
OBJECT-ORIENTED PROGRAMMING AND
THE OBJECTIVE C LANGUAGE

Object- Oriented Software

NelmEP"
OBJECT-ORIENTED
PROGRAMMING AND
THE OBJECTIVE C
LANGUAGE

NeXTSTEP Developer's Library
NeXT Computer, Inc .

...
TT
Addison-Wesley Publishing Company
Reading, Massachusetts' Menlo Park, California' New York' Don Mills, Ontario
Wokingham, England' Amsterdam' Bonn' Sydney' Singapore' Tokyo' Madrid
San Juan' Paris' Seoul' Milan' Mexico City' Taipei

Release 3

NeXT and the publishers have tried to make the information contained in this manual as accurate and
reliable as possible, but assume no responsibility for errors or omissions. They disclaim any warranty
of any kind, whether express or implied, as to any matter whatsoever relating to this manual, including
without limitation the merchantability or fitness for any particular purpose. In no event shall NeXT or
the publishers be liable for any indirect, special, incidental, or consequential damages arising out of
purchase or use of this manual or the information contained herein. NeXT will from time to time revise
the software described in this manual and reserves the right to make such changes without obligation
to notify the purchaser.

NeXTSTEP Object-Oriented Programming and the Objective C Language Copyright © 1990-1993
by NeXT Computer, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher or copyright owner.
Printed in the United States of America. Published simultaneously in Canada.

NeXTSTEP 3.0 Copyright © 1988-1992 by NeXT Computer, Inc. All rights reserved. Certain portions of the
software are copyrighted by third parties. U.S. Pat. Nos. 5,146,556; 4,982,343. Other Patents Pending.

NeXT, the NeXT logo, NeXTSTEP. Application Kit, Database Kit, Device Driver Kit, Indexing Kit, Interface
Builder, Sound Kit, 3D Graphics Kit, and Workspace Manager are trademarks of NeXT Computer, Inc.
PostScript is a registered trademark of Adobe Systems, Incorporated. RenderMan is a registered
trademark of Pixar. All other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 [or, if applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86).

This manual describes NeXTSTEP Release 3.

Written by NeXT Publications.

This manual was designed, written, and produced on NeXT computers. Proofs were printed on a NeXT
400 dpi Laser Printer and NeXT Color Printer. Final pages were transferred directly from a NeXT floppy
disk to film using NeXT computers and an electronic imagesetter.

2 3 4 5 6-AL-96959493
Second printing, July 1993

ISBN 0-201-63251-9

L1brary of Congress Catalog1ng-1n-Publlcat1on Data

NeXTSTEP object-or1ented programming and the objective C Language,
release 3 / NeXT Computer, Inc.

p. cm. -- (NeXTSTEP developer's library)
Includes Index.
ISBN 0-201-63261-9
1. Object-or1ented programming. 2. NeXTstep. 3. C (Computer

program language) 4. NeXT (Camputer)--Programmlng. I. NeXT
Computer, Inc. II. Series.
QA76.64.N49 1993
006.4'3--dc20 93-7629

CIP

Contents

xi Introduction
xii The Development Environment
xiii Why Objective C
xiv How the Manual is Organized
xv Conventions

1 Chapter 1: Object-Oriented Programming
2 Interface and Implementation
5 The Object Model
7 The Messaging Metaphor
8 Classes
10 Modularity
10 Reusability
12 Mechanisms of Abstraction
12 Encapsulation
13 Polymorphism
15 Inheritance
15 Class Hierarchies
16 Subclass Definitions
17 Uses of Inheritance
18 Dynamism
19 Dynamic Typing
20 Dynamic Binding
22 Dynamic Loading

23 Structuring Programs
24 Outlet Connections
25 Extrinsic and Intrinsic·Connections
26 Activating the Object Network
26 Aggregation and Decomposition
27 Models and Kits
29 Structuring the Programming Task
29 Collaboration
30 Organizing Object-Oriented Projects
30 Designing on a Large Scale
30 Separating the Interface from the Implementation
31 Modularizing the Work
31 Keeping the Interface Simple
31 Making Decisions Dynamically
32 Inheriting Generic Code
32 Reusing Tested Code

33 Chapter 2: The Objective C Language
34 Objects
35 id
35 Dynamic Typing
36 Messages
38 The Receiver's Instance Variables
38 Polymorphism
39 Dynamic Binding
40 Classes
40 Inheritance
42 The Object Class
42 Inheriting Instance Variables
43 Inheriting Methods
44 Overriding One Method with Another
44 Abstract Classes

45 Class Types
45 Static Typing
46 Type Introspection
46 Class Objects
48 Creating Instances
48 Customization with Class Objects
50 Variables and Class Objects
50 Initializing a Class Object
51 Methods of the Root Class
51 Class Names in Source Code
52 Defining a Class
53 The Interface
55 Importing the Interface
55 Referring to Other Classes
56 The Role of the Interface
57 The Implementation
58 Referring to Instance Variables
59 The Scope of Instance Variables
62 How Messaging Works
65 Selectors
66 Methods and Selectors
66 Method Return and Argument Types
66 Varying the Message at Run Time
67 The Target-Action Paradigm
68 Avoiding Messaging Errors
69 Hidden Arguments
70 Messages to self and super
71 An Example
73 Using super
74 Redefining self

77 Chapter 3: Objective C Extensions
77 Categories
78 Adding to a Class
79 How Categories are Used
80 Categories of the Root Class
80 Protocols
81 How Protocols are Used
81 Methods for Others to Implement
83 Anonymous Objects
84 Nonhierarchical Similarities
85 Informal Protocols
85 Formal Protocols
87 Protocol Objects
87 Conforming to a Protocol
88 Type Checking
89 Protocols within Protocols
90 Remote Messaging
91 Distributed Objects
92 Language Support
93 Synchronous and Asynchronous Messages
94 Pointer Arguments
96 Proxies and Copies
97 Static Options
97 Static Typing
98 Type Checking
99 Return and Argument Types
100 Static Typing to an Inherited Class
101 Getting a Method Address
101 Getting an Object Data Structure
102 Type Encoding

105 Chapter 4: The Run-lime System
107 Allocation and Initialization
107 Allocating Memory for Objects
108 Zones
109 Allocating froIl! a Zone
110 Initializing New Objects
111 The Object Returned
112 Arguments
112 Coordinating Classes
117 Combining Allocation and Initialization
118 Deallocation
119 Forwarding
122 Forwarding and Multiple Inheritance
123 Surrogate Objects
123 Making Forwarding Transparent
124 Dynamic Loading
126 Bundles
127 Localized Resources
128 Loadable Code
128 Loading Bundled Code
130 Organizing for Customization
130 Search Path
131 Bundle Name
131 Communication Protocols
133 Development Interfaces
134 Archiving
134 Typed Streams
135 Reading and Writing
136 The write: and read: Methods
137 The Archiving Functions
138 Outlet Instance Variables
141 Final Steps

143 Chapter 5: Programming in Objective C
144 Starting Up
146 Using a Software Kit
147 Inheriting from Kit Classes
147 Implementing Your Own Version of a Method
149 Implementing Methods You Don't Invoke
150 Inheriting the Framework
150 Connecting to Kit Objects
150 Delegation
151 Other Kit Outlets
152 Programming with the Application Kit
152 NeXTSTEP Applications
153 The Event Cycle
155 The Window Server
159 Event Loops
160 Other Input
161 Application Kit Objects
163 The Application Object
163 Window Objects
164 Views
166 Fitting into the Event Cycle
166 Handling Events
168 Drawing
169 Controls
170 Coordinating with the Application and its Windows
172 Subclass Clusters
173 Using C++ with Objective C
174 Writing Mixed Code
175 Bridge Classes
176 Using Objective C Libraries with C++ Code
176 Run-Time Sequencing

177 Appendix A: Objective C Language Summary
177 Messages
178 Defined Types
178 Preprocessor Directives
178 Compiler Directives
179 Classes
180 Categories
180 Formal Protocols
181 Method Declarations
181 Method Implementations
182 Naming Conventions

183 Appendix B: Reference Manual for the Objective C Language
185 External Declarations
188 Type Specifiers
188 Type Qualifiers
189 Primary Expressions

191 Appendix C: The Object Class
191 Class Description
192 Initializing an Object to Its Class
192 Instance and Class Methods
193 Interface Conventions
194 Instance Variables
194 Method Types
196 Class Methods
204 Instance Methods

225 Suggested Reading on Object-Oriented Programming

227 Glossary

237 Index

Introduction

Object-oriented programming, like most interesting new developments, builds on some old
ideas, extends them, and puts them together in novel ways. The result is many faceted and
a clear step forward for the art of programming. An object-oriented approach makes
programs more intuitive to design, faster to develop, more amenable to modifications, and
easier to understand. It leads not only to new ways of constructing programs, but also to
new ways of conceiving the programming task.

Nevertheless, object-oriented programming presents some formidable obstacles to those
who would like to understand what it's all about or begin trying it out. It introduces a new
way of doing things that may seem strange at first, and it comes with an extensive
terminology that can take some getting used to. The terminology will help in the end, but
it's not always easy to learn. Moreover, there are as yet few full-fledged object-oriented
development environments available to try out. It can be difficult to get started.

That's where this book comes in. It's designed to help you become familiar with
object-oriented programming and get over the hurdle its terminology presents. It spells
out some of the implications of object-oriented design and tries to give you a flavor of
what writing an object-oriented program is really like. It fully documents the Objective C
language, an object-oriented programming language based on standard C, and
introduces the most extensive object-oriented development environment currently
available-N eXTSTEpn ..

The book is intended for readers who might be interested in:

• Learning about object-oriented programming,
• Finding out about the NeXTSTEP development environment, or
• Programming in Objective C. .

Introduction xi

NeXT supplies its own compiler for the Objective C language (a modification of the GNU
C compiler) and a run-time system to carry out the dynamic functions of the language. It
has tested and made steady improvements to both over the years; this book describes the
latest release (Release 3), which includes provisions for declaring and adopting protocols
and setting the scope of instance variables.

Throughout this manual and in other NeXT documentation, the term "Objective C" refers
to the language as implemented for the NeXTSTEP development environment and
presented here.

The Development Environment

xii Introduction

Every object-oriented development environment worthy of the name consists of at least
three parts:

• A library of objects and software kits
• A set of development tools
• An object-oriented programming language

NeXTSTEP comes with an extensive library. It includes several software kits containing
definitions for objects that you can use "off the shelf' or adapt to your program's needs.
The kits include the Application KitTM for building a graphical user interface, the
Database KifM for interacting with a database server, the 3D Graphics KifM for constructing
and manipulating three-dimensional images, the Sound KifM for recording, editing, and
playing sounds, and others. All these kits, and more, are documented in the NeXTSTEP
General Reference.

NeXTSTEP also includes some exceptional development tools for putting together
applications. There's Interface Builder™, a program that lets you design an application
graphically and assemble its user interface on-screen, and Project Builder, a
project-management program that provides graphical access to the compiler, the debugger,
documentation, a program editor, and other tools. These programs are documented in
NeXTSTEP Development Tools and Techniques.

This book is about the third component of the development environment-the
programming language. All NeXTSTEP software kits are written in the Objective C
language. To get the benefit of the kits, applications must also use Objective C.

Objective C is implemented as set of extensions to the C language. It's designed to give C
a full capability for object-oriented programming, and to do so in a simple and
straightforward way. Its additions to C are few and are mostly based on Smalltalk, one
of the first object-oriented programming languages.

This book both introduces the object-oriented model that Objective C is based upon and
fully documents the language. It concentrates on the Objective C extensions to C, not on
the C language itself. There are many good books available on C; this manual doesn't
attempt to duplicate them.

Because this isn't a book about C, it assumes some prior acquaintance with that language.
However, it doesn't have to be an extensive acquaintance. Object-oriented programming in
Objective C is sufficiently different from procedural programming in standard C that you
won't be hampered if you're not an experienced C programmer.

Why Objective C

. The Objective C language was chosen for the NeXTSTEP development environment for a
variety of reasons. First and foremost, it's an object-oriented language. The kind of
functionality that's packaged in the NeXTSTEP software kits can only be delivered through
object-oriented techniques. This manual will explain how the kits work and why this is
the case.

Second, because Objective C is an extension of standard ANSI C, existing C programs can
be adapted to use the software kits without losing any of the work that went into their
original development. Since Objective C incorporates C, you get all the benefits of C when
working within Objective C. You can choose when to do something in an object-oriented
way (define a new class, for example) and when to stick to procedural programming
techniques (define a structure and some functions instead of a class).

Moreover, Objective C is a simple language. Its syntax is small, unambiguous, and easy to
learn. Object-oriented programming, with its self-conscious terminology and emphasis on
abstract design, often presents a steep learning curve to new recruits. A well-organized
language like Objective C can make becoming a proficient object-oriented programmer
that much less difficult. The size of this manual is a testament to the simplicity of
Objective C. It's not a big book-and Objective C is fully documented in just two of
its chapters.

Why Objective C xiii

Objective C is the most dynamic of the object-oriented languages based on C. The
compiler throws very little away, so a great deal of information is preserved for use at run
time. Decisions that otherwise might be made at compile time can be postponed until the
program is running. This gives Objective C programs unusual flexibility and power. For
example, Objective C's dynamism yields two big benefits that are hard to get with other
nominally object-oriented languages:

• Objective C supports an open style of dynamic binding, a style than can accommodate
a simple architecture for interactive user interfaces. Messages are not necessarily
constrained by either the class of the receiver or the method selector, so a software kit
can allow for user choices at run time and permit developers freedom of expression in
their design. (Terminology like "dynamic binding," "message," "class," "receiver," and
"selector" will be explained in due course in this manual.)

• Objective C's dynamism enables the construction of sophisticated development tools.
An interface to the run-time system provides access to information about running
applications, so it's possible to develop tools that monitor, intervene, and reveal the
underlying structure and activity of Objective C applications. Interface Builder could
not have been developed with a less dynamic language. (The full interface to the
run-time system is documented in the NeXTSTEP General Reference manual.)

How the Manual is Organized

xiv Introduction

This manual is divided into five chapters and three appendices. The chapters are:

• Chapter 1, "Object-Oriented Programming," discusses the rationale for object-oriented
programming languages and introduces much of the terminology. It develops the ideas
behind object-oriented programming techniques. If you're already familiar with
object-oriented programming and are interested only in Objective C, you may want to
skip this chapter and go directly to Chapter 2.

• Chapter 2, "The Objective C Language," describes the basic concepts and syntax of
.objective C. It covers many of the same topics as Chapter 1, but looks at them from the
standpoint of the Objective C language. It reintroduces the terminology of
object-oriented programming, but in the context of Objective C.

• Chapter 3, "Objective C Extensions," concentrates on two of the principal innovations
introduced into the language as part of N eXTSTEP Objective C-categories and
protocols. It also takes up static typing and lesser used aspects of the language.

• Chapter 4, "The Run-Time System," looks at the Object class and how Objective C
programs interact with the run-time system. In particular, it examines the paradigms for
allocating and initializing new objects, dynamically loading new classes at run time,
archiving objects, and forwarding messages to other objects.

• Chapter 5, "Programming in Objective C," tries to give a flavor of what programming
with the NeXTSTEP software kits is like. As an example, it describes how you would
go about programming with the Application Kit, the software kit that's used to build and
run a graphical user interface.

The three appendices contain reference material that might be useful for understanding the
language. They are:

• Appendix A, "Objective C Language Summary," lists and briefly comments on all the
Objective C extensions to the C language.

• Appendix B, "Reference Manual for the Objective C Language," presents,
uncommented, a formal grammar of the Objective C extensions to the C language. This
reference manual is meant to be read as a companion to the reference manual for C
presented in The C Programming Language by Brian W. Kernighan and Dennis M.
Ritchie, published by Prentice Hall.

• Appendix C, "The Object Class," is a full specification of the Object class, the root class
that all other Objective C classes inherit from. This specification is equivalent to the one
found in the NeXTSTEP General Reference manual and is presented here for
convenience.

Conventions

Where this manual discusses functions, methods, and other programming elements, it
makes special use of bold and italic fonts. Bold denotes words or characters that are to be
taken literally (typed as they appear). Italic denotes words that represent something else or
can be varied. For example, the syntax

@interface ClassName (CategoryName)

means that @interface and the two parentheses are required, but that you can choose the
class name and category name. Where method syntax is shown, mainly in Appendix C, the
method name is bold, parameters are italic, and other elements (mainly data types) are in
regular font. For example:

- write:(NXTypedStream *)stream

Conventions xv

xvi Introduction

Where example code is shown, ellipsis indicates the parts, often substantial parts, that have
been omitted:

- write: (NXTypedStream *)stream

[super write: stream] ;

return self;

The conventions used in the reference manual are described there (Appendix B).

Object-Oriented Programming

Programming languages have traditionally divided the world into two parts-data and
operations on data. Data is static and immutable, except as the operations may change it.
The procedures and functions that operate on data have no lasting state of their own; they're
useful only in their ability to affect data.

This division is, of course, grounded in the way computers work, so it's not one that you
can easily ignore or push aside. Like the equally pervasive distinctions between matter and
energy and between nouns and verbs, it forms the background against which we work. At
some point, all programmers-even object-oriented programmers-must layout the data
structures that their programs will use and define the functions that will act on the data.

With a procedural programming language like C, that's about all there is to it. The language
may offer various kinds of support for organizing data and functions, but it won't divide the
world any differently. Functions and data structures are the basic elements of design.

Object-oriented programming doesn't so much dispute this view of the world as restructure
it at a higher level. It groups operations and data into modular units called objects and lets
you combine objects into structured networks to form a complete program. In an
object-oriented programming language, objects and object interactions are the basic
elements of design.

Every object has both state (data) and behavior (operations on data). In that, they're not
much different from ordinary physical objects. It's easy to see how a mechanical device,
such as a pocket watch or a piano, embodies both state and behavior. But almost anything
that's designed to do ajob does too. Even simple things with no moving parts such as an
ordinary bottle combine state (hoW full the bottle is, whether or not it's open, how warm its
contents are) with behavior (the ability to dispense its contents at various flow rates, to be
opened or closed, to withstand high or low temperatures).

Object-Oriented Programming 1

It's this resemblance to real things that gives objects much of their power and appeal. They
can not only model components of real systems, but equally as well fulfill assigned roles as
components in software systems.

Interface and Implementation

As humans, we're constantly faced with myriad facts and impressions that we must make
sense of. To do so, we have to abstract underlying structure away from surface details and
discover the fundamental relations at work. Abstractions reveal causes and effects, expose
patterns and frameworks, and separate what's important from what's not. They're at the
root of understanding. .

To invent programs, you need to be able to capture the same kinds of abstractions and
express them in the program design.

It's the job of a programming language to help you do this. The language should facilitate
the process of invention and design by letting you encode abstractions that reveal the way
things work. It should let you make your ideas concrete in the code you write. Surface
details shouldn't obscure the architecture of your program.

All programming languages provide devices that help express abstractions. In essence,
these devices are ways of grouping implementation details, hiding them, and giving them,
at least to some extent, a common interface-much as a mechanical object separates its
interface from its implementation.

Figure 1. Interface and Implementation

2 Chapter 1: Object-Oriented Programming

Looking at such a unit from the inside, as the implementor, you'd be concerned with what
it's composed of and how it works. Looking at it from the outside, as the user, you're
concerned only with what it is and what it does. You can look past the details and think
solely in terms of the role that the unit plays at a higher level.

The principal units of abstraction in the C language are structures and functions. Both, in
different ways, hide elements of the implementation:

• On the data side of the world, C structures group data elements into larger units which
can then be handled as single entities. While some code must delve inside the structure
and manipulate the fields separately, much of the program can regard it as a single
thing-not as a collection of elements, but as what those elements taken together
represent. One structure can include others, so a complex arrangement of information
can be built from simpler layers.

In modern C, the fields of a structure live in their own name space-that is, their names
won't conflict with identically-named data elements outside the structure. Partitioning
the program name space is essential for keeping implementation details out of the
interface. Imagine, for example, the enormous task of assigning a different name to
every piece of data in a large program and of making sure new names don't conflict with
old ones.

• On the procedural side of the world, functions encapsulate behaviors that can be used
repeatedly without being reimplemented. Data elements local to a function, like the
fields within a structure, are protected within their own name space. Functions can
reference (call) other functions, so quite complex behaviors can be built from smaller
pieces.

Functions are reusable. Once defined, they can be called any number of times without
again considering the implementation. The most generally useful functions can be
collected in libraries and reused in many different applications. All the user needs. is the
function interface, not the source code.

However, unlike data elements, functions aren't partitioned into separate name spaces.
Each function must have a unique name. Although the function may be reusable, its
name is not.

C structures and functions are able to express significant abstractions, but they maintain the
distinction between data and operations on data. In a procedural programming language,
the highest units of abstraction still live on one side or the other of the data-versus­
operations divide. The programs you design must always reflect, at the highest level, the
way the computer works.

Interface and Implementation 3

Object-oriented programming languages don't lose any of the virtues of structures and
functions. But they go a step further and add a unit capable of abstraction at a higher level,
a unit that hides the interaction between a function and its data.

Suppose, for example, that you have a group of functions that all act on a particular data
structure. You want to make those functions easier to use by, as far as possible, taking the
structure out of the interface. So you supply a few additional functions to manage the data.
All the work of manipulating the data structure-allocating it, initializing it, getting
information from it, modifying values within it, keeping it up to date, and freeing it-
is done through the functions. All the user does is call the functions and pass the structure
to them.

With these changes, the structure has become an opaque token that other programmers
never need to look inside. They can concentrate on what the functions do, not how the data
is organized. You've taken the first step toward creating an object.

The next step is to give this idea support in the programming language and completely hide
the data structure so that it doesn't even have to be passed between the functions. The data
becomes an internal implementation detail; all that's exported to users is a functional
interface. Because objects completely encapsulate their data (hide it), users can think of
them solely in terms of their behavior.

With this step, the interface to the functions has become much simpler. Callers don't need
to know how they're implemented (what data they use). It's fair now to call this an "object."

The hidden data structure unites all of the functions that share it. So an object is more
than a collection of random functions; it's a bundle of related behaviors that are supported
by shared data. To use a function that belongs to an object, you first create the object
(thus giving it its internal data structure), then tell the object which function it should
invoke. You begin to think in terms of what the object does, rather than in terms of the
individual functions.

This progression from thinking about functions and data structures to thinking about object
behaviors is the essence of object-oriented programming. It may seem unfamiliar at first,
but as you gain experience with object-oriented programming, you'll find it's a more
natural way to think about things. Everyday programming terminology is replete with
analogies to real-world objects of various kinds-lists, containers, tables, controllers, even
managers. Implementing such things as programming objects merely extends the analogy
in a natural way.

A programming language can be judged by the kinds of abstractions that it enables you to
encode. You shouldn't be distracted by extraneous matters or forced to express yourself
using a vocabulary that doesn't match the reality you're trying to capture.

4 Chapter 1: Object-Orimted Programming

If, for example, you must always tend to the business of keeping the right data matched with
the right procedure, you're forced at all times to be aware of the entire program at a low
level of implementation. While you might still invent programs at a high level of
abstraction, the path from imagination to implementation can become quite tenuous-and
more and more dIfficult as programs become bigger and more complicated.

By providing another, higher level of abstraction, object-oriented programming languages
give you a larger vocabulary and a richer model to program in.

The Object Model

The insight of object-oriented programming is to combine state and behavior-data and
operations on data-in a high-level unit, an object, and to give it language support. An
object is a group of related functions and a data structure that serves those functions. The
functions are known as the object's methods, and the fields of its data structure are its
instance variables. The methods wrap around the instance variables and hide them from
the rest of the program:

Figure 2. An Object

Likely, if you've ever tackled any kind of difficult programming problem, your design has
included groups of functions that work on a particular kind of data-implicit "objects"
without the language support. Object-oriented programming makes these function groups
explicit and permits you to think in terms of the group, rather than its components. The
only way to an object's data, the only interface, is through its methods.

Object-oriented terminologyvaries from languageto language; For example, in C++
methods are called IImember functions" and instance variables are II data members/'
This manual uses the terminology of Objective C, which has its basis in Smalltalk.

The Object M ode/ 5

By combining both state and behavior in a single unit, an object becomes more than either
alone; the whole really is greater than the sum of its parts. An object is a kind of
self-sufficient "subprogram" with jurisdiction over a specific functional area. It can playa
full-fledged modular role within a larger program design.

For example, if you were to write a program that modeled home water usage, you might
invent objects to represent the various components of the water-delivery system. One might
be a Faucet object that would have methods to start and stop the flow of water, set the rate
of flow, return the amount of water consumed in a given period, and so on. To do this work,
a Faucet object would need instance variables to keep track of whether the tap is open or
shut, how much water is being used, and where the water is coming from.

Clearly, a programmatic Faucet can be smarter than a real one (it's analogous to a
mechanical faucet with lots of gauges and instruments attached). But even a real faucet,
like any system component, exhibits both state and behavior. To effectively model a
system, you need programming units, like objects, that also combine state and behavior.

A program consists of a network of interconnected objects that call upon each other to solve
a part of the puzzle. Each object has a specific role to play in the overall design of the
program and is able to communicate with other objects. Objects communicate through
messages, requests to perform a method.

~ message

Figure 3. Object Network

6 Chapter 1: Object-Oriented Programming

The objects in the network won't all be the same. For example, in addition to Faucets, the
program that models water usage might also have WaterPipe objects that can deliver water
to the Faucets and Valve objects to regulate the flow among WaterPipes. There could be a
Building object to coordinate a set of WaterPipes, Valves, and Faucets, some Appliance
objects-corresponding to dishwashers, toilets, and washing machines-that can tum
Valves on and off, and maybe some Users to work the Appliances and Faucets. When a
Building object is asked how much water is being used, it might call upon each Faucet and
Valve to report its current state. When a User starts up an Appliance, the Appliance will
need to turn on a Valve to get the water it requires.

The Messaging Metaphor

Every programming paradigm comes with its own terminology and metaphors. None more
so than object-oriented programming. Its jargon invites you to think about what goes on in
a program from a particular perspective.

There's a tendency, for example, to think of objects as "actors" and to endow them with
human-like intentions and abilities. It's tempting sometimes to talk about an object
"deciding" what to do about a situation, "asking" other objects for information,
"introspecting" about itself to get requested information, "delegating" responsibility to
another object, or "managing" a process.

Rather than think in terms of functions or methods doing the work, as you would in a
procedural programming language, this metaphor asks you to think of objects as
"performing" their methods. Objects are not passive containers for state and behavior, but
are said to be the agents of the program's activity.

This is actually a useful metaphor. An object is like an actor in a couple of respects: It has
a particular role to play within the overall design of the program, and within that role it can
act fairly independently of the other parts of the program. It interacts with other objects as
they play their own roles, but is self-contained and to a certain extent can act on its own.
Like an actor on stage, it can't stray from the script, but the role it plays it can be
multi-faceted and quite complex.

The idea of objects as actors fits nicely with the principal metaphor of object-oriented
programming-the idea that objects communicate through "messages." Instead of calling
a method as you would a function, you send a message to an object requesting it to perform
one of its methods.

The Object Model 7

Although it can take some getting used to, this metaphor leads to a useful way of looking
at methods and objects. It abstracts methods away from the particular data they act on and
concentrates on behavior instead. For example, in an object-oriented programming
interface, a start method might initiate an operation, a write method might archive
information, and a draw method might produce an image. Exactly which operation is
initiated, which information is archived, and which image is drawn isn't revealed by the
method name. Different objects might perform these methods in different ways.

Thus, methods are a vocabulary of abstract behaviors. To invoke one of those behaviors,
you have to make it concrete by associating the method with an object. This is done by
naming the object as the "receiver" of a message. The object you choose as receiver
will determine the exact operation that's initiated, the data that's archived, or the image
that's drawn.

Since methods belong to objects, they can be invoked only through a particular receiver (the
owner of the method and of the data structure the method will act on). Different receivers
can have different implementations of the same method, so different receivers can do
different things in response to the same message. The result of a message can't be
calculated from the message or method name alone; it also depends on the object that
receives the message.

By separating the message (the requested behavior) from the receiver (the owner of a
method that can respond to the request), the messaging metaphor perfectly captures the idea
that behaviors can be abstracted away from their particular implementations.

Classes

A program can have more than one object of the same kind. The program that models
water usage, for example, might have several Faucets and WaterPipes and perhaps a
handfui of Appliances and Users. Objects of the same kind are said to belong to the same
class. All members of a class are able to perform the same methods and have matching sets
of instance variables. They also share a common definition; each kind of object is defined
just once.

In this, objects are similar to C structures. Declaring a structure defines a type. For
example, this declaration

struct key {

char *word;
int count;

} ;

8 Chapter 1: Object-Oriented Programming

defines the struct key type. Once defined, the structure name can be used to produce any
number of instances of the type:

struct key a, b, c, d;
struct key *p = rnalloc(sizeof(struct key) * MAXITEMS);

The declaration is a template for a kind of structure, but it doesn't create a structure that the
program can use. It takes another step to allocate memory for an actual structure of that
type, a step that can be repeated any number of times.

Similarly, defining an object creates a template for a kind of object. It defines a class of
objects. The template can be used to produce any number of similar objects-instances of
the class. For example, there would be a single definition of the Faucet class. Using this
definition, a program could allocate as many Faucet instances as it needed.

A class definition is like a structure definition in that it lays out an arrangement of data
elements (instance variables) that become part of every instance. Each instance has
memory allocated for its own set of instance variables, which store values peculiar to
the instance.

However, a class definition differs from a structure declaration in that it also includes
methods that specify the behavior of class members. Every instance is characterized by its
access to the methods defined for the class. Two objects with equivalent data structures but
different methods would not belong to the same class.

Access to Methods

It's convenient to think of methods as being part of an object, just as instance variables
are. As in Figure 2 above, methods can be diagrammed as surrounding the object's
instance variables.

But, of course, methods aren't grouped with instance variables in memory. Memory is
allocated for the instance variables of each new object, but there's no need to allocate
memory for methods. All an instance needs is access to its methods, and all instances of
the same class share access to the same set of methods. There's only one copy of the
methods in memory, no matter how many instances of the class are created.

The Object AI ode! 9

Modularity

To a C programmer, a "module" is nothing more than a file containing source code.
Breaking a large (or even not-so-Iarge) program into different files is a convenient way of
splitting it into manageable pieces. Each piece can be worked on independently and
compiled alone, then integrated with other pieces when the program is linked. Using the
static storage class designator to limit the scope of names to just the files where they're
declared enhances the independence of source modules.

This kind of module is a unit defined by the file system. It's a container for source code,
not a logical unit of the language. What goes into the container is up to each programmer.
You can use them to group logically related parts of the code, but you don't have to. Files
are like the drawers of a dresser; you can put your socks in one drawer, underwear in
another, and so on, or you can use another organizing scheme or simply choose to mix
everything up.

Object-oriented programming languages support the use of file containers for source code,
but they also add a logical module to the language-class definitions. As you'd expect, it's
often the case that each class is defined in its own source file-logical modules are matched
to container modules.

In Objective C, for example, it would be possible to define the part of the Valve class that
interacts with WaterPipes in the same file that defines the WaterPipe class, thus creating a
container module for WaterPipe-related code and splitting Valve class into more than one
file. The Valve class definition would still act as a modular unit within the construction of
the program-it would still be a logical module-no matter how many files the source code
was located in.

The mechanisms that make class definitions logical units of the language are discussed in
some detail under "Mechanisms of Abstraction" below.

Reusability

A principal goal of object-oriented programming is to make the code you write as reusable
as possible-to have it serve many different situations and applications-so that you
can avoid reimplementing, even if in only slightly different form, something that's already
been done.

10 Chapter 1: Object-Oriented Programming

Reusability is influenced by a variety of different factors, including:

• How reliable and bug-free the code is
• How clear the documentation is
• How simple and straightforward the programming interface is
• How efficiently the code performs its tasks
• How full the feature set is

Clearly, these factors don't apply just to the object model. They can be used to judge the
reusability of any code-standard C functions as well as class definitions. Efficient and
well documented functions, for example, would be more reusable than undocumented and
unreliable ones.

Nevertheless, a general comparison would show that class definitions lend themselves to
reusable code in ways that functions do not. There are various things you can do to make
functions more reusable-passing data as arguments rather than assuming
specifically-named global variables, for example. Even so, it turns out that only a small
subset of functions can be generalized beyond the applications they were originally
designed for. Their reusability is inherently limited in at least three ways:

• Function names are global variables; each function must have a unique name (except for
those declared static). This makes it difficult to rely heavily on library code when
building a complex system. The programming interface would be hard to learn and so
extensive that it couldn't easily capture significant generalizations.

Classes, on the other hand, can share programming interfaces. When the same naming
conventions are used over and over again, a great deal of functionality can be packaged
with a relatively small and easy-to-understand interface.

• Functions are selected from a library one at a time. It's up to programmers to pick and
choose the individual functions they need.

In contrast, objects come as packages of functionality, not as individual methods and
instance variables. They provide integrated services, so users of an object-oriented
library won't get bogged down piecing together their own solutions to a problem.

• Functions are typically tied to particular kinds of data structures devised for a specific
program. The interaction between data and function is an unavoidable part of the
interface. A function is useful only to those who agree to use the same kind of data
structures it accepts as arguments.

Because it hides its data, an object doesn't have this problem. This is one of the principal
reasons why classes can be reused more easily than functions.

The Object Model 11

An object's data is protected and won't be touched by any other part of the program.
Methods can therefore trust its integrity. They can be sure that external access hasn't put it
in an illogical or untenable state. This makes an object data structure more reliable than
one passed to a function, so methods can depend on it more. Reusable methods are
consequently easier to write.

Moreover, because an object's data is hidden, a class can be reimplemented to use a
different data structure without affecting its interface. All programs that use the class can
pick up the new version without changing any source code; no reprogramming is required.

Mechanisms of Abstraction

To this point, objects have been introduced as units that embody higher-level abstractions
and as coherent role-players within an application. However, they couldn't be used this
way without the support of various language mechanisms. Two of the most important
mechanisms are:

• Encapsulation, and
• Polymorphism.

Encapsulation keeps the implementation of an object out of its interface, and polymorphism
results from giving each class its own name space. The following sections discuss each of
these mechanisms in tum.

Encapsulation

To design effectively at any level of abstraction, you need to be able to leave details of
implementation behind and think in terms of units that group those details under a common
interface. For a programming unit to be truly effective, the barrier between interface and
implementation must be absolute. The interface must encapsulate the implementation­
hide it from other parts of the program. Encapsulation protects an implementation from
unintended actions and inadvertent access.

In C, a function is clearly encapsulated; its implementation is inaccessible to other parts of
the program and protected from whatever actions might be taken outside the body of the
function. Method implementations are similarly encapsulated, but, more importantly, so
are an object's instance variables. They're hidden inside the object and invisible outside it.
The encapsulation of instance variables is sometimes also called information hiding.

12 Chapter 1: Object-Oriented Programming

It might seem, at first, that hiding the information in instance variables would constrain
your freedom as a programmer. Actually, it gives you more room to act and frees you from
constraints that might otherwise be imposed. If any part of an object's implementation
could leak out and become accessible or a concern to other parts of the program, it would
tie the hands both of the object's implementor and of those who would use the object.
Neither could make modifications without first checking with the other.

Suppose, for example, that you're interested in the Faucet object being developed for the
program that models water use and you want to incorporate it in another program you're
writing. Once the interface to the object is decided, you don't have to be concerned as
others work on it, fix bugs, and find better ways to implement it. You'll get the benefit of
these improvements, but none of them will affect what you do in your program. Because
you're depending solely on the interface, nothing they do can break your code. Your
program is insulated from the object's implementation.

Moreover, although those implementing the Faucet object would be interested in how
you're using the class and might try to make sure that it meet your needs, they don't have
to be concerned with the way you're writing your code. Nothing you do can touch the
implementation of the object or limit their freedom to make changes in future releases. The
implementation is insulated from anything that you or other users of the object might do.

Polymorphism

This ability of different objects to respond, each in its own way, to identical messages is
called polymorphism.

Polymorphism results from the fact that every class lives in its own name space. The
names assigned within a class definition won't conflict with names assigned anywhere
outside it. This is true both of the instance variables in an object's data structure and of
the object's methods:

• Just as the fields of a C structure are in a protected name space, so are an object's
instance variables.

• Method names are also protected. Unlike the names of C functions, method names
aren't global symbols. The name of a method in one class can't conflict with
method naInes in other classes; two very different classes could implement identically
named methods.

The Object Model 13

Method names are part of an object's interface. When a message is sent requesting an
object to do something, the message names the method the object should perform. Because
different objects can have different methods with the same name, the meaning of a message
must be understood relative to the particular object that receives the message. The same
message sent to two different objects could invoke two different methods.

The main benefit of polymorphism is that it simplifies the programming interface. It
permits conventions to be established that can be reused in class after class. Instead of
inventing a new name for each new function you add to a program, the same names can be
reused. The programming interface can be described as a set of abstract behaviors, quite
apart from the classes that implement them.

For example, instead of defining an amountConsumed method for an Appliance object to
report the amount of water it uses over a given period of time, an
amountDispensedAtFaucet method for a Faucet to report virtually the same thing, and a
cumulative Usage method for the Building object to report the cumulative total for the
whole building-requiring programmers to learn three different names for what is
conceptually the same operation-each class can simply have a waterUsed method.

Polymorphism also permits code to be isolated in the methods of different objects rather
than be gathered in a single function that enumerates all the possible cases. This makes the
code you write more extensible and reusable. When a new case comes along, you don't
have to reimplement existing code, but only add a new class with a new method, leaving
the code that's already written alone.

For example, suppose you have code that sends a draw message to an object. Depending
on the receiver, the message might produce one of two possible images. When you want to
add a third case, you don't have to change the message or alter existing code, but merely
allow another object to be assigned as the message receiver.

!"" "
! '

r
i

Theterms~lpolymorphism" and "argument overloading" refer basicallytothe same ,
thing,butfrom slightly different points of view., Polymorphism takes a pluralistic point of
view and notes that several classes can each have a method with the same name.
Argument Qverl9ading takes the point of the view of the method name and notes that it
'canhave different effects depending on what kind of object it applies to.

Operato,>overloading issimilar. It refers to the ability to turn operators ,of the language
(suchas';::=' and ,'+',in C} into methodsthatcan be assigned particular meaningsfor
p~rticularkinds of objects. Objective Cimplements polymorphism of method names, but'
"not.operatoroverloading.'

14 Chapter 1: Object-Oriented Programming

Inheritance

The easiest way to explain something new is to start with something old. If you want to
describe what a "schooner" is, it helps if your listeners already know what "sailboat"
means. If you want to explain how a harpsichord works, it's best if you can assume your
audience has already looked inside a piano, or has seen a guitar played, or at least is familiar
with the idea of a "musical instrument."

The same is true if want to define a new kind of object; the description is simpler if it can
start from the definition of an existing object.

With this in mind, object-oriented programming languages permit you to base a new class
definition on a class already defined. The base class is called a superclass; the new class is
its subclass. The subclass definition specifies only how it differs from the superclass;
everything else is taken to be the same.

Nothing is copied from superclass to subclass. Instead, the two classes are connected so
that the subclass inherits all the methods and instance variables of its superclass, much as
you want your listener's understanding of "schooner" to inherit what they already know
about sailboats. If the subclass definition were empty (if it didn't define any instance
variables or methods of its own), the two classes would be identical (except for their names)
and share the same definition. It would be like explaining what a "fiddle" is by saying that
it's exactly the same as a "violin." However, the reason for declaring a subclass isn't to
generate synonyms, but to create something at least a little different from its superclass.
You'd want to let the fiddle play bluegrass in addition to classical music.

Class Hierarchies

Any class can be used as a superclass for a new class definition. A class can simultaneously
be a subclass of another class and a superclass for its own subclasses. Any number of
classes can thus be linked in a hierarchy of inheritance.

Figure 4. Inheritance Hierarchy

The Object Mode! 15

As the figure above shows, every inheritance hierarchy begins with a root class that has no
superclass. From the root class, the hierarchy branches downward. Each class inherits
from its superclass, and through its superclass, from all the classes above it in the hierarchy.
Every class inherits from the root class.

Each new class is the accumulation of all the class definitions in its inheritance chain. In the
example above, class D inherits both from C, its superclass, and the root class. Members
of the D class will have methods and instance variables defined in all three classes-D, C,
and root.

Typically, every class has just one superclass and can have an unlimited number of
subclasses. However, in some object-oriented programming languages (though not in
Objective C), a class can have more than one superclass; it can inherit through multiple
sources. Instead of a single hierarchy that branches downward as shown in Figure 4 above,
multiple inheritance lets some branches of the hierarchy (or of different hierarchies) merge.

Subclass Definitions

A subclass can make three kinds of changes to the definition it inherits through its
superclass:

• It can expand the class definition it inherits by adding new methods and instance
variables. This is the most common reason for defining a subclass. Subclasses always
add new methods, and new instance variables if the methods require it.

• It can modify the behavior it inherits by replacing an existing method with a new
version. This is done by simply implementing a new method with the same name as
one that's inherited. The new version overrides the inherited version. (The inherited
method doesn't disappear; it's still valid for the class that defined it and other classes that
inherit it.)

• It can refine or extend the behavior it inherits by replacing an existing method with a
new version, but still retain the old version by incorporating it in the new method.
This is done by sending a message to perform the old version in the body of the
new method. Each class in an inheritance chain can contribute part of a method's
behavior. In Figure 4, for example, class D might override a method defined in class C
and incorporate C's version, while C's version incorporates a version defined in the
root class.

Subclasses thus tend to fill out a superclass definition, making it more specific and
specialized. They add, and sometimes replace, code rather than subtract it. Note
that methods generally can't be disinherited and instance variables can't be removed
or overridden.

16 Chapter 1: Object-Oriented Programming

Uses of Inheritance

The classic examples of an inheritance hierarchy are borrowed from animal and plant
taxonomies. For example, there could a class corresponding to the Pinaceae (pine) family
of trees. Its subclasses could be Fir, Spruce, Pine, Hemlock, Tamarack, DouglasFir, and
TrueCedar, corresponding to the various genera that make up the family. The Pine class
might have SoftPine and HardPine subclasses, with WhitePine, SugarPine, and
BristleconePine as subclasses of SoftPine, and PonderosaPine, JackPine, MontereyPine,
and RedPine as subclasses of HardPine.

There's rarely a reason to program a taxonomy like this, but the analogy is a good one.
Subclasses tend to specialize a superclass or adapt it to a special purpose, much as a species
specializes a genus.

Here are some typical uses of inheritance:

• Reusing code. If two or more classes have some things in common but also differ in
some ways, the common elements can be put in an a single class definition that the other
classes inherit. The common code is shared and need only be implemented once.

For example, Faucet, Valve, and WaterPipe objects, defined for the program that models
water use, all need a connection to a water source and they all should be able to record
the rate of flow. These commonalities can be encoded once, in a class that the Faucet,
Valve, and WaterPipe classes inherit from. A Faucet can be said to be a kind of Valve,
so perhaps the Faucet class would inherit most of what it is from Valve, and add very
little of its own.

