if unencoded
Number of kerning pairs starting with this character
Width in x of this character
N arne-an index into a string table
Character bounding box
Index into NXFontMetrics.kerns array

SYNOPSIS typedef struct _NXChunk {
short growby;
int allocated;
int used;

} NXChunk;

DESCRIPTION NXChunk structures are used to implement variable sized arrays of records. Allocation is
by the given size (in bytes)-typically a multiple number of records, say 10. The block of
memory never shrinks, and the chunk records the current number of elements. To use
NXChunks, declare a structure with an NXChunk structure as its first field. See
NXChunkMallocO for more information.

2-984 Chapter 2: Application Kit

The fields of an NXChunk are:

growby
allocated
used

The increment used to enlarge the array
How many elements are currently allocated
How many elements are currently used

NXColorSpace

DECLARED IN appkitlgraphics.h

SYNOPSIS typedef enum _NXColorSpace {
NX_ CustomColorSpace = -1,
NX_ OneIsBlackColorSpace = 0,
NX_ OneIs WhiteColorSpace = 1,
NX_RGBColorSpace = 2,
NX_CMYKColorSpace = 5

} NXColorSpace;

DESCRIPTION U sed to represent sample-encoding formats for a bitmap image.

NXCompositeChar

DECLARED IN appkitlafm.h

SYNOPSIS typedef struct {
int compCharlndex;
int numParts;
int firstPartIndex;

} NXCompositeChar;

DESCRIPTION An NXCompositeChar structure describes a composite character. The fields are:

compCharIndex
numParts
firstPartIndex

Index into NXFontMetrics.charMetrics
Number of parts making up this char
Index of first part in NXFontMetrics.compositeCharParts

Types and Constants: NXColorSpace 2-985

NXCompositeCharPart

DECLARED IN appkitJafm.h

SYNOPSIS typedef struct {
int partIndex;
float dx;
float dy;

} NXCompositeCharPart;

DESCRIPTION NXCompositeCharPart structures are used to describe elements of a composite character
array. The fields are:

partlndex
dx
dy

Index into NXFontMetrics.charMetrics
Displacement of part in x
Displacement of part in y

NXDataLinkDisposition

DECLARED IN appkitINXDataLink.h

SYNOPSIS typedef enum _NXDataLinkDisposition {
NX_LinklnDestination = 1,
NX_LinklnSource = 2,
NX_LinkBroken = 3

} NXDataLinkDisposition

DESCRIPTION Returned by NXDataLink's disposition method to identify a link as a destination link, a
source link, or a broken link. See the NXDataLink class specification for more information
on the dispositions of links.

2-986 Chapter 2: Application Kit

NXDataLinkNumber

DECLARED IN appkitINXDataLink.h

SYNOPSIS typedef int NXDataLinkNumber;

DESCRIPTION The type returned by NXDataLink's IinkNumber method as a persistent identifier of a
destination link.

NXDataLinkUpdateMode

DECLARED IN appkitINXDataLink.h

SYNOPSIS typedef enum _NXDataLinkUpdateMode {
NX_ Update Continuously = 1,
NX_ Update WhenSourceSaved = 2,
NX_UpdateManuaUy = 3,
NX_UpdateNever = 4

} NXDataLinkUpdateMode

DESCRIPTION Used by NXDataLink's setUpdateMode: and updateMode methods to identify when a
link's data is to be updated.

Types and Constants: NXDataLinkNumber 2-987

NXDragOperation

DECLARED IN appkit/drag.h

SYNOPSIS typedef enum _NXDragOperation {
NX_DragOperationNone = 0,
NX_DragOperationCopy = 1,
NX_DragOperationLink = 2,
NX_DragOperationGeneric = 4,
NX_DragOperationPrivate = 8,
NX_DragOperationAll = 15

} NXDragOperation;

DESCRIPTION The NXDragOperation constants represent the operations that a dragging destination can
perform on the data that a dragged image represents. While a dragging session is in
progress, the drag operation values returned by the source and destination objects are
compared to determine whether the destination object is valid, and to (automatically) set
the appearance of the cursor:

• NX_DragOperationNone. The destination won't accept the dragged-image's data; the
cursor isn't changed.

• NX_DragOperationCopy. The destination will copy the data; the cursor is changed to
the copy cursor.

• NX_DragOperationLink. The destination will create some sort of link, as appropriate
for the data; the cursor is changed to the link cursor.

• NX_DragOperationGeneric. The destination will perform a "standard" operation; the
cursor is changed to the move cursor.

• NX_DragOperationPrivate. The source and the destination will negotiate for the data,
or otherwise send special messages to each other; the cursor isn't changed.

• NX_DragOperationAll. This should only be used by the dragging source as the value
of its drag operation mask.

See the NXDraggingDestination protocol for more information.

2·988 Chapter 2: Application Kit

NXEncodedLigature

DECLARED IN appkitiafm.h

SYNOPSIS typedef struct {
unsigned char firstChar;
unsigned char second Char;
unsigned char IigatureChar;

} NXEncodedLigature;

DESCRIPTION An NXEncodedLigature structure is used for elements of the encoded ligature array. This
structure is used only for those ligatures in which all three characters are encoded. The
fields are:

firstChar
secondChar
ligatureChar

NXErrorReporter

DECLARED IN' appkitierrors.h

Character encoding of first character
Character encoding of second character
Character encoding of ligature

SYNOPSIS typedef void NXErrorReporter(NXHandler *errorState);

DESCRIPTION This is the type for a function that acts as a application's error reporter. See the description
of NXRegisterErrorReporterO for more information.

Types and Constants: NXEncodedLigature 2-989

NXFacelnfo

DECLARED IN appkitIFont.h

SYNOPSIS typedef struct _NXFaceInfo {
NXFontMetrics *fontMetrics;
int flags;
struct _fontFlags {

unsigned int usedlnDoc: 1;
unsigned int usedlnPage: 1;
unsigned int usedlnSheet: 1 ;

} fontFlags;
struct _NXFaceInfo *nextFlnfo;

} NXFacelnfo;

DESCRIPTION NXFaceInfo structures store information about a font and its usage. Its fields are:

fontMetrics
flags
fontFlags
nextFInfo

Information form the AFM file
Which font information is present
Font usage (see below)
Pointer to next record in the linked list

The fontFlags substructure records font usage so that conforming PostScript comments can
be generated for a document. Its fields are:

usedInDoc

usedInPage

usedInSheet

NXFontMetrics

DECLARED IN appkitlafm.h

Has the font been used in the document?

Has the font been used in the page?

Has the font been used in the sheet? (There can be more than one
page printed on a sheet of paper.)

SYNOPSIS typedef struct _NXFontMetrics {
char *formatVersion;
char *name;

2-990 Chapter 2: Application Kit

char *fullName;
char *familyName;
char *weight;
float italicAngle;
char isFixedPitch;
char isScreenFont;
short screenFontSize;
float fontBBox[4];
float underlinePosition;
float underlineThickness;
char *version;
char *notice;
char *encodingScheme;
float capHeight;
float xHeight;
float ascender;
float descender;
short hasYWidths;
float *widths;
unsigned int widthsLength;
char *strings;
unsigned int stringsLength;
char hasXYKerns;
short *encoding;
float *yWidths;
NXCharMetrics *charMetrics;
int numCharMetrics;
NXLigature *ligatures;
int numLigatures;
NXEncodedLigature *encLigatures;
int numEncLigatures;
union {

NXKemPair *kernPairs;
NXKemXPair *kernXPairs;

} kerns;
int numKernPairs;
NXTrackKem *trackKerns;
int numTrackKerns;
NXCompositeChar *compositeChars;
int numCompositeChars;
NXCompositeCharPart *compositeCharParts;
int numCompositeCharParts;

} NXFontMetrics;

Types and Constants: NXFontMetrics 2-991

DESCRIPTION The NXFontMetrics structure is used to describe a font. (See the description of
readMetrics: in the Font class specification for more information.)

The structure's fields are:

format Version
name
fullName
familyName
weight
italicAngle
isFixedPitch
isScreenFont
screenFontSize
fontBBox[4]
underlinePosition
underlineThickness
version
notice
encodingScheme
capHeight
xHeight
ascender
descender
hasYWidths
widths
widthsLength
strings
stringsLength
hasXYKerns
encoding
yWidths

charMetrics
numCharMetrics
ligatures
numLigatures
encLigatures
numEncLigatures
kerns.kernPairs
kerns.kernXPairs
numKernPairs
trackKerns

2-992 Chapter 2: Application Kit

Version of afm file format
N arne of font for findfont
Full name of font
Font family name
Weight of font
Degrees counterclockwise from vertical
Is the font mono spaced ?
Is the font a screen font?
If it is, how big is it?
Bounding box (llx, lly, urx, ury)
Distance from baseline for underlines
Thickness of underline stroke
Version identifier
Trademark or copyright
Default encoding vector
Top of 'H'
Top of 'x'
Top of 'd'
Bottom of 'p'
Do any chars have non-O y width?
Character widths in x

Table of strings and other info

Do any of the kerning pairs have nonzero dy?
256 offsets into NXCharMetrics
Character widths in y (not in encoding order, but a parallel

array to the NXCharMetrics array)
Array of NXCharMetrics
Number of elements
Array of NXLigatures
Number of elements
Array of NXEncodedLigatures
Number of elements
Array of NXKernPairs
Array of NXKernXPairs
Number of elements
Array of NXTrackKerns

numTrackKems Number of elements
compositeChars Array of NXCompositeChars
numCompositeChars Number of elements
compositeCharParts Array of NXCompositeCharParts
numCompositeCharParts Number of elements

NXFontTraitMask

DECLARED IN appkitIFontManager.h

SYNOPSIS typedef unsigned int NXFontTraitMask;

DESCRIPTION A NXFontTraitMask characterizes one or more of a font's traits. It's used as an argument
type for several of the methods in the FontManager class.

NXFSM

DECLARED IN appkit/Text.h

SYNOPSIS typedef struct _NXFSM {
const struct _NXFSM *next;
short delta;
short token;

~NXFSM;

DESCRIPTION NXFSM is a word definition finite-state machine transition structure used by a Text object.
The fields are:

next

delta

token

Points to state to go to; NULL implies final state

If final state, this undoes lookahead

If final state, negative value implies word is newline; 0 implies
dark; and positive implies white space

Types and Constants: NXFontTraitMask 2-993

NXHeightChange

DECLARED IN appkitiText.h

SYNOPSIS typedef struct _NXHeightChange {
NXLineDesc IineDesc;
NXHeightInfo heightInfo;

} NXHeightChange;

DESCRIPTION This structure associates line descriptors and line height information in a Text object.

NXHeightlnfo

DECLARED IN appkitlText.h

SYNOPSIS typedef struct _NXHeightInfo {
NXCoord newHeight;
NXCoord oldHeight;
NXLineDesc IineDesc;

} NXHeightInfo;

DESCRIPTION This structure is used to store height information for each line of text in a Text object. The
fields are

newHeight
oldHeight
lineDesc

2-994 Chapter 2: Application Kit

Line height from current position forward
Height before change
Line descriptor

NXJournalHeader

DECLARED IN appkitINXJournaler.h

SYNOPSIS typedef struct {
int version;
unsigned int offsetToAppNames;
unsigned int lastEventTime;

} NXJournalHeader

DESCRIPTION The NXJournalHeader type defines the header for ajournaling event file. The event data
begins immediately after the header.

NXKernPair

DECLARED IN appkitlafm.h

SYNOPSIS typedef struct {
int secondCharlndex;
float dx;
float dy;

} NXKernPair;

DESCRIPTION The NXKernPair structure describes a kerning pair element. Its fields are:

secondCharIndex
dx
dy

Index into NXFontMetrics.charMetrics
x displacement relative to first character
y displacement relative to first character

Types and Constants: NXJournalHeader 2-995

NXKernXPair

DECLARED IN appkitlafm.h

SYNOPSIS typedef struct {
int secondCharlndex;
float dx;

} NXKernXPair;

DESCRIPTION The NXKernXPair structure describes a kerning pair element. In this structure, the
displacement in the y direction is assumed to be O. The structure's fields are:

secondCharIndex Index into NXFontMetrics.charMetrics
dx X displacement relative to first character

NXLay

DECLARED IN appkitlText.h

SYNOPSIS typedef struct _NXLay {
NXCoordx;
NXCoordy;
short offset;
short chars;
id font;
void *paraStyle;
NXRun *run;
NXLayFlags IFlags;

} NXLay;

2-996 Chapter 2: Application Kit

DESCRIPTION A Text object's NXLay structure represents a single sequence of text in a line and records
everything needed to select or draw that piece. The fields are:

x x coordinate of moveto
y y coordinate of moveto
offset
chars
font
parastyle
run
IFlags

Offset in line array for text
Number of characters in the lay
Font object
Implementation dependent style sheet information
Text run for this lay
Lay flags

NXLayArray

DECLARED IN appkit/Text.h

SYNOPSIS typedef struct _NXLay Array {
NXChunk chunk;
NXLay lays[1];

.} NXLayArray;

DESCRIPTION A Text object's NXLayArray structure holds the layout for the current line. Since the
structure's first field is an NXChunk structure, NXLayArrays can be manipulated using the
functions that manage variable-sized arrays of records. See NXChunkMallocO for more
information.

NXLayFlags

DECLARED IN appkit/Text.h

SYNOPSIS typedef struct {
unsigned int mustMove: 1;
unsigned int isMoveChar: 1;

} NXLayFlags;

Types and Constants: NXLayArray 2-997

DESCRIPTION This structure records whether a text lay in a Text object needs special treatment. Its
fields are:

mustMove
isMoveChar

True if current lay follows lay with nonprinting character
True if lay contains nonprinting character

NXLaylnfo

DECLARED IN appkit/Text.h

SYNOPSIS typedef struct _NXLay Info {
NXRect rect;
NXCoord descent;
NXCoord width;
NXCoord left;
NXCoord right;
NXCoord rightIndent;
NXLay Array *Iays;
NXWidthArray *widths;
NXCharArray *chars;
NXTextCache cache;
NXRect *textClipRect;
struct _IFlags {

unsigned int horizCanGrow: 1;
unsigned int vertCanGrow: 1;
unsigned int erase: 1 ;
unsigned int ping: 1 ;
unsigned int endsParagraph: 1;
unsigned int resetCache: 1;

} IFlags;
} NXLaylnfo;

2-998 Chapter 2: Application Kit

DESCRIPTION A Text object's NXLayInfo structure is used by the scanning and drawing functions to
communicate information about lines. Its fields are:

rect
descent
width
left
right
rightlndent
lays
widths
chars
cache
textClipRect
IFlags.horizCanGrow
IFlags. vertCanGrow
IFlags.erase
IFlags.ping
IFlags.endsParagraph
IFlags.resetCache

NXLigature

DECLARED IN appkitlafm.h

SYNOPSIS typedef struct {

Bounds rect for current line
Descent line; can be reset by the scanning function
Width of line
Coordinate visible at left side
Coordinate visible at right side
How much white space to leave at right side of line
Filled with NXLay items by the scanning function
Filled with character widths by the scanning function
Filled with characters by the scanning function
Cache of current block and run
If non-nil, the current clipping rectangle for drawing
1 if the scanning function should dynamically resize x margins
1 if the scanning function should dynamically resize y margins
Tells the drawing function whether to erase before drawing line
Tells the drawing function whether to ping the Window Server
True if this line ends the paragraph
U sed in the scanning function to reset local caches

int firstCharIndex;
int second Char Index;
int ligatureIndex;

} NXLigature;

DESCRIPTION This structure correlates two characters and a ligature character. Its fields are:

firstCharIndex Index into NXFontMetrics.charMetrics
secondCharIndex Index into NXFontMetrics.charMetrics
ligatureIndex Index into NXFontMetrics.charMetrics

Types and Constants: NXLigature 2-999

NXLineDesc

DECLARED IN appkitlText.h

SYNOPSIS typedef short NXLineDesc;

DESCRIPTION An NXLineDesc is used to identify lines in the Text object.

NXLinkEnumerationState

DECLARED IN appkitINXDataLinkManager.h

SYNOPSIS typedef struct {
void *a;
void *b;

} NXLinkEnumerationState

DESCRIPTION An NXLinkEnumerationState structure is prepared by NXDataLinkManager's
prepareEnumerationState: method and then passed to the nextLinkUsing: method,
allowing an application to retrieve the link manager's links. The contents of this structure
are private.

NXMeasurementUnit

DECLARED IN appkitIPageLayout.h

SYNOPSIS typedef enum _NXMeasurementUnit {
NX_ UnitInch,
NX_ UnitCentimeter,
NX_ UnitPoint,
NX_UnitPica

} NXMeasurementUnit;

2-1000 Chapter 2: Application Kit

DESCRIPTION These are the units of measurement that are used by the PageLayout class. They're offered
to the user through the Units pop-up list in the Page Layout panel.

NXMessage

DECLARED IN appkit/Listener.h

SYNOPSIS typedef struct _NXMessage {
msg_header_t header;
msg_type_t sequenceType;
int sequence;
msg_type_t actionType;
char action[NX_MAXMESSAGE];

} NXMessage

DESCRIPTION NXMessage is the structure of messages sent by Speaker objects.

NXModalSession

DECLARED IN appkitl Application.h

SYNOPSIS typedef struct _NXModalSession {
id app;
id window;
struct _NXModalSession *prevSession;
int oldRunningCount;
BOOL oldDoesHide;
BOOL freeMe;
int winNum;
NXHandler *errorData;

} NXModalSession;

DESCRIPTION The NXModalSession structure contains information used by the system between
beginModaISession:for: and endModalSession: messages. The application should not
access any of the fields of this structure.

Types and Constants: NXMessage 2-1001

NXParagraphProp

DECLARED IN appkitiText.h

SYNOPSIS typedef enum {
NX_LEFTALIGN = NX_LEFTALIGNED,
NX_RIGHTALIGN = NX_RIGHTALIGNED,
NX_CENTERALIGN = NX_CENTERED,
NX_JUSTALIGN = NX_JUSTIFIED,
NX_FIRSTINDENT,
NX_INDENT,
NX_ADDTAB,
NX_REMOVETAB,
NX_LEFTMARGIN,
NX_RIGHTMARGIN

} NXParagraphProp;

DESCRIPTION These constants are used to identify specific paragraph properties for modification. See
Text's setSeIProp:to: method for more information.

NXParamValue

DECLARED IN appkitlListener.h

SYNOPSIS typedef union {
int ivai;
double dval;
port_t pval;
struct _bval {

char *p;
int len;

} bval;
} NXParamValue

DESCRIPTION U sed by Speaker objects to pass method parameters.

2-1002 Chapter 2: Application Kit

NXRect

DECLARED IN appkitlgraphics.h

SYNOPSIS typedef struct _NXRect {
NXPoint origin;
NXSize size;

} NXRect

DESCRIPTION U sed throughout the Application Kit to give the dimensions and location of a rectangle
on the screen. The NXPoint and NXSize structures are described in Chapter 5,
"Display PostScript."

NXRemoteMethod

DECLARED IN appkitlListener.h

SYNOPSIS typedef struct _NXRemoteMethod {
SELkey;
char *types;

} NXRemoteMethod

DESCRIPTION Defines a method understood by a Listener.

NXResponse

DECLARED IN appkitlListener.h

SYNOPSIS typedef struct _NXResponse {
msg_header_t header;
msg_type_t sequenceType;
int sequence;

} NXResponse

DESCRIPTION NXResponse is the structure of a Listener response message.

Types and Constants: NXRect 2-1003

NXRTFDError

DECLARED IN appkitINXRTFDErrors.h

SYNOPSIS typedef enum {
NX_RTFDErrorNone
NX_RTFDErrorSaveAborted,
NX_RTFDErrorUnableTo WriteFile,
NX_RTFDErrorUnableToCloseFile,
NX_RTFDErrorUnableToCreatePackage
NX_RTFDErrorUnableToCreateBackup,
NX_RTFDErrorUnableToDeleteBackup,
NX_RTFDErrorUnableToDeleteTemp,
NX_RTFDErrorUnableToDeleteOriginal,
NX_RTFDErrorFileDoesntExist,
NX_RTFDErrorUnableToReadFile,
NX_RTFDErrorlnsufficientAccess,
NX_RTFDErrorMalformedRTFD

} NXRTFDError;

DESCRIPTION This enumeration defines the constants returned by methods that open or save RTFD
documents (for example, the openRTFDFrom: method in the Text class). These constants
divide into four group, as listed in the lists below.

No Errors

NX_RTFDErrorNone

Write Errors

NX_RTFDErrorSaveAborted
NX_RTFDErrorUnableTo WriteFile
NX_RTFDErrorUnableToCloseFile
NX_RTFDErrorUnableToCreatePackage
NX_RTFDErrorUnableToCreateBackup
NX_RTFDErrorUnableToDeleteBackup
NX_RTFDErrorUnableToDeleteTemp
NX_RTFDErrorUnableToDeleteOriginal

2-1004 Chapter 2: Application Kit

Read Errors

NX_RTFDErrorFileDoesntExist
NX_RTFDErrorUnableToReadFile

Read/Write Errors

NX_RTFDErrorInsufficientAccess
NX_RTFDErrorMalformedRTFD

NXRun

DECLARED IN appkitffext.h

SYNOPSIS typedef struct _NXRun {
id font;
int chars;
void *paraStyle;
float textGray;
int textRGBColor;
unsigned char superscript;
unsigned char subscript;
id info;
NXRunFlags rFlags;

} NXRun;

DESCRIPTION A Text object's NXRun structure represents a single sequence of text with a given format.
The fields are:

font
chars
paraStyle
textGray
textRGBColor
superscript
subscript
info
rFlags

The Font object for the run
Number of characters in run
Implementation dependent style sheet information
Gray value of the text
Text color (negative if not set)
Superscript in points
Subscript in points
Available for subclasses of Text
Indicates underline, etc.

Types and Constants: NXRun 2-1005

NXRunArray

DECLARED IN appkitlText.h

SYNOPSIS typedef struct _NXRunArray {
NXChunk chunk;
NXRun runs[l];

} NXRunArray;

DESCRIPTION A Text object's NXRunArray structure holds the array of text runs. Since the
structure's first field is an NXChunk structure, NXRunArrays can be manipulated using
the functions that manage variable-sized arrays of records. See NXChunkMallocO for
more information.

NXRunFlags

DECLARED IN appkitlText.h

SYNOPSIS typedef struct {
unsigned int underline: 1 ;
unsigned int graphic: 1 ;

} NXRunFlags;

DESCRIPTION A Text object's NXRunFlags structure records whether a run contains graphics or is
underlined. Its fields are:

underline
graphic

2-1006 Chapter 2: Application Kit

True if text is underlined
True if graphic is present

NXScreen

DECLARED IN appkitlscreens.h

SYNOPSIS typedef struct _NXScreen {
int screenNumber;
NXRect screenBounds;
NXWindowDepth depth;

} NXScreen;

DESCRIPTION The NXScreen structure represents a screen. Its fields are:

screenN umber
screenBounds
depth

NXSelPt

DECLARED IN appkitlText.h

A unique integer that identifies the screen
The screen's area, reckoned in the screen coordinate system
The amount of memory the screen devotes to each pixel

SYNOPSIS typedef struct _NXSeIPt {
int cp;
int line;
NXCoordx;
NXCoordy;
int cIst;
NXCoordht;

} NXSeIPt;

DESCRIPTION A Text object's NXSelPt structure represents one end of a selection. Its fields are:

cp
line
x
Y
clst
ht

Character position
Offset of LineDesc in break table
x coordinate
y coordinate
Character position of first character on the line
Line height

Types and Constants: NXScreen 2-1007

NXSpeliCheckMode

DECLARED IN appkitINXSpellChecker.h

SYNOPSIS typedef enum {
NX_ CheckSpelling,
NX_ CheckSpellingToEnd,
NX_ CheckSpellingFromStart,
NX_ CheckSpellinglnSelection,
NX_CountWords,
NX_ CountWordsToEnd,
NX_ CountWordslnSelection

} NXSpellCheckMode;

DESCRIPTION Used as arguments to NXSpellChecker's checkSpelling:of: and
checkSpelling:of:wordCount: methods to specify the extent and nature of word checking
and counting. The elements are:

NX_ CheckSpelling
NX_ CheckSpellingToEnd
NX_ CheckSpellingFromStart
NX_CheckSpellingInSelection
NX_CountWords
NX_CountWordsToEnd
NX_ CountWordslnSelection

NXStreamSeekMode

DECLARED IN appkitireadOnlyTextStream.h

SYNOPSIS typedef enum {
NX_StreamStart,
NX_StreamCurrent,
NX_StreamEnd

} NXStreamSeekMode;

Checks spelling of the entire text stream
Checks spelling from the current position to the end
Checks spelling of the stream from top to bottom
Check spelling within the selection
Counts the number of words in the entire text stream
Counts words from the current position to the end
Counts words in the selection

DESCRIPTION Used by the NXReadOnlyTextStream protocol during a seek on a stream. See the protocol
specification for details.

2-1008 Chapter 2: Application Kit

NXStringOrderTable

DECLARED IN appkitlText.h

SYNOPSIS typedef struct {
unsigned char primary [256] ;
unsigned char secondary [256] ;
unsigned char primaryCI[256];
unsigned char secondaryCI[256];

} NXStringOrderTable;

DESCRIPTION The arrays in a Text object's NXStringOrderTable structure are used for case-sensitive and
case-insensitive ordering of characters. See the documentation forNXOrderStringsO for
more information.

NXTabStop

DECLARED IN appkitlText.h

SYNOPSIS typedef struct _NXTabStop {
short kind;
NXCoordx;

} NXTabStop;

DESCRIPTION This structure is used to describe a Text object's tab stops. Its fields are:

kind
x

Kind of tab (only NX_LEFTTAB is currently implemented)
x coordinate for stop

Types and Constants: NXStringOrderTable 2-1009

NXTextBlock

DECLARED IN appkit/Text.h

SYNOPSIS typedef struct _NXTextBlock {
struct _NXTextBlock *next;
struct _NXTextBlock *prior;
struct _tbFlags {

unsigned int malloced: 1 ;
} thFlags;
short chars;
wchar *text;

} NXTextBlock;

DESCRIPTION A Text object's NXTextBlock structures hold the characters of the text. Its fields are:s

next
prior
tbFlags.malloced
chars
text

NXTextCache

DECLARED IN appkit/Text.h

Next block in linked list
Previous block in linked list
True if the block was malloc' ed
Number of characters in this block
The text in this block

SYNOPSIS typedef struct _NXTextCache {
int curPos;
NXRun *curRun;
int runFirstPos;
NXTextBlock *curBlock;
int hlockFirstPos;

} NXTextCache;

2-1010 Chapter 2: Application Kit

DESCRIPTION A Text object's NXTextCache structure describes the current text block and run. Its
fields are:

curPos
curRun
runFirstPos
curB lock
blockFirstPos

Current position in text stream
Current run of text
Character position of first character in current run
Current block of text
Character position of first character in current block

NXTextFilterFunc

DECLARED IN appkitiText.h

SYNOPSIS typedef char *(*NXTextFilterFunc)
(id self,
unsigned char *insertText,
int *insertLength,
int position);

DESCRIPTION A Text object's text filter function can be used to implement autoindenting and other
features. See Text's setTextFilter: method.

NXTextFunc

DECLARED IN appkitiText.h

SYNOPSIS typedef int (*NXTextFunc)
(id self,
NXLayInfo *laylnfo);

DESCRIPTION This is the type for a Text object's scanning and drawing functions, as set through Text's
setScanFunc: and setDrawFunc: methods.

Types and Constants: NXTextFilterFunc 2-1011

NXTextStyle

DECLARED IN appkitlText.h

SYNOPSIS typedef struct _NXTextStyle {
NXCoord indentlst;
NXCoord indent2nd;
NXCoord IineHt;
NXCoord descentLine;
short alignment;
short numTabs;
NXTabStop *tabs;

} NXTextStyle;

DESCRIPTION A Text object's NXTextStyle structure describes the text layout and tab stops. Its fields are:

indent 1st
indent2nd
lineHt
descentLine
alignment
numTabs
tabs

How far the first line of the paragraph is indented
How far the second line is indented
Line height
Distance to descent line from bottom of line
Alignment mode
Number of tab stops
Array of tab stops

NXTopLevelErrorHandler

DECLARED IN appkitlerrors.h

SYNOPSIS typedef void NXTopLevelErrorHandler(NXHandler *errorState);

DESCRIPTION This is the type for functions that act as a application's top-level error handler. See the
description of NXDefaultTopLevelErrorHandlerO for more information.

