THE MIDAS USER’S GUIDE

IDR4558

The MIDAS Users Guide
IDR 4558

This guide documents the software operation of the Prime Computer and

its supporting systems and utilities as implemented at Master Disk
Revision Level 17.6 (Rev. 17.6).

PRIME Computer, Inc.
5¢@ Old Connecticut Path
Framingham, Massachusetts 01701

ACKNOWLEDGEMENTS

We wish to thank the members of the documentation team and also the
non-team members, both customer and Prime, who contributed to and
reviewed this book.

Copyright © 1980 by
Prime Computer, Incorporated
508 Old Connecticut Path
Framingham, Massachusetts 01701

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer

Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a 1license
and may be used or copied only in accordance with the terms of such
license.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET and THE PROGRAMMER'S COMPANION are trademarks of Prime
Computer, Inc.

First Printing October 1980

All correspondence on suggested changes to this document should be
directed to:

Laura Douros

Technical Publications Department
Prime Computer, Inc.

50¢ 0l1d Connecticut Path
Framingham, Massachusetts @1701

ii

IDR4558

CONTENTS

PART I. INTRODUCTION

1 INTRODUCTION TO MIDAS

Introduction 1-1
What a MIDAS File Looks Like 1-2
From the User's Viewpoint 1-7
The MIDAS System 1-9

Language-Dependent Limitations 1-11

PART II. CREATING A MIDAS FILE

2 INITIALIZING A MIDAS FILE (CREATK)

Introduction 2-1

Setting Up a Template 2-1
Other Things to Know About CREATK 2-10

3 BUILDING A MIDAS FILE (KBUILD)
Introduction 3-1
Using KBUILD 3-5
KBUILD and Direct Access 3-29
KBUILD Error Messages 3-32

4 DELETING A MIDAS FILE (KIDDEL)

Introduction 4-1
The KIDDEL Utility 4-1

PART III. MIDAS FILE ACCESS

5 FILE ACCESS OVERVIEW
Introduction 5-1
6 THE FORTRAN INTERFACE
Introduction 6-1
Opening and Closing MIDAS Files 6-4
OPENMS: Opening the File 6-5

CLOSMS$: Closing the File 6-7
NTFYMS: The "Notify MIDAS" Routine 6-8

iii

CONTENTS

October 1980

CONTENTS IDR4558

File Access Concepts 6-10
The FORTRAN/MIDAS Interface Subroutines 6-16
ADD1$ 6-19

Reading a MIDAS File 6-29
FINDS 6-39

NEXTS 6-39

GDATAS 6-47

Updating a Record 6-48
LOCKS 6-48

UPDATS 6-52

DELETS 6-58

7 THE COBOL INTERFACE

Introduction 7-1

Opening a MIDAS File 7-4
Error Handling 7-13
Positioning the File 7-15
Reading a File 7-19
Adding Records 7-25
Updating Records 7-28
Deleting Records 7-29

8 THE BASIC/VM INTERFACE

Introduction 8-1

Opening/Closing a MIDAS File 8-2
File Positioning 8-4

Adding Records 8-7

Reading Records 8-14

Updating Records 8-14

Deleting Records 8-15

9 THE PL/I INTERFACE

Introduction 9-1

Opening/Creating a MIDAS File 9-2
File I/0 Concepts in PL/I 9-4
Adding Records 9-6

Reading a MIDAS File 9-9

Updating File Records 9-12

Deleting Records 9-14

Locked Records 9-15

Accessing CREATK-Defined Files 9-16
Error Handling 9-17

1¢ THE RPG INTERFACE

Introduction 10-1
Language-Dependent Features 10-1
Describing a MIDAS File in RPG 18-2
File Operations 10-6

Indexed File Examples 10-11

Direct File Examples 1@-16

October 1980 iv

IDR4558

11 DIRECT ACCESS

Introduction '11-1

Direct Access in Each Language 11-2
Creating a Direct Access File 11-4
Relative File Access 11-6

Adding Records to a Relative File 11-12

Reading a Relative File 11-18
Updating Record 11-21

b&llﬂ N/ L 4
.« A

Deleting Records 11-23

PART IV. MAINTENANCE AND ADMINISTRATION

12 MAINTAINING A MIDAS FILE

Introduction 12-1

Examining the Template 12-1
The MPACK Utility 12-8

The MPACK Dialog 12-9
MPACK Error Messages 12-17

13 PFPOR THE ADMIN ISTRATCR

Introduction 13-1

Concurrent Process Handling 13-1
Initializing MIDAS 13-5

Library Modifications 13-7

MIDAS Cleanup/Recovery Utilities 13-8
Handling Concurrency Errors 13-9
Debugging Tips 13-11

PART V. MORE MIDAS

14 OFFLINE ROUTINES

Introduction 14-1

Part I Creating/Examining a MIDAS File
Alternatives to CREATK 14-1

KX$SRFC 14-6

Part II File-Building Routines 14-11
Alternate File-Building Methods 14-11
PRIBLD 14-16

SECBLD 14-28

BILDSR 14-24

Part III Other MIDAS Routines 14-33
Other Offline Routines 14-33

14-1

CONTENTS

October 19860

CONTENTS IDR4558

15 ADVANCED USES OF MIDAS

Introduction 15-1

CREATK's Extended Options Path 15-1
Double-Length Indexes 15-6
Modifying a Template 15-7
Modifying MIDAS 15-8

APPENDICES

A MIDAS ERROR MESSAGES
Introduction A-1
Run-Time Error Codes A-1
Errors Returned by Utilities A-6
B MIDAS AND THE FILE SYSTEM
File System Background B-1
C OBSOLETE MATERIAL
Introduction C-1
Obsolete Material C-1
Effectively Obsolete Material C-3
D THE MIDAS ARCHIVES
Introduction D-1
Administrative/Installation Changes D-1
New Methods and 0ld Methods D-3

Changes to Existing Routines D-5
New MIDAS Routines D-13

October 1980 vi

IDR4558 PREFACE

ABOUT THIS BOCK...

This book is intended to replace PDR3@61, The MIDAS Reference Guide.
Its emphasis is on acquainting the first-time or relatively
new-to-MIDAS user with the basic concepts of MIDAS. However, the needs
of the experienced or long-time MIDAS user have not been overlooked.
Since it was not possible to satisfy everyone's particular needs at
this first writing, anyone with useful ideas and suggestions regarding
the improvement of the book should not hesitate to contact the author.
All input will be considered for incorporation into future revisions of
this book. This is your user's guide and only you know what else you'd
like to see in it.

HON TO USE THIS BOOK

Part I introduces MIDAS and briefly describes its major functions and
features. Users needing additional background on terminology used here
should see Appendix B.

Part II covers MIDAS file creation and the role of CREATK in setting up
a MIDAS file template. MIDAS file deletion is also covered here.

Part III covers all the currently available language interfaces to
MIDAS., It describes how to access a MIDAS file in COBOL, FORTRAN,
BASIC/VM and so forth.

Part IV talks about the basic MIDAS file maintenance tasks that can be
done by the user. It also covers MIDAS system maintenance and
initialization, which 1is wusually handled by the System Administrator,
or whoever is in charge of MIDAS at a particular site.

Part V deals with the more esoteric aspects of MIDAS, most of which
will mean 1little to new users at first. Veteran MIDAS users may find
this material helpful in tuning MIDAS performance. Programmers who
like to do things for themselves will find the information about the

offline MIDAS routines useful in writing certain applications.

The collection of appendices includes a complete set of MIDAS run-time
error message codes and explanations, a description of how MIDAS fits
in with the rest of the PRIME file system, a summary of obsolete
routines, and a summary of the changes that have occurred to MIDAS at
this revision (17.6).

vii October 1980

PREFACE IDR4558

Conventions

The following conventions are used throughout this book, and should be
reviewed before reading further:

Braces { } Used to show a series of arguments, parameters or
keywords, at least one of which must be chosen,

unless the braces are themselves enclosed by
brackets.

Brackets [] Used to indicate that the enclosed parameters,
arguments or keywords are optional.

Underlining Generally used in examples to distinguish user

input from system output. May also be used to
indicate the minimum abbreviation of certain

options, parameters, command words or responses.

(CR) This symbol indicates a single carriage return,
that is, a single hitting of the RETURN key on most
terminals. It is used in examples to show that the

user typed a carriage return, and nothing else in
response to some MIDAS utility prompt.

Note

It is assumed that users already know that any command or
response entered, either to PRIMOS or to any MIDAS utility,
must be terminated by a carriage return, which causes the
information typed by the user to be transmitted.

October 1980 viii

Part 1
Introduction

IDR4558 INTRODUCTION TO MIDAS

SECTION 1

INTRODUCTION TC MIDAS

INTRODUCTION

MIDAS, the Multiple Index Data Access System, is a collection of

o = O Ry By 313+32 i Aamalhl a +ha aimnla

subroutines and interactive utilities ciac ehao.ie o Simpie
construction, access and maintenance of keyed data files. Because of
their structure, information can be rapidly retrieved from MIDAS files
throwgh high-level languages 1like FORTRAN, COBOL and BASIC/VM. (nce
the overall shape (structure) of the MIDAS file is established, data
can be added to it on-line through interactive programs, or through
application programs. Alternatively, by using MIDAS utilities, data in
existing sequential (non-MIDAS) files can be added to MIDAS files. The
process of building a MIDAS file is quite simple. MIDAS does most of
the work; the user merely provides the information requested by the
various MIDAS file-building programs.

When To Use MIDAS

MIDAS file structure and access is key-oriented, making it easier for
users to maintain, update and retrieve information stored in both larg
and small files. Although MIDAS is indeed a useful tool in many
applications, it is not always the best answer. While this book cannot
address every possible situation where MIDAS might be under
consideration, it can offer a few basic guidelines. Briefly, MIDAS

should be used when:

e A large file of information is to be accessed by one or more
keys. For example, a customer master file may be accessed by
account number or by customer name.

e A file needs to be accessed and updated on-line by several users
simul taneously.

e Various factors like numbers of files per application, number of
keys per file, number of files accessed per program, security
requirements and necessary recovery features indicate that DBMS
is not a preferred solution. These factors should be discussed
with a systems analyst when determining which of Prime's data
management products are most suited to your particular
application.

1 - 1 Cctober 1980

SECTION 1 IDR4558

How To Access MIDAS

MIDAS files are created and maintained by a collection of Prime
supplied utilities and subroutines, all of which are later described in
detail. MIDAS files can be accessed through these Prime languages:

BASIC/WM

COBOL
FORTRAN/FORTRAN 77
RPGII

PL/I

PMA

Ordinarily, a MIDAS file is set up for use with a particular language
interface; however, it is possible to access a MIDAS file with any of
these Prime high-level languages.

WHAT A MIDAS FILE LOOKS LIKE

Although the user need not know all the details of MIDAS file
structure, there are some basic terms and concepts which are important.
The remainder of this book assumes that the reader is familiar with
certain fundamental information, most of which is dealt with in this
section. Other details are covered in Appendix B, as indicated.

Some Basic Terms and Concepts

A typical data file is composed of records, which are divided into one
or more related fields. Each field in a record is a piece of data,
like a last name, age or phone number, which describes or pertains to
an individual event, person, company, and so forth. Each record in the
file has the same field layout; for example, each record has a last
name, age, and phone number field. The important thing is that the
actual contents of each field (called the field value) will generally
differ from record to record. Thus, at least one field in each record
will have a unique value, thereby distinguishing each record from all
other file records.

Some file records contain two kinds of fields: those which identify
the record and those which describe the record. The fields which
identify a record are usually called key-fields or keys. Such fields
are distinguished from other fields in the record which simply contain
descriptive data, or "detail" information. Files with key fields are
called "keyed" files. Detail information tends to be less unique or
less used in everyday applications.

Keys are most often used for file searches because they readily
identify a particular record. However, keys usually mean additional
file overhead, that 1is, they require more storage. Keyed fields
therefore should be used sparingly and chosen carefully. They should
be fields which users are most likely to search on.

REV. @ 1 - 2

IDR4558 INTRODUCTION TO MIDAS

An Illustration: A keyed file, for example, might be an EMPLOYEE file
which may contain many records, one for each employee in a company.
Each data record contains information on each employee, and may be
divided into several fields, such as SOCIAL-SECURITY-NO, LAST-NAME,
FIRST-NAME, PAY-RATE, and EMPLOYEE-NO. (See Figure 1-1.)

Certain fields, like SOCIAL-SECURITY-NO, LAST-NAME, and PAY-RATE, are
designated as file search keys.

A particular record is retrieved by searching on one of these unique
key values. For example, to fetch the employee OGLETHORPE's record in
the EMPLOYEE file (refer to Figure 1-1), you could use the LAST-NAME
key value of "OGLETHORPE", or the SOCIAL-SECURITY-NO key value of
"313-99-8666" .

Types of Keys: There are two kinds of keys: primary and secondary. A
primary key must have a unique value for each record in the data file,
with only one primary key field per record. A secondary key is not
required to have a unique value in every record, and there may be as
many as 17 secondary keys per MIDAS file record. Keys may be one of
eleven data types. For complete details, see Section 2.

In the EMPLOYEE file, the SOCIAL-SECURITY-NO key could be the primary
key because it guarantees a unique value for every employee in the
file. The other keyed fields in the record, like PAY-RATE ard
LAST-NAME, are secondary keys and may or may not have unique values.

MIDAS File Structure

The concepts just described in the sample data file, EMPLOYEE, apply to
MIDAS files as well. A MIDAS file is a type of keyed file known as a
keyed-index file. A keyed-index file consists of at least two parts:
a keyed data file and an index file.

The index file, called an index subfile in MIDAS, simply stores all the
key values that appear in the MIDAS data file. Because there may be
more than one key field in a data record, MIDAS creates one index
subfile for each key. Because of this profusion of subfiles, a MIDAS
file is also called a segment directory. A segment directory is
physically made up of one or more segment subfiles, but logically, the
segment directory is one file with a single file name. 1In a MIDAS
file, one of these segment subfiles is the data subfile, the other, the
primary index subfile. See Figure 1-2 for a representation of MIDAS
file structure. For a more complete description of MIDAS structure, as
well as other Prime file structure concepts, refer to Appendix B.

1 - 3 October 1980

SECTION 1

KEY

KEY-FIELD

FIELD

FIELD-NAME

RECORD 1

RECORD 2

RECORD 3

RECORD 4

RECORD n-1

RECORD n

REV. 0@

IDR4558
PRIMARY SECONDARY SECONDARY
KEY KEY 1 KEY n DATA sooe eee DATA
KEY-FIELD-VALUE |KEY-FIELD VALUE| KEY-FIELD-VALUE| FIELD-VALUE FIELD-VALUE
TYPICAL DATA RECORD
SECONDARY SECONDARY
PRIMARY KEY KEY 1 KEY 2 DATA-FIELD
:ganLsecumTv LAST-NAME PAY-RATE FIRST-NAME
313.09-8666 OGLETHORPE 301.25 GREGORY
132:34.6789 WONG 348.00 JANE
002-49-6222 CHERRY 380.00 DAVE
134.01-9999 LARSON 348.00 SUSAN
Figure 1-1. Employee Data File With Three Keys

IDR4558 INTRODUCTION TO MIDAS

Index Subfile Contents: Index subfiles store key field values that
appear in the records of a data file and are used by MIDAS when looking
for a particular key value during a file search. Because there are two
types of keys, there are two types of index subfiles: a primary index
subfile and a secondary index subfile. Every MIDAS file has a primary
index subfile, and, depending on the number of secondary keys, an
equivalent number of secondary index subfiles.

Assuming that every record in the data file has at least one key field,
(containing a primary key value), the primary index subfile for that
MIDAS file would list all of these values; in this case, the primary
index subfile would have one entry per data file record. Depending on
how many data records have a field entry for the corresponding
secondary key, and on the interface used to add the data records, the
number of secondary index entries will vary. This is described in more

detail in the language interface sections.

Index Subfile Mntries: Each entry in an index subfile consists of a
key value from a particular record in the data file plus a pointer to
that record. A pointer is a three-word address that tells MIDAS where
to find the associated record. ‘The entries in an index subfile are
stored in a B-tree, a special type of binary tree. The data file
records are not stored in the same order as the index entries, but that
doesn't matter because each index entry always points to the right data
record. The index entries are always stored in an orderly fashion;
the entry with the lowest value is the £first entry in the index,
followed by entries of increasingly greater value.

The "Template" Concept

Although the exact number of files and subfiles varies, there are
always two logical parts to a MIDAS file: the various index subfiles,
and the data file, which contains the information to be accessed.
Collectively, these two parts are called a template.

The data file, also called a data subfile, consists of records which
can be referenced through the primary index subfile by specifying a
primary key value. Each entry in the data subfile is "pointed to" by
its unique primary key entry in the primary index subfile.

What is a Template?: A file template is a structural definition of a
MIDAS file; it consists of all the index subfiles needed for key value
storage, plus a few other subfiles and pointers. It is essentially an
initialized (unpopulated = empty) MIDAS file.

1 - 5 October 1980

SECTION 1 IDR4558
313-09-8666
132346789 POINTERS
T0
134.01-9999 DATA NOTE
KEYS RECORDS ARROWS ARE POINTERS TO RECORDS IN
IN 002996222 DATA SUBFILE. EACH ENTRY IN THE
PRIMARY INDEX SUBFILE HAS A POINTER TO THE
INDEX P RECORD IN THE DATA SUBFILE THAT HAS
SUBFILE A MATCHING KEY FIELD. FOR EXAMPLE,
e THE RECORD CONTAINING INFO ON JANE
b WONG CAN BE REFERENCED THROUGH THE
ENTRIES IN THE INDEX SUBFILES THAT
KEY n-1 MATCH, AS SHOWN IN THE DIAGRAM.
KEY n
PRIMARY INDEX SUBFILE
OGLETHORPE
313098666 | OGLETHORPE 301.25 GREGORY
WONG i
CHERRY \
ws 132.34.6789 WONG 348.00 JANE
SECONDARY LARSON
INDEX -
SUBFILE
o1 . 002.99.6222 CHERRY 380.00 DAVE
[]
KEY n-1
134-01.9999 LARSON 348.00 SUSAN
KEYn
SECONDARY INDEX SUBFILE 01
°
301.25
348.00
KEYS 380.00
N
SECONDARY 348.00
INDEX RECORD n-1
SUBFILE .
02 °
.
RECORD n
KEY n-1
KEYn DATA SUBFILE

SECONDARY INDEX SUBFILE 02

Figure 1-2.

Iogical View of a MIDAS File

RECORDS

IDR4558 INTRODUCTION TO MIDAS

A template's primary function is to accurately define the structure and
properties of a MIDAS data file. MIDAS utilities and access routines
require a template in order to access the information in a data file.
The "definition"™ of a MIDAS file includes a description of all the data
file's key types and lengths, and the data file record length.

Setting Up A Template: The MIDAS utility CREATK sets up a MIDAS file
template using interactive dialog. CREATK asks for information about
the template you intend to build. Basically, CREATK requires only the
key types and sizes, plus the length of the data record, to be
specified. Based on this information, CREATK sets up the appropriate
index subfile skeletons and pointers required by MIDAS. (More on
CREATK in Section 2.)

FROM THE USER'S VIEWPOINT

From the user's point of view, the first step in setting up a MIDAS
file is to create a template with CREATK. ‘The second step is to
populate, or add data to the file, building the data subfile mentioned
earlier. The data subfile can be "built" in several ways, all of which
are discussed in Section 3. Once the file is populated you can access
individual data records by primary and/or secondary key. Below are
some descriptions of what happens during record addition and record
access.

What Happens When You Add A Record

Records are added to a MIDAS data file by primary key; the primary key
entry for the record is added to the primary index at this time. When
you add a record to a MIDAS file in any of the language interfaces, the
new record is written to the end of the data file. If desired, the
user may then add the appropriate secondary key value to each of the
secondary index subfiles for that file so the record can be referenced
by one or more secondary keys. Keep in mind that there are no pointers
from the data subfile to the index subfiles; pointers are maintained
in one direction only: from the index subfile entries to the data
subfile records. Only the pointer from the primary index subfile to
the data subfile record is created upon record addition; secondary
index subfile pointers must be added individually in some of the
language interfaces. In others, the secondary index subfile entries
are automatically added when the record (and primary index entry) is
added .

What Happens When You Delete A Record

A record is "deleted" from a MIDAS file by deleting its primary key.
Once a primary index entry (key value) is deleted, there is no way to
get to the data subfile record it used to reference. The record in the
data subfile is then marked as deleted, and the area is not reused
until MPACK is run. MPACK is a special MIDAS utility that reclaims

1 - 7 October 1980

SECTION 1 IDR4558

"deleted" areas in the data subfile and in the various index subfiles
for future use.

When a record is deleted by primary key, the corresponding secondary
index entries for this record are marked for deletion but are not
deleted until a user attempts to use them to reference this record.
Since the pointer in the index entry references a deleted record, the
secondary index entry is then removed from the index. However,
secondary index entries can be deleted independently of the primary
index entry in most language interfaces in which case the index entry
space is automatically reclaimed (that is, MIDAS could use it for
another entry).

Deleting Index Subfile: ‘The entire contents and template description
of a secondary index subfile can be deleted with the KIDDEL utility.
KIDDEL asks for the numbers of the index subfiles to be deleted. The

entire file can be deleted by specifying ALL. However, you cannot
delete just the primary index subfile, as this would render the file

inaccessible. See Section 4 for further details on the KIDDEL utility.

MIDAS File Access Methods

There are two ways to retrieve information from a MIDAS file: the
"keyed-index" method and the "direct access" method. A MIDAS file

template can be set up for keyed-index access only, or it can be set up
to use both methods.

Keyed-Index Access: From the user's viewpoint, keyed-index access
involves giving MIDAS a primary or secondary key value and waiting for
MIDAS to return the appropriate record. MIDAS does keyed-index file
searches by looking through a list of index subfile entries for a match
on the user-supplied key value. Once a match is found, the
corresponding record in the data subfile is located by following the
pointer from the index subfile to the data subfile. Sequential
searches are also possible by performing a "get next record" operation,
which tells MIDAS to return the next record entry in the data subfile.

Partial searches can also be done by using a prefix of the full key
value.

Direct Access: Direct access is based on record numbers. Each record
in the data subfile is given a unique number. To access a particular
record, the user simply gives MIDAS a record number. Although the user
must keep track of record numbers, this method can be faster than
keyed-index access because there is less searching involved. Direct
access files in COBOL require that the primary key be the record
number. FORTRAN, however, does not 1levy this restriction; thus,
direct access files in FIN can be accessed either by record number or
by primary or secondary key. For direct access files with primary and
secondary keys in addition to record numbers, the keyed-index access
method can be used to retrieve information by key value. This means
that the keyed-index method can be used on files of either type of
template, while direct access only works on templates set up for direct

REV»G l - 8

IDR4558 INTRODUCTION TO MIDAS

access. Direct access 1is supported only by the COBOL, FORTRAN and
RPGII MIDAS interfaces.

THE MIDAS SYSTEM

The MIDAS system consists of Prime-supplied interactive programs,

called "utilities," and file access subroutines. The utilities are
responsible for file creation, modification and maintenance; the

2101 € LOL 22 LICQL il § SR CELL

subroutines are used to add, delete, modify and access information in
existing MIDAS files.

MIDAS Utilities

The MIDAS utilities are directly accessible from PRIMOS command 1level.
These utilities build and modify MIDAS file structure:

® CREATK creates/modifies a MIDAS file.

e KBUILD adds entries to a MIDAS data subfile and index subfiles
from sequential disk files.

o KIDDEL deletes a MIDAS file (partially or totally).
e MPACK restructures an overgrown or inefficient MIDAS file.

A Word on Utility Names: For those curious unbelievers, the MIDAS
utility names do have some real meaning. CREATK is almost
obvious — the "K" stands for "keyed" to distinguish it from the other
PRIMOS level command CREATE, which creates ordinary files and
directories, but not segment directories, which is CREATK's job.
KBUILD builds "keyed" files; KIDDEL deletes (DEL) keys, indexes and
data (K, I, D); MPACK "packs up," or recovers space in MIDAS files
(M). So, while they may not seem totally consistent, the names do make
sense.

The MIDAS Life Cycle

For those of you who find it easier to think of dry subjects like MIDAS
in biological terms, the following paragraphs are presented for your
enjoyment.

The four MIDAS utilities described briefly above are in charge of
managing the "life cycle" of a MIDAS file. CREATK gives birth to a
MIDAS file, defining its shape and general characteristics. Based on
the user's specifications, it creates a skeleton for the file. CREATK
also serves as a "monitor" for the MIDAS file during its lifetime,
providing important information about its skeletal structure, and, to
some degree, about its contents. In fact, CREATK can even make minor
adjustments to the file's skeleton at the user's command, improving its
useability.

1 - 9 October 1980

SECTION 1 IDR4558

All this is well and good but we have to get information into the MIDAS
file once we've defined its shape. The KBUILD utility does this by
taking existing sequential (non-MIDAS) disk files with the information
we want to put into the MIDAS database, and putting it into the proper
cubbyholes in the MIDAS file superstructure. It puts key entries into
the proper index subfiles and record entries into the data subfile.

Sometimes a MIDAS file begins suffering from the common ailments
associated with repeated use (and abuse) and must undergo corrective
surgery. The utility that performs this service is MPACK. It can do
anything from a major overhaul to a simple face-lift. Major overhauls
usually involve recovering the space wasted by data subfile and
secondary index entries marked for deletion, plus checking to see that
all index entries are in the proper order and reporting them to the
user if they aren't, and finally, reordering the data subfile entries
so the file can be used more efficiently. Minor cosmetic surgery
involves unlocking records which were locked by program failure or
maybe by system failure during file processing, or it might involve
packing up an index subfile or two, again recovering space occupied by
"deleted" index entries.

At some point in the life cycle of a MIDAS file, surgery may no longer
be a viable option. Clearly, a miracle is in order. However, there is
no life-giving utility in MIDAS. Instead, the KIDDEL utility has the
unique task of meting out several types of death sentences to a MIDAS
file. 1If the user determines that the shape of the MIDAS file can be
used again in whole or in part, KIDDEL performs selective surgery on
the file, removing parts of it entirely, or removing all the data
entries from various parts of the file; this allows the file to begin
a new life, reusing parts or all of its old skeletal structure. If,
however, the MIDAS file has outlived its usefulness, KIDDEL will
destroy it entirely, freeing up the disk space it formerly occupied.

This digression was intended to give you some idea of how the utilities
work together as a package, and to make you more comfortable with the
whole idea of MIDAS; which isn't such a frightful beast after all.

MIDAS File Access Subroutines

The remainder of MIDAS consists of data access and maintenance
subroutines. These subroutines, listed and explained briefly below,
have been integrated into and are used indirectly by the following
languages: BASIC/VM, COBOL, PL/I and RPGII.

IDR4558 INTRODUCTION TO MIDAS

Special MIDAS access statement in those languages 1lets you obtain
information from a MIDAS file without having to know anything about
these MIDAS subroutines. FORTRAN and PMA users can call these
subroutines directly from programs written in these languages. These
subroutines are:

e ADDI$ adds an entry to a MIDAS file.

e DELETS deletes a data file or index subfile entry.
e FINDS 1locates a data file entry.

e LOCKS finds and locks entry for exclusive access.
e NEXT$ locates next sequential entry in file.

e UPDATS updates/rewrites a file entry.

The calling sequences for these subroutines are discussed in Section 6.

LANGUAGE-DEPENDENT LIMITATIONS

Althouwgh any of Prime's languages may be used to access a MIDAS file,
those languages with built-in interfaces have some limitations which
must be kept in mind when using MIDAS. This is especially true if a
file is to be accessed by programs written in more than one language.
Below are the restrictions on template creation as they pertain to each
language interface. Other restrictions pertaining to file access and
maintenance are addressed separately in each of the language interface
sections.

BASIC/VM

MIDAS files built for access by BASIC/VM programs can have up to 18
keys: one primary and 17 secondaries. Although keys are not required
to be part of the data record, it is recommended that both primary and
secondary keys be included in the data record for convenience.
BASIC/VM does not support the direct access feature of MIDAS. See
Section 8 for BASIC/VM information.

COBOL

A keyed-index MIDAS file, called an INDEXED SEQUENTIAL file in COBOL,
can have up to six keys: one primary and five secondaries. If
fixed-length records are desired, the data subfile record 1length
indicated by the user during template creation should include the
lengths of all primary and secondary key fields. This is because all
keys must be included in the data record. Furthermore, the primary key
must be the first field in the data subfile record. COBOL supports the
direct access feature of MIDAS, enabling COBOL users to use direct

1 -1 OCctober 1980

SECTION 1 IDR4558

direct access feature of MIDAS, enabling COBOL users to use direct
access MIDAS files, called RELATIVE files in COBOL, using the standard
COBOL REIATIVE file I/O statements. See Section 7 for information on
INDEXED SEQUENTIAL files, and Section 11 for details on RELATIVE files.

FORTRAN and PMA

Because FORTRAN is the principal MIDAS interface, and is in fact the
basis of all the other language interfaces, FORTRAN and PMA users can
take advantage of the full range of MIDAS features. Up to 17 secondary
keys (and index subfiles) can be created per file. Keys do not have to
be part of the data record, but it is easier to keep tabs on file
integrity if they are. This simply means defining each key as an
actual field in the record, as in the examples seen earlier in this
section. See also Section 6.

RPGII

The RPG interface to MIDAS does not support the use of secondary keys
or secondary data; only the primary key is recognized. Thus, records
can be retrieved and reported on by primary key only. The size of the
primary key is 1limited to 32 characters. Records in a MIDAS file can
be updated or added through RPG, but cannot be deleted. RPGII supports
access to both keyed-index and direct access MIDAS files. See also
Section 14.

PL/1

The PL/I Subset G MIDAS interface supports only ASCII primary keys,
with a maximum length of 32 characters. PL/I does not support these
MIDAS features: secondary keys, secondary data or direct access. It
is not necessary to use CREATK to set up a MIDAS file template, as PL/I
has its own tools for doing so. However, files created with CREATK can

W, +h Ca, 3 3
be accessed through PL/I, See Section 2 for details.

REV. @ 1 - 12

Part I1
Creating a Midas File

IDR4558 INITIALIZING A MIDAS FILE

SECTION 2

INITIALIZING A MIDAS FILE
(CREATK)

INTRODUCTION
MIDAS file creation involves two essential steps:

1. Initializing — defining a template for the file to allocate
space for all index and data subfiles.

2. Building/converting a data file — adding data to the file (see
Section 3 (KBUILD), and also Sections 5-10).

This section deals with MIDAS file initialization, describing how to

use CREATK in setting up a simple MIDAS file. Other CREATK functions
are treated primarily in Sections 12 and 15.

Language Interface Dependencies

If you're getting acquainted with MIDAS for the first time, the
importance of the language interfaces, to which Section 1 made
reference, may not be immediately apparent. The MIDAS utilities
provide all the essential tools for building, maintaining and
destroying a MIDAS data base, but they don't provide any tools for
information extraction. ‘That's why the 1language interfaces are
essential. They enable you to access (read), update, delete and add
new information to MIDAS files. Without them, a MIDAS file would be a
mass of inaccessible information.

Each language interface to MIDAS works a bit differently; some support
all the features of MIDAS, and others, only a few. Therefore, it's
important to know what language interface you'll be using to access a
file before you create that file; that way you'll be able to tailor
the file to the requirements of that particular language interface.
These requirements and guidelines are all summarized in Table 2-1.

SETTING UP A TEMPLATE
CREATK is an interactive program that sets up a template based on
user-supplied file specifications, often called "parameters," which
include:

e MIDAS file type (keyed-index or direct access)

e Primary key type and size

2 -1 October 1980

SECTION 2 IDR4558

Table 2-1. Summary of Interface Requirements

Language Primary Secondary User Data Size
Interface key Keys (record-length)
not required enter (CR) or @
BASIC/VM to be in data up to 17 for variable-length
record, but (numbers 1-17) records; or enter
is recommended record size in words
for ease of use* for fixed-length
records
must reside in up to 5 must include lengths
COBOL data record and (numbers 1-5) of all key fields (in
must be first must be defined addition to non-key
field in record in order fields) if fixed-

length records are
desired; variable-
length records are
supported, but keys
must reside in

record.
not required enter size in words
FORTRAN/ to reside in up to 17 for fixed-length
PMA data record (numbers 1-17) records; enter (CR)
(but recommended) * or @ for variable-

length records

must be an ASCII Variable-length
PL/I key; default size no secondary records only, if
(see Note) is 32 chars. —- keys supported creating file from
does not have to be PL/1 program; fixed-
part of data recoird length recoids
but is recommended supported if file was
for ease of use* created with CREATK
must reside in data fixed-length records
RPGII record; does not no secondary only; size must
have to be first keys allowed include primary
field in record key
Note

PL/I programmers do not have to use CREATK when initializing a
MIDAS file template. PL/I can create one for you: see Section
9 for details.

* Files with keys resident in the data record can be easily rebuilt
with KBUILD. See Section 3 for details.

REV. ¢ 2 - 2

PIUB9 REV. 19 MIDAS

On page 2-3, the first sentence should read:

Secondary key types and sizes —— these are optional and should be used
when you want more than one search key for the file. Secondary search

keys do not have to be part of the data record except in COBCOL.

IDR4558 INITIALIZING A MIDAS FILE

e Secondary key types and sizes — these are optional and should

be used when you want more than one field per record to use a
search key; the maximum number of secondary search keys
allowable depends on the language interface which will be used
to access the file. (See Tables 2-1 and 2-3 for more
information on keys and key types).

CREATK's Dialogs: Minimum Options vs. Full Options

CREATK has two dialogs:

e The "minimum options" dialog, which lets MIDAS supply default
values for most of the structural parameters needed to build the
template

e The "full options" dialog which lets the user provide these
parameter values

With either CREATK dialog, the user can set up a keyed-index or direct
access MIDAS file, depending on the access method desired.

The real difference between the two dialogs is that the "full" (also
called "extended") options path requires the user to supply more
information. Under minimum options, a user can set up either a
keyed-index or direct access file by answering a few simple questions
about the file and its keys. The full options dialog, which asks the
user for file size details like segment length and index block size, is
discussed in Section 15.

Generally, the minimum options path provides all the options most users
need. Full or extended options features are required only when the
user wishes to increase or decrease the index block size.

Minimum Options: Keyed-Index Dialog

The remainder of this section explains the use of CREATK's minimum
options path to create a keyed-index MIDAS file. If you want
information on creating a direct access file, see Section 11. The
extended options path is covered in Section 14. The complete dialog
for creating a keyed-index file appears just below this discussion.

All input to CREATK can be in lowercase or uppercase and must conform
to the guidelines explained in Table 2-2. 1In cases of improper input,
CREATK usually displays an explanatory message of some sort, telling
you what it's looking for. This is repeated until a proper response is
given.

2 - 3 October 1980

SECTION 2

IDR4558

Table 2-2. Minimum Options (Keyed-Index) Dialog

Prompt
MINIMUM OPTIONS?

FILE NAME?

NEW FILE?

DIRECT ACCESS?

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE:

PRIMARY KEY SIZE=:

DATA SIZE=:

SECONDARY INDEX

INDEX NO?:

REV. @

Response
YES (for simplest options path)

Enter pathname of file to be
created.

Enter YES to Create new
template.

Enter NO to create keyed index
file.

Define primary key type; enter
one of the Kkey codes listed in

Size can be specified with B nn,
where nn is number of bytes for
an ASCII key or the number of
bits for a bit string key; size
can also be given in number of
words, Wnn, for ASCII or bit

string keys. See Table 2-3.

For fixed-length records,
indicate maximum 1length of data
record in the data subfile;
size is expressed in words. The
length of all keys must be
included in the data size for
MIDAS files to be used in COBOL
applications. Enter (CR} or £

for variable-length records.

Enter number from 1-17 (FIN and
BASIC/VWM) or 1-5 (coeoL) ,
indicating which secondary index
is being defined. In COBOL,
secondary keys must be defined
in order, that is, secondary key
1 must be defined before
secondary key 2, and so forth.
Inter # or (CR) to terminate
secondary index definition
sequence.

IDR4558 INITIALIZING A MIDAS FILE

DUPLICATE KEYS PERMITTED? Answer YES or NO. YES allows

the same key value to appear in
more than one record. Duplicate

values are legal for secondary

keys only.

KEY TYPE: Enter one of codes 1listed in
Table 2-3.

KEY SIZE=: Enter size of key in words,

bytes or bits. See Table 2-3.

SECONDARY DATA SIZE=: Enter number words of secondary
- data to be stored with this
secondary key; for FORTRAN and
PMA only. Otherwise, enter @ or
(CR) .

2 - 5 October 1989

SECTION 2

IDR4558

Table 2-3. MIDAS File Key Types

KEY CODE KEY TYPE

A ASCII

B Bit string

D Double Precision
Floating Point

I Short Integer
(INT*2)

L [ong Integer
(INT*4)

S Single Precision
Floating Point

REV. @

Length Specification

Words or Bytes: Wnn or B nn
Max. 32 words (64 bytes)

Bits or Words: B nn or W nn
Max. of 16 words (32 bytes)

Bardware-defined:
4 words

Hardware—defined:
1 word

Hardware—defined:
2 words

Hardware-defined:
2 words

IDR4558 INITIALIZING A MIDAS FILE

When CREATK asks a "YES/NO"-type question, it will accept any one
of these possible responses:

YES
NO
AYE
NAY
OK

These responses can be abbreviated to one letter and can be typed
in uppercase or lowercase.

The CREATK dialog terminates when the user hits (CR) in response to
the INDEX NO? prompt.

Key Types: 'The data types for MIDAS keys are listed in Table 2-3. The
maximum number of words per key is limited to 16 words for bit strings
and 32 words for ASCII strings. The other data types are automatically
sized according to their internal specifications, as shown in the
table.

A Sample File

To help illustrate the basic features of CREATK, Figure 2-1 shows the
layout of a sample MIDAS file which is used throughout the book to
illustrate various MIDAS concepts. ‘This sample file is called
CUSTOMER, and will contain information about certain vendors, including
names, locations and regions. It could also contain order information,
a sales rep name, etc. For simplicity, the file record has been
limited to three major fields: customer code, a unique field which
identifies each customer, the customer name field and the region code.
The record can be expanded to accommodate more data, like the
customer's address.

The CUSTOMER file is a minimum options keyed-index file created with
one primary key and two secondary keys. The primary key is an ASCII
key, five characters in length; it describes the customer code, which
is a unique field in each file record. The first secondary key is an
ASCII key of 25 characters referencing the customer name field of each
file record. The second secondary key, a four character ASCII string,
describes the region-code field. It will be comprised of a two-letter
code describing one of six geographic regions:

MW mid-west

NE horth east

NW north west

SE south east

SW south west

WR western region (California, Nevada, etc.)

and a two letter state code, taken from the standard two letter
abbreviations for state names.