• Setting up a protocol. A class can declare a number of methods that its subclasses are
expected to implement. The class might have empty versions of the methods, or it might
implement partial versions that are to be incorporated into the subclass methods. In
either case, its declarations establish a protocol that all its subclasses must follow.

When different classes implement similarly named methods, a program is better able to
make use of polymorphism in its design. Setting up a protocol that subclasses must
implement helps enforce these naming conventions.

• Delivering generic functionality. One implementor can define a class that contains a
lot of basic, general code to solve a problem, but doesn't fill in all the details. Other
implementors can then create subclasses to adapt the generic class to their specific
needs. For example, the Appliance class in the program that models water use might
define a generic water-using device that subclasses would tum into specific kinds
of appliances.

Inheritance is thus both a way to make someone else's programming task easier and a
way to separate levels of implementation.

The Object Model 17

• Making slight modifications. When inheritance is used to deliver generic functionality,
set up a protocol, or reuse code, a class is devised that other classes are expected to
inherit from. But you can also use inheritance to modify classes that aren't intended as
superclasses. Suppose, for example, that there's an object that would work well in your
program, but you'd like to change one or two things that it does. You can make the
changes in a subclass.

• Previewing possibilities. Subclasses can also be used to factor out alternatives for
testing purposes. For example, if a class is to be encoded with a particular user interface,
alternative interfaces can be factored into subclasses during the design phase of the
project. Each alternative can then be demonstrated to potential users to see which
they prefer. When the choice is made, the selected subclass can be reintegrated into
its superclass.

Dynamism

At one time in programming history, the question of how much memory a program would
use was settled when the source code was compiled and linked. All the memory the
program would ever need was set aside for it as it was launched. This memory was fixed;
it could neither grow nor shrink.

In hindsight, it's evident what a serious constraint this was. It limited not only how
programs were constructed, but what you could imagine a program doing. It constrained
design, not just programming technique. Functions (like mallocO) that dynamically
allocate memory as a program runs opened possibilities that didn't exist before.

Compile-time and link-time constraints are limiting because they force issues to be decided
from information found in the programmer's source code, rather than from information
obtained from the user as the program runs.

Although dynamic allocation removes one such constraint, many others, equally as limiting
as static memory allocation, remain. For example, the elements that make up an application
must be matched to data types at compile time. And the boundaries of an application are
typically set at link time. Every part of the application must be united in a single executable
file. New modules and new types can't be introduced as the program runs.

Object-oriented programming seeks to overcome these limitations and to make programs
as dynamic and fluid as possible. It shifts much of the burden of decision making from
compile time and link time to run time. The goal is to let program users decide what will
happen, rather than constrain their actions artificially by the demands of the language and
the needs of the compiler and linker.

18 Chapter 1: Object-Oriented Programming

Three kinds of dynamism are especially important for object-oriented design:

• Dynamic typing, waiting until run time to determine the class of an object
• Dynamic binding, determining at run time what method to invoke
• Dynamic loading, adding new components to a program as it runs

Dynamic Typing

The compiler typically complains if the code you write assigns a value to a type that can't
accommodate it. You might see warnings like these:

incompatible types in assignment
assignment of integer from pointer lacks a cast

Type checking is useful, but there are times when it can interfere with the benefits you get
from polymorphism, especially if the type of every object must be known to the compiler.

Suppose, for example, that you want to send an object a message to perform the start
method. Like other data elements, the object is represented by a variable. If the variable's
type (its class) must be known at compile time, it would be impossible to let run-time
factors influence the decision about what kind of object should be assigned to the variable.
If the class of the variable is fixed in source code, so is the version of start that the
message invokes.

If, on the other hand, it's possible to wait until run time to discover the class of the variable,
any kind of object could be assigned to it. Depending on the class of the receiver, the start
message might invoke different versions of the method and produce very different results.

Dynamic typing thus gives substance to dynamic binding (discussed next). But it does
more than that. It permits associations between objects to be determined at run time, rather
than forcing them to be encoded in a static design. For example, a message could pass an
object as an argument without declaring exactly what kind of object it is-that is, without
declaring its class. The message receiver might then send its own messages to the object,
again without ever caring about what kind of object it is. Because the receiver uses the
object it's passed to do some of its work, it is in a sense customized by an object of
indeterminate type (indeterminate in source code, that is, not at run time).

The Object Model 19

Dynamic Binding

In standard C, you can declare a set of alternative functions, like the standard
string-comparison functions,

int strcmp(const char * const char *) i

int strcasecmp(const char *, const char *) i

/* case sensitive */

/* case insensitive */

and declare a pointer to a function that has the same return and argument types:

int (* compare) (const char *, const char *) i

You can then wait until run time to determine which function to assign to the pointer,

if (**argv == 'i')
compare

else
compare

strcasecmpi

strcmpi

and call the function through the pointer:

if (compare (sl, s2))

This is akin to what in object-oriented programming is called dynamic binding, delaying
the decision of exactly which method to perform until the program is running.

Although not all object-oriented languages support it, dynamic binding can be routinely
and transparently accomplished through messaging. You don't have to go through the
indirection of declaring a pointer and assigning values to it as shown in the example above.
You also don't have to assign each alternative procedure a different name.

Messages invoke methods indirectly. Every message expression must find a method
implementation to "call." To find that method, the messaging machinery must check the
class of the receiver and locate its implementation of the method named in the message.
When this is done at run time, the method is dynamically bound to the message. When it's
done by the compiler, the method is statically bound.

Dynamic binding is possible even in the absence of dynamic typing, but it's not very
interesting. There's little benefit in waiting until run time to match a method to a message
when the class of the receiver is fixed and known to the compiler. The compiler could just
as well find the method itself; the run-time result won't be any different.

20 Chapter 1: Object-Oriented Programming

However, if the class of the receiver is dynamically typed, there's no way for the compiler
to determine which method to invoke. The method can be found only after the class of the
receiver is resolved at run time. Dynamic typing thus entails dynamic binding.

Dynamic typing also makes dynamic binding interesting, for it opens the possibility that a
message might have very different results depending on the class of the receiver. Run-time
factors can influence the choice of receiver and the outcome of the message.

Dynamic typing and binding also open the possibility that the code you write can send
messages to objects not yet invented. If object types don't have to be decided until run time,
you can give others the freedom to design their own classes and name their own data types,
and still have your code send messages to their objects. All you need to agree on are the
messages, not the data types.

Note: Dynamic binding is routine in Objective C. You don't need to arrange for it
specially, so your design never needs to bother with what's being done when.

Late Binding

Some object-oriented programming languages (notably C++) require a message receiver
to be statically typed in source code, but don't require the type to be exact. An object can
be typed to its own class or to any class that it inherits from~

The compiler therefore can't tell whether the message receiver is an instance of the class
specified in the type declaration, an instance of a subclass, or an instance of some more
distantly derived class. Since it doesn't know the exact class ofthe receiver, it can't know
which version of the method named in the message to invoke.

In this circumstance, the choice is between treating the receiver as if it were an instance
of the specified class and simply bind the method defined for that class to the message,
or waiting until run time to resolve the situation. In C++, the decision is postponed to run
time for methods (member functions) that are declared virtual.

This is sometimes referred to as "late binding" ratherthanlldynamic binding." While
II dynamic" in the sense that it happens at run time, it carries with it strict compile-time
type constraints. As discussed here (and implemented in Objective C), "dynGlmic
binding" is unconstrained.

The Object Model 21

Dynamic Loading

The usual rule has been that, before a program can run, all its parts must be linked together
in one file. When it's launched, the entire program is loaded into memory at once.

Some object-oriented programming environments overcome this constraint and allow
different parts of an executable program to be kept in different files. The program can be
launched in bits and pieces as they're needed. Each piece is dynamically loaded and linked
with the rest of program as it's launched. User actions can determine which parts of the
program are in memory and which aren't.

Only the core of a large program needs to be loaded at the start. Other modules can be
added as the user requests their services. Modules the user doesn't request make no
memory demands on the system.

Dynamic loading raises interesting possibilities. For example, an entire program wouldn't
have to be developed at once. You could deliver your software in pieces and update one
part of it at a time. You could devise a program that groups many different tools under a
single interface, and load just the tools the user wants. The program could even offer sets
of alternative tools to do the same job. The user would select one tool from the set and only
that tool would be loaded. It's not hard to imagine the possibilities. But because dynamic
loading is relatively new, it's harder to predict its eventual benefits.

Perhaps the most important current benefit of dynamic loading is that it makes applications
extensible. You can allow others to add to and customize a program you've designed. All
your program needs to do is provide a framework that others can fill in, then at run time find
the pieces that they've implemented and load them dynamically.

For example, in the NeXTSTEP environment, Interface Builder dynamically loads custom
palettes and inspectors, and the Workspace Manager™ dynamically loads inspectors for
particular file formats. Anyone can design their own custom palettes and inspectors that
these applications will load and incorporate into themselves.

Although it's the term commonly used, IJdynamic loading" could just as well becalled.
"dynamiclinking." Programs are linked when their various parts are joined so thatthey
can work together; they're loaded when they're read into volatile memory at launch time.
Linking usuaUyprecedesloading. Dynamic loading refers to the process of separately

,loading new or additional parts of a. program and linking them dynamically to the parts
. alreadY'funning.

22 Chapter 1: Object-Oriented Programming

The main challenge that dynamic loading faces is getting a newly loaded part of a program
to work with parts already running, especially when the different parts were written by
different people. However, much of this problem disappears in an object-oriented
environment because code is organized into logical modules with a clear division between
implementation and interface. When classes are dynamically loaded, nothing in the newly
loaded code can clash with the code already in place. Each class encapsulates its
implementation and has an independent name space.

In addition, dynamic typing and dynamic binding let classes designed by others fit
effortlessly into the program you've designed. Once a class is dynamically loaded, it's
treated no differently than any other class. Your code can send messages to their objects
and theirs to yours. Neither of you has to know what classes the other has implemented.
You need only agree on a communications protocol.

Structuring Programs

Object-oriented programs have two kinds of structure. One can be seen in the inheritance
hierarchy of class definitions. The other is evident in the pattern of message passing as the
program runs. These messages reveal a network of object connections.

• The inheritance hierarchy explains how objects are related by type. For example, in the
program that models water use, it might turn out that Faucets and WaterPipes are the
same kind of object, except that Faucets can be turned on and off and WaterPipes can
have multiple connections to other WaterPipes. This similarity would be captured in the
program design if the Faucet and WaterPipe classes inherit from a common antecedent.

• The network of object connections explains how the program works. For example,
Appliance objects might send messages requesting water to Valves, and Valves to
WaterPipes. WaterPipes might communicate with the Building object, and the Building
object with all the Valves, Faucets, and WaterPipes, but not directly with Appliances. To
communicate with each other in this way, objects must know about each other. An
Appliance would need a connection to a Valve, and a Valve to a WaterPipe, and so on.
These connection define a program structure.

Object-oriented programs are designed by laying out the network of objects with their
behaviors and patterns of interaction, and by arranging the hierarchy of classes. There's
structure both in the program's activity and in its definition.

Structuring Programs 23

Outlet Connections

Part of the task of designing an object-oriented program is to arrange the object network.
The network doesn't have to be static; it can change dynamically as the program runs.
Relationships between objects can be improvised as needed, and the cast of objects that
play assigned roles can change from time to time. But there has to be a script.

Some connections can be entirely transitory. A message might contain an argument
identifying an object, perhaps the sender of the message, that the receiver can communicate
with. As it responds to the message, the receiver can send messages to that object, perhaps
identifying itself or still another object that that object can in tum communicate with. Such
connections are fleeting; they last only as long as the chain of messages.

But not all connections between objects can be handled on the fly. Some need to be
recorded in program data structures. There are various ways to do this. A table might be
kept of object connections, or there might be a service that identifies objects by name.
However, the simplest way is for each object to have instance variables that keep track of
the other objects it must communicate with. These instance variables-termed outlets
because they record the outlets for messages-define the principal connections between
objects in the program network.

Although the names of outlet instance variables are arbitrary, they generally reflect the roles
that outlet objects play. The figure below illustrates an object with four outlets-an
"agent," a "friend," a "neighbor," and a "boss." The objects that play these parts may
change every now and then, but the roles remain the same.

Figure 5. Outlets

24 Chapter 1: Object-Oriented Programming

Some outlets are set when the object is first initialized and may never change. Others might
be set automatically as the consequence of other actions. Still other can be set freely, using
methods provided just for that purpose.

However they're set, outlet instance variables reveal the structure of the application.
They link objects into a communicating network, much as the components of a water
system are linked by their physical connections or as individuals are linked by their patterns
of social relations.

Extrinsic and Intrinsic Connections

Outlet connections can capture many different kinds of relationships between objects.
Sometimes the connection is between objects that communicate more or less as equal
partners in an application, each with its own role to play and neither dominating the other.
For example, an Appliance object might have an outlet instance variable to keep track of
the Valve it's connected to.

Sometimes one object should be seen as being part of another. For example, a Faucet might
use a Meter object to measure the amount of water being released. The Meter would serve
no other object and would act only under orders from the Faucet. It would be an intrinsic
part of the Faucet, in contrast to an Appliance's extrinsic connection to a Valve.

Similarly, an object that oversees other objects might keep a list of its charges. A Building
object, for example, might have a list of all the WaterPipes in the program. The WaterPipes
would be considered an intrinsic part of the Building and belong to it. WaterPipes, on the
other hand, would maintain extrinsic connections to each other.

Intrinsic outlets behave differently than extrinsic ones. When an object is freed or archived
in a file on disk, the objects that its intrinsic outlets point to must be freed or archived with
it. For example, when a Faucet is freed, its Meter is rendered useless and therefore should
be freed as well. A Faucet that was archived without its Meter would be of little use when
it was un archived again (unless it could create a new Meter for itself).

Extrinsic outlets, on the other hand, capture the organization of the program at a higher
level. They record connections between relatively independent program subcomponents.
When an Appliance is freed, the Valve it was connected to still is of use and remains in
place. When an Appliance is unarchived, it can be connected to another Valve and resume
playing the same sort of role it played before.

Structuring Programs 25

Activating the Object Network

The object network is set into motion by an external stimulus. If you're writing an
interactive application with a user interface, it will respond to user actions on the keyboard
and mouse. A program that tries to factor very large numbers might start when you pass it
a target number on the command line. Other programs might respond to data received over
a phone line, information obtained from a database, or information about the state of a
mechanical process the program monitors.

Object-oriented programs often are activated by a flow of events, reports of external activity
of some sort. Applications that display the NeXTSTEP user interface are driven by events
from the keyboard and mouse. Every touch of a key or click of the mouse generates events
that the application receives and responds to. An object-oriented program structure (a
network of objects that's prepared to respond to an external stimulus) is ideally suited for
this kind of user-driven application.

Aggregation and Decomposition

Another part of the design task is deciding the arrangement of classes-when to add
functionality to an existing class by defining a subclass and when to define an independent
class. The problem can be clarified by imagining what would happen in the extreme case:

• It's possible to conceive of a program consisting of just one object. Since it's the only
object, it can send messages only to itself. It therefore can't take advantage of
polymorphism, or the modularity of a variety of classes, or a program design conceived
as a network of interconnected objects. The true structure of the program would be
hidden inside the class definition. Despite being written in an object-oriented language,
there would be very little that was object-oriented about it.

• On the other hand, it's also possible to imagine a program that consists of hundreds of
different kinds of objects, each with very few methods and limited functionality. Here,
too, the structure of the program would be lost, this time in a maze of object connections.

Obviously, it's best to avoid either of these extremes, to keep objects large enough to take
on a substantial role in the program but small enough to keep that role well-defined. The
structure of the program should be easy to grasp in the pattern of object connections.

Nevertheless, the question often arises of whether to add more functionality to a class or
to factor out the additional functionality and put it in an separate class definition. For
example, a Faucet needs to keep track of how much water is being used over time. To

26 Chapter 1: Object-Oriented Programming

do that, you could either implement the necessary methods in the Faucet class, or you
could devise a generic Meter object to do the job, as suggested earlier. Each Faucet would
have an outlet connecting it to a Meter, and the Meter would not interact with any object
but the Faucet.

The choice often depends on your design goals. If the Meter object could be used in more
than one situation, perhaps in another project entirely, it would increase the reusability of
your code to factor the metering task into a separate class. If you have reason to make
Faucet objects as self-contained as possible, the metering functionality could be added to
the Faucet class.

It's generally better to try to for reusable code and avoid having large classes that do so
many things that they can't be adapted to other situations. When objects are designed as
components, they become that much more reusable. \Vhat works in one system or
configuration might well work in another.

Dividing functionality between different classes doesn't necessarily complicate the
programming interface. If the Faucet class keeps the Meter object private, the Meter
interface wouldn't have to be published for users of the Faucet class; the object would be
as hidden as any other intrinsic Faucet instance variable.

Models and Kits

Objects combine state and behavior, and so resemble things in the real world. Because they
resemble real things, designing an object-oriented program is very much like thinking
about real things-what they do, how they work, and how one thing is connected to another.

When you design an object-oriented program, you are, in effect, putting together a
computer simulation of how something works. Object networks look and behave like
models of real systems. An object-oriented program can be thought of as a model, even if
there's no actual counterpart to it in the real world.

Each component of the model-each kind of object-is described in terms of its behavior
and responsibilities and its interactions with other components. Because an object's
interface lies in its methods, not its data, you can begin the design process by thinking about
what a system component will do, not how it's represented in data. Once the behavior of
an object is decided, the appropriate data structure can be chosen, but this is a matter of
implementation, not the initial design.

Structuring Programs 27

For example, in the water-use program, you wouldn't begin by deciding what the Faucet
data structure looked like, but what you wanted a Faucet to do-make a connection to a
WaterPipe, be turned on and off, adjust the rate of flow, and so on. The design is therefore
not bound from the outset by data choices. You can decide on the behavior first, and
implement the data afterwards. Your choice of data structures can change over time without
affecting the design.

Designing an object-oriented program doesn't necessarily entail writing great amounts of
code. The reusability of class definitions means that the opportunity is great for building a
program largely out of classes devised by others. It might even be possible to construct
interesting programs entirely out of classes someone else defined. As the suite of class
definitions grows, you have more and more reusable parts to choose from.

Reusable classes come from many sources. Development projects often yield reusable
class definitions, and some enterprising developers have begun marketing them.
Object-oriented programming environments typically come with class libraries. There are
well over a hundred classes in the NeXTSTEP libraries. Some of these classes offer basic
services (hashing, data storage, remote messaging). Others are more specific (user
interface devices, video displays, a sound editor).

Typically, a group of library classes work together to define a partial program structure.
These classes constitute a software kit that can be used to build a variety of different kinds
of applications. When you use a kit, you accept the program model it provides and adapt
your design to it. You use the kit by:

• Initializing and arranging instances of kit classes,
• Defining subclasses of kit classes, and
• Defining new classes of your own to work with classes defined in the kit.

In each of these ways, you not only adapt your program to the kit, but you also adapt the
generic kit structure to the specialized purposes of your particular application.

The kit, in essence, sets up part of a object network for your program and provides part of
its class hierarchy. Your own code completes the program model started by the kit.

Chapter 5, "Programming in Objective C," has more on the NeXTSTEP software kits and
how to work with them.

28 Chapter 1: Object-Oriented Programming

Structuring the Programming Task

Object-oriented programming not only structures programs in a new way, it also helps
structure the programming task.

As software tries to do more and more, and programs become bigger and more complicated,
the problem of managing the task also grows. There are more pieces to fit together and
more people working together to build them. The object-oriented approach offers ways of
dealing with this complexity, not just in design, but also in the organization of the work.

Collaboration

Complex software requires an extraordinary collaborative effort among people who must
be individually creative, yet still make what they do fit exactly with what others are doing.

The sheer size of the effort and the number of people working on the same project at the
same time in the same place can get in the way of the group's ability to work cooperatively
towards a common goal. In addition, collaboration is often impeded by barriers of time,
space, and organization.

• Code must be maintained, improved, and used long after it's written. Programmers
who collaborate on a project may not be working on it at the same time, so may not
be in a position to talk things over and keep each other informed about details of
the implementation.

• Even if programmers work on the same project at the same time, they may not be located
in the same place. This also inhibits how closely they can work together.

• Programmers working in different groups with different priorities and different
schedules often must collaborate on projects. Communication across organizational
barriers isn't always easy to achieve.

The answer to these difficulties must grow out of the way programs are designed and
written. It can't be imposed from the outside in the form of hierarchical management
structures and strict levels of authority. These often get in the way of people's creativity,
and become burdens in and of themselves. Rather, collaboration must be built into the
work itself.

Structuring the Programming Task 29

That's where object-oriented programming techniques can help. For example, the
reusability of object-oriented code means that programmers can collaborate effectively
even when they work on different projects at different times or are in different
organizations, just by sharing their code in libraries. This kind of collaboration holds a
great deal of promise, for it can conceivably lighten difficult tasks and bring impossible
projects into the realm of possibility.

Organizing Object-Oriented Projects

Object-oriented programming helps restructure the programming task in ways that benefit
collaboration. It helps eliminated the need to collaborate on low-level implementation
details, while providing structures that facilitate collaboration at a higher level. Almost
every feature of the object model, from the possibility of large-scale design to the increased
reusability of code, has consequences for the way people work together.

Designing on a Large Scale

When programs are designed at a high level of abstraction, the division of labor is more
easily conceived. It can match the division of the program on logical lines; the way a
project is organized can grow out of its design.

With an object-oriented design, it's easier to keep common goals in sight, instead of losing
them in the implementation, and easier for everyone to see how the piece they're working
on fits into the whole. Their collaborative efforts are therefore more likely to be on target.

Separating the Interface from the Implementation

The connections between the various components of an object-oriented program are
worked out early in the design process. They can be well-defined, at least for the initial
phase of development, before implementation begins.

During implementation, only this interface needs to be coordinated, and most of that falls
naturally out of the design. Since each class encapsulates its implementation and has its
own name space, there's no need to coordinate implementation details. Collaboration is
simpler when there are fewer coordination requirements. The difficulties that are avoided
are the easiest ones to manage.

30 Chapter 1: Object-Oriented Programming

Modularizing the Work

The modularity of object-oriented programming means that the logical components of a
large program can each be implemented separately. Different people can work on different
classes. Each implementation task is isolated from the others.

This has benefits, not just for organizing the implementation, but for fixing problems later.
Since implementations are contained within class boundaries, problems that come up are
also likely to be isolated. It's easier to track down bugs when they're located in a
well-defined part of the program.

Separating responsibilities by class also means that each part can be worked on by
specialists. Classes can be updated periodically to optimize their performance and make
the best use of new technologies. These updates don't have to be coordinated with other
parts of the program. As long as the interface to an object doesn't change, improvements
to its implementation can be scheduled at any time.

Keeping the Interface Simple

The polymorphism of object-oriented programs yields simpler programming interfaces,
since the same names and conventions can be reused in any number of different classes.
The result is less to learn, a greater shared understanding of how the whole system works,
and a simpler path to cooperation and collaboration.

Making Decisions Dynamically

Because object-oriented programs make decisions dynamically at run time, less
information needs to be supplied at compile time (in source code) to make two pieces of
code work together. Consequently, there's less to coordinate and less to go wrong.

Structuring the Programming Task 31

Inheriting Generic Code

Inheritance is a way of reusing code. If you can define your classes as specializations of
more generic classes, your programming task is simplified. The design is simplified as
well, since the inheritance hierarchy lays out the relationships between the different levels
of implementation and makes them easier to understand.

Inheritance also increases the reusability and reliability of code. The code placed in a
superclass is tested by all its subclasses. The generic class you find in a library will have
been tested by other subclasses written by other developers for other applications.

Reusing Tested Code

The more software you can borrow from others and incorporate in your own programs, the
less you have to do yourself. There's more software to borrow in an object-oriented
programming environment, because the code is more reusable. Collaboration between
programmers working in different places for different organizations is enhanced, while the
burden of each project is eased.

Classes and kits from an object-oriented library can make substantial contributions to your
program. When you program with the NeXTSTEP software kits, for example, you're
effectively collaborating with the programmers at NeXT; you're contracting a part of your
program, often a substantial part, to them. You can concentrate on what you do best and
leave other tasks to the library developer. Your projects can be prototyped faster, completed
faster, with less of a collaborative challenge at your own site.

The increased reusability of object-oriented code also increases its reliability. A class taken
from a library is likely to have found its way into a variety of different applications and
situations. The more the code has been used, the more likely it is that problems will have
been encountered and fixed. Bugs that would have seemed strange and hard to find in your
program might already have been tracked down and eliminated.

32 Chapter 1: Object-Oriented Programming

The Objective C Language

This chapter describes the Objective C language as it's implemented for the NeXTSTEP
development environment and discusses the principles of object-oriented programming as
they're implemented in Objective C. It covers all the basic features that the language adds
to standard C. The next chapter continues the discussion by taking up more advanced and
less commonly used language features.

Objective C syntax is a superset of standard C syntax, and its compiler works for both C
and Objective C source code. The compiler recognizes Objective C source files by a ".m"
extension, just as it recognizes files containing only standard C syntax by a ".c" extension.
As implemented for NeXTSTEP, the Objective C language is fully compatible with ANSI
standard C.

Objective C can also be used as an extension to C++. At first glance, this may seem
superfluous since C++ is itself an object-oriented extension of C. But C++ was designed
primarily as "a better C," and not necessarily as a full-featured object-oriented language. It
lacks some of the possibilities for object-oriented design that dynamic typing and dynamic
binding bring to Objective C. At the same time, it has useful language features not found
in Objective C. When you use the two languages in combination, you can assign
appropriate roles to the features found in each and take advantage of what's best in both.
Chapter 5, "Programming in Objective C," has more on combining C++ with Objective C.

Because object-oriented programs postpone many decisions from compile time to run time,
object-oriented languages depend on a run-time system for executing the compiled code.
The run-time system for the Objective C language is discussed in Chapter 4. This chapter
and the next present the language, but touch on important elements of the run-time system
as they're important for understanding language features. NeXT has modified the GNU C
compiler to also compile Objective C and provides its own run-time system.

The Objective C Language 33

Objects

As the name implies, object-oriented programs are built around objects. An object
associates data with the particular operations that can use or affect that data. In
Objective C, these operations are known as the object's methods; the data they affect are
its instance variables. In essence, an object bundles a data structure (instance variables)
and a group of procedures (methods) into a self-contained programming unit.

For example, through the NeXTSTEP Application Kit, you can produce an object that
displays a matrix of cells to users of your application. The cells might be text fields where
the user can enter data, a series of mutually exclusive switches, a list of buttons or menu
commands, or a bank of sliders. The figure below illustrates some of the different kinds of
cells a matrix can contain:

Figure 6. Some Matrices

A Matrix object has instance variables that define the matrix, including its dimensions and
coordinates, the font used to display character strings in the cells, the arrangement of cells
into rows and columns, and what to do when a cell is selected. A Matrix also has methods
that do such things as alter its size, change its position on-screen, add and remove cells,
highlight a particular cell, and set the color that's displayed between cells.

Each cell in a Matrix is also an object. Cells have instance variables that record their
contents and what action to take when the cell is selected. They have methods to determine
what the cell looks like and to track the cursor as it moves from cell to cell.

In Objective C, an object's instance variables are internal to the object; you get access to an
object's state only through the object's methods. For others to find out something about an

34 Chapter 2: The Objective C Language

object, there has to be a method to supply the information. For example, a Matrix has
methods that reveal its size, the currently selected cell, and the current number of columns
and rows.

Moreover, an object sees only the methods that were designed for it; it can't mistakenly
perform methods intended for other types of objects. Just as a C function protects its local
variables, hiding them from the rest of the program, an object hides both its instance
variables and its method implementations.

id

In Objective C, objects are identified by a distinct data type, id. This type is defined as a
pointer to an object-in reality, a pointer to the object's data (its instance variables). Like
a C function or an array, an object is identified by its address. All objects, regardless of
their instance variables or methods, are of type id.

id anObject;

For the object-oriented constructs of Objective C, such as method return values, id replaces
int as the default data type. (For strictly C constructs, such as function return values, int
remains the defaulttype.)

The keyword nil is defined as a null object, an id with a value of O. id, nil, and the other
basic types of Objective C are defined in the header file objc.h, which is located in the objc
subdirectory of /NextDeveloper/Headers.

Dynamic Typing

The id type is completely nonrestrictive. By itself, it yields no information about an object,
except that it is an object.

But objects aren't all the same. A Matrix won't have the same methods or instance
variables as an object that represents one of its cells. Cells that display buttons
(ButtonCells) won't be exactly like those that display text (TextFieldCells). At some point,
a program needs to find more specific information about the objects it contains-what the
object's instance variables are, what methods it can perform, and so on. Since the id type
designator can't supply this information to the compiler, each object has to be able to
supply it at run time.

Objects 35

This is possible because every object carries with it an isa instance variable that identifies
the object's class-what kind of object it is. Every Matrix object would be able to tell the
run-time system that it is a Matrix. Every ButtonCell can say that it is a ButtonCell.
Objects with the same behavior (methods) and the same kinds of data (instance variables)
are members of the same class.

Objects are thus dynamically typed at run time. Whenever it needs to, the run-time system
can find the exact class that an object belongs to, just by asking the object. Dynamic typing
in Objective C serves as the foundation for dynamic binding, discussed later.

The isa pointer also enables objects to introspect about themselves as objects. The
compiler doesn't discard much of the information it finds in source code; it arranges most
of it in data structures for the run-time system to use. Through isa, objects can find this
information and reveal it at run time. An object can, for example, say whether it has a
particular method in its repertoire and what the name of its superclass is.

Object classes are discussed in more detail under "Classes" below.

Note: It's also possible to give the compiler information about the class of an object by
statically typing it in source code using the class name. Classes are particular kinds of
objects, and the class name can serve as a type name. See "Class Types" later in this chapter
and "Static Options" in Chapter 3.

Messages

To get an object to do something, you send it a message telling it to apply a method. In
Objective C, message expressions are enclosed in square brackets:

[receiver message]

The receiver is an object, and the message tells it what to do. In source code, the message
is simply the name of a method and any arguments that are passed to it. When a message
is sent, the run-time system selects the appropriate method from the receiver's repertoire
and invokes it.

For example, this message tells the myMatrix object to perform its display method, which
draws the matrix and its cells in a window:

[myMatrix display];

36 Chapter 2: The Objective C Language

Methods can also take arguments. The message below tells myMatrix to change its
location within the window to coordinates (30.0, 50.0):

[myMatrix moveTo:30.0 :50.0];

Here the method name, moveTo::, has two colons, one for each of its arguments. The
arguments are inserted after the colons, breaking the name apart. Colons don't have to be
grouped at the end of a method name, as they are here. Usually a keyword describing the
argument precedes each colon. The getRow:andColumn:ofCell: method, for example,
takes three arguments:

int row, column;
[myMatrix getRow:&row andColumn:&column ofCell:someCell];

This method finds someCell in the matrix and puts the row and column where it's located
in the two variables provided.

Methods that take a variable number of arguments are also possible, though they're
somewhat rare. Extra arguments are separated by commas after the end of the method
name. (Unlike colons, the commas aren't considered part of the name.) In the following

. example, the imaginary makeGroup: method is passed one required argument (group) and
three that are optional:

[receiver makeGroup:group, memberOne, memberTwo, memberThree];

Like standard C functions, methods can return values. The following example assigns the
identifying integer returned by the tag method to a variable also named tag.

int tag;

tag = [myMatrix tag];

Note that a variable and a method can have the same name.

One message can be nested inside another. Here the selected Cell method returns an object
that then receives a tag message:

int tag = [[myMatrix selectedCell] tag];

A message to nil also is valid,

[nil moveTo:l00.0 :22.5];

but it has no effect and makes little sense. Messages to nil simply return nil.

Messages 37

The Receiver's Instance Variables

A method has automatic access to the receiving object's instance variables. You don't
need to pass them to the method as arguments. For example, the tag method illustrated
above takes no arguments, yet it can find the tag for myMatrix and return it. Every
method assumes the receiver and its instance variables, without having to declare them.
as arguments.

This convention simplifies Objective C source code. It also supports the way
object-oriented programmers think about objects and messages. Messages are sent to
receivers much as letters are deliveredto your home. Message arguments bring information
from the outside to the receiver; they don't need to bring the receiver to itself.

A method has automatic access only to the receiver's instance variables. If it requires
information about a variable stored in another object, it must send a message to the object
asking it to reveal the contents of the variable. The selected Cell and tag methods shown
above are used for just this purpose.

See "Defining a Class" for more information on referring to instance variables.

Polymorphism

As the examples above 'illustrate, messages in Objective C appear in the same syntactic
positions as function calls in standard C. But, because methods "belong to" an object,
messages behave differently than function calls.

In particular, an object has access only to the methods that were defined for it. It can't
confuse them with methods defined for other kinds of objects, even if another object has a
method with the same name. This means that two objects can respond differently to the
same message. For example, each kind of object sent a display message could display
itself in a unique way. A ButtonCell and a TextFieldCell would respond differently to
identical instructions to track the cursor.

This feature, referred to as polymorphism, plays a significant role in the design of
object-oriented programs. Together with dynamic binding, it permits you to write code that
might apply to any number of different kinds of objects, without your having to choose at
the time you write the code what kinds of objects they might be. They might even be
objects that will be developed later, by other programmers working on other projects. If
you write code that sends a display message to an id variable, any object that has a display
method is a potential receiver.

38 Chapter 2: The Objective C Language

Dynamic Binding

A crucial difference between function calls and messages is that a function and its
arguments are joined together in the compiled code, but a message and a receiving object
aren't united until the program is running and the message is sent. Therefore, the exact
method that will be invoked to respond to a message can only be determined at run time,
not when the code is compiled.

The precise method that a message invokes depends on the receiver. Different receivers
may have different method implementations for the same method name (polymorphism).
For the compiler to find the right method implementation for a message, it would have to
know what kind of object the receiver is-what class it belongs to. This is information the
receiver is able to reveal at run time when it receives a message (dynamic typing), but it's
not available from the type declarations found in source code.

The selection of a method implementation happens at run time. When a message is sent, a
run-time messaging routine looks at the receiver and at the method named in the message.
It locates the receiver's implementation of a method matching the name, "calls" the
method, and passes it a pointer to the receiver's instance variables. (For more on this
routine, see "How Messaging Works" below.)

The method name in a message thus serves to "select" a method implementation. For this
reason, method names in messages are often referred to as selectors.

This dynamic binding of methods to messages works hand-in-hand with polymorphism to
give object-oriented programming much of its flexibility and power. Since each object can
have its own version of a method, a program can achieve a variety of results, not by varying
the message itself, but by varying just the object that receives the message. This can be
done as the program runs; receivers can be decided "on the fly" and can be made dependent
on external factors such as user actions.

In the Application Kit, for example, users determine which objects receive messages from
menu commands like Cut, Copy, and Paste. The message goes to whatever object controls
the current selection. An object that displays editable text would react to a copy: message
differently than an object that displays scanned images. A Matrix would respond
differently than a Cell. Since messages don't select methods (methods aren't bound to
messages) until run time, these differences are isolated in the methods that respond to the
message. The code that sends the message doesn't have to be concerned with them; it
doesn't even have to enumerate the possibilities. Each application can invent its own
objects that respond in their own way to copy: messages.

Objective C takes dynamic binding one step further and allows even the message that's sent
(the method selector) to be a variable that's determined at run time. This is discussed in the
section on "How Messaging Works."

Messages 39

Classes

An object-oriented program is typically built from a variety of objects. A program based
on the NeXTSTEP software kits might use Matrix objects, Window objects, List objects,
SoundView objects, Text objects, and many others. Programs often use more than one
object of the same kind or class-several Lists or Windows, for example.

In Objective C, you define objects by defining their class. The class definition is a
prototype for a kind of object; it declares the instance variables that become part of every
member of the class, and it defines a set of methods that all objects in the class can use.

The compiler creates just one accessible object for each class, a class object that knows how
to build new objects belonging to the class. (For this reason it's sometimes also called a
"factory object.") The class object is the compiled version of the class; the objects it builds
are instances of the class. The objects that will do the main work of your program are
instances created by the class object at run time.

All instances of a class have access to the same set of methods, and they all have a set of
instance variables cut from the same mold. Each object gets its own instance variables, but
the methods are shared.

By convention, class names begin with an uppercase letter (such as "Matrix"); the names
of instances typically begin with a lowercase letter (such as "myMatrix").

Inheritance

Class definitions are additive; each new class that you define is based on another class
through which it inherits methods and instance variables. The new class simply adds to or
modifies what it inherits. It doesn't need to duplicate inherited code.

Inheritance links all classes together in a hierarchical tree with a single class, the Object
class, at its root. Every class (but Object) has a superclass one step nearer the root, anq any
class (including Object) can be the superclass for any number of subclasses one step farther
from the root. Figure 7 below illustrates the hierarchy for a few of the classes in the
NeXTSTEP Application Kit.

40 Chapter 2: The Objective C Language

Figure 7. Some Application Kit Classes

This figure shows that the Matrix class is a subclass of the Control class, the Control class
is a subclass of View, View is a subclass of Responder, and Responder is a subclass of
Object. Inheritance is cumulative. So a Matrix object has the methods and instance
variables defined for Control, View, Responder, and Object, as well as those defined
specifically for Matrix. This is simply to say that a Matrix object isn't only a Matrix, it's
also a Control, a View, a Responder, and an Object.

Every class (but Object) can thus be seen as a specialization or an adaptation of another
class. Each successive subclass further modifies the cumulative total of what's inherited.
The Matrix class defines only the minimum needed to tum a Control into a Matrix.

When you define a class, you link it to the hierarchy by declaring its superclass; every class
you create must be the subclass of another class (unless you define a new root class). Plenty
of potential superclasses are available. The NeXTSTEP development environment
includes the Object class and several software kits containing definitions for more than 125
different classes. Some are classes that you can use "off the shelf' -incorporate into your
program as is. Others you might want to adapt to your own needs by defining a subclass.

Some kit classes define almost everything you need, but leave some specifics to be
implemented in a subclass. You can thus create very sophisticated objects by writing only
a small amount of code, and reusing work done by the programmers at NeXT.

Classes 41

The Object Class

Object is the only class without a superclass, and the only one that's in the inheritance path
for every other class. That's because it defines the basic framework for Objective C objects
and object interactions. It imparts to the classes and instances that inherit from it the ability
to behave as objects and cooperate with the run-time system.

A class that doesn't need to inherit any special behavior from another class is nevertheless
made a subclass of the Object class. Instances of the class must at least have the ability to
behave like Objective C objects at run time. Inheriting this ability from the Object class is
much simpler and much more reliable than reinventing it in a new class definition.

Appendix C, "The Object Class," has a full specification of the root class and describes its
methods in detail.

Note: Implementing a new root class is a delicate task and one with many hidden hazards.
The class must duplicate much of what the Object class does, such as allocate instances,
connect them to their class, and identify them to the run-time system. It's strongly
recommended that you use the Object class provided with NeXTSTEP as the root class.
This manual doesn't explain all the ins and outs that you would need to know to replace it.

Inheriting Instance Variables

When a class object creates a new instance, the new object contains not only the instance
variables that were defined for its class, but also the instance variables defined for its
superclass, and for its superclass' s superclass, all the way back to the root Object class. The
isa instance variable defined in the Object class becomes part of every object. isa connects
each object to its class.

Figure 8 below shows some of a Matrix object's instance variables and where they come
from. Note that the variables that make the object a Matrix are added to the ones that make
it a Control, and the ones that make it a Control are added to the ones that make it a View,
and so on.

42 Chapter 2: The Objective C Language

Class isa; - declared in Object
id nextResponder; - declared in Responder
NXRect frame;
NXRect bounds;
id superview;

declared in View
id subviews;
id window;

int tag; } id cell; declared in Control

id cell List;
id target;
SEL action;
id selectedCell;
int numRows;

declared in Matrix
int numCols;
float backgroundGray;
id font;
id cellClass;

Figure 8. Matrix Instance Variables

A class doesn't have to declare instance variables. It can simply define new methods and
rely on the instance variables it inherits, if it needs any instance variables at all.

Inheriting Methods

An object has access not only to the methods that were defined for its class, but also to
methods defined for its superclass, and for its superclass's superclass, all the way back to
the root of the hierarchy. A Matrix object can use methods defined in the Control, View,
Responder, and Object classes as well as methods defined in its own class.

Any new class you define in your program can therefore make use of the code written for
all the classes above it in the hierarchy. This type of inheritance is a major benefit of
object-oriented programming. When you use one of the object-oriented kits provided by
NeXTSTEP, your programs can take advantage of all the basic functionality coded into the
kit classes. You have to add only the code that customizes the kit to your application.

Class objects also inherit from the classes above them in the hierarchy. But because they
don't have instance variables (only instances do), they inherit only methods.

Classes 43

Overriding One Method with Another

There's one useful exception to inheritance: When you define a new class, you can
implement a new method with the same name as one defined in a class farther up the
hierarchy. The new method overrides the original; instances of the new class will
perform it rather than the original, and subclasses of the new class will inherit it rather
than the original.

For example, the View class defines a display method that Matrix overrides by defining its
own version of display. The View method is available to all kinds of objects that inherit
from the View class-but not to Matrix objects, which instead perform the Matrix version
of display.

Although overriding a method blocks the original version from being inherited, other
methods defined in the new class can skip over the redefined method and find the original
(see "Messages to self and super," below, to learn how).

A redefined method can also incorporate the very method it overrides. When it does, the
new method serves only to refine or modify the method it overrides, rather than replace it
outright. When several classes in the hierarchy define the same method, but each new
version incorporates the version it overrides, the implementation of the method is
effectively spread over all the classes.

Although a subclass can override inherited methods, it can't override inherited instance
variables. Since an object has memory allocated for every instance variable it inherits, you
can't override an inherited variable by declaring a new one with the same name. If you try,
the compiler will complain.

Abstract Classes

Some classes are designed only so that other classes can inherit from them. These abstract
classes group methods and instance variables that will be used by a number of different
subclasses into a common definition. The abstract class is incomplete by itself, but contains
useful code that reduces the implementation burden of its subclasses.

The Object class is the prime example of an abstract class. Although programs often define
Object subclasses and use instances belonging to the subclasses, they never use instances
belonging directly to the Object class. An Object instance wouldn't be good for anything;
it would be a generic object with the ability to do nothing in particular.

44 Chapter 2: The Objective C Language

In the NeXTSTEP software kits, abstract classes often contain code that helps define the
structure of an application. When you create subclasses of these classes, instances of your
new classes fit effortlessly into the application structure and work automatically with other
kit objects.

(Because abstract classes must have subclasses, they're sometimes also called
abstract superclasses.)

Class Types

A class definition is a specification for a kind of object. The class, in effect, defines a data
type. The type is based not just on the data structure the class defines (instance variables),
but also on the behavior included in the definition (methods).

A class name can appear in source code wherever a type specifier is permitted in C-for
example, as an argument to the sizeof operator:

int i = sizeof(Matrix);

Static Typing

You can use a class name in place of id to designate an object's type:

Matrix *myMatrix;

Since this way of declaring an object type gives the compiler information about what kind
of object it is, it's known as static typing. Just as id is defined as a pointer to an object,
objects are statically typed as pointers to a class. Objects are always typed by a pointer.
Static typing makes the pointer explicit; id hides it.