2-1012 Chapter 2: Application Kit

NXTrackingTImer

DECLARED IN appkitltimer.h

SYNOPSIS typedef struct _NXTrackingTimer {
double delay;
double period;
DPSTimedEntry te;
BOOL freeMe;
BOOL firstTime;
NXHandler *errorData;

} NXTrackingTimer;

DESCRIPTION Information used by the system between calls to NXBeginTimerO and NXEndTimerO.
All the fields in this structure are private.

NXTrackKern

DECLARED IN appkitlafm.h

SYNOPSIS typedef struct {
int degree;
float minPointSize;
float minKernAmount;
float maxPointSize;
float maxKernAmount;

} NXTrackKern;

DESCRIPTION This structure records track kerning data. The fields are:

degree
minPointSize
minKernAmount
maxPointSize
maxKernAmount

Degree of tightness
Minimum cut-off value
Kerning amount at minPointSize and below
Maximum cut-off value
Kerning amount at maxPointSize and above

Types and Constants: NXTrackingTimer 2-1013

NXWidthArray

DECLARED IN appkitlText.h

SYNOPSIS typedef struct _NXWidthArray {
NXChunk chunk;
NXCoord widths[l];

} NXWidthArray;

DESCRIPTION A Text object's NXWidthArray structure holds the character widths for the current line.
Since the structure's first field is an NXChunk structure, NXWidthArrays can be
manipulated using the functions that manage variable-sized arrays of records. See
NXChunkMallocO for more information.

NXWindowDepth

DECLARED IN appkitlgraphics.h

SYNOPSIS typedef enum _NXWindowDepth {
NX_DefaultDepth,
NX_ TwoBitGrayDepth,
NX_EightBitGrayDepth,
NX_ TwelveBitRGBDepth,
NX_TwentyFourBitRGBDepth

} NXWindowDepth;

DESCRIPTION Encodes the depth, or amount of memory, devoted to a single pixel for a window or screen.

wchar

DECLARED IN appkitiText.h

SYNOPSIS typedef unsigned char wchar;

DESCRIPTION This is the type used for the characters within a Text object.

2-1014 Chapter 2: Application Kit

SYl11bolic Constants

Bits per Character and Integer

DECLARED IN appkitlnextstd.h

SYNOPSIS NBITSCHAR
NBITSINT

DESCRIPTION These constants define the number of bits per character and the number of bits per
integer, respectively.

Boolean Constants

DECLARED IN appkitlnextstd.h

SYNOPSIS Constant

TRUE
FALSE

Value

1
o

DESCRIPTION These constants define boolean true and false values.

Box Borders

DECLARED IN appkitIBox.h

SYNOPSIS NX_NOBORDER
NX_LINE
NX_BEZEL
NX_GROOVE

DESCRIPTION These constants represent the four types of borders that can be drawn around a Box object.

Types and Constants: Bits per Character and Integer 2-1015

Box Title Positions

DECLARED IN appkitIBox.h

SYNOPSIS NX_NOTITLE
NX_ABOVETOP
NX_ATTOP
NX_BELOWTOP
NX_ABOVEBOTTOM
NX_ATBOTTOM
NX_BELOWBOTTOM

DESCRIPTION These constants represent the locations where a Box's title can be placed with respect to its
border. Thus, for example, NX_ABOVETOP means the title is above the top of the border,
NX_ATTOP means the title breaks the top border, and so on.

Button and ButtonCell Highlight/Display Types

DECLARED IN appkitlButtonCell.h

SYNOPSIS NX_MOMENTARYPUSH
NX_PUSHONPUSHOFF
NX_TOGGLE
NX_SWITCH
NX_RADIOBUTTON
NX_MOMENTARYCHANGE
NX_ONOFF

DESCRIPTION These constants represent the way Buttons and ButtonCells behave when pressed, and how
they display their state. See Button's setType: method for more information.

2-1016 Chapter 2: Application Kit

Button and ButtonCell Icon Positions

DECLARED IN appkitlCell.h

SYNOPSIS NX_TITLEONLY
NX_ICONONLY
NX_ICONLEFT
NX_ICONRIGHT
NX_ICONBELOW
NX_ICONABOVE
NX_ICONOVERLAPS

DESCRIPTION These constants represent the position of a ButtonCell's icon relative to its title. See
Button's setIconPosition: method for more information.

Cell and ButtonCell Parameters

DECLARED IN appkitlCell.h

SYNOPSIS NX_CELLDISABLED
NX_CELLSTATE
NX_CELLEDITABLE
NX_CELLHIGHLIGHTED

NX_LIGHTBYCONTENTS
NX_LIGHTBYGRAY
NX_LIGHTB YB ACKGROUND
NX_ICONISKEYEQUIVALENT
NX_OVERLAPPINGICON
NX_ICONHORIZONTAL
NX_ICONLEFTORBOTTOM
NX_CHANGECONTENTS
NX_BUTTONINSET

DESCRIPTION These constants represent parameters that are accessed through Cell's and ButtonCell's
setParameter:to: and getParameter: methods. Only the first four constants listed above
are accessible by Cell; the others apply to ButtonCells only.

Types and Constants: Button and ButtonCel! Icon Positions 2-1017

Cell Data Entry Types

DECLARED IN appkitiCell.h

SYNOPSIS NX_ANYTYPE
NX_INTTYPE
NX_POSINTTYPE
NX_FLOATTYPE
NX_POSFLOATTYPE
NX_DOUBLETYPE
NX_POSDOUBLETYPE

DESCRIPTION These constants represent the numeric data types that a text Cell can accept. See Cell's
setEntryType: method for more information.

Cell Periodic Action Flag

DECLARED IN appkitlCell.h

SYNOPSIS NX_PERIODICMASK

DESCRIPTION You pass this constant to Cell's sendActionOn: method to indicate that the Cell should
send its action message periodically while the mouse is down.

Cell Types

DECLARED IN appkitlCell.h

SYNOPSIS Constant

NX_NULLCELL
NX_TEXTCELL
NX_ICONCELL

Cell Type

No display
The Cell displays text
The Cell display an icon

DESCRIPTION These constants represent different types of Cell objects.

2-1018 Chapter 2: Application Kit

Color Panel Modes

DECLARED IN appkitINXColorPanel.h

SYNOPSIS NX_GRAYMODE
NX_RGBMODE
NX_CMYKMODE
NX_HSBMODE
NX_CUSTOMPALETTEMODE
NX_CUSTOMCOLORMODE
NX_BEGINMODE

DESCRIPTION These constants represent the different Color panel modes.

Color Panel Mode Masks

DECLARED IN appkitINXColorPanel.h

SYNOPSIS NX_GRAYMODEMASK
NX_RGBMODEMASK
NX_CMYKMODEMASK
NX_HSBMODEMASK
NX_CUSTOMPALETTEMODEMASK
NX_LISTMODEMASK
NX_ WHEELMODEMASK
NX_ALLMODESMASK

DESCRIPTION These constants provide masks for the Color panel modes.

Types and Constants: Color Panel Modes 2-1019

Color Picker Insertion Order Constants

DECLARED IN appkitINXColorPanel.h

SYNOPSIS Insertion Order Value

NX_ WHEEL_INSERTION 0.50
NX_SLIDERS_INSERTION 0.51
NX_ CUSTOMPALETTE_INSERTION 0.52
NX_LIST _INSERTION 0.53

DESCRIPTION These constants represent the insertion orders that correspond to the color pickers that are
provided by the system.

Drawing Activity States

DECLARED IN appkitlView.h

SYNOPSIS Constant

NX_DRAWING
NX_PRINTING
NX_COPYING

Activity

Drawing to the screen
Spooling to a printer
Copying to a pasteboard

DESCRIPTION Describes an application's current drawing activity.

Error Base Constants

DECLARED IN appkit/errors.h

SYNOPSIS NX_APPKIT_ERROR_BASE
NX_APP _ERROR_BASE

DESCRIPTION These constants represent the base error codes for errors generated by the Application Kit
and by your application. 1000 error codes are reserved for both sets of errors.

2-1020 Chapter 2: Application Kit

Application Priority Levels

DECLARED IN appkitl Application.h

SYNOPSIS Level Value Meaning

NX_BASETHRESHOLD 1 Normal execution
NX_RUNMODALTHRESHOLD 5 An attention panel is being run
NX_MODALRESPTHRESHOLD 10 A modal event loop is in progress

DESCRIPTION These constants represent the default priorities at which an application runs under the
described circumstances. An application's priority setting is used to block the delivery of
events that have a lesser priority value. A priority must be between 0 and 30 (inclusive).

Events, Kit-Defined Subtypes

DECLARED IN appkitl Application.h

SYNOPSIS Constant

NX_ WINEXPOSED
NX_APPACT
NX_APPDEACT
NX_ WINMOVED
NX_SCREENCHANGED

Meaning

A nonretained Window has been exposed
The application has been activated
The application has been deactivated
A Window has moved
A Window has changed screens

DESCRIPTION These represent events that are manufactured by the Application Kit.

Events, System-Defined Subtype

DECLARED IN appkitl Application.h

SYNOPSIS Constant Meaning

NX_POWEROFF The user is turning off the computer

DESCRIPTION These represent events that are produced by the user's actions on the system.

Types and Constants: Application Priority Levels 2-1021

Figure Space Constant

DECLARED IN appkitIFont.h

SYNOPSIS NX_FIGSPACE

DESCRIPTION This constant identifies the nonbreaking space character in the NeXTSTEP
encoding vector.

Font Attribute Constants

DECLARED IN appkit/afm.h

SYNOPSIS NX_FONTHEADER
NX_FONTMETRICS
NX_FONTWIDTHS
NX_FONTCHARDATA
NX_FONTKERNING
NX_FONTCOMPOSITES

DESCRIPTION The Font class uses these constants to query the Window Server for font attributes. See the
description of readMetrics: in the Font class specification.

2-1022 Chapter 2: Application Kit

Font Conversion Constants

DECLARED IN appkit/FontManager.h

SYNOPSIS Type of Change

NX_NOFONTCHANGE
NX_ VIAPANEL
NX_ADDTRAIT
NX_SIZEUP
NX_SIZEDOWN
NX_HEAVIER
NX_LIGHTER
NX_REMOVETRAIT

Value

o
1
2
3
4
5
6
7

DESCRIPTION These constants are used as values of a FontManager's whatToDo instance variable. The
value of this variable determines how the FontManager will convert a font when it receives
a convertFont: message. (See the description of the FontManager's convertFont: method
for more information.)

Font Matrix Constants

DECLARED IN appkit/Font.h

SYNOPSIS NX_IDENTITYMATRIX
NX_FLIPPEDMATRIX

DESCRIPTION These constants identify the orientation of the font. NX_IDENTITYMATRIX identifies a
font matrix that's used for fonts that will be displayed in a View having an unflipped
coordinate system. If the View has a flipped coordinate system (as is found in a Text
object), use NX_FLIPPEDMATRIX.

Types and Constants: Font Conversion Constants 2-1023

Font Trait Constants

DECLARED IN appkit/FontManager.h

SYNOPSIS NX_ITALIC
NX_BOLD
NX_UNBOLD
NX_NONSTANDARDCHARSET
NX_NARROW
NX_EXPANDED
NX_CONDENSED
NX_SMALLCAPS
NX_POSTER
NX_COMPRESSED

DESCRIPTION These constants are used by the FontManager to identify font traits. The list of font traits
should be kept small since the more traits that are assigned to a given font, the harder it will
be to map it to some other family. Some traits are mutually exclusive, such as
NX_EXPANDED and NX_CONDENSED.

FontPanel View Tags

DECLARED IN appkit/FontPanel.h

SYNOPSIS NX_FPPREVIEWFIELD
NX_FPSIZEFIELD
NX_FPREVERTBUTTON
NX_FPPREVIEWBUTTON
NX_FPSETBUTTON
NX_FPSIZETITLE
NX_FPCURRENTFIELD

These tags identify the View objects within a FontPanel object.

2·1024 Chapter 2: Application Kit

Gray Shades

DECLARED IN appkitlgraphics.h

SYNOPSIS Gray Shade

NX_WHITE
NX_LTGRAY
NX_DKGRAY
NX_BLACK

Value

1.0
2.0/3.0
1.0/3.0
0.0

DESCRIPTION These constants represent the four pure (undithered) shades of gray that can be displayed
on a monochrome screen.

Icon and Token Window Dimensions

DECLARED IN appkitlWindow.h

SYNOPSIS Dimension Value

NX_ICONWIDTH 48.0
NX_ICONHEIGHT 48.0
NX_TOKENWIDTH 64.0
NX_TOKENHEIGHT 64.0

DESCRIPTION These constants give the dimensions of an icon and the Window (a token-style Window) in
which it's contained.

Types and Constants: Gray Shades 2-1025

Image Representation Device Matching Constant

DECLARED IN appkitINXImageRep.h

SYNOPSIS NX_MATCHESDEVICE

DESCRIPTION This constant is used by NXImageRep to indicate that the value of certain attributes, such
as the number of colors, or bits-per-sample, will change to match the device that the image
is shown on. See the NXImageRep class specification for more information.

Journaling Flag and Mask

DECLARED IN appkitl Application.h

SYNOPSIS NX_JOURNALFLAG
NX_JOURNALFLAGMASK

DESCRIPTION The flag and associated mask for setting a Window's event mask for journal events.

Journaling Listener Name

DECLARED IN appkitINXJoumaler.h

SYNOPSIS Name

NX_JOURNALREQUEST

Value

"NXJournalerRequest"

DESCRIPTION This is the name that an Application's master journaler's Listener uses to check into the
Network Name Server.

2-1026 Chapter 2: Application Kit

Journaling Recording Device

DECLARED IN appkitINXJournaler.h

SYNOPSIS NX_CODEC
NX_DSP

DESCRIPTION Used to set or return the recording device for NXJoumaler's recordDevice and
setRecordDevice: methods.

Journaling Status

DECLARED IN appkitINXJournaler.h

SYNOPSIS NX_STOPPED
NX_PLAYING
NX_RECORDING
NX_NONABORTABLEFLAG
NX_NONABORTABLEMASK

DESCRIPTION NX_STOPPED, NX_PLAYING, and NX_RECORDING are values of event status and
sound status for NXJournaler's getEventStatus: ... and setEventStatus: ... methods. If you
logically OR NX_NONABORTABLEMASK into the event status for a setEventStatus: ...
message, journaling will be made non-abortable.

Journaling Subevents

DECLARED IN appkitINXJournaler.h

SYNOPSIS NX_ WINDRAGGED
NX_MOUSELOCATION
NX_LASTJRNEVENT

DESCRIPTION Subevents of the NX_JOURNALEVENT event.

Types and Constants: lournaling Recording Device 2-1027

Journaling Window Encodings

DECLARED IN appkitINXJoumaler.h

SYNOPSIS Encoding Value

NX_KEYWINDOW
NX_MAINWINDOW
NX_MAINMENU
NX_MOUSEDOWNWINDOW
NX_APPICONWINDOW
NX_UNKNOWNWINDOW

DESCRIPTION Window encodings in ".evt" file used to save joumaling sessions.

Listener Maximum Message Size

DECLARED IN appkitiListener.h

SYNOPSIS NX_MAXMESSAGE

DESCRIPTION The maximum size of a SpeakerlListener remote message.

Listener Maximum Parameters

DECLARED IN appkitiListener.h

SYNOPSIS NX_MAXMSGPARAMS

DESCRIPTION The maximum number of remote method parameters allowed in a SpeakerlListener remote
message. Currently, the maximum is 20.

2-1028 Chapter 2: Application Kit

Listener Position Types

DECLARED IN appkitIListener.h

SYNOPSIS Position Type Value

NX_TEXTPOSTYPE 0
NX_REGEXPRPOSTYPE 1
NX_LINENUMPOSTYPE 2
NX_CHARNUMPOSTYPE 3
NX_APPPOSTYPE 4

DESCRIPTION These constants describe the acceptible values for the posType argument in the
msgPosition:posType:ok: and msgSetPosition:posType:andSelect:ok:
Speaker/Listener methods.

Listener Reserved Message Numbers

DECLARED IN appkitlListener.h

SYNOPSIS Message

NX_SELECTORPMSG
NX_SELECTORFMSG
NX_RESPONSEMSG
NX_ACKNOWLEDGE

Value

35555
35556
35557
35558

DESCRIPTION Reserved values for the ms~id field in the header field of a Listener's NXMessage
structure. In other words, these are reserved message numbers for the Mach messages
received by a Listener.

Types and Constants: Listener Position Types 2-1029

Listener RPC Error Return Values

DECLARED IN appkitiListener.h

SYNOPSIS Error Value

NX_INCORRECTMESSAGE

DESCRIPTION This value is the return value for a SpeakeriListener message that is successfully sent if the
selector isn't recognized on the remote side.

Listener Timeout Default

DECLARED IN appkitiListener.h

SYNOPSIS Number

NX_SENDTIMEOUT
NX_RCVTIMEOUT

Value

10000
10000

DESCRIPTION These values nominally represent the default timeout values for SpeakeriListener remote
messages. However, they are·generally disregarded for more reasonable values.

Mach Executable File Segment Names for Images

DECLARED IN appkitINXImageRep.h

SYNOPSIS Constant

NX_EPSSEGMENT
NX_TIFFSEGMENT
NX_ICONSEGMENT

Segment Name
" __ EPS"
" __ TIFF"
" __ ICON"

DESCRIPTION These constants represent the three Mach segments in which images can reside.

2·1030 Chapter 2: Application Kit

Matrix Selection Mode Constants

DECLARED IN appkit/Matrix.h

SYNOPSIS NX_RADIOMODE
NX_HIGHLIGHTMODE
NX_LISTMODE
NX_TRACKMODE

DESCRIPTION These constants represent the modes of operation of a Matrix, as described in the Matrix
class specification.

Modal Session Return Values

DECLARED IN appkitl Application.h

SYNOPSIS NX_RUNSTOPPED
NX_RUNABORTED
NX_RUNCONTINUES

DESCRIPTION Return values for Application's runModalFor: and runModaISession:.

Open Panel Tag Constants

DECLARED IN appkitlOpenPanel.h

SYNOPSIS NX_OPICONBUTTON
NX_OPTITLEFIELD
NX_OPCANCELBUTTON
NX_OPOKBUTTON
NX_OPFORM

DESCRIPTION These constants redefine the SavePanel tag constants for the OpenPanel.

Types and Constants: Matrix Selection Mode Constants 2-1031

Page Layout Panel Button Tags

DECLARED IN appkitlPageLayout.h

SYNOPSIS NX_PLICONBUTTON
NX_PLTITLEFIELD
NX_PLPAPERS IZEB UTTON
NX_PLLAYOUTBUTTON
NX_PLUNITSBUTTON
NX_PLWIDTHFORM
NX_PLHEIGHTFORM
NX_PLPORTLANDMATRIX
NX_PLSCALEFIELD
NX_PLCANCELBUTTON
NX_PLOKBUTTON

DESCRIPTION These constants represent the tag values of the various buttons that the Page Layout
panel displays.

Page Order Modes

DECLARED IN appkitlPrintlnfo.h

SYNOPSIS NX_DESCENDINGORDER
NX_SPECIALORDER
NX_ASCENDINGORDER
NX_UNKNOWNORDER

DESCRIPTION These constants describe the order in which pages are spooled for printing.

2-1032 Chapter 2: Application Kit

Page Orientation Constants

DECLARED IN appkitIPrintlnfo.h

SYNOPSIS NX_PORTRAIT
NX_LANDSCAPE

DESCRIPTION These constants represent the way a page is oriented for printing. In NX_PORTRAIT
mode, the page is turned so it's higher than it is wide; NX_LANDSCAPE orients the page
to be wider than high.

Pagination Modes

DECLARED IN appkitIPrintlnfo.h

SYNOPSIS NX_AUTOPAGINATION
NX_FITPAGINATION
NX_CLIPPAGINATION

DESCRIPTION These constants represent the different ways in which an image is divided into pages. See
the Printlnfo class specification for a fuller explanation.

Panel Button Tags

DECLARED IN appkitlPanel.h

SYNOPSIS Name

NX_OKTAG
NX_CANCELTAG

Value

1
o

DESCRIPTION These constants define tags for the two buttons commonly presented by a Panel.

Types and Constants: Page Orientation Constants 2-1033

Panel Return Values

DECLARED IN appkitlPanel.h

SYNOPSIS Name Value

NX_ALERTDEFAULT 1
NX_ALERTALTERNATE 0
NX_ALERTOTHER -1
NX_ALERTERROR -2

DESCRIPTION These constants define values returned by the NXRunAlertPanelO function and by
runModalSession: when the modal session is run with a Panel provided by
NXGetAlertPanelO.

Printer Table Key Length

DECLARED IN appkitINXPrinter.h

SYNOPSIS NX_PRINTKEYMAXLEN

DESCRIPTION This constant gives the maximum length of a string passed as the key to an NXPrinter
printer-information table.

Printer Table States

DECLARED IN appkitINXPrinter.h

SYNOPSIS NX_PRINTERTABLEOK
NX_PRINTERTABLENOTFOUND
NX_PRINTERTABLEERROR

DESCRIPTION These constants are used to describe the state of a printer-information table stored by an
NXPrinter object.

2·1034 Chapter 2: Application Kit

Rectangle Sides

DECLARED IN appkitlgraphics.h

SYNOPSIS Side Meaning

NX_XMIN
NX_YMIN
NX_XMAX
NX_YMAX

Parallel to the y-axis, along the side with the smallest x values
Parallel to the x-axis, along the side with the smallest y values
Parallel to the y-axis, along the side with the greatest x values
Parallel to the x-axis, along the side with the greatest y values

DESCRIPTION These constants represent the four sides of a rectangle.

Save Panel Tag Constants

DECLARED IN appkitlSavePanel.h

SYNOPSIS Name

NX_SPICONBUTTON
NX_SPTITLEFIELD
NX_SPBROWSER
NX_SPCANCELBUTTON
NX_SPOKBUTTON
NX_SPFORM

Value

150
151
152
NX_CANCELTAG
NX_OKTAG
155

DESCRIPTION These constants define tags for identifying views in the SavePanel.

Types and Constants: Rectangle Sides 2-1035

Scroller Arrow Positions

DECLARED IN appkitlScroller.h

SYNOPSIS Position Value

NX_SCROLLARROWSMAXEND 0
NX_SCROLLARROWSMINEND 1
NX_SCROLLARROWSNONE 2

DESCRIPTION These constants are used in Scroller's setArrowsPosition: method to set the position of the
arrows within the scroller.

Scroller Part Identification Constants

DECLARED IN appkitlScroller.h

SYNOPSIS Part

NX_NOPART
NX_DECPAGE
NX_:r<N0B
NX_INCPAGE
NX_DECLINE
NX_INCLINE
NX_KNOBSLOT
NX_JUMP

Value

o
1
2
3
4
5
6
6

DESCRIPTION These constants are used in Scroller's hitPart method to identify the part of the Scroller
specified in a mouse event.

2-1036 Chapter 2: Application Kit

Scroller Usable Parts

DECLARED IN appkitlScroller.h

SYNOPSIS Usable Parts

NX_SCROLLERNOPARTS
NX_SCROLLERONLYARROWS
NX_SCROLLERALLPARTS

Value

o
1
2

DESCRIPTION These constants define the usable parts of a Scroller object; see the class specification for
more information.

Scroller Width and Height

DECLARED IN appkitlScroller.h

SYNOPSIS NX_SCROLLERWIDTH

DESCRIPTION This constant identifies the default width of a vertical Scroller and the default height of a
horizontal Scroller. Currently, the constant is defined as 18.0.

Text Alignment Modes

DECLARED IN appkitlText.h

SYNOPSIS NX_LEFTALIGNED
NX_RIGHTALIGNED
NX_CENTERED
NX_JUSTIFIED

DESCRIPTION Used as arguments and return values for methods that specify text alignment.

Types and Constants: Scroller Usable Ports 2·1037

Text Block Constant

DECLARED IN appkit/Text.h

SYNOPSIS NX_TEXTPER

DESCRIPTION This constant identifies the number of characters to allocate for each text block in a
Text object.

Text Key Constants

DECLARED IN appkitiText.h

SYNOPSIS NX_BACKSPACE
NX_CR
NX_DELETE
NX_BTAB
NX_ILLEGAL
NX_RETURN
NX_TAB
NX_BACKTAB
NX_LEFT
NX_RIGHT
NX_UP
NX_DOWN

DESCRIPTION These constants are used by a Text object's character filter function.

2-1038 Chapter 2: Application Kit

Text Tab Stop Constant

DECLARED IN appkitiText.h

SYNOPSIS NX_LEFTTAB

DESCRIPTION This constant identifies the only type of tab currently defined for a Text object.

TIFF Compression Schemes

DECLARED IN appkitltiff.h

SYNOPSIS NX_TIFF _COMPRESSION_NONE
NX_TIFF _COMPRESSION_CCITTFAX3
NX_TIFF _COMPRESSION_CCITTFAX4
NX_TIFF _COMPRESSION_LZW
NX_TIFF _COMPRESSION_JPEG
NX_TIFF _COMPRESSION_PACKBITS

DESCRIPTION These constants represent the various TIFF (tag image file format) data compression
schemes. See the NXBitmapImageRep class specification for their meanings.

Types and Constants: Text Tab Stop Constant 2-1039

View Autoresize Constants

DECLARED IN appkitlView.h

SYNOPSIS NX_NOTSIZABLE
NX_MINXMARGINSIZABLE
NX_ WIDTHS IZAB LE
NX_MAXXMARGINS IZAB LE
NX_MINYMARGINSIZABLE
NX_HEIGHTSIZABLE
NX_MAXYMARGINS IZAB LE

DESCRIPTION Used to describe which parts of a View (or its margins) are resized when the View's
superview is resized. See the View class specification for details.

Window Button Masks

DECLARED IN appkitlWindow.h

SYNOPSIS NX_CLOSEBUTTONMASK
NX_MINIATURIZEBUTTONMASK

DESCRIPTION These determine the existence of the close button and miniaturize button in a Window's title
bar. See the Window class description for more information.

Window Frame Description String Length

DECLARED IN appkitlWindow.h

SYNOPSIS NX_MAXFRAMESTRINGLENGTH

DESCRIPTION You use this constant to allocate a string that will contain Window frame information, as
used by Window methods such as saveFromToString:.

2-1040 Chapter 2: Application Kit

Window Styles

DECLARED IN appkitlWindow.h

SYNOPSIS NX_PLAINSTYLE
NX_ TITLED S TYLE
NX_MENUSTYLE
NX_MINIWINDOWSTYLE
NX_MINIWORLDSTYLE
NX_TO KENS TYLE
NX_RESIZEBARSTYLE
NX_FIRSTWINSTYLE
NX_LA S TWINS TYLE
NX_NUMWINSTYLES

DESCRIPTION Used to describe a Window object's style. The last three constants are useful for
sequencing through the list of distinct styles. See the Window class description for more
information.

Window Tiers

DECLARED IN appkitlWindow.h

SYNOPSIS Window tier Value

NX_NORMALLEVEL 0
NX_FLOATINGLEVEL 3
NX_DOCKLEVEL 5
NX_SUBMENULEVEL 10
NX_MAINMENULEVEL 20

DESCRIPTION These constants list the window (device) tiers that are used by the Application Kit.
Windows are ordered (or "layered") within tiers: The uppermost window in one tier can
still be obscured by the lowest window in the next higher tier.

Types and Constants: Window Styles 2·1041

Workspace Name Constants

DECLARED IN appkitlListener.h

SYNOPSIS NX_ WORKSPACEREQUEST
NX_ WORKSPACEREPLY

DESCRIPTION NX_ WORKSPACEREQUEST is the name of the Workspace Manager's Listener's port; it
isn't defined until an application enters the run loop. NX_ WORKSPACEREPLY is private
and shouldn't be meddled with.

