e

]
ot
=
Pl
L -
1S
=35
39
:_.V
=
il
o

D 1 & ¢ 1 - riente Softrware

NeXTSTEP'

GENERAL REFERENCE
Volume 1

NeXTSTEP Developer's Library Release 3
NeXT Computer, Inc.

A
A\ A4

Addison-Wesley Publishing Company

Reading, Massachusetts - Menlo Park, California - New York - Don Mills, Ontario
Wokingham, England « Amsterdam - Bonn * Sydney * Singapore * Tokyo * Madrid
San Juan * Paris - Seoul + Milan « Mexico City - Taipei

NeXT and the publishers have tried to make the information contained in this manual as accurate and
reliable as possible, but assume no responsibility for errors or omissions. They disclaim any warranty

of any kind, whether express or implied, as to any matter whatsoever relating to this manual, including
without limitation the merchantability or fitness for any particular purpose. In no event shall NeXT or
the publishers be liable for any indirect, special, incidental, or consequential damages arising out of
purchase or use of this manual or the information contained herein. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation to
notify the purchaser. R

NeXTSTEP General Reference Copyright © 1990- 1992 by NeXT Computer, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher or copyright owner. Printed in the United States of
America. Published simultaneously in Canada.

NeXTSTEP 3.0 Copyright © 1988-1992 by NeXT Computer, inc. All rights reserved. Certain portions of the
software are copyrighted by third parties. U.S. Pat. Nos. 5,146,556; 4,982,343. Other Patents Pending.

NeXT, the NeXT logo, NeXTSTEP, Application Kit, Database Kit, Digital Webster, Indexing Kit, Interface
Builder, Mach Kit, NetInfo, NetInfo Kit, Phone Kit, 3D Graphics Kit, and Workspace Manager are
trademarks of NeXT Computer, Inc. PostScript and Display PostScript are registered trademarks of Adobe
Systems, Incorporated. Novell and NetWare are registered trademarks of Novell, Inc. ORACLE is a
registered trademark of Oracle Corp. PANTONE is a registered trademark of Pantone, Inc. SYBASE is a
registered trademark of Sybase, Inc. UNIX is a registered trademark of UNIX Systems Laboratories, Inc.
All other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c){1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 [or, if applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

PANTONE®* Computer Video simulations used in this product may not match PANTONE-identified solid
color standards. Use current PANTONE Color Reference Manuals for accurate color.

*Pantone, Inc.'s check-standard trademark for color.

This manual describes NeXTSTEP Release 3.
Written by NeXT Publications.
This manual was designed, written, and produced on NeXT computers. Proofs were printed on a NeXT

400 dpi Laser Printer and NeXT Color Printer. Final pages were transferred directly from a NeXT optical
disk to film using NeXT computers and an electronic imagesetter.

3456789 10-CRS-96959493
Third printing, November 1993

ISBN 0-201-62220-3

Contents

Volume 1:

1-3
1-5
1-39

2-1

2-5
2-17
2-865
2-911
2-979
2-1049

3-3
3-7
3-43
3-103

Introduction

Chapter 1: Root Class
Introduction

Classes

Types and Constants

Chapter 2: Application Kit
Introduction

Classes

Protocols

Functions

Types and Constants

Other Features

Chapter 3: Common Classes and Functions
Introduction

Classes

Functions

Types and Constants

Volume 2:

Chapter 4: Database Kit

Chapter 5: Display PostScript
Chapter 6: Distributed Objects
Chapter 7: Indexing Kit

Chapter 8: Interface Builder
Chapter 9: Mach Kit

Chapter 10: MIDI Driver API
Chapter 11: Netinfo Kit

Chapter 12: Networks: Novell NetWare
Chapter 13: Phone Kit

Chapter 14: Preferences

Chapter 15: Run-Time System
Chapter 16: Sound

Chapter 17: 3D Graphics Kit
Chapter 18: Video

Chapter 19: Workspace Manager

Appendices

Appendix A: Data Formats

Appendix B: Default Parameters
Appendix C: Keyboard Event Information
Appendix D: System Bitmaps

Appendix E: Details of the DSP

Suggested Reading
Glossary

Index

Introduction

This manual describes the application programming interface (API) for the
NeXTSTEP™ development environment. It’s part of a collection of manuals called
the NeXTSTEP Developer’s Library, which offer assistance to developers creating
applications for NeXTSTEP computers. Some of the other manuals in the library are
listed on the back cover.

The two volumes of the General Reference provide detailed descriptions of all the
NeXTSTEP software kits and of all the classes, functions, operators, and other
programming elements that make up the API. The first volume covers the root Object class,
Application Kit™, and other common classes and functions. The second volume covers
more specialized kits, like Database Kit™, Phone Kit™, and 3D Graphics Kit". Most
programmers will use the Application Kit and one or more of the other kits, depending on
the kind of application they’re developing.

The information in these volumes is supplemented by on-line release notes (in the
/NextLibrary/Documentation/NextDev/ReleaseNotes directory) that you can access
through the Digital Librarian application. The release notes provide last-minute
information about the latest release of the software.

The Mach operating system is documented in another Developer’s Library manual,
NeXTSTEP Operating System Software. For the most part, you don’t have to be familiar
with Mach to use the Application Kit and other software documented here.

However, this manual does assume that you’re familiar with the NeXTSTEP user interface,
with the C programming language, and with the Objective C extensions to C. Objective C
is documented in NeXTSTEP Object-Oriented Programming and Objective C. The user
interface is described and explained in NeXTSTEP User Interface Guidelines.

Intro-1

Using Documented API

The API described in this manual provides all the functionality you need to make full use
of NeXTSTEP software. If you have questions about using the API, this documentation
and the NeXT Technical Support Department can help you use it correctly. If a feature in
the API doesn’t work as described, it’s considered a bug which NeXT will work to fix. If
API features change in future releases, these changes will be described in on-line release
notes and printed documentation.

Undocumented features are not part of the APL. If you use undocumented features, you run
several risks. First, your application may be unreliable, because undocumented features
won’t work the way you expect them to in all cases. Second, NeXT Technical Support can’t
provide full assistance in fixing problems that arise, other than to recommend that you use
documented API. Finally, your application may be incompatible with future releases, since
undocumented features can and will change without notice.

Precompiled Header Files

Intro-2

Throughout this manual, you’ll find cross references to the header files where NeXTSTEP
API is declared. All these header files are located in subdirectories of the
/NextDeveloper/Headers directory.

When programming, you typically import the header files that declare the APl you're using.
For example, to use the NXPhoneCall class, you’d import NXPhoneCall.h:

#import <phonekit/NXPhoneCall.h>

However, for most of NeXTSTEP API, there’s a simpler and more efficient path. Some of
the software kits have a master header file that imports all the other header files required by
that kit. Matched to the master header file is a parsed and precompiled version of all the
header files it directly or indirectly includes. By importing the master file, you get the
header files in their precompiled form. This saves the compiler several steps, and a great
deal of time. It’s much more efficient than importing individual header files for each part
of the API you use.

The following table lists the master files that correspond to precompiled versions of the

header files.
Header File Contents
appkit/appkit.h Application Kit, Sound Kit™, all the common classes, and
most of the common functions
3Dkit/3Dkit.h 3D Graphics Kit
dbkit/dbkit.h Database Kit

All three of these files also include the root Object class (through the normal process of
Objective C inheritance).

How the Manual Is Organized

Each chapter of the General Reference is devoted to a separate software kit or a separate
group of functionally related classes and functions. The chapters are:

* Chapter 1, “Root Class,” describes the Object class, the class that stands at the root of
almost all Objective C inheritance hierarchies. It’s the one class that all other classes
inherit from and the class that all NeXTSTEP software kits are based upon.

¢ Chapter 2, “Application Kit,” describes the basic software for writing interactive
applications—applications that use windows, draw on the screen, and respond to user
actions on the keyboard and mouse. The Application Kit contains the fundamental
building blocks for the NeXTSTEP user interface.

* Chapter 3, “Common Classes and Functions,” describes an assortment of classes and
functions that aid applications in managing data and resources. These facilities are used
by a wide variety of applications and range from storage allocators and hashing routines
to error handling and language localization aids.

* Chapter 4, “Database Kit,” describes a software kit that enables applications to
communicate with database servers, such as those provided by Oracle or Sybase, using
a high-level entity-relationship model. The kit provides record management, buffering,
and modeling services, as well as user-interface objects for displaying and editing data.

Intro-3

Intro-4

Chapter 5, “Display PostScript®,” describes the NeXTSTEP implementation of the
Display PostScript Client Library. The Client Library is mainly documented by Adobe
Systems, Inc. (see “Suggested Reading” at the end of Volume 2), but NeXTSTEP has
extended the Library in various ways. This chapter documents those extensions.

Chapter 6, “Distributed Objects,” describes how Objective C messages can be sent
between remote objects—objects in different tasks or in different threads of the same
task. A distributed objects architecture makes it possible to have different applications
cooperate on a single project at run time or to split an application into various
independent processes.

Chapter 7, “Indexing Kit™,” describes a set of tools for manipulating large or small
amounts of data—especially for retrieving data items, based on their contents, from a
large store. Among other things, the Indexing Kit can be used to build flat-file databases
or to create applications (like Digital Librarian™) that search for text in collections of
files or database records.

Chapter 8, “Interface Builder™,” describes the programming interface to Interface
Builder, the application that enables you to design an application graphically on-screen.
The chapter shows how to use this API to augment Interface Builder’s standard set of
tools. You can create loadable palettes containing your own custom objects and provide
custom inspectors and editors for these objects. With this API, you’ll be able to adapt
Interface Builder to any number of highly specific uses. For a tutorial on creating a
simple loadable palette and inspector, see the NeXTSTEP Development Tools and
Techniques manual.

Chapter 9, “Mach Kit™,” describes an Objective C interface to a part of the Mach
operating system. A portion of this interface is used by the distributed objects
architecture documented in Chapter 6.

Chapter 10, “MIDI,” describes the functions that control the MIDI (Musical Instrument
Digital Interface) device driver. The device driver manages the flow of MIDI data to and
from an external device, such as a synthesizer, digital piano, or another computer.

Chapter 11, “NetlInfo Kit™,” describes a software kit that’s used to build network
management applications.

Chapter 12, “Networks: Novell® NetWare®,” contains information on using Novell
NetWare to connect NeXTSTEP machines.

Chapter 13, “Phone Kit",” describes how to hook up your application to a telephone line,
to make and answer calls, and to transmit and receive information during a call. When
the phone line is an ISDN (Integrated Services Digital Network) line, data can be

transmitted and received, without using a modem, at 64 kilobits per second per channel.

Chapter 14, “Preferences,” describes the programming interface to the Preferences
application. With this interface, you can add new display modules to the application and
thus extend the choices that Preferences presents to the user.

Chapter 15, “Run-Time System,” describes the run-time system for the Objective C
language. For the most part, you don’t have to be concerned with the API documented
in this chapter unless you’re developing interfaces to the run-time system other than
Objective C. However, some run-time functions may be generally useful within
Objective C programs.

Chapter 16, “Sound,” describes the Sound Kit and sound functions that permit
applications to record, play, display, and manipulate sounds. It also includes the API to
the sound driver.

Chapter 17, “3D Graphics Kit,” describes an Objective C interface for using Interactive
RenderMan™. The 3D Graphics Kit works within the drawing context provided by the
Application Kit, but sets up its own compatible context for rendering, manipulating, and
allowing users to manipulate three-dimensional images.

Chapter 18, “Video Class,” describes the NXLiveVideoView class. An
NXLiveVideoView can display live video images on-screen and record images for
video display.

Chapter 19, “Workspace Manager™,” describes how you can augment Workspace
Manager’s standard set of contents inspectors with those of your own creation. For
example, Workspace Manager comes with inspectors that show the contents of files in
Rich Text Format® (RTF) and Tag Image File Format (TIFF), but doesn’t necessarily
provide inspectors for the data formats you’ll be using in the application you write.
Using the API and techniques described in this chapter, you can create content
inspectors for those formats.

Appendix A, “Data Formats,” describes the standard data formats supported by
NeXTSTEP. These formats permit different applications to exchange data through
the pasteboard.

Intro-5

* Appendix B, “Default Parameters,” lists the standard default parameters that affect
NeXTSTEP software. Most default parameters record user preferences—for example,
what font to use in menus. Some make hidden behavior visible—for example, by
recording all PostScript output to the Window Server—and are therefore useful during
debugging. Default parameters are read and written using functions documented in
Chapter 3.

* Appendix C, “Keyboard Event information,” describes the keyboard codes for
NeXTSTEP encoding.

* Appendix D, “System Bitmaps,” shows the bitmap images that are available with
the system.

* Appendix E, “Details of the DSP,” lists technical information about the DSP (digital
signal processor).

How the Chapters Are Organized

Each chapter begins by listing three pieces of information of chapter-wide significance:

Library: The library that contains all the software described in the
chapter. An “_s” at the end of the library name indicates
that the library is shared. Code from a shared library isn’t
incorporated into your program. Instead, the library is
mapped into the address space of your application when
your application runs.

Header File Directory: The directory or directories where the API described in
the chapter is declared.

Import: The header file that, directly or indirectly, includes all the
header files required for using the kit. By importing this
one header file, you get precompiled versions of all the
header files it includes. This dramatically reduces the
time required to compile an application. See
“Precompiled Header Files” above.

After these three headings, the chapter is divided into a few standard sections:

Intro-6

Introduction

The introduction gives a broad overview of the software documented in the chapter. It
describes the facilities available in the kit and how the various pieces fit together. It may
also contain information about how to use particular methods and functions.

Classes

This section contains a full specification for each class defined in the kit. Classes are
presented alphabetically. The structure of a class specification is described under
“Classes” below.

Protocols

This section describes both formal protocols (those declared using the @ protocol
directive) and informal ones (those declared as categories). Protocol specifications
resemble class specifications and are described under “Protocols” below.

Functions

Functions (and macros resembling functions) are documented next. The format for
function descriptions is explained under “Functions” below.

Types and Constants

This section describes the defined types, symbolic constants, enumerations, structures,
unions, and global variables that are provided as part of the kit. This API supports the
classes and functions defined in the kit. See “Types and Constants” below for a
description of the formats.

Other Features
If a kit has features that are not fully documented in the preceding sections, this section

has notes explaining them. For example, the Application Kit chapter includes notes on
how to advertise a service.

Intro-7

Intro-8

Classes

Information about a class is presented under the following headings shown in bold. The
text accompanying each bold item describes the content of that particular section of the
class specification.

Inherits From: The inheritance hierarchy for the class. For example:
Panel : Window : Responder : Object

The first class listed (Panel, in this example) is the class’s
superclass. The last class listed is always Object, the root
of all NeXTSTEP inheritance hierarchies. The classes
between show the chain of inheritance from Object to the
superclass. (This particular example shows the
inheritance hierarchy for the Menu class of the
Application Kit.)

Conforms To: The formal protocols that the class conforms to. These
include both protocols the class adopts and those it
inherits from other adopting classes. If inherited, the
name of the adopting class in given in parentheses. For
example:

IXPostingExchange
IXPostingOperations
IXCursorPositioning (IXBTreeCursor)

(This particular example is from the IXPostingCursor
class, a subclass of IXBTreeCursor in the Indexing Kit.)

Declared In: The header file that declares the class interface. For
example:

video/NXLiveVideoView.h

(This example is from the NXLiveVideoView class,
which is declared in the video subdirectory of
/NextDeveloper/Headers.)

Class Description

This section gives a general description of the class. It explains how the class fits into
the overall design of the kit and how your application can make use of it. A class
description often has information relevant to the way particular methods should be used.

Instance Variables

This section shows the instance variables declared for the class (exclusive of any private
instance variables). For example, here are the instance variables declared in the List
common class:

id *dataPtr;
unsigned int numElements;
unsigned int maxElements;

It then gives a short explanation for each variable.

dataPtr The data managed by the List object (the array of objects).

numElements The actual number of objects in the array.

maxElements The total number of objects that can fit in currently allocated
memory.

Instance variables that are for the internal use of the class are neither listed nor
explained. These internal variables all begin with an underscore (“_") to prevent
collisions with names that you might choose for instance variables in a subclass you
define, or they are marked @private in the interface file.

Adopted Protocols

If the class adopts any protocols, the names of the methods declared in the protocols are
listed next. These methods are normally not documented elsewhere in the class
specification. Refer to the protocol specification for a complete description of these
methods, their arguments, and their return types.

Intro-9

Intro-10

Method Types

Next, the methods the class declares and implements are listed by name and grouped
by type. For example, methods used to draw are listed separately from methods used
to handle events. This directory includes all the principal methods defined in the class
(except those declared in adopted protocols) and a few that are inherited from other
classes. Inherited methods are followed by the name of the class where they’re
defined; they’re included in the directory to let you know which inherited methods you
might commonly use with instances of the class and where to look for a description of
those methods.

Class Methods
Instance Methods

A detailed description of each method defined in the class follows the classification by
type. Methods that are used by class objects are presented first followed by methods that
are used by instances. The descriptions within each group are ordered alphabetically by
method name.

Each description begins with the syntax of the method’s arguments and return values,
continues with an explanation of the method, and ends, where appropriate, with a list of
other related methods. Where a related method is defined in another class, it’s followed
by the name of the other class within parentheses. For example, here’s a method
description from the Window class:

gStafe
— (int)gState

Returns the PostScript graphics state object associated with the Window.

See also: — gState (View)

Internal methods used to implement the class aren’t listed in the specification. Since you
shouldn’t override any of these methods, or use them in a message, they’re excluded
from both the method directory and the method descriptions. However, you may
encounter them when looking at the call stack of your program from within the
debugger. A private method is easily recognizable by the underscore (“_") that begins
its name.

Methods Implemented by the Delegate

If a class lets you define another object—a delegate—that can intercede on behalf of
instances of the class, the methods that the delegate can implement are described in a
separate section. These are not methods defined in the class; rather, they’re methods that
you can define to respond to messages sent from instances of the class.

If you define one of these methods, the delegate will receive automatic messages to
perform it at the appropriate time. For example, if you define a
windowDidBecomeKey: method for a Window’s delegate, the delegate will receive
windowDidBecomeKey: messages whenever the Window becomes the key window.
Messages are sent only if you define a method that can respond.

In essence, this section documents an informal protocol. But because these methods are
so closely tied to the behavior of a particular class, they’re documented with the class
rather than in the “Protocols” section.

Some class specifications have separate sections with titles such as “Methods
Implemented by the Superview” or “Methods Implemented by the Owner.” These are
also informal protocols. They document methods that can or must be implemented to
receive messages on behalf of instances of the class.

Protocols

The protocols section documents both formal and informal protocols. Formal protocols
are those that are declared using the @protocol compiler directive. They can be
formally adopted and implemented by a class and tested by sending an object a
conformsTo: message.

Some formal protocols are adopted and implemented by classes in the NeXTSTEP
software kits. However, many formal protocols are declared by a kit, but not implemented
by it. They list methods that you can implement to respond to kit-generated messages.

A few formal protocols are implemented by a kit, but not by a class that’s part of the
documented API. Rather, the protocol is implemented by an anonymous object that the kit
supplies. The protocol lets you know what messages you can send to the object.

Like formal protocols, informal protocols declare a list of methods that others are invited
to implement. If an informal protocol is closely associated with one particular class—for
example, the list of methods implemented by the delegate—it’s documented in the class
description. Informal protocols associated with more than one class, or not associated with
any particular class, are documented with the formal protocols in this section.

Intro-11

Protocol information is organized into many of the same sections as described above for a
class specification. But protocols are not classes and therefore differ somewhat in the kind
of information provided. The sections of a protocol specification are shown in bold below:

Adopted By:

Incorporates:

A list of the NeXTSTEP classes that adopt the
protocol. Many protocols declare methods that
applications must implement and so are not adopted
by any NeXTSTEP classes.

Some protocols are implemented by anonymous objects
(instances of an unknown class); the protocol is the only
information available about what messages the object can
respond to. Protocols that have an implementation
available through an anonymous object generally don’t
have to be reimplemented by other classes.

Other protocols that the protocol being described
incorporates by reference. One protocol incorporates
others by listing them within -angle brackets:

@protocol biathlon <skiing, shooting>

The protocol specification doesn’t describe methods
declared in incorporated protocols. See the specification
for the incorporated protocol for a description of its
methods.

An informal protocol can’t be formally adopted by a class and it can’t formally incorporate
another protocol. So its description begins with information about the category where

it’s declared:

Category Of:

Intro-12

The class that the category belongs to. Informal protocols
are typically declared as categories of the Object class.
This gives them the widest possible scope.

Both formal and informal protocols include a cross reference to a header file in
/NextDeveloper/Headers:

Declared In: The header file where the protocol is declared.
Following this introductory information, the protocol specification is divided into only a

small number of sections:

Protocol Description
Category Description

First, there’s a short description of the protocol (or the category of an informal protocol).
This description includes information on the purpose of the protocol and whether or not
you might need to implement it.

Method Types

If the protocol includes enough methods to warrant it, they’re divided by type and
presented just as the methods of a class are.

Class Methods
Instance Methods

The main part of a protocol specification is the description of the methods it declares.
Since these methods aren’t necessarily implemented, the descriptions focus on the intent
of the method. If the protocol is adopted by any NeXTSTEP classes, there may also be
notes on how particular classes implement the methods.

Intro-13

Intro-14

Functions

Related functions are grouped together and the groups are arranged alphabetically by the
name of the first function in each. There are cross references so that you can look up any
function and find the group where it’s documented.

The description of each function group is divided into a number of standard sections:
SUMMARY A brief description of the purpose of the functions.

DECLARED IN The header file where the functions are declared. If the header file is
included in a master header file that has been precompiled, it’s always
more efficient to import the master file than to directly import the header
file that declares the functions. If there is a master header file, it’s listed
at the beginning of the chapter under “Import.”

SYNOPSIS A prototype of the functions, showing their names, return types,
argument types, and calling sequence.

DESCRIPTION A description of the functions and how to use them.
If relevant, the following sections may also be present:
EXAMPLES Example code showing how the functions are used.
RETURN A statemeﬁt or restatement of what each function returns.
EXCEPTIONS The exceptions that the functions might potentially raise.

SEE ALSO References to other functions or to other parts of the NeXTSTEP API.

Types and Constants

The “Types and Constants” section is divided into the following parts:

Defined Types

Types that are defined with the typedef compiler directive.

Symbolic Constants

Constants that are defined with the #define preprocessor directive. Function-like
macros are documented in the “Functions” section.

Enumerations

Constants that are defined with enum, excluding those that are members of a
defined type.

Structures

Structures and unions, excluding those that are defined types.

Globals

Global variables.

Within these subsections, each element of the API is presented in a way reminiscent of the
function descriptions:

DECLARED IN The header file where the type, constant, structure, or global variable
is declared.

sYNoPSIs The declaration of the type, enumerated constants, structure, or global
variable, or a table listing symbolic constants. Private fields of a
structure—those that begin with an underscore—are not shown. Fields
of a structure that are shown but are not in bold should not be accessed
or modified in application code.

DESCRIPTION A description of each part of the public APL

SEE ALSO References to other parts of the API

Intro-15

Conventions

Intro-16

Where this manual discusses functions, methods, or other programming elements, it makes
special use of ellipsis, square brackets [], and bold and italic fonts.

Bold denotes words or characters that are to be taken literally (typed as they appear). Italic
denotes words that represent something else or can be varied. For example, the syntax

print expression
means that you follow the word print with any expression.

Square brackets [] mean that the enclosed elements are optional, except when the brackets
are bold [], in which case they’re to be taken literally. The exceptions are few and will be
clear from the context. For example,

pointer [filename]

means that you specify a pointer with or without a file name after it, but
[receiver message]

means that you specify a receiver and a message enclosed in square brackets.

Ellipsis (...) indicates that the previous element may be repeated. For example:

Syntax 4 Allows

pointer ... One or more pointers

pointer [, pointer] ... One or more pointers separated by commas

pointer [filename ...] A pointer optionally followed by one or more file names
pointe'r [, filename] ... A pointer optionally followed by a comma and one or

more file names separated by commas

Roor Class

1-3

15

1-39

1-41
1-44

introduction

Classes
Object

Types and Constants
Defined Types
Symbolic Constants

11

1 Roor Class

Library: libsys_s.a
Header File Directory: /NextDeveloper/Headers/objc

Import: objc/Object.h,
appkit/appkit.h,
dbkit/dbkit.h,
3Dkit/3Dkit.h, or
the interface file of any class that inherits from Object

Introduction

In the Objective C language, new classes are created as subclasses of an existing class:

@interface NewClass : 0ldClass

But not every class can be a subclass. The inheritance hierarchy has to start somewhere.
There has to be at least one root class, a class that doesn’t inherit from any other class:

@interface RootClass

Theoretically, there can be many different root classes, a separate one for each project or
kit perhaps, or one for each group of closely related classes. However, in practice, all
Objective C inheritance hierarchies are rooted in the same class—the Object class. As you
look at the inheritance diagrams for the various software kits documented in this book,
you’ll notice that each one begins with the Object class. For example, the figure on the next
page shows the Object class and part of the Application Kit inheritance hierarchy.

Roor Class 1-3

1-4

Font Window

Object Responder Application

Pasteboard View Text

Figure 1-1. Some Application Kit Classes

Because all classes inherit from the Object class, it can define only general properties that
all objects share. These shared properties are the ones that connect objects to the run-time
system and enable them to behave as objects. For example, the Object class gives all
objects the ability to identify their class and to find which method to use in response to a
message. It provides class objects with methods to create new instances, and instances with
methods to forward messages and archive and copy themselves. In short, the Object class
defines what it is to be an Objective C object.

It’s precisely for this reason that Object is used as the universal root class. There’s no point
in reinventing object-oriented behavior each time you develop a new class. It’s better to
declare a new class as a subclass of Object, or of another class that inherits from Object.

The Object class is the root class used by all NeXTSTEP software kits and the one that
should be used in all NeXTSTEP applications. However, NeXTSTEP includes one other
root class for a special purpose. The NXProxy class, described in Chapter 6, “Distributed
Objects,” defines an object that can stand in for, and assume the identity of, another object,
one located in a remote process. By sending messages to the proxy, an application can in
fact communicate with the remote object. NXProxy is a root class only because proxy
objects need to behave differently from all other objects; they can’t inherit typical object
behavior. Except for special cases like this, all ordinary objects should inherit from the
Object class.

Chapter 1: Root Class

Classes

1-6

Object

Inherits From: none (Object is the root class)

Declared In: objc/Object.h

Class Description

Object is the root class of all ordinary Objective C inheritance hierarchies; it’s the one class
that has no superclass. From Obiject, other classes inherit a basic interface to the run-time
system for the Objective C language. It’s through Object that instances of all classes obtain
their ability to behave as objects.

Among other things, the Object class provides inheriting classes with a framework for
creating, initializing, freeing, copying, comparing, and archiving objects, for performing
methods selected at run-time, for querying an object about its methods and its position in
the inheritance hierarchy, and for forwarding messages to other objects. For example, to
ask an object what class it belongs to, you’d send it a class message. To find out whether
it implements a particular method, you’d send it a respondsTo: message.

The Object class is an abstract class; programs use instances of classes that inherit from
Object, but never of Object itself.

Initializing an Object to Its Class

Every object is connected to the run-time system through its isa instance variable, inherited
from the Object class. isa identifies the object’s class; it points to a structure that’s

compiled from the class definition. Through isa, an object can find whatever information
it needs at run time—such as its place in the inheritance hierarchy, the size and structure of

* its instance variables, and the location of the method implementations it can perform in

response to messages.

Because all objects directly or indirectly inherit from the Object class, they all have this
variable. The defining characteristic of an “object” is that its first instance variable is an isa
pointer to a class structure.

The installation of the class structure—the initialization of isa—is one of the
responsibilities of the alloc, allocFromZone:, and new methods, the same methods that

Chapter 1: Root Class

create (allocate memory for) new instances of a class. In other words, class initialization
is part of the process of creating an object; it’s not left to the methods, such as init, that
initialize individual objects with their particular characteristics.

Instance and Class Methods

Every object requires an interface to the run-time system, whether it’s an instance object or
a class object. For example, it should be possible to ask either an instance or a class about
its position in the inheritance hierarchy or whether it can respond to a particular message.

So that this won’t mean implementing every Object method twice, once as an instance
method and again as a class method, the run-time system treats methods defined in the root
class in a special way:

Instance methods defined in the root class can be performed both by instances
and by class objects.

A class object has access to class methods—those defined in the class and those inheritied
from the classes above it in the inheritance hierarchy—but generally not to instance
methods. However, the run-time system gives all class objects access to the instance
methods defined in the root class. Any class object can perform any root instance method,
provided it doesn’t have a class method with the same name.

For example, a class object could be sent messages to perform Object’s respondsTo: and
perform:with: instance methods:

SEL method = @selector(riskAll:); -

if ([MyClass respondsTo:method])
[MyClass perform:method with:self];

When a class object receives a message, the run-time system looks first at the receiver’s
repertoire of class methods. If it fails to find a class method that can respond to the
message, it looks at the set of instance methods defined in the root class. If the root class
has an instance method that can respond (as Object does for respondsTo: and
perform:with:), the run-time system uses that implementation and the message succeeds.

Note that the only instance methods available to a class object are those defined in the root
class. If MyClass in the example above had reimplemented either respondsTo: or
perform:with:, those new versions of the methods would be available only to instances.
The class object for MyClass could perform only the versions defined in the Object class.
(Of course, if MyClass had implemented respondsTo: or perform:with: as class methods
rather than instance methods, the class would perform those new versions.)

Classes: Object 1-7

Interface Conventions

The Object class defines a number of methods that other classes are expected to override.
Often, Object’s default implementation simply returns self. Putting these “empty” methods
in the Object class serves two purposes:

» It means that every object can readily respond to certain standard messages, such as
awake or init, even if the response is to do nothing It’s not necessary to check (using
respondsTo:) before sending the message.

» It establishes conventions that, when followed by all classes, make object interactions
more reliable. These conventions are explained in full under the method descriptions.

Sometimes a method is merely declared in the Object class; it has no implementaﬁon, not
even the empty one of returning self. These “unimplemented” methods serve the same

purpose—defining an interface convention—as Object’s “empty” methods. When
implemented, they enable objects to respond to system-generated messages.

Instance Variables

Class isa;
isa A pointer to the instance’s class structure.
Method Types
Initializing the class + initialize
Creating, copying, and freeing instances
+ alloc
+ allocFromZone:
+ new
— copy
— copyFromZone:
—zone
- free
+ free
Initializing a new instance — init

1-8 Chapter 1: Root Class

Identifying classes + name
+ class
—class
+ superclass
— superclass

Identifying and comparing instances
—isEqual:
—hash
— self
—name
— printForDebugger:

Testing inheritance relationships
— 1sKindOf:
— isKindOfClassNamed:
— isMemberOf:
~ isMemberOfClassNamed:

Testing class functionality — respondsTo:
+ instancesRespondTo:

Testing for protocol conformance
+ conformsTo:
— conformsTo:

Sending messages determined at run time

— perform:

— perform:with:

— perform:with:with:
Forwarding messages — forward::

— performv::

Obtaining method information — methodFor:
+ instanceMethodFor:
— descriptionForMethod:
+ descriptionForInstanceMethod:

Posing + poseAs:
Enforcing intentions — notIlmplemented:
— subclassResponsibility:
Error handling — doesNotRecognize:
— error:
Dynamic loading + finishLoading:

+ startUnloading

Classes: Object

1-9

1-10

Archiving —read:
— write:
— startArchiving:
—awake
— finishUnarchiving
+ setVersion:
+ version

Class Methods

alloc
+ alloc

Returns a new instance of the receiving class. The isa instance variable of the new object
is initialized to a data structure that describes the class; memory for all other instance
variables is set to 0. A version of the init method should be used to complete the
initialization process. For example:

id newObject = [[TheClass alloc] init];

Other classes shouldn’t override alloc to add code that initializes the new instance. Instead,
class-specific versions of the init method should be implemented for that purpose. Versions
of the new method can also be implemented to combine allocation and initialization.

Note: The alloc method doesn’t invoke allocFromZone:. The two methods work
independently.

See also: + allocFromZone:, — init, + new

allocFromZone:
+ allocFromZone:(NXZone *)zone

Returns a new instance of the receiving class. Memory for the new object is allocated from
zone.

The isa instance variable of the new object is initialized to a data structure that describes
the class; memory for its other instance variables is set to 0. A version of the init method
should be used to complete the initialization process. For example:

id newObject = [[TheClass allocFromZone:someZone] init];

The allocFromZone: method shouldn’t be overridden to include any initialization code.
Instead, class-specific versions of the init method should be implemented for that purpose.

Chapter 1: Root Class

When one object creates another, it’s often a good idea to make sure they’re both allocated
from the same region of memory. The zone method can be used for this purpose; it returns
the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocFromZone: [self zone]] init];

See also: + alloc, — zone, — init

class
+ class

Returns self. Since this is a class method, it returns the class object.

When a class is the receiver of a message, it can be referred to by name. In all other cases,
the class object must be obtained through this, or a similar method. For example, here
SomeClass is passed as an argument to the isKindOf: method:

BOOL test = [self i1isKindOf: [SomeClass classl];

See also: — name, — class

conformsTo:
+ (BOOL)conformsTo:(Protocol *)aProtocol

Returns YES if the receiving class conforms to aProtocol, and NO if it doesn’t.

A class is said to “conform to” a protocol if it adopts the protocol or inherits from another
class that adopts it. Protocols are adopted by listing them within angle brackets after the
interface declaration. Here, for example, MyClass adopts the imaginary
AffiliationRequests and Normalization protocols:

@interface MyClass : Object <AffiliationReguests, Normalization>

~ A class also conforms to any protocols that are incorporated in the protocols it adopts or
inherits. Protocols incorporate other protocols in the same way that classes adopt them.
For example, here the AffiliationRequests protocol incorporates the Joining protocol:

@protocol AffiliationRequests <Joining>

When a class adopts a protocol, it must implement all the methods declared in the protocol
(and in any protocols incorporated in the protocol it adopts). In the example above,
MyClass must implement the methods in the AffiliationRequests, Joining, and
Normalization protocols. When this convention is followed and all the methods in adopted
protocols are in fact implemented, the conformsTo: test for a set of methods becomes
roughly equivalent to the respondsTo: test for a single method.

Classes: Objecr 1-11

112

However, this method judges conformance solely on the basis of the formal declarations in
source code, as illustrated above. It doesn’t check to see whether the methods declared in
the protocol are actually implemented. It’s the programmer’s responsibility to see that
they are.

The Protocol object required as this method’s argument can be specified using the
@protocol() directive:

BOOL canJdoin = [MyClass conformsTo:@protocol (Joining)]
The Protocol class is documented in Chapter 15, “Run-Time System.”

See also: — conformsTo:

descriptionForlnstanceMethod:

+ (struct objc_method_description *)
descriptionForInstanceMethod:(SEL)aSelector

Returns a pointer to a structure that describes the aSelector instance method, or NULL if
the aSelector method can’t be found. To ask the class for a description of a class method,
or an instance for the description of an instance method, use the descriptionForMethod:
instance method.

See also: — descriptionForMethod:

finishLoading:
+ finishLoading:(struct mach_header *)header

Implemented by subclasses to integrate the class, or a category of the class, into a running
program. A finishLoading: message is sent immediately after the class or category has
been dynamically loaded into memory, but only if the newly loaded class or category
implements a method that can respond. header is a pointer to the structure that describes
the modules that were just loaded.

Once a dynamically loaded class is used, it will also receive an initialize message.
However, because the finishLoading: message is sent immediately after the class is loaded,
it always precedes the initialize message, which is sent only when the class receives its first
message from within the program.

A finishLoading: method is specific to the class or category where it’s defined; it’s not
inherited by subclasses or shared with the rest of the class. Thus a class that has four
categories can define a total of five finishLoading: methods, one in each category and one
in the main class definition. The method that’s performed is the one defined in the class or
category just loaded.

Chapter 1: Root Class

There’s no default finishLoading: method. The Object class declares a prototype for this
method, but doesn’t implement it.

See also: + startUnloading

free
+ free

Returns nil. This method is implemented to prevent class objects, which are “owned” by
the run-time system, from being accidentally freed. To free an instance, use the instance
method free.

See also: — free

initialize

+ initialize
Initializes the class before it’s used (before it receives its first message). The run-time
system generates an initialize message to each class just before the class, or any class that

inherits from it, is sent its first message from within the program. Each class object receives
the initialize message just once. Superclasses receive it before subclasses do.

For example, if the first message your program sends is this,
[Application new]
the run-time system will generate these three initialize messages,

[Object initializel;
[Responder initialize];
[Application initialize];

since Application is a subclass of Responder and Responder is a subclass of Object. All
the initialize messages precede the new message and are sent in the order of inheritance,
as shown.

If your program later begins to use the Text class,
[Text instancesRespondTo:someSelector]
the run-time system will generate'these additional initialize messages,

[View initialize];
[Text initialize];

Classes: Object 1-13

1-14

since the Text class inherits from Object, Responder, and View. The instancesRespondTo:
message is sent only after all these classes are initialized. Note that the initialize messages
to Object and Responder aren’t repeated; each class is initialized only once.

You can implement your own versions of initialize to provide class-specific initialization
as needed.

Because initialize methods are inherited, it’s possible for the same method to be invoked
many times, once for the class that defines it and once for each inheriting class. To prevent
code from being repeated each time the method is invoked, it can be bracketed as shown in
the example below: '

+ initialize

{

if (self == [MyClass class]) {
/* put initialization code here */

}

return self;

}

Since the run-time system sends a class just one initialize message, the test shown in the
example above should prevent code from being invoked more than once. However, if for
some reason an application also generates initialize messages, a more explicit test may be
needed:
+ initialize
{
static BOOL tooLate = NO;
if (!tooLate) {
/* put initialization code here */
toolLate = YES;
}

return self;

}

See also: —init, — class

instanceMethodFor:
+ (IMP)instanceMethodFor:(SEL)aSelector

Locates and returns the address of the implementation of the aSelector instance method.
An error is generated if instances of the receiver can’t respond to aSelector messages.

Chapter 1: Root Class

This method is used to ask the class object for the implementation of an instance method.
To ask the class for the implementation of a class method, use the instance method
methodFor: instead of this one.

instanceMethodFor:, and the function pointer it returns, are subject to the same
constraints as those described for methodFor:.

See also: — methodFor:

instancesRespondTo:
+ (BOOL)instancesRespondTo:(SEL)aSelector

Returns YES if instances of the class are capable of responding to aSelector messages, and
NO if they’re not. To ask the class whether it, rather than its instances, can respond to a
particular message, use the respondsTo: instance method instead of
instancesRespondTo:.

If aSelector messages are forwarded to other objects, instances of the class will be able to
receive those messages without error even though this method returns NO.

See also: - respondsTo:, — forward::

name

+ (const char *)name

Returns a null-terminated string containing the name of the class. This information is often
used in error messages or debugging statements.

See also: — name, + class

new

+ new

Creates a new instance of the receiving class, sends it an init message, and returns the
initialized object returned by init.

As defined in the Object class, new is essentially a combination of alloc and init. Like
alloc, it initializes the isa instance variable of the new object so that it points to the class
data structure. It then invokes the init method to complete the initialization process.

Classes: Objecr 1-15

1-16

* Unlike alloc, new is sometimes reimplemented in subclasses to have it invoke a class-

specific initialization method. If the init method includes arguments, they’re typically
reflected in the new method as well. For example:

+ newArg: (int)tag arg: (struct info *)data
{

return [[self alloc] initArg:tag arg:datal;
}

However, there’s little point in implementing a new... method if it’s simply a shorthand for
alloc and init..., like the one shown above. Often new... methods will do more than just
allocation and initialization. In some classes, they manage a set of instances, returning the
one with the requested properties if it already exists, allocating and initializing a new one
only if necessary. For example:

+ newArg: (int)tag arg: (struct info *)data
{

id theInstance;

if (theInstance = findTheObjectWithTheTag(tag))
return thelnstance;
return [[self alloc] initArg:tag arg:datal];
}

Although it’s appropriate to define new new... methods in this way, the alloc and
allocFromZone: methods should never be augmented to include initialization code.

See also: —init, + alloc, + allocFromZone:

poseAs:
+ poseAs:aClassObject

Causes the receiving class to “pose as” its superclass, the aClassObject class. The receiver
takes the place of aClassObject in the inheritance hierarchy; all messages sent to
aClassObject will actually be delivered to the receiver. The receiver must be defined as a
subclass of aClassObject. It can’t declare any new instance variables of its own, but it can
define new methods and override methods defined in the superclass. The poseAs: message
should be sent before any messages are sent to aClassObject and before any instances of
aClassObject are created.

This facility allows you to add methods to an existing class by defining them in a subclass
and having the subclass substitute for the existing class. The new method definitions will
be inherited by all subclasses of the superclass. Care should be taken to ensure that this
doesn’t generate errors.

Chapter 1: Root Class

A subclass that poses as its superclass still inherits from the superclass. Therefore, none of
the functionality of the superclass is lost in the substitution. Posing doesn’t alter the
definition of either class.

Posing is useful as a debugging tool, but category definitions are a less complicated and
more efficient way of augmenting existing classes. Posing admits only two possibilities
that are absent for categories:

* A method defined by a posing class can override any method defined by its superclass.
Methods defined in categories can replace methods defined in the class proper, but they
cannot reliably replace methods defined in other categories. If two categories define the
same method, one of the definitions will prevail, but there’s no guarantee which one.

* A method defined by a posing class can, through a message to super, incorporate the
superclass method it overrides. A method defined in a category can replace a method
defined elsewhere by the class, but it can’t incorporate the method it replaces.

If successful, this method returns self. If not, it generates an error message and aborts.

setVersion:
+ setVersion:(int)aVersion

Sets the class version number to aVersion, and returns self. The version number is helpful
when instances of the class are to be archived and reused later. The default version is Q.

See also: + version

startUnloading
+ startUnloading

Implemented by subclasses to prepare for the class, or a category of the class, being
unloaded from a running program. A startUnloading message is sent immediately before
the class or category is unloaded, but only if the class or category about to be unloaded
implements a method that can respond.

A startUnloading method is specific to the class or category where it’s defined; it isn’t
inherited by subclasses or shared with the rest of the class. Thus a class that has four
categories can define a total of five startUnloading methods, one in each category and one
in the main class definition. The method that’s performed is the one defined in the class or
category that will be unloaded.

Classes: Object 117

1-18

There’s no default startUnloading method. The object class declares a prototype for this
method but doesn’t implement it. ‘ :

See also: + finishLoading:

superclass

+ superclass

Returns the class object for the receiver’s superclass.

See also: + class, — superclass

version
+ (int)version
Returns the version number assigned to the class. If no version has been set, this will be 0.

See also: + setVersion:

Instance Methods

awake

— awake

Implemented by subclasses to reinitialize the receiving object after it has been unarchived
(by read:). An awake message is automatically sent to every object after it has been
unarchived and after all the objects it refers to are in a usable state.

The default version of the method defined here merely returns self.

A class can implement an awake method to provide for more initialization than can be done
in the read: method. Each implementation of awake should limit the work it does to the
scope of the class definition, and incorporate the initialization of classes farther up the
inheritance hierarchy through a message to super. For example:

- awake

{
[super awakel;
/* class-specific initialization goes here */
return self;

}

All implementations of awake should return self.

Chapter 1: Root Class

Note: Not all objects loaded from a nib file (created by Interface Builder) are unarchived;
some are newly instantiated. Those that are unarchived receive an awake message, but
those that are instantiated do not. See the Interface Builder documentation in NeXTSTEP
Development Tools for more information.

See also: — read:, — finishUnarchiving, — awakeFromNib (NXNibNotification protocol
in the Application Kit), — loadNibFile:owner: (Application class in the Application Kit)

class
— class

Returns the class object for the receiver’s class.

See also: + class

conformsTo:
— (BOOL)conformsTo:(Protocol *)aProtocol

Returns YES if the class of the receiver conforms to aProtocol, and NO if it doesn’t. This
method invokes the conformsTo: class method to do its work. It’s provided as a
convenience so that you don’t need to get the class object to find out whether an instance
can respond to a given set of messages.

See also: + conformsTo:

copy
- copy

Returns a new instance that’s an exact copy of the receiver. This method cr¢ates only one
new object. If the receiver has instance variables that point to other objects, the instance
variables in the copy will point to the same objects. The values of the instanee variables
are copied, but the objects they point to are not.

This method does its work by invoking the copyFromZone: method and specifying that
the copy should be allocated from the same memory zone as the receiver. If a subclass
implements its own copyFromZone: method, this copy method will use it to copy
instances of the subclass. Therefore, a class can support copying from both methods just
by implementing a class-specific version of copyFromZone:.

See also: — copyFromZone:

Classes: Objecr 1-19

1-20

copyFromZone:
— copyFromZone:(NXZone *)zone

Returns a new instance that’s an exact copy of the receiver. Memory for the new instance
is allocated from zone.

This method creates only one new object. If the receiver has instance variables that point
to other objects, the instance variables in the copy will point to the same objects. The
values of the instance variables are copied, but the objects they point to are not.

Subclasses should implement their own versions of copyFromZone:, not copy, to define
class-specific copying.

See also: — copy, — zone

descriptionForMethod:
— (struct objc_method_description *)descriptionForMethod:(SEL)aSelector

Returns a pointer to a structure that describes the aSelector method, or NULL if the
aSelector method can’t be found. When the receiver is an instance, aSelector should be an
instance method; when the receiver is a class, it should be a class method.

The objc_method_description structure is declared in objc/Protocol.h, and is mostly
used in the implementation of protocols. It includes two fields—the selector for the method
(which will be the same as aSelector) and a character string encoding the method’s return
and argument types:

struct objc_method_description {
SEL name;
char *types;

}:

Type information is encoded according to the conventions of the @encode() directive, but
the string also includes information about total argument size and individual argument
offsets. For example, if descriptionForMethod: were asked for a description of itself, it
would return this string in the types field:

~“{objc_method_description=:*}12@8:12:16

This records the fact that descriptionForMethod: returns a pointer (‘*’) to a structure
(“{...}”) and that it pushes a total of 12 bytes on the stack. The structure is called
“objc_method_description” and it consists of a selector (‘:”) and a character pointer (‘*°).
The first argument, self, is an object (‘@) at an offset of 8 bytes from the stack pointer, the
second argument, _cmd, is a selector (*:”) at an offset of 12 bytes, and the third argument,
aSelector, is also a selector but at an offset of 16 bytes. The first two arguments—self for

Chapter 1: Roor Class

the message receiver and _cmd for the method selector—are passed to every method
implementation but are hidden by the Objective C language.

The type codes used for methods declared in a class or category are:

Meaning Code
id ‘@’
Class #
SEL 7
void v’
char ‘¢’
unsigned char ‘<
short - ‘s’
unsigned short ‘S’
int 1
unsigned int ‘T
long ‘r
unsigned long ‘L’
float ‘f
double ‘@
char * x
any other pointer n
an undefined type r
a bitfield ‘b’
begin an array ‘T
end an array T
begin a union ‘C
end a union Yy
begin a structure L
end a structure ‘v

The same codes are used for methods declared in a protocol, but with these additions for
type modifiers:

const ‘v’

in ‘n’
inout ‘N’
out ‘0’
bycopy ‘o
oneway A

See also: + descriptionForInstanceMethod:, — descriptionForClassMethod:
(Protocol class in the Run-Time System), — descriptionForInstanceMethod (Protocol
class in the Run-Time System)

Classes: Objecr 1-21

1-22

doesNotRecognize:
— doesNotRecognize:(SEL)aSelector

Handles aSelector messages that the receiver doesn’t recognize. The run-time system
invokes this method whenever an object receives an aSelector message that it can’t respond
to or forward. This method, in turn, invokes the error: method to generate an error
message and abort the current process.

doesNotRecognize: messages should be sent only by the run-time system. Although
they’re sometimes used in program code to prevent a method from being inherited, it’s
better to use the error: method directly. For example, an Object subclass might renounce
the copy method by reimplementing it to include an error: message as follows:

- copy
{
[self error:" %s objects should not be sent ’'%s’ messages\n",
[[self class] name], sel_getName(_cmd)];

}

This code prevents instances of the subclass from recognizing or forwarding copy
messages—although the respondsTo: method will still report that the receiver has access
to a copy method.