Static typing permits the compiler to do some type checking-for example, to warn if an
object receives a message that it appears not to be able to respond to-and to loosen some
restrictions that apply to objects generically typed id. In addition, it can make your
intentions clearer to others who read your source code. However, it doesn't defeat dynamic
binding or alter the dynamic determination of a receiver's class at run time.

An object can be statically typed to its own class or to any class that it inherits from. For
example, since inheritance makes a Matrix a kind of View, a Matrix instance could be
statically typed to the View class:

View *myMatrix;

Classes 45

This is possible because a Matrix is a View. It's more than a View since it also has the
instance variables and method capabilities of a Control and a Matrix, but it's a View
nonetheless. For purposes of type checking, the compiler will consider myMatrix to be a
View, but at run time it will be treated as a Matrix.

See "Static Options" in the next chapter for more on static typing and its benefits.

Type Introspection

Instances can reveal their types at run time. The isMemberOf: method, defined in the
Object class, checks whether the receiver is an instance of a particular class:

if ([anObject isMemberOf:someClass])

The isKindOf: method, also defined in the Object class, checks more generally whether the
receiver inherits from or is a member of a particular class (whether it has the class in its
inheritance path):

if ([anObject isKindOf:someClass])

The set of classes for which isKindOf: returns YES is the same set to which the receiver
can be statically typed.

Introspection isn't limited to type information. Later sections of this chapter discuss
methods that return the class object, report whether an object can respond to a message,
and reveal other information.

See Appendix C, "The Object Class," for more on isKindOf:, isMemberOf:, and
kindred methods.

Class Objects

A class definition contains various kinds of information, much of it about instances of
the class:

• The name of the class and its superclass
• A template describing a set of instance variables
• The declaration of method names and their return and argument types
• The method implementations

46 Chapter 2: The Objective C Language

This information is compiled and recorded in data structures made available to the run-time
system. The compiler creates just one object, a class object, to represent the class. The
class object has access to all the information about the class, which means mainly
information about what instances of the class are like. It's able to produce new instances
according to the plan put forward in the class definition.

Although a class object keeps the prototype of a class instance, it's not an instance itself.
It has no instance variables of its own and it can't perform methods intended for instances
of the class. However, a class definition can include methods intended specifically for
the class object-class methods as opposed to instance methods. A class object inherits
class methods from the classes above it in the hierarchy, just as instances inherit instance
methods.

In source code, the class object is represented by the class name. In the following example,
the Matrix class returns the class version number using a method inherited from the
Object class:

int versionNumber = [Matrix version] ;

However, the class name stands for the class object only as the receiver in a message
expression. Elsewhere, you need to ask an instance or the class to return the class id. Both
respond to a class message:

id aClass = [anObject class];

id matrixClass = [Matrix class] ;

As these examples show, class objects can, like all other objects, be typed id. But class
objects can also be more specifically typed to the Class data type:

Class aClass = [anObject class];
Class matrixClass = [Matrix class];

All class objects are of type Class. Using this type name for a class is equivalent to using
the class name to statically type an instance.

Class objects are thus full-fledged objects that can be dynamically typed, receive messages,
and inherit methods from other classes. They're special only in that they're created by the
compiler, lack data structures (instance variables) of their own other than those built from
the class definition, and are the agents for producing instances at run time.

Note: The compiler also builds a "metaclass object" for each class. It describes the class
object just as the class object describes instances of the class. But while you can send
messages to instances and to the class object, the metaclass object is used only internally
by the run-time system.

Classes 47

Creating Instances

A principal function of a class object is to create new instances." This code tells the Matrix
class to create a new Matrix instance and assign it to the myMatrix variable:

id rnyMatrix;

myMatrix = [Matrix alloc];

The alloc method dynamically allocates memory for the new object's instance variables
and initializes them all to O-all, that is, except the isa variable that connects the new
instance to its class. For an object to be useful, it generally needs to be more completely
initialized. That's the function of an init method. Initialization typically follows
immediately after allocation:

myMatrix = [[Matrix alloc] init];

This line of code, or one like it, would be necessary before myMatrix could receive any of
the messages that were illustrated in previous examples in this chapter. The alloc method
returns a new instance and that instance performs an init method to set its initial state.
Every class object has at least one method (like alloc) that enables it to produce new
objects, and every instance has at least one method (like init) that prepares it for use.
Initialization methods often take arguments to allow particular values to be passed and have
keywords to label the arguments (initFrame:mode:ceIlClass:numRows:numColumns:,
for example, is the method that would most often initialize a new Matrix instance), but they
all begin with "init".

Customization with Class Objects

It's not just a whim of the Objective C language that classes are treated as objects. It's a
choice that has intended, and sometimes surprising, benefits for design. It's possible, for
example, to customize an object with a class, where the class belongs to an open-ended set.
In the Application Kit, a Matrix object can be customized with a particular kind of Cell.

A Matrix can take responsibility for creating the individual objects that represent its cells.
It can do this when the Matrix is first initialized and later when new cells are needed. The
visible matrix that a Matrix object draws on-screen can grow and shrink at run time,
perhaps in response to user actions. When it grows, the Matrix needs to be able to produce
new objects to fill the new slots that are added.

48 Chapter 2: The Objective C Language

But what kind of objects should they be? Each Matrix displays just one kind of Cell, but
there are many different kinds. The inheritance hierarchy in Figure 9 below shows some of
those provided by the Application Kit. All inherit from the generic Cell class:

Figure 9. Inheritance Hierarchy for Cells

When a Matrix creates new Cell objects, should they be ButtonCells to display a bank of
buttons or switches, TextFieldCells to display a field where the user can enter and edit text,
or some other kind of Cell? The Matrix must allow for any kind of Cell, even types that
haven't been invented yet.

One solution to this problem would be to define the Matrix class as an abstract class and
require everyone who uses it to declare a subclass and implement the methods that produce
new cells. Because they would be implementing the methods, users of the class could be
sure that the objects they created were of the right type.

But this requires others to do work that ought to be done in the Matrix class, and it
unnecessarily proliferates the number of classes. Since an application might need more
than one kind of Matrix, each with a different kind of Cell, it could become cluttered with
Matrix subclasses. Every time you invented a new kind of Cell, you'd also have to define
a new kind of Matrix. Moreover, programmers on different projects would be writing
virtually identical code to do the same job, all to make up for Matrix's failure to do it.

A better solution, the solution the Matrix class actually adopts, is to allow Matrix instances
to be initialized with a kind of Cell-with a class object. It defines a setCellClass: method
that passes the class object for the kind of Cell object a Matrix should use to fill empty slots:

[myMatrix setCellClass: [ButtonCell class]];

The Matrix uses the class object to produce new cells when it's first initialized and
whenever it's resized to contain more cells. This kind of customization would be
impossible if classes weren't objects that could be passed in messages and assigned
to variables.

Classes. 49

Variables and Class Objects

When you define a new class of objects, you can decide what instance variables they should
have. Every instance of the class will have its own copy of all the variables you declare;
each object controls its own data.

However, you can't prescribe variables for the class object; there are no "class variable"
counterparts to instance variables. Only internal data structures, initialized from the class
definition, are provided for the class. The class object also has no access to the instance
variables of any instances; it can't initialize, read, or alter them.

Therefore, for all the instances of a class to share data, an external variable of some sort is
required. Some classes declare static variables and provide class methods to manage them.
(Declaring a variable static in the same file as the class definition limits its scope to just the
class-and to just the part of the class that's implemented in the file. Unlike instance
variables, static variables can't be inherited by subclasses, unless the subclasses are defined
in the same file.)

Static variables help give the class object more functionality than just that of a "factory"
producing instances; it can approach being a complete and versatile object in its own right.
A class object can be used to coordinate the instances it creates, dispense instances from
lists of objects already created, or manage other processes essential to the application. In
the limiting case, when you need only one object of a particular class, you can put all the
object's state into static variables and use only class methods. This saves the step of
allocating and initializing an instance.

Note: It would also be possible to use external variables that weren't declared static, but
the limited scope of static variables better serves the purpose of encapsulating data into
separate objects.

Initializing a Class Object

If a class object is to be used for anything besides allocating instances, it may need to be
initialized just as an instance is. Although programs don't allocate class objects,
Objective C does provide a way for programs to initialize them.

The run-time system sends an initialize message to every class object before the class
receives any other messages. This gives the class a chance to set up its run-time
environment before it's used. If no initialization is required, you don't need to write an
initialize method to respond to the message; the Object class defines an empty version that
your class can inherit and perform.

50 Chapter 2: The Objective C Language

If a class makes use of static or global variables, the initialize method is a good place to set
their initial values. For example, if a class maintains an array of instances, the initialize
method could set up the array and even allocate one or two default instances to have
them ready.

Methods of the Root Class

All objects, classes and instances alike, need an interface to the run-time system. Both
class objects and instances should be able to introspect about their abilities and to report
their place in the inheritance hierarchy. It's the province of the Object class to provide
this interface.

So that Object's methods won't all have to be implemented twice-once to provide a
run-time interface for instances and again to duplicate that interface for class objects-class
objects are given special dispensation to perform instance methods defined in the root class.
When a class object receives a message that it can't respond to with a class method, the
run-time system will see if there's a root instance method that can respond. The only
instance methods that a class object can perform are those defined in the root class, and only
if there's no class method that can do the job.

For more on this peculiar ability of class objects to perform root instance methods, see the
"Class Description" section in Appendix C, "The Object Class."

Class Names in Source Code

In source code, class names can be used in only two very different contexts. These contexts
reflect the dual role of a class as a data type and as an object:

• The class name can be used as a type name for a kind of object. For example:

Matrix *anObject;

anObject = [[Matrix alloc] init];

Here anObject is statically typed to be a Matrix. The compiler will expect it to have the
data structure of a Matrix instance and the instance methods defined and inherited by the
Matrix class. Static typing enables the compiler to do better type checking and makes
source code more self-documenting. See "Static Options" in the next chapter for details.

Only instances can be statically typed; class objects can't be, since they aren't members
of a class, but rather belong to the Class data type.

Classes 51

• As the receiver in a message expression, the class name refers to the class object. This
usage was illustrated in several of the examples above. The class name can stand for the
class object only as a message receiver. In any other context, you must ask the class
object to reveal its id (by sending it a class message). The example below passes the
Matrix class as an argument in an isKindOf: message.

if ([anObject isKindOf: [Matrix class]])

It would have been illegal to simply use the name "Matrix" as the argument. The class
name can only be a receiver.

If you don't know the class name at compile time but have it as a string at run time,
objc_lookUpClassO will return the class object:

if ([anObject isKindOf:objc_lookUpClass(aBuffer)]

This function returns nil if the string it's passed is not a valid class name.

Class names compete in the same name space as variables and functions. A class and a
global variable can't have the same name. Class names are about the only names with
global visibility in Objective C.

Defining a Class

Much of object-oriented programming consists of writing the code for new objects­
defining new classes. In Objective C, classes are defined in two parts:

• An inteiface that declares the methods and instance variables of the class and names
its superclass

• An implementation that actually defines the class (contains the code that implements
its methods)

Although the compiler doesn't require it, the interface and implementation are usually
separated into two different files. The interface file must be made available to anyone who
uses the class. You generally wouldn't want to distribute the implementation file that
widely; users don't need source code for the implementation.

52 Chapter 2: The Objective C Language

A single file can declare or implement more than one class. Nevertheless, it's customary
to have a separate interface file for each class, if not also a separate implementation file.
Keeping- class interfaces separate better reflects their status as independent entities.

Interface and implementation files typically are named after the class. The implementation
file has a ".m" suffix, indicating that it contains Objective C source code. The interface file
can be assigned any other extension. Because it's included in other source files, the
interface file usually has the ".h" suffix typical of header files. For example, the Matrix
class would be declared in Matrix.h and defined in Matrix.m.

Separating an object's interface from its implementation fits well with the design of
object-oriented programs. An object is a self-contained entity that can be viewed from the
outside almost as a "black box." Once you've determined how an object will interact with
other elements in your program-that is, once you've declared its interface-you can freely
alter its implementation without affecting any other part of the application.

The Interface

The declaration of a class interface begins with the compiler directive @interface and ends
with the directive @end. (All Objective C directives to the compiler begin with "@".)

@interface ClassName : ItsSuperclass
{

instance variable declarations
}
method declarations
@end

The first line of the declaration presents the new class name and links it to its superclass.
The superclass defines the position of the new class in the inheritance hierarchy, as
discussed under "Inheritance" above. If the colon and superclass name are omitted, the new
class is declared as a root class, a rival to the Object class.

Following the class declaration, braces enclose declarations of instance variables, the data
structures that will be part of each instance of the class. Here's a partial list of the instance
variables declared in the Matrix class:

id selectedCelli
int numRoWSi
int numColsi
float backgroundGraYi
id cellClassi

Defining a Class 53

Methods for the class are declared next, after the braces enclosing instance variables and
before the end of the class declaration. The names of methods that can be used by class
objects, class methods, are preceded by a plus sign:

+ alloci

The methods that instances of a class can use, instance methods, are marked with a
minus sign:

- displaYi

Although it's not a common practice, you can define a class method and an instance method
with the same name. A method can also have the same name as an instance variable. This
is more common, especially if the method returns the value in the variable. For example,
Matrix has a selected Cell method to match its selectedCell instance variable.

Method return types are declared using the standard C syntax for casting one type to
another:

- (int)tagi

Argument types are declared in the same way:

- setTag: (int)anlnti

If a return or argument type isn't explicitly declared, it's assumed to be the default type for
methods and messages-an id. The alloc, display, and setTag: methods illustrated above
all return ids.

When there's more than one argument, they're declared within the method name after
the colons. Arguments break the name apart in the declaration, just as in a message.
For example:

- moveTo: (NXCoord)x : (NXCoord)Yi

- getRow: (int *)aRow andColumn: (int *)aColumn ofCell:aCelli

(NXCoord is a defined type for floating-point values that specify coordinate
measurements.)

Methods that take a variable number of arguments declare them using a comma and an
ellipsis, just as a function would:

- makeGroup:group, ... i

54 Chapter 2: The Objective C Language

Importing the Interface

The interface file must be included in any source module that depends on the class
interface-that includes any module that creates an instance of the class, sends a message
to invoke a method declared for the class, or mentions an instance variable declared in the
class. The interface is usually included with the #import directive:

#irnport "Matrix.h"

This directive is identical to #include, except that it makes sure that the same file is never
included more than once. It's therefore preferred, and is used in place of #include in code
examples throughout NeXTSTEP documentation.

To reflect the fact that a class definition builds on the definitions of inherited classes, an
interface file begins by importing the interface for its superclass:

#import "ItsSuperclass.h"

@interface ClassName : ItsSuperclass
{

instance variable declarations
}
method declarations
@end

This convention means that every interface file includes, indirectly, the interface files for all
inherited classes. When a source module imports a class interface, it gets interfaces for the
entire inheritance hierarchy that the class is built upon.

Referring to Other Classes

An interface file declares a class and, by importing its superclass, implicitly contains
declarations for all inherited classes, from Object on down through its superclass. If the
interface mentions classes not in this hierarchy, it must import them explicitly-or, better,
declare them with the @class directive:

@class Matrix, List;

This directive simply informs the compiler that "Matrix" and "List" are class names. It
doesn't import their interface files.

Defining a Class 55

An interface file mentions class names when it statically types instance variables, return
values, and arguments. For example, this declaration

- getCells: (List *)theCells;

mentions the List class.

Since declarations like this simply use the class name as a type and don't depend on any
details of the class interface (its methods and instance variables), the @ciass directive gives
the compiler sufficient forewarning of what to expect. However, where the interface to a
class is actually used (instances created, messages sent), the class interface must be
imported. Typically, an interface file uses @ciass to declare classes, and the corresponding
implementation file imports their interfaces (since it will need to create instances of those
classes or send them messages).

The @ciass directive minimizes the amount of code seen by the compiler and linker, and is
therefore the simplest way to give a forward declaration of a class name. Being simple, it
avoids potential problems that may come with importing files that import still other files.
For example, if one class declares a statically typed instance variable of another class, and
their two interface files import each other, neither class may compile correctly.

The Role of the Interface

The purpose of the interface file is to declare the new class to other source modules (and to
other programmers). It contains all the information they need to work with the class
(programmers might also appreciate a little documentation).

• Through its list of method declarations, the interface file lets other modules know what
messages can be sent to the class object and instances of the class. Every method that
can be used outside the class definition is declared in the interface file; methods that are
internal to the class implementation can be omitted.

• It also lets the compiler know what instance variables an object contains and
programmers know what variables their subclasses will inherit. Although instance
variables are most naturally viewed as a matter of the implementation of a class rather
than its interface, they must nevertheless be declared in the interface file. This is because
the compiler must be aware of the structure of an object where it's used, not just where
it's defined. As a programmer, however, you can generally ignore the instance variables
of the classes you use, except when defining a subclass.

• Finally, the interface file also tells users how the class is connected into the inheritance
hierarchy and what other classes-inherited or simply referred to somewhere in the
class-are needed.

56 Chapter 2: The Objective C Language

The Implementation

The definition of a class is structured very much like its declaration. It begins with an
@impiementation directive and ends with @end:

@impiementation ClassName : ItsSuperclass
{

instance variable declarations
}
method definitions
@end

However, every implementation file must import its own interface. For example, Matrix.m
imports Matrix.h. Because the implementation doesn't need to repeat any of the
declarations it imports, it can safely omit:

• The name of the superclass
• The declarations of instance variables

This simplifies the implementation and makes it mainly devoted to method definitions;

#import "ClassName.h"

@impiementation ClassName
method definitions
@end

Methods for a class are defined, like C functions, within a pair of braces. Before the braces,
they're declared in the same manner as in the interface file, but without the semicolon.
For example:

+ alloc

- (int)tag

- moveTo: (NXCoord)x : (NXCoord)y

Defining 0 Closs 57

Methods that take a variable number of arguments handle them just as a functions would:

#import <stdarg.h>

- getGroup:group,

va_list ap;

va_start (ap, group);

Referring to Instance Variables

By default, the definition of an instance method has all the instance variables of a potential
receiving object within its scope. It can refer to them simply by name. Although the
compiler creates the equivalent of C structures to store instance variables, the exact nature
of the structure is hidden. You don't need either of the structure operators ('.' or '->') to
refer to an object's data. For example, the following method definition refers to the
receiver's tag instance variable:

- setTag: (int)anlnt

tag anlnt;

Neither the receiving object nor its tag instance variable is declared as an argument to this
method, yet the instance variable falls within its scope. This simplification of method
syntax is a significant shorthand in the writing of Objective C code.

The instance variables of the receiving object are not the only ones that you can refer to
within the implementation of a class. You can refer to any instance variable of any object
as long as two conditions are met:

• The instance variable must be within the scope of the class definition. Normally that
means the instance variable must be one that the class declares or inherits. (Scope is
discussed in more detail in the next section.)

• The compiler must know what kind of object the instance variable belongs to.

When the instance variable belongs to the receiver (as it does in the setTag: example
above), this second condition is met automatically. The receiver's type is implicit but
clear-it's the very type that the class defines.

58 Chapter 2: The Objective C Language

· When the instance variable belongs to an object that's not the receiver, the object's type
must be made explicit to the compiler through static typing. In referring to the instance
variable of a statically typed object, the structure pointer operator ('->') is used.

Suppose, for example, that the Sibling class declares a statically typed object, twin, as an
instance variable:

@interface Sibling Object
{

Sibling *twin;
int gender;
struct features *appearancei

As long as the instance variables of the statically typed object are within the scope of the
class (as they are here because twin is typed to the same class), a Sibling method can set
them directly:

- makeldenticalTwin

if (! twin) {

twin = [[Sibling alloc] init];
twin->gender = gender;
twin->appearance = appearance;

return twin;

The Scope of Instance Variables

Although they're declared in the class interface, instance variables are more a matter of the
way a class is implemented than of the way it's used. An object's interface lies in its
methods, not in its internal data structures.

Often there's a one-to-one correspondence between a method and an instance variable, as
in the following example:

- (int)tag

return tag;

But this need not be the case. Some methods might return informatiQn not stored in
instance variables, and some instance variables might store information that an object is
unwilling to reveal.

Defil1il1g a Class 59

As a class is revised from time to time, the choice of instance variables may change, even
though the methods it declares remain the same. As long as messages are the vehicle for
interacting with instances of the class, these changes won't really affect its interface.

To enforce the ability of an object to hide its data, the compiler limits the scope of instance
variables-that is, limits their visibility within the program. But to provide flexibility, it
also lets you explicitly ~et the scope at three different levels. Each level is marked by a
compiler directive:

Directive

@private

@protected

@public

Meaning

The instance variable is accessible only within the class that
declares it.

The instance variable is accessible within the class that declares it
and within classes that inherit it.

The instance variable is accessible everywhere.

This is illustrated in Figure 10.

The class that
declares the @private

instance variable

I @protected

A class that
inherits the @public

instance variable

Unrelated code

Figure 10. The Scope of Instance Variables

60 Chapter 2: The Objective C Language

A directive applies to all the instance variables listed after it, up to the next directive or the
end of the list. In the following example, the age and evaluation instance variables are
private, name, job, and wage are protected, and boss is pUblic.

@interface Worker : Object

char *name;
@private

int age;
char *evaluation;

@protected
id job;
float wage;

@public
id boss;

By default, all unmarked instance variables (like name above) are @protected.

All instance variable that a class declares, no matter how they're marked, are within the
scope of the class definition. For example, a class that declares ajob instance variable, such
as the Worker class shown above, can refer to it in a method definition:

- promoteTo:newPosition

id old = job;
job = newPosition;
return old;

Obviously, if a class couldn't access its own instance variables, the instance variables would
be of no use whatsoever.

Normally, a class also has access to the instance variables it inherits. The ability to refer to
an instance variable is usually inherited along with the variable. It makes sense for classes
to have their entire data structures within their scope, especially if you think of a class
definition as merely an elaboration of the classes it inherits from. The promoteTo: method
illustrated above could just as well have been defined in any class that inherits the job
instance variable from the Worker class.

Defining a Class 61

However, there are reasons why you might want to restrict inheriting classes from accessing
an instance variable:

• Once a subclass accesses an inherited instance variable, the class that declares the
variable is tied to that part of its implementation. In later versions, it can't eliminate the
variable or alter the role it plays without inadvertently breaking the subclass.

• Moreover, if a subclass accesses an inherited instance variable and alters its value, it may
inadvertently introduce bugs in the class that declares the variable, especially if the
variable is involved in class-internal dependencies.

To limit an instance variable's scope to just the class that declares it, you must mark it
@private.

At the other extreme, marking a variable @public makes it generally available, even
outside of class definitions that inherit or declare the variable. Normally, to get information
stored in an instance variable, other modules must send a message requesting it. However,
a public instance variable can be accessed anywhere as if it were a field in a C structure.

Worker *ceo = [[Worker alloc] init];

ceo->boss = nil;

Note that the object must be statically typed.

Marking instance variables @public defeats the ability of an object to hide its data. It runs
counter to a fundamental principle of object-oriented programming-the encapsulation of
data within objects where it's protected from view and inadvertent error. Public instance
variables should therefore be avoided except in extraordinary cases.

How Messaging Works

In Objective C, messages aren't bound to method implementations until run time. The
compiler converts a message expression,

[receiver message]

into a call on a messaging function, objc_msgSendO. This function takes the receiver and
the name of the method mentioned in the message-that is, the method selector-as its two
principal arguments:

objc_msgSend(receiver, selector)

62 Chapter 2: The Objective C Language

Any arguments passed in the message are also handed to objc_msgSendO:

objc_msgSend(receiver, selector, argl, arg2, ...)

The messaging function does everything necessary for dynamic binding:

• It first finds the procedure (method implementation) that the selector refers to. Since the
same method can be implemented differently by different classes, the precise procedure
that it finds depends on the class of the receiver.

• It then calls the procedure, passing it the receiving object (a pointer to its data), along
with any arguments that were specified for the method.

• Finally, it passes on the return value of the procedure as its own return value.

Note: The compiler generates calls to the messaging function. You should never call it
directly in the cod.e you write.

The key to messaging lies in the structures that the compiler builds for each class and
object. Every class structure includes these two essential elements:

• A pointer to the superclass.

• A class dispatch table. This table has entries that associate method selectors with the
class-specific addresses of the methods they identify. The selector for the moveTo::
method is associated with the address of (the procedure that implements) moveTo::, the
selector for the display method is associated with display's address, and so on.

When a new object is created, memory for it is allocated and its instance variables are
initialized. First among the object's variables is a pointer to its class structure. This pointer,
called isa, gives the object access to its class and, through the class, to all the classes it
inherits from.

These elements of class and object structure are illustrated in Figure 11.

How Messaging Works 63

superclass

The root class (Object) selector ... address
selector ... address
selector ... address

superclass

The object's superclass selector ... address
selector ... address
selector ... address

superclass

The object's class selector ... address
selector ... address
selector ... address

Figure 11. Messaging Framework

~ • • I

When a message is sent to an object, the messaging function follows the object's isa pointer
to the class structure, where it looks up the method selector in the dispatch table. If it can't
find the selector there, objc_IDsgSendO follows the pointer to the superclass and tries to
find the selector in its dispatch table. Successive failures cause objc_IDsgSendO to climb
the class hierarchy until it reaches the Object class. Once it locates the selector, it calls the
method entered in the table and passes it the receiving object's data structure.

64 Chapter 2: The Objective C Language

This is the way that method implementations are chosen at run time-or, in the jargon of
object-oriented programming, that methods are dynamically bound to messages.

To speed the messaging process, the run-time system caches the selectors and addresses of
methods as they are used. There's a separate cache for each class, and it can contain
selectors for inherited methods as well as for methods defined in the class. Before
searching the dispatch tables, the messaging routine first checks the cache of the receiving
object's class (on the theory that a method that was used once may likely be used again). If
the method selector is in the cache, messaging is only slightly slower than a function call.
Once a program has been running long enough to "warm up" its caches, almost all the
messages it sends will find a cached method. Caches grow dynamically to accommodate
new messages as the program runs.

Selectors

For efficiency, full ASCII names are not used as method selectors in compiled code.
Instead, the compiler writes each method name into a table, then pairs the name with a
unique identifier that will represent the method at run time. The run-time system makes
sure each identifier is unique: No two selectors are the same, and all methods with the same
name have the same selector. Compiled selectors are assigned to a special type, SEL, to
distinguish them from other data. Valid selectors are never O.

A compiled selector contains fields of coded information that aid run-time messaging. You
should therefore let the system assign SEL identifiers to methods; it won't work to assign
them arbitrarily yourself.

The @selectorO directive lets Objective C source code refer to the compiled selector,
rather than to the full method name. Here the selector for moveTo:: is assigned to the
mover variable:

SEL mover;
mover = @selector(moveTo::);

It's most efficient to assign values to SEL variables at compile time with the @selectorO
directive. However, in some cases, a program may need to convert a character string to a
selector at run time. This can be done with the sel~etUidO function:

mover = sel_getUid(aBuffer);

Conversion in the opposite direction is also possible. The sel~etNameO function returns
a method name for a selector:

char *method;
method = sel_getName(mover);

How Messaging Works 65

These and other run-time functions are described in the NeXTSTEP General Reference
manual.

Methods and Selectors

Compiled selectors identify method names, not method implementations. Matrix's display
method, for example, will have the same selector as display methods defined in other
classes. This is essential for polymorphism and dynamic binding; it lets you send the same
message to receivers belonging to different classes. If there were one selector per method
implementation, a message would be no different than a function call.

A class method and an instance method with the same name are assigned the same selector.
However, because of their different domains, there's no confusion between the two. A class
could define a display class method in addition to a display instance method.

Method Return and Argument Types

The messaging routine has access to method implementations only through selectors, so it
treats all methods with the same selector alike. It discovers the return type of a method, and
the data types of its arguments, from the selector. Therefore, except for messages sent to
statically typed receivers, dynamic binding requires all implementations of identically
named methods to have the same return type and the same argument types. (Statically
typed receivers are an exception to this rule, since the compiler can learn about the method
implementation from the class type.)

Although identically named class methods and instance methods are represented by the
same selector, they can have different argument and return types.

Varying the Message at Run Time

The perform:, perform:with:, and perform:with:with: methods, defined in the Object
class, take SEL identifiers as their initial arguments. All three methods map directly into
the messaging function. For example,

[friend perform:@selector(gossipAbout:) with:aNeighbor];

is equivalent to:

[friend gossipAbout:aNeighbor];

66 Chapter 2: The Objective C Language

These methods make it possible to vary a message at run time, just as it's possible to vary
the object that receives the message. Variable names can be used in both halves of a
message expression:

id helper = getTheReceiver();
SEL request = getTheSelector();
[helper perform: request] ;

In this example, the receiver (helper) is chosen at run time (by the fictitious
getTheReceiverO function), and the method the receiver is asked to perform (request) is
also determined at run time (by the equally fictitious getTheSelectorO function).

Note: perform: and its companion methods return an id. If the method that's performed
returns a different type, it should be cast to the proper type. (However, casting won't work
for all types; the method should return a pointer or a type compatible with a pointer.)

The Target-Action Paradigm

In its treatment of user-interface controls, the NeXTSTEP Application Kit makes good use
of the ability vary both the receiver and the message.

Controls are graphical devices that can be used to give instructions to an application. Most
resemble real-world control devices such as buttons, switches, knobs, text fields, dials,
menu items, and the like. In software, these devices stand between the application and the
user. They interpret events coming from hardware devices like the keyboard and mouse and
translate them into application-specific instructions. For example, a button labeled "Find"
would translate a mouse click into an instruction for the application to start searching
for something.

The Application Kit defines a framework for creating control devices and defines a few
"off-the-shelf' devices of its own. For example, the ButtonCell class defines an object that
you can assign to a Matrix and initialize with a size, a label, a picture, a font, and a keyboard
alternative. When the user clicks the button (or uses the keyboard alternative), the
ButtonCell sends a message instructing the application to do something. To do this, a
ButtonCell must be initialized not just with an image, a size, and a label, but with directions
on what message to send and who to send it to. Accordingly, a ButtonCell can be initialized
for an action message, the method selector it should use in the message it sends, and a
target, the object that should receive the message.

[myButtonCell setAction:@selector(reapTheWind:)];

[myButtonCell setTarget:anObject];

How Messagi!1g Works 67

The ButtonCell sends the message using Object's perform:with: method. All action
messages take a single argument, the id of the control device sending the message.

If Objective C didn't allow the message to be varied, all ButtonCells would have to send
the same message; the name of the method would be frozen in the ButtonCell source code.
Instead of simply implementing a mechanism for translating user actions into action
messages, ButtonCells and other controls would have to constrain the content of the
message. This would make it difficult for any object to respond to more than one
ButtonCell. There would either have to be one target for each button, or the target object
would have to discover which button the message came from and act accordingly. Each
time you rearranged the user interface, you'd also have to reimplement the method that
responds to the action message. This would be an unnecessary complication that
Objective C happily avoids.

Avoiding Messaging Errors

If an object receives a message to perform a method that isn't in its repertoire, an error
results. It's the same sort of error as calling a nonexistent function. But because messaging
occurs at run time, the error often won't be evident until the program executes.

It's relatively easy to avoid this error when the message selector is constant and the class
of the receiving object is known. As you're programming, you can check to be sure that
the receiver is able to respond. If the receiver is statically typed, the compiler will check
for you.

However, if the message selector or the class of the receiver varies, it may be necessary to
postpone this check until run time. The respondsTo: method, defined in the Object class,
determines whether a potential receiver can respond to a potential message. It takes the
method selector as an argument, and returns whether the receiver has access to a method
matching the selector:

if ([anObject respondsTo:@selector(moveTo::)]

[anObject moveTo:O.O :0.0];
else

~printf (stderr, "%s can't be moved\n", [anObject name]);

The respondsTo: test is especially important when sending messages to objects that you
don't have control over at compile time. For example, if you write code that sends a
message to an object represented by a variable that others can set, you should check to be
sure the receiver implements a method that can respond to the message.

68 Chapter 2: The Objective C Language

Note: An object can also arrange to have messages it receives forwarded to other objects,
if it can't respond to them directly itself. In that case, it will appear that the object can't
handle the message, even though it responds to it indirectly by assigning it to another
object. Forwarding is discussed in Chapter 4, "The Run-Time System."

Hidden Arguments

When the messaging function finds the procedure that implements a method, it calls the
procedure and passes it all the arguments in the message. It also passes the procedure two
hidden arguments:

• The receiving object.
• The selector for the method.

These arguments give every method implementation explicit information about the two
halves of the message expression that invoked it. They're said to be "hidden" because they
aren't declared in the source code that defines the method. They're inserted into the
implementation when the code is compiled.

Although these arguments aren't explicitly declared, source code can still refer to them Gust
as it can refer to the receiving object's instance variables). A method refers to the receiving
object as self, and to its own selector as _cmd. In the example below, _cmd refers to the
selector for the strange method and self to the object that receives a strange message.

- strange

id target
SEL action

getTheReceiver() ;
getTheMethod() ;

if (target == self I I action _cmd
return nil;

return [target perform:action];

self is the more useful of the two arguments. It is, in fact, the way the receiving object's
instance variables are made available to the method definition.

Methods that have no other meaningful return value typically return self, rather than void.
This enables messages to be nested in source code. For example:

[[[my Matrix setMode:NX_RADIOMODE] setEnabled:YES] setTag:99];

self is discussed in more detail in the next section.

How Messaging Works 69

Messages to self and super

Objective C provides two terms that can be used within a method definition to refer to the
object that performs the method-self and super.

Suppose, for example, that you define a reposition method that needs to change the
coordinates of whatever object it acts on. It can invoke the moveTo:: method to make
the change. All it needs to do is send a moveTo:: message to the very same object that
the reposition message itself was sent to. When you're writing the reposition code, you
can refer to that object as either self or super. The reposition method could read either:

- reposition

[self moveTo:someX :someYJ;

or:

- reposition

[super moveTo:someX :someY];

Here self and super both refer to the object receiving a reposition message, whatever
object that may happen to be. The two terms are quite different, however. self is one
of the hidden arguments that the messaging routine passes to every method; it's a local
variable that can be used freely within a method implementation, just as the names of
instance variables can be. super is a term that substitutes for self only as the receiver in a
message expression. As receivers, the two terms differ principally in how they affect the
messaging process:

• self searches for the method implementation in the usual manner, starting in the dispatch
table of the receiving object's class. In the example above, it would begin with the class
of the object receiving the reposition message.

• super starts the search for the method implementation in a very different place.
It begins in the superclass of the class that defines the method where super appears.
In the example above, it would begin with the superclass of the class where reposition
is defined.

70 Chapter 2: The Objective C Language

Wherever super receives a message, the compiler substitutes another messaging routine for
objc_msgSendO. The substitute routine looks directly to the superclass of the defining
class-that is, to the superclass of the class sending the message to super-rather than to
the class of the object receiving the message.

An Example

The difference between self and super becomes clear in a hierarchy of three classes.
Suppose, for example, that we create an object belonging to a class called Low. Low's
superclass is Mid; Mid's superclass is High. All three classes define a method called
negotiate, which they use for a variety of purposes. In addition, Mid defines an ambitious
method called makeLastingPeace, which also has need of the negotiate method. This is
illustrated in Figure 12 below:

superclass

High - negotiate

superclass

Mid - negotiate
- makeLastingPeace

superclass

Low - negotiate

Figure 12. High, Mid, and Low

,.
" ,

How Messaging Works 71

We now send a message to our Low object to perform the makeLastingPeace method, and
makeLastingPeace, in tum, sends a negotiate message to the same Low object. If source
code calls this object self,

- makeLastingPeace

[self negotiate];

the messaging routine will find the version of negotiate defined in Low, self's class.
However, if source code calls this object super,

- makeLastingPeace

[super negotiate];

the messaging routine will find the version of negotiate defined in High. It ignores the
receiving object's class (Low) and skips to the superclass of Mid, since Mid is where
makeLastingPeace is defined. Neither message finds Mid's version of negotiate.

As this example illustrates, super provides a way to bypass a method that overrides another
method. Here it enabled makeLastingPeace to avoid the Mid version of negotiate that
redefined the original High version.

Not being able to reach Mid's version of negotiate may seem like a flaw, but, under the
circumstances, it's right to avoid it:

• The author of the Low class intentionally overrode Mid's version of negotiate so
that instances of the Low class (and its subclasses) would invoke the redefined version
of the method instead. The designer of Low didn't want Low objects to perform the
inherited method.

• In sending the message to super, the author of Mid's makeLastingPeace method
intentionally skipped over Mid's version of negotiate (and over any versions that might
be defined in classes like Low that inherit from Mid) to perform the version defined in
the High class. Mid's designer wanted to use the High version of negotiate and no other.

Mid's version of negotiate could still be used, but it would take a direct message to a Mid
instance to do it.

72 Chapter 2: The Objective C Language

Using super

Messages to super allow method implementations to be distributed over more than one
class. You can override an existing method to modify or add to it, and still incorporate the
original method in the modification:

- negotiate

return [super negotiate];

For some tasks, each class in the inheritance hierarchy can implement a method that does
part of the job, and pass the message on to super for the rest. The init method, which
initializes a newly allocated instance, and the write: method, which archives an object by
writing it to a data stream, are designed to work like this. Each write: method has
responsibility for writing the instance variables defined in its class. But before doing so, it
sends a write: message to super to have the classes it inherits from archive their instance
variables. Each version of write: follows this same procedure, so classes write their
instance variables in the order of inheritance:

- write: (NXTypedStream *)stream

[super write: stream] ;

return self;

It's also possible to concentrate core functionality in one method defined in a superclass,
and have subclasses incorporate the method through messages to super. For example,
every class method that creates a new instance must allocate storage for the new object and
initialize its isa pointer to the class structure. This is typically left to the alloc and
allocFrornZone: methods defined in the Object class. If another class overrides these
methods for any reason (a rare case), it can still get the basic functionality by sending a
message to super.

How J/essaging Works 73

Redefining self

super is simply a flag to the compiler telling it where to begin searching for the method to
perform; it's used only as the receiver of a message. But self is a variable name that can be
used in any number of ways, even assigned a new value.

There's a tendency to do just that in definitions of class methods. Class methods are often
concerned, not with the class object, but with instances of the class. For example, a method
might combine allocation and initialization of an instance:

+ newTag: (int)anlnt

return [[self alloc) initTag:anlnt)i

In such a method, it's tempting to send messages to the instance and to call the instance self,
just as in an instance method. But that would be an error. self and super both refer to
the receiving object-the object that gets a message telling it to perform the method. Inside
an instance method, self refers to the instance; but inside a class method, self refers to the
class object.

Before a class method can send a message telling self to perform an instance method, it
must redefine self to be the instance:

+ newTag: (int)anlnt andColor: (NXColor)aColor

self = [[self alloc) initTag:anlnt);
[self setColor:aColor) i

return self;

The method shown above is a class method, so, initially, self refers to the class object. It's
as the class object that self receives the alloc message. self is then redefined to be the
instance that alloc returns and initTag: initializes. It's as the new instance that it receives
the setColor: message.

To avoid confusion, it's usually better to use a variable other than self to refer to an instance
inside a class method:

+ newTag: (int)anlnt andColor: (NXColor)aColor

id newlnstance = [[self alloc) initTag:anlnt);
[newlnstance setColor:aColor)i
return newlnstancei

74 Chapter 2: The Objective C Language

Note: In these examples, the class method sends messages (initTag: and setColor:) to
initialize the instance. It doesn't assign a new value directly to an instance variable as an
instance method might have done:

tag = anlntj
color = NX_REDCOLORj

Only instance variables of the receiver can be directly set this way. Since the receiver
for a class method (the class object) has no instance variables, this syntax can't be used.
However, if newlnstance had been statically typed, something similar would have
been possible:

newlnstance->tag = anlnt;

See "Referring to Instance Variables," earlier in this chapter, for more on when this syntax
is permitted.

How Messaging Works 75

76

Objective C Extensions

The preceding chapter has all you need to know about Objective C to define classes and
design programs in the language. It covers basic Objective C syntax and explains the
messaging process in detail.

Class definitions are at the heart of object-oriented programming, but they're not the only
mechanism for structuring object definitions in Objective C. This chapter discusses two
other ways of declaring methods and associating them with a class:

• Categories can compartmentalize a class definition or extend an existing one.
• Protocols declare methods that can be implemented by any class.

The chapter also explains how static typing works and takes up some lesser used features
of Objective C, including ways to temporarily overcome its inherent dynamism.

Categories

You can add methods to a class by declaring them in an interface file under a category name
and defining them in an implementation file under the same name. The category name
indicates that the methods are additions to a class declared elsewhere, not a new class.

A category can be an alternative to a subclass. Rather than define a subclass to extend an
existing class, through a category you can add methods to the class directly. For example,
you could add categories to Matrix and other NeXTSTEP classes. As in the case of a
subclass, you don't need source code for the class you're extending.

Objective C Extensions, 77

The methods the category adds become part of the class type. For example, methods added
to the Matrix class in a category will be among the methods the compiler will expect a
Matrix instance to have in its repertoire. Methods added to the Matrix class in a subclass
would not be included in the Matrix type. (This matters only for statically typed objects,
since static typing is the only way the compiler can know an object's class.)

Category methods can do anything that methods defined in the class proper can do. At run
time, there's no difference. The methods the category adds to the class are inherited by all
the class's subclasses, just like other methods.

Adding to a Class

The declaration of a category interface looks very much like a class interface declaration­
except the category name is listed within parentheses after the class name and the
superclass isn't mentioned. The category must import the interface file for the class it
extends:

#import "ClassName.h"

@interface ClassName (CategoryName)
method declarations
@end

The implementation, as usual, imports its own interface. Assuming that interface and
implementation files are named after the category, a category implementation looks
like this:

#import" CategoryName.h"

@impiementation ClassName (CategoryName)
method definitions
@end

Note that a category can't declare any new instance variables for the class; it includes only
methods. However, all instance variables within the scope of the class are also within the
scope of the category. That includes all instance variables declared by the class, even ones
declared @private.

There's no limit to the number of categories that you can add to a class, but each category
name must be different, and each should declare and define a different set of methods.

78 Chapter 3: Objective C Extensions

The methods added in a category can be used to extend the functionality of the class or
override methods the class inherits. A category can also o.verride methods declared in the
class interface. However, it cannot reliably override methods declared in another category
of the same class. A category is not a substitute for a subclass. It's best if categories don't
attempt to redefine methods the class defines elsewhere; a class shouldn't define the same
method more than once.

Note: When a category overrides an inherited method, the new version can, as usual,
incorporate the inherited version through a message to super. But there's no way for a
category method to incorporate a method with the same name defined for the same class.

How Categories are Used

Categories can be used to extend classes defined by other implementors-for example, you
can add methods to the Classes defined in the NeXTSTEP software kits. The added
methods will be inherited by subclasses and will be indistinguishable at run time from the
original methods of the class.

Categories can also be used to distribute the implementation of a new class into separate
source files-for example, you could group the methods of a large class into several
categories and put each category in a different file. When used like this, categories can
benefit the development process in a number of ways:

• They provide a simple way of grouping related methods. Similar methods defined
in different classes can be kept together in the same source file.