2 - 7 October 1980

SECTION 2 IDR4558

FIELD 1 FIELD 2 FIELD 3 FIELD 4
LOCATION
CUSTOMER CUSTOMER CODE ADDRESS
CODE NAME (TWO LETTER
{5 CHARACTERS) (25 CHARACTERS) REGION CODE; (35 CHARACTERS)
TWO LETTER
STATE CODE)
SECONDARY KEY 01
ASCII KEY
25 CHARACTERS NOT A KEYED FIELD
NO DUPLICATES
PRIMARY KEY SECONDARY KEY 02
ASCII KEY ASCII KEY
5 CHARACTERS 4 CHARACTERS
N p DUPLICATES
O DUPLICATES A LOWED

RECORD-LENGTH: 35 WORDS; 70 CHARS

Figure 2-1. Layout of CUSTOMER File

IDR4558 INITIALIZING A MIDAS FILE

Sample CREATK Dialog

To show you how the CUSTOMER file template could be set up with CREATK,
a comoutput file (PRIMOS command output file), containing CREATK dialog
prompts and responses is listed below. The responses entered at the
terminal by the user have been underlined to distinguish them from
CREATK's prompts. ‘This is only a text convention and is used only for
clarity. Don't attempt to underline your input to CREATK {or to
anything else, for that matter). Note that your responses can be
entered in uppercase or lowercase letters.

Because we want to access the file through all the language interfaces,
we chose fixed-length records so there would be no ambiguities. Thus,

the USER DATA SIZE is supplied as 35 words, giving the data file
fixed-length records of 35 words (7¢ characters) each.

Important Cbservations: The secondary data feature is not used,
therefore a carriage return was supplied for this prompt. The use of
secondary data is not recommended, and in fact is highly discouraged;
see Appendix C. 'The convention for representing a carriage return in
this document is (CR). Understand that each line input to all MIDAS
utilities must be terminated by a carriage return. ‘The symbol appears
only where it's necessary to point out that a "null" response was
entered to a particular prompt. User input is underlined in all
examples in this book to distinguish it from system output.

OK, creatk
[CREATK rev 17.6]

MINIMUM OPTIONS? yes

FILE NAME? customers

NEW FILE? ves

DIRECT ACCESS? no

DATA SUBFILE QUESTIONS
PRIMARY KEY TYPE: a

PRIMARY KEY SIZE = : b 5
DATA SIZE = : 35

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? no
KEY TYPE: a

KEY SIZE = : b 25

SECONDARY DATA SIZE = : (CR)

INDEX NO.? 2

2 - 9 October 1989

SECTION 2 IDR4558

DUPLICATE KEYS PERMITTED? yes

KEY TYPE: a

KEY SIZE = : b 4
SECONDARY DATA SIZE = : (CR)

INDEX NO.? (CR)
SETTING FILE LOCK TO N READERS AND N WRITERS

OK,

OTHER THINGS TO KNOW ABOUT CREATK

CREATK is a complex utility, capable of performing many different
tasks. So far this section has only given you a sampling of its
repertoire. The next few pages describe some important things about
CREATK that will help you use MIDAS and that will increase your
understanding of how CREATK works and what it does.

File Read/Write Locks

By default, CREATK sets the file read/write lock on each MIDAS file it
creates to n readers and n writers. This—is-equivatent—to—the—PRIMOS
~FWEOCK—sekking—of—3. With @ lock setting of 3, it is possible for one
or more users to have the file open for reading, while one or more
users have it open for writing or updating. These default read/write
lock settings are part of MIDAS's concurrent process handling method,
described in Section 13.

CREATK displays the message:
SETTING FILE LOCKS TO N READERS AND N WRITERS

at the end of every session in which a new MIDAS file is created.

REV. @ 2 - 10

Page 2-10 states that a read-wr

writers is "equivalent to th
incorrect. Instead,

n3n getting to set the

what was meant was that you would use the
file read—write lock to n rea

PTU8Y REV. 19 MIDAS

jte lock setting for n readers and n
e PRIMDS RWIOCK setting of 3", This is -

FUTIL
ders and n writers.

IDR4558 INITIALIZING A MIDAS FILE

Note

If you use FUTIL to TRECOPY a MIDAS file from one location to
another, the read/write lock settings of the file are reset to
the system default. Remember to reset the locks on these files
to 3 before attempting to access them from MIDAS. The lock on
a particular file can be set with the SR subcommand. Simply

type:
SR filename 3

where filename is the filename of the copied file.

More CREATK Functions

CREATK has many other options which allow you to obtain information
about an existing MIDAS file, its key types and sizes, its index
subfile structure, segment length, block size, etc. It is possible to
add or modify new index subfiles. You can change the length of the
data file record (expand it preferably) and get estimates on how much
room is needed for a pro¥ected number of entries, given a certain file
layout. To obtain a list of all these "old file" options, type H (for
HELP) in response to the FUNCTION? prompt. These options can only be
used on existing files, i.e., when you answer "no" tc the "NEW FILE?"
prompt :

OK, creatk
[CREATK rev 17.6]

MINIMUM OPTIONS? yes

FILE NAME? customers
NEW FILE? no

FUNCTION?

See Section 12, MIDAS FILE MAINTENANCE, for details on all the "old
file" options of CREATK, which are summarized below for your
convenience.

2 - 11 October 1980

SECTION 2 IDR4558

Summary of CREATK Options

Once you've indicated to CREATK that a file is an old or existing file
(by entering "no" to the NEW FILE? prompt), CREATK asks which FUNCTION

you want. The entire list of functions can be displayed by typing
"help":

A[DD] = ADD AN INDEX

D[ATA] = CHANGE DATA RECORD SIZE
E[XTEND] = CHANGE SEGMENT SEGMENT DIRECTORY LENGTH
F[ILE] = OPEN A NEW FILE

H[ELP] = PRINT THIS SUMMARY

M[ODIFY] = MODIFY AN EXISTING SUBFILE
P[RINT] = PRINT DESCRIPTOR INFORMATION
QLUIT] = EXIT CREATK

(C/R) = IMPLIED QUIT

S[IZE] = DETERMINE THE SIZE OF A FILE
U[SAGE] = DISPLAY CURRENT INDEX USAGE
V[ERSION] = MIDAS DEFAULTS FOR THIS FILE

The brief descriptions provided by CREATK are expanded a bit in the
following paragraphs. For details on these functions and how to use
them, see Section 12.

ADD: Allows you to add a secondary index subfile (and a key) to an
existing MIDAS template. It does not let you add more than 17
secondary index subfiles and won't allow you to specify index subfile
17 as double-length (if you've enabled this feature: see Section 15).

DATA: Changes the data record length and the number of records
allocated for that file if it is a direct access file; it does not
display the current record length, so it must be known (use the PRINT
option to get it: see below).

EXTEND: Lets you change the number of segments per segment directory
and words per segment subfile. See Section 15 for more details. This
effectively permits you to make bigger index and data subfiles by
extending the segment subfile and segment directory lengths.

FILE: Essentially re-starts CREATK; lets you create a new file
template without returning to PRIMOS and re-entering CREATK, or work on
another old file. Returns you to PRIMOS after file definition is
complete.

HELP: Displays the list of functions as shown above.

REV. @ 2 - 12

IDR4558 INITIALIZING A MIDAS FILE

MODIFY: Allows you to change support of duplicates; changes secondary
data size; changes single to double-length index, if double-length
indexes are supported. Also allows you to change the index block
length, if using the extended options version of CREATK. See Section
15.

PRINT: Describes each index subfile and the data subfile in terms of

segments allocated, index capacity, key type, key size and number of
index levels for that subfile; for each level, it describes the entry

size, block size, control words, maximum number of entries per block
and the number of blocks in that level. Data subfile information
displayed, as of 1last MPACK, includes the file access type (keyed or
direct), the number of indexes, the entry size and the key size. See
also Section 12.

QUIT: Exits the CREATK dialog and returns to PRIMOS. A carriage
return does the same thing.

SIZE: Estimates the number of segments and disk records required for a

hypothetical number of entries; estimates can be made for each index
subfile, for the data subfile and the total file. See also Section 12.

USAGE: Provides information on the total number of entries in the
file, the number of entries indexed, and the number of entries deleted,
and the number of entries inserted since last MPACK; also displays the
version of MIDAS vhich last modified the file., See alsc Section 12.

VERSION: Displays the rev. stamp of the version of MIDAS under which

this particular file was created; also displays the default parameters
for the file (DAM file 1length, segment directory length, segments
index, etc.). See also Section 12.

2 - 13 October 1980

PTU8B9 REV. 19 MIDAS

There are several new messages output by KBUILD during the process of
building a file. Most of them should not concern the user as they are
simply informative and do not indicate difficulties. The diagnostic
messages make more sense if you understand how KBUILD goes about
building a MIDAS file, Briefly, KBUILD builds a MIDAS file in one or
more stages, called "passes."” On each pass, one or more index subfiles
are built or are deferred for building during a subsequent pass. The
KBUILD message: -

FIRST BUILD/DEFER PASS QOMPLETE

»

simply indicates that KBUILD has finished building the data subfile,
(if the primary index needs to be built) and has built one or more
indexes while possibly deferring the building of others. KBUILD defers
the building of an index only if the index to be built is empty and the
user-provided input is unsorted. During the first pass KBUILD puts the
unsorted input entries for each such index into a temporary "defer"
file, After the first pass is complete, KBUILD sorts the individual
defer files and builds the “index subfiles from the now sorted data.

Each time an index is softed, KBUILD prints out a message indicating
which index it is going to sort., After the sort is complete, the
message:

SORT COMPLETE

is printed. Similarly, KBUILD announces the building of each index.
For example:

BUILDING INDEX 0

After this index is built, the message:
INDEX 0 BUILT
is displayed. when KBUILD has finished building the data subfile and
all the index subfiles that needed to be built, it displays the
message: :
KBUILD COMPLETE.

and control returns to PRIMDS (unless you are running KBUILD out of a
command file).

IDR4558 KBUILD

SECTION 3

BUILDING A MIDAS FILE
(KBUILD)

INTRODUCTION

Throughout this book, the terms "building," "data entry" and
"populating” all refer to the process of adding data to a MIDAS file.
Once you've set up a MIDAS file template there are several ways to add
data to, or populate it. The alternatives are summarized below, along
with references to other sections in this book where you can find more
information on populating MIDAS files.

There are at least three ways to build a file (four, if vyou're
programming in BASIC/VM). One of these ways, the KBUILD utility, is
documented in this section. The other methods:

e Application Programs

e Interactive Entry

e Offline Routines
are covered as indicated in Table 3-1. A quick comparison of these

methods is also included to help you decide which method is best suited
to your needs.

When to Use KBUILD

KBUILD is a quick and easy-to-use method of building a MIDAS file.
With it, you can build both data and index subfiles from sequential
disk files. KBUILD can also be used to add entries to a secondary
index subfile, using entries in a sequential disk file or entries
already present in the MIDAS data subfile associated with this index.

With KBUILD you can build keyed-index MIDAS files containing either
fixed- or variable-length records, and you can build direct access
MIDAS files (which always have fixed-length records). Special direct
access information is summarized at the end of this section under
KBUILD AND DIRECT ACCESS.

3 -1 OCctober 1980

SECTION 3 IDR4558

Any of these file types can be processed by KBUILD:

These

ASCII text files (compressed)
PRWF$SS—written binary files
FORTRAN-written binary files

COBOL-written "text" files with primary key as first
field (uncompressed)

RPG-written files (uncompressed)

file types are further described in Table 3-2.

When to Use a Program

Application programs to build MIDAS files require more work of the user
than does KBUILD. They should be used only when one or more of the
following is true:

You don't have a pre-existing sequential disk file containing
data in an easily convertible form.

It would require more work to prepare an existing data file for
KBUILD than it would to simply use ADD1$ (FORTRAN call
interface), one of the "add" statements in the other language
interfaces, or other offline routines.

A particular application program has already been written to
handle updates, deletions, etc., and it would not require much
effort to convert or modify it to perform record addition.

A series of finds, updates and adds must be done on a regular
basis and it would be easier to take care of everything with a
single applications program.

Other users may need access to the file even while another
program is adding entries to it. The only way to do this safely
is to use the online routines 1like ADD1$, either directly
(through FORTRRAN or PMA) or indirectly through COBOL, BASIC/WM,
and so forth. KBUILD and the other offline routines (discussed
in Section 14) must have single-user access to a file while
building it. However, they cannot guarantee that this remains
true during the entire build process, so if another user or
process accesses the file while one of these routines has it
open, the file will be damaged.

Data entry as implemented in the various language interfaces is covered
‘in Sections 6 through 10.

REV.

@

Alternative

KBUILD
(interactive
utility)

Application
Program

Interactive
Entry

PRIBLD,
SECBLD,
BILDSR
(offline
routines)

IDR4558

When to Use

Mainly for COBOL, RPG and FIN
programmers who already have
existing data in sequential disk
file. KBUILD adds entries from
these input files to the index
subfiles and data subfile of the
MIDAS file template. Data in
the input files must include a
primary key and all records in
the file must be formatted
identically. Files can be in
text, binary, COBOL or RPG-type
format: details below.

Use this method when existing
disk files are not in the form
required by KBUILD, or when
only a small number of

records are being added.

For BASIC/VM only; when you want
to add a few entries without a
lot of programming hassle.

Users can call offline routines
PRIBLD, SECBLD, and BILDSR to
build a MIDAS file from existing
sequential disk files; useful
for adding concatenated keys

or secondary data. See Section
14 for details.

File-Building Alternatives

KBUILD

Where to

find Info

Section 3
(this one)

Sections 6-10

Section 8

Section 14

October 1980

SECTION 3

REV.

2

IDR4558

Table 3-2. File Types Supported by KBUILD

File Type Code

BINARY

COBOL

FTNBIN

TEXT

Description

A binary file created by PRWFS$, which is
usually called from a FORTRAN program. There
are no newline characters (.NL,) in such a
file.

An ASCII file created by O$AD@8, a routine
called by COBOL as a result of a WRITE
statement. The primary key must be the first
field in the record. These are uncompressed
files with fixed-length records and newline
characters as delimiters.

A binary file created by a FORTRAN WRITE
statement via the routine 0$BD@7, which is used
in FORTRAN binary output. The first word of
each record in this type of file indicates the
record-length of that record. Contains no
newline characters.

A file created by the 0SADZ8 routine; an ASCII
uncompressed file with fixed-length records and
newline character delimiters. Records must
contain the primary key but it doesn't have to
be the first field in the record.

An ASCII file (written with O0S$AD@7) that has
been passed through the EDITOR and is thus
compressed. The records may be variable-length
and are terminated by a newline character.

IDR4558 " KBUILD

USING KBUILD

The remainder of this section describes all the important features of
KBUILD, familiarizes you with the basic KBUILD dialog and variations
thereof, and shows you how to use KBUILD in some typical situations.

KBUILD's Functions

KBUILD's range of functions are summarized below:

e Adding data to a new ("empty") MIDAS file template and building
(adding entries to) the necessary index subfiles from sorted or
unsorted input data.

e Adding new data and index entries to a MIDAS file that already
contains data entries.

e Adding entries from an external data file to a newly created
secondary index subfile which has just been added to an existing
(and previously-populated) MIDAS file.

Converting a field from existing MIDAS data subfile records to a
secondary key field and adding these entries to a new or already
existing secondary index subfile.

Most frequently, KBUILD is used when a large quantity of records need
to be added to a MIDAS file. For each record, KBUILD takes care of
adding the primary index entry, the data subfile entry and any
secondary index entries that have been supplied. Especially in cases
where lots of entries are being added to a file, it is recommended that
you keep a "backup" copy of the input file or files in case of damage
to the MIDAS file, or in case of a system crash while the file is being
processed. Set up a command file that first invokes CREATK to set up

the template, then invokes KBUILD to populate the file.
The user must know the following to use KBUILD:
e The record structure of the input files (this shouldn't be a
problem since the user will most likely set up the input file to

suit the situation at hand)

e The record size definition of the MIDAS data subfile as supplied
to CREATK

Note

KBUILD does not process secondary data (it zeroes it out) and
cannot handle concatenated keys. Use PRIBLD and SECBLD to
build a file with these features: see Section 14.

3 - 5 October 1980

SECTION 3 IDR4558

File Types Supported by KBUILD

KBUILD supports input files with fixed-length records only. However,
MIDAS files with variable-length records can be built by KBUILD, using
specially formatted input files, as explained further under
Variable-Length Records, below. Each file type supported by KBUILD is
identified by its own type-code, as shown in Table 3-2, above. It's
important that you know the type of file you're using before entering
the KBUILD dialog, because KBUILD cannot process the input file without
this information.

Input File Rules

Input files always have fixed-length records, regardless of whether the
output (MIDAS) file contains fixed- or variable-length records. The
format of the input file record varies, depending on what you intend
KBUILD to do with the file. Input files can contain:

e Primary key values and data values -- secondary key
values optional

® Secondary key values only: must include primary key
value in each input record so the record to be referenced
can be located

"Data" means the information that is to be written to the data subfile.
Records do not have to be in sorted order, although it 1is recommended
that they be sorted by any or all keys for faster processing. Some
users may have existing files that they effectively want to "convert"
into MIDAS files by using KBUILD. These files may or may not contain
extraneous information that the user doesn't want processed. In any
event, it's important to note that KBUILD expects certain things of
input files and their record structure. The data record structure
should be roughly laid out as follows:

e Each record of the input file must begin with the pertinent data
to be transferred by KBUILD to the appropriate parts of the
MIDAS (output) file. In other words, the data to be placed in
the index subfiles and in the data subfile must appear in the
front of the input record.

e No extraneous data can appear before the fields you want KBUILD
to process. 'This restriction makes sense because it is easier
for KBUILD to truncate the part of the record it doesn't need
than to extract bits and pieces from a jumbled-up record.

REV. # 3 - 6

IDR4558 KBUILD

e KBUILD requires the user to specify the starting character
position of each key field in the input record; this is also
called the "byte offset" of the key field. The first character
position in the record is character position 1, not @#. Key
fields must begin on byte (half-word) boundaries; they are not
required to precede the data portion of the input record, except
for the primary key in COBOL. They may appear after the data if
they are not going to be physically part of the data subfile
entry.

@ KBUILD requires the user to tell it the input record 1length.
This length is the number of words 1in an input record, not
including anything inserted by the file system, 1like .NL.
characters or leading word count (in FTNBIN files). The user
doesn't have to tell KBUILD the length of the output file
record, since it figures that out by reading the MIDAS file
configuration.

Note

For COBOL type files only, the primary key MUST begin in record
position 1 (byte offset 1) of each input file record. RPG
files do not require that the primary key start in position
one.

Where Keys Should Reside

Should you not want the keys to reside in the data subfile records, put
them AFTER the data you want included in the data subfile entries.
KBUILD can then truncate them when it writes the entries to the data
subfile. Only the initial portion of the input record (without keys)
will be written to the MIDAS data subfile. Remember, in COBOL the
primary key must begin in record position 1 but secondary keys can

3 A vam~rA
appear anywhere in the record.

Record Compatibility

Each record of the input file should have exactly the same record
layout; that is, if the primary key starts in character position 1 of
the first record, it should begin in the same position in each of the
subsequent records in the input file. The same goes for any secondary
key fields. Furthermore, it is assumed that the portion of each input
record to be written to the output file always begins with word 1 of
the input file record. When writing a record from the input file to
the output (MIDAS) file, KBUILD always begins with word 1 (character
position 1) of the input record. ‘The actual length of the entry
written to the output file depends on whether the MIDAS file has
fixed-length records or variable-length records. For more information
on this topic, see Building a MIDAS File With Variable-length Records,
below.

3 - 7 Cctober 1980

SECTION 3 IDR4558

Sample Record Layout

The following paragraphs and illustrations should give you an idea of
record layouts for applications that require keys to reside in the data
subfile record (like COBOL), and for applications that exclude keys
from the data record.

In the record layout pictured in Figure 3-la, the primary key starts in
character position (byte offset) 1. Secondary key @1 starts in
position 8. KBUILD knows how long the key is supposed to be by looking
at the MIDAS file. Secondary key @2 starts in character position 15.
The non-key portion of the input record begins at position 21 and would
continue for as many words as the user specifies. This record layout
represents the kind of input file structure you'd need to include the
key fields in the data subfile record. Each record in this input file
would follow the same pattern.

Keys Not Resident in Data: If keys were not included in the data
subfile record, the record layout might look something like that shown
in Figure 3-1b.

The data portion of the record is 2@ characters long; the primary key
begins in character position 21; secondary key @1 starts in position
28, and secondary key @2 starts in position 35. After the key values
are written to their respective index subfiles, the first 2@ characters
(10 words) of the input record are copied to the data subfile.

What's Next

Most of the general things you need to know about KBUILD have just been
covered; the next part of this section discusses the particulars of
using KBUILD, like:

e How to build variable-length output records from fixed-length
input records

e HHow to process multiple input files
e The requirements for using sorted input files

e Populating a direct access file with KBUILD

REV. @ 3 - 8

IDR4558 KBUILD
4———— RECORD CHARACTER POSITION ———
11 1 1 1 11 1 1 1 2 iti . 4
1 2 3 4 5 6 7 8 90 1 2 3 & 5 6 7 8 9 0 o Positions 22-39 s o
Primary Key Secondary Key Secondary Data
(7 characters) 01 Key 02 {20 characters)
(7 characters) (6 characters) 10 words
Figure 3-la. Keys Resident in Data
<«——— RECORD CHARACTER POSITIONS —————a
Positions 2-19 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4
- - 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
Data) Secondary Key Secondary
{20 characters) Primary Key 01 Key 02
10 words (7 characters)

(7 characters)

(6 characters)

Figure 3-1b.

Figure 3-1.

Sample Record lLayouts

Keys Not Resident in Data

Cctober 1989

SECTION 3 IDR4558

Building a MIDAS File With Variable-Length Records

KBUILD can be used to process input files with fixed-length records for
addition to MIDAS files that have variable-length records. There is a
catch, however. In each record of the input file the user must
indicate the number of words in that record which KBUILD should
actually add to the data subfile. For ease of reference, let's call
this piece of information the output record length. This record length
can be specified as a bit string (an integer in binary form) or as an
ASCII string. KBUILD asks you what form it's in so it can be properly
converted. This number must appear at the same word position in each
input file record. KBUILD asks whether the number is a bit string (B)
or an ASCII string (A) during the dialog sequence, after it determines
that your output file has variable-length records.

For example, word nﬁmber 15 of each of these input file records is used
to indicate the number of words that should be processed from the
record:

2194GSpectrographics 117 Lyons Blvd, Jamaica Pln.
10@2PFlora Portraits 11 Ramos Ave, Belleville
9411PStudio West @9 Arcade Ct, Pasadena
94¢2AArtistry Unltd. 16 Moorland St, Utica
#816SMorrow Paper Mills 12 Vista Point, Monadnock
2334PSeacoast Strippers 12 Seaspray Ln, Monterey
4956SMark-Burton P9 Granger Rd, Belmont

In this example, the output record length is in ASCII form, as the
input file was created with the PRIMOS Editor (ED). Since it's not
likely that the user wants the data transfer length to be included in
the actual data written to the data subfile, so make this word number
the last item in the input file record. It could also be put in the
front of the record, but it would then become part of the data subfile
record by default (and you probably wouldn't want it that way).

Requirements for Variable-Length Records: When you have a MIDAS file
with variable-length records, KBUILD assumes you want to add
variable-length records to it, although it's perfectly reasonable to
add fixed-length records to such a file. However, KBUILD requires you
to specify the input record length, because it must have fixed-length
input records to process. Therefore, even though KBUILD can add
records to a variable-length MIDAS file, it requires the input file to
have fixed-length records. Once KBUILD has determined that the MIDAS
file indeed has variable-length records, KBUILD prints out the
following message:

THE OUTPUT FILE SELECTED CONTAINS VARIABLE LENGTH DATA RECORDS.
IS THE OUTPUT RECORD LENGTH SPECIFIED IN EACH INPUT RECORD
AN ASCII STRING OR A BINARY(INT#2) STRING? (ENTER A OR B):

Your answer depends upon the format of the input file.

REV. @ 3 - 19

IDR4558 KBUILD

If the number is in ASCII format, and you entered "A" to the above
prompt, KBUILD then asks:

ENTER STARTING CHARACTER POSITION IN INPUT RECORD:
ENTER ENDING CHARACTER POSITION IN INPUT RECORD:

Simply enter the starting and ending character positions of the output
record length indicator in each input file record.

If the number is a binary string (INT*2 number), you must supply the
word number at which the output record length indicator appears in the
input file record:

ENTER STARTING WORD NUMBER IN INPUT RECORD:

Supply the word number in the input file record reserved for the output
record length indicator. If the input file does not have a word number
set aside for this purpose, KBUILD cannot process the file properly and
will abort. You can specify fixed-length records if desired by simply
making the output record length the same in each input record.

Note

The routines PRIBLD, SECBLD and BILDSR are still available for
users who would rather build variable-length MIDAS files that
way than with KBUILD, ‘These routines alsc support direct
access files. See Section 14 for information.

Multiple Input Files

KBUILD allows more than one input file to be processed during a single
run. This allows you to add information from several data files, up to
192 of them, tc a single MIDAS file.

Note

It is not possible to have more than one output file open at a
time during a single execution of KBUILD.

If more than one input file exists, the filenames must all begin with
the same letters and end in a two-digit number, beginning with any
two-digit number you want. For example:

CusTgl
CcusTg2
CUST@3

Up to 108 input files can be processed at a time. The files must all
exist in the same directory and must have exactly the same format and
file type. It is also assumed that the key fields begin in the same
record position in all of the input files.

3 -1 October 1980

SECTION 3 IDR4558

Sorted Input Files

Input files can be sorted (in ascending order only) by primary and/or
secondary Kkey. If sorted by primary key, the data records and key
entries are all added in primary key order. That is, the order of the
entries in the data subfile will correspond to the order of the
respective key entries in the primary index subfile. If the file
contains secondary index entries for a subfile that allows duplicates,
these duplicate keys will be added to the index subfile in the order in
which they are read from the input file.

Pre-sorted index entries can only be added to an index that contains no
entries. This is true for both primary and secondary index subfiles.
There may be times when an index is for all purposes "empty" because it
contains entries that point to deleted data subfile records. KBUILD
can recognize that such an index is logically empty only if the primary
index for that file is truly empty; this is because a file with an
empty primary index doesn't have any data subfile records to be
referenced, so any secondary index entries that exist are useless.
When KBUILD notices that you are trying to build a non-empty secondary
index from a sorted input file, it tells you so. MPACK must be run on
this index to clean it out before you can add sorted input entries to
it. Otherwise, if the primary index does contain entries, you must run
KIDDEL to clean out the secondary index subfile you want to build
before trying to add sorted entries to it.

Sort Requirements: The KBUILD dialog asks whether input files are
sorted or unsorted; 1if the files are sorted, it asks if the primary
key field has been sorted. KBUILD then asks if any secondary key
fields have been used as sort keys. There are some restrictions on
when a file can be properly called a "sorted" file:

e If the input file records have not been sorted by a primary or
secondary key field, the file is unsorted.

e If there are several input files, they must all be sorted on the
same field and all the sorted key values in the first file must
be less than the sorted key values of the second file (and so on
for as many files as you've got) in order to call the files
sorted. This holds true for each sorted key field in the file.
If either of these requirements is not met, the files must be
declared unsorted.

e Furthermore, if an index in the MIDAS file to which the entries
are being added already contains entries, do not declare the
input files sorted by that key even if they are. If you do,
KBUILD will catch this error and tell you about it. KBUILD
cannot process an input file for building a MIDAS index that
already contains entries if that input file is called "sorted."

Multiple Sort Keys: When a file is specified as "sorted," KBUILD asks
whether this file (or files) is sorted by primary key. Regardless of

REV. ¢ 3 - 12

IDR4558 KBUILD

the user's answer to this question, KBUILD then asks which secondary
key it has been sorted on. This prompt is repeated to allow the user
to specify multiple index numbers. You should then indicate the
numbers of any secondary key fields by which the input file has been
sorted. If the file has not been sorted by a secondary key field, hit
(CR) in response to this prompt. Do likewise when you've finished
telling KBUILD which secondary keys were used in sorting the file.

Regardless of whether the input files are sorted or not, the data
subfile entries are always stored in the order they are read in. Index
entries are ultimately stored in sorted order, whether the user sorts
them or not (it just saves time to pre-sort them). Duplicates are
stored in the order read in, regardless of sorting.

Adding Secondary Index Entries Only

Most of this discussion on KBUILD has been based on the assumption that
all primary and secondary key entries are being added along with data
subfile entries. However, KBUILD is quite handy for populating a
secondary index subfile when:

e You decide to make one of the fields in a MIDAS data record a
secondary key. (You need more keys.)

e You didn't supply secondary key values supplied for all the data
entries you added originally; thus, this index subfile is
"sparse," meaning there is not a one-to-one correspondence
between index entries and data subfile entries.

To accomplish this, you have two choices:

e Get the secondary index entries (key values) from the MIDAS data
subfile records (i.e., make one of the fields in the data record
a secondary key).

e Take the secondary index entries from an external input file.
In this case, the primary key must be present in the input
record.

Remember —- secondary index subfiles must be added to the template with
CREATK before KBUILD can add entries to them. In other words, KBUILD

can build the index subfiles as long as they've been properly defined,
but KBUILD itself cannot define a new index subfile.

The KBUILD Dialog

To invoke the KBUILD utility, simply type KBUILD. Responses can be
entered in upper- or lowercase, as is the case for all MIDAS utilities
at Rev 17.6. The general KBUILD dialog is shown below, with prompts
numbered for convenience.

3 - 13 October 1980

SECTION 3

2.

3.

REV. @

Prompt

SECONDARIES ONLY?

USE MIDAS DATA?

ENTER MIDAS FILENAME:

ENTER INPUT FILENAME:

ENTER INPUT RECORD
LENGTH (WORDS) :

IDR4558

Response
Enter Y[ES] or N[O]:

YES: builds/adds entries to one
or more secondary index subfiles.
Dialog resumes at step 2,
(Subfiles may or may not contain
entries.)

NO: adds data entries to data
subfile by primary key. Entries
are also added to primary index
subfile and any secondary index
subfiles as indicated. Dialog
resumes at step 4.

Enter Y[ES] or N[O]:

YES: existing data entries will
be used as a source of values for
a secondary index subfile(s). Do
this when you've got existing
records in the data subfile and
you want to make fields from these
records into secondary keys.
Dialog continues with step 3.

NO: all subfile and data subfile
entries are taken from an input
file (not a MIDAS file) that must
contain primary key values too.
Use this method when the MIDAS
file being built does not contain
any data entries. Dialog
continues with step 4.

Enter pathname of MIDAS file from
which KBUILD should extract the
secondary key entries; asked only
if you answered YES to prompt 2.
Dialog skips to step 14.

Enter pathname of input file to be
processed by KBUILD. If using
multiple files, simply enter the
name of the one with the lowest
sequence number.

Enter size of input file record
in words.

14

6.

7.

9.

1a.

11.

12.

13.

IDR4558 KBUILD

INPUT FILE TYPE:

ENTER NUMBER OF FILES:

ENTER OUTPUT FILENAME:

Enter one of the KBUILD file type
codes; see Table 3-2.

Enter 1 for single files; for
multiple input files, enter the
total number of files.

Enter pathname of MIDAS file to
which input file 1is being added.

(If the MIDAS output file has variable-length records, the

next prompt is displayed.

If the MIDAS file |has

fixed-length records, the dialog skips to step 13. For
direct access files, see KBUILD and DIRECT ACCESS, below.)

THE OUTPUT FILE SELECTED CONTAINS VARIABLE LENGTH DATA RECORDS.
IS THE OUTPUT RECORD LENGTH SPECIFIED IN EACH INPUT RECORD
AN ASCII STRING OR A BINARY(INT*2) STRING? (ENTER A OR B):

In general (and this is a general statement, not a
rule), if the input file was created with the Editor,
COBOL, or RPG, and the output record length is in ASCII
form, enter "A"; dialog continues with step 10. If
the input file is BINARY or FTNBIN enter "B"; dialog

continues with step 12.

ENTER STARTING CHARACTER
POSITION IN INPUT RECORD:

ENTER ENDING CHARACTER
POSITION IN INPUT RECORD:

ENTER STARTING WORD NUMBER
IN INPUT RECORD:

ENTER STARTING CHARACTER
POSITION, PRIMARY KEY:

Enter the character position
where the output record length
specification begins. (Asked only
if "A" specified above.)

Enter character position that
marks the end of the output record
length specification. (Asked only
if "A" was specified for prompt
9.) Dialog resumes with step 13.

Enter the word number in the
input record that specifies the
output record 1length: for Binary
(INT*2) representations only.
(Asked only if "B" was specified
in response to prompt 9.)

Enter starting position of field
in input record which contains
primary key value. (Asked only if
answer to 1initial KBUILD prompt
was NO.)

15 Cctober 1980

SECTION 3

14,

15,

16.

SECONDARY KEY NUMBER:

ENTER STARTING CHARACTER
POSITION:

IS THE FILE SORTED?

IDR4558

Enter number of secondary index
subfile for which an entry is to
be taken from the input file
record. This and the next prompt
are repeated until the user hits
(CR).

Enter character position in input
record where this secondary key
field begins.

Enter YES only if the index being
built contains no entries and the
input file or files are indeed
sorted (and all in the same way);
otherwise, enter NO, and the
dialog resumes at step 19.

(next two prompts asked only if you answered YES to previous prompt)

17.

18'

19.

REV.

2

IS THE PRIMARY KEY SORTED:

ENTER INDEX NUMBER OF
SECONDARY SORT KEY:

ENTER LOG/ERROR FILE NAME:

Enter YES if input file was sorted
by primary key field. File may be
sorted additionally by a secondary
key field. Inter NO if file was
not sorted by primary key field.
Not asked if building secondary
index entries only.

If file was sorted on a field that
corresponds to a secondary Kkey,
enter that key (index subfile)
number. Prompt is repeated until
you hit (CR).

Enter name of file to be opened
for recording errors and KBUILD
statistics: see below. The
filename should not be the name of
an existing file. If it is, the
existing file will be overwritten.
Hit (CR) if you don't want the
statistics recorded; they are
still displayed at the terminal
however.

16

IDR4558 KBUILD

2@8. ENTER MILESTONE COUNT: Enter interval (number of records)
at which statistics should be
displayed (and opticnally recorded
in a log/error file) during
processing of the input file. If
you enter @, milestones are
printed for first and last records
of input file only.

Logging Errors and Milestones

KBUILD automatically reports all errors and milestone statistics at the
user's terminal. It also displays the name of the input file it is
currently processing and tells you what part of the MIDAS file it is
currently in. This data can be optionally recorded in a log/error file
which the user indicates during the KBUILD dialog. If you don't want
such a file to be created, simply supply a carriage return (CR) when
KBUILD asks you for the log/error filename. 'The statistics will be
displayed at the terminal but they won't be saved in a file.

Milestone Reporting: A milestone report consists of:

e The number of the record for which the milestone is being
generated

o 'The current date and time

e The CPU time elapsed since KBUILD began processing this
file

e The disk time used since KBUILD began processing

e The total disk and CPU time elapsed since the start of
KBUILD's run

e The increment (of total time) elapsed since the last
milestone was generated

If the input file is unsorted, KBUILD also tells you when it begins and
ends a sort pass through each set of index entries.

Here is an example of a milestone report for a sample run of KBUILD,
using an unsorted input file. The milestone count is 1:

3 - 17 October 1980

SECTION 3 IDR4558

BUILDING: DATA
DEFERRING: @, 1

PROCESSING FR(M: var.names

COUNT DATE TIME CPU MIN
@ 09-20-8¢0 23:31:33 0.000
1 09-20-80 23:31:33 0.002
2 09-20-80 23:31:34 9.019
3 09-20-80 23:31:34 0.020
4 09-20-80 23:31:36 0.034
5 09-20-80 23:31:36 8.035
FIRST BUILD/DEFER PASS COMPLETE.
5 09-20-80 23:31:36 9.036
SORTING INDEX @
COUNT DATE TIME CPU MIN
@ 09-20-80 23:31:36 0.000
SORT COMPLETE
5 09-20-88 23:31:36 0.004
BUILDING INDEX &
COUNT DATE TIME CPU MIN
B 09-20-80 23:31:36 0.000
1 09-20-80 23:31:36 g.001
2 09-20-80 23:31:36 0.001
3 ©9-20-80 23:31:36 0.002
4 09-20-80 23:31:36 0.002
5 09-20-80 23:31:36 2.002
INDEX @ BUILT
5 09-20-80 23:31:37 2.083
SORTING INDEX 1
COUNT DATE TIME CPU MIN
0 09-20-80 23:31:37 0.000
SORT COMPLETE
5 09-20-80 23:31:37 2.004
BUILDING INDEX 1
COUNT DATE TIME CPU MIN
@ @9-20-80 23:31:37 0.000
1 @9-20-80 23:31:37 g.001
2 09-20-80 23:31:37 g.002
3 09-20-80 23:31:37 2.002
4 09-20-80 23:31:37 0.003
5 @9-20-80 23:31:37 0.003
INDEX 1 BUILT
5 @9-20-80 23:31:37 g.004

KBUILD COMPLETE.

REV. @ 3 - 18

DISK MIN TOTAL ™

g.000
?.000
0.000
9.0008
0.000
9.001

?.901

DISK MIN
0.000

0.000

DISK MIN
9.000
d.000
0.000
2.000
0.000
0.000

0.000

DISK MIN
2.000

2.000

DISK MIN
0.000
2.001
g.001
0.001
g.001
g.001

7.001

8.000
0.002
2.019
0.020
0.034
0.036

0.0837

TOTAL ™
0.000

0.004

TOTAL ™
0.000
f.001
2.9001
0.002
2.002
0.002

@.003

TOTAL T™
2.000

g.004

TOTAL T™™
0.000
0.002
0.002
0.003
0.003
0.004

g.004

DIFF
2.000
B.002
g.016
0.001
g.014
0.002

g.001

DIFF
0.000

7.004

DIFF
d.000
2.001
7.000
7.9000
0.000
?.000

2.001

DIFF
g.000

0.004

DIFF
0.000
9.002
g.000
2.000
0.000
0.000

2.001

IDR4558 KBUILD

The milestones were done for each record in the input file because
there were so few of them. For larger files, set the milestone count
to a more appropriate value depending on how concerned you are with
resource usage.

If, for example, the milestone increment is 14 and there are 35 records
in the file, KBUILD prints the words:

FIRST BUILD/DEFER PASS COMPLETE.
or
INDEX xx BUILT

before the milestone for record 35 is displayed. xx is the number of
the index which was just completed. Following this message, the number
35 will be displayed, indicating that a total of 35 records were added
to the MIDAS file.

Milestone Reports for Multiple Files: If there are multiple input
files, the name of each successive input file is displayed above the
record count column as each new input file is processed.

Error Reporting: KBUILD reports any error (both fatal and non-fatal)
that it encounters during processing. Errors can be file handler
errors or MIDAS errors. The type and number of the error encountered
are printed, along with the record number that was being processed when
this error occurred. Fatal errors are recorded in the log/error file
just before KBUILD aborts.