Workspace Request Constants

DECLARED IN appkitlworkspaceRequest.h

SYNOPSIS File Operation Constant

WSM_MOVE_OPERATION
WSM_COPY _OPERATION
WSM_LINK_OPERATION
WSM_COMPRESS_OPERATION
WSM_DECOMPRESS_OPERATION
WSM_ENCRYPT_OPERATION
WSM_DECRYPT_OPERATION
WSM_DESTROY _OPERATION
WSM_RECYCLE_OPERATION
WSM_DUPLICATE_OPERATION

Value

"move"
"copy"
"link"
"compress"
"decompress"
"encrypt"
"decrypt"
"destroy"
"recycle"
"duplicate"

DESCRIPTION Possible file operation arguments for the
performFileOperation:source:destination:files:options: method. The object that
responds to this method is available from Application's workspace method.

2-1042 Chapter 2: Application Kit

Global Variables

Application Object

DECLARED IN appkitl Application.h

SYNOPSIS id NXApp;

DESCRIPTION The current application's Application object.

Break Tables

DECLARED IN appkitlText.h

SYNOPSIS const NXFSM *const NXEnglishBreakTable;
const int NXEnglishBreakTableSize;
const NXFSM *const NXEnglishNoBreakTable;
const int NXEnglishNoBreakTableSize;
const NXFSM *const NXCBreakTable;
const int NXCBreakTableSize;

DESCRIPTION These tables are finite state machines that determine word wrapping in a Text object.

Character Category Tables

DECLARED IN appkitlText.h

SYNOPSIS onst unsigned char *const NXEnglishCharCatTable;
const unsigned char *const NXCCharCatTable;

DESCRIPTION These tables define the character classes used in a Text object's break and click tables.

Types and Constants: Application Object 2-1043

Click Tables

DECLARED IN appkitlText.h

SYNOPSIS const NXFSM *const NXEnglishClickTable;
const int NXEnglishClickTableSize;
const NXFSM *const NXCClickTable;
const int NXCClickTableSize;

DESCRIPTION These tables are used by a Text object as finite state machines that determine which
characters are selected when the user double clicks.

Domain Name

DECLARED IN appkitl Application.h

SYNOPSIS char *const NXSystemDomainName;

DESCRIPTION The name of the host's domain.

File Information

DECLARED IN appkitlworkspaceRequest.h

SYNOPSIS NXAtom NXPlainFileType;
NXAtom NXDirectoryFileType;
NXAtom NXApplicationFileType;
NXAtom NXFilesystemFileType;
NXAtom NXShellCommandFileType;

DESCRIPTION Values identifying a file's type using the getInfoForFile:application:type: method. The
object that responds to this message is available from Application's workspace method.

2-1044 Chapter 2: Application Kit

File-Name Extension for Data Links

DECLARED IN appkitINXDataLinkh

SYNOPSIS NXAtom NXDataLinkFilenameExtension;

DESCRIPTION The file-name suffix used for links saved to files using NXDataLink's
NXDataLinkFilenameExtension method.

Null Object

DECLARED IN appkitl Application.h

SYNOPSIS int NXNullObject;

DESCRIPTION A canonical null object.

Pasteboard Names

DECLARED IN appkitlPasteboard.h

SYNOPSIS NXAtom NXGeneralPboard;
NXAtom NXFontPboard;
NXAtom NXRulerPboard;
NXAtom NXFindPboard;
NXAtom NXDragPboard;

DESCRIPTION The names of the standard pasteboards. See the Pasteboard class specification introduction
for more information.

Types and Constants: File-Name Extension for Data Links 2-1045

Pasteboard Types

DECLARED IN appkitlPasteboard.h

SYNOPSIS NXAtom NXAsciiPboardType;
NXAtom NXPostScriptPboardType;
NXAtom NXTIFFPboardType;
NXAtom NXRTFPboardType;
NXAtom NXFilenamePboardType;
NXAtom NXTabularTextPboardType;
NXAtom NXFontPboardType;
NXAtom NXRulerPboardType;
NXAtom NXFileContentsPboardType;
NXAtom NXColorPboardType;

DESCRIPTION Some standard pasteboard data types. See the Pasteboard class specification for more
information.

Pasteboard Types

DECLARED IN appkitINXDataLink.h

SYNOPSIS NXAtom NXDataLinkPboardType;

DESCRIPTION A pasteboard type for copying a data link to the pasteboard. See the NXDataLink class
specification for more information.

2-1046 Chapter 2: Application Kit

Pasteboard Types

DECLARED IN appkitINXSelection.h

SYNOPSIS NXAtom NXSelectionPboardType;

DESCRIPTION A pasteboard type for copying selection descriptions to the pasteboard. See the
NXSelection class specification for more information.

Process

DECLARED IN appkitl Application.h

SYNOPSIS int NXProcessID;

DESCRIPTION The Mach process in which the current application is running.

Screen Dump Switch

DECLARED IN appkitlView.h

SYNOPSIS BOOL NXScreenDump;

DESCRIPTION If YES, objects are printed as they appear on the screen. If NO (the default), objects are
printed in their default states.

Types and Constants: Pasteboard Types 2-1047

Smart Cut and Paste Tables

DECLARED IN appkitiText.h

SYNOPSIS const unsigned char *const NXEnglishSmartLeftChars;
const unsigned char *const NXEnglishSmartRightChars;
const unsigned char *const NXCSmartLeftChars;
const unsigned char *const NXCSmartRightChars;

DESCRIPTION These arrays are suitable as arguments for. a Text object's setPreSelSmartTable: and
setPostSelSmartTable: methods. When the user pastes text into a Text object, if the
character to the left (right) of the new word is not in the left (right) table, an extra space
is added on that side.

View Drawing Status

DECLARED IN appkitlView.h

SYNOPSIS short NXDrawingStatus;

DESCRIPTION Encodes the current drawing status for an application. It takes one of the three values listed
under "Drawing Activity States," above.

Workspace Name

DECLARED IN appkit/Listener.h

SYNOPSIS const char *NXWorkspaceName;
const char *const NXWorkspaceReplyName;

DESCRIPTION Use the Workspace name constants (listed under "Symbolic Constants") rather than
these variables.

2-1048 Chapter 2: Application Kit

Other Features

Services

The NeXTSTEP services facility allows an application to make use of the services of other
applications without knowing in advance what those services might be. For example, a text
editing application lets the system know that it's willing to provide plain ASCII text or rich
text (RTF) on the pasteboard any time there is a selection. Any service-providing
application is then able to receive that text and act upon it. A service-providing application
could thus provide such services as spell checking, grammar checking, encryption,
reformatting, language translation, conversion to speech, or any number of useful
functions. Service-providing applications can also place data back on the pasteboard to be
received by the main application. In this way, data can be seamlessly exchanged between
applications, and any application can extend the functionality of many others. This
document provides a basic overview of the process of providing and using services.

Providing a Service

In order to provide a service, an application must make known the data types it's willing to
act upon, the messages it must receive to initiate action, the menu item to be placed in
applications that can provide or accept such data, and the Mach port on which it can receive
the messages it published.

As an example, consider a service to reverse text. This service will accept ASCII text on
the pasteboard, reverse it, and place the reversed ASCII text back on the pasteboard. Since
the Text class supplied with NeXTSTEP knows how place and receive text on the
pasteboard, all NeXTSTEP applications will be able to take advantage of the text reversal
service to check palindromes or for simple encryption. Since the text will be automatically
replaced in a Text object, it will be as though this feature were built in to every application.

First, you must declare the important aspects of the Reverser service in a text file looking
something like this:

Message: reverseData
Port: Reverser
Send Type: NXAsciiPboardType
Return Type: NXAsciiPboardType
Menu Item: Reverse It

This is known as a service specification. (More than these five fields may be listed. The
complete specification is described later.) For this example, we will call this file
services. text. The Send Type field indicates that this service requires that data of
NXAsciiPboardType be placed on the pasteboard. NXAsciiPboardType is a data type
consisting of simple ASCII text. NeXTSTEP defines data types for simple and rich text,
file names, encapsulated PostScript, TIFF image data and others. A service is free to

2-1050 Chapter 2: Application Kit

request any data types it likes, including proprietary formats, but the service will only be
enabled if the main application can supply data of that type. The Return Type field
indicates that the service will return ASCII data on the pasteboard after manipulating the
data. A return type isn't necessary; the service could simply act on the data it receives
without returning anything to the main application. However, since this service returns
data, the main application will wait for the service to provide data before it continues
processing. (If the service doesn't return data, the service is invoked asynchronously and
the main application doesn't wait.) Both the Send Type and Return Type fields are
optional. A service may just accept data, it may just provide data, or it may modify data to
be pasted back into the main application. A service may also list multiple send or return
types indicating that it can accept anyone of several types or that it will return many types;
to indicate this, the Send Type or Return Type lines can be duplicated.

The Menu Item field indicates that a Reverse It command should be added to the Services
menu of every application that can (at least under some circumstances) send and receive
ASCII text. This command will be enabled any time a text field has a selection that can be
reversed. If the user chooses the enabled Reverse It command, the selection will be placed
on the pasteboard and the message indicated in the Message field will be send to the port
indicated in the Port field.

How a Service Is Advertised

NeXTSTEP uses the Mach-O executable file format, which effectively provides a simple
directory structure to executable files. An executable thus contains multiple segments (akin
to directories) each with a number of sections containing binary code, images, text, and
other data. At run time, the system will look into the executable files in -/ Apps and
lLocalApps. If an executable contains a __ services section in its __ ICON segment, the
services listed in the section will be made available to the appropriate applications. The
following line must be added to the Makefile.preamble file (included by NeXTSTEP's
standard makefile) to include the above services.text file:

LDFLAGS = -sectcreate ICON services services.text

How to Implement a Service

The message line in the services. text file indicates that the system will send a reverseData
message to the service-providing application when the user clicks its menu item. Before
sending such a message, the system will ask the main application to put the selected data
on the pasteboard in the format required by the service. (The service's menu item will only
be enabled when the main application has confirmed that it will be able to provide the data;
more on this later.) The actual message sent to the service provider contains parameters
identifying the pasteboard, supplying optional information about which service is actually
to be performed (since a single method can be used to perform multiple services), and a

Other Features: Services 2-1051

pointer allowing the service to return an error message. Here is a possible implementation
of the service to reverse text:

- reverseData: (id)pasteboard

userData: (const char *)userData
error: (char **)msg

const char *types[1];

char *buffer, *revBuffer, *data;

int length, i=O, j;

[pasteboard types]; II pretend to check the pasteboard types

II read the ASCII data from the pasteboard

if ([pasteboard readType:NXAsciiPboardType data:&data
length: &length])

buffer = malloc(length+1)
revBuffer = malloc(length+1)

strncpy(buffer,data,length);

buffer[length]='\O';

revBuffer[length]='\O' ;

II Reverse the text into revBuffer
j = length - 1;

while (j >=0) revBuffer[i++] = buffer[j--];

II Write the reversed buffer back to the pasteboard
types [0] = NXAsciiPboardType;
[pasteboard declareTypes: types num: 1 owner:nil];

[pasteboard writeType: NXAsciiPboardType data:revBuffer
length: length] ;

free (buffer) ;

free(revBuffer)i

else *msg = "Error: couldn't reverse text.";

return self;

Every application has a Listener object to receive Objective C messages from external
applications. This Listener registers its Mach port with the network name server under the
application's name (Reverser, in this case), and it's used to receive messages from the

2·1052 Chapter 2: Application Kit

Workspace Manager to open files or to receive notification that the system will shut down.
This same Listener can also be used to receive messages from applications requesting
services.

The Listener must be told which object within the application implements the methods that
respond to service requests. This object is referred to as the services delegate. For
example, to inform the application's Listener object that theServiceObject is the services
delegate, you'd send these messages:

id theListener = [NXApp appListenerJ;
[theListener setServicesDelegate:theServiceObject] ;

Thereafter, the Reverser application will receive the reverseData:userData:error:
message any time the user requests that the selected text be reversed.

Fields in a Service Specification

The following fields must be included in a service specification:

Message: <name of message>

This field identifies the method that will be invoked in the Listener's service delegate.
In the example above, the message field is reverseData, so the delegate must implement
a reverseData:userData:error: method.

Port: <name of a port>

The name of a port of a Listener that is listening for service messages. Since every
NeXTSTEP application has, by default, a Listener port registered under the
application's name, the sevice specification generally uses this port name.

Menu Item: <string appearing in other app's Services Menu>

The menu item for the service. This string will appear in the Services menus of
applications that can take advantage of the- service. If this string contains a'/, character,
that character will be used as a delimiter to specify a second level in the Service menu
hierarchy. For example, a menu item of Encrypt/Replace ,will create a submenu
Encrypt in the Services menu, with a Replace menu item in that submenu. Only one
level of hierarchy is supported.

The menu item field must be untranslated. Translated menu items can be achieved by
including menu item fields preceded by the appropriate language; for example French
Menu Item. Alternatively, the supplied string can be used as a key into a ".strings" file
(see NXStringTableO) called Language .Iproj/ServicesMenu.strings found in the
same directory as the executable containing the __ services section

Other Features: Services 2-1053

In addition, the following fields may be included in a service specification:

User Data: <any arbitrary string>

The User Data field is for the service provider's use and is simply passed along as one
of the parameters to the someMessage:userData:error: message. This parameter may
be useful if multiple services are performed by a single method.

Send Type: <any valid pasteboard type>

The Send Type field specifies the type of data the requesting application is expected to
provide in making the request. You may have more than one Send Type field (implying
that your request can operate on more than one type of data), but the requesting
application is required only to place one of those types into the Pasteboard.

Return Type: <any valid pasteboard type>

If the Return Type field is specified, then the requesting application will expect you to
place some data of that type back into the pasteboard object which you are passed. You
may specify any number of return types, but you must place ALL of those types in the
pasteboard as part of your implementation of your method (though, of course, you may
provide some of them lazily-see the Pasteboard documentation's description of the
provideData: method). Under normal circumstances, the requestor will use the
returned data to replace the selection, though the requestor isn't required to do so.

Executable: <a full path to an executable file>

The process which actually services a request need not be a full-fledged application with
a user-interface, an icon, and Mach-O segments. The Executable field lets you specify
the path to the program which should be launched before looking up the port. Note that
you must still provide a normal application with a user-interface in whose Mach-O you
can put the request information (even if the service is always provided by a lightweight
program). This full-fledged application should at the very least give a short description
of the provided service(s) as well as any copyright or usage information when the user
double-clicks on it from the Workspace.

Timeout: <some number of milliseconds>

The Timeout field is used to determine how long a request might take to process. The
default is 30000 milliseconds. Increasing this time allows time consuming services to
be performed before the system assumes there was an error and continues. Decreasing
this time for speedy services allows errors to be reported more quickly.

2-1054 Chapter 2: Application Kit

Host: <the name of a network host>

The Host field lets you specify a specific host on which the service provider should be
run. This is done either by requesting the launch of that application from the Workspace
Manager running on that host or by using rsh(l) to start up the application on the remote
host (if it isn't a full-fledged application).

Key Equivalent: <any character>

The Key Equivalent field may be used to specify the key equivalent for the menu item
that invokes the service. Like the Menu Item field, it may be localized by preceding it
with a language. For example, a service could have the following entries in its service
specification:

Menu Item: Hello
French Menu Item: Bonjour
Key Equivalent: H
French Key Equivalent: B

Specifying Services Dynamically

Many services are known in advance, so the services specification is included in a Mach-O
section of the executable file. Some services, however, can't be known until run-time. For
example, when data is added to a Librarian bookshelf, Librarian can provide a service to
look up information within that data.

To facilitate such dynamic services, you must create a text file with a ".services" extension.
Alternatively, you may create a directory with a .services extension, and a text file called
services inside it. The format of this text file is exactly the same as the services
specification detailed earlier. This file or directory must be placed in your normal
application path or one of lNextLibrary/Services, /LocaILibrary/Services or
..... /Library/Services. After adding the file, call the function
NXUpdateDynamicServicesO to get the system to recognize your newly-added services.

Using Services

In order to take advantage of services, an application must have a Services menu, and it
must contain Responder objects that register the data types that they may be willing to
export and import. If the application's interface is generated with Interface Builder, you
can simply drag the Services menu item into the application's menu from an Interface
Builder palette. If the application's menu is created programmatically, you can specify the
menu item that is to be the Services menu with Application's setServicesMenu: method.

Other Features: Services 2-1055

Registering Types

Responder objects (including subclasses of View, Window, and Application) should, at the
time they are created, register all the data types that they can import and export by using
Application's registerServicesMenuSendTypes:andReturnTypes: method. The lists of
types provided to this method need not be balanced; it's perfectly reasonable for a
Responder to handle one export type and three import types, for example. Some of the
standard pasteboard data types are listed in appkitlPasteboard.h. A Responder doesn't
necessarily have to import or export common data types, but more service providers will be
able to act on the common data types than on less common types.

The types supplied to registerServicesMenuSendTypes:andReturnTypes: are used to
determine which service provider commands are listed in the Services menu. Any service
provider that can receive a data type provided by the application or that can supply data to
the application should be allowed to have an item in the Services menu, so Responders
should provide a complete list of the data they use under any circumstance. The item for
an individual service provider will be dynamically enabled any time the application can
supply or use the data required or supplied by the service.

The following code could be used to register an object that is, at least in some state, able to
export ASCII or RTF text and/or import ASCII text:

const char *sendTypes[3];
const char *returnTypes[2];
sendTypes[O] NXAsciiPboardType;
sendTypes[l] = NXRTFPboardType;
sendTypes[2] = NULL;
returnTypes[O] = NXAsciiPboardType;
returnTypes[l] = NULL;
[NXApp registerServicesMenuSendTypes:sendTypes

andReturnTypes:returnTypes] ;

Validating Services Dynamically

A Responder (or delegate) that can use services must validate the data types that it can
import and export at any given time. It does this by implementing the
validRequestorForSendType:andReturnType: method. This method is invoked for each
service that the application might be able to make use of, with arguments for the data types
the service requires. If the Responder can, in its current state, use both the specified send
and receive data types (or they are nil) it should return self to indicate that the
corresponding service can be enabled. If the responder can't make use of either the send
type or the receive type, it should forward the message to its superclass's implementation;
the default implementation will then forward the message up the responder chain, looking
for a responder that can take advantage of the service.

2-1056 Chapter 2: Application Kit

The validRequestorForSendType:andReturnType: method may be invoked frequently,
typically many times per event to ensure that the menu items for all service providers reflect
the state of the application. A Responder's implementation of this method must be fast so
that event handling remains snappy. The arguments to this method are NXAtoms, so you
can compare the arguments to standard pasteboard types by comparing pointers rather than
comparing strings.

The following example demonstrates an implementation of the
validRequestorForSendType:andReturnType: method for an object that can send and
receive ASCII text. Pseudocode is in italics.

- validRequestorForSendType: (NXAtom)typeSent

andReturnType: (NXAtom)typeReturned

/*

* First, check to make sure that the types are ones
* that we can handle.
*/

if ((typeSent == NXAsciiPboardType I I typeSent == NULL) &&
(typeReturned == NXAsciiPboardType I I typeReturned == NULL)

/*

/*

* If so, return self if we can give the service
* what it wants and accept what it gives back.
*/

if ((there is a selection) I I typeSent == NULL) &&
((the text is editable) I I typeReturned == NULL)

return self;

* Otherwise, return the default.
*/

return [super validRequestorForSendType:typeSent

andReturnType:typeReturned] ;

While the application is running, the validRequestorForSendType:andReturnType:
message is sent to objects in a limited Responder chain, consisting of the responder chain
in the key window, the key window's delegate (only ifit isn't a Responder), the Application
object, and the Application object's delegate (only if it isn't a Responder). The delegates
of the key window and Application object are excluded if they are Responders in order to
keep the message from being sent down additional responder chains.

Other Features: Services 2-1057

How a Service Is Invoked

A service's menu item is enabled any time the application returns a non-nil value to a
validRequestorForSendType:andReturnType: message. If the user then clicks on the
service's menu item, the service is invoked. If the service requires data but doesn't send
any back (that is, if the service has a send type but no return type) then the service is invoked
asynchronously; the application provides the data and continues to run without waiting on
the service. However, if the service provides data (that is, the send type is non-NULL) then
the service is invoked synchronously; the application won't continue until the service
supplies the data or the service request times out.

When the service is invoked, the system checks whether the service requires data. If so, the
responder that returned self to the validRequestorForSendType:andReturnType:
message is sent a writeSelectionToPasteboard: message to instruct the responder to
provide the data it said it would be able to supply. The implementation of this method
should put the data on the pasteboard using the deciareTypes:num:owner: Pasteboard
method. If a pasteboard owner is specified, the responder can wait to provide the actual
data by implementing the pasteboard:provideData: method. (The owner must persist as
long as the application is running.) If no owner is specified, the application should provide
the data immediately using Pasteboard's writeType:data:length: method.

The responder's implementation of writeSelectionToPasteboard: should return YES if
the selection is successfully written to the Pasteboard, and NO if it fails to supply the data.
However, if the responder correctly replies to
validRequestorForSendType:andReturnType: queries, it should almost always be able
to subsequently provide the data.

If the service returns data (that is, has a non-NULL return type), the application will wait
(up to the service's time-out period) for the service to provide the returned data. The
service must do its processing work and put the data back on the pasteboard using
Pasteboard's deciareTypes:num:owner: method, as described earlier. The application
will then receive a readSelectionFromPasteboard: message, and its implementation of
that method should replace the selection (which could be empty, like a cursor marking an
insertion point) with the data from the pasteboard.

Invoking a Service Programmatically

Though services are usually invoked when the user clicks a service menu item, they may
also be invoked programmatically with the following function:

BOOL NXPerformService(const char *itemName, Pasteboard *pboard)

This function returns YES if the service is successfully performed. itemName is a Services
menu item in any language. Note that Services menu entries which are in subdirectories

2-1058 Chapter 2: Application Kit

must include a slash wherever there is a subdirectory, for example, "Mail/Selection". The
pboard must contain whatever data the service requires, and will, upon return of the
function, contain the resultant data provided by the service.

Examples of Services

Here are a few examples of services that have already been implemented to give you an idea
of what can be done with NeXTSTEP's services mechanism:

• Optical character recognition-When a NeXTSTEP application receives a fax, it
receives a bitmap that can't be edited as text. If the application is willing to place the
image on the pasteboard as a TIFF image, then an optical character recognition service
can convert the image to ASCII text and paste it back as editable data.

• Encryption-An encryption service can convert data to a more secure form. For
example, Mail can place a mail message on the pasteboard as a standard Rich Text
Format (RTF) document, and another application could encrypt the document and place
it back into mail as unreadable ASCII text, or as a document to be opened only by
another external decryption application.

• Encapsulated PostScript effects-Many applications support encapsulated PostScript
(EPS) graphic images. An EPS effects service can take selected graphics from the
pasteboard, rotate them, scale them, and add other effects before pasting them back. In
this manner, consistent graphics editing is enabled, even in applications with minimal
graphics support.

• Database lookup-Selected topics can be looked up in a database. This is a good
example of an asynchronous service that reads data from the pasteboard but doesn't send
any data back to the main application.

• Document compression and mailing-One standard pasteboard type defines a complete
file name, including its path. Services use this data to send the current file by Mail, and
to compress the current document.

• Macro services-Not all services require data from an application. Some simply
provide data on request. Examples include macro programs that insert commonly used
data such as signatures and time stamps.

Other Features: Services 2-1059

3 Common Classes and Functions

3-3 Introduction

3-7 Classes
3-8 HashTable
3-15 List
3-23 NXBundle
3-31 NXStringTable
3-35 Storage

3-43 Functions

3-103 Types and Constants
3-104 Defined Types
3-109 Symbolic Constants
3-110 Global Variables

3-1

Common Classes and Functions

Library: libsys_s.a

Header File Directories: INextDeveloperlHeaders/objc
IN extDeveloperlHeaders/streams
IN extDeveloper/Headers/defaults
INextDeveloperlHeaders/appkit

Import: appkitJappkit.h
or individual header files

Introduction

The classes and functions described in this chapter can serve a wide variety of different
kinds of applications. They get the name "common" from the fact that they're generally
useful and commonly used. Most provide ways of managing data and resources within a
program. They can be used in conjunction with any of the NeXTSTEP software kits.

List
Storage

HashTable ---- NXStringTable

NXBundle

Figure 3-1. Common Classes Inheritance Hierarchy

Common Classes and Functions 3-3

The table below is a guide to the facilities documented here. The first column states, in a
few words, a kind of data-management or resource-management service. The second
column says where to look in the chapter; it names the class or principal function that
provides the service. Consult the documentation for the functions and classes mentioned
to learn whether they're right for your application.

Facility

Storage allocation

Unordered collections

Ordered collections

Class or Function

NXZoneMallocO
NXCreateZoneO
NXMallocCheckO
Storage class

HashTable class
NXCreateHashTableO
NXHashInsertO
NXStringTable class

List class
Storage class

Recording user preferences NXRegisterDefaultsO

Localizing resources

Exception handling

Dynamic loading of code

Input -output streams

Archiving
and typed streams

Classifying and
converting characters

3-4 Chapter 3: Common Classes and Functions

NXBundle class
NXLocalizedStringO

NX_RAISEO
NXDefaultExceptionRaiser()
NXSetU ncaughtExceptionHandlerO
NXAllocErrorDataO

NXBundle class

NXOpenFileO
NXOpenMemoryO
NXReadO
NXPutcO

NXOpenTypedStreamO
NXReadObjectO
NXReadTypeO

NXlsAlphaO
NXToAsciiO

Because the Application Kit makes use of all the common classes and almost all of the
common functions, importing the appkit.h header file automatically imports all but one of
the header files that declare common classes and functions. Since appkit.h corresponds to
a precompiled version of the header files, importing it rather than individual files
dramatically reduces the time required for compilation. The only common header file that's
omitted, and that you might need to import individually, is streams/streamsimpl.h. It
declares rarely used functions that implement new versions of a stream.

Introduction 3-5

Classes

HashTable

Inherits From:

Declared In:

Class Description

Object

objc/HashTable.h

The HashTable class defines objects that store associations of keys and values. You use a
HashTable object when you need a convenient and efficient way to retrieve the data
associated with an arbitrary key. Internally, a hash table locates the key and associated
object according to the value returned by applying a hashing function to the key. However,
the hashing operation is provided automatically by the HashTable's methods, so that the
methods that add an association to a HashTable (or return an association, given its key)
accept and return the key values directly, not their hashed forms.

In a HashTable object, keys must be of the same type (so that the same hashing function
can be applied to each of them), and associated values must be of the same type. The types
of the keys and the values are established when the HashTable is initialized. The
initKeyDesc:valueDesc: ... methods take arguments that let you specify key type and
value type independently. The initKeyDesc: method specifies the type of the keys but
assumes that the associated values are ids. The init method assumes that both keys and
associated values are of type id (object pointers). The following characters are used as
HashTable descriptions (that is, as arguments to the initKeyDesc: or
initKeyDesc:valueDesc: methods):

Character

@

*
%

3-8 Chapter 3: Common Classes and Functions

Type

id
char *
NXAtom
int
other

Hashing Algorithm and Tests for Equality

The class uses three different algorithms, selected according to the description of the keys.
For keys that are of type "object", the HashTable sends itself a hash message (inherited
from Object). For keys that are strings, it uses a string hashing function. For all other cases,
it uses a generic integer hashing function.

To test whether a proposed key is equal to a key already included in the HashTable, keys
that are objects are compared using an isEqual: message. If two keys are equal in the sense
of isEqual:, then their hashed values must be equal.

Keys that are strings are compared using a string comparison. Note that the HashTable
object keeps only a pointer to the string used as a key (without making a copy of the string),
so the string to which it points must never change as long as the association remains in
the table.

If you're creating a HashTable whose keys are List or Storage objects, note that these
classes have an isEqual: method but no hash method; you can either subclass or define a
hash method.

When freeing a HashTable, only object keys or object values are freed.