• They simplify the management of a large class when more than one developer is
contributing to the class definition.

• They let you achieve some of the benefits of incremental compilation for a very
large class.

• They can help improve locality of reference for commonly used methods.

• They enable you to configure a class differently for different applications, without
having to maintain different versions of the same source code.

Categories are also used to declare informal protocols, as discussed under "Protocols"
below.

Categories 79

Categories of the Root Class

A category can add methods to any class, including the root Object class. Methods added
to Object become available to all classes that are linked to your code. While this can be
useful at times, it can also be quite dangerous. Although it may seem that the modifications
the category makes are well understood and of limited impact, inheritance gives them a
wide scope. You may be making unintended changes to unseen classes; you may not know
all the consequences of what you're doing. Moreover, others who are unaware of your
changes won't understand what they're doing.

In addition, there are two other considerations to keep in mind when implementing methods
for the root class:

• Messages to super are invalid (there is no superclass).
• Class objects can perform instance methods defined in the root class.

Normally, class objects can perform only class methods. But instance methods defined in
the root class are a special case. They define an interface to the run-time system that all
objects inherit. Class objects are full-fledged objects and need to share the same interface.

This feature means that you need to take into account the possibility that an instance
method you define in a category of the Object class might be performed not only by
instances but by class objects as well. For example, within the body of the method, self
might mean a class object as well as an instance. See Appendix C, "The Object Class," for
more information on class access to root instance methods.

Protocols

Class and category interfaces declare methods that are associated with a particular class­
mainly methods that the class implements. Informal and formal protocols, on the other
hand, declare methods not associated with a class, but which any class, and perhaps many
classes, might implement.

A protocol is simply a list of method declarations, unattached to a class definition. For
example, these methods that report user actions on the mouse could be gathered into
a protocol:

- mouseDown: (NXEvent *)theEventi
- mouseDragged: (NXEvent *)theEventi
- mouseUp: (NXEvent *)theEventi

80 Chapter 3: Objective C Extensions

Any class that wanted to respond to mouse events could adopt the protocol and implement
its methods.

Protocols free method declarations from dependency on the class hierarchy, so they can be
used in ways that classes and categories cannot. Protocols list methods that are (or may be)
implemented somewhere, but the identity of the class that implements them is not of
interest. What is of interest is whether or not a particular class conforms to the protocol­
whether it has implementations of the methods the protocol declares. Thus objects can be
grouped into types not just on the basis of similarities due to the fact that they inherit from
the same class, but also on the basis of their similarity in conforming to the same protocol.
Classes in unrelated branches of the inheritance hierarchy might be typed alike because
they conform to the same protocol.

Protocols can playa significant role in object-oriented design, especially where a project is
divided among many implementors or it incorporates objects developed in other projects.
NeXTSTEP software uses them heavily to support interprocess communication through
Objective C messages.

However, an Objective C program doesn't need to use protocols. Unlike class definitions
and message expressions, they're optional. Some NeXTSTEP software kits use them; some
don't. It all depends on the task at hand.

How Protocols are Used

Protocols are useful in at least three different situations:

• To declare methods that others are expected to implement
• To declare the interface to an object while concealing its class
• To capture similarities among classes that are not hierarchically related

The following sections discuss these situations and the roles protocols can play.

Methods for Others to Implement

If you know the class of an object, you can look at its interface declaration (and the interface
declarations of the classes it inherits from) to find what messages it responds to. These
declarations advertise the messages it can receive. Protocols provide a way for it to also
advertise the messages it sends.

Protocols 81

Communication works both ways; objects send messages as well as receive them. For
example, an object might delegate responsibility for a certain operation to another object,
or it may on occasion simply need to ask another object for information. In some cases, an
object might be willing to notify other objects of its actions so that they can take whatever
collateral measures might be required. .

If you develop the class of the sender and the class of the receiver as part of the same project
(or if someone else has supplied you with the receiver and its interface file), this
communication is easily coordinated. The sender simply imports the interface file of the
receiver. The imported file declares the method selectors the sender uses in the messages
it sends.

However, if you develop an object that sends messages to objects that aren't yet defined­
objects that you're leaving for others to implement-you won't have the receiver's interface
file. You need another way to declare the methods you use in messages but don't
implement. A protocol serves this purpose. It informs the compiler about methods the
class uses and also informs other implementors of the methods they need to define to have
their objects work with yours.

Suppose, for example, that you develop an object that asks for the assistance of another
object by sending it beJpOut: and other messages. You provide an assistant instance
variable to record the outlet for these messages and define a companion method to set the
instance variable. This method lets other objects register themselves as potential recipients
of your object's messages:

- setAssistant:anObject

assistant = anObjecti
return self;

Then, whenever a message is to be sent to the assistant, a check is made to be sure that the
receiver implements a method that can respond:

- (BOOL)doWork

if ([assistant respondsTo:@selector(helpOut:)]) {

[assistant helpOut:self];
return YES;

return NO;

82 Chapter 3: Objective C Extetlsions

Since, at the time you write this code, you can't know what kind of object might register
itself as the assistant, you can only declare a protocol for the belpOut: method; you can't
import the interface file of the class that implements it.

Anonymous Objects

A protocol can also be used to declare the methods of an anonymous object, an object of
unknown class. An anonymous object may represent a service or handle a limited set of
functions, especially where only one object of its kind is needed. (Objects that playa
fundamental role in defining an application's architecture and objects that you must
initialize before using are not good candidates for anonymity.)

Objects can't be anonymous to their developers, of course, but they can be anonymous
when the developer supplies them to someone else. For example, an anonymous object
might be part of a software kit or be located in a remote process:

• Someone who supplies a software kit or a suite of objects for others to use can include
objects that are not identified by a class name or an interface file. Lacking the name and
class interface, users have no way of creating instances of the class. Instead, the supplier
must provide a ready-made instance. Typically, a method in another class returns a
usable object:

id formatter = [receiver formattingService] i

The object returned by the method is an object without a class identity, at least not one
the supplier is willing to reveal. For it to be of any use at all, the supplier must be willing
to identify at least some of the messages that it can respond to. This is done by
associating the object with a list of methods declared in a protocol.

• It's possible to send Objective C messages to remote objects-objects in other
applications. (The next section, "Remote Messaging," discusses this possibility in more
detail.)

Each application has its own structure, classes, and internal logic. But you don't need
to know how another application works or what its components are to communicate with
it. As an outsider, all you need to know is what messages you can send (the protocol)
and where to send them (the receiver).

An application that publishes one of its objects as a potential receiver of remote
messages must also publish a protocol declaring the methods the object will use to
respond to those messages. It doesn't have to disclose anything else about the object.
The sending application doesn't need to know the class of the object or use the class in
its own design. All it needs is the protocol.

Protocols 83

Protocols make anonymous objects possible. Without a protocol, there would be no way
to declare an interface to an object without identifying its class.

Note: Even though the supplier of an anonymous object won't reveal its class, the object
itself will reveal it at run time. A class message will return the anonymous object's class.
The class object can then be queried with the name and superclass methods. However,
there's usually little point in discovering this extra information; the information in the
protocol is sufficient.

Nonhierarchical Similarities

If more than one class implements a set of methods, those classes are often grouped under
an abstract class that declares the methods they have in common. Each subclass may
reimplement the methods in its own way, but the inheritance hierarchy and the common
declaration in the abstract class captures the essential similarity between the subclasses.

However, sometimes it's not possible to group common methods in an abstract class.
Classes that are unrelated in most respects might nevertheless need to implement some
similar methods. This limited similarity may not justify a hierarchical relationship.
For example, many different kinds of classes might implement methods to facilitate
reference counting:

- setRefCount: (int)count;

- (int)refCount;

- incrementCount;

- decrementCount;

These methods could be grouped into a protocol and the similarity between implementing
classes acco~nted for by noting that they all conform to the same protocol.

Objects can be typed by this similarity (the protocols they conform to), rather than by their
class. For example, a Matrix must communicate with the objects that represent its cells.
The Matrix could require each 'of these objects to be a kind of Cell (a type based on class)
and rely on the fact that all objects that inherit from the Cell class will have the methods
needed to respond to Matrix messages. Alternatively, the Matrix could require objects
representing cells to have methods that can respond to a particular set of messages (a type
based on protocol). In this case, the Matrix wouldn't care what class a cell object belonged
to, just that it implemented the methods.

84 Chapter 3: Objective C Extensions

Informal Protocols

The simplest way of declaring a protocol is to group the methods in a category declaration:

@interface Object (Ref Counting
- setRefCount: (int) count;
- (int) ref Count;
- incrementCount;
- decrementCount;
@end

Informal protocols are typically declared as categories of the Object class, since that
broadly associates the method names with any class that inherits from Object. Since all
classes inherit from the root class, the methods aren't restricted to any part of the
inheritance hierarchy. (It would also be possible to declare an informal protocol as a
category of another class to limit it to a certain branch of the inheritance hierarchy, but there
is little reason to do so.)

When used to declare a protocol, a category interface doesn't have a corresponding
implementation. Instead, classes that implement the protocol declare the methods again
in their own interface files and define them along with other methods in their
implementation files.

An informal protocol bends the rules of category declarations to list a group of methods but
not associate them with any particular class or implementation.

Being informal, protocols declared in categories don't receive much language support.
There's no type checking at compile time nor a check at run time to see whether an object
conforms to the protocol. To get these benefits, you must use a formal protocol.

Formal Protocols

The Objective C language provides a way to formally declare a list of methods as a
protocol. Formal protocols are supported by the language and the run-time system. For
example, the compiler can check for types based on protocols, and objects can introspect at
run time to report whether or not they conform to a protocol.

Formal protocols are declared with the @protocol directive:

@protocol ProtocolName
method declarations
@end

Protocols 85

For example, the reference-counting protocol could be declared like this:

@protocol ReferenceCounting

- setRefCount: (int)count;
- (int) ref Count;
- incrementCount;

- decrementCount;
@end

Unlike class names, protocol names don't have global visibility. They live in their own
name space.

A class is said to adopt a formal protocol if it agrees to implement the methods the protocol
declares. Class declarations list the names of adopted protocols within angle brackets after
the superclass name:

@interface ClassName : ItsSuperclass < protocol list >

Categories adopt protocols in much the same way:

@interface ClassName (CategoryName) < protocol list >

Names in the protocol list are separated by commas.

A class or category that adopts a protocol must import the header file where the protocol is
declared. The methods declared in the adopted protocol are not declared elsewhere in the
class or category interface.

It's possible for a class to simply adopt protocols and declare no other methods. For
example, this class declaration,

@interface Formatter: Object < Formatting, Prettifying>

@end

adopts the Formatting and Prettifying protocols, but decla~es no instance variables or
methods of its own.

A class or category that adopts a protocol is obligated to implement all the methods the
protocol declares. The compiler will issue a warning if it does not. The Formatter class
above would define all the methods declared in the two protocols it adopts, in addition to
any it might have declared itself.

Adopting a protocol is similar in some ways to declaring a superclass. Both assign methods
to the new class. The superclass declaration assigns it inherited methods; the protocol
assigns it methods declared in the protocol list.

86 Chapter 3: Objective C Extensions

Protocol Objects

Just as classes are represented at run time by class objects and methods by selector codes,
formal protocols are represented by a special data type-instances of the Protocol class.
Source code that deals with a protocol (other than to use it in a type specification) must refer
to the Protocol object.

In many ways, protocols are similar to class definitions. They both declare methods, and
at run time they're both represented by objects-classes by class objects and protocols by
Protocol objects. Like class objects, Protocol objects are created automatically from the
definitions and declarations found in source code and are used by the run-time system.
They're not allocated and initialized in program source code.

Source code can refer to a Protocol object using the @protocolO directive-the same
directive that declares a protocol, except that here it has a set of trailing parentheses. The
parentheses enclose the protocol name:

Protocol *counter = @protocol(ReferenceCounting) i

This is the only way that source code can conjure up a Protocol object. Unlike a class name,
a protocol name doesn't designate the object-except inside @protocoIO.

The compiler creates a Protocol object for each protocol declaration it encounters, but only
if the protocol is also:

• Adopted by a class, or
• Referred to somewhere in source code (using @protocoIO).

Protocols that are declared but not used (except for type checking as described below)
aren't represented by Protocol objects.

Conforming to a Protocol

A class is said to conform to a formal protocol if it adopts the protocol or inherits from a
class that adopts it. An instance of a class is said to conform to the same set of protocols
its class conforms to.

Since a class must implement all the methods declared in the protocols it adopts, and
those methods are inherited by its subclasses, saying that a class or an instance conforms
to a protocol is tantamount to saying that it has in its repertoire all the methods that the
protocol declares.

Protocols 87

It's possible to check whether an object conforms to a protocol by sending it a conformsTo:
message.

if ([receiver conformsTo:@protocol(ReferenceCounting)]

[receiver incrementCount];

The conformsTo: test is very much like the respondsTo: test for a single method,
except that it tests whether a protocol has been adopted (and presumably all the methods
it declares implemented) rather than just whether one particular method has been
implemented. Because it checks for a whole list of methods, conformsTo: can be more
efficient than respondsTo:.

The conformsTo: test is also very much like the isKindOf: test, except that it tests for a
type based on a protocol rather than a type based on the inheritance hierarchy .

. Type Checking

Type declarations for objects can be extended to include formal protocols. Protocols thus
offer the possibility of another level of type checking by the compiler, one that's more
abstract since it's not tied to particular implementations.

In a type declaration, protocol names are listed between angle brackets after the type name:

- (id <Formatting»formattingService;

id <ReferenceCounting, AutoFreeing> anObjecti

Just as static typing permits the compiler to test for a type based on the class hierarchy, this
syntax permits the compiler to test for a type based on conformance to a protocol.

For example, if Formatter is an abstract class, this declaration

Formatter *anObject;

groups all objects that inherit from Formatter into a type and permits the compiler to check
assignments against that type.

Similarly, this declaration,

id <Formatting> anObjecti

groups all objects that conform to the Formatting protocol into a type, regardless of their
positions in the class hierarchy. The compiler can check to be sure that only objects that
conform to the protocol are assigned to the type.

88 Chapter 3: Objective C Extensions

In each case, the type groups similar objects-either because they share a common
inheritance, or because they converge on a common set of methods.

The two types can be combined in a single declaration:

Formatter <Formatting> *anObjecti

Protocols can't be used to type class objects. Only instances can be statically typed to a
protocol, just as only instances can be statically typed to a class. (However, at run time,
both classes and instances will respond to a conformsTo: message.)

Protocols within Protocols

One protocol can incorporate others using the same syntax that classes use to adopt
a protocol:

@protocol ProtocolName < protocol list >

All the protocols listed between angle brackets are considered part of the ProtocolName
protocol. For example, if the Paging protocol incorporates the Formatting protocol,

@protocol Paging < Formatting >

any object that conforms to the Paging protocol will also conform to Formatting. Type
declarations

id <Paging> someObjecti

and conformsTo: messages

if ([anotherObject conformsTo:@protocol(Paging)]

need mention only the Paging protocol to test for conformance to Formatting as well.

When a class adopts a protocol, it must implement the methods the protocol declares, as
mentioned earlier. In addition, it must conform to any protocols the adopted protocol
incorporates. If an incorporated protocol incorporates still other protocols, the class must
also conform to them. A class can conform to an incorporated protocol by either:

• Implementing the methods the protocol declares, or
• Inheriting from a class that adopts the protocol and implements the methods.

Protocols 89

Suppose, for example, that the Pager class adopts the Paging protocol. If Pager is a subclass
of Object,

@interface Pager : Object < Paging>

it must implement all the Paging methods, including those declared in the incorporated
Formatting protocol. It adopts the Formatting protocol along with Paging.

On the other hand, if Pager is a subclass of Formatter (a class that independently adopts the
Formatting protocol),

@interface Pager : Formatter < Paging >

it must implement all the methods declared in the Paging protocol proper, but not
those declared in Formatting. Pager inherits conformance to the Formatting protocol
from Formatter.

Remote Messaging

Like most other programming languages, Objective C was initially designed for programs
that are executed as a single process in a single address space.

Nevertheless, the object-oriented model, where communication takes place between
relatively self-contained units through messages that are resolved at run-time, would seem
well suited for interprocess communication as well. It's not hard to imagine Objective C
messages between objects that reside in different address spaces (that is, in different tasks)
or in different threads of execution of the same task.

For example, in a typical server-client interaction, the client task might send its requests to
a designated object in the server, and the server might target specific client objects for the
notifications and other information it sends.

Or imagine an interactive application that needs to do a good deal of computation to carry
out a user command. It could simply put up an attention panel telling the user to wait while
it was busy, or it could isolate the processing work in a subordinate task, leaving the main
part of the application free to accept user input. Objects in the two tasks would
communicate through Objective C messages.

Similarly, several separate processes could cooperate on the editing of 'a single document.
There could be a different editing tool for each type of data in the document. One task
might be in charge of presenting a unified user interface on-screen and of sorting out which
user instructions were the responsibility of which editing tool. Each cooperating task could

90 Chapter 3: Objective C Extensions

be written in Objective C, with Objective C messages being the vehicle of communication
between the user interface and the tools and between one tool and another.

Distributed Objects

Remote messaging in Objective C requires a run-time system that can establish connections
between objects in different address spaces, recognize when a message is intended for a
remote address, and transfer data from one address space to another. It must also mediate
between the separate schedules of the two tasks; it has to hold messages until their remote
receivers are free to respond to them.

NeXTSTEP includes a distributed objects architecture that is essentially this kind of
extension to the run-time system. Using distributed objects, you can send Objective C
messages to objects in other tasks or have messages executed in other threads of the same
task. (When remote messages are sent between two threads of the same task, the threads
are treated exactly like threads in different tasks.)

To send a remote message, an application must first establish a connection with the remote
receiver. Establishing the connection gives the application a proxy for the remote object
in its own address space. It then communicates with the remote object through the proxy.
The proxy assumes the identity of the remote object; it has no identity of its own. The
application is able to regard the proxy as if it were the remote object; for most purposes,
it is the remote object.

Remote messaging is diagrammed in Figure 13 below, where object A communicates
with object B through a proxy, and messages for B wait in a queue until B is ready to
respond to them:

Figure 13. Remote Messages

The sender and receiver are in different tasks and are scheduled independently of each
other. So there's no guarantee that the receiver will be free to accept a message when the
sender is ready to send it. Therefore, arriving messages are placed in a queue and retrieved
at the convenience of the receiving application.

Remote Messaging 91

A proxy doesn't act on behalf of the remote object or need access to its class. It isn't a copy
of the object, but a lightweight substitute for it. In a sense, it's transparent; it simply passes
the messages it receives on to the remote receiver and manages the interprocess
communication. Its main function is to provide a local address for an object that wouldn't
otherwise have one.

A remote receiver is typically anonymous. Its class is hidden inside the remote application.
The sending application doesn't need to know how that application is designed or what
classes it uses. It doesn't need to use the same classes itself. All it needs to know is what
messages the remote object responds to.

Because of this, an object that's designated to receive remote messages typically advertises
its interface in a formal protocol. Both the sending and the receiving application declare
the protocol-they both import the same protocol declaration. The receiving application
declares it because the remote object must conform to the protocol. The sending
application declares it to inform the compiler about the messages it sends and because it
may use the conformsTo: method and the @protocolO directive to test the remote receiver.
The sending application doesn't have to implement any of the methods in the protocol; it
declares the protocol only because it initiates messages to the remote receiver.

The distributed objects architecture, including the NXProxy and NXConnection classes, is
documented in the NeXTSTEP General Reference manual.

Language Support

Remote messaging raises not only a number of intriguing possibilities for program design,
it also raises some interesting issues for the Objective C language. Most of the issues are
related to the efficiency of remote messaging and the degree of separation that the two tasks
should maintain while they're communicating with each other.

So that programmers can give explicit instructions about the intent of a remote message,
Objective C defines five type qualifiers that can be used when declaring methods inside a
formal protocol:

oneway
in
out
inout
bycopy

92 Chapter 3: Objective C Extensions

These modifiers are restricted to formal protocols; they can't be used inside class and
category declarations. However, if a class or category adopts a protocol, its implementation
of the protocol methods can use the same modifiers that are used to declare the methods.

The following sections explain how these five modifiers are used.

Synchronous and Asynchronous Messages

Consider first a method with just a simple return value:

- (BOOL)canDanCei

When a canDance message is sent to a receiver in the same application, the method is
invoked and the return value provided directly to the sender. But when the receiver is in a
remote application, two underlying messages are required-one message to get the remote
object to invoke the method, and the other message to send back the result of the remote
calculation. This is illustrated in the figure below:

~,;*"'----"

" \ initial message
I Proxy --... -------.... ~

for
B return information

Figure 14. Round-Trip Message

Most remote messages will be, at bottom, two-way (or "round trip") remote procedure calls
(RPCs) like this one. The sending application waits for the receiving application to invoke
the method, complete its processing, and send back an indication that it has finished, along
with any return information requested. Waiting for the receiver to finish, even. if no
information is returned, has the advantage of coordinating the two communicating
applications, of keeping them both "in sync." For this reason, round-trip messages are often
called synchronous. Synchronous messages are the default.

Remote Messagil1g 93

However, it's not always necessary or a good idea to wait for a reply. Sometimes it's
sufficient simply to dispatch the remote message and return, allowing the receiver to get to
the task when it will. In the meantime, the sender can go on to other things. Objective C
provides a return type modifier, oneway, to indicate that a method is used only for
asynchronous messages:

- (oneway void)waltzAtWill;

Although oneway is a type qualifier (like const) and can be used in combination with
a specific type name, such as oneway float or oneway id, the only such combination
that makes any sense is oneway void. An asynchronous message can't have a valid
return value.

Pointer Arguments

Next, consider methods that take pointer arguments. A pointer can be used to pass
information to the receiver by reference. When invoked, the method looks at what's stored
in the address it's passed.

- setTune: (struct tune *)aSong

tune = *aSong;

The same sort of argument can also be used to return information by reference. The method
uses the pointer to find where it should place information requested in the message.

- getTune: (struct tune *)theSong

*theSong tune;

The way the pointer is used makes a difference in how the remote message is carried out.
In neither case can the pointer simply be passed to the remote object unchanged; it points
to a memory location in the sender's address space and would not be meaningful in the
address space of the remote receiver. The run-time system for remote messaging must
make some adjustments behind the scenes.

If the argument is used to pass information by reference, the run-time system must
dereference the pointer, ship the value it points to over to the remote application, store the
value in an address local to that application, and pass that address to the remote receiver.

94 Chapter 3: Objective C Extensions

If, on the other hand, the pointer is used to return information by reference, the value it
points to doesn't have to be sent to the other application. Instead, a value from the other
application must be sent back and written into the location indicated by the pointer.

In the one case, information is passed on the first leg of the round trip. In the other case,
information is returned on the second leg of the round trip. Because these cases result in
very different actions on the part of the run-time system for remote messaging, Objective C
provides type modifiers that can clarify the programmer's intention:

• The type modifier in indicates that information is being passed in a message:

- setTune: (in struct tune *)aSongi

• The modifier out indicates that an argument is being used to return information
by reference:

- getTune: (out struct tune *)theSongi

• A third modifier, inout, indicates that an argument is used both to provide information
and to get information back:

- adjustTune: (inout struct tune *)aSongi

The NeXTSTEP distributed objects system takes in out to be the default modifier for all
pointer arguments except those declared const, for which in is the default. inout is the
safest assumption, but also the most time-consuming since it requires passing information
in both directions. The only modifier that makes sense for arguments passed by value
(nonpointers) is in. While in can be used with any kind of argument, out and inout make
sense only for pointers.

In C, pointers are sometimes used to represent composite values. For example, a string is
represented as a character pointer (char *). Although in notation and implementation
there's a level of indirection here, in concept there's not. Conceptually, a string is an entity
in and of itself, not a pointer to something else.

In cases like this, the distributed objects system automatically dereferences the pointer and
passes whatever it points to as if by value. Therefore, the out and inout modifiers make no
sense with simple character pointers. It takes an additional level of indirection in a remote
message to pass or return a string by reference:

- getTuneTitle: (out char **)theTitlei

The same is true of objects:

- adjustMatrix: (inout Matrix **)theMatrixi

These conventions are enforced at run time, not by the compiler.

Remote Messaging 95

Proxies and Copies

Finally, consider a method that takes an object as an argument:

- danceWith:aPartneri

A dance With: message passes an object id to the receiver. If the sender and receiver are
in the same application, they would both be able to refer to the same aPartner object.

This is true even if the receiver is in a remote application, except that the receiver will need
to refer to the object through a proxy (since the object isn't in its address space). The
pointer that danceWith: delivers to a remote receiver is actually a pointer to the proxy.
Messages sent to the proxy would be passed across the connection to the real object and
any return information would be passed back to the remote application.

There are times when proxies may be unnecessarily inefficient, when it's better to send a
copy of the object to the remote process so that it can interact with it directly in its own
address space. To give programmers a way to indicate that this is intended, Objective C
provides a bycopy type modifier:

- danceWith: (bycopy id)aClonei

bycopy can also be used for return values:

- (bycopy)danceri

It can similarly be used with out to indicate that an object returned by reference should be
copied rather than delivered in the form of a proxy:

- getDancer: (bycopy out id *)theDanceri

The only type that it makes sense for bycopy to modify is an object, whether dynamically
typed id or statically typed by a class name.

Note: When a copy of an object is passed to another application, it cannot be anonymous.
The application that receives the object must have the class of the object loaded in its
address space.

96 Chapter 3: Objective C Extensions

Static Options

Objective C objects are dynamic entities. As many decisions about them as possible are
pushed from compile time to run time:

• The memory for objects is dynamically allocated at run time by class methods that
create new instances.

• Objects are dynamically typed. In source code (at compile time), any object can be of
type id no matter what its class. The exact class of an id variable (and therefore its
particular methods and data structure) isn't determined until the program is running.

• Messages and methods are dynamically bound, as described under "How Messaging
Works" in the previous chapter. A run-time procedure matches the method selector in
the message to a method implementation that "belongs to" the receiver.

These features give object-oriented programs a great deal of flexibility and power, but
there's a price to pay. Messages are somewhat slower than function calls, for example,
(though not much slower due to the efficiency of the run-time system) and the compiler
can't check the exact types (classes) of id variables.

To permit better compile-time type checking, and to make code more self-documenting,
Objective C allows objects to be statically typed with a class name rather than generically
typed as id. It also lets you turn some of its object-oriented features off in order to shift
operations from run time back to compile time.

Static Typing

If a pointer to a class name is used in place of id in an object declaration,

Matrix *thisObjecti

the compiler restricts the declared variable to be either an instance of the class named in the
declaration or an instance of a class that inherits from the named class. In the example
above, thisObject can only be a Matrix of some kind.

Statically typed objects have the same internal data structures as objects declared to be ids.
The type doesn't affect the object; it affects only the amount of information given to the
compiler about the object and the amount of information available to those reading the
source code.

Static Options 97

Static typing also doesn't affect how the object is treated at run time. Statically typed
objects are dynamically allocated by the same class methods that create instances of type
id. If Mosaic is a subclass of Matrix, the following code would still produce an object with
all the instance variables of a Mosaic, not just those of a Matrix:

Matrix *thisObject = [[Mosaic alloc] init] i

Messages sent to statically typed objects are dynamically bound, just as objects typed id
are. The exact type of a statically typed receiver is still determined at run time as part of
the messaging process. A display message sent to thisObject

[thisObject display] i

will perform the version of the method defined in the Mosaic class, not its Matrix
superclass.

By giving the compiler more information about an object, static typing opens up
possibilities that are absent for objects typed id:

• In certain situations, it allows for compile-time type checking.

• It can free objects from the restriction that identically named methods must have
identical return and argument types.

• It permits you to use the structure pointer operator to directly access an object's
instance variables.

The first two topics are discussed in the sections below. The third was covered in the
previous chapter under "Defining a Class."

Type Checking

With the additional information provided by static typing, the compiler can deliver better
type-checking services in two situations:

• When a message is sent to a statically typed receiver, the compiler can check to be sure
that the receiver can respond. A warning is issued if the receiver doesn't have access to
the method named in the message.

• When a statically typed object is assigned to a statically typed variable, the compiler can
check to be sure that the types are compatible. A warning is issued if they're not.

98 Chapter 3: Objective C Extensions

An assignment can be made without warning provided the class of the object being
assigned is identical to, or inherits from, the class of the variable receiving the assignment.
This is illustrated in the example below.

View *aView;
Matrix *aMatrix;

aMatrix = [[Matrix alloc) init);
aView = aMatrix;

Here aMatrix can be assigned to a View because a Matrix is a kind of View-the Matrix
class inherits from View. However, if the roles of the two variables are reversed and a View
is assigned to aMatrix, the compiler will generate a warning; not every View is a Matrix.
(For reference, Figure 7 in the previous chapter shows a portion of the class hierarchy
including View and Matrix.)

There's no check when the expression on either side of the assignment operator is an id. A
statically typed object can be freely assigned to an id, or an id to a statically typed object.
Because methods like alloe and init return ids, the compiler doesn't check to be sure that a
compatible object is returned to a statically typed variable. The following code is
error-prone, but is allowed nonetheless:

Matrix *aMatrix;
aMatrix = [[Window alloc) init);

Note: This is consistent with the implementation of void * (pointer to void) in ANSI C.
Just as void * is a generic pointer that eliminates the need for coercion in assignments
between pointers, id is a generic pointer to objects that eliminates the need for coercion to
a particular class in assignments between objects.

Return and Argument Types

In general, methods that share the same selector (the same name) must also share the same
return and argument types. This constraint is imposed by dynamic binding. Because the
class of a message receiver, and therefore class-specific details about the method it's asked
to perform, can't be known at compile time, the compiler must treat all methods with the
same name alike. When it prepares information on method return and argument types for
the run-time system, it creates just one method description for each method selector.

However, when a message is sent to a statically typed object, the class of the receiver
is known by the compiler. The compiler has access to class-specific information about
the methods. Therefore, the message is freed from the restrictions on its return and
argument types.

Static Options 99

Static Typing to an Inherited Class

An instance can be statically typed to its own class or to any class that it inherits from.
All instances, for example, can be statically typed as Objects.

However, the compiler understands the class of a statically typed object only from the class
name in the type designation, and it does its type checking accordingly. Typing an instance
to an inherited class can therefore result in discrepancies between what the compiler thinks
would happen at run time and what will actually happen.

For example, if you statically type a Matrix instance as a View,

View *myMatrix = [[Matrix alloc] init];

the compiler will treat it as a View. If you send the object a message to perform a
Matrix method,

id cell = [myMatrix selectedCell];

the compiler will complain. The selectedCeIl method is defined in the Matrix class, not
in View.

However, if you send it a message to perform a method that the View class knows about,

[myMatrix display];

the compiler won't complain, even though Matrix overrides the method. At run time,
Matrix's version of the method will be performed.

Similarly, suppose that the Upper class declares a worry method that returns a double,

- (double)worry;

and the Middle subclass of Upper overrides the method and declares a new return type:

- (int)worrYi

If an instance is statically typed to the Upper class, the compiler will think that its worry
method returns a double, and if an instance is typed to the Middle class, it will think
that worry returns an int. Errors will obviously result if a Middle instance is typed to
the Upper class. The compiler will inform the run-time system that a worry message sent
to the object will return a double, but at run time it will actually return an int and generate
an error.

Static typing can free identically named methods from the restriction that they must have
identical return and argument types, but it can do so reliably only if the methods are
declared in different branches of the class hierarchy.

100 Chapter 3: Objective C Extensions

Getting a Method Address

The only way to circumvent dynamic binding is to get the address of a method and call it
directly as if it were a function. This might be appropriate on the rare occasions when a
particular method will be performed many times in succession and you want to avoid the
overhead of messaging each time the method is performed.

With a method defined in the Object class, methodFor:, you can ask for a pointer to the
procedure that implements a method, then use the pointer to call the procedure. The pointer
that methodFor: returns must be carefully cast to the proper function type. Both return and
argument types should be included in the cast.

The example below shows how the procedure that implements the setTag: method might
be called:

id (*setter) (id, SEL, int);

int i;

setter = (id (*) (id, SEL, int)) [target methodFor:@selector(~etTag:)];
for (i = 0; i < 1000, i++)

setter(targetList[i], @selector(setTag:), i);

The first two arguments passed to the procedure are the receiving object (self) and the
method selector (_cmd). These arguments are hidden in method syntax but must be made
explicit when the method is called as a function.

Using methodFor: to circumvent dynamic binding saves most of the time required by
messaging. However, the savings will be significant only where a particular message will
be repeated many times, as in the for loop shown above.

Note that methodFor: is provided by the run-time system; it's not a feature of the
Objective C language itself.

Getting an Object Data Structure

A fundamental tenet of object-oriented programming is that the data structure of an object
is private to the object. Information stored there can be accessed only through messages
sent to the object. However, there's a way to strip an object data structure of its
"objectness" and treat it like any other C structure. This makes all the object's instance
variables publicly available.

Static Options 101

When given a class name as an argument, the @defsO directive produces the declaration
list for an instance of the class. This list is useful only in declaring structures, so @defsO
can appear only in the body of a structure declaration. This code, for example, declares a
structure that would be identical to the template for an instance of the Worker class:

struct workerDef {
@defs(Worker)

} *public;

Here public is declared as a pointer to a structure that's essentially indistinguishable from
a Worker instance. With a little help from a type cast, a Worker id can be assigned to the
pointer. The object's instance variables can then be accessed publicly through the pointer:

id aWorker;
aWorker = [[Worker alloc] init];

public = (struct workerDef *)aWorker;
public->boss = nil;

This technique of turning an object into a structure makes all of its instance variables
public, no matter whether they were declared @private, @protected, or @public.

Objects generally aren't designed with the expectation that they'll be turned into C
structures. You may want to use @defsO for classes you define entirely yourself, but it
should not be applied to classes found in a library or to classes you define that inherit from
library classes.

Type Encoding

To assist the run-time system, the compiler encodes the return and argument types for each
method in a character string and associates the string with the method selector. The coding
scheme it uses might also be of use in other contexts and so is made publicly available with
the @encodeO directive. When given a type specification, @encodeO returns a string
encoding that type. The type can be a basic type such as an int, a pointer, a tagged structure
or union, or a class name-anything, in fact, that can be used as an argument to the C
sizeofO operator.

char *bufl @encode(int **);
char *buf2 @encode(struct key);
char *buf3 @encode(Matrix);

102 Chapter 3: Objective C Extensions

The table below lists the type codes. Note that many of them overlap with the codes used
in writing to a typed stream. However, there are codes listed here that you can't use when
writing to a typed stream and there are codes that you may want to use when writing to a
typed stream that aren't generated by @encodeO. (See the NeXTSTEP General Reference
manual and the next chapter of this book for information on typed streams.)

Code

c

s
I
C
I
S
L
f
d
v

*
@

[... J
{ ... }
(...)
bnum
/\type

?

Meaning

A char
An int
A short
Along
An unsigned char
An unsigned int
An unsigned short
An unsigned long
A float
A double
A void
A character string (char *)
An object (whether statically typed or typed id)
A class object (Class)
A method selector (SEL)
An array
A structure
A union
A bitfield of num bits
A pointer to type
An unknown type

The type specification for an array is enclosed within square brackets; the number of
elements in the array is specified immediately after the open bracket, before the array type.
For example, an array of 12 pointers to floats would be encoded as:

[121\fJ

Type Encoding 103

Structures are specified within braces, and unions within parentheses. The structure tag is
listed first, followed by an equal sign and the codes for the fields of the structure listed in
sequence. For example, this structure,

typedef struct example

id anObjectj

char *aStringj

int anlntj

Examplej

would be encoded like this:

{example=@*i}

The same encoding results whether the defined type name (Example) or the structure tag
(example) is passed to @encodeO. The encoding for a structure pointer carries the same
amount of information about the structure's fields:

"'{example=@*i}

However, another level of indirection removes the internal type specification:

"''''{example}

Objects are treated like structures. For example, passing the Object class name to
@encodeO yields this encoding:

{Object=#}

The Object class declares just one instance variable, isa, of type Class.

Note: Although the @encodeO directive doesn't return them, the run-time system also
uses these additional encodings for type qualifiers when they're used to declare methods in
a protocol:

Code Meaning

r const
n in
N inout
0 out
0 bycopy
V oneway

104 Chapter 3: Objective C Extensions

The Run-Time System

The Objective C language defers as many decisions as it can from compile time and link
time to run time. Whenever possible, it does things dynamically. This means that the
language requires not just a compiler, but also a run-time system to execute the compiled
code. The run-time system acts as a kind of operating system for the Objective C language;
it's what makes the language work.

Objective C programs interact with the run-time system at three distinct levels:

• Through Objective C source code. For the most part, the run-time system works
automatically and behind the scenes. You use it just by writing and compiling
Objective C source code.

It's up to the compiler to produce the data structures that the run-time system requires
and to arrange the run-time function calls that carry out language instructions. The data
structures capture information found in class and category definitions and in protocol
declarations; they include the class and protocol objects discussed earlier, as well as
method selectors, instance variable templates, and other information distilled from
source code. The principal run-time function is the one that sends messages, as
described under "How Messaging Works" in Chapter 2. It's invoked by source-code
message expressions.

• Through a method interface defined in the Object class. Every object inherits from the
Object class, so every object has access to the methods it defines. Most Object methods
interact with the run-time system.

Some of these methods simply query the system for information. The preceding
chapters, for example, mentioned the class method, which asks an object to identify its
class, isKindOf: and isMemberOf:, which test an object's position in the inheritance
hierarchy, respondsTo:, which checks whether an object can accept a particular

The RU11- Time System 105

message, conformsTo:, which checks whether it conforms to a protocol, and
methodFor:, which asks for the address of a method implementation. Methods like
these give an object the ability to introspect about itself.

Other methods set the run-time system in motion. For example, perform: and its
companions initiate messages, and alloc produces a new object properly connected to
its class.

All these methods were mentioned in previous chapters and are described in detail in
Appendix C, "The Object Class."

• Through direct calls to run-time functions. The run-time system has a public interface,
consisting mainly of a set of functions. Many are functions that duplicate what you get
automatically by writing Objective C code or what the Object class provides with a
method interface. Others manipulate low-level run-time processes and data structures.
These functions make it possible to develop other interfaces to the run-time system and
produce tools that augment the development environment; they're not needed when
programming in Objective C.

However, a few of the run-time functions might on occasion be useful when writing an
Objective C program. These functions-such as sel_getUidO, which returns a method
selector for a method name, and objc_lookUpClassO, which returns a class object for
a class name-are described at various places in the text of this manual.

All the run-time functions are fully documented in the NeXTSTEP General Reference
manual.

Because the Object class is at the root of all inheritance hierarchies, the methods it defines
are inherited by all classes. Its methods therefore establish behaviors that are inherent to
every instance and every class object. However, in a few cases, the Object class merely
defines a framework for how sOlnething should be done; it doesn't provide all the necessary
code itself.

For example, the Object class defines a name method that should return a character string
associated with the receiver:

if (!strcmp([anObject name], "Connochaetes taurinus"))

If you define a class of named objects, you must implement a name method to return the
specific character string associated with the receiver. Object's version of the method can't
know what that name will be, so it merely returns the class name as a default.

106 Chapter 4: The Run-Time System

This chapter looks at five areas where the Object class provides a framework and defines
conventions, but where you may need to write code to fill in the details:

• Allocating and initializing new instances of a class
• Deallocating instances when they're no longer needed
• Forwarding messages to another object
• Dynamically loading new modules into a running program
• Archiving objects-for example, storing them in a file on disk

Other conventions of the Object class are described in Appendix C.

Allocation and Initialization

It takes two steps to create an object in Objective C. You must both:

• Dynamically allocate memory for the new object, and
• Initialize the newly allocated memory to appropriate values.

An object isn't fully functional until both steps have been completed. As discussed in
Chapter 2, each step is accomplished by a separate method, but typically in a single line
of code:

id anObject = [[Matrix alloc] init];

Separating allocation from initialization gives you individual control over each step so
that each can be modified independently of the other. The following sections look
first at allocation and then at initialization, and discuss how they are in fact controlled
and modified.

Allocating Memory for Objects

In Objective C, memory for new objects is allocated using class methods defined in
the Object class. Object defines two principal methods for this purpose, alloe and
alIoeFromZone: .

+ alloc;
+ allocFrornZone: (NXZone *)zone;

Allocation and Initialization 107

These methods allocate enough memory to hold all the instance variables for an object
belonging to the receiving class. They don't need to be overridden and modified
in subclasses.

The argument passed to allocFrornZone: determines where the new object will be located
in memory. It permits you to group related objects into the same region of memory for
better performance.

Zones

In a multitasking environment like NeXTSTEP, users typically run several applications at
once. These applications can easily require more memory than will physically fit on the
user's system.

To solve this problem, NeXTSTEP, like most modem systems, makes use of virtual
memory-a system for addressing more information than can actually be accommodated
in main memory. Whenever an application references some information, the system
determines whether the memory page containing that information resides in main memory.
If it doesn't, the page with the requested information must be read in. If there's no room
for the new page, a page of resident memory must be stored to the disk to make room.

This swapping of pages in and out of main memory, to and from the disk, is much slower
than a direct memory reference. It slows the execution of applications, and, in a
multitasking environment, can degrade the overall responsiveness of the system. Reducing
swapping to a minimum can greatly increase system performance.

One way to reduce swapping is to improve locality of reference, the chance that the next
piece of information the system needs to reference will be located close to the last piece of
information referenced, perhaps on the same page, or at lcast on a page recently referenced
and so still in main memory. The idea is to minimize the number of pages that must be
resident for a given operation by putting related information on the same page (or the same
few pages) and keeping unrelated, or rarely used, information on other pages.

To this end, NeXTSTEP lets you partition dynamic memory into zones and direct which
zone objects (and other data structures) should be allocated from.

Zones are recorded in NXZone structures, one per zone. These structures are provided by
the system; you don't have to allocate memory for them or make copies. You also don't
need to look inside the structure or manipulate its fields. You can simply regard pointers to
the structures as zone identifiers.

108 Chapter 4: The Run-Time System

The system creates one default zone for each application, which is returned by
NXDefaultMallocZoneO.

NXZone *defaultZone = NXDefaultMallocZone();

Other zones can be created by the NXCreateZoneO function.

NXZone *newZone = NXCreateZone(vrn-page_size * 2, vrn-page_size, YES);

This function takes three arguments:

• The initial size of the zone in bytes.

• The granularity of the zone (how much it should grow or shrink by).

• Whether it's possible to free memory from the zone. For most zones, this normally is
YES. However, it can be NO if a zone is to be used temporarily, then destroyed (with
NXDestroyZoneO). Destroying a zone effectively deallocates all the memory within it.

The initial size of a zone and its granularity should be set to small multiples of a page size,
since a page is the smallest amount of memory handled by the virtual memory system. The
size of a page can vary from installation to installation; its current value is stored in the
vm_page_size global variable declared in machlmach_init.h.

Ideally, zones should be moderate in size. Large zones may fail to group related data onto
a small number of pages; they're prone to the same problem that zone allocation is meant
to correct: the fragmentation of data across many pages.