(The _cmd variable identifies the current selector; in the example above, it identifies the
selector for the copy method. The sel_getName() function returns the method name
corresponding to a selector code; in the example, it returns the name “copy”.)

See also: — error:, — subclassResponsibility:, + name

error:

— error:(const char *)aString, ...

Generates a formatted error message, in the manner of printf(), from aString followed by
a variable number of arguments. For example:

[self error:"index %d exceeds limit %d\n", index, limit];

The message specified by aString is preceded by this standard prefix (where class is the
name of the receiver’s class):

"error: class "

This method doesn’t return. It calls the run-time _error function, which first generates the
error message and then calls abort() to create a core file and terminate the process.

See also: — subclassResponsibility:, — notImplemented:, — doesNotRecognize:

Chapter 1: Root Class

finishUnarchiving

— finishUnarchiving

Implemented by subclasses to replace an unarchived object with a new object if necessary.
A finishUnarchiving message is sent to every object after it has been unarchived (using
read:) and initialized (by awake), but only if a method has been implemented that can
respond to the message.

The finishUnarchiving message gives the application an opportunity to test an unarchived
and initialized object to see whether it’s usable, and, if not, to replace it with another object
that is. This method should return nil if the unarchived instance (self) is OK; otherwise, it
should free the receiver and return another object to take its place.

There’s no default implementation of the finishUnarchiving method. The Object class
declares this method, but doesn’t define it.

See also: - read:, — awake, — startArchiving:

forward::

— forward:(SEL)aSelector :(marg_list)argFrame
Implemented by subclasses to forward messages to other objects. When an object is sent
an aSelector message, and the run-time system can’t find an implementation of the method
for the receiving object, it sends the object a forward:: message to give it an opportunity

to delegate the message to another receiver. (If the delegated receiver can’t respond to the
message either, it too will be given a chance to forward it.)

The forward:: message thus allows an object to establish relationships with other objects
that will, for certain messages, act on its behalf. The forwarding object is, in a sense, able
to “inherit” some of the characteristics of the object it forwards the message to.

A forward:: message is generated only if the aSelector method isn’t implemented by the
receiving object’s class or by any of the classes it inherits from.

An implementation of the forward:: method has two tasks:

* Tolocate an object that can respond to the aSelector message. This need not be the same
object for all messages.

* To send the message to that object, using the performv:: method.

Classes: Objecr 1-23

1-24

In the simple case, in which an object forwards messages to just one destination (such as
the hypothetical friend instance variable in the example below), a forward:: method could
be as simple as this:

- forward: (SEL)aSelector :(marg_list)argFrame
{
if ([friend respondsTo:aSelector])
return [friend performv:aSelector :argFrame];
[self doesNotRecognize:aSelector];

}

argFrame is a pointer to the arguments included in the original aSelector message. It’s
passed directly to performv:: without change. (However, argFrame does not correctly
capture variable arguments. Messages that include a variable argument list—for example,
messages to perform Object’s error: method—cannot be forwarded.)

(Note that in the example forward:: returns unchanged the value returned by performv::.
Since forward:: returns a pointer, specifically an id, the aSelector method must also be one
that returns a pointer (or void). Methods that return other types cannot be reliably
forwarded.)

Implementations of the forward:: method can do more than just forward messages.
forward:: can, for example, be used to consolidate code that responds to a variety of
different messages, thus avoiding the necessity of having to write a separate method for
each selector. A forward:: method might also involve several other objects in the response
to a given message, rather than forward it to just one.

The default version of forward:: implemented in the Object class simply invokes the
doesNotRecognize: method; it doesn’t forward messages. Thus, if you choose not to
implement forward::, unrecognized messages will generate an error and cause the task to
abort.

See also: — performv::, — doesNotRecognize:

free
— free
Frees the memory occupied by the receiver and returns nil. Subsequent messages to the

object will generate an error indicating that a message was sent to a freed object (provided
that the freed memory hasn’t been reused yet).

Chapter 1: Root Class

Subclasses must implement their own versions of free to deallocate any additional memory
consumed by the object—such as dynamically allocated storage for data, or other objects
that are tightly coupled to the freed object and are of no use without it. After performing
the class-specific deallocation, the subclass method should incorporate superclass versions
of free through a message to super:

- free {
[companion free];
free (privateMemory) ;
vi_deallocate(task_self (), sharedMemory, memorySize);
return [super free]l;

}

If, under special circumstances, a subclass version of free refuses to free the receiver, it
should return self instead of nil. Object’s default version of this method always frees the
receiver and always returns nil. It calls object_deallocate() to accomplish the
deallocation.

hash
— (unsigned int)hash

Returns an unsigned integer that’s derived from the id of the receiver. The integer is
guaranteed to always be the same for the same id.

See also: - isEqual:

init
— init
Implemented by subclasses to initialize a new object (the receiver) immediately after

memory for it has been allocated. An init message is generally coupled with an allec or
allocFromZone: message in the same line of code:

id newObject = [[TheClass alloc] init];

An object isn’t ready to be used until it has been initialized. The version of the init method
defined in the Object class does no initialization; it simply returns self.

Subclass versions of this method should return the new object (self) after it has been
successfully initialized. If it can’t be initialized, they should free the object and return nil.
In some cases, an init method might free the new object and return a substitute. Programs
should therefore always use the object returned by init, and not necessarily the one returned
by alloc or allocFromZone:, in subsequent code.

Classes: Objecr 1-25

1-26

Every class must guarantee that the init method returns a fully functional instance of the
class. Typically this means overriding the method to add class-specific initialization code.
Subclass versions of init need to incorporate the initialization code for the classes they
inherit from, through a message to super:
- init
{
[super init];
/* class-specific initialization goes here */
return self;
}

Note that the message to super precedes the initialization code added in the method. This
ensures that initialization proceeds in the order of inheritance.

Subclasses often add arguments to the init method to allow specific values to be set. The
more arguments a method has, the more freedom it gives you to determine the character of
initialized objects. Classes often have a set of init... methods, each with a different number
of arguments. For example:

- init;

- initArg: (int)tag;

- initArg: (int)tag arg: (struct info *)data;

The convention is that at least one of these methods, usually the one with the most
arguments, includes a message to super to incorporate the initialization of classes higher
up the hierarchy. This method is the designated initializer for the class. The other init...
methods defined in the class directly or indirectly invoke the designated initializer through
messages to self. In this way, all init... methods are chained together. For example:

- init

{

return [self initArg:-17;

- initArg: (int)tag
{
return [self initArg:tag arg:NULL];

- initArg: (int)tag arg: (struct info *)data
{
[super init. . .]:
/* class-specific initialization goes here */

Chapter 1: Root Class

In this example, the initArg:arg: method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated initializer.
This method should begin by sending a message to super to perform the designated
initializer of its superclass. Suppose, for example, that the three methods illustrated above
are defined in the B class. The C class, a subclass of B, might have this designated
initializer:
- initArg: (int)tag arg: (struct info *)data arg:anObject
{
[super initArg:tag arg:datal;
/* class-specific initialization goes here */

}

If inherited init... methods are to successfully initialize instances of the subclass, they must
all be made to (directly or indirectly) invoke the new designated initializer. To accomplish
this, the subclass is obliged to cover (override) only the designated initializer of the
superclass. For example, in addition to its designated initializer, the C class would also
implement this method:

- initArg: (int)tag arg: (struct info *)data
{
return [self initArg:tag arg:data arg:nil];

}

This ensures that all three methods inherited from the B class also work for instances of the
C class.

Often the designated initializer of the subclass overrides the designated initializer of the
superclass. If so, the subclass need only implement the one init... method.

These conventions maintain a direct chain of init... links, and ensure that the new method
and all inherited init... methods return usable, initialized objects. They also prevent the
possibility of an infinite loop wherein a subclass method sends a message (to super) to
perform a superclass method, which in turn sends a message (to self) to perform the
subclass method.

This init method is the designated initializer for the Object class. Subclasses that do their
own initialization should override it, as described above.

See also: + new, + alloc, + allocFromZone:

Classes: Object 1-27

1-28

isEqual:
— (BOOL)isEqual:anObject

Returns YES if the receiver is the same as anObject, and NO if it isn’t. This is determined
by comparing the id of the receiver to the id of anObject.

Subclasses may need to override this method to provide a different test of equivalence. For
example, in some contexts, two objects might be said to be the same if they’re both the
same kind of object and they both contain the same data:

- (BOOL)isEqual:anObject
{

if (anObject == self)
return YES;
if ([anObject isKindOf:[self class]]) {
if | !strcmp(stringData, [anObject stringDatal))

return YES;

}
return NO;

isKindOf:
— (BOOL)isKindOf:aClassObject

Returns YES if the receiver is an instance of aClassObject or an instance of any class that
inherits from aClassObject. Otherwise, it returns NO. For example, in this code
isKindOf: would return YES because, in the Application Kit, the Menu class inherits from
Window:

id aMenu = [[Menu alloc] init];
if ([aMenu isKindOf: [Window class]])

When the receiver is a class object, this method returns YES if aClassObject is the Object
class, and NO otherwise.

See also: —isMemberOf:

Chapter 1: Root Class

isKindOfClassNamed:
— (BOOL)isKindOfClassNamed:(const char *)aClassName

Returns YES if the receiver is an instance of aClassName or an instance of any class that
inherits from aClassName. This method is the same as isKindOf:, except it takes the class
name, rather than the class id, as its argument.

See also: — isMemberOfClassNamed:

isMemberOf:
— (BOOL)isMemberOf:aClassObject

Returns YES if the receiver is an instance of aClassObject. Otherwise, it returns NO. For
example, in this code, isMemberOf: would return NO:

id aMenu = [[Menu alloc] init];
if ([aMenu isMemberOf:[Window class]])

When the receiver is a class object, this method returns NO. Class objects are not
“members of” any class.

See also: — isKindOf:

isMemberOfClassNamed:
— (BOOL)isMemberOfClassNamed:(const char *)aClassName

Returns YES if the receiver is an instance of aClassName, and NO if it isn’t. This
method is the same as isMemberOf:, except it takes the class name, rather than the class
id, as its argument.

See also: — isKindOfClassNamed:

methodFor:
— (IMP)methodFor:(SEL)aSelector

Locates and returns the address of the receiver’s implementation of the aSelector method,
so that it can be called as a function. If the receiver is an instance, aSelector should refer
to an instance method; if the receiver is a class, it should refer to a class method.

Classes: Object 1-29

1-30

aSelector must be a valid, nonNULL selector. If in doubt, use the respondsTo: method to
check before passing the selector to methodFor:.

IMP is defined (in the objc/objc.h header file) as a pointer to a function that returns an id
and takes a variable number of arguments (in addition to the two “hidden” arguments—self
and _cmd—that are passed to every method implementation):

typedef id (*IMP) (id, SEL, ...);

This definition serves as a prototype for the function pointer that methodFor: returns. It’s
sufficient for methods that return an object and take object arguments. However, if the
aSelector method takes different argument types or returns anything but an id, its function
counterpart will be inadequately prototyped. Lacking a prototype, the compiler will
promote floats to doubles and chars to ints, which the implementation won’t expect. It
will therefore behave differently (and erroneously) when called as a function than when
performed as a method.

To remedy this situation, it’s necessary to provide your own prototype. In the example
below, the declaration of the test variable serves to prototype the implementation of the
isEqual: method. test is defined as pointer to a function that returns a BOOL and takes an
id argument (in addition to the two “hidden” arguments). The value returned by
methodFor: is then similarly cast to be a pointer to this same function type:

BOOL (*test) (id, SEL, id);
test = (BOOL (*) (id, SEL, id)) [target methodFor:@selector(isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {

}

In some cases, it might be clearer to define a type (similar to IMP) that can be used both for
declaring the variable and for casting the function pointer methodFor: returns. The
example below defines the EqualIMP type for just this purpose:

typedef BOOL (*EqualIMP) (id, SEL, id);
EqualIMP test;
test = (EqualIMP) [target methodFor:@selector (isEqual:)];

while (!test(target, @selector(isEqual:), someObject)) {

Chapter 1: Root Class

Either way, it’s important to cast methodFor:’s return value to the appropriate function
type. It’s not sufficient to simply call the function returned by methodFor: and cast the
result of that call to the desired type. This can result in errors.

Note that turning a method into a function by obtaining the address of its implementation
“unhides” the self and _cmd arguments.

See also: + instanceMethodFor:

name
— (const char *)name

Implemented by subclasses to return a name associated with the receiver.

By default, the string returned contains the name of the receiver’s class. However, this
method is commonly overridden to return a more object-specific name. You should
therefore not rely on it to return the name of the class. To get the name of the class, use the
class name method instead:

const char *classname = [[self class] name];

See also: + name, + class

notimplemented:
— notImplemented:(SEL)aSelector

Used in the body of a method definition to indicate that the programmer intended to
implement the method, but left it as a stub for the time being. aSelector is the selector for
the unimplemented method; notImplemented: messages are sent to self. For example:

- methodNeeded

{
[self notImplemented:_cmd];
}

When a methodNeeded message is received, notlmplémented: will invoke the error:
method to generate an appropriate error message and abort the process. (In this example,
_cmd refers to the methodNeeded selector.)

See also: - subclassResponsibility:, — error:

Classes: Objecr 1-31

1-32

perform:
— perform:(SEL)aSelector

Sends an aSelector message to the receiver and returns the result of the message. This is
equivalent to sending an aSelector message directly to the receiver. For example, all three
of the following messages do the same thing:

id myClone = [anObject copy]:
id myClone = [anObject perform:@selector (copy)];
id myClone [anObject perform:sel_getUid("copy")]:

It

However, the perform: method allows you to send messages that aren’t determined until
run time. A variable selector can be passed as the argument:

SEL myMethod = findTheAppropriateSelectorForTheCurrentsituation();
[anObject perform:myMethod];

aSelector should identify a method that takes no arguments. If the method returns anything
but an object, the return must be cast to the correct type. For example:

char *myClass;
myClass = (char *)[anObject perform:@selector (name)];

Casting generally works for pointers and for integral types that are the same size as pointers
(such as int and enum). Whether it works for other integral types (such as char, short, or
long) is machine dependent. Casting doesn’t work if the return is a floating type (float or
double) or a structure or union. This is because the C language doesn’t permit a pointer
(like id) to be cast to these types.

Therefore, perform: shouldn’t be asked to perform any method that returns a floating type,
structure, or union, and should be used very cautiously with methods that return integral
types. An alternative is to get the address of the method implementation (usmg
methodFor:) and call it as a function. For example:

SEL aSelector = @selector (backgroundGray) ;
float aGray = ((float (*)(id, SEL))
[anObject methodFor:aSelector]) (anObject, aSelector);

See also: — perform:with:, — perform:with:with:, — methodFor:

Chapter 1: Root Class

perform:with:
- perform:(SEL)aSelector with:anObject

Sends an aSelector message to the receiver with anObject as an argument. This method is
the same as perform:, except that you can supply an argument for the aSelector message.
aSelector should identify a method that takes a single argument of type id.

See also: — perform:, — perform:with:afterDelay:cancelPrevious: (Application Kit
Object Additions)

perform:with:with:

— perform:(SEL)aSelector
with:anObject
with:anotherObject

Sends the receiver an aSelector message with anObject and anotherObject as arguments.
This method is the same as perform:, except that you can supply two arguments for the
aSelector message. aSelector should identify a method that can take two arguments of
type id.

See also: — perform:

performv::
— performv:(SEL)aSelector :(marg_list)argFrame

Sends the receiver an aSelector message with the arguments in argFrame. performv::
messages are used within implementations of the forward:: method. Both arguments,
aSelector and argFrame, are identical to the arguments the run-time system passes to
forward::. They can be taken directly from that method and passed through without
change to performv::.

performv:: should be restricted to implementations of the forward:: method. Because it
doesn’t restrict the number of arguments in the aSelector message or their type, it may seem
like a more flexible way of sending messages than perform:, perform:with:, or
perform:with:with:. However, it’s not an appropriate substitute for those methods. First,
it’s more expensive than they are. The run-time system must parse the arguments in
argFrame based on information stored for aSelector. Second, in future releases,
performv:: may not work in contexts other than the forward:: method.

See also: — forward::, — perform:

Classes: Object 1-33

1-34

printForDebugger:
— (void)printForDebugger:(NXStream *)stream
Implemented by subclasses to write a useful description of the receiver to stream. Object’s

default version of this method provides the class name and the hexadecimal address of the
receiver, formatted as follows:

<classname: O0xaddress>

Debuggers can use this method to ask objects to identify themselves.

read:
—read:(NXTypedStream *)stream

Implemented by subclasses to read the receiver’s instance variables from the typed stream
stream. You need to implement a read: method for any class you create, if you want its
instances (or instance of classes that inherit from it) to be archivable.

The method you implement should unarchive the instance variables defined in the class in
a manner that matches they way they were archived by write:. In each class, the read:
method should begin with a message to super: :

- read: (NXTypedStream *)stream

{
[super read:stream];
/* class-specific code goes here */
'return self;

}
This ensures that all inherited instance variables will also be unarchived.
All implementations of the read: method should return self.

After an object has been read, it’s sent an awake message so that it can reinitialize itself,
and may also be sent a finishUnarchiving message.

See also: — awake, — finishUnarchiving, — write:

respondsTo:
— (BOOL)respondsTo:(SEL)aSelector
Returns YES if the receiver implements or inherits a method that can respond to aSelector

messages, and NO if it doesn’t. The application is responsible for determining whether a
NO response should be considered an error.

Chapter 1: Root Class

Note that if the receiver is able to forward the aSelector message to another object, it will
be able to respond to the message (albeit indirectly), even though this method returns NO.

See also: —forward::, + instancesRespondTo:

self
—self

Returns the receiver.

See also: + class

startArchiving:
— startArchiving:(NXTypedStream *)stream

Implemented by subclasses to prepare an object for being archived—that is, for being
written to the typed stream stream. A startArchiving: message is sent to an object just
before it’s archived—but only if it implements a method that can respond. The message
gives the object an opportunity to do anything necessary to get itself, or the stream, ready
before a write: message begins the archiving process.

There’s no default implementation of the startArchiving: method. The Object class
declares the method, but doesn’t define it.

See also: — awake, — finishUnarchiving, — write:

subclassResponsibility:
— subclassResponsibility:(SEL)aSelector

Used in an abstract class to indicate that its subclasses are expected to implement aSelector
methods. If a subclass fails to implement the method, it will inherit it from the abstract
superclass. That version of the method generates an error when it’s invoked. To avoid the
error, subclasses must override the superclass method.

For example, if subclasses are expected to implement doSomething methods, the
superclass would define the method this way:

- doSomething
{
[self subclassResponsibility:_cmd];

}

Classes: Object 1-35

1-36

When this version of doSomething is invoked, subclassResponsibility: will—by in turn
invoking Object’s error: method-—abort the process and generate an appropriate error
message.

(The _cmd variable identifies the current method selector, just as self identifies the current
receiver. In the example above, it identifies the selector for the doSomething method.)

Subclass implementations of the aSelector method shouldn’t include messages to super to
incorporate the superclass version. If they do, they’ll also generate an error.

See also: — doesNotRecognize:, — notImplemented:, — error:

superclass
— superclass

Returns the class object for the receiver’s superclass.

See also: + superclass

write:
— write:(NXTypedStream *)stream

Implemented by subclasses to write the receiver’s instance variables to the typed stream
stream. You need to implement a write: method for any class you create, if you want to be
able to archive its instances (or instances of classes that inherit from it).

The method you implement should archive only the instance variables defined in the class,
but should begin with a message to super so that all inherited instance variables will also
be archived:

- write: (NXTypedStream *)stream

{

) [super write:stream];
/* class-specific archiving code goes here */
return self;

}

- All implementations of the write: method should return self.

During the archiving process, write: methods may be performed twice, so they shouldn’t
do anything other than write instance variables to a typed stream.

See also: - read:, — startArchiving:

Chapter 1: Root Glass

zone
— (NXZone *)zone

Returns a pointer to the zone from which the receiver was allocated. Objects created
without specifying a zone are allocated from the default zone, which is returned by
NXDefaultMallocZone().

See also: + allocFromZone:, + alloc, + copyFromZone:

Classes: Objecr 1-37

1ypes and Constants

The objc.h header file defines the principal data types for the Objective C language.
Because it’s imported by Object.h, and Object.h is indirectly imported whenever you use
an Objective C class, its definitions are always available.

Other, lesser used, types and constants are documented in Chapter 15, “Run-Time System.”

1-40 Chapter 1: Root Class

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

Defined Types

BOOL
objc/objc.h
typedef char BOOL;

This type carries the basic boolean distinction between YES and NO (true and false).

Class
objc/objc.h
typedef struct objc_class *Class;

Class is the data type for class objects. The objc_class structure it refers to holds
information compiled from the class definition; details of its contents can be found in
Chapter 15, “Run-Time System.”

Every object has an isa instance variable of this type, which enables the object to identify
its class.

Class objects can also be assigned to type id. But just as instances of a class can be
statically typed by using the class name, class objects can be more particularly typed with
the Class data type.

Types and Constants: BOOL 1-41

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

DECLARED IN

SYNOPSIS

DESCRIPTION

id
objc/objc.h

typedef struct objc_object {
Class isa;
} *id;

The id data type designates an Objective C object of any class. All objects, including both
instances and class objects, can be assigned to this type.

IMP
objc/objc.h
typedef id (*IMP) (id, SEL, ...);

This is the data type returned by Object’s methodFor: method to identify a method
implementation. It’s defined as a pointer to a function that returns an id and takes an object
(self) and a selector (_cmd) as its first two arguments.

SEL
objc/objc.h
typedef struct objc_selector *SEL;

The SEL type identifies method selectors. Valid SEL values are assigned only by the
run-time system. They are never 0. '

1-42 Chapter 1: Root Class

STR

DECLARED IN objc/objc.h
sYNoPsIs typedef char *STR;

DESCRIPTION This type is a rarely used shorthand for a character string. It’s mainly of historical interest.

Types and Constants: STR ~ 1-43

Symbolic Constants

Boolean Constants

DECLARED IN objc/objc.h

sYNopPsis YES (BOOL)1
NO (BOOL)0

DESCRIPTION YES and NO are the standard values assigned to BOOL variables.

Empty Objects
DECLARED IN objc/objc.h

SYNOPSIS nil id)0
Nil (Class)0

DESCRIPTION nil is the common notation for a NULL object. Nil is sometimes used for a NULL class
object, but nil typically serves this purpose as well.

1-44 Chaprer 1: Root Class

Application Kit

2-5 Introduction

2-6 Application Kit Classes and Protocols
2-8 Encapsulating an Application

2-8 General Drawing and Event Handling
2-8 Menus and Cursors

2-8 Grouping and Scrolling Views

2-9 Controlling an Application

2-9 Text and Fonts

2-9 Graphics and Color

2-10 Printing and Faxing

2-10 Accessing the File System

2-10 Sharing Data with Other Applications
2-10 Spell-Checking

2-11 Journaling and Help

2-11 Application Kit Functions

2-11 Drawing and Graphic Geometry

2-12 Images

2-12 Colors

2-13 Text, Fonts, and Characters

2-13 Windows and Screen Devices

2-13 Attention Panels

2-14 Events

2-14 The File System and Operating Environment
2-14 Pasteboard Functions

2-14 Archiving

2-15 Named Objects

2-15 Services, Data Links, and Remote Messages

21

2-2

2-15
2-16

2-17

2-18

2-26

2-74

2-83

2-98

2-120
2-150
2-161
2-180
2-191
2-203
2-209
2-220
2-226
2-244
2-282
2-291
2-295
2-314
2-345
2-350
2-353
2-360
2-369
2-373
2-380
2-387
2-390
2-401
2-414
2-419
2-426
2-438
2-473
2-482
2-488

Error Handling and Debugging
Allocating Memory

Classes

ActionCell
Application

Box

Button

ButtonCell

Cell

ClipView

Control

Font

FontManager
FontPanel

Form

FormCell

Listener

Matrix

Menu

MenuCell
NXBitmaplmageRep
NXBrowser
NXBrowserCell
NXCachedImageRep
NXColorList
NXColorPanel
NXColorPicker
NXColorWell
NXCursor
NXCustomImageRep
NXDatalink
NXDatalinkManager
NXDatal_inkPanel
NXEPSImageRep
NXHelpPanel
NXImage
NXImageRep
NXJournaler
NXPrinter

2-503 NXSelection
2-508 NXSpellChecker
2-516 NXSpellServer
2-523 NXSplitView
2-528 Object Additions
2-530 OpenPanel
2-534 Pagelayout
2-542 Panel

2-547 Pasteboard
2-560 PopUpList
2-568 PrintInfo

2-583 PrintPanel
2-589 Responder
2-598 SavePanel
2-607 Scroller

2-616 ScrollView
2-626 SelectionCell
2-630 Slider

2-637 SliderCell
2-652 Speaker

2-665 Text

2-736 TextField
2-748 TextFieldCell
2-755 View

2-803 Window

2-865 Protocols

2-866 NXChangeSpelling

2-867 NXColorPickingCustom
2-870 NXColorPickingDefault
2-875 NXDraggingDestination
2-879 NXDragginglnfo

2-883 NXDraggingSource

2-885 NXlgnoreMisspelledWords
2-887 NXNibNotification

2-889 NXPrintingUserInterface
2-891 NXReadOnlyTextStream
2-894 NXRTFDErrorHandler
2-895 NXSelectText

2-897 NXServicesRequests

2-899 NXWorkspaceRequestProtocol

2-4

2-911

2-979
2-980
2-1015
2-1043

2-1049
2-1050
2-1050
2-1051
2-1051
2-1053
2-1055
2-1055
2-1056
2-1056
2-1058
2-1058
2-1059

Functions

Types and Constants
Defined Types
Symbolic Constants
Global Variables

Other Features
Services
Providing a Service
How a Service Is Advertised
How to Implement a Service
Fields in a Service Specification
Specifying Services Dynamically
Using Services
Registering Types
Validating Services Dynamically
How a Service Is Invoked
Invoking a Service Programmatically
Examples of Services

2 Application Kir

Library: libNeXT_s.a
Header File Directory: /NextDeveloper/Headers/appkit

Import: appkit/appkit.h

Introduction

The Application Kit defines a set of Objective C classes and protocols, C functions, and
assorted constants and data types that are used by virtually every NeXTSTEP application.
The pith of the Kit are the tools it provides for implementing a graphical, event-driven
user interface:

* The Application Kit provides classes—most notably Window and View—that make
drawing on the screen exquisitely succinct. Much of the unromantic work that’s
involved in drawing—communicating with hardware devices and screen buffers,
clearing areas of the screen before drawing, coordinating overlapping drawing areas—
is taken care of for you, letting you concentrate on the much more gratifying task of
supplying code that simply draws. And even this task is assisted by many of the other
classes and a number of C functions that provide drawing code for you.

Application Kit 2-5

¢ The Application Kit makes event handling extremely simple. The Responder class,
from which many of the Kit’s classes inherit, defines a mechanism by which the user’s
actions are passed to the objects in your application that can best respond to them. The
Application class, which inherits from Responder, establishes the low-level connections
that makes this system possible. It provides methods that inform your application of
watershed events, such as when the user makes the application active and inactive, and
when the user logs out or turns off the computer.

By using these tools, you bless your application with a look and feel that’s similar to other
applications, making it easier for the user to recognize and use.

Application Kit Classes and Protocols

The Application Kit is large; it comprises more than 50 classes and protocols. Figure 1
shows the inheritance hierarchy of the Application Kit classes. The following sections
briefly describe the topics that the Kit addresses through its classes and protocols. Within
the descriptions, class and protocol names are highlighted as they’re introduced for easy
identification.

2-6 Chapter 2: The Application Kit

uoLpInpoLIU|J

Lc

sassero 3r3f uoneorddy ‘i-z ainbiy

Object

NXColorPicker

NXColorList
NXCursor — NXBitmaplmageRep
NXImage
NXimageRep - NXEPSImageRep
— NXCustomimageRep B
. NXCachedimageRep B
Font B
FontManager B
Printinfo F Window Panel
Responder Application
Pasteboard L. View — Control
NXDataLink - Box
NXDataLinkManager — NXSplitView
NXSelection l- ScrollView
- ClipView
Speaker
Listener . Text
NXBrowserCell
NXJournaler SelectionCell
FormCell
. ButtonCell
Cell ActionCell
TextFieldCell
SliderCell

NXSpellChecker
NXSpellServer

Menu ——————— PopUplList

NXHelpPanel

NXDataLinkPanel

FontPanel

PrintPanel

PagelLayout

SavePanel ———— OpenPanel
NXColorPanel

NXColorWell

NXBrowser

Matrix —————e— o Form
Button

Scroller

Slider

TextField

MenuCell

2-8

Encapsulating an Application

The central class of the Application Kit is Application. Every application that uses the
Application Kit is given a single Application object, known to your program as NXApp,
that keeps track of the application’s windows and menus, controls the main event loop, lets
you open NeXT Interface Builder files (with support from the NXNibNotification
protocol), and maintains information regarding printing, languages, screens, color support,
and so on.

General Drawing and Event Handling

The Window and View classes are the centerpieces of drawing. More specifically,
Windows represent rectangular areas on the screen in which the user works. To the extent
that everything the user does is directed to a Window, an application’s set of Windows is
the application. Views are areas within Windows that perform your application’s drawing.

Panel is a subclass of Window that you use to display transient, global, or pressing
information. For example, you would use a Panel, rather than an instance of Window, to
display error messages, or to query the user for a response to remarkable or unusual
circumstances.

The Responder class defines the responder chain, an ordered list of objects that respond to
user events. When the user clicks the mouse or presses a key, an event is generated and
passed up the responder chain in search of an object that can respond to it.

Menus and Cursors

The Menu, MenuCell, and NXCursor classes define the look and behavior of the menus
and cursors that your application displays to the user.

Grouping and Scrolling Views

The Box, ScrollView, and NXSplitView classes provide graphic accoutrements to some
other View or collection of Views. A Box groups some number of other Views, and lets
you draw a border around the entire group. NXSplitView lets you “stack” Views vertically,
apportioning to each View some amount of a common territory; a sliding control bar lets
the user redistribute the territory among Views. ScrollView, and its helper ClipView,
provide a scrolling mechanism as well as the graphic objects that let the user initiate and
control a scroll.

Chapter 2: The Application Kit

Controlling an Application

The Control and Cell classes, and their subclasses, define an easily recognized set of
buttons, sliders, and browsers that the user can manipulate graphically to control some
aspect of your application. Just what a particular control affects is up to you: When a
control is “touched,” it sends a certain message to a specific object. This is the targeted
action paradigm; for each Control, you define both the target (an object) and the action (the
message that’s sent to that object).

A Cell completes the implementation of a Control. In general, for each Control there is a
corresponding Cell; thus a button comprises a Button and a ButtonCell, a slider is a Slider
and SliderCell, and so on.

Text and Fonts

Most applications display text in some form. The Text and TextField classes make this
presentation as straightforward and simple as possible. The size of the Text class is
daunting at first, but for simple text presentation only a handful of methods are actually
needed (or you can use the streamlined TextField class). More complicated text-based
applications, such as word processors, can take advantage of the Text class’ more
sophisticated features, such as rulers and break tables.

The Font and FontManager encapsulate and manage different font families, sizes, and
variations. The Font class defines a single object for each distinct font; for efficiency, these
objects, which can be rather large, are shared by all the objects in your application.

The FontPanel class defines the font-specification panel that’s presented to the user.

Graphics and Color

The NXImage, NXImageRep, and the other image representation classes encapsulate
graphic data, allowing you to easily and efficiently access images stored in files on the disk.
The presentation of an image is greatly influenced by the hardware that it’s displayed on.
For example, a particular image may look good on a color monitor, but may be too “rich”
for monochrome. Through the image classes, you can group representations of the same
image, where each representation fits a specific type of display device—the decision of
which representation to use can be left to the NXImage class itself.

Color is incorporated and supported by NXColorPanel, NXColorList, NXColorPicker,
and NXColorWell. These are mostly interface classes: They define and present Panels and
Views that allow the user to select and apply colors. The NXColorPicking protocol lets
you extend the standard Colors panel.

Introduction 2-9

2-10

The four standard color formats—RGB, CMYK, HSB, and grayscale—are recognized by
the color classes. You can also tell the classes to recognize custom representations.

Printing and Faxing

The NXPrinter, PrintPanel, PageLayout, and PrintInfo classes work together to provide
the means for printing and faxing the information that your application displays in its
Windows and Views. For more control, the View and Window classes and the
NXPrintingUserInterface protocol define methods that can fine-tune the printing and
faxing mechanism.

Accessing the File System

The Application Kit doesn’t provide a class that defines objects to correspond to files on the
disk. However, the OpenPanel and SavePanel provide a convenient and familiar user
interface to the file system.

Sharing Data with Other Applications

The Pasteboard class defines a repository for data that’s copied from your application,
making this data available to any application that cares to use it. This is the familiar
cut-copy-paste mechanism. The NXServicesRequest protocol uses the Pasteboard to
communicate data that’s passed between applications by a registered service.

The Listener and Speaker classes provide a more specific communication between
separate applications in which one application (using a Speaker) provides data to which the
other (through a Listener) is programmed to respond.

Finally, an intimate link between applications can be created through the NXDataLink,
NXDatal.inkManager, NXDatal.inkPanel, and NXSelection classes. Through these
classes, multiple applications can share the same data. A change to the data in one
application is seen immediately in all others that display that data.

Spell-Checking

The NXSpellServer class lets you define a spell-checking facility and provide it as a
service to other applications. To connect your application to a spelling checker, you use the
NXSpellChecker class. The NXSelectText, NXIgnoreMisspelledWords, and
NXChangeSpelling protocols support the spell-checking mechanism.

Chapter 2: The Application Kit

Journaling and Help

The NXJournaler class provides an interactive recording and playback environment in
which you can run your application. During recording, events are noted, time-stamped, and
stored. The journaled “script” can then be played back; your application will run itself to
the delight of the assembled throng.

The NXHelpPanel class is the central component of the NeXTSTEP help system. It
provides a panel that displays the text and illustrations that constitute your application’s
help information, and it associates user-interface objects with specific passages of that text.

Application Kit Functions

The “Functions” section, later in this chapter, describes the functions (and function-like
macros) that are provided by the Application Kit. Many of the functions are auxiliary to
the Kit’s classes in that they augment or are superceded by one or more classes. Of the rest,
some functions provide information or functionality that can’t be gotten elsewhere, while
some others are convenient but not necessarily the only way to address a particular topic.

The following sections don’t attempt to describe what individual functions do—the names
of the functions are fairly descriptive in themselves—they merely list the functions as they
fall into broad categories.

Drawing and Graphic Geometry

These functions draw standard interface accoutrements, or examine and manipulate
graphic regions.

¢ NXDrawButton(), NXDrawGrayBezel(), NXDrawGroove(), NXDrawWhiteBezel(),
NXDrawTiledRects(), NXFrameRect(), NXFrameRectWithWidth()

* NXAttachPopUpList(), NXCreatePopUpListButton()

* NXRectClip(), NXRectClipList(), NXRectFill(), NXRectFillList(),
NXRectFillListWithGrays(), NXEraseRect(), NXHighlightRect()

* NXSetRect(), NXOffsetRect(), NXInsetRect(), NXIntegralRect(), NXDivideRect()

* NXMouselnRect(), NXPointInRect(), NXIntersectsRect(), NXContainsRect(),
NXEqualRect(), NXEmptyRect()

* NXUnionRect(), NXIntersectionRect()

Introduction 2-11

e NX_X(), NX_Y(), NX_WIDTH(), NX_HEIGHT(), NX_MAXX(), NX_MAXY(),
NX_MIDX(), NX_MIDY()

* NXFindPaperSize()

Images

These functions access image data (note, however, that they’re superceded by NXImage
and related classes).

* NXCopyBits()
* NXCopyBitmapFromGstate()

Colors

Since there isn’t a class that represents individual colors, these function are indispensable
for dealing with color.

* NXSetColor()

e NXColorListName(), NXColorName(), NXFindColorNamed()
* NXReadPixel()

¢ NXEqualColor()

* NXChangeRedComponent(), NXChangeGreenComponent(),
NXChangeBlueComponent(), NXChangeCyanComponent(),
NXChangeMagentaComponent(), NXChange YellowComponent(),
NXChangeBlackComponent(), NXChangeHueComponent(),
NXChangeSaturationComponent(), NXChangeBrightnessComponent(),
NXChangeGrayComponent(), NXChangeAlphaComponent()

¢ NXConvertColorToORGBA(), NXConvertColorToCMYKA(),
NXConvertColorToHSBA(), NXConvertColorToGrayAlpha(),
NXConvertColorToRGB(), NXConvertColorToCMYK(), NXConvertColorToHSB(),
NXConvertColorToGray()

* NXConvertRGBAToColor(), NXConvertCMYKAToColor(),
NXConvertHSBAToColor(), NXConvertGrayAlphaToColor(), ,
NXConvertRGBToColor(), NXConvertCMY KToColor(), NXConvertHSBToColor(),
NXConvertGrayToColor()

212 Chapter 2: The Application Kit

* NXRedComponent(), NXGreenComponent(), NXBlueComponent(),
NXCyanComponent(), NXMagentaComponent(), NX YellowComponent(),
NXBlackComponent(), NXHueComponent(), NXSaturationComponent(),
NXBrightnessComponent(), NXGrayComponent(), NXAlphaComponent()

Text, Fonts, and Characters

These functions let you query and manipulate various aspects of displayed text.

¢ NXReadWordTable(), NXWriteWordTable()

¢ NXScanALine(), NXDrawALine()

¢ NXFieldFilter(), NXEditorFilter()

¢ NXTextFontInfo()

¢ NXOrderStrings(), NXDefaultStringOrderTable()

Windows and Screen Devices

Through these functions you can access the Window Server’s windows (the devices that
underlie Window objects) and retrieve information that aids in matching a Window object
to the attributes of the screen upon which it’s placed.

¢ NXColorSpaceFromDepth(), NXBPSFromDepth(),
NXNumberOfColorComponents(), NXGetBestDepth()

¢ NXConvertWinNumToGlobal(), NXConvertGlobalToWinNum()
¢ NXCountWindows(), NXWindowList()
¢ NXGetWindowServerMemory()

* NXSetGState(), NXCopyCurrentGState()

Attention Panels

Attention panels are much easier to create through the following functions rather than by
creating individual Panel objects.

* NXRunAlertPanel(), NXRunLocalizedAlertPanel(), NXGetAlertPanel(),
NXFreeAlertPanel()

Introduction 2-13

2-14

Events

These functions let you query for events and provide some control over the events that your
application manufactures.

¢ NXGetOrPeekEvent()

¢ NXUserAborted(), NXResetUserAbort()
¢ NXBeginTimer(), NXEndTimer()

¢ NXlJournalMouse()

* NXPing()

The File System and Operating Environment

These functions provide information about the user, manipulate file names, and play the
system beep,,

* NXHomeDirectory(), NXUserName()
e NXCompleteFilename()

» NXExpandFilename()

* NXBeep()

Pasteboard Functions

These functions access data on the pasteboard:

¢ NXCreateFileContentsPboardType(), NXCreateFilenamePboardType()
* NXGetFileType(), NXGetFileTypes()
¢ NXReadColorFromPasteboard(), NXWriteColorToPasteboard()

Archiving

The archiving functions let you read and write individual items (rather than entire objects)
from and to files.

« NXReadPoint(), NXWritePoint(), NXReadRect(), NXWriteRect(), NXReadSize(),
NXWriteSize()

e NXReadColor(), NXWriteColor()

Chapter 2: The Application Kit

Named Objects

These functions let you refer to objects by name.

¢ NXGetNamedObject(), NXGetObjectName(), NXNameObject(), NXUnnameObject()

Services, Data Links, and Remote Messages

These functions assist the services system, data links, and aid in getting data into and from
a remote message (a message passed between applications).

* NXSetServicesMenultemEnabled(), NXIsServicesMenultemEnabled()
* NXUpdateDynamicServices()

* NXPerformService()

* NXFrameLinkRect(), NXLinkFrameThickness()

» NXCopyInputData(), NXCopyOutputData()

* NXRemoteMethodFromSel(), NXResponsibleDelegate()

* NXPortFromName(), NXPortNameLookup()

Error Handling and Debugging

These functions help you respond to errors and to debug your application.

* NXDefaultTopLevelErrorHandler(), NXSetTopLevelErrorHandler(),
NXTopLevelErrorHandler()

» NXLogError()

* NXRegisterErrorReporter(), NXRemoveErrorReporter(), NXReportError()
e NX_ASSERT()

* NX_PSDEBUG

Introduction 2-15

Allocating Memory

These functions let you allocate and free memory. The “chunk” functions are used,
principally, by the Text class.

* NX MALLOC(, NX_REALLOC(), NX_FREE()
¢ NX_ZONEMALLOC(), NX_ZONEREALLOC()

¢ NXChunkMalloc(), NXChunkRealloc(), NXChunkGrow(), NXChunkCopy(),
NXChunkZoneMalloc(), NXChunkZoneRealloc(), NXChunkZoneGrow(),
NXChunkZoneCopy()

2-16 Chaprer 2: The Application Kir

Classes

2-18

ActionCell

Inherits From: Cell : Object

Declared In: appkit/ActionCell.h

Class Description

An ActionCell defines an active area inside a Control (an instance of Control or one of its
subclasses). As a Control’s active area, an ActionCell does three things: it performs
display of text or an icon; it provides the Control with a target and an action; and it handles -
mouse (cursor) tracking by properly highlighting its area and sending action messages to
its target based on cursor movement. You can set an ActionCell’s Control only by sending
the drawSelf:inView: message to the ActionCell, passing the Control as the argument for
the inView: keyword of the method.

ActionCell implements the target object and action method as defined by its superclass,
Cell. As a user manipulates a Control, ActionCell’s trackMouse:inRect:of View: method
(inherited from Cell) updates its appearance and sends the action message to the target
object with the Control object as the only argument.

A single Control may have more than one ActionCell. An integer tag is used to identify an
ActionCell; this is important for Controls that contain more than one ActionCell. Note,
however, that no checking is done by the ActionCell object itself to ensure that the tag is
unique. See the Matrix class for an example of a subclass of Control that contains multiple
ActionCells.

Many of the methods that define the contents and look of an ActionCell, such as setFont:
and setBordered:, are reimplementations of methods inherited from Cell. They’re
subclassed to ensure that the ActionCell is redisplayed if it’s currently in a Control.

Chapter 2: Application Kit

Instance Variables

int tag;

id target;

SEL action;

tag An integer used to identify the ActionCell.

target The object that is sent the ActionCell’s action.
action The message that the ActionCell sends to its target.

Method Types

Configuring an ActionCell — setEnabled:
— setBezeled:
— setBordered:
— setAlignment:
— setFloatingPointFormat:left:right:
— setFont:
— setlcon:

Manipulating ActionCell values
— doubleValue
— floatValue
— intValue
— setString Value:
— setStringValueNoCopy:shouldFree:
— stringValue
Displaying — drawSelf:inView:
— controlView
Target and action - setAction:
— action
— setTarget:
— target
Assigning a tag —setTag:
—tag
Archiving — write:
—read:

Classes: ActionCell

2-20

Instance Methods

action
— (SEL)action

Returns the ActionCell’s action method. Keep in mind that the argument of an action
method sent by an ActionCell is its associated Control (the object returned by
controlView).

See also: — setAction:, — target, — control View

controlView

— controlView

Returns the Control in which the ActionCell was most recently drawn. In general, your
code should use the object returned by this method only to (indirectly) redisplay the
ActionCell. For example, the subclasses of ActionCell defined by the Application Kit
invoke this method in order to send the Control a message such as updateCelllnside:.

The Control in which an ActionCell is drawn is set automatically by the drawSelf:inView:
method. You can’t explicitly set the Control.

See also: — drawSelf:inView:

doubleValue
— (double)doubleValue

Returns the ActionCell’s contents as a double-precision floating point number. If the
ActionCell is being edited when this message is received, editing is validated first.

See also: — setDoubleValue: (Cell), — floatValue, — intValue, — stringValue,
— validateEditing (Control)

Chapter 2: Application Kir

drawSelf:inView:

— drawSelf:(const NXRect *)cellFrame inView:controlView

Displays the ActionCell. Sets the ActionCell’s Control to controlView and performs
drawing if and only if controlView is a Control object (an instance of Control or a subclass
thereof). You must lock focus on the Control before invoking this method (Control’s
display method automatically performs this).

See also: — drawSelf:inView: (Cell)

floatValue
— (float)floatValue

Returns the ActionCell’s contents as a single-precision floating point number. If the
ActionCell is being edited when this message is received, editing is validated first.

See also: — setFloatValue: (Cell), — doubleValue, — intValue, — stringValue,
- validateEditing (Control)

intValue
— (int)intValue

Returns the ActionCell’s contents as an integer. If the ActionCell is being edited when this
message is received, editing is validated first.

See also: — setIntValue: (Cell), — doubleValue, - floatValue, — string Value,
- validateEditing (Control)

read:
—read:(NXTypedStream *)stream

Reads the ActionCell from the typed stream stream. Returns self.

See also: — write:

Classes: ActionCell 2-21

222

setAction:
— setAction:(SEL)aSelector
Sets the ActionCell’s action method to aSelector. The argument of an action method

sent by an ActionCell is its associated Control (the object returned by controlView).
Returns self.

See also: — action, — setTarget:, — controlView, — sendA ction:to: (Control)

setAlignment:

— setAlignment:(int)mode
If the ActionCell is a text Cell (type NX_TEXTCELL), this sets its text alignment to mode,
which should be NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED. If

it’s currently in a Control view, the ActionCell is redlsplayed or marked as needing
redisplay. Returns self.

See also: — alignment (Cell)

setBezeled:
— setBezeled:(BOOL)flag
Adds or removes the ActionCell’s bezel, according to the value of flag. Adding a bezel will

remove the ActionCell’s border, if any. If it’s currently in a Control view, the ActionCell is
redisplayed or marked as needing redisplay. Returns self.

See also: —isBezeled (Cell), — setBordered:

setBordered:

— setBordered:(BOOL)flag
Adds or removes the ActionCell’s border, according to the value of flag. The border is
black and has a width of 1.0. Adding a border will remove the ActionCell’s bezel, if any.

If it’s currently in a Control view, the ActionCell is redisplayed or marked as needing
redisplay. Returns self.

See also: — isBordered (Cell), — setBezeled:

Chapter 2: Application Kit

setEnabled:
— setEnabled:(BOOL)flag

Enables or disables the ActionCell’s ability to receive mouse events, according to the value
of flag. If it’s currently in a Control view, the ActionCell is redisplayed or marked as
needing redisplay. Returns self.

See also: — isEnabled (Cell)

setFloatingPointFormat:left:right:

— setFloatingPointFormat:(BOOL)autoRange
left:(unsigned int)leftDigits
right:(unsigned int)rightDigits

Sets the ActionCell’s floating point format as described in the Cell class specification for
the setFloatingPointFormat:left:right: method. If it’s currently in a Control view, the
ActionCell is redisplayed or marked as needing redisplay. Returns self.

See also: — setFloatingPointFormat:left:right: (Cell)

setFont:
— setFont:fontObject

If the ActionCell is a text Cell (type NX_TEXTCELL), this sets its Font to fontObject. In
addition, if it’s currently in a Control view, the ActionCell is redisplayed or marked as
needing redisplay. Returns self.

See also: - font (Cell)

setlcon:

— setIcon:(const char *)iconName

Sets the ActionCell’s icon to iconName and sets its Cell type to NX_ICONCELL. Ifit’s
currently in a Control view, the ActionCell is redisplayed or marked as needing redisplay.
Returns self.

See also: — setIcon: (Cell)

Classes: ActionCell 2-23

2-24

setStringValue:
— setStringValue:(const char *)aString

Sets the ActionCell’s contents to a copy of aString. If it’s currently in a Control view, the
ActionCell is redisplayed or marked as needing redisplay. Returns self.