When a HashTable is archived, data is archived according to its type description. For keys
or values whose description is "%", upon reading to reconstitute an archived HashTable,
each such string is reconstructed by again calling the NXUniqueStringO function to assure
that it is unique in the new context.

Function Interface to Hash Tables

When even greater efficiency of storage and access is required, consider using the C
function interface to hash tables rather than the HashTable class (see
NXCreateHashTableO).

Related Classes

Two other classes for storage and retrieval are NXStringTable and List. An NXStringTable
object is a hash table specialized for the situation in which both keys and values are
character strings. A List stores a sequential collection of objects; however, it stores the
objects (that is, the pointers to them) without keys, so the time required to find a particular
element in a List grows linearly with the number of elements.)

Classes: HashTable 3·9

Instance Variables

unsigned int count;

const char *keyDesc;

const char *valueDesc;

count

keyDesc

valueDesc

Method Types

Current number of associations

Description (character representing the type) of keys

Description (character representing the type) of values

Initializing and freeing a HashTable
- init
- initKeyDesc:
- initKeyDesc:valueDesc:
- initKeyDesc:valueDesc:capacity:
- free
- freeObjects
- freeKeys:values:
- empty

Copying a HashTable - copyFromZone:

Manipulating table associations - count
- isKey:
- valueForKey:
- insertKey:value:
- removeKey:

Iterating over all associations - initState
- nextState:key:value:

Archiving - read:
- write:

3-10 Chapter 3: Common Classes and Functions

Instance Methods

copyFromZone:

- copyFromZone:(NXZone *)zone

Returns a new HashTable of the same size as the receiving object. Memory for the new
HashTable is allocated from zone. Neither keys nor values are copied.

count

- (unsigned int)count

Returns the number of objects in the table.

empty

-empty

Empties the HashTable but retains its capacity.

free

-free

Deallocates the HashTable (but not the objects that its associations point to).

freeKeys:values:

- freeKeys:(void (*)(void *))keyFunc values:(void (*)(void *))valueFunc

Conditionally deallocates the HashTable's associations but does not deallocate the
table itself.

freeObjects

- freeObjects

Deallocates every object in the HashTable, but not the HashTable itself. Strings are not
recovered.

Classes: Hash Table 3-11

init

- init

Initializes a new HashTable to map keys of type "object" to values of type "object."
Returns self.

See also: - initKeyDesc:key:value:capacity:

initKeyDesc:

- initKeyDesc:(const char *)aKeyDesc

Initializes a new HashTable to map keys as described by aKeyDesc to object values.
Returns self.

See also: - initKeyDesc:key:value:capacity:

in itKeyDesc:valueDesc:

- initKeyDesc:(const char *)aKeyDesc valueDesc:(const char *)aValueDesc

Initializes a new HashTable to map keys and values as described by aKeyDesc and
a ValueDesc. Returns self.

See also: - initKeyDesc:key:value:capacity:

i nitKeyDesc:valueDesc:capacity:

- initKeyDesc:(const char *)aKeyDesc
valueDesc:(const char *)aValueDesc
capacity: (unsigned int)aCapacity

Initializes a new HashTable. This is the designated initializer for HashTable objects: If you
subclass HashTable, your subclass's designated initializer must maintain the initializer
chain by sending a message to super to invoke this method. See the introduction to the
class specifications for more information.

A HashTable initialized by this method maps keys and values as described by aKeyDesc
and aValueDesc. The argument aCapacity is given only as a hint; you can use 0 to create a
table of minimal size. As more space is needed, it will be allocated automatically, each time
doubling the table's capacity. Returns self.

See also: - initKeyDesc:key:value:capacity:

3-12 Chapter 3: Common Classes and Functions

initState

- (NXHashState)initState

Returns an NXHashState structure that's required when iterating through the HashTable.
Iterating through all of a HashTable's associations involves setting up an iteration state,
conceptually private to HashTable, and then progressing until all entries have been visited.
Here's an example of visiting all the associations in a HashTable called table (and just
counting them):

unsigned int count = 0;
const void *key;

void *value;
NXHashState state = [table initState];
while ([table nextState: &state key: &key value: &value])

count++;

See also: - nextState:key:value:

insertKey:value:

- (void *)insertKey:(const void *)aKey value:(void *)aValue

Adds or updates a key and value pair, as specified by aKey and a Value. If aKey is already
in the hash table, it's associated with a Value andits previously associated value is returned.
Otherwise, insertKey:value: returns nil.

See also: - removeKey:

isKey:

- (BOOL)isKey:(const void *)aKey

Returns YES if aKey is in the table, otherwise NO.

See also: - valueForKey:

Classes: HashTable 3-13

nextState:key:value:

- (BOOL)nextState:(NXHashState *)aState
key:(const void **)aKey
value:(void **)a Value

Moves to the next entry in the HashTable and provides the addresses of pointers to its
key/value pair. No insertKey: or removeKey: should be done while iterating through the
table. Returns NO when there are no more entries in the table; otherwise, returns YES. If
there are no more entries, aKey and a Value are set to NULL.

See also: - initState

read:

- read:(NXTypedStream *)stream

Reads the HashTable from the typed stream stream. Returns self.

See also: - write:

removeKey:

- (void *)removeKey:(const void *)aKey

Removes the hash table entry identified by aKey. Always returns nil.

See also: - insertKey:value:

valueForKey:

- (void *)valueForKey:(const void *)aKey

Returns the value mapped to aKey. Returns nil if aKey is not in the table.

See also: - isKey:

write:

- write:(NXTypedStream *)stream

Writes the HashTable to the typed stream stream. Returns self.

See also: - read:

3-14 Chapter 3: Common Classes and Functions

List

Inherits From:

Declared In:

Class Description

Object

objclList.h

A List is a collection of objects. The class provides an interface that permits easy
manipulation of the collection as a fixed or variable-sized list, a set, or an ordered
collection. Lists are implemented as arrays to allow fast random access using an index.
Indices start at O.

A List array contains object ids. An object isn't copied when it's added to a List; only its
id is. There are no empty slots within the array. nil objects can't be inserted in a List, and
the collection is contracted to close the empty space when an object is removed.

A List grows dynamically when new objects are added. The default mechanism
automatically doubles the capacity of the List when it becomes full, thus ensuring an
average constant time for insertions, independent of the size of the List.

For manipulating sets of structures that aren't objects, see the Storage class.

Instance Variables

id *dataPtr;

unsigned int numElements;
unsigned int maxElements;

dataPtr

numElements

maxElements

The data managed by the List object (the array of objects).

The actual number of objects in the array.

The total number of objects that can fit in currently
allocated memory.

Classes: List 3-15

Method Types

Initializing a new List object - init
- initCount:

Copying and freeing a List - copyFromZone:
-free

Manipulating objects by index - insertObject:at:
- addObject:
- removeObjectAt:
- removeLastObject
- replaceObjectAt:with:
- objectAt:
-lastObject
- count

Manipulating objects by id - addObject:
- addObjectIfAbsent:
- removeObject:
- replaceObject:with:
-indexOf:

Comparing and combining Lists
- isEqual:
- appendList:

Emptying a List - empty
- freeObjects

Sending messages to the objects
- makeObjectsPerform:
- makeObjectsPerform:with:

Managing the storage capacity - capacity
- setAvailableCapacity:

Archiving -read:
- write:

3-16 Chapter 3: Common Classes and Functions

Instance Methods

addObject:

- addObject:anObject

Inserts anObject at the end of the List, and returns self. However, if an Object is nil, nothing
is inserted and nil is returned.

See also: - insertObject:at:, - appendList:

addObjectlfAbsent:

- addObjectIfAbsent:anObject

Inserts anObject at the end of the List and returns self, provided that anObject isn't already
in the List. If anObject is in the List, it won't be inserted, but self is still returned.

If anObject is nil, nothing is inserted and nil is returned.

See also: - insertObject:at:

appendList:

- appendList:(List *)otherList

Inserts all the objects in otherList at the end of the receiving List, and returns self. The
ordering of the objects is maintained.

See also: - addObject:

capacity

- (unsigned int)capacity

Returns the maximum number of objects that can be stored in the List without allocating
more memory for it. When new memory is allocated, it's taken from the same zone that
was specified when the List was created.

See also: - count, - setAvaiiableCapacity:

Classes: List 3-17

copyFromZone:

- copyFromZone:(NXZone *)zone

Returns a new List object with the same contents as the receiver. The objects in the List
aren't copied; therefore, both Lists contain pointers to the same set of objects. Memory for
the new List is allocated from zone.

See also: - copy (Object)

count

- (unsigned int)count

Returns the number of objects currently in the List.

See also: - capacity

empty

- empty

Empties the List of all its objects without freeing them, and returns self. The current
capacity of the List isn't changed.

See also: - freeObjects

free

-free

Deallocates the List object and the memory it allocated for the array of object ids.
However, the objects themselves aren't freed.

See also: - freeObjects

freeObjects

- freeObjects

Removes every object from the List, sends each one of them a free message, and returns
self. The List object itself isn't freed and its current capacity isn't altered.

The methods that free the objects shouldn't have the side effect of modifying the List.

See also: - empty

3·18 Chapter 3: Common Classes and Functions

indexOf:

- (unsigned int)indexOf:anObject

Returns the index of the first occurrence of anObject in the List, or NX_NOT _IN_LIST if
anObject isn't in the List.

init

- init

Initializes the receiver, a new List object, but doesn't allocate any memory for its array of
object ids. It's initial capacity will be O. Minimal amounts of memory will be allocated
when objects are added to the List. Or an initial capacity can be set, before objects are
added, using the setAvaiiableCapacity: method. Returns self.

See also: - initCount:, - setAvaiiableCapacity:

initCount:

- initCount:(unsigned int)numSlots

Initializes the receiver, a new List object, by allocating enough memory for it to hold
numSlots objects. Returns self.

This method is the designated initializer for the class. It should be used immediately after
memory for the List has been allocated and before any objects have been assigned to it; it
shouldn't be used to reinitialize a List that's already in use.

See also: - capacity

insertObject:at:

- insertObject:clnObject at:(unsigned int)index

Inserts anObject into the List at index, moving objects down one slot to make room. If
index equals the value returned by the count method, anObject is inserted at the end of the
List. However, the insertion fails if index is greater than the value returned by count or
anObject is nil.

If anObject is successfully inserted into the List, this method returns self. If not, it
returns nil.

See also: - count, - addObject:

Classes: List 3-19

isEqual:

- (BOOL)isEqual:anObject

Compares the receiving List to anObject. If anObject is a List with exactly the same
contents as the receiver, this method returns YES. If not, it returns NO.

Two Lists have the same contents if they each hold the same number of objects and the ids
in each List are identical and occur in the same order.

lastObject

- lastObject

Returns the last object in the List, or nil if there are no objects in the List. This method
doesn't remove the object that's returned.

See also: - removeLastObject

makeObjectsPerform:

- makeObjectsPerform:(SEL)aSelector

Sends an aSelector message to each object in the List in reverse order (starting with the last
object and continuing backwards through the List to the first object), and returns self. The
aSelector method must be one that takes no arguments. It shouldn't have the side effect of
modifying the List.

makeObjectsPerform:with:

- makeObjectsPerform:(SEL)aSelector with:anObject

Sends an aSelector message to each object in the List in reverse order (starting with the last
object and continuing backwards through the List to the first object), and returns self. The
message is sent each time with anObject as an argument, so the aSelector method must be
one that takes a single argument of type id. The aSelector method shouldn't, as a side
effect, modify the List.

3-20 Chapter 3: Common Classes and Functions

objectAt:
- objectAt:(unsigned int)index

Returns the id of the object located at slot index, or nil if index is beyond the end of the List.

See also: - count

read:
- read:(NXTypedStream *)stream

Reads the List and all the objects it contains from the typed stream stream.

See also: - write:

removeLastObject
- removeLastObject

Removes the object occupying the last position in the List and returns it. If there are no
objects in the List, this method returns nil.

See also: - lastObject, - removeObjectAt:

removeObject:

- removeObject:anObject

Removes the first occurrence of anObject from the List, and returns it. If anObject isn't in
the List, this method returns nil.

The positions of the remaining objects in the List are adjusted so there's no gap.

See also: - removeLastObject, - removeObjectAt:

removeObjectAt:
- removeObjectAt:(unsigned int)index

Removes the object located at index and returns it. If there's no object at index, this method
returns nil.

The positions of the remaining objects in the List are adjusted so there's no gap.

See also: - removeLastObject, - removeObject:

Classes: List 3-21

replaceObject:with:
- replaceObject:anObject with:newObject

Replaces the first occurrence of anObject in the List with newObject, and returns
an Object. However, if newObject is nil or anObject isn't in the List, nothing is replaced
and nil is returned.

See also: - replaceObjectAt:with:

replaceObjectAt:with:
- replaceObjectAt:(unsigned int)index with:newObject

Returns the object at index after replacing it with newObject. If there's no object at index
or newObject is nil, nothing·is replaced and nil is returned.

See also: - replaceObject:with:

setAvailableCapacity:
- setAvaiiableCapacity:(unsigned int)numSlots

Sets the storage capacity of the List to at least numSlots objects and returns self. However,
if the List already contains more than numSlots objects (if the count method returns a
number greater than numSlots), its capacity is left unchanged and nil is returned.

See also: - capacity, - count

write:
- write:(NXTypedStream *)stream

Writes the List, including all the objects it contains, to the typed stream stream.

See also: - read:

3-22 Chapter 3: Common Classes and Functions

NXBundle

Inherits From: Object

Declared In: objclNXBundle.h

Class Description

An NXBundle is an object that corresponds to a directory where program resources are
stored. The directory, in essence, "bundles" a set of resources used by an application, and
the NXBundle object makes those resources available to the application. It's able to find
requested resources in the directory and, in some cases, dynamically load executable code.
The term "bundle" is used both for the object and for the directory it represents.

Bundled resources might include such things as:

• Images
• Sounds
• Character strings
• Nib files-files with a ".nib" extension-archived by Interface Builder
• Executable code

Each resource resides in a separate file.

Localized Resources

If an application is to be used in more than one part of the world, its resources may need to
be customized-localized-for language, country, or cultural region. It may need, for
example, to have separate Japanese, English, French, Hindi, and Swedish versions of the
character strings that label menu commands: Its nib files might similarly need to be
localized, as well as any images or sounds it uses.

The resource files specific to a particular language are grouped together in a subdirectory
of the bundle directory. The subdirectory has the name of the language (in English)
followed by a ".lproj" extension (for "language project"). The application mentioned
above, for example, would have Japanese.lproj, English.lproj, French.lproj,
Hindi.lproj, and Swedish.lproj subdirectories.

Each ".lproj" subdirectory in a bundle has the same set of files; all versions of a resource
file must have the same name. Thus, mylcon.tiff in French.lproj should be the French
counterpart to the Swedish mylcon.tiff in Swedish.lproj, and so on.

Classes: NXBundle 3-23

If two or more languages share the same localized version of a file, the file can be stored in
just one of the ".lproj" subdirectories, while the other subdirectories keep (hard or soft)
links to it. If a resource doesn't need to be localized at all, it's stored in the bundle directory
itself, not in the" .lproj' , subdirectores.

The user determines which set of localized resources will actually be used by the
application. NXBundle objects rely on the language preferences set by the user in the
Preferences application. Preferences lets users order a list of available languages so that the
most preferred language is first, the second most preferred language is second, and so on.

When an NXBundle is asked for a resource file, it provides the path to the resource that best
matches the user's language preferences. In the following code, for example, the
application sends a getPath:forResource:oIType: message to ask for the path to the
mylcon.tiff file. With the path in hand, it can use other facilities (here NXImage's
initFromFile: method) to access the resource.

char buf[MAXPATHLEN + 1];
NXBundle *bundle;
NXlmage *image;

bundle = [NXBundle bundleForClass: [self class]];
if ([bundle getPath:buf forResource: l mylcon" ofType: l tiff"]) {

image = [[NXlmage alloc] initFromFile:buf];

The Main Bundle

Every application is considered to have at least one bundle-its main bundle, the directory
where its executable file is located. If the application is organized into a file package
marked by a ".app" extension, the file package is the main bundle.

Note: A file package is a directory that the Workspace Manager presents to users as if it
were a simple file; the contents of the directory are hidden. A file package for an
application includes the application executable plus other files required by the application
as it runs. It bears the same name as the executable file but adds a ".app" extension that
identifies it to the Workspace Manager. For example, if you develop a Rutabaga application
and place it.in a Rutabaga.app directory with various ".nib" and TIFF files that the
application will use, the Rutabaga.app directory is its file package and its main bundle.

3-24 Chapter 3: Common Classes and Functions

Other Bundles

An application can be organized into any number of other bundles in addition to the main
bundle. These other bundles usually reside inside the file package, but they can be located
anywhere in the file system. Each bundle directory is represented in the application by a
separate NXBundle object.

By convention, bundle directories other than the main bundle end in a ".bundle" extension,
which instructs the Workspace Manager to hide the contents of the directory just as it hides
the contents of a file package. The extension isn't required, but it's a good idea, especially
if the bundle isn't already hidden by virtue of being inside a file package.

Dynamically Loadable Classes

Any bundle directory can contain a file with executable code. For the main bundle, that file
is the application executable that's loaded into memory when the application is launched.
The executable in the main bundle includes the mainO function and other code necessary
to start up the application.

Executable files in other bundle directories hold class (and category) definitions that the
NXBundle object can dynamically load while the application runs. When asked, the
NXBundle returns class objects for the classes (and categories) stored in the file. It waits
to load the file until those classes are needed.

In the example below, the first line of code creates an instance of a class provided by an
NXBundle object. If the class had not already been loaded into memory, asking for the
class would cause it to be loaded.

id faa = [[[myBundle classNamed: "Reporter"] alloc] init] i

if (faa) {

[faa doSomething] i

By using a number of separate bundles in this way, you can split an application into smaller,
more manageable pieces. Each piece is loaded into memory only when the code being
executed requires it, so the application can start up faster than it otherwise would. And,
assuming that only the rare user will exercise every part of the application, it will also
consume less memory as it runs.

The file that contains dynamically loadable code must have the same name as the bundle
directory, but without the ".bundle" extension.

Since each bundle can have only one executable file, that file should be kept free of
localizable content. Anything that needs to be localized should be segregated into separate
resource files and stored in ".lproj" subdirectories.

Classes: NXBundle 3-25

Instance Variables

None declared in this class.

Method Types

Initializing a new NXBundle object
- initForDirectory:

Getting and freeing an NXBundle

Getting a bundled class

+ mainBundle
+ bundleForClass:
-free

- principalClass
- classN amed:

Setting which resources to use + setSystemLanguages:

Finding a resource - getPath:forResource:oIType:

Getting the bundle directory

Setting the version

Class Methods

bundleForClass:

+ getPath:forResource:oIType:inDirectory:with Version:

- directory

- setVersion:
- version

+ bundleForClass:classObject

Returns the NXBundle object that dynamically loaded classObject, or the main bundle
object if classObject was not dynamically loaded.

See also: + mainBundle

3-26 Chapter 3: Common Classes and Functions

getPath:forResource:ofType:inDirectory:withVersion:

+ (BOOL)getPath:(char *)path
forResource:(const char *)filename
ofType:(const char *)extension

. inDirectory:(const char *)directory
with Version: (int)version

Returns YES if the specified resource file is available within the directory, and NO if it's
not. If path is not NULL, a full pathname to the file is copied into the buffer it points to.
To accommodate all possible pathnames, the path buffer should be at least MAXPATHLEN
+ 1 characters long. MAXPATHLEN is defined in the sys/param.h header file.

This method works just like the getPath:forResource:ofType: instance method, except
that it searches for the resource in directory (rather than in the directory associated with the
instance) and it tests against version (rather than the version last set by setVersion:).
Therefore, if you only occasionally search for a resource in directory and don't need to
dynamically load code from it, you can use this method instead of
getPath:forResource:ofType': and avoid creating an NXBundle instance.

See also: - getPath:forResource:ofType:, - setVersion:, + setSystemLanguages:

main Bundle

+ mainBundle

Returns the NXBundle object that corresponds to the directory where the application
executable (the file that's loaded into memory to start up the application) is located. This
method allocates and initializes the NXBundle object, if it doesn't already exist.

In general, the main bundle corresponds to an application file package, a directory that
bears the name of the application and is marked by a ".app" extension.

See also: + bundleForClass:

setSystemLanguages:

+ setSystemLanguages:(const char * const *)languageArray

Informs the NXBundle class of the user's language preferences, and returns self. The
argument, languageArray, is a pointer to an ordered list of null-terminated character
strings. Each string is the name of a language.

Classes: NXBundle 3-27

Language names used for ".lproj" subdirectories should match those set by this method. By
convention, the names are in English. These are among the names currently in use:

English
French
German
Japanese
Spanish
Swedish

This method responds to a message sent by the Application Kit when the application first
starts up; it's not necessary for your application to set the system languages.

Instance Methods

classNamed:

- c1assNamed:(const char *)classname

Returns the class object for the classname class, or nil if classname isn't one of the classes
associated with the receiving NXBundle.

Before returning, this method ensures that any code in the bundle directory has been loaded
into memory, so the classname class will be part of the executable image, if it's available
to the NXBundle object.

See also: - principal Class

directory

- (const char *)directory

Returns a pointer to the full pathname of the receiver's bundle directory.

See also: - initForDirectory:

free

-free

Frees the receiving NXBundle, and returns nil. However, the main bundle can't be freed,
and neither can any NXBundle with dynamically loaded code. If it can't free the object,
this method returns self.

3-28 Chapter 3: Common Classes and Functions

getPath:forResource:ofType:

- (BOOL)getPath:(char *)path
forResource:(const char *)filename
oIType:(const char *)extension

Returns YES if the specified resource file is available within the bundle, and NO if it's not.
If path is not NULL, a full pathname to the file is copied into the buffer it points to. To
accommodate all possible pathnames, the path buffer should be at least MAXPATHLEN +
1 characters long. MAXPATHLEN is defined in the sys/param.h header file.

To find the resource file, this method first looks inside the bundle directory for" .lproj' ,
subdirectories that match the user's language preferences (as specified in the Preferences
application). It searches for subdirectories in the order of user preference.

When it finds a ".lproj" subdirectory for a preferred language, the NXBundle first makes
sure that the subdirectory version (as specified in a version file) matches the version last
set by the setVersion: method. If the versions don't match or if the subdirectory doesn't
contain the requested resource file, the NXBundle continues the search by looking for the
".lproj" subdirectory for the next most preferred language.

The search stops, and this method returns, as soon as the resource file is found. If the file
can't be found in any ".lproj" subdirectory, the NXBundle looks for a nonlocalized version
of it in the bundle directory.

If the extension doesn't repeat an extension already specified in the filename, it's added to
filename before the search begins. The extension can be NULL, but filename can't be.

See also: + getPath:forResource: oIType:inDirectory: with Version:,
+ setSystemLanguages:, - setVersion:

initForDirectory:

- initForDirectory:(const char *)fullPath

Initializes a newly allocated NXBundle object to make it the NXBundle for thefullPath
directory. fullPath must be a full pathname for a directory.

If the directory doesn't exist or the user doesn't have access to it, the NXBundle is freed
and this method returns nil. If the application already has an NXBundle object for the
fullPath directory, this method frees the receiver and returns the existing object.

It's not necessary to allocate and initialize an object for the main bundle; the mainBundle
method provides it.

See also: + mainBundle

Classes: NXBundle 3-29

principalClass

- principal Class

Returns the class object for a class that's dynamically loaded by the NXBundle, or nil if the
NXBundle can't dynamically load any classes. Classes can be loaded from just one file
within the bundle directory, a file that has the same name as the directory (but without the
".bundle" extension). If that file contains a single class, this method returns it. If the file
contains more than one loadable class, this method returns the first one it encounters-that
is, the first one listed on the ld command line that created the file. In the following example,
Reporter would be the principal class:

Id -0 myBundle -r Reporter.o NotePad.o QueryList.o

In general, the principal class should be the one that controls all the other classes that are
dynamically loaded with it.

Before returning, this method ensures that any loadable code in the bundle directory has in
fact been loaded into memory. If the NXBundle can load any classes at all, the principal
class will be part of the executable image.

If the receiver is the main bundle object, this method returns nil. The main bundle doesn't
have a principal class.

See also: - classNamed:

setVersion:

- setVersion:(int)version

Sets the version that the NXBundle will use when searching" .lproj" subdirectories for
resource files, and returns self. The default version is O.

See also: - getPath:forResource:of'Type:, - version

version

- (int)version

Returns the version last set by the setVersion: method, or 0 if no version has been set.

See also: - setVersion:

3-30 Chapter 3: Common Classes and Functions

NXStringTable

Inherits From: HashTable : Object

Declared In: objclNXStringTable.h

Class Description

NXStringTable defines an object that associates a key with a value. Both the key and the
value must be character strings. For example, these keys and values might be associated in
a particular NXStringTable:

Key

"Yes"
"No"

Value

"Oui"
"Non"

By using an NXStringTable object to store your application's character strings, you can
reduce the effort required to adapt the application to different language markets. Interface
Builder give you direct access to NXStringTables, letting you create and initialize a string
table and connect it into your application.

A new NXStringTable instance can be created either through Interface Builder's Classes
window or through the inherited alloc ... and ioit ... methods. Similarly, you can establish
the contents of an NXStringTable either directly through Interface Builder or
programmatically through NXStringTable methods that read keys and values that are stored
in a file (see readFromFile: and readFromStream:). Each assignment in the file can be
of either of these formats:

"key" = "value" i

"key" i

If only key is present for a particular assignment, the corresponding value is taken to be
identical to key.

Classes: NXStringTable 3-31

A valid key or value-a valid token-is composed of text enclosed in double quotes. The
text can't include double quotes (except in an escape sequence; see table) or the null
character. It can include these escape sequences:

Escape Sequence

\a
\b
\f
\n
\r
\t
\v
\"

Meaning

alert (bell)
backspace
formfeed
newline
carriage return
horizontal tab
vertical tab
double quote

The backslash is stripped from any other character; consequently, numeric escape codes
aren't interpreted. White space between tokens is ignored. A key or value can't exceed
MAX_NXSTRINGTABLE_LENGTH characters.

The file can also include standard C-Ianguage comments; the NXStringTable ignores them.
Comments can provide valuable information to a person who's translating or documenting
the application.

To retrieve the value associated with a specific key, send a valueForStringKey: message
to the NXStringTable. For example, assuming myStringTable is an NXStringTable
containing the appropriate keys and values, this call would display an attention panel
announcing a problem opening a file:

NXRunAlertPanel([myStringTable valueForStringKey:"openTitle"],

[myStringTable valueForStringKey:"openError"],
"OK",

NULL,

NULL) ;

If you're accessing NXStringTables through Interface Builder, please note the following.
For efficiency, use several NXStringTables-each in its own interface file-rather than one
large one. By using several NXStringTables, your application can load only those strings
that it needs at a particular time. For example, you might place all the strings associated
with a help system in an NXStringTable in one interface file and those associated with error
messages in another NXStringTable in another file. When the user accesses the help system
for the first time, the application can load the appropriate NXStringTable. Also, instantiate
only one copy of any individual NXStringTable. Don't put an NXStringTable object in
an interface file that will be loaded more than once, since multiple copies of the same table
will result.

3-32 Chapter 3: Common Classes and Functions

Instance Variables

None declared in this class.

Method Types

Initializing and freeing an NXStringTable
- init
-free

Querying an NXStringTable - valueForStringKey:

Reading and writing elements - readFromFile:
- writeToFile:

Instance Methods

free

-free

- readFromStream:
- writeToStream:

Frees the string table and its strings. You should never send a freeObjects (HashTable)
message to an NXStringTable.

init

- init

Initializes a new NXStringTable. This is the designated initializer for the NXStringTable
class. Returns self.

readFromFile:

- readFromFile:(const char *)fileName

Reads an ASCII representation of the NXStringTable's keys and values fromfileName.
The NXStringTable opens a stream on the file and then sends itself a readFromStream:
message to load the data. See "Class Description" above for the format of the data. Returns
nil on error; otherwise, returns self.