It's also not a good idea to have a large number of zones with very little information in them.
The free space in one zone won't be available for allocation from other zones, so an
application could end up using more memory than it should.

Allocating from a Zone

The allocFromZone: method permits you to cluster related objects (such as a Matrix and
its Cells) in the same region of memory. It takes a pointer to a zone as its argument:

NXZone *rnatrixZone = NXCreateZone(vrn-page_size, vrn-page_size, YES);
id newObject = [[Matrix allocFrornZone:rnatrixZone] init];

The zone method returns the zone of the receiver and can be used to make sure one object
is allocated from the same zone as another object. For example, a Matrix could be allocated
from the same zone as the Window it will be displayed in:

id aMatrix = [[Matrix allocFromZone: [my Window zone]] init];

Allocation and Initialization 109

The NXZoneMalloeO function lets you specify a zone when dynamically allocating
memory for data structures that aren't objects. It's arguments are a zone and the number of
bytes to be allocated:

float *points = (float *)NXZoneMalloc(NXDefaultMallocZone() I

sizeof(float) * numPoints);

Allocation methods and functions that don't specify a zone, such as the alloe method, take
memory from the default zone. The standard C malloeO function allocates from the default
zone, or from memory outside any zone.

Objects that are commonly used together should be kept together in the same zone,
along with any related data structures the objects use. For example, all the objects that
contribute to a particular document and its display (the Window object, View objects,
text data structures, and so on) could be kept together in the same zone, one created just for
the document. When the document isn't open, none of the pages in the zone will clutter
main memory.

It's equally important to keep rarely used objects separate from those that are used more
frequently. For example, users only occasionally refer to an application's information panel
(usually only when first becoming familiar with the application). If the objects that
contribute to the panel share pages with objects that are used regularly, they will take up
space in main memory even when they're not needed.

If your application often both allocates and frees a certain type of object, there are a couple
of considerations to keep in mind. First, freeing tends to fragment memory. It might be
best to keep all these objects in the same zone to prevent the fragmentation of other zones.
Second, freeing takes a bit of time, because newly freed memory must be coalesced with
memory already free. Rather than free each object individually, you might locate them all
in a temporary zone that can't free memory, then destroy the whole zone at once (through
a call to NXDestroyZoneO). Such a zone can allocate memory quickly, but can only grow
in size, so you should use this technique only if you will soon destroy the zone.

Initializing New Objects

The alloe and alloeFromZone: methods initialize a new object's isa instance variable
so that it points to the object's class (the class object). All other instance variables are set
to O. Usually, an object needs to be more specifically initialized before it can be safely used.

This initialization is the responsibility of class-specific instance methods that, by
convention, begin with the abbreviation "init". If the method takes no arguments, the

110 Chapter 4: The Run-Time System

method name is just those four letters, init. If it takes arguments, labels for the arguments
follow the "init" prefix. For example, a View can be initialized with an initFrame: method.

Every class that declares instance variables must provide an init ... method to initialize
them. The Object class declares the isa variable and defines an init method. However,
since isa is initialized when memory for a new object is allocated, all Object's init method
does is return self. Object declares the method mainly to establish the naming convention
described above.

The Object Returned

An init ... method normally initializes the instance variables of the receiver, then returns it.
It's the responsibility of the method to return an object that can be used without error.

However, in some cases, this responsibility can mean returning a different object than
the receiver. For example, if a class keeps a list of named objects, it might provide an
initName: method to initialize new instances. If there can be no more than one object
per name, initName: might refuse to assign the same name to two objects. When asked
to assign a new instance a name that's already being used by another object, it might free
the newly allocated instance and return the other object-thus ensuring the uniqueness
of the name while at the same time providing what was asked for, an instance with the
requested name.

In a few cases, it might be impossible for an init ... method to do what it's asked to do. For
example, an initFromFile: method might get the data it needs from a file passed as an
argument. If the file name it's passed doesn't correspond to an actual file, it won't be able
to complete the initialization. In such a case, the init ... method could free the receiver and
return nil, indicating that the requested object can't be created.

Because an init ... method might return an object other than the newly allocated receiver, or
even return nil, it's important that programs use the value returned by the initialization
method, not just that returned by alloc or allocFromZone:. The following code is very
dangerous, since it ignores the return of init.

id anObject = [SorneClass alloc];

[anObject init];

[anObject someOtherMessage];

It's recommended that you combine allocation and initialization messages:

id anObject = [[SomeClass alloc] init];

[anObject someOtherMessage];

Allocation and Initialization 111

If there's a chance that the init ... method might return nil, the return value should be
checked before proceeding:

id anObject = [[SomeClass alloc] init];
if (anObject)

[anObject someOtherMessage];

else

Arguments

An init... method must ensure that all of an object's instance variables have reasonable
values. This doesn't mean that it needs to provide an argument for each variable. It can set
some to default values or depend on the fact that (except for is a) all bits of memory
allocated for a new object are set to O. For example, if a class requires its instances to have
a name and a data source, it might provide an initName:fromFile: method, but set
nonessential instance variables to arbitrary values or allow them to have the null values set
by default. It could then rely on methods like setEnabled:, setFriend:, and
setDimensions: to modify default values after the initialization phase had been completed.

Any init ... method that takes arguments must be prepared to handle cases where an
inappropriate value is passed. One option is to substitute a default value, and to let a null
argument explicitly evoke the default.

Coordinating Classes

Every class that declares instance variables must provide an init ... method to initialize them
(unless the variables require no initialization). The init ... methods the class defines
initialize only those variables declared in the class. Inherited instance variables are
initialized by sending a message to super to perform an initialization method defined
somewhere farther up the inheritance hierarchy:

- initName: (char *)string

if (self = [super init]) {

name = (char *)NXZoneMalloc([self zone], strlen(string) + 1);
strcpy(name, string);

return self;

return nil;

112 Chapter 4: The Run-Time System

The message to super chains together initialization methods in all inherited classes.
Because it comes first, it ensures that superclass variables are initialized before those
declared in subclasses. For example, a Matrix object must be initialized as an Object, a
Responder, a View, and a Control before it's initialized as a Matrix. (See Figure 7 in
Chapter 2 for the Matrix inheritance hierarchy.)

The connection between the initName: method illustrated above and the inherited init
method it incorporates is diagrammed in the figure below:

- init

Class A

Class B - initName:

•
I
I

J

Figure 15. Incorporating an Inherited Initialization Method

A class must also make sure that all inherited initialization methods work. For example, if
class A defines an init method and its subclass B defines an initName: method, as shown
in the figure above, B must also make sure that an init message will successfully initialize
B instances. The easiest way to do that is to replace the inherited init method with a version
that invokes initName:.

- init

return [self initName:"default"]i

The initName: method would, in tum, invoke the inherited method, as was shown in the
example and figure above. That figure can be modified to include B's version of init.

Allocation and Initialization. 113

Class A

Class B
(

- init

- init

- initName:

• • I
.J

Figure 16. Covering an Inherited Initialization Method

Covering inherited initialization methods makes the class you define more portable to other
applications. If you leave an inherited method uncovered, someone else may use it to
produce incorrectly initialized instances of your class.

In the example above, initN arne: would be the designated initializer for its class (class B).
The designated initializer is the method in each class that guarantees inherited instance
variables are initialized (by sending a message to super to perform an inherited method).
It's also the method that does most of the work, and the one that other initialization methods
in the same class invoke. It's a NeXTSTEP convention that the designated initializer is
always the method that allows the most freedom to determine the character of a new
instance (the one with the most arguments).

It's important to know the designated initializer when defining a subclass. For example,
suppose we define class C, a subclass ofB, and implement an initNarne:frornFile: method.
In addition to this method, we have to make sure that the inherited init and initNarne:
methods also work for instances of C. This can be done just by covering B's initNarne:
with a version that invokes initNarne:frornFile:.

- initName: (char *)string

return [self initName:string fromFile:NULL] i

114 Chapter 4: The RUl1-Time System

For an instance of the C class, the inherited init method will invoke this new version of
initName: which will invoke initName:fromFile:. The relationship between these
methods is diagrammed below.

• • I

- init

Class B - initName:

Class C -" - initName:

..310. - initName:fromFile: ~

Figure 17. Covering the Designated Initializer

This figure omits an important detail. The initName:fromFile: method, being the
designated initializer for the C class, will send a message to super to invoke an inherited
initialization method. But which of B's methods should it invoke, init or initName:? It
can't invoke init, for two reasons:

• Circularity would result (init invokes C's initName:, which invokes
initName:fromFile:, which invokes init again).

• It won't be able to take advantage of the initialization code in B's version of in it Name:.

Therefore, initName:fromFile: must invoke initName:.

- initName: (char *)string fromFile: (char *)pathname

if (self = [super initName:string])

Allocation and Initialization 115

The general principle is this:

The designated initializer in one class must, through a message to super, invoke the
designated initializer in an inherited class.

Designated initializers are chained to each other through messages to super, while other
initialization methods are chained to designated initializers through messages to self.

The figure below shows how all the initialization methods in classes A, B, and C are linked.
Messages to self are shown on the left and messages to super are shown on the right.

- init

Class A

- init

Class B ,. - initName:

Class C - initName:

-'" - initName:fromFile: -- ..,....

Figure 18. Initialization Chain

116 Chapter 4: The Run-Time System

• • I
J

~

Note that B's version of init sends a message to self to invoke the initName: method.
Therefore, when the receiver is an instance of the B class, it will invoke B's version of
initName:, and when the receiver is an instance of the C class, it will invoke C's version.

Combining Allocation and Initialization

The Object class defines a new method that combines the two steps of allocating and
initializing a new object. Just as you can define init ... methods with arguments, you can
also define new ... methods that take similar arguments. For example:

+ newName: (char *)string

return [[self alloc] initName:string];

However, there's little point in implementing a new ... method like this that simply covers
for other allocation and initialization methods.

On the other hand, a new ... method does make sense if the allocation must somehow be
informed by the initialization. For example, if the data for the initialization is taken from a
file, and the file might contain enough data to initialize more than one object, it would be
impossible to know how many objects to allocate until the file is opened. In this case, you
might implement a newListFromFile: method that takes the name of the file as an
argument. It would open the file, see how many objects to allocate, and create a List object
large enough to hold all the new objects. It would then allocate and initialize the objects
from data in the file, put them in the List, and finally return the List.

It also makes sense to combine allocation and initialization in a single method if you want
to avoid the step of blindly allocating memory for a new object that you might not use. As
mentioned under "The Object Returned" above, an init ... method might sometimes
substitute another object for the receiver. For example, when initName: is passed a name
that's already taken, it might free the receiver and in its place return the object that was
previously assigned the name. This means, of course, that an object is allocated and freed
immediately without ever being used.

If the code that checks whether the receiver should be initialized is placed inside the method
that does the allocation instead of inside init ... , you can avoid the step of allocating a new
instance when one isn't needed and therefore would not have to free it.

Allocation and Initialization 117

In the following example, the soloist method ensures that there's no more than one instance
of the Soloist class. It allocates and initializes an instance only once:

+ soloist

static Soloist *instance nil;

if (instance == nil)
instance = [[self alloc] init];

return instance;

Note that this method is not named "new" since it rarely returns a new object.

Deallocation

The Object class defines a free method that releases the memory that was originally
allocated for an object. Because objects are created dynamically at run time, the memory
they occupy must be freed when they've outlived their usefulness. This is accomplished by
telling the object to free itself:

[anObject free];

The point of a free message is to deallocate all the memory occupied by the receiver.
Object's version of the method deallocates the receiver's instance variables, but doesn't
follow any variable that points to other memory. If the receiver allocated any additional
memory-to store a character string or an array of structures, for example-that memory
must also be freed (unless it's shared by other objects). Similarly, if the receiver is
served by another object that would be rendered useless in its absence, that object must also
be freed.

Therefore, it's necessary to override Object's version of free and implement a version that
deallocates all the other memory the object occupies. Every class that has its objects
allocate additional memory must have its own free method. Each version of free ends with
a message to super to perform an inherited version of the method:

118 Chapter 4: The Rutt-Time System

- free

free (buffer) ;
if (vrnMemory

Vffi_deallocate(task_self(), vrnMemory, memorySize);
[servant free];
return [super free];

By working its way up the inheritance hierarchy, every free message eventually invokes
Object's version of the of the method.

Object's version of free returns nil. If for some reason a free method is unable to free the
receiver, it should avoid the message to super and return self instead.

Note: Although free returns nil, it doesn't automatically change the receiver's id to nil; it
merely makes the id invalid. Any further messages sent to the object will produce errors.
To be safe, you can assign free's return value to the variable that stores the id:

myObject = [myObject free];

forwarding

It's an error to send a message to an object that can't respond to it. However, before
announcing the error, the run-time system gives the receiving object a second chance
to handle the message. It sends the object a forward:: message with two arguments­
the method selector in the original message and a pointer to the arguments that were passed
with it. These two arguments fully specify the message the receiver was unable to
respond to.

A forward:: method can be implemented to give a default response to the message, or to
avoid the error in some other way. As its name implies, forward:: is commonly used to
forward the message to another object.

Forwarding 119

To see the scope and intent of forwarding, imagine the following scenarios: Suppose, first,
that you're designing an object that can respond to a negotiate message, and you want its
response to include the response of another kind of object. You could accomplish this
easily by passing a negotiate message to the other object somewhere in the body of the
negotiate method you implement.

Take this a step further, and suppose that you want your object's response to a negotiate
message to be exactly the response implemented in another class. One way to accomplish
this would be to make your class inherit the method from the other class. However, it might
not be possible to arrange things this way. There may be good reasons why your class and
the class that implements negotiate are in different branches of the inheritance hierarchy.

Even if your class can't inherit the negotiate method, you can still "borrow" it by
implementing a version of the method that simply passes the message on to an instance of
the other class:

- negotiate

if ([someOtherObject respondsTo:@selector(negotiate)]
return [someOtherObject negotiate];

return self;

This way of doing things could get a little cumbersome, especially if there were a number
of messages you wanted your object to pass on to the other object. You'd have to
implement one method to cover each method you wanted to borrow from the other class.
Moreover, it would be impossible to handle cases where you didn't know, at the time you
wrote the code, the full set of messages that you might want to forward. That set might
depend on events at run time, and it might change as new methods and classes are
implemented in the future.

The second chance offered by a forward:: message provides a less ad hoc solution to this
problem, and one that's dynamic rather than static. It works like this: When an object can't
respond to a message because it doesn't have a method matching the selector in the
message, the run-time system informs the object by sending it a forward:: message. Every
object inherits a forward:: method from the Object class. However, Object's version of the
method simply generates a run-time error due to the unrecognized message. By overriding
Object's version and implementing your own, you can take advantage of the opportunity
that the forward:: message provides to forward messages to other objects.

120 Chapter 4: The Run-Time System

To forward a message, all a forward:: method needs to do is:

• Determine where the message should go, and
• Send it there with its original arguments.

The message can be sent with the performv:: method:

- forward: (SEL)aSelector : (marg_list)argFrame

if ([someOtherObject respondsTo:aSelector]
return [someOtherObject performv:aSelector :argFrame] i

else

The original message will return whatever value forward:: returns. The return type should
be id.

The forward:: method's two arguments are the selector in the unrecognized message and
the stack frame containing the arguments that were passed in the message. (Even methods
like negotiate that declare no outward arguments are implemented with the two hidden
arguments, self and _cmd, so the stack frame won't be empty.) Note that forward::'s
arguments are passed unchanged to performv::.

A forward:: method can act as a distribution center for unrecognized messages, parceling
them out to different receivers. Or it can be a transfer station, sending all messages to the
same destination. It can translate one message into another, or simply "swallow" some
messages so there's no response and no error. A forward:: method can also consolidate
several messages into a single response. What forward:: does is up to the implementor.
However, the opportunity it provides for linking objects in a forwarding chain opens up
possibilities for program design.

Note: The forward:: method gets to handle messages only if they don't invoke an existing
method in the nGininal receiver. If, for example, you want your object to forward negotiate
messages to another object, it can't have a negotiate method of its own. If it does, the
message will never reach forward::.

Forwarding 121

Forwarding and Multiple Inheritance

Forwarding mimics inheritance, and can be used to lend some of the effects of multiple
inheritance to Objective C programs. As shown in Figure 19 below, an object that responds
to a message by forwarding it appears to borrow or "inherit" a method implementation
defined in another class.

Warrior Diplomat

- forward:: - negotiate

negotiate

Figure 19. Forwarding

In this illustration, an instance of the Warrior class forwards a negotiate message to an
instance of the Diplomat class. The Warrior will appear to negotiate like a Diplomat. It
will seem to respond to the negotiate message, and for all practical purposes it does
respond (although it's really a DiplO111at that's doing the work).

The object that forwards a message thus "inherits" methods from two branches of the
inheritance hierarchy-its own branch and that of the object that responds to the message.
In the example above, it will appear as if the Warrior class inherits from Diplomat as well
as its own superclass.

Forwarding addresses most needs that lead programmers to value multiple inheritance.
However, there's an important difference between the two: Multiple inheritance combines
different capabilities in a single object. It tends toward large, multifaceted objects.
Forwarding, on the other hand, assigns separate responsibilities to separate objects. It
decomposes problems into smaller objects, but associates those objects in a way that's
transparent to the message sender.

122 Chapter 4: The Run-Time System

Surrogate Objects

Forwarding not only mimics multiple inheritance, it also makes it possible to develop
lightweight objects that represent or "cover" more substantial objects. The surrogate stands
in for the other object and funnels messages to it.

The proxy discussed under "Remote Messaging" in Chapter 3 is such an object. A proxy
takes care of the administrative details of forwarding messages to a remote receiver, making
sure argument values are copied and retrieved across the connection, and so on. But it
doesn't attempt to do much else; it doesn't duplicate the functionality of the remote object
but simply gives the remote object a local address, a place where it can receive messages in
another application.

Other kinds of surrogate objects are also possible. Suppose, for example, that you have an
object that manipulates a lot of data-perhaps it creates a complicated image or reads the
contents of a file on disk. Setting this object up could be time-consuming, so you prefer to
do it lazily-when it's really needed or when system resources are temporarily idle. At the
same time, you need at least a placeholder for this object in order for the other objects in
the application to function properly.

In this circumstance, you could initially create, not the full-fledged object, but a lightweight
surrogate for it. This object could do some things on its own, such as answer questions
about the data, but mostly it would just hold a place for the larger object and, when the time
came, forward messages to it. When the surrogate's forward:: method first receives a
message destined for the other object, it would check to be sure that the object existed and
would create it if it didn't All messages for the larger object go through the surrogate, so
as far as the rest of the program is concerned, the surrogate and the larger object would be
the same.

Making Forwarding Transparent

Although forwarding mimics inheritance, the Object class never confuses the two.
Methods like respondsTo: and isKindOf: look only at the inheritance hierarchy, never
at the forwarding chain. If, for example, a Warrior object is asked whether it responds to
a negotiate message,

if ([aWarrior respondsTo:@selector(negotiate)]

the answer will be NO, even though it can receive negotiate messages without error and
respond to them, in a sense, by forwarding them to a Diplomat. (See Figure 19 above.)

Forwarding 123

In many cases, NO is the right answer. But it may not be. If you use forwarding to set up
a surrogate object or to extend the capabilities of a class, the forwarding mechanism should
probably be as transparent as inheritance. If you want your objects to act as if they truly
inherited the behavior of the objects they forward messages to, you'll need to reimplement
the respondsTo: and isKindOf: methods to include your forwarding algorithm:

- respondsTo: (SEL)aSelector

if ([super respondsTo:aSelector]

return YES;
else {

/* Here, test whether the aSelector message can be *
* forwarded to another object and whether that object *
* can respond to it. Return YES if it can. */

return NO;

In addition to respondsTo: and isKindOf:, the instancesRespondTo: and
isKindOfClassNamed: methods should also mirror the forwarding algorithm. These two
methods round out the set. If protocols are used, the conformsTo: methods should likewise
be added to the list. Similarly, if an object forwards any remote messages it receives, it
should have versions of two other methods, descriptionForMethod: and
descriptionForInstanceMethod:, that can return accurate descriptions of the methods that
ultimately respond to the forwarded messages.

You might consider putting the forwarding algorithm somewhere in private code and have
all these methods, forward:: included, call it.

Note: All the methods mentioned above are described in Appendix C, "The Object Class."

Dynamic Loading

An Objective C program can load and link new classes and categories while it's running.
The new code is incorporated into the program and treated identically to classes and
categories loaded at the start.

Dynamic loading can be used to do a lot of different things. For example, device drivers
written with the NeXTSTEP Device Driver KifM (a Release 3.1 addition) are dynamically
loaded into the kernel. Adaptors for database servers are dynamically loaded by the
Database Kit.

124 Chapter 4: The Run-Time System

In the NeXTSTEP environment, dynamic loading currently finds its favored use in
customizing applications. You can allow others to write modules that your program will
load at run time-much as the NeXTSTEP Interface Builder loads custom palettes, the
Preferences application loads custom displays, and the Workspace Manager loads data
inspectors. The loadable modules extend what your application can do. They contribute to
it in ways that you permit, but could not have anticipated or defined yourself. You provide
the framework, but others provide the code.

Dynamically loaded modules that customize an application generally come with their own
user interface-perhaps their own windows, but more likely objects that draw in windows
you provide. When the code is loaded and objects are instantiated or unarchived, the
interface to the custom portion of the application is presented on-screen along with the rest
of the user interface.

The Preferences application, for example, has a window with a scrollable list of buttons
along the top, plus a display area beneath the buttons. Each button controls the presentation
of a different set of options within the display area; clicking a button causes its options to
be displayed. Each dynamically loadable module provides a display that can be presented
in the window, along with an image for the button and the code to handle user actions and
set preferences. The Preferences window illustrated below shows the localization button
highlighted and, beneath it, the display of localization options.

Figure 20. The Preferences Application

Dynamic Loading 125

Bundles

Classes and categories are dynamically loaded and linked by calling the
objc_loadModulesO function. They can be unlinked and unloaded again by calling
objc_unloadModulesO. However, once code is loaded, it typically remains in place;
there's little reason to unload it.

These two functions are part of the Objective C run-time system and provide the basic
methodology for dynamic loading and unloading. They're documented in the NeXTSTEP
General Reference manual. However, the NeXTSTEP environment also provides another,
more convenient interface for dynamic loading-one that's object-oriented and integrated
with related services. The loading task can be assigned to an NXBundle object.

NXBundles correspond to directories where programs store resources they'll refer to at run
time. Each object manages one directory. The directory "bundles" the resources and makes
them available to the NXBundle object and, through the object, to the program. The
directory might contain image data, sound files, objects that were archived into so-called
"nib files" by Interface Builder, tables of character strings, and other resources. It can also
contain a file of executable code.

An NXBundle object is initialized to a bundle directory with the initForDirectory: method
as shown below (though, of course, you'd rarely use a hard-wired path like this):

char *path = I/LocalLibrary/Preferences/Music.preferences";

NXBundle *myBundle = [[NXBundle alloc] initForDirectory:path];

An NXBundle can do two things with the information stored in the bundle directory:

• Dynamically load the executable code and return class objects for the newly loaded
classes

• Find resources that match the user's language preference and make them available to
the application

These two things go together; the whole point of an NXBundle is to combine them in a
single facility. Dynamically loaded code doesn't stand on its own. It typically requires the
support of various resource files-archived instances of the bundled classes, character
strings that the code displays to users, bitmap images to place within the display, and so on.
Code and resources are grouped together in the same directory and are managed together
by the same NXBundle object.

126 Chapter 4: The Run-Time System

Localized Resources

Typically, a bundle directory packages a file of loadable code with all the resources that the
code requires. Some resources in the bundle might occur in various alternative forms
"localized" to a particular language or region of the world. For example, the English string
"Select All" might have counterparts in Spanish ("Seleccionar todo"), German ("Alles
auswahlen"), French ("Tout selectionner"), Swedish ("Markera alIt"), and other languages.

Localized resources are kept in subdirectories of the bundle directory. Each subdirectory
is named after a language and carries a ".lproj" extension (for "language project"). For
example, there might be Swedish.lproj, English.lproj, and Tagalog.lproj subdirectories.
Each subdirectory has a matched set of files. If the user sets the language preference to
Swedish, the application will use the files in Swedish.lproj. If the preference is set to
English, English.lproj files will be used. When asked for a resource, an NXBundle looks
in the subdirectory that matches the current preference.

The figure below illustrates the layout of a possible bundle for the Preferences application.
The Music file holds the loadable code and Music.tiff holds the bitmap image (in Tag
Image File Format) that will be displayed on the button at the top of the window. The rest
of the files are localized and located in ".lproj" subdirectories.

Music.preferences Music

Music.tiff

French.lproj 1 Music.nib
Composers. strings

Compositions.strings

Samples.snd

English.lp·roj 1 Music.nib

Composers.strings

Compositions.strings

Samples.snd

Swedish.lproj 1 Music.nib
Composers.strings

Compositions.strings

Samples.snd

Figure 21. A Bundle Directory

Dynamic Loading 127

Note: Language preferences are set using the Preferences application, as shown above in
Figure 20. The application not only sets the preference, it is itself localized and reflects the
current choice. In the figure, the language preference is set to Spanish and, accordingly,
Spanish is displayed in the window.

Loadable Code

The loadable code in a bundle directory must be in a file with the same name as the
directory (minus any extension on the directory name) and it must contain nothing but
compiled class and category definitions.

Bundled code is not localized. Rather, it's kept free of any content that would vary
depending on the language or location where the software is used. This content is extracted
from the code and put in resource files within the ".lproj" subdirectories. The same
NXBundle object that loads the executable code can find the required resources at run time.

Dynamic loading therefore should not be seen as the isolated task of loading and linking
class and category code. It also includes loading the objects, images, strings, sounds, and
other resources that are required at run time. The decision of which resources to load must
be dynamic for it depends on information available only at run time-the user's language
preference.

Loading Bundled Code

When requested, an NXBundle returns class objects for the classes bundled within its
directory. It waits until it receives the first request to load the bundled code. This message,
for example, asks an NXBundle for the Ivlozart class:

Class composer = [myBundle classNamed:"Mozart"];

If the executable code stored in the bundle had not yet been loaded, this message would load
it. All bundled classes are located in one file and are loaded at the same time. If the file
doesn't contain the requested class, c1assNamed: returns nil.

128 Chapter 4: The Run-Time System

The classNamed: method finds a specific class within the bundle, one that you request by
name. Typically, however, an application needs to find only one class from the dynamically
loaded file (at least initially), and it won't know or care what the class is named. The
principal Class method returns this class:

Class head = [myBundle principalClass];

Like classNamed:, principal Class dynamically loads the bundled code if it hasn't already
been loaded.

A set of bundled classes often supports a small subnetwork of objects that can be attached
to the larger object network already in place. The connection is established through just
one object, an instance of the principal class. That object might have methods to return
other objects that the application can talk to, but typically all messages from the application
to the subnetwork are funneled through the one instance.

The NXBundle expects the principal class to be the first one encountered in the executable
file. When several classes are linked into a dynamically loadable file, the principal class
should be the first one listed on the ld command line. For example, this command makes
DiscJockey the principal class in the Music bundle:

ld -0 Music -r DiscJockey.o Bach.o Mozart.o Coltrane.o ...

Each application has a choice to make regarding when to load bundled code. It can load
the code at start-up before the interaction with the user begins, or it can wait until the user
requests it. There are benefits to waiting. For example, when it encounters a bundle of
loadable code, the Preferences application immediately creates a button for it and puts the
button in the scrollable list at the top of the window. It takes the image for the button from
the bundle directory (Music.tiffin Figure 21 above). However, it doesn't dynamically load
the bundled code (the Music file Figure 21) until the user clicks the button. Code that isn't
used isn't loaded.

For some applications, the user's request can be even more explicit. For example, you
might present the user with a panel that displays file icons for each bundle containing
dynamically loadable code. The panel might even display some information about each
bundle, information supplied by the customizer in the bundle directory. When the user
double-clicks an icon, the application would load it and display its user interface on-screen.

No matter what triggers dynamic loading, when your application is ready to start using the
bundled code, the principalClass method will load it.

Dynamic Loading 129

Organizing for Customization

To allow others to customize your application, you need to set up a framework for finding,
loading, and executing their code. So that customizers can prepare their code to work
within your framework, you'll need to let them know what the framework is and what you
expect of them.

You are, in effect, entering into a contract of sorts with the customizer. The framework lets
you carry out your end of the bargain; the information you provide lets them carry out
theirs. You need to furnish customizers with at least the following information:

• The path where your application will search for their code
• The naming conventions you expect their bundle directories to follow
• A protocol that they should implement so that your objects can talk to one of theirs
• A protocol that you implement so that their objects can talk to one of yours
• The interface their code can be linked against when it's loaded

The following sections discuss these matters in more detail.

Search Path

Code must be located before it can be loaded. If you're setting up a framework that lets
others add to your application, the first requirement is to publish the places where the
application will look for bundles with dynamically loadable code. This usually takes the
form of a search path. For example, the Preferences application looks for bundles inside a
Preferences subdirectory located in one of the "Library" directories. It looks in this order:

• First, in the user's home directory, /LibrarylPreferences,
• Next, in the site-specific library, lLoca!LibrarylPrcfcrences,
• Then, in the NeXT-supplied library, lNextLibrarylPreferences, and
• Finally, in the application file package itself, lNextAppslPreferences.app.

This kind of path prefers the user version of a bundle over the site version, and the site
version over one supplied by NeXT. If two or more bundles have the same name, the one
that's encountered first is the one that's chosen, and those encountered afterward ignored.

Preferences includes its own file package in the search path because all of the buttons and
preference options it displays are loaded from bundles at run time. The file package stores
the bundles that come with the application.

Note: The fact that Preferences dynamically loads its own code has benefits both for the
user and for the programmer. For the user, it means reduced launch times. For the

130 Chapter 4: The Run-Time System

programmer, it means faster link times. It also means that Preferences can have a simpler
design-a single paradigm is used for interacting with all preference modules. Moreover,
the customization framework is thoroughly tested in Preferences' own development.

Bundle Name

In addition to the search path, you'll also need to publish any constraints you impose on the
name of the bundle directory. Preferences expects its bundles to carry a specific extension
(".preferences"), but doesn't restrict the rest of the name. This seems like a good precedent
to follow. The name shouldn't be so constrained that it limits the number of loadable
modules, but it must be recognizable as being intended for a particular application.

If you register the extension as one that denotes documents belonging to your application,
the Workspace Manager will treat the bundle directory as a file package; it will display the
directory as if it were a file. Just as users don't look inside files, they don't normally look
inside file packages. This hides the contents of the bundle directory, simplifies its interface,
and ensures its integrity.

Communication Protocols

Bundled code is loaded simply by asking the NXBundle for the principal class, as
mentioned above. But getting the principal class is just the first step. Once your program
has the class, it needs to create an instance and talk to it.

To be able to write code that can communicate with an instance of a dynamically loaded
class, you need to know what messages the new instance will respond to. To arrange this
communication, you'll need to publish a protocol of methods that you expect customizers
to implement in the principal class. This protocol should include an initialization method,
so that your code can properly initialize a new instance.

If you want the dynamically loaded code to be able to talk to your objects (often a good
idea), you'll also need to publish another protocol, one that's implemented by an object in
your program. One of the first things your code should do is pass this object to the new
instance of the principal class.

For example, if the protocol you implement is called ApplicationResponsibilities,

@protocol ApplicationResponsibilities

@end

Dynamic Loading 131

the protocol you expect the principal class to implement could include an initContact:
method that would both (a) initialize a new instance of the principal class and (b) pass that
instance an object that conforms to the ApplicationResponsibilities protocol:

@protocol CustomizerResponsibilities
- initContact: (id <ApplicationResponsibilities»anObject;

@end

Both protocols would be declared in a header file that you make available to potential
customizers.

Before your application begins interacting with the customizer's code, it's a good idea to
check whether the principal class conforms to the expected protocol:

if ([[theBundle principalClass]
conformsTo:@protocol(CustomizerResponsibilites)]) {

If it does conform, you can create an instance of the principal class and begin talking to it:

id adjunct = [[[theBundl~ principalClass] alloc] initContact:myAgent];

if (adjunct)

The object passed as initContact: 's argument is, in a sense, a counterpart to the new
instance of the principal class. It receives messages from dynamically loaded code, just as
the new instance receives messages sent from application code.

As an alternative to the two protocols, you could provide an interface to an abstract class
that developers should subclass. The abstract class wou1d declare methods-equivalent to
the CustomizerResponsibilites protocol-that customizers should implement in their
subclasses. It could also implement methods-equivalent to the
ApplicationResponsibilities protocol-that customizers could use in their code to
communicate with your application. The abstract class would reside in your application,
rather than in a library. The superclass-subclass relationship is resolved when the
customizer's subclass is loaded and linked dynamically.

Note: Preferences and other applications that come with N eXTSTEP choose an abstract
class over the two protocols. The class gives them the opportunity to lighten the
customizer's burden by providing, through inheritance, part of the customization code.

132 Chapter 4: The Run-Time System

Development Interfaces

Most NeXT STEP software resides in shared libraries, principally libNeXT_s and libsys_s.
Linking to a shared library gives an application access to library code, but it doesn't actually
incorporate the code into the application. At run time, one copy of the code is shared by all
applications linked to the library.

An application can be linked to a shared library, but the code it dynamically loads can't be.
Bundled code must be self-contained; any unresolved symbols within it must be resolved
by symbols found within the application it's dynamically linked to. It can't maintain an
independent connection to a shared library. Therefore, if others are to customize your
application, you'll need to inform them of the interface they can link against.

Normally, dynamically loaded code can link against any program symbols that are global
to the application or any shared library symbols the application actually references. It can't
use facilities in the shared library that the application itself doesn't use. However, if you
link your application to shared libraries with the -ObjC flag (the Project Builder default),
all classes in the libraries will be available to customizers, whether or not the application
also uses them. In addition, if you list the names of shared libraries after the -u option,

ld -0 myApp -ObjC -u libNeXT_s -u libsys_s . . .

all symbols defined in the listed libraries will be available to dynamically loaded code.

The strip utility can be used to remove extraneous symbols from the final version of your
application. You should be careful to leave symbols that might be needed by dynamically
loaded code. The -A option leaves all global symbols from a shared library and all
Objective C class symbols:

strip -s appSymbolsToSave -A myApp

In summary, it's important to let customizers know what programming interface they can
rely on when developing dynamically loadable code, including:

• Whether your application defines a programming interface that they can use,
• Which libraries the application is linked against, and
• Which part of the library interface is available to them.

Dynamic Loading 133

Archiving

NeXTSTEP software and the Object class support archiving, copying an object's data
structure from dynamic memory to some other location. The other location can be a file
where the object is stored until it's later reactivated, another application that will use the
copy in its own way, the pasteboard, a port, or some other destination. Archiving permits
objects to persist between sessions of the same application, and to be passed from one
application to another.

Only the object data structure is archived (only its instance variables), not any of the class
code that includes the object's methods and other information it needs to function properly.
For an object to be of any use once it's read from the archive, the program that reads it must
have access to this code. The class must have been loaded, either at startup or dynamically
later on, before the object is unarchived.

Interface Builder is perhaps the most dramatic example of how archiving can be used. It
permits you to design an application on-screen using graphical tools. You choose objects
from a palette, manipulate them graphically to initialize them, and connect them to each
other to form a program network. Interface Builder archives these objects in a file; they can
then be unarchived as part of your application, or again in Interface Builder to further
modify the design.

Typed Streams

Objects are archived by writing them to a special kind of data stream, a typed stream, that
accepts not only the object's data but also information about what type of data it is and what
class the object belongs to. The class information is needed to reconnect the object to its
class when it's unarchived.

Data written to the stream might go to a file, to the pasteboard, to memory somewhere, or
to some other destination. It doesn't matter; the archiving mechanism doesn't distinguish
among destinations. (In this discussion, it will be assumed that the stream is connected to
a file.)

Objects are unarchived in similar fashion by reading them from a typed stream. Again, the
mechanism is oblivious to the source of the data. The stream might be connected to a file,
to memory, to the pasteboard or a port, or to some other source. However, typed streams
impose a format on the data in the archive. Therefore, you can read data using a typed
stream only if the data was previously written using a typed stream.

134 Chapter 4: The Run-Time System

Because the archiving mechanism is independent of the destination or source of the data,
the same code can be reused in a variety of situations. Unarchiving an object from an
Interface Builder file, for example, uses the same code as retrieving it from the pasteboard
or receiving it as an argument in a relIlote message.

Typed streams are recorded in NXTypedStream structures. The functions that open a
stream for reading or writing return an NXTypedStream pointer. For example,
NXOpenTypedStreamForFileO opens a typed stream on a file:

NXTypedStream *streami
stream = NXOpenTypedStreamForFile(l/home/archive", NX_READWRITE) i

The two arguments to NXOpenTypedStreamForFileO are a file name and a specification
for how the stream will be used (NX_READWRITE, NX_READONLY, or
NX_ WRITEONLY).

Like NXZone and FILE structures, you don't have to allocate memory for an
NXTypedStream or look inside the structure; a pointer to the structure can be regarded as
a stream identifier.

Reading and Writing

Archiving is initiated by calling a function that writes an object to a typed stream, typically
NXWriteRootObjectO:

NXWriteRootObject(stream, anObject)i

This generates a write: message to the object, telling it to write its instance variables to the
stream. (The "root object" in the function name refers not to the root of the inheritance
hierarchy, but to the object passed as the argument. Since archiving this object might
indirectly cause other objects to be archived, it's the one that "roots" (initiates) the
archiving sequence.)

Objects are unarchived by the inverse of this process, usually initiated by calling
NXReadObjectO:

id anObject = NXReadObject(stream) i

This function allocates memory for the object, reconnects it to its class, and generates a
read: message to the object telling it to reinitialize its instance variables from the stream.

Archiving 135

The write: and read: Methods

The Object class defines default versions of the write: and read: methods. However,
Object's versions can't know about instance variables declared in other classes. Thus, any
class that declares instance variables must supply its own versions of write: and read: to
archive and unarchive them. Every class has responsibility for reading and writing its own
instance variables.

So that write: and read: messages will archive or unarchive all of an object's instance
variables, each version of either method should incorporate, through a message to super,
the version it overrides:

- write: (NXTypedStream *)stream

[super write:stream];

- read: (NXTypedStream *)stream

[super read: stream] ;

Because the message to super comes first, instance variables are archived in the order of
inheritance and unarchived in the same order. Those declared in a superclass are handled
before those declared in a subclass.

Every write: method must be matched by a read: method. The two methods are the inverse
of each other; whatever write: writes, read: reads.

However, write: and read: don't have to account for every instancc variable. It's nlore
efficient to skip over instance variables that fall into one of the following categories:

• Instance variables that are not essential to the character of the object
• Those that would be invalid when the object is un archived in a different context
• Those that can be recalculated from scratch when the object is un archived

For example, it would be better not to archive a variable that records a transitory state-one
that changes often as the program runs (such as the current selection in a body of text).
Rather, the variable could simply be set to an arbitrary initial value when the object is
unarchived.

136 Chapter 4: The Run-Time System

The Archiving Functions

After the message to super, a write: method must get down to the business of archiving a
set of instance variables. A number of functions are provided for this purpose, the most
general of them being NXWriteTypeO, which archives a single variable, possibly a
structure, and NXWriteTypesO~ which archives a series of variables, none of which can be
structures. As their first argument, both functions take a pointer to the stream. As their
second argument, both take a string of characters encoding all the types to be written,
including all the types within a structure. These type codes are almost identical to those
provided by the @encodeO compiler directive. (Differences are explained in the
NeXTSTEP General Reference manual.) Pointers to the data to be archived follow the
type codes.

For example, imagine a class that declares these six instance variables,

struct key info;

char *name;
double factor;
unsigned int mask;
unsigned int flags;

int state;

where the key structure consists of just an integer and a string:

struct key {

int i;
char *s;

} ;

It might archive the instance variables as follows:

- write: (NXTypedStream *)stream

[super write: stream] ;
NXWriteType(stream, "{i*}", &info);
NXWriteTypes(stream, l*dII", &name, &factor, &mask, &flags);

return self;

Note that this method ignores the state variable.

Archiving 137

The archiving functions follow a character pointer (coded '*') to archive the string it points
to, and an object pointer (coded '@') to archive the object. However, they don't follow
other kinds of pointers. You must explicitly archive any data that the object refers to but
that resides in memory outside the object.

The NXReadTypeO and NXReadTypesO functions read back what NXWriteTypeO and
NXWriteTypesO write:

- read: (NXTypedStream *)stream

[super read:stream);
NXReadType(stream, "{*i}", &info);
NXReadTypes(stream, l*dII", &name, &factor, &mask, &flags);

state = 1;
return self;

A read: method might also reinitialize instance variables that were not archived. Here it
resets state to 1;

Outlet Instance Variables

Most objects have instance variables that point to other objects. As explained in Chapter 1,
these outlets let an object keep track of the other objects it needs to communicate with.
They serve to define the connections between objects in a program.

Outlets raise a question for archiving: When one object is archived, should the objects that
its outlets point to also be archived?

The answer to this question can't be a universal "yes." If it were, archiving one object might
result in archiving a whole series of unwanted objects. Archiving a Matrix, for example,
would also archive the Window object for the window where the matrix is drawn, along
with every other object that draws in the window, all objects those objects are connected to,
and so on. The answer also can't always be "no." If it were, essential elements of an
archived object might be missing when it was unarchived. You'd get back a Matrix without
its Cells, for example.

138 Chapter 4: The Run-Time System

How an outlet instance variable is archived depends on the nature of the connection it
represents. In NeXTSTEP, you have three options:

• If an outlet object is the private servant of the object being archived and can be recreated
from scratch without losing information, it doesn't need to be archived. The write:
method can simply ignore the object and read: can produce a new one to take its place.

- read: (NXTypedStream *)stream

[super read: stream] ;

anOutlet = [[SomeClass alloc] init];

• If an outlet object is intrinsic to the object being archived, crucial to its character, or
required for its operation, the write: method should archive it. For example, a Matrix
archives its Cells. write: can archive an object by calling NXWriteTypeO or
NXWriteTypesO and passing it the' @' type code that designates an object:

- write: (NXTypedStream *)stream

[super write:stream];

NXWriteType(stream, "@", &anOutlet);

It's even simpler to use the shorthand NXWriteObjectO method:

- write: (NXTypedStream *)stream

[super write:stream];

NXWriteObject(stream, anOutlet);

These three functions have equivalent results; they each initiate a write: message to the
outlet object.

NXWriteObjectO should be balanced by a call to NXReadObjectO in the read:
method. NXWriteTypeO is balanced by NXReadTypeO and NXWriteTypesO is
balanced by NXReadTypesO.

Archiving 139

• If an outlet object is only peripherally connected to the object being archived, the write:
method can call NXWriteObjectReferenceO to ask that a reference to it be maintained
in case the object is archived for some other reason:

- write: (NXTypedStream *)stream

[super write: stream] i

NXWriteObjectReference(stream, anOutlet)i

This function doesn't archive the object. However, it's possible that the object will be
archived anyway, perhaps because some other write: method requests it. If so,
NXWriteObjectReferenceO guarantees that the outlet connection will be reestablished
when the objects are unarchived. If not, it makes sure the outlet instance variable is set
to nil.