See also: - setStringValueNoCopy:shouldFree:, — setStringValue: (Cell),
— stringValue, — doubleValue, — ﬂoatValue, — intValue

setStringValueNoCopy:shouldFree:
— setStringValueNoCopy:(char *)aString shouldFree:(BOOL)flag

Sets the ActionCell’s contents to a aString. If flag is YES, aString will be freed when the
ActionCell is freed. If it’s currently in a Control view, the ActionCell is redisplayed or
marked as needing redisplay. Returns self.

See also: - setStringValue:, — setStringValueNoCopy:shouldFree: (Cell),
— stringValue, — doubleValue, — floatValue, — intValue

setTag:
— setTag:(int)anlnt

Sets the ActionCell’s tag to anint. The tag can be used to identify the ActionCell in a
Control that contains multiple Cells (Matrix, for example). Returns self.

See also: —tag, — setTag: (Control)

setTarget:
— setTarget:anObject

Sets the ActionCell’s target to anObject. This is the object that is sent the ActionCell’s
action method. Returns self.

See also: — target, — setAction:

Chapter 2: Application Kit

stringValue
— (const char *)stringValue

~ Returns the ActionCell’s contents as a string. If the ActionCell is being edited when this
message is received, editing is validated first.

See also: - setStringValue:, — stringValue (Cell), — validateEditing (Control),
— doubleValue, — floatValue, — intValue

tag
— (int)tag

Returns the ActionCell’s tag. The tag can be used to identify the ActionCell in a Control
that contains multiple Cells (Matrix, for example).

See also: - setTag:, — tag (Control)

target
— target

Returns the ActionCell’s target, the object that is sent the ActionCell’s action method.

See also: — setTarget:, — action

write:
— write:(NXTypedStream *)stream

Writes the ActionCell to the typed stream stream. Returns self.

See also: —read:

Classes: ActionCell 2-25

2-26

Application

Inherits From: Responder : Object

Declared In: appkit/Application.h

Class Description

The Application class provides the central framework of your application’s execution.
Every application must have exactly one object that is an instance of Application (or of a
custom subclass of Application). Project Builder automatically inserts into the main file
(the file that contains the main() function) code that creates that object and stores it as the
global variable NXApp. The automatically generated code then loads your application’s
nib file, and starts the event loop by sending a run message to NXApp.

Creating the Appliéation object connects the program to the Window Server and initializes
its PostScript environment. The Application object maintains a list of all the Windows that
the application uses, so it can retrieve any of the application’s Views.

The Application object’s main task is to receive events from the Window Server and
distribute them to the proper Responders. The Application object handles a system event
itself. It translates a Window event into a message forwarded to the affected Window
object. A key-down event that occurs while the Command key is pressed is translated into
a commandKey: message, and every Window has an opportunity to respond to it. Other
keyboard and mouse events are sent to the Window associated with the event; the Window
then distributes them to the objects in its View hierarchy.

In general, it’s neater and cleaner to separate the code that embodies your program’s
functionality into a number of custom objects. Usually those custom objects are subclasses
of Object. Methods defined in your custom objects can be invoked from a small dispatcher
object without being closely tied to the Application object. It is rarely necessary to create
a custom subclass of Application. You will need to do so only if you need to provide your
own special response to messages that are routinely sent to the Application object. If you
do create a custom subclass of Application, it’s the object representing your custom class
that gets the name NXApp and receives the run message.

The Application object can be assigned a delegate that responds on its behalf to notification
messages addressed to the Application object. For a few of these notification methods, if
you have created a subclass of Application and it implements the method but the delegate
doesn’t, that message is sent to self (and thus to a subclass method). Where that is true, it’s
noted in the method’s description in “Methods Implemented by the Delegate,” below.

Chapter 2: Application Kit

Since an application must have one and only one Application object, you must use new to
create it. You can’t use alloc, allocFromZone:, or init to create or initialize an Application
object.

When your application is launched, its main nib file (if it has one) is loaded; the objects
stored in the nib file are unarchived. When unarchived, each gets an awake message and
then a finishUnarchiving message. Note that some objects in the nib file—for example,
objects represented by the proxy CustomView object—are simply referenced, not archived.
Those objects don’t get the awake or finishUnarchiving messages. Instead, they’re
instantiated through the alloc and init mechanism.

Instance Variables

char *appName;
NXEvent currentEvent;
id windowList;

id keyWindow;

id mainWindow;

id delegate;

int *hiddenList;

int hiddenCount;
const char *hostName;
DPSContext context;
int contextNum,;

id appListener;

id appSpeaker;

port_t replyPort;
NXSize screenSize;
short running;

struct __appFlags {
unsigned int hidden:1;
unsigned int autoupdate:1;
unsigned int active:1;

} appFlags;

appName The name of your application; used by the defaults system
and the application’s Listener object

currentEvent The event most recently retrieved from the event queue

Classes: Application — 2-217

2-28

windowList

keyWindow

mainWindow

delegate
hiddenList

hiddenCount
hostName

context
contextNum

appListener
appSpeaker
replyPort

screenSize

running
appFlags.hidden
appFlags.autoupdate

appFlags.active

Method Types

Initializing the class

Creating and freeing instances

Chapter 2: Application Kir

A List containing all the Windows to which the
Application has access

The Window that receives keyboard events

The Window that receives menu commands and action
messages from a Panel

The object that responds to notification messages

The List of Windows belonging to the Application at the
time the Application was hidden

The number of Windows referred to by hiddenList
The name of the machine running the Window Server

The Display PostScript context connected to the Window
Server

A number identifying the application’s Display PostScript
context

The Application object’s Listener
The Application object’s Speaker

A general purpose reply port for the Application object’s
Speakers

The size of the screen that this application is running on
The nested level of run and runModalFor:
YES if the Application’s Windows are currently hidden

YES if the Application object is to send an update
message to each Window after an event has been
processed

YES if the Application is the active application

+ initialize
+ alloc
+ allocFromZone:

+ new
— free

Setting up the application + workspace
— loadNibFile:owner:
— loadNibFile:owner:withNames:
— loadNibFile:owner:withNames:fromZone:
— loadNibSection:owner:
—loadNibSection:owner:withNames:
—loadNibSection:owner:withNames:fromHeader:
— loadNibSection:owner:withNames:fromZone:
—loadNibSection:owner:withNames:fromHeader:

fromZone:

— appName
— setMainMenu:
— mainMenu

Responding to notification — applicationWillLaunch:
— applicationDidLaunch:
— applicationDidTerminate:

Changing the active application
— activeApp
— becomeActiveApp
— activate:
— activateSelf:
—isActive
— resignActive App
- deactivateSelf

Running the event loop —run
~ isRunning
— stop:
— runModalFor:
— stopModal
— stopModal:
— abortModal
— beginModalSession:for:
— runModalSession:
— endModalSession:
- delayedFree:
—sendEvent:

Classes: Application 2-29

Getting and peeking at events - currentEvent
— getNextEvent:
— getNextEvent:waitFor:threshold:
— peekAndGetNextEvent:
— peekNextEvent:into:
— peekNextEvent:into:waitFor:threshold:

Journaling — setJournalable:
— isJournalable
— masterJournaler
— slaveJournaler

Handling user actions and events
— applicationDefined:
" —hide:
—isHidden
— unhide
— unhide:
— unhideWithoutActivation:
— powerOff:
— powerOffIn:andSave:
— rightMouseDown:
— unmounting:ok:

Sending action messages — sendAction:to:from:
— tryToPerform:with:
— calcTargetForAction:

Remote messaging — setAppListener:
— appListener
— setAppSpeaker:
— appSpeaker
— appListenerPortName
—replyPort

Managing Windows — applcon
— findWindow:
— getWindowNumbers:count:
- keyWindow
— mainWindow
— makeWindowsPerform:inOrder:
— setAutoupdate:
— updateWindows
— windowList
— miniaturize All:
— preventWindowOrdering

2-30 Chapter 2: Application Kit

Managing the Windows menu — setWindowsMenu:
— windowsMenu
— arrangeInFront:
— addWindowsltem:title:filename:
— changeWindowsltem:title:filename:
— removeWindowsltem:
— updateWindowsltem:

Managing Panels — showHelpPanel:
— orderFrontDatalinkPanel:

Managing the Services menu — setServicesMenu:
— servicesMenu
— registerServicesMenuSendTypes:andReturnTypes:
— validRequestorForSendType:andReturn Type:

Managing screens — mainScreen
— colorScreen
— getScreens:count:
— getScreenSize:

Querying the application — context
— focusView
— hostName

Reporting current languages — systemlLanguages

Using files — openFile:ok:
— openTempFile:ok:
— fileOperationCompleted:

Responding to devices — mounted:
— unmounted:

Printing - setPrintInfo:
— printInfo
— runPageLayout:

Color — orderFrontColorPanel:
— setImportAlpha:
— doesImportAlpha

Terminating the application — terminate:

Assigning a delegate — setDelegate:
— delegate

Classes: Applicarion 2-31

2-32

Class Methods

alloc

This method cannot be used to create an Application object. Use new instead. The method
is implemented only to prevent you from using it; if you do use it, it generates an error
message.

See also: + new

allocFromZone:

This method cannot be used to create an Application object. Use new instead. The method
is implemented only to prevent you from using it; if you do use it, it generates an error
message.

See also: + new

initialize

+ initialize
Registers defaults used by the Application class. You never send this message directly; it’s
sent for you when your application starts. Returns self.

new
+ new

L2

Creates a new Application object and assigns it to the global variable NXApp. A program

~ can have only one Application object, so this method just returns NXApp if the Application

object already exists. This method also makes a connection to the Window Server, loads
the PostScript procedures the application needs, and completes other initialization. Your
program should generally invoke this method as one of the first statements in main(); this
is done for you if you create your application with Interface Builder. Returns the
Application object.

See also: —run *

Chapter 2: Application Kit

workspace
+ (id <NXWorkspaceRequestProtocol>)werkspace

Returns an object representing the Workspace Manager. Your code can send it a message
asking it to do such things as open a file. The Workspace Manager responds to the
NXWorkspaceRequest protocol. Here’s an example of asking the Workspace Manager for
the icon for the file x.draw:

NXImage *1 = [[Application workspace] getIconForFile:"x.draw"];

Instance Methods

abortModal
— (void)abortModal

Aborts the modal event loop by raising the NX_abortModal exception, which is caught by
runModalFor:, the method that started the modal loop. Since this method raises an
exception, it never returns; runModalFor:, when stopped with this method, returns
NX_RUNABORTED. This method is typically invoked from procedures registered with
DPSAddTimedEntry(), DPSAddPort(), or DPSAddFD(). Note that you can’t use this
method to abort modal sessions, where you control the modal loop and periodically invoke
runModalSession:.

See also: — runModalFor:, — runModalSession:, — endModalSession:, — stopModal,
— stopModal:

activate:

- (int)activate:(int)contextNumber
Makes the application identified by contextNumber the active application. The argument
contextNumber is the PostScript context number of the application to be activated.
Normally, you shouldn’t invoke this method; the Application Kit is responsible for proper

activation. Returns the PostScript context number of application that was previously
active.

See also: —isActive, — activateSelf:, — deactivateSelf

Classes: Application 2-33

2-34

activateSelf:
— (int)activateSelf:(BOOL)flag

Makes the receiving application the active application. If flag is NO, the application is
activated only if no other application is currently active. Normally, this method is invoked
with flag set to NO. When the Workspace Manager launches an application, it deactivates
itself, so activateSelf:NO allows the application to become active if the user waits for it to
launch, but the application remains unobtrusive if the user activates another application. If
flag is YES, the application will always activate. Regardless of the setting of flag, there
may be a time lag before the application activates; you should not assume that the
application will be active immediately after sending this message.

Note that you can make one of your Windows the key window without changing the active
application; when you send a makeKeyWindow message to a Window, you simply ensure
that the Window will be the key window when the application is active.

You should rarely need to invoke this method. Under most circumstances the Application
Kit takes care of proper activation. However, you might find this method useful if you
implement your own methods for interapplication communication. This method returns the
PostScript context number of the previously active application.

See also: — activeApp, — activate:, — deactivateSelf, — makeKeyWindow (Window)

activeApp
— (int)activeApp

Returns the active application’s PostScript context number. If no application is active,
returns Zzero.

See also: —isActive, — activate:

addWindowsltem:title:filename:

— addWindowsItem:aWindow
title:(const char *)aString
filename:(BOOL)isFilename

Adds an item to the Windows menu corresponding to the Window aWindow. If isFilename
is NO, aString appears literally in the menu. If isFilename is YES, aString is assumed to
be a converted name with the name of the file preceding the path (the way Window’s

Chapter 2: Application Kit

setTitleAsFilename: method shows a title). If an item for aWindow already exists in the
Windows menu, this method has no effect. You rarely invoke this method because an item
is placed in the Windows menu for you whenever a Window’s title is set. Returns self.

See also: - changeWindowsItem:title:filename:, — setTitle: (Window),
— setTitleAsFilename: (Window)

applcon
— applcon

Returns the Window object that represents the application in the Workspace Manager
(containing the application’s title and icon).

applicationDefined:
— applicationDefined:(NXEvent *)theEvent

Invoked when the application receives an application-defined (NX_APPDEFINED) event.
This is a vehicle in which you provide whatever response you want, by overriding the
default definition in a subclass or defining this method in the delegate. Returns self.

applicationDidLaunch:

— (int)applicationDidLaunch:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName has
launched. This is one of the messages the Application will receive if it has previously sent
the Workspace Manager the message beginListeningForA pplicationStatusChanges.

If the delegate implements the method app:applicationDidLaunch:, that message is sent
to it. If the delegate doesn’t implement it, the method is handled by the Application
subclass object (if you created one). The return is an arbitrary integer; your application
defines and interprets it. If you neither provide a delegate method nor override in a
subclass, the default definition simply returns 0.

See also: — app:applicationDidLaunch: (Application delegate method),
— beginListeningForA pplicationStatusChanges (NXWorkspaceRequest protocol)

Classes: Application ~ 2-35

2-36

applicationDidTerminate:
— (int)applicationDid Terminate:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName has
terminated. This is one of the messages the Application will receive if it has previously
sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

If the delegate implements the method app:applicationDidTerminate:, that message is
sent to it. If the delegate doesn’t implement it, the method is handled by the Application
subclass object (if you created one). The return is an arbitrary integer; your application
defines and interprets it. If you neither provide a delegate method nor override in a
subclass, the default definition simply returns O.

See also: — app:applicationDidTerminate: (Application delegate method),
— beginListeningForApplicationStatusChanges (NXWorkspaceRequest protocol)

applicationWillLaunch:
— (int)application WillLaunch:(const char *)appName

Notification from the Workspace Manager that the application whose name is appName is
about to launch. This is one of the messages the Application will receive if it has previously
sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

If the delegate implements the method app:applicationWillLaunch:, that message is sent
to it. If the delegate doesn’t implement it, the method is handled by the Application
subclass object (if you created one). The return is an arbitrary integer; your application
defines and interprets it. If you neither provide a delegate method nor override in a
subclass, the default definition simply returns O.

See also: — app:applicationWillLaunch: (Application delegate method),
— beginListeningForApplicationStatusChanges (NXWorkspaceRequest protocol)

applListener
— appListener

Returns the Application object’s Listener—the object that will receive messages sent to
the port that’s registered for the application’s name. If you don’t send a setAppListener:
message before your application starts running, an instance of Listener is created for you.
(Note, however, that to communicate with the Workspace Manager to do such things as
open files, you should send messages to the object that represents the Workspace Manager,

Chapter 2: Application Kit

returned by the workspace class method; it responds to the NXWorkspaceRequest
protocol.)

See also: — setAppListener:, — appListenerPortName, — run, + workspace

applListenerPortName

— (const char *)appListenerPortName

Returns the name used to register the Application object’s Listener. The default is the same
name that’s returned by the Application object’s appName method. If a different name is
desired, this method should be overridden. Messages sent by name to
appListenerPortName will be received by your Application object.

See also: — checkInAs: (Listener), — appName, NXPortFromName()

appName
— (const char *)appName

Returns the name under which the Application object has been registered for defaults. This
name is also used for messaging unless the messaging name was changed by overriding
appListenerPortName.

See also: — appListenerPortName

appSpeaker
— appSpeaker

Returns the Application object’s Speaker. You can use this object to send messages to
other applications.

See also: — setSendPort: (Speaker)

arrangeinFront:

— arrangelnFront:sender

Arranges all of the windows listed in the Windows menu in front of all other windows.
Windows associated with the application but not listed in the Windows menu are not
ordered to the front. Returns self.

See also: — removeWindowslItem:, — makeKeyAndOrderFront: (Window)

Classes: Application 2-37

2-38

becomeActiveApp
— becomeActiveApp

Sends the appDidBecomeActive: message to the Application object’s delegate. This
method is invoked when the application is activated. You never send a becomeActiveApp
message directly, but you can override this method in a subclass. Returns self.

See also: — activateSelf:, — appDidBecomeActive: (delegate method)

beginModalSession:for:

— (NXModalSession *)beginModalSession:(NXModalSession *)session
for:theWindow

Prepares the application for a modal session with theWindow. In other words, prepares the
application so that mouse events get to it only if they occur in theWindow. If session is
NULL, an NXModalSession is allocated; otherwise the given storage is used. (The sender
could declare a local NXModalSession variable for this purpose.) theWindow is made the
key window and ordered to the front.

beginModalSession:for: should be balanced by endModalSession:. If an exception is
raised, beginModalSession:for: arranges for proper cleanup. Do not use NX_DURING
constructs to send an endModalSession: message in the event of an exception. Returns the
NXModalSession pointer that’s used to refer to this session.

See also: — runModalSession:, — endModalSession:

calcTargetForAction:

— calcTargetForAction:(SEL)theAction
Returns the first object in the responder chain that responds to the message theAction. The
message isn’t actually dispatched. Note that this method doesn’t test the value that the

responding object would return should the message be sent; specifically, it doesn’t test to
see if the responder would return nil. Returns nil if no responder is found.

See also: — sendAction:to:from:

Chapter 2: Application Kit

changeWindowsltem:title:filename:

— changeWindowslItem:aWindow
title:(const char *)aString
filename:(BOOL)isFilename

Changes the item for aWindow in the Windows menu to aString. If aWindow doesn’t have
an item in the Windows menu, this method adds the item. If isFilename is NO, aString
appears literally in the menu. If isFilename is YES, aString is assumed to be a converted
name with the file’s name preceding the path (the way Window’s setTitleAsFilename:
places a title). Returns self.

See also: — addWindowslItem:title:filename:, — setTitle: (Window),
— setTitleAsFilename: (Window)

colorScreen

— (const NXScreen *)colorScreen

Returns the screen that can best represent color. This method will always return a screen,
even if no color screen is present.

See also: NXBPSFromDepth()

context
— (DPSContext)context

Returns the Application object’s Display PostScript context.

currentEvent
— (NXEvent *)currentEvent

Returns a pointer to the last event the Application object retrieved from the event queue. A
pointer to the current event is also passed with every event message.

See also: — getNextEvent:waitFor:threshold:, — peekNextEvent:waitFor:threshold:

Classes: Application 2-39

2-40

deactivateSelf
— deactivateSelf

Deactivates the application if it’s active. Normally, you shouldn’t invoke this method; the
Application Kit is responsible for proper deactivation. Returns self.

See also: — activeApp, — activate:, — activateSelf:

delayedFree:
- delayedFree:theObject

Frees theObject by sending it the free message after the application finishes responding to
the current event and before it gets the next event. If this method is performed during a
modal loop, theObject is freed after the modal loop ends. Returns self.

See also: — perform:with:afterDelay:cancelPrevious: (DelayedPerform informal
protocol)

delegafe
— delegate

Returns the Application object’s delegate.

See also: — setDelegate:

doesimportAlpha
— (BOOL)doesImportAlpha

Reports whether the application imports colors that include a value for alpha (opacity), and
includes an opacity slider in its ColorPanel. The default is YES.

See also: — setImportAlpha:

endModalSession:
— endModalSession:(NXModalSession *)session

Cleans up after a modal session. The argument session should be from a previous
invocation of beginModalSession:for:.

See also: — runModalSession:, — beginModalSession:for:

Chapter 2: Application Kir

fileOperationCompleted:
— (int)fileOperationCompleted:(int)operation

Notification from the Workspace Manager that the file operation identified by operation has
completed. The argument is the integer returned by the method that requested the file
operation, to wit performFileOperation:source:destination:files:options: (part of
NXWorkspaceRequest protocol).

If the delegate implements the method app:fileOperationCompleted:, that message is
sent to it. If the delegate doesn’t implement it, the method is handled by the Application
subclass object (if you created one). The return is an arbitrary integer; your application
defines and interprets it. If you neither provide a delegate method nor override in a
subclass, the default definition simply returns O.

findWindow:
— findWindow:(int)windowNum

Returns the Window object that corresponds to the window number windowNum. This
method is of primary use in finding the Window object associated with a particular event.

See also: — windowNum (Window)

focusView

- focusView

Returns the View whose focus is currently locked, or nil if no View’s focus is locked.

See also: - lockFocus (View)

free
—free

Closes all the Application object’s windows, breaks the connection to the Window Server,
and frees the Application object.

Classes: Application 2-841

2-42

getNextEvent:
— (NXEvent *)getNextEvent:(int)mask

Gets the next event from the Window Server and returns a pointer to its event record. This
method is similar to getNextEvent:waitFor:threshold: with an infinite timeout and a
threshold of NX_MODALRESPTHRESHOLD.

See also: — getNextEvent:waitFor:threshold, — run, ~ runModalFor:, — currentEvent

getNextEvent:waitFor:threshold:

— (NXEvent *)getNextEvent:(int)mask
waitFor:(double)simeout
threshold:(int)/evel

Gets the next event from the Window Server and returns a pointer to its event record. Only
events that match mask are returned; getNextEvent:waitFor:threshold: goes through the
event queue, starting from the head, until it finds an event matching mask. Events that are
skipped are left in the queue. Note that getNextEvent:waitFor:threshold: doesn’t alter
the window event masks that determine which events the Window Server will send to the
application.

If an event matching the mask doesn’t arrive within #imeout seconds, this method returns a
NULL pointer.

You can use this method to short circuit normal event dispatching and get your own events.
For example, you may want to do this in response to a mouse-down event in order to track
the mouse while it’s down. In this case, you would set mask to accept mouse-dragged,
mouse-entered, mouse-exited, or mouse-up events.

level determines what other procedures should be performed when the event queue is
examined. These might include procedures to deal with timed-entries, procedures to
handle messages received on ports, or procedures to read new data from files. Any such
procedure that needs to be called will be called if its priority (specified when the procedure
is registered) is equal to or higher than level.

In general, modal responders should pass NX_MODALRESPTHRESHOLD for level. The
main run loop uses a threshold of NX_BASETHRESHOLD, allowing all procedures
(except those registered with priority 0) to be checked and invoked if needed.

See also: - peekNextEvent:waitFor:threshold:, — run, — runModalFor:

Chapter 2: Application Kir

getScreens:count:

— getScreens:(const NXScreen **)/ist count:(int *)numScreens
Gets screen information for every screen connected to the system. A pointer to an array of
NXScreen structures is placed in the variable indicated by list, and the number of
NXScreen structures in that array is placed in the variable indicated by numScreens. The

list of NXScreen structures belongs to the Application object; it should not be altered or
freed. Returns self.

getScreenSize:
— getScreenSize:(NXSize *)theSize

Gets the size of the main screen, in units of the screen coordinate system, and places it in
the structure pointed to by theSize. Returns self.

getWindowNumbers:count:

- getWindowNumbers:(int **)/ist count:(int *)numWindows
Gets the window numbers for all the Application object’s Windows. A pointer to a
non-NULL-terminated array of ints is placed in the variable indicated by lisz. The number
of entries in this array is placed in the integer indicated by numWindows. The order of
window numbers in the array is the same as their order in the Window Server’s screen list,

which is their front-to-back order on the screen. The application is responsible for freeing -
the list array when done. Returns self.

See also: NXWindowList()

hide:

— hide:sender

Collapses the application’s graphics—including all its windows, menus, and panels—into
a single small window. The hide: message is usually sent using the Hide command in the
application’s main Menu. Returns self.

See also: — unhide:

Classes: Application 2-43

2-44

hostName

— (const char *)hostName

Returns the name of the host machine on which the Window Server that serves the
Application object is running. This method returns the name that was passed to the
receiving Application object through the NXHost default; this name is set either from its
value in the defaults database or by providing a value for NXHost through the command
line. If a value for NXHost isn’t specified, NULL is returned.

isActive
— (BOOL)isActive
Returns YES if the application is currently active, and NO if it isn’t.

See also: -~ activateSelf:, — activate:

isHidden
— (BOOL)isHidden

Returns YES if the application is currently hidden, and NO if it isn’t.

isJournalable
— (BOOL)isJournalable

Returns YES if the application can be journaled, and NO if it can’t. By default, applications
can be journaled. Journaling is handled by the NXJournaler class.

See also: — setJournalable:

isRunning
— (BOOL)isRunning

Returns YES if the application is running, and NO if the stop: method has ended the main
event loop.

See also: — run, — stop:, — terminate:

Chapter 2: Application Kit

keyWindow
— keyWindow

Returns the key Window, that is, the Window that receives keyboard events. If there is no
key Window, or if the key Window belongs to another application, this method returns nil.

See also: — mainWindow, — isKeyWindow (Window)

loadNibFile:owner:

—loadNibFile:(const char *)filename owner:anOwner

Loads interface objects from a NeXT Interface Builder (nib) file. The argument anOwner
is the object that appears as the “File’s Owner” in Interface Builder’s File window. The
objects and their names are read from the specified nib file into storage allocated from the
default zone.

Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages; other objects are instantiated
and are sent an init message.

Returns non-nil if the file filename is successfully opened and read, and nil otherwise.

Invoking loadNibFile:owner: is equivalent to invoking
loadNibFile:owner:withNames:fromZone: when the additional argument values
indicate that names should also be loaded and that memory should be allocated from the
default zone.

See also: —loadNibFile:owner:withNames:fromZone:, NXDefaultMallocZone(),
— awake (Object), — init (Object)

loadNibFile:owner:withNames:

— loadNibFile:(const char *)filename
owner:anObject
withNames:(BOOL)flag

Loads interface objects from a NeXT Interface Builder (nib) file. The argument anOwner
is the object that appears as the “File’s Owner” in Interface Builder’s File window. The
objects are read from the specified interface file into storage allocated from the default
zone. When flag is YES, the objects’ names are also loaded. Names must be loaded if you
use NXGetNamedObject() to get at the objects, but are not otherwise required.

Classes: Application ~ 2-45

2-46

Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages; other objects are instantiated
and are sent an init message.

Returns non-nil if the file filename is successfully opened and read.

Invoking loadNibFile:owner:withNames: is equivalent to invoking
loadNibFile:owner:withNames:fromZone: when zone specifies that memory should be
allocated from the default zone.

See also: — loadNibFile:owner:withNames:fromZone:, NXDefaultMallocZone(),
— awake (Object), — init (Object)

loadNibFile:owner:withNames:fromZone:

—loadNibFile:(const char *)filename
owner:anOwner
withNames:(BOOL)flag
fromZone:(NXZone *)zone

Loads interface objects from a NeXT Interface Builder (nib) file. The argument anOwner
is the object that appears as the “File’s Owner” in Interface Builder’s File window. The
objects are read into memory allocated from zone. When flag is YES, the objects’ names
are also loaded. Names must be loaded if you use NXGetNamedObject() to get at the
objects, but are not otherwise required. Objects that were archived in the nib file (standard
objects from an Interface Builder palette) are sent finishUnarchiving and awake
messages; other objects are instantiated and are sent an init message.

Returns non-nil if the file filename is successfully opened and read.

See also: — awake (Object), — init (Object)

loadNibSection:owner:

— loadNibSection:(const char *)name owner:anOwner

Loads interface objects and their names from the source identified by name. To find the
source, the method searches as follows:

* First, for a section named name within the __NIB segment of the application’s
executable file. (This is where earlier versions of Interface Builder routinely put nib
sections, but not where Project Builder puts them now, so the section will be here only
if the applications was compiled by an earlier version of Interface Builder.)

Chapter 2: Application Kit

* Second, if no such section exists, the method searches certain language directories
within the main bundle for a file with name name and type “nib,” and—if it finds one—
loads the interface objects from there. It searches the language directories that the user
specified for this application, or (if none) those specified by the user’s default language
preferences (see systemLanguages).

* Third, if there’s no file named name in the main bundle’s relevant language directories,
it looks for a file with name name and type “nib” in the main bundle (but outside the
“.Iproj” directories).

The argument anOwner is the object that corresponds to the “File’s Owner” object in
Interface Builder’s File window. The loaded objects are allocated memory from the
default zone.

Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages; other objects are instantiated
and are sent an init message.

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner: is equivalent to invoking ;
loadNibSection:owner:withNames:fromZone: when the additional arguments
indicate that names should also be loaded and that memory should be allocated from
the default zone.

See also: — NXDefaultMallocZone(), + mainBundle (NXBundle),
— getPath:forResource:of Type: (NXBundle), — awake (Object), — init (Object)

loadNibSection:owner:withNames:

— loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag

Loads interface objects and their names from the source identified by name. The source
may be a section within the executable file, or a file within the application bundle, as
described above for the loadNibSection:owner: instance method.

The argument anOwner is the object that corresponds to the “File’s Owner” object in
Interface Builder’s File window. The loaded objects are allocated memory from the default
zone. When flag is YES, the objects’ names are also loaded. Names must be loaded if you
use NXGetNamedObject() to get at the objects, but are not otherwise required.

Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages; other objects are instantiated
and are sent an init message.

Classes: Application 2-47

2-48

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner:withNames is equivalent to invoking
loadNibSection:owner:withNames:fromZone: when the additional argument indicates
that memory should be allocated from the default zone.

See also: NXDefaultMallocZone(), — awake (Object), — init (Object)

loadNibSection:owner:withNames:fromHeader:

— loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag
fromHeader:(const struct mach_header *)header

Loads interface objects from a section within a dynamically loaded object file—that is,
from a file other than those in the application’s main bundle. The argument header
identifies the file, as returned by the function objc_loadModule(). The argument name
identifies a named section within the file’s __NIB segment. When no such file exists, the
method searches the executable file’s bundle, first within its language subdirectories, as
described above for the loadNibSection:owner: instance method.

The argument anOwner is the object that corresponds to the “File’s Owner” object in
Interface Builder’s File window. Memory for the loaded objects is allocated from the
default zone. When flag is YES, the objects’ names are also loaded. Names must be loaded
if you use NXGetNamedObject() to get at the objects, but are not otherwise required.

Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages; other objects are instantiated
and are sent an init message.

A class can use this method in its finishLoading class method to load interface data objects
required by the class but stored separately (for example, because the same interface objects
are also used by other classes).

Returns non-nil if the section or file is successfully opened and read.

Invoking loadNibSection:owner:withNames:fromHeader: is equivalent to invoking
loadNibSection:owner:withNames:fromHeader:fromZone: when the additional
arguments indicate that names should also be loaded and that memory should be allocated
from the default zone.

See also: NXDefaultMallocZone(), — awake (Object), — init (Object)

Chapter 2: Application Kit

loadNibSection:owner:withNames:fromHeader:fromZone:

— loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag
fromHeader:(const struct mach_header *)header
fromZone:(NXZone *)zone

Loads interface objects from a section within a dynamically loaded object file—that is,
from a file other than those in the application’s main bundle. The argument header
identifies the file, as returned by the function objc_loadModule(). The argument name
identifies a named section within the file’s __NIB segment. When no such file exists, the
method searches the executable file’s bundle, first within its language subdirectories, as
described above for the loadNibSection:owner: instance method.

The argument anOwner is the object that corresponds to the “File’s Owner” object in
Interface Builder’s File window. Memory for the loaded objects is allocated from the zone
specified by zone. When flag is YES, the objects’ names are also loaded. Names must be
loaded if you use NXGetNamedObject() to get at the objects, but are not otherwise
required. Objects that were archived in the nib file (standard objects from an Interface
Builder palette) are sent finishUnarchiving and awake messages; other objects are
instantiated and are sent an init message.

A class can use this method in its finishLoading class method to load interface data objects
required by the class but stored separately (for example, because the same interface objects
are also used by other classes).

Returns non-nil if the section is successfully opened and read.

See also: —loadNibSection:owner:withNames:fromZone:, — awake (Object),
— init (Object)

loadNibSection:owner:withNames:fromZone:

~ loadNibSection:(const char *)name
owner:anOwner
withNames:(BOOL)flag
fromZone:(NXZone *)zone

Loads interface objects and their names from the source identified by name. The source
may be a section within the executable file, or a file within the application bundle, as
described above for the loadNibSection:owner: instance method.

Classes: Application 2-49

2-50

The argument anOwner is the object that corresponds to the “File’s Owner” object in
Interface Builder’s File window. When flag is YES, the objects’ names are also loaded.
Names must be loaded if you use NXGetNamedObject() to get at the objects, but are not
otherwise required. Memory for the loaded objects is allocated from the zone specified by
zone. Objects that were archived in the nib file (standard objects from an Interface Builder
palette) are sent finishUnarchiving and awake messages; other objects are instantiated
and are sent an init message.

Returns non-nil if the section or file is successfully opened and read, and nil otherwise.

See also: —loadNibSection:owner:withNames:fromHeader:fromZone:,
— awake (Object), — init (Object)

mainMenu

— mainMenu

Returns the Application object’s main Menu.

"~ mainScreen

— (const NXScreen *)mainScreen

Returns the main screen. If there is only one screen, that screen is returned. Otherwise,
this method attempts to return the key window’s screen. If there is no key window, it
attempts to return the main menu’s screen. If there is no main menu, this method returns
the screen that contains the screen coordinate system origin.

See also: — screen (Window)

mainWindow
~ mainWindow

Returns the main Window. This method returns nil if there is no main window, if the main
window belongs to another application, or if the application is hidden.

See also: — keyWindow, — isMainWindow (Window)

Chapter 2: Application Kit

makeWindowsPerform:inOrder:
~ makeWindowsPerform:(SEL)aSelector inOrder:(BOOL)flag
Sends the Application object’s Windows a message to perform the aSelector method. The

message is sent to each Window in turn until one of them returns YES; this method then
returns that Window. If no Window returns YES, this method returns nil.

If flag is YES, the Application object’s Windows receive the aSelector message in the
front-to-back order in which they appear in the Window Server’s window list. If flag is NO,
Windows receive the message in the order they appear in the Application object’s window
list. This order generally reflects the order in which the Windows were created.

The method designated by aSelector can’t take any arguments.

masterJournaler

— masterJournaler

Returns the Application object’s master journaler. Journaling is handled by the
NXJoumaler class.

See also: — slaveJournalar:

miniaturizeAll:

— miniaturizeAll:sender

This method miniaturizes all of the receiver’s application windows. Returns self.

mounted:
— (int)ymounted:(const char *)fullPath

Invoked by the Workspace Manager when the device identified by fullPath has completed
mounting. You shouldn’t directly send a mounted: message. This is one of the messages
the Application will receive if it has previously sent the Workspace Manager the message
beginListeningForDeviceStatusChanges.

If the delegate implements the method app:mounted:, that message is sent to it. If the
delegate doesn’t implement it, the method is handled by the Application subclass object (if
you created one). The return value is an arbitrary integer; your application defines and
interprets it. If you neither provide a delegate method nor override in a subclass, the default
definition simply returns 0.

See also: — unmounting:ok:, — unmounted:

Classes: Application 2-51

2-52

openFile:ok:

— (int)openFile:(const char *)fullPath ok:(int *)flag
Responds to a remote message requesting the application to open a file. openFile:ok: is
typically sent to the application from the Workspace Manager, although an application can
send it directly to another application. The Application object’s delegate is queried with
appAcceptsAnotherFile: and if the result is YES, it’s sent an app:openFile:type:

message. If the delegate doesn’t respond to either of these messages, they’re sent to the
Application object (if it implements them).

The variable pointed to by flag is set to YES if the file is successfully opened, NO if the file
is not successfully opened, and —1 if the application does not accept another file. Returns
zero.

See also: — app:openFile:type: (delegate method), — openTempkFile:ok:,
— openkFile:ok: (Speaker)

openTempFile:ok:
— (int)openTempFile:(const char *)fullPath ok:(int *)flag
Same as the openFile:ok: method, but app:openTempFile:type: is sent. Returns O.

See also: — app:openTempFile:type: (delegate method),
— openTempkFile:ok: (Speaker)

orderFrontColorPanel:

— orderFrontColorPanel:sender

Displays the color panel. Returns self.

orderFrontDataLinkPanel:

#import NXDataLinkPanel.h
— orderFrontDataLinkPanel:sender

Displays the data link panel. It does this by sending an orderFront: message to the shared
instance of NXDatal.inkPanel (if need be, creating a new one). Returns self.

Chapter 2: Application Kir

peekAndGetNextEvent:
— (NXEvent *)peekAndGetNextEvent:(int)mask

This method is similar to getNextEvent:waitFor:threshold: with a zero timeout and a
threshold of NX_MODALRESPTHRESHOLD.

See also: — getNextEvent:waitFor:threshold, — run, — ranModalFor:,
— currentEvent, — peekNextEvent:into:

peekNextEvent:into:
— (NXEvent *)peekNextEvent:(int)mask into:(NXEvent *)eventPtr

This method is similar to peekNextEvent:into:waitFor:threshold: with a zero timeout
and a threshold of NX_MODALRESPTHRESHOLD.

See also: — peekNextEvent:into:waitFor:threshold, — run, — runModalFor:,
— currentEvent

peekNextEvent:into:waitFor:threshold:
— (NXEvent *)peekNextEvent:(int)mask
into:(NXEvent *)eventPtr

waitFor:(float)timeout
threshold:(int)level

This method is similar to getNextEvent:waitFor:threshold: except the matching event
isn’t removed from the event queue nor is it placed in currentEvent; instead, it’s copied
into storage pointed to by eventPtr.

If no matching event is found, NULL is returned; otherwise, eventPtr is returned.

See also: - getNextEvent:waitFor:threshold:, — run, — runModalFor:,
— currentEvent

powerOff:
— powerOff:(NXEvent *)theEvent

A powerOff: message is generated when a power-off event is sent from the Window
Server. As a general rule, only the Workspace Manager and login window should respond
to this event. If the application was launched by the Workspace Manager, this method does
nothing; instead, the Application object will wait for the powerOffIn:andSave: message
from the Workspace Manager. If the application wasn’t launched from the Workspace

Classes: Application ~ 2-53

2-54

Manager, this method sends the delegate a powerOff: message, assuming there’s a delegate
and it implements the method. Applications that are not launched from the Workspace
Manager are not fully supported, and are not guaranteed any amount of time after receiving
this message. However, applications launched from the Workspace Manager can request
additional time before shutdown from within the app:powerOffIn:andSave method.
Returns self.

See also: — app:powerOffIn:andSave: (delegate method), — powerOffIn:andSave:

powerOffln:andSave:
— (int)powerOffIn:(int)ms andSave:(int)aFlag

You never invoke this method directly; it’s sent from the Workspace Manager. The
delegate or your subclass of Application will be given the chance to receive the
app:powerOffIn:andSave message. The aFlag parameter has no particular meaning and
can be ignored. This method raises an exception, so it never returns.

See also: — app:powerOffIn:andSave: (delegate method)

preventWindowOrdering

— preventWindowOrdering

Suppresses the usual window ordering behavior entirely. Most applications will not need
to use this method since the Application Kit support for dragging will call it when dragging
is initiated. :

printinfo

— printInfo

Returns the Application object’s global PrintInfo object. If none exists, a default one
is created.

Chaprer 2: Application Kit

registerServicesMenuSendTypes:andReturnTypes:

— registerServicesMenuSendTypes:(const char *const *)sendTypes
andReturnTypes:(const char *const *)returnTypes

Registers pasteboard types that the application can send and receive in response to service
requests. If the application has a Services menu, a menu item is added for each service
provider that can accept one of the specified send types or return one of the specified return
types. This method should typically be invoked at application startup time or when an
object that can use services is created. It can be invoked more than once; its purpose is to
ensure that there is a menu item for every service that the application may use. The
individual items will be dynamically enabled and disabled by the event handling
mechanism to indicate which services are currently appropriate. An application (or object
instance that can cut or paste) should register every possible type that it can send and
receive. Returns self.

See also: — validRequestorForSendType:andReturnType: (Responder),
— readSelectionFromPasteboard: (Object method),
— writeSelectionToPasteboard:types: (Object method)

removeWindowsltem:

— removeWindowsltem:aWindow

Removes the item for aWindow in the Windows menu. Note that this method doesn’t
prevent the item from being automatically added again, so you must use Window’s
setExcludedFromWindowsMenu: method if you want the item to remain excluded from
the Windows menu. Returns self.

See also: — changeWindowslItem:title:filename:,
— setExcludedFromWindowsMenu: (Window)

replyPort
~ (port_t)replyPort

Returns the Application object’s reply port. This port is allocated for you automatically by
the run method, and is the default reply port which can be shared by all the Application
object’s Speakers.

See also: - setReplyPort: (Speaker)

Classes: Application 2-55

2-56

resignActiveApp

— resignActiveApp
This method is invoked immediately after the application is deactivated. You never send
resignActiveApp messages directly, but you could override this method in your

Application object to notice when your application is deactivated. Alternatively, your
delegate could implement appDidResignActive:. Returns. self.

See also: — deactivateSelf:, — appDidResignActive: (delegate method)

rightMouseDown:
— rightMouseDown:(NXEvent *)theEvent

Pops up the main Menu. Returns self.

run

—run

Initiates the Application object’s main event loop. The loop continues until a stop: or
terminate: message is received. Each iteration through the loop, the next available event
from the Window Server is stored, and is then dispatched by sending the event to the
Application object using sendEvent:

A run message should be sent as the last statement from main(), after the application’s
objects have been initialized. Returns self if terminated by stop:, but never returns if
terminated by terminate:.

See also: — runModalFor:, — sendEvent:, — stop:, — terminate:,
— appDidInit: (delegate method)

runModalFor:
— (intyrunModalFor:the Window
Establishes a modal event loop for theWindow. Until the loop is broken by a stopModal,

stopModal:, or abortModal message, the application won’t respond to any mouse,
keyboard, or window-close events unless they’re associated with theWindow. If

Chapter 2: Application Kit

stopModal: is used to stop the modal event loop, this method returns the argument passed
to stopModal:. If stopModal is used, it returns the constant NX_RUNSTOPPED. If
abortModal is used, it returns the constant NX RUNABORTED. This method is
functionally similar to the following:

NXModalSession session;
[NXApp beginModalSession:&session for:theWindow] ;
for (;;) {
if ([NXApp runModalSession:&session] != NX_RUNCONTINUES)
break;

}
[NXApp endModalSession:&session];

See also: - stopModal, — stopModal:, — abortModal, — runModalSession:

runModalSession:

— (int)runModalSession:(NXModalSession *)session

Runs a modal session represented by session, as defined in a previous invocation of
beginModalSession:for:. A loop using this method is similar to a modal event loop run
with rumModalFor:, except that with this method the application can continue processing
between method invocations. When you invoke this method, events for the Window of this
session are dispatched as normal; this method returns when there are no more events. You
must invoke this method frequently enough that the window remains responsive to events.

If the modal session was not stopped, this method returns NX_RUNCONTINUES. If
stopModal was invoked as the result of event procession, NX_RUNSTOPPED is returned.
If stopModal: was invoked, this method returns the value passed to stopModal:. The
NX_abortModal exception raised by abortModal isn’t caught.

See also: — beginModalSession:, — endModalSession, — stopModal:, — stepModal,
- runModalFor:

runPagelLayout:

— runPageLayout:sender

Brings up the Application object’s Page Layout panel, which allows the user to select the
page size and orientation. Returns self.

Classes: Application ~ 2-57

2-58

sendAction:to:from:
— (BOOL)sendAction:(SEL)aSelector to:aTarget from:sender

Sends an action message to an object. If aTarget is nil, the Application object looks for an
object that can respond to the message—that is, for an object that implements a method
matching aSelector. It begins with the first responder of the key window. If the first
responder can’t respond, it tries the first responder’s next responder and continues
following next responder links up the Responder chain. If none of the objects in the key
window’s responder chain can handle the message, the Application object attempts to send
the message to the key Window’s delegate.

If the delegate doesn’t respond and the main window is different from the key window,
NXApp begins again with the first responder in the main window. If objects in the main
window can’t respond, the Application object attempts to send the message to the main

-window’s delegate. If still no object has responded, NXApp tries to handle the message

itself. If NXApp can’t respond, it attempts to send the message to its own delegate.

Returns YES if the action is applied; otherwise returns NO.

sendEvent:
— sendEvent:(NXEvent *)theEvent

Sends an event to the Application object. You rarely send sendEvent: messages directly
although you might want to override this method to perform some action on every event.
sendEvent: messages are sent from the main event loop (the run method). sendEvent is
the method that dispatches events to the appropriate responders; the Application object
handles application events, the Window indicated in the event record handles window
related events, and mouse and key events are forwarded to the appropriate Window for
further dispatching. Returns self.

~ See also: — setAutoupdate:

servicesMenu

— servicesMenu

Returns the Application object’s Services menu. Returns nil if no Services menu has been
created.

See also: — setServicesMenu:

Chapter 2: Application Kit

setApplListener:

— setAppListener:alistener
Sets the Listener that will receive messages sent to the port that’s registered for the
application. If you want to have a special Listener reply to these messages, you must either
send a setAppListener: message before the run message is sent to the Application object,
or send this message from the delegate method appWilllnit:, so that aListener is properly

registered. This method doesn’t free the Application object’s previous Listener object.
Returns self.

See also: — appListenerPortName, — appWilllnit: (delegate method)

setAppSpeaker:
— setAppSpeaker:aSpeaker

Sets the Application object’s Speaker. If you don’t send a setAppSpeaker: message before
the Application object initializes, a default Speaker is created for you. This method doesn’t
free the Application object’s previous Speaker object.

See also: — appWilllnit: (delegate methoci)

setAutoupdate:

— setAutoupdate:(BOOL)flag
Turns on or off automatic updating of the application’s windows. (Until this message is
sent, automatic updating is not enabled.) When automatic updating is on, an update
message is sent to each of the application’s Windows after each event has been processed.

This can be used to keep the appearance of menus and panels synchronized with your
application. Returns self.

See also: — updateWindows

setDelegate:
— setDelegate:anObject

Sets the Application object’s delegate. The notification messages that a delegate can expect
to receive are listed at the end of the Application class specification. The delegate doesn’t
need to implement all the methods. Returns self.

See also: — delegate

Classes: Application 2-59

setimportAlpha:
— setImportAlpha:(BOOL)flag

Determines whether your application will accept translucent colors in objects it receives.
This affects colors imported by the View method acceptsColor:atPoint:, or by
NXColorPanel’s dragColor:withEvent:fromView:. It has no effect on internal
programmatic manipulations of colors.

A pixel may be described by its color (values for red, blue, and green) and also by its
opacity, measured by a coefficient called alpha. When alpha is 1.0, a color is completely
opaque and thus hides anything beneath it. When alpha is less then 1, the effective color is
derived partly from the color of the object itself and partly from the color of whatever is
beneath it. When flag is YES, the application accepts a color that includes an alpha
coefficient, and forces an alpha value of 1.0 for a source where alpha was not specified. In
addition, when flag is YES, a ColorPanel opened within the application includes an opacity
slider.

When the Application has received a setImportAlpha: message with flag set to NO, all
imported colors are forced to have an alpha value of NX_NOALPHA, and there’s no
opacity slider in the ColorPanel. The default state is NO, do not import alpha.

This method has the same effect as the NXColorPanel method setShowAlpha:. The only
difference is that you can invoke setImportAlpha: even before an NXColorPanel has been
instantiated. Since the two methods set the same internal flag, each can reverse the effect
of the other.

Returns self.

See also: — doesImportAlpha, — doesShowAlpha (NXColorPanel), — setShowAlpha:
(NXColorPanel)

setJournalable:
— setJournalable:(BOOL)flag

Sets whether the application is journalable. Returns self. Journaling is handled by the’
NXJournaler class.

See also: —isJournalable

2-60 Chapter 2: Application Kir

setMainMenu:
— setMainMenu:aMenu

Makes aMenu the Application object’s main menu. Returns self.