See also: - readFromStream:

Classes: NXStringTable 3-33

readFromStream:

- readFromStream:(NXStream *)stream

Reads an ASCII representation of the NXStringTable's keys and values from stream. See
"Class Description" above for the format of the data. Returns nil on error; otherwise,
returns self.

See also: - readFromFile:

valueForStringKey:

- (const char *)valueForStringKey:(const char *)aString

Searches the string table for the value that corresponds to the key aString. Returns NULL
if and only if no value is found for that key; otherwise, returns a pointer to the value.

writeToFile:

- writeToFile:(const char *)fileName

Writes an ASCII representation of the NXStringTable's keys and values tofileName. The
NXStringTable opens a stream on the file and then sends itself a writeToStream: message.
See "Class Description" above for the format of the data. Returns nil if an error occurs;
otherwise, returns self.

See also: - writeToStream:

write ToStream:

- writeToStream:(NXStream *)stream

Writes an ASCII representation of the NXStringTable's keys and values to stream. See
"Class Description" above for the format of the data. Returns self.

See also: - writeToFile:

3-34 Chapter 3: Common Classes and Functions

Storage

Inherits From:

Declared In:

Class Description

Object

objc!Storage.h

The Storage class implements a general storage allocator. Each Storage object manages an
array containing data elements of an arbitrary type. All the elements must be of the same
type. When an element is added to the Storage object, it's copied into the array. The array
grows dynamically when necessary; its capacity doesn't need to be explicitly adjusted.

Because a Storage object holds elements of an arbitrary type, you don't have to define a
special class for each type of data you want to store. When setting up a new instance of the
class, you specify the size of the elements and a description of their type. The type
description is needed for archiving the object and must agree with the specified element
size. It's encoded in a string using the descriptor codes listed in the table below:

Type Code Type Code

int char c
unsigned int I unsigned char C
short s char * *
unsigned short S NXAtom %
long I id @

unsigned long L Class #
float f SEL
double d structure {<types> }
ignored array [<count> <types>]

For example, "[15d]" means that each stored element is an array of fifteen doubles, and
" { csi * @ } " means that each stored element is a structure containing a char, a short, an int,
a character pointer, and an object.

Classes: Storage 3-35

Most of these codes are identical to ones that would be returned by the @encodeO compiler
directive. However, there are some differences:

• A structure description can contain only encoded type information between the braces.
It can't include a full type name or structure name.

• The' %' descriptor specifies a unique string pointer. When the pointer is unarchived, the
NXUniqueStringO function is called to make sure that it's also unique within the new
context.

• The'!' descriptor marks data that won't be archived. Each occurrence of ' !' instructs
the archiver to skip data the size of an into

• A few @encodeO descriptors-such as the ones for pointers, bitfields, and undefined
types-should not be used. Use only the codes shown in the table above.

Instance Variables

void *dataPtr;
const char *description;
unsigned int numElements;
unsigned int maxElements;
unsigned int elementSize;

dataPtr

description

numElements

maxElements

elementSize

3-36 Chapter 3: Common Classes and Functions

A pointer to the data stored by the object.

A string encoding the type of data stored.

The number of elements actually in the Storage array.

The total number of elements that can fit within currently
allocated memory.

The size of each element in the array.

Method Types

Initializing a new Storage instance
- init
- initCount:elementSize:description:

Copying and freeing Storage objects
- copyFromZone:
-free

Getting, adding, and removing elements
- addElement:
- insertElementat
- removeElementAt:
- removeLastElement
- replaceElementAtwith:
-empty
- elementAt

Comparing Storage objects - isEqual:

Managing the storage capacity and type
- count

Archiving

Instance Methods

addElement:

- description
- setAvailableCapacity:
- setNumSlots:

- read:
- write:

- addElement:(void *)anElement

Adds anElement at the end of the Storage array and returns self. The size of the array is
increased if necessary.

See also: - insertElement:at:

Closses: Storage 3-37

copyFromZone:

- copyFromZone:(NXZone *)zone

Returns a new Storage object containing the same data as the receiver. The data and the
object are both copied, and memory for both is taken from zone. However, the description
string is not copied; the two objects share the same string.

See also: - copy (Object)

count

- (unsigned int)count

Returns the number of elements currently in the Storage array.

See also: - setNumSlots:

description

- (const char *)description

Returns the string encoding the data type of elements in the Storage array.

See also: - initCount:elementSize:description:

elementAt:

- (void *)elementAt:(unsigned int)index

Returns a pointer to the element at index in the Storage array. If no element is stored at
index (index is beyond the end of the array), a NULL pointer is returned.

Before using the pointer that's returned, you must convert it into the appropriate type by a
cast. The pointer can be used either to read the element at index or to alter it.

See also: - replaceElementAt:with:, - insertElement:at:

3-38 Chapter 3: Common Classes and Functions

empty

-empty

Empties the Storage array of all its elements and returns self. The current capacity of the
array remains unchanged; nothing is deallocated.

See also: - free

free

-free

Frees the Storage object and all the elements it contains. Pointers stored in the object will
be freed, but the data they point to won't be (unless the data is also stored in the object).
You might want to free the data before freeing the Storage object. The description string
isn't freed.

See also: - empty

init

- init

Initializes the Storage object so that it's ready to store object ids. The initial capacity of the
array isn't set. In general, it's better to store object ids in a List object. Returns self.

See also: - initCount:elementSize:description:, - initCount: (List)

initCount:elementSize:description:

- initCount:(unsigned int)count
elementSize: (unsigned int)sizelnBytes
description:(const char *)string

Initializes the Storage object so that it has count elements. Each element is of size
sizelnBytes and of the type described by string. Memory for all the elements is set to O.
Returns self.

If string is NULL, the object won't be archivable. Once set, the description string should
never be modified.

This method is the designated initializer for the class. It's used to initialize Storage objects
immediately after they have been allocated; it should never be used to reinitialize a Storage
object that's already been placed in use.

Classes: Storage 3-39

insertElement:at:

- insertElement: (void *)anElement at: (unsigned int) index

Puts anElement in the Storage array at index. All elements between index and the last
element are shifted to make room. The size of the array is increased if necessary.
Returns self.

See also: - addElement:, - setNumSlots:

isEqual:

- (BOOL)isEqual:anObject

Compares the receiver with anObject, and returns YES if they're the same and NO if
they're not. Two Storage objects are considered to be the same if they have the same
number of elements and the elements at each position in the array match.

read:

- read:(NXTypedStream *)stream

Reads the Storage object and the data it stores from the typed stream stream. Where an
archived string is represented by a '%' descriptor, the NXUniqueStringO function is called
to make sure that the string is unique within the new context.

See also: - write:

removeElementAt:

- removeAt:(unsigned int)index

Removes the element located at index from the Storage array and returns self. All elements
between index and the last element are shifted to close the gap.

See also: - removeLastElement

removeLastElement

- removeLastElement

Removes the last element from the Storage array and returns self.

See also: - removeElementAt:

3-40 Chapter 3: Common Classes and Functions

replaceElementAt:with:

- replaceElementAt:(unsigned int)index with:(void *)anElement

Replaces the data at index with the data pointed to by anElement. However, if no element
is stored at index (index is beyond the end of the array), nothing is replaced. Returns self.

See also: - elementAt:, - insertElement:at:

setAvailableCapacity:

- setAvaiiableCapacity: (unsigned int)numS lots

Sets the storage capacity of the array to at least numSlots elements and returns self. If the
array already contains more than numSlots elements, its capacity is left unchanged and nil
is returned.

See also: - setNumSlots:, - count

setNumSlots:

- setNumSlots:(unsigned int)numSlots

Sets the number of elements in the Storage array to numSlots and returns self. If numSlots
is greater than the current number of elements in the array (the value returned by count),
the new slots will be filled with zeros. If numSlots is less than the current number of
elements in the array, access to all elements with indices equal to or greater than numSlots
will be lost.

If necessary, this method increases the capacity of the storage array so there's room for at
least numSlots elements.

See also: - setAvaiiableCapacity:, - count

write:

- write:(NXTypedStream *)stream

Writes the Storage object and its data to the typed stream stream.

See also: - read:

Classes: Storage 3-41

Functions

NXAliocErrorData 0, NXResetErrorData 0

SUMMARY Manage the error data buffer

DECLARED IN objc/error.h

SYNOPSIS void NXAllocErrorData(int size, void **data)
void NXResetErrorData(void)

DESCRIPTION These functions handle the error buffer, which is used to pass error data to an error handler.
When an error occurs, NX_RAISEO is called with two arguments that point to an arbitrary
amount of data about the error. If an error handler can't respond to the error, the error code
and associated data are passed to the next higher-level handler.

NXAllocErrorDataO allocates size amount of space in the error buffer, increasing the size
of the buffer if necessary. The data argument points to a pointer to the data in the buffer.
To empty and free the buffer, call NXResetErrorDataO. If you're using the Application
Kit, the buffer is freed for you upon each pass through the event loop.

SEE ALSO NX_RAISEO, NXDefaultTopLevelErrorHandlerO (Application Kit)

NXAtEOSO ~ See NXSeekO

NXChangeBufferO ~ See NXStreamCreateFromZoneO

3-44 Chapter 3: Common Classes and Functions

NXCloseO

SUMMARY Close a stream

DECLARED IN streams/streams.h

SYNOPSIS void NXClose(NXStream *stream)

DESCRIPTION This function closes the stream given as its argument. If the stream had been opened for
writing, it's flushed first. (The NXStream structure is defined in the header file
stream/streams.h.)

If the stream had been a file stream, the storage used by the stream is freed, but the file
descriptor isn't closed. See the UNIX manual page on closeO for information about closing
a file descriptor. If the stream had been opened in memory, the internal buffer is truncated
to the size of the data in it. (Calling NXCloseO on a memory stream is equivalent to
NXCloseMemoryO with the constant NX_TRUNCATEBUFFER.)

EXCEPTIONS NXCloseO raises an NX_illegalStream exception if the stream passed in is invalid.

SEE ALSO NXCloseMemoryO

NXCloseMemoryO ---7 See NXOpenMemoryO

NXCloseTypedStreamO ---7 See NXOpenTypedStreamO

NXCompareHashTablesO ---7 See NXCreateHashTableO

NXCopyHashTableO ---7 See NXCreateHashTableO

NXCopyStringBufferO ---7 See NXUniqueStringO

NXCopyStringBufferFromZoneO ---7 See NXUniqueStringO

NXCountHashTableO ---7 See NXHashlnsertO

NXCreateChildZoneO ---7 See NXCreateZoneO

Functions: NXClose() 3-45

NXCreateHash TableO, NXCreateHash TableFromZone(),
NXFreeHashTableO, NXEmptyHash TableO, NXResetHash TableO,
NXCopyHash TableO, NXCompareHashTables(), NXPtrHash (),
NXStrHashO, NXPtrlsEqualO, NXStrlsEqualO, NXNoEffectFreeO,
NXReallyFreeO

SUMMARY Create and free a hash table

DECLARED IN objc/hashtable.h

SYNOPSIS NXHashTable *NXCreateHashTable(NXHashTablePrototype prototype,
unsigned capacity, const void * info)

NXHashTable *NXCreateHashTableFromZone(NXHashTablePrototype prototype,
unsigned capacity, const void *info, NXZone *zone)

void NXFreeHashTable(NXHashTable * table)
void NXEmptyHashTable(NXHashTable *table)
void NXResetHashTable(NXHashTable * table)
NXHashTable *NXCopyHashTable(NXHashTable *table)
BOOL NXCompareHashTables(NXHashTable *tablel, NXHashTable *table2)
unsigned NXPtrHash(const void *info, const void *data)
unsigned NXStrHash(const void *info, const void *data)
int NXPtrIsEqual(const void *info, const void * datal , const void *data2)
int NXStrIsEqual(const void *info, const void *datal, const void *data2)
void NXNoEffectFree(const void *info, void *data)
void NXReallyFree(const void *info, void *data)

DESCRIPTION These functions set up, copy, and free a hash table. A hash table provides an efficient means
of manipulating elements of an unordered set of data. A data element is stored by
computing a hash function-or hashing-on the element to be stored. The value of the
hashing function, sometimes called the key, is used to determine the location at which to
store the data. The functions described under NXHashlnsertO insert, remove, and search
for a data element; they also count the number of elements and iterate over all elements in
a hash table.

To create a hash table, call NXCreateHashTableO or NXCreateHashTableFromZoneO.
These functions differ only in that the first one creates the hash table in the default zone, as
returned by NXDefaultMallocZoneO, and the second lets you specify a zone. Only
NXCreateHashTableO will be discussed below.

3-46 Chapter 3: Common Classes and Functions

The first argument to NXCreateHashTableO is a NXHashTablePrototype structure, which
is defined in objc/hashtable.h and shown below. This structure requires you to specify
three functions, a hashing function, a comparison function that determines whether two
data elements are equal, and a freeing function that frees a given data element in the table:

typedef struct {
unsigned (*hash) (const void *info, const void *data);
int (*isEqual) (const void *info, const void *datal,

const void *data2);
void (*free) (const void *info, void *data);
int style;

NXHashTablePrototype;

The hashing function must be defined such that if two data elements are equal, as defined
by the comparison function, the values produced by hashing on these elements must also
be equal. Also, data elements must remain invariant if the value of the hashing function
depends on them; for example, if the hashing function operates directly on the characters
of a string, that string can't change. The comparison function must return true if and only
if the two data elements being compared are equal. The third function specifies how a data
element is to be freed. The style field is reserved for future use; currently, it should be
passed in as O.

As shown, the third argument for NXCreateHashTableO, info, is passed as the first
argument to the hashing, comparison, and freeing functions. You can use info to modify or
add to the effects produced by these functions. For example, the comparison function can
be modified to return a certain value if the elements being compared are similar to each
other but not exactly equal.

For convenience, functions for hashing pointers, integers, and strings and for comparing
them have already been defined; two different freeing functions are also provided.
NXPtrHashO hashes the address bits of data and returns a key for storing the data.
NXPtrIsEqualO returns nonzero if datal is equal to data2 and 0 if they're not equal.
These functions can be used for pointers or for data of type int. Similarly, NXStrHashO
returns a key for the string passed in as data, and NXStrIsEqualO checks whether two
strings are equal. NXReallyFreeO frees the data element passed in, allowing its key to be
reused. NXNoEffectFreeO, as its name implies, has no effect.

The info argument for all six of these functions isn't used. If you want to hash data other
than pointers or strings, or if you want to use the info argument, you need to write your own
hashing, comparison, and freeing functions.

Functions: NXCreateHashTable() 3-47

In addition to the hashing, comparison, and freeing functions, four different prototypes
have been predefined. The prototype for pointers (which can also be used for data of type
int) and the one for strings both use the functions described above:

const NXHashTablePrototype NXPtrPrototype = {
NXPtrHash, NXPtrIsEqual, NXNoEffectFree, 0

} i

const NXHashTablePrototype NXStrPrototype = {
NXStrHash, NXStrIsEqual, NXNoEffectFree, 0

} i

The following example shows how to use NXPtrPrototype to create a hash taqle for storing
a set of pointers or data of type int:

NXHashTable *myHashTablei
myHashTable = NXCreateHashTable(NXPtrPrototype, 0, NULL) i

Note that you pass the NXPtrPrototype structure as an argument, not a pointer to it.
NXCreateHashTableO returns a pointer to an NXHashTable structure, which is defined in
the header file objc/hashtable.h.

The other two prototypes create a hash table for storing a set of structures; the first element
of each structure will be used as the key. NXPtrStructKeyPrototype expects the first
element to be a pointer, and NXStrStructKeyPrototype expects a string. The free function
for both these prototypes is NXReallyFreeO.

NXCreateHashTableO's second argument, capacity, is only a hint; you can just pass 0 to
create a minimally sized table. As more space is needed, it will be automatically and
efficiently allocated.

NXFreeHashTableO frees each element of the specified hash table and the table itself.
NXResetHashTableO frees each element but doesn't deallocate the table. This is useful
for retaining the table's capacity. NXEmptyHashTableO sets the number of elements in
the table to 0 but doesn't deallocate the table or the data in it.

NXCopyHashTableO returns a pointer to a copy of the hash table passed in.
NXCompareHashTablesO returns YES if the two hash tables supplied as arguments are
equal. That is, each element of table} is in table2, and the two tables are the same size.

RETURN NXCreateHashTableO, NXCreateHashTableFromZoneO, and NXCopyHashTableO
return pointers to the new hash tables they create.

NXCompareHashTablesO returns YES if the two hash tables supplied as arguments
are equal.

3-48 Chapter 3: Common Classes and Functions

NXPtrHashO returns a key for storing a pointer in a hash table; NXStrHashO returns a
key for storing a string.

NXPtrIsEqualO and NXStrIsEqualO return nonzero if the two data elements passed in
are equal, and 0 if they're not.

SEE ALSO NXHashlnsertO

NXCreateHashTableFromZone() ~ See NXCreateHashTableO

NXCreateZone(), NXCreateChildZone(), NXMergeZoneO,
NXDefaultMallocZoneO, NXZoneFromPtr(), NXDestroyZoneO

SUMMARY Manage memory zones

DECLARED IN objc/zone.h

SYNOPSIS NXZone*NXCreateZone(size_t startSize, size_t granularity, int canFree)
NXZone *NXCreateChildZone(NXZone *parentZone, size_t startSize,

size_t granularity, int canFree)
void NXMergeZone(NXZone *zone)
NXZone *NXDefauItMallocZone(void)
NXZone *NXZoneFromPtr(void *ptr)
void NXDestroyZone(NXZone * zone)

DESCRIPTION These functions set up and manage the memory zones that are used to improve locality of
reference. A zone is a region of memory from which functions like NXZoneMallocO can
allocate storage. A pointer to a zone is passed to the allocation function, which returns
memory from the specified zone. Keeping related data structures together in the same zone
reduces the amount of paging activity that otherwise would be required.

NXCreateZoneO creates a new zone of startSize bytes that will grow and shrink by
granularity bytes; it returns a pointer to the new zone. The zone will grow as needed as
memory is allocated from it, and will shrink as memory is freed. Each time the function is
called, it creates and returns a new zone.

Functions: NXCreateHashTableFromZone() 3-49

Since the point of using zones is to keep data structures together on the same page, small
multiples of vm_page_size (declared in machlmach_init.h) are a good choice for both
startSize and granularity. If these parameters are too large, the benefits of zone allocation
can be defeated.

The parameter canFree determines whether memory, once allocated, can be freed within
the zone. If canFree is NO, memory can't be freed and allocation from the zone will be as
fast as possible; but you will need to destroy the zone to reclaim the memory.

NXCreateChildZoneO creates a new zone that obtains memory from an existing zone,
parentZone. It returns a pointer to the new zone, or NX_NOZONE if you attempt to create
a child zone from a zone which is itself a child. Typically, child zones are used to ensure
that a group of data structures are packed together within a larger zone; successive
allocations within the child zone are contiguous. The zone is created with a startSize
sufficient for what it will contain; it can be smaller than a page size. After the allocations
are complete, NXMergeZoneO is called to merge the child zone back into its parent.
All memory that was allocated and initialized within the child then resides within the
parent zone.

NXDefaultMallocZoneO returns the default zone, which is created automatically at
startup. This is the zone used by the standard C mallocO function.

NXZoneFromPtrO returns the zone for the ptr block of memory, or NX_NOZONE if the
block was not allocated from a zone. The pointer must be one that was returned by a prior
call to an allocation function.

The macro NXDestroyZoneO destroys a zone; all the memory from the zone is reclaimed.

RETURN NXCreateZoneO and NXCreateChildZoneO return a pointer to a new zone.
NXDefaultMallocZoneO returns a pointer to the default zone, and NXZoneFromPtrO
returns the zone for the ptr block of memory. A return of NX_NOZONE indicates that the
zone couldn't be created or doesn't exist.

SEE ALSO NXZoneMallocO

3-50 Chapter 3: Common Classes and Functions

NXDefaultExceptionRaiser(), NXSetExceptionRaiser(),
NXGetExceptionRaiser()

SUMMARY Set and return an exception raiser

DECLARED IN objc/error.h

SYNOPSIS void NXDefaultExceptionRaiser(int code, const void *datal, const void *data2)
void NXSetExceptionRaiser(NXExceptionRaiser * procedure)
NXExceptionRaiser *NXGetExceptionRaiser(void)

DESCRIPTION These functions set and return the procedure that's called when exceptions are raised
using NX_RAISEO. By default, the NXDefaultExcep.tionRaiserO will be invoked
by NX_RAISEO; this function is also what NXGetExceptionRaiserO returns unless
you've declared your own exception raiser by using NXSetExceptionRaiserO, as
described below.

NXDefaultExceptionRaiserO forwards the exception condition indicated by code and any
information about the exception pointed to by datal and data2 to the next error handler.
Error handlers exist in a nested hierarchy, which is created by using any number of nested
NX_D URING ... NX_ENDHANDLER constructs and by defining a top-level error handler.

If the error has occurred outside of the domain of any handler,
NXDefaultExceptionRaiserO invokes an uncaught exception handling function. For
more information on the Application Kit's default uncaught exception handling function or
to define your own, see the description of NXSetUncaughtExceptionHandlerO. If the
uncaught exception handling function can't be found, NXDefaultExceptionRaiserO exits.

To override the default exception raiser, call NXSetExceptionRaiserO and give it a pointer
to the exception raising function you want to use. This function must be of type
NXExceptionRaiser (that is, the same type as NXDefauItExceptionRaiserO), which is
defined in the header file objc/error.h as follows:

typedef void NXExceptionRaiser(int code, canst void *datal,
canst void *data2);

In other words, the function procedure must take three arguments of the types shown above,
and it must return void. Once you've called NXSetExceptionRaiserO, subsequent calls to
NXGetExceptionRaiserO will return a pointer to procedure; also, subsequent calls to
NX_RAISEO will invoke procedure.

SEE ALSO NX_RAISEO, NXSetUncaughtExceptionRaiserO

Functions: NXDefaultExceptionRaiser() 3-51

NXDefaultMallocZoneO ~ See NXCreateZoneO

NXDefaultReadO ~ See NXStreamCreateFromZoneO

NXDefaultWriteO ~ See NXStreamCreateFromZoneO

NXDestroyZoneO ~ See NXCreateZoneO

NXEmptyHashTableO ~ See NXCreateHashTableO

NXEndOfTypedStream ()

SUMMARY Determine whether there's more data to be read

DECLARED IN objc/typedstream.h

SYNOPSIS BOOL NXEndOfTypedStream(NXTypedStream * stream)

DESCRIPTION This function indicates whether more data is available to be read from the typed stream
passed in as an argument. It should be called only on a typed stream opened for reading.
(The NXTypedStream type is declared in the header file objc/typedstream.h. The
structure itself is private since you never need access to its members.)

RETURN NXEndOfTypedStreamO returns TRUE if the read operation has reached the end of the
stream and no more data is available to be read; returns FALSE otherwise.

EXCEPTIONS NXEndOfTypedStreamO raises a TYPEDSTREAM_CALLER_ERROR with the
message "expecting a reading stream" if the stream passed in wasn't opened for reading.

SEE ALSO NXOpenTypedStreamO

3-52 Chapter 3: Common Classes and Functions

NXFilePathSearch 0

SUMMARY Search for and read a file

DECLARED IN defaults/defaults.h

SYNOPSIS int NXFilePathSearch(const char *envVarName, const char *defaultPath, int leftToRight,
const char *filename, int (*funcPtr)O, void *funcArg)

DESCRIPTION NXFilePathSearchO searches a colon-separated list of directories for one or more files
named filename. The directory list is obtained from the environmental variable,
envVarName, if it's available. If not, defaultPath is used. If leftToRight is true, the list of
directories is searched from left to right; otherwise, it's searched right to left.

In each directory, if the file filename can be accessed, the function specified by funcPtr is
called. The function is passed two arguments, the path to the file and funcArg, which can
contain arbitrary data for the function to use.

RETURN If the function specified by funcPtr is called and returns 0 or a negative value,
NXFilePathSearchO returns the same value. If the function returns a positive value,
NXFilePathSearchO continues searching through the directory list for other occurrences
offilename. If it searches through the entire directory list, it returns O. If it can't find a list
of directories to search, it returns -1.

NXFiliO ~ See NXStreamCreateO

NXFlushO

SUMMARY Flush a stream

DECLARED IN streams/streams.h

SYNOPSIS int NXFlush(NXStream *stream)

Functions: NXFilePathSearch() 3-53

DESCRIPTION This function flushes the buffer associated with the stream passed in.as an argument.
NXFlushO is called by NXCloseO, so you don't have to flush the buffer before closing a
stream with NXCloseO. In some cases, you might not want to close the stream but you
might want to ensure that data is actually written to the stream's destination rather than
remaining in the buffer.

RETURN NXFlushO returns the number of characters flushed from the buffer and written to
the stream.

EXCEPTIONS This function raises an NX_illegalStream exception if the stream passed in is invalid.
In addition, it raises an NX_illegalWrite exception if an error occurs while flushing
the stream.

NXFlushTypedStream()

SUMMARY Flush a typed stream

DECLARED IN objc/typedstream.h

SYNOPSIS void NXFlushTypedStream(NXTypedStream *TypedStream)

DESCRIPTION This function flushes the buffer associated with the typed stream passed in as an argument.
NXFlushTypedStreamO is called by NXCloseTypedStreamO, so you don't have to flush
the buffer before closing a typed stream. (The NXTypedStream type is declared in the
header file objc/typedstream.h. The structure itself is private since you never need to
access its members.)

EXCEPTIONS NXFlushTypedStreamO raises a TYPEDSTREAM_CALLER_ERROR with the message
"expecting a writing stream" if the typed stream wasn't opened for writing.

SEE ALSO NXOpenTypedStreamO

NXFreeHashTableO ~ See NXCreateHashTableO

NXFreeObjectBufferO ~ See NXReadObjectFromBufferO

3-54 Chapter 3: Common Classes and Functions

NXGetcO --7 See NXPutcO

NXGetDefaultValueO --7 See NXRegisterDefaultsO

NXGetMemoryBufferO --7 See NXOpenMemoryO

NXGetTempFilename{)

SUMMARY Create a temporary file name

DECLARED IN defaults/defaults.h

SYNOPSIS char *NXGetTempFiIename(char *name, int pos)

DESCRIPTION This function creates a unique file name by altering the name argument it is passed.
NXGetTempFiIenameO replaces the six characters starting at the posth position within
name with digits it generates; it then checks whether the file name is unique. If it is, the file
name is returned; if not, different digits are tried until a unique name is found.
NXGetTempFiIenameO is similar to the standard C function mktempO, except that it can
leave suffixes intact since you specify the location of the characters that get replaced.

RETURN NXGetTempFiIenameO returns the unique file name it generates.

NXGetTypedStreamZone(), NXSetTypedStreamZoneO

SUMMARY Set zones for streams

DECLARED IN objc/typedstream.h

SYNOPSIS NXZone *NXGetTypedStreamZone(NXTypedStream * stream)
void NXSetTypedStreamZone(NXTypedStream *stream, NXZone *zone)

DESCRIPTION These functions let you associate a zone with a typed stream. Zones improve application
performance by optimizing locality of reference. See the description under
NXCreateZoneO for more on allocating and freeing zones.

Functions: NXGetc() 3-55

If no zone is set for a typed stream, its zone is the default zone. Use these functions to
associate zones with the typed streams used to unarchive objects in your application. You
can, for example, use these functions to be sure that objects that interact are all unarchived
in the same zone.

Use NXSetTypedStreamZoneO to set the zone used for unarchiving objects from a typed
stream. Use NXGetTypedStreamZoneO to access the zone associated with a particular
typed stream.

RETURN NXGetTypedStreamZoneO returns the zone set for stream.
NXSetTypedStreamZoneO sets zone as the zone for stream.