KBUILD Examples

The examples showr

{on
[0)]
'_l
Q
%
'-l
'._l
'._l
&
ot
"~
1]
“r
[$]
o
(]
n
(]
r

(D
(W]
ot
=
"~
(D
n
O
Fh
&
«c
=
3
6B

e Building a fixed-length record MIDAS file from unsorted input
e Building a fixed-length MIDAS file from sorted input
e Building a variable-length record MIDAS file from text input

e Building a secondary index from existing data subfile entries

3 - 19 October 1980

SECTION 3 IDR4558

Using Unsorted Input: In this example, an unsorted input file is used
to build entries for the CUSTOMER file which has fixed-length records
of 35 words. Input files are not required to have the same record
length as that of the output (MIDAS) file. When added, if they are too
long, they are truncated, and if they are too short, they are
blank-padded to the correct 1length. The input file contains the
following records:

2194GSpectrographics NWOR
10@2PFlora Portraits NENY
9411PStudio West WRCA
94¢@2AArtistry Unltd. WRCA
#816SMorrow Paper Mills NENH
2334PSeacoast Strippers WRCA
4@56SMark-Burton NEMA

The file was built using the dialog shown below:

OK, kbuild
[KBUILD rev 17.6]

SECONDARIES ONLY? no

ENTER INPUT FILENAME: names

ENTER INPUT RECORD LENGTH (WORDS): 35

INPUT FILE TYPE: t _

ENTER NUMBER OF INPUT FILES: 1

ENTER OUTPUT FILENAME: customer

ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 1
SECONDARY KEY NUMBER: 1 -
ENTER STARTING CHARACTER POSITION: 6

SECONDARY KEY NUMBER: 2

ENTER STARTING CHARACTER POSITION: 31

SECONDARY KEY NUMBER: (CR)

IS FILE SORTED? n

ENTER LOG/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 1

REV. 0 3 - 20

IDR4558

BUILDING: DATA
DEFERRING: 4, 1, 2

PROCESSING FROM: names
COUNT DATE TIME CPU MIN
@ 09-23-80 10:28:50 0.000
1 09-23-80 10:28:50 2.002
2 09-23-80 10:28:50 0.0082
3 @9-23-80 10:28:50 9.003
4 (9-23-80 10:28:50 0.003
S5 09-23-80 108:28:5¢ 0.004
FIRST BUILD/DEFER PASS COMPLETE.
5 09-23-80 1@:28:51 0.004
SORTING INDEX 0
COUNT DATE TIME CPU MIN
0 ©9-23-80 10:28:51 0.000
SORT CCOMPLETE
5 ©9-23-80 10:28:51 0.004
BUILDING INDEX 0@
COUNT DATE TIME CPU MIN
0 09-23-80 10:28:51 0.000
1 @9-23-80 1@:28:51 ¢.001
2 09-23-80 10:28:51 6.001
3 $9-23-806 16:28:51 6.002
4 @9-23-80 10:28:51 0.002
5 09-23-80 1@:28:51 ?.0082
INDEX @ BUILT
5 09-23-80 16:28:51 9.993
SORTING INDEX 1
COUNT DATE TIME CPU MIN
g @9-23-80 10:28:52 g.000
SORT COMPLETE
5 09-23-80 10:28:52 g.004
BUILDING INDEX 1
COUNT DATE TIME CPU MIN
0 09-23-80 10:28:52 0.000
1 09-23-80 10:28:52 0.002
2 09-23-80 10:28:52 0.0082
3 09-23-80 10:28:52 0.002
4 @9-23-80 10:28:52 0.003
5 ©09-23-80 10:28:52 0.003
INDEX 1 BUILT
5 09-23-80 10:28:52 2.004
SORTING INDEX 2
COUNT DATE TIME CPU MIN
@ 09-23-80 10:28:52 ?.000
SORT COMPLETE
5 09-23-8¢0 10:28:53 g.004

KBUILD
DISK MIN TOTAL ™ DIFF
0.000 0.000 0.000
0.001 0.003 0.003
g.001 2.003 g.0081
g.001 0.004 0.001
0.001 #.0085 7.001
g.901 2.085 2.001
2.001 g.006 g.001
DISK MIN TOTAL ™ DIFF
0.000 0.000 0.9000
2.000 7.004 0.004
DISK MIN TOTAL T™ DIFF
0.000 0.9000 0.000
g.000 ?.001 2.001
B.000 9.001 2.000
b.000 b.002 0.000
@.000 0.002 0.000
0.000 3.002 #.000
9.900 @.003 2.901
DISK MIN TOTAL ™ DIFF
v.000 2.000 9.000
7.000 9.004 p.904
DISK MIN TOTAL ™ DIFF
0.008 0.0080 0.000
0.001 0.002 0.002
g.001 0.0083 0.000
g.001 2.003 2.000
g.001 g.004 @.000
7.001 0.004 2.000
0.001 ?.005 2.001
DISK MIN TOTAL ™™ DIFF
?.000 2.000 B.000
0.000 7.004 0.004
October 1980

SECTION 3 IDR4558

BUILDING INDEX 2

COUNT DATE TIME CPU MIN DISK MIN TOTAL ™ DIFF
@ 09-23-80 10:28:53 0.000 2.000 2.000 0.000
1 09-23-80 10:28:53 0.001 0.001 9.003 0.003
2 09-23-80 10:28:53 0.002 g.001 0.003 0.000
3 @9-23-80 10:28:53 g.002 0.001 9.003 2.000
4 @9-23-80 10:28:53 0.003 9.001 0.004 0.000
5 09-23-80 10:28:53 ?.003 0.001 g.004 0.000

INDEX 2 BUILT

5 09-23-80 10:28:53 0.004 g.091 0.005 2.001

KBUILD COMPLETE.

Using Sorted Input: If the CUSTOMER file is built from sorted input

records, the build is faster because KBUILD doesn't have to sort the
records itself. This is the sorted input file (sorted on primary key):

REV.

#816SMorrow Paper Mills NENH
10@2PFlora Portraits NENY
2194GSpectrographics NWOR
94@2AArtistry Unltd. WRCA
9411PStudio West WRCA
KBUILD-user dialog used to build this file is:

OK, kbuild
[KBUILD rev 17.6]

SECONDARIES ONLY? no
ENTER INPUT FILENAME: names.sort

ENTER INPUT RECORD LENGTH (WORDS): 17

INPUT FILE TYPE: text T

ENTER NUMBER OF INPUT FILES: 1

ENTER OUTPUT FILENAME: customer

ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 1
SECONDARY KEY NUMBER: 1 -
ENTER STARTING CHARACTER POSITION: 6

SECONDARY KEY NUMBER: 2

ENTER STARTING CHARACTER POSITION: 31

SECONDARY KEY NUMBER: (CR)

IS FILE SORTED? yes

IS THE PRIMARY KEY SORTED? yes

ENTER INDEX NUMBER OF SECONDARY SORT KEY: (CR)
ENTER LOG/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 1

g 3 - 22

BUILDING: DATA, 0
DEFERRING: 1, 2

PROCESSING FROM: names.sort

IDR4558

COUNT DATE TIME CPU MIN
P 09-22-8¢ 15:28:45 0.000
1 @§9-22-80 15:28:45 B.002
2 §9-22-89 15:28:45 0.002
3 09-22-80 15:28:45 0.003
4 09-22-8¢ 15:28:45 9.003
5 09-22-89 15:28:45 2.004
FIRST BUILD/DEFER PASS COMPLETE.
5 09-22-80 15:28:46 ?.004
SORTING INDEX 1
COUNT DATE TIME CPU MIN
@ 09-22-80 15:28:46 2.000
SORT COMPLETE
5 09-22-80 15:28:47 g.004
BUILDING INDEX 1
COUNT DATE TIME CPU MIN
@ ©09-22-80 15:28:47 2.000
1 ©09-22-8¢ 15:28:47 B8.902
2 09-22-80 15:28:47 0.002
3 ©§9-22-88 15:28:47 b.0903
4 09-22-8¢ 15:28:47 0.003
5 09-22-80 15:28:47 #.003
INDEX 1 BUILT
5 09-22-80 15:28:47 ?.004
SORTING INDEX 2
COUNT DATE TIME CPU MIN
@ 99-22-80 15:28:47 b.000
SORT COMPLETE
S ©9-22-8¢ 15:28:48 3.903
BUILDING INDEX 2
COUNT DATE TIME CPU MIN
@ ©9-22-80 15:28:48 @.000
1 @9-22-89 15:28:49 0.002
2 09-22-80 15:28:49 0.092
3 @9-22-80 15:28:49 0.002
4 @9-22-8¢ 15:28:49 #.003
S 09-22-80 15:28:49 0.003
INDEX 2 BUILT
5 #9-22-8¢ 15:28:49 g.004
KBUILD COMPLETE.
3 - 23

DISK MIN
B.009
?.083
0.0083
0.003
0.003
2.003

2.003

DISK MIN
2.000

0.005

DISK MIN
0.000
0.002
?.003
B.003
0.003
0.003

?.003

DISK MIN
6.000

0.000

DISK MIN
0.000

0.002
9.002

0.002
0.002
0.002

0.002

TOTAL T™
0.000
0.004
2.005
9.005
?.006
2.006

2.007

TOTAL ™
0.000

?.009

TOTAL ™
2.000
¢.004
0.005
2.006
0.006
d.007

g.907

TOTAL ™
0.000

?.003

TOTAL T™
0.000

0.003
0.004

0.004
g.004
2.005

?.006

KBUILD

DIFF
0.000
0.004
0.091
g.001
8.001
g.201

2.001

DIFF
0.000

#.9099

DIFF
2.000
2.004
g.001

b.000
0.000

¢.000

9.991

DIFF
0.000

3.903

DIFF
2.000

0.003
g.001
?.000
7.000
g.001

a.001

October 1980

SECTION 3 IDR4558

Note that the primary index entries were not sorted during this run of
KBUILD because we told it that they'd already been sorted. However,
the secondary index entries were sorted by KBUILD as indicated by the
explanatory messages.

Building Variable-length Records: MIDAS files with variable-length
records can be built by KBUILD, but the user must supply KBUILD with
the length of each data record to be written to the output file. This
example shows the prompts needed to create a keyed index file with
variable-length records, the input file with the output record length
indicated in each record and the user/KBUILD dialog needed to build
this MIDAS file.

OK, creatk
[CREATK rev 17.6]

MINIMUM OPTIONS? yes

FILE NAME? varcust

NEW FILE? yes

DIRECT ACCESS? no

DATA SUBFILE QUESTIONS
PRIMARY KEY TYPE: a

PRIMARY KEY SIZE = : 5
DATA SIZE = : (CR)
SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? yes
KEY TYPE: a

KEY SIZE = : b 25

SECONDARY DATA SIZE = : (CR)
INDEX NO.? 2

DUPLICATE KEYS PERMITTED? yes

KEY TYPE: a
KEY SIZE = : b 4
SECONDARY DATA SIZE = : (CR)

INDEX NO.? (CR)

SETTING FILE LOCK TO N READERS AND N WRITERS

The input file used in building the MIDAS file is called VAR.NAMES.
Although each output record is different in length, KBUILD needs to
know the input data record length. In this case, it is 22 words. Each

REV. # 3 - 24

IDR4558 ' KBUILD

record in the file contains a number that indicates the output record
length for that particular record. This length tells KBUILD how many
words of the input record to write to the data subfile. The output
record length begins in character position 3¢ and ends in character
position 31 of each record. Gbserve that the address information will
not be written to the file as part of the data subfile record. At a
later time however, another index could be created and the address
field corresponding to each record in the data subfile could be added
to the new index subfile.

2154GSpectrographics 11 7 Lyons Blvd, Jamaica Pln.
1002PFlora Portraits 11 Ramos Ave, Belleville
9411PStudio West @9 Arcade Ct, Pasadena
94¢2AArtistry Unltd. 16 Moorland St, Utica
#816SMorrow Paper Mills 12 Vista Point, Monadnock
2334PSeacoast Strippers 12 Seaspray Ln, Monterey
4056SMark-Burton @9 Granger Rd, Belmont

Since the output record length is in ASCII form, we tell KBUILD what
character positions it begins and ends in, that is, 30 and 31. If the
number were in binary (INTEGER*2) form, we'd indicate the word number
that the entry number begins in. The KBUILD dialog and user responses
for the above example are as follows:

OK, kbuild

fKBUILD rev 17.6]

SECONDARIES ONLY? no

ENTER INPUT FILENAME: var .names

ENTER INPUT RECORD LENGTH (WORDS): 22

INPUT FILE TYPE: t —

ENTER NUMBER OF INPUT FILES: 1

ENTER OUTPUT FILENAME: varcust

THE OUTPUT FILE SELECTED CONTAINS VARIABLE LENGTH DATA RECORDS.
IS THE OUTPUT RECORD LENGTH SPECIFIED IN EACH INPUT RECORD
AN ASCIT STRING OR A BINARY (INT*2) STRING? (ENTER A OR B): a
ENTER STARTING CHARACTER POSITION IN INPUT RECORD: 30 -
ENTER ENDING CHARACTER POSITION IN INPUT RECORD: 31

ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 1
SECONDARY KEY NUMBER: 1

ENTER STARTING CHARACTER POSITION: 6

SECONDARY KEY NUMBER: (CR) -

IS FILE SORTED? no

ENTER LOG/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 1

3 - 25 October 1980

SECTION 3 IDR4558

BUILDING: DATA
DEFERRING: 4, 1

PROCESSING FROM: var.names

COUNT DATE TIME CPU MIN
@ ©@9-30-80 23:55:13 ?.000
1 @9-30-89 23:55:13 0.002
2 @9-30-89 23:55:13 0.902
3 @9-30-80 23:55:14 0.003
4 99-30-8¢ 23:55:14 ?.003
5 @9-30-80 23:55:14 0.004
FIRST BUILD/DEFER PASS COMPLETE.
5 09-30-80 23:55:15 g.004
SORTING INDEX @
COUNT DATE TIME CPU MIN
@ ©@9-30-8¢ 23:55:15 0.000
SORT COMPLETE
5 @9-30-80 23:55:16 g.004
BUILDING INDEX @
COUNT DATE TIME CPU MIN
@ ©09-30-80 23:55:16 0.000
1 @9-39-80 23:55:17 2.001
2 09-30-80 23:55:17 g.001
3 09-30-88 23:55:17 9.002
4 @9-30-8¢ 23:55:17 @.002
5 09-30-80 23:55:17 0.002
INDEX @ BUILT
5 @9-30-80 23:55:18 9.003
SORTING INDEX 1
COUNT DATE TIME CPU MIN
@ @9-30-80 23:55:18 0.000
SORT CCOMPLETE
5 09-30-80 23:55:20 g.004
BUILDING INDEX 1
COUNT DATE TIME CPU MIN
@ 09-30-80 23:55:20 0.000
1 09-30-80 23:55:20 0.002
2 0§9-30-80 23:55:21 0.002
3 09-30-89 23:55:21 2.003
4 @9-30-80 23:55:21 0.003
5 @9-39-88 23:55:21 ?.003
INDEX 1 BUILT
5 @9-30-8¢ 23:55:21 g.004

KBUILD COMPLETE.

REV. @ 3 - 26

DISK MIN
7.000
0.000
0.000
B.000
0.000
0.000

0.000

DISK MIN
0.000

0.000

DISK MIN
0.000
2.000
0.000
0.000
0.000
?.000

2.000

DISK MIN
0.000

0.000

DISK MIN
0.0600
2.000
7.000
0.000
2.000
g.000

g.000

TOTAL TM
2.000
0.002
0.002
?.003
0.003
0.004

0.004

TOTAL TM
0.000

g.004

TOTAL T™
0.000
g.001
0.001
2.002
0.002
0.002

9.003

TOTAL ™
?.000

g.004

TOTAL T™M
0.000
0.002
0.002
0.003
9.003
0.003

9.004

DIFF
0.000
0.002
0.001
0.001
9.001
9.001

g.001

DIFF
0.000

0.004

DIFF
2.000
p.001
0.000
2.9000
0.000
0.000

g.001

DIFF
g.000

0.004

DIFF
0.000
0.002
0.000
2.000
2.000
0.080

2.901

IDR4558 KBUILD

Building a Secondary Index From MIDAS Data: Suppose we only built the
primary and one secondary index during the KBUILD as shown in the first
example. At a later time we decide to add another secondary index to
the file so that we can use the region code information as a search
key. Since the information is already present in the data subfile
record (we wrote the entire input record to the data subfile), we can
tell KBUILD to take the secondary index entries from the data subfile
record and add them to secondary index subfile 2. This example shows
how. Keep in mind that we're working with a MIDAS file that already
contains data entries.

To add a new secondary index to a file, use the ADD option of CREATK
(see Section 12 for details):

OK, creatk
MINIMUM OPTIONS? y

FILE NAME? customer
NEW FILE? n

FUNCTION? add
INDEX NO.? 2
DUPLICATE KEYS PERMITTED? yes

KEY TYPE: a
KEY SIZE = : b 4

SECONDARY DATA SIZE = : (CR)

INDEX NO.? (CR)
FUNCTION? g

Entries were added to the new secondary index by providing KBUILD with
the information as shown in this sample session:

"OK, kbuild
[KBUILD rev 17.6]

SECONDARIES ONLY? yes
USE MIDAS DATA ENTRIES? yes

ENTER MIDAS FILENAME: customer
SECONDARY KEY NUMBER: 2

ENTER STARTING CHARACTER POSITION: 31
SECONDARY KEY NUMBER: (CR) -
IS FILE SORTED? n

ENTER LOG/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 1

3 - 27 October 1980

SECTION 3 IDR4558

DEFERRING: 2

PROCESSING FROM: customer

COUNT DATE TIME CPU MIN
g 10-91-84 11:36:15 2.000
1 10-91-80 11:36:16 0.001
2 10-01-80 11:36:16 B8.002
3 10-01-80 11:36:16 0.002
4 19-01-80 11:36:16 0.003
5 10-91-80 11:36:16 9.003

FIRST BUILD/DEFER PASS COMPLETE.
5 10-01-80 11:36:16 g.004

SORTING INDEX 2

COUNT DATE TIME CPU MIN
@ 10-91-80 11:36:16 0.000

SORT COMPLETE
5 10-91-80 11:36:17 0.003

BUILDING INDEX 2

COUNT DATE TIME CPU MIN
0 10-01-89 11:36:17 0.000
1l 16-01-80 11:36:17 0.002
2 10-91-890 11:36:17 0.002
3 10-91-89 11:36:18 2.002
4 19-01-890 11:36:18 0.003
5 10-91-80 11:36:18 0.003

INDEX 2 BUILT
5 10-91-84 11:36:18 g.004

KBUILD COMPLETE.

DISK MIN TOTAL ™

0.000
9.001
g.001
9.001
0.001
9.001

2.001

DISK MIN
3.000

?.000

DISK MIN
0.000
?.001
g.001
g.001
g.001
g.001

0.001

0.000
0.002
?.003
0.003
g.004
0.004

@.005

TOTAL ™
0.000

9.003

TOTAL ™
0.000
9.003
?.003
2.004
0.004
2.004

@.005

DIFF
0.000
0.002
g.001
B.000
g.001
0.000

g.001

DIFF
7.000

9.003

DIFF
0.000
0.003
9.000
0.001
0.000
?.000

2.001

The MIDAS file now contains five entries in each of the indexes and the

data subfile. (You can use CREATK to verify this.)

REV. @ 3 - 28

IDR4558 KBUILD

KBUILD AND DIRECT ACCESS

The remainder of this section is meant only for users with direct
access MIDAS files. Direct access MIDAS files are called REIATIVE
files in COBOL. and DIRECT files in REFG.

Building Direct Access Files

Practically everything said above about building keyed-index MIDAS
files applies to direct access MIDAS files. The only major differences
are:

e A record number must be supplied for each record -- the data
type must be a REAL*4 (floating-point) number in the form of a
bit string, or it can be an ASCII string.

e The record number must be placed at the same character position
in each input record.

e In COBOL files, the record number must be the primary key.
e In non-COBOL files, a primary key can be supplied in addition to
a record number (the record number doesn't have to be the

primary key). A direct access file can have up to 999,999
entries.

KBUILD Dialog Requirements

When KBUILD determines that the MIDAS output file is a direct access
file, it prints the following message:

IS THE ENTRY NUMBER SPECIFIED IN EACH INPUT RECORD
AN ASCII STRING OR A BINARY (REAL*4) STRING? (ENTER A OR B)

(SR AW RA L&} NaN ia aiNeund waiva \ava o

KBUILD then prompts for the beginning and ending character positions of
the record number if it is an ASCII string. If the number is specified
as a single-precision floating-point bit string, KBUILD asks for the
word number (not character position) at which the number begins in the
record. If the word number is beyond the logical end of the record
which you specified earlier in the dialog, KBUILD will warn you about
it. See Section 11 for information on direct access (RELATIVE) files
in COBOL. For more information on direct access files in RPG, see
Section 10.

Direct Access Example: A direct access file can be built with KBUILD,
providing that you include record entry numbers for each record in the
input file. Numbers can be written in ASCII or binary (floating point)
form and should match the key type specification for the primary key if
the primary key was defined as the record number, which is always the
case in COBOL and RFG.

For example, this CREATK session sets up a direct access file with a

3 - 29 Cctober 1980

SECTION 3 IDR4558

primary key declared as a 48-bit bit string. (This means it can be
treated as a REIATIVE file in COBOL, because the primary key will be
the record number.)

OK, creatk
[CREATK rev 17.6]

MINIMUM OPTIONS? yes
FILE NAME? dacust

NEW FILE? yes
DIRECT ACCESS? yes

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: b

PRIMARY KEY SIZE = : b 48

DATA SIZE = : 22

NUMBER OF ENTRIES TO ALLOCATE? 10

SECONDARY INDEX
INDEX NO.? (CR)
SETTING FILE LOCK TO N READERS AND N WRITERS

The input file used to build the direct access file created above is
shown below. Because we didn't want the record number to be part of
the data subfile record, we put it after the fields that we did want
included in the data subfile record. Thus the direct access entry
number appears in positions 37 - 42 of the input file record. The
numbers, like the entire input file, are written in ASCII format.
COBOL programers might want to do something similar when building a
REIATIVE file with KBUILD. The file used as input to KBUILD contains
these records:

2194GSpectrographics NWOR (00001
1002PFlora Portraits NENY 000002
9411PStudio West WRCA 000003
94@02AArtistry Unltd. WRCA (00004
@816SMorrow Paper Mills NENH (00025
2334PSeacoast Strippers WRCA (00006
4@56SMark-Burton NEMA 000087

REV. @ 3 - 30

IDR4558 KBUILD

This file was processed by KBUILD in the sample session shown here:

OK, kbuild
[KBUILD rev 17.6]

SECONDARIES ONLY? no
ENTER INPUT FILENAME: da.names

ENTER INPUT RECORD LENGTH (WORDS): 21

INPUT FILE TYPE: t -

ENTER NUMBER OF INPUT FILES: 1

ENTER OUTPUT FILENAME: dacust

THE OUTPUT FILE SELECTED 1S A DIRECT ACCESS FILE.

IS THE ENTRY NUMBER SPECIFIED IN EACH INPUT RECORD

AN ASCII STRING OR A BINARY (REAL*4) STRING? (ENTER A OR B): a
ENTER STARTING CHARACTER POSITION IN INPUT RECORD: 37
ENTER ENDING CHARACTER POSITION IN INPUT RECORD: 42
ENTER STARTING CHARACTER POSITION, PRIMARY KEY: 37
SECONDARY KEY NUMBER: (CR) —

IS FILE SORTED? n

ENTER LOG/ERROR FILE NAME: (CR)

ENTER MILESTONE COUNT: 1

BUILDING: DATA

DEFERRING: @

PROCESSING FROM: da.names.new

COUNT DATE TIME CPU MIN DISK MIN TOTAL ™ DIFF
g 10-20-88 23:59:50 3.000 0.000 2.000 9.000
1 10-20-8¢ 23:59:50 @.002 0.000 3.002 p.002
2 10-20-86 23:59:50 g.002 0.000 9.002 3.001
3 10-20-80 23:59:50 0.003 0.000 2.003 9.001
4 10-20-80 23:59:50 0.003 0.000 7.003 @4.001
5 10-20-80 23:59:50 0.004 0.000 a.004 d.001
6 10-20-8@ 23:59:509 2.9a5 2.209 2.025 2.001

FIRST BUILD/DEFER PASS COMPLETE.
6 10-20-80 23:59:5¢ 2.005 2.000 7.005 g.001

SORTING INDEX @

COUNT DATE TIME CPU MIN DISK MIN TOTAL ™ DIFF
10-20-88 23:59:50 7.000 2.000 a2.000 9.000

SORT COMPLETE
6 10-20-8¢ 23:59:51 g.004 0.000 g.004 g.004

3 - 31 October 1980

SECTION 3

BUILDING INDEX @

IDR4558

COUNT DATE TIME CPU MIN DISK MIN TOTAL ™ DIFF
@ 10-20-80 23:59:51 8.000 7.000 0.000 0.000
1 10-20-80 23:59:51 g.001 2.000 9.001 g.001
2 10-20-80 23:59:51 0.001 0.000 0.001 0.001
3 10-20-80 23:59:51 ?.002 0.000 0.002 0.000
4 10-20-80 23:59:51 0.002 2.000 0.002 0.000
5 10-20-80 23:59:51 0.002 a.000 9.002 2.000
6 10-20-80 23:59:51 0.003 0.000 0.003 0.000
INDEX @ BUILT
6 10-20-80 23:59:51 0.004 0.000 g.004 g.001

KBUILD COMPLETE.

KBUILD ERROR MESSAGES

In addition to the messages that are listed in Appendix A ssf@#¢ KBUILD
will display one of the following messages during run-time if it gets
into trouble. Some errors are fatal: these are always evidenced by
the fact that KBUILD aborts after it reports them. In some "fatal"
errors files may be damaged, but in most cases, they are still useable,
as indicated in the error message explanations that follow.

> INVALID DIRECT ACCESS ENTRY NUMBER -- RECORD NOT ADDED

The user-supplied direct access record number is an ASCII string, but
is not legitimate if it contains non-numeric characters. BAlso, the
entry number may be less than or equal to @, may not be a whole number
or may exceed number of records allocated. (Non-fatal)

> INVALID OUTPUT DATA RECORD LENGTH -- RECORD NOT ADDED
The output record length 1is an invalid ASCII string -- that is, it

contains non-numeric characters. Also, the size specified might exceed
the input record size. (Non-fatal)

> THIS INDEX IS NOT EMPTY. EITHER ZERO THE INDEX OR DO NOT SPECIFY
THIS KEY AS SORTED.

KBUILD cannot add sorted data entries to any index subfile that already
contains entries. (Non-fatal)

REV. @ 3 - 32

IDR4558 KBUILD

> INDEX BLOCK SIZE GREATER THAN MAXIMUM DEFAULT
The value of RECINT in KPARAM used in building the KBUILD utility is

smaller than the RECINT wvalue used when the file was created with
CREATK., (Fatal)

P> UNABLE TO REACH BOTTOM INDEX LEVEL

Guldn't locate last level index block —- file is damaged. (Fatal)

’ CAN'T FIND PRIMARY KEY IN INDEX — RECORD NOT ADDED

Occurs when adding secondary index entries. The primary key value
supplied by the user was not found in the primary index. (Non-fatal)

’ INDEX @#: INVALID KEY —— RECORD NOT ADDED

Could occur 1if the input file is sorted and an entry was out of order,
or if a duplicate key value appeared for an index that doesn't permit
duplicates. (Non-fatal)

P> INDEX ¢ FULL —— INPUT TERMINATED

If the maximum number of entries in primary index is exceeded, KBUILD
aborts. (Fatal —— but file still okay)

> INDEX index-no FULL —— NO MORE ENTRIES WILL BE ADDED TO IT

Same as above, but occurs during building of a secondary index.
Building of other indexes continues. (Fatal —— but file still okay)

3 - 33 October 1980

SECTION 3 IDR4558

P> INDEX @ FULL — REMAINING RECORDS WILL BE DELETED

Data records are added to the subfile first, in the order read in from
the input file. Then the primary index entries are added, in sorted
order, to point to them. KBUILD ran out of room in the primary index
when trying to add entries to point to those already in the data
subfile and is forced to set the delete bit on in data subfile entries
whose primary keys will not fit in the primary index. (Fatal -- but
file still okay)

r

'»- INDEX a: | KEY SEQUENCE ERROR — RECORD NOT ADDED
index-no:

A duplicate value was discovered for the primary key or for a secondary
key that doesn't allow duplicates. (Non-fatal)

REV. @ 3 - 34

IDR4558 KIDDEL

SECTION 4

DELETING A MIDAS FILE
(KIDDEL)

INTRODUCTION
This section covers the KIDDEL utility which is the fastest method of

destroying or zerocing {removing entries from) part or all of an
existing MIDAS file.

THE KIDDEL UTILITY
The MIDAS KIDDEL utility performs the following functions:

e Deletes an entire MIDAS file, including all index subfiles and
data subfiles

@ Deletes one or more secondary index subfiles (completely)

e Deletes "junk" (work files, etc.) left over from an aborted
MPACK run (see Section 12)

® Zeroes out (initializes) one or more secondary index subfiles
(removes all entries therefrom)

e Zeroes out, or initializes, all entries in the primary and

secondary index subfiles, and all entries in the data subfile,
if the file is a direct access MIDAS file

Zero vs. Delete

The KIDDEL dialog asks if you want to "delete" or "zero" a file's
indexes. The difference between delete and zero is that delete gets
rid of an entire index subfile, whereas "zero" only deletes the entries
and unused space in an index subfile. An initialized or "zeroed out"
file looks exactly like the initial template created for the file with
CREATK.

4 - 1 Cctober 1980

SECTION 4 IDR4558

The KIDDEL Dialog

The KIDDEL dialog shows how to respond to each prompt (prompts are
numbered for convenience):

Prompt Response
1. FILE NAME? Enter pathname of MIDAS file to be KIDDELed.

2. DELETE INDEXES: Enter one of the following:

List of secondary indexes: numbers of
secondary index subfiles to be deleted. Use
optional commas between numbers.

ALL: kills entire file, deletes it from the
UFD it resides in, and returns you to
PRIMOS.

JUNK: deletes residual "garbage" left after
an aborted MPACK operation.

NO[NE]: you want no index subfiles deleted,
but instead want to zero one or more of
them. Dialog continues at step 3.

3. ZERO INDEXES: Asked only if you entered "NONE" to above
prompt. You may enter one of the following:

List of indexes: the numbers of secondary
index subfiles whose entries are to be
deleted.

ALL: zeroes all index subfiles and the data
subfile. If a direct access file, the file
is reinitialized.

NONE: returns you without action to PRIMOS.

Note

It is not legal to enter "@" (primary index) in response to
either prompt 2 or 3. If you want to delete or zero the
primary index, you should use the "ALL" response.

KIDDEL Example

This example uses a version of the CUSTOMER file (created in Section 2)
which has been accessed by both PL/I and BASIC/VM programs. Several
records have been deleted from the file by primary key, and the
secondary key entries which referenced these records still remain in
the secondary index subfiles. KIDDEL is first used to remove entries

REV. @ 4 - 2

IDR4558 KIDDEL

from the secondary indexes in the file. It is then used to =zero all

the index subfiles and finally, to delete one of the secondary index
subfiles.

The "usage" option of CREATK is used to find out how many entries are
in the index subfiles before and after KIDDEL is run. USAGE

(abbreviated "u") was briefly mentioned in Section 2; See Section 12
for more information on this and other options.

Comments have been appended for explanatory purposes.
OK, Get rid of entries in secondaries

OK, kiddel
[KIDDEL rev 17.6]

FILE NAME? customer

DELETE INDEXES: none

ZERO INDEXES: 1,2

OK, Check what's in the index subfiles
OK, creatk

[CREATK rev 17.6]

MINIMUM OPTIONS? yes

FILE NAME? customer
NEW FILE? no

FUNCTION? u

INDEX? 0

ENTRIES INDEXED: 7
ENTRIES INSERTED: 0
ENTRIES DELETED: 2

TOTAL ENTRIES IN FILE: 5
LAST MODIFIED BY MIDAS REV. 17.6
FUNCTION? u

INDEX? 1

ENTRIES INDEXED: 0
ENTRIES INSERTED: 0
ENTRIES DELETED: p

TOTAL ENTRIES IN FILE: 0
LAST MODIFIED BY MIDAS REV. 17.6
FUNCTION? u

INDEX? 2

4 - 3 October 1980

SECTION 4 IDR4558

ENTRIES INDEXED: @
ENTRIES INSERTED: g
ENTRIES DELETED: g
TOTAL ENTRIES IN FILE: g

LAST MODIFIED BY MIDAS REV. 17.6

FUNCTION? g
OK, To get rid off all index subfile

and data subfile entries, zero
OK, everything with the ALL option:
OK, kiddel
[KIDDEL rev 17.6]
FILE NAME? customer
DELETE INDEXES:none
ZERO INDEXES: all
OK, creatk
[CREATK rev 17.6]
MINIMUM OPTIONS? yes

FILE NAME? customer
NEW FILE? no

FUNCTION? u

INDEX? @

ENTRIES INDEXED: 0
ENTRIES INSERTED: 0
ENTRIES DELETED: 0
TOTAL ENTRIES IN FILE: 0
LAST MODIFIED BY MIDAS REV. 17.6
FUNCTION? u

INDEX? 1

ENTRIES INDEXED: 0
ENTRIES INSERTED: 0
ENTRIES DELETED: 0
TOTAL ENTRIES IN FILE: 0

LAST MODIFIED BY MIDAS REV. 17.6

FUNCTION? g
OK, Everything is now gone.
2 4 - 4

IDR4558 KIDDEL

OK, To delete an index subfile,
use the delete option:

0K, kiddel

[KIDDEL rev 17.6]
FILE NAME? customer
DELETE INDEXES: 2
OK, creatk

[CREATK rev 17.6]
MINIMUM OPTIONS? yes

FILE NAME? customer
NEW FILE? no

FUNCTION? p

INDEX NO.? 2
INDEX DOES NOT EXIST

INDEX NO.? (CR)
FUNCTION? g
OK,

KIDDEL Error Messages

If the MIDAS file being KIDDEIed was created by a version of MIDAS
earlier than Rev 15, or if other file incompatibilities exist, the

KIDDEL utility may return one of several error messages to the user's
terminal during file processing.

Some error messages are shared by several MIDAS utilities, so the user

may also encounter them while using utilities other than KIDDEL. See
Appendix A for a list of these error messages.

4 - 5 October 1989

Part I11
Midas File Access

IDR4558 FILE ACCESS OVERVIEW

SECTION 5

FILE ACCESS OVERVIEW

INTRODUCTION

This section is an overview of all the MIDAS file operations that can
be performed in the various language interfaces. It summarizes which
file access operations are available in each language interface and
tells you where to find more information. The next four sections
explain how to add data to and retrieve data from a MIDAS file using
each of the language interfaces. The file created in Section 2 is used
throughout subsequent sections to illustrate MIDAS file access.

Once a simple template is set up, data must be added to create a data
subfile. If you already have a sequential data file, Section 3 tells
you how to go about "adding" it to the template. There are several
ways to do this, the most common being KBUILD. The KBUILD utility is
completely documented in Section 3.

As soon as the data subfile has been populated, (that is, when it
contains record entries), information can be retrieved from the file
using any of the keys defined for the file. Information retrieval,
update, deletion etc., are all treated in each of the language
interface sections.

Fundamental Access Operations

Accessing a MIDAS file usually involves these basic operations:
e Opening a file for update and/or read access
e 2Adding a record
e DPositioning to a file record on any key

e DPositioning to a file record without key; record is
automatically locked but not read

e Reading a record by any key (partial/full)

e Reading next record in sequence

5 - 1 October 1980

SECTION 5 IDR4558

e Reading next (sequential) record with the same key
e I[ocking a record with a read operation

e Updating current record

e Deleting current record

e Deleting a record by a key

e Closing the file

MIDAS Access in Five Languages

Each language interface has a slightly different method of performing
these operations. The FORTRAN interface is presented first, as it is
the basis of all other MIDAS interface methods and presents the full
range of MIDAS access capabilities. In addition, a section of this
book is devoted to each of the language interfaces to make life easier
for each language programmer:

Section Language

Section 6 FORTRAN (PMA,F77)

Section 7 COBOL (Keyed index access only)
Section 8 BASIC/WM

Section 9 PL/I Subset G

Section 10 RPGII

Section 12 COBOL (direct access only) (RELATIVE)

Language Interface Routines and Statements

Table 5-1 summarizes the possible MIDAS access functions and the
routines and/or statements available to perform them in each language
interface. Where an appropriate statement or routine does not exist to
perform such an operation, the word "NO" appears. This table is just a
summary and does not represent the whole scope of each language
interface. Please refer to the indicated section for particulars on
the language interface you're interested in.

REV- g 5 - 2

IDR4558 FILE ACCESS OVERVIEW

Table 5-1. Language Interface Routines

Function COBOL BASIC RPG FORTRAN PL/I

POSITION FILE and
automatically LOCK
RECORD: (without
returning record)

by primary START POSITION CALC SETLL NO LOCATE with
REWIND KEY option
by secondary START POSITION NO NO NO
REWIND
READ and LOCK
RECORD:
PRIMKEY
by primary key READ * READ |KEY CALC CHAIN LOCKS READ with
KEY option
by secondary key READ * READ KEY NO LOCKS NO
[PRIMKEY|
by partial key READ * READ |KEY NO LOCKS NO
next record READ READ SEQ Input Cycle NEXTS READ
NEXT * or followed
READ + by LOCKS
next with same
key value READ READ SAMEKEY NO NEXTS NO
NEXT * followed
by LOCKS
current record READ ** READ NO LOCK$ NO
READ without LOCK: READ *** NO NO NEXT$ NO
or
FINDS

* Record only locked file is open for I/0

** Only after START or with KEY IS clause (RANDOM access)

*** If file open for @MIPUT (reading) only

+ For indexed files declared as Primary (P), Secondary (S), or Demand (D)

INPOT

5 - 3 October 1989

SECTION 5 IDR4558

Table 5-1. Language Interface Routines (continued)

Function COBOL BASIC RPG FORTRAN PL/I

READ KEY: (read key
associated with record)

current key NO READ KEY NO FINDS READ with
KEYTO(var)
keyed on partial NO READ KEY NO FINDS NO

primary or secondary

READ SECONDARY
DATA: NO NO NO FINDS NO

UPDATE/REWRITE current

data record REWRITE UPDATE Output UPDATS REWRITE
Cycle (key
optional]
ADD:
data record and
keys by primary key WRITE ADD OCutput: ADD1S WRITE
ADD
secondary index
to a data record NO NO NO ADD1S NO
DELETE:
current data
record DELETE * NO NO DELETS DELETE
[no keyl
data record by
primary key DELETE REMOVE NO DELETS DELETE with
KEY option
secondary index
entry (only) NO REMOVE NO DELETS NO
UNLOCK record NO NO NO UPDATS NO

without update:

* In SEQUENTIAL access, only if record already locked by a READ

REV. @ 5 - 4

PTU89 REV. 19 MIDAS

General Changes

The file-no argument, which appears in all of the FORTRAN
subroutine calling sequences, can be set to any value the user
desires. Currently the documentation infers that file-no should be
set to 0. This arqument is ignored completely by MIDAS and is
being preserved only for compatibility.