See also: — mainMenu

setPrintinfo:

— setPrintInfo:info

Sets the Application object’s global PrintInfo object. Returns the previous PrintInfo object,
or nil if there was none.

See also: - printInfo

setServicesMenu:

— setServicesMenu:aMenu
Makes aMenu the Application object’s Services menu. Returns self.

See also: — servicesMenu

setWindowsMenu:
— setWindowsMenu:aMenu

Makes aMenu the Application object’s Windows menu. Returns self.

See also: — windowsMenu

showHelpPanel:
— showHelpPanel:sender

Shows the application’s Help panel. If no Help panel yet exists, the method first creates a
default Help panel. If the delegate implements app:willShowHelpPanel:, notifies it.
Returns self.

Classes: Application 2-61

2-62

slaveJournaler
—slaveJournaler

Returns the Application object’s slave journaler. Journaling is handled by the NXJournaler
class.

See also: — masterJournalar:

stop:
- stop:sender
Stops the main event loop. This method will break the flow of control out of the run

method, thereby returning to the main() function. A subsequent run message will restart
the loop. '

If this method is applied during a modal event loop, it will break that loop but not the main
event loop. Returns self.

See also: — terminate:, — run, — runModalFor:, — ranModalSession:

stopModal

— stopModal
Stops a modal event loop. This method should always be paired with a previous
runModalFor: or beginModalSession:for: message. When runModalFor: is stopped
with this method, it returns NX_RUNSTOPPED. This method will stop the loop only if
it’s executed by code responding to an event. If you need to stop a runModalFor: loop

from a procedure registered with DPSAddTimedEntry(), DPSAddPort(), or
DPSAddFD(), use the abortModal method. Returns self.

See also: - stopModal:, — runModalFor:, — runModalSession:, — abortModal

stopModal:
— stopModal:(int)returnCode

Just like stopModal except argument returnCode allows you to specify the value that
runModalFor: will return. Returns self.

See also: — stopModal, - runModalFor:, — abortModal

Chapter 2: Application Kit

systemLanguages
— (const char *const *)systemLanguages

Returns a list of the names of languages in order of the user’s preference. If your
application will respond to the user’s language preference, this method is the way to
discover what the preferences are. The return is a NULL-terminated list of pointers to
NULL-terminated strings.

If the user has recorded preferences specific to the application now in use, the method
returns them. If the user has recorded no preferences for the application, but has recorded
a global preference, the method returns the list of global preferences. (Note that just
because the user has recorded a preference doesn’t mean than the language files are in fact
installed on the host that is executing the application.) If this method returns NULL, the
user has no language preference.

terminate:

— terminate:sender

Terminates the application. (This is the default action method for the application’s Quit
menu item.) Each use of terminate: invokes appWillTerminate: to notify the delegate
that the application will terminate. If appWillTerminate: returns nil, terminate: returns
self; control is returned to the main event loop, and the application isn’t terminated.
Otherwise, this method frees the Application object and calls exit() to terminate the
application. Note that you should not put final cleanup code in your application’s main()
function; it will never be executed.

See also: — stop, — appWillTerminate: (delegate method), exit()

tryToPerform:with:
— (BOOL)tryToPerform:(SEL)aSelector with:anObject

Aids in dispatching action messages. The Application object tries to perform the method
aSelector using its inherited Responder method tryToPerform:with:. If the Application
object doesn’t perform aSelector, the delegate is given the opportunity to perform it using
its inherited Object method perform:with:. If either the Application object or the
Application object’s delegate accept aSelector, this method returns YES; otherwise it
returns NO.

See also: — tryToPerform:with: (Responder), — respondsTo: (Object),
— perform:with: (Object)

Classes: Application 2-63

2-64

unhide
— (int)unhide

Responds to an unhide message sent from Workspace Manager. You shouldn’t invoke this
method; invoke unhide: instead. Returns zero.

See also: — unhide:

unhide:
— unhide:sender
Restores a hidden application to its former state (all of the windows, menus, and panels

visible), and makes it the active application. This method is usually invoked as the result
of double-clicking the icon for the hidden application. Returns self.

See also: — hide:, — unhideWithoutA ctivation:, — activateSelf:

unhideWithoutActivation:

— unhideWithoutActivation:sender

Unhides the application but doesn’t make it the active application. You might want to
invoke activateSelf:NO after invoking this method to make the receiving application
active if there is no active application. Returns self.

See also: — hide:, — activateSelf:

unmounted:
— (int)junmounted:(const char *)fullPath

Invoked by the Workspace Manager when it has completed unmounting the device
identified by fullPath. You shouldn’t directly send an unmounted: message. This is one
of the messages the Application will receive if it has previously sent the Workspace
Manager the message beginListeningForDeviceStatusChanges.

If the delegate implements the method app:unmounted:, that message is sent to it. If the
delegate doesn’t implement it, the method is handled by the Application subclass object (if
you created one). The return is an arbitrary integer; your application defines and interprets
it. If you neither provide a delegate method nor override in a subclass, the default definition
simply returns 0.

See also: — mounted:, — unmounting:ok:

Chapter 2: Application Kit

unmounting:ok:
— (int)yunmounting:(const char *)fullPath ok:(int *)flag

Invoked and sent to all active applications when the Workspace Manager has received a
request to unmount the device identified by fullPath. This serves to warn applications that
may be making use of the device. You shouldn’t directly send unmounting:ok: messages.

The method sets flag to point to YES to indicate that the Application assents to unmounting,
and NO if it objects.

If the delegate implements the method app:unmounting:, that message is sent to it, and
flag is set to whatever the delegate returns. If the delegate doesn’t implement
app:unmounting:, the method is handled by the Application subclass object (if you
created one). The default behavior is to close all files on the device, and if the current
working directory is on the device, to change the current working directory to the user’s
home directory.

The return value is an arbitrary integer; your application defines and interprets it. If you
neither provide a delegate method nor override in a subclass, the default definition simply
returns 0.

updateWindows
— updateWindows

Sends an update message to the Application object’s visible Windows. When automatic
updating has been enabled, this method is invoked automatically in the main event loop
after each event. An application can also send updateWindows messages at other times to
have Windows update themselves.

If the delegate implements appWillUpdate:, that message is sent to the delegate before the
windows are updated. Similarly, if the delegate implements appDidUpdate:, that message
is sent to the delegate after the windows are updated. Returns self.

See also: — setAutoupdate:, — appWillUpdate: (delegate method),
— appDidUpdate: (delegate method)

updateWindowsltem:

— updateWindowsItem:aWindow

Updates the item for aWindow in the Windows menu to reflect the edited status of aWindow.
You rarely need to invoke this method because it is invoked automatically when the edited
status of a Window is set. Returns self.

See also: — changeWindowslItem:title:filename:, — setDocEdited: (Window)

Classes: Application 2-65

2-66

validRequestorForSendType:andReturnType:

- validRequestorForSend Type:(NXAtom)sendType
andReturnType:(NXAtom)returnType

Passes this message on to the Application object’s delegate, if the delegate can respond (and
isn’t a Responder with its own next responder). If the delegate can’t respond or returns nil,
this method returns nil, indicating that no object was found that could supply typeSent data
for a remote message from the Services menu and accept back typeReturned data. If such
an object was found, it is returned.

Messages to perform this method are initiated by the Services menu.

See also: — validRequestorForSend Type:andReturnType: (Responder),
- registerServicesMenuSend Types:andReturnTypes:,

— writeSelectionToPasteboard:types: (Object),

— readSelectionFromPasteboard: (Object)

windowlList

— windowList

Returns the List object used to keep track of all the Application object’s Windows,
including Menus, Panels, and the like. In the current implementation, this list also contains
global (shared) Windows.

windowsMenu

— windowsMenu

Returns the Application object’s Windows menu. Returns nil if no Windows menu has
been created.

Chapter 2: Application Kit

Methods Implemented by the Delegate

app:applicationDidLaunch:

— app:sender applicationDidLaunch:(const char *)appName
Implement this method to respond to an applicationDidLaunch: message sent from the
Workspace Manager to sender (an Application object), informing it that an application
named appName has launched. This is one of the messages the Application will receive if

it has previously sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

See also: — applicationDidLaunch:

app:applicationDidTerminate:

— app:sender applicationDidTerminate:(const char *)appName
Implement this method to respond to an applicationDidTerminate: message sent from the
Workspace Manager to sender (an Application object), informing it that an application
named appName has terminated. This is one of the messages the Application will receive

if it has previously sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

See also: — applicationDidTerminate:

app:applicationWillLaunch:

— app:sender applicationWillLaunch:(const char *)appName
Implement this method to respond to an applicationWillLaunch: message sent from the
Workspace Manager to sender (an Application object), informing it that an application
named appName is about to launch. This is one of the messages the Application will

receive if it has previously sent the Workspace Manager the message
beginListeningForApplicationStatusChanges.

See also: — applicationWillLaunch:

Classes: Application ~ 2-67

2-68

app:fileOperationCompleted:
— app:sender fileOperationCompleted:(int)operation

Sent to the delegate when sender (an application) has completed the file operation identified
by operation. The argument is the integer returned by the method that requested the file
operation: performFileOperation:source:destination:files:options: (part of
NXWorkspaceRequest protocol).

app:mounted:

— app:sender mounted:(const char *)fullPath

Implement this method to respond to a mounted: message sent from the Workspace
Manager to sender (an Application object), informing it that a device (for example a floppy
disk or an optical disk) has been mounted. This is one of the messages the Application will
receive if it has previously sent the Workspace Manager the message '
beginListeningForDeviceStatusChanges.

See also: — mounted:

app:openFile:type:
— (int)app:sender
openFile:(const char *)filename
type:(const char *)aType

Invoked from within openFile:ok: after it has been determined that the application can
open another file. The method should attempt to open the file of type fype and name
filename, returning YES if the file is successfully opened, and NO otherwise. (Although a
file’s type may by convention be reflected in its name, fype is not a synonym for extension.
filename should not exclude part of the name just because it can sometimes be inferred from

type.)
This method is also invoked from within openTempFile:ok: if neither the delegate nor the
Application subclass responds to app:openTempFile:type:

See also: — openFile:ok:, — openTempFile:ok:, —app:openFileWithoutUI:type:,
— app:openTempFile:type:

\ Chapter 2: Application Kit

app:openFileWithoutUl:type:

— (NXDataLinkManager *)app:sender
openFileWithoutUI:(const char *)filename
type:(const char *)type

Sent to the delegate when sender (an Application) requests that the file of type type and
name filename be opened as a linked file. The file is to be opened without bringing up its
application’s user interface; that is, work with the file will be under programmatic control
of sender, rather than under keyboard control of the user.

Returns a pointer to the NXDatalinkManager that will coordinate data flow between the
two applications.

See also: — app:openFile:type:

app:openTempFile:type:
— (int)app:sender
openTempFile:(const char *)filename
type:(const char *)aType

Invoked from within openTempkFile:ok: after it has been determined that the application
can open another file. The method should attempt to open the file filename with the
extension aType, returning YES if the file is successfully opened, and NO otherwise.

By design, a file opened through this method is assumed to be temporary; it’s the
application’s responsibility to remove the file at the appropriate time.

See also: — openFile:ok:, - openTempFile:ok:

app:powerOffln:andSave:
— app:sender powerOffIn:(int)ms andSave:(int)aFlag

Invoked from the powerOffIn:andSave: method after the Workspace Manager receives a
power-off event. This method is invoked only if the application was launched from the
Workspace Manager. The argument ms is the number of milliseconds to wait before
powering down or logging out. The argument aFlag has no particular meaning at this time,
and can be ignored. You can ask for additional time by sending the
extendPowerOffBy:actual: message to the Workspace Manager from within your
implementation of this method. The Workspace Manager will power the machine down (or
log out the user) as soon as all applications terminate, even if there’s time remaining on the
time extension. '

See also: — extendPowerOffBy:actual: (Speaker)

Classes: Application — 2-69

2-70

app:unmounted:

— app:sender unmounted:(const char *)fullPath
Implement this method to respond to an unmounted: message sent from the Workspace
Manager to sender (an Application object), informing it that the device identified by
fullPath has been unmounted. This is one of the messages the Application will receive if

it has previously sent the Workspace Manager a beginListeningForDeviceStatusChanges
message.

See also: — unmounted, — app:mounted:

app:unmounting:

— (int)app:sender unmounting:(const char *)fullPath
Invoked when the device mounted at fullPath is about to be unmounted. This method is
invoked from unmounting:ok: and is invoked only if the application was launched from
the Workspace Manager. The Application object or its delegate should do whatever is

necessary to allow the device to be unmounted. Specifically, all files on the device should
be closed and the current working directory should be changed if it’s on the device.

See also: — unmounting:ok:, — app:unmounted:

app:willShowHelpPanel:
— app:sender willShowHelpPanel:panel

Implement this to respond to notice that sender (an Application) has received a
showHelpPanel: message and is about to put up the Help panel identified by panel. The
return value doesn’t matter.

See also: — showHelpPanel:

appAcceptsAnotherFile:

— (BOOL)appAcceptsAnotherFile:sender
Invoked from within Application’s openFile:ok: and openTempFile:ok: methods, this
method should return YES if it’s okay for the application to open another file, and NO if

isn’t. If neither the delegate nor the Application object responds to the message, then the
file shouldn’t be opened.

See also: ~ openFile:ok:, — openTempFile:ok:

Chapter 2: Application Kir

appDidBecomeActive:
— appDidBecomeActive:sender

Implement to respond to notification sent from the Workspace Manager immediately after
the Application becomes active.

See also: — applicationDidLaunch:

appDidHide:
— appDidHide:sender
Invoked immediately after the application is hidden.

See also: — hide:, — unhide:, — appDidUnhide: (delegate method)

appDidinit:
— appDidInit:sender

Invoked after the application has been launched and initialized, but before it has received
its first event. The delegate or the Application subclass can implement this method to
perform further initialization.

See also: — appWillInit: (delegate method)

appDidResignActive:
— appDidResignActive:sender

Invoked immediately after the application is deactivated.

See also: — becomeActiveApp, — resignActiveApp

appDidUnhide:
— appDidUnhide:sender

Invoked immediately after the application is unhidden.

See also: — hide:, — unhide:, — appDidHide: (delegate method)

Classes: Application 2-11

2-72

appDidUpdate:
— appDidUpdate:sender

Invoked immediately after the Application object updates its Windows.

See also: — updateWindows, — updateWindowsItem:, — appWillUpdate:
(delegate method)

applicationDefined:
— applicationDefined:(NXEvent *)theEvent

Invoked when the application receives an application-defined (NX_APPDEFINED) event.
See the description of this method under “Instance Methods,” above.

appWillInit:

— appWilllnit:sender
Invoked before the Application object is initialized. This method is invoked before the
Application object has initialized its Listener and Speaker objects and before any
app:openFile:type: messages are sent to your delegate. The Application object’s Listener

and Speaker objects will be created for you immediately after invoking this method if they
have not been previously created.

See also: — appDidlInit: (delegate method), — appListener, — appSpeaker

appWillTerminate:

— appWillTerminate:sender
Invoked from within the terminate: method immediately before the application
terminates. If this method returns nil, the application is not terminated, and control is

returned to the main event loop. If you want to allow the application to terminate, you
should put your clean up code in this method and return non-nil.

See also: — terminate:

Chapter 2: Application Kit

appWillUpdate:
— appWillUpdate:sender
Invoked immediately before the Application object updates its Windows.

See also: —updateWindows, — updateWindowsItem:, — appDidUpdate:
(delegate method)

powerOff:

— powerOff:(NXEvent *)theEvent
Invoked from the powerOff: Application method only if the application wasnt launched
from the Workspace Manager. Only applications launched from the Workspace Manager
are fully supported, so your application isn’t guaranteed any amount of processing time

after this message is received. This notification is provided mainly for the use of alternate
login window programs.

See also: — powerOff:, — powerOffIn:andSave:

Classes: Application 2-713

2-74

Box

Inherits From: View : Responder : Object

Declared In: appkit/Box.h

Class Description

A Box object is a simple View that can do two things: It can draw a border around itself
and it can title itself. You use a Box to group, visually, some number of other Views. These
other Views are added to the Box through the typical subview-adding methods, such as
addSubview: and replaceSubview:with:.

A Box contains a content area, a rectangle set within the Box’s frame in which the Box’s
subviews are displayed. The size and location of the content area depends on the Box’s
border type, title location, the size of the font used to draw the title, and an additional
measure that you can set through the setOffsets:: method. When you create a Box, a
instance of View is created and added (as a subview of the Box object) to fill the Box’s
content area. If you replace this content view with a View of your own, your View will be
resized to fit the content area. Similarly, as you resize a Box its content view is
automatically resized to fill the content area.

The Views that you add as subviews to a Box are actually added to the Box’s content
view—View’s subview-adding methods are redefined by Box to ensure that a subview is
correctly placed in the view hierarchy. However, you should note that the subviews method
isn’t redefined: It returns a List containing a single object, the Box’s content view.

Instance Variables

id cell;

id contentView;
NXSize offsets;
NXRect borderRect;
NXRect titleRect;

Chapter 2: Application Kir

struct _bFlags {
unsigned int borderType:2;
unsigned int titlePosition:3;

} bFlags;

cell The cell that draws the Box’s title.

contentView The Views that fills the Box’s content area.

offsets Offsets of the content view from the Box’s border.
borderRect The Box’s border rectangle.

titleRect The rectangle in which the title cell is drawn.
bFlags.borderType A constant describing the Box’s border type.
bFlags.titlePosition A constant describing the position of the Box’s title.

Method Types

Initializing and freeing — initFrame:
— free

Setting the border and title — setBorderType:
— borderType
— setTitlePosition:
— titlePosition
- setTitle:
— title
— setFont:
— font
—cell

Setting and placing the content view
— setContentView:
— contentView
— setOffsets:: - -
— getOffsets:

Putting Views in the Box — addSubview:
' — replaceSubview:with:

Resizing the Box — setFrameFromContentFrame:
— sizeTo::
— sizeToFit

Classes: Box 2-75

2-76

Drawing the Box — drawSelf::

Archiving — awake
: —read:
— write:

Instance Methods

addSubview:

— addSubview:aView

Adds aView to the Box. This is done by forwarding the addSubview:aView message to the
Box’s content view. Note that this means aView’s location and size are reckoned within the
content view’s coordinate system. After invoking this method, you should send the Box a
sizeToFit message. Returns self.

awake

— awake

Lays out the Box during the unarchiving process so that it can be displayed. You should
never invoke this method directly.

borderType
— (int)borderType

Returns the Box’s border type, one of NX_LINE, NX_GROOVE, NX_BEZEL, or
NX_NOBORDER. By default, a Box’s border type is NX_GROOVE.

See also: — setBorderType:

cell

- cell

Returns the cell used to display the Box’s title.

Chapter 2: Application Kit

contentView

— contentView

Returns the Box’s content view. The content view is created automatically when the Box
is created, and resized as the Box is resized (you should never send frame-altering messages
directly to a Box’s content view). You can replace it with a View of your own through the
setContentView: method.

See also: — setContentView:

drawSelf::
— drawSelf:(const NXRect *)rects :(int)rectCount

Fills the Box’s background with opaque, light gray (NX_LTGRAY) paint, then draws the
object’s title, border, and its subviews (you can’t change the background color short of
creating your own Box subclass). You never invoke this method directly; it’s invoked by
the display methods inherited from the View class. Returns self.

font
—font

Returns the Font object used to draw the Box’s title. By default, the Font is the 12.0 point
system font (NXSystemFont).

See also: — setFont:

free

— free

Frees the Box and all its subviews.

getOffsets:
— getOffsets:(NXSize *)theSize

Returns, by reference in theSize, the horizontal and vertical distances between the Box’s
border and its content area, measured in the Box’s coordinate system. The default is 5.0 in
both dimensions. Returns self.

See also: — setOffsets::

Classes: Box 2-77

2-78

initFrame:
— initFrame:(const NXRect *)frameRect

The designated initializer for the Box class, this method initializes the Box with the
following values:

Attribute Value

frame frameRect

title “Title”

border type NX_RIDGE

title position NX_ATTOP

font 12.0 point NXSystemFont
offsets 5.0 in both dimensions

In addition, the Box’s content view is automatically created and added as the Box’s single
subview, and the Box identifies itself as an opaque View. Returns self.

read:
—read:(NXTypedStream *)stream
Reads the Box from the typed stream stream. Returns self.

See also: — write:

replaceSubview:with:

— replaceSubview:oldView with:newView

Replace oldView with newView in the subview list of the Box’s content view. This method
does nothing and returns nil if oldView isn’t a subview of the content view or if newView
isn’t a View. Otherwise, this method returns oldView.

See also: — addSubview:

Chapter 2: Application Kit

setBorderType:
— setBorderType:(int)aType

Sets the border type to aType, which must be NX_LINE, NX_GROOVE, NX_BEZEL, or
NX_NOBORDER (a Box’s default border type is NX_GROOVE). If the size of the new
border is different from that of the old border, the content view is resized to absorb the
difference. The Box isn’t redisplayed. Returns self.

See also: — borderType

setContentView:

—setContentView:aView

Sets the Box’s content view to aView, resizing the View to fit within the Box’s current
content area. The old content view is returned.

See also: — contentView

setFont:
— setFont:fonrObj

Sets fontObj as the Font object used to draw the Box’s title. By default, the title is drawn
using the 12.0 point system font (NXSystemFont). If the size of the new Font is different
from that of the old Font, the content view is resized to absorb the difference. The Box isn’t
redisplayed. Returns self.

See also: + newFont:size: (Font)

setFrameFromContentFrame:
— setFrameFromContentFrame:(const NXRect *)contentFrame

Places the Box so its content view lies on contentFrame, reckoned in the coordinate system
of the Box’s superview. Returns self.

See also: - setOffsets::, — setFrame: (View)

Classes: Box 2-79

2-80

setOffsets::

— setOffsets:(NXCoord)horizontal :(NXCoord)vertical
Sets the horizontal and vertical distance between the border of the Box and its content view.
The horizontal value is applied (reckoned in the Box’s coordinate system) fully and equally

to the left and right sides of the Box. The vertical value is similarly applied to the top and
bottom. Returns self

Unlike changing a Box’s other attributes, such as its title position or border type, changing
the offsets doesn’t automatically resize the content view. In general, you should send a
sizeToFit message to the Box after changing the size of its offsets. This causes the content
view to remain unchanged while the Box is wrapped around it.

setTitle:
— setTitle:(const char *)aString

Sets the title to aString. By default, a Box’s title is “Title”. After invoking this method you
should send a size ToFit message to the Box to ensure that it’s wide enough to accommodate
the length of the title. Returns self.

See also: — title, — setFont:

setTitlePosition:

— setTitlePosition:(int)aPosition

Sets the title position to aPosition, which can be one of the values listed in the following
table. The default position is NX_ATTOP.

Value : Meaning

NX_NOTITLE The Box has no title

NX_ABOVETOP Title positioned above the Box’s top border
NX_ATTOP Title positioned within the Box’s top border
NX_BELOWTOP Title positioned below the Box’s top border
NX_ABOVEBOTTOM Title positioned above the Box’s bottom border
NX_ATBOTTOM Title positioned within the Box’s bottom border

NX_BELOWBOTTOM Title positioned below the Box’s bottom border

If the new title position changes the size of the Box’s border area, the content view is resized
to absorb the difference. The Box isn’t redisplayed. Returns self.

See also: — getTitlePosition:

Chapter 2: Application Kit

sizeTo::

— sizeTo:(NXCoord)width :(NXCoord)height
Resizes the Box to width and height. The Box’s content view is resized accordingly; if the
new width or height of the Box leaves no room for the content view (after subtracting the

room needed to accommodate the border, title, and offsets), the respective dimension of the
content view will be zero. Returns self.

sizeToFit
— sizeToFit

Resizes and moves the Box’s content view so that it just encloses its subviews. The Box
itself is then moved and resized to wrap around the content view. The Box’s width is
constrained so its title will be fully displayed.

You should invoke this method after:

¢ Adding a subview (to the content view).

*» Altering the size or location of such a subview.
+ Setting the Box’s offsets.

» Setting the Box’s title.

The mechanism by which the content view is moved and resized depends on whether the
object responds to its own sizeToFit message: If it does respond, then that message is sent
and the content view is expected to be so modified. If the content view doesn’t respond, the
Box moves and resizes the content view itself.

Returns self.

title
— (const char *)title

Returns the Box’s title. By default, a Box’s title is “Title”.

See also: —setTitle:

Classes: Box 2-81

titlePosition
— (int)titlePosition

Returns a constant representing the title position. See the description of setTitlePosition:
for a list of the title position constants.

See also: — setTitlePosition:

write:
— write:(NXTypedStream *)stream

Writes the Box to the typed stream stream. Returns self.

See also: —read:

2-82 Chapter 2: Application Kir

Button

Inherits From: Control : View : Responder : Object

Declared In: appkit/Button.h

Class Description

Button is a subclass of Control that intercepts mouse-down events and sends an action
message to a target object when it’s clicked or pressed. By virtue of its ButtonCell, Button
is a two-state Control—it’s either “off” or “on”—and it displays its state depending on the
configuration of the ButtonCell. Button acquires other attributes of ButtonCell. The state
is used as the value, so Control methods like setIntValue: actually set the state (the
methods setState: and state are provided for more conceptually accurate setting of the
state). The Button can send its action continuously and display highlighting in several
different ways. What’s more, a Button can have a key equivalent that’s eligible for
triggering whenever the Button’s Panel or Window is key.

Button and Matrix both provide a Control View needed to display a ButtonCell object.
However, while Matrix requires you to access the ButtonCells directly, most of Button’s
methods are covers for identically declared methods in ButtonCell. The only ButtonCell
methods that don’t have covers relate to the font used to display the key equivalent, and to
specific methods for highlighting or showing the Button’s state (these last are usually set
together with Button’s setType: method).

Creating a Subclass of Button

The initFrame:icon:tag:target:action:key:enabled: method is the designated initializer
for Buttons that initially display only icons. Buttons that initially display only text have the
designated initializer initFrame:text:tag:target:action:key:enabled:. Override one or

both of these methods if you create a subclass of Button that performs its own initialization.

In particular, if you want to use a custom ButtonCell subclass with your subclass of Button,
you have to override the setCellClass: method as well as the designated initializers, as
described in “Creating New Controls” in the Control class specification.

See the ButtonCell class specification for more on Button’s behavior.

Classes: Butron — 2-83

2-84

Instance Variables

None declared in this class.

Method Types

Setting Button’s Cell class

Initializing a Button

Setting the Button type
Setting the state

Setting the repeat interval

Setting the titles

Setting the icons

Modifying graphic attributes

Displaying the Button

Chapter 2: Application Kit

+ setCellClass:

— init

— initFrame:

- initFrame:icon:tag:target:action:key:enabled:
- initFrame:title:tag:target:action:key:enabled:
- setType:

— setState:
— State

- setPeriodicDelay:andInterval:

— getPeriodicDelay:andInterval:

— setTitle:

— setTitleNoCopy:
— title

— setAltTitle:

— altTitle

— setlcon:

— setlcon:position:
—icon

— setAltlcon:

— altlcon

— setlmage:
—image

— setAltImage:
—altlmage
—setIconPosition:
— iconPosition

— setTransparent:
— isTransparent
— setBordered:

— isBordered

— display
— highlight:

Setting the key equivalent ~ setKeyEquivalent:
— keyEquivalent

Handling events and action messages
— acceptsFirstMouse
— performClick:
— performKeyEquivalent:

Setting the Sound — setSound:
—sound

Class Methods

setCellClass:
+ setCellClass:classld

Configures the Button class to use instances of classld for its Cells. classld should be the
id of a subclass of ButtonCell, obtained by sending the class message to either the Cell
subclass object or to an instance of that subclass. The default Cell class is ButtonCell.
Returns self.

If this method isn’t overridden by a subclass of Button, then when it’s sent to that subclass,
Button and any other subclasses of Button that don’t override the methods mentioned
below will use the new Cell subclass as well. To safely set a Cell class for your subclass of
Button, override this method to store the Cell class in a static id. Also, override the
designated initializer to replace the Button subclass instance’s Cell with an instance of the
Cell subclass stored in that static id. See “Creating New Controls” in the Control class
specification’s class description for more information.

Instance Methods

acceptsFirstMouse
— (BOOL)acceptsFirstMouse

Returns YES. Buttons always accept the mouse-down event that activates a Window,
regardless of whether the Button is enabled.

Classes: Button — 2-85

alticon
— (const char *)altIcon

Returns the name of the NXImage that appears on the Button when it’s in its alternate state,
or NULL if there is no alternate icon or the NXImage has no name. This NXImage is
displayed only for Buttons that highlight or show their alternate state by displaying their
alternate contents (as opposed to simply lighting or pushing in).

See also: —setAltlcon:, — setlconPosition:, — altImage, — icon, — image, — setType:

altimage
— altImage

Returns the NXImage that appears on the Button when it’s in its alternate state, or nil if
there is no alternate NXImage. This Button only displays its alternate NXImage if it
highlights or shows its alternate state by displaying its alternate contents.

See also: —setAltImage:, — setIconPosition:, — altIcon, — image, — icon, - setType:

altTitle
— (const char *)altTitle

Returns the string that appears on the Button when it’s in its alternate state, or NULL if
there isn’t one. The alternate title is only displayed if the Button highlights or shows its
alternate state by displaying its alternate contents.

See also: — setAltTitle:, — title, — setType:

display
— display

Displays the Button. This method is overridden from View so that
displayFromOpaqueAncestor::: is invoked if the Button is not opaque. Returns self.

See also: —isOpaque (Cell), - isTransparent, — setTransparent:

2-86 Chapter 2: Application Kit

getPeriodicDelay:andInterval:
~ getPeriodicDelay:(float *)delay andInterval:(float *)interval

Returns self, and by reference the delay and interval periods for a continuous Button. delay
is the amount of time (in seconds) that a continuous Button will pause before starting to
periodically send action messages to the target object. interval is the amount of time (also
in seconds) between those messages.

See also: — setContinuous: (Control), — setPeriodicDelay:andInterval:

highlight:
— highlight:(BOOL)flag

If the highlight state of the cell is not equal to flag, the Button is highlighted and the
highlight state of the cell is set to flag. Highlighting may involve the Button appearing
“pushed in” to the screen, displaying its alternate title or icon, or lighting. This method
issues a flushWindow message after highlighting the Button. Returns self.

See also: —setType:

icon

— (const char *)icon

Returns the name of the NXImage that appears on the Button when it’s in its normal state,
or NULL if there is no such NXImage or the NXImage doesn’t have a name. A Button that
doesn’t display its alternate contents to highlight or show its alternate state will always
display its normal icon.

See also: - setlcon:, — setIcon:position:, — setIconPosition:, — image, — altIcon,
— altImage, — setType:

iconPosition

— (int)iconPosition

Returns the position of the icon (if any) on the Button. See setlconPosition: for the list
of positions.

See also: - setIconPosition:, — setIcon:position:

Classes: Button — 2-87

2-88

image
- image
Returns the NXImage that appears on the Button when it’s in its normal state, or nil if there

is no such NXImage. This NXImage is always displayed on a Button that doesn’t change
its contents when highlighting or showing its alternate state.

See also: — setImage:, — setIconPosition:, — icon, — altImage, — altIcon, — setType:

init

— init
Initializes and returns the receiver, a new Button instance, with a frame origin of (0, 0) and
width and height of 50 units each. The new instance is enabled and displays the default title
“Button” centered in its frame, but has no icon, tag, target, action, or key equivalent

associated with it. The new Button is bordered, and is of type NX_MOMENTARYPUSH.
One of the more specific initializers is usually used to initialize a Button.

See also: - initFrame:title:tag:target:action:key:enabled:,
— initFrame:icon:tag:target:action:key:enabled:, — initFrame:, — setType:

initFrame:

— initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new Button instance, with default parameters in the
given frame. The new instance is enabled and displays the default title “Button” centered
in its frame, but has no icon, tag, target, action, or key equivalent. The new Button is
bordered, and is of type NX_MOMENTARYPUSH. One of the more specific initializers
is usually used to initialize a Button.

See also: —initFrame:title:tag:target:action:key:enabled:,
~ initFrame:icon:tag:target:action:key:enabled:, - initFrame:, — setType:

Chapter 2: Application Kit

initFrame:icon:tag:target:action:key:enabled:

— initFrame:(const NXRect *)frameRect
icon:(const char *)iconName
tag:(int)anint
target:anObject
action:(SEL)aSelector
key:(unsigned short)charCode
enabled:(BOOL)flag

Initializes and returns the receiver, a new Button instance that displays an icon. frameRect
is the rectangle defining the Button’s position and size in its superview. iconName is the
name of an NXImage that will be used for the Button’s icon. anlnt is set as the Button’s
tag. anObject is set as the target, which will be sent aSelector when the Button is clicked
or pressed. charCode is the new Button’s key equivalent. flag determines whether the
Button is enabled or not. The new Button is bordered, and is of type
NX_MOMENTARYPUSH.

This method is the designated initializer for Buttons that display icons. A Button that
displays an icon can be configured to also display a title with the setTitle: and
setIconPosition: methods.

See also: - setTitle:, — setlconPosition:, — setType:

initFrame:title:tag:target:action:key:enabled:

— initFrame:(const NXRect *)frameRect
title:(const char *)aString
tag:(int)anint
target:anObject
action:(SEL)aSelector
key:(unsigned short)charCode
enabled:(BOOL)flag

Initializes and returns the receiver, a new Button instance that displays a text string. The
arguments and operation of this method are identical to those of
initFrame:icon:tag:target:action:key:enabled:, except that aString is the title that the
Button will display instead of the name of an icon. The new Button is bordered, and is of
type NX_MOMENTARYPUSH.

Classes: Button — 2-89

2-90

This method is the designated initializer for Buttons that display text. A Button that
displays an icon can be configured to also display an icon with the setIcon:position:
method, or a combination of setIcon: or setImage: and setIconPosition:.

See also: —setIcon:, — sétImage:, — setlconPosition:, — setType:

isBordered
— (BOOL)isBordered

Returns YES if the Button has a border, NO otherwise. A Button’s border isn’t the single
line of most other Controls’ borders; instead, it’s a raised bezel (“bezel” usually refers to a
depressed bezel, as seen on FormCells, for example). You shouldn’t use the setBezeled:
method with a Button.

See also: — setBordered:

isTransparent
- (BOOL)isTransparent

Returns YES if the Button is transparent, NO otherwise. A transparent Button never draws
itself, but it receives mouse-down events and tracks the mouse properly.

See also: — setTransparent:

keyEquivalent ,
— (unsigned short)keyEquivalent

Returns the key equivalent character of the Button, or 0 if one hasn’t been defined.

See also: — setKeyEquivalent:, — performKeyEquivalent:

performClick:
— performClick:sender

Highlights the Button, sends its action message to the target object, then unhighlights the
Button. Invoke this method when you want the Button to behave exactly as if the user had
clicked it with the mouse.

See also: — performKeyEquivalent:

Chapter 2: Application Kit

performKeyEquivalent:
— (BOOL)performKeyEquivalent:(NXEvent *)theEvent

If the character in theEvent matches the Button’s key equivalent, simulates the user clicking
the Button by sending performClick: to self, and returns YES. Otherwise, does nothing
and returns NO.

The Button won’t perform the key equivalent if there’s a modal panel present that the
Button isn’t on.

See also: — keyEquivalent, — performClick:

setAlticon:

— setAltIcon:(const char *)iconName

Sets the Button’s alternate icon by name; iconName is the name of the NXImage to be
displayed. Doesn’t display the Button even if autodisplay is on. Returns self.

A Button’s alternate icon is only displayed if the Button highlights or shows its alternate
state by changing its contents.

See also: - altIcon, - setIconPosition:, — setAltImage:, — setIcon:, — setImage:,
+ findImageNamed: (NXImage), — setType:, — setAutodisplay: (View)

setAltimage:
- setAltlmage:altimage

Sets the Button’s alternate icon by id; altlmage is the NXImage to be displayed.
Returns self.

A Button displays its alternate NXImage only if it highlights or displays its alternate state
by using its alternate contents.

See also: — altImage, — setlconPosition:, — setAltIcon:, — setlmage:, — setlcon:,
- setType:

Classes: Button — 2-91

2-92

setAltTitle:
— setAltTitle:(const char *)aString

Sets the title that the Button displays in its alternate state to aString. Returns self.

The alternate title is shown only if the Button changes its contents when highlighting or
displaying its alternate state.

See also: — altTitle:, — setTitle:, — setType:

setBordered:
— setBordered:(BOOL)flag

If flag is YES, the Button displays a border; if NO, the Button doesn’t display a border. A
Button’s border is not the single line or most other Controls’ borders; instead, it’s a raised
bezel (“bezel” usually refers to a depressed bezel, as seen on FormCells, for example). This
method redraws the Button if the bordered state changes. Returns self.

See also: —isBordered

setlcon:

— setlcon:(const char *)iconName

Sets the Button’s icon by name; iconName is the name of the NXImage to be displayed.

. Redraws the Button’s inside and returns self.

A Button’s icon is displayed when the Button is in its normal state, or always if the Button
doesn’t highlight or show state by changing its contents.

See also: - setlcon:position:, — icon, — setIconPosition:, — setImage:, — setAltIcon:,
— setAltImage:, + findImageNamed: (NXImage), — setType:

setlcon:position:

— setlcon:(const char *)iconName position:(int)aPosition
Combines setlcon: and setIconPosition: into one message. Returns self.

See also: - setIcon:, — setIconPosition:

Chapter 2: Application Kit

setlconPosition:

— setlIconPosition:(int)aPosition

Sets the position of the icon when a Button simultaneously displays both text and an icon.
aPosition can be one of the following constants:

NX_TITLEONLY title only (no icon on the Button)
NX_ICONONLY icon only (no text on the Button)
NX_ICONLEFT icon is to the left of the text
NX_ICONRIGHT icon is to the right of the text
NX_ICONBELOW icon is below the text
NX_ICONABOVE icon is above the text

NX_ICONOVERLAPS icon and text overlap (text drawn over icon)

If the position is top or bottom, the alignment of the text will be changed to
NX_CENTERED. This behavior can be overridden with a subsequent setAlignment:
method. Redraws the Button’s inside and returns self.

See also: —iconPosition, — setIcon:position:, — setAlignment: (Control)

setimage:
— setImage:image

Sets the Button’s icon by id; image is the NXImage to be displayed. Redraws the Button’s
inside and returns self.

A Button’s icon is displayed when the Button is in its normal state, or all the time for a
Button that doesn’t change its contents when highlighting or displaying its alternate state.

See also: — image, — setIlconPosition:, — setIcon:, — setAltlmage:, — setAltIcon:,
— setType:

setKeyEquivalent:
— setKeyEquivalent:(unsigned short)charCode

Sets the key equivalent character of the Button, and redraws the Button’s inside if there is
no icon or alternate icon set for the Button. The key equivalent isn’t displayed if the icon
position is set to NX_TITLEONLY, NX_ICONONLY or NX_ICONOVERLAPS; that is,
the Button must display both its title and its “icon” (the key equivalent in this case), and
they must not overlap. Returns self.

Classes: Button 2-93

2-94

To display a key equivalent on a Button, set the image and alternate image to nil, then set
the key equivalent, and then set the icon position.

See also: — keyEquivalent, — setlconPosition:, — performKeyEquivalent:,
— setImage:, — setAltImage:

setPeriodicDelay:andInterval:
- setPeriodicDelay:(float)delay andInterval:(float)interval

Sets the message delay and interval for the Button. These two values are used if the Button
is configured (by a setContinuous: message) to continuously send the action message to
the target object while tracking the mouse. delay is the amount of time (in seconds) that a
continuous Button will pause before starting to periodically send action messages to the
target object. interval is the amount of time (also in seconds) between those messages.
Returns self.

The maximum value allowed for both the delay and the interval is 60.0 seconds.

See also: — getPeriodicDelay:andInterval:, — setContinuous (Control)

setSound:
— setSound:soundObject

Sets the Sound played when the Button is pressed, and whenever the cursor re-enters the
Button while tracking. Returns self.

See also: — sound

setState:
— setState:(int)anlnt

Sets the Button’s state to anlnt and redraws the Button. O is the normal or “off” state, and
any nonzero number is the alternate or “on” state. Returns self.

See also: - state

Chapter 2: Application Kit

setTitle:
— setTitle:(const char *)aString

Sets the title displayed by the Button when in its normal state to aString. This title is always
shown on Buttons that don’t use their alternate contents when highighting or displaying
their alternate state. Redraws the Button’s inside and returns self.

See also: - setTitleNoCopy:, — title, — setAltTitle:, — setType:

setTitleNoCopy:
— setTitleNoCopy:(const char *)aString

Similar to setTitle: but doesn’t make a copy of aString. Returns self.

See also: - setTitle:

setTransparent:
— setTransparent:(BOOL)flag

Sets whether the Button is transparent, and redraws the Button if flag is NO. Returns self.

A transparent Button tracks the mouse and sends its action, but doesn’t draw. A transparent
Button is useful for sensitizing an area on the screen so that an action gets sent to a target
when the area receives a mouse click.

See also: - isTransparent

setType:
- setType:(int)aType

Sets the way the Button highlights while pressed, and how it shows its state. Redraws the
Button and returns self. The types available are for the most common Button types, which
are also accessible in Interface Builder; you can configure different behavior with
ButtonCell’s setHighlightsBy: and setShowsStateBy: methods. aType can be one of
seven constants:

NX_MOMENTARYPUSH (the default): While the Button is held down it’s shown as
lit, and also “pushed in” to the screen if the Button is bordered. This type of Button is
best for simply triggering actions, as it doesn’t show its state; it always displays its
normal icon or title. This option is called “Momentary Push” in Interface Builder’s
Button Inspector.

Classes: Button — 2-95

2-96

NX_MOMENTARYCHANGE: While the Button is pressed, the alternate icon or
alternate title is displayed. This type always displays its normal title or icon (that is, it
doesn’t display its state). The miniaturize button in a window’s title bar is a good
example of this type of Button. This option is called “Momentary Change” in Interface
Builder’s Button Inspector.

NX_PUSHONPUSHOFF: Holding the Button down causes it to be shown as lit, and
also “pushed in” to the screen if the Button is bordered. The Button displays itself as lit
while in its alternate state. This option is called “Push On/Push Off” in Interface
Builder’s Button Inspector.

NX_ONOFF: Highlights while pressed by lighting, and stays lit in its alternate state.
This option is called “On/Off” in Interface Builder’s Button Inspector.

NX_TOGGLE: Highlighting is performed by changing to the alternate title or icon
“pushing in.” The alternate state is shown by displaying the alternate title or icon. This
option is called “Toggle” in Interface Builder’s Button Inspector.

NX_SWITCH: A variant of NX_TOGGLE that has no border, and that has a default
icon called “switch” and an alternate icon called “switchH” (these are identical to the
“NXswitch” and “NXswitchH” system bitmaps). This type of Button is available as a
separate palette item in Interface Builder.

NX_RADIOBUTTON: Like NX_SWITCH, but the default icon is “radio” and the
alternate icon is ‘‘radioH” (identical to the “NXradio” and “NXradioH” system
bitmaps). This type of Button is available as a separate palette item in Interface Builder.

There is no constant for Interface Builder’s “Momentary Light” type; you can set this
programmatically as follows:

[ImyButton cell] setHighlightsBy :NX_CHANGEGRAY | NX_CHANGEBACKGROUND] ;
[[myButton cell] setShowsStateBy:NX_NONE] ;

See also: —setType: (ButtonCell), — setHighlightsBy: (ButtonCell),
— setShowsStateBy: (ButtonCell)

sound

—sound

Returns the Sound played when the Button is pressed and whenever the cursor re-enters
the Button while tracking.

See also: —setSound:

Chapter 2: Application Kir

state
— (int)state
Returns the Button’s state, either O for normal or “off,”” or 1 for alternate or “on.”

See also: — setState:

title
— (const char *)title

Returns the title displayed on the Button when it’s in its normal state, or always if the
Button doesn’t use its alternate contents for highlighting or displaying the alternate state.
Returns NULL if there is no title.

See also: - setTitle:, — altTitle, — setType:

Classes: Button — 2-97

2-98

ButtonCeII

Inherits From: ActionCell : Cell : Object

Declared In: appkit/ButtonCell.h

Class Description

ButtonCell is a subclass of ActionCell used to implement the user interface devices of
push buttons, switches, and radio buttons, as well as any area of the screen that should send
a message to a target when clicked. ButtonCells are used by the Button and Matrix
subclasses of Control. Matrix is specifically used to hold sets of ButtonCells to create
groups of switches or radio buttons.

A ButtonCell is a two-state Cell; it’s either “off” or “on,” and can be configured to display
the two states differently, with a separate title and/or icon (named NXImage) for either
state. The two states are more often referred to as “normal” and “alternate.” A ButtonCell’s
state is also used as its value, so Cell methods that set the value (setIntValue: and so on)
actually set the ButtonCell’s state to “on” if the value provided is non-zero (or non-null for
strings), and to “off” if the value is zero or null. Similarly, methods that retrieve the value
return 1 for the “on” or alternate state (an empty string in the case of stringValue), or 0 or
NULL for the “off” or normal state. Unlike Button, ButtonCell doesn’t have setState: or
state methods; you have to use setIntValue: or a related method.

A ButtonCell sends its action message to its target once if it’s View is clicked and it gets
the mouse-down event, but can also send the action message continuously as long as the
mouse is held down with the cursor inside the ButtonCell. The ButtonCell can show that
it’s being pressed by highlighting in several ways, for example, a bordered ButtonCell can
appear pushed into the screen, or the icon or title can change to an alternate form while the
ButtonCell is pressed.

A ButtonCell can also have a key equivalent (like a Menu item). If the Window or Panel
that the ButtonCell’s View is on is the key window, then it gets the first chance to receive
events related to key equivalents. This is used quite often in modal panels that have an
“OK” Button with a Return sign on them. Usually a ButtonCell displays a key equivalent
as its icon; if you ever set an icon for the ButtonCell, the key equivalent remains, but
doesn’t get displayed.

For more information on ButtonCell’s behavior, see the Button and Matrix class
specifications.

Chapter 2: Application Kir

Instance Variables

char *altContents;
union _icon {
struct _bmap {
id normal;
id alternate;
} bmap;
struct _ke {
id font;
float descent;
} ke;
} iconm;
id sound;
struct _bcFlags1 {
unsigned int pushln:1;
unsigned int changeContents:1;
unsigned int changeBackground:1;
unsigned int changeGray:1;
unsigned int lightByContents:1;
unsigned int lightByBackground:1;
unsigned int lightByGray:1;
unsigned int hasAlpha:1;
unsigned int bordered:1;
unsigned int iconOverlaps:1;
unsigned int horizontal:1;
unsigned int bottomOrLeft:1;
unsigned int iconAndText:1;
unsigned int lastState:1;
unsigned int iconSizeDiff:1;
unsigned int iconIsKeyEquivalent:1;
} beFlagsl;
struct _bcFlags2 {
unsigned int keyEquivalent:8;
unsigned int transparent:1;
} beFlags2;
unsigned short periodicDelay;
unsigned short periodicInterval,

Classes: ButtonCell 2-99

altContents

icon.bmap.normal
icon.bmap.alternate

icon.ke.font
icon.ke.descent

sound

bcFlags1.pushin
bcFlags1.changeContents
bcFlags1.changeBackground
bcFlags1.changeGray
bcFlags1.lightByContents
bcFlagsi.lightByBackground
bcFlags1.lightByGray
bcFlags1.hasAlpha

bcFlags1.bordered
bcFlags1.iconOverlaps
bcFlags1.horizontal
bcFlags1.bottomOrLeft
bcFlagsl.iconAndText
bcFlagsl.lastState
bcFlagsl.iconSizeDiff

2-100 Chaprer 2: Application Kir

The contents shown when the ButtonCell is in its alternate
state: a string for a text ButtonCell, an NXImage for an
icon-only ButtonCell.

The icon for a ButtonCell that displays both a title and an
icon.

The alternate icon for a ButtonCell that displays both a
title and an icon.

Font used to draw the key equivalent.
The descent of descenders in the key equivalent font.

The Sound played when the ButtonCell gets a
mouse-down event.

If 1, abordered ButtonCell appears to push into the screen
when pressed.