NXGetUncaughtExceptionHandlerO ~
See NXSetUncaughtExceptionHandlerO

NXHashGetO ~ See NXHashlnsertO

NXHashlnsertO, NXHashlnsertlfAbsentO, NXHashMemberO,
NXHashGetO, NXHashRemoveO, NXCountHashTableO,
NXlnitHashStateO, NXNextHashStateO

SUMMARY Manipulate the elements of a hash table

DECLARED IN objc/hashtable.h

SYNOPSIS void *NXHashlnsert(NXHashTable *table, const void *data)
void *NXHashlnsertIfAbsent(NXHashTable *table, const void *data)
int NXHashMember(NXHashTable *table, const void *data)
void *NXHashGet(NXHashTable *table, const void *data)
void *NXHashRemove(NXHashTable *table, const void *data)
unsigned NXCountHashTable(NXHashTable *table)
NXHashState NXlnitHashState(NXHashTable *table)
int NXNextHashState(NXHashTable *table, NXHashState *state, void **data)

3·56 Chapter 3: Common Classes and Functions

DESCRIPTION These functions manipulate the elements of a hash table that was created using
NXCreateHashTableO. NXCreateHashTableO, which is described earlier in this
chapter, returns a pointer to the NXHashTable structure it creates. You pass a pointer to this
structure (which is defined in the header file objc/hashtable.h) for each of the functions
described here.

NXHashlnsertO inserts data into the hash table specified by table. It checks whether data
is already in the table by using the function referred to by the isEqual member of the
NXHashTablePrototype; this prototype is defined when the table is created. (See the
description of NXCreateHashTableO for more information about defining the isEqual
function.) If data is already in the table, the new data is inserted anyway and a pointer to
the old data is returned. If data isn't already in the table, it's inserted and NULL is returned.

NXHashlnsertIfAbsentO inserts data only if it isn't already in the table and then returns
a pointer to data. If data is already in the table, as determined using the function referred
to by isEqual, a pointer to the existing data is returned.

NXHashMemberO checks whether data is in the hash table specified by table. If so, it
returns a nonzero value; if not, it returns O. NXHashGetO returns a pointer to data if it's
in the table; if not, it returns NULL. You can use these functions if you have a pointer to
the data that might be stored in the table. You can also use them if data is stored in the table
as a structure containing the key for that data and if you have that key. (In a hash table, the
key determines where data is stored.) For example, suppose my hash table contains data of
type MyStruct and that you have a key:

typedef struct {
MyKey keYi

} MyStructi

MyStruct pseudOi
pseudo.key = yourKeYi

You can then use your key on my hash table with either function:

int foundIti
foundIt NXHashMember(myTable, &pSeudO)i

MyStruct *storedDatai
storedData = NXHashGet(myTable, &pseudo) i

NXHashRemoveO removes and returns a pointer to data unless it can't find data in the
table, in which case it returns NULL.

NXCountHashTableO returns the number of elements in the hash table specified by table.

Functions: NXHashlnsert() 3-57

NXlnitHashStateO and NXNextHashStateO iterate through the elements of a hash table.
NXlnitHashStateO returns an NXHashState structure to start the iteration process; this
structure is then passed to NXNextHashStateO, which visits each element of the hash table
and finally returns O. (NXHashState is defined in the header file objclhashtable.h; you
shouldn't use members of this structure as they may change in the future.) The following
example counts the elements in the hash table table:

unsigned count = 0;
MyData *data;
NXHashState state = NXlnitHashState(table);

while (NXNextHashState(table, &state, &data))
count++;

As it progresses through the table, NXNextHashStateO reads each element of the table
into the location specified by its third argument.

RETURN NXHashlnsertO returns NULL if the given data isn't already in the table. Otherwise, it
returns a pointer to the existing data.

NXHashlnsertIfAbsentO returns a pointer to the given data if it isn't already in the table.
Otherwise, a pointer to the existing data is returned.

NXHashMemberO returns a nonzero value if it finds the given data in the hash table
specified; if not, it returns O.

NXHashGetO returns a pointer to the given data if it's in the table; if not, it returns NULL.

NXHashRemoveO returns a pointer to the data it removes unless it can't find the data, in
which case it returns NULL. ~

NXCountHashTableO returns the number of elements in the hash table.

NXlnitHashStateO returns an NXHashState for use with NXNextHashStateO.

NXNextHashStateO returns 0 when it has visited every element of the hash table.

SEE ALSO NXCreateHashTableO

NXHashlnsertlfAbsentO ~ See NXHashlnsertO

NXHashMemberO ~ See NXHashlnsertO

3-58 Chapter 3: Common Classes and Functions

NXHashRemoveO ~ See NXHashlnsertO

NXlnitHashStateO ~ See NXHashlnsertO

NXlsAINumO ~ See NXlsAlphaO

NXlsAlphaO, NXlsAINumO, NXlsCntrlO, NXlsDigitO, NXlsGraphO,
NXlsLowerO, NXlsPrintO, NXlsPunctO, NXlsSpaceO, NXlsUpperO,
NXlsXDigitO, NXlsAsciiO

SUMMARY Classify NeXTSTEP-encoded values

DECLARED IN appkitINXCType.h

SYNOPSIS int NXIsAlpha(unsigned int c)
int NXIsAINum(unsigned int c)
int NXIsUpper(unsigned int c)
int NXIsLower(unsigned int c)
int NXIsDigit(unsigned int c)
int NXIsXDigit(unsigned int c)
int NXIsSpace(unsigned int c)
int NXIsPunct(unsigned int c)
int NXIsPrint(unsigned int c)
int NXIsGraph(unsigned int c)
int NXIsCntrl(unsigned int c)
int NXIsAscii(unsigned int c)

DESCRIPTION These functions classify NeXTSTEP-encoded integer values. They return a nonzero value
if the tested value belongs to the indicated class of characters or 0 if it does not.

These functions are similar to the standard C library routines for testing ASCII -encoded
integer values (see the ctype(3) UNIX manual page), except that they act on the extended
character set defined by NeXTSTEP encoding. For example, both isalphaO and
NXIsAlphaO classify the character "a" as a letter; however, only NXIsAlphaO classifies
"a" as a letter. The functions make these tests:

Functions: NXHashRemove() 3-59

Function

NXIsAlpha(c)
NXIs Upper(c)
NXIsLower(c)
NXIsDigit(c)
NXIsXDigit(c)
NXIsAINum(c)
NXIsSpace(c)
NXIsPunct(c)
NXIsPrint(c)
NXIsGraph(c)
NXIsCntrl(c)
NXIsAscii(c)

Tests whether cis:

a letter
an uppercase letter
a lowercase letter
a digit
a hexadecimal digit
an alphanumeric character
a space, tab, carriage return, newline, vertical tab, or formfeed
a punctuation character (neither control nor alphanumeric)
a printing character
a printing character; like NXIsPrintO except false for space
a control character (OxOO through OxlF, Ox7F, Ox80, OxFE, OxFF)
an ASCII character (code less than Ox7F)

RETURN Each of these functions returns a nonzero value if the tested value belongs to the indicated
class of characters or 0 if it does not.

SEE ALSO NXToAsciiO

NXlsAscii() ~ See NXlsAlpha()

NXlsCntrl() ~ See NXlsAlpha()

NXlsDigitO ~ See NXlsAlphaO

NXlsGraphO ~ See NXlsAlphaO

NXlsLowerO ~ See NXlsAlpha 0

NXlsPrintO ~ See NXlsAlphaO

NXlsPunctO ~ See NXlsAlphaO

NXlsSpaceO ~ See NXlsAlphaO

NXlsUpper() ~ See NXlsAlphaO

NXlsXDigit() ~ See NXlsAlphaO

NXLoadLocalizedStringFromTablelnBundleO ~
See NXLocalizedString()

3-60 Chapter 3: Common Classes and Functions

NXLocalizedStringO, NXLocalizedStringFromTable(),
NXLocalizedStringFromTablelnBundleO,
NXLoadLocalizedStringFromTablelnBundle()

SUMMARY Get localized versions of strings

DECLARED IN objclNXBundle.h

SYNOPSIS const char * NXLocalizedString(const char * key, const char *value, comment)
const char *NXLocalizedStringFromTable(const char *table, const char *key,

const char *value, comment)
const char *NXLocalizedStringFromTablelnBundle(const char *table,

NXBundle *bundle, const char *key, const char *value, comment)
const char *NXLoadLocalizedStringFromTablelnBundle(const char * table,

NXBundle *bundle, const char *key, const char *value)

DESCRIPTION These three macros and one function select a localized string to display to the user. They
each look up the key string in a table and return a matching string in a language of the user's
preference. For example, if the key is "Cancel" and the user's preferred language is French,
the string returned might be "Annuler"; if the user's preferred language is German, the
same key might designate "Abbrechen". Users choose their preferred languages in the
Preferences application.

To localize your application-to permit it to be run in more than one language-you must
(1) keep the compiled code free of any user-visible strings and (2) provide resource files
containing those strings in all the languages you're willing to support. Language-specific
resources are kept in Language.lproj subdirectories of a bundle directory that can be
managed by an NXBundle object. Most applications keep ".lproj" subdirectories in the file
package that contains the application executable. This file package is a directory named
after the application and assigned a ".app" extension. When it contains resource files and
".lproj" subdirectories, it's also known as the main bundle. An application can be
organized into additional bundle directories, each with its own set of subdirectories, inside
the main bundle. (See the description of the NXBundle class for more on bundle
directories.)

Each ".lproj" subdirectory of a bundle bears the name of a language-such as
English.lproj, French.lproj, or German.lproj-and stores resources specific to that
language. Every resource file is repeated (with the identical name) in every subdirectory
of the bundle. In addition to strings that are displayed to the user, localized resources
include images, sounds, and nib files produced by Interface Builder.

Functions: NXLocalizedString() 3-61

One kind of resource in a ".lproj" subdirectory is a string table-identified by a ".strings"
extension on the file name. Entries in a string table look like this,

[/* comment */]

"key" [= "value"] ;

where the square brackets indicate that the comment and value are optional. The key is a
string that's used to identify the entry; it must be unique within a file. The value is the
localized string that's matched to the key. If the key and value strings are identical, the
value string can be omitted. The comment is typically an explanation that would aid
translators preparing correct versions of the string in other languages.

For example, an English.lproj subdirectory might contain a my.strings file with this entry:

/* unable to open a file; %s is the file name */

"open failure"="Can't open %s";

In French.lproj, the my.strings file might have this entry:

/* unable to open a file; %s is the file name */

"open failure"="Ouverture de %s impossible";

And in German.lproj, the entry could look like this:

/* unable to open a file; %s is the file name */

"open failure"="%s kann nicht geOffnet werden";

The NXLoadLocalizedStringFromTablelnBundleO function searches for a localized
version of the string designated by key. It looks only in the bundle directory managed by
the bundle object and in the string table named table, which mayor may not include the
".strings" extension. If bundle is nil, it looks in the main bundle; if table is NULL, it looks
for a file named Localizable.strings.

The search starts with the ".lproj" subdirectory of the user's most preferred language and
continues down the ordered list of language preferences until the table file is found. (If
table occurs in every subdirectory, it should be found for the user's preferred language,
provided the application is localized for that language.) If table can't be found in any
".lproj" subdirectory, the function looks for it in the bundle directory itself.

If a key entry is found in the string table, the function returns the matching value string
(the string in the entry after the equal sign). If a value string is absent from the entry, it
returns the key string. If the string table can't be found, or if the table lacks an entry for
key, it returns the default value passed to the function as an argument. If value is NULL,
it returns key.

3-62 Chapter 3: Common Classes and Functions

The three macros are defined on the NXLoadLocalizedStringFromTablelnBundleO
function and do just what it does. However, they're preferred to the function since, in
combination with the genstrings utility, they can aid in constructing string tables.
genstrings searches for each occurrence of the macros in source code and constructs string
table entries from the key, value, and comment arguments it finds. The comment argument
can simply be information for translators who might render localized versions of the entry;
it's discarded by the preprocessor and is not passed to the function. genstrings writes the
entries into the table file, creating the file and adding the ".strings" extension if necessary.
In the case of NXLocalizedStringO, which doesn't have a table argument, it writes the
results to the standard output For example, from this code,

char *s;

s = NXLocalizedStringFromTable ("my", "open failure", "Can't open %s",

unable to open a file; %s is the file name) ;

genstrings would construct the string table entry illustrated earlier and put it in the
my.strings file. The genstrings utility is more fully documented on-line, in the file
Localization.rtfd under the lNextLibrarylDocumentationIN extDev/Concepts directory.

The NXLocalizedStringFromTablelnBundleO macro works just like the
NXLoadLocalizedStringFromTablelnBundleO function, except that it provides source
material for genstrings. The NXLocalizedStringFromTableO macro looks for the key
string in the table file in the main bundle. The NXLocalizedStringO macro, the simplest
of the three to use, looks for the key string in the string table named Localizable.string in
the main bundle.

RETURN The function and all three macros return a localized string designated by key, or value if the
string can't be found, or key if the string can't be found and value is NULL.

NXLocalizedStringFromTableO ~ See NXLocalizedStringO

NXLocalizedStringFromTablelnBundleO ~ See NXLocalizedStringO

Functions: NXLocalizedStringFromTable() 3-63

NXMaliocCheckO, NXNameZoneO, NXZonePtrlnfoO

SUMMARY Aid in debugging memory allocation

DECLARED IN objc/zone.h
)

SYNOPSIS int NXMallocCheck(void)
void NXNameZone(NXZone *zone, const char *name)
void NXZonePtrInfo(void *ptr)

DESCRIPTION These functions assist in debugging memory allocation problems. NXMallocCheckO
verifies all internal memory-allocation information, and returns 0 if there are no
inconsistencies or errors. This function is used by malloc_debugO. NXNameZoneO
assigns name to zone. NXZonePtr Info 0 prints various information about the ptr memory
block to the standard output. The information includes the name of the zone, if one was
assigned by NXNameZoneO.

SEE ALSO NXZoneMallocO, NXCreateZoneO

NXMapFileO ~ See NXOpenMemory 0

NXMergeZoneO ~ See NXCreateZoneO

NXNameZoneO ~ See NXMaliocCheckO

NXNextHashStateO ~ See NXHashlnsertO

NXNoEffectFreeO ~ See NXCreateHashTableO

3-64 Chapter 3: Common Classes and Functions

NXOpenFile(), NXOpenPort()

SUMMARY Open a file stream or a Mach port stream

DECLARED IN streams/streams.h

SYNOPSIS NXStream *NXOpenFile(intfd, int mode)
NXStream *NXOpenPort(port_t port, int mode)

DESCRIPTION These functions connect a stream to a file or a Mach port. (The NXStream structure is
defined in the header file streams/streams.h.)

NXOpenFileO opens a stream on the file specified by the file descriptor argument,fd,
which can refer to a pipe or a socket. (If the file is stored on disk, use NXMapFileO;
this function is described below under NXOpenMemoryO.) The mode argument should
be one of the three constants NX_READONLY, NX_ WRITEONLY, or NX_READWRITE
to specify how the stream will be used. The mode should be the same as the one used
when obtaining the file descriptor. (The system call openO, which returns a file descriptor,
takes O_RDONLY, 0_ WRONLY, or O_RDWR to indicate whether the file will be used
for reading, writing, or both. For more information on this function, see its UNIX
manual page.)

You can use NXOpenFileO to connect to stdin, stdout, and stderr by obtaining their file
descriptors using the standard C library function filenoO. (For more information on this
function, see its UNIX manual page.) .

NXOpenPortO opens a stream associated with the Mach port specified by port. The mode
must be either NX_READONLY or NX_ WRITEONLY. The port must already be
allocated using the Mach function port_allocateO. See the NeXTSTEP Operating System
Software manual for more information about using this function.

Once the file or Mach port stream is open, you can read from or write to it. See the
descriptions of NXReadO and NXPutcO for more information about the functions
available for reading or writing to a stream.

When you're finished with the stream, close it with NXCloseO. If you've written to the
stream, the data will be automatically saved in the file. After calling NXCloseO on a file
stream, you still need to close the file descriptor. To do this, use the system call closeO,
giving it the file descriptor as an argument. (For more information about closeO, see its
UNIX manual page.)

Functions: NXOpenFile() 3-65

RETURN Both functions return a pointer to the stream they open or NULL if an error occurred while
trying to open the stream.

SEE ALSO NXOpenMemoryO, NXReadO, NXPutcO, NXCloseO

NXOpenMemory(), NXMapFile(), NXSaveToFile(),
NXGetMemoryBuffer(), NXCloseMemory()

SUMMARY Manipulate a memory stream

DECLARED IN streams/streams.h

SYNOPSIS NXStream *NXOpenMemory(const char *address, int size, int mode)
NXStream *NXMapFile(const char *pathName, int mode)
int NXSaveToFile(NXStream *stream, const char *name)
void NXGetMemoryBuffer(NXStream *stream, char **streambuf, int *len, int *maxlen)
void NXCloseMemory(NXStream *stream, int option)

DESCRIPTION These functions open, save, and close streams on memory. (The NXStream structure is
defined in the header file streams/streams.h.)

NXOpenMemoryO returns a pointer to the memory stream it opens. Its argument mode
specifies whether the stream will be used for reading or writing. If NX_ WRITEONLY is
specified, the first two arguments should be NULL and 0 to allow the amount of memory
available to be automatically adjusted as more data is written. Any other value for address
should be the starting address of memory allocated with vm_allocateO. If
NX_READONLY is specified, a memory stream will be set up for reading the data
beginning at the location specified by the first argument; the second argument indicates
how much data will be read. To use the stream for both writing and reading, you can either
use NULL and 0 or specify the location and amount of data to be read; again, address
should be the starting address of memory allocated with vm_allocateO.

NXMapFileO maps a file into memory and then opens a memory stream. A related
function, NXOpenFileO, connects a stream to a file specified with a file descriptor. (This
function is described earlier in this chapter.) Memory mapping allows efficient random and
multiple access to the data in the file, so NXMapFileO should be used whenever the file is
stored on disk. When you call NXMapFileO, give it the pathname for the file and indicate

3-66 Chapter 3: Common Classes and Functions

whether you will be writing, reading, or both, by using one of the mode constants described
above. If you use the stream only for reading, just close the memory stream when you're
finished. If you write to the memory-mapped stream, you need to call NXSaveToFileO, as
described below, to save the data. If you try to map a file that doesn't exist, this function
returns a NULL stream.

Once the memory stream is open, you can read from or write to it. See the descriptions of
NXReadO and NXPutcO for more information about reading or writing to a stream.

Before you close a memory stream, you can save data written to the stream in a file. To do
this, call NXSaveToFileO, giving it the stream and a pathname as arguments.
NXSaveToFileO writes the contents of the memory stream into the file, creating it if
necessary. After saving the data, close the stream using NXCloseMemoryO.

NXGetMemoryBufferO returns the memory buffer (streambuf) and its current and
maximum lengths (len and maxlen).

When you're finished with a memory stream, close it by calling NXCloseMemoryO. If
you've used the stream for writing, more memory may have been made available than was
actually used; the constant NX_ TRUNCATEBUFFER indicates that any unused pages of
memory should be freed. (Calling NXCloseO with a memory stream is equivalent to
calling NXCloseMemoryO and specifying NX_TRUNCATEBUFFER.)
NX_SAVEBUFFER doesn't free the memory that had been made available.
NXCloseMemoryO doesn't free the internal buffer: Use NXGetMemoryBufferO to get
the internal buffer and use vm_deallocateO to free it.

RETURN NXOpenMemoryO and NXMapFileO return a pointer to the stream they open or NULL
if the stream couldn't be opened.

NXSaveToFileO returns -1 if an error occurred while opening or writing to the file and 0
otherwise.

EXCEPTIONS The functions in this group that take a stream as an argument raise an NX_illegalStream
exception if the stream is invalid. This exception is also raised if these functions are used
on a stream that isn't a memory stream.

SEE ALSO NXReadO, NXPutcO, NXOpenFileO

NXOpenPort() --7 See NXOpenFile()

Functions: NXOpenPort() 3-67

NXOpenTypedStream(), NXCloseTypedStream(),
NXOpenTypedStreamForFile()

SUMMARY Open or close a typed stream

DECLARED IN objc/typedstream.h

SYNOPSIS NXTypedStream *NXOpenTypedStream(NXStream *stream, int mode)
void NXCloseTypedStream(NXTypedStream * stream)
NXTypedStream *NXOpenTypedStreamForFile(const char *filename, int mode)

DESCRIPTION These functions open, save the contents of, and close a typed stream. A typed stream
should be used for archiving-that is, for saving Objective C objects for later use, typically
in a file. (The NXTypedStream type is declared in the header file objc/typedstream.h. The
structure itself is private since you never need to access its members.)

The first argument for NXOpenTypedStreamO is an already opened NXStream structure.
See the descriptions of NXOpenMemoryO, NXOpenFileO, and NXOpenPortO earlier in
this chapter for more information about opening a stream. The second argument to
NXOpenTypedStreamO must be NX_READONLY or NX_ WRITEONLY to specify how
the typed stream will be used.

Once the typed stream is open, you can write to or read from it. See the descriptions of
NXReadTypeO, NXReadObjectO, and NXReadPointO later in this chapter for more
information about reading and writing. When you're finished with the typed stream, you
must first close the typed stream using NXCloseTypedStreamO and then close the
NXStream structure. See the descriptions of NXCloseO and NXCloseMemoryO for more
information about closing a stream.

To open a typed stream on a file, use NXOpenTypedStreamForFileO. This function
opens a memory stream and an associated typed stream. If mode is NX_READONLY, the
typed stream is initialized with the contents of the file specified by filename. A subsequent
call to NXCloseTypedStreamO will close the NXTypedStream and NXStream structures
and free the buffer that had been used. If mode is NX_ WRITEONLY, a typed stream on
memory is opened, ready for writing. When you finish writing, calling
NXCloseTypedStreamO will flush the typed stream, save its contents in the file specified
by filename, close both the NXTypedStream and the NXStream structures, and free the
buffer used.

3-68 Chapter 3: Common Classes and Functions

Note: Thefilename argument to NXOpenTypedStreamForFileO is stored as a pointer. If
the file is opened in NX_ WRITEONLY mode, the referenced file isn't actually opened for
writing until NXCloseTypedStreamO is called. Thus if the string pointed to by filename
changes between these two function calls, the data will be written to the file of the new
name. NXCloseTypedStreamO will raise an exception iffilename can't be opened
for writing.

RETURN NXOpenTypedStreamO and NXOpenTypedStreamForFileO return a pointer to the
typed stream they open or NULL if the stream couldn't be opened.

EXCEPTIONS NXOpenTypedStreamO and NXOpenTypedStreamForFileO raise a
TYPEDSTREAM_CALLER_ERROR exception with the message
"NXOpenTypedStream: invalid mode" if the mode is anything other than
NX_READONLY or NX_ WRITEONLY.

NXOpenTypedStreamO raises a TYPEDSTREAM_CALLER_ERROR exception with
the message "NXOpenTypedStream: null stream" if an invalid NXStream structure is
passed.

SEE ALSO NXOpenMemoryO, NXOpenFileO, NXCloseO, NXCloseMemoryO, NXReadTypeO,
NXReadObjectO, NXReadPointO

NXOpenTypedStreamForFile() ~ See NXOpenTypedStreamO

NXPrintf() ~ See NXPutc()

NXPtrHashO ~ See NXCreateHashTableO

NXPtrlsEqualO ~ See NXCreateHashTableO

Functions: NXOpenTypedStreamForFile() 3-69

NXPu1c(), NXGetc(), NXUngetc(), NXScanf(), NXPrintf(), NXVScanf(),
NXVPrintf()

SUMMARY Read or write formatted data to or from a stream

DECLARED IN streams/streams.h

SYNOPSIS int NXPute(NXStream * stream, char c)
int NXGete(NXStream *stream)
void NXUngete(NXStream * stream)
int NXSeanf(NXStream *stream, const char *format, ...)
void NXPrintf(NXStream * stream, const char *format, ...)
int NXVSeanf(NXStream * stream, const char *format, va_list argList)
void NXVPrintf(NXStream * stream, const char *format, va_list argList)

DESCRIPTION These functions and macros read and write data to and from a stream that has already been
opened. (See the descriptions of NXOpenMemoryO and NXOpenFileO for more
information about opening a stream.) After writing to a stream, you may need to call
NXFlushO to flush data from the buffer associated with the stream. (See the description of
NXFlushO earlier in this chapter.)

The macros for writing and reading single characters at a time are similar to the
corresponding standard C functions: NXPuteO and NXGeteO work like putcO and geteO.
NXPutcO appends a character to the stream. Its second argument specifies the character to
be written to the stream. NXGeteO retrieves the next character from the stream. To reread
a character, call NXUngeteO. This function puts the last character read back onto the
stream. NXUngeteO doesn't take a character as an argument as ungeteO does.
NXUngeteO can only be called once between any two calls to NXGeteO (or any other
reading function).

The other four functions convert strings of data as they're written to or read from a stream.
NXPrintfO and NXSeanfO take a character string that specifies the format of the data to
be written or read as an argument. NXPrintfO interprets its variables according to the
format string and writes them to the stream. Similarly, NXSeanfO reads characters from
the stream, interprets them as specified in the format string, and stores them in the variables
indicated by the last set of arguments. The conversion characters in the format string for
both functions are the same as those used for the standard C library functions, printfO and
seanfO. For detailed information on these characters and how conversions are performed,
see the UNIX manual pages for printfO and seanfO.

3-70 Chapter 3: Common Classes and Functions

Two related functions, NXVPrintf 0 and NXVScanfO, are exactly the same as NXPrintfO
and NXScanfO, except that instead of being called with a variable number of arguments,
they are called with a va_list argument list, which is defined in the header file stdarg.h.
This header file also defines a set of macros for advancing through a va_list.

RETURN NXPutcO and NXGetcO return the character written or read. NXScanfO and NXVScanfO
return EOP if all data was successfully read; otherwise, they return the number of
successfully read data items.

SEE ALSO NXOpenMemoryO, NXOpenFileO, NXFlushO, NXReadO

NXReadO, NXWriteO

SUMMARY Read from or write to a stream

DECLARED IN streams/streams.h

SYNOPSIS int NXRead(NXStream *stream, void *buf, int count)
int NXWrite(NXStream *stream, const void *buf, int count)

DESCRIPTION These macros read and write multiple bytes of data to a stream that has already been
opened. (See the descriptions of NXOpenMemoryO and NXOpenFileO for more
information about opening a stream.) After writing to a stream, you may need to call
NXFlushO to flush data from the buffer associated with the stream. (See the description of
NXFlushO earlier in this chapter.)

To read data from a stream, call NXReadO:

NXRect myRect;
NXRead(stream, &myRect, sizeof(NXRect));

NXReadO reads the number of bytes specified by its third argument from the given stream
and places the data in the location specified by the second argument.

In the following example, an NXRect structure is written to a stream.

NXRect myRect;

NXSetRect(&myRect, 0.0, 0.0, 100.0, 200.0);
NXWrite(stream, &myRect, sizeof(NXRect));

Functions: NXRead() 3-71

The second and third arguments for NXWriteO give the location and amount of data
(measured in bytes) to be written to the stream.

RETURN These macros return the number of bytes written or read. If an error occurs while writing
or reading, not all the data will be written or read.

SEE ALSO NXFlushO

NXReadArray(), NXWriteArray()

SUMMARY Read or write arrays from or to a typed stream

DECLARED IN objc/typedstream.h

SYNOPSIS void NXReadArray(NXTypedStream *stream, const char *dataType, int count,
void *data)

void NXWriteArray(NXTypedStream *stream, const char *dataType, int count,
const void *data)

DESCRIPTION These functions read and write arrays from and to a typed stream. They can be used within
read: or write: methods for archiving purposes. See the description of NXReadObjectO
in this chapter for more about these methods. Functions are also available for reading and
writing other data types; they're listed below in the "See Also" section.

Before using a typed stream for reading and writing, it must be opened; see the description
of NXOpenTypedStreamO for details on opening a typed stream. (The NXTypedStream
type is declared in the header file objc/typedstream.h. The structure itselfis private since
you never need access to its members.)

NXReadArrayO and NXWriteArrayO read and write an array of count elements of type
dataType from or to stream. NXReadArrayO reads the array from the typed stream into
the location specified by data, which must have been previously allocated.
NXWriteArrayO writes the array specified by data to the typed stream. Both functions
use the characters listed under the description of NXReadTypeO for dataType.