IDR4558 THE FORTRAN INTERFACE

SECTION 6

THE FORTRAN INTERFACE

INTRODUCTION

The FORTRAN interface to MIDAS is a collection of user-callable
routines that can be called from any program written in FORTRAN, PMA,
PL/I, and so forth. However, it only makes sense to use these routines
in FORTRAN and PMA, as all the other programming languages that support
MIDAS have already incorporated these routines into their respective
interfaces. The FORTRAN/MIDAS interface package handles both
keyed-index and direct access MIDAS files. The main emphasis of this
section is on keyed-index access; therefore, this information is
presented first, and is followed by pertinent direct access
information. Background information on direct access MIDAS files,
including a description of file structure and how to create a direct
access template, is covered in Section 11.

Which FORTRAN?

The term "FORTRAN", as used in this section, refers to both FORTRAN IV
and FORTRAN 77, the two Prime-supported versions of the FORTRAN
programming language. Both versions of FORTRAN handle MIDAS calls
identically, and programs can be written in either language to access
MIDAS files. One should be careful of the differences between the two
lanquages, however. ‘There is no guarantee that all programs written
and compiled under FIN will compile and run under F77. For example,
one of the commonly-encountered discrepancies between the two involves
variables declared as "INTEGER". FORTAN IV assumes they are INTEGER*2
and FORTRAN 77 assumes they are INTEGER*4. Refer to The FORTRAN 77

Reference Guide for a summarv of the immrtant differences between the

1ILT UWalUe LUL & SwwisaSe e el Ta TS

two languages. All the programs shown in this section were compiled
without errors under both compilers.

Compile and Load Sequence

All FORTRAN programs that use MIDAS must have the MIDAS library VKDALB,
included in the SEG load sequence, as shown in this example. User
input is underlined to distinguish it from system output.

6 - 1 October 1980

SECTION 6 IDR4558

OK, FIN PROGRAM -64V
9000 ERRORS [<.MAIN.>FIN-REV17.6]

OK, SBG

[SEG rev 17.6]

LOAD #PROGRAM
$ LO B_PROGRAM
$ LT VKDALB

$ LI

LOAD COMPLETE

$
$

Iol]

OK,

The same sequence applies to programs written in FORTRAN 77; simply
substitute "F77" for "FIN". Additional FORTRAN program requirements
are addressed under S$INSERT Mnemonics later in this section.

FORTRAN's Requirements

All the other language interfaces sit on top of the FORTRAN interface,
automatically taking care of all the subroutine-level f£file 1I/0,
eliminating the need for the programmer to keep track of what's
actually going on "underneath.” The FORTRAN interface, however,
requires the user to be concerned with explicit tasks like notifying
MIDAS when a file is opened and closed, permitting several users to
access the same file simultaneously or denying multiple user access to
that file, locking/unlocking a record, keeping track of the current
record (see FILE ACCESS CONCEPTS, below) and monitoring file position
relative to an index subfile.

Why the Tasks are Necessary

The special method of opening and closing files is part of the MIDAS
concurrent process handler which regulates the simultaneous access of
processes to a single MIDAS file. There are several methods of doing
this, all of which are described in this section. The current record
must be monitored by MIDAS in order to avoid errors like operating on
the wrong record. ‘To keep track of current file position and of what
the user is doing in a given file, MIDAS uses a 1l4-word array. hhile
the entire array is not the user's responsibility, the user must know
how to utilize certain parts of it. ‘These tasks aren't at all
difficult, although they may seem complicated at first. They are
explained a bit at a time so you can see how they all fit together.

REV. 0 6 - 2

IDR4558 THE FORTRAN INTERFACE

Summary of FORTRAN Access Operations

Below is a summary of the basic access operations available to the
FORTRAN (and PMA) programmer. The subroutines that perform these
operations are listed below, and are described fully later in this
section.

FORTRAN Access Operations

and Corresponding Subroutines

Operation FIN Subroutine

Adding a record ADD1S

Adding a secondary index entry ADD1$

Closing a file CLOSMS ,NTFYMS$
Deleting a record DELET$
Deleting an index entry DELETS
Locking a record for updating LOCK$

Opening the file OPENMS , NTFYMS
Positioning the file by key FINDS,NEXT$
Reading a record by key FINDS,NEXTS
Reading duplicates NEXT$

Reading next record NEXTS,GDATAS
Updating a record UPDATS$

6 - 3 October 1984

SECTION 6 IDR4558

OPENING AND CLOSING MIDAS FILES

Like all FORTRAN files, MIDAS files must be explicitly opened and
closed. There are two ways to open a file in the current version of
MIDAS (this applies to versions stamped Rev. 17 and above):

e Existing programs which use SRCH$$ or TSRC$$ to open and close
the file can be modified by making calls to NTFYMS$, a routine
that notifies MIDAS when a MIDAS file is opened and/or closed.

e The OPENM$ subroutine can be used to perform the tasks of both
SRCHSS (or TSRCSS) and NTFYMS in one step.

In either case, opening the file associates it with a particular file

unit, which is in turn associated with the user number of the process
which opened that file unit.

Setting the READ/WRITE Lock

The READ/WRITE lock on all MIDAS files should be set to 3 before they
are accessed. See your System Administrator if there are any
questions. This READ/WRITE lock setting allows a MIDAS file to be
opened for writing and reading by more than one process at a time.
This is part of MIDAS's concurrent process handler, which is explained
in Section 13 and Appendix D.

Requirements for Existing Applications

Existing FORTRAN application programs (written prior to Rev. 17) must
be modified in order to operate with the current version of MIDAS.
MIDAS must be notified when a MIDAS file (segment directory) has been
opened for processing. You can replace the existing file open/close
routine (generally it's SRCHSS or TSRC$$) with calls to OPENM$ and
CLOSM$; alternatively, leave the existing open/close routine in place
and insert calls to NTFYM$ after the file has been opened and before
the file is to be closed. If desired, the user can completely disable
concurrent process handling, thereby making no changes to existing
application programs. This, however, will result in performance
degradation. See Section 13 for details on disabling the present
method of concurrency handling.

REV-g 6 - 4

IDR4558 THE FORTRAN INTERFACE

Benefits of "New" Method: OPENMS$, CLOSMS and NTFYMS$ allow segments to
be left open between calls, resulting in a great performance
improvement over the old method. (See Previous Concurrency-Handling
Methods, in Appendix D.) They also permit MIDAS's concurrent process
mechanism to work, which allows more than one user to have the same
segment subfile open for use. However, it prevents these processes
from operating on the same record simultaneously. If you do not use
either OPENM$S and CLOSMS, or NTFYMS and SRCHSS, the new concurrent
process handling method will be disabled. The old methods of opening
and closing files do not allow for file segments being left open
between calis which results in significant peformance degradation.

Note

Programs that use offline routines (documented in Section 14)
should not use OPENMS$/CLOSMS or NTFYMS to open MIDAS files.
Use SRCHSS or TSRCSS$ instead.

OPENMS$: OPENING THE FILE

OPENMS is the MIDAS routine which opens a MIDAS file (segment
directory), associates it with a file unit, and notifies MIDAS that
processing is about to begin on that particular file. MIDAS itself
needs this information to keep track of all the processes interacting
with a MIDAS file; without this ™"monitoring" system, MIDAS file
integrity could be adversely affected by conflicting concurrent
processes.

OPENMS$ Keys

OPENMS replaces direct calls to either of these
routines:

RIM

?
h
[
e
(D
@
@
&

3

e SRCHSS, which takes a filename argument

e TSRCSS, which takes a pathname or treename argument
These routines are responsible for opening a file and associating it
with a PRIMOS file unit. OPENMS requires the use of certain TSRCSS or

SRCH$S keys, which tell PRIMOS whether a file is to be opened for
reading, writing or both:

6 - 5 October 1980

SECTION 6

Key

KSGETU

K$SREAD
KSWRIT

KSRDWR

IDR4558

Action

Opens file on an available PRIMOS file unit; should be
used when first opening the file from a program

Opens file for reading only
Opens file for writing only

Opens file for reading and writing

These keys are used in calling OPENM$ as shown below.

OPENMS Calling Sequence

The calling sequence of OPENMS is:

REV,

CALL OPENMS$ (key, pathname, namlen, funit, status)

arguments, which are all INTEGER*2, are:

key

pathname

namlen

funit

status

]

Valid OPENMS access key: KS$SREAD, KSWRIT, or KSRDWR, used
optionally together with KSGETU (supplied by user)

Pathname (treename) of MIDAS file to be opened (supplied
by user)

Length of pathname in characters (supplied by user)
funit is the file unit on which the file is to be opened
(supplied by user); if KSGETU is specified instead,
funit is returned as the file unit on which the file was
opened (returned by OPENMS)
Error status (returned by OPENMS)
g No error
< 10881 PRIMOS file system error (system-defined)
10001 Bad key
10002 Too many MIDAS files open: limit is 128
(This is the MFILES argument in KPARAM
file: see Section 15.)

19063 Specified file 1is not a MIDAS segment
directory

IDR4558 THE FORTRAN INTERFACE

CLOSMS: CLOSING THE FILE

The CLOSM$ routine closes a MIDAS file (segment directory) opened on a
specified file unit, and closes any of the subfiles which MIDAS has
opened during file access.

CLOSM$ Calling Sequence

The calling sequence of CLOSMS is:
CALL CLOSMS (funit, status)
The arguments (INTEGER*2) used in this call are:

funit File unit on which the MIDAS file is open (supplied by
user)

status Error status (returned by CLOSMS$)
No error

> @ PRIMOS file system error (system-defined)

Using OPENM$ and CLOSMS$

The following program segment could be used to open and close the MIDAS
file created in Section 2:

Use OPENMS to tell MIDAS we're
going to open and use this file
CALL OPENMS (KSRDWR+KSGETU,'CUSTOMER',8,FUNIT, STATUS)

0o

C Process MIDAS file (with FINDS,ADD1S etc.)

C Close the file
CALL CLOSM$(UNIT,STATUS)

END

In the above example, the KSGETU key tells PRIMOS to open the file
CUSTOMER on any available file unit that is returned in FUNIT. STATUS
returns an error code that tells what kind of error, if any, was
encountered upon opening or closing the file.

6 - 7 October 1980

SECTION 6 IDR4558

NTFYM$: THE "NOTIFY MIDAS" ROUTINE

The NTFYM$S routine informs MIDAS that a MIDAS file (segment directory)
has been opened or is about to be closed by the user. It can generally
be inserted into an existing program immediately after a call to SRCHS$
is made to open the file and immediately before SRCH$S is again called
to close the file.

A call to NTFYMS$S after a MIDAS file has been opened tells MIDAS that it
should leave open between MIDAS calls any of the file's segment
subfiles opened during subsequent file access. A call to NTFYMS before
a MIDAS file is closed tells MIDAS that it should close any of the
file's segment subfiles that it has left open. If the MIDAS library
has been customized to disable internal locking, a call to NTFYMS has
no effect. Users with existing applications may use NTFYM$ along with
SRCHSS or TSRCSS (in lieu of OPENM$ and CLOSMS).

NTFYM$ Calling Sequence

The calling sequence is:
CALL NTFYM$ (key, unit, status)
The arguments (all INTEGER*2) used in this call are:

key specifies whether the file has been opened or is about to
be closed (supplied by user)

1 - file has been opened
2 - file is about to be closed

unit File unit on which the file is open (supplied by user)

status Error status (returned by NTFYMS$)
@ No error
19081 Bad argument

10002 Too many MIDAS files open simultaneously;
occurs only if key is 1 (default limit = 128)

REV.@ 6 - 8

IDR4558 THE FORTRAN INTERFACE

Use of NTFYM$

The following sample FORTRAN program opens the CUSTOMER file on a file
unit obtained by using the KS$SGETU key. (See OPENMS Keys, above.)
Assuming the call to NTFYMS$ is successful, the variable TYPE returns a
code identifying the type of the file that was opened. If the file is
indeed a MIDAS file, TYPE will be returned with a wvalue of 2,
indicating that the file is a SAM segment directory. (See The PRIMOS
Subroutines Reference Guide for more information.) The program calls
NTFYMS to notify MIDAS that it is ready to begin operations on a MIDAS
file. The program also notifies MIDAS when processing is completed and
then closes the file.

C OPEN THE FILE
CALL SRCH$S (KSREAD, 'CUSTOMER',8,KSGETU, TYPE,CODE)

IF (CODE .NE. @) GO TO 9000 /* ERROR ON CALL

IF (TYPE .NE. 2) GO TO 9999 /* NOT A MIDAS FILE

CALL NTFYMS$(1,UNIT,CODE) /* TELL MIDAS WE'RE READY
IF (CODE .NE. @) GO TO 99@2 /* HANDLE ERRORS

200 CONTINUE

c DO MIDAS FILE PRCCESSING (E.G. CALLS TO FINDS ETC.)
CALL NTFYMS (2,UNIT,CODE) /* TELL MIDAS WE'RE DONE

CALL SRCHS$$ (KS$CLOS,@,0,UNIT,TYPE,CODE) /* CLOSE FILE

Er.IC.

The labels 90008, 9002, and 9999 refer to statements in the program (not
shown here) that handle errors occurring on calls to SRCH$S and NTFYMS.
Note that if we'd used a pathname for the MIDAS file instead of a
filename, TSRC$S would have been used in place of SRCHSS.

6 - 9 October 1980

SECTION 6 IDR4558

FILE ACCESS CONCEPTS

MIDAS file access at the FORTRAN call-interface level involves some
important concepts which should be understood if you want to write and
debug a program successfully. These concepts include:

e The current record

e Record locking

e The communications array

e SINSERT files

e The MIDAS flags

The Current Record

The current record can be thought of as that record in the file to
which the file pointer is presently positioned. Usually, this occurs
as a result of a read (find) operation. Some MIDAS calls need to know
which record is the current record so that the operation is performed
on the right one. For example, if a record is being read, it is the
current record. After the read operation is complete, that "current
record" location is stored away so the next operation knows which
record to act on should that be necessary. If the subsequent operation
is a "read next" operation, the file handler has to check where the
current file position is so it can read the proper record. The proper
record is the one after the record just read, so it becomes the current
record. If, however, the subsequent operation is a call to FINDS,
MIDAS doesn't care which record is current because it must do an index
search to find the desired record anyway.

This current record position information is stored in l4-word array
supplied on each MIDAS call. It is constantly updated and checked by
MIDAS, and is used to communicate index location, file position and
current record location between MIDAS and the user. Consequently, it
is called the MIDAS "communications array," although it is commonly
referred to simply as "the array" throughout this book.

The Communications Array

The communications array is used by MIDAS to keep track of the current
file position once a MIDAS file has been opened for access. The array
stores several items, including the address of the current record, the
current position in the index subfile, an indication of whether or not
the last record was found, the word number of the located entry in the
index subfile, and the data record address. The size of the array is
14 words, but only the first five are important in the basic operations

REV. 0 6 - 10

IDR4558 THE FORTRAN INTERFACE

dealt with here. The array is one of the arguments used in the calling
sequences of most FORTRAN/MIDAS file access subroutines, so you'll be
seeing a lot of it throughout this section.

Record Locking

In order to update a record, it is necessary to lock that record for
exclusive use. This prevents anyone else from attempting to read or
change the record while you are changing it. The other language
interfaces to MIDAS perform locking automatically; the method of doing
so varies in each one. Only FORTRAN requires that an explicit lock
action be taken by calling a special subroutine, LOCKS, before an
update operation can occur. Record locking, however, does not entirely
eliminate the possibility of concurrency errors because a locked record
can be deleted by another user.

The Array Format: From the user's standpoint, only the first five
words of the array are really important. Table 6-1 describes the first
five words of the array as implemented for keyed-index access (access
to keyed-index MIDAS files). The description includes what each word
indicates and the meaning of the important bits in each word. The
format of the array as used in direct access is shown in Table 6-2,
The complete format of the array is discussed in Section 13.

Only the first word of the keyed-index access array can be modified by
the user; the others are taken care of by MIDAS and return information
that may or may not be important to your application.

Table 6~1. Keyed-Index Access Array Format

Word Number Describes
Word 1 When supplied by user, can be g, 1,

or -1 (see below); when returned by
MIDAS, contains array state code

Words 2-4 Current position in index subfile
(index entry address)

Word 2, bits 1-8 Entry number
Word 2, bits 9-16 Segment file number
Words 3-4 (32 bits) Word offset of index subfile block

Word 5 Hash value (based on current key
value)

6 - 11 October 198¢

SECTION 6 IDR4558

Word 1: Input Value: The only word in the array that can be modified
by the user is word 1. It can be set by the user to a value of 1, &,
or -1. Any other value produces an error on any call in which that
array is used. If set to @ or 1, MIDAS is told to use the current
array contents on this call. If set to -1, MIDAS is told to ignore the
array contents.

Word 1: Output Value: The first word in the array is always used by
MIDAS to return a completion code after an operation has finished. If
set to @ or 1, the array contents are valid, and no error was flagged
on the last call. If there was an error on the last call, word 1 has a
value greater than 1 corresponding to some MIDAS error condition code.
Appendix A contains a complete list of MIDAS error codes.

The Direct Access Array

The direct access array format differs slightly from the one used in
keyed-index access. The user must supply values for words 2, 3 and 4
of the array on some calls. It is important to supply the proper
values for each word of the array when processing direct access MIDAS
files.

Table 6-2. Direct Access Array Format

Word No. Setting Meaning
1 gorl Use array contents (supplied by user)
2 entry size Entry length is the primary key length
(in words) in words, plus data record length

in words, plus 2 words
(supplied by user)

3-4 record number A single-precision (REAL*4)
floating-point record number
(supplied by user)

5-14 Same as for keyed-index access

SINSERT Mnemonics

Another of the concepts peculiar to the FORTRAN interface is the
SINSERT file SYSCOM>PARM.K. It contains a host of parameters used by
MIDAS in the interface FORTRAN subroutines and must be inserted in each
FORTRAN program that uses MIDAS. Put the statement:

SINSERT SYSCOM>PARM.K

at the beginning of your programs. The SINSERT statement must begin in
column 1. Most of the parameters in the PARM.K file which you are

REV. @ 6 - 12

IDR4558 THE FORTRAN INTERFACE

likely to encounter are described later under The MIDAS Flags.

Another file the user will need to insert at the beginning of a FORTRAN
program is the SYSCOM>KEYS.F file which contains declarations for all
the keys used by the FORTRAN-MIDAS interface subroutines. Use the
statement:

$INSERT SYSCOMMKEYS.F

at the beginning of all your FORTRAN programs. PMA programmers should
use the file SYSCOM>KEYS.P instead.

The MIDAS Flags

MIDAS has a special set of flag values which can be set in each of the
various subroutine calls to tell MIDAS what options are to be used for
that call. Options are specified with a set of flag names which are
defined in the insert file SYSCOM>PARM.K. The flag names correspond to
single bits of a one-word parameter called flags, which is passed to
MIDAS by the user in each subroutine call. Table 6-3 lists each flag
name and the bit to which it corresponds. To use the flag options,
compile your programs with the statement:

$INSERT SYSCOM>PARM.K

Each flag bit is set off by default; you set certain ones on before a
call, depending on what you want to do on that particular call. To set
a flag on, all you have to do is specify the name of that flag in an
assignment statement or in place of the flags argument on the actual
call. MIDAS takes care of the rest. For example:

FLAGS = FLSFST + FLSRET

As a result of this assignment, the octal values of the two flags
FLSFST and FLSRET are added together, and the result, a single octal
value, determines which bits are set off and which are set on in the
flag word. Don't worry about the octal values because all the bits are
initialized for you in the PARM.K file. The bit settings indicate the
actions to be taken on the call.

All the flag names, the bits to which they correspond, their octal

values, their meanings when set off or on, and the subroutine calls in
which they can be used, are listed in Table 6-3.

6 - 13 October 1989

SECTIN 6

Table 6-3. MIDAS Flag Names, Values and Meanings

Bit No. Name Setting
1. FLSUSE ON
(:100000) OFF
2. FLSRET ON
(:40000) OFF
3. FLSKEY ON
(:20000)
OFF
4. FL$BIT ON
(:10000) OFF
5. FLSPLW ON
(:4000)
OFF
REV. @ 6

IDR4558

Meaning

Use current copy of
array.

Don't use current copy
of array.

Return entire array for
use on subsequent calls.
Return completion code
only, in array(l).

On calls to FINDS, NEXTS
and LOCKS, returns
primary key with data
record. On calls

to ADD1S, tells MIDAS
not to make its own
copy of the primary key
to store in data record.
Used only if primary key
is first field in data
record.

On calls to FIND$, NEXTS$

and LOCKS, does not return
primary key in data buffer.

In ADD1S, tells MIDAS to
store a copy of primary
key in each data subfile
record.

Call specifies key size

in bits, if key is a bit
string, or in bytes, if

it is an ASCII key.

Call specifies key size

in words (default).

Position to next index
entry greater than or
equal to current or user-—
supplied entry.

Can Be

Used In

All calls

All calls

All calls

FINDS
and
NEXTS

FINDS
and
NEXTS

Position to next index entry

only if it matches current

or user-supplied key.

6.

7.

8.

9.

[
=

11.

Bits 12-16 of the flags parameter must be set to @,
setting, at all times.

FLSUKY
(:2000)

FL$SEC

—~

(1]
[
]
=)
=
N

FLSULK
(:400)

FLSFST
(:200)

FLSNXT
(:100)

FLSPRE
(:40)

OFF

OFF

OFF

OFF

OFF

OFF

IDR4558

THE FORTRAN INTERFACE

Update user-supplied FIND
key field with version and
stored in the file. NEXTS
Useful in partial key
searches.
Don't update user-supplied
key field.
Return secondary data FINDS
instead of data record. and
Return data record read NEXTS
from data subfile.
Unlock data entry UPDATS
only — don't update it. only
Update data entry
and unlock it.
Position to first FINDS,
index entry in subfile. LOCKS,
Position to first entry and
that matches current NEXTS$
entry or user-supplied
key value.
Position to next index FINDS
entry greater than and
current entry or user- NEXTS
supplied key value.
Position to next index
entry that matches current
entry or user-supplied
key value.
Position to index entry FINDS$
just prior to current and
index entry or user- NEXTS
supplied key value.
Position to index entry
that matches the current or
user-supplied key value.
Note

the default

Leave them alone.

- 15 October 1980

SECTION 6 IDR4558

Order of Precedence: When specified in combination, certain flags have
precedence over others. The priority order is:

e FL$FST
e FLSNXT
e FLSPIW
e FLSPRE

Cbserve that certain combinations of flags are simply not sensible:
for example, FLSNXT and FLSPRE. Although meanings are given for each
flag when set off, the actual action taken on any given call is
dictated by the combination of keys set on, which may, in fact,
override the defaults.

THE FORTRAN/MIDAS INTERFACE SUBROUTINES

There are seven FORTRAN subroutines that can be called directly by the
FORTRAN programmer in accessing a MIDAS file; they are used
(transparently to the user) by all the other language interfaces. Most
of these subroutines share the same calling sequence, which makes it
easier to learn how to use them. They're listed below by function:

Function Subroutine
Adds a data record ADD1$
Adds a secondary index entry ADD1S

Deletes a data entry or secondary index entry DELETS

Finds a data entry by any key FINDS
Finds the next data entry via an index NEXT
[ocks a data entry for update LOCKS
Reads data entries in order stored GDATAS
(physically)

Updates a data entry UPDATS

REV. @ 6 - 16

IDR4558 THE FORTRAN INTERFACE

User-Supplied Information

The MIDAS access subroutines (ADD1$, FINDS, LOCKS$, DELETS, NEXTS and
UPDATS) use essentially the same calling sequence. The variables used
in this calling sequence pass the following information along to MIDAS:

The file unit number on which the MIDAS file is open

The size of the data record buffer: used for data added to or
returned from the data subfile

The size of the primary key buffer
The MIDAS communications array

The flag argument specifying the options to be used in the call
(see below)

A program label indicating the alternate return to be taken in
the event of an error: set to @ if no alternate return exists

The access method to be used (keyed-index or direct access)
The type of index subfile to be used (primary or secondary)

The length of the data to be transferred (except in DELETS
calls)

The length of the key to be used in partial key access

6 - 17 October 1980

SECTION 6 IDR4558

General Calling Sequence

The general format of the calling sequence for the six data access
routines mentioned above is:

CALL routine (funit, buffer, key, array, flags, altrtn, index,
file-no, bufsiz, keysiz)

Argument Data Specifies
routine character One of these six routines:
ADD1S, DELETS, FINDS, LOCKS, NEXTS
or UPDATS
funit integer The file unit on which the MIDAS file
(short) is open
buffer integer The sbeshiNWge data record buffer
(short) into which data is read or from

which it is written to the file

key integer The key value to be used on call
(short)

array integer The communications array which holds
(short) current record and index position

information: also returns
status codes after each call

flags integer The flag word specifying options
(short) for this call: see below

altrtn integer Label in program of alternate return
(short) to be taken if an error occurs (set to

@ if no alternate return exists)

index integer The access method to be used, (keyed-
(short) index or direct access) and which
index to use if not direct access

file-no integer (bsolete: set to @
(short)
bufsiz integer The length of the data to be gopPL/IEP
{short) transferred to/from file
(except in calls to DELETS): WaRpS,

set at @ if full data entry is
being transferred

keysiz integer The length of the key to be
(short) used in partial key access
(used with FINDS and NEXTS only)

REV. 0@ 6 - 18

744

IDR4558 THE FORTRAN INTERFACE

"Optional" Arguments: The arguments for which the user may supply a o
instead of another value, and their respective meanings when set to @
are:

Argument Default

altrtn There is no alternate return for handling errors on
this call

file-no Obsolete — maintained for compatibility

bufsiz Default data subfile entry length (stored in file)

keysiz Defaults to key length specified in file: can be set

at @ if full key is being used

Note

Another data access subroutine, GDATAS, which is used for
sequential retrieval of entries in the data subfile, does not
use the general calling sequence just described. Its
particular calling sequence and function are described later in
this section.

ADD1S$

The ADD1$ routine is used to add primary index entries and data subfile
entries to keyed-index and direct access MIDAS files. It also adds
secondary index entries (and optional secondary data) to files that
have secondary indexes. During an add (as in all file operations), the
file is effectively locked to other users to prevent unnecessary
complications.

Keyed-Index Adds

Records can only be added to a MIDAS file when accompanied by a primary
key value. Similarly, a secondary key value can only be added if the
record which it will reference already exists in the data subfile and
is referenced by a primary index entry. Secondary index entries are
always added separately from the primary index and data entries.
Generally, records and the keys associated with them are added in this
sequence:

6 - 19 October 1980

SECTION 6 IDR4558

1. First, make a call to ADD1S$, with FLSRET in flags set on, to
add a data entry and its primary key value.

2. Make a separate call to ADD1$, with FLSUSE set in flags, to add
a secondary index entry for this record.

You can also add secondary index entries for an existing data subfile
record at a later time, in either of two ways. The first method is to
supply the primary key value in buffer and set index and key to the
desired secondary index number and value respectively on a call to
ADD1S. 1In the second method, the record must first be located by
primary key (with a FINDS or NEXT$ call). The array must be returned
by this call so that the call to ADD1$ will be able to use it. index
and key must be set to the index subfile number and value on the call
to ADDIS.

ADD1$ Calling Sequence

The calling sequence uses the general format shown earlier:

CALL ADD1S$ (funit, buffer, key, array, flags, altrtn, index,
file-no, bufsiz, keysiz)

Some of the arguments have meanings pecullar to ADD1S. ‘They are
explained in Table 6-4.

Index Values: The index argument indicates whether the add is being
performed on a direct access file or a keyed-index file. It also tells
whether a primary or secondary index entry is to be processed on this
call. Here is a summary of the values for the index argument:

Value for Index Meaning
) Primary index
1-17 Secondary index
-1 Direct access

When index is @, the data entry information to be added to the data
subfile must be supplied in buffer. If you are storing keys in the
data, be sure to incude all- key values in buffer. When adding
secondary indexes, 1ndex should be a number from 1 to 17, the
corresponding primary key must be specified as the first item in the
buffer; the secondary key value must be specified in full in the key
argument.

REV. @ 6 - 29

PTU89 REV. 19 MIDAS

On pages 6-21 and 6-31, the arqument file-no was mistakenly amitted
from the arqument explanation 1list. Please insert the following in
between the index and bufsiz arguments on these pages:

file-no Set this to 0: obsolete.

Argument

funit

buffer

IDR4558 THE FORTRAN INTERFACE

Table 6-4. ADDS1 Arguments

Meaning

The file unit on which the MIDAS file is opened.

On a data entry add, it contains the data subfile
record. If keys are being stored in the data record,
include all key values in buffer as well. On a
secondary index add without FLSUSE set, buffer
contains the primary key value followed by optional
secondary data.

Must contain full primary key value on a data record
add; contains full secondary key value on a
secondary index add.

The communications array.

The flags options for calls to ADD1$ are shown in
Table 6-5.

Statement number of alternate return to be taken in
event of error; supply @ if no alternate return.

Indicates access method and index subfile to use:
@ = primary index
1-17 = secondary index

-1 = direct access

F}LL:.NOA—-—‘ $€€ Pi’ﬁg‘i

hi fs

A,

‘_eml-h nf Aata A ke added to nhfil Fram hinff

llﬂ\—ll Vi \ LS R S WJL L L 4L\l AJ\‘J--L

If bufsiz = @ and index = @, MIDAS adds data from
buffer to data subfile, taking only the number of
words it needs to match the record size defined for
the MIDAS file during CREATK. If index > @, adds
secondary data from buffer to indicated index
subfile, if secondary data 1is supported for that
index. If bufsiz is less than data record size or is
less than key size plus secondary data, only that
part of buffer will be used. The rest of data
subfile or secondary data entry is zero-filled. In
general, specify @ for fixed-length records: for
files with variable-length records, specify length of
data to be written to file.

Set to @ (ignored).

6 - 21 October 1980

SECTION 6

REV.

Flag
FLSUSE:

FLSRET:

FLSKEY:

@

IDR4558

Table 6-5. Flags for ADD1$

Meaning

When set on, uses contents of array from previous
call —- used on calls to add secondary index entries.
Set off when adding primary index entries or secondary
index entries when FLSUSE is off.

When set on, returns array contents from this call (set
only on calls to add data records).

When set on, tells MIDAS not to store its own copy of

the primary key with each data subfile record; see
Redundant Primary Keys, below.

IDR4558 THE FORTRAN INTERFACE

Redundant Primary Keys

MIDAS always stores its own copy of the primary Key with each entry in
the data subfile. When an entry is returned from the data subfile,
this primary key value is not returned unless specifically requested by
the user. However, if keys are being stored in the data record (by the
user), it is not necessary to have an extra copy of the primary key, as
long as the user's copy of the primary key appears in the beginning of
the data record. To eliminate redundant copies of the primary key, set
FLSKEY on in FLAGS for all ADD1$ calls that add data subfile entries.
Remember, this option should be used only if the primary key is the
first field in the data subfile record.

Adding Data Records

When adding primary index and data entries, the full primary key value
associated with the record to be added should be placed in key. The
information to be added to the data subfile is placed in buffer. The
length of this entry must be supplied in bufsiz. For keyed-index MIDAS
files with fixed-length records, bufsiz should be set to @; for
variable-length records, set bufsiz to the length of the data entry (in
words). If there are secondary indexes in this file, the array should
be returned (set the FLSRET flag on in flags) for use in subsequent
calls to ADD1S.

Note

When adding entries to a MIDAS file with ADD1$, the full key
value must always be supplied in the key argument. Partial key
values are illegal. The argument keysiz is therefore ignored
and can be specified as @ if desired. Consequently, bit 4

1™ T™my PR S 5 - - e, | - -~ - P -~ -
(FLSBIT) of flags is not relevant in calls to ADD1S.

Adding Secondary Index Entries

When adding secondary index values, the user must provide MIDAS with
this information:

e Secondary index number (in index)

e Secondary key value (in key)

e Primary key value —- must either be in first part of buffer or
FLSUSE must be set to use a valid copy of array. The array is

valid only if returned by an immediately prior call in which the
desired key value was used and/or returned.

e Secondary data (optional — supplied in buffer, following
primary key value)

6 - 23 October 1980

SECTION 6 IDR4558

The full primary key value is always supplied as the first field in
buffer, if FLSUSE is not indicated. Any secondary data information
should be included after the primary key in the buffer argument.

Duplicate secondary key entries are supported only for those index
subfiles which were created with duplicate status during CREATK. 2n
attempt to add duplicate entries to a secondary index that does not
support them results in an error and the failure of the add operation.

Typical Scenario: If you want to add all secondary index entries for
a particular data subfile entry immediately after you've added the
primary key and the data entry, here's the typical sequence of events
you'd follow:

1. Set FLSRET in flags on the ADD1$ call when adding the primary
index and data entry.

2. After the above call, set FLSUSE in flags if you have one or
more secondary index entries to add.

3. Set index to the appropriate index subfile number (1 -17).

4, 1If a valid array exists from a previous call (see 2Addi
Secondary Index Entries above), simply set FLSUSE. Or, if Ege
array is not valid, put the primary key value of this record in
the first part of buffer. This won't be necessary if you store
keys (in order) in the data record because you will already
have put the primary key wvalue in buffer(l) on the previous
call.

5. Put any secondary data for this index entry in Dbuffer,
immediately following the primary key value.

6. Set key to the full secondary key value you want stored in the
index subfile.

7. Make the call to ADD1S to add this secondary index entry.

8. Repeat steps 2 - 7 for each secondary index entry to be added
for this record.

REV. ¢ 6 - 24

IDR4558 THE FORTRAN INTERFACE

ADD1$ Example

The following program adds entries to the MIDAS file CUSTOMER (set up
in Section 2). It is an interactive program intended for on-line data
entry. The program first asks the user for a primary key value, then
asks if there are any secondary key values to be added for this record.
After key values have been accepted, it asks for the non-key portion of
the data record to be stored in the index subfile. 1In this
application, all keys are being stored in the data record, and the
primary key is the first field in the data record. If desired, we
could use the FLSKEY option on each add so that MIDAS will use the data
record's copy of the primary key instead of making its own copy of this
key. However, we would always have to set FLSKEY in calls to FINDS or
NEXT$ in order to get the primary key returned with the data record if
we chose this option. Instead, FLSKEY is set off in this program so
the full data record is always returned.

ADD PROGRAM FOR CUSTOMER FILE
THIS PROGRAM ADDS ENTRIES TO THE CUSTOMER FILE BY ASKING THE

USER FOR KEY VALUES AND DATA RECORD VALUES.
THE KEYS ARE STORED IN THE DATA RECORD.

oNoNoNOoNe Ne]

SINSERT SYSCOM>KEYS.F

$INSERT SYSCOM>PARM.K

C DECLARATIONS

C Garden variety call parameters
INTEGER*2 ARRAY(14) ,INDEX, FUNIT,BUFFER(35) , STATUS, FLAGS
INTEGER*2 KEY(13) ,BUFSIZ,KEYSIZ,CODE

C KEY IS MAX OF 13 WORDS (SEC KEY@1)

C
INTEGER*2 ANSWER, /* YES OR NO
* 1, /* LOOP INDEX
* PKEY(3), /* PRIMARY KEY
* SKEY1(13), /* SEC. KEY@1
* SKEY2(2), /* SEC. KEY@2
* DATA(17) /* JUST DATA PART
LOGICAL *2 SWITCH(2) /* TELLS WHEN WE
o HAVE SECONDARY KEYS TO ADD FOR AN ENTRY
C SET SWITCH(1) ON IF WE HAVE ENTRY FOR SEC KEY#1
c SET SWITCH(2) ON IF WE HAVE ENTRY FOR SEC KEY@2
C
o EQUIVALENCE KEYS AND DATA TO PARTS OF BUFFER
o SO THAT ALL KEY VALUES WILL BE STORED WITH RECORD
EQUIVALENCE (BUFFER(1),PKEY(1)),
* (BUFFER(4),SKEY1(1)),
* (BUFFER(17) ,SKEY2(1)),
* (BUFFER(19),DATA(1))
o
SWITCH(1) = .FALSE. /* SET OFF INITIALLY
SWITCH(2) = .FALSE.

C OPEN FILE

6 - 25 October 1980

SECTION 6 IDR4558

10

40

45

1111
2222
3333
4444

REV.

]

CALL OPENMS (KSRDWR+KSGETU, ' CUSTOMER' , 8, FUNIT, STATUS)
IF(STATUS .NE. @) GO TO 100 /* ERROR

CALL TNOUA('ENTER PRIMARY KEY VALUE: ',25)
READ(1,2222) PKEY

ASK IF THERE ARE SECONDARIES TO ADD

CALL TNOUA('ANY SECONDARIES TO ADD FOR THIS RECORD?',40)
READ(1,1111) ANSWER

IF(ANSWER .EQ. 'N') GO TO 5@

ELSE GO ON

CALL TNOUA('ENTER INDEX NO.: ',17)
READ(1,6666) INDEX

CALL TNOUA('ENTER KEY VALUE: ',17)
IF(INDEX .EQ. 2) GO TO 40

READ (1,4444)SKEY1

SWITCH(1l) = .TRUE.