If 1, the ButtonCell shows its alternate state by displaying
its alternate icon and title.

If 1, the ButtonCell shows its alternate state by swapping
the light gray and white pixels in its background.

If 1, the ButtonCell shows its alternate state by swapping
its light gray and white pixels.

If 1, the ButtonCell highlights while pressed by
displaying its alternate icon and title.

If 1, the ButtonCell highlights by swapping the light gray
and white pixels in its background.

If 1, the ButtonCell shows its highlighting by swapping its
light gray and white pixels.

1 if the ButtonCell’s icon has alpha values (transparent
pixels).

1 if the ButtonCell has a raised bezel border.

1 if the icon overlaps the title.

1 if the icon is to one side of title.

1 if the icon is on the left or bottom.

1 if the ButtonCell has both an icon and a title.
The state of the ButtonCell when last drawn.

1 if the alternate i_con is a different size than the
normal icon.

bcFlagsl.iconlsKeyEquivalent 1 if the key equivalent is drawn as the icon.

bcFlags2.keyEquivalent The key equivalent character.

bcFlags2.transparent 1 if the ButtonCell doesn’t draw itself at all.

periodicDelay The delay before sending the first action message by a
continuous ButtonCell.

periodicInterval The interval at which a continuous ButtonCell sends
its action.

Method Types

Initializing, copying, and freeing a ButtonCell
— init
— initTextCell:
— initlconCell:
— copyFromZone:
— free

Determining component sizes — calcCellSize:inRect:
— getDrawRect:
— getTitleRect:
— getlconRect:

Setting the titles — setTitle:
‘ — setTitleNoCopy:
— title
— setAltTitle:
— altTitle
— setFont:

Setting the icons — setlcon:
—icon
— setAltIcon:
—altlcon
— setlmage:
— image
— setAltImage:
— altlmage
— setIconPosition:
—iconPosition

Setting the Sound — setSound:
—sound

Classes: ButtonCell 2-101

Setting the state — setDoubleValue:
— doubleValue
— setFloatValue:
— floatValue
— setIntValue:
— intValue
— setStringValue:
— setStringValueNoCopy:
— string Value

Setting the repeat interval — setPeriodicDelay:andInterval:
— getPeriodicDelay:andInterval:

Tracking the mouse — trackMouse:inRect:of View:

Setting the key equivalent — setKeyEquivalent:
- setKeyEquivalentFont:
- setKeyEquivalentFont:size:
— keyEquivalent

Setting parameters — setParameter:to:
— getParameter:

Modifying graphic attributes — setBordered:
— isBordered
— setTransparent:
— isTransparent
~isOpaque
Modifying display behavior - setType:
— setHighlightsBy:
— highlightsBy
— setShowsStateBy:
- showsStateBy

Simulating a click — performClick:

Displaying the ButtonCell — drawlInside:inView:
~ drawSelf:inView:
— highlight:inView:lit:
Archiving —read:
— write:

2-102 Chaprer 2: Application Kir

Instance Methods

alticon

— (const char *)altIcon

Returns the name of the NXImage that appears on the ButtonCell when it’s in its alternate
state, or NULL if there is no alternate icon or the NXImage has no name. This NXImage
is displayed only for ButtonCells that highlight or show their alternate state by displaying
their alternate contents (as opposed to simply lighting or pushing in).

See also: - setAltIcon:, — setIconPosition:, — altImage, — icon, — image, — setType:

altimage
— altImage

Returns the NXImage that appears on the ButtonCell when it’s in its alternate state, or nil
if there is no alternate NXImage. This ButtonCell only displays its alternate NXImage if it
highlights or shows its alternate state by displaying its alternate contents. '

See also: - setAltImage:, — setlconPosition:, — altIlcon, — image, — icon, — setType:

altTitle
— (const char *)altTitle

Returns the string that appears on the ButtonCell when it’s in its alternate state, or NULL
if there isn’t one. The alternate title is only displayed if the ButtonCell highlights or shows
its alternate state by displaying its alternate contents.

See also: —setAltTitle:, — title, — setType:

calcCellSize:inRect:
— calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns self, and by reference in theSize the minimum width and height required for
displaying the ButtonCell in aRect. This minimum size is the larger of the sizes required
for displaying the normal contents or the alternate contents, plus any space needed to
display a border.

See also: — getDrawRect:, — getIconRect:, — getTitleRect:

Classes: ButtonCell 2-103

copyFromZone:
— copyFromZone:(NXZone *)zone

Allocates, initializes, and returns a copy of the receiving ButtonCell. The copy is allocated
from zone and is given the same data as the receiver.

doubleValue
— (double)doubleValue

Returns 0.0 if the ButtonCell is in its normal state, 1.0 if the it’s in its alternate state.

See also: — setDoubleValue:, — floatValue, — intValue, — stringValue

drawlinside:inView:

— drawlnside:(const NXRect *)aRect inView:controlView

Draws the inside of the ButtonCell (the title, icon, and their background, but not the border)
in aRect within controlView. aRect should be the same rectangle passed to
drawSelf:inView:. The PostScript focus must be locked on controlView when this
message is sent. This method is invoked by drawSelf:inView: and by the Control classes’
drawCellInside: method. It’s provided so that when a ButtonCell’s state is set (with
setIntValue:, for example), a minimal update of the ButtonCell’s visual appearance can
occur. Returns self.

If you subclass ButtonCell and override drawSelf:inView:, you must also override this
method. However, you are free to override only this method and not drawSelf:inView: if
your subclass doesn’t draw outside the area that ButtonCell draws in.

See also: — drawlnside:inView: (Cell), — drawSelf:inView:, — lockFocus (View)

drawSelf:inView:

— drawSelf:(const NXRect *)cellFrame inView:controlView

Displays the ButtonCell in cellFrame within controlView. The PostScript focus must be
locked on controlView when this message is sent. Draws the border of the ButtonCell if
necessary, then invokes drawlInside:inView:. Returns self.

See also: — drawlnside:inView:, — lockFocus (View)

2-104 Chapter 2: Application Kit

floatValue
— (float)floatValue

Returns 0.0 if the ButtonCell is in its normal state, 1.0 if it’s in its alternate state.

See also: - setFloatValue:, — doubleValue, — intValue, — stringValue

free
— free

Frees the memory used by the ButtonCell and returns nil.

getDrawRect:
— getDrawRect:(NXRect *)theRect

Returns self and, by reference in theRect the bounds of the area into which the title and icon
(not including the border) are drawn. You must pass the bounds of the ButtonCell in
theRect (the same bounds calculated by calcCellSize:inRect: and passed to
drawSelf:inView:). This method assumes that the ButtonCell is being drawn in a flipped
View.

See also: — getIconRect:, — getTitleRect:, — calcCellSize:inRect:

geticonRect:
— getlconRect:(NXRect *)theRect

Returns self and, by reference in theRect, the bounds of the area into which the icon of the
ButtonCell will be drawn. This will be the larger of the bounds for the normal and the
alternate icons. If the ButtonCell has no icon, then theRect will be completely zeroed. You
must pass the bounds of the ButtonCell in theRect (the same bounds calculated by
calcCellSize:inRect: and passed to drawSelf:inView:). This method assumes that the
ButtonCell is being drawn in a flipped: View. Returns self.

See also: — getTitleRect:, — getDrawRect:, — calcCellSize:inRect:

Classes: ButtonCell 2-105

getParameter:

— (int)getParameter:(int)aParameter
Returns the value of one of the frequently accessed flags for a ButtonCell. See
setParameter:to: for a list of the parameters and corresponding methods. Since the

parameters are also accessible through normal querying methods, you shouldn’t need to use
this method often.

See also: — setParameter:to:

getPeriodicDelay:andinterval:

— getPeriodicDelay:(float *)delay andInterval:(float *)interval
Returns self, and by reference the delay and interval periods for a continuous ButtonCell.
delay is the amount of time (in seconds) that a continuous ButtonCell will pause before

starting to periodically send action messages to the target object. interval is the amount of
time (also in seconds) between those messages.

See also: — setContinuous: (Cell), — setPeriodicDelay:andInterval:

getTitleRect:
— getTitleRect:(NXRect *)theRect

Returns self and, by reference in theRect a copy of the bounds of the area into which the
ButtonCell’s title will be drawn. This will be the larger of the bounds for the normal and
the alternate titles. If the ButtonCell has no title, then theRect will be completely zeroed.
You must pass the bounds of the ButtonCell in theRect (the same bounds calculated by
calcCellSize:inRect: and passed to drawSelf:inView:). This method assumes that the
ButtonCell is being drawn in a flipped View.

See also: — getlconRect:, — getDrawRect:, — calcCellSize:inRect:

2-106 Chaprer 2: Application Kit

highlight:inView:lit:
— highlight:(const NXRect *)cellFrame

inView:controlView
lit:(BOOL)flag

Displays the ButtonCell in cellFrame if its highlight state is not equal to flag. The
PostScript focus must be locked on controlView when this method is invoked. If flag is
YES, the ButtonCell is displayed as highlighted. How this is done depends on how the
ButtonCell has been configured; see the description of setHighlightsBy: for the possible
manners of highlighting. This method does nothing if the ButtonCell is disabled or
transparent. Returns self.

See also: —lockFocus (View)

highlightsBy
— (int)highlightsBy

Returns the Jogical OR of flags that indicate the way the ButtonCell highlights when it gets
a mouse-down event. See setHighlightsBy: for the list of flags.

See also: - setHighlightsBy:, — showStateBy, — setShowsStateBy:

icon
— (const char *)icon

Returns the name of the NXImage that appears on the ButtonCell when it’s in its normal
state, or NULL if there is no such NXImage or the NXImage doesn’t have a name. A
ButtonCell that doesn’t display its alternate contents to highlight or show its alternate state
will always display its normal icon.

See also: - setlcon:, — setlcon:position:, — setlconPosition:, — image, — altIcon,
— altImage, — setType:

iconPosition

— (int)iconPosition

Returns the position of the ButtonCell’s icon (if any). See setIconPosition: for a list of the
valid positions.

See also: — setIconPosition:

Classes: ButtonCell 2-107

image

— image

Returns the NXImage that appears on the ButtonCell when it’s in its normal state, or nil if
there is no such NXImage. This NXImage is always displayed on a ButtonCell that doesn’t
change its contents when highlighting or showing its alternate state.

See also: — setImage:, - setlconPosition:, — icon, — altImage, — altIcon, — setType:

init

— init
Initializes and returns the receiver, a new text ButtonCell, with the title “Button” aligned in
the center. The new ButtonCell is enabled, but has no icon, tag, target, action, or key

equivalent associated with it. The new ButtonCell is bordered, and is of type
NX_MOMENTARYPUSH.

See also: — initIconCell:, — initTextCell:

initiconCell:
— initIconCell:(const char *)iconName

Initializes and returns the receiver, a new ButtonCell instance that displays an icon.
iconName is the name of an NXImage that will be used for the Button’s icon. The new
ButtonCell is enabled, bordered, and is of type NX: MOMENTARYPUSH.

This is the designated initializer for ButtonCells that display icons.

See also: — initTextCell:, — init

initTextCell:

— initTextCell:(const char *)aString

Initializes and returns the receiver, a new ButtonCell instance that displays a title. aString
is the title that will be used; it will be displayed in the user’s default system font (as set with
the Preferences application), 12.0 point size, and aligned in the center. The new ButtonCell
is enabled, is bordered, and is of type NX_MOMENTARYPUSH.

This is the designated initializer for ButtonCells that display titles.

See also: — initIconCell:, — init

2-108 Chapter 2: Application Kit

intValue
— (int)intValue
Returns 0 if the ButtonCell is in its normal state, 1 if in its alternate state.

See also: - setIntValue:, — doubleValue, — floatValue, — stringValue

isBordered
— (BOOL)isBordered

Returns YES if the ButtonCell has a border, NO if not. A ButtonCell’s border isn’t the
single line of most other Cells’ borders; instead, it’s a raised bezel (“bezel” usually refers
to a depressed bezel, as seen on FormCells, for example).

See also: — setBordered:

isOpaque
— (BOOL)isOpaque

Returns YES if the ButtonCell draws over every pixel in its frame, NO if not. The
ButtonCell is opaque only if it is not transparent and if it has a border.

See also: - isBordered, — setBordered:, — isTransparent, — setTransparent:

isTransparent
— (BOOL)isTransparent

Returns YES if the ButtonCell is transparent, NO if not. A transparent ButtonCell never
draws anything, but it does receive mouse-down events and track the mouse properly.

See also: — setTransparent:, — isOpaque

keyEquivalent
— (unsigned short)keyEquivalent

Returns the key equivalent character of the ButtonCell, or 0 if one hasn’t been set.

See also: — setKeyEquivalent:, — setKeyEquivalentFont:,
- setKeyEquivalentFont:size:

Classes: ButtonCell 2-109

performClick:
— performClick:sender

If this ButtonCell is contained iﬁ a Control, themrinvoking this method causes the
ButtonCell to act as if the user had clicked it.

read:
—read:(NXTypedStream *)stream

Reads the ButtonCell from the typed stream stream. Returns self.

See also: — write:

setAlticon:

— setAltIcon:(const char *)iconName

Sets the ButtonCell’s alternate icon by name; iconName is the name of the NXImage to be
displayed. Has the ButtonCell redrawn if possible, and returns self.

A ButtonCell’s alternate icon is only displayed if the ButtonCell highlights or shows its
alternate state by changing its contents.

See also: — altIcon, — setIconPosition:, — setAltlmage:, — setIcon:, — setlmage:,
+ findImageNamed: (NXImage), — setType:

setAltimage:
— setAltImage:altimage

Sets the Button’s alternate icon by id; altImage is the NXImage to be displayed. Has the
ButtonCell redrawn if possible, and returns self.

A ButtonCell displays its alternate NXImage only if it highlights or displays its alternate
state by using its alternate contents.

See also: - altImage, — setIconPosition:, — setAltIcon:, — setImage:, — setIcon:,
—setType:

- 2110 Chaprer 2: Application Kit

setAltTitle:
— setAltTitle:(const char *)aString

Sets the title that the ButtonCell displays in its alternate state to aString. Doesn’t display
the ButtonCell even if autodisplay is on in the ButtonCell’s View. Returns self.

The alternate title is shown only if the ButtonCell changes its contents when highlighting
or displaying its alternate state.

See also: - altTitle:, — setTitle:, — setType:

setBordered:
— setBordered:(BOOL)flag

If flag is YES, the ButtonCell displays a border; if NO, the If flag is YES, the ButtonCell
displays a border; if NO, the ButtonCell doesn’t display a border. A ButtonCell’s border is
not the single line or most other Cells’ borders; instead, it’s a raised bezel (‘“bezel” usually
refers to a depressed bezel, as seen on FormCells, for example). Your code shouldn’t use
setBezeled: with a ButtonCell. This method redraws the ButtonCell if the bordered state
changes. Returns self.

See also: —isBordered

setDoubleValue:
— setDoubleValue:(double)aDouble

If aDouble is 0.0, sets the ButtonCell’s state to O (the normal state); if aDouble is nonzero,
sets it to 1 (the alternate state). Returns self.

See also: - doubleValue, — setFloatValue:, — setIntValue:, — setStringValue:

setFloatValue:
— setFloatValue:(float)aFloat

If aDouble is 0.0, sets the ButtonCell’s state to 0 (the normal state); if aDouble is nonzero,
sets it to 1 (the alternate state). Returns self.

See also: — floatValue, — setDoubleValue:, — setIntValue:, — setStringValue:

Classes: ButronCell 2-111

setFont:
— setFont:fontObject

Sets the Font used to displaying the title and alternate title. Does nothing if the cell has no
title or alternate title. Returns self.

If the ButtonCell has a key equivalent, its Font is not changed, but the key equivalent’s Font
size is changed to match the new title Font.

See also: — setKeyEquivalentFont:, - setKeyEquivalentFont:size:

setHighlightsBy:
— setHighlightsBy:(int)aType

Sets the way the ButtonCell highlights itself while pressed, and returns self. aType can be
the logical OR of one or more of the following constants:

NX_PUSHIN (the default): The ButtonCell “pushes in” when pressed if it has a border.

'NX_NONE: The ButtonCell doesn’t change. This flag is ignored if any others are set
in aType.

NX_CONTENTS: The ButtonCell displays its alternate icon and/or title.

NX_CHANGEGRAY: The ButtonCell swaps the light gray and white pixels on the its
background and icon.

NX_CHANGEBACKGROUND: Same as NX_CHANGEGRAY, but only background
pixels are changed.

If both NX_CHANGEGRAY and NX_CHANGEBACKGROUND are specified, both are
recorded, but which behavior is used depends on the ButtonCell’s icon. If there is no icon,
or if the icon has no alpha (tranparency) data, NX_CHANGEGRAY is used. If the icon
does have alpha data, NX_CHANGEBACKGROUND is used; this allows the gray/white
swap of the background to show through the icon’s transparent pixels.

See also: — highlightsBy, — setShowsStateBy:, — showsStateBy

2-112 Chapter 2: Application Kit

seticon:

— setIcon:(const char *)iconName

Sets the Button’s icon by name; iconName is the name of the NXImage to be displayed.
Redraws the Button’s inside and returns self.

A ButtonCell’s icon is displayed when the ButtonCell is in its normal state, or always if the
ButtonCell doesn’t highlight or show state by changing its contents.

See also: — setlcon:position:, — icon, — setIconPosition:, — setImage:, — setAltIcon:,
— setAltImage:, + findlmageNamed: (NXImage), — setType:

setlconPosition:

— setIconPosition:(int)aPosition

Sets the position of the icon when a ButtonCell simultaneously displays both text and an
icon. aPosition can be one of the following constants:

NX_TITLEONLY title only (no icon on the Button)
NX_ICONONLY icon only (no text on the Button)
NX_ICONLEFT icon is to the left of the text
NX_ICONRIGHT icon is to the right of the text
NX_ICONBELOW icon is below the text
NX_ICONABOVE icon is above the text

NX_ICONOVERLAPS icon and text overlap (text drawn over icon)

If the position is top or bottom, the alignment of the text will be changed to
NX_CENTERED. This behavior can be overridden with a subsequent setAlignment:
method. Redraws the Button’s inside and returns self.

See also: —iconPosition, — setAlignment: (ActionCell)

setimage:

— setImage:image

Sets the Button’s icon by id; image is the NXImage to be displayed. Redraws the Button’s
inside and returns self.

A ButtonCell’s NXImage is displayed when the ButtonCell is in its normal state, or all the
time for a ButtonCell that doesn’t change its contents when highlighting or displaying its
alternate state.

See also: —image, — setIconPosition:, — setlcon:, — setAltImage:, — setAltIcon:,
— setType:

Classes: BurttonCell 2-113

setintValue:
— setIntValue:(int)anlnt

Sets the ButtonCell’s state to 1 if anlnt is nonzero, 0 otherwise. Returns self.

See also: — intValue, — setDoubleValue:, — setFloatValue:, — setStringValue:

setKeyEquivalent:
— setKeyEquivalent:(unsigned short)charCode

Sets the key equivalent character of the ButtonCell. Has the ButtonCell redrawn if needed.
The key equivalent isn’t displayed if the icon position is set to NX_TITLEONLY,
NX_ICONONLY or NX_ICONOVERLAPS. Returns self.

The key equivalent isn’t displayed on a ButtonCell that has an icon. To make sure it gets
displayed, set the image and alternate image to nil before using this method.

See also: — keyEquivalent, - setKeyEquivalentFont:, — setKeyEquivalentFont:size:,
— performKeyEquivalent: (Button, Matrix classes)

setKeyEquivalentFont:
— setKeyEquivalentFont:fontObject

Sets the Font used to draw the key equivalent, and has the ButtonCell redrawn if possible.
Does nothing if there is already an icon associated with this ButtonCell. The default Font
is the same as that used to draw the title. Returns self.

See also: — setKeyEquivalentFont:size:

setKeyEquivalentFont:size:

— setKeyEquivalentFont:(const char *)fontName size:(float)fontSize

Sets by name and size the font used to draw the key equivalent, and has the ButtonCell
redrawn if possible. Does nothing if there is already an icon associated with this
ButtonCell. The default Font is the same as that used to draw the title. Returns self.

See also: — setKeyEquivalentFont:

2-114 Ghapter 2: Application Kit
7

setParameter:to:
— setParameter:(int)aParameter to:(int)value

Sets the value of one of a number of frequently accessed flags for a ButtonCell to value,
and returns self. You don’t normally need to use this method since all of these flags can be
set through specific methods (for example, setEnabled:, setHighlightsBy:, and so on).
The following table lists each constant used to identify a parameter with the methods for

setting and retrieving the value for that parameter:

Parameter Constant

NX_CELLDISABLED
NX_CELLSTATE
NX_CELLHIGHLIGHTED
NX_CELLEDITABLE
NX_BUTTONINSET
NX_CHANGECONTENTS
NX_CHANGEBACKGROUND
NX_CHANGEGRAY
NX_LIGHTBYCONTENTS
NX_LIGHTBYBACKGROUND
NX_LIGHTBYGRAY
NX_PUSHIN
NX_OVERLAPPINGICON
NX_ICONHORIZONTAL
NX_ICONONLEFTORBOTTOM
NX_ICONISKEYEQUIVALENT

Equivalent Methods

setEnabled:, isEnabled
setState:, state

highlight:inView:lit:, isHighlighted

setEditable:, isEditable
(none—see below)
setShowsStateBy:, showsStateBy
setShowsStateBy:, showsStateBy
setShowsStateBy:, showsStateBy
setHighlightsBy:, highlightsBy
setHighlightsBy:, highlightsBy
setHighlightsBy:, highlightsBy
setHighlightsBy:, highlightsBy
setIconPosition:, iconPosition
setIconPosition:, iconPosition
setlconPosition:, iconPosition
(see below)

NX_BUTTONINSET is the inset of the ButtonCell’s icon from its frame. You can find out
if a ButtonCell’s icon is its key equivalent by checking that both the image and altImage
methods return nil, and that the keyEquivalent method returns a nonzero value. Your code
should never set the NX_ICONISKEYEQUIVALENT parameter; always use the
setKeyEquivalent: method, removing the ButtonCell’s icon if necessary.

See also: — getParameter:, — setKeyEquivalent:

Classes: ButtonCell 2-115

setPeriodicDelay:andinterval:

- setPeriodicDelay:(float)delay andInterval:(float)interval
Sets the message delay and interval for the ButtonCell. These two values are used if the
ButtonCell has been set—by a setContinuous: message—to continuously send its action
message to its target object while tracking the mouse. delay is the amount of time (in
seconds) that a continuous ButtonCell will pause before starting to periodically send action

messages to the target object. interval is the amount of time (also in seconds) between
those messages. Returns self.

The maximum value allowed for both delay and the interval is 60.0 seconds.

See also: — getPeriodicDelay:andInterval:, — setContinuous: (Cell)

setShowsStateBy:
— setShowsStateBy:(int)aType

Sets the way the ButtonCell indicates its alternate state. aType should be the logical OR of
one or more of the following constants:

NX_NONE (the default): The ButtonCell doesn’t change. This flag is ignored if any
others are set in aType.

NX_CONTENTS: The ButtonCell displays its alternate icon and/or title.

NX_CHANGEGRAY: The ButtonCell swaps the light gray and white pixels on its
background and icon.

NX_CHANGEBACKGROUND: Same as NX_CHANGEGRAY, but only the
background pixels are changed.

If both NX_CHANGEGRAY and NX_CHANGEBACKGROUND are specified, both are
recorded, but the actual behavior depends on the ButtonCell’s icon. If there is no icon, or
if the icon has no alpha (tranparency) data, NX_CHANGEGRAY is used. If the icon exists
and has alpha data, NX_CHANGEBACKGROUND is used; this allows the gray/white
swap of the background to show through the icon’s transparent pixels.

See also: — showsStateBy, — setHighlightsBy:, — highlightsBy

2-116 Chapter 2: Application Kir

setSound:
— setSound:aSound

Sets the Sound that will be played when the mouse goes down in the ButtonCell, and
whenever the cursor re-enters the ButtonCell while tracking. Be sure to link against the
Sound Kit if you use a Sound object. Returns self.

See also: —sound

setStringValue:

— setStringValue:(const char *)aString

Sets the ButtonCell’s state to 1 if aString is non-null (even if the string is empty), O
otherwise. Returns self.

See also: - setStringValueNoCopy:, — stringValue

setStringValueNoCopy:
— setStringValueNoCopy:(const char *)aString

Sets the ButtonCell’s state to 1 if aString is non-null (even if the string is empty), 0
otherwise. Returns self.

See also: — setStringValue:, — stringValue, — setDoubleValue:, — setFloatValue:,
— setIntValue:

setTitle:

— setTitle:(const char *)aString

Sets the title displayed by the ButtonCell when in its normal state to aString. This title is
always shown on ButtonCells that don’t use their alternate contents when highighting or
displaying their alternate state. Redraws the Button’s inside and returns self.

See also: — setTitleNoCopy:, — title, — setAltTitle:

setTitleNoCopy:
— setTitleNoCopy:(const char *)aString

Similar to setTitle: but does not make a copy of aString. Returns self.

See also: —setTitle:

Classes: ButtonCell 2-117

setTransparent:
— setTransparent:(BOOL)flag

Sets whether the ButtonCell is transparent. Returns self.

A transparent ButtonCell never draws, but does track the mouse and send its action
normally. A transparent ButtonCell is useful for sensitizing an area on the screen so that
an action gets sent to a target when the area receives a mouse click.

See also: - isTransparent, — isOpaque

setType:
— setType:(int)aType

Sets the way the ButtonCell highlights while pressed, and how it shows its state. Redraws
the ButtonCell if possible and returns self. aType can be one of the following constants (as
described in the Button class specification’s setType: method description):

NX_MOMENTARYPUSH
NX_MOMENTARYCHANGE
NX_PUSHONPUSHOFF
NX_ONOFF

NX_TOGGLE

NX_SWITCH
NX_RADIOBUTTON

See also: —setType: (Button), — setHighlightsBy:, — setShowsStateBy:

showsStateBy
— (int)showsStateBy

Returns the logical OR of flags that indicate the way the ButtonCell shows its alternate
state. See setShowsStateBy: for the list of flags.

See also; — setShowsStateBy:, — highlightsBy, — setHighlightsBy:

sound

—sound

Returns the Sound played when the ButtonCell gets a mouse-down event, and whenever
the cursor re-enters the ButtonCell while tracking.

See also: — setSound:

2-118 Chapter 2: Application Kir

stringValue
~ (const char *)stringValue

Returns “”” (an empty string) if the ButtonCell’s state is 1 (the alternate state), or NULL if
the state is 0 (the normal state).

See also: — setStringValue:, — setStringValueNoCopy:, — doubleValue, — floatValue,
— intValue

title

— (const char *)title

Returns the title displayed on the Button when it’s in its normal state, or always if the
Button doesn’t use its alternate contents for highlighting or displaying the alternate state.
Returns NULL if there is no title.

See also: - setTitle:, — setTitleNoCopy:

trackMouse:inRect:ofView:

— (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
ofView:controlView

Tracks the mouse by starting the Sound (if any) and sending trackMouse:inRect:of View
to super with the same arguments. When super’s method returns, stops the Sound if
needed and returns YES if the mouse Button went up with the cursor in the cell, NO
otherwise. This method returns if the cursor leaves the bounds of the ButtonCell.

See also: — trackMouse:inRect:of View: (Cell)

write:
— write:(NXTypedStream *)stream

Writes the receiving ButtonCell to the typed stream stream. Returns self.

See also: —read:

Classes: ButronCell 2-119

- Cell

Inherits From: Object

Declared In: appkit/Cell.h

Class Description

The Cell class provides a mechanism for displaying text or icons (that is, named
NXImages) in a View without the overhead of a full View subclass. In particular, it
provides much of the functionality of the Text class by providing access to a shared Text
object used by all instances of Cell in an Application. Cells are also extremely useful for
placing titles or icons at various locations in a custom subclass of View.

Cell is used heavily by the Control classes to implement their internal workings. Some
subclasses of Control (notably Matrix) allow multiple Cells to be grouped and to act
together in some cooperative manner. Thus, with a Matrix, a group of radio buttons can be
implemented without needing a View for each button (and without needing a Text object
for the text on each button).

The Cell class provides primitives for displaying text or an icon, editing text, formatting
floating point numbers, maintaining state, highlighting, and tracking the mouse. It has
several subclasses: SelectionCell, NXBrowserCell, and ActionCell (which in turn has the
subclasses ButtonCell, SliderCell, TextFieldCell, and FormCell). Cell’s
trackMouse:inRect:of View: method supports the target object and action method used to
implement controls. However, Cell implements target/action features abstractly, deferring
the details of implementation to subclasses of ActionCell.

The initIconCell: method is the designated initializer for Cells that display icons. The
initTextCell: method is the designated initializer for Cells that display text. Override one
or both of these methods if you implement a subclass of Cell that performs its own
initialization. If you need to use target and action behavior, you may prefer to override
ActionCell, which provides the default implementation of this behavior.

For more information on how Cell is used, see the Control class specification.

2-120 Chapter 2: Application Kit

Instance Variables

char *contents;

id support;

struct _cFlags] {
unsigned int state:1;
unsigned int highlighted:1;
unsigned int disabled:1;
unsigned int editable:1;
unsigned int type:2;
unsigned int freeText:1;
unsigned int alignment:2;
unsigned int bordered:1;
unsigned int bezeled:1;
unsigned int selectable:1;
unsigned int scrollable:1;
unsigned int entryType:3;

} cFlagsl;

struct _cFlags?2 {
unsigned int continuous:1;
unsigned int actOnMouseDown:1;
unsigned int floatLeft:4;
unsigned int floatRight:4;
unsigned int autoRange:1;
unsigned int actOnMouseDragged:1;
unsigned int noWrap:1;
unsigned int dontActOnMouseUp:1;

} cFlagsZﬁ

contents The string for a text Cell; the image name for an icon Cell.
support The Font for a text Cell; the NXImage for an icon Cell.
cFlags].state The state of the Cell (0 or 1).

cFlags1.highlighted True if the Cell is highlighted.

cFlags1.disabled True if the Cell is disabled.

cFlags].editable True if the text in the Cell is editable.

cFlagsl.type The type of the Cell.

cFlagsl1.freeText True if the Cell should free contents when freeing

the Cell.

Classes: Cell 2-121

cFlags1.alignment
cFlags1.bordered
cFlags1.bezeled
cFlags1.selectable
cFlags1.scrollable
cFlagsl.entryType

cFlags2.continuous

cFlags2.actOnMouseDown
cFlags2 floatl_eft

cFlags2.floatRight
cFlags2.autoRange
cFlags2.actOnMouseDragged

cFlags2.noWrap
cFlags2.dontActOnMouseUp

Method Types

The text alignment of the Cell.

True if the Cell has a solid border.

True if the Cell has a bezeled border.

True if the text is selectable.

True if the text is scrollable.

Data type accepted when the user types in a text Cell.

True if the Cell sends its action continuously to target
while control is active.

True if the Cell sends its action on a mouse-down.

Digits to left of decimal when text is floating-point
number.

Digits to right of decimal when text is floating-point
number.

True if the Cell autoranges decimal places when text is
floating point number.

True if the Cell sends its action every time the mouse
changes position.

True if the Cell wraps text by character, false if by word.

True if the Cell does not send its action on a mouse-up
event.

Initializing, copying, and freeing a Cell

Determining component sizes

2-122 Chapter 2: Application Kit

— init

— initlconCell:

— initTextCell:

— copyFromZone:
— free

— calcCellSize:

— calcCellSize:inRect:
— calcDrawlInfo:

— getDrawRect:

— getlconRect:

— getTitleRect:

Setting the Cell’s type —setType:
—type
Setting the Cell’s state — setState:

— incrementState
— state

Enabling and disabling the Cell — setEnabled:
—isEnabled

Setting the icon — setlcon:
—icon

Setting the Cell’s value — setDoubleValue:
— doubleValue
— setFloatValue:
— floatValue
— setIntValue:
— intValue
— setString Value:
— setString ValueNoCopy:
— setString ValueNoCopy:shouldFree:
— stringValue

Interacting with other Cells — takeDouble ValueFrom:
— takeFloatValueFrom:
— takeIntValueFrom:
— takeString ValueFrom:

Modifying text attributes — setAlignment:
— alignment
— setFont:
— font
— setEditable:
—isEditable
— setSelectable:
—isSelectable
— setScrollable:
—isScrollable
— setTextAttributes:
— setWrap:

Editing text — edit:inView:editor:delegate:event:
— endEditing:
— select:inView:editor:delegate:start:length:

Classes: Cell 2-123

Validating input — setEntryType:
—entryType
— isEntryAcceptable:

Formatting data — setFloatingPointFormat:left:right:

Modifying graphic attributes - setBezeled:
—isBezeled
— setBordered:
— isBordered
- isOpaque

Setting parameters - — setParameter:to:
— getParameter:

Displaying — control View
— drawlInside:inView:
— drawSelf:inView:
— highlight:inView:lit:
— isHighlighted
Target and action — setAction:
— action
— setTarget:
— target
— setContinuous:
— isContinuous
- sendActionOn:

Assigning a tag —setTag:
—tag

Handling keyboard alternatives — keyEquivalent

Tracking the mouse + prefersTrackingUntilMouseUp
— mouseDownFlags
— getPeriodicDelay:andInterval:
— trackMouse:inRect:of View:
— startTrackingAt:inView:
— continueTracking:at:inView:
— stopTracking:at:inView:mouselsUp:

Managing the cursor — resetCursorRect:inView:
. . {
Archiving —read:
— write:
— awake

2-124 Chapter 2: Application Kit

Class Methods
prefersTrackingUntilMouseUp
+ (BOOL)prefersTrackingUntilMouseUp

Returns NO by default. Override this method to return YES if the Cell’s View should allow
it, after a mouse-down event, to track mouse-dragged and mouse-up events even if they
occur outside the Cell’s frame. For example, this method is overridden by SliderCell to
ensure that a SliderCell in a Matrix doesn’t stop responding to user input (and its neighbor
start responding) just because its knob isn’t dragged in a perfectly straight line.

See also: — trackMouse:inRect:of View:

Instance Methods

action
— (SEL)action

Returns a null selector. This method is overridden by Action Cell and subclasses that
actually implement a target object and action method.

See also: — setAction:, — target

alignment

— (int)alignment

Returns the alignment of text in the Cell. The return value can be one of three constants:
NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

See also: — setAlignment:

awake

— awake

Used during unarchiving to initialize static variables for the Cell class. Returns self.

See also: —read:

Classes: Cell 2-125

calcCellSize:
— calcCellSize:(NXSize *)theSize

Returns by reference the minimum width and height required for displaying the Cell. This
method invokes calcCellSize:inRect: with the rectangle argument set to a rectangle with
very large width and height. Override this method if that isn’t the proper way to calculate
the minimum width and height required for displaying the Cell. Returns self.

See also: — calcCellSize:inRect:

calcCellSize:inRect:
— calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Returns by reference the minimum width and height required for displaying the Cell in the
given rectangle. If it’s not possible to fit, the width and/or height could be bigger than the
ones of the provided rectangle. The computation is done by trying to size the Cell so that
it fits in the rectangle argument (for example, by wrapping the text). If a choice must be
made between extending the width or height of aRect to fit text, the height will be extended.
Returns self.

See also: — calcCellSize:

calcDrawlnfo:

— calcDrawlInfo:(const NXRect *)aRect
Does nothing and returns self. Objects using Cells generally maintain a flag that informs
them if any of their Cells has been modified in such a way that the location or size of the

Cell should be recomputed. If so, calcSize is automatically invoked before displaying the
Cell; that method invokes Cell’s calcDrawInfo: for each Cell.

See also: — calcSize (Matrix)

continueTracking:at:inView:

— (BOOL)continueTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)currentPoint
inView:aView

Determines whether or not the Cell should keep tracking the mouse based on the positions
provided. Returns YES if it can keep tracking, NO if should not. This method is invoked
by trackMouse:inRect:of View: as the mouse is dragged around inside the Cell. lastPoint

2-126 Chapter 2: Application Kit

and currentPoint should be in aView’s coordinate system. By default, this method returns
YES when the Cell is continuous (that is, when it should continually send action messages
while the mouse is pressed or dragged). This method is often overridden to provide more
sophisticated tracking behavior.

See also: - trackMouse:inRect:of View:, — startTrackingAt:inView:,
— stopTracking:at:inView:mouselsUp:

controlView
— controlView

Returns nil. This method is implemented abstractly, since Cell doesn’t record the View in
which it’s drawn. This method is overridden by ActionCell and its subclasses, which use
the control View as the only argument in the action message when it’s sent to the target.

See also: — controlView (ActionCell), — drawSelf:inView:, — drawInside:inView:

copyFromZone:
— copyFromZone:(NXZone *)zone

Allocates, initializes, and returns a copy of the receiving Cell. The copy is allocated from
zone and is assigned the same contents as the receiver. When you subclass Cell, override
this method to send the message

[super copyFromZone: zone];
then copy each of the subclass’s unique instance variables separately in that same zone.

See also: — copy (Object)

doubleValue
— (double)doubleValue

Returns the receiving text Cell’s value as a double-precision floating point number, by
converting its string contents to a double using the standard C function atof(). Returns 0.0
if the Cell isn’t a text Cell.

See also: - setDoubleValue:, — floatValue, — intValue, — stringValue, — type

Classes: Cell 2-127

drawlinside:inView:

— drawlInside:(const NXRect *)cellFrame inView:aView

Draws the “inside” of the Cell. For the base Cell class, it’s the same as drawSelf:inView:
except that it doesn’t draw the bezel or border if there is one. cellFrame should be the frame
of the Cell (that is, the same as the cellFrame passed to drawSelf:inView:), not the
rectangle returned by getDrawRect:. The PostScript focus must be locked on aView when
this method is invoked. If the Cell’s highlight flag is YES, then the Cell is highlighted (by
swapping light gray and white throughout cellFrame; see the description of the Display
PostScript operator compositerect for a description of highlighting). Returns self.

drawlnside:inView: is usually invoked from the Control class’s drawCellInside: method
and is used to cause minimal drawing to be done in order to update the value displayed by
the Cell when the contents is changed. This becomes more important in more complex
Cells such as ButtonCell and SliderCell.

All subclasses of Cell which override drawSelf:inView: must override
drawlnside:inView:. drawlnside:inView: should never invoke drawSelf:inView:, but
drawSelf:inView: can—and often does—invoke drawlnside:inView:.

See also: — drawSelf:inView:, — lockFocus (View), — highlight:inView:lit:,
— isHighlighted, compositerect (Display PostScript operator)

drawSelf:inView:

— drawSelf:(const NXRect *)cellFrame inView:aView

Displays the contents of a Cell in a given rectangle of a given view. Your code must lock
the focus on aView before invoking this method. It draws the border or bezel (if any), then
invokes drawlnside:inView:. A text Cell displays its text in the rectangle by using a
global Text object. An icon Cell displays its icon centered in the rectangle if it fits in the
rectangle, or by setting the icon origin on the rectangle origin if it doesn’t fit. Nothing is
displayed for a Cell of type NX_NULLCELL. Override this method if you want a display
that is specific to your own subclass of Cell. Returns self.

See also: — drawlnside:inView:, — lockFocus (View)

2-128 Chapter 2: Application Kit

edit:inView:editor:delegate:évent:

- edit:(const NXRect *)aRect
inView:aView
editor:zextObject
delegate:anObject
event:(NXEvent *)theEvent

Begins editing of a Cell’s text by using the Text object textObject in response to an
NX_MOUSEDOWN event. aRect must be the one you have used when displaying the
Cell. theEventis the NX_MOUSEDOWN event. anObject is made the delegate of the Text
object textObject used for the editing: it will receive messages such as
textDidEnd:endChar:, textWillEnd, textDidResize, textWillResize, and others sent by
the Text object while editing. If the receiver isn’t a text Cell, no editing is performed,
otherwise the Text object is sized to aRect and its superview is set to aView, so that it exactly
covers the Cell. Then it’s activated and editing begins. It’s the responsibility of the
delegate to end the editing, remove any data from textObject and invoke endEditing: on
the Cell in the textDidEnd:endChar: method. Returns self.

See also: — endEditing:, Text class (Methods Implemented by the Delegate)

endEditing:
— endEditing:textObject

Ends editing begun with edit:inView:editor:delegate:event: or
select:inView:editor:delegate:start:length:. Usually this method is invoked by the
textDidEnd:endChar: method of the object you are using as the delegate for the Text
object (most often a Matrix or TextField). This method should remove the Text object from
the view hierarchy and sets its delegate to nil. Returns self.

See also: — edit:inView:editor:delegate:event:,
— select:inView:editor:delegate:start:length:, — textDidEnd:endChar: (Text class
delegate method)

entryType

— (int)entryType
Returns the type of data allowed in the Cell. See setEntryType: for the list of valid types.
See also: —setEntryType:

Classes: Cell 2-129

floatValue
— (float)floatValue

Returns the receiving text Cell’s value as a single-precision floating point number, by
converting its string contents to a double using the C function atof() and then casting the
result to a float. Returns 0.0 if the receiver isn’t a text Cell.

See also: — setFloatValue:, — doubleValue, — intValue, — stringValue, — type

font
— font
Returns the Font used to display text in the Cell. Returns nil if the receiver isn’t a text Cell.

See also: — setFont:, — type

free
— free

Frees the memory used by the Cell and returns nil. If the Cell’s contents was set by copy
(the default), then the contents is also freed. ‘

getDrawRect:

— getDrawRect:(NXRect *)theRect
Given the bounds of the Cell in theRect, this method changes it to be the rectangle into
which the Cell would draw its “insides™ (everything but a bezel or border), and returns it
by reference. In other words, this method calculates the rectangle which is touched by

drawlnside:inView:. However, your code should not use the rectangle returned by this
‘method as the argument to drawInside:inView:. Returns self.

See also: — getlconRect:, — getTitleRect:, — drawInside:inView:

2-130 Chaprer 2: Application Kit

geticonRect:

— getIconRect:(NXRect *)theRect
Given the bounds of the Cell in theRect, this method changes it to be the rectangle into
which the Cell would draw its icon, and returns it by reference. If the Cell doesn’t draw an

icon, theRect is untouched. Your code should not use the rectangle returned by this method
as the argument to drawlInside:inView:. Returns self.

See also: - getDrawRect:, — getTitleRect:, — drawInside:inView:

getParameter:

— (int)getParameter:(int)aParameter
Returns the value of one of the frequently accessed flags for a Cell. See setParameter:to:
for a list of the parameters and corresponding methods. Since the parameters are also

accessible through methods such as isEnabled and isHighlighted, you shouldn’t need to
use this method often.

See also: — setParameter:to:

getPeriodicDelay:andInterval:

— getPeriodicDelay:(float*)delay andInterval:(float*)interval
Returns by reference two values: the amount of time (in seconds) that a continuous button
will pause before starting to periodically send action messages to the target object, and the
interval (also in seconds) at which those messages are sent. Periodic messaging behavior
is controlled by Cell’s sendActionOn: and setContinuous: methods. (By default, Cell

sends the action message only on mouse up events.) Override this method to return your
own values. Returns self.

See also: —setContinuous:, — sendActionOn:

getTitleRect:
— getTitleRect:(NXRect *)theRect

Returns self, and, by reference in theRect, the rectangle into which the text will be drawn.
If this Cell doesn’t draw any text, theRect is untouched. Your code should not use the
rectangle returned by this method as the argument to drawlnside:inView:. Returns self.

See also: — getDrawRect:, — getIconRect:, — drawInside;inView:

Classes: Cell 2-131

highlight:inView:lit:
— highlight:(const NXRect *)cellFrame

inView:aView
lit:(BOOL)flag

If the Cell’s highlight status is different from flag, sets the Cell’s highlight status to flag and,
if flag is YES, highlights the rectangle cellFrame in aView. Your code must lock focus on
aView before invoking this method. This method composites with NX_HIGHLIGHT
inside the bounds of cellFrame. Override this method if you want more sophisticated
highlighting behavior in a Cell subclass. Returns self.

Note that the highlighting that the base Cell class does will not appear when printed
(although subclasses like TextFieldCell, SelectionCell, and ButtonCell can print
themselves highlighted). This is because the base Cell class is transparent, and there is no
concept of transparency in printed output.

See also: - isHighlighted, — drawSelf:inView:, — drawInside:inView:

icon

— (const char *)icon

Returns the name of the icon currently used by the Cell, if any, or NULL if the receiver isn’t
an icon Cell.

See also: —setlcon:, — title

incrementState

— incrementState

Adds 1 to the state of the Cell, wrapping around to 0 from the maximum value (which, for
the Cell class, is 1). Returns self.

Subclasses may want to change the meaning of this method (to create multistate Cells, for
example). Remember that if you want the visual appearance of the Cell to reflect a change
in state, you must invoke drawSelf:inView: after altering the state. Your
drawSelf:inView: implementation must draw the different states in different ways, since
the default implementation doesn’t do so.

See also: — setState:, — drawSelf:inView:

2-132 Chapter 2: Application Kit

init

— init
Initializes and returns the receiver, a new Cell instance, as type NX_NULLCELL. This
method is the designated initializer for cells without either text or an icon.

See also: —initIconCell:, — initTextCell:, — setIcon:, — setText:

initiconCell:

— initIconCell:(const char *)iconName

Initializes and returns the receiver, a new icon Cell instance (that is, its type is
NX_ICONCELL). The icon is set to an NXImage with the name iconName. If iconName
is NULL or an image for iconName is not found, the Cell will be initialized with a default
icon, “NXsquare16”. This method is the designated initializer for Cells that display an
icon. If the Cell later has text assigned, its type will automatically change.

See also: —icon, — setlcon:, — initTextCell:, — setText:, — init,
— findImageFor: (NXImage), — name (NXImage)

initTextCell:

— initTextCell:(const char *)aString

Initializes and returns the receiver, a new text Cell instance, (that is, its type is
NX_TEXTCELL). The string value is set to aString, or “Cell” if aString is NULL. This
method is the designated initializer for text Cells.

See also: — title, — setTitle:, — initIconCell:, — setlcon:, — init

intValue

— (int)intValue

Returns the receiving text Cell’s value as an integer, by converting its string contents to an
int using the C function atoi(). Returns 0 if the receiver isn’t a text Cell.

See also: - setIntValue:, — doubleValue, — floatValue, — stringValue, — type:

Classes: Cell 2-133

isBezeled
— (BOOL)isBezeled

Returns YES if the Cell draws itself with a bezeled border, NO otherwise. The default is
NO.

See also: — setBezeled:, — isBordered

isBordered
— (BOOL)isBordered

Returns YES if the Cell draws itself surrounded by a 1-pixel black frame, NO otherwise.
The default is NO.

See also: — setBordered:, — isBezeled

isContinuous
— (BOOL)isContinuous

Returns YES if the Cell continuously sends its action message to the target object when
tracking. This usually has meaning only for subclasses of Cell that implement instance
variables and methods for target/action functionality, such as ActionCell; certain Control
subclasses, specifically Matrix, send a default action to a default target even if the Cell
doesn’t have a target and action.

See also: — setContinuous:, — target, — action

isEditable
— (BOOL)isEditable

Returns YES if text in the Cell is editable (and therefore also selectable), NO otherwise.
The default is NO.

See also: — setEditable:, — isSelectable

2-134 Chapter 2: Application Kit

isEnabled

— (BOOL)isEnabled
Returns YES if the Cell is enabled, NO otherwise. The default is YES. A Cell’s enabled
status is used primarily in event handling and display: It affects the behavior of methods
for mouse tracking and text editing, by allowing or disallowing changes to the Cell within
those methods, and only allows the Cell to highlight or set a cursor rectangle if it’s enabled.

You can still affect many Cell attributes programmatically (setState:, for example, will still
work).

See also: —setEnabled:, — trackMouse:inRect:of View:

isEntryAcceptable:
— (BOOL)isEntryAcceptable:(const char *)aString

Tests whether aString matches the Cell’s entry type, as set by the setEntryType: method.
Returns YES if aString is acceptable by the receiving Cell, NO otherwise. For example, a
text Cell of type NX_INTTYPE accepts strings that represent integers, but not floating
point numbers or words. If aString is NULL or empty, this method returns YES.