Like NXWriteObjectO, NXWriteObjectReferenceO is balanced by calling
NXReadObjectO in the read: method:

- read: (NXTypedStream *)stream

[super read: stream] i

anOutlet = NXReadObject(stream)i

For example, a Matrix writes a reference to its Window object. If just the Matrix is
archived, NXReadObjectO will set the outlet that points to the Window to nil.
However, if the entire Window is archived, the Matrix will also be archived and
NXReadObjectO will reestablish its connection to the Window.

In addition to being used inside a write: method, NXWriteObjectO can be used instead of
NXWriteRootObjectO to initiate archiving. However, NXWriteObjectO fails in this role
if any object it seeks to archive calls NXWriteObjectReferenceO. Only
NXWriteRootObjectO knows how to write a reference to an object. It makes two passes
over the network of objects being archived. On the first pass, it maps out the connections
between objects, taking note of which ones are referred to and where. On the second pass,
it archives the objects. (Therefore, all write: methods should be able to be invoked twice
with no side effects.)

NXWriteRootObjectO can be used only to initiate archiving, never inside a write:
method.

Both NXWriteRootObjectO and NXWriteObjectO make sure that no object is archived
more than once, no matter how may write: methods request that it be archived.

140 Chapter 4: The Run-Time System

Final Steps

Immediately after an object has been unarchived with the read: method, NXReadObjectO
sends it an awake message. The inherited version of awake defined in the Object class
does nothing but return self. But a class can define an awake method of its own to
reinitialize its instances and make sure they're in a usable state before they receive any other
messages.

Like write: and read: methods, awake methods should be chained together through
messages to super.

- awake

[super awake 1 ;

After the awake message, NXReadObjectO sends each unarchived object that can respond
a finishUnarchiving message. This message gives Objective C programs a chance to free
the un archived object and substitute another object for it. For example, if a class of named
objects requires each name to be unique, and the newly unarchived object has a name that's
already in use, finishUnarchiving might replace the new object with the existing one.

finishUnarchiving should return nil if there's no substitution, and the replacement object
if there is. The Object class declares a prototype for this method, but doesn't implement it.

Archiving 141

142

Programming in Objective C

When you write a program in an object-oriented language, you're almost certainly not
doing it alone. You'll be using classes developed by others and perhaps a software kit or
two. A kit provides a set of mutually dependent classes that work together to structure a
portion, often a substantial portion, of your program.

The NeXTSTEP development environment contains a number of software kits, including:

• The Application Kit for running an interactive and graphical user interface
• The Database Kit for operating a connection to a database server
• The 3D Graphics Kit for drawing in three dimensions
• The Sound Kit for recording, editing, and playing sounds
• The Indexing Kif" for managing large amounts of textual data

Using a library of kit classes differs somewhat from using a library ofC functions. You can
pretty much pick and choose which library functions to use and when to use them
depending on the program you're designing. A kit, on the other hand, imposes a design on
your program (at least on the part the kit is concerned with). When you use a kit, you'll
find yourself relying on library methods to do much of the work of the program. To
customize the kit and adapt it to your needs, you'll implement methods that the kit will
invoke at the appropriate time. These kit-designated methods are "hooks" where your own
code can be introduced into the kit design. In a sense, the usual roles of program and library
are reversed. Instead of incorporating library code into the program, program code is
incorporated into the kit.

This chapter discusses what it's like to write an Objective C program, especially one based
on a software kit. It discusses some of the programming techniques that come into play,
and, as an example, explains something of how the NeXTSTEP Application Kit works.
The final section takes up the question of combining Objective C with C++.

Programming in Objective C 143

Starting Up

Objective C programs begin where C programs do, with the mainO function. The job of
an Objective C mainO is quite simple. Its twofold task is to:

• Set up a core group of objects, and
• Tum program control over to them.

Objects in the core group might create other objects as the program runs, and those objects
might create still other objects. From time to time, the program might also load classes,
unarchive instances, connect to remote objects, and find other resources as they're needed.
However, all that's required at the outset is enough structure (enough of the object network)
to handle the program's initial tasks. mainO puts this initial framework in place and gets
it ready to go to work.

Typically, one of the core objects has responsibility for overseeing the program or
controlling its input When the core structure is ready, mainO sends this object a message
to set the program in motion:

• If the program is launched from a shell and takes direction from the command line,
mainO's message could simply tell it to begin. It might also pass along crucial
command-line arguments. For example, a utility that reformats files might take a target
file name as an argument on the command line. After setting up the objects the program
requires, mainO could begin the reformatting process by passing this name to one of the
objects.

(In NeXTSTEP, the argc and'argv arguments passed to mainO are stored in global
variables, NXArg.c and NXArgv, to make them available to all parts of the program.)

• If the program has no user interface, but exists only to run in the background and
serve other applications, mainO's message has it begin listening for remote input.
A number of services might be implemented as this kind of background process­
for example, a sorting service, a service that checks for spelling errors, a utility that
translates documents from one data format to another, or one that compresses and
decompresses files.

• If the program is launched from the workspace, not a shell, and presents a graphical
interface to the user, mainO's message has it begin responding to user input.

Most NeXTSTEP applications belong in this last category. They display windows and
menus on-screen, and may have various kinds of buttons to click, text fields to type into,
icons to drag, and other control devices to manipulate. Such an interface invites user
actions on the keyboard and mouse.

144 Chapter 5: Programming in Objective C

The core group of objects that mainO sets up must include some that draw the user
interface, and mainO must make sure that at least part of this interface-perhaps just a
menu-is placed on-screen. (This typically is taken care of as a by-product of loading core
objects from an Interface Builder archive.)

Once the initial interface is on-screen, the application will be driven not by command-line
arguments or even remote messages, but by external events, most notably user actions on
the keyboard and mouse. For example, when the user clicks a menu item, two events are
generated-a mouse-down event when the mouse button is pressed and a mouse-up event
when the button is released again. Similarly, typing on the keyboard generates key-down
and key-up events, moving the mouse with a button pressed generates mouse-dragged
events, and so on. Each event is reported to the application with a good deal of information
about the circumstances of the user action-for example, which key or mouse button was
pressed, where the cursor was located, and which window was affected.

An application gets an event, looks at it, responds to it, then waits for another event. It
keeps getting one event after another, as long as the user produces them. From the time it's
launched to the time it terminates, almost everything the application does will derive from
user actions in the form of events.

The mechanism for getting and responding to events is the main event loop (called "main"
because an application can also set up subordinate event loops for brief periods of time).
One object in the core group has responsibility for running the main event loop-getting an
event, generating a message that initiates the application's response to the event, then
getting (or waiting for) the next event.

The Application Kit defines an object to do this work; it's an instance of the Application
class and is assigned to the global variable NXApp. After creating this object (and other
objects in the core framework), the mainO function sends it a run message:

main()
{

NXApp = [Application new];

[NXApp run];

[NXApp free];
exit(O);

With the run message, mainO's work is essentially done. The run method puts the
application in the main event loop and has it begin responding to events. It remains in the
loop until the user quits the application.

Starting Up 145

While in the main event loop, an application can also receive input from other sources. For
example, a music application might receive input from a MIDI (Musical Instrument Digital
Interface) keyboard, an application that's hooked up to a telephone line might receive data
over the line, and almost any application might receive remote messages from other
applications. This kind of remote input is scheduled between events. In some cases (MIDI,
for example), it might far outweigh user activity on the computer keyboard and mouse.

Using a Software Kit

Library functions impose few restrictions on the programs that use them; they can be called
whenever they're needed. The methods in an object-oriented library, on the other hand, are
tied to class definitions and can't be used unless you create an object that has access to
them. The object must be connected to at least one other object in the program so that it
can operate in the program network. A class defines a program component; to avail
yourself of its services, you need to craft it into the structure of your application.

Nevertheless, for some classes, using a library object is pretty much the same as using a
library function, though on a grander scale. You can simply create an instance, initialize it,
and insert it into an awaiting slot in your application. For example, NeXTSTEP includes a
HashTable class that provides a hashing service that you can take advantage of as needed.

In general, however, object-oriented libraries contain more than single classes that offer
individual services. They contain kits, collections of classes that structure a problem space
and present an integrated solution to it. Instead of providing services that you use as
needed, a kit provides an entire program structure, a framework, that your own code must
adapt to. It's a generic program model that you specialize to the requirements of your
particular application. Rather than design a program that you plug library functions into,
you plug your own code into the design provided by the kit.

To use a kit, you must accept the program model it defines and employ as many of its
classes as necessary to implement the model in your program. The classes are mutu~lly
dependent and come as a group, not individually.

The classes in a software kit deliver their services in four ways:

• Some kit classes define "off-the-shelf' objects. You simply create instances of the class
and initialize them as needed. The Matrix, ButtonCell, and TextFieldCell classes in the
Application Kit are examples of this kind of class. Off-the-shelf objects are typically
created and initialized using Interface Builder.

146 Chapter 5: Programming in Objective C

• Some kit objects are created for you behind the scenes; you don't need to allocate and
initialize them. Behind-the-scenes objects are usually anonymous; a protocol specifies
what messages they can respond to.

• Some kit classes are generic. The kit may provide some concrete subclasses that you
can use unchanged and off-the-shelf, but you can-and in some cases are required to­
define your own subclasses and complete the implementation of certain methods.

• Sometimes, a kit object is prepared to keep another object informed of its actions and
even delegate certain responsibilities to it. The messages the kit object is prepared to
send are declared in a protocol. If you implement the protocol in a class of your own
design and register an instance of the class with the kit object, your code will be
connected to the kit.

The last two items on this list-subclassing and delegation-are ways of specializing the
kit design and adapting it to the needs of your program. The next sections look in more
detail at these two ways of using a kit.

Inheriting from Kit Classes

A kit defines a program framework that many different kinds of applications can share.
Since the framework is generic, it's not surprising that some kit classes are incomplete or
abstract. A class can often do most of the work in low-level and common code, but
nevertheless will require application-specific additions.

These additions are made in subclasses of the kit class. The point of defining a subclass is
to fill in pieces the kit class is missing. This is done by implementing a specific set of
methods. The kit designer declares these methods, sometimes in a protocol, but typically
in the kit class itself. The subclass simply overrides the kit version of the methods.

Implementing Your Own Version of a Method

Most methods defined in a kit class are fully implemented; they exist so that you can invoke
the services the class provides. In some cases, these methods should never be changed by
the application. The kit depends on them doing just what they do-nothing more and
nothing less. In other cases, the methods can be overridden, but there's no real reason to do
so. The kit's version does the job. But, just as you might implement your own version of
a string comparison function rather than use strcmpO, you can choose to override the kit
method if you want to.

Using a Software Kit 147

However, a few kit methods are designed to be overridden; they exist so that you can add
specific behavior to the kit. Often, the kit-defined method will do little or nothing that's of
use to your application, but will appear in messages initiated by other methods. To give
content to the method, your application must implement its own version.

It's possible to distinguish four different kinds of methods that you might define in
a subclass:

• Some methods are fully implemented by the kit, and are also invoked by the kit; you
wouldn't invoke them in the code you write. These methods exist in the interface for
just one reason-so that you can override them if you want to. They give you an
opportunity to substitute your own algorithm for the one used by the kit.

For example, the placePrintRect:offset: method is invoked to position an image on the
printed page. The kit version of this method works fine and is rarely overridden. But if
you want to do it differently, you can replace the kit version with your own.

• Some methods make object-specific decisions. The kit may implement a default version
of the method that makes the decision one way, but you'll need to implement your own
versions to make a different decision where appropriate; Sometimes, it's just a matter
of returning YES instead of NO, or of calculating a specific value rather than the default.

For example, Views in the Application Kit are sent acceptsFirstResponder messages
asking, among other things, if they can'display the user's typing. By default, the View
method returns NO-most Views don't accept typed input. However, some View
subclasses (such as the Text class) do; they have to override the method to return YES.

• Some methods must be overridden, but only to add behavior, not to alter what the
kit-defined method does. When your application implements one of these methods, it's
important that it incorporate the very method it overrides. This is done by messaging
super to p~rform the kit-defined version of the method.

Occasionally, the kit method will have generic code that sets up the specific work to be
accomplished in the subclass version of the method, and so must be included with the
code you write.

More often, the method is one that every class is expected to contribute to. For example,
Chapter 4 discussed how initialization (init...) methods are chained together through
messages to super, and also how it was necessary to implement versions of the write:
and read: methods to archive and un archive instance variables declared in the class. So
that a write: message will archive all of an object's instance variables, not just those
declared in the subclass, each version of the method begins by incorporating the version
it overrides.

148 Chapter 5: Programming in Objective C

• Some kit methods do nothing at all, except return self. These are methods that the kit
can't define even in rudimentary form since they carry out tasks that are entirely
application-specific. There's no need to incorporate the kit implementation of the
method in the subclass version.

Most methods that are to be overridden in a subclass belong in this group. It includes,
among others, the principal methods you implement to draw (drawSelf::) and respond
to events (mouseDown: and others). To keep the interface simple, kit classes generally
try to isolate the responsibilities of their subclasses in methods unencumbered by
superclass code.

It's important to note that you're not on entirely on your own when you implement your
own version of a method. Subclass methods can often be built from facilities provided in
the kit. An event-handling method, for example, can call on other kit methods and
functions to do much of the work.

Implementing Methods You Don't Invoke

The kit methods you override in a subclass generally won't be ones that you'll invoke
yourself, at least not directly. You simply implement the method and leave the rest up to
the kit.

In fact, the more likely you are to write an application-specific version of a method, the
less likely you are to use it in your own code. There's good reason for this. There are
really only two reasons for a kit class to declare a method. Methods are provided so that
you can either:

• Invoke them to avail yourself of the services the class provides, or
• Override them to introduce your own code into the kit.

If a method is one that you can invoke, it's generally fully defined by the kit and doesn't
need to be redefined in your code. If the method is one that you need to implement, the kit
has a particular job for it to do and so will invoke the method itself at the appropriate times.

Much of the task of programming an object-oriented application is implementing methods
that you use only indirectly, through messages arranged by the kit.

Using a Software Kit 149

Inheriting the Framework

New instances of a subclass are ready to take their place in the network of objects the kit
defines. They inherit the ability to work with other objects from the kit. For example, if
you define a Cell subclass, instances of the new class will be able to connect with a Matrix
just like ButtonCells, TextFieldCells, and other kinds of kit-defined Cell objects.

The kit superclass defines a set of outlet connections to other objects and provides a
mechanism for setting those connections, sometimes automatically. Instances of the
subclass fit into the kit framework as if they were defined in the kit.

Connecting to Kit Objects

A kit framework can never be complete. It can cover much of the terrain, but it can't
anticipate all the details of every application or what additional structure they'll need.
Therefore, kits generally provide ways for you to hook your own objects up to kit objects.

This is usually done by implementing an object that can respond to messages declared in a
protocol and registering the object with a kit object. For example, several classes in the
NeXTSTEP software kits permit you to register a delegate:

[my Window setDelegate:myObjectJ;

Delegation is one of the principal ways that the objects you design to do the basic work of
your application can be connected to a kit.

Delegation

Delegates mainly receive two kinds of messages:

• Messages that notify the delegate of what the kit object is doing
• Messages that assign some specific task to the delegate

Notification messages are easy to recognize in the interface; the methods that respond to
them are typically named for the action the kit object took or is about to take, not for what
the method will be implemented to do. For example, names like browserDidScroll: or
textWillConvert:fromFont:toFont: are typical of notification methods in the Application
Kit. The method can be implemented to do anything the application needs to keep current
with the activity of the kit object.

150 Chapter 5: Programming in Objective C

Notifications after the fact allow the delegate to coordinate other activities with the actions
of the kit object, but they don't give the delegate any control over the kit. For example,
a Window object's delegate receives windowDidResize: messages after the user resizes
the window.

Prior notifications permit the same kind of coordination, but in addition may give the
delegate a chance to approve or disapprove of the impending action, or to modify it in some
way. For example, a Window sends its delegate windowWillResize:toSize: messages as
the user drags an outline of the window to resize it. The message gives the delegate a
chance to constrain the size of the window.

True delegation messages, those that assign a specific responsibility to the delegate, use a
different naming scheme. The methods that respond to these messages are, like most
methods, named for what the method is supposed to do, not for what the kit did. For
example, a kit object might send a browser:loadCell:atRow:inColumn: message to its
delegate when it needs data to display in a browser on-screen, or an app:openFile:type:
message when it needs help in opening a file.

Other Kit Outlets

Assigning a delegate is just one way of making a connection to a kit object. In the
Application Kit, for example, you can also assign owners to Pasteboard objects and targets
to control devices (button, sliders, and the like). These different kinds of connections­
delegates, targets, owners, and others-name the various kinds of outlet connections that
kit objects maintain to the objects you invent. Each specifies the kind of role your object
will play in the kit design.

Different kinds of outlets have different responsibilities. The pasteboard's owner, for
example, is responsible for providing data when it's needed for a Paste operation. A target
is entrusted with carrying out the command of a control device.

Each kit defines its own group of outlets, plus the methods for setting them. Outlets often
can be set graphically within Interface Builder while programming the user interface.
Although there are setDelegate: and setTarget: methods, for example, delegates and
targets are almost always set in Interface Builder.

Using a Software Kit 151

Programming with the Application Kit

Instead of talking about software kits in the abstract, it's helpful to turn to a specific
example-the NeXTSTEP Application Kit. Each NeXTSTEP kit covers a certain terrain.
For the Application Kit, it's the user interface and the attendant tasks of drawing on the
screen, printing, and organizing the interaction with the user. To show the logic of the Kit
and of the framework it defines, the following sections start from the ground up. They build
a rationale for the kit, then look at what tasks it takes on, how it's structured, and how your
own code can be made to fit within that structure.

For this example, it's necessary to shift gears to some extent and examine, in general terms,
the architecture of NeXTSTEP applications. What follows is an overview. Don't be
concerned about every method or line of code that's mentioned here-there are other
manuals that go into greater detail-but concentrate instead on the general concepts
introduced, and especially on the division of labor between the Application Kit and the
code that you would write.

NeXTSTEP Applications

The Application Kit is the basic kit used by all NeXTSTEP applications. It's designed for
interactive applications that cooperate with each other in a multitasking environment and
present a graphical interface to the user.

• NeXTSTEP applications cooperate by sharing the screen and other resources, and also
by sharing the work. They're able to split up tasks and make use of the services provided
by other applications.

• NeXTSTEP applications have a graphical interface that structures the user's interaction
with the computer, making it easy and intuitive. Rather than use the command line or a
multitude of function keys, NeXTSTEP applications employ software control devices­
buttons, scrollers, sliders, and the like-to get information from the user. They're more
likely to use graphical devices that the user can directly manipulate, like icons and
scrollers, than require indirect or typed instructions.

• NeXTSTEP applications are interactive-they take instructions from the user through
the keyboard and mouse and respond visually through the graphical interface. (They can
also respond in other ways, but a visual component in always present.) The interaction
between the user and the application is immediate and ongoing-like the give and take
of a friendly conversation.

152 Chapter 5: Programming in Objective C

This kind of user interface must be a fundamental part of each application's design, not just
something that's tacked on at the end. The more an application is able to take advantage of
the graphical possibilities of the screen and the more effectively it puts the user in charge,
the more successful it will be. Thus, in large part, applications need to be designed around
the user interface and the two principal tasks it imposes:

• Getting user input from the keyboard and mouse, interpreting it, and responding to it
without delay.

• Drawing the application's interface on the screen and continually updating the display
in response to user actions.

These can be formidable tasks. While easy and intuitive for the user, an interactive
graphical interface can be quite intricate from the programmer's perspective. They demand
a lot of time and a lot of code.

The Application Kit is designed to reduce this effort. The Kit takes over much of the
user-interface work, so your application doesn't need to be concerned with it at all. For
example, it provides ready-made windows and a set of software control devices with
built-in code for drawing and responding to user actions.

Of course, the Kit can't handle every user action or do all the drawing. If it did, there would
be no way for you to develop an application-to put your own interpretation on input from
the user or put your own output on the screen. The goal of the Kit is not to constrain what
an application can do, but to set up a structure that makes it easy for it to draw and interpret
user input. The Kit assumes most of the low-level burden of these tasks, while allowing
you complete freedom to construct any kind of interactive application you want.

Since getting user input and providing drawing output are fundamental to the design of an
application, the way the Kit structures these tasks becomes the core of a basic program
structure for the entire application. This structure is built around the event cycle.

The Event Cycle

NeXTSTEP applications are controlled by the actions of the user on the keyboard and
mouse. These actions are reported to the application as events-discrete packets of
information that record what the user did along with other relevant information (such as
where the cursor was located at the time and which window was affected). For example,
a key-down event is generated when the user presses a key on the keyboard, and a key-up

Programming with the Application Kit 153

event when the key is released again. Mouse-down, mouse-dragged, and mouse-up events
are generated when the user presses a mouse button, moves the cursor on-screen with the
button down, and then releases the button. Each event records one atomic user action.

Almost everything the application does, it does on direct instructions from the user in the
form of events. This is what's meant when it's said that an application is "driven by
events" -the user drives the application. An application can choose just what events it
wants to receive and just how to react to them, but the cycle of getting an event, responding
to it, then getting another event is universal.

Applications invite user actions by the graphical user interface they draw on-screen. An
empty text field with a blinking caret, for example, lets the user know it's appropriate to
enter text. A button or menu command solicits a click. The knob of a scroller looks like
something that might be grabbed and moved along the bar.

Once the user acts and an event is received, an application must draw again to keep up its
end of the conversation with the user-to provide a visible response to the user's actions.
It's useful, in fact, to think of applications drawing for three overlapping reasons, all of
them related to the cycle of getting and responding to events. An application draws:

• To present itself to the user. At start up, an application draws its user interface on-screen,
then prepares to receive events. As it runs, it continues to update its user interface in
response to events.

• To provide immediate feedback that an event has been received. For example, a button
is highlighted and a typed character appears in place. This feedback lets users know that
the application is responsive and paying attention.

• To display the results of the user's work. The reason for using a computer is not to
experience the user interface or watch buttons highlight, but to get something done. The
user's work is captured as data. Only when it displays this data-whether it's an edited
document, a scanned image, a graph picturing some information, or the current
configuration of pieces on a game board-does the screen become a real "workspace."

Thus, at start up, an application draws its interface on the screen. The user chooses what
to do and generates an event. The application responds to the event and alters the display,
while the user again acts to generate another event.

154 Chapter 5: Programming in Objective C

This cycle of drawing and events is illustrated below:

User Application

Figure 22. The Event Cycle

The Window Server

All of an application's event input and drawing output flows through a single process-the
Window Server. The Server is a low-level process that runs in the background; it doesn't
have or need a user interface of its own. Its primary function is to provide client
applications with windows where they can draw. It can serve any number of clients; there's
just one Server for all the applications running on any given machine.

At start up, every NeXTSTEP application establishes a connection to the Window Server.
The application and the Server run independently of each other, but maintain a two-way
communication channel. As the application runs, it requests the windows it needs, and the
Server provides them. Each client application has an independent operating context within
the Server and its own set of windows.

Programming with the Application Kit 155

All of a client application's drawing output is confined within window boundaries; it's
impossible to draw directly on-screen outside a window. So the application presents
itself-its user interface-within windows, and users do their work within windows. It's
natural, therefore, for windows to be the focus of user actions. Consequently, the Window
Server plays a principal role for both drawing output and event input:

• It interprets the client's drawing code and renders it.

• It monitors the keyboard and mouse, and turns the user's actions on those devices into
events for the intended application.

Putting the Window Server into the event cycle shown in Figure 22 above, the picture looks
something like this:

User

Window
Server
event

dispatcher

Window
Server

PostScript
interpreter

Figure 23. The Window Server in the Event Cycle

Drawing instructions are typically encoded in the PostScript® language. (Three
dimensional images from the 3D Graphics Kit are encoded using RenderMan®.) As
the illustration above shows, the Window Server includes a PostScript interpreter that
receives drawing code and renders it.

156 Chapter 5: Programming in Objective C

PostScript code is captured within Objective C by a set of C functions that correspond to
PostScript operators. For example, this PostScript code

/radius 50 def
10 {

0.333 setgray
radius neg radius neg radius 2 mul radius 2 mul rectfill

0.667 setgray

o 0 radius 0 360 arc
fill

/radius radius 0.707 mul def
repeat

can be written in C as follows:

float radius = 50.0;
for (i = 0; i < 10 ; i++) {

PSsetgray(0.333) ;

PSrectfill(O.O-radius, O.O-radius, radius*2.0, radius*2.0);
PSsetgray(0.667) ;
PSarc(O.O, 0.0, radius, 0.0, 360.0);
PSfill () ;

radius = 0.707 * radius;

This code draws a series of ten inset circles and squares that looks like this:

Programming with the Application Kit 157

In the C version, the control loop and calculations are done in C. PostScript code is
delivered to the Window Server only to produce the image. This is accomplished by the
PSsetgrayO, PSrectfillO, PSarcO, and PSfillO functions, corresponding to the setgray,
rectfill, arc, and fill operators.

In addition to the library of single-operator "PS" functions, a utility called pswrap creates
C functions that send definable bundles of PostScript code to the interpreter in the Window
Server. The following declaration will compile to a single function,
drawSquaresAndCircIesO, that, when called with the proper argument, will draw the
same figure as the code shown above.

defineps drawSquaresAndCircles(float initial)

/radius initial def

10

endps

0.333 setgray

radius neg radius neg radius 2 mul radius 2 mul rectfill

0.667 setgray

o 0 radius 0 360 arc

fill

Iradius radius 0.707 mul def

repeat

This version makes the initial radius (one-half the side of the outer square) a parameter
of the function. The values passed to setgray and the other operators could also have
been parameterized to make the function more generally useful. Note that this version
keeps the control loop and all calculations within the PostScript code. Generally, it's
more efficient to do that kind of work in compiled C code, and just do the drawing in
interpreted PostScript.

Calling either a single-operator function or a pswrap-generated function delivers
PostScript code to the Window Server, where it will be interpreted and the image it
describes rendered.

That's just what Application Kit objects do. The Kit defines objects that draw most of the
user-interface devices (such as buttons, sliders, window title bars, and the like) that your
application will need. There's also a Text object to draw editable text. Your application
can concentrate on drawing just what's unique to it.

In addition to functions that wrap around PostScript code, the Kit has other facilities to aid
in the drawing code you write. For example, NXImage objects can manage the presentation
of images produced from various kinds of data.

158 Chapter 5: Programming ill Objective C

Event Loops

After setting itself up and placing its initial user interface on-screen, an application begins
the cycle of getting and responding to events. In code, the cycle is manifested as the main
event loop. In outline form, it looks something like this:

BOOL running = YES;
while (running) {

/* get an event */

/* respond to it */

As long as an application is running, it stays in the main event loop and continues to get and
respond to events as they're generated. It remains in the loop even when it's inactive­
when the user turns to another application, for example, or takes a nap. While it waits for
events, the application doesn't consume system resources or compete with other
applications for processing time.

As part of its response to an event, an application can set up a subordinate event loop for a
short period of time. Like the main event loop, a subordinate loop gets and responds to
events, but is typically focused on only a small subset of events. The loop puts the
application into a temporary mode that's broken by an appropriate user action; subordinate
loops are therefore referred to as modal event loops.

In the NeXTSTEP user interface, modal event loops are used in only a limited number
of situations:

• For attention panels. When an attention panel is on-screen, the user's actions within the
application are limited. Only actions that affect the panel are permitted. The loop is
broken when the user dismisses the panel. Like the main event loop, modal loops for
attention panels are implemented by the Application Kit.

• For coordinating events. These are typically "spring-loaded" event loops that last only
as long as the user holds down a mouse button or a key. For example, when an
application gets a mouse-down event while the cursor is over a button or menu
command, it sets up a temporary event loop that tracks the movement of the cursor
through mouse-dragged events while waiting for a mouse-up event. When the inevitable
mouse-up event is received, the loop is broken and the action of the button or menu
command is performed (provided the cursor hasn't moved away).

A coordinating event loop can also be devised to collect a number of similar events, so
they can be handled together. For example, while the user is typing, an application
might collect a small number of key-down events before rendering the characters
on-screen. The loop is broken when the user stops generating the expected type of event
(stops typing or hesitates momentarily) or enough events have been collected to handle
efficiently as a group.

Programming with the Application Kit 159

Each modal event loop operates inside another event loop and, ultimately, inside the main
event loop. For example, a spring-loaded event loop might operate directly inside the main
event loop or inside a modal event loop for an attention panel. When the inner loop is
broken, the outer loop will get the next event. The main event loop isn't broken until the
application terminates.

The main event loop works identically in all applications; it's common code that can be
implemented by the Application Kit. The Kit also defines a number of off-the-shelf objects
that run modal event loops, including attention panels and "spring-loaded" event loops that
track the cursor. You can invent your own objects to do the same.

Other Input

Event loops embody the principle that "applications are driven by events." But applications
aren't driven only by events, so event loops must also accommodate other kinds of input:

• To be cooperative in a multitasking environment like N eXTSTEP, applications need to
communicate not just with the user, but with each other; they need to be able to respond
to remote messages. For example, an application might receive a message asking it to
supply some data in text form to a word processor, or it might get a message from the
Workspace Manager requesting it to open another file.

• Some applications might expect input from an external device other than the keyboard
or mouse, or might need to read data that accumulates in a file. For example, an
application might monitor changes to a central database.

• In addition, an application might want to do something at regular intervals, and so
might regard the mere passage of time as sufficient reason to take action. It needs to
respond to timed entries, procedures that are called periodically. For example, an
application could register a timed entry to animate a display, or to cause files to be saved
at regular intervals.

An application responds to these other types of input between events. When it's time to get
the next event, the application first checks whether any remote messages have been
received, any data is waiting at a monitored port or file, or it's time to call a timed entry. If
so, the next event (if one is waiting) can be postponed.

160 Chapter 5: Programming in Objective C

Each additional source of input has an assigned priority. The choice of what to respond to
next is made by weighing the various priorities against the threshold importance of getting
the next event. If an event and a remote message are both waiting for a response, the
application could pick the remote message first and postpone the event, or do it the other
way around and pick the event first. For example, while in a modal event loop, an
application might not want to be interrupted by a remote message that it would be willing
to receive between events in the main event loop. Once your application sets the priorities,
the Application Kit manages this decision-making process for you.

Events are the most important input for almost all applications, both because they're
generally more common than the other types of input and because they convey instructions
directly from the user.

But, like events, the other types of input are also usually due to user activity; they indirectly
derive from events. A remote message is typically prompted by an event in another
application, data is received at monitored ports and files due to user activity elsewhere,
and a timed entry is usually registered because of the events the application receives.

Application Kit Objects

The Application Kit defines objects that play critical roles in every part of the event cycle.
These objects take over the elementary work of running the main event loop, managing
windows, and drawing in them. They structure the event cycle and, in so doing, also
structure the application.

• The Application object runs the application's connection to the Window Server and
initiates its main event loop. It gets events from the Server and distributes them to the
objects that will respond.

• Window objects correspond to the application's windows. Each object communicates
with the Window Server to create and manage a window and responds to events that
concern the window.

• View objects draw within windows. Each object controls a paIticular region within a
window and handles events associated with that region.

Each application has just one Application object, several Windows, and many Views. The
Application object keeps a list of all the Windows, and each Window organizes a set of
Views. When an event is received, the Application object decides which window it matters
to, and passes it to the Window object for that window. The Window decides which View
it concerns and hands it to the View.

Programming with the Application Kit 161

This could be the View that's displaying the current selection and handling typing within
the key window, and so needs to receive the key-down events that the typing generates. Or
it might be a View that drew an icon that the user clicked, and so must get the mouse-down
event for the click.

When a View gets an event, it responds to it, at least in part, by altering the display-for
example, by inserting new characters into the stream of text or highlighting the icon that
was clicked.

An application in the event cycle looks something like this:

events - __

drawing

Figure 24. Inside an Application in the Event Cycle

162 Chapter 5: Programming i,l Objective C

The Application Object

Every program must have an Application object to act as its contact with the Window
Server. The Application object has four principal tasks:

• It supervises the entire program, receiving events from the Server and dispatching them
to the appropriate Window objects for distribution to their Views.

• It manages all the application's Windows (much as each Window object manages
its Views).

• It handles changes to the application's status. It can make it the currently active
application, hide and unhide it, and terminate it when the user quits.

• It keeps global information shared by other objects. So that all objects can readily take
advantage of its services, it's assigned to the global variable NXApp.

The Application class is not abstract; it defines an off-the-shelf object that you can use
without sUbclassing. To coordinate your own code with the Application object, you can
assign it a delegate of your own design.

Window Objects

Every window the user sees on-screen is managed by a separate Window object. At the
lowest level, windows are implemented by the Window Server. Generally, when a new
Window object is created, the Server produces the window it will manage. However, to
conserve memory and reduce start-up time, you can delay creating the window until it's
placed on-screen; you can also arrange for the Window object to destroy the window when
it's removed from the screen and get a new one when it's needed again. So it's possible for
a Window object to be temporarily without a window and to be paired, at various times,
with a variety of different window devices. The object corresponds to the user's conception
of a window, not necessarily to its lower-level implementation.

The Window object takes care of drawing the window's title bar and frame, and it responds
to user actions that move the window, miniaturize and close it. It handles all
window-specific communication with the Window Server.

Programmi11g with the Applicatio11 Kit 163

In addition to the Window class, the Application Kit provides a number of more specific
classes that inherit from Window:

• Some, such as Panel, Menu, and PopUpList, provide the specialized form and behavior
expected of panels, menus, and pop-up lists in the user interface. But their specific
contents can be set by the application.

• Others, such as FontPanel and OpenPanel, have fixed contents and fulfill specific roles
in the user interface.

Instances of the Window class, on the other hand, are more generic; they can be assigned
any content the application requires. Typically, they're used to display the work of the user,
such as text, graphics, a game board, or a form for entering information in a database.

You give content to a Window by assigning it Views. Each Window contains a set of
hierarchically arranged Views; you can place a View anywhere in the hierarchy. At the top
of the hierarchy is the content view, which fills the entire content area of the window inside
the frame and title bar. Other Views are in charge of smaller areas (such as a particular text
field or scroller), or larger areas (such as an entire document) that are clipped to the visible
area within the window.

Like the Application object, Windows can be taken off-the-shelf and used without
subclassing, though you might define a subclass of Panel (Window's subclass) to set up a
particular kind of panel. To connect any Window object (including a Panel, a Menu, or a
PopUpList) with application-specific code, you can assign it a delegate. Other kinds of
Windows inherit the ability to have a delegate from the Window class.

Views

Views are the objects in charge of drawing and handling keyboard and mouse events. Each
View owns a rectangular region associated with a particular window and is responsible for
drawing one part of a window's contents. It produces images within its rectangle­
typically by calling C functions that wrap around PostScript code-and responds to events
associated with the images it draws. Its drawing is clipped to the rectangle.

Views adopt coordinate systems that are convenient for the drawing and event handling they
do. Typically, the coordinate origin is at the lower (or upper) left corner of the View
rectangle. This is illustrated in the figure below:

164 Chapter 5: Programming in Objective C

----------1

l, _______ _
I
I
I
I
I
I
I
I
I
I

l _______________________ ~

(0.0,0.0)
View default coordinates

,---------- (0.0,0.0)
Window base coordinates

Figure 25. A View in a Window

Views can be moved and resized, much as windows can. Each View is part of a hierarchy
that includes all the Views associated with the window. One View can be made up of
other Views.

The View class is abstract. It implements the overall mechanism for drawing and event
handling-organizing the hierarchy of Views, making sure they're in focus before they
draw, getting events to the correct View, and so on-but the specific content of methods
that draw and respond to events is left up to the application. They have to be implemented
in subclasses.

The objects defined by View subclasses fall into three major groups:

• Views that display data and enable the user to change and manipulate it. The Views
that display editable text for a word processor or images for a graphics editor fall into
this group, as do the Views that display data in a spreadsheet or the game board for a
chess program.

• Views that capture instructions from the user and pass them on to other objects. Views
that implement control devices like buttons, sliders, and text fields belong in this group.
Their job is to interpret a user action and translate it into a more specific instruction for
the application.

• Views that are used in conjunction with other Views, either to enhance or to regulate the
display. This group includes Views that scroll other Views, split the display into two or
more resizable sections, or simply enclose other Views within a frame.

Programming with the Application Kit 165

Views that belong to the first group are wholesale consumers of events; they display the
direct results of the user's actions. Views in the second group act as intermediaries for
actions that ultimately are intended to affect other objects. (Because of their importance to
program structure, these Views are discussed in a little more detail under "Controls"
below.) Views in the third group give users some control over what they see on-screen.

The Application Kit defines off-the-shelf Views in each group-the Text object in the first
group, Matrix, Form, and other controls in the second, and Scroll View, Clip View, and
others in the third. However, most programs need to add to these objects with their own
customized View subclasses.

Unlike Windows and the Application object, Views don't have delegates (though you could
implement a View subclass that had one). Since you must define a View subclass to hold
application-specific code anyway, any coordinating code that would otherwise be placed in
the delegate can go in the subclass instead.

Fitting into the Event Cycle

The Application, Window, and View classes set up a basic framework for handling the
application's end of the event cycle. The application must fill in this framework by giving
it specific drawing and event-handling content. You may also need to coordinate the
activities of your own objects with the objects defined in the kit.

Handling Events

Events are delivered to Views in messages named after the event. For example, a
mouse-down event is delivered as a mouseDown: message and a kcy-down event as a
keyDown: message. Each message carries a pointer to a record of the event (a structure of
type NXEvent).

To handle an event, a View must have a method that can respond to the event message that
delivers it. Since each application, and each kind of View, responds to events differently,
the implementation of these methods is left to View subclasses.

166 Chapter 5: Programming in Objective C

Methods that respond to event messages sometimes set up modal event loops. For example,
to coordinate a mouse-down event with the subsequent mouse-up event, or to track the
cursor while the user holds the mouse button down, a mouseDown: method might get
mouse-dragged and mouse-up events directly from the Application object. The modal loop
is broken when the mouse-up event arrives. Such a method might look something like this:

- mouseDown: (NXEvent *)thisEvent

int
int

NXEvent

shouldLoop = YES;
oldMask;

*nextEvent;

I * Make the ini tial response to the mouse-down event here. * /
oldMask = [windowaddToEventMask:NX_MOUSEDRAGGEDMASK];
while (shouldLoop) {

next Event = [NXApp getNextEvent: (NX_MOUSEUPMASK I
NX_MOUSEDRAGGEDMASK)];

switch (nextEvent->type) {
case NX_MOUSEUP:

shouldLoop = NO;
break;

case NX_MOUSEDRAGGED:

/* Track the position of the cusor as *
* reported in mouse-dragged events here. */

break;
default:

break;

/* Respond to the mouse-up event that broke the loop here. */

[window setEventMask:oldMask];

return self;

Briefly, this method responds to a mouse-down event by resetting the window's event mask
to include mouse-dragged events. It then sets up a subordinate event loop that looks only
for mouse-dragged and mouse-up events. While waiting for the mouse-up event that will
break the loop, it tracks the position of the cursor through the mouse-dragged events it
receives. (All of the programming elements used in this example are defined in the
Application Kit and documented in the NeXTSTEP General Reference.)

Programming with the Application Kit 167

Such a method might respond to a click by first highlighting the image that was clicked (on
the mouse-down event) then taking the required action (on the mouse-up event). Or it
might continually update the position of an image the user is dragging, or highlight a range
of text as the user drags over it.

The Application Kit's event-handling mechanism makes sure the event message gets to the
View. All the View subclass needs to do is implement the method.

Drawing

Views draw at two different times and in two different ways. They draw proactively to
present themselves to the user (that is, to present what the display within the View rectangle
currently looks like) and reactively in response to events. Reactive drawing is temporary­
the highlighting of a button while the cursor is over it or of text as the user drags across it.
It gives immediate feedback to the user. Proactive drawing is more permanent. It can
change as the result of events, of course, but it doesn't track the user's action.

For example, as the user drags to select a range of text, the amount of highlighted text
changes as the cursor moves. This drawing reacts to the movement of the cursor as reported
in mouse-dragged events. When the user releases the mouse button to finish the selection,
the text stays highlighted. The highlighting has become an inherent part of the text display
(at least until the next event), and part of what the View will proactively present when asked
to display itself.

Reactive drawing happens in methods that respond to event messages, such as the
mouseDown: method illustrated above. Proactive drawing happens as the result of display
messages. A View can be asked to display its contents at any time. For example, a View
that draws editable text would receive a display message when its window first comes
on-screen. Latcr it might receive display 111eSsages when lhe lext is scrolled, after the user
makes some editing changes, or when the image is magnified.

The Application Kit's display mechanism makes sure that Views receive display messages
when they need to refresh their images on-screen. However the Kit can't know what image
to draw. To do the actual drawing, a display message invokes the drawSelf:: method of
each View being displayed. Every View is required to supply its own drawS elf: : method
to proactively present itself to the user.

Before sending a drawSelf:: message to a View, the Kit brings the View into focus (makes
its coordinate system the current coordinate system for drawing). The message itself passes
the View two arguments specifying the regions where it's expected to draw. These regions
might be smaller that the View rectangle; by paying attention to them, drawS elf: : can avoid
generating unneeded drawing instructions.

168 Chapter 5: Programming in Objective C

A View can draw using wrapped PostScript code, as discussed earlier under "The Window
Server," or it can use the imaging facilities provided in the NXImage class, or even draw in
three dimensions using the 3D Graphics Kit. The 3D Kit defines a framework for building
3D images and presenting them within a View.

A View can also divide its drawing area into small sections and put another object in charge
of each section. This is exactly what a Matrix does; it uses Cell objects to draw and handle
events for it. A Matrix is a kind of View, so it can take care of all external relations­
positioning itself relative to other Views, getting events, setting up a coordinate system for
drawing, and so on. The Cells take care of internal matters. When the Matrix receives a
display message, its drawSelf:: method sends drawSelf:inView: messages to the Cells.
When it gets a mouse-down event, its mouseDown: method tracks the cursor over the Cells
and informs the Cell the cursor is pointing to.

Controls

Event messages deliver the user's instructions directly to Views. However, because events
are closely tied to hardware devices-the keyboard and mouse-there can be but a handful
of different event types. Events alone don't give an application much information about the
user's intentions.

The user interface, therefore, needs to establish well-understood paradigms for interpreting
events. In text, for example, a key-down event for a backspace deletes the previous
character, other key-down events insert characters into the stream of text, double-clicking
selects a word, and so on.

Graphical user interfaces often borrow paradigms from the real world by emulating
hardware devices in software. It's not possible (or at least not very practical) to attach a lot
of control panels with buttons, knobs, sliders and other devices to the computer alongside
the keyboard and mouse. But it is possible to provide those controls on the screen where
they can be manipulated indirectly through mouse and keyboard events.