GO TO 45

READ(1, 5555) SKEY2

SWITCH(2) = .TRUE. /* ENTRY FOR INDEX 02
CALL TNOUA('MORE?',5)

READ(1,1111) ANSWER

IF(ANSWER .EQ. 'Y') GO TO 35

ELSE GO ON

CALL TNOUA('ENTER DATA RECORD (NON-KEY) INFO: ', 34)
READ(1, 3333) DATA

SET UP FLAGS AND OTHER ARGS FOR CALL TO ADD1$

INDEX = @

FLAGS = FLSRET ,

CALL ADD1$ (FUNIT,BUFFER, PKEY,ARRAY, FLAGS, $200 , INDEX, @, 0, 0)

IF(.NOT. SWITCH(1l)) GO TO 99 /* NO KEY@1l ENTRY
ELSE ADD ENTRY TO INDEX SUBFILE @1

FLAGS = FL$USE + FLSRET /* USE ARRAY
CALL ADD1S (FUNIT,BUFFER,SKEY1,ARRAY,FLAGS,$2068,1,0,0,0)

IF(.NOT. SWITCH(2)) GO TO 99 /* ENTRY FOR INDEX 82 ?
IF SO, ADD ENTRY FOR INDEX @2, RE-USING FLAGS SETTING

CALL ADD1S (FUNIT,BUFFER, SKEY2,ARRAY, FLAGS, $200,2,0,0,0)

SEE IF WE'RE DONE

CALL TNOUA('READY TO QUIT? (Y OR N)',23)

READ(1,1111) ANSWER
IF(ANSWER .EQ. 'N') GO TO 20
ELSE GET OUT
GO TO 444 /* CLOSE FILE
FORMATS
FORMAT (A2) /* ANSWER
FORMAT (6A2) /* PKEY
FORMAT (34A2) /* DATA
FORMAT (26A2) /* SKEY1

6 - 26

IDR4558 THE FORTRAN INTERFACE

5555 FORMAT(4A2) /* SKEY2
6666 FORMAT(I1) /* INDEX
C
C

C ERROR HANDLERS

199 CALL TNOUA('ERROR ON OPEN: STATUS IS: ',24)
CALL TODEC(STATUS)
GO TO 444

200 CALL TNOU('ERROR ON ADD',12)
CALL TNOUA('INDEX IS: ',10)
CALL TODEC(INDEX)
CALL TONL
CALL TNOUA('ARRAY(1l) IS: ',13)
CALL TODEC(ARRAY(1))
CALL TONL
GO TQ. 20

444 CALL CLOSMS (FUNIT,STATUS)

555 CALL EXIT
END

Here is some sample output from a terminal session using the program
just listed:

OK, SEG #ADD
ENTER PRIMARY KEY VALUE: 2194G

ANY SECONDARIES TO ADD FOR THIS RECORD? Y
ENTER INDEX NO.: 1 ' -
ENTER KEY VALUE: SPECTROGRAPHICS

MORE?Y

ENTER INDEX NO.: 2

ENTER KEY VALUE: NWOR

MORE?N

ENTER DATA RECORD (NON-KEY) INFO: PORTLAND
READY TO QUIT? (Y OR N) N

ENTER PRIMARY KEY VALUE: 4@56S

ANY SECONDARIES TO ADD FOR THIS RECORD? Y
ENTER INDEX NO.: 1 -
ENTER KEY VALUE: EASTERN GRAPHICS

MORE?Y

ENTER INDEX NO.: 2

ENTER KEY VALUE: NECN

MORE?N

ENTER DATA RECORD (NON-KEY) INFO: OLD SAYBROOK

It is possible to add just primary key and data entries to the file
using this program. Secondary index entries can then be added at later
time, but the program would have to be modified to allow a FINDS
operation on a primary or secondary key value first, with FLSRET set.
Then the array could be used on an ADDI$ call to add the secondary
index entry.

6 - 27 October 1980

SECTION 6 IDR4558

Note

Since primary index and data entries are added separately from
secondary index entries, there is no guarantee that a record
for which you are in the process of adding secondary index
entries cannot be deleted by another user before the current
ADD1$ operation is complete. Files which are prone to
multi-user access should be protected in some way, perhaps by
another "single-threading” mechanism, much like that enforced
by the MIDAS lock.

Array Word Values

The MIDAS array may return one of the following codes or values in word
1 after a call to ADD1S:

Value/Code Meaning
2 Successful completion of call
1 Successful completion: there are

duplicates for this index (okay)

7 No entry exists with supplied
primary index value

12 Attempt to add duplicates to a
primary index or to a secondary index
that doesn't allow them

Others See Appendix A for a list
of MIDAS error codes

Direct Access Adds

In direct access files, the user must set the index value to -1 in all
calls to ADD1S that add data entries. To add secondary index entries,
set index as described above. This indicates to MIDAS that the file is
configured for direct access and that the user will be supplying a
unique floating-point record number for each record added, in addition
to a primary key value. The record number and the primary key can be
the same, if desired (it's just a bit redundant). Remember that the
record number does not have to be defined as a key during template
creation because MIDAS takes care of storing the numbers.

REV. @ 6 - 28

IDR4558 THE FORTRAN INTERFACE

In each call to ADD1$, the user must provide:
e A primary key value (in key)

e A floating-point data entry number (in words 3 and 4 of the
array)

e The data entry size (in datasiz)

The data entry size is equal to the key length (rounded up, in words)
plus the data length (in words) plus 2. Make sure you supply the
correct data entry size every time.

The Array: The array format for direct access calls is shown earlier

in Table 6-2. The contents of the first four words of the array in
direct access calls to AID1S are:

e Word 1: Condition code (@ or 1)

e Word 2: Data entry size (key size + data length + 2)

e Words 3-4: Entry number (record number) in REAL*4 format
If an entry already exists with the supplied record number, MIDAS
places the new record into an overflow area. This will not happen

however, if the primary kev is defined as the record number because no
duplicates are allowed for any primary key.

READING A MIDAS FILE

There is no "read" subroutine in the MIDAS-FORTRAN call interface, but
FINDS and NEXTS provide the same service. At the FORTRAN call level,
there are three types of read operations possible:

1. Keyed reads, by primary or secondary key, or by record number
using FINDS and NEXT$

2. Sequential reads, by primary or secondary key, or by record
number —— using NEXTS

3. Sequential data subfile reads, using GDATAS to return records
in physical order stored

These three types of reads are discussed relative to the FINDS, NEXTS
and GDATAS subroutines. Conceptually, FINDS performs keyed or random
reads. NEXT$ can do both keyed and sequential reads, while GDATAS
performs only sequential reads.

6 - 29 October 1980

SECTION 6 IDR4558

Note

Some of the other language interfaces automatically lock a
record upon reading it. However, in the FORTRAN interface,
none of the data retrieval routines 1locks a record upon
positioning to it. The only way to explicitly lock a record is
to use LOCKS. This makes sense because normally you only lock
a record when you intend to update it.

FINDS

FINDS locates and reads a MIDAS data entry by either primary or
secondary key. Searches can be done on partial primary or secondary
key values. ‘The full key value as stored in the index subfile being
searched, can be returned by FINDS at the user's request. If a given
secondary index contains secondary data, FINDS can be told to return
that instead of the data record.

FINDS Calling Sequence

The calling sequence of FINDS is:

CALL FINDS (funit, buffer, key, array, flags, altrtn, index,
file-no, bufsiz, keysiz)

The arguments which have special meanings in this call are shown in
Table 6-6. Flag values for FINDS are listed in Table 6-7.

Specifying Which Index to Use

The index argument indicates which access mode is being used on this
call to FINDS. It also spells out which index is to be used in a
keyed-index file. Settings are:

Index Values Meaning
-1 Direct access -- locate entries

by record number
@ Use primary index as search key

1 -17 Use indicated secondary
index as basis of search

See FINDS and Direct Access for information on reading direct access
files.

PTU89 REV. 19 MIDAS

On pages 6-21 and 6-31, the arqument file-no was mistakenl)} anitted
from the arqument explanation 1list., Please insert the following in
between the index and bufsiz arguments on these pages:

file-no Set this to 0: obsolete.

Argument

funit

buffer

key

array

flags

altrtn

index

FNE v

bufsiz

keysiz

IDR4558 THE FORTRAN INTERFACE

Table 6-6. FINDS Arguments

Meaning
File unit number on which the MIDAS file 1is opened.

Buffer in which data entry, primary key values, or
secondary data are returned as a result of call to
FIND$. -~

User supplies full or partial primary or secondary
key value to use on this call. In direct access, key
is not supplied unless FL$UKY is set in flags: see
below.

The communications array — returned after each call
with a completion or error code. In direct access,
the user must supply the entry size and record number

in words 2-4 of this array.

See Table 6-7 for flags that can be used on calls to
FINDS.

Statement number in program of alternate return.

Set to @ if primary index access. Set to 1-17 if
secondary index access. Set to -1 for direct access.

see pPTUE?

Length of buffer; set to @ if complete data entry
and primary key (if FLSKEY set on) are to be
returned; otherwise specify number of words you want
returned from data subfile entry.

Size of key; set to # if full key, otherwise set to
number of bits, bytes or words in key.

6 - 31 October 1980

SECTION 6

REV.

Hag
FL$BIT

FLSFST

FLSKEY

FLSNXT

FLSPLW

FLSPRE

]

IDR4558

Table 6-7. Flags for FINDS

Meaning

When set on, length of key is specified in keysiz in
bits, if the key is defined as a bit string, or in
bytes, if the key is an ASCII string. When set off,
keysiz is assumed to be in words.

Tells FINDS to @me position to first entry in specified
index subfile, If set off, FINDS positions to first
index entry that matches the user-supplied key, unless
another flag setting overrules this.

When set on, tells FINDS to return the full value of the
primary key for this record in buffer, beginning in
buffer(1l). The returned data record will then
immediately follow the primary key in buffer.

When set on, tells FINDS to position to next index entry
which is greater than current or user-supplied entry.
When set off, positions to index entry that matches
current or user-supplied entry; may be overruled by
flag setting with higher precedence (FLSFST). This flag
setting is useful in partial key searches.

If set on, tells FINDS to fetch the next entry in the
current index, whether greater than or equal to ("not
less than," for COBOL persons) the current or
user-supplied entry. This is useful in partial key
searches. When set off, positions to next entry in
index only if it matches the current or user-supplied
key value. (This can be overruled by other flag
settings like FLSFST and FLSNXT.)

When set on, tells FINDS to position to index entry
immediately prior to the current index entry. When set
off, positions to index entry that matches the
user-supplied key value, unless overruled by a flag
setting with higher precedence.

FLSRET

FL$SEC

FLSUKY

FLSUSE

IDR4558 THE FORTRAN INTERFACE

Tells MIDAS to return entire array after this call to
FINDS. If set off, only the first word of array, the
completion code, is returned.

When set on, returns secondary data from secondary index
being searched instead of returning the data record.
Secondary data is returned in buffer. Not applicable in
direct access or primary index access, that is, if index
is @ or -1.

When set on, returns, in key, the full primary or
secondary index value that corresponds to the
user-supplied key value used in this call.

In keyed-index access, when set on, tells MIDAS to use
contents of array as returned by previous call. In
direct access, the setting does not matter because the
array is used anyway.

6 - 33 October 1980

SECTION 6 IDR4558

Specifying Key Values

If index is @, the user must supply a primary key value in the key
argument. Similarly, if a secondary index is indicated, a wvalue from
that index must be specified in key so FINDS can use it in the
retrieval. If the full key value is specified in key, the keysiz
argument can be set to 0.

FIND$ Example

The following program reads records from the CUSTOMER file defined in
Section 2. A variety of searches can be done with this program,
including searches using full or partial primary or secondary key
values. It also allows the user to retrieve the data subfile record
referenced by the first entry in any specified index subfile, using the
FL$FST flag. The program could easily be modified to find the previous
or next index entry relative to the current entry by using the FLSPRE
or FLSNXT flags. It is meant only as a general example of how to set
up calls to FIND$, and is certainly not exhaustive.

READ PROGRAM FOR CUSTOMER FILE

THIS PROGRAM USES FIND$ TO LOCATE A RECORD BY ANY KEY
IT ALSO SHONS HOW TO USE FLSFST TO RETURN FIRST ENTRY IN
ANY INDEX

OO0OO0O0O000

SINSERT SYSCOM>KEYS.F

$INSERT SYSCOM>PARM.K

o DECLARATIONS

C Garden variety call parameters
INTEGER*2 ARRAY(14) ,INDEX,FUNIT,BUFFER(35) ,STATUS, FLAGS
INTEGER*2 KEY(13) ,BUFSIZ,KEYSIZ,CODE

C KEY IS MAX OF 13 WORDS (SEC KEY@l)

INTEGER*2 ANSWER /* YES OR NO
CALL OPENMS (KSREAD+KS$GETU, ' CUSTOMER' , 8, FUNIT, STATUS)
IF (STATUS .NE. @) GO TO 100

gl CALL TNOUA ('SEARCH ON PRIMARY? (Y or N)', 27)
READ(1, 3333) ANSWER
IF(ANSWER .EQ. 'N') GO TO @5

C ELSE IT'S A PRIMARY SEARCH
INDEX = @
GO TO 14

B85 CALL TNOUA('ENTER SEARCH INDEX: ',20) /* SEC. INDEX NO.
READ(1,2222) INDEX

C GO ON AND GET KEY VALUE

19 CALL TNOUA('USE YOUR KEY VALUE? (Y OR N)',28)
READ(1,3333) ANSWER
IF(ANSWER .EQ. 'Y') GO TO 15

C ELSE USE FL$FST FLAG TO GET FIRST INDEX ENTRY
FLAGS = FLSFST + FLSRET
GO TO 45

15 CALL TNOUA('ENTER KEY VALUE: ', 18)

REV. @ 6 - 34

20

25

30

35

1111

ol

2222
3333

100

200

444
555

IDR4558 THE FORTRAN INTERFACE

READ(1,1111)KEY

CALL TNOUA('PARTIAL KEY? (Y OR N)',21)
READ(1, 3333) ANSWER

IF(ANSWER .EQ. 'Y') GO TO 3@

ELSE ASSUME FULL KEY

KEYSIZ = @ /* FULL KEY
CALL TNOUA('RETURN ALL DATA? (Y or N)', 25)
READ(1, 3333) ANSWER

IF (ANSWER .NE. 'Y') GO TO 35

OTHERWISE, SET BUFSIZ TO @

BUFSIZ =

GO TO 40

CALL TNOUA('ENTER KEYSIZE IN WORDS: ', 24)
READ(1,2222) KEYSIZ

GO TO 25

CALL TNOUA('ENTER DATA SIZE: ', 17)
READ(1, 2222) BUFSIZ

CONTINUE

MAKE CALL TO FINDS

FLAGS = FL$RET

CALL FINDS$ (FUNIT,BUFFER, KEY, ARRAY, FLAGS, $20@, INDEX, 0,
+ BUFSIZ,KEYSIZ)

DISPLAY WHAT'S IN BUFFER NOW

CALL TNOUA('RECORD READ IS: ',16)

CALL TNOU(BUFFER, 70)

Ask if want to go on

CALL TNOUA('DO YOU WANT TO CONTINUE? (Y or N)', 33)
READ (1, 3333) ANSWER

IF (ANSWER .EQ. 'N') GO TQ 444

ELSE GO BACK TO TOP

GO TO A1

FORMAT STATEMENTS HERE

FORMAT (26A2) /* KEY VALUE

FORMAT(I2) /* INDEX#,KEYSIZ,BUFSIZ
FORMAT (A2) /* ANSWER

Error handlers next

CALL TNOUA('ERROR ON OPEN: STATUS IS: ',24)
CALL TODEC(STATUS)

GO TO 444

CALL TNOU('ERROR ON FIND: ',15)
CALL TNOUA('INDEX IS: ',10)
CALL TODEC (INDEX)

CALL TONL

CALL TNOUA('ARRAY(1) IS: ',13)
CALL TODEC (ARRAY(1))

CALL TONL

GO TO 68

CALL CLOSMS$ (FUNIT, STATUS)

CALL EXIT

END

6 - 35 October 1980

SECTION 6 IDR4558

Primary Key Search: The first example shows the use of a primary key
to find a MIDAS file entry:

SEARCH ON PRIMARY? (Y or N)Y

USE YOUR KEY VALUE? (Y OR N)Y

ENTER KEY VALUE: 4056S -

PARTIAL KEY? (Y OR N)N

RETURN ALL DATA? (Y or N)Y

RECORD READ IS: 4@56S EASTERN GRAPHICS NECN OLD SAYBROOK

Secondary Key Search: This sample excerpt shows a search conducted on
a secondary key value.

SEARCH ON PRIMARY? (Y or N)N

ENTER SEARCH INDEX: 2 -

USE YOUR KEY VALUE? (Y OR N)Y

ENTER KEY VALUE: NWOR

PARTIAL KEY? (Y OR N)N

RETURN ALL DATA? (Y or N)Y

RECORD READ IS: 2194G SPECTROGRAPHICS MAOR PORTLAND

Using FLSFST: The FLSFST flag causes MIDAS to position to the first
entry in the index specified and to return the associated data record.
No key value need be supplied when FLSFST is used in a call to FINDS.

SEARCH ON PRIMARY? (Y or N)Y

USE YOUR KEY VALUE? (Y OR N)N

RECORD READ IS: #816S MORROW PAPER MILLS NENH MONADNOCK
DO YOU WANT TO CONTINUE? (Y or N)Y

SEARCH ON PRIMARY? (Y or N)N -

ENTER SEARCH INDEX: 1

USE YOUR KEY VALUE? (Y R N)N

RECORD READ IS: 4@56S EASTERN GRAPHICS NECN OLD SAYBROOK

Partial Key Values: Full or partial keys may be used in both primary
and secondary key searches. Partial key values must be prefixes of the
full key value — that is, they must be taken from the beginning of the
key value, not from the middle or the end. For example, if the key is
"Massachusetts", 1legal partial values would be: "Mass", "Ma",
"Massach", "M" and so forth. During a partial key search, FINDS
returns the first data entry that has a key value beginning with the
indicated partial value.

To specify a partial key value, supply, in keysiz, the exact length of
the value in key. If the key is a bit string or an ASCII string, its
length should be specified in bits or bytes, as appropriate, and the
FLSBIT flag should be set on. If FLSBIT is set off, the key size is
assumed to be in words.

IDR4558 THE FORTRAN INTERFACE

Here is an example of a partial key search using the READ program
listed earlier:

SEARCH ON PRIMARY? (Y or N)N

ENTER SEARCH INDEX: 1

USE YOUR KEY VALUE? (Y OR N)Y

ENTER KEY VALUE: EAST -

PARTIAL KEY? (Y OR N)Y

ENTER KEYSIZE IN WORDS: 2

RETURN ALL DATA? (Y or N)Y

RECORD READ IS: 4¢56S EASTERN GRAPHICS NECN OLD SAYBROOK

If keys are not being stored in the record, set FLSKEY on in flags when
doing partial key searches if you want the full key value to be
returned.

Retrieval Options

FINDS permits the retrieval of the following items from a MIDAS file:

e A data subfile entry (full or partial) —— set bufsiz to @ to
return all information. To return a partial entry, specify in

ufsiz the number of words to be returned.

e The primary key value associated with the record being sought --
set FLSKEY on. This should be used when keys aren't stored in
the data record, or when entries were added with FLSKEY set on
during calls to ADD1$. Primary key value is returned in buffer.
Set bufsiz to include both primary key and data record.

& The secondary data stored with the secondary key value on which
the search is being conducted: secondary data is returned in
buffer in place of data record. bufsiz can be set to # to
return all secomdary data, or to the number of words you want
returned. Use FL$SEC in the call: index must be a value from 1

- 170

e A full primary or secondary key value when searching on partial
keys — set FLSUKY on: full key value is returned in key.

All information returned by FINDS is placed in buffer (except when

FLSUKY is used). ‘Therefore, bufsiz must be specified accordingly
during each call.

6 - 37 Cctober 1980

SECTION 6 IDR4558

When to Use FLSKEY: The only cases in which it is necessary to set
FLSKEY on (to return full primary key value) are: when you aren't
storing keys in the data record, or when FLSKEY was set on during calls
to ADD1$. In these cases, setting FLSKEY in a FIND$ is the only way
you can find out what the primary key value is for a given record.

When to Use FLSUKY: The FLSUKY flag is useful when doing record access
by partial key. It returns the complete value of the key which MIDAS
used to conduct the search. If keys are being stored in the record,
this is good way of checking that the index entries correspond to the
key values in the data record. In addition, these flags come in handy
when doing retrievals on duplicate keys as they can help identify which
record you're actually looking at.

FINDS and the Array

During access to keyed-index MIDAS files, the user doesn't have to
worry about the settings for the array argument in calls to FINDS.
Word 1 always returns a completion code to the user following a call to
FINDS. If the value of array(l) is @, the call was successful. If 1,
the key value used in the call may occur more than once in the file.

If array(l) has a value other than @ or 1, an error has occurred.
Consult Appendix A to determine the nature of the problem.

The entire array is returned to the user when the FLSRET flag is set in

the call to FINDS. It can subsequently be used in calls to other
routines like ADD1S, NEXTS$, DELETS and LOCKS.

FINDS and Direct Access

Direct access files can be accessed by any key or by entry number. To
access a direct access file by primary or secondary use the keyed-index
access method we've been talking about up to this point. Set index to
the appropriate index subfile (key) number and set key and keysiz as
described above. In other words, the direct access file is treated
just like a keyed-index file. However, to access a direct access file
by entry number (record number), index must have a value of -1, and
both key and keysiz should be set to #. In some direct access files,
the record entry number and the primary key may be the same, as in
COBOL REIATIVE files.

Accessing a direct access file by entry number involves a search
algorithm that calculates the physical location of the record 1in the
file, given the entry number and the data subfile record size. To use
the entry number method, supply a floating-point data entry number in
array and the full data subfile entry size in bufsiz, in words.

REV. @ 6 - 38

IDR4558 THE FORTRAN INTERFACE

Argument Settings: The index argument must be set to -1 in regardless
of the search method used. 1If searching by primary key, key must
contain the full primary key value to be used in the search, and Reysiz
must always be @, indicating a full key value. In the entry number
access method, the array argument must be set to the entry number to be
used on this call. See Table 6-2, Direct Access Array Format, earlier
in this section. It doesn't matter whether or not you set FLSUSE
because the array is always used by MIDAS in this type of call.

NEXTS

NEXT$ is a powerful subroutine that allows a variety of operations to
be performed on a keyed-index MIDAS file. NEXTS can be used to:

1. Retrieve file records sequentially according to primary or
secondary key order

2. Retrieve all file records with a primary or secondary key value
greater than some given key value

3. Retrieve all records with the same partial key value

4. Retrieve all records with duplicate index entries for a
specified secondary key value

5. Retrieve all records whose key values precede a certain key
value in a given index subfile

6. Retrieve a particular record using a full or partial primary or
secondary key value (keyed retrieval)

Special flag settings are required to perform these retrievals: see

Table 6-9.

Note

NEXT$ cannot be used on direct access files. Therefore, index
can never have a value of -1 in a call to NEXT$S. Remember also
that FLSRET must always be specified in calls to NEXTS, or a
MIDAS error 30 will occur.

NEXT$ Calling Sequence

The calling sequence for NEXT$ is:

CALL NEXT$ (funit, buffer, key, array, flags, altrtn, index,
file-no, bufsiz, keysiz)

Meanings for NEXT$ arguments are shown in Table 6-8; flags settings
for NEXTS are described in Table 6-9.

6 - 39 October 1980

SECTION 6

REV.

ngument
funit

buffer

key

array

flags

altrtn

index

file-no

bufsiz

keysiz

2

IDR4558

Table 6-8. NEXTS$ Arguments

Meaning
The file unit on which the MIDAS file is opened.

Buffer into which retrieved data record or secondary
data value 1is read. If FLSKEY is set, buffer will
include key value plus data record. If "FLSSEC is
set, secondary data 1is returned instead of data
record. See Table 6-9.

Value of key to be used in search: can be full or
partial, as specified in keysiz.

MIDAS communications array.

For flag options to be used in this call, see Table
6—9 Y

Statement number of alternate return to be taken in
event of program error.

Indicates index to be used: if set to @, primary
index is wused; if greater than #, secondary index
subfile is used. Direct access is 1llegal (index
cannot be -1).

Set to @ (obsolete).

Length of data to be returned: if set to @, full
data subfile entry is returned. If FLSKEY is set on,
the full key value 1is returned with the data. If
FLSSEC is set on, secondary data is returned instead
of the data subfile entry. Be sure to make the value
of bufsiz large enough to accommodate everything that
must be returned in buffer.

Length of user-supplied key on this call. If set to
@, full key wvalue is used; 1if greater than @,
partial key is specified in either bits or bytes (if
FLSBIT is set on) or in words (FLSBIT set off).

FLSBIT

FLSFST

FLSNXT

FLSPLW

FLSPRE

FLSRET

FL$SEC

FLSUKY

FLSUSE

IDR4558 THE FORTRAN INTERFACE

Table 6-9. Flags for NEXT$

Meanigg

When set on, keysiz is specified in bits or bytes; when
set off, keysiz is in words.

When set on, tells NEXTS$ to return the record referenced
by the first entry in the specified index.

When set on, positions to next index entry greater than

key.

When set on, positions to next index entry greater than
or equal to key.

When set on, positions to index entry previous to
current entry or user-supplied key.

Tells MIDAS to return contents of array after this
call — this flag must be set on in all calls to NEXTS,
otherwise an error 3@ will occur.

When set on, returns secondary data in buffer instead of
data record; only used when index is > 1. TIf not set,
secondary data is not returned.

When set on, key field used on this call is updated by
MIDAS with full key value stored in the index.

When set on, MIDAS uses current contents of array;

array must be left over from a previous call to FINDS or
NEXTS.

6 - 41 October 1980

SECTION 6 IDR4558

Buffer Size Specifications

Data retrieved on a call to NEXTS is returned in buffer. The amount to
be read back is determined by the bufsiz argument. 1If the entire data
subfile entry is to be returned, set bufsiz to @. Similarly, when
retrieving secondary data (when index is set to a value greater than @
and FLSSEC is set), set bufsiz to @#. Otherwise, set this argument to
the number of words you want returned from the index or data subfile.
If FLSKEY is set in this call, the buffer size specified here is
assumed to include the full primary key value. Make sure bufsiz
specifies a large enough buffer to include the full primary key (as
well as the data record) when FL$KEY is used.

Array Settings

The only word of the array likely to be of any concern to the user on
calls to NEXTS is word 1 which returns a completion code after the
call. Again, the possible settings for array(l) are:

Code Meaning
/] Successful retrieval
1 Successful retrieval, but

duplicates may exist for
this key value

anything Something is wrong:
else see Appendix A

Sequential Record Retrieval

To retrieve records sequentially from some point in a primary or
secondary index (other than the beginning), use FIND$ to locate the
initial key value. Once the starting point is found, repeated calls
should then be made to NEXTS$ to return the data subfile records based
on the order of entries in the primary or in a secondary index. In
combination, FIND$ and NEXTS calls effectively enable a "greater than
or equal to" search: first you find a particular value, then you find
all the values that are greater than or equal to it. The key values
are returned according to the collating sequence by which they were
entered in the index subfile.

RE‘VY. g 6 - 4 2

IDR4558 THE FORTRAN INTERFACE

To start this type of retrieval, set the FLSRET flag in the call to
FINDS so the array can be used in the NEXTS loop. Thereafter, set the
FLSRET and FLSUSE flags in each call to NEXT$ so the array can be used
in that call and returned for use on the next call. (The FLSUSE flag
tells NEXTS to use the array as returned by the previous call.)

From the Top: To retrieve file records sequentially, beginning with
the first index entry in a given subfile, make a call to NEXTS with
FLSFST set on in flags. When set on, the FLSFST flag tells NEXTS to
return the record pointed to by the first index entry in the specified
index subfile. The index to be used in the retrieval is specified in
the index argument of the call. The FLSRET flag should also be set on
in this call. After the initial call is made, the FLSFST flag is set
off and the FLSPLW and FLSUSE flags are set on in the subsequent call.
This tells NEXTS to get the next entry in the index regardless of
whether it matches the one just retrieved or not.

NEXTS Example

The program listed here accomplishes two types of retrievals: it
retrieves all the entries in the CUSTOMER file, in order by primary
index entry, and it finds all the duplicates of a particular secondary
key value.

C "NEXT" PROGRAM FOR CUSTOMER FILE

C

C THIS PROGRAM RETRIEVES DUPLICATES FROM A SECONDARY INDEX

SINSERT SYSCOMM>KEYS.F

$INSERT SYSCOM>PARM.K

C DECLARATIONS

C Garden variety call parameters
INTEGER*2 ARRAY(14) ,INDEX,FUNIT,BUFFER(35),STATUS,FLAGS
INTEGER*2 KEY(13),BUFSIZ,KEYSIZ,CODE

C KEY IS MAX OF 13 WORDS (SECONDARY KEY @1)

INTEGER*2 J /* TRACKS # OF DUPS
C
10 CALL OPENMS (KSREAD+K$GETU, ' CUSTOMER' , 8, FUNIT, STATUS)
IF(STATUS .NE. @) GO TO 200 /* ERROR HANDLER
C GET ALL ENTRIES OUT OF PRIMARY INDEX
20 INDEX = 0@
KEYSIZ = @
BUFSIZ = 0
C
C USE FLSFST FLAG TO GET FIRST ENTRY

30 FLAGS = FLSRET + FLSFST
CALL NEXTS (FUNIT,BUFFER,KEY,ARRAY,FLAGS, $300, INDEX, @,
+ BUFSIZ,KEYSIZ)

C DISPLAY WHAT'S IN BUFFER NOW

CALL TONL /* BLANK LINE
49 CALL TNOUA('RECORD READ IS: ',16)

CALL TNOU(BUFFER, 70)

6 - 43 October 198¢

SECTION 6 IDR4558

U‘lOOOOOOOOaO

=

55

60

70

CALL TONL

CALL TNOU('RETRIEVE RECORDS IN ORDER BY KEY', 32)
RETRIEVES RECORDS IN INDEX ENTRY ORDER

USING FLSNXT FLAG WHICH TELLS MIDAS TO
GET NEXT ENTRY GREATER THAN THE CURRENT
INDEX ENTRY.

DON'T FORGET TO RETURN ARRAY!!!

FLAGS = FLSUSE + FLSNXT + FLSRET

CALL NEXTS (FUNIT,BUFFER,KEY,ARRAY,FLAGS, $60, INDEX, @,
+ BUFSIZ,KEYSIZ)

CALL TONL /* BLANK LINE

CALL TNOU('NEXT RECORD IS: ',16)
CALL TNOU(BUFFER, 70)
GO TO 50 /* REPEAT UNTIL DONE

CALL TNOU('END OF ENTRIES IN INDEX @',25) /* END OF INDEX @
CONTINUE

CALL TONL

CALL TNOU('FIND DUPLICATES IN SECONDARY INDEX @2', 37)
INDEX = 2

CALL TNOUA('KEY VALUE TO USE?', 17)

READ(1,1111)KEY

FLAGS = FLSRET /* FIND FIRST ENTRY
CALL NEXTS (FUNIT,BUFFER,KEY,ARRAY, FLAGS, $300, INDEX, 0,
+ BUFSIZ,KEYSIZ)

PRINT OUT RECORD

CALL TONL

CALL TNOU('RECORD READ IS: ',16)

CALL TNOU(BUFFER, 70)

READ ALL DUPLICATES

J KEEPS TRACK OF # OF DUPLICATES FOUND

J=0 /* INITIALIZE COUNTER
FLAGS = FLSUSE + FLSRET

CALL NEXTS (FUNIT,BUFFER,KEY,ARRAY,FLAGS,$100, INDEX, d,
+ BUFSIZ,KEYSIZ)

PRINT OUT RECORD

CALL TONL /* BLANK LINE

CALL TNOU('NEXT DUPLICATE IS: ',19)

CALL TNOU(BUFFER, 790)

J=J+1 /* KEEPS TRACK OF # DUPS
GO TO 80

IF FALL THRU LOOP, CHECK VALUE OF J
IF (J .EQ. 9) GO TO 150 /* NO DUPS FOUND AT ALL
ELSE WE RAN OUT OF DUPLICATES

158

1111

200

C
300

C
444
555

Sequential Retrieval Example:

IDR4558

CALL TNOU('NO MORE DUPLICATES',18)

GO TO 444

THE FORTRAN INTERFACE

/* CLOSE FILE

CALL TNOU('NO DUPLICATES FOUND FOR THIS KEY', 32)
/* CLOSE FILE

GO TO 444

FORMAT (26A2)
ERROR HANDLERS

/* FORMAT FOR KEY ARG

CALL TNOUA('ERROR ON OPEN. STATUS IS: ',24)

CALL TODEC({STATUS)
CALL TONL
GO TO 444

CALL TNOU('ERROR ON CALL TO NEXT: ',23)
IF(ARRAY (1) .EQ. 7) CALL TNOU('RECORD NOT FOUND',16)

CLOSE FILE

CALL CLOSMS (FUNIT, STATUS)

CALL EXIT
END

This sample session excerpt shows

the

records retrieved by the first part of the above program:

OK, SEG #NEXT

RECORD READ IS: $816S MORROW PAPER MILLS

RETRIEVE RECORDS IN ORDER BY KEY

NEXT RECORD IS:
1002P FLORA PORTRAITS

NEXT RECORD IS:
2194G SPECTROGRAPHICS

[l g S S ¥t B R

NEXT RECORD IS:
2334P PERFECT PRINTS

NEXT RECORD IS:
4056S EASTERN GRAPHICS

NEXT RECORD IS:
94¢2A ARTISTRY UNLTD.

NEXT RECORD IS:
9411P STUDIO WEST

END OF ENTRIES IN INDEX @

NENH MONADNOCK

NENY CROTON-ON-HUDSON

NWOR PORTLAND

Lsiva

WRCA SANTA BARBARA

NECN OLD SAYBROOK

WRCA MONTEREY

WRCA PALO ALTO

October 1980

SECTION 6 IDR4558

Retrieving Duplicates

NEXT$ can retrieve duplicate secondary key values and primary key
values that begin with identical prefixes. Only prefix values can be
used in partial key searches, that is, the key value supplied must be
extracted from the initial portion of the full key value. For example,
if the full key is "Brookline", legal prefixes would include "“Brook",
"Bro", "Br", and so forth.

To perform a duplicate key search, use a FINDS (with FLSRET set), or
use NEXT$ without FLSUSE, to retrieve the first entry with the desired
full or partial key value. The rest of the values that match this one
can be found by calling NEXTS$ with FLSUSE set on. (FL$NXT and FLSPLN
are set off.) The FLSRET flag should be set on for all calls to NEXTS
when doing this type of retrieval.

Duplicate Example: The NEXT program listed earlier allows you to
retrieve records with duplicates of any secondary key value desired.
For example, here is some output from a sample run of the NEXT program,
using the value "WRCA" for secondary index 02:

FIND DUPLICATES IN SECONDARY INDEX @2
KEY VALUE TO USE?WRCA

RECORD READ IS:
9411P STUDIO WEST WRCA PALO ALTO

NEXT DUPLICATE IS:
94¢2A ARTISTRY UNLTD. WRCA MONTEREY

NEXT DUPLICATE IS:
2334P PERFECT PRINTS WRCA SANTA BARBARA
NO MORE DUPLICATES

Retrieving Previous Records

To find all the records whose index values are less than or equal to a
certain key value, set the the FLSPRE flag on. First, you must have a
key value to start with. Establish this with a call to FINDS or NEXTS
with the FLSUSE flag set off. Then call NEXT$ with FLSPRE, FLSUSE and
FLSRET set on. The search should fail when the first index entry in
the index subfile is reached.

REV, 0@ 6 - 46

PTUBY REV. 19 MIDAS

On page 6-47, the line describing bufsiz should read:
bufsiz Size of buffer in bytes,

(The manual currently says "words" instead of "bytes".)

IDR4558 THE FORTRAN INTERFACE

GDATAS

The GDATAS routine retrieves records directly from the data subfile in
the physical order stored, that is, the order in which they appear in
the data subfile. This order does not necessarily correspond to any
key order, unless the records were added in order by primary key, or
unless the file has just been MPACKed.

In order to use GDATAS, the FLSFST flag must be set on in the first
call; the FLSNXT flag must be set on in subsequent calls.
Caution
Successive calls to GDATAS with FLSNXT set should not be mixed
with calls to other MIDAS file access routines because GDATAS

does not use the MIDAS array to keep track of current index
position.

GDATAS Calling Sequence

GDATAS does not use the general calling sequence used by the other data
access subroutines. Instead, it has its own:

These arguments and their meanings are:

Argument Meaning
unit PRIMOS file unit on which MIDAS file is opened.
flags Set FLSFST to retrieve first data record: this must
be used for initial call. Set FLSNXT flag on to

retrieve next sequential record in data subfile.

buffer Buffer in which data is returned.
bufsiz Size of buffer in wsudss by 7L 5,
status Error status code: may be one of the following:

/] No error

>0 System error code
-1 Bad flags value supplied
-2 Bad index descriptor

-3 Invalid record position

6 - 47 October 1980

SECTION 6 IDR4558

The data buffer, buffer, contains the retrieved data record upon
returning from a GDATAS call.

UPDATING A RECORD

Record updates are performed by jointly using the LOCKS and UPDATS
routines. LOCKS secures a record for update, preventing other users
from locking or updating it. It does not, however, prevent other users
from deleting a locked record. To update a record, it must first be
locked with LOCK$ and then updated with UPDAT$ immediately thereafter.

MIDAS CALLS THAT PRocesS OTHER FILES CAN Be mAst gerween
CAWUS 7O Lockd ave UPDAT$
LOCKS

LOCKS works on both keyed-index and direct access MIDAS files. It
works essentially like FINDS except that it also locks the record it
retrieves. Like FIND$, LOCK$ returns the located data record in
buffer. LOCKS cannot lock an already locked record, and will return an
error upon an attempt to do so. When LOCKS is successful, the record
will remain locked until UPDATS is called to update that record. A
successful LOCKS must always be followed by a call to UPDATS (otherwise
the record can't be unlocked).

LOCKS Calling Sequence

The LOCK$ calling sequence is:

CALL LOCK$ (funit, buffer, key, array, flags, altrtn, index,
file-no, bufsiz, keysiz)

An explanation of these arguments appears in Table 6-1@. Pertinent
flags values are addressed in Table 6-1l.

REV. @ 6 - 48

PIUBY REV. 19 MIDAS

On page 6-48, add the following sentence to the end of the paragraph
entitled UPDATING A RECORD:

MIDAS calls that process other files can be made between calls to
LOCKS and UPDATS.

On pAge 6-49, the argument listed as key value should be simply key.

Argument

funit

buffer

Key japddse

array

file-no

bufsiz

keysiz

IDR4558 THE FORTRAN INTERFACE

Table 6-1@¢. LOCKS Arguments

Meaning
The file unit on which the MIDAS file is open.

The buffer into which the data record to be locked is
read.

Full primary or secondary key wvalue which
identifies the record to be locked; not necessary if
record already found on a call to FINDS or NEXTS.

For keyed-index access, set to # or 1 on input. For
direct access, array must include the user-supplied
record entry number and size to identify the record to
be locked. See LOCK$ and Direct Access.

For flags that can be used with LOCKS$, see Table 6-11.

An alternate return to be taken in the event of an
error.

In keyed-index, set to # for primary index access,
1-17 for secondary index access, and to -1 for direct
access.,

Set to 4.

Length of data to be read from file: it's a good idea
to set it at @ (to return the whole record). However,
if FLSKEY is set on, make sure bufsiz is large enough
to include complete primary key.

Ignored by LOCKS: full key, is assumed if supplied.

6 - 49 October 1980

SECTION 6

Flag

FLSKEY

FLSRET

FLSUSE

REV. @

IDR4558

Table 6-11. Flags for LOCKS$
Meaning

Set on to include full primary key value in buffer along
with data record; use only if keys are not stored in the
record.

Must be set on in each call to LOCKS$ so that UPDATS can
use the array returned by this call. If not set, an
error 30 occurs.

Set on if record to be locked was already found by an
immediately prior call to FINDS or NEXTS$; the array
returned by the previous call is used on this call to
LOCKS, and the user does not have to supply a value for

key.

IDR4558 THE FORTRAN INTERFACE

Specifying a Key

In order to lock a record, it must be retrieved and made current. To
retrieve the record to be updated, a full key value must be supplied in
key on a call to LOCKS, or a valid array must be supplied by a previous
call and FLSUSE must be set on. The record to be updated can be
positioned to and locked via the primary or secondary key. You may
specify a wvalue for keysiz if you want, but it will be ignored because
a full key is always assumed if a value for key is supplied in the
call. Partial key retrieval is possible only i1f you use FIND$ or NEXTS
first with FLSUKY and FL$RET set on in flags. A subsequent call can
then be made to LOCKS with FLSUSE set on. No key is required in this
call to LOCKS because the data record has already been located by the
previous FINDS or NEXTS call.