This method is invoked by Form, Matrix, and other Controls to see if a new text string is
acceptable for this Cell. This method doesn’t check for overflow. It can be overridden to
enforce specific restrictions on what the user can type into the Cell.

See also: - setEntryType:

isHighlighted

— (BOOL)isHighlighted
Returns YES if the Cell is highlighted, NO otherwise.
See also: - highlight:inView:lit:

isOpaque
— (BOOL)isOpaque

Returns YES if the Cell is opaque (that is, if it draws over every pixel in its frame), NO
otherwise. The base Cell class is opaque if and only if it draws a bezel. Subclasses that
draw differently should override this based on how they perform their drawing.

See also: — setBezeled:

Classes: Cell 2-135

" isScrollable
— (BOOL)isScrollable

Returns YES if typing past an end of the text in the Cell will cause the Cell to scroll to
follow the typing. The default return value is NO.

See also: — setScrollable:

isSelectable
- (BOOL)isSelectable

Returns YES if the text in the Cell is selectable, NO otherwise. The default is NO.

See also: — setSelectable:, — isEditable

keyEquivalent
— (unsigned short)keyEquivalent

Returns 0, as Cell provides no support for key equivalents. Subclasses can implement key
equivalents, and can override this method to return the key equivalent for the receiver.

See also: — setKeyEquivalent: (ButtonCell), — keyEquivalent (ButtonCell)

mouseDownFlags
— (intymouseDownFlags

Returns the flags (for example, NX_SHIFTMASK) that were set when the mouse went
down to start the current tracking session. This method is only valid during tracking. It
doesn’t work if the target of the Cell initiates another Cell tracking loop as part of its action
method (as does PopUpList).

See also: — sendActionOn:

read:
—read:(NXTypedStream *)stream

Reads the Cell from the typed stream stream.

See also: — write:, — awake

2-136 Chapter 2: Application Kit

resetCursorRect:inView:
— resetCursorRect:(const NXRect *)cellFrame inView:aView

If the receiver is a textCell, then a cursor rectangle is added to aView (with
addCursorRect:cursor:). This allows the cursor to change to an I-beam when it passes
over the Cell. Override this method to change the cursor for an icon Cell, or to provide a
different cursor for a text Cell.

See also: — addCursorRect:cursor: (View, Control)

select:inView:editor:delegate:start:length:

— select:(const NXRect *)aRect
inView:aView
editor:aTextObject
delegate:anObject
start:(int)selStart
length:(int)selLength

Uses aTextObj to select text in the Cell identified by selStart and selLength, which will be
highlighted and selected as though the user had dragged the cursor over it. This method is
similar to edit:inView:editor:delegate:event:, except that it can be invoked in any
situation, not only on a mouse-down event.

See also: - edit:inView:editor:delegate:event:

sendActionOn:
— (int)sendActionOn:(int)mask

Resets flags to determine when the action is sent to the target while tracking. Can be any
logical combination of:

NX_MOUSEUPMASK
NX_MOUSEDOWNMASK
NX_MOUSEDRAGGEDMASK
NX_PERIODICMASK

The default is NX_MOUSEUPMASK. You can also use the setContinuous: method to
turn on the flag corresponding to NX_PERIODICMASK (cflags2.continuous) or

Classes: Cell 2-137

NX_MOUSEDRAGGEDMASK (cflags2.actOnMouseDragged), whichever is
appropriate to the given subclass of Cell.

This method returns an event mask built from the old flags.

See also: — setContinous:

setAction:
— setAction:(SEL)aSelector

Does nothing. This method is overridden by Action Cell and its subclasses, which actually
implement the target object and action method. It is also overriden by NXBrowserCell to
provide access to its NXBrowser’s action method. Returns self.

See also: — action, — setTarget:

setAlignment:

— setAlignment:(int)mode

Sets the alignment of text in the Cell. mode should be one of three constants:
NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED. Returns self.

See also: - alignment, — setWrap:

setBezeled:
— setBezeled:(BOOL)flag

If flag is YES, then the Cell draws itself surrounded by a bezel; if NO, it doesn’t.
setBordered: and setBezeled: are mutually exclusive. Returns self.

See also: —isBezeled, — setBordered:

setBordered:
— setBordered:(BOOL)flag

If flag is YES, then the Cell draws itself surrounded by a 1-pixel black frame; if NO, it
doesn’t. setBordered: and setBezeled: are mutually exclusive. Returns self.

See also: —isBordered, — setBezeled:

2-138 Chaprer 2: Application Kit

setContinuous:

— setContinuous:(BOOL)flag
Sets whether a Cell continuously sends its action message to the target object when
tracking. Normally, this method will set the continuous (cflags2.continuous) or the
mouse-dragged flag (cflags2.actOnMouseDragged), depending on which setting is
appropriate to the subclass implementing it. In the base Cell class, this method sets the
continuous flag. These settings usually have meaning only for ActionCell and its
subclasses which implement the instance variables and methods that provide target/action

functionality. Some Control subclasses, specifically Matrix, send a default action to a
default target when a Cell doesn’t provide a target or action.

See also: — isContinuous, — sendActionOn:

setDoubleValue:
— setDoubleValue:(double)aDouble

Sets the contents of the Cell to the string value representing the double-precision floating
point number aDouble, ignoring the entry type of the Cell. Does nothing if the receiver
isn’t a text Cell. Returns self.

See also: - doubleValue, — setFloatValue:, — setIntValue:, — setString Value:,
— entryType, — type

setEditable:
— setEditable:(BOOL)flag

If flag is YES, then the text is made both editable and selectable. If flag is NO, and the text
was not selectable before editing was last enabled (that is, before this message was last sent
with an argument of YES), then the text is returned to not being selectable. Returns self.

See also: - isEditable, — setSelectable:, — edit:inView:editor:delegate:event:

setEnabled:
— setEnabled:(BOOL)flag

Sets the enabled status of the Cell. A Cell’s enabled status is used primarily in event
handling and display: It affects the behavior of methods for mouse tracking and text
editing, by allowing or disallowing changes to the Cell within those methods, and only

Classes: Cell 2-139

allows the Cell to highlight or set a cursor rectangle if it’s enabled. Many Cell attributes
can still be altered programmatically (setState:, for example, will still work). Returns self.

See also: —isEnabled

setEntryType:
— setEntryType:(int)aType

This method sets the data format allowed in the Cell. aType is one of these seven constants,
allowing only the corresponding numeric string values to be entered:

NX_ANYTYPE No restrictions

NX_INTTYPE Integer values

NX_FLOATTYPE Single-precision floating point values
NX_DOUBLETYPE Double-precision floating point values
NX_POSINTTYPE Positive integer values
NX_POSFLOATTYPE Positive single-precision floating point values

NX_POSDOUBLETYPE Positive double-precision floating point values

If the receiver isn’t a text Cell, it’s converted to type NX_TEXTCELL, in which case its
font is set to the user’s system font at 12.0 point, and its string value is set to “Cell” (even
for text Cells that display numbers).

The entry type is checked by the isEntryAcceptable: method. That method is used by
Controls that contain editable text (such as Matrix and TextField) to validate that what the
user has typed is correct. If you want to have a custom Cell accept some specific type of
data (other than those listed above), override the isEntryAcceptable: method to check for
the validity of the data the user has entered.

See also: - entryType, — isEntryAcceptable:, — setFloatingPointFormat:left:right:

setFloatingPointFormat:left:right:

- setFloatingPointFormat:(BOOL)autoRange
left:(unsigned int)leftDigits
right:(unsigned int)rightDigits

Sets whether floating-point numbers are autoranged, and sets the sizes of the fields to the
left and right of the decimal point. leftDigits specifies the maximum number of digits to
the left of the decimal point, and rightDigits specifies the number of digits to the right (the
fractional digit places will be padded with zeros to fill this width). However, if a number
is too large to fit its integer part in leftDigits digits, as many places as are needed on the left
are effectively removed from rightDigits when the number is displayed.

2-140 Chaprer 2: Application Kit

If autoRange is YES, leftDigits and rightDigits are simply added to form a maximum total
field width for the Cell (plus 1 for the decimal point). The fractional part will be padded
with zeros on the right to fill this width, or truncated as much as possible (up to removing
the decimal point and displaying the number as an integer). The integer portion of a number
is never truncated—that is, it is displayed in full no matter what the field width limit is.

leftDigits must be between 0 and 10. rightDigits must be between 0 and 14. If leftDigits
is 0, then the default printf() formatting applies. If rightDigits is 0, then the decimal and
the fractional part of the floating-point number are truncated (that is, the floating-point
number is printed as if it were an integer). If the entry type of the Cell isn’t already
NX_FLOATTYPE, NX_POSFLOATTYPE, NX_DOUBLETYPE, or
NX_POSDOUBLETYPE, it’s set to NX_FLOATTYPE. Returns self.

See also: - setEntryType:

setFloatValue:
— setFloatValue:(float)aFloat
Sets the contents of the Cell to the string value representing the single-precision floating

point number aFloat, ignoring the entry type of the Cell. Does nothing if the receiver isn’t
a text Cell. Returns self.

See also: - floatValue, — setDoubleValue:, — setIntValue:, — setStringValue:,
— entryType, — type

setFont:
— setFont:fontObject

Sets the Font to be used when displaying text in the Cell. Does nothing if the receiver isn’t
a text Cell. Returns self.

See also: - font

setlcon:

— setIcon:(const char *)iconName

Sets the Cell’s icon to iconName (an NXImage object with that name). iconName is stored
as the Cell’s contents, and the NXImage is stored as its support. If the Cell isn’t an icon
cell, it’s converted; if the Cell was a text Cell, the text string is freed if necessary. If
iconName is NULL or an empty string, or if an image can’t be found for iconName, the Cell
has its icon set to the standard system bitmap “NXsquare16”.

Classes: Cell 2-141

If you specify a name for which an image can’t be found, no change is made. Your code
can verify that the icon was properly changed by comparing the values returned by the type
or icon methods before and after invoking setIcon:. Returns self.

See also: —icon, - findlmageNamed (NXImage), — initIconCell:

setintValue:
— setIntValue:(int)anint

Sets the contents of the Cell to the string value representing the integer anlnt. Does nothing
if the receiver isn’t a text Cell. This method ignores the entry type of the Cell. Returns self.

See also: — intValue, — setDoubleValue:, — setFloatValue:, — setStringValue:, — type,
— entryType

setParameter:to:

— setParameter:(int)aParameter to:(int)value
Sets the value of one of the Cell’s parameters to value, and returns self. You don’t normally
use this method, since these parameters can be set using specific methods such as
setEditable:. In this method, the parameters is identified by aParameter, a symbolic

constant defined in the header file appkit/Cell.h. The following table lists these constants
with the corresponding methods for setting and getting the value of the related parameters:

Parameter Constant Equivalent Methods

NX_CELLDISABLED setEnabled:, isEnabled
NX_CELLHIGHLIGHTED highlightInView:lit:, isHighlighted
NX_CELLSTATE setState:, incrementState, state
NX_CELLEDITABLE setEditable:, isEditable

Use of this method is discouraged as it could produce unpredictable results in subclasses.
It’s much safer to invoke the appropriate parameters-specific method.

See also: — getParameter:

setScrollable:
— setScrollable:(BOOL)flag

Sets whether the Cell will scroll to follow typing while being edited. Returns self.

See also: —isScrollable, — edit:inView:editor:delegate:event:

2-142 Chapter 2: Application Kir

setSelectable:
— setSelectable:(BOOL)flag

If flag is YES, then the text is made selectable but not editable. If NO, then the text is static
(neither editable nor selectable). To make text in a Cell both selectable and editable, send
it a setEditable: message. Returns self.

See also: - isSelectable:, — isEditable, — edit:inView:editor:delegate:event:

setState:
— setState:(int)value
Sets the state of the Cell to O if value is 0, to 1 otherwise. Returns self.

See also: — state, — incrementState

setStringValue:

— setString Value:(const char *)aString

Copies aString as the receiver’s contents. If the receiver isn’t a text Cell, this method
converts it to that type, setting its font to the user’s system font at 12 points. Returns self.

If the receiver was an icon Cell, the NXImage for that icon is not freed; your code should
retrieve it beforehand and free it after sending this message.

If floating point formatting has been set (with setFloatingPointParameters:left:right:)
and the entry type of the Cell is a floating point number type, then the string is tested to
determine whether it represents a floating point number; if so, the string is displayed
according to that floating point format.

See also: - setStringValueNoCopy:, — setStringValueNoCopy:shouldFree:,
— stringValue, — setDoubleValue:, — setFloatValue:, — setIntValue:,
— setFloatingPointFormat:left:right:

setStringValueNoCopy:
- setStringValueNoCopy:(const char *)aString

Similar to setStringValue: but doesn’t make a copy of aString. The Cell records that it
doesn’t have to dispose of its contents when it receives a free message. Note that if a string

Classes: Cell 2-143

is set this way, floating-point formatting can’t be applied (since a shared string can’t be
altered). Returns self.

See also: — setStringValue:, — setStringValueNoCopy:shouldFree:, — stringValue

setStringValueNoCopy:shouldFree: ,
— setStringValueNoCopy:(char *)aString shouldFree:(BOOL)flag

Similar to setStringValueNoCopy:, but the sender can specify in flag if the contents should
be freed when the Cell receives a free message. Note that if a string is set this way,
floating-point formatting isn’t applied. Returns self.

If the contents was already the same string as aString (the same pointer, not the same string
value), the free-contents flag can’t be set set to YES. That is, you can’t set a string as
non-freeable and later change it to be freeable by reinvoking this method with that same
string; you can, however, change it from freeable to nonfreeable.

See also: - setStringValue:, — setStringValueNoCopy:, — stringValue

setTag:
— setTag:(int)anint

Does nothing. This method is overridden by ActionCell and its subclasses to support
Controls with multiple Cells (Matrix and Form). Override this method to provide a way to
identify Cells. Returns self.

See also: - tag, — findCellWithTag: (Matrix, Menu classes)

setTarget:
— setTarget:anObject

Does nothing. This method is one of several overridden by ActionCell and subclasses to
implement target/action functionality. Returns self.

See also: — setAction:, — target, — action, ActionCell

2-144 Chaprer 2: Application Kit

setTextAttributes:
- setTextAttributes:textObject

Invoked just before any drawing or editing occurs in the Cell. This method is intended to
be overridden. If you do override this method you must include this line first:

[super setTextAttributes:textObject];

If you don’t, you risk inheriting drawing attributes from the last Cell which drew any text.
You should invoke only the setBackgroundGray: and setTextGray: Text instance
methods. Don’t set any other parameters in the Text object.

This method normally returns textObject. If you want to substitute some other Text object
to draw with (but not edit, since editing always uses the window’s field editor), you can
return that object instead of textObject and it will be used for the draw that caused
setTextAttributes: to be invoked.

TextFieldCell, a subclass of ActionCell, allows you to set the grays without creating your
own subclass of Cell. You only need to subclass Cell to control the gray values if you don’t
want all the functionality (and instance variable usage) of an ActionCell.

The default values for text attributes are as follows. If the Cell is enabled, its text gray will
be NX_BLACK, otherwise it will be NX_DKGRAY. If the Cell has a bezel, then its
background gray will be NX_WHITE, otherwise it will be NX_LTGRAY. The Text object
does not paint the background gray before drawing; it only uses the background gray to
erase characters while editing. The Cell class does paint the NX_WHITE background
when it draws a bezeled Cell, but doesn’t paint any background otherwise (that is,

it’s transparent).

Note that most of the other text object attributes can be set with Cell methods (setFont:,
setAlignment:, setWrap:) so you need only override this method if you need to set the
gray values. Returns self.

setType:
— setType:(int)aType

Sets the type of the Cell. aType should be NX_TEXTCELL, NX_ICONCELL, or
NX_NULLCELL. If aType is NX_TEXTCELL and the receiver isn’t currently a text Cell,
then the font is set to the user’s system font in 12.0 point; its string value is set to “Cell”.
If aType is NX_ICONCELL and the receiver isn’t an icon Cell, then the icon set to the
default, “NXsquare16”.

See also: - type, — init, — initIlconCell:, — initTextCell:, — setIcon:, — setText:

Classes: Cell 2-145

2-146

setWrap:
— setWrap:(BOOL)flag

If flag is YES, text will be wrapped to word breaks. If flag is NO, it will be truncated. The
default is YES. This setting has effect only when displaying text, not when editing, and

- only applies to Cells whose alignment is NX_LEFTALIGNED (centered and right-aligned

text always wraps to word breaks).

See also: - setAlignment:

startTrackingAt:inView:

— (BOOL)startTrackingAt:(const NXPoint *)startPoint inView:aView
This method is invoked from trackMouse:inRect:of View: the first time the mouse appears
in the Cell needing to be tracked. Override to provide implementation-specific tracking

behavior. This method should return YES if it’s OK to track based on this starting point,
and only if the Cell is continuous; otherwise it should return NO.

See also: — trackMouse:inRect:of View:, — continueTracking:at:inView:,
— stopTracking:at:inView:mouselsUp:, — isContinuous, — mouseDownFlags

state
— (int)state

Returns the state of the Cell (0 or 1). The default is 0.

See also: — setState:, — incrementState

stopTracking:at:inView:mouselsUp:

— stopTracking:(const NXPoint *)lastPoint
at:(const NXPoint *)stopPoint
inView:aView
mouselsUp:(BOOL)flag

Invoked from trackMouse:inRect:of View: when the mouse has left the bounds of the
Cell, or the mouse button has gone up. flag is YES if the mouse button went up to cause
this method to be invoked. The default behavior is to do nothing and return self. This
method is often overridden to provide more sophisticated tracking behavior.

See also: — trackMouse:inRect:of View:, — startTrackingAt:inView:,
— continueTracking:at:inView:

Chapter 2: Application Kit

stringValue

— (const char *)stringValue
Returns the contents of the Cell as a string.

See also: — setStringValue:, — doubleValue, — floatValue, — intValue

tag
— (int)tag
Returns —1. This method is overridden by ActionCell and its subclasses to support

multiple-Cell controls (Matrix and Form). Override this method if you want to use tags to
identifiy Cells. Returns self.

See also: —setTag:, — findCellWithTag: (Matrix, Menu classes)

takeDoubleValueFrom:
— takeDoubleValueFrom:sender

Sets the Cell’s double-precision floating point value to the value returned by sender’s
doubleValue method. sender must be of a class that implements the doubleValue method.
Returns self.

This method can be used in action messages between Cells. It permits one Cell (the sender)
to affect the value of another Cell (the receiver). For example, a TextFieldCell can be made
the target of a SliderCell, which will send it a takeDoubleValueFrom: action message.
The TextFieldCell will get the return value of the SliderCell’s double Value method, turn it
into a text string, and display it.

See also: — takeDoubleValueFrom: (Control), — setDoubleValue:

takeFloatValueFrom:
— takeFloatValueFrom:sender

Sets the Cell’s single-precision floating-point value to the value returned by sender’s
floatValue method. sender must be of a class that implements the floatValue method.
Returns self.

This method is similar to takeDoubleValueFrom: except it works with floats rather
than doubles.

See also: — takeFloatValueFrom: (Control), — setFloatValue:

Classes: Cell 2-147

takelntValueFrom:

— takeIntValueFrom:sender

Sets the Cell’s integer value to the value returned by sender’s intValue method. sender
must be of a class that implements the intValue method. Returns self.

This method is similar to takeDoubleValueFrom: except it works with ints rather
than doubles.

See also: — takeIntValueFrom: (Control), — setIntValue:

takeStringValueFrom:
— takeStringValueFrom:sender

Sets the Cell’s string value to the value returned by sender’s stringValue method. sender
must be of a class that implements the stringValue method. Returns self.

This method is similar to takeDoubleValueFrom: except it works with strings rather
than doubles.

See also: — takeStringValueFrom: (Control), — setStringValue:

target
— target

Returns nil. This method is one of those overridden by ActionCell and subclasses to
implement target/action functionality.

See also: — setTarget:, — action, ActionCell

trackMouse:inRect:ofView:

— (BOOL)trackMouse:(NXEvent *)theEvent
inRect:(const NXRect *)cellFrame
ofView:aView

Invoked by a Control to initiate the tracking behavior of a Cell. It’s generally not
overridden since the default implementation invokes other Cell methods that can be
overridden to handle specific events in a dragging session. Returns YES if the mouse goes
up in cellFrame, NO otherwise.

2-148 Chaprer 2: Application Kit

This method first invokes startTrackingAt:inView:. If that method returns YES, then as
mouse-dragged events are intercepted, continueTracking:at:inView: is invoked, and,
finally, when the mouse leaves the bounds or if the mouse button goes up,
stopTracking:at:inView:mouselsUp: is invoked (if cellFrame is NULL, then the bounds
are considered infinitely large). You usually override one or more of these methods to
respond to specific mouse events.

If the other tracking methods are insufficient for your needs, override this method directly.
It’s this method’s responsibility to invoke aView’s sendAction:to: method when
appropriate (before, during, or after tracking) and to return YES if and only if the mouse
goes up within the Cell during tracking. If the Cell’s action is sent on a mouse down event,
then startTrackingAt:inView: is invoked before the action is sent and the mouse is tracked
until it goes up or out of bounds. If the Cell sends its action periodically, then the action is
sent periodically to the target even if the mouse isn’t moving (although
continueTracking:at:inView: is only invoked when the mouse changes position). If the
Cell’s action is sent on a mouse dragged event, then continueTracking:at:inView: is
invoked before the action is sent. The state of the Cell is incremented (with
incrementState) before the action is sent and after stopTracking:at:inView: is invoked
when the mouse goes up.

See also: - startTrackingAt:inView:, — continueTracking:at:inView:,
— stopTracking:at::inView:mouseIsUp:

type
— (int)type

Returns the type of the Cell, which can be either NX_NULLCELL, NX _ICONCELL or
NX_TEXTCELL.

See also: — setType:

write:
— write:(NXTypedStream *)stream
Writes the Cell to the typed stream stream. Returns self.

See also: —read:

Classes: Cell 2-149

ClipView

Inherits From: View : Responder : Object

Declared In: appkit/ClipView.h

Class Description

A ClipView object lets you scroll a document that may be larger than the ClipView’s frame
rectangle, clipping the visible portion of the document to the frame. The document, which
must be a View object, is called the ClipView’s document view. A ClipView’s document
view, which is set through the setDocView: method, is the ClipView’s only subview. You
can set the cursor that’s displayed when the mouse enters a ClipView’s frame (in other
words, when it’s poised over the document view) through the setDocCursor: method.

When the ClipView is instructed to scroll its document view, it copies as much of the
previously visible document as possible, unless it received a setCopyOnScroll:NO
message. The ClipView then sends its document view a message to either display or mark
as invalid the newly exposed region(s) of the ClipView. By default it will invoke the
document view’s display:: method, but if the ClipView received a
setDisplayOnScroll:NO message, it will invoke the document view’s invalidate::
method.

The ClipView sends its superview (usually a ScrollView) a reflectScroll: message
whenever the relationship between the ClipView and the document view has changed. This
allows the superview to update itself to reflect the change—for example, the Scroll View
class uses this method to change the position of its scrollers when the user causes the
document to autoscroll.

You don’t normally use the ClipView class directly; it’s provided primarily as the scrolling
machinery for the ScrollView class. However, you might use the ClipView class to
implement a class similar to ScrollView.

2-150 Chapter 2: Application Kit

Instance Variables

float backgroundGray;
id docView;
id cursor;

backgroundGray
docView

cursor

Method Types

Initializing the class

The gray value used to fill the ClipView’s background.
The ClipView’s document view.

The cursor that’s used within the ClipView’s frame.

+ initialize

Initializing and freeing a ClipView

— initFrame:
— free

Modifying the frame rectangle — moveTo::

— rotateTo:
—sizeTo::

Modifying the coordinate system

Managing component Views

— rotate:

—scale::

— setDrawOrigin::
— setDrawRotation:
— setDrawSize::

— translate::

— docView

— setDocView:

— getDocRect:

— getDocVisibleRect:
— resetCursorRects

— setDocCursor:

Modifying graphic attributes and displaying

— backgroundGray

— setBackgroundGray:
— backgroundColor

— setBackgroundColor:
— drawSelf::

Classes: ClipView 2-151

Scrolling — autoscroll:
— constrainScroll:
—rawScroll:
— setCopyOnScroll:
— setDisplayOnScroll:

Coordinating with other Views — descendantFlipped:
— descendantFrameChanged:

Archiving — awake
—read:
— write:

Class Methods
initialize
+ initialize

Sets the current version of the ClipView class. You never invoke this method directly; it’s
sent for you when the application starts. Returns self.

Instance Methods
autoscroll:

— autoscroll:(NXEvent *)theEvent

Performs automatic scrolling of the document. You never invoke this method directly;
instead, the ClipView’s document view should send autoscroll: to itself while inside a
modal event loop initiated by a mouse-down event when the mouse is dragged outside the
ClipView’s frame. The View class implements autoscroll: to forward the message to the
View’s superview; thus is the message forwarded to the ClipView.

Returns nil if no scrolling occurs; otherwise returns self.

See also: — autoscroll: (View)

| awake

— awake

You never invoke this method directly; it’s invoked automatically after the ClipView has
been read from an archive file. Returns self.

2-152 Chaprer 2: Application Kir

backgroundColor
— (NXColor)backgroundColor

Returns the color of the ClipView’s background. If the background gray value has been set
but no color has been set, the color equivalent of the background gray value is returned. If
neither value has been set, the background color of the ClipView’s window is returned.

See also: — backgroundGray, — setBackgroundColor:, — setBackgroundGray:,
— backgroundColor (Window), NXConvertGrayToColor()

backgroundGray
— (float)backgroundGray

Returns the gray value of the ClipView’s background. If no value has been set, the gray
value of the ClipView’s window is returned.

See also: — backgroundColor, — setBackgroundGray:, — backgroundGray (Window)

constrainScroll:

— constrainScroll:(NXPoint *)newOrigin
Ensures that the document view is not scrolled to an undesirable position. This method is
invoked by the private method that all scrolling messages go through before it invokes
rawScroll: or scrollClip:to:. The default implementation keeps as much of the document
view visible as possible. You may want to override this method to provide alternate

constraining behavior. newOrigin is the desired new origin of the ClipView’s bounds
rectangle, given in ClipView’s coordinate system. Returns self.

See also: — rawScroll:

descendantFlipped:
— descendantFlipped:sender

Changes the ClipView’s coordinate system orientation (unflipped or flipped) to match that
of the document view. You never invoke this method directly; it’s invoked automatically
when the document view’s orientation changes. Returns self.

Classes: ClipView 2-153

descendantFrameChanged:
— descendantFrameChanged:sender

Notifies the ClipView that its document view has been resized or moved. The ClipView
may then scroll and/or redisplay the document view, and the ClipView may also notify its
superview to reflect the changes in the scroll position. You never invoke this method
directly, nor should you override it in a subclass. Returns self.

See also: — moveTo:: (View), — sizeTo:: (View), — reflectScroll: (ScrollView),
- notifyAncestorWhenFrameChanged: (View), — setDocView:

docView
— docView

Returns the ClipView’s document view.

See also: - setDocView:

drawSelf::
— drawSelf:(const NXRect *)rects :(int)rectCount

Overrides View’s drawSelf:: method to fill the portions of the ClipView that aren’t covered
by opaque portions of the document view. If a color value has been set and the ClipView
is drawing itself on a color screen, the ClipView draws its background with the color value,
otherwise it draws its background using its gray value. Returns self.

See also: — backgroundColor:, — backgroundGray:, — drawSelf:: (View)

free
— free

Frees the ClipView and its subviews.

2-154 Chapter 2: Application Kit

getDocRect:
— getDocRect:(NXRect *)aRect
Returns, by reference in aRect, the smallest rectangle that encloses both the document

view’s frame and the ClipView’s frame. The origin of the rectangle is always set to that of
the document view’s frame.

The document rectangle is used in conjunction with the ClipView’s bounds rectangle to
determine values for any indicators of relative position and size between the ClipView and
the document view. The ScrollView uses these rectangles to set the size and position of the
Scrollers’ knobs. Returns self.

See also: — reflectScroll: (ScrollView)

getDocVisibleRect:

— getDocVisibleRect:(NXRect *)aRect
Returns, by reference in aRect, the portion of the document view that’s visible within the
ClipView. The visible rectangle is given in the document view’s coordinate system. Note
that this rectangle doesn’t reflect the effects of any clipping that may occur above the

ClipView itself. To get the portion of the document view that’s guaranteed to be visible,
send it a getVisibleRect: message. Returns self.

See also: - getVisibleRect: (View)

initFrame:

— initFrame:(const NXRect *)frameRect
Initializes the ClipView, which must be a newly allocated ClipView instance. The
ClipView’s frame rectangle is made equivalent to that pointed to by frameRect. This
method is the designated initializer for the ClipView class, and can be used to initialize a

ClipView allocated from your own zone. By default, clipping is enabled, and the ClipView
is set to opaque. A ClipView is initialized without a document view. Returns self.

moveTo::
— moveTo:(NXCoord)x :(NXCoord)y

Moves the origin of the ClipView’s frame rectangle to (x, y) in its superview’s coordinates.
Returns self.

Classes: ClipView 2-155

rawScroll:

—rawScroll:(const NXPoint *)newOrigin

Performs scrolling of the document view. This method sets the ClipView’s bounds
rectangle origin to newOrigin. Then it copies as much of the previously visible document
as possible, unless it received a setCopyOnScroll:NO message. It then sends its document
view a message to either display or invalidate the newly exposed region(s) of the ClipView.
By default it will invoke the document view’s display:: method, but if the ClipView
received a setDisplayOnScroll:NO message, it will invoke the document view’s
invalidate:: method. The rawScroll: method doesn’t send a reflectScroll: message to its
superview; that message is sent by the method that invokes rawScroll:. Note also that
while the ClipView provides clipping to its frame, it doesn’t clip to the update rectangles.

This method is used by a private method through which all scrolling passes, and is invoked
if the ClipView’s superview does not implement the scrollClip:to: method. If the
ClipView’s superview does implement scrollClip:to:, that method should invoke
rawScroll:. This mechanism is provided so that the ClipView’s superview can coordinate
scrolling of multiple tiled ClipViews. (Note that ScrollView doesn’t implement the
scrollClip:to: method.) Returns self.

read:
—read:(NXTypedStream *)stream

Reads the ClipView and its document view from the typed stream stream. Returns self.

See also: — write:

resetCursorRects

— resetCursorRects

Resets the cursor rectangle for the document view to the bounds of the ClipView.
Returns self.

See also: — setDocCursor:, — addCursorRect:cursor: (View)

rotate:

— rotate:(NXCoord)angle
Disables rotation of the ClipView’s coordinate system. You also should not rotate the
ClipView’s document view, nor should you install a ClipView as a subview of a rotated

view. The proper way to rotate objects in the document view is to perform the rotation in
your document view’s drawSelf:: method. Returns self.

2-156 Chaprer 2: Application Kit

rotateTo:
— rotateTo:(NXCoord)angle

Disables rotation of the ClipView’s frame rectangle. This method also disables ClipView’s
inherited rotateBy: method. Returns self.

See also: —rotate:

scale::
— scale:(NXCoord)x :(NXCoord)y

Rescales the ClipView’s coordinate system by a factor of x for its x-axis, and by a factor of
y for its y-axis. Since the document view’s coordinate system is measured relative to the
ClipView’s coordinate system, the document view is redisplayed and a reflectScroll:
message may be sent to the ClipView’s superview. Returns self.

See also: — reflectScroll: (ScrollView)

setBackgroundColor:
— setBackgroundColor:(NXColor)color

Sets the color of the ClipView’s background. This color is used to fill the area inside the
ClipView that’s not covered by opaque portions of the document view. If no background
gray has been set for the ClipView, this method sets it to the gray component of the color.
Returns self.

See also: — backgroundColor, — backgroundGray, — setBackgroundGray,
NXGrayComponent()

setBackgroundGray:
— setBackgroundGray:(fioat)value

Sets the gray value of the ClipView’s background. This gray is used to fill the area inside
the ClipView that’s not covered by opaque portions of the document view. value must lie
in the range from 0.0 (black) to 1.0 (white). Returns self.

See also: — backgroundColor, — backgroundGray, — setBackgroundColor

Classes: ClipView 2-157

setCopyOnScroll:
— setCopyOnScroll:(BOOL)flag

Determines whether visible portions of the document view will be copied when scrolling
occurs. If flag is YES, scrolling will copy as much of the document as possible to scroll the
View, allowing the document view to update only the newly exposed portions of itself. If
flag is NO, the document view is responsible for redrawing its entire visible portion. This
should only rarely be changed from the default value (YES). Returns self.

setDisplayOnScroll:

— setDisplayOnScroll:(BOOL)flag
Determines whether the results of scrolling will be immediately displayed. If flag is YES,
the results of scrolling will be immediately displayed. If flag is NO, the ClipView is marked

as invalid but isn’t displayed. This should only rarely be changed from the default setting
of YES. Returns self.

See also: - rawScroll:, — display:: (View), — invalidate:: (View)

setDocCursor:
— setDocCursor:anObj

Sets the cursor to be used inside the ClipView’s bounds. anObj should be an NXCursor
object. Returns the old cursor.

setDocView:

— setDocView:aView

Sets aView as the ClipView’s document view. A ClipView can have only one document
view; invoking this method removes the previous document view, if any. This method
initializes the document view with notifyAncestorWhenFrameChanged:YES and
notifyWhenFlipped: YES messages. The origin of the document view’s frame is initially
set to be coincident with the origin of the ClipView’s bounds. If the ClipView is contained
within a ScrollView, you should send the ScrollView the setDocView: message and have
the ScrollView pass this message on to the ClipView. Returns the old document view, or
nil if there was none.

See also: - setDocView: (ScrollView)

2-158 Chaprer 2: Application Kir

setDrawOrigin::
— setDrawOrigin:(NXCoord)x :(NXCoord)y

Overrides the View method so that changes in the ClipView’s coordinate system are
reflected in the displayed document view. This method may redisplay the document view,
and a reflectScroll: message may be sent to the ClipView’s superview. Returns self.

See also: - setDrawOrigin:: (View)

setDrawRotation:
— setDrawRotation:(NXCoord)angle

Disables rotation of the ClipView’s coordinate system. The proper way to rotate objects in
the document view is to perform the rotation in your document view’s drawSelf:: method.
Returns self.

See also: - rotate:

setDrawSize::
— setDrawSize:(NXCoord)widrh :(NXCoord)height

Overrides the View method so that rescaling of the ClipView’s coordinate system is
reflected in the displayed document view. This method may redisplay the document view,
and a reflectScroll: message may be sent to the ClipView’s superview. Returns self.

See also: - setDrawSize:: (View)

sizeTo::
— sizeTo:(NXCoord)width :(NXCoord)height

Overrides the View method so that resizing of the ClipView’s frame rectangle is reflected
in the displayed document view. This method may redisplay the document view, and a
reflectScroll: message may be sent to the ClipView’s superview. Returns self.

See also: - sizeTo:: (View)

Classes: ClipView 2-159

translate::
— translate:(NXCoord)x :(NXCoord)y

Overrides the View method so that translation of the ClipView’s coordinate system is
reflected in the displayed document view. This method may redisplay the document view,
and a reflectScroll: message may be sent to the ClipView’s superview. Returns self.

See also: — translate:: (View)

write:
— write:(NXTypedStream *)stream
Writes the ClipView and its document view to the typed stream stream. Returns self.

See also: —read:

Methods Implemented by a ClipView'’s Superview

reflectScroll:
— reflectScroll:aClipView

Notifies the ClipView’s superview that either the ClipView’s bounds rectangle or the
document view’s frame rectangle has changed, and that any indicators of the scroll position
need to be adjusted. ScrollView implements this method to update its Scroller.

scrollClip:to:

— scrollClip:aClipView to:(const NXPoint *)newOrigin
Notifies the ClipView’s superview that the ClipView needs to set its bounds rectangle
origin to newOrigin. The ClipView’s superview should then send the ClipView the
rawScroll: message. This mechanism is provided so that the ClipView’s superview can

coordinate scrolling of multiple tiled ClipViews. Note that the default delegate is the
ClipView’s ScrollView, and doesn’t respond to this method.

See also: — rawScroll: (ClipView)

2-160 Chapter 2: Application Kit

Control

Inherits From: View : Responder : Object

Declared In: appkit/Control.h

Class Description

Control is an abstract superclass that provides three fundamental features for implementing
user interface devices. First, as a subclass of View, Control allows the on-screen
representation of the device to be drawn. Second, it receives and responds to
user-generated events within its bounds by overriding Responder’s mouseDown: method
and providing a position in the responder chain. Third, it implements the sendAction:to:
method to send an action message to the Control’s target object. Subclasses of Control
defined in the Application Kit are Button, Form, Matrix, NXBrowser, NXColorWell,
Slider, Scroller, and TextField.

Target and Action

Target objects and action methods provide the mechanism by which Controls interact with
other objects in an application. A target is an object that a Control has effect over. The
target class defines an action method to enable its instances to respond to user input. An
action method takes only one argument: the id of the sender. The sender may be either
Control that sends the action message or another object that the target should treat as the
sender. When it receives an action message, a target can return messages to the sender
requesting additional information about its status. Control’s sendAction:to: asks the
Application object, NXApp, to send an action message to the Control’s target object. The
method used for this is Application’s sendAction:to:from:. You can also set the target to
nil and allow it to be determined at run time. When the target is nil, the Application object
must look for an appropriate receiver. It conducts its search in a prescribed order, by
following the responder chain until it finds an object that can respond to the message:

» [t begins with the first responder in the key window and follows nextResponder links
up the responder chain to the Window object. After the Window object, it tries the
Window’s delegate.

» [If the main window is different from the key window, it then starts over with the first
responder in the main window and works its way up the main window’s responder chain
to the Window object and its delegate.

Classes: Control 2-161

* Next, it tries to respond itself. If the Application object can’t respond, it tries its own
delegate. NXApp and its delegate are the receivers of last resort.

Control provides methods for setting and using the target object and the action method.
Howeyver, these methods require that a Control have an associated subclass of Cell that
provides a target and an action, such as ActionCell and its subclasses.

Target objects and action methods demonstrate the close relationship between Controls and
Cells. In most cases, a user interface device consists of an instance of a Control subclass
paired with one or more instances of a Cell subclass. Each implements specific details of
the user interface mechanism. For example, Control’s mouseDown: method sends a
trackMouse:inRect:of View: message to a Cell, which handles subsequent mouse and
keyboard events; a Cell sends a Control a sendAction:to: message in response to particular
events. Control’s drawSelf:: method is implemented by sending a drawSelf:inView:
message to the Cell. As another example, Control provides methods for setting and
formatting its contents; these methods send corresponding messages to Cell, which actually
owns the contents.

See the ActionCell class specification for more on the implementation of target and
action behavior.

Creating New Controls

Since Control uses the Cell class to implement most of its actual functionality, you can
usually implement a unique user interface device by creating a subclass of Cell or
ActionCell rather than Control. A Control subclass doesn’t have to use a Cell subclass to
implement itself; Scroller and NXColorWell don’t. However, such subclasses have to take
care of details that Cell would otherwise handle. Specifically, they have to override
methods designed to work with a Cell. What’s more, they cannot be used in a Matrix—a
subclass of Control designed specifically for managing multi-cell arrays such as

radio buttons.

The initFrame: method is the designated initializer for the Control class. Override this
method if you create a subclass of Control that performs its own initialization.

If your new Control uses a custom subclass of Cell, you’ll probably also want to override
Control’s setCellClass: class method. Since Objective C does not support class variables,
if you create a subclass of, for example, Button, and send setCellClass: to your subclass
object to use a custom Cell, then all Buttons created after that will also use that Cell class.
There are two ways to circumvent this problem. One is to reset the Cell class each time you
create an instance of your Control subclass. The other is to override setCellClass: to store
its own Cell class in a global variable and to use that in its initFrame: method as follows
(note that in the initialize method MyCellSubClass checks itself to prevent its subclasses
from inheriting a method that initializes them incorrectly):

2-162 Chaprer 2: Application Kit

static id myStoredCellClass;

+ initialize
{
/* Class initialization code. */
if (self == [MyCellSubclass class]) {
myStoredCellClass = [MyCellSubclass class]; // Default class
}

return self;

setCellClass:classId

+

myStoredCellClass = classId;
return self;

- initFrame: (NXRect *)frameRect
id oldCell;

[super initFrame:frameRect];

0ldCell = [self setCell:[[myStoredCellClass alloc] init]];
[oldCell free];

/* other initialization code */

return self;

Instance Variables

int tag;

id cell;

struct _conFlags {
unsigned int enabled:1;
unsigned int editingValid:1;
unsigned int ignoreMultiClick:1;
unsigned int calcSize:1;

} conFlags;

Classes: Control 2-163

tag Identifies the ControI; used by View’s find ViewWithTag:

method.
cell The Control’s Cell (if it has only one).
conFlags.enabled YES if the Control is enabled; relevant for muiti-cell
controls only.
cthlags.editingValid YES if editing has been validated.

conFlags.ignoreMultiClick YES if the Control ignores double- or triple-clicks.

conFlags.calcSize YES if the cell should recalculate its size and location
before drawing.

Method Types

Initializing and freeing a Control
— initFrame:
— free

Setting the Control’s Cell + setCellClass:
— setCell:
—cell

Enabling and disabling the Control
— isEnabled
— setEnabled:

Identifying the selected Cell ~ — selectedCell
— selectedTag

Setting the Control’s value — setFloatValue:
— floatValue
— setDoubleValue:
— doubleValue
— setIntValue:
— intValue
— setString Value:
— setStringValueNoCopy:
— setString ValueNoCopy:shouldFree:
— stringValue

Interacting with other Controls — takeDoubleValueFrom:
— takeFloatValueFrom:
— takeIntValueFrom:
— takeString ValueFrom:

2-164 Chapter 2: Application Kit

Formatting text — setAlignment:
— alignment
— setFont:
— font

— setFloatingPointFormat:left:right:

Managing the field editor — abortEditing
— currentEditor
— validateEditing

Managing the cursor — resetCursorRects

Resizing the Control — calcSize
—sizeTo::
— sizeToFit

Displaying the Control and Cell — drawCell:
— drawCellInside:
— drawSelf::
- selectCell:
~update
— updateCell:
— ypdateCellInside:

Target and action — setAction:
— action
— setTarget:
— target
— setContinuous:
— isContinuous
— sendAction:to:
—sendActionOn:

Assigning a tag — setTag:
—tag
Tracking the mouse — ignoreMultiClick:

— mouseDown:
— mouseDownFlags

Archiving —read:
— write:

Classes: Control 2-165

Class Methods
setCellClass:
+ setCellClass:classld

This abstract method does nothing. -It’s implemented by subclasses of Control, which use
this method to set the class of their Cells. Returns self.

Instance Methods
abortEditing
— abortEditing

Terminates and discards any editing of text displayed by the receiving Control. Returns
self, or nil if no editing was going on in the receiving Control. This method doesn’t
redisplay the old value of the Control.

See also: — endEditingFor: (Window), — validateEditing

action
— (SEL)action

Returns the action message sent by the Control’s Cell, or the default action message for a
Control with multiple Cells (such as a Matrix or Form). To retrieve the action message, this
method sends an action message to the Cell. For Controls with multiple Cells, it’s better
to get the action message for a particular Cell using:

someAction = [[theControl selectedCell] action];

See also: — setAction:, — target, — sendAction:to:

alignment

— (int)alignment

Returns the alignment mode of the text in the Control’s Cell. The return value can be one
of three constants: NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED.

See also: - setAlignment:

2-166 Chapter 2: Application Kit

calcSize
— calcSize

Recomputes any internal sizing information for the Control, if necessary, by invoking its
Cell’s calcDrawlInfo: method. This method doesn’t actually draw. It can be used for more
sophisticated sizing operations as well (for example, Form). calcSize is automatically
invoked whenever the Control is displayed and something has changed; you need never
invoke it. Returns self.

See also: — calcSize (Matrix, Form), — sizeToFit

cell

—cell

Returns the Control’s Cell. You should use selectedCell in the action method of the target
of the Control, since a Control may have multiple Cells.

See also: — selectedCell

currentEditor

— currentEditor

If the receiving Control is being edited (that is, has a Text object acting as its editor, and is
the first responder in its Window), this method returns the Text object being used to perform
that editing. If the Control isn’t being edited, this method returns nil.

See also: — abortEditing, — validateEditing

doubleValue
— (double)doubleValue

Returns the value of the Control’s selected Cell as a double-precision floating point number.
If the Control contains many cells (for example, Matrix), then the value of the currently
selectedCell is returned. If the Control is in the process of editing the affected Cell, then
validateEditing is invoked before the value is extracted and returned.

See also: — setDoubleValue:, — floatValue, — intValue, — stringValue

Classes: Control 2-167

drawCell:

—drawCell:aCell
If aCell is the cell used to implement this Control, then the Control is displayed. This
method is provided primarily to support a consistent set of methods between Controls with

single and multiple Cells, since a Control with multiple Cells needs to be able to draw a
single Cell at a time. Returns self.

See also: — updateCell:, — drawCelllnside:, — updateCellInside:,
— drawCell: (Matrix)

drawCelllnside:
— drawCellInside:aCell

Draws the inside of a Control (the area within a bezel or border). This method invokes
Cell’s drawInside:inView: method. drawCellInside: is used by setStringValue: and
similar content-setting methods to provide a minimal update of the Control when its value
is changed. Returns self.

See also: - drawCell:, — drawlnside:inView: (Cell), — drawCellInside: (Matrix),
— updateCellInside:

drawSelf::
- drawSelf:(const NXRect *)rects :(int)rectCount

Draws the Control. This method invokes the drawSelf:inView: method of the Control’s
Cell. You must override this method if you have a Control with multiple Cells.
Returns self.

See also: — drawSelf:inView: (Cell)

floatValue
~ (float)floatValue

Returns the value of the Control’s selected Cell as a single-precision floating point number.
See doubleValue for more details.

See also: — setFloatValue:, — doubleValue, — intValue, — stringValue

2-168 Chapter 2: Application Kit

font
— font
Returns the Font object used to draw the text (if any) of the Control’s Cell.

See also: — setFont:

free
— free

Frees the memory used by the Control and its Cells. Aborts editing if the text of the Control
was currently being edited. Returns nil.

See also: —free (View)

ignoreMultiClick:

— ignoreMultiClick:(BOOL)flag
Sets the Control to ignore multiple clicks if flag is YES. By default, double-clicks (and
higher order clicks) are treated the same as single clicks. You can use this method to

“debounce” a Control, so that it won’t inadvertently send its action message twice when
double-clicked. Returns self.

initFrame:

— initFrame:(const NXRect *)frameRect
Initializes and returns the receiver, a new instance of Control, by setting the value pointed
to by frameRect as its frame rectangle. Makes the new instance an opaque View. Since
Control is an abstract class, messages to perform this method should appear only in

subclass methods; that is, there should always be a more specific designated initializer for
the subclass. initFrame: is the designated initializer for the Control class.

intValue

— (int)intValue

Returns the value of the Control’s selected Cell as an integer (see doubleValue for
more details).

See also: — setIntValue:, — doubleValue, — floatValue, — stringValue

Classes: Control 2-169

isContinuous
— (BOOL)isContinuous

Returns YES if the Control’s Cell continuously sends its action message to its target during
mouse tracking.

See also: - setContinuous:

isEnabled
— (BOOL)isEnabled

Returns YES if the Control is enabled, NO otherwise.

See also: — setEnabled:

mouseDown:

— mouseDown:(NXEvent *)theEvent

Highlights the Control, and sends trackMouse:inRect:of View: to the Control’s Cell (or
whichever Cell the mouse event occured in if the Control has multiple Cells). This method
is invoked when the mouse button goes down while the cursor is within the bounds of the
Control. The Control’s Cell tracks the cursor until it goes outside the bounds, at which time
the Control is unhighlighted. If the cursor goes back into the bounds, then the Control
highlights again and its Cell starts tracking again. This behavior continues until the mouse
button goes up. If it goes up with the cursor in the Control, the state of the Control is
changed, and the action message is sent to the target with sendAction:to:. If the mouse
button goes up with the cursor outside the Control, no action message is sent. Returns self.