It's the job of software control devices to interpret events and ask other objects to respond
to them. Graphically, a control presents the user with an image of a recognizable device
that can be manipulated with the keyboard and mouse-a button that can be pressed, a
slider with a knob that can be dragged, a text field where data can be entered. Functionally,
it translates the event messages it receives into application-specific action messages for
another object. The object that receives an action message is the control's target.

The Application Kit defines several standard control devices. Most are implemented as
Views, others as Panels. In a Matrix, each ButtonCell or SliderCell might be thought of as
a separate control, or the whole Matrix might act as an independent control device.

Programming with the Application Kit 169

The Kit lets you set the target of a control,

[myDevice setTarget:anObject];

and also the selector of the action message:

[myDevice setAction:@selector(dimLights:)];

There's a limited set of events, but a virtually unlimited number of action messages.

In some cases, the target might be an object defined in the Kit. The Text object, for
example, can respond to copy:, paste:, and selectAII: action messages, among others. In
most cases, however, you'll need to define the target object and implement a methods to
respond to the action messages it receives.

Action messages take a single argument, the id of the object that sends the message. If a
target needs more information to accurately respond to an action message, it can send a
message back to the control requesting the information it needs. For example, if a target
receives a changeName: message from a Matrix, it can send a stringValue message back
to the Matrix to find the name the user selected.

Assigning a target and action message to a control device gives it specific meaning. It's
something like buying a generic switch at the hardware store and hooking it up to a
particular piece of equipment in your home. Using kit-defined controls, you can assemble
most of your application's user interface from off-the-shelf objects. The objects you design
to do the basic work of your application can be connected to the user interface by being
made targets of controls.

Interface Builder lets you set targets and actions graphically. You can name your own
action methods while you design the user interface, then implement the methods later.

Coordinating with the Application and its Windows

Much of the activity of an application centers on the Application object, which represents
the application as a whole, and on Window objects, which represent each of the windows
the application uses. To coordinate other parts of the program with these objects, you can
assign them a delegate and implement methods that the Application and Window classes
declare in informal protocols. You can select which messages you want the delegate to
receive; a message is sent only if the delegate implements a method that can respond.

170 Chapter 5: Programming in Objective C

Most methods implemented by Window and Application delegates respond to simple
notifications. For example, when the user moves a window, the Window's delegate can be
notified with a windowDidMove: message. Applications mostly don't care where their
windows are located on-screen, but they can take note of the new location by implementing
this method.

When the window becomes the key window (the window the user is about to work in and
the one marked by a black title bar), the delegate is sent a windowDidBecomeKey:
message, and when another window takes over as key window, it gets a
windowDidResignKey: message. The Window object takes care of all the required
changes when a window gains and loses key-window status (such as bringing the window
to the front of the screen and highlighting and unhighlighting its title bar), but the delegate
can take note of these status changes by implementing these methods.

The Application object can send its delegate a variety of messages. Many are pure
notifications. For example, just after it finishes all its initialization tasks and before it enters
the main event loop, the Application object sends its delegate an appDidInit: message.
When the application becomes the active application (the one the user is about to work in),
the delegate is sent an appDidBecomeActive: message and, if it was hidden, an
appDidUnhide: message. When the application is hidden (its windows removed from the
screen), the delegate is sent an appDidHide: message and an appDidUnhide: message
when it returns to the screen. When the user quits the application, the delegate gets an
app WillTerminate: message.

These messages give you a chance to coordinate with user actions. For example,
appDidInit: could open an empty window for the user to work in, if the application
normally opens and displays a file but the user launched it by double-clicking an application
icon rather than a file icon. If quitting would destroy some of the user's work,
app WillTerminate: could put up an attention panel reminding the user of that fact, then
return nil to prevent the termination if the user cancels the Quit command.

Some messages to the Application object's delegate assign it specific tasks. For example,
if the application receives a remote message asking it to open a particular file, the
Application object will determine whether the application is able to open another file and,
if it is, find the file and pass its pathname to its delegate in an app:openFile:type: message.
The Application object can't itself open the file and display its contents in a window.
Different applications store their data differently. Being generic, the Application Kit can't
know about application-specific data formats and conventions. Therefore, when it receives
a request to open a file, it sends its delegate an app:openFile:type: message. The delegate
can implement this method to open the file, create a Window and a View, and display the
contents of the file on-screen.

See the NeXTSTEP General Reference manual for more detailed information on these
methods, their arguments, and return values.

Programming with the Application Kit 171

Subclass Clusters

There's usually a one-to-one correspondence between concepts in the program design and
class definitions. Matrices are defined by the Matrix class, windows by the Window class,
and so on. However, given the basic tenets of object-oriented programming, there's no
reason why a single conceptual "object" can't be implemented in more than one class. This
possibility follows from the fact that:

• A class interface lies in its methods. The data structure it defines is a matter of
implementation only; it should never be of much concern to anyone who uses the class.

• Different classes can have different implementations of the same method.

It shouldn't be surprising, therefore, to find a group of classes that have differing, and
alternative, implementations of the same interface. Each implementation is optimized for
a different set of circuinstances. Instead of a program component being implemented in
just one class, it's implemented in a cluster of classes.

To keep differences between classes in the cluster a matter of implementation only, it's
important that they all share the same interface. Typically, all the implementing classes are
grouped under an abstract class that declares their common interface. Program users can
regard an instance of any class in the cluster as if it was an instance of the abstract class.

A cluster of classes can be used to optimize data storage. Suppose, for example, that your
program will make extensive use of an object with a long list of instance variables. Some
variables will be used frequently, but many are for specialized situations that rarely come
up. Perhaps some variables declared as doubles will most often hold small integers, but
they must be declared as floating point numbers for the exceptional case.

Moreover, because there will be many instances of this kind of object in your program,
you're concerned with the amount of memory they'll consume.

In this circumstance, you might save memory by implementing a cluster of classes instead
of a single class. An abstract class would declare a common interface that all its subclasses
would adhere to; it would declare no instance variables of its own. One subclass could
declare a small subset of instance variables sufficient to handle simple cases. It would have
chars or shorts instead of doubles and avoid some of the more esoteric fields that would
be infrequently used. Other subclasses could be optimized for special circumstances. One
subclass, of course, would have to provide the full set of instance variables that you
originally contemplated. Each subclass would override superclass methods and implement
them in a way that's appropriate for its particular kind of data storage.

172 Chtipter 5: Programming in Objective C

A cluster of classes can also be used to optimize methods for different patterns of usage.
For example, suppose that you want to define an interface for data storage and retrieval.
The way you'd implement the methods would vary depending on the anticipated size of the
data elements and the number being stored. In this circumstance, you could provide more
than one implementation of the interface, optimizing each for a particular size and amount
of data.

The choice of which implementation (which subclass in the cluster) to use can be handled
in a variety of ways. Allocation and initialization methods in the superclass might choose
the subclass that best fits the circumstances and create an instance of that class-trying
always for instances that occupy as little memory as possible and that have access to the
most efficient algorithms for the data.

A subclass cluster obviously works best for objects that, once initialized, are rarely or never
modified. However, if an instance ever needs to change its implementation to that of
another subclass (one that can store more information, for example), the change might be
made almost automatically. A special "copy" method would allocate an instance of the
alternative class, initialize and return it. The original instance could then be freed.

Subclass clusters take to heart the idea that what matters most about an object is its method
interface, not its implementation. By keeping the same interface for an assortment of
alternative implementations, they serve to simplify the overall interface and make it easier
to understand. Instead of a variety of different data-storage schemes, for example, there's
just one, with a variety of different implementations.

Using C++ with Objective C

The Objective C language is conceived as a set of extensions to a base language, which
happens to be C. These extensions don't alter the semantics of the base language; they
simply add a few syntactic constructions to give it an object-oriented capability. Other
programming languages may similarly be made "Objective," as long as any syntactic
conflicts between the base language and the extensions are properly handled.

NeXT has taken the logical step and added the Objective C extensions to C++. Objective C
and C++ can be combined in the same source file and compiled together. With C++ as the
base for the Objective C extensions, you can mix features from both languages, using
whichever ones are appropriate for the task. For example, you can take advantage of
Objective C's dynamic binding and still use C++'s stronger type checking and
compile-time binding as needed. Modules using features from both languages can translate
between modules written in "straight" C++ and Objective C code.

Using C++ with Objective C. 173

NeXT's primary goal in integrating the C++ and Objective C programming languages is to
make it possible for you to use an existing base of C++ code with the NeXTSTEP software
kits. You can also take advantage of this integration to write mixed code if you have a
strong need for some features of the C++ language while programming in Objective C.

Writing Mixed Code

NeXT's C++ compiler allows c++ and Objective C expressions to be mixed in almost any
manner. For example, Objective C messages can be sent within the member functions of
C++ classes, and C++ member functions can be called within Objective C methods.
Objects defined in either language can create and use objects defined in the other language;
a C++ class can declare an id as a data member, while an Objective C class can declare a
C++ object as an instance variable. An Objective C message can pass a C++ object as an
argument, and a C++ function can take an Objective C object as an argument.

However, classes defined in each languages retain their own character. You can't define an
hybrid object. Objective C messages can be sent only to Objective C receivers, and C++
member functions are called only through C++ objects. A class defined in one language
can't inherit from a class defined in the other language. Moreover, operators specific to
C++ can't be applied to Objective C objects. It won't work, for example, to use the C++
new and delete operators to allocate and free Objective C objects.

When mixing C++ and Objective C code, the keywords of both languages should be
respected. In most cases, there's no problem since both languages derive from C and most
keywords are shared. However, the C++ keyword new is also a common method name in
Objective C. To handle this potential conflict, the compiler allows an Objective C method
to have the same name as a C++ keyword and decides which is which based on context.
For example, if "new" appears outside square brackets, it's treated as the C++ keyword for
allocation from the free store; if it appears within square brackets in the position of a
message name, it's treated as such. It's even legal to use "new" within a message
expression as a C++ keyword:

[anObject useCPlusPlusObject:new cPlusPlusClass];

Since this style of code can be hard to read, it's not recommended that you use it.

174 Chapter 5: Programming in Objective C

Bridge Classes

A common method of mixing C++ and Objective C code is to write most modules purely
in one language or the other, and then connect them by creating compound "bridge"
objects-one defined as an Objective C object containing a C++ object as an instance
variable, and if needed, a corresponding C++ object containing an Objective C object as a
data member. The Objective C object responds to messages by calling one of the C++
object's member functions, and the C++ object implements its member functions to send
messages to its Objective C counterpart. If the communication must be two-way, the C++
class and the Objective C @c1ass declarations can be used to avoid circular references in
header files.

When a project is structured this way, only the bridge classes need to contain both
Objective C and C++ expressions. This reduces the potential for conflicts and makes the
rest of the source code easier to read.

Suppose, for example, that a project written primarily in the Objective C language needs
to use a C++ object for some of its calculations. A special Objective C class can be
defined to translate Objective C messages into C++ function calls. If the Objective C
object stores the C++ object as an instance variable called calculator, one of its methods
might look like this:

- (int)calcInt: (int)anInt withFloat: (float)aFloat

return calculator.calcIntWithFloat(anInt, aFloat);

Similarly, a C++ class could be implemented to use an Objective C object for displaying
information to the user. If the C++ object stores the Objective C object as a data member
called displayer, one of its member functions might look like this:

void collaborator: :showResult(char *aString)

[displayer showResult:aString];

return;

Using C++ with Objective C 175

Using Objective C Libraries with C++ Code

Files written in C++ that use standard C libraries must use an extern linkage directive when
including header files for those libraries, for example:

extern "C" {

#include <stdio.h>

Similarly, C++ files that include Objective C header files require the "Objective-C"
language to be specified (note that this form of the name is hyphenated):

extern "Objective-C" {

#import <objc/Object.h>

When Objective C is added to C++, the meaning of the C++ linkage directive is slightly
different from its meaning in standard C++. Normally, the linkage directive merely
specifies that the code in the directive's scope is to be linked according to rules defined for
the named programming language; the code doesn't actually have to be written in the
language specified. However, when the specified language is "Objective-C," all the code
within the scope of the directive must be legal Objective C.

Run-lime Sequencing

The Objective C language uses an extensive run-time system to support its dynamic
allocation, typing, binding, and loading. C++, on the other hand, needs very little run-time
support. Statically declared C++ objects are initialized before the Objective C run-time
system is. For this reason, C++ code should not refer'to Objective C objects in static
initializers or constructors. Doing so will result in launch-time errors.

176 Chapter 5: Programmil1g i,l Objective C

Objective C
Language Summary

",?

Objective C adds a small number of constructs to the C language and defines a handful
of conventions for effectively interacting with the run-time system. This appendix lists
all the additions to the language, but doesn't go into great detail. For more information,
see Chapters 2 and 3 of this manual. For a more formal presentation of Objective C
syntax, see Appendix B, "Reference Manual for the Objective C Language," which follows
this summary.

Messages

Message expressions are enclosed in square brackets:

[receiver message]

The receiver can be:

• A variable or expression that evaluates to an object (including the variable self)
• A class name (indicating the class object)
• super (indicating an alternative search for the method implementation)

The message is the name of a method plus any arguments passed to it.

Objective C Language Summary 177

Defined Types

The principal types used in Objective C are defined in objc/objc.h. They are:

id
Class
SEL
IMP
BOOL

An object (a pointer to its data structure)
A class object (a pointer to the class data structure)
A selector, a compiler-assigned code that identifies a method name
A pointer to a method implementation that returns an id
A boolean value, either YES or NO

id can be used to type any kind of object, class or instance. In addition, class names can be
used as type names to statically type instances of a class. A statically typed instance is
declared to be a pointer to its class or to any class it inherits from.

The objc.h header file also defines these useful terms:

nil
Nil

A null object pointer, (id)O
A null class pointer, (Class)O

Preprocessor Directives

The preprocessor understands these new notations:

#import

II

Compiler Directives

Imports a header file. This directive is identical to #include,
except that it won't include the same file more than once.

Begins a comment that continues to the end of the line.

Directives to the compiler begin with "@". The following directives are used to declare
and define classes, categories, and protocols:

@interface
@implementation
@protocol
@end

178 Appendix A: Objective C Language Summary

Begins the declaration of a class or category interface
Begins the definition of a class or category
Begins the declaration of a formal protocol
Ends the declaration/definition of a class, category, or protocol

Classes

The following mutually-exclusive directives specify the visibility of instance variables:

@private
@protected
@public

Limits the scope of an instance variable to the class that declares it
Limits instance variable scope to declaring and inheriting classes
Removes restrictions on the scope of instance variables

The default is @protected.

In addition, there are directives for these particular purposes:

Declares the names of classes defined elsewhere
Returns the compiled selector that identifies method

@class
@selector(method)
@protocol(name)
@encode(spec)
@defs(classname)

Returns the name protocol (an instance of the Protocol class)
Yields a character string that encodes the type structure of spec
Yields the internal data structure of classname instances

A new class is declared with the @interface directive. It imports the interface file for
its superclass:

#import" ItsSuperclass.h"

@interface ClassName : ItsSuperclass < protocol list >
{

instance variable declarations
}
method declarations
@end

Everything but the compiler directives and class name is optional. If the colon and
superclass name are omitted, the class is declared to be a new root class. If any protocols
are listed, the header files where they're declared must also be imported.

A class definition imports its own interface:

#import" ClassName.h"

@impiementation ClassName
method definitions
@end

Classes 179

Categories

A category is declared in much the same way as a class. It imports the interface file that
declares the class:

#import "ClassName.h"

@interface ClassName (CategoryName) < protocol list >
method declarations
@end

The protocol list and method declarations are optional. If any protocols are listed, the
header files where they're declared must also be imported.

Like a class definition, a category definition imports its own interface:

#import "CategoryName.h"

@implementation ClassName (CategoryName)
method definitions
@end

Formal Protocols

Formal protocols are declared using the @protocol directive:

@protocol ProtocolName < protocol list >
method declarations
@end

The list of incorporated protocols and the method declarations are optional. The protocol
must import the header files that declare any protocols it incorporates.

Within source code, protocols are referred to using the similar @protocolO directive,
where the parentheses enclose the protocol name.

Protocol names listed within angle brackets « ... » are used to do three different things:

• In a protocol declaration, to incorporate other protocols (as shown above)

• In a class or category declaration, to adopt the protocol (as shown under "Classes" and
"Categories" above)

180 Appendix A: Objective C Language Summary

• In a type specification, to limit the type to objects that conform to the protocol

Within protocol declarations, these type qualifiers support remote messaging:

oneway
in

The method is for asynchronous messages and has no valid return.
The argument passes information to the remote receiver.

out
inout
bycopy

The argument gets information returned by reference.
The argument both passes information and gets information.
A copy of the object, not a proxy, should be passed or returned.

Method Declarations

The following conventions are used in method declarations:

• A "+" precedes declarations of class methods.

• A "-" precedes declarations of instance methods.

• Arguments are declared after colons (:). Typically, a label describing the argument
precedes the colon. Both labels and colons are considered part of the method name.

• Argument and return types are declared using the C syntax for type casting.

• The default return and argument type for methods is id, not int as it is for functions.
(However, the modifier unsigned when used without a following type always means
unsigned int)

Method Implementations

Each method implementation is passed two hidden arguments:

• The receiving object (self)
• The selector for the method (_cmd)

Within the implementation, both self and super refer to the receiving object. super
replaces self as the receiver of a message to indicate that only methods inherited by the
implementation should be performed in response to the message.

Methods with no other valid return typically return self.

Method Declarations 181

Naming Conventions

The names of files that contain Objective C source code have a ".m" extension. Files that
declare class and category interfaces or that declare protocols have the" .h" extension
typical of header files.

Class, category, and protocol names generally begin with an uppercase letter; the names of
methods and instance variables typically begin with a lowercase letter. The names of
variables that hold instances usually also begin with lowercase letters.

In Objective C, identical names that serve different purposes don't clash. Within a class,
names can be freely assigned:

• A class can declare methods with the same names as methods in other classes.
• A class can declare instance variables with the same names as variables in other classes.
• An instance method can have the same name as a class method.
• A method can have the same name as an instance variable.

Likewise, protocols and categories of the same class have protected name spaces:

• A protocol can have the same name as a class, a category, or anything else.
• A category of one class can have the same name as a category of another class.

However, class names are in the same name space as variables and defined types. A
program can't have a global variable with the same name as a class.

182 Appendix A: Objective C Language Summary

B Reference Manual for
the Objective C Language

This appendix presents a formal grammar for the Objective C extensions to the C
language-as the Objective C language is implemented for the NeXTSTEP development
environment. It adds to the grammar for ANSI standard C found in Appendix A of The C
Programming Language (second edition, 1988) by Brian W. Kernighan and Dennis M.
Ritchie, published by Prentice Hall, and should be read in conjunction with that book.

The Objective C extensions introduce some new symbols (such as class-interface), but also
make use of symbols (such as function-definition) that are explained in the standard C
grammar. The symbols mentioned but not explained here are listed below:

compound statement
constant
declaration
declaration-list
enum-specifier
expression
function-definition

identifier
parameter-type-list
string
struct-declaration-list
struct-or-union
typedef-name
type-name

Of these, identifier and string are undefined terminal symbols. Objective C adds no
undefined terminal symbols of its own.

Two notational conventions used here differ from those used in The C Programming
Language:

• Literal symbols are shown in bold type.

• Brackets enclose optional elements and are in italic type. Literal brackets, like other
literal symbols, are nonitalic and bold.

Reference Manual for the Objective C Language 183

Otherwise, this appendix follows the conventions of the C reference manual. Each
part of the grammar consists of a symbol followed by a colon and an indented list of
mutually-exclusive possibilities for expanding the symbol. For example:

receiver:
expression
class-name
super

However, there is an exception: Even though they're not mutually exclusive, the
constituents of classes, categories, and protocols are listed on separate lines to clearly

, show the ordering of elements. For example:

protocol-declaration:
@protocol protocol-name

[protocol-reJerence-list J
[interface-declaration-list J

@end

This exception to the general rule is easily recognized since each list terminates with @end.

There are just four entry points where the Objective C language modifies the rules defined
for standard C:

• External declarations
• Type specifiers
• Type qualifiers
• Primary expressions

This appendix is therefore divided into four sections corresponding to these points. Where
a rule in the standard C grammar is modified by an Objective C extension, the entire rule is
repeated in its modified form.

184 Appendix B: Reference Manual for the Objective C Language

External Declarations

external-declaration:
Junction-definition
declaration
class-inteljace
class-implementation
category-inteljace
category-implementation
protocol-declaration
class-declaration-list

class-inteljace:
@interface class-name [: superclass-name]

[protocol-reJerence-list]
[instance-variables]
[interJace-declaration-list]

@end

class-implementation:
@implementation class-name [: superclass-name]

[instance-variables]
[implementation-definition-list]

@end

category-inteljace:
@interface class-name (category-name)

[protocol-reJerence-list]
[inteljace-declaration-list]

@end

category-implementation:
@implementation class-name (category-name)

[implementation-definition-list]
@end

protocol-declaration:
@protocol protocol-name

[protocol-reJerence-list]
[inteljace-declaration-list]

@end

External Declarations 185

class-declaration-list:
@ciass class-list ;

class-list:
class-name
class-list , class-name

protocol-reJerence-list:
< protocol-list >

protocol-list:
protocol-name
protocol-list , protocol-name

class-name:
identifier

superclass-name:
identifier

category-name:
identifier

protocol-name:
identifier

instance-variables:
{ [visibility-specification 1 struct-declaration-list [instance-variables 1 }

visibility-specification:
@private
@protected
@public

interface-declaration-list:
declaration
method-declaration
interface-declaration-list declaration
interface-declaration-list method-declaration

method-declaration:
class-method-declaration
instance-method-declaration

186 Appendix E: Reference Manual for the Objective C Language

class-method-declaration:
+ [method-type J method-selector

instance-method-declaration:
- [method-type J method-selector

implementation-definition-list:
function-definition
declaration
method-definition
implementation-definition-list function-definition
implementation-definition-list declaration
implementation-definition-list method-definition

method-definition:
class-method-definition
instance-method-definition

class-method-definition:
+ [method-type J method-selector [declaration-list J compound-statement

instance-method-definition:
- [method-type J method-selector [declaration-list J compound-statement

method-selector:
unary-se lecto r
keyword-selector [, .•• J
keyword-selector [, parameter-type-list J

unary-selector:
selector

keyword-selector:
keyword-declarator
keyword-selector keyword-declarator

keyword-declarator:
: [method-type J identifier
selector : [method-type J identifier

selector:
identifier

method-type:
(type-name)

Extemal Declarations 187

Type Specifiers

type-specifier:
void
char
short
int
long
float
double
signed
unsigned
id [protocol-reJerence-list]
class-name [protocol-reJerence-list]
struct-or-union-specifier
enum-specifier
typedeJ-name

struct-or-union-specifier:
struct-or-union [identifier] { struct-declaration-list }
struct-or-union [identifier] { @defs (class-name) }
struct-or-union identifier

Type Qualifiers

type-qualifier:
const
volatile
protocol-qualifier

protocol-qualifier:
in
out
inout
bycopy
oneway

188 Appmdix E: Reference Manual for the Objective C Language

Primary Expressions

primary-expression:
identifier
constant
string
(expression)
self
message-exp ression
selector-expression
protocol-expression
encode-expression

message-exp ression:
[receiver message-selector]

receiver:
expression
class-name
super

message-selector:
selector
keyword-argument-list

keyword-argument-list:
keyword-argument
keyword-argument-list keyword-argument

keyword-argument:
selector : expression
: expression

se lecto,r-exp ression:
@selector (selector-name)

selector-name:
selector
keyword-name-list

keyword-name-list:
keyword-name
keyword-name-list keyword-name

Primary Expressions 189

keyword-name:
selector

protocol-expression:
@protocol (protocol-name)

encode-expression:
@encode (type-name)

190 Appendix B: Reference Manualforthe Objective C Language

The Object Class

Inherits From: none (Object is the root Class)

Declared In: /NextDeveloperlHeaders/objc/Object.h

Class Description

Object is the root class of all ordinary Objective C inheritance hierarchies; it's the one class
that has no superclass. From Object, other classes inherit a basic interface to the run-time
system for the Objective C language. It's through Object that instances of all classes obtain
their ability to behave as objects.

Among other things, the Object class provides inheriting classes with a framework for
creating, initializing, freeing, copying, comparing, and archiving objects, for performing
methods selected at run-time, for querying an object about its methods and its position in
the inheritance hierarchy, and for forwarding messages to other objects. For example, to
ask an object what class it belongs to, you'd send it a class message. To find out whether
it implements a particular method, you'd send it a respondsTo: message.

The Object class is an abstract class; programs use instances of classes that inherit from
Object, but never of Object itself.

The Object Class 191

Initializing an Object to Its Class

Every object is connected to the run-time system through its isa instance variable, inherited
from the Object class. isa identifies the object's class; it points to a structure that's
compiled from the class definition. Through isa, an object can find whatever information
it needs at run time-such as its place in the inheritance hierarchy, the size and structure of
its instance variables, and the location of the method implementations it can perform in
response to messages.

Because all objects directly or indirectly inherit from the Object class, they all have this
variable. The defining characteristic of an "object" is that its first instance variable is an isa
pointer to a class structure.

The installation of the class structure-the initialization of isa-is one of the
responsibilities of the alloc, allocFrornZone:, and new methods, the same methods that
create (allocate memory for) new instances of a class. In other words, class initialization is
part of the process of creating an object; it's not left to the methods, such as init, that
initialize individual objects with their particular characteristics.

Instance and Class Methods

Every object requires an interface to the run-time system, whether it's an instance object or
a class object. For example, it should be possible to ask either an instance or a class about
its position in the inheritance hierarchy or whether it can respond to a particular message.

So that this won't mean implementing every Object method twice, once as an instance
method and again as a class method, the run-time system treats methods defined in the root
class in a special way: .

Instance methods defined in the root class can be peiformed both by instances
and by class objects.

A class object has access to class methods-those defined in the class and those inherited
from the classes above it in the inheritance hierarchy-but generally not to instance
methods. However, the run-time system gives all class objects access to the instance
methods defined in the root class. Any class object can perform any root instance method,
provided it doesn't have a class method with the same name.

192 Appendix C: The Object Class

For example, a class object could be sent messages to perform Object's respondsTo: and
perform:with: instance methods:

SEL method = @selector(riskAll:) i

if ([MyClass respondsTo:method])
[MyClass perform:method with:self] i

When a class object receives a message, the run-time system looks first at the receiver's
repertoire of class methods. If it fails to find a class method that can respond to the
message, it looks at the set of instance methods defined in the root class. If the root class
has an instance method that can respond (as Object does for respondsTo: and
perform:with:), the run-time system uses that implementation and the message succeeds.

Note that the only instance methods available to a class object are those defined in the root
class. If MyClass in the example above had reimplemented either respondsTo: or
perform:with:, those new versions of the methods would be available only to instances.
The class object for MyClass could perform only the versions defined in the Object class.
(Of course, if MyClass had implemented respondsTo: or perform:with: as class methods
rather than instance methods, the class would perform those new versions.)

Interface Conventions

The Object class defines a number of methods that other classes are expected to override.
Often, Object's default implementation simply returns self. Putting these "empty" methods
in the Object class serves two purposes:

• It means that every object can readily respond to certain standard messages, such as
awake or init, even if the response is to do nothing It's not necessary to check (using
respondsTo:) before sending the message.

• It establishes conventions that, when followed by all classes, make object interactions
more reliable. These conventions are explained in full under the method descriptions.

Sometimes a method is merely declared in the Object class; it has no implementation, not
even the empty one of returning self. These "unimplemented" methods serve the same
purpose-defining an interface convention-as Object's "empty" methods. When
implemented, they enable objects to respond to system-generated messages.

Class Description 193

Instance Variables

Class isa;

isa A pointer to the instance's class structure.

Method Types

Initializing the class + initialize

Creating, copying, and freeing instances
+ alloc

Initializing a new instance

Identifying classes

+ allocFromZone:
+ new
-copy
- copyFromZone:
-zone
-free
+ free

- init

+ name
+ class
- class
+ superclass
- superclass

Identifying and comparing instances
- isEqual:
-hash
- self
-name
- printForDebugger:

Testing inheritance relationships
- isKindOf:
- isKindOfClassNamed:
- isMemberOf:
- isMemberOfClassNamed:

194 AppeJldix C: The Object Class

Testing class functionality - respondsTo:
+ instancesRespondTo:

Testing for protocol conformance
+ conformsTo:
- conformsTo:

Sending messages determined at run time
-perform:
- perform:with:
- perform:with:with:

Forwarding messages - forward::
- performv::

Obtaining method information - methodFor:

Posing

Enforcing intentions

Error handling

Dynamic loading

Archiving

+ instanceMethodFor:
- descriptionForMethod:
+ descriptionForInstanceMethod:

+ poseAs:

- notImplemented:
- subclassResponsibility:

- doesNotRecognize:
- error:

+ finishLoading:
+ startUnloading

- read:
- write:
- startArchiving:
- awake
- finishUnarchiving
+ setVersion:
+ version

Method Types 195

Class Methods

alloe

+ alloc

Returns a new instance of the receiving class. The isa instance variable of the new object
is initialized to a data structure that describes the class; memory for all other instance
variables is set to O. A version of the init method should be used to complete the
initialization process. For example:

id newObject = [[TheClass alloc] init];

Other classes shouldn't override alloc to add code that initializes the new instance. Instead,
class-specific versions of the init method should be implemented for that purpose. Versions
of the new method can also be implemented to combine allocation and initialization.

Note: The alloc method doesn't invoke allocFrornZone:. The two methods work
independently.

See also: + allocFrornZone:, - init, + new

alioeFromZone:

+ allocFrornZone:(NXZone *)zone

Returns a new instance of the receiving class. Memory for the new object is allocated
from zone.

The isa instance variable of the new object is initialized to a data structure that describes
the class; memory for its other instance variables is set to O. A version of the init method
should be used to complete the initialization process. For example:

id newObject = [[TheClass allocFromZone:someZone] init];

The allocFrornZone: method shouldn't be overridden to include any initialization code.
Instead, class-specific versions of the init method should be implemented for that purpose.

When one object creates another, it's often a good idea to make sure they're both allocated
from the same region of memory. The zone method can be used for this purpose; it returns
the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocFromZone: [self zone]] init];

See also: + alloc, - zone, - init

196 Appendix C: The Object Class

class

+ class

Returns self. Since this is a class method, it returns the class object.

When a class is the receiver of a message, it can be referred to by name. In all other cases,
the class object must be obtained through this, or a similar method. For example, here
SomeClass is passed as an argument to the isKindOf: method:

BOOL test = [self isKindOf: [SomeClass class]];

See also: - name, - class

conformsTo:

+ (BOOL)conformsTo:(Protocol *)aProtocol

Returns YES if the receiving class conforms to aProtocol, and NO if it doesn't.

A class is said to "conform to" a protocol if it adopts the protocol or inherits from another
class that adopts it. Protocols are adopted by listing them within angle brackets after the
interface declaration. Here, for example, MyClass adopts the imaginary
AffiliationRequests and Normalization protocols:

@interface MyClass : Object <AffiliationRequests, Normalization>

A class also conforms to any protocols that are incorporated in the protocols it adopts or
inherits. Protocols incorporate other protocols in the same way that classes adopt them.
For example, here the AffiliationRequests protocol incorporates the Joining protocol:

@protocol AffiliationRequests <Joining>

When a class adopts a protocol, it must implement all the methods the protocol declares. If
it adopts a protocol that incorporates another protocol, it must also implement all the
methods in the incorporated protocol or inherit those methods from a class that adopts it.
In the example above, MyClass must implement the methods in the AffiliationRequests and
Normalization protocols and, in addition, either inherit from a class that adopts the Joining
protocol or implement the Joining methods itself.

When these conventions are followed and all the methods in adopted and incorporated
protocols are in fact implemented, the conformsTo: test for a set of methods becomes
roughly equivalent to the respondsTo: test for a single method.

However, conformsTo: judges conformance solely on the basis of the formal declarations
in source code, as illustrated above. It doesn't check to see whether the methods declared
in the protocol are actually implemented. It's the programmer's responsibility to see that
they are.

Class Afethods 197

The Protocol object required as this method's argument can be specified using the
@protocolO directive:

BOOL canJoin = [MyClass conformsTo:@protocol(Joining)];

The Protocol class is documented in the NeXTSTEP General Reference manual.

See also: - conformsTo:

descriptionForlnstanceMethod:

+ (struct objc_method_description *)
descriptionForInstanceMethod:(SEL)aSelector

Returns a pointer to a structure that describes the aSelector instance method, or NULL if
the aSelector method can't be found. To ask the class for a description of a class method,
or an instance for the description of an instance method, use the descriptionForMethod:
instance method.

See also: - descriptionForMethod:

finish loading:

+ finishLoading:(struct mach_header *)header

Implemented by subclasses to integrate the class, or a category of the class, into a running
program. A finishLoading: message is sent immediately after the class or category has
been dynamically loaded into memory, but only if the newly loaded class or category
implements a method that can respond. header is a pointer to the structure that describes
the modules that were just loaded.

Once a dynamically loaded class is used, it will also receive an initialize message.
However, because the finishLoading: message is sent immediately after the class is loaded,
it always precedes the initialize message, which is sent only when the class receives its first
message from within the program.

A finishLoading: method is specific to the class or category where it's defined; it's not
inherited by subclasses or shared with the rest of the class. Thus a class that has four
categories can define a total of five finishLoading: methods, one in each category and one
in the main class definition. The method that's performed is the one defined in the class or
category just loaded.

There's no default finishLoading: method. The Object class declares a prototype for this
method, but doesn't implement it.

See also: + startUnloading

198 Appendix C: The Object Class

free

+ free

Returns nil. This method is implemented to prevent class objects, which are "owned" by
the run-time system, from being accidentally freed. To free an instance, use the instance
method free.

See also: - free

initialize

+ initialize

Initializes the class before it's used (before it receives its first message). The run-time
system generates an initialize message to each class just before the class, or any class that
inherits from it, is sent its first message from within the program. Each class object receives
the initialize message just once. Superclasses receive it before subclasses do.

For example, if the first message your program sends is this,

[Application new]

the run-time system will generate these three initialize messages,

[Object initialize];

[Responder initialize];

[Application initialize];

since Application is a subclass of Responder and Responder is a subclass of Object. All
the initialize messages precede the new message and are sent in the order of inheritance,
as shown.

If your program later begins to use the Text class,

[Text instancesRespondTo:someSelector]

the run-time system will generate these additional initialize messages,

[View initialize];

[Text initialize];

since the Text class inherits from Object, Responder, and View. The instancesRespondTo:
message is sent only after all these classes are initialized. Note that the initialize messages
to Object and Responder aren't repeated; each class is initialized only once.

You can implement your own versions of initialize to provide class-specific initialization
as needed.

Class Methods 199

Because initialize methods are inherited, it's possible for the same method to be invoked
many times, once for the class that defines it and once for each inheriting class. To prevent
code from being repeated each time the method is invoked, it can be bracketed as shown in
the example below:

+ initialize

if (self == [MyClass class])
/* put initialization code here */

return self;

Since the run-time system sends a class just one initialize message, the test shown in the
example above should prevent code from being invoked more than once. However, if for
some reason an application also generates initialize messages, a more explicit test may
be needed:

+ initialize

static BaaL tooLate = NO;
if (! tooLate) {

/* put initialization code here */

tooLate = YES;

return self;

See also: - init, - class

instanceMethodFor:

+ (IMP)instanceMethodFor: (SEL)aSelector

Locates and returns the address of the implementation of the aSelector instance method.
An error is generated if instances of the receiver can't respond to aSelector messages.

This method is used to ask the class object for the implementation of an instance method.
To ask the class for the implementation of a class method, use the instance method
methodFor: instead of this one.

instanceMethodFor:, and the function pointer it returns, are subject to the same
constraints as those described for methodFor:.

See also: - methodFor:

200 Appendix C: The Object Class

instancesRespondTo:

+ (BOOL)instaneesRespondTo:(SEL)aSelector

Returns YES if instances of the class are capable of responding to aSelector messages, and
NO if they're not. To ask the class whether it, rather than its instances, can respond to a
particular message, use the respondsTo: instance method instead of
instaneesRespond To:.

If aSelector messages are forwarded to other objects, instances of the class will be able to
receive those messages without error even though this method returns NO.

See also: - respondsTo:, - forward::

name

+ (const char *)name

Returns a null-terminated string containing the name of the class. This information is often
used in error messages or debugging statements.

See also: - name, + class

new

+ new

Creates a new instance of the receiving class, sends it an init message, and returns the
initialized object returned by init.

As defined in the Object class, new is essentially a combination of alloe and init. Like
alIoe, it initializes the isa instance variable of the new object so that it points to the class
data structure. It then invokes the init method to complete the initialization process.

Unlike alIoe, new is sometimes reimplemented in subclasses to have it invoke a class­
specific initialization method. If the init method includes arguments, they're typically
reflected in the new method as well. For example:

+ newArg: (int)tag arg: (struct info *)data

return [[self alloc] initArg:tag arg:data];

However, there's little point in implementing a new ... method if it's simply a shorthand for
alloe and init ... , like the one shown above. Often new ... methods will do more than just
allocation and initialization. In some classes, they manage a set of instances, returning the

Class Methods 201

one with the requested properties if it already exists, allocating and initializing a new one
only if necessary. For example:

+ newArg: (int)tag arg: (struct info *)data

id thelnstancej

if (thelnstance = findTheObjectWithTheTag(tag)

return thelnstancej

return [[self alloc] initArg:tag arg:data] j

Although it's appropriate to define new new •.. methods in this way, the alloc and
allocFromZone: methods should never be augmented to include initialization code.

See also: - init, + alloc, + allocFromZone:

poseAs:

+ poseAs:aClassObject

Causes the receiving class to "pose as" its superclass, the aClassObject class. The receiver
takes the place of a Class Object in the inheritance hierarchy; all messages sent to
aClassObject will actually be delivered to the receiver. The receiver must be defined as a
subclass of aClassObject. It can't declare any new instance variables of its own, but it can
define new methods and override methods defined in the superclass. The poseAs: message
should be sent before any messages are sent to aClassObject and before any instances of
aClassObject are created.

This facility allows you to add methods to an existing class by defining them in a subclass
and having the subclass substitute for the existing class. The new method definitions will
be inherited by all subclasses of the superclass. Care should be taken to ensure that this
doesn't generate errors.

A subclass that poses as its superclass still inherits from the superclass. Therefore, none of
the functionality of the superclass is lost in the substitution. Posing doesn't alter the
definition of either class.

Posing is useful as a debugging tool, but category definitions are a less complicated and
more efficient way of augmenting existing classes. Posing admits only two possibilities
that are absent for categories:

• A method defined by a posing class can override any method defined by its superclass.
Methods defined in categories can replace methods defined in the class proper, but they
cannot reliably replace methods defined in other categories. If two categories define the
same method, one of the definitions will prevail, but there's no guarantee which one.

202 Appendix C: The Object Class

• A method defined by a posing class can, through a message to super, incorporate the
superclass method it overrides. A method defined in a category can replace a method
defined elsewhere by the class, but it can't incorporate the method it replaces.

If successful, this method returns self. If not, it generates an error message and aborts.

setVersion:

+ setVersion:(int)aVersion

Sets the class version number to a Version, and returns self. The version number is helpful
when instances of the class are to be archived and reused later. The default version is O.

See also: + version

startUnloading

+ startUnloading

Implemented by subclasses to prepare for the class, or a category of the class, being
unloaded from a running program. A startUnloading message is sent immediately before
the class or category is unloaded, but only if the class or category about to be unloaded
implements a method that can respond.

A startUnloading method is specific to the class or category where it's defined; it isn't
inherited by subclasses or shared with the rest of the class. Thus a class that has four
categories can define a total of five startUnloading methods, one in each category and one
in the main class definition. The method that's performed is the one defined in the class or
category that will be unloaded.

There's no default startUnloading method. The object class declares a prototype for this
method but doesn't implement it.

See also: + finishLoading:

superclass

+ superclass

Returns the class object for the receiver's superclass.

See also: + class, - superclass

Class Methods 203

version

+ (int)version

Returns the version number assigned to the class. If no version has been set, this will be O.

See also: + setVersion:

Instance Methods

awake

-awake

Implemented by subclasses to reinitialize the receiving object after it has been un archived
(by read:). An awake message is automatically sent to every object after it has been
unarchived and after all the objects it refers to are in a usable state.

The default version of the method defined here merely returns self.

A class can implement an awake method to provide for more initialization than can be done
in the read: method. Each implementation of awake should limit the work it does to the
scope of the class definition, and incorporate the initialization of classes farther up the
inheritance hierarchy through a message to super. For example:

- awake

[super awake];
/* class-specific initialization goes here */

return self;

All implementations of awake should return self.

Note: Not all objects loaded from a nib file (created by Interface Builder) are un archived;
some are newly instantiated. Those that are unarchived receive an awake message, but
those that are instantiated do not. See the Interface Builder documentation in NeXTSTEP
Development Tools for more information.

See also: - read:, - finishUnarchiving, - awakeFromNib (NXNibNotification protocol
in the Application Kit chapter of the NeXTSTEP General Reference manual),
- loadNibFile:owner: (Application class in the Application Kit chapter of the NeXTSTEP
General Reference manual)

204 Appendix C: The Object Class

class

- class

Returns the class object for the receiver's class.

See also: + class

conformsTo:

- (BOOL)conformsTo:(Protocol *)aProtocol

Returns YES if the class of the receiver conforms to aProtocol, and NO if it doesn't. This
method invokes the conformsTo: class method to do its work. It's provided as a
convenience so that you don't need to get the class object to find out whether an instance
can respond to a given set of messages.

See also: + conformsTo:

copy

-copy

Returns a new instance that's an exact copy of the receiver. This method creates only one
new object. If the receiver has instance variables that point to other objects, the instance
variables in the copy will point to the same objects. The values of the instance variables
are copied, but the objects they point to are not.

This method does its work by invoking the copyFrornZone: method and specifying that
the copy should be allocated from the same memory zone as the receiver. If a subclass
implements its own copyFrornZone: method, this copy method will use it to copy
instances of the subclass. Therefore, a class can support copying from both methods just
by implementing a class-specific version of copyFrornZone:.

See also: - copyFromZone:

copyFromZone:

- copyFrornZone:(NXZone *)zone

Returns a new instance that's an exact copy of the receiver. Memory for the new instance
is allocated from zone.

Instance Methods 205

This method creates only one new object. If the receiver has instance variables that point
to other objects, the instance variables in the copy will point to the same objects. The values
of the instance variables are copied, but the objects they point to are not.

Subclasses should implement their own versions of copyFromZone:, not copy, to define
class-specific copying.

See also: - copy, - zone

descriptionForMethod:

- (struct objc_method_description *)descriptionForMethod:(SEL)aSelector

Returns a pointer to a structure that describes the aSelector method, or NULL if the
aSelector method can't be found. When the receiver is an instance, aSelector should be an
instance method; when the receiver is a class, it should be a class method.