The Array in LOCK$

hWhen the entry to be updated has already been found on a previous call
to FINDS or NEXT$ (with FLSRET set on), FLSUSE should be set on in
flags on the call to LOCKS. array can be set to @ or 1 on the LOCKS
call. When returned, as a completion code, the first word of the array
may contain one of the following values:

Value Meaning
@ Successful retrieval
1 Successful retrieval but there may be duplicates of

this key value (secondaries only)
7 Entry not found
19 Entry found, but already locked
Anything See Appendix A
Else

Note

On all calls to LOCKS, FLSRET must be set on so that the
immediately subsequent call to UPDATS can use the array
returned by the LOCKS operation.

LOCKS and Direct Access: In direct access, the use of LOCKS is
identical to its use on keyed-index access. The only differences are
that index must be set to -1, and that array must include the data
entry number and size on any call that does not use an array returned
by a prior call to FINDS. The array must be set up as follows:

6 - 51 October 1989

SECTION 6 IDR4558

Word Number Setting
1 If set to 1, tells MIDAS to use array contents.

If set to -1, array contents are not used.

2 Supply entry size (in words). This includes the key
length (in words) plus secondary data length (in
words) plus 2 words.

3-4 Supply the record entry number. This is a
single-precision (REAL*4) floating-point record
number.

5-14 Set to 0 (obsolete).

Records may be retrieved prior to locking by calling FINDS with FL$RET
set on; LOCKS is then called with FLSUSE set on. There is no need to
reset the array in this case.

UPDATS

A call to UPDATS must always be preceded by a call to LOCKS. Check the
returned completion code in array(l) after the LOCKS call to make sure
that the record was successfully locked before doing a call to UPDATS.
Record updates can be done on both keyed-index and direct access MIDAS
files. An update is a true rewrite of the record as returned in
buffer. After the call, the record is unlocked. A call to UPDATS with
FLSULK set on simply unlocks the locked record without updating it.

UPDAT$ Calling Sequence

The calling sequence for UPDATS is: |<ej7

CALL UPDATS (funit, buffer,/array, flags, altrtn, index,
file-no, bufsiz, keysiz)

Because key values are not supplied in updates, both the key and keysiz
arguments should be set to @ in a call to UPDATS. Index must match
index specified on the prior call to LOCKS. The updated record is
supplied in buffer. All the UPDATS arguments are described in Table
6-12. The flags that may be used on calls to UPDAT$ are described in
Table 6-13.

Unlock Only: 1If an entry is to be unlocked only, (not updated) set
FLSULK on in flags. buffer does not have to be altered in this case.

UPDATS and the Array: Since a copy of the array as returned by LOCKS$
must be used 1in every call to UPDATS, the FLSUSE flag must be set on.
array is effectively supplied by FLSUSE being set on and should not be
tampered with following a call to LOCKS. The completion code returned

REV. ¢ 6 - 52

PTUBY REV. 19 MIDAS

On pages 6-52 and 6-58, the key argument was imadvertently
amitted from the calling sequences, although it does appear in
the arqument explanation lists on pages 6-53 and 6-59. The key
argument should be inserted between the buffer and array
arquments in these calling sequences.

On page 6-52, insert the key arqument between the buffer and array
arquments in the UPDATS$ calling sequence. The calling sequence should
now read: ‘

CALL UPDATS (funit, buffer, key, array, flags, altrtn, index,
file-no, bufsiz, keysize)

Argument

funit

buffer

file-no

bufsiz

keysiz

IDR4558 THE FORTRAN INTERFACE

Table 6-12. UPDATS Arguments
Meaning

File unit on which MIDAS file is opened.
Buffer which contains the updated 1last record. If
FLSKEY was set in the previous call to LOCKS, the
primary key should be included in buffer. If keys are
being stored in the data record, make sure all keys
are supplied.
Ignored: set to 4.

Supplied by previous call to LOCKS$: should already be
set to @ or 1.

For flags options on update calls, see Table 6-13.
Alternate return to be taken in event of error.

Set to @ if primary index was used in LOCKS$ call; set
to 1-17 if secondary index was used in LOCKS$ call. If
direct access, set to -1. index setting for UPDATS
must match its setting in previous call to LOCKS.

Set to #.

Same as in call to LOCKS. (Ignored)

Partial keys do not apply in updates. (Ignored)

6 - 53 October 1980

SECTION 6

REV.

Flag
FLSKEY

FLSULK

FLSUSE

FL $rer

]

IDR4558

Table 6-13. Flags for UPDATS
Meaning

When set on, indicates that a full primary key is present
in buffer. Used only when keys are not being stored in
the data records.

When set on, tells UPDATS to unlock the record only: all
other flags settings are ignored and the data record is
not updated.

Must be set on so that the array returned by prior LOCK$

call is used on the UPDATS call. If not set on, an error
3@ occurs.

- %ee pPrv3?

PIU89 REV. 19 MIDAS

On page 6-54, add the following note to the bottom of Table 6-13:

FLSRET 1Ignored by UPDATS. Note that UPDATS always resets the
flag in the array which indicates whether or not a record is
locked.

IDR4558 THE FORTRAN INTERFACE

operation indicates whether or not the update was successful. If
array(l) is returned as @, the update was successful. If returned as
11, the entry was not locked as expected and the operation failed.
Other errors can occur as well, such as a concurrency error 1if the
record was deleted by another user in between the LOCKS and UPDATS
calls. See Appendix A for a list of MIDAS error codes.

Caution

Neither primary nor secondary keys may be changed in a call to
UPDATS; this includes secondary data values. It's never
permissible to change the value of a primary key anyway. Where
keys are stored in the data record, changes to secondary key
fields during a call to UPDATS will have no effect on the
actual secondary index subfile entries that point to the record
being updated. To change a secondary index entry and/or
secondary data, you must delete the entry from the index
subfile, and then re-add it in the desired form. If keys are
being stored in the data record, you should then update the
data subfile record accordingly.

UPDATS Example

The UPDATE program below shows the use of LOCKS and UPDATS in updating
a record in a MIDAS file.

UPDATE PROGRAM FOR CUSTOMER FILE

THIS PROGRAM FINDS A RECORD ON ANY INDEX
THEN LOCKS AND UPDATES IT AT THE USER'S REQUEST

INSERT SYSCOM>KEYS.F
INSERT SYSCOM>DPARM K
DECLARATIONS
Garden variety call parameters
INTEGER*2 ARRAY(14),INDEX,FUNIT,BUFFER(35) ,STATUS, FLAGS
INTEGER*2 KEY(13) ,BUFSIZ,KEYSIZ,CODE
C KEY IS MAX OF 13 WORDS

QOO oan

INTEGER*2 DATA(17) /* NON-KEY PART OF RECORD
‘ INTEGER*2 ANSWER /* YES OR NO
c EQUIVALENCE (BUFFER(19),DATA(1))
¢ CALL OPENMS (KSREAD+KSGETU, ' CUSTOMER' , 8, FUNIT, STATUS)
IF (STATUS .NE. @) GO TO 100
gl CALL TNOUA ('SEARCH ON PRIMARY? (Y or N)', 27)

READ(1, 3333) ANSWER

IF(ANSWER .EQ. 'N') GO TO 05
C ELSE IT'S A PRIMARY SEARCH

INDEX = @

6 - 55 October 1989

SECTION 6 IDR4558

GO TO 19

25 CALL TNOUA('ENTER SEARCH INDEX: ',2d) /* SEC. INDEX NO.
READ(1,2222) INDEX

C GO ON AND GET KEY VALUE

10 CALL TNOUA('USE YOUR KEY VALUE? (Y OR N)',28)

READ(1, 3333) ANSWER
IF(ANSWER .EQ. 'Y') GO TO 15

c ELSE USE FLSFST FLAG TO GET FIRST INDEX ENTRY
FLAGS = FLSFST + FLSRET
GO TO 25

15 CALL TNOUA('ENTER KEY VALUE: ', 18)
READ(1,1111)KEY
KEYSIZ = 0 /* FULL KEY
BUFSIZ = @

C MAKE CALL TO FINDS

20 FLAGS = FLSRET

25 CALL FINDS (FUNIT,BUFFER,KEY,ARRAY, FLAGS, $200, INDEX, @,
+ BUFSIZ,KEYSIZ)

C ELSE PRINT OUT RECORD

C DISPLAY WHAT'S IN BUFFER NOW

30 CALL TNOUA('RECORD READ IS: ',16)
CALL TNOU(BUFFER, 70)

C UPDATE RECORD

49 CALL TNOUA('UPDATE THIS RECORD?', 19)
READ(1,1111) ANSWER
IF(ANSWER .EQ. 'N') GO TO @1

C
C ELSE LOCK AND UPDATE
FLAGS = FL$USE + FLSRET
C AIWAYS RETURN ARRAY ON CALL TO LOCKS
50 CALL LOCKS (FUNIT,BUFFER,KEY,ARRAY,FLAGS, $300, INDEX, @,
+ BUFSIZ,KEYSIZ)
o
C IF NO ERROR, WE CAN UPDATE
C CHANGE NON-KEY PORTION OF DATA RECORD
CALL TNOUA('ENTER NEW DATA:',15)
READ(1,4444) DATA
C
C GO AHEAD AND UPDATE

FLAGS = FLSUSE
59 CALL UPDATS (FUNIT,BUFFER,KEY,ARRAY, FLAGS, $400, INDEX, @,
+ BUFSIZ,KEYSIZ)

C
C IF NO ERROR, ASK IF WANT TO CONTINUE
70 CALL TNOUA('DO YOU WANT TO CONTINUE? (Y or N)', 33)

READ(1,3333) ANSWER
IF (ANSWER .EQ. 'N') GO TO 444
C ELSE GO BACK TO TOP

GO TO A1
C
C FORMAT STATEMENTS HERE
1111 FORMAT(26A2) /* KEY VALUE
2222 FORMAT(I2) /* INDEX#,KEYSIZ,BUFSIZ

3333
4444

1006

200

300

400

C
C
444
555

This
reco
reco

Now,

IDR4558 THE FORTRAN INTERFACE

FORMAT (A2) /* ANSWER
FORMAT (34A2) /* DATA

Error handlers next

CALL TNOUA('ERROR ON OPEN: STATUS IS: ',24)
CALL TODEC(STATUS)

GO TO 444

CALL TNOU('ERROR ON FIND: ',15)

GO TO 70

CALL TNOU('ERRCR ON LOCK®,13)

CALL TNOUA('MIDAS ERROR IS:', 15)

CALL TODEC(ARRAY(1))

GO TO 444 /* CLOSE FILE
CALL TNOU('ERROR ON UPDATE',15)

CALL TNOUA('MIDAS ERROR IS:', 15)

CALL TODEC(ARRAY (1))

CLOSE FILE

CALL CLOSMS (FUNIT, STATUS)
CALL EXIT
END

excerpt from a sample execution of the above program shows a
rd update involving only the non-key portion of the data subfile
rd:

SEARCH ON PRIMARY? (Y or N)Y

USE YOUR KEY VALUE? (Y OR N)Y

ENTER KEY VALUE: 94027 -

RECORD READ IS: 94@2A ARTISTRY UNLTD. WRCA MONTEREY
UPDATE THIS RECORD?Y

ENTER NEW DATA: CARMEL

DO YOU WANT TO CONTINUE? (Y or N)N

use the READ program to see if the record was updated properly.

OK, SEG #READ
SEARCH ON PRIMARY? (Y or N)Y
USE YOUR KEY VALUE? (Y OR N)Y
ENTER KEY VALUE: 94@2A -
PARTIAL KEY? (Y OR N)N}
RETURN ALL DATA? (Y or N)Y

RECORD READ IS: 94@¢2A ARTISTRY UNLTD. WRCA CARMEL

6 - 57 October 1980

SECTION 6 IDR4558

DELETS

DELET$ can remove either a data subfile entry (and its associated
primary key) or a secondary index entry. When a primary index entry
and record entry are deleted, the associated secondary index entries
(if there are any) are not deleted. Instead, they are marked for
deletion, and the space they occupy is not reclaimed until the entry is
referenced in an interface subroutine call, or until the file is
MPACKed (see Section 12).

DELET$ ignores the fact that a record may be 1locked and deletes it
anyway. It is not necesary to precede DELETS with a call to another
subroutine like FINDS or NEXTS because DELET$ can position to as well
as remove a record or an index subfile entry. Records can be deleted
from both keyed-index and direct access files.

DELETS Calling Sequence

The DELET$ calling sequence is the same one shared by all the other
interface routines. Some arguments are ignored by MIDAS and can be
supplied as @ in the call.
KeYs
CALL DELETS(funit, buffer,fa-rray, flags, altrtn, index,
file-no, bufsiz, keysiz)

The arguments for DELETS are shown in Table 6-14.

Locating the Record to Delete

A record to be deleted may be located by either primary or secondary
key value. Simply give DELETS$ the full primary or secondary key value
in key and set index appropriately. However, a FINDS, NEXT$ or LOCKS$
operation may be used prior to a delete operation to establish the
record to be deleted. In this case, the FLSRET flag should be set in
this prior call so that DELETS$ can use the returned array. The call to
DELET$ must then set FLSUSE in flags. The key and keysiz arguments are
ignored when FLSUSE is set on in the call.

Deleting Duplicates

When deleting duplicate key entries you must use NEXT$ to locate the
particular record you want deleted. Neither DELETS nor FINDS will do
the trick unless the record or index entry you want deleted happens to
be the oldest of the duplicates in a particular subfile. The "oldest"
duplicate is always the first one that physically appears in the index.
Both DELETS and FIND$ are unacceptable because they automatically
position to the oldest duplicate value for that key in the file.

REV. 0@ 6 - 58

PTU89 REV. 19 MIDAS

On pages 6-52 and 6-58, the key argqument was inadvertently
omitted from the calling sequences, although it does appear in
the argument explanation lists on pages 6-53 and 6-59. The key
arqument should be inserted between the huffer and array
arguments in these calling sequences.

Argument

funit

buffer

key

array

flags

altrtn

index

file-no

bufsiz

keysiz

IDR4558 THE FORTRAN INTERFACE

Table 6-14. DELETS Arguments and Flags

Meaning
The file unit on which the MIDAS file is open.

Ignored.

Full primary or secondary key to be used in
identifying the entry to be deleted. MNo need to
supply a value for this if using the array from the
previous call (assumes FLSUSE is set).

Supply array(l) as @ or 1 in keyed-index access. In
direct access, words 2, 3 and 4 must include entry
number and data size. See DELETS and Direct Access.

The only applicable flag in this call is FLSUSE which
should be set if a previous call to FINDS or NEXTS was
made to locate entry to be deleted. All other
settings for flags will be ignored.

Alternate return to be taken if error on call.

Indicates whether a data record (and primary index
entry) or a secondary index entry should be deleted.

If @: deletes primary index entry and the data record
it references.

If 1-17: deletes secondary index entry from specified
index.

If -1: deletes primary index and data entry from a
direct access file.

Set to f#: obsolete.
Ignored on this call: set to 4.

Ignored on this call: set to 4.

6 - 59 October 198¢

SECTION 6 IDR4558

Deleting Secondary Index Entries

A secondary index entry may be removed without touching the data record
it references, and without deleting the primary index entry associated
with it. The entry to be deleted can be located by a call to DELETS
with FLSUSE set off and index and key set to the index number and full
key value to be used in the call.

Alternatively, the secondary index entry to be deleted can be located
with a call to FINDS or NEXTS$ with FLSRET set in flags and with index
set to the appropriate secondary index subfile number. The key value
specified must be an entry within that index. A call to either FINDS
or NEXT$ is then followed by a call to DELET$ with FLSUSE set on and
with the value for index unchanged. key can be set to # since it is
ignored when FLSUSE is set anyway.

Removing a Record and All Keys

Although a records' secondary key entries will eventually be deleted,
either by referencing them through a MIDAS call or by MPACKing the
file, it is sometimes desirable to remove all secondary key entries
explicitly. For example, in situations where a large number of records
have been deleted and their secondary key entries have not, if someone
did a call to FINDS with FLSNXT set, for example, it would take quite a
while for MIDAS to step through that secondary index looking for an
index entry that points to an existing data record. Chances are that
the secondary index subfile will contain many useless entries that
point to nothing. One way to get around this is to delete all the
secondary index entries before the actual data record is deleted.

First, delete all the secondary index entries that reference this
record, then delete the data record and its primary index entry. 'This
process is greatly simplified if you store all the keys in the data
record, because once you retrieve the data record, you can tell what
the keys are and you can delete the appropriate ones. If you don't
make a habit of storing the keys in the data subfile record this could
be a time-consuming process. In this case, you'd be better off
deleting the record by primary key and then MPACKing the file to
reclaim the secondary index and data subfile space.

DELETS Example

Although it is not necessary to do a FINDS$ before a call to DELETS, the
program shown here does, simply because it's a good idea to verify that
a record should be deleted before the delete actually occurs. This is
true mainly in an interactive application, so you certainly can
dispense with the precautions if you wish. This program also deletes
all the secondary index entries associated with the record before the
data entry 1is removed. This quarantees that no space will be taken up
in any of the secondary index subfiles by useless entries.

ele Koo K2 Ko Ke)

IDR4558 THE FORTRAN INTERFACE

DELETE PROGRAM FOR CUSTOMER FILE

THIS PROGRAM USES FINDS TO LOCATE THE RECORD TO BE
DELETE BY PRIMARY KEY AND PRINTS IT OUT.

IT DELETES ALL SECONDARY INDEX ENTRIES FIRST, THEN
PRIMARY INDEX AND DATA SUBFILE ENTRY ARE REMOVED.

SINSERT SYSCOM>KEYS.F
SINSERT SYSCOM>PARM.K

C
C

o NeXe!

=
(8]

a0

[eNeXe!

DECLARATIONS

Garden variety call parameters

INTEGER*2 ARRAY(14) , INDEX, FUNIT,BUFFER(35) ,STATUS, FLAGS
INTEGER*2 BUFSIZ,KEYSIZ,CODE

INTEGER*2 PKEY(3) ,SKEY1(13),SKEY2(2) /* KEYS FOR FILE
INTEGER*2 ANSWER /* YES OR NO

EQUIVALENCE KEYS TO PARTS OF BUFFER

EQUIVALENCE (PKEY(1) ,BUFFER(1)),
* (SKEY1(1l) ,BUFFER(4)),
* (SKEY2(1) ,BUFFER(17))

CALL OPENMS (KSREAD+KS$SGETU, ' CUSTOMER' , 8, FUNIT, STATUS)

IF (STATUS .NE. §) GO TO 100

CALL TNQUA('ENTER PRIMARY KEY VALUE OF RECORD TQ BE DELETED:',48)
READ(1,1111) PKEY

SET OTHER ARGUMENTS APPROPRIATELY

INDEX = @
KEYSIZ
BUFSIZ =
MAKE CALL TO FINDS$

FLAGS = FLSRET

CALL FINDS (FUNIT,BUFFER, PKEY,ARRAY,FLAGS,$200, INDEX, d,
+ BUFSIZ,KEYSIZ)

DISPLAY WHAT'S IN BUFFER NOW

CALL TNOUA('RECORD IS: ',11)

CALL TNOU(BUFFER, 78)

] /* FULL KEY
g

CALL TNOUA('OKAY TO DELETE?: ',17)

READ (1, 2222) ANSWER

IF(ANSWER .EQ. 'N') GO TO 15

ELSE DELETE

NOW DELETE EACH SECONDARY INDEX BEFORE DELETING DATA RECORD

INDEX = 1

ARRAY(1l) = 0@ /* RESET WORD 1 OF ARRAY
OTHER ARGS REMAIN UNCHANGED EXCEPT FOR KEY VALUE

CALL DELETS(FUNIT,BUFFER,SKEY1,ARRAY,FLAGS,$308, INDEX,d,

+ BUFSIZ,KEYSIZ)

NOW DELETE INDEX ENTRY FROM INDEX SUBFILE @2
INDEX = 2

6 - 61 October 1980

SECTION 6 IDR4558

40

50

60

1111
2222

100

200

300

444
555

REV.

ARRAY(1l) = 0@
CALL DELETS (FUNIT,BUFFER,SKEY2,ARRAY,FLAGS, $30@, INDEX, &,
+ BUFSIZ,KEYSIZ)

DELETE PRIMARY INDEX AND DATA ENTRY

INDEX = @

ARRAY(1) = @

CALL DELETS (FUNIT,BUFFER, PKEY,ARRAY, FLAGS, $300, INDEX, @,
+ BUFSIZ,KEYSIZ)

CALL TNOUA('ANY MORE ENTRIES TO DELETE?',27)
READ(1, 2222) ANSWER

IF(ANSWER .EQ. 'Y') GO TO 15
ELSE CLOSE UP

GO TO 444

FORMAT STATEMENTS

FORMAT (6A2) /* PKEY VALUE
FORMAT (A2) /* ANSWER

ERROR HANDLERS

CALL TNOUA('ERROR ON OPEN: STATUS IS: ',24)

CALL TODEC(STATUS)

GO TO 444

CALL TNOU('ERROR ON FIND: ',15)

GO TO 15

CALL TNOU('ERROR ON DELETE',15)

CALL TNOUA('MIDAS ERROR IS:', 15)

CALL TODEC(ARRAY(1))

GO TO 444 /* CLOSE FILE

CALL CLOSMS$ (FUNIT, STATUS)

CALL EXIT
END

] 6 - 62

IDR4558 THE FORTRAN INTERFACE

Below is some sample output from an execution of the above program:

OK, SEG #DELETE

ENTER PRIMARY KEY VALUE OF RECORD TO BE DELETED:9411P
RECORD IS: 9411P STUDIO WEST WRCA PALO ALTO
OKAY TO DELETE?: Y

ANY MORE ENTRIES TO DELETE?N

To verify that the record is really gone, use the READ program:

OK, SEG $READ

SEARCH ON PRIMARY? (Y or N)Y

USE YOUR KEY VALUE? (Y OR N)Y
ENTER KEY VALUE: 9411P

PARTIAL KEY? (Y OR N)N

RETURN ALL DATA? (Y or N)Y

ERROR ON FIND:

INDEX IS: 2

ARRAY (1) IS: 7

DO YOU WANT TO CONTINUE? (Y or N)N

The error code 7 means that the record sought was not found, which was
certainly not unexpected.

DELETS and Direct Access

To delete a record from a direct access file, the user must supply a
full primary key in key or a floating-point data entry number and data
entry size in array.

The only way to delete a secondary index entry from a direct access

file is to pretend it's not a direct access file and supply the proper
index number in index instead of the usual value of -1.

6 - 63 October 1980

IDR4558 THE COBOL INTERFACE

SECTION 7

THE COBOL INTERFACE

INTRODUCTION

The COBOL interface to MIDAS is based on the standard COBOL file I/0
statements for INDEXED SEQUENTIAL and RELATIVE files. Keyed-index
MIDAS files are called INDEXED SEQUENTIAL files in COBOL and direct
access MIDAS files are known as REIATIVE files. Any kind of MIDAS file
can be accessed through the COBOL interface just as if it were any
other standard COBOL INDEXED SEQUENTIAL or REIATIVE file. All the
"housekeeping™ details associated with the FORTRAN call level interface
to MIDAS are built into both sets of COBOL file I/0O statements, which
means that there's no need for the user to worry about them. In
addition, the COBOL file-handling packages come equipped with
error-handlers that simplify routine file processing and debugging.

A template must be created with CREATK for both types of files. COBOL
cannot "create" a MIDAS file from program level; it can only access an
existing file. Any MIDAS file referred to in this section already
exists; that is, a template has been created for it with CREATK.

What's in this Section

This section explains how to access an INDEXED SEQUENTIAL file from a
COBOL program. It describes how to define the file's characteristics
properly in the various parts of a typical COBOL program, and explains
the syntax of the COBOL statements used to read, write and update
records in a MIDAS file. (nly INDEXED SEQUENTIAL MIDAS files are
covered in this section; REIATIVE files are described in Section 11.

It is assumed that you have previously read Sections 2 and 3 and that
you already know how to create a template for a keyed-index MIDAS file.
The syntax and usage of the COBOL statements and verbs as they pertain
to INDEXED SEQUENTIAL files are summarized briefly here; refer to The
COBOL Reference Guide for more details on COBOL syntax and concepts.

7 - 1 October 1980

SECTION 7 IDR4558

This section and Section 11 supplement those portions of The COBOL
Reference Guide that deal with MIDAS files. This book documents the
latest version of MIDAS and therefore should be considered the more
up-to-date of the two books. However, The COBOL Reference Guide should
always be considered the authority on syntax, as this book tends to
focus only on those aspects of COBOL that apply directly to MIDAS. The
chief function of sections 7 and 11 is to summarize all the important
tools which are needed 1in dealing with MIDAS files. Perhaps equally
importantly, they show you how to use these tools in a straightforward
and practical manner.

More Terms

The primary key in an INDEXED SEQUENTIAL file is called the RECORD KEY;
secondary keys are called ALTERNATE RECORD KEYS. Prime's COBOL
supports the use of up to five secondary keys 1in INDEXED SEQUENTIAL
files. The primary key in a REIATIVE file is called the RELATIVE KEY
and is always a record number. Details on REIATIVE file access are
covered in Section 1l.

Language Dependencies

While supporting most MIDAS features, COBOL places these limitations on
MIDAS files used in COBOL applications:

e Up to five secondary keys are supported per file (INDEXED only).

e The primary key and all secondary keys (if any) must be included
in the data record -- known as "storing keys in data".

e The primary key must be the first field in the data record.

e Secondary keys should not be embedded in the primary key because
if you change any of the secondary key values, you will impact
the primary key field which cannot be changed.

e If a MIDAS file has fixed-length records, the data size
specified in the 1level @1 description of the data record must
match the data size defined for the file during CREATK.

e The only key types supported by COBOL are ASCII (A) and bit
string (B). The maximum ASCII key size is 64 characters or
bytes (32 words); the maximum bit string key size is 32
characters (16 words). Avoid specifying any other type of key
during template creation.

e Secondary data is not supported (see Appendix C).

Restrictions applicable to RELATIVE files are covered in Section 11.

REV. @ 7 - 2

IDR4558 THE COBOL INTERFACE

Note

COBOL supports MIDAS files with either ixed- or
variable-length records. However, even though the MIDAS file
template may be declared with variable-length records, COBOL
always writes out fixed-length records.

Compiling and Ioading a COBOL Program

COBOL programs that access MIDAS files must be loaded with the MIDAS
library, VKDALB. Here is an example of a typical compile and load
sequence, showing all the libraries that must be loaded in order to
successfully run a program:

COBOL program
SEG

VL #program
LO B program
LI VCOBLB

LI VKDALB

LI

sA

0

SEG #program

You should substitute the appropriate program name for the program
parameter shown in the above sequence.

Example: This is an example of a compile, load and run sequence.
User input is underlined.

0K, cobol read.da
Phase I

Phase II

Phase III

Phase IV

Phase V

Phase VI

No Errors, No Warnings, Prlme V-Mode COBOL, Rev 17.6 <DACUST>

7 - 3 October 198¢

SECTION 7 IDR4558

OK, seg

[SEG rev 17.6]
vl #read.da
$ To b_read.da
$ 11 vcoblb

$ T1 vkdalb
$1i

LOAD COMPLETE
$ sa

$q

OK, seg }read.da

ENTER FILE ASSIGNMENTS:

> (enter filenames or / —- see below)
FILE ASSIGNMENTS CQMPLETE.

(program now runs —— hopefully)

If the file-id values used in the program to identify existing disk
files are not identical to the actual pathnames of the files (relative
to the current directory), you must indicate which program file-id
values correspond to which disk files, using the form:

file-id-value = actual-pathname

If the file-id-values are identical to the actual filenames of the
files to be accessed, simply enter a "/" character in response to the
"ENTER FILE ASSIGNMENTS" prompt as indicated above. For more
information, see Data Division Requirements, below.

OPENING A MIDAS FILE

In order to open a MIDAS file from a COBOL program, the standard COBOL
file I/0 procedures must be followed. ‘The rules for defining an
INDEXED SEQUENTIAL file in the File Control Section and in the Data
Division of a program are discussed below.

File Control Requirements

The File Control paragraph contains the names of the files to be
accessed, the names of the devices on which they are to be opened,
optional mode specifications, the names of the primary (RECORD) key
(one for each file), the names of any secondary keys (ALTERNATE RECORD)
present in each file and an optional file status indicator (one for
each file) to be used in monitoring the success or failure of the
various program statements that affect each file.

REV. @ 7 - 4

IDR4558 THE COBOL INTERFACE

The basic format of the SELECT statement for an INDEXED file is:
SELECT filename
ASSIGN TO PFMS
ORGANIZATION IS INDEXED
SEQUENTIAL
[ACCESS MODE IS RANDOM]
DYNAMIC
RECORD KEY IS key-name-1
[ALTERNATE RECORD KEY IS key-name-2 [WITH DUPLICATES]...]
[FILE STATUS IS status—code].

For a complete discussion of File Control Section rules, refer to The
COBOL Reference Guide. The important rules are summarized below.

The SELECT Clause: Simply defines the name of the MIDAS file and tells
the compiler to assign it some available file unit. Always assign the
file to PFMS. Indexed files can only be accessed by MIDAS if they are
disk files. Each filename specified in a SELECT statement must also
appear in a Data Division FD entry. {See Data Division Requirements,

below.)

The Organization Clause: 1Is probably the single most important part of
the File Control definition sequence because it tells the compiler that
the file to be opened is a keyed-index MIDAS file.

The ACCESS MODE Clause: Is optional; the default mode is SEQUENTIAL.
If SEQUENTIAL is specified, or if the clause is omitted, all reads and
writes must be performed sequentially — no random operations are
allowed. Records must be added in primary key order and are always
retrieved in key order in SEQUENTIAL access mode.

If the RANDOM access mode is chosen, records can be written and
retrieved in a random fashion, based on a supplied key wvalue.
Sequential reads and writes are not permitted. The DYNAMIC access mode
gets you the best of both modes: you can read and write sequentially
or randomly and you can switch back and forth between the two.

The RECORD KEY Clause: Defines the key-name associated with the
primary key for the MIDAS file. ‘The parameter Key-name-1 must be
defined in the Record Description entry associated with the FD entry
for this file, and must be the first entry in such a description.

7 - 5 October 1980

SECTION 7 IDR4558

Some general rules of interest governing the RECORD KEY definition are:
o A primary key cannot be specified with an OCCURS clauses.

e No duplicate entries are allowed for the primary key.

e The length of the primary key cannot exceed 64 characters if
it's an ASCII key or 32 characters if it's a bit string. It

must be the same length and type as defined during template
creation.

e The primary key cannot have a P character in its PICTURE clause,
nor can it be defined as a numeric with a separate sign.

e The primary key should not have secondary keys embedded within
it because the primary key value cannot be changed. Since
secondary key values can be altered, it is too easy to get into

: . ! :
trouble by embedding keys in this manner. If you do it, use

extreme caution.

e Keys must not be defined in the WORKING STORAGE area of the
program.

When defining the keys in the File Control section, if you're not sure
of any of the length or types, use the PRINT option of CREATK to obtain

a summary of each index description. See Sections 2 or 12 for more
information.

The ALTERNATE RECORD KEY Clause: Designates a field within each record
as a secondary Key. Recall from Sections 1 and 2 that a MIDAS file may
have secondary keys that are specified during template creation. In
COBOL, you must always define the keys in the order in which they were
created during CREATK, that is, index @, index 1 ... and so on. The
ALTERNATE RECORD clause tells COBOL about the order and length of each
field you've designated as a key for this MIDAS file. A separate
ALTERNATE RECORD KEY clause is required for each secondary key you've
defined in the template. The WITH DUPLICATES modifier should be used
only for those keys which were allowed duplicate status during CREATK
and is a documentation feature only; you cannot alter the duplicate
status of an index at program level. ‘This can only be done with
CREATK; see Section 12 for more information.

Secondary keys are bound by the same size and type restrictions as the
primary key and the cannot have P characters in their PICTURE clauses.
Secondary keys cannot be defined in the WORKING STORAGE area of the
program either.

The FILE STATUS Clause: Names a two-byte unsigned field, called
status-code in the format above. The COBOL file control system uses it
to indicate the execution status of each program statement which
explicitly references the MIDAS file. Each time one of these
statements is executed, a 2-byte status code is placed into this field
indicating whether or not the operation was successful. Each status
code describes a different condition or problem, as shown in Table 7-1.

REV. 0@ 7 - 6

IDR4558 THE COBOL INTERFACE

Table 7-1. Status Codes for Indexed Files

Status Code Error Type

/4] NONE

10 END OF FILE

22 INVALID KEY

23 INVALID KEY

30 SYSTEM I/0
ERROR

99 Prime—defined
Conditions are
codes 90-99

91

92

93

94

95

99 SYSTEM ERROR

Interpretation

Successful completion of operation.

End of file reached on READ operation;
file pointer positioned past 1logical
end of file.

Attempt to perform a WRITE or REWRITE
which would create a duplicate primary
key entry. Duplicate primary key
values are illegal.

Record not found on an unsuccessful key
search; there is no record in the file
with this key value.

Operation unsuccessful due to an
I/0 error, such as a data check, parity
error or a transmission error.

Record already locked; another
user or process has already locked
this record for update.

Record not locked; a REWRITE operation
was attempted without first locking the
record via a READ operation.

Attempt to add a duplicate secondary
key value to a secondary index subfile

that does not permit duplicates.

The indexes referred to in the program

do not match those defined during
template creation.

MIDAS concurrency error: another user
just deleted the record you were trying
to perform some operation on.

Bad record 1length supplied: the
program has incorrectly specified the
record length (data size) of the MIDAS
file.

System - error: could be serious
trouble. Verify that the program is
not seriously flawed before you call
your system analyst.

7 - 7 October 1980

SECTION 7 IDR4558

Example: Below is a sample File Control Section from a program used to
access the CUSTOMER file created in Section 2. Consult the sample
program at the end of this section for another example of a File
Gontrol Section.

FILE-CONTROL.

SELECT CUSTOMER ASSIGN TO PFMS

ORGANIZATION IS INDEXED

ACCESS MODE IS SEQUENTIAL

RECORD KEY IS CUST-ID

ALTERNATE RECORD KEY IS CUST-NAME WITH DUPLICATES

ALTERNATE RECORD KEY IS LOCATION-CODE WITH DUPLICATES

FILE STATUS IS STATUS-CODE.
DATA DIVISION.

Data Division Requirements

The Data Division of the program describes the record structure of each
file used in the program, that is, each file mentioned in the File
Section. It also describes the record structure and data items which
are not part of external files but which are used to handle data
written to and read from these files during the course of program
execution.

The important rules governing the File Section of the Data Division are
summarized below:

The File Section of the Data Division consists of the following:

e One or more file description entries called FD's. If you have
more than one FD, the keys must be specified in the same order
in each one. Further, the order in which the keys are described
in each FD should match the order in which they appear in the
record.

® One or more record description entries for each FD.

e One or more file-id values, which name the MIDAS files referred
to in the File Control Section. The file-id value may or may
not be the same as the filename specified in the File Control
Section.

~J
i
(o]

REV. g

IDR4558 THE COBOL INTERFACE

The general format of a File Description entry is:

FD filename [UNCQMPRESSED]

RECORD IS

LABEL STANDARD

RECORDS ARE

[RECORD CONTAINS integer-2 [TO integer-3] CHARACTERS]

VALUE OF FILE-ID IS file-id-value

[DATA data-name-1 [data-name-2] ...]

RECORD IS

RECORDS ARE

Here are some important points about the File Section clauses:

The FD clause, required for a MIDAS file, must be followed by
the name which the program uses to refer to this MIDAS file.
The UNCOMPRESSED option may be specified, but is ignored by
MIDAS.

The LABEL RECORD IS STANDARD clause is required for all disk
files.

If the RECORD CONTAINS clause is used, the number of characters
specified must match the data record size specified during
template creation. The maximum record size is 32767 characters.

If the DATA RECORD clause is used, a record description must
follow this clause. If more than one DATA RECORD is defined per

file, a separate description of each one must be given. The
beginning of each new record description must begin with an @1
level number. Multiple record descriptions imply that a file
has more than one record-type -- but all share the same buffer
area. The key fields must all be specified in the same relative
order in each DATA RECORD description. This order must
correspond to the order in which the keys were defined during

template creation.

The VALUE OF FILE-ID clause is required; the value of
file-id-value is used to tie an internal filename to the actual

name of the MIDAS file as it appears on disk. See Note below.

7 - 9 October 1980

SECTION 7 IDR4558

Note

Since COBOL only accepts file-id values of 8 characters or
less, the file-id feature should be used to assign another name
to any MIDAS file whose pathname exceeds 8 characters. ‘The
actual MIDAS pathname is equated to the internal filename
(which is specified as file-id-value) at run-time. When COBOL
asks for FILE ASSIGNMENTS during run-time, the actual MIDAS
filename and the file-id value are equated in the form:

file-id-value = actual-MIDAS-file-pathname

The actual MIDAS filename may be assigned to file-id-value in
the VALUE OF FILE-ID clause if it's less than 8 characters.

The Record Description simply defines all the items that make up a
record and their relationship to one another. The complete syntax of a
Record Description entry is described in the Data Division chapter of
The COBOL Reference Guide.

Example: This example shows a sample File Section in the DATA DIVISION
of the program whose Envirorment Division appeared earlier:

DATA DIVISION.
FILE SECTION.
FD CUSTOMER
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID.IS "CUSTCMER"
DATA RECORD IS CUST-FILE-RECORD.
@1 CUST-FILE-RECORD.
@2 CUST-ID PIC X(5).
@2 CUST-NAME PIC X(25).
@2 LOCATION-CODE.

@5 REGION PIC XX.
@5 STATE PIC XX.

The OPEN Statement

The OPEN statement opens the MIDAS file and establishes the mode in
which it is to be accessed. It must be executed before any other
statement that references the file. More than one file can be opened
with this statement, but each file name specified in an OPEN statement
must appear in a SELECT and ASSIGN statement and must be described with
an FD entry in the Data Division. The format is:

INPUT
OPEN I-0 filename
OUTPUT

The filename is the internal name for the MIDAS file; INPUT, OUTPUT
and I-0 are the access modes which may be applied to the file. (See
Access Modes below for details.)

REV. ¢ 7 - 10

IDR4558 THE COBOL INTERFACE

If the named file cannot be 1located, the program will abort at
run-time. This statement may be used to open more than one file as
shown in this example:

OPEN INPUT CARD-FILE
OUTPUT PRINT-FILE, DIRECTORY-FILE.

Access Modes: BPBriefly, here's what you can do in each access mode:

e In INPUT mode, a file can only be accessed by READ statements
("read only" mode).

e In OUTPUT mode, a file can only be written to with WRITE
statements ("write only" mode).

e In I-O mode, a file can be both read and written to, and records
can be updated and deleted as well. Records are automatically
locked when read in I-O mode, whereas they are not in INPUT
mode. (See Record Locking later in this section.)

e Table 7-2 shows what statements can be used in each access mode.