See also: — trackMouse:inRect:ofView: (Cell), — sendAction:to:

mouseDownFlags

— (int)mouseDownFlags

Returns the event flags (for example, NX_SHIFTMASK) that were in effect at the
beginning of mouse tracking. The flags are valid only in the action method invoked upon
the Control’s target.

See also: — mouseDownFlags (Cell), — sendAction:to:

2-170 Chapier 2: Application Kit

read:
- read:(NXTypedStream *)stream

Reads the Control from the typed stream stream. Returns self.

resetCursorRects
—resetCursorRects

Reestablishes the cursor rectangles for the Control’s Cell (or Cells). If the Cell displays
text, and the text in the Cell is selectable, then resetCursorRect:inView: is sent to the Cell.
resetCursorRect:inView: in turn, sends addCursorRect:cursor: back to the Control, so
that the cursor will change to an I-beam when it enters the Cell’s rectangle. Returns self.

See also: — resetCursorRect:inView: (Cell), — addCursorRect:cursor: (View)

selectCell:
—selectCell:aCell

If aCell is a Cell of the receiving Control and is unselected, this method selects aCell and
redraws the Control. Returns self.

selectedCell
— selectedCell

Returns the Control’s selected Cell. The target of the Control should use this method when
it wants to get the Cell of the sending Control. Note that even though the cell method will
return the same value for Controls with only a single Cell, it’s strongly suggested that this
method be used since it will work for Controls with either a single or multiple Cells.

See also: — sendAction:to:, — selectedCell (Matrix)

selectedTag
— (int)selectedTag

Returns the tag of the Control’s selected Cell. This is equivalent to:

myTag = [[theControl selectedCell] tagl;

Classes: Control 2-171

Returns —1 if there is no selected Cell. The Cell’s tag can be set with ActionCell’s setTag:
method. You should only use the setTag: and tag methods in conjunction with
findViewWithTag:. When you set the tag of a Control with a single Cell in Interface
Builder, it sets both the tags of both Control and Cell as a convenience.

See also: — sendAction:to:

sendAction:to:
— sendAction:(SEL)theAction to:theTarget

Sends a sendAction:to:from: message to NXApp, which in turn sends a message to
theTarget to perform theAction. sendAction:to:from: adds the Control as theAction’s only
argument. If theAction is NULL, no message is sent. sendAction:to: is invoked primarily
by Cell’s trackMouse:inRect:of View:

If theTarget is nil, NX App looks for an object that can respond to the message by following
the responder chain, as detailed in the class description.

Returns nil if no object that responds to theAction could be found; otherwise returns self.

See also: — action, — target, — trackMouse:inRect:of View: (Cell),
— sendAction:to:from: (Application)

sendActionOn:

- (int)sendActionOn:(int)mask

Uses mask to record the events that cause sendAction:to: to be invoked during tracking of
the mouse, which is performed in Cell’s trackMouse:inRect:of View:. Returns the old
event mask.

See also: — sendAction:to:, — sendActionOn: (Cell),
— trackMouse:inRect:of View: (Cell)

setAction:
— setAction:(SEL)aSelector

Makes aSelector the Control’s action method. If aSelector is NULL, then no action
messages will be sent from the Control. Returns self.

See also: — action, — setTarget:, — sendAction:to:

2-172 Chaprer 2: Application Kit

setAlignment:
— setAlignment:(int)mode
Sets the alignment mode of the text in the Control’s Cell, or of all the Control’s Cells if it

has more than one, and redraws the Control. mode should be one of:
NX_LEFTALIGNED, NX_CENTERED or NX_RIGHTALIGNED. Returns self.

See also: — alignment

setCell:
—setCell:aCell
Sets the Cell of the Control to be cell. Use this method with great care as it can irrevocably

damage your Control; specifically, you should only use this method in initializers for
subclasses of Control. Returns the old Cell.

setContinuous:
— setContinuous:(BOOL)flag

Sets whether the Control will continuously send its action message to its target as the mouse
is tracked. Returns self.

See also: —setContinuous: (ButtonCell, SliderCell), — sendActionOn:

setDoubleValue:
— setDoubleValue:(double)aDouble

Sets the value of the Control’s selected Cell to be aDouble (a double-precision floating
point number). If the affected Cell is being edited, that editing is aborted and the value
being typed is discarded in favor of aDouble. If autodisplay is on, then the Cell’s inside
(the area within a bezel or border) is redrawn. Returns self.

See also: — doubleValue, — setFloatValue:, — setIntValue:, — setStringValue:,
— abortEditing, — drawInside:inView: (Cell), — isAutodisplay (View),
— setAutodisplay: (View)

Classes: Gontrol 2-1713

setEnabled:

— setEnabled:(BOOL)flag
Sets whether the Control is active or not (that is, whether it tracks the mouse and sends its
action to its target). If flag is NO, any editing is aborted. Redraws the entire Control if

autodisplay is on. Subclasses may want to override this to redraw only a portion of the
Control when the enabled state changes (Button and Slider do this). Returns self.

See also: — setEnabled: (Cell), — isAutodisplay (View), — setAutodisplay: (View)

setFloatValue:
— setFloatValue:(float)aFloat

Same as setDoubleValue:, but sets the value as a single-precision floating point number.
Returns self.

See also: - floatValue, — setDoubleValue:, — setIntValue:, — setString Value:

setFloatingPointFormat:left:right:

— setFloatingPointFormat:(BOOL)autoRange
left:(unsigned)leftDigits
right:(unsigned)rightDigits
Sets the autoranging and floating point number format of the Control’s Cell, so that at most
leftDigits are displayed to the left of the decimal point, and rightDigits to the right. If the
Control has more than one Cell, they’re all affected. See the description of this method in
the Cell class specification for more detail. This method doesn’t redraw the Control.

setFloatingPointFormat:left:right: affects only subsequent invocations of
setFloatValue:. Returns self.

See also: — setFloatingPointFormat:left:right: (Cell)

setFont:
— setFont:fontObject

Sets the Font object used to draw the text (if any) in the Control’s Cell, or in all the Cells if
the Control has more than one. You only need to use this method if you don’t want to use
the user’s default system font (as set by the user in the Preferences application). If
autodisplay is on, then the inside of the Cell is redrawn. . Returns self.

See also: —font, — isAutodisplay (View), — setAutodisplay: (View)

2-174 Chapter 2: Application Kir

setintValue:
— setIntValue:(int)anint

Same as setDoubleValue:, but sets the value as an integer. Returns self.

See also: — intValue, — setDoubleValue:, — setFloatValue:, — setStringValue:

setStringValue:

— setString Value:(const char *)aString

Same as setDoubleValue:, but sets the value as a string by copying it from aString.
Returns self.

See also: - stringValue, — setStringValueNoCopy:,
— setStringValueNoCopy:shouldFree:, — setDoubleValue:, — setFloatValue:,
— setIntValue:

setStringValueNoCopy:
— setStringValueNoCopy:(const char *)aString

Like setStringValue:, but doesn’t copy the string. Returns self.

See also: — stringValue, — setStringValue:, — setStringValueNoCopy:,
— setStringValueNoCopy:shouldFree:, — setDoubleValue:, — setFloatValue:,
— setIntValue:

setStringValueNoCopy:shouldFree:
— setString ValueNoCopy:(char *)aString shouldFree:(BOOL)flag

Like setStringValueNoCopy:, but lets you specify whether the string should be freed
when the Control is freed. Returns self.

See also: — stringValue, — setStringValue: — setStringValueNoCopy:,
— setDoubleValue:, — setFloatValue:, — setIntValue:

Classes: Contro/ 2-175

setTag:

- —setTag:(int)anlnt
Makes anlnt the receiving Control’s tag. Doesn’t affect the Control’s Cell. Returns self.
See also: — tag, — selectedTag, — find ViewWithTag: (View), — setTag: (Cell)

setTarget:
— setTarget:anObject

Sets the target for the action message of the Control’s Cell. Returns self.

If anObject is nil, then when an action message is sent, NXApp looks for an object that
can respond to the message by following the responder chain, as detailed in the
class description.

See also: — target, — setAction:, — sendAction:to:

sizeTo:
— sizeTo:(NXCoord)width :(NXCoord)height

Changes the width and the height of the Control’s frame. Redisplays the Control if
autodisplay is on. Returns self.

See also: - isAutodisplay (View), — setAutodisplay: (View)

sizeToFit
— sizeToFit

Changes the width and the height of the Control’s frame so that they are the minimum
needed to contain the Cell. If the Control has more than one Cell, then you must override
this method. Returns self.

See also: - sizeToFit (Matrix), — sizeToCells (Matrix)

2-176 Chapter 2: Application Kit

stringValue
— (const char *)stringValue

Returns the value of the Control’s selected Cell as a string. If the Control is in the process
of editing the affected Cell, then validateEditing is invoked before the value is extracted
and returned.

See also: - setStringValue:, — doubleValue, — floatValue, — intValue

tag

— (int)tag
Returns the receiving Control’s tag (not the tag of the Control’s Cell).
See also: —setTag:, — selectedTag, — tag (Cell)

takeDoubleValueFrom:
— takeDoubleValueFrom:sender

Sets the double-precision floating-point value of the receiving Control’s selected Cell to the
value obtained by sending a doubleValue message to sender. Returns self.

This method can be used in action messages between Controls. It permits one Control (the
sender) to affect the value of another Control (the receiver) by invoking this method in an
action message to the receiver. For example, a TextField can be made the target of a Slider.
Whenever the Slider is moved, it will send a takeDoubleValueFrom: message to the
TextField. The TextField will then get the Slider’s floating-point value, turn it into a text
string, and display it, thus tracking the value of the Slider.

See also: —setDoubleValue:, — doubleValue

takeFloatValueFrom:
— takeFloatValueFrom:sender

Sets the single-precision floating-point value of the receiving Control’s selected Cell to the
value obtained by sending a floatValue message to sender. Returns self.

See takeDoubleValueFrom: for an example.

See also: — setFloatValue:, — floatValue

Classes: Control 2-1717

takelntValueFrom:

— takeIntValueFrom:sender

Sets the integer value of the receiving Control’s selected Cell to the value returned by
sending an intValue message to sender. Returns self.

See takeDoubleValueFrom: for an example.

See also: - setIntValue:, — intValue

takeStringValueFrom:

— takeStringValueFrom:sender

Sets the character string of the receiving Control’s selected Cell to a string obtained by
sending a stringValue message to sender. Since this is an action method, there is no
alternate like takeStringValueFrom:noCopy:. Returns self.

See takeDoubleValueFrom: for an example.

See also: — stringValue, — setStringValue:

target
— target

Returns the target for the action message of the Control’s cell, or the Control’s target for a
Control with multiple Cells. If nil, then any action messages sent by the Control will be
sent up the responder chain, as detailed in the Class Description.

See also: —setTarget:, — action, — sendAction:to:

update
— update

If autodisplay is enabled, sends a display message to itself. Otherwise it simply sets a flag
indicating that the Control needs to be displayed. This method also makes sure that
calcSize is performed. Returns self.

See also: — updateCell:, — updateCelllnside:

2-178 Chapter 2: Application Kir

updateCell:
— updateCell:aCell

If aCell is a Cell used to implement this Control, and if autodisplay is on, then draws the
Control’s Cell; otherwise, sets the needsDisplay and calcSize flags to YES. Returns self.

See also: — update, — updateCelllnside:, — isAutodisplay (View),
— setAutodisplay: (View)

updateCellinside:
— updateCellInside:aCell

If aCell is a Cell used to implement this Control, and if autodisplay is on, draws the inside
portion of the Cell; otherwise sets the needsDisplay flag to YES. Returns self.

See also: — update, — updateCell:, — isAutodisplay (View), — setAutodisplay: (View)

validateEditing
— validateEditing

Causes the value of the Control’s selected Cell to be set to the value of the field being
edited, if any. “Being edited” does not necessarily mean that a user is typing; if a field (for
example, a TextField object) has the application’s global Text object acting in its place as
first responder, then the field is considered as being edited. This method is invoked
automatically from stringValue, intValue, and other similar methods, so that a partially
edited field’s actual value will be correctly returned by those methods. Returns self.

This method doesn’t end editing; to do that, invoke Window’s endEditingFor: or
abortEditing.

See also: — endEditingFor: (Window), — abortEditing

write:
— write:(NXTypedStream *)stream

Writes the Control to the typed stream stream.

See also: —read:

Classes: Control 2-179

Font

Inherits From: Object

Declared In: appkit/Font.h

Class Description

The Font class provides objects that correspond to PostScript fonts. Each Font object
records a font’s name, size, style, and matrix. When a Font object receives a set message,
it establishes its font as the current font in the Window Server’s current graphics state.

For a given application, only one Font object is created for a particular PostScript font.
When the Font class object receives a message to create a new object for a particular font,
it first checks whether one has already been created for that font. If so, it returns existing
object; otherwise, it creates a new object and returns it. To implement this sharing of Font
objects, the Font class provides special instantiation methods (the new... methods,
userFixedPitchFontOfSize:matrix:, and so on); use these methods, not alloc or
allocFromZone:.

This sharing Font objects minimizes the number of objects created. It also implies that no
one object in your application can know whether it has the only reference to a particular
Font object. Thus, Font objects shouldn’t be freed; Font’s free method simply returns self.

Instance Variables

char *name;

float size;

int style;

float *matrix;

int fontNum,;
NXFacelnfo *facelnfo;
id otherFont;

struct _fFlags {
unsigned int isScreenFont:1;
} fFlags;

2-180 Chaprer 2: Application Kit

name
size

style
matrix
fontNum
facelnfo
otherFont

fFlags.isScreenFont

Method Types

Initializing the Class object

The font’s name.

The font’s size.

The font’s style.

The font’s matrix.

The user object referring to this font.
The font’s face information.

The associated screen font for this font.

True if the font is a screen font.

+ initialize
+ useFont:

Creating and freeing a Font object

Querying the Font object

+ newFont:size:

+ newFont:size:matrix:

+ newFont:size:style:matrix:

+ boldSystemFontOfSize:matrix:

+ userFixedPitchFontOfSize:matrix:
+ userFontOfSize:matrix:

+ systemFontOfSize: matrix:

— free

— displayName
— familyName
— name

— fontNum

— getWidthOf:
— hasMatrix

— matrix

— metrics

— pointSize

— readMetrics:
— screenFont
— style

Classes: Font

2-181

Setting the font —set
~ setStyle:
+ setUserFixedPitchFont:
+ setUserFont:

Archiving — awake
— finishUnarchiving
" —read:
— write:

Class Methods

allocFromZone:
+ allocFromZone:(NXZone *)zone
Creates an uninitialized Font object in the specified zone. Don’t use this method to create

a Font; instead, use newFont:size: or one of the other Font creation methods listed in
“Method Types” above.

See also: + newFont:size:style:matrix:, + newFont:size:matrix:, + newFont:size:

boldSystemFontOfSize:matrix:
+ boldSystemFontOfSize:(float)fontSize matrix:(const float *)fontMatrix

Returns the Font object representing the bold system font of size fontSize and matrix
fontMatrix. The bold system font is used for text in attention panels, window titles, and so
on. If fontSize is 0, the size as recorded in the Preferences application’s General
Preferences display is used. fontMatrix can be NX_IDENTITYMATRIX or
NX_FLIPPEDMATRIX. (See newFont:size:style:matrix: for more information on
font matrices.)

This method raises the NX_unavailableFont exception if a suitable Font object can’t
be found.

See also: + systemFontOfSize:matrix:, + userFixedPitchFontOfSize:matrix:,
+ userFontOfSize:matrix:

2-182 Chaprer 2: Application Kit

initialize

+ initialize
Initializes the Font class object. The class object receives an initialize message before it
receives any other message. You never send an initialize message directly.

See also: + initialize (Object)

newFont:size:
+ newFont:(const char *)fontName size:(float)fontSize
Returns a Font object for font fontName of size fontSize. This method invokes the

newFont:size:style:matrix: method with the style set to O and the matrix set to
NX_FLIPPEDMATRIX.

See also: + newFont:size:style:matrix:, + newFont:size:matrix:

newFont:size:matrix:

+ newFont:(const char *)fontName
size:(float)fontSize
matrix:(const float *)fontMatrix

Returns a Font object for font fontName of size fontSize. This method invokes the
newFont:size:style:matrix: method with the style set to 0.

See also: + newFont:size:style:matrix:, + newFont:size:

newFont:size:style:matrix:

+ newFont:(const char *)fontName
size:(float)fontSize
style:(int)fontStyle
matrix:(const float *)fontMatrix

Returns a Font object for font fontName, of size fontSize, and matrix fontMatrix. fontStyle
is currently ignored. If an appropriate Font object was previously created, it’s returned;
otherwise, a new one is created and returned. If an error occurs, this method returns nil.
This is the designated new... method for the Font class. ‘

There are two constants available for the fontMatrix parameter:

* NX_IDENTITYMATRIX. Use the identity matrix.

Classes: Fonr 2-183

¢ NX_FLIPPEDMATRIX. Use a flipped matrix. (Appropriate for a flipped View like the
Text object.)

The fontStyle parameter is stored in the Font object, and is preserved by the FontManager’s
convertFont: method, but is not used by the Application Kit. It can be used to store
- application-specific font information.

Note: If this method is invoked from a subclass (through a message to super), a new
object is always created. Thus, your subclass should institute its own system for
sharing Font objects.

See also: + newFont:size:matrix:, + newFont:size:

setUserFixedPitchFont:
+ setUserFixedPitchFont:(Font *)aFont

Sets the fixed-pitch font that’s used by default in the application. This method is intended
for an application that wants to override the default fixed-pitch font as recorded in the
Preferences application’s General Preferences display.

See also: + userFixedPitchFontOfSize:matrix:, + setUserFont:

setUserFont:
+ setUserFont:(Font *)aFont

Sets the standard font that’s used by default in the application. This method is intended for
an application that wants to override the default standard font as recorded in the Preferences
application’s General Preferences display.

See also: + userFontOfSize:matrix:, + setUserFixedPitchFont:

systemFontOfSize:matrix:

+ systemFontOfSize:(float)fontSize matrix:(const float *)fontMatrix
Returns the Font object representing the system font of size fontSize and matrix fontMatrix.
The system font is used for text in attention panels, menus, and so on. If fontSize is 0, the
size as recorded in the Preferences application’s General Preferences display is used.

fontMatrix can be NX_IDENTITYMATRIX or NX_FLIPPEDMATRIX. (See
newFont:size:style:matrix: for more information on font matrices.)

2-184 Chapter 2: Application Kir

This method raises the NX_unavailableFont exception if a suitable Font object can’t be
found.

See also: + boldSystemFontOfSize:matrix:, + userFixedPitchFontOfSize:matrix:,
+ userFontOfSize:matrix:

useFont:
+ useFont:(const char *)fontName

Registers that the font identified by fontName is used in the document. Returns self.

The Font class object keeps track of the fonts that are being used in a document. It does

this by registering the font whenever a Font object receives a set message. When a

document is called upon to generate a conforming PostScript language version of its text

(such as during printing), the Font class provides the list of fonts required for the

% % DocumentFonts comment. (See Document Structuring Conventions by Adobe
Systems Inc.)

The useFont: method augments this system by providing a way to register fonts that are
included in the document but not set using Font’s set method. For example, you might set
a font by executing the setfont operator within a function created by pswrap. In such a
case, make sure to pair the use of the font with a useFont: message to register the font with
the Font class object.

See also: —set

userFixedPitchFontOfSize:matrix:
+ userFixedPitchFontOfSize:(ﬂoat)fontSize matrix:(const float *)fontMatrix

Returns the Font object representing the application’s fixed-pitch font of size fontSize and
matrix fontMatrix. If fontSize is 0, the size as recorded in the Preferences application’s
General Preferences display is used. fontMatrix can be NX_IDENTITYMATRIX or
NX_FLIPPEDMATRIX. (See newFont:size:style:matrix: for more information on font
matrices.)

This method raises the NX_unavailableFont exception if a suitable Font object can’t be
found.

See also: + setUserFixedPitchFont:, + boldSystemFontOfSize: matrix:,
+ systemFontOfSize:matrix:, + userFontOfSize:matrix:

Classes: Font 2-185

2-186

userFontOfSize:matrix:
+ userFontOfSize:(float)fontSize matrix:(const float *)fontMatrix

Returns the Font object representing the application’s standard font of size fontSize and
matrix fontMatrix. If fontSize is 0, the size as recorded in the Preferences application’s
General Preferences display is used. fontMatrix can be NX_IDENTITYMATRIX or
NX_FLIPPEDMATRIX. (See newFont:size:style:matrix: for more information on
font matrices.) '

This method provides an easy way to determine the user’s font preference, which you can
use to initialize new documents.

userFontOfSize:matrix: raises the NX_unavailableFont exception if a suitable Font
object can’t be found.

See also: + setUserFixedPitchFont:, + boldSystemFontOfSize:matrix:,
+ systemFontOfSize:matrix:, + userFixedPitchFontOfSize:matrix:

Instance Methods

awake
- awake

Reinitializes the Font object after it’s been read in from a stream.

An awake message is automatically sent to each object of an application after all objects
of that application have beenread in. You never send awake messages directly. The awake

‘message gives the object a chance to complete any initialization that read: couldn’t do.

If you override this method in a subclass, the subclass should send this message to
its superclass:

[super awake];
Returns self.

See also: —read:, — write:, — finishUnarchiving

displayName

— (const char *)displayName

Returns the full name of the font. For example, the font named
“Futura-CondExtraBoldObl” returns the display name “Futura Condensed Extra Bold
Oblique™.

See also: - familyName, — name

Chapter 2: Application Kit

familyName
— (const char *)familyName

Returns the name of the font’s family. For example, the font named
“Futura-CondExtraBoldObl” returns the family name “Futura”.

See also: — displayName, — name

finishUnarchiving

— finishUnarchiving

A ﬁnishUnarchiving message is sent after the Font object has been read in from a stream.
This method checks if a Font object for the particular PostScript font already exists. If so,
self is freed and the existing object is returned.

See also: —read:, — write:, — awake

fontNum

— (int)fontNum
Returns the PostScript user object that corresponds to this font. The Font object must set
the font in the Window Server before this method will return a valid user object. Sending
a Font object the set message sets the font in the Window Server. The fontNum method

returns 0 if the Font object hasn’t previously received a set message or if the font couldn’t
be set.

See also: — set, DPSDefineUserObject()

free
— free

Has no effect. Since only one Font object is allocated for a particular font, and since you
can’t be sure that you have the only reference to a particular Font object, a Font object
shouldn’t be freed.

getWidthOf:
— (float)getWidthOf:(const char *)string

Returns the width of string using this font. This method has better performance than the
Window Server routine PSstringwidth().

Classes: Font 2-187

hasMatrix
— (BOOL)hasMatrix

Returns YES if the Font object’s matrix is different from the identity matrix,
NX_IDENTITYMATRIX; otherwise, returns NO.

See also: + newFont:size:style:matrix:, — matrix

matrix

— (const float *)matrix
Returns a pointer to the matrix for this font.

See also: — hasMatrix

metrics
— (NXFontMetrics *)metrics

Returns a pointer to the NXFontMetrics record for the font. See the header file
appkit/afm.h for the structure of an NXFontMetrics record.

See also: — readMetrics:

name

— (const char *)name
Returns the font’s name, as would be used in a PostScript language program.

See also: — displayName, — familyName

pointSize
— (float)pointSize

Returns the size of the font in points.

2-188 Chaprer 2: Application Kit

read:
~ read:(NXTypedStream *)stream

Reads the Font object’s instance variables from stream. A read: message is sent in
response to archiving; you never send this message.

See also: — write:, — read: (Object)

readMetrics:

— (NXFontMetrics *)readMetrics:(int)flags
Returns a pointer to the NXFontMetrics record for this font. The flags argument determines
which fields of the record will be filled in. flags is built by ORing together constants such
as NX_FONTHEADER, NX_FONTMETRICS, and NX_FONTWIDTHS. See the header

file appkit/afm.h for the complete list of constants and for the structure of the
NXFontMetrics record.

See also: — metrics

screenFont
— screenFont

Provides the screen font corresponding to this font. If the receiver represents a printer font,
this method returns the Font object for the associated screen font (or nil if one doesn’t
exist). If the receiver represents a screen font, it simply returns self.

set

—set
Makes this font the current font in the current graphics state. Returns self.

When a Font object receives a set message, it registers with the Font class object that its
PostScript font has been used. In this way, the Application Kit, when called upon to
generate a conforming PostScript language document file, can list the fonts used within a
document. (See Document Structuring Conventions by Adobe Systems Inc.) If the
application uses fonts without sending set messages (say through including an EPS file),
such fonts must be registered by sending the class object a useFont: message.

See also: + useFont:

Classes: Fonr 2-189

setStyle:
- setStyle:(int)aStyle

Sets the Font’s style. Setting a style isn’t recommended but is minimally supported—a
Font object’s style isn’t interpreted in any way by the Application Kit. You can use it for
your own non-PostScript language font styles (a drop-shadow style, for example).

Be very careful using this method since it causes the Font to stop being shared. You must
reassign the pointer to the Font to the return value of setStyle:.

font = [font setStyle:127];
Returns self.

See also: — style

style
— (int)style

Returns the style of the font. For Font objects created by the Application Kit, this method
returns 0.

See also: — setStyle:

write:
— write:(NXTypedStream *)stream

Writes the Font object’s instance variables to stream. A write: message is sent in response
to archiving; you never send this message directly.

See also: —read:, — write: (Object)

2-190 Chapter 2: Application Kit

FontManager

Inherits From: Object

Declared In: appkit/FontManager.h

Class Description

The FontManager is the center of activity for font conversion. It accepts messages from
font conversion user-interface objects (such as the Font menu or the Font panel) and
appropriately converts the current font in the selection by sending a changeFont: message
up the responder chain. When an object receives a changeFont: message, it should query
the FontManager (by sending it a convertFont: message), asking it to convert the font in
whatever way the user has specified. Thus, any object containing a font that can be changed
should respond to the changeFont: message by sending a convertFont: message back to
the FontManager for each font in the selection.

To use the FontManager, you simply insert a Font menu into your application’s menu. This
is most easily done with Interface Builder, but, alternatively, you can send a getFontMenu:
message to the FontManager and then insert the menu that it returns into the application’s
main menu. Once the Font menu is installed, your application automatically gains the
functionality of both the Font menu and the Font panel.

The FontManager’s delegate can restrict which font names will be appear in the FontPanel.
See “Methods Implemented by the Delegate™ near the end of this class specification for
more information.

The FontManager can be used to convert a font or find out the attributes of a font. It can
also be overridden to convert fonts in some application-specific manner. The default
implementation of font conversion is very conservative: The fontisn’t converted unless all
traits of the font can be maintained across the conversion.

Classes: FontManager 2-191

Instance Vai'iables

id panel;

id menu;

SEL action;

int whatToDo;

NXFontTraitMask traitToChange;
id selFont;

struct _fmFlags {
unsigned int multipleFont:1;
_ unsigned int disabled:1;

} fmFlags;
panel The Font panel.
menu » The Font menu.
action The action to send.
whatToDo ' What to do when a convertFont: message is received.
traitToChange The trait to change if whatToDo ==
NX_CHANGETRAIT.
selFont : The font of the current selection.
fmFlags.multipleFont True if the current selection has multiple fonts.
fmFlags.disabled True if the Font panel and menu are disabled.
Method Types
Creating the FontManager + new
Converting fonts — convertFont:
— convertWeight:of:

— convert:toFace:

— convert:toFamily:

— convert:toSize:

— convert:toHaveTrait:

— convert:toNotHaveTrait:

— findFont:traits:weight:size:

— getFamily:traits:weight:size:ofFont:

2-192 Chapter 2: Application Kit

Setting parameters — setAction:
+ setFontPanelFactory:
+ setFontManagerFactory:
— setSelFont:isMultiple:
— setEnabled:

Querying parameters — action
— availableFonts
— getFontMenu:
— getFontPanel:
— isMultiple
— selFont
— isEnabled

Target and action methods — modifyFont:
— addFontTrait:
— removeFontTrait:
— modifyFontViaPanel:
— orderFrontFontPanel:
— sendAction

Assigning a delegate — setDelegate:
— delegate

Archiving the FontManager — finishUnarchiving

Class Methods

alloc

Disables the inherited alloc method to prevent multiple FontManagers from being created.
There’s only one FontManager object for each application; you access it using the new
method. Returns an error message.

See also: + new

allocFromZone:

Disables the inherited allocFromZone method to prevent multiple FontManagers from
being created. There’s only one FontManager object for each application; you access it
using the new method. Returns an error message.

See also: + new

Classes: FontManager 2-193

new
+ new

Returns a FontManager object. An application has no more than one FontManager object,
so this method either returns the previously created object (if it exists) or creates a new one.
This is the designated new method for the FontManager class.

setFontManagerFactory:
+ setFontManagerFactory:classld

Sets the class object that will be used to create the font manager; thus allowing you to
specify a class of your own. When the FontManager class object receives a new message,
it creates an instance of the specified class, if no instance already exists. If no class has been
specified, the new method creates an instance of the FontManager class.

As a consequence of this implementation, your class shouldn’t implement the new method.
Instead, initialization code should be place in the init method.

The setFontManagerFactory: method must be invoked before your application’s main
nib file is loaded. Returns self.

See also: — setFontPanelFactory:

setFontPanelFactory:
+ setFontPanelFactory:classld

Sets the class object that’s used to create the FontPanel object when the user chooses the
Font Panel command from the Font menu and no such panel has yet been created. Unless
you use this method to specify another class, the FontPanel class will be used. Returns self.

See also: - setFontManagerFactory:

Instance Methods

action
— (SEL)action

Returns the action that’s sent to the first responder when the user selects a new font from
the Font panel or from the Font menu.

See also: —setAction:

2-194 Chapier 2: Application Kit

addFontTrait:
— addFontTrait:sender

Causes the FontManager’s action message (by default, changeFont:) to be sent up the
responder chain. When the responder replies with a convertFont: message, the font is
converted to add the trait specified by sender. '

Before the action message is sent up the responder chain, the FontManager sets its
traitToChange variable to the value returned by sending sender a selectedTag message.
The FontManager also sets its whatToDe variable to NX_ADDTRAIT. When the
convertFont: message is received, the FontManager converts the supplied font by sending
itself a convert:toHaveTrait: message.

See also: —removeFontTrait:, — convertFont:, — convert:toHaveTrait:,
— selectedTag (Control)

availableFonts

— (char **)availableFonts

Returns by reference a NULL-terminated list of NULL-terminated PostScript font names
of all the fonts available for use by the Window Server. The returned names are suitable
for creating new Fonts using the newFont:size: class method of the Font class. The fonts
are not in any guaranteed order, but no font name is repeated in the list. It’s the sender’s
responsibility to free the list when finished with it.

See also: + newFont:size: (Font)

convert:toFace:
— convert:fontObj toFace:(const char *)typeface

Returns a Font object whose traits are the same as those of fonrObj except as specified by
typeface. If the conversion can’t be made, the method returns fonrObyj itself. This method
can be used to convert a font, or it can be overridden to convert fonts in a different manner.

See also: — convert:toFamily:, — convert:toSize:, — convert:toHaveTrait:,
— convert:toNotHaveTrait:, — convertWeight:of:

Classes: FontManager 2-195

convert:toFamily:
— convert:fontObj toFamily:(const char *)family
Returns a Font object whose traits are the same as those of fontObj except as specified by

Sfamily. If the conversion can’t be made, the method returns fontObj itself. This method can
be used to convert a font, or it can be overridden to convert fonts in a different manner.

See also: — convert:toFace:, — convert:toSize:, — convert:toHaveTrait:,
— convert:toNotHaveTrait:, — convertWeight:of:

convert:toHaveTrait:

— convert:fontObj toHaveTrait:(NXFontTraitMask)traits
Returns a Font object whose traits are the same as those of fontObj except as altered by the
addition of the traits specified by traits. Of course, conflicting traits (such as
NX_CONDENSED and NX_EXPANDED) have the effect of turning each other off. If the

conversion can’t be made, the method returns fontObj itself. This method can be
overridden to convert fonts in a different manner.

See also: — convert:toNotHaveTrait:, — convert:toFace:, — convert:toSize:,
— convert:toFamily:, — convertWeight:of:

convert:toNotHaveTrait:
— convert:fontObj toNotHaveTrait:(NXFontTraitMask)traits

Returns a Font object whose traits are the same as those of fontObj except as altered by the
removal of the traits specified by traits. If the conversion can’t be made, the method returns
fontObj itself. This method can be overridden to convert fonts in a different manner.

See also: — convert:toHaveTrait:, — convert:toFace:, — convert:toSize:,
— convert:toFamily:, — convertWeight:of:

convert:toSize:
— convert;fontObj toSize:(float)size

Returns a Font object whose traits are the same as those of fontObj except as specified by
size. If the conversion can’t be made, the method returns fontObj itself. This method can
be used to convert a font, or it can be overridden to convert fonts in a different manner.

See also: — convert:toFace:, — convert:toFamily:, — convert:toHaveTrait:,
— convert:toNotHaveTrait:, — convertWeight:of:

2-196 Chapter 2: Application Kit

convertFont:
— convertFont:fontObj
Converts fontObj according to the user’s selections from the Font panel or menu.

Whenever an object receives a changeFont: message from the FontManager, it should
send a convertFont: message for each font in its selection.

This method determines what to do to the forntObj by checking the whatToDo instance
variable and applying the appropriate conversion method. Returns the converted font.

convertWeight:of:

— convertWeight:(BOOL)upFlag of:fontObj
Attempts to increase (if upFlag is YES) or decrease (if upFlag is NO) the weight of the font
specified by fontObj. If it can, it returns a new font object with the higher (or lower) weight.
If it can’t, it returns fontObj itself. By default, this method converts the weight only if it

can maintain all of the traits of the original fontObj. This method can be overridden to
convert fonts in a different manner.

See also: — convert:toHaveTrait:, — convert:toNotHaveTrait:, — convert:toFamily:

delegate
— delegate

Returns the FontManager’s delegate.

See also: — setDelegate:

findFont:traits:weight:size:

— findFont:(const char *)family
traits:(NXFontTraitMask)traits
weight:(int)weight
size:(float)size

If there’s a font on the system with the specified family, traits, weight, and size, then it’s
returned; otherwise, nil is returned. If NX_BOLD or NX_UNBOLD is one of the traits,
weight is ignored. :

Classes: FontManager 2-197

finishUnarchiving
-— finishUnarchiving

Finishes the unarchiving task by instantiating the one application-wide instance of the
FontManager class if necessary.

getFamily:traits:weight:size:ofFont:
- getFamily:(const char **)family
traits:(NXFontTraitMask *)traits
weight:(int *)weight
size:(float *)size
ofFont:fontObj

For the given font object fontObj, copies the font family, traits, weight, and point size
information into the storage referred to by this method’s arguments.

getFontMenu:
— getFontMenu:(BOOL)create

Returns a menu suitable for insertion in an application’s menu. The menu contains an item
that brings up the Font panel as well as some common accelerators (such as Bold and
Ttalic). If the create flag is YES, the menu is created if it doesn’t already exist.

See also: — getFontPanel:

getFontPanel:
— getFontPanel:(BOOL)create

Returns the FontPanel that will be used when the user chooses the Font Panel command
from the Font menu. If the create flag is YES, the FontPanel is created if it doesn’t
already exist.

Unless you’ve specified a different class (by sending a setFontPanelFactory: message to
the FontManager class before creating the FontManager object), an object of the FontPanel
class is returned.

See also: — getFontMenu:

2-198 Chaprer 2: Application Kir

isEnabled
— (BOOL)isEnabled

Reports whether the controls in the Font panel and the commands in the Font menu are
enabled or disabled.

See also: — setEnabled:

isMultiple
— (BOOL)isMultiple
Returns whether the currently selected text has multiple fonts.

See also: - setSelFont:isMultiple:

modifyFont:
— modifyFont:sender

Causes the FontManager’s action message (by default, changeFont:) to be sent up the
responder chain. When the responder replies with a convertFont: message, the font is
converted in a way specified by the selectedTag of the sender of this message. The Larger,
Smaller, Heavier, and Lighter commands in the Font menu invoke this method.

See also: — addFontTrait:, — removeFontTrait:

modifyFontViaPanel:

— modifyFontViaPanel:sender
Causes the FontManager’s action message (by default, changeFont:) to be sent up the
responder chain. When the receiver replies with a convertFont: message, the

FontManager sends a panelConvertFont: message to the FontPanel to complete the
conversion.

This message is almost always sent by a Control in the Font panel itself. Usually, the panel
uses the FontManager’s convert routines to do the conversion based on the choices the
user has made.

See also: — panelConvertFont: (FontPanel)

Classes: FontManager 2-199

orderFrontFontPanel:
— orderFrontFontPanel:sender

Sends orderFront: to the FontPanel. If there’s no Font panel yet, a new message is sent to
the FontPanel class object, or to the object you specified with the FontManager’s
setFontPanelFactory: class method.

removeFontTrait:
—removeFontTrait:sender

Causes the FontManager’s action message (by default, changeFont:) to be sent up the
responder chain. When the responder replies with a convertFont: message, the font is
converted to remove the trait specified by sender.

Before the action message is sent up the responder chain, the FontManager sets its
traitToChange variable to the value returned by sending sender a selectedTag message.
The FontManager also sets its whatToDo variable to NX_REMOVETRAIT. When the
convertFont: message is received, the FontManager converts the supplied font by sending
itself a convert:toNotHaveTrait: message.

See also: — convertFont:, — convert:toHaveTrait:, — seléctedTag (Control)

selFont
—selFont
Returns the last font set with setSelFont:isMultiple:.

If you receive a changeFont: message from the FontManager and want to find out what
font the user has selected from the Font panel, use the following (assuming
theFontManager is the application’s FontManager object):

selectedFont =‘[theFontManager convertFont:[theFontManager selFont]]

See also: - setSelFont:isMultiple:, — modifyFont:

sendAction

—sendAction
Sends the FontManager’s action message (by default, changeFont:) up the responder
chain. The sender is always the FontManager object regardless of which user-interface

object initiated the sending of the action. The whatToDo and possibly traitToChange
variables should be set appropriately before sending a sendAction message.

2-200 Chapter 2: Application Kit

You rarely, if ever, need to send a sendAction message or to override this method. The
message is sent by the target/action messages sent by different user-interface objects that
allow users to manipulate the font of the current text selection (for example, the Font panel
and the Font menu).

See also: — setAction:

setAction:
— setAction:(SEL)aSelector

Sets the action that’s sent when the user selects a new font from the Font panel or from the
Font menu. The default is changeFont:.

See also: - sendAction

setDelegate:
— setDelegate:anObject

Sets the FontManager’s delegate. The delegate can restrict which font names appear in the
Font panel.

See also: — delegate

setEnabled:

— setEnabled:(BOOL)flag
Sets whether the controls in the Font panel and the commands in the Font menu are enabled
or disabled. By default, these controls and commands are enabled. Even when disabled,

the Font panel allows the user to preview fonts. However, when the Font panel is disabled,
the user can’t apply the selected font to text in the application’s main window.

You can use this method to disable the user interface to the font selection system when its
actions would be inappropriate. For example, you might disable the font selection system
when your application has no document window.

See also: - isEnabled

Classes: FontManager 2-201

setSelFont:isMultiple:
— setSelFont:fontObj isMultiple:(BOOL)flag

Sets the font that the Font panel is currently manipulating. An object containing a
document should send this message every time its selection changes. If the selection
contains multiple fonts, flag should be YES.

An object shouldn’t send this message as part of its handling of a changeFont: message,
since doing so will cause subsequent convertFont: messages to have no effect. This is
because if you are converting a font based on what is set in the Font panel and you reset
what’s in the panel (by sending a setSelFont:isMultiple: message), the FontManager can
no longer sensibly convert the font since the information necessary to convert it has

been lost.

See also: - selFont, — isMultiple

Methods Implemented by the Delegate

fontManager:willincludeFont:
— (BOOL)fontManager:sender willlncludeFont:(const char *)fontName

Responds to a message informing the FontManager’s delegate that the FontPanel is about
to include fontName in the list displayed to the user. fontName is the name of the font, for
example “Helvetica-Narrow-Bold”. If this method returns NO, the font isn’t added;
otherwise, it is.

A delegate that implements this method can receive multiple
fontManager:willlncludeFont: messages whenever the Font panel needs updating, such
as when the user selects a different family name to determine which typefaces are available.
For each typeface within that family, the delegate will receive notification. Consequently,
your implementation of this method shouldn’t take long to execute.

2-202 Chapter 2: Application Kit

FontPanel

Inherits From: Panel : Window : Responder : Object

Declared In: appkit/FontPanel.h

Class Describtion

The FontPanel is a user-interface object that displays a list of available fonts, letting the
user preview them and change the font used to display text. The actual changes are made
through conversion messages sent to the FontManager. There is only one FontPanel object
for each application.

In general, you add the facilities of the FontPanel (and of the other components of the font
conversion system: the FontManager and the Font menu) to your application through
Interface Builder. You do this by dragging a Font menu into one of your application’s
menus. At runtime, when the user chooses the Font Panel command for the first time, the
FontPanel object will be created and hooked into the font conversion system. You can also
create (or access) the FontPanel through either of the new... methods.

A FontPanel can be customized by adding an additional View object or hierarchy of View
objects (see setAccessoryView:). If you want the FontManager to instantiate a panel
object from some class other than FontPanel, use the FontManager’s
setFontPanelFactory: method.

Instance Variables

id faces;

id families;

id preview;

id current;

id size;

id sizes;

id manager;

id selFont;

NXFontMetrics *selMetrics;
int curTag;

Classes: FontPanel 2-203

id accessoryView;
id setButton,;

id separator;

id sizeTitle;

char *lastPreview;
struct _fpFlags {

unsigned int multipleFont:1;

unsigned int dirty:1;

} fpFlags;

faces

families
preview
current

size

sizes

manager
selFont
selMetrics
curTag
accessory View
currentBox
setButton
separator
sizeTitle
lastPreview
fpFlags.multipleFont
fpFlags.dirty

Method Types

Creating a FontPanel

2-204 Chapter 2: Application Kit

The Typeface browser.

The Family browser.

The preview field.

The current font field.

The Size field.

The Size browser.

The FontManager object.

The font of the current selection.

The metrics of selFont.

The tag of the currently displayed font.

The application-customized area.

The box displaying the current font.

The Set button.

The line separating buttons from upper part of panel.
The title over the Size field and Size browser.
The last font previewed.

True if selection has multiple fonts.

True if panel was updated while not visible.

+ new
+ newContent:style:backing:buttonMask:defer:

Setting the font — panelConvertFont:
— setPanelFont:isMultiple:

Configuring the FontPanel — accessory View
— setAccessory View:
— setEnabled:
— isEnabled
— worksWhenModal

Editing the FontPanel’s fields - textDidGetKeys:isEmpty:
— textDidEnd:endChar:

Displaying the FontPanel — orderWindow:relativeTo:

Resizing the FontPanel — windowWillResize:toSize:

Class Methods
alloc

Disables the inherited alloc method to prevent multiple FontPanels from being created.
There’s only one FontPanel object for each application; you access it through either of the
new... methods. Returns an error message.

See also: + new, + newContent:style:backing:buttonMask:defer:

allocFromZone:

Disables the inherited allocFromZone method to prevent multiple FontPanels from being
created. There’s only one FontPanel object for each application; you access it through
either of the new... methods. Returns an error message.

See also: + new, + newContent:style:backing:buttonMask:defer:

new

+ new

Returns a FontPanel object by invoking the
newContent:style:backing:buttonMask:defer: method. An application has no more
than one Font panel, so this method either returns the previously created object (if it exists)
or creates a new one.

See also: + new

Classes: FontPane!l 2-205

newContent:style:backing:buttonMask:defer:

+ newContent:(const NXRect *)contentRect
style:(int)aStyle
backing:(int)bufferingType
buttonMask:(int)mask
defer:(BOOL)flag

Returns a FontPanel object. An application has no more than one Font panel, so this
method either returns the previously created object (if it exists) or creates a new one. The
arguments are ignored. This is the designated new... method of the FontPanel class.

See also: + new

Instance Methods
accessoryView
— accessory View
Returns the application-customized View set by setAccessoryView:.

See also: — setAccessoryView:

isEnabled
— (BOOL)isEnabled

Reports whether the Font panel’s Set button is enabled.

See also: — setEnabled:

orderWindow:relativeTo:

— orderWindow:(int)place relativeTo:(int)otherWin

Repositions the panel in the screen list and updates the panel if it was changed while not
visible. place can be one of:

NX_ABOVE
NX_BELOW
NX_OUT

If it’s NX_OUT, the panel is removed from the screen list and otherWin is ignored. If it’s
NX_ABOVE or NX_BELOW, otherWin is the window number of the window that the Font

2-206 Chaprer 2: Application Kit

Panel is to be placed above or below. If otherWin is O, the panel will be placed above or
below all other windows.

See also: — orderWindow:relativeTo: (Window),
— makeKeyAndOrderFront: (Window)

panelConvertFont:

— panelConvertFont:fontObj
Returns a Font object whose traits are the same as those of fontObj except as specified by
the users choices in the Font Panel. If the conversion can’t be made, the method returns
fontObj itself. The FontPanel makes the conversion by using the FontManager’s methods

that convert fonts. A panelConvertFont: message is sent by the FontManager whenever
it needs to convert a font as a result of user actions in the Font panel.

setAccessoryView:
— setAccessoryView:aView

Customizes the Font panel by adding aView above the action buttons at the bottom of the
panel. The FontPanel is automatically resized to accommodate aView.

aView should be the top View in a view hierarchy. If aView is nil, any existing accessory
view is removed. If aView is the same as the current accessory view, this method does
nothing. Returns the previous accessory view or nil if no accessory view was previously
set.

See also: — accessory View

setEnabled:
— setEnabled:(BOOL)flag

Sets whether the Font panel’s Set button is enabled (the default state). Even when disabled,
the Font panel allows the user to preview fonts. However, when the Font panel is disabled,
the user can’t apply the selected font to text in the application’s main window.

You can use this method to disable the user interface to the font selection system when its
actions would be inappropriate. For example, you might disable the font selection system
when your application has no document window.

See also: — isEnabled

Classes: FontPanel 2-207

setPanelFont:isMultiple:
— setPanelFont:fonrObj isMultiple:(BOOL)flag

Sets the font that the FontPanel is currently manipulating. This message should only be
sent by the FontManager. Do not send a setPanelFont:isMultiple: message directly.

textDidEnd:endChar:
— textDidEnd:textObject endChar:(unsigned short)endChar

A textDidEnd:endChar: message is sent to the FontPanel object when editing is
completed in the Size field. This method updates the Size browser and the preview field.

See also: — textDidGetKeys:isEmpty:, — textDidEnd:endChar: (Text)

textDidGetKeys:isEmpty:
— textDidGetKeys:textObject isEmpty:(BOOL)flag

A textDidGetKeys:isEmpty: message is sent to the FontPanel object whenever the Size
field is typed in or emptied.

See also: — textDidEnd:endChar:, — textDidGetKeys:isEmpty: (Text)

windowW.illResize:toSize:
— windowWillResize:sender toSize:(NXSize *)frameSize

Keeps the FontPanel from being sized too small to accommodate the browser columns and
accessory view.

See also: — windowWillResize:toSize: (Window)

worksWhenModal
— (BOOL)worksWhenModal

Returns whether the FontPanel will operate while a modal panel is displayed within the
application. By default, this method returns YES.

See also: — worksWhenModal (Panel)

2-208 Chapter 2: Application Kit

Form

Inherits From: Matrix : Control : View : Responder : Object

Declared In: appkit/Form.h

Class Description

A Form is a Matrix that contains titled entries into which a user can type data values.
'Here’s an example:

Entries are indexed starting with zero at the top. Eachitem in the Form, including the title,

is aFormCell. A mouse click a FormCell (that is, on the title or in the entry area) starts text

editing in that entry. If the user presses the Return or Enter key while editing an entry, the

action of the entry is sent to the target of the entry, or—if the entry doesn’t have an action—
the Form sends its action ito its target. If the user presses the Tab key, the next entry in the

Form is selected; if the user presses Shift-Tab, the previous entry is selected.

For more information, see the FormCell and Matrix class specifications.

Instance Variables

None declared in this class.