The objc_method_description structure is declared in objclProtocol.h, and is mostly
used in the implementation of protocols. It includes two fields-the selector for the method
(which will be the same as aSelector) and a character string encoding the method's return
and argument types:

struct objc_method_description

SEL name;
char *types;

} ;

Type information is encoded according to the conventions of the @encodeO directive, but
the string also includes information about total argument size and individual argument
offsets. For example, if descriptionForMethod: were asked for a description of itself, it
would return this string in the types field:

A{objc_method_description=:*}12@8:12:16

This records the fact that descriptionForMethod: returns a pointer ('''') to a structure
(" { ... }") and that it pushes a total of 12 bytes on the stack. The structure is called
"objc_method_description" and it consists of a selector (':') and a character pointer ('*').
The first argument, self, is an object ('@') at an offset of 8 bytes from the stack pointer, the
second argument, _cmd, is a selector (':') at an offset of 12 bytes, and the third argument,
aSelector, is also a selector but at an offset of 16 bytes. The first two arguments-self for
the message receiver and _cmd for the method selector-are passed to every method
implementation but are hidden by the Objective C language.

206 Appendix C: The Object Class

The type codes used for methods declared in a class or category are:

Meaning Code

id '@'

Class '#'
SEL '.'
void 'v'
char 'c'
unsigned char 'C'
short 's'
unsigned short 'S'
int 'i'
unsigned int 'I'
long 'l'
unsigned long 'L'
float 'f'
double 'd'
char * '*'

any other pointer '/\'

an undefined type '?'
a bitfield 'b'
begin an array , ['
end an array ']'
begin a union 'C
end a union ')'
begin a structure '{ ,
end a structure '}'

The same codes are used for methods declared in a protocol, but with these additions for
type modifiers:

const 'r'
in 'n'
inout 'N'
out '0'

bycopy '0'
oneway 'V'

See also: + descriptionForlnstanceMethod:

Instance Methods 207

doesNotRecognize:

- doesNotRecognize:(SEL)aSelector

Handles aSelector messages that the receiver doesn't recognize. The run-time system
invokes this method whenever an object receives an aSelector message that it can't respond
to or forward. This method, in turn, invokes the error: method to generate an error message
and abort the current process ..

doesNotRecognize: messages should be sent only by the run-time system. Although
they're sometimes used in program code to prevent a method from being inherited, it's
better to use the error: method directly. For example, an Object subclass might renounce
the copy method by reimplementing it to include an error: message as follows:

- copy

[self error:" %s objects should not be sent '%s' messages\n" ,
[[self class] name], sel_getName(_cmd)] i

This code prevents instances of the subclass from recognizing or forwarding copy
messages-although the respondsTo: method will still report that the receiver has access
to a copy method.

(The _cmd variable identifies the current selector; in the example above, it identifies the
selector for the copy method. The sel_getNameO function returns the method name
corresponding to a selector code; in the example, it returns the name "copy".)

See also: - error:, - subclassResponsibility:, + name

error:

- error: (const char *)aString, ••.

Generates a formatted error message, in the manner of printfO, from aString followed by
a variable number of arguments. For example:

[self error: "index %d exceeds limit %d\n", index, limit] i

The message specified by aString is preceded by this standard prefix (where class is the
name of the receiver's class):

"error: class "

This method doesn't return. It calls the run-time _error function, which first generates the
error message and then calls abortO to create a core file and terminate the process.

See also: - subclassResponsibility:, - notlmplemented:, - doesNotRecognize:

208 Appendix C: The Object Class

finishUnarchiving

- finishUnarchiving

Implemented by subclasses to replace an unarchived object with a new object if necessary.
A finishUnarchiving message is sent to every object after it has been unarchived (using
read:) and initialized (by awake), but only if a method has been implemented that can
respond to the message.

The finishUnarchiving message gives the application an opportunity to test an unarchived
and initialized object to see whether it's usable, and, if not, to replace it with another object
that is. This method should return nil if the un archived instance (self) is OK; otherwise, it
should free the receiver and return another object to take its place.

There's no default implementation of the finishUnarchiving method. The Object class
declares this method, but doesn't define it.

See also: - read:, - awake, - startArchiving:

forward::

- forward:(SEL)aSelector :(marg_Iist)argFrame

Implemented by subclasses to forward messages to other objects. When an object is sent
an aSelector message, and the run-time system can't find an implementation of the method
for the receiving object, it sends the object a forward:: message to give it an opportunity
to delegate the message to another receiver. (If the delegated receiver can't respond to the
message either, it too will be given a chance to forward it.)

The forward:: message thus allows an object to establish relationships with other objects
that will, for certain messages, act on its behalf. The forwarding object is, in a sense, able
to "inherit" some of the characteristics of the object it forwards the message to.

A forward:: message is generated only if the aSelector method isn't implemented by the
receiving object's class or by any of the classes it inherits from.

An implementation of the forward:: method has two tasks:

• To locate an object that can respond to the aSelector message. This need not be the same
object for all messages.

• To send the message to that object, using the performv:: method.

Instance Methods, 209

In the simple case, in which an object forwards messages to just one destination (such as
the hypothetical friend instance variable in the example below), a forward:: method could
be as simple as this:

- forward: (SEL)aSelector : (marg_list)argFrame

if ([friend respondsTo:aSelector])
return [friend performv:aSelector :argFrame] i

[self doesNotRecognize:aSelector] i

argFrame is a pointer to the arguments included in the original aSelector message. It's
passed directly to performv:: without change. (However, argFrame does not correctly
capture variable arguments. Messages that include a variable argument list-for example,
messages to perform Object's error: method-cannot be forwarded.)

The aSelector message will return the value returned by forward::. (Note in the example
that forward:: returns unchanged the value returned by performv::.) Since forward::
returns a pointer, specifically an id, the aSelector method must also be one that returns a
pointer (or void). Methods that return other types cannot be reliably forwarded.

Implementations of the forward:: method can do more than just forward messages.
forward:: can, for example, be used to consolidate code that responds to a variety of
different messages, thus avoiding the necessity of having to write a separate method for
each selector. A forward:: method might also involve several other objects in the response
to a given message, rather than forward it to just one.

The default version of forward:: implemented in the Object class simply invokes the
doesNotRecognize: method; it doesn't forward messages. Thus, if you choose not to
implement forward::, unrecognized messages will generate an error and cause the task
to abort.

Note: If it's necessary for a forward:: method to reason about the arguments passed in
argFrame, it can get information about what kinds of arguments they are by calling the
method_getNumberOfArgumentsO, method_getSizeOfArgumentsO, and
method_getArgumentInfoO run-time functions. It can then examine and alter argument
values with the mar~getValueO, mar~getRefO, and mar~setValueO macros. These
functions and macros are documented in the NeXTSTEP General Reference.

See also: - performv::, - doesNotRecognize:

210 Appendix C: The Object Class

free

-free

Frees the memory occupied by the receiver and returns nil. Subsequent messages to the
object will generate an error indicating that a message was sent to a freed object (provided
that the freed memory hasn't been reused yet).

Subclasses must implement their own versions of free to deallocate any additional memory
consumed by the object-such as dynamically allocated storage for data, or other objects
that are tightly coupled to the freed object and are of no use without it. After performing
the class-specific deallocation, the subclass method should incorporate superclass versions
of free through a message to super:

- free {
[companion free];
free (privateMemory) ;
Vffi_deallocate(task_self(), sharedMemory, memorySize);
return [super free];

If, under special circumstances, a subclass version of free refuses to free the receiver, it
should return self instead of nil. Object's default version of this method always frees the
receiver and always returns nil. It calls object_disposeO to accomplish the deallocation.

hash
- (unsigned int)hash

Returns an unsigned integer that's derived from the id of the receiver. The integer is
guaranteed to always be the same for the same id.

See also: - isEqual:

Instance Methods 211

init

- init

Implemented by subclasses to initialize a new object (the receiver) immediately after
memory for it has been allocated. An init message is generally coupled with an alloc or
allocFrornZone: message in the same line of code:

id newObject = [[TheClass alloc] init]i

An object isn't ready to be used until it has been initialized. The version of the init method
defined in the Object class does no initialization; it simply returns self.

Subclass versions of this method should return the new object (self) after it has been
successfully initialized. If it can't be initialized, they should free the object and return nil.
In some cases, an init method might free the new object and return a substitute. Programs
should therefore always use the object returned by init, and not necessarily the one returned
by alloc or allocFrornZone:, in subsequent code.

Every class must guarantee that the init method returns a fully functional instance of the
class. Typically this means overriding the method to add class-specific initialization code.
Subclass versions of init need to incorporate the initialization code for the classes they
inherit from, through a message to super:

- init

[super init];
/* class-specific initialization goes here */

return self;

Note that the message to super precedes the initialization code added in the method. This
ensures that initialization proceeds in the order of inheritance.

Subclasses often add arguments to the init method to allow specific values to be set. The
more arguments a method has, the more freedom it gives you to determine the character of
initialized objects. Classes often have a set of init. .. methods, each with a different number
of arguments. For example:

- initi
- initArg: (int)tagi
- initArg: (int)tag arg: (struct info *)datai

The convention is that at least one of these methods, usually the one with the most
arguments, includes a message to super to incorporate the initialization of classes higher
up the hierarchy. This method is the designated initializer for the class. The other init ...
methods defined in the class directly or indirectly invoke the designated initializer through
messages to self. In this way, all init ... methods are chained together. For example:

212 Appendix C: The Object Class

- init

return [self initArg:-l] i

- initArg: (int)tag

return [self initArg:tag arg:NULL]i

- initArg: (int)tag arg: (struct info *)data

[super init ...] i
/* class-specific initialization goes here */

In this example, the ioitArg:arg: method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated initializer.
This method should begin by sending a message to super to perform the designated
initializer of its superclass. Suppose, for example, that the three methods illustrated
above are defined in the B class. The C class, a subclass of B, might have this designated
initializer:

- initArg: (int)tag arg: (struct info *)data arg:anObject

[super initArg:tag arg:data]i
/* class-specific initialization goes here */

If inherited ioit ... methods are to successfully initialize instances of the subclass, they must
all be made to (directly or indirectly) invoke the new designated initializer. To accomplish
this, the subclass is obliged to cover (override) only the designated initializer of the
superclass. For example, in addition to its designated initializer, the C class would also
implement this method:

- initArg: (int)tag arg: (struct info *)data

return [self initArg:tag arg:data arg:nil]i

This ensures that all three methods inherited from the B class also work for instances of
the C class.

Often the designated initializer of the subclass overrides the designated initializer of the
superclass. If so, the subclass need only implement the one ioit ... method.

Installce Methods 213

These conventions maintain a direct chain of init ... links, and ensure that the new method
and all inherited init ..• methods return usable, initialized objects. They also prevent the
possibility of an infinite loop wherein a subclass method sends a message (to super) to
perform a superclass method, which in tum sends a message (to self) to perform the
subclass method.

This init method is the designated initializer for the Object class. Subclasses that do their
own initialization should override it, as described above.

See also: + new, + alloc, + allocFromZone:

isEqual:

- (BOOL)isEqual:anObject

Returns YES if the receiver is the same as anObject, and NO ifit isn't. This is determined
by comparing the id of the receiver to the id of anObject.

Subclasses may need to override this method to provide a different test of equivalence. For
example, in some contexts, two objects might be said to be the same if they're both the same
kind of object and they both contain the same data:

- (BOOL)isEqual:anObject

if (anObject == self
return YES;

if ([anObject isKindOf: [self class]]) {
if (!strcmp(stringData, [anObject stringData])

return YES;

return NO;

isKindOf:

- (BOOL)isKindOf:aClassObject

Returns YES if the receiver is an instance of aClassObject or an instance of any class that
inherits from aClassObject. Otherwise, it returns NO. For example, in this code isKindOf:
would return YES because, in the Application Kit, the Menu class inherits from Window:

id aMenu = [[Menu alloc] init];
if ([aMenu isKindOf: [Window class]])

214 Appendix C: The Object Class

When the receiver is a class object, this method returns YES if a Class Object is the Object
class, and NO otherwise.

See also: - isMemberOf:

isKindOfClassNamed:

- (BOOL)isKindOfClassNamed:(const char *)aClassName

Returns YES if the receiver is an instance of aClassName or an instance of any class that
inherits from aClassName. This method is the same as isKindOf:, except it takes the class
name, rather than the class id, as its argument.

See also: - isMemberOfClassNamed:

isMemberOf:

- (BOOL)isMemberOf:aClassObject

Returns YES if the receiver is an instance of aClassObject. Otherwise, it returns NO. For
example, in this code, isMemberOf: would return NO:

id aMenu = [[Menu alloc] init];
if ([aMenu isMemberOf: [Window class]])

When the receiver is a class object, this method returns NO. Class objects are not
"members of' any class.

See also: - isKindOf:

isMemberOfClassNamed:

- (BOOL)isMemberOfClassNamed:(const char *)aClassName

Returns YES if the receiver is an instance of aClassName, and NO if it isn't. This method
is the same as isMemberOf:, except it takes the class name, rather than the class id, as
its argument.

See also: - isKindOfClassNamed:

Instance Methods 215

methodFor:

- (IMP)methodFor:(SEL)aSelector

Locates and returns the address of the receiver's implementation of the aSelector method,
so that it can be called as a function. If the receiver is an instance, aSelector should refer
to an instance method; if the receiver is a class, it should refer to a class method.

aSelector must be a valid, nonNULL selector. If in doubt, use the respondsTo: method to
check before passing the selector to methodFor:.

IMP is defined (in the objc/objc.h header file) as a pointer to a function that returns an id
and takes a variable number of arguments (in addition to the two "hidden" arguments-self
and _cmd-that are passed to every method implementation):

typedef id (*IMP) (id, SEL, ...);

This definition serves as a prototype for the function pointer that methodFor: returns. It's
sufficient for methods that return an object and take object arguments. However, if the
aSelector method takes different argument types or returns anything but an id, its function
counterpart will be inadequately prototyped. Lacking a prototype, the compiler will
promote floats to doubles and chars to ints, which the implementation won't expect. It
will therefore behave differently (and erroneously) when called as a function than when
performed as a method.

To remedy this situation, it's necessary to provide your own prototype. In the example
below, the declaration of the test variable serves to prototype the implementation of the
isEqual: method. test is defined as pointer to a function that returns a BaaL and takes an
id argument (in addition to the two "hidden" arguments). The value returned by
methodFor: is then similarly cast to be a pointer to this same function type:

BOOL (*test) (id, SEL, id);

test = (BOOL (*) (id, SEL, id)) [target methodFor:@selector(isEqual:)];

while !test(target, @selector(isEqual:), someObject)) {

In some cases, it might be clearer to define a type (similar to IMP) that can be used both for
declaring the variable and for casting the function pointer methodFor: returns. The
example below defines the EquaIIMP type for just this purpose:

typedef BOOL (*EqualIMP) (id, SEL, id);

EqualIMP test;

test = (EqualIMP) [target methodFor:@selector(isEqual:)]i

while !test(target, @selector(isEqual:), someObject))

216 Appendix C: The Object Class

Either way, it's important to cast methodFor:'s return value to the appropriate function
type. It's not sufficient to simply call the function returned by methodFor: and cast the
result of that call to the desired type. This can result in errors.

Note that turning a method into a function by obtaining the address of its implementation
"unhides" the self and _cmd arguments.

See also: + instanceMethodFor:

name

- (const char *)name

Implemented by subclasses to return a name associated with the receiver.

By default, the string returned contains the name of the receiver's class. However, this
method is commonly overridden to return a more object-specific name. You should
therefore not rely on it to return the name of the class. To get the name of the class, use the
class name method instead:

const char *classname = [[self class] name];

See also: + name, + class

notlmplemented:
- notImplemented:(SEL)aSelector

U sed in the body of a method definition to indicate that the programmer intended to
implement the method, but left it as a stub for the time being. aSelector is the selector for
the unimplemented method; notImplemented: messages are sent to self. For example:

- methodNeeded

[self notImplemented:_cmd];

When a methodNeeded message is received, notImplemented: will invoke the error:
method to generate an appropriate error message and abort the process. (In this example,
_cmd refers to the methodNeeded selector.)

See also: - subclassResponsibility:, - error:

Instol1ce Methods 217

perform:

- perform:(SEL)aSelector

Sends an aSelector message to the receiver and returns the result of the message. This is
equivalent to sending an aSelector message directly to the receiver. For example, all three
of the following messages do the same thing:

id myClone [anObject copy];
id myClone = [anObject perform:@selector(copy)];

id myClone = [anObject perform:sel_getUid("copy ")]i

However, the perform: method allows you to send messages that aren't determined until
run time. A variable selector can be passed as the argument:

SEL myMethod = findTheAppropriateSelectorForTheCurrentSituation() i

[anObject perform:myMethod] i

aSelector should identify a method that takes no arguments. If the method returns anything
but an object, the return must be cast to the correct type. For example:

char *myClassi
myClass = (char *) [anObject perform:@selector(name)]i

Casting generally works for pointers and for integral types that are the same size as pointers
(such as int and enum). Whether it works for other integral types (such as char, short, or
long) is machine dependent. Casting doesn't work if the return is a floating type (float or
double) or a structure or union. This is because the C language doesn't permit a pointer
(like id) to be cast to these types.

Therefore, perform: shouldn't be asked to perform any method that returns a floating type,
structure, or union, and should be used very cautiously with methods that return integral
types. An alternative is to get the address of the method implementation (using
methodFor:) and call it as a function. For example:

SEL aSelector @selector(backgroundGraY)i
float aGray = ((float (*) (id, SEL))

[anObject methodFor:aSelector]) (anObject, aSelector)i

See also: - perform:with:, - perform:with:with:, - methodFor:

218 Appendix C: The Object Class

perform :with:

- perform:(SEL)aSelector with:anObject

Sends an aSelector message to the receiver with anObject as an argument. This method is
the same as perform:, except that you can supply an argument for the aSelector message.
aSelector should identify a method that takes a single argument of type id.

See also: - perform:, - perform:with:afterDelay:canceIPrevious: (Application Kit
chapter of the NeXTSTEP General Reference manual)

perform :with:with:

- perform:(SEL)aSelector
with:anObject
with:anotherObject

Sends the receiver an aSelector message with anObject and anotherObject as arguments.
This method is the same as perform:, except that you can supply two arguments for
the aSelector message. aSelector should identify a method that can take two arguments
of type id.

See also: - perform:

performv::

- performv:(SEL)aSelector :(marg_list)argFrame

Sends the receiver an aSelector message with the arguments in argFrame. performv::
messages are used within implementations of the forward:: method. Both arguments,
aSelector and argFrame, are identical to the arguments the run-time system passes to
forward::. They can be taken directly from that method and passed through without
change to performv::.

performv:: should be restricted to implementations of the forward:: method. Because it
doesn't restrict the number of arguments in the aSelector message or their type, it may seem
like a more flexible way of sending messages than perform:, perform:with:, or
perform:with:with:. However, it's not an appropriate substitute for those methods. First,
it's more expensive than they are. The run-time system must parse the arguments in
argFrame based on information stored for aSelector. Second, in future releases,
performv:: may not work in contexts other than the forward:: method.

See also: - forward::, - perform:

Instance Methods 219

printForDebugger:

- (void)printForDebugger:(NXStream *)stream

Implemented by subclasses to write a useful description of the receiver to stream. Object's
default version of this method provides the class name and the hexadecimal address of the
receiver, formatted as follows:

<classname: Oxaddress>

Debuggers can use this method to ask objects to identify themselves.

read:

- read:(NXTypedStream *)stream

Implemented by subclasses to read the receiver's instance variables from the typed stream
stream. You need to implement a read: method for any class you create, if you want its
instances (or instance of classes that inherit from it) to be archivable.

The method you implement should unarchive the instance variables defined in the class in
a manner that matches they way they were archived by write:. In each class, the read:
method should begin with a message to super:

- read: (NXTypedStream *)stream

[super read: stream] ;
/* class-specific code goes here */
return self;

This ensures that all inherited instance variables will also be unarchived.

All implementations of the read: method should return self.

After an object has been read, it's sent an awake message so that it can reinitialize itself,
and may also be sent a finishUnarchiving message.

See also: - awake, - finishUnarchiving, - write:

220 Appendix C: The Object Class

respondsTo:

- (BOOL)respondsTo:(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can respond to aSelector
messages, and NO if it doesn't. The application is responsible for determining whether a
NO response should be considered an error.

Note that if the receiver is able to forward aSelector messages to another object, it will be
able to respond to the message, albeit indirectly, even though this method returns NO.

See also: - forward::, + instancesRespondTo:

self

- self

Returns the receiver.

See a Iso: + class

startArchiving:

- startArchiving: (NXTypedStream *)stream

Implemented by subclasses to prepare an object for being archived-that is, for being
written to the typed stream stream. A startArchiving: message is sent to an object just
before it's archived-but only if it implements a method that can respond. The message
gives the object an opportunity to do anything necessary to get itself, or the stream, ready
before a write: message begins the archiving process.

There's no default implementation of the startArchiving: method. The Object class
declares the method, but doesn't define it.

See also: - awake, - finishUnarchiving, - write:

Instance Methods 221

subclassResponsibility:

- subclassResponsibility:(SEL)aSelector

Used in an abstract class to indicate that its subclasses are expected to implement aSelector
methods. If a subclass fails to implement the method, it will inherit it from the abstract
superclass. That version of the method generates an error when it's invoked. To avoid the
error, subclasses must override the superclass method.

For example, if subclasses are expected to implement doSomething methods, the
superclass would define the method this way:

- doSomething

[self subclassResponsibility:_cmd];

When this version of doSomething is invoked, subclassResponsibiIity: will-by in
tum invoking Object's error: method-abort the process and generate an appropriate
error message.

(The _cmd variable identifies the current method selector, just as self identifies the current
receiver. In the example above, it identifies the selector for the doSomething method.)

Subclass implementations of the aSelector method shouldn't include messages to super to
incorporate the superclass version. If they do, they'll also generate an error.

See also: - doesNotRecognize:, - notImplemented:, - error:

superclass

- superclass

Returns the class object for the receiver's superclass.

See also: + superclass

222 Appendix C: The Object Class

write:

- write: (NXTypedStream *)stream

Implemented by subclasses to write the receiver's instance variables to the typed stream
stream. You need to implement a write: method for any class you create, if you want to be
able to archive its instances (or instances of classes that inherit from it).

The method you implement should archive only the instance variables defined in the class,
but should begin with a message to super so that all inherited instance variables will also
be archived:

- write: (NXTypedStream *)stream

[super write: stream] ;

/* class-specific archiving code goes here */

return self;

All implementations of the write: method should return self.

During the archiving process, write: methods may be performed twice, so they shouldn't
do anything other than write instance variables to a typed stream.

See also: - read:, - startArchiving:

zone
- (NXZone *)zone

Returns a pointer to the zone from which the receiver was allocated. Objects created
without specifying a zone are allocated from the default zone, which is returned by
NXDefaultMallocZoneO·

See also: + allocFromZone:, + alloc, + copyFromZone:

Instance Methods 223

224

Suggested Reading on
Object-Oriented Programming

Designing Object-Oriented Software. Rebecca Wirfs-Brock, Brian Wilkerson, and
Lauren Wiener. Prentice Hall, 1990.

An Introduction to Object-Oriented Programming. Timothy A. Budd. Addison-Wesley,
1991.

Object Orientation: Concepts, Languages, Databases, User Interfaces. Setrag Khoshafian
and Razmik Abnous. John Wiley and Sons, 1990.

Object-Oriented Design: with Applications. Grady Booch. Benjamin/Cummings, 1991.

Object-Oriented Software Construction. Bertrand Meyer. Prentice Hall International
Series in Computer Science, 1988.

Suggested Reading 011 Object-Oriented Programming 225

226

Glossary

abstract class
A class that's defined solely so that other classes can inherit from it. Programs don't use
instances of an abstract class, only of its subclasses.

abstract superclass
Same as abstract class.

action message
In the Application Kit, a message sent by an object (such as a Button or Slider) in response
to a user action (such as clicking the button or dragging the slider's knob). The message
translates the user's action into a specific instruction for the application. See also target.

active application
The application associated with keyboard events, the one the user is currently working in.
Menus are visible on-screen only for the active application, and only the active application
can have the current key window.

adopt
In the Objective C language, a class is said to adopt a protocol if it declares that it
implements all the methods in the protocol. Protocols are adopted by listing their names
between angle brackets in a class or category declaration.

anonymous object
An object of unknown class. The interface to an anonymous object is published through a
protocol declaration.

Glossary 227

228 Glossary

Application Kit
The Objective C classes and C functions available for implementing the NeXTSTEP
window-based user interface in an application. The Application Kit provides a basic
program structure for applications that draw on the screen and respond to events.

archiving
The process of preserving a data structure, especially an object, for later use. An archived
data structure is usually stored in a file, but it can also be written to memory, copied to the
pasteboard, or sent to another application. Archiving involves writing data to a special kind
of data stream, called a typed stream. See also typed stream.

asynchronous message
A remote message that returns immediately, without waiting for the application that
receives the message to respond. The sending application and the receiving application act
independently, and are therefore not "in sync." See also synchronous message.

attention panel
A panel that demands the user's attention. Until the user acts to dismiss the panel from the
screen, only actions affecting the panel are permitted. Attention panels permit the user to
rescind a command (such as Close), ask the user to complete a command (such as Save As),

. and give warnings that the user must acknowledge. See also panel.

category
In the Objective C language, a set of method definitions that is segregated from the rest of
the class definition. Categories can be used to split a class definition into parts, or to add
methods to an existing class.

class
In the Objective C language, a prototype for a particular kind of object. A class definition
declares instance variables and defines methods for all members of the class. Objects that
have the same types of instance variables and have access to the same methods belong to
the same class. See also class object.

class method
In the Objective C language, a method that can be used by the class object rather than by
instances of the class.

class object
In the Objective C language, an object that represents a class and knows how to create new
instances of the class. Class objects are created by the compiler, lack instance variables,
and can't be statically typed, but otherwise behave like all other objects. As the receiver in
a message expression, a class object is represented by the class name.

compile time
The time when source code is compiled. Decisions made at compile time are constrained
by the amount and kind of information encoded in source files.

conform
In the Objective C language, a class is said to conform to a protocol if it adopts the protocol
or inherits from a class that adopts it. An instance conforms to a protocol if its class does.
Thus, an instance that conforms to a protocol can perform any of the instance methods
declared in the protocol.

content view
In the Application Kit, the View object that's associated with the content area of a
window-all the area in the window excluding the title bar, resize bar, and border. All other
Views in the window are arranged in a hierarchy beneath the content view.

controls
Graphical objects-such as buttons, sliders, text fields, and scrollers-that the user can
operate to give instructions to an application.

cursor
The small image (usually an arrow) that moves on the screen and is controlled by moving
the mouse.

delegate
In the NeXTSTEP software kits, an object that acts on behalf of another object.
Window, Application, Text, Listener, NXBrowser, NXImage, and other objects can be
assigned delegates.

designated initializer
The init ... method that has primary responsibility for initializing new instances of a class.
Each class defines or inherits its own designated initializer. Through messages to self, other
init ... methods in the same class directly or indirectly invoke the designated initializer, and
the designated initializer, through a message to super, invokes the designated initializer of
its superclass.

dynamic binding
Binding a method to a message-that is, finding the method implementation to invoke in
response to the message-at run time, rather than at compile time.

dynamic typing
Discovering the class of an object at run time rather than at compile time.

Glossary 229

230 Glossary

event
The direct or indirect report of external activity, especially user activity on the keyboard
and mouse.

event message
In the Application Kit, a message to perform a method named after an event or subevent.
Event messages are used to dispatch events to the objects that will respond to them. See
also action message.

factory
Same as class object.

factory method
Same as class method.

factory object
Same as class object.

file package
A directory that the Workspace Manager presents as a file, allowing the user to manipulate
a group of files as if they were one file. A file package for an application executable has the
same name as the executable file, plus a ".app" extension. File packages for documents and
bundles bear an extension that's recognized as belonging to a particular application.

formal protocol
In the Objective C language, a protocol that's declared with the @protocol directive.
Classes can adopt formal protocols, objects can respond at run time when asked if they
conform to a formal protocol, and instances can be typed by the formal protocols they
conform to.

id
In the Objective C language, the general type for any kind of object regardless of class. id
is defined as a pointer to an object data structure. It can be used for both class objects and
instances of a class.

informal protocol
In the Objective C language, a protocol declared as a category, usually as a category of
the Object class. The language gives explicit support to formal protocols, but not to
informal ones.

inheritance
In object-oriented programming, the ability of a superclass to pass its characteristics
(methods and instance variables) on to its subclasses.

inheritance hierarchy
In object-oriented programming, the hierarchy of classes that's defined by the arrangement
of superclasses and subclasses. Every class (except Object, which is at the root of the
hierarchy) has a superclass, and any class may have an unlimited number of subclasses.
Through its superclass, each class inherits from those above it in the hierarchy.

instance
In the Objective C language, an object that belongs to (is a member of) a particular class.
Instances are created at run time according to the specification in the class definition.

instance method
In the Objective C language, any method that can be used by an instance of a class rather
than by the class object.

instance variable
In the Objective C language, any variable that's part of the internal data structure of an
instance. Instance variables are declared in a class definition and become part of all objects
that are members of or inherit from the class.

Interface Builder
A tool that lets you graphically specify your application's user interface. It sets up the
corresponding objects for you and makes it easy for you to establish connections between
these objects and your own code where needed.

introspection
The ability of an object to reveal information about itself as an object-such as its class and
superclass, the messages it can respond to, and the protocols it conforms to.

key window
The window in the active application that receives keyboard events and is the focus of user
activity. The title bar of the key window is highlighted in black.

link time
The time when files compiled from different source modules are linked into a single
program. Decisions made by the linker are constrained by the compiled code and
ultimately by the information contained in source code.

Glossary 231

232 Glossary

localize
To adapt an application to work under various local conditions-especially to have it use a
language selected by the user. Localization entails freeing application code from
language-specific and culture-specific references and making it able to import localized
resources (such as character strings, images, and sounds). For example, an application
localized in Spanish would display "Salir" as the last item in the main menu. In Italian, it
would be "Esci," in German "Verlassen," and in English "Quit."

main event loop
The principal control loop for applications that are driven by events. From the time it's
launched until the moment it's terminated, an application gets one keyboard or mouse
event after another from the Window Server and responds to them, waiting between events
if the next event isn't ready. In the Application Kit, the Application object runs the main
event loop.

menu
A small window that displays a list of commands. Only menus for the active application
are visible on-screen.

message
In object-oriented programming, the method selector (name) and accompanying arguments
that tell the receiving object in a message expression what to do.

message expression
In object-oriented programming, an expression that sends a message to an object. In the
Objective C language, message expressions are enclosed within square brackets and consist
of a receiver followed by a message (method selector and arguments).

method
In object-oriented programming, a procedure that can be executed by an object.

modal event loop
A temporary event loop that's set up to get events directly from the event queue, bypassing
the main event loop. Typically, a mouse-down event initiates the modal loop and the
following mouse-up event ends it. The loop gets mouse-dragged events (or mouse-entered
and mouse-exited events) to track the cursor's movement while the user holds the mouse
button down.

multiple inheritance
In object-oriented programming, the ability of a class to have more than one superclass­
to inherit from different sources and thus combine separately-defined behaviors in a single
class. Objective C doesn't support multiple inheritance.

name space
A logical subdivision of a program within which all names must be unique. Symbols in one
name space won't conflict with identically named symbols in another name space. For
example, in Objective C, the instance methods of each class are in a separate name space,
as are the class methods and instance variables

NeXTSTEP
NeXT's application development and user environment, consisting of the Workspace
Manager, the Window Server, various software kits such as the Application Kit and the
Database Kit, various applications such as Project Builder and Interface Builder, and
other software.

nib file
A file (actually a file package) that stores the specifications for all or part of an application's
interface. Nib files are created using Interface Builder and can contain archived objects,
information about connections between objects, and sound and image data.

nil
In the Objective C language, an object id with a value of O.

object
A programming unit that groups together a data structure (instance variables) and the
operations (methods) that can use or affect that data. Objects are the principal building
blocks of object-oriented programs.

outlet
An instance variable that points to another object. Outlet instance variables are a way for
an object to keep track of the other objects to which it may need to send messages.

panel
A window that holds objects that control what happens in other windows (such as a Font
panel) or in the application generally (such as a Preferences panel), or a window that
presents information about the application to the user (such as an information panel). See
also attention panel.

polymorphism
In object-oriented programming, the ability of different objects to respond, each in its own
way, to the same message.

pop-up list
A menu-like list of items that appears over (or next to) an on-screen button when the button
is pressed. The user can choose an item by dragging to it and releasing the mouse button.
When the mouse button is released, the pop-up list disappears.

Glossary 233

234 Glossary

procedural programming language
A language, like C, that organizes a program as a set of procedures that have definite
beginnings and ends.

protocol
In the Objective C language, the declaration of a group of methods not associated with any
particular class. See also formal protocol and informal protocol.

receiver
In object-oriented programming, the object that is sent a message.

remote message
A message sent from one application to an object in another application.

remote object
An object in another application, one that's a potential receiver for a remote message.

run time
The time after a program is launched and while it's running. Decisions made at run time
can be influenced by choices the user makes.

selector
In the Objective C language, the name of a method when it's used in a source-code message
to an object, or the unique identifier that replaces the name when the source code is
compiled. ~ompiled selectors are of type SEL.

static typing
In the Objective C language, giving the compiler information about what kind of object an
instance is, by typing it as a pointer to a class.

subclass
In the Objective C language, any class that's one step below another class in the inheritance
hierarchy. Occasionally used more generally to mean any class that inherits from another
class, and sometimes also used as a verb to mean the process of defining a subclass of
another class.

superclass
In the Objective C language, a class that's one step above another class in the inheritance
hierarchy; the class through which a subclass inherits methods and instance variables.

surrogate
An object that stands in for and forwards messages to another object.

synchronous message
A remote message that doesn't return until the receiving application finishes responding to
the message. Because the application that sends the message waits for an
acknowledgement or return information from the receiving application, the two
applications are kept "in sync." See also asynchronous message.

target
In the Application Kit, the object that receives action messages from a Control.

typed stream
A specialized data stream used for archiving. When a typed stream is used, the type of the
data is archived along with the data and an object's class hierarchy and version are archived
with the object. See also archiving.

Window Server
A process that dispatches user events to applications and renders PostScript code on behalf
of applications.

zone
A particular region of dynamic memory. Zones are set up in program code and are passed
to allocation methods and functions to specify that the allocated memory should come from
a particular zone. Allocating related data structures from the same zone can improve
locality of reference and overall system performance. For example, all the Views that are
displayed in the same window might be clustered in the same zone.

Glossary 235

236

Index

#irnport directive 55, 178
II comment marker 178
@class directive 55, 179, 186
@defsO directive 102, 179, 188
@encodeO directive 102-104, 179, 190
@end directive 53, 178, 185
@irnplernentation directive 57, 178, 179, 180, 185
@interface directive 53, 178, 179, 180, 185
@private directive 60-62,179,186
@protected directive 60-62, 179, 186
@protocol directive 85, 178, 180, 185
@protocolOdirective 87,179,180,190
@public directive 60-62, 179, 186
@selectorO directive 65, 179, 189

abstract classes 44-45
action messages 67, 169-170
adopting protocols 86, 180
+ alloc method 48, 107, 196
allocating instances 48, 107-110, 196
+ alIocFrornZone: method 107, 196
anonymous objects 83-84
Application Kit 152-171
Application object 161, 163, 170-171
archiving 134-141
arguments, variable number of 37,54,58
- awake method 141,204

BOOL data type 178
bundle directories 126-129
by copy type qualifier 96, 104, 181, 188

C++, using with Objective C 33,173-176
categories 77-80

declaration of 78-79, 180, 185
implementation of 78-79, 180, 185
uses of 79, 85

Class data type 47, 178
@class directive 55, 179, 186
+ class method 47, 197
- class method 47, 205
class methods 47, 54
class objects 40, 46-51, 52
classes 8-12, 40-62

declaration of 53-56, 179, 185
implementation of 57-62, 179, 185

- classNamed: method 128
_crnd 69,181
II comment marker 178
conforming to protocols 81, 87-88, 89-90
+ conformsTo: method 132, 197-198
- conformsTo: method 88,89,205
- copy method 205
- copyFrornZone: method 205
customizing

through dynamic loading 125-133
with class objects 48-49

Index 237

@defsO directive 102, 179, 188
delegates 150-151, 170-171
+ descriptionForInstanceMethod: method 198
- descriptionForMethod: method 206-207
designated initializer 114-117
distributed objects 91-96
- doesNotRecognize: method 208
drawing 154-158, 168-169
dynamic binding 20-21,39,62-65
dynamic loading 22-23, 124-133
dynamic typing 19,35-36

encapsulation 12-13
@encodeO directive 179, 190, 102-104
@end directive 53,178,185
- error: method 208
event cycle 153-161
event handling 166-168
events 26, 145, 153, 166

+ finishLoading: method 198
- finishUnarchiving method 141,209
- forward:: method 119-121,209-210
forwarding 119-124
+ free method 199
- free method 118-119,211

- hash method 211
hidden arguments See self and _cmd

id data type 35-36,45,99, 178, 181, 188
IMP data type 178
implementation and interface 2-5, 30
@implementation directive 57, 178, 179, 180, 185
#import directive 55, 178
in type qualifier 95, 104, 181, 188
information hiding See encapsulation
inheritance 15-18,32,40-45
- init method 48, 110-117,212-214
+ initialize method 50, 199-200
initializing

classes 50-51, 199-200
instances 48, 110-118,212-214

238 Index

inout type qualifier 95, 104, 181, 188
instance methods 47,54
instance variables 5, 34-35

declaration of 53, 179, 186
inheriting 42-43
of the receiver 38
outlets 24-25, 138-140, 151
referring to 58-62
scope of 59-62

+ instanceMethodFor: method 200
instances of a class 40

allocating 48, 107-110, 196
initializing 48, 110-118,212-214

+ instancesRespondTo: method 201
interface and implementation 2-5, 30
@interface directive 53, 178, 179, 180, 185
introspection 36, 46
isa instance variable 36,63, 192
- isEqual: method 214
- isKindOf: method 46, 123,214
- isKindOfClassNamed: method 215
- isMemberOf: method 46, 215
- isMemberOfClassNamed: method 215

late binding 21
localization 127-128

main event loop 145-146, 159-160.
mainO function 144-146
message expressions 36, 177
message receiver 8, 36, 177
messages 6,7-8,36-37,177
messaging 39,62-65
- methodFor: method 101, 216-217
methods 5,34-35

class methods 47, 54
declaration of 54, 181, 186
implementation of 57-58, 181, 187
inheriting 43-44
instance methods 47, 54
of the root class 51, 192-193
overriding 16,44,147-150
return and argument types 66, 99

moda1event1oops 159-160,167-168

+ name method 201
- name method 217
naming conventions 182
+ new method 117,201-202
nil 35,37,178
- notlmplemented: method 217
NXBundle objects 126-129
NXDefaultMallocZoneO function 109
NXReadObjectO function 135, 139, 140, 141
NXReadTypeO function 138, 139
NXReadTypesO function 138,139
NXWriteObjectO function 139-140
NXWriteObjectReferenceO function 140
NXWriteRootObjectO function 135, 140
NXWriteTypeO function 137-138, 139
NXWriteTypesO function 137-138, 139

objc_loadModulesO function 126
objc_lookUpClassO function 52
objc_msgSendO function 62
objc_unloadModulesO function 126
Object class 40,42, 191-223
objects 5-7, 34-35
oneway type qualifier 93-94, 104, 181, 188
out type qualifier 95, 104, 181, 188
outlet instance variables 24-25, 138-140, 151
overriding methods 16,44, 147-150

- perform: method 66-67, 218
- perform:with: method' 66-67,219
- perform:with:with: method 66-67,219
- performv:: method 121,219
polymorphism 13-14,31,38
+ poseAs: method 202-203
PostScript language 156-158
- principal Class method 129
- printForDebugger: method 220
@private directive 60-62, 179, 186
@protected directive 60-62, 179, 186
@protocol directive 85, 178, 180, 185
Protocol objects 87

@protocolO directive 87,179,180,190
protocols 80-90

adopting 86, 180
conforming to 81, 87-88, 89-90
declaration of 85-86, 180, 185
formal 85-90, 180-181
incorporating other protocols 89-90, 180
informal 85
type checking 88-89
uses of 81-84,92, 131-132

proxy objects 91-96
@publicdirective 60-62,179, 186

- read: method 135-140, 220
receiver of a message 8, 36, 177
remote messages 90-96, 160
- respondsTo: method 68, 123,221
reusability of software 10-12

SEL data type 65, 178
sel_getNameO function 65
sel_getUidO function 65
@selectorO directive 65, 179, 189
selectors 39, 65-66
self 69-72, 74-75, 181, 189
- self method 221
+ setVersion: method 203
shared libraries 133
- startArchiving: method 221
+ startUnloading method 203
static typing 45-46,51,97-100
subclasses 15, 16,40, 147-150
- subclassResponsibility: method 222
super 70-73, 177, '181, 189
superclass 15, 40
+ superclass method 203
- superclass method 222
surrogate objects 123

target-action paradigm 67-68, 169-170
targets 67,151, 169-170
timed entries 160

Index 239

type checking
class types 98-99
protocol types 88-89

typed streams 134-135

+ version method 204
View objects 161, 164-166

Window objects 161, 163-164, 170-171
Window Server 155-158
- write: method 135-140,223

- zone method 109, 223
zones 108-110

240 Illdex

NeXTSTEP Programming

NEXTSTEP OBJEO-oRiENTED PROGRAMMING AND
THE OBJECTIVE C lANGUAGE: RElEASE 3

NeXTSTEP is the object-oriented programming environment that speeds the development of all kinds of software-from mission­

critical custom applications for business to advanced research projects for academia. NeXTSTEP offers building blocks that

implement essential behavior in a variety of application areas-including database management, telecommunications and

networking, and high-quality 2D and 3D graphics.

NeXTSTEP Object-Oriented Programming and the Objective C Language describes the Objective C language as it is implemented

for NeXTSTEP. The Objective C language adds a small amount of syntax to standard ANSI C to support object-oriented programming

techniques- including full dynamic binding, message forwarding, and remote messaging between objects in different

applications. Standard C and C++ can be freely mixed with Objective C code.

Topics covered in this book include:

• The principles of object-oriented programming • The run-time system for the Objective C language

• The Objective C language • Using Objective C with C++

The NeXTSTEP Developer's Library is essential reading for every NeXTSTEP enthusiast, providing authoritative, in-depth

descriptions of the NeXTSTEP programming environment. Other titles in the NeXTSTEP Developer's Library include:

• NeXTSTEP General Reference: Release 3, Volumes 1 and 2 • NeXTSTEP Operating System Software: Release 3

• NeXTSTEP Development Tools and Techniques: Release 3 • NeXTSTEP Programming Interface Summary: Release 3

• NeXTSTEP User Interface Guidelines: Release 3 • NeXTSTEP Network and System Administration: Release 3

NeXT develops and markets the industry-acclaimed NeXTSTEP object-oriented software for industry-standard computer architectures.

NEITSTEP
Obj ec t Ori e f/t e d Soft w ar e

9 780201 632514

ISBN 0-201-63251-9

Addison-Wesley Publishing Company
US $24.95
CANADA $31.95