The CLOSE Statement

The CLOSE statement is the reverse of the OPEN statement: it tells the
compiler that the file unit on which the file is opened should be
released and that the file should be written back to disk in its
current form. The format is simply:

CLOSE filename

filename is the name of the file as specified in the SELECT and FD
clauses., A file can be OPENed and CLOSEd more than once in the same

program.

7 - 11 Cctober 1980

SECTION 7

IDR4558

Table 7-2. Statements Permitted in Each Access Mode
INDEXED 1/O
Open Mode
File Access
Mode Statement Input Output Input-Output

Sequential READ (] [
WRITE []
REWRITE o
START [®
DELETE {

Random READ o []
WRITE] o
REWRITE o
START
DELETE L

Dynamic READ o o
WRITE [o
REWRITE @
START [) o
DELETE o

REV.

]

IDR4558 THE COBOL INTERFACE

ERROR HANDLING

Run-time errors can be handled in a number of ways. ZAmong them, those
well-suited to MIDAS file processing are:

e The AT END clause, which directs control to some "end-of-file"
handler (procedure) in the event that a logical end of file is
reached during a read.

e 'The INVALID KEY clause, which is executed when an error occurs;
it transfers program control to a designated procedure or
performs some useful action or series of actions. (Can be used
in START, READ, WRITE, REWRITE and DELETE statements.)

e The USE AFTER ERROR statement which indicates the name of a
procedure in the program which will be executed in the event of
an I-0 error, in addition to the System's standard I-0O
procedures.

A brief explanation of how these error-handlers work follows; refer to
The COBOL Reference Guide for complete details on these error handling
mechanisms.

The AT END Clause

The AT END clause, used only in a sequential READ statement, prevents
program failure when an end-of-file condition is encountered during the
read. The format is simple:

AT END imperative-statement

The imperative-statement, for example, could be a GO TO that transfers
control to another procedure in the program which performs some further
useful action, or it might simply close the file. Of course, this
statement could be any number of things; these are just a few
suggestions.

The INVALID KEY Clause

Many things can go wrong in MIDAS file processing, as evidenced by
Table 7-1. The INVALID Key clause is one good way to identify and trap
these errors. It should be used in all START, READ, WRITE, REWRITE,
and DELETE statements to protect your program from key errors.

7 - 13 October 198p

SECTION 7 IDR4558

Without an INVALID Key clause or a USE AFTER statement, the program
will abort when a file I-O error occurs. The format of the clause,
which can be appended to any of the statements mentioned above is:

INVALID [KEY] imperative-statement
The word "KEY" is optional: INVALID is sufficient. When this clause
is executed, the cause of the error may be determined by examining the
FILE-STATUS variable. For a list of codes, see Table 7-1.

For example, this READ statement is "protected" by an INVALID KEY
clause:

READ MFILE KEY IS PKEY INVALID KEY PERFORM READ-ERROR.

If a key error in the MIDAS file MFILE is raised during this READ, a
procedure named READ-ERROR will be performed.

The USE AFTER Statement

The USE AFTER statement must be placed under the DECLARATIVES section
of the program, immediately following a section header (and a period
and a space). It defines a procedure which will be executed in
addition to the standard I-O control system's method of dealing with
I-0 errors.

The format of USE AFTER is:

USE AFTER [STANDARD] EXCEPTION filename
ERROR PROCEDURE ON INPUT
OUTPUT
1-0

The INPUT, OUTPUT, I-O, and filename parameters are used to indicate
when that particular procedure should be executed. When filename is
specified, only errors occurring while processing that file will be
handled by this procedure. This is useful for multi-file processing.
USE AFTER itself is never executed: instead, it identifies the
conditions under which the procedure it introduces should be executed.
The terms EXCEPTION and ERROR are synonymous.

PROCEDURE DIVISION.
DECLARATIVES.

Section-name SECTION. USE AFTER etc.
[paragraph-name. [sentence] ...]...

IDR4558 THE COBOL INTERFACE

After the execution of the USE procedure, program control is returned
to the statement following the invoking statement. This example shows
a simple USE procedure:

PROCEDURE DIVISION.
DECLARATIVES.
ERROR-HANDLING SECTION. USE AFTER ERROR PROCEDURE ON I-O.
READ-ERR.
DISPLAY 'STATUS CODE IS:' ERROR-STATUS.

etc.
END DECLARATIVES.

You can have a separate USE AFTER procedure for each file accessed in
the program: or, you can have a single procedure for each OPEN mode,
that is, one for INPUT errors, one for OUTPUT errors, and one for I-O
errors (covers everything). Alternatively, you can have a single USE
AFTER that handles all the errors that might occur on any of the files
accessed by the program.

POSITIONING THE FILE

The concepts of "file position" and the "current record" are very
important when dealing with MIDAS files. 1It's a good idea to
understand them before you attempt to figure out how the actual I/0
statements work —— it will spare you a lot of confusion later on.

A Iogical View

From the user's point of view, "file position" refers to the file
pointer's present position in the file. The record to which it is
currently pointing is the "current record". The COBOL statements which
alter the current record location are OPEN, START, READ and DELETE.
DELETE alters the current record pointer by leaving the current record
position undefined after a record is deleted. However, this is no
problem because it's still possible to do a sequential or keyed READ
after a DELETE.

7 - 15 October 1980

SECTION 7 IDR4558

What's Really Happening

The first and most important thing to understand is that file
positioning is actually done relative to a primary or secondary index
subfile. The user sees file positioning in terms of the data subfile,
that is, in terms of which record is returned at any given point;
however, the file position is actually based on which key the user
supplies in a given START or READ statement. If you specify that a
START should be done using the primary key (the RECORD KEY), file
position will be established via the primary index subfile. If the
file is then processed sequentially, data subfile records will be
returned in primary key order; in other words, MIDAS uses the order of
entries in the primary index subfile as a basis for finding and
returning data subfile records.

Similarly, the secondary index subfile can be used as a basis for file
processing if a secondary key value is used in a START or a keyed READ.
A sequential read thereafter would return the next data subfile record
as referenced by the next sequential entry in the secondary index
subfile. Remember that MIDAS always adds entries to the index subfiles
in sorted order; that is, it inserts things where you would logically
expect them to be inserted. That's why it always seems that records
are in some logical order, when they are really just stored in the
order in which they were written.

Record Locking

Record locking 1is another important concept in MIDAS that applies to
files opened for I-0O only. To protect users from conflicting updates
and to ensure that the record you just read will be the record you
update or delete (assuming you want to perform either of these
operations), the READ statement always locks the record to which it
positions. Remember, this happens only in files opened for I-0O. When
a record 1is "locked", it becomes, in a sense, the sole property of the
user who locked it, protecting the record from harm by any other user
as long as the record remains locked. This is a general rule, and of
course, there are always exceptions. (One such exeception is described
under START and Iocked Records, below.) The record remains "locked"
until another I/0 operation is performed. Only the "current record"
can be locked and READ is the only COBOL statement that can 1lock a
record. There are no specific "lock" and "unlock" statements in COBOL.

What If Somebody Else...: If your program attempts to access a record
which someone else has already locked, a MIDAS error will occur. If
you don't have a "program trap" for this condition, the code of a MIDAS
error message will appear at your terminal and the program will abort.
In addition, a file status code of 90 will be returned. To be safe,
make sure that your program handles all the file status conditions
listed under File Status codes in Table 7-1. For details, see ERROR
HANDLING, above.

REV. @

~J
!

16

IDR4558 THE COBOL INTERFACE

The START Statement

The START statement establishes file position in a MIDAS file opened
for SEQUENTIAL or DYNAMIC access by moving the file pointer to a
specific record in the file. START cannot be used in a file opened for
RANDOM access.

Generally, START uses a specific key value or a conditional expression
based on a key value to position a MIDAS file to a particular record.
If an explicit key value is not supplied by the program, the primary
key (the RECORD KEY) is assumed. To position the file on an explicit
key value, follow these two steps:

1. Use a MOVE statement to assign some initial value to the key
you want to use in the START operation.

2. Use a START statement to specify whether the file should be
positioned to the first record containing that key value or to
the first record with a key value greater than the value just
MOVEd to that key, or to the first record with a key value
greater than or equal to the specified key value.

The general format of START is:

GREATER THAN
START filename {KEY IS { NOT LESS THAN; key-name]
EQUAL TO I

[INVALID KEY imperative-statement].

key-name is the name of a file key (which must have been defined in the
RECORD definition) and contains some value previously assigned by a
MOVE operation. The value in key-name is used for comparison by the
START statement. The INVALID KEY clause must be included unless a USE
AFTER procedure has been provided for this file under the DECLARATIVES.

Important Points: The important points to note about START are:

e START only positions the file pointer —- it does not return the
record (as in a READ).

e START can only be used with files opened for SEQUENTIAL or
DYNAMIC access.

e If the key value specified in the previous MOVE does not exist,
the program will terminate abnormally unless some error-handling
mechanism is included in the program. See ERROR HANDLING above.

e DBoth primary and secondary key values can be used to position
the file, but a value must be assigned either to the RECORD KEY
(primary key) or to an ALTERNATE RECORD KEY (a secondary key)
prior to the START statement. If a secondary key is used, the
KEY IS key-name clause must be included in the START statement.

7 - 17 October 1989

SECTION 7 IDR4558

e The GREATER THAN option positions to the first file record whose
key value is greater than that assigned to key-name.

e The NOT LESS THAN option positions to the first record with a
key-name value that is equal to or greater than the value
assigned to the indicated key.

e If key-name is a primary key, or is a secondary key that does
not allow duplicates, the EQUAL TO option positions to the
record in which that key field value is the same as the value
assigned to key-name.

e If key-name is a secondary key that does allow duplicates, the
EQUAL TO option will position to the first record with the
indicated key value.

e START does not lock the record to which it positions.

SThBJ:and Iocked Records: If you attempt a START operation on a record
ht 13~already locked by another user, here's what will hapfen: |a
file-status~eade of 9¢ will be returned, you will (unintentionally)
lock the record~for the other user, and your file” position will
rgmain unchanged. b~nake matters more interesSting, the person who
orliginally locked the record will subsequertly get a 91 error when
MIDAS attempts to unlock this alregdy-tnlocked record.

spite of all this e original corxent record position remgins
hanged File position is thus unaffected by &~START that encounteys a
locked record f another START is attempted, you get the re¢ord
ou want_urfless the other user (for whom you unlocked the recQrd) beats
ou O it.

Out of Range Keys: If you specify a key value that causes START to
position the file pointer to the end of the file, for example, START
KEY IS GREATER THAN AGE where the AGE field has been initialized to its
largest value in the file, the "end-of-file" condition will be raised
by a subsequent READ. This makes sense because it is not an error to
position the file pointer to end-of-file, but it is not possible to
read beyond the last file record.

Examples: Generally, to process a file sequentially via some index,
first set the file pointer to the beginning of that index this way:

MOVE LOW-VALUES TO key-name.
START filename KEY IS NOT LESS THAN key-name
INVALID KEY GO TO KEY-ERR.

or
MOVE SPACES TO key-name

START filename KEY IS NOT LESS THAN Key-name
INVALID KEY GO TO KEY-ERR.

REV. @ 7 - 18

PTUBY REV. 19 MIDaS

On page 7-19, the phrase KEY IS should be inserted after PHONE-FILE
in the example at the top of the page.

IDR4558 THE COBOL INTERFACE

To set file position with a particular key value, simply move that
value to the proper key field, as in:

MOVE '617' TO AREA-CODE.
START PHONE—FILELNOT LESS THAN AREA-CODE INVALID KEY GO TO ERRORS.
Xey)5

Positioning on Partial Keys: can be done in SEQUENTIAL or DYNAMIC
modes only, using the MOVE and START statements. The GREATER THAN and
NOT LESS THAN options enable the use of partial key values in
positioning the file pointer as long as the key value is correctly and
fully initialized before the START statement is executed. This applies
to both primary and secondary keys. For example, using the CUSTOMER
file, if you wanted to find all the records whose CUST-NAME fields
begin with the letter F and above, you might initialize the file
position as shown in this program excerpt:

PROCEDURE DIVISION.
FIRST-PROC.
OPEN INPUT CUSTQOMER.
MOVE 'F' TO CUST-NAME.
START CUSTOMER KEY IS NOT LESS THAN CUST-NAME
INVALID KEY GO TO KEY-ERR.

READING A FILE

File reads can be divided into two basic categories: sequential and
keyed.

Sequential reads simply mean reading one record after the other in
primary key or secondary key order depending on which index the file is
positioned on. In this type of read, the user doesn't supply a key
value except to tell MIDAS at which point in the index to start reading

sequentially.

Keyed reads are also called "random" reads because it 1is possible to
jump anywhere from the current file position by specifying a new key
value to search for.

Access Modes

The three types of access modes possible in COBOL -- DYNAMIC, RANDOM
and SEQUENTIAL -- were mentioned earlier. Each access mode permits
only certain operations to be performed on a file. Keyed reads are the
only type of read possible in RANDOM access mode, while sequential
reads are the only type permitted in SEQUENTIAL access mode. DYNAMIC
access mode allows the user to switch from one type of read to another,
that is, you can do a keyed read to get to a certain spot in an index
and then do sequential reads from there to retrieve the records which
logically follow it.

7 - 19 October 1980

SECTION 7 IDR4558

Reminder: You must have the file open for INPUT or I-O in order to
read it!

Sequential Reads

Sequential reads work by positiong the file to the next logical record
in after the current record, making it current. This record is then
read and returned to the user. This implies the need for a current
record as a reference point. The current record is established by a
MOVE and START or by a previous READ operation. Sequential reads are
legal in SEQUENTIAL and DYNAMIC access modes, but not in RANDOM mode.

In SEQUENTIAL Access Mode: You can read the file sequentially by
primary or secondary key. Records cannot be read randomly.

The format of a sequential READ statement in SEQUENTIAL access mode is:
READ filename [INTO read-var]
[AT END imperative-statement].

The optional INTO clause reads the record retrieved by the READ
operation into read-var. If omitted, the record value is returned in
the buffer associated with the file in the FD. The AT END clause must
be included in each READ statement unless an applicable USE AFTER
procedure has been specified for this file under the DECLARATIVES. The
NEXT RECORD clause is implied but not stated in this format because
every READ operation in SEQUENTIAL access mode automatically performs a
position to the next record in the file before the READ is performed.
Records are not locked when read if the file is opened for INPUT only;
however, they are locked if the file is opened for I-0O. Furthermore,
the current record remains 1locked until another I1/0 operation is
performed, yielding a new current record.

The following excerpt from a COBOL program written to access the
CUSTOMER file shows the PROCEDURE DIVISION which reads the file
sequentially, in primary key order.

PROCEDURE DIVISION.,
FIRST-PROC.
OPEN INPUT CUSTOMER.
MOVE LOW-VALUES TO CUST-ID OF CUST-FILE-RECORD.
START CUSTOMER KEY IS NOT LESS THAN CUST-ID
INVALID KEY GO TO END-FILE.
READ-LOOP.
READ CUSTOMER NEXT INTO READ-REC AT END GO TO END-FILE.
DISPLAY READ-REC.
GO TO READ-LOOP.
END-FILE.
CLOSE CUSTOMER.
IF STATUS-CODE =@@ DISPLAY 'SUCCESSFUL COMPLETION.'
ELSE
DISPLAY 'STATUS CODE IS:' STATUS-CODE.
STOP RUN.

REV. @ 7 - 20

IDR4558 THE COBOL INTERFACE

In DYNAMIC Access Mode: You can read a file sequentially by primary or
secondary key simply by using the NEXT clause. The key on which the
READ is done could be established by a START or by a keyed read (see
Keyed Reads, below). (Once the file position is established (relative
to a primary or secondary index), you can read the file sequentially,
by index entry order, with this form of the READ statement:

READ filename NEXT RECORD [INTO read-var]
[AT END imperative-statement].

The AT END clause is used to trap end-of-file conditions, and must be
specified if there isn't an applicable USE AFTER procedure under the
DECLARATIVES. For example, if the CUSTOMER file is opened for I-O in
DYNAMIC access mode, records can be read sequentially from some point
in a primary or secondary index by just using START, then a READ NEXT
statement:

PROCEDURE DIVISION.
FIRST-PROC.
OPEN INPUT CUSTOMER.
MOVE LOWN-VALUES TO CUST-ID.
START CUSTQMER KEY IS NOT LESS THAN CUST-ID
INVALID KEY GO TO KEY-ERR.
READ-NEXT.
READ CUSTOMER NEXT RECORD INTO READ-REC
AT END GO TO KEY-ERR.
DISPLAY 'READ NEXT AFTER START RETURNS FIRST LOG. RECORD'.
DISPLAY READ-REC.
READ-CUR.
DISPLAY 'READ WITH "KEY IS" RETURNS CURRENT RECCRD'.
READ CUSTOMER INTO READ-REC KEY IS CUST-ID
INVALID KEY GO TO KEY-ERR.
DISPLAY READ-REC,
READ-RANDOM.
MOVE *FLORA PORTRAITS ‘' TO CUST-NAME.
READ CUSTOMER INTO READ-REC KEY IS CUST-NAME INVALID KEY
GO TO KEY-ERR.
DISPLAY 'RANDOM READ ON SECONDARY KEY:' READ-REC.
DISPLAY 'NON READ SEQUENTIALLY ON THIS SECONDARY INDEX'.
READ-LOOP.
READ CUSTOMER NEXT RECORD INTO READ-REC AT END
GO TO FINIS.
DISPLAY READ-REC,
GO TO READ-LOOP.
KEY-ERR.
DISPLAY 'STATUS CODE 1IS:' STATUS-CODE.
GO TO CLOSE-FILES.
FINIS.
IF STATUS-CODE = @@ DISPLAY 'NO ERRORS'
- ELSE DISPLAY 'STATUS CODE IS:' STATUS-CODE.
CLOSE-FILES.
CLOSE CUSTOMER.
STOP RUN.

7 - 21 October 1980

SECTION 7 IDR4558

This program segment would read the entire file by secondary key
(CUST-NAME) and would handle the end-of-file condition by transferring
control to the FINIS label.

Key_gd Reads

Keyed (random) reads are performed simply by specifying the key value
on which a search should be conducted. Keyed reads are legal in RANDOM
and DYNAMIC access modes and work the same way in each mode: move the
key value into the proper key field, then use this form of the READ to
position to and retrieve the desired record:

READ filename [RECORD] [INTO read-var]
[KEY IS key-name]
[INVALID KEY imperative-stmt].

For example, to retrieve a record for the CUSTOMER file with a CUST-ID
value of '2194G', the program logic might be:

PROCEDURE DIVISION.
FIRST-PROC.
OPEN INPUT CUSTOMER.
MOVE '2194G' TO CUST-ID OF CUST-FILE-RECORD.
READ-RANDOM.
READ CUSTOMER INTO READ-REC KEY IS CUST-ID
INVALID KEY GO TO KEY-ERR.
DISPLAY READ-REC.

A keyed read does not require, and in fact eliminates the need for, a
START operation. In fact, STARTs are illegal in RANDOM access mode,
which only allows keyed reads anyway. In RANDOM access mode, any READ
done without the KEY IS clause automatically returns the current
record, that is, the record to which the file pointer is pointing at
the time the READ operation is encountered. It is not legal to MOVE
LON-VALUES to a key field prior to a keyed READ in RANDOM mode because
there is no key value that matches LOW-VALUE (octal 20@) in a MIDAS
index subfile.

Changing Search Indexes

The "KEY IS" clause provides an easy method of switching from one index
subfile to another without using a START. Simply put the key value you
want to search into the proper key-name variable, then use that
key-name in the KEY IS clause. This will establish key-name as the new
"key of reference" and will automatically put you into the
corresponding index subfile.

REV. @ 7 - 22

IDR4558 THE COBOL INTERFACE

Reading Duplicates

For secondary keys that allow duplicates, it is possible to retrieve
all the records with the same secondary key value in DYNAMIC access
mode only. Follow these steps:

1. MOVE the desired secondary key value into the appropriate
secondary key:

MOVE 'sec-val' TO sec-Key-name

2. Position the file with a START to the first record with this
key value:

START filename NOT LESS THAN sec-key-name INVALID KEY
imperative-statement.

3. In a loop, use a READ NEXT statement with the AT END option to
trap the end-of-file condition (status code 1¢) which happens
when there are no more entries in the index to search.

4. Compare the value just read with the value sought to verify
that it is indeed a valid duplicate.

For example: Using the CUSTOMER file, suppose you want to read all the
records which have the value WRCA in their LOCATION-CODE field (a
secondary key). Position the file by secondary key to the first WRCA
entry in secondary index subfile @2, then READ NEXT in a loop until no
more duplicates are found. The following is the PROCEDURE DIVISION of
a program that accesses duplicate values in the CUSTOMER file:

PROCEDURE DIVISION.
FIRST-DUP.
OPEN INPUT CUSTQMER.
MOVE 'WRCA' TO LOCATION-CODE.
START CUSTOMER KEY IS NOT LESS THAN LOCATION-CODE
INVALID KEY GO TO KEY-ERR.
READ-LOOP.
READ CUSTOMER NEXT RECORD INTO READ-REC
AT END GO TO KEY-ERR,
IF LOCATION-CODE NOT EQUAL 'WRCA' GO TO FINIS.
PRINT-REC.
DISPLAY READ-REC.
GO TO READ-LOOP.

KEY-ERR.
IF STATUS-CODE = 1§ DISPLAY 'END OF FILE'
ELSE
DISPLAY 'STATUS CODE IS:' STATUS-CODE.
FINIS.

CLOSE CUSTOMER.
IF STATUS-CODE = @@ DISPLAY 'ALL DONE'.
STOP RUN.

When run, the program produces the following output:

7 - 23 October 1980

SECTION 7 IDR4558

9411PSTUDIO WEST WRCA
9402AARTISTRY UNLTD. WRCA
2334PSEACOAST STRIPPERS WRCA
END OF FILE

ALL DONE

OK,

More on Partial Key Access

Partial key access is possible only by using the MOVE and START
statements —— partial values cannot be used in READ operations.
However, the MOVE and START statements provide a good method of
searching for values less than or greater than a particular value. The
value itself may represent a full or partial key value. By partial key
value, we «.nean a prefix of a full key value. For example, if a key
value is "FLORA", legal prefixes would include: "F", "FL", "FLO", and
so forth. The use of partial key values in positioning the file was
introduced earlier, and this example shows how this concept can be
applied in a typical situation:

PROCEDURE DIVISION.
FIRST-PROC.
OPEN INPUT CUSTOMER.
MOVE 'F' TO CUST-NAME.
START CUSTOMER KEY IS NOT LESS THAN CUST-NAME
INVALID KEY GO TO KEY-ERR.
READ-IT.
READ CUSTOMER NEXT RECORD INTO READ-REC AT END
GO TO FINIS.
DISPLAY 'FIRST RECORD WITH NAME BEG. WITH F:'
DISPLAY READ-REC.
DISPLAY 'READ REST OF RECORDS BEG. WITH F ON UP:'.
READ-LOOP.
READ CUSTOMER NEXT RECORD INTO READ-REC AT END
GO TO FINIS.
DISPLAY READ-REC.
GO TO READ-LOOP.

When run, the following is printed at the terminal:

FIRST RECORD WITH NAME BEG. WITH F:

10@02PFLORA PORTRAITS NENY
READ REST OF RECORDS BEG. WITH F ON UP:
4¢56SMARK-BURTON NEMA
2334PSEACOAST STRIPPERS WRCA
2194GSPECTROGRAPHICS NWOR
9411PSTUDIO WEST WRCA

REV. @ 7 - 24

IDR4558 THE COBOL INTERFACE

ADDING RECORDS

Records can be added to a MIDAS file when it is opened for OUTPUT or
I-O. However, a file opened for SEQUENTIAL access can only be written
to if it's opened for OUTPUT. The WRITE statement takes information
supplied by the user and adds it to the MIDAS file. Regardless of the
order in which the records are presented, MIDAS inserts all primary key
entries into the primary index subfile in ascending key sequence (low
values first); however, the data records are always added to the
bottom of the data subfile. Secondary key entries, like primary key
entries, are added to secondary index subfiles in sorted order.
Duplicates are handled a bit differently; when MIDAS first attempts to
add a duplicate entry (for a secondary index that allows duplicates) it
sets a flag in the original entry to indicate that there's more than
one occurrence of this particular entry value in the index subfile.
Duplicates are added sequentially thereafter, following the last
matching key.

The WRITE Statement

A unique key value must be supplied for the primary key of each record
added to an INDEXED SEQUENTIAL file. TIn other words, put a new value
in the RECORD KEY (primary key) field before each WRITE statement is
executed. To add secondary keys to their respective indexes, put the
appropriate values in the secondary key fields prior to the execution
of the WRITE statement. The WRITE statement format is:

WRITE record-name FRM from-area
[INVALID KEY imperative-statement].

The important things about this statement are:

e In fixed-length files, if the data in from-area is not the same
length as the file record, it is truncated or blank-filled.

® Make sure from-area and record-name do not reference the same
memory location.

e A unique value for the primary key must be supplied prior to the
execution of each WRITE.

e The INVALID KEY clause can be used to trap duplicate primary or

secondary Kkey errors and is required unless a USE AFTER
procedure is specified for this file in the DECLARATIVES.

7 - 25 October 1980

SECTION 7 IDR4558

In files open for SEQUENTIAL access, the data values to be added should
be supplied in sorted order, by primary key value. Because the file
pointer cannot be randomly positioned in SEQUENTIAL access, the entries
cannot be added randomly either. However, it's okay in the other
access modes to give unsorted input to the program, although it Jjust

makes good sense (and better performance too) to sort it wherever
possible.

WRITE Example: This program shows how to add entries to a file
Interactively by prompting the user for input, then inserting the entry
into the file. 'This is a case where you can't always be sure of the
order of input entries, so the file is opened for DYNAMIC access mode:

ID DIVISION.
PROGRAM-ID. ADD-PROG.
AUTHOR. LJD.
INSTALLATION. TPUBS.
DATE-WRITTEN. @8/28/80.
DATE-COMPILED. 08/28/80.
SECURITY. NONE.
REMARKS. PROGRAM TO TEST CUSTOMER FILE ADDS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE COMPUTER. PRIME.
OBJECT COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CUSTCMER ASSIGN TO PFMS
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS CUST-ID
ALTERNATE RECORD KEY IS CUST-NAME WITH DUPLICATES
ALTERNATE RECORD KEY IS LOCATION-CODE WITH DUPLICATES
FILE STATUS IS STATUS-CODE.
DATA DIVISION.
FILE SECTION.
FD CUSTCMER
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "CUSTOMER"
DATA RECORD IS CUST-FILE-RECORD.
@1 CUST-FILE-RECORD.
@2 CUST-ID PIC X(5).
@2 CUST-NAME PIC X(25).
@2 LOCATION-CODE PIC X(4).
@2 FILLER PIC X(35).
WORKING-STORAGE SECTION.
@1 STATUS-CODE PIC 99.
@1 READ-REC PIC X(35).
PROCEDURE DIVISION.
FIRST-PROC.
OPEN I-O CUSTQMER.
GET-DATA.
DISPLAY 'ENTER CUSTOMER ID —- PIC X(5) OR ENTER XX TO QUIT'.
ACCEPT CUST-ID.

REV., ¥ 7 - 26

IDR4558 THE COBOL INTERFACE

IF CUST-ID = 'XX' GO TO FINIS.
CHECK-DUPS.
READ CUSTQMER KEY IS CUST-ID
INVALID KEY GO TO CHECK.
GET-REST.
DISPLAY 'ENTER CUST-NAME — 25 CHARS'.
ACCEPT CUST-NAME.
DISPLAY 'ENTER LOCATION CODE — 4 CHARS (REGION-STATE)'.
ACCEPT LOCATION-CODE.
WRITE CUST-FILE-RECORD INVALID KEY
GC TC CHECK.
GO TO GET-DATA.
CHECK.
IF STATUS-CODE = '23' GO TO GET-REST
ELSE DISPLAY ' STATUS-CODE IS:' STATUS-CODE.
GO TO GET-DATA.
FINIS.
IF STATUS-CODE = @@ DISPLAY 'ALL DONE'
ELSE
DISPLAY 'STATUS CODE IS:' STATUS-CODE.
CLOSE CUSTCMER.
STOP RUN.

When run, the program does the following (user input is underlined) :

ENTER CUSTOMER ID - - PIC X(5) OR ENTER XX TO QUIT
8888T

ENTER CUST-NAME — 25 CHARS

MARVIN'S TYPESETTING

ENTER LOCATION CODE -- 4 CHARS (REGION-STATE)

SWAZ

ENTER CUSTQMER ID - - PIC X(5) OR ENTER XX TO QUIT
XX

ALL DONE

To verify that the new record was added and was inserted in the proper
order, run the program shown earlier that reads the file sequentially
by primary key:

OK, seqg #seqrd
ENTER FILE ASSIGNMENTS:

>/

FILE ASSIGNMENTS CQMPLETE.
#816SMorrow Paper Mills NENH
1002PFLORA PORTRAITS NENY
2194GSPECTROGRAPHICS NWOR
2334PSEACOAST STRIPPERS WRCA
4056 SMARK-BURTON NEMA
8888TMARVIN'S TYPESETTING SSWA
94@2AARTISTRY UNLTD. WRCA
9411PSTUDIO WEST WRCA
SUCCESSFUL COMPLETION.

OK,

7 - 27 October 1980

SECTION 7 IDR4558

UPDATING RECORDS (REWRITE)

A record update in COBOL consists of rewriting the entire record. Any
field can be changed, with the exception of the primary key field.
Because a record must be locked in order to be updated, only the
current record can be updated. In SEQUENTIAL access mode, you must
first READ the record to indicate which one is to be rewritten. In
RANDOM mode you must position to the record with a keyed read; in
DYNAMIC mode, either of these methods will do. If the record to be
updated is not read prior to a REWRITE, a status code of 91 will be
returned. This condition code indicates an unlocked record; a record
must be locked in order to be updated. In addition, the file must be
open for I-0: this applies to all access modes.

The REWRITE Format

The REWRITE statement format is the same for all access modes The
INVALID KEY clause must be included in all REWRITE statements if there
is no USE AFTER procedure specified for this file under the
DECLARATIVES.

REWRITE record-name [FROM from-area]
[INVALID KEY imperative-statement].

If the FROM option is used, the RECORD KEY value must be the same as
the key used in the previous READ. This option allows the new record
to be written from another file or data area. 'The data in this "“FROM
area" is moved to the record-name buffer before it is written to the
file. Without the FROM option, you directly modify the buffer
(record-name) which contains the just-read data and then write it back
to the file.

PROCEDURE DIVISION.
FIRST-PROC.
OPEN I-O CUSTOMER.
MOVE '2334P' TO CUST-ID.
READ-THIS.
READ CUSTOMER INTO READ-REC KEY IS CUST-ID
INVALID KEY GO TO KEY-ERR.
DISPLAY 'CURRENT RECORD IS:' READ-REC.

CHANGE-VAL.
MOVE ' 2334PSEACOAST FINISHERS WRCA' TO NEW-RECORD.
UPDATE.

REWRITE CUST-FILE-RECORD FROM NEW-RECORD
INVALID KEY GO TO KEY-ERR.
READ CUSTQMER INTO READ-REC INVALID KEY
GO TO KEY-ERR.
DISPLAY 'UPDATED RECORD IS:' READ-REC.
ALT-UPDATE.
MOVE NEW-RECORD TO CUST-FILE-RECCRD.

REV. @ 7 - 28

IDR4558 THE COBOL INTERFACE

REWRITE CUST-FILE-RECORD INVALID KEY GO TO KEY-ERR.

GO TO FINIS.
KEY-ERR.

DISPLAY 'STATUS CODE 1IS:' STATUS-CODE.
FINIS.

When run, the program produces the following output:

CURRENT RECORD IS:2334PSEACOAST STRIPPERS WRCA
UPDATED RECORD IS:2334PSEACOAST FINISHERS WRCA
ALL DONE

OK,

DELETING RECORDS

The DELETE statement in COBOL removes the data record and its primary
index entry and marks all the corresponding secondary index entries for
deletion. The space occupied by these secondary index entries is not
reclaimed until the MPACK utility is run on this file. Remember that
the file must be opened for I-0 in order to delete entries from it.

The DELETE Statement Format

The DELETE format is:
DELETE filename [INVALID KEY imperative-stmt].

filename is the name assigned to the MIDAS file in the SELECT clause
and FD clause. The INVALID KEY clause must be included in the DELETE
statement when the file is opened for RANDOM or DYNAMIC access and
there is no USE AFTER procdure specified for this file. In not include
the INVALID KEY clause in DELETE statements used on files opened for
SEQUENTIAL access.

The important things to remember are:

e In SEQUENTIAL access mode, the record must first be read in
order to be deleted. This 1is because a DELETE operation in
SEQUENTIAL access mode does not perform a position operation:
that's what the READ is for.

e In SEQUENTIAL access mode, the value in the RECORD KEY (the
primary key) should not be changed between the READ and the
DELETE statements. This is because DELETE can only operate on
the current record and uses the primary key value used in the
READ to check that it's the same one as the current record's
primary key value.

7 - 29 October 1980

SECTION 7 IDR4558

e In DYNAMIC and RANDOM access modes, if the record for which a

prior key value has been supplied cannot be found, the INVALID
KEY clause will be activated and a file status code of 23 will

be returned.

e A DELETE operation leaves the current record undefined, but a
READ NEXT or a keyed read operation immediately after a DELETE
will be successful, assuming that you didn't delete the last
record in the file.

e You can't perform two DELETEs in a row in SEQUENTIAL access

mode, but you can in RANDOM or DYNAMIC modes, as long as you
supply a new primary key value.

How to Remove Records

To delete records in files opened for RANDOM or DYNAMIC access, MOVE
the primary key value of the record to be deleted to the RECORD KEY.
The DELETE statement then positions to this record and deletes it. In
RANDOM and DYNAMIC access modes, DELETE automatically locks the record
upon positioning to that record. This makes that record the current
record. In SEQUENTIAL access mode, the record must be read prior to a
DELETE to establish the current record position because DELETE does not
perform a position operation in SEQUENTIAL access mode.

Note

If you attempt to read a record that has been deleted from a
file, you'll get a 23 error (record not found). However, a
subsequent READ NEXT will return the next record (in key order)
that happens to follow the current record.

Examples
The first of these two examples shows the PROCEDURE DIVISION of a
program that accesses the CUSTOMER file when opened for DYNAMIC access.

The second program shows how to delete a record from the CUSTOMER file
when it is opened for SEQUENTIAL access.

REV. 0 7 - 30

IDR4558 THE COBOL INTERFACE

Program Excerpt 1:

PROCEDURE DIVISION.
FIRST-PROC.
OPEN I-O CUSTQOMER.
MOVE '@816S' TO CUST-ID.
DISPLAY 'DELETE RECORD WITH PRIMARY KEY §816S'.
DEL~REC.
DELETE CUSTOMER.
READ CUSTCMER NEXT RECORD INTO READ-REC AT END
GO TO KEY-ERR.
DISPLAY 'NEXT RECORD IS:' READ-REC.
GO TO FINIS.
KEY-ERR.
DISPLAY 'STATUS CODE IS:' STATUS-CODE.
FINIS.
IF STATUS-CODE = @@ DISPLAY 'ALL DONE'
ELSE DISPLAY 'STATUS CODE IS:' STATUS-CODE.
CLOSE CUSTQMER.
STOP RUN.
OK,

When run, the program produces this output:
DELETE RECORD WITH PRIMARY KEY @816S

NEXT RECORD IS:10@2PFLORA PORTRAITS NENY
ALL DONE

7 - 31 OCctober 1980

SECTION 7 IDR4558

Program Excerpt 2:

PROCEDURE DIVISION.
FIRST-PROC.
OPEN I-O CUSTQOMER.
MOVE '2334P' TO CUST-ID.
START CUSTOMER KEY IS EQUAL TO CUST-ID INVALID KEY
GO TO KEY-ERR.

READ-THIS.
READ CUSTOMER INTO READ-REC

INVALID KEY GO TO KEY-ERR.
DISPLAY READ-REC.

DEL-REC.
DELETE CUSTOMER INVALID KEY GO TO KEY-ERR.
GO TO FINIS.
KEY-ERR.
* DISPLAY 'STATUS CODE IS:' STATUS-CODE.
FINIS.

IF STATUS-CODE = @@ DISPLAY 'ALL DONE'
ELSE DISPLAY 'STATUS CODE IS:' STATUS-CODE.

CLOSE CUSTOMER.
STOP RUN.

OK,
The program produces the following output:

2334PSEACOAST FINISHERS WRCA
ALL DONE

REV. @

IDR4558 BASIC/VM INTERFACE

SECTION 8

THE BASIC/VM INTERFACE

INTRODUCTION

BASIC/WM's interface to MIDAS consists of a special set of file
handling statements that read, write, delete and update entries in a
MIDAS file. The MIDAS access statements are similar in format to the
standard file handling statements in BASIC/VM, but extensions to their
syntax permit the more complex operations associated with MIDAS files.
Because the interface acts as a "go-between", translating the user's
demands into the MIDAS subroutine calls which do all the work, a MIDAS
file can be processed as easily as any other file type supported by
BASIC/VM.

Note

This section assumes that you've read and are familiar with the
the concepts in Section 1 and 2. In addition, it may be worth
clarifying that access to MIDAS files is supported only by the
BASIC/VM compiler, and not by any of Prime's other BASIC
scftware products.

Language Dependencies

Like all other language interfaces (except PL/I), a template must be
created for a MIDAS file (with CREATK) before it can be accessed from
BASIC/VM. In addition, the following rules apply to BASIC/VM's MIDAS
interface:

e Up to 17 secondary indexes are allowed per file (duplicates are
allowed) .

e Only keyed-index MIDAS files are supported; direct access MIDAS
files cannot be processed by BASIC/VM.

e Key fields are not required to be part of the data record, but
it is strongly recommended that they be included.

e The secondary data feature is not supported.

Two very important things to remember are: first, that keys are
referred to by number in BASIC/VM; therefore the primary key is KEY#,
the first secondary is KEY@l, the second KEY@2, etc.; secondly, that
key numbers - and - index -subfile numbers- are one and the same. Any
reference to a particular key is implicitly a reference to the index
subfile in which those key values are stored.

8 - 1 October 1980

SECTION 8 IDR4558

Summary of Access Statements

The BASIC/VM statements needed to process a MIDAS file are briefly
summarized in Table 8-1. Experienced BASIC/VM users will note the

similarity between these statements and those used in handling other
file types in BASIC/WM.

OPENING/CLOSING A MIDAS FILE
BASIC/VM uses the same methods of opening and closing a MIDAS file as

it does any file — the DEFINE FILE statement. The file type must be
declared as MIDAS.

The DEFINE FILE Statement

The DEFINE FILE statement opens a MIDAS file and assigns it a file unit
number to be used as an alias for the file for the remainder of the
program. Up to 12 files can be opened at a time from a single BASIC
program. Be sure to use the unit numbers 1-12 when opening a MIDAS
file. The keyword MIDAS is required. The format of this statement is:

DEFINE [READ] FILE #unit = filename, MIDAS [,record-size]

The parameters used in the above format are explained below.