3-72 Chapter 3: Common Classes and Functions

The following is an example of an integer array being written. To read the same array,
NXReadArrayO would be called with the same first three arguments as NXWriteArrayO;
the fourth argument would be a pointer to memory for the array.

int aa[4];

aa [0] = 0; aa [1] = 11; aa [2] = 22; aa [3] 33 ;
NXWriteArray(typedStream, "i", 4, aa);

EXCEPTIONS Both functions check whether the typed stream has been opened for reading or for writing
and raise a TYPEDSTREAM_FILE_INCONSISTENCY exception if the mode isn't
correct. For example, if NXReadArrayO is called and the stream was opened for writing,
the exception is raised.

NXReadArrayO raises a TYPED STREAM_FILE_INCONSISTENCY exception if the
data to be read is not of the expected type.

SEE ALSO NXOpenTypedStreamO, NXReadTypeO, NXReadObjectO, and NXReadPointO

NXReadDefaultO ~ See NXRegisterDefaultsO

NXReadObjectO, NXWriteObject(), NXWriteObjectReference(),
NXWriteRootObject()

SUMMARY Read or write Objective C objects from or to a typed stream

DECLARED IN objc/typedstream.h

SYNOPSIS id NXReadObject(NXTypedStream *stream)
void NXWriteObject(NXTypedStream * stream, id object)
void NXWriteObjectReference(NXTypedStream * stream, id object)
void NXWriteRootObject(NXTypedStream * stream, id rootObject)

Functions: NXReadDefault() 3-73

DESCRIPTION These functions initiate the archiving and un archiving processes for Objective C objects.
They read and write the object passed in from or to stream. When an object is archived
with these functions, its class is automatically written as well. In addition, the data type of
each of its instance variables is archived along with the value of the variable. These
functions also ensure that objects are written only once.

Before you use a typed stream for reading and writing, it must be opened; see the
description of NXOpenTypedStreamO for details on opening a typed stream. (The
NXTypedStream type is declared in the header file objc/typedstream.h. The structure
itself is private since you never need to access its members.)

NXReadObjectO begins the unarchival process by allocating memory for a new object of
the correct class. It then sends the object a read: message to initialize its instance variables
from the typed stream. read: messages should only be generated through
NXReadObjectO; they shouldn't be sent directly to objects. Application Kit objects
already have read: methods, but you need to implement read: methods for any classes you
create that add instance variables:

- read: (NXTypedStream *)typedStream

[super read:typedStream];

... /* code for reading instance variables declared in
this class */

The message to super ensures that inherited instance variables will be unarchived. The
body of the read: method unarchives the object's instance variables, using the appropriate
function for that data type. The functions available for unarchiving include
NXReadTypesO, NXReadPointO, and NXReadArrayO, as well as NXReadObjectO.
See the descriptions of these functions in this chapter for information about how to use
them. A read: method can also check the version of the class being unarchived. See the
description of NXTypedStreamClassVersionO for more information about how to do this.

After NXReadObjectO un archives an object, it sends the object awake and
finishUnarchiving messages. You can implement an awake method to initialize the object
to a usable state. The finishUnarchiving method allows you to replace the just-unarchived
object with another one. If you implement a finishUnarchiving method, it should free the
unarchived object and return the replacement object.

3-74 Chapter 3: Common Classes and Functions

NXWriteObjectO writes object to stream by sending the object a write: message. As is
the case with read: methods, write: methods shouldn't be sent directly to objects, and they
need to be implemented for classes that add instance variables. They also need to begin
with a message to super. The functions available for archiving instance variables parallel
those for unarchiving; they include NXWriteTypesO, NXWritePointO, and
NXWriteArrayO, all of which are described elsewhere in this chapter. If the object being
archived has id instance variables (including those that are statically typed to a class),
they're archived as described below.

In some cases, an object's id instance variables contain inherent properties of the object to
which they belong, or they might be necessary for the object to be usable. For example, a
View's subview list is an intrinsic part of that View, just as a ButtonCell is needed for a
Button to work properly. For these kinds of instance variables, the object-the View or the
Button in the examples mentioned-uses NXWriteObjectO within its write: method.
(Actually, Button objects inherit Control's write: method, which archives the cell instance
variable.) The function NXWriteTypesO can also be used to archive id instance variables,
by specifying the id data type format character.

In other cases, an object's id instance variables refer to other objects that act at the
discretion of the object, such as its target or delegate, or that aren't inherently part of the
object. A View's superview and window instance variables aren't considered intrinsic to
the View since you might want to hook up the View to another superview or to a different
Window. For these kinds of instance variables, the object calls
NXWriteObjectReferenceO within its write: method. When archiving a data structure
that includes objects that have called NXWriteObjectReferenceO,
NXWriteRootObjectO must be used instead of NXWriteObjectO.

NXWriteObjectReferenceO specifies that a pointer to nil should be written for the object
passed in, unless that object is an intrinsic part of some member of the data structure being
archived. If the object is intrinsic, it will be archived and, after unarchiving, the pointer will
point to the object. NXWriteRootObjectO makes two passes through the data structure
being written. The first time, it defines the limits of the data to be written by including
instance variables intrinsic to the data structure and by making a note of which objects have
been written with NXWriteObjectReferenceO. On the second pass,
NXWriteRootObjectO archives the data structure.

As an example, consider a View that has a Button as one subview and a TextField, which
is the target of the Button, as another subview. If you archive the Button, its ButtonCell
will be written. The archived ButtonCell's target instance variable will point to nil. If you
archive the View, however, the Button and the TextField will be archived since they're
subviews. The ButtonCell will be archived since it's needed by the Button. The
ButtonCell's target instance variable will point to the TextField since it's an intrinsic part
of the View.

Functions: NXReadObject() 3-75

RETURN NXReadObjectO returns the id of the object read.

EXCEPTIONS All functions check whether the typed stream has been opened for reading or for writing
and raise a TYPEDSTREAM_CALLER_ERROR exception with an appropriate message
if it isn't correct. For example, if NXReadObjectO is called and the stream was opened
for writing, an exception is raised.

If an error occurs while creating an instance of the appropriate class, NXReadObjectO
raises a TYPEDSTREAM_CLASS_ERROR. This function a~so raises a
TYPEDSTREAM_FILE_INCONSISTENCY exception if the data to be read is not of
type id.

If NXWriteObjectO is used to archive a data structure that includes objects with calls to
NXWriteObjectReferenceO, a TYPEDSTREAM_ WRITE_REFERENCE_ERROR
exception is raised.

SEE ALSO NXOpenTypedStreamO, NXReadArrayO, NXReadTypeO, NXReadPointO
(Application Kit), and NXTypedStreamClassVersionO

NXReadObjectFromBuffer(), NXReadObjectFromBufferWithZone(),
NXWriteRootObjectToBuffer(), NXFreeObjectBuffer()

SUMMARY Read and write an object to a typed-stream memory buffer

DECLARED IN objc/typedstream.h

SYNOPSIS id NXReadObjectFromBuffer(const char *buffer, int length)
id NXReadObjectFromBufferWithZone(const char *buffer, int length, NXZone *zone)
char *NXWriteRootObjectToBuffer(id object, int *length)
void NXFreeObjectBuffer(char *buffer, int length)

DESCRIPTION These functions allow you to easily read and write an object to a typed stream on memory.
They're particularly useful for archiving an object, writing it to the pasteboard, and then
unarchiving it from the pasteboard.

3-76 Chapter 3: Common Classes and Functions

NXWriteRootObjectToBufferO opens a stream on memory (using NXOpenMemoryO)
and a corresponding typed stream. It then writes the object given as its argument by calling
NXWriteRootObjectO and closes the typed stream. (See the description of
NXWriteRootObjectO under NXReadObjectO above for more information about how
the object is written.) NXWriteRootObjectToBufferO also closes the memory stream but
retains the buffer, which is truncated to the size of the object.
NXWriteRootObjectToBufferO returns the size of the object (in the location specified by
length) and a pointer to the buffer itself.

NXReadObjectFromBufferO calls NXReadObjectFromBufferWithZoneO with the
default zone as its zone argument.

NXReadObjectFromBufferWithZoneO opens a stream on memory and a corresponding
typed stream with its zone set by the NXSetTypedStreamZoneO function. The buffer and
length arguments passed in should be taken from a previous call to
NXWriteRootObjectToBufferO. NXReadObjectO is called to read the object from the
buffer into the zone, after which the streams are closed.
NXReadObjectFromBufferWithZoneO saves the memory buffer and returns the object
it reads in the zone specified. Unless you're going to reread the buffer, you should free it
using the NXFreeObjectBufferO function.

NXFreeObjectBufferO frees the buffer specified by buffer, which should be length bytes
long. These arguments should be taken from a previous call to
NXWriteRootObjectToBufferO.

RETURN NXReadObjectFromBufferO returns the object it reads from the buffer.

NXWriteRootObjectToBufferO returns a pointer to the buffer it creates.

EXCEPTIONS NXReadObjectFromBufferO and NXReadObjectFromBufferWithZoneO raise a
TYPEDSTREAM _FILE_INCONSISTENCY exception if the data to be read from the
buffer is not of type id.

SEE ALSO NXOpenMemoryO, NXReadObjectO, and NXOpenTypedStreamO

NXReadObjectFromBufferWithZoneO ~
See NXReadObjectFromBufferO

Functions: NXReadObjectFromBuJJerWithZone() 3-77

NXReadTypeO, NXWriteTypeO, NXReadTypesO, NXWriteTypesO

SUMMARY Read or write arbitrary data to a typed stream

DECLARED IN objc/typedstream.h

SYNOPSIS void NXReadType(NXTypedStream *stream, const char *type, void *data)
void NXWriteType(NXTypedStream *stream, const char *type, const void *data)
void NXReadTypes(NXTypedStream *stream, const char *types, ...)
void NXWriteTypes(NXTypedStream *stream, const char *types, ...)

DESCRIPTION These functions read and write strings of data from and to a typed stream. They can be used
within read: or write: methods for archiving purposes. See the description of
NXReadObjectO in this chapter for more about these methods. Functions are also
available for reading and writing certain data types; they're listed below in the "See Also"
section.

These functions are similar to the NXPrintfO and NXScanfO functions for streams
(and to the printfO and scanfO standard C functions). Before using a typed stream for
reading and writing, it must be opened; see the description of NXOpenTypedStreamO
for details on opening a typed stream. (The NXTypedStream type is declared in the header
file objC/typedstream.h. The structure itself is private since you never need to access
its members.)

These four functions take as arguments a pointer to a typed stream, a character string
indicating the format of the data to be read or written, and the address of the data. The
data types and format string characters listed below are supported.

Type Code Type Code
int char c
unsigned int I unsigned char C
short s char * *
unsigned short S NXAtom %
long I id @

unsigned long L Class #
float f SEL
double d structure {<types> }
ignored array [<count> <types>]

3-78 Chapter 3: Common Classes and Functions

For example, "[15d]" means that each stored element is an array of fifteen doubles, and
"{ csi * @ }" means that each stored element is a structure containing a char, a short, an int,
a character pointer, and an object.

Most of these codes are identical to ones that would be returned by the @encodeO compiler
directive. However, there are some differences:

• A structure description can contain only encoded type information between the braces.
It can't include a full type name or structure name.

• The '%' descriptor specifies a unique string pointer. When the pointer is unarchived,
the NXUniqueStringO function is called to make sure that it's also unique within the
new context.

• The'!' descriptor marks data that won't be archived. Each occurrence of '!' instructs
the archiver to skip data the size of an int.

• A few @encodeO descriptors-such as the ones for pointers, bitfields, and undefined
types-should not be used. Use only the codes shown in the table above.

NXReadTypeO and NXWriteTypeO read and write the data specified by data as the single
data type specified by type. The functions NXReadTypesO and NXWriteTypesO read and
write multiple types of data; the types should be listed in types using the appropriate format
characters shown above, and matching data should be provided in data. This example
shows three different data types being written to an already open typed stream:

float aa 3.0;
int bb 5;
char *cc "foo";

NXWriteTypes(typedStream, "fi*", &aa, &bb, &cc) i

If NXWriteTypeO had been used, three lines of code would have been necessary, one for
each data type. Both functions take pointers to the data to be written, unlike printfO.

To read these three pieces of data from the NXTypedStream, NXReadTypesO would be
called with the same arguments as shown above for NXWriteTypesO:

NXReadTypes (typedStream, "fi*", &aa, &bb, &cc) i

Note: NXWriteTypeOINXReadTypeO and NXWriteTypesO/NXReadTypesO must be
used sYIilmetrically. That is, if you write data values using a series of NXWriteTypeO
function calls, you must read those values using a corresponsing series of NXReadTypeO
function calls. A similar stricture applies for NXWriteTypesO and NXReadTypesO.

Functions: NXReadType() 3-79

Note: Use NXWriteTypeO and NXReadTypeO to archive structures; for example, use the
following code to write a structure of four floats:

NXWriteType (s, II {4f} ", &data)

then use the corresponding code to read the structure:

NXReadType(s, 1{4f}", &data)

Use the NXWriteArrayO and NXReadArrayO functions to write and read arrays. Avoid
using the NXWriteTypesO and NXReadTypesO functions for structures and arrays; these
functions can archive arrays and structures incorrectly and cause errors at runtime.

EXCEPTIONS All four functions check whether the typed stream has been opened for reading or for
writing and raise a TYPEDSTREAM_FILE_INCONSISTENCY exception if the type isn't
correct. For example, if NXReadTypeO or NXReadTypesO is called and the stream was
opened for writing, the exception is raised.

The functions for reading raise a TYPEDSTREAM_FILE_INCONSISTENCY exception
if the data to be read is not of the expected type.

SEE ALSO NXOpenTypedStreamO, NXReadObjectO, and NXReadPointO

NXReadTypesO ~ See NXReadTypeO

NXReallyFreeO ~ See NXCreateHashTableO

3-80 Chapter 3: Common Classes and Functions

NXRegisterDefaults(), NXGetDefaultValue(), NXReadDefault(),
NXSetDefault(), NXWriteDefault(), NXWriteDefaults(),
NXUpdateDefault(), NXUpdateDefaults(), NXRemoveDefault(),
NXSetDefau ItsUser()

SUMMARY Set or read default values

DECLARED IN defaults/defaults.h

SYNOPSIS int NXRegisterDefaults(const char *owner, const NXDefaultsVector vector)
const char *NXGetDefauItValue(const char *owner, const char *name)
const char *NXReadDefault(const char *owner, const char *name)
int NXSetDefault(const char *owner, const char *name, const char *value)
int NXWriteDefault(const char *owner, const char *name, const char *value)
int NXWriteDefaults(const char *owner, NXDefaultsVector vector)
const char *NXUpdateDefault(const char *owner, const char *name)
void NXUpdateDefaults(void)
int NXRemoveDefault(const char *owner, const char *name)
const char *NXSetDefaultsUser(const char *newUser)

DESCRIPTION These functions give you access to a system of default parameters through which you can
allow users to customize your application to meet their needs. For example, you can allow
users to determine what units of measurement your application will display or how often
documents will be automatically saved. The parameters get the name default since they're
commonly used to determine an application's default state at startup or the way it will act
by default.

Parameter values can be set from the command line or from a user's defaults database.
Since values are stored specific to a particular user, you can use the parameters to record
user preferences or to capture the application's state in one session so that it can be carried
over to the next session. You can invent whatever parameters your application needs.
Some parameters are defined in NeXTSTEP software-for example, many record choices
the user makes in the Preferences application. See Appendix B, "Default Parameters," for
a listing of system-defined parameters that you can read or set.

Functions: NXRegisterDefaults() 3-81

Parameters are set on the command line by preceding the parameter name with a hyphen
and following it with a value. For example, the following instruction would launch the Edit
application on the host machine named "earth" and assign that name as the value of the
NXHost parameter:

localhost> /NextApps/Edit.app/Edit -NXHost earth

Listing a parameter on the command line doesn't put it in the defaults database. To put a
parameter in the defaults database, you must use the functions described below.

A defaults database is created automatically for each user. It's named .NeXTdefaults and
is located in the .N eXT directory in the user's home directory. Each parameter in the
database is made up of three components:

• An owner, which is either the name of a specific application or "GLOBAL"
• The name of the parameter
• The value associated with the parameter

Each component is specified as a character string.

At run time, the parameters your application will use are placed in an internal cache. By
using this cache, you avoid having to open the user's defaults database each time that you
need access to a parameter. The cache is a list of parameters containing the same three
components for each parameter as the database: the owner, the parameter name, and the
associated value.

To register parameters in the cache, call NXRegisterDefaultsO and give it two arguments:
a character string specifying the owner and an NXDefaults Vector array. This array is a list
of structures, each containing a parameter name and a value. (NXDefaults Vector is defined
in the header file defaults/defaults.h.) Every application should register default
parameters early in the program, before any of the values are needed.

Note: You should use the full market name of your product as the owner of the parameters
you create. This will avoid conflicts with existing parameters. Noncommercial
applications might use the name of the program and the author or institution.

3-82 Chapter 3: Common Classes and Functions

A good place to call NXRegisterDefaultsO is in the initialize method of the class
that will use the parameters. The following example registers the values in ArbDefaults
for the owner "Arboretum" (note that NULL is used to signal the end of the
NXDefaults Vector array):

+ initialize

static NXDefaultsVector ArbDefaults
{"NXMeasurementunit", NULL},

{"AutoPropagate", "YES"},
{NULL}

} ;

NXRegisterDefaults("Arboretum" , ArbDefaults);

return self;

If the defaults database doesn't exist when NXRegisterDefaultsO is called, it's
automatically created and placed in the .NeXT directory; the directory is created if
necessary.

NXRegisterDefaultsO creates a cache that contains a value for each of the parameters
listed in the NXDefaults Vector array. For each parameter, a value is determined by first
looking to see if it was defined on the command line (if the application was launched that
way); if not, the user's defaults database (.NeXTdefaults) is searched. If
NXRegisterDefaultsO finds a parameter and owner in the database that match those passed
to it as arguments, the corresponding value from the database is placed in the cache. If no
parameter-owner match is found, NXRegisterDefaultsO searches the database's global
parameters-those owned by "GLOBAL" -for a matching parameter, and, if it finds one,
places the corresponding value in the cache. If a match still isn't found, the
parameter-value pair listed in the NXDefaultsVector array is used. (A value can be
specified in the array as NULL.)

To summarize, this is the precedence ordering used to obtain a value for a given parameter
for the cache:

1. The command line
2. The user's defaults database (.NeXTdefaults), with a matching owner
3. The user's defaults database, with the owner listed as "GLOBAL"
4. The NXDefaults Vector array passed to NXRegisterDefaultsO

Functions: NXRegisterDefaults() 3-83

To read a parameter value, you'll most often call NXGetDefaultValueO. This function
takes an owner and name of a parameter as arguments and returns a character pointer to the
value for that parameter. NXGetDefaultValueO first looks in the cache for a matching
owner-parameter item. If NXGetDefaultValueO doesn't find a match in the cache (which
would be the case only if the parameter wasn't in the NXDefaults Vector array passed to
NXRegisterDefaultsO), it searches the user's defaults database (.NeXTdefaults) for the
owner and parameter. If still no match is found, it searches for a matching global parameter,
first in the cache and then in the database. If the value is found in the database rather than
the cache, NXGetDefaultValueO registers that value for subsequent use.

Occasionally, you may want to search only the database for a parameter value and ignore
the cache. For example, you might want to get a parameter value that another application
may have changed after the cache was created. In these rare cases, call NXReadDefaultO,
which takes an owner and parameter name as arguments and looks in the database for an
exact match. It doesn't look for a global parameter unless "GLOBAL" is specified as the
owner. If a match is found, a character pointer to the value is returned; if no value is found,
NULL is returned. After obtaining a value from the database with NXReadDefaultO, you
may want to write it into the cache with NXSetDefaultO.

NXSetDefaultO takes as arguments an owner, the name of a parameter, and a value for that
parameter. The parameter and its value are placed in the cache, but they aren't written into
the user's defaults database (.NeXTdefaults).

NXWriteDefaultO writes the owner, parameter, and value specified as its arguments into
the user's defaults database and places them in the cache. Similarly, NXWriteDefaultsO
writes a vector of parameters into the database and registers it. Both NXWriteDefaultO
and NXWriteDefaultsO return the number of successfully written values. To maximize
efficiency, you should use one call to NXWriteDefaultsO rather than several calls to
NXWriteDefaultO to write multiple values. This will save the time required to open and
close the database each time a value is written.

Since other applications (and the user) can write to the database, at various points the
database and the internal cache might not agree on the value of a given parameter. You can
update the cache with any changes that have been made to the database since the cache was
created by calling NXUpdateDefaultO or NXUpdateDefaultsO. Both functions compare
the cache and the database. If a value is found in the database that is newer than the
corresponding value in the internal cache, the new value is written into the cache.

NXUpdateDefaultO updates the value for the single parameter and owner given as its
arguments. NXUpdateDefaultsO, which takes no arguments, updates the entire cache. It
checks every parameter in the cache, determines whether a newer value exists in the
database, and puts any newer values it finds in the cache.

3-84 Chapter 3: Common Classes and Functions

NXRemoveDefauItO removes the specified owner-parameter pair from both the user
database and the internal cache.

Ordinarily, the functions described above use the database belonging to the user who
started the application. NXSetDefaultsUserO changes which defaults database is used by
subsequent calls to these functions. NXSetDefaultsUserO accepts the name of a user
whose database you wish to use; it returns a pointer to the name of the user whose defaults
database was previously set for access by these functions. All entries in the internal cache
are purged; use NXGetDefauItValueO or NXRegisterDefaultsO to get the new user's
defaults for your application. When NXSetDefauItsUserO is called, the user who started
the application must have appropriate access (read, write, or both) to the defaults database
of the new user. This function is generally called in applications intended for use by a
superuser who needs to update defaults databases for a number of users.

RETURN NXRegisterDefaultsO returns 0 if the database couldn't be opened; otherwise it returns 1.

NXGetDefauItValueO returns a character pointer to the requested parameter value, or 0 if
the database couldn't be opened.

NXReadDefauItO returns a character pointer to the parameter value; if a value is not
found, NULL is returned.

NXSetDefaultO returns 1 if it successfully set a parameter value, and 0 if not.

NXWriteDefaultO returns 1 unless an error occurs while writing the parameter value, in
which case it returns O.

NXWriteDefaultsO returns the number of successfully written parameter values.

NXUpdateDefaultO returns the new value, or NULL if the value did not need to
be updated.

NXRemoveDefaultO returns 1, or 0 if the parameter couldn't be removed.

NXSetDefaultsUserO returns the login name of the user whose defaults database was
being used before the function was called.

Functions: NXRegisterDefaults() 3-85

NXRegisterPrintfProc()

SUMMARY Register a procedure for formatting data written to a stream

DECLARED IN streams/streams.h

SYNOPSIS void NXRegisterPrintfProc(char formatChar, NXPrintfProc *proc, void *procData)

DESCRIPTION NXRegisterPrintfProc registers formatChar, a format character that corresponds to
*proc, which is a pointer to a function of type NXPrintfProc. The type definition for an
NXPrintfProc function is:

typedef void NXPrintfProc(NXStream *stream, void *item,
void *procData)

formatChar can be any of the characters "vVwWyYzZ"; other characters are reserved
for use by NeXT. procData represents client data that will be blindly passed along to
the function.

After calling NXRegisterPrintfProcO, formatChar can be used in a format string for the
NXPrintfO or NXVPrintfO functions. When these functions encounter formatChar in a
format string, proc will be called to format the corresponding argument passed to
NXPrintfO. For example:

tabOver(NXStream stream, void *item, void *data)

NXRegisterPrintfProc('v', &tabOver, NULL);

NXPrintf (myStream, II %v", itemOne);

This code registers "v" as the formatting character for tabOverO; with the NULL
argument, no client data will be passed to tabOverO. NXPrintfO then passes the variable
itemOne to tabOverO for formatting, which formats the item and places it in myStream.

SEE ALSO NXPutcO

NXRemoveDefaultO -7 See NXRegisterDefaultsO

3-86 Chapter 3: Common Classes and Functions

NXResetErrorDataO ~ See NXAliocErrorDataO

NXResetHashTableO ~ See NXCreateHashTableO

NXSaveToFileO ~ See NXOpenMemoryO

NXScanfO ~ See NXPutcO

NXSeekO, NXTeIlO, NXAtEOSO

SUMMARY Set or report current position in a stream

DECLARED IN streams/streams.h

SYNOPSIS void NXSeek(NXStream * stream, long offset, int ptrName)
long NXTell(NXStream * stream)
BOOL NXAtEOS(NXStream *stream)

DESCRIPTION These functions set or report the current position in the stream given as an argument. This
position determines which data will be read next or where the next data will be written since
the functions for reading and writing to a stream start from the current position.

NXSeekO sets the position offset number of bytes from the place indicated by ptrName,
which can be NX_FROMSTART, NX_FROMCURRENT, or NX_FROMEND.

NXTellO returns the current position of the buffer. This information can then be used in a
call to NXSeekO.

The macro NXAtEOSO evaluates to TRUE if the end of a stream has been reached. Since
streams opened for writing don't have an end, this macro should only be used with streams
opened for reading.

Since position within a Mach port stream is undefined, NXSeekO and NXTellO shouldn't
be called on a Mach port stream. These functions also shouldn't be used on a typed stream.
The NX_CANSEEK flag (defined in the header file streams/streams.h) can be used to
determine if a given stream is seekable.

RETURN NXTellO returns the current position of the buffer.

NXAtEOSO evaluates to TRUE if the end of the stream has been detected and to
FALSE otherwise.

Functions: NXResetErrorData() 3-87

EXCEPTIONS NXSeekO and NXTellO raise an NX_illegalStream exception if the stream passed in
is invalid.

NXSeekO raises an NX_illegalSeek exception if offset is less than 0 or greater than the
length of a reading stream. This exception will also be raised if ptrName is anything other
than the three constants listed above.

NXSetDefault() ~ See NXRegisterDefaults()

NXSetDefaultsUser() ~ See NXRegisterDefaults()

NXSetExceptionRaiser() ~ See NXDefaultExceptionRaiser()

NXSetTypedStreamZone() ~ See NXGetTypedStreamZone()

NXSetUncaughtExceptionHandler(),
NXGetUncaughtExceptionHandler()

SUMMARY Handle uncaught exceptions

DECLARED IN objc/error.h

SYNOPSIS void NXSetUncaughtExceptionHandler(NXUncaughtExceptionHandler *proc)
NXUncaughtExceptionHandler * NXGetUncaughtExceptionHandler(void)

DESCRIPTION These macros provides a means of handling exceptions that are raised outside of an
NX_DURING ... NX_ENDHANDLER construct. You can use the Application object's
default procedure, or you can define your own handler using
NXSetUncaughtExceptionHandlerO.

If proc is NULL or if you never call NXSetUncaughtExceptionHandlerO, your program
will use the Application object's default procedure. This function writes an uncaught
exception message to stderr if the application was launched from a terminal. If the
application was launched by the Workspace Manager, the message is written using syslogO
with the priority set to LOG_ERR; this message will normally appear in the Workspace
Manager's console window. The default uncaught exception handler then calls the function
pointed to by NXTopLevelErrorHandlerO and passes it any data about the exception

3-88 Chapter 3: Common Classes and Functions

supplied by NX_RAISEO, which was called when the exception occurred. (See the
description of NX_RAISEO.) If you haven't defined your own top-level error handler, the
program exits.

To create your own handler, you define an exception handling function and give the name
of that function as an argument to NXSetUncaughtExceptionHandlerO. Subsequent calls
to NXGetUncaughtExceptionHandlerO will return a pointer to the function. These two
macros are defined in the header file objc/error.h. '

SEE ALSO NX_RAISEO, NXDefauItTopLevelErrorHandlerO

NXStreamCreateFromZone(), NXStreamCreate(), NXStreamDestroy(),
NXDefaultRead(), NXDefaultWrite(), NXFiIlO, NXChangeBuffer()

SUMMARY Support a user-defined stream

DECLARED IN streams/streamsimpl.h

SYNOPSIS NXStream *NXStreamCreateFromZone(int mode, int createBuf, NXZone *zone)
NXStream *NXStreamCreate(int mode, int createBuj)
void NXStreamDestroy(NXStream * stream)
int NXDefaultRead(NXStream *stream, void *buf, int count)
int NXDefauItWrite(NXStream * stream, const void *buf, int count)
int NXFill(NXStream *stream)
void NX ChangeBuffer(NXStream * stream)

DESCRIPTION These functions need only be used if you implement your own version of a stream. If
you're using a memory stream, a stream on a file, a stream on a Mach port, or a typed
stream, you don't need the functions described here. Instead, you canjust use the functions
already defined for these types of streams; see the NeXTSTEP Programming Interface
Summaries manual for a list of these functions.