Classes: Form 2-209

Method Types

Setting Form’s Cell class + setCellClass:
Initializing a Form — initFrame:
Laying out the Form — addEntry:

— addEntry:tag:target:action:
— insertEntry:at:
— insertEntry:at:tag:target:action:

—removeEntryAt:
— setInterline:
Assigning a tag — setTag:at:
Finding indices — findIndexWithTag:
— selectedIndex

Modifying graphic attributes — setBezeled:
— setBordered:
— setFont:
— setTitleFont:
— setTextFont:
— setTitleAlignment:
— setTextAlignment:

Setting item titles — setTitle:at:
— titleAt:

Setting item values — setDoubleValue:at:
— doubleValueAt:
— setFloatValue:at:
— floatValueAt:
— setIntValue:at:
— intValueAt:
— setStringValue:at:
— stringValueAt:

Editing text — selectTextAt:

Resizing the Form — calcSize
— setEntryWidth:
— sizeTo::
— sizeToFit

Displaying ' — drawCellAt:

Target and action — setAction:at:
- setTarget:at:

2-210 Chapter 2: Application Kit

Class Methods

setCellClass:

+ setCellClass:classld
Configures the Form class to use instances of classld for its Cells. classld should be the id
of a subclass of FormCell, obtained by sending the class message to either the FormCell

subclass object or to an instance of that subclass. The default Cell class is FormCell.
Returns self.

“Creating New Controls” in the Control class specification has more information on how
to safely set the Cell class used by a subclass of Control.

See also: — initFrame:

Instance Methods

addEntry:
— addEntry:(const char *)title
Adds a new item with aString as the title to the bottom of the receiving Form and returns

the FormCell created. The new FormCell has no tag, target, or action, but is enabled and
editable. Does not redraw the Form even if autodisplay is on.

See also: — addEntry:tag:target:action:

addEntry:tag:target:action:

— addEntry:(const char *)title
tag:(int)anint
target:anObject
action:(SEL)aSelector

Adds a new item with aString as the title to the bottom of the receiving Form and returns
the FormCell created. The FormCell’s tag is set to anlnt, it action to aSelector, and its target
to anObject. The new FormCell is enabled and editable. Does not redraw the Form even
if autodisplay is on.

See also: — addEntry:

Classes: Form 2-211

calcSize
— calcSize

Calculates the size and layout of the Form based on the sizes of its Cells and their title
portions. Your code should invoke this method before drawing if it modifies any of the
Cells in the Form in such a way that the size of the Cells or the size of the title part of the
Cells has changed. This method is automatically invoked before any drawing is done after
a setTitle:at:, setFont:, setBezeled: or some other similar Form method has been invoked.

See also: - validateSize: (Matrix)

doubleValueAt:
— (double)doubleValueAt:(int)index

Returns the value of the entry at position index as a double-precision floating point number.
Form does not override Control’s doubleValue method; your code should never use that
method with a Form.

See also: - setDoubleValue:at:, — floatValueAt:, — intValueAt:, — stringValueAt:,
- doubleValue (Control)

drawCellAt:
— drawCellAt:(int)index

Displays the FormCell at the specified index in the Form.

findindexWithTag:
— (int)findIndexWithTag:(int)aTag

Returns the index of the Cell with the corresponding tag, —1 otherwise.

See also: — findCellWithTag: (Matrix)

2-212 Chapter 2: Application Kit

floatValueAt:
- (ﬂoat)ﬂoatValueAt: (int)index

Returns the value of the entry at position index as a single-precision floating point number.
Form does not override Control’s floatValue method; your code should never use that
method with a Form.

See also: — setFloatValue:at:, — doubleValueAt:, — intValueAt:, — stringValueAt:,
— floatValue (Control)

initFrame:

— initFrame:(const NXRect *)frameRect

Initializes and returns the receiver, a new instance of Form, with default parameters in the
given frame. The new Form has no entries. Newly created entries will have the following
default characteristics: titles will be right aligned, text will be left justified with bezeled
borders, entry background color will be white, text color black, fonts will be the user’s
chosen system font in 12.0, the interline spacing will be 1.0, and the actions will be NULL.
This method is the designated initializer for Form; override it if you create a subclass of

. Form that performs its own initialization.

Note that Form doesn’t override the Matrix class’s designated initializers
initFrame:mode:cellClass:numRows:numCols: or
initFrame:mode:prototype:numRows:numCols:. Don’t use those methods to initialize
a new instance of Form.

See also: — initFrame: (Matrix), — initFrame:mode:cellClass:numRows:numCols:,
— initFrame:mode:prototype:numRows:numCols:

insertEntry:at:

— insertEntry:(const char *)title at:(int)index
Inserts an item with the titie title at position index in the Form. The item at the top of the
form has an index of 0. The new FormCell has no tag, target, or action. Returns the

FormCell used to implement the entry. Returns the newly inserted FormCell. Does not
redraw the Form even if autodisplay is on.

See also: —insertEntry:at:tag:target:action:, — addEntry:,
— addEntry:tag:target:action:, — removeEntryAt:

Classes: Form 2-213

insertEntry:at:tag:target:action:

— insertEntry:(const char *)title
at:(int)index
tag:(int)anint
target:anObject
action:(SEL)aSelector

Inserts a new entry with the given title at position index. The tag, target, and action of the
corresponding entry are set to the given values. Returns the newly inserted FormCell.
Does not redraw the Form even if autodisplay is on.

See also: - insertEntry:at:, — addEntry:, — addEntry:tag:target:action:,
—removeEntryAt:

intValueAt:
— (int)intValueAt:(int)index

Returns the value of the entry at position index as an integer. Form does not override
Control’s intValue method; your code should never use that method with a Form.

See also: — setIntValue:at:, — doubleValueAt:, — floatValueAt:, — stringValueAt:,
— intValue (Control)

removeEntryAt:

— removeEntryAt:(int)index

If index is a valid position in the Form, removes the entry there and frees it. Note that if
you use Matrix’s removeRowAt:andFree: method to remove an entry, the widths of the
titles in the entries will not be readjusted; your code should use this method instead. Does
not redraw the Form even if autodisplay is on. Returns self.

See also: — addEntry:, — insertEntry:at:

selectTextAt:
— selectTextAt:(int)index

If index is a valid position in the Form, begins text editing on the item at that position.
Returns the FormCell selected.

2-214 Chapter 2: Application Kit

selectedindex

— (int)selectedIndex

Returns the index of the currently selected entry if any, —1 otherwise. The currently
selected entry is the one being edited or, if none of the entries is being edited, then it’s the
entry that was last edited.

setAction:at:
— setAction:(SEL)aSelector at:(int)index
Sets the action of the FormCell at position index to aSelector. Returns self.

See also: — action (ActionCell), — setTarget:at:

setBezeled:

— setBezeled:(BOOL)flag
If flag is YES, all Cells in the Form are set to show a bezel around their editable text and
are redrawn; if flag is NO, Cells in the Form have no bezel. A bezel is mutually exclusive

with a border, and invoking this method with NO as the argument will not remove a border.
Returns self.

See also: — isBezeled (Cell), — setBordered:

setBordered:
— setBordered:(BOOL)flag

If flag is YES, all Cells in the Form are set to show a 1-pixel black border around their
editable text and are redrawn,; if flag is NO, Cells in the Form have no border. A border is
mutually exclusive with a bezel, and invoking this method with NO as the argument will
not remove a bezel. Returns self.

See also: —isBordered (Cell), — setBezeled:

Classes: Form 2-215

setDoubleValue:at:
— setDoubleValue:(double)aDouble at:(int)index

Sets the value of the item at position index to aDouble and redraws that item. Form does
not override Control’s setDoubleValue: method; your code should never use that method
with a Form.

See also: — doubleValueAt:, — setFloatValue:at:, — setIntValue:at:,
— setString Value:at:, — setDoubleValue: (Control)

setEntryWidth:
— setEntryWidth:(NXCoord)width

Sets the width of all the entries (including the title part). Doesn’t redisplay the Form. You
should invoke sizeToFit after invoking this method. Returns self.

See also: — sizeToFit

setFloatValue:at:
— setFloatValue:(float)aFloat at:(int)index

Sets the value of the item at position index to aFloat and redraws that item. Form does
not override Control’s setFloatValue: method; your code should never use that method
with a Form.

See also: — floatValueAt:, — setDoubleValue:at:, — setIntValue:at:,
— setStringValue:at:, — setFloatValue: (Control)

setFont:
— setFont:fontObject

Sets the Font used to draw both the titles and the editable text in the Form. It’s generally
best to keep the title Font and the text Font the same (or at least the same size); therefore,
this method is preferred to setTitleFont: and setTextFont:. Redraws the Form if
autodisplay is on. Returns self.

See also: — setTitleFont:, — setTextFont:

2-216 Chapter 2: Application Kit

setintValue:at:
— setIntValue:(int)anlnt at:(int)index

Sets the value of the item at position index to anint and redraws that item. Form does
not override Control’s setIntValue: method; your code should never use that method
with a Form.

See also: - intValueAt:, — setDoubleValue:at:, — setFloatValue:at:,
— setStringValue:at:, — setIntValue: (Control)

setinterline:
— setInterline:(NXCoord)spacing

Sets the space between items in the Form to spacing. Does not redraw the matrix even if
autodisplay is on. Returns self.

setStringValue:at:

— setStringValue:(const char *)aString at:(int)index

Sets the value of the item at position index to aString and redraws that item. Form does
not override Control’s setStringValue: method; your code should never use that method
with a Form.

See also: - stringValueAt:, — setFloatValue:at:, — setDoubleValue:at:,
— setStringValue:at:, — setStringValue: (Control)

setTag:at:
— setTag:(int)anlnt at:(int)index

Sets the tag of the FormCell at position index to anlnt. Returns self.

See also: - tag (ActionCell)

setTarget:at:
— setTarget:anObject at:(int)index

Sets the target of the FormCell at position index to anObject. Returns self.

See also: - target (ActionCell), — setAction:at:

Classes: Form 2-217

setTextAlignment:
— setTextAlignment:(int)mode

Sets the alignment mode for the editable text in the Form. mode can be one of three
constants: NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED. The
default is left aligned. Redraws the Form if autodisplay is on, and returns self.

See also: — setTitleAlignment:

setTextFont:
— setTextFont:fontObject

Sets the Font used to draw the editable text in the Form to fontObject. Redraws the Form
if autodisplay is on, and returns self.

See also: - setFont:, — setTitleFont:

setTitle:at:

— setTitle:(const char *)aString at:(int)index
Changes the title of the entry at position index to aString.
See also: - titleAt:

setTitleAlignment:
— setTitleAlignment: (int)mode

Sets the alignment mode for titles in the Form. mode can be one of three constants:
NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED. The default is
right aligned. Redraws the Form if autodisplay is on, and returns self.

See also: — setTextAlignment:

setTitleFont:
— setTitleFont:fontObject

Sets the Font used to draw the titles in the Form. to fontObject Redraws the Form if
autodisplay is on, and returns self.

See also: — setFont:, — setTextFont:

2-218 Chapter 2: Application Kit

sizeTo::
— sizeTo:(NXCoord)width :(NXCoord)height

Resizes the entry width to reflect width, then resizes the Form to width and height. Doesn’t
redraw the Form. Returns self.

See also: — sizeToFit

sizeToFit
—sizeToFit

Adjusts the width of the Form so that it’s the same as the width of the entries. Adjusts the
height of the Form so that it will exactly contain all the Cells. Doesn’t redraw the Form.
Returns self.

See also: —sizeTo::, — setEntryWidth:

stringValueAt:

— (const char *)stringValueAt:(int)index

Returns the value of the entry at position index as a string. Form does not override
Control’s stringValue method; your code should never use that method with a Form.

See also: —setStringValue:at:, — doubleValueAt:, — floatValueAt:, — intValueAt:,
— stringValue (Control)

titleAt:
~ (const char *)titleAt:(int)index

Returns the title of the entry at position index.

See also: — setTitle:at:

Classes: Form 2-219

FormCell

Inherits From: ActionCell : Cell : Object

Declared In: appkit/FormCell.h

Class Description

This class is used to implement entries in a Form. It displays a title within itself, and allows
editing only in the remaining (right-hand) portion of the Cell.

See the Form class specification for more on the use of FormCell.

Instance Variables

NXCoord titleWidth;
id titleCell;
NXCoord titleEndPoint;

titleWidth ‘ The width of the title portion; if —1, width is calculated as
needed.

titleCell The Cell used to draw the title.

titleEndPoint The coordinate that separates the title from the text area.

Method Types

Initializing, copying, and freeing a FormCell
— init
— initTextCell:
— copyFromZone:
— free '

Determining a FormCell’s size - calcCellSize:inRect:
Enabling the FormCell — setEnabled:

2-220 Chaprer 2: Application Kir

Modifying the title — setTitle:
— title
— setTitleFont:
— titleFont
— setTitleAlignment:
— titleAlignment
- setTitleWidth:
— titleWidth:
— titleWidth

Modifying graphic attributes — isOpaque

Displaying — drawInside:inView:
— drawSelf:inView:

Managing cursor rectangles — resetCursorRect:inView:
Tracking the mouse — trackMouse:inRect:of View:

Archiving —read:
— write:

Instance Methods

calcCellSize:inRect:
— calcCellSize:(NXSize *)theSize inRect:(const NXRect *)aRect

Calculates the size of the FormCell assuming it’s constrained to fit within aRect. Returns
the size in theSize.

copyFromZone:
— copyFromZone:(NXZone *)zone

Creates and returns a copy of the receiving FormCell instance allocated from zone.

drawlinside:inView:

— drawlnside:(const NXRect *)cellFrame inView:controlView

Draws only the text inside the FormCell (not the bezel or the title of the FormCell). If you
create a subclass of FormCell and override drawSelf:inView:, you must implement this
method as well. Returns self.

See also: — drawSelf:inView:

Classes: FormCell 2-221

drawSelf:inView:

— drawSelf:(const NXRect *)cellFrame inView:controlView

Has the FormCell’s title Cell drawn, then draws the editable text portion of the FormCell.
returns self.

See also: — drawInside:inView:

free
—free

Frees the storage used by the FormCell and returns nil.

init
— init
Initializes and returns the receiver, a new instance of FormCell, with its contents set to an

empty string (“”’) and its title set to “Field”, right-aligned.

See also: — initTextCell:

initTextCell:

— initTextCell:(const char *)aString

Initializes and returns the receiver, a new instance of FormCell, with its contents set to the
empty string (“”’) and its title set to aString. The font for both title and text is the user’s
chosen system font in 12.0 point, and the text area is drawn with a bezel. This method is
the designated initializer for FormCell.

See also: —init

isOpaque
- (BOOL)isOpaque

Returns YES if the FormCell is opaque, NO otherwise. If the FormCell has a title, then it’s
not opaque (since the title field is not opaque).

See also: — isOpaque (Cell)

2-222 Chapter 2: Application Kit

read:
—read:(NXTypedStream *)stream

Reads the FormCell from the typed stream stream. Returns self.

See also: — write:

resetCursorRect:inView:

— resetCursorRect:(const NXRect *)cellFrame inView:controlView

Adds a cursor rectangle to controlView (with addCursorRect:cursor:), allowing the
cursor to change to an I-beam when it passes over the text portion of the FormCell.

See also: — addCursorRect:cursor: (View, Control)

setEnabled:
— setEnabled:(BOOL)flag

If flag is YES, the FormCell accepts mouse clicks; if NO, it doesn’t.
See also: — isEnabled (Cell)

setTitle:

— setTitle:(const char *)aString
Sets the title of the FormCell to aString.

See also: — title

setTitleAlignment:
— setTitleAlignment:(int)mode

Sets the alignment of the title. mode can be one of three constants: NX_LEFTALIGNED,

NX_CENTERED, or NX_RIGHTALIGNED.
See also: - titleAlignment

Classes: FormCell

2-223

setTitleFont:
- setTitleFont:fontObject

Sets the Font used to draw the title of the FormCell.

See also: — setFont:

setTitleWidth:
— setTitleWidth:(NXCoord)width

Sets the width of the title field to width. If width is —1, the title field’s width is always
calculated when needed. Use this method only if the FormCell’s title isn’t going to change,
or if your code always resets the title width when it resets the title.

See also: - titleWidth, — titleWidth:

title

— (const char *)title
Returns the title of the FormCell.

See also: - setTitle:

titleAlignment
— (int)titleAlignment

Returns the alignment of the title, which will be one of the following: -
NX_LEFTALIGNED, NX_CENTERED, or NX_RIGHTALIGNED.

See also: — setTitleAlignment:

titleFont
— titleFont

Returns the Font used to draw the title of the FormCell.

See also: — setTitleFont:

- 2-224 Chapter 2: Application Kit

titleWidth
— (NXCoord)titleWidth

If the width of the title has already been set, then that value is returned. Otherwise, it’s
calculated and returned.

See also: — setTitleWidth:, — titleWidth:

titleWidth:
— (NXCoord)titleWidth:(const NXSize *)aSize

If the title width has been set, then it’s returned. Otherwise, the width is calculated
constrained to aSize. aSize may be NULL, in which case the width is calculated
without constraint.

See also: — setTitleWidth:, — titleWidth:

trackMouse:inRect:ofView:

— (BOOL)trackMouse:(NXEvent*)event
inRect:(const NXRect*)aRect
ofView:controlView

Causes editing to occur. Returns YES if the mouse goes up in the FormCell, NO otherwise.

See also: - trackMouse:inRect:ofView: (TextFieldCell)

write:
— write:(NXTypedStream *)stream

Writes the receiving FormCell to the typed stream stream. Returns self.

See also: - read:

Classes: FormCell 2-225

Listener

Inherits From: Object

Declared In: appkit/Listener.h

Class Description

The Listener class, with the Speaker class, supports communication between applications
through Mach messaging. Mach messages are the standard way of performing remote
procedure calls (RPCs) in the Mach operating system. The Listener class implements the
receiving end of a remote message, and the Speaker class implements the sending end.

Remote messages are sent to ports, which act something like mailboxes for the tasks that
have the right to receive the messages delivered there. Each Listener corresponds to a
single Mach port to which its application has receive rights. Since a port has a fixed size—
usually there’s room for only five messages in the port queue—when the port is full, a new
message must wait for the Listener to take an old message from the queue.

To initiate a remote message, you send an Objective C message to a Speaker instance. The
Speaker translates it into the proper Mach message protocol and dispatches it to the port of
the receiving task. The Mach message is received by the Listener instance associated with
the port. The Listener verifies that it understands the message, that the Speaker has sent the
correct parameters for the message, and that all data values are well formed—for example,
that character strings are null-terminated. The Listener translates the Mach message back
into an Objective C message, which it sends to itself. It’s as if an Objective C message sent
to a Speaker in one task is received by a Listener in another task.

Delegation

The Listener methods that receive remote Objective C messages simply pass those
messages on to a delegate. The Listener’s job is just to get the message and find another
object to respond to it.

The setDelegate: method assigns a delegate to the Listener. There’s no default delegate,
but before the Application object gets its first event, it registers a Listener for the
application and makes itself the Listener’s delegate. You can register your own

Listener (with Application’s setAppListener: method) in start-up code, and when

you send the Application object a run message, the Application object will become

the Listener’s delegate.

2-226 Chapter 2: Application Kit

If an object has its own delegate when it becomes the Listener’s delegate, the Listener looks
first to its delegate’s delegate and only then to its own delegate when searching for an object
to entrust with a remote message. This means that you can implement the methods that
respond to remote messages in either the Application object’s delegate or in the Application
object. (You can also implement the methods directly in a Listener subclass, or in another
object you make the Listener’s delegate.)

Setting Up a Listener
Two methods, checkInAs: and usePrivatePort, allocate a port for the Listener:

¢ With the checkInAs: method, the Listener’s port is given a name (usually the name of
the application) and is registered with the network name server. This makes the port
publicly available so that other applications can find it. Applications get send rights to
a public port through the NXPortFromName() function.

* Alternatively, the Listener’s port can be kept private (with the usePrivatePort method).
Send rights to the port can then be doled out only to selected applications.

Once allocated, the port must be added (with the addPort method) to the list of those that
the client library monitors. A procedure will automatically be called to read Mach
messages from the port queue and begin the Listener’s process of transforming the Mach
message back into an Objective C message. The procedure is called between events,
provided the priority of getting remote messages is at least as high as the priority of getting
the next event.

A Listener is typically set up as follows:

myListener = [[Listener alloc] init];
[myListener setDelegate:someOtherObject];

/*

* Sets the object responsible for handling

* messages received.

*/
[myListener checkInAs:"portname"];

/* or [myListener usePrivatePort] */
[myListener addPort];

/*

* Now, between events, the client library

* will check to see if a message has arrived

* in the port queue.

*/

[myListener free];
/* When we no longer need the Listener. */

Classes: Listener 2-227

An application may have more than one Listener and Speaker, but it must have at least one
of each to communicate with the Workspace Manager and other applications. If your
application doesn’t create them, a default Listener and Speaker are created for you at
start-up before Application’s run method gets the first event.

If a Listener is created for you, it will be checked in automatically under the name returned
by Application’s appListenerPortName method. Normally, this is the name assigned to
the application at compile time. The port will also be added to the list of those the client
library monitors, so the Listener will be scheduled to receive messages asynchronously.

Remote Methods

The Listener and Speaker classes implement a number of methods that can be used to send
and receive remote messages. You can add other methods in Listener and Speaker
subclasses. The msgwrap program can be used to generate subclass definitions from a list
of method declarations. Most programmers will use msgwrap instead of manually
subclassing the Listener class. See the man page for msgwrap for details.

Some remote methods, especially those with the prefix “msg”, are designed to allow an
application to run under program control rather than user control. By implementing these
methods, you’ll permit a controlling application to run your application in conjunction with
others as part of a script. ‘

Argument Types

Remote messages take two kinds of arguments—input arguments, which pass values from
the Speaker to the Listener, and output arguments, which are used to pass values back from
the Listener to the Speaker. The Listener sends return information back to the Speaker in
.a separate Mach message to a port provided by the Speaker. The Speaker reformats this
information so that it’s returned by reference in variables specified in the original
Objective C message.

A method can take up to NX_MAXMSGPARAMS arguments. Arguments are constrained
to a limited set of permissible types. Internally, the Listener and Speaker identify each
permitted type with a unique character code. Input argument types and their identifying
codes are listed below. Note that an array of bytes counts as a single argument, even though
two Objective C parameters are used to refer to it—a pointer to the array and an integer that
counts the number of bytes in the array. A character string must be null-terminated.

Category Type Character Code
integer (int) i
double (double) d
character string (char *) C
byte array (char *), (int) b
receive rights (port) (port_t) r
send rights (port) (port_t) s

2-228 Chapter 2: Application Kit

There’s a matching output argument for each of these categories. Since output arguments
return information by reference, they’re declared as pointers to the respective input types:

Category Type Character Code
integer (int *))|

double (double *) D

character string (char **) C

byte array (char **), (int *) B

receive rights (port) (port_t *) R

send rights (port) (port_t *) S

The validity of all input parameters is guaranteed for the duration of the remote message.
The memory allocated for a character string or a byte array is freed automatically after the
Listener method returns. If you want to save a string or an array, you must copy it. When
the amount of input data is large, you can use the NXCopyInputData() function to take
advantage of the out-of-line data feature of Mach messaging. This function is passed the
index of the argument to be copied (the combination of a pointer and an integer for a byte
array counts as a single argument) and returns a pointer to an area obtained through the
vm_allocate() function. This pointer must be freed with vim_deallocate(), rather than
free(). Note that the size of the area allocated is rounded up to the next page boundary, and
so will be at least one page. Consequently, it is more efficient to malloc() and copy amounts
up to about half the page size.

The application is responsible for deallocating all port parameters received with the
port_deallocate() function when they’re no longer needed.

Return Values

All remote methods return an int that indicates whether or not the message was
successfully transmitted. A return of 0 indicates success.

The Listener methods that receive remote messages use the return value to signal whether
they’re able to delegate a message to another object. If a method can’t entrust its message
to the delegate (or the delegate’s delegate), it returns a value other than 0. If, on the other
hand, it’s successful in delegating the message, it passes on the delegate’s return value as
its own. In general, delegate methods should always return 0.

The Listener doesn’t pass the return value back to the Speaker that initiated the remote
message. However, if the Speaker is expecting return information from the Listener—that
is, if the remote message has output arguments—a nonzero return causes the Listener to
send an immediate message back to the Speaker indicating its failure to find a delegate for
the remote message. The Speaker method then returns —1.

Note that the return value indicates only whether the message got through; it doesn’t say
anything about whether the action requested by the message was successfully carried out.
To provide that information, a remote message must include an output argument.

Classes: Listener 2-229

Instance Variables

char *portName;
port_t listenPort;
port_t signaturePort;
id delegate;

int timeout;

int priority;

portName
listenPort
signaturePort

delegate

timeout

priority

Method Types

Initializing the class

The name under which the port is registered.

The port where the Listener receives remote messages.

The port used to authenticate registration.

The object responsible for responding to remote messages
received by the Listener.

How long, in milliseconds, that the Listener will wait for
its return results to be placed in the port queue of the
sending application. :

The priority level at which the Listener will receive
messages.

+ initialize

Initializing a new Listener instance

Freeing a Listener

Setting up a Listener

2-230 Chapter 2: Application Kit

— init
— free

— addPort

— removePort
— checkInAs:

— usePrivatePort
— checkOut

— listenPort

— signaturePort
— portName

— setPriority:

— priority

— setTimeout:
— timeout

+ run

Providing for program control — msgCalc:
— msgCopyAsType:ok:
— msgCutAsType:ok:
— msgDirectory:ok:
— msgFile:ok:
— msgPaste:
— msgPosition:posType:ok:
— msgPrint:ok:
— msgQuit:
— msgSelection:length:asType:ok:
— msgSetPosition:posType:andSelect:ok:
— msgVersion:ok:

Receiving remote messages — messageReceived:
— performRemoteMethod:paramList:
— remoteMethodFor:

Assigning a delegate — setDelegate:
— delegate
— setServicesDelegate:
— servicesDelegate

Archiving —read:
— write:

Class Methods
initialize
+ initialize
Sets up a table that instances of the class use to recognize the remote messages they
understand. The table lists the methods that can receive remote messages and specifies the

number of parameters for each along with their types. An initialize message is sent to the
class the first time it’s used; you should never invoke this method.

run
+ run

Sets up the necessary conditions for Listener objects to receive remote messages if they’re
used in applications that don’t have an Application object and a main event loop. In other
words, if an application doesn’t send a run message to the Application object,

[NXApp run];

Classes: Listener 2-231

it will need to send a run message to the Listener class

[Listener run];

for instances of the class to work. This method never returns, so your application will
probably need to be dispatched by messages to its Listener instances.

Instance Methods

addPort
— addPort

Enables the Listener to receive messages by adding its port to the list of those that the client
library monitors. The Listener will then be scheduled to receive messages between events.
Returns self.

See also: — removePort, DPSAddPort()

checkinAs:

— (int)checkInAs:(const char *)name
Allocates a port for the Listener, and registers that port as name with the Mach network
name server. This method also allocates a signature port that’s used to protect the right to
remove name from the name server. This method returns 0 if it successfully checks in the
application with the name server, and a Mach error code if it doesn’t. The Mach error code

is most likely to be one of those defined in the header files servers/netname_defs.h and
mach/kern_return.h

See also: — usePrivatePort, — checkOut

checkQut -
— (int)checkOut

Removes the Listener’s port from the list of those registered with the network name server.
This makes the port private. This method will always be successful and therefore always
returns 0.

See also: — checkInAs:

2-232 Chaprer 2: Application Kit

delegate
— delegate

Returns the Listener’s delegate. The default delegate is nil, but just before the first event
is received, the Application object is made the delegate of the Listener registered as the
Application object’s Listener. The delegate is expected to respond to the remote messages
received by the Listener, although it may do this by sending messages to another object.

See also: — setDelegate:, — setAppListener: (Application)

free
— free

Frees the Listener object and deallocates its listen port and its signature port. If the
Listener’s port is registered with the network name server, it is unregistered.

init

— init
Initializes a newly allocated Listener instance. The new instance has no port name, its
priority is set to NX_BASETHRESHOLD, its timeoutis initialized to 30,000 milliseconds,

its listen port and signature port are both PORT_NULL, and it has no delegate. Returns
self.

See also: — setPriority:, — setTimeout:, — setDelegate:, — checkInAs:

listenPort
— (port_t)listenPort

Returns the port at which the Listener receives remote messages. This port is never set
directly, but is allocated by either checkInAs: or usePrivatePort. It’s deallocated by the
free method. The Listener caches this portas its listenPort instance variable.

See also: — checkInAs:, — usePrivatePort

Classes: Listener 2-233

messageReceived:

— messageReceived:(NXMessage *)msg
Begins the process of translating a Mach message received at the Listener’s port into an
Objective C message. This method verifies that the Mach message is well formed, that it

corresponds to an Objective C method understood by the Listener, and that the method’s
arguments agree in number and type with the fields of the Mach message.

messageReceived: messages are initiated whenever a Mach message is to be read from the
Listener’s port; you shouldn’t initiate them in the code you write. Returns self.

See also: — performRemoteMethod:paramList:

msgCalc:
— (int)msgCalc:(int *)flag

Receives a remote message to perform any calculations that are necessary to bring the
current window up to date. The method you implement to respond to this message should
set the integer specified by flag to YES if the calculations will be performed, and to NO if
they won’t.

msgCopyAsType:ok:
— (int)msgCopyAsType:(const char *)aType ok:(int *)flag

Receives a remote message requesting the application to copy the current selection to the
pasteboard as aType data. aType should be one of the standard pasteboard types defined in
appkit/Pasteboard.h. The method you implement to respond to this request should set the
integer referred to by flag to YES if the selection is copied, and to NO if it isn’t.

msgCutAsType:ok:
— (int)msgCutAsType:(const char *)aType ok:(int *)flag

Receives a remote message requesting the application to delete the current selection and
place it in the pasteboard as aType data. aType should be one of the standard pasteboard
types defined in appkit/Pasteboard.h. The method you implement to respond to this
request should set the integer referred to by flag to YES if the requested action is carried
out, and to NO if it isn’t.

2-234 Chaprer 2: Application Kit

msgDirectory:ok:

— (int)msgDirectory:(char *const *)fullPath ok:(int *)flag
Receives a remote message asking for the current directory. The method you implement to
respond to this message should place a pointer to the full path of its current directory in the

variable specified by fullPath. The integer specified by flag should be set to YES if the
directory will be provided, and to NO if it won’t.

The current directory is application-specific, but is probably best described as the directory
the application would show in its Open panel were the user to bring it up.

msgFile:ok:
— (intymsgFile:(char *const *)fullPath ok:(int *)flag

Receives a remote message requesting the application to provide the full pathname of its
current document. The current document is the file displayed in the main window.

The method you implement to respond to this request should set the pointer referred to by
JullPath so that it points to a string containing the full pathname of the current document.

The integer specified by flag should be set to YES if the pathname is provided, and to NO
if it isn’t. '

msgPaste:

— (int)msgPaste:(int *)flag
Receives a remote message requesting the application to replace the current selection with
the contents of the pasteboard, just as if the user had chosen the Paste command from the

Edit menu. The method you implement to respond to this message should set the integer
referred to by flag to YES if the request is carried out, and to NO if it isn’t.

msgPosition:posType:ok:
— (int)msgPosition:(char *const *)aString
posType:(int *)anlnt
ok:(int *)flag
Receives a remote message requesting a description of the current selection.

The method you implement to respond to this request should describe the selection in a
character string and set the pointer referred to by aString so that it points the description.

Classes: Listener 2-235

The integer referred to by anlnt should be set to one of the following constants to indicate
how the current selection is described:

NX_TEXTPOSTYPE As a character string to search for
NX_REGEXPRPOSTYPE As aregular expression to search for

NX_LINENUMPOSTYPE As a colon-separated range of line numbers, for example
“10:12”

NX_CHARNUMPOSTYPE As a colon-separated range of character positions, for
‘ example “21:33”

NX_APPPOSTYPE As an application-specific description

The integer referred to by flag should be set to YES if the requested information is provided
in the other two output arguments, and to NO if it isn’t.

msgPrint:ok:

— (intymsgPrint:(const char *)fullPath ok:(int *)flag
Receives a remote message requesting the application to print the document whose path is
fullPath. The method you implement to respond to this request should set the integer

referred to by flag to YES if the document is printed, and to NO if it isn’t. The document
file should be closed after it’s printed.

msgQuit:
— (int)msgQuit:(int *)flag
Receives a remote message for the application to quit. The method you implement to

respond to this message should set the integer specified by flag to YES if the application
will quit, and to NO if it won’t.

msgSelection:length:asType:ok:

— (int)msgSelection:(char *const *)bytes
length:(int *)numBytes
asType:(const char *)aType
ok:(int *)flag

2-236 Chapter 2: Application Kit

Receives a remote message asking the application for its current selection as aType data.
aType will be one of the following standard data types for the pasteboard (or an
application-specific type):

NXAsciiPboardType
NXPostScriptPboardType
NXTIFFPboardType
NXRTFPboardType
NXSoundPboardType
NXFilenamePboardType
NXTabularTextPboardType

The method you implement to respond to this request should set the pointer referred to by
bytes so that it points to the selection and also place the number of bytes in the selection in
the integer referred to by numBytes. The integer referred to by flag should be set to YES if
the selection is provided, and to NO if it’s not.

msgSetPosition:posType:andSelect:ok:

— (int)msgSetPosition:(const char *)aString
posType:(int)anint
andSelect:(int)selectFlag
ok:(int *)flag

Receives a remote message requesting the application to scroll the current document (the
one displayed in the main window) so that the portion described by aString is visible.
aString should be interpreted according to the anlnt constant, which will be one of

the following:

NX_TEXTPOSTYPE aString is a character string to search for.
NX_REGEXPRPOSTYPE aString is a regular expression to search for.

NX_LINENUMPOSTYPE aString is a colon-separated range of line numbers, for
example “10:12”.

NX_CHARNUMPOSTYPE aString is a colon-separated range of character positions,
for example “21:33”.

NX_APPPOSTYPE aString is an application-specific description of a portion
of the document.

The msgSetPosition:posType:andSelect:ok: method you implement should set the
integer referred to by flag to YES if the document is scrolled, and to NO if it isn’t. If
selectFlag is anything other than 0, the portion of the document described by aString
should also be selected. ‘

Classes: Listener 2-237

msgVersion:ok:

— (int)msgVersion:(char *const *)aString ok:(int *)flag
Receives a remote message requesting the current version of the application. The method
you implement to respond to this request should set the pointer referred to by aString so
that it points to a string containing current version information for your application. The

integer specified by flag should be set to YES if version information is provided, and to
NO if it’s not.

performRemoteMethod:paramlList:

— (int)performRemoteMethod:(NXRemoteMethod *)method
paramList:(NXParamValue *)params

Matches the data received in the Mach message with the corresponding Objective C
method and sends the Objective C message to self. The Listener method that receives the
message will then try to delegate it to another object. method is a pointer to the method
structure returned by remoteMethodFor: and params is a pointer to the list of arguments.

The msgwrap program automatically generates a performRemoteMethod:paramList:
method for a Listener subclass. Each Listener subclass must define its own version of
the method.

performRemoteMethod:paramList: messages are initiated when the Listener reads a
Mach message from its port queue.

See also: — remoteMethodFor:, msgwrap(8) UNIX manual page

portName

— (const char *)portName

Returns the name under which the Listener’s port (the port returned by the listenPort
method) is registered with the network name server.

See also: — checkInAs:, — listenPort, — appListenerPortName (Application)

priority
— (int)priority

Returns the priority level for receiving remote messages.

See also: — setPriority:

2-238 Chapter 2: Application Kir

read:
—read:(NXTypedStream *)stream
Reads the Listener from the typed stream stream. Returns self.

See also: — write:

remoteMethodFor:
— (NXRemoteMethod *)remoteMethodFor:(SEL)aSelector

Looks up aSelector in the table of remote messages the Listener understands and returns a
pointer to the table entry. A NULL pointer is returned if aSelector isn’t in the table.

Each Listener subclass must define its own version of this method and send a message to
super to perform the Listener version. The msgwrap program produces subclass method
definitions automatically. The version of the method produced by msgwrap uses the
NXRemoteMethodFromSel() function to do the look up.

remoteMethodFor: messages are initiated automatically when the Listener reads a Mach
message from its port queue.

See also: — performRemoteMethod:paramList:, msgwrap(8) UNIX manual page

removePort
— removePort

Removes the Listener’s port from the list of those that the client library monitors. Remote
messages sent to the port will pile up in the port queue until they are explicitly read; they
won’t be read automatically between events.

See also: — addPort

servicesDelegate

— servicesDelegate

Returns the Listener’s services delegate, the object that will respond to remote messages
sent from the Services menus of other applications. The services delegate should
contain the methods that a service-providing application uses to provide services to
other applications. '

See also: — setServicesDelegate:

Classes: Listener 2-239

setDelegate:
— setDelegate:anObject

Sets the Listener’s delegate to anObject. The delegate is expected to respond to the remote
messages received by the Listener. However, if anObject has a delegate of its own at the
time the setDelegate: message is sent, the Listener will first check to see if that object can
handle a remote message before checking anObject. ‘In other words, the Listener.
recognizes a chain of delegation.

The delegate assigned by this method will be overridden if the Listener is registered as the
Application object’s appListener and the assignment is made before the Application
object is sent a run message. Before getting the first event, the run method makes the
Application object the appListener’s delegate.

See also: — delegate, — setAppListener: (Application)

setPriority:

— setPriority:(int)level
Sets the priority for receiving remote messages to level. Whenever the application is ready
to get another event, the priority level is compared to the threshold at which the application

is asking for the next event. For the Listener to be able to receive remote messages from
its port queue, the priority level must be at least equal to the event threshold.

Priority values can range from O through 30, but three standard values are generally used:

NX_BASETHRESHOLD 1
NX_RUNMODALTHRESHOLD 5
NX_MODALRESPTHRESHOLD 10

These constants are defined in the appkit/Application.h header file.

* Ata priority equal to NX_BASETHRESHOLD, the Listener will be able to receive
messages whenever the application asks for an event in the main event loop, but not
during a modal loop associated with an attention panel nor during a modal loop
associated with a control such as a button or slider.

* At a priority equal to NX_RUNMODALTHRESHOLD, the Listener will receive
remote messages in the main event loop and in the event loop for an attention panel, but
not during a control event loop.

* Ata priority equal to NX_MODALRESPTHRESHOLD, remote messages are received
even during a control event loop.

The default priority level is NX_BASETHRESHOLD.

2-240 Chapter 2: Application Kit

A new priority takes effect when the Listener receives an addPort message. To change the
default, you must either set the Listener’s priority before sending it an addPort message,
or you must send it a removePort message then another addPort message.

See also: - priority, — addPort

setServicesDelegate:
— setServicesDelegate:anObject

Registers anObject as the object within a service provider that will respond to remote
messages. This method returns self. As an example, consider an application called
Thinker that provides a ThinkAboutlt service that ponders the meaning of ASCII text it
receives on the pasteboard. Thinker would need to have something like the following in
the __services section of its __ICON segment in its Mach-O file:

Message: thinkMethod

Port: Thinker

Send Type: NXAsciiPboardType
Menu Item: ThinkAboutIt

To get this information in your Mach-O file you could put the above text in a file called
services.txt and then include the following line in your Makefile.preamble file:

LDFLAGS = ~segcreate __ICON __services services.txt

Alternatively, if the services the application can provide are not known at compile time, the
application can build a services file at run time; see NXUpdateDynamicServices().

Then, in order to provide the ThinkAboutlt service you must implement a
thinkMethod:userData:error: method in an object which is the services delegate of a
Listener which is listening on the Thinker port. (If the application is named “Thinker”, then
by default NXApp’s Listener listens on this port.) Here is an example method that could
be used to provide the ThinkAboutlt service:

- thinkMethod: (id)pb
userData: (const char *)userData
error: (char **)msg

char *data;

int length;
char *const *s; /* We use s to go through types. */
char *const *types = [pb types];

for (s = types; *s; s++)
if (!strcmp(*s, NXAsciiPboardType)) break;

Classes: Listener 2-241

if (*s && [pb readType:NXAsciiPboardType
data:&data length:&length])

/* doSomething is your own method... */
[self doSomething:data :lengthl;
/* free the memory allocated by readType:... */
vm_deallocate(task_self (), data, length);
}
/* now make msg point to an error string if */
/* anything went wrong, and return... */
return self;

}

See also: — servicesDelegate,
— registerServicesMenuSendTypes:andReturnTypes: (Application),
— validRequestorForSendType:andReturnType: (Responder)

setTimeout:

— setTimeout:(int)ms

Sets, to ms milliseconds, how long the Listener will persist in attempting to send a return
message back to the Speaker that initiated the remote message. If ms is 0, there will be no
time limit. The default is 30,000 milliseconds. Returns self.

See also: — timeout

signaturePort
— (port_t)signaturePort

Returns the port that’s used to authenticate the Listener’s port to the network name server.
This port is never set directly, but is allocated by checkInAs: and deallocated by free.

See also: — checkInAs:, — free, netname_check_in(), netname_check_out()

timeout

— (int)timeout

Returns the number of milliseconds the Listener will wait for a return message to the
Speaker to be successfully placed in the port designated by the Speaker. If it’s 0, there’s no
time limit.

See also: — setTimeout:

2-242 Chapier 2: Application Kit

usePrivatePort
— (int)usePrivatePort

Allocates a listening port for the Listener, but doesn’t register it publicly. Other tasks can
send messages to this Listener only if they are explicitly given the address of the portina
message; the port is not available through the Network Name Server. This method is an
alternative to checkInAs:. Itreturns O on success and a Mach error code if it can’t allocate
the port. The error code will be one of those defined in mach/kern_return.h.

See also: — checkInAs:

write:
— write:(NXTypedStream *)stream

Writes the Listener to the typed stream stream. Returns self.

See also: —read:

Classes: Listener 2-243

Matrix

Inherits From: Control : View : Responder : Object

Declared In: appkit/Matrix.h

Class Description

Matrix is a class used for creating groups of Cells that work together in various ways. It
includes methods for arranging its Cells in rows and columns, either with or without space
between them. The only restriction is that all Cells must be the same size. Cells in the
Matrix are numbered by row and columns, each starting with O; for example, the top left
Cell would be at (0, 0), and the Cell that’s second down and third across would be at (1, 2).
A Matrix can have many Cells of different classes, but usually uses only one type of Cell.
A Matrix can be set up to create new Cells by copying a prototype Cell, or by allocating
and initializing instances of a specific Cell class.

A Matrix adds to Control’s target/action paradigm by allowing a separate target and action
for each of its Cells in addition to its own, and also by having an action that gets sent when
the user double-clicks a Cell, and which is sent in addition to the single-click action. If a
Cell doesn’t have an action, the Matrix sends its own action to its own target. If a Cell
doesn’t have a target, the Matrix sends the Cell’s action to its own target. The double-click
action of a Matrix is always sent to the target of the Matrix.

Since the user might press the mouse button anywhere in the Matrix, and then drag the
mouse around, Matrix offers four “selection modes” which determine how Cells behave
when the Matrix is tracking the mouse:

NX_TRACKMODE is the most basic mode of operation. All that happens in this mode is
that the Cells are asked to track the mouse with trackMouse:inRect:of View: whenever the
mouse is inside their bounds. No highlighting is performed. An example of this mode
might be a “graphic equalizer” Matrix of sliders. Moving the mouse around causes the
sliders to move under the mouse.

NX_HIGHLIGHTMODE is a modification of TRACKMODE. In this mode, a Cell is
highlighted before it is asked to track the mouse, then unhighlighted when it is done
tracking. This is useful for multiple unconnected Cells which use highlighting to inform
the user that they are being tracked (like push-buttons and switches).

NX_RADIOMODE is used when you want no more than one Cell to be selected at a time.
It can be used to create a set of buttons of which one and only one is selected (there is the

2-244 Chapter 2: Application Kit

option of allowing no button to be selected). Any time a Cell is selected, the previously
selected Cell is unselected. The canonical example of this mode is a set of radio buttons.

NX_LISTMODE is the opposite of NX_TRACKMODE. Cells are highlighted, but don’t
track the mouse. This mode can be used to select a range of text values, for example.
Matrix supports the standard multiple-selection paradigms of dragging to select, using the
shift key to make disjoint selections, and using the alternate key to extend selections.

The best way to learn about selection modes is to play with a Matrix in Interface Builder,
testing the Matrix interface with various options and Cell types. You can also create
minimal connections to Buttons that play sounds, setting the action to be performClick:,
which will cause the sounds to be played when you use the Matrix in Interface Builder’s
test mode.

Instance Variables

id cellList;

id target;

SEL action;

id selectedCell;

int selectedRow;

int selectedCol;

int numRows;

int numCols;

NXSize cellSize;
NXSize intercell;

float backgroundGray;
float cellBackgroundGray;
id font;

id protoCell;

id cellClass;

id nextText;

id previousText;

SEL doubleAction,;
SEL errorAction;

id textDelegate;

Classes: Matrix 2-245

struct _mFlags {
unsigned int highlightMode:1;
unsigned int radioMode:1;
unsigned int listMode:1;
unsigned int allowEmptySel:1;
unsigned int autoscroll: 1;
unsigned int reaction:1;

unsigned int selectionByRect: 1;

} mFlags;

cellList List of the Cells in the Matrix. |

target The object that is sent an action if a Cell doesn’t have its
own action or its own target.

action The message sent to the target of the Matrix if a Cell
doesn’t have its own.

selectedCell The selected Cell (if there’s only one).

selectedRow The row number of selected Cell.

selectedCol The column number of selected Cell.

numRows Number of rows in the Matrix.

numCols Number of columns in the Matrix.

cellSize The size of each Cell in the Matrix (they’re all the

' same size).

intercell Vertical and horizontal spacing between Cells.

backgroundGray The gray level drawn between Cell in the Matrix.

cellBackgroundGray The gray level drawn as the background of each Cell.

font The Font of text in the Cells of the Matrix.

protoCell A Cell instance copied to make new Cells.

cellClass The class of Cell used by the Matrix; not used if a
prototype is used.

nextText The object whose text is selected when Tab is pressed.

previousText The object whose text is selected when Shift-Tab is
pressed.

doubleAction Action sent to the target of the Matrix on a double-click

Chapter 2: Application Kit

in a Cell.

errorAction

textDelegate
mFlags.highlightMode
mFlags.radioMode
mFlags.listMode
mFlags.allowEmptySel
mFlags.autoscroll

mFlags.reaction

mFlags.selectionByRect

Method Types

Initializing the Matrix class

Initializing and freeing a Matrix

Setting the selection mode

Configuring the Matrix

Setting the Cell class

Message sent to the target when a bad value is entered in
a text field.

Delegate for Text object delegate methods.

True if selection mode is NX_HIGHLIGHTMODE.
True if selection mode is NX_RADIOMODE.

True if selection mode is NX_LISTMODE.

True if no selection is allowed in NX_RADIOMODE.
True if the Matrix auto-scrolls when in a ScrollView.

True if an action message caused the Cell that triggered
the action message to change.

True if a rectangle of Cells in the Matrix can be selected
by dragging the cursor.

+ initialize

+ setCellClass:

— initFrame:

— initFrame:mode:cellClass:numRows:numCols:
— initFrame:mode:prototype:numRows:numCols:
— free

— setMode:
—mode

— setEnabled:

— setEmptySelectionEnabled:
— isEmptySelectionEnabled
— setSelectionByRect:

- isSelectionByRect

— setCellClass:
— setPrototype:
— prototype

Classes: Matrix 2-247

" Laying out the Matrix —addCol
— addRow
— insertColAt:
— insertRowAL:
—removeColAt:andFree:
—removeRowAt:andFree:
— makeCellAt::
- putCell:at::
—renewRows:cols:
- setCellSize:
— getCellSize:
— getCellFrame:at::
— setlntercell:
— getintercell:
— cellCount
— getNumRows:numCols:

Finding Matrix coordinates — getRow:andCol:ofCell:
— getRow:andCol:forPoint:

Modifying individual Cells — setlcon:at::
— setState:at::
— setTitle:at::
— setTag:at::
— setTag:target:action:at::

Selecti