The first, argument to NXStreamCreateFromZoneO, mode, indicates whether the stream
to be created will be used for reading or writing or both. It should be one of the following
constants: NX_READONLY, NX_ WRITEONLY, or NX_READWRITE. The argument
createBuf specifies whether the stream should be buffered. If it is TR VE, a buffer is created
of size NX_DEFAVLTBVFSIZE, as defined in the header file streams/streamsimpl.h.
The argument zone specifies the memory zone where you allocate memory for the new

Functions: NXStreamCreateFromZone() 3-89

stream; see NXCreateZoneO for more on allocating zones of memory. When
implementing your own version of a stream, you may want to provide a function to open
such a stream; this function will probably call NXStreamCreateFromZoneO, as
NXOpenMemoryO, NXOpenPortO, and NXOpenFileO do.

NXStreamCreateO calls NXStreamCreateFromZoneO with the default zone as its
zone argument.

NXStreamDestroyO destroys the stream given as its argument, deallocating the space it
had used. If a buffer had been created for stream, its storage is also freed. To avoid losing
data, a stream should be flushed using NXFlushO before it's destroyed. When
implementing your own version of a stream, you may want to provide a function to close
such a stream; this function will probably call NXStreamDestroyO, as NXCloseO and
NXCloseMemoryO do.

NXDefaultReadO and NXDefaultWriteO read and write multiple bytes of data on a
stream. NXDefaultReadO reads the next count number of bytes from stream, starting at
the position specified by the buffer pointer buf NXDefaultWriteO writes count number
of bytes to stream, starting at the position specified by buf These functions return the
number of bytes read or written. When implementing your own version of a stream, you
can use these functions with your stream unless you want to perform specialized buffer
management. If you implement your own versions of these functions for reading and
writing bytes, they should return the number of bytes read or written.

When reading from a buffered stream, NXFillO can be called to fill the buffer with the next
data to be read. Check whether buf_Ieft is equal to 0 to determine whether all the data
currently in the buffer has been read. (See the header file streams/streams.h for more
information about buf_Ieft, which is part of an NXStream structure.)

NXChangeBufferO switches the mode of a stream between reading and writing. If the
argument stream had been defined for reading, this function changes it to a stream that
can be written to; if stream had been defined for writing, it becomes a stream for reading.
In both cases, the pointer that points to either the next piece of data to be read from the
buffer or the next location to which data will be written is realigned appropriately.
Also, NX_READFLAG and NX_ WRITEFLAG are updated to reflect the new mode of
the stream.

RETURN NXStreamCreateO returns a pointer to the stream it creates.

NXDefaultReadO and NXDefaultWriteO return the number of bytes read or written.

NXFillO returns the number of characters read into the buffer.

3-90 Chapter 3: Common Classes and Functions

EXCEPTIONS All functions that take a stream as an argument raise an NX_illegalStream exception if the
stream passed in is invalid.

NXFillO raises an NX_illegalRead exception if an error occurs while filling.

NXChangeBufferO raises an NX_illegalStream exception if NX_READFLAG
and NX_ WRITEFLAG have not been set to match the NX_ CANREAD and
NX_CANWRITE flags.

SEE ALSO NXOpenFileO, NXOpenMemoryO, NXCloseO, NXFlushO, NXReadO

NXStreamDestroyO ~ See NXStreamCreateFromZoneO

NXStrHashO ~ See NXCreateHashTableO

NXStrlsEqualO ~ See NXCreateHashTableO

NXTeliO ~ See NXSeekO

NXToAsciiO, NXToLower(), NXToUpperO

SUMMARY Convert NeXTSTEP-encoded characters

DECLARED IN NXCType.h

SYNOPSIS unsigned char *NXToAscii(unsigned int c)
int NXToLower(unsigned int c)
int NXToUpper(unsigned int c)

DESCRIPTION These functions convert characters encoded in the extended character set defined by
NeXTSTEP encoding. They are similar to the standard C library functions toasciiO,
tolowerO, and toupperO (see the ctype(3) UNIX manual page), which operate on
characters in the ASCII character set.

NXToLowerO converts an uppercase letter to its lowercase equivalent, and NXToUpperO
converts a lowercase letter to its uppercase equivalent. If there's no opposite case
equivalent-or if the character is already of the desired case-these functions return the
supplied argument unchanged.

Functions: NXStreamDestroy() 3-91

NXToAsciiO converts its argument to a value that lies within the standard ASCII character
set. The lower 128 positions in NeXTSTEP encoding constitute the ASCII character set,
so no conversion is required for codes in this range. For the upper 128 character codes­
the extended characters-NXToAsciiO makes these conversions:

Extended Character

Agrave, Aacute, Acircumflex, Atilde, Adieresis, Aring
Ccedilla
Egrave, Eacute, Ecircumflex, Edieresis
Igrave, Iacute, lcircumflex, Idieresis
Ntilde
Ograve, Oacute, Ocircumflex, Otilde, Odieresis, Os lash
Ugrave, Uacute, Ucircumflex, Udieresis
Yacute
eth, Eth
Thorn, thorn
fi
fl
agrave, aacute, acircumflex, atilde, adieresis, aring
ccedilla
egrave, eacute, ecircumflex, edieresis
AE
igrave, iacute, icircumflex, idieresis
ntilde
Lslash
OE
ograve, oacute, ocircumflex, otilde, odieresis, oslash
ae
ugrave, uacute, ucircumflex, udieresis
dotlessi
yacute, ydieresis
lslash

:oe
germandbls
multiply
divide
exclamdown
quotesingle

Converts to
A
C
E
I
N
o
U
Y
TH
th
fi
fl
a
c
e
AE

n
L
OE
o
ae
u

Y
I
oe
ss
x
/

quotedblleft, guillemotleft, quotedblright, guillemotright, quotedblbase \
quotesinglbase
guilsinglleft <
guilsinglright >
periodcentered

3-92 Chapter 3: Common Classes and Functions

Extended Character

brokenbar
bullet
ellipsis
questiondown
one superior
two superior
threesuperior
emdash
plusminus
one quarter
onehalf
three quarters
ordfeminine
ordmasculine
mu, copyright, cent, sterling, fraction, yen, florin, section, currency,
registered, endash, dagger, daggerdbl, paragraph, perthousand,
logicalnot, grave, acute, circumflex, tilde, macron, breve, dotaccent,
dieresis, ring, cedilla, hungarumlaut, ogonek, caron

Converts to

*

?
1
2
3

+-
1/4
112
3/4
a
0

RETURN NXToAsciiO returns by reference a valid ASCII character. NXToLowerO or
NXToUpperO returns an integer value that represents the converted character.

SEE ALSO NXIsAlpbaO

NXToLowerO ~ See NXToAsciiO

NXToUpperO ~ See NXToAsciiO

NXTypedStreamClassVersion()

SUMMARY Get the class version number of an archived instance

DECLARED IN objc/typedstream.h

SYNOPSIS int NXTypedStreamClassVersion(NXTypedStream *stream, const char *className)

Functions: NXToLower() 3-93

DESCRIPTION This function returns the class version number of an archived object. Class versioning is
useful if you create a class, archive an instance of it, then change the class-by adding
instance variables to it, for example. This function is used in a class's read: method to
select the appropriate code for initializing the instance being unarchived. This function
should be called only on a typed stream opened for reading with NXReadObjectO.

NXTypedStreamClassVersionO can be called in your read: method after sending a
[super read:stream] message and before performing version-specific initialization.
Calling this function doesn't change the position of the read pointer in stream. If you need
to know the version of an object's superclass (or any class in its inheritence hierarchy), call
this function using the name of that class as className.

For NXTypedStreamClassVersionO to return a nonzero value, you should change the
class version to a new value whenever you change the class definition. The Object class
provides two methods for handling class versioning. Object's setVersion: class method
can be used in a subclass's initialize class method to set a new class version when you
change the instance variables. Object's version class method returns the current version of
your class.

The NXWriteObjectO function automatically archives the class version when it is
archiving an object. The default version number is 0. Thus if you have previously archived
instances of a class without setting the version, you can set the version of the altered class
to any integer value other than 0, then use this function to detect old and new instances of
the class.

In the following code example, MyClass's initialize method sets the class version using
Object's setVersion: method:

@implementation MyClass:MySuperClass
+ initialize

if (self == [MyClass class]) {
[MyClass setVersion:MYCLASS_CURRENT_VERSION];

return self;

3-94 Chapter 3: Common Classes and Functions

Note that this code tests to see that initialize is being invoked by the implementing class,
not a subclass. This is useful to assure that subclasses don't inherit the version number (or
other class-specific details).

In the next example, MyClass's read: method uses version numbers to unarchive old and
new instances differently:

- read: (NXTypedStream *)typedStream

[super read:typedStream];
if (NXTypedStreamClassVersion(typedStream, "MyClass")

[MyClass version] {
/* read code for current version */

else
/* read code for old version */

See the description of NXReadObjectO earlier in this chapter for more information about
archiving. The NXTypedStream type is declared in the header file objc/typedstream.h.
The structure itself is private since you never need access to its members.

SEE ALSO NXReadObjectO

NXUngetc() ~ See NXPutc()

Functions: NXUngetc() 3-95

NXUniqueStringO, NXUniqueStringWithLength(),
NXUniqueStringNoCopy(), NXCopyStringBufferO,
NXCopyStringBufferFromZoneO

SUMMARY Manipulate a string buffer

DECLARED IN objc/hashtable.h

SYNOPSIS NXAtom NXUniqueString(const char *buffer)
NXAtom NXUniqueStringWithLength(const char * buffer, int length)
NXAtom NXUniqueStringNoCopy(const char *buffer)
char *NXCopyStringBuffer(const char *buffer)
char *NXCopyStringBufferFromZone(const char *buffer, NXZone *zone)

DESCRIPTION The first three functions in this group create unique strings, which are allocated once and
then can be shared. The fourth and fifth functions allocate memory for and return a copy
of the given string.

Unique strings are identified by the type NXAtom, which indicates that they can be
compared using == rather than strcmpO. NXAtom strings shouldn't be deallocated or
modified; the Mach function vm_protectO is used to ensure that the strings are read-only.
(The type NXAtom is defined in the objclhashtable.h header file.)

NXUniqueStringO, NXUniqueStringWithLengthO, and NXUniqueStringNoCopyO
maintain a hash table of unique strings. Each function checks if the string passed in is
already in the table and if so, returns it. Because a hash table is used, the average search
time is constant regardless of how many unique strings exist. If buffer doesn't exist in the
hash table, NXUniqueStringO and NXUniqueStringWithLengthO return a pointer to a
copy of it as an NXAtom; NXUniqueStringNoCopyO inserts the string in the hash table
but doesn't make a copy of it. For efficiency, all unique strings are stored in the same area
of virtual memory.

NXUniqueStringO assumes buffer is null-terminated; if it's NULL, NXUniqueStringO
returns NULL. NXUniqueStringWithLengthO assumes that buffer is a non-NULL string
of at least length non-NULL characters.

NXCopyStringBufferO allocates memory from the default memory zone for a copy of
buffer. Then buffer, which should be null-terminated, is copied using strcpyO.
NXCopyStringBufferFromZoneO is identical to NXCopyStringBufferO except that
memory is allocated from the specified zone.

3-96 Chapter 3: Common Classes and Functions

RETURN NXUniqueStringO and NXUniqueStringWithLengthO return a pointer to a copy of
buffer as an NXAtOffi.

NXUniqueStringNoCopyO returns a pointer to the string passed in.

NXCopyStringBufferO and NXCopyStringBufferFromZoneO return a pointer to a copy
of buffer.

NXUniqueStringNoCopy() ~ See NXUniqueString()

NXUnictueStringWithLength() ~ See NXUniqueStringO

NXUpdateDefaultO ~ See NXRegisterDefaults()

NXUpdateDefaultsO ~ See NXRegisterDefaultsO

NXVPrintfO ~ See NXPutcO

NXVScanfO ~ See NXPutcO

NXWrite() ~ See NXReadO

NXWriteArray() ~ See NXReadArray()

NXWriteDefaultO ~ See NXRegisterDefaults()

NXWriteDefaultsO ~ See NXRegisterDefaultsO

NXWriteObject() ~ See NXReadObject()

NXWriteObjectReference() ~ See NXReadObjectO

NXWriteRootObjectO ~ See NXReadObject()

NXWriteRootObjectToBufferO ~ See NXReadObjectFromBufferO

NXWriteTypeO ~ See NXReadType()

NXWriteTypesO ~ See NXReadTypeO

NXZoneCaUoc() ~ See NXZoneMalloc()

NXZoneFromPtr() ~ See NXCreateZone()

Functions: NXUniqueStringNoCopy() 3-97

NXZoneFreeO ~ See NXZoneMaliocO

NXZoneMaliocO, NXZoneCaliocO, NXZoneRealiocO, NXZoneFreeO

SUMMARY Allocate and free memory within a zone

DECLARED IN objc/zone.h

SYNOPSIS void *NXZoneMalloc(NXZone *zone, size_t size)
void *NXZoneCalloc(NXZone *zone, size_t numElems, size_t numBytes)
void *NXZoneRealloc(NXZone *zone, void *ptr, size_t size)
void NXZoneFree(NXZone *zone, void *ptr)

DESCRIPTION These functions allocate and free memory within a particular region, or zone. They're
similar to the standard C library functions mallocO, callocO, reallocO, and freeO, but
allow more control over memory placement. By placing data structures that are likely to
be used in conjunction with each other in the same zone, you can ensure better locality of
reference. This can significantly improve performance on a paged virtual memory system.
When related data structures are grouped close together, consecutive references are less
likely to result in memory paging activity.

To use these functions, you must first obtain a pointer to a zone, generally by creating a new
zone using NXCreateZoneO. The zone pointer is passed as the first argument to each of
these functions. Memory is allocated from the zone specified.

NXZoneMallocO allocates size bytes from zone, and returns a pointer to the allocated
memory. NXZo.teCallocO allocates enough memory from zone for numElems elements,
each with a size of numBytes bytes, and returns a pointer to the allocated memory. Both
allocate memory that's aligned to accommodate any C data type. Like callocO,
NXZoneCallocO sets the allocated memory to 0 throughout; NXZoneMallocO, like
mallocO, does not.

NXZoneReallocO changes the size of the block of memory pointed to by ptr to size bytes.
It may allocate new memory to replace the old. If so, it moves the contents of the old
memory block to the new block, up to a maximum of size bytes.

NXZoneFreeO returns memory to the zone from which it was allocated. The standard C
function freeO does the same, but spends time finding which zone the memory belongs to.

3-98 Chapter 3: Common Classes and Functions

For both NXZoneReallocO and NXZoneFreeO, ptr must be a pointer to a memory block
that was returned by NXZoneMallocO, NXZoneCallocO, NXZoneReallocO, or their
standard C counterparts. The zone must be the one from which the ptr memory block was
allocated; if it's not, the results are unpredictable, and possibly disastrous.

NXZoneMallocO, NXZoneReallocO, and NXZoneFreeO are implemented as macros.

RETURN If successful, NXZoneMallocO, NXZoneCallocO, and NXZoneReallocO return a pointer
to the memory allocated (or reallocated). If unsuccessful, they return NULL.

SEE ALSO NXCreateZoneO, - allocFrornZone: (Object class)

NXZonePtrlnfoO ~ See NXMaliocCheckO

NXZoneRealiocO ~ See NXZoneMaliocO

SUMMARY Get a pointer to the objects stored in a List

DECLARED IN objclList.h

SYNOPSIS id *NX_ADDRESS(List *aList)

DESCRIPTION This macro takes a List object, aList, as its argument and returns a pointer to the first id
stored in the List. With this pointer, you get direct access to the contents of the List and can
avoid the overhead of messaging. NX_ADDRESSO therefore provides an alternative to
List's objectAt: method for situations where somewhat greater performance is required. In
general, however, the method is the preferred way of accessing the List.

RETURN This macro returns a pointer to the contents of a List object.

SEE ALSO List class

Functions: NX_ADDRESS() 3-99

SUMMARY Mark exception handling domains and handlers

DECLARED IN objc/error.h

SYNOPSIS NX_DURING
NX_HANDLER
NX_ENDHANDLER

DESCRIPTION These macros are used to delimit portions of code that are under the control of the
NeXTSTEP exception handling system. Code that lies between the NX_DURING and
NX_HANDLER macros is said to lie in an exception-handling domain. Code that lies
between NX_HANDLER and NX_ENDHANDLER is said to be within the exception
handler. A call to NX_RAISEO within the exception-handling domain transfers program
execution to the first line of code in the exception handler. See ExceptHandling.rtfd in
lNextLibrary/Docomentation/NextDev/Concepts for more information.

SEE ALSO NX_RAISEO

3-100 Chapter 3: Common Classes and Functions

NX_RAISEO, NX_RERAISEO, NX_VALRETURNO, NX_VOIDRETURN

SUMMARY Raise an exception

DECLARED IN objc/error.h

SYNOPSIS void NX_RAISE(int code, const void *datal, const void *data2)
NX_RERAISE(void)
NX_ VALRETURN(val)
NX_ VOIDRETURN

DESCRIPTION These macros initiate the error handling mechanism by alerting the appropriate error
handler that an error has occurred. Error handlers exist in a nested hierarchy, which is
created by using any number of nested NX_DURINO ... NX_ENDHANDLER constructs
and by defining a top-level error handler.

The three arguments for NX_RAISEO provide information about the error condition. The
first argument is~ a·constant that acts as a label for the error. (Error codes used by the
Application Kit are defined in the header file appkit/errors.h.) The next two arguments
point to arbitrary data about the error. Within an NX_DURING ... NX_ENDHANDLER
construct, this data is stored in a local variable called NXLocalHandler (which is of type
NXHandler, defined in the header file objc/error.h). (See the description of
NXAllocErrorDataO for more information about managing the storage of error data.)
NX_RAISEO calls the function pointed to by NXGetExceptionRaiserO; see this
function's description earlier in this chapter.

By default, an error handler should call NX_RERAISEO when it encounters an error that
it can't handle, as shown below. NX_RERAISEO has the same functionality as
NX_RAISEO, but it's called with no arguments. Since NX_RERAISEO implies a
previous call to NX_RAISEO, the error data will already be stored in the local handler,
eliminating the need for arguments.

NX_DURING

/* code that may cause an error */

NX_HANDLER
switch (NXLocalHandler.code)
case

NX_someErrorCode:

/* code to execute for this type of error */

default: NX_RERAISE()i
NX_ENDHANDLER

Functions: NX_RAISE() 3-101

NX_ VALRETURNO and NX_ VOIDRETURN can be used to exit a method or function
from within the block of code between NX_DURING and NX_HANDLER labels. The
only legal ways of exiting this block are falling out the bottom or using one of these macros.
NX_ VALRETURNO causes its method (or function) to return val, while
NX_ VOIDRETURN can be used to return from a method (or function) that has no return
value. Use these macros only within an NX_DURING ... NX_HANDLER construct.

SEE ALSO NXAllocErrorDataO, NXSetUncaughtExceptionHandlerO,
NXDefaultTopLevelErrorHandlerO (Application Kit), NXRegisterErrorReporterO
(Application Kit), NXDefaultExceptionRaiserO

NX_RERAISEO ~ See NX_RAISEO

NX_VALRETURNO ~ See NX_RAISEO

NX_VOIDRETURN ~ See NX_RAISEO

3-102 Chapter 3: Common Classes and Functions

Types and Constants

Defined Types

NXAtom

DECLARED IN objc/hashtable.h

SYNOPSIS typedef const char *NXAtom;

DESCRIPTION NXAtom is the type for a unique string. A unique string is a string that is allocated once
and for all (that is, never deallocated) and that has only one representation. Unique strings
can therefore be compared using the equality operator (==) rather than using strcmpO. A
unique string should never be modified (and in fact some memory protection is done to
ensure that it won't be modified). To more explicitly declare that the string has been made
unique, this synonym of const char * has been added.

SEE ALSO NXUniqueStringO

NXDefaultsVector

DECLARED IN defaults/defaults.h

SYNOPSIS typedef struct _NXDefault {
char *name;
char *value;

} NXDefaultsVector[];

DESCRIPTION This structure is used by the functions NXRegisterDefaultsO and NXWriteDefaultsO. It
provides a way to specify an open-ended list of default name/value pairs as an . argument to
these functions.

3-104 Chapter 3: Common Classes and Functions

NXExceptionRaiser

DECLARED IN objc!error.h

SYNOPSIS typedef void NXExceptionRaiser(int code,
const void *datal,
const void *data2);

DESCRIPTION This type is used for the function that handles exceptions raised within an
exception-handling domain. In NeXTSTEP, this function is by default
NXDefaultExceptionRaiserO.

SEE ALSO NXDefaultExceptionRaiserO

NXHandler

DECLARED IN objc/error.h

SYNOPSIS typedef struct _NXHandler {
jmp_buf jumpState;
struct _NXHandler *next;
int code;
const void *datal, *data2;

} NXHandler;

DESCRIPTION This structure is used by the NeXTSTEP exception-handling system to mark nodes in the
chain of exception handlers. Its fields are:

jumpState
next
code
datal
data2

SEE ALSO NX_RAISEO

Place to jump to using longjmpO
Pointer to next exception handler
Error code of exception
User-defined data about the exception
User-defined data about the exception

Types and Constants: NXExceptionRaiser 3-105

· NXHashState

DECLARED IN objc/hashtable.h

SYNOPSIS typedef struct {
int i;
intj;

} NXHashState;

DESCRIPTION This type is used for the marker passed between the functions NXlnitHashStateO and
NXNextHashStateO. Its fields may change in the future, so your code shouldn't rely on
the composition of an NXHashState structure.

SEE ALSO NXlnitHashStateO and NXNextHashStateO

NXHashTable

DECLARED IN objc/hashtable.h

SYNOPSIS typedef struct {
const NXHashTablePrototype *prototype;
unsigned count;
unsigned nbBuckets;
void *buckets;
const void *info;

} NXHashTable;

DESCRIPTION This type is used to identify a hash table, such as the ones returned by
NXCreateHashTableO. Its fields are private and shouldn't be accessed.

SEE ALSO NXCreateHashTableO

3-106 Chapter 3: Common Classes and Functions

NXHashTablePrototype

DECLARED IN objc/hashtable.h

SYNOPSIS typedef struct {
unsigned (*hash)(const void *info, const void *data);
int (*isEqual)(const void *info, const void *datal, const void *data2);
void (*free)(const void *info, void *data);
int style;

} NXHashTablePrototype;

DESCRIPTION This type is used as one of the arguments to NXCreateHashTableO. Its fields specify the
functions to be used for hashing, comparing, and freeing data elements:

hash
isEqual
free
style

SEE ALSO NXCreateHashTableO

Identifies the hashing function
Identifies the comparison function
Identifies the function that frees a data element
Reserved for future use

NXUncaughtExceptionHandler

DECLARED IN objc/error.h

SYNOPSIS typedef void NXUncaughtExceptionHandler(int code,
const void *datal,
const void *data2);

DESCRIPTION This type is used for the function that handles exceptions raised outside of an
exception-handling domain. In NeXT STEP, this function can be set using
NXSetUncaughtExceptionHandlerO.

SEE ALSO NXSetUncaughtExceptionHandlerO

Types and Constants: NXHashTablePrototype 3-107

NXZone

DECLARED IN objclzone.h

SYNOPSIS typedef struct _NXZone {
void *(*realloc)(struct _NXZone *zonep, void *ptr, size_t size);
void *(*malloc)(struct _NXZone *zonep, size_t size);
void (*free)(struct _NXZone *zonep, void *ptr);
void (*destroy)(struct _NXZone *zonep);

} NXZone;

DESCRIPTION This structure is used to identify and manage memory zones. The fields of the structure are
private and subject to change in future releases; they should not be directly accessed or
altered. Use NXCreateZoneO or a similar function to establish a new zone.

SEE ALSO NXCreateZoneO and NXZoneMallocO

3-108 Chapter 3: Common Classes and Functions

SYl11bolic Constants

List Constants

DECLARED IN objclList.h

DESCRIPTION This constant is returned by List's indexOf: method when it can't find the object it's passed
anywhere in the List.

NXStringTable Constants

DECLARED IN objclNXStringTable.h

SYNOPSIS MAX_NXSTRINGTABLE_LENGTH 1024

DESCRIPTION This constant defines the maximum length for keys or values within an NXStringTable
object.

Zone Constants

DECLARED IN objc/zone.h

SYNOPSIS NX_NOZONE (NXZone *)0

DESCRIPTION This constant is used as a return value by NXCreateChildZoneO, NXZoneFromPtrO,
and other functions to indicate the absence of a zone.

Types and Constants: List Constants 3·109

Global Variables

Command Line Arguments

DECLARED IN defaults/defaults.h

SYNOPSIS extern int NXArgc;
extern char **NXArgv;

DESCRIPTION These global variables pass command-line arguments to a program when it begins
executing. NXArgc is the number of command-line arguments the program was invoked
with. NXArgv is a pointer to an array of character strings that contain the arguments, one
per string.

HashTable Prototypes

DECLARED IN objc/hashtable.h

SYNOPSIS const NXHashTablePrototype NXPtrPrototype;
const NXHashTablePrototype NXStrPrototype;
const NXHashTablePrototype NXPtrStructKeyPrototype;
const NXHashTablePrototype NXStrStructKeyPrototype;

DESCRIPTION These global variables identify hash table prototypes suitable for use with
NXCreateHashTableO. The first two are used for hash tables of pointers and strings,
respectively. They use NXNoEffectFree() as the freeing function (see
NXHashTablePrototype).

NXPtrStructKeyPrototype and NXStrStructKeyPrototype identify prototypes that are
useful for hash tables where the key is the first element of a structure and is either a pointer
or a string.

3-110 Chapter 3: Common Classes and Functions

For example, NXStrStructKeyPrototype can be used to hash pointers to Example, where
Example is:

typedef struct
char *key;
int datal;

Example

For NXPtrStructKeyPrototype and NXStrStructKeyPrototype, NXReallyFreeO is
used as the freeing function.

SEE ALSO NXHashTablePrototype and NXCreateHashTableO

Types and Constants: Hash Table Prototypes 3-111

NeXTSTEP Programming

NEXTSTEP GENERAl REFERENCE:
RELEASE 3, VOLUME 1

NeXTSTEP is the object-oriented programming environment that speeds the development of all kinds of software-from mission­

critical custom applications for business to advanced research projects for academia. NeXTSTEP offers building blocks that

implement essential behavior in a variety of application areas- including database management, telecommunications and

networking, and high-quality 2D and 3D graphics.

This first volume of the NeXTSTEP General Reference includes comprehensive descriptions of the application programming

interface for the Application Kit and common classes. The second volume contains information on other kits, including the

Database, Indexing, and 3D Graphics Kits.

The NeXTSTEP Developer's library is essential reading for every NeXTSTEP enthusiast, providing authoritative, in-depth

descriptions of the NeXTSTEP programming environment. Other titles in the NeXTSTEP Developer's library include:

• NeXTSTEP Development Tools and Techniques: Release 3

• NeXTSTEP User Interface Guidelines: Release 3

• NeXTSTEP Object-Oriented Programming and the

Objective C language: Release 3

• NeXTSTEP Operating System Software: Release 3

• NeXTSTEP Programming Interface Summary: Release 3

• NeXTSTEP Network and System Administration: Release 3

NeXT develops and markets the industry-acclaimed NeXTSTEP object-oriented software for industry-standard computer architectures.

NEXTSTEP
Ob jec t O r i e llt e d S of t w ar e

9 780201 622201
ISBN 0-201-62220-3

Addison-Wesley Publishing Company
US $44.95
CANADA $57.95