Parameter Meaning

#unit The user-assigned unit number (either a literal or
numeric expression); the # sign is required as in:
#2.

filename The name of the MIDAS file; must be enclosed in

quotes, or must be a legal BASIC string expression.

record-size The length of the MIDAS data subfile record in words;
(optional) if the MIDAS file has fixed-length records, this
number, 1if specified, must match the data size
indicated in the MIDAS file. (Use the PRINT option

of CREATK to determine this. See Section 12.) No

record-size is necessary if the file has
variable-length records. (The default record-size is
60 words.)

The READ option opens the file for reading only; no records can be
added to the file. ‘The default access mode allows the full range of
file operations to be performed on the MIDAS file (no restrictions).

Table 8-1.
Statement

ADD

DEFINE FILE

POSITION

REMOVE

REWIND

UPDATE

IDR4558 BASIC/VM INTERFACE

Summary of Access Statements.

Description

Adds a record (by primary key) to the
MIDAS file; secondary keys may be
added also (optional).

Opens the designated MIDAS file on an
available PRIMOS file unit and assigns
a BASIC/VM file unit number to it for
program reference.

Positions the file pointer by key
value to a particular record in the
file and locks it.

Finds, locks and returns a MIDAS file
record, by primary or secondary key;
other options allow duplicate
retrieval as well as sequential record
retrieval.

Deletes a record by primary key;
also, can delete any secondary index
entry.

Positions the file pointer to the
first entry in the specified index
(defaults to primary index).

Rewrites the current record.

8 - 3 October 1980

SECTION 8 IDR4558

For example, the first of these two statements opens a file with

fixed-length records; the second opens a file with variable-length
records:

DEFINE FILE #1
DEFINE FILE #1

'CUSTOMER' , MIDAS, 35
'SAMPLE', MIDAS

CLOSE Statement

MIDAS files are closed just like any other BASIC/WM file:

CLOSE #unit

The unit number is the user-assigned BASIC/VM file unit on which
the MIDAS file is opened. The # sign is required.

Error Handling

The BASIC/VM ON ERROR statement can trap MIDAS errors by directing
program control to a statement which will be executed if an error
occurs. ON ERROR traps only I/0 errors on the particular unit on
which the file was opened. A general error trap, as well as one
for each file opened, may be in effect simultaneously. Following
an error, the MIDAS code of this error can be obtained by using
MIDASERR. This works much 1like ERR, the special error-code
variable that returns BASIC/VM error codes. You can then look up

the MIDAS error code in Appendix A to determine the nature of the
problem. The ON ERROR format is:

ON ERROR [#unit] GOTO 1ine-number

#unit is the user-assigned unit number on which the MIDAS file was

opened. If #unit is not specified, all I/0 errors occurring on
every opened file unit will be trapped. line-number is the line
number of the first statement of the error handler.

To print out the MIDAS error code, use the following PRINT
statement:

PRINT MIDASERR

FILE POSITIONING

Almost all of the BASIC/VM file handling statements use and/or set
the current file position. The current file position is considered
that record in the file at which the file "pointer" is pointing.
The file position is actually established according to an index
subfile. This makes sense because the only way records can be
retrieved from the data subfile is via pointers to the records in
the index subfiles. Thus the "file pointer" actually points to a

IDR4558 BASIC/VM INTERFACE

specific entry in some index subfile, which contains a pointer to a
record in the data subfile, making that record the current record.

File position, then, can be established in the primary index
subfile or in one of the secondary index subfiles. This can be
done with the REWIND, POSITION or READ statements, all of which
generally establish a new file position based on a user-specified
key value. If the user does not supply a key value or an index
number, the file position is set by default using the primary
index. The "current record” would then be set to the record
referenced by the first entry in the primary index subfile. It may
be helpful to think of the index subfile which is pointing to the
current record as the "current index."

Other BASIC/VM MIDAS access statements use the current file
position to perform some action, and some of them reset it to a new
location after the operation is complete. All of this is important
only when trying to visualize where you are in the file at any
given time. The idea of the "current record" and current file
position will become clearer as you familiarize yourself with the
way these statements actually work.

Locking/Unlocking

" L

There are no "lock/unlock® statements in BASIC/VM; therefore, in
order to preserve the integrity of any record, the READ, UPDATE,
POSITION and DELETE statements all 1lock a record before they
perform their respective operations. By locking the record,
BASIC/VM protects the record from accidental harm by another user
or process. It is a good 1idea to include error traps in your
programs for records that may already be 1locked by another user
when you try to access them. Specifically, one would want to trap
for a MIDAS error number 14. (See Appendix A of this book for a

list of MIDAS error codes.)

A% (SR VL0 L

The POSITION Statement

The POSITION statement moves the file pointer to any record in the
MIDAS file, making it the current record. POSITION locks the
record, leaving it locked until the file pointer is positioned to
another record.

8 - 5 October 1980

SECTION 8 TIDR4558

The format is:
SEQ
POSITION #unit|4,KEY [key-number] = key-value ('
SAME KEY

The parameters and keywords used in the format are explained below.

Parameter Meanigg

key—number Key number (index subfile number), which may be a
literal or numeric expression; if unspecified or
zero, it is taken as the primary key.

key-value Key value enclosed in quotes, or a legal string
expression.
SEQ Positions pointer to the next sequential record

in the file according to the order of entries in
the current index.

SAME KEY The next record is made current if it has the
same key value as the current record; used when
most recent file position was established via a
secondary Key allowing duplicates.

If there is no record at the file position specified, an error will
be flagged. Some examples of the various POSITION options are:

POSITION #1, SAME KEY
POSITION #4, SEQ
POSITION #2, KEY 3 = '478"'

How POSITION Works: Records are positioned by primary or secondary
key, as specified on the POSITION statement line. This establishes
that key as the "current key of reference" and it establishes the
index subfile in which that key's value is stored, as the current
"index of reference." If no key number is specified, the primary
key is assumed, and POSITION uses the primary index subfile as its
index of reference. (The primary key 1is then the "key of
reference.") Once an index of reference is established, the file
can be processed sequentially without explicitly referring to a key
number or index subfile. All "read" requests are interpreted
relative to that index; that is, records are read in the order in
which their key values appear in the index of reference. (More on
this under READING RECORDS.)

REV. ﬂ 8 - 6

IDR4558 BASIC.VM INTERFACE

The REWIND Statement

The REWIND statement positions to and makes current the record with
the lowest value for the specified key. If no key number is
specified, the primary key is assumed. Essentially, REWIND Jjust
sets the file pointer relative to the first entry in the indicated
index subfile. (Remember that references to key numbers are really
references to index subfile numbers.) The REWIND statement format
is:

REWIND #unit [, KEY num-expr]

num-expr is the key (index subfile) number; it must be used with
KEY option.

Examples: The first example sets the file position to the record
referenced by the initial entry in the primary index. The second
sets the position to the record referenced by the first entry in
secondary index subfile @3.

REWIND #3
REWIND #2, KEY 3

ADDING RECCRDS

The ADD statement adds a record to a MIDAS file; it does not
change the current file position or the current record. Although
only the primary key value 1is required in an ADD, one or more
secondary key values may be added to the appropriate index subfiles
with a single ADD. In fact, this practice is recommended because
it avoids the possibility of having index entries that don't match
the key values in the data record. Whenever keys are being kept in
the data record, it's important to make sure the entries in the
primary and secondary index subfiles are the same as the key
entries stored in the data subfile record; it minimizes confusion.
The format of the ADD statement is:

PRIMKEY
ADD #unit, new-record, KEY[#-expr] = key@-val [, keylist]

where keylist has the form:

KEY key-number = key-val ...
This expression can be repeated for each secondary key field in the
record. The key values assigned here should match the key values

in the data record (new-record), if you are storing keys in the
data record. ‘The parameters are described below. :

8 - 7 Cctober 1980

SECTION 8 IDR4558

Parameter Explanation

new-record Data record to be added; should be equal in
length to the record size declared for the file,
if the file has fixed-length records; record
should be padded to correct length with blanks.
If you want keys stored in the record, make sure
new-record includes all the key values.

PRIMKEY Both of these keywords represent the primary key.
KEY[@-expr] @O-expr is a literal or numeric expression that
evaluates to zero.

key@-val Represents the primary key value: may be a string
expression or a literal.

keylist An optional list of secondary key numbers and
values.

key-number A numeric expression indicating a secondary key
number (index subfile number).

key-val A string expression or literal «containing a
secondary key value.

Only the keys which are explicitly specified in the keylist are
entered in the respective index subfiles. It is recommended that
you add all index entries at the same time to avoid possible
ambiguities. The example below shows an ADD statement that adds
all the index entries along with the data subfile entry (also
called the "data record").

ADD Example

This example shows a BASIC/VM program which adds records to the
CUSTOMER file created in Section 2. This program reads data from a
sequential disk file, called NAMES, pads each record with blanks
until it's the proper 1length, then adds each record to the data
subfile. At the same time, the primary and secondary key entries
are placed in the proper index subfiles, because all the necessary
key values were included in the keylist. This example also shows
the output from the program when it is executed. MNotice that the
program is run from PRIMOS command level, using the BASICV command.

OK, slist add.basic

19 DEFINE FILE #1 = 'CUSTOMER', MIDAS, 35
20 DEFINE FILE #2 = 'NAMES', 17

30 DEF FNSS$S(X$,N) ! PADS STRING X$ WITH SPACES

40 ! ADD SPACES UNTIL THE LENGTH EQUALS 7¢ CHARACTERS

50 X$ = X$ +' ' UNTIL LEN(XS) = N

60 FNSS = X$ | ASSIGN THE NEW PADDED STRING TO FUNCTION
70 FNEND ! END OF PAD FUNCTION

8 J =7

REV. @ 8 - 8

IDR4558 BASIC/VM INTERFACE

99 N = 790 ! NUMBER OF CHARACTERS PER RECORD

100 FORI=1TOJ

119 READ #2, AS

120 PRINT 'RECORD VALUE IS:': AS

139 B$ = SUB(ASIJ-IS)

140 PRINT 'PRIMARY KEY IS:': B$

160 CS = SUB(AS,6,30)

170 D$ =SUB(AS, 31, 34)

180 ! PAD STUFF HERE

190 AS = FNSS$(AS,N)

200 ADD #1, AS, PRIMKEY = BS, KEY1 = C$, KEYZ = DS
210 NEXT I

220 CLOSE #1

230 CLOSE #2

240 PRINT 'DONE'

250 END

OK, basicv add.basic

RECORD VALUE IS: 2194GSpectrographics NWOR
PRIMARY KEY IS: 2194G

RECORD VALUE IS: 10@2PFlora Portraits NENY
PRIMARY KEY IS: 1002P

RECORD VALUE IS: 9411PStudio West WRCA
PRIMARY KEY IS: 9411P

RECORD VALUE IS: 94@2AArtistry Unltd. WRCA
PRIMARY KEY IS: 94g2A

RECORD VALUE IS: g816SMorrow Paper Mills NENH
PRIMARY KEY IS: 9816S

RECORD VALUE IS: 2334PSeacoast Strippers WRCA
PRIMARY KEY IS: 2334P

RECORD VALUE IS: 4@56SMark-Burton NEMA
PRIMARY KEY IS: 4056S

DONE

OK,

A Note on Record Size: Please note carefully the method used in
the above example to pad the data record to the specified record
length. This is mandatory in fixed-length record files or you'll
get an error message when you attempt to add the record. If your
file has variable-length records, don't worry about this.

8 -9 October 1980

SECTION 8 IDR4558

READING RECORDS

The BASIC/VM READ statement provides users with a complete range of
options for getting information out of a MIDAS file. You can read
a MIDAS file both randomly and sequentially, on any index, and you
can alternate easily between the two types of reads. A READ
operation always locks the record to which it positions, guarding
against concurrency errors. When the READ is complete, the record
remains locked until another operation is performed to change the
file pointer location.

Overview of READ Options

With the SEQ option, the file can be processed sequentially on any
index; this operation is equivalent to a "read next." The SAMEKEY
option allows the retrieval of items with duplicate secondary key
values. Partial key searches are permitted on any key; a special
"READ KEY" option returns the full value of any key as stored in
the appropriate index subfile.

An optionless READ returns the current record, which is the record
to which the file pointer is currently positioned.

The READ Statement Format

The READ statement format allows you to read records from a MIDAS
file sequentially, by duplicate keys and by primary or secondary
key values. The format is:

SEQ
READ [KEY] #unit]{,[KEY [key-num] = key-vall}|l,read-var
SAMEKEY

The keywords and parameters used in this format are:

Parameter Explanation
{KEY] Optional; for reading the full value of any key

as contained in an index subfile.

#unit The user-assigned unit number on which the file is
opened; the # sign is required.

KEY This keyword is used with key-num and key-val to
indicate which record should be read. If the
KEY [key-num] = key-val clause is omitted, the
current record is read. In this case, the current

record must be established by a POSITION or REWIND
statement.

IDR4558 BASIC/VM INTERFACE

key-num A literal or numeric expression indicating which
key (index subfile) should be used in this
retrieval. If omitted, the default is @ (the
primary key).

key-val The full or partial value (see below) of the key
on which to conduct the search; if KEY [key-num]
is used, a key-val must be supplied.

SEQ Indicates that the next sequential record, as
determined by current index of reference, should
be read.

SAMEKEY For reading duplicates; reads next record with

the same key value as current record.

read-var A string variable into which the retrieved record
value is read.

READ Examples

The following examples illustrate some uses of the READ statement
as applied to MIDAS files; all are taken from BASIC/VM programs

designed to access the CUSTOMER file created in Section 2 of this

book.

Sequential READs: The following program segment shows how to

position the file by primary key and how to step through the file
sequentially in primary key order:

OK, slist readseq.basic

1@ DEFINE FILE #1 = 'CUSTOMER', MIDAS, 3
20 READ #1, GS ! READS FIRST ENTRY IN F
30 PRINT GS$

4¢ ' READ SEQUENTIALLY THRU FILE ON PRIMARY INDEX
5¢ PRINT 'STEP THRU FILE ON PRIMARY INDEX'

68 PRINT

78 N= 6 ! NO. RECORDS REMAINING IN FILE

80 FORI =1 TON

90 READ #1, SEQ, G$

100 PRINT G$

114 NEXT I

LE

5
I

8 - 11 October 1980

SECTION 8 IDR4558

The output from this portion of the program would be:

OK, basicv readseq.basic
@816SMorrow Paper Mills NENH
STEP THRU FILE ON PRIMARY INDEX

1092PFlora Portraits NENY
2194GSpectrographics NWOR
2334PSeacoast Strippers WRCA
4¢56Mark-Burton NEMA
94@2AArtistry Unltd. WRCA
9411PStudio West WRCA

Similarly, if positioned by secondary key, which can be done with
either a POSITION or READ statement the file can be read
sequentially in secondary key order, as shown in the program
excerpt below, which is the second half of the program shown above:

129 ! STEP THRU FILE ON A SECONDARY INDEX

130 PRINT

14@ PRINT 'STEP THRU FILE ON SECONDARY INDEX @1'
1590 PRINT

155 REM POSITION TO FIRST ENTRY IN INDEX SUBFILE @1
160 REWIND #1, KEY@1

18 FOR I =1 TO 6

190 READ #1,SEQ,X$! READ NEXT

200 PRINT X$

210 NEXT I

2209 CLOSE #1

230 END

The output from this portion of the program is:

STEP THRU FILE ON SECONDARY INDEX @1

10@2PFlora Portraits NENY
4¢56SMar k-Bur ton NEMA
p8l6SMorrow Paper Mills NENH
2334PSeacoast Strippers WRCA
2194GSpectrographics NWOR
9411PStudio West WRCA

Random READs: To randomly locate a particular file value, use the
"KEY [key-num] = key-val" option, as in:

READ #1, KEY@2 = 'WRCA', G$

This READ returns the first record with the secondary key value
'WRCA' L]

REV. @ 8 - 12

IDR4558 BASIC/VM INTERFACE

Finding Duplicates: To find all the records with the same
secondary key value, use the SAMEKEY option, as in:

OK, slist dups.basic

19 DEFINE FILE #1 = 'CUSTQMER',MIDAS, 35

20 ! THIS PROGRAM FINDS FIRST OCCURRENCE OF A CERTAIN
30 ! SECONDARY KEY VALUE AND THEN FINDS ALL THE DUPLICATES
40 READ #1,KEYP2="WRCA', GS

5@ PRINT 'FIRST RECORD WITH THIS VALUE:', G$

60 PRINT

7@ ' NOW READ ALL DUPLICATES OF THIS KEY

80 ON ERROR GOTO 160

99 ! ERROR WILL OCCUR WHEN NO MORE KEYS ARE FOUND WITH THIS VAL
UE

100 PRINT 'RECORDS WITH DUPLICATE VALUES ARE:'

11@ PRINT

120 FORI=1TO 5

130 READ #1, SAMEKEY, SS$

149 PRINT S$

150 NEXT I

160 ! ERROR HANDLER

17¢ PRINT 'BASIC ERROR IS:', ERRS(ERR)

180 CLOSE #1

199 END

OK, basicv dups.basic

FIRST RECORD WITH THIS VALUE:

9411PStudio West WRCA

RECORDS WITH DUPLICATE VALUES ARE:

94@2AArtistry Unltd. WRCA
2334PSeacoast Strippers WRCA
BASIC ERRCR IS: RECORD NOT FOUND

Gbviously, this kind of program would only work when secondary keys
allow duplicates, as explained in Section 2. The duplicate feature

is turned on or off during template creation. The error handler is
used to trap the error that will inevitably occur when we find no

more duplicates for this key value.

Reading on Partial Key Values: Partial key values can be used in
any READ statement, as in:

READ #1, KEY 1 = 'Flor', K$

The full value of this key is actually "Flora Portraits". Remember
that only prefixes of a key value are allowed as partial key
values. In other words, it would not be legal to do a search on
"Portraits" in this case.

The READ KEY Option: The READ KEY option can be used to return
the full value of any key. With it, you can find out what key
you're currently positioned on, (that is, what index you're using

8 - 13 Cctober 1980

SECTION 8 IDR4558

as the index of reference); alternatively, you can obtain the full
key value of any key by specifying a partial value. For example:

OK, slist readkey.basic

10 DEFINE FILE #1 = 'CUSTOMER', MIDAS, 35

20 ' READ RECORD WITH PARTIAL KEY

30 READ #1, KEY 1 = 'Flor', KS$

40 PRINT 'RECORD READ WITH PARTIAL KEY:', KS$

50 ' RETURN FULL VALUE OF CURRENT KEY OF REFERENCE
60 READ KEY #1, HS ! READS CURRENT KEY POS'D TO
70 PRINT 'CURRENT KEY VALUE IS:': HS

80 ! READ KEY CAN ALSO BE DONE WITH A KEY SEARCH CLAUSE:
99 READ KEY #1, KEY2 = 'NE', K$

100 FIND RECORD WITH PARTIAL KEY VALUE

119 ! THEN RETURN FULL KEY VALUE

120 PRINT ! SPACE

13@¢ PRINT 'FULL KEY :': KS ! KEY USED IN READING RECORD IS READ
149 CLOSE #1

15¢ END

OK, basicv readkey.basic

RECORD READ WITH PARTIAL KEY:

10@2PFlora Portraits NENY

CURRENT KEY VALUE IS:

Flora Portraits

FULL KEY :
NEMA
OK,

UPDATING RECORDS

The UPDATE statement replaces the current record with a new record
value. UPDATE does not change any of the index subfile entries so
don't attempt to change key values with UPDATE. The proper way to
change key values is to delete the record and then add it back
again with the new key values. The UPDATE format is:

UPDATE #unit, new-record
$unit is the user-assigned file unit on which the file is open.

new-record is the new data record value; can be a string variable
or a quoted literal.

REV. # 8 - 14

IDR4558 BASIC/VM INTERFACE

Since an update operation is usually done to modify a certain
record, the record should first be read to establish it as the
current record, and to return the contents of that record to be
modified. It is not necessary to do a READ to establish the
current record position, as a REWIND or POSITION statement can be
used to the same purpose. The user should note that UPDATE
overwrites the existing record -— it does not delete and replace
it. Take care to make the new record equal in length to the old
one so that all the old data is completely overwritten.

For example:

OK, slist update.basic

19 DEFINE FILE #1 = 'CUSTOMER', MIDAS, 35

2¢ ! FIND RECORD TO BE UPDATED

30 READ #1, KEY1="SEA', X$

4@ PRINT 'ORIGINAL RECORD IS:', XS$

50 PRINT

60 ! UPDATE THIS RECORD BY ADDING SOMETHING TO THE END
70 AS= 'Contact Marvin'

87 ! WRITE THE ORIGINAL RECORD BACK WITH THIS ADDITION
99 X$ = SUB(XS$,1,35) ! TAKE JUST THE NON-BLANK PART
108 X$ = X$+AS | COMBINE THE TWO

119 ! NOW PAD TO CORRECT LENGTH

120 X$ = XS +' ' UNTIL LEN(XS) = 70

13¢ UPDATE #1,XS$

140 REWIND #1

15¢ READ #1, KEY='2334', XS

160 PRINT 'UPDATED RECORD:', X$

17¢ CLOSE #1

180 END

OK, basicv update.basic

ORIGINAL RECORD IS:

2334PSeacoast Strippers WRCA

UPDATED RECORD:
2334PSeacoast Strippers WRCA Contact Marvin

In files with fixed-length records, be sure to pad the record to

the correct length or you'll get a record-size error and the update
will not occur.

DELETING RECORDS

The REMOVE statement selectively deletes index entries for a
particular data record. If the primary key is specified, then the
associated data record, as well as the primary index entries, will
be deleted. In this case, the secondary key entries will not be
deleted until they are used to reference the now deleted data
record, or until MPACK is run on the file. (See Section 12.)

8 - 15 October 1980

SECTION 8 IDR4558

The REMOVE format is:
REMOVE #unit [,KEY [key-num] = key-val] [,KEY [key-num]=key-val]...

key-num is a numeric variable containing an optional key (index
subfile) number. This is the key to be deleted. If a key number
is not specified, the primary key is assumed. More than one key
value can be deleted in a single REMOVE statement, as shown in the
above format. key-val is a string expression containing a key
value; along with key-num, it indicates which primary or secondary
key entry is to be removed from an index subfile. To delete the
current record, use the optionless form of REMOVE.

Example

The following example shows how specific secondary key values can
be removed from an index, and how an entire record and its primary
index entry can be deleted. In addition, it uses the MIDASERR
feature to print out the MIDAS error code associated with the read
error that will occur on an attempt to read a deleted record.

OK, slist delete.basic

19 DEFINE FILE #1 = 'YCUSTCMER', MIDAS, 35

20 ! REMOVE A SECONDARY INDEX ENTRY FROM THIS FILE

30 PRINT 'REMOVE THE SECONDARY KEY VALUE: Studio West'
40 REMOVE #1, KEY@l='Studio West'

5¢ ' BUT THE RECORD VALUE REMAINS UNCHANGED

60 PRINT

70 READ #1, KEY = '9411P', X$

80 PRINT 'RECORD VALUE IS:':XS$

90 REWIND #1, KEY@1 ! POSITION TO TOP OF SECONDARY INDEX @1
100 ! READ FILE ON SECONDARY KEY

119 !

120 ON ERROR GOTO 214

139 PRINT

14¢ PRINT 'RECORDS READ BY SECONDARY KEY:'

150 PRINT

l6d FORI=1TO 6

170 READ #1,SEQ,NS$

180 PRINT NS

19¢ NEXT I
200 ! DELETE THE RECORD
210 PRINT

220 PRINT 'NOTE: RECORD REFERENCED BY DELETED '
230 PRINT 'INDEX ENTRY IS NOT PRINTED'

240 PRINT

250 PRINT 'DELETE RECORD BY PRIMARY KEY'

260 REMOVE #1, KEY@='9411P'

270 REWIND #1

280 !

299 ON ERROR GOTO 340

300 PRINT

310 READ #1, KEY='9411', X$

REV. 8 - 16

IDR4558 BASIC/VM INTERFACE

320 PRINT X$

330 GOTO 360 ! IF NO ERROR

34¢ PRINT 'MIDAS ERROR CODE:': MIDASERR
350 PRINT 'BASIC ERROR IS:': ERRS(ERR)
368 CLOSE #1

3780 END

OK, basicv delete.basic
REMOVE THE SECONDARY KEY VALUE: Studio West

RECORD VALUE IS:
9411PStudio West WRCA

RECORDS READ BY SECONDARY KEY:

10@¢2PFlora Portraits NENY
4@56SMar k-Bur ton NEMA
@816SMorrow Paper Mills NENH
2334PSeacoast Strippers WRCA
2194Gspectrographics NWOR

NOTE: RECORD REFERENCED BY DELETED
INDEX ENTRY IS NOT PRINTED

DELETE RECORD BY PRIMARY KEY

MIDAS ERROR CODE: 7
BASIC ERROR IS: RECORD NOT FOUND

OK’
The MIDAS error code of 7 indicates an unsuccessful read resulting

from a failure to find a record with the indicated key value. You
can verify this by looking up MIDAS error 7 in Appendix A.

8 - 17 October 1980

IDR4558 THE PL/I INTERFACE

SECTION 9

THE PL/I INTERFACE

INTRODUCTION

This section documents the PL/I subset G interface to MIDAS files as
implemented at this revision of MIDAS (17.6). The term PL/I as it is
used in this section refers exciusively to Prime's Subset G version of
the PL/I language unless otherwise indicated.

From PL/I's point of view, a MIDAS file is simply a RECORD KEYED
SEQUENTIAL file that can be accessed by the standard PL/I READ, WRITE,
REWRITE and DELETE statements. However, the MIDAS file must have an
ASCII primary key: this is a PL/I requirement. In addition to
supporting CREATK-defined files, PL/I can create its own MIDAS files.
A PL/I-created file has an ASCII primary key of 32 characters in length
and variable-length records. Further restrictions on the PL/I
interface are discussed later.

In this section, the syntax and usage of PL/I statements are addressed
in relation to MIDAS only; consult The PL/I Subset G Reference Guide
for complete syntax information on these and other PL/I statements

referenced here.

Language Limitations

The PL/I Subset G interface to MIDAS does not support the following
MIDAS features:

e non-ASCII primary keys

e Secondary keys

e Direct access MIDAS files
e Secondary data

Because PL/I does not support secondary keys or non-ASCII primary Kkeys
you can't use PL/I to set up a MIDAS file template with these features.
To create a MIDAS file with secondary keys, fixed-length records or a
primary key of less than 32 characters, use CREATK instead. You can
access such a file from a PL/I program as long as its primary key is a
character string of 32 characters or less. Existing MIDAS files with
secondary keys can still be accessed from a PL/I program, but you will
not be able to access any secondary index subfiles from PL/I.

9 - 1 October 1980

SECTION 9 IDR4558

Note on Conversion

The restriction on primary key type applies only to the actual
definition of the primary key during template creation. As long as the
primary key 1is declared as an ASCII character string of 32 or fewer
characters, the file can be accessed from PL/I using character or
numeric key values. Numeric values will be converted to character
strings in accordance with standard PL/I conversion rules.

Running a PL/I Program

You don't need to load any special libraries in order to run a PL/I
program that accesses MIDAS files. Just follow this sample compile and
load sequence. User input is underlined to distinguish it from system
output.

OK, pllg program
@000 ERRORS (PL1G-REV 17.6)

OK, seg

[SEG rev 17.6]
lo #program
$ lo b_program
$ 1i plllib

$ 11

LOAD CQMPLETE
S sa

$4a

OK, seg #program

Substitute the name of your program for the program arqgument in the
above example.

OPENING/CREATING A MIDAS FILE

There are two ways to create a MIDAS file for use with PL/I: you can
create the file with CREATK, and then simply open it for reading and/or
writing from a PL/I program; or, you can create a MIDAS file from PL/I
using the standard file I/O statements. The next part of this section
tells how to open an existing MIDAS file and how to create a new one
with PL/I.

Creating a MIDAS File from PL/I

When creating a MIDAS file from a PL/I program the file must be
explicitly declared with the KEYED SEQUENTIAL [RECORD] attributes.
Their order doesn't matter. The RECORD attribute is implied by the

REV. 0§ 9 - 2

IDR4558 THE PL/I INTERFACE

KEYED attribute and need not be specified. Follow this simple sequence
in creating a MIDAS file from PL/I:

DECLARE filename FILE KEYED SEQUENTIAL;
OPEN FILE(filename) OUTPUT;

The FILE keyword in the DECLARE statement can appear before or after
the actual filename. The DECLARE statement can be abbreviated to DCL.
These statements tell MIDAS to open a MIDAS file with the default
attributes mentioned above. (See The PL/I Subset G Reference Guide for
details on OPEN and DECLARE syntax and attributes.) The MIDAS file
will have variable-length records with a maximum length of 2@48K words
(4096 bytes) and a primary key of 32 characters in length.

Although the default primary key is defined as an ASCII character
string, PL/I conversion rules permit you to then define the primary key
from program level as a character or numeric item. Thus you can write
file entries with character or numeric key values. Keep in mind that
the data must be read out in the same format as it was written. You
can't mix and match data types in WRITEs and READs.

Opening an Existing MIDAS File

To open an existing MIDAS file that was previously created with PL/I,
use the OPEN statement with this format:

OUTPUT

UPDATE’
filename must be no longer than 8 characters in length, and may be
specified before or after the FILE option. The file should first be
declared as KEYED SEQUENTIAL. The INPUT, OUTPUT and UPDATE options
indicate the access mode in which the file should be opened. The
access mode controls the types of operations which can be performed on
the file.

OPEN FILE(filename) INPUT }

The INPUT option: allows READ operations only. It defines the access
mode for this file as "read only".

The OUTPUT option: permits only write operations and is primarily used
to open and create new files. It also allows additions to be made to
an existing KEYED SEQUENTIAL file with the indicated name; however, if
no such file exists, PL/I creates a new one. Neither read nor update
operations cannot be performed on a file opened for OUTPUT.

The UPDATE option: permits READ, WRITE, UPDATE and DELETE operations

on an existing file. Use UPDATE when making changes or additions to an
existing file.

9 - 3 October 1980

SECTION 9 IDR4558

Combining DCL and OPEN: Alternatively, the INPUT, OUTPUT or UPDATE
options can be included in the DECLARE statement where the KEYED
SEQUENTIAL file is first declared, eliminating the need for an explicit
OPEN statement:

DECLARE SAMPLE FILE KEYED SEQUENTIAL OUTPUT;
or
DCL OTHER FILE KEYED SEQUENTIAL INPUT;

Remember that a file opened or declared as INPUT or UPDATE must already
exist —— if it doesn't, an error is signalled.

Note

For information on opening non-PL/I-created files, (i.e., MIDAS
files created directly with CREATK or KXSCRE), see Opening
CREATK-defined Files at the end of this section.

FILE I/0 CONCEPTS IN PL/I

The remainder of this section deals with these PL/I statements, which
are all used to access MIDAS files from PL/I programs:

PL/I Statement Function

READ [KEY] Reads next sequential record in file (if
KEY not specified) or reads record with
the indicated KEY value.

WRITE Adds a new record to the bottom of the
file with a specified primary KEY value.

REWRITE [KEY] Updates (rewrites) the indicated record
(KEY specified) or the current record (no
KEY) .

DELETE [KEY] Deletes the specified record (KEY
specified) or the current record (no
KEY) .

The access mode for which the file is opened restricts the use cof these
statements.

REV. @ 9 - 4

IDR4558 THE PL/I INTERFACE

The table below indicates which statements can be used in each access
mode :

INPUT OUTPUT UPDATE

READ WRITE READ
WRITE
REWRITE
DELETE

The topics addressed in the remainder of this section are:
e The current record in PL/I file I/0
e Writing to a file (new or existing)
e Data size/record length
e Reading a file (sequentially or by key)
e Updating file records
o Deleting file records
o Iocked records

e 2Accessing CREATK-defined files

The Current Record in PL/I

In PL/I the current file position is handled automatically so you don't
have to worry about a communications array to keep track of the current
record (as in the FORTRAN interface). PIL/I's READ statement advances
the current file position pointer to the next sequential record in the
file before performing the read operation. After a READ, the current
record is always the one just read. The WRITE statement positions to
the proper spot in the primary index subfile so it can insert the
primary key value of the record being added in its proper place. Thus
the current record after a WRITE is the record just written. When a
DELETE is performed, the current record position is not moved, but is
instead left undefined. That is, no record is "current" after a DELETE
because DELETE always removes the current record. REWRITE does not
update the current record position at all.

Initial "Current" Record: When a MIDAS file is opened for INPUT or
UPDATE in PL/I, the current file pointer is set just prior to the first
record in the file; a current record position is established by a READ
(with or without KEY), or any other I/0 operation permitted by the
access mode. ‘This establishes the current file position and
initializes the MIDAS communications array which PL/I handles
(transparently) for the user. (This means you don't have to worry
about it!).

9 - 5 October 1980

SECTION 9 IDR4558

DELETE and the Current Record: After a DELETE operation, the current
record is left undefined until the next READ or WRITE operation. A
sequential READ (without the KEY option) will work unless you just
deleted the 1last record in the file. A WRITE operation positions the
file pointer to the place in the index where the key entry associated
with the record to be written logically fits according to the collating
sequence.

ADDING RECORDS

To add records to a new or existing file, the file must first be opened
for OUTPUT or UPDATE. Records are then written to the MIDAS file with
a PL/I WRITE statement:

WRITE FILE(filename) FROM(var) KEYFRM(kewvar) ;
The var argument contains the new record information. Its data type
should be declared as CHARACTER; its size, which PI/I views as the

record size, can be declared varying (VAR) if desired. (See Declaring
Data Size below.)

The KEYFROM Option

The KEYFROM option specifies the primary key value for this new record;
KEYFROM and a unique Kkey value must be present in every WRITE statement
performed on a MIDAS file. keyvar can be declared as a character
string of 32 characters or less, or as a numeric field ,for example,
fixed bin, fixed decimal, and so forth. If declared as a CHARACTER, it
cannot be declared as VARYING. Furthermore, if the template was
created with CREATK, the variable should match in size and type the
primary key as defined during template creation.

Inside Story: PL/I always writes 32 characters per index entry,
regardless of how many non-blank characters you specify in a WRITE
statement and regardless of how you define the primary key in your
program. It may be wise to declare the key variable as 32 characters
even if you only have a 6 character key, for example. 1It's better to
have PL/I add the remaining 26 characters as blanks than to have
unpredictable "garbage" values stored in the index entry slot.

No Duplicates Allowed: The key value specified for keyvar must not
already exist in the file or a KEY error will be reported, causing
program execution to halt. Remember, primary keys must be unique in a
MIDAS file —— you must supply a new value for the keyvar argument with
every WRITE statement. (For more details on KEY errors, see Error
Handling, below.)

REV. @ 9 - 6

IDR4558 THE PL/I INTERFACE

The WRITE Operation

WRITE updates the current record position in order to add a new record
to the file. It doesn't matter which record is current prior to a
WRITE operation, because WRITE takes care of positioning the file to
the proper index location. The current record after a WRITE is the one
just written, so a "read next record" operation subsequent to a WRITE
returns the record immediately following the one just added. However,
the file must be opened for I/0 or OUTPUT in order to add records to
it. Each WRITE operation places key entries in their proper slots in
the index the program-supplied primary key entry into its proper slot
in the index and adds the corresponding data record to the bottom of
the data subfile. Keys are added to the primary index subfile in
ascending order by key value regardless of the fact that data subfile
records are written to the bottom of the data subfile. This means that
when reading sequentially through the file, you'll get all the records
in the order you expect (based on primary index entry order) rather
than in the order in which you added them — unless, of course, you
added them in ascending key order in the first place!

Declaring Data Size

It is not possible to create a true fixed-length reccrd MIDAS file from
a PL/I program. However, you must declare a maximum size for the data
variable from which each MIDAS file record will be written. This is
the variable into which the user's program puts data record information
so it can be written to the MIDAS file as a unit. By setting the size
of this variable, you effectively limit the record size of the MIDAS
file:

DECLARE SAMPLE FILE KEYED SEQUENTIAL;

DECLARE PKEY CHAR(32);

DECLARE DATAVAR CHAR(39) ;

PKEY = 'aaaa';

WRITE FILE(SAMPLE) FROM(DATAVAR) KEYFROM(PKEY) ;

In this example, datavar is set at 3@ characters, indicating that the
records written to the MIDAS file SAMPLE will be 3@ characters in
length. datavar could be declared as "CHAR(3@) VAR" to eliminate blank
padding. PKEY represents the primary key field for each file record
and is set to the default length of 32 characters. It doesn't have to
be 32 characters long -- this is the simply the maximum key size
allowed by PL/I.

For Example: The OPENIT program, listed below, opens a new MIDAS file
called SAMPLE and adds records to it. Primary key values are supplied
in ASCII form because pkey is declared as char(32). If we wanted to,
we could have declared the primary key as a fixed decimal number and
then supplied the primary key values in numeric form.

9 - 7 October 1989

SECTION 9 IDR4558

openit:
proc options(main) ;

/* This program creates a MIDAS file called Sample */

dcl sample file keyed sequential; /* MIDAS */
dcl pkey char (32); /* primary key */

/* recvar contains the data to add to the file */

dcl recvar char(30) var; /* record size */
open file(sample) output; /* for new file */

/* Values for pkey and recvar */

pkey = '0001';

recvar = 'first file record';

write file(sample) from(recvar) keyfrom(pkey);
pkey = '0002';

recvar = 'second file record';

write file(sample) from(recvar) keyfrom/(pkey);
pkey = '0003';

recvar = 'third file record';

write file(sample) from (recvar) keyfrom(pkey);
close file(sample);

end;

Storing Primary Keys in Record

To maintain data integrity and to allow for future file requirements,
it might be a good idea to include the primary key in the data record
proper. This can be done easily as shown in this example:

add:
proc options(main);

/* this program adds a new record to the Sample file */

dcl sample file keyed sequential;
dcl pkey char (32); /* primary key */
dcl recvar char (30@) var;

open file(sample) output;

/* output mode is ok for adding records only */
/* primary key is in data record */
recvar = '@@@5£fifth file record’;
pkey = substr (recvar, 1, 4);
write file(sample) from(recvar) keyfrom(pkey);

close file(sample);
end;

REV. @ g - 8

IDR4558 THE PL/I INTERFACE

When reading the file, remember to use "PUT EDIT" to print out just the
part of the record you want. The key can also be stored at the end of
the data record. Avoid making changes to the "key field" of the record
during an UPDATE because the primary key entry in the index subfile
cannot be changed.

READING A MIDAS FILE

There are three types of "file reads" that can be done on a MIDAS fiie
from PL/I:

® Keyed read - a record is found based on a user-supplied key
value

® Sequential read - (also called "non-keyed" read) records can be
read from the file in primary key order; file position is
established at some point in the primary index subfile, either
by a keyed read or by default, which puts the file pointer at
the beginning of the index subfile.

e Reading keys - the full key value of the primary key, as MIDAS

stores it in the primary index, is returned (can only be done in
a non-keyed read)

The READ Statement

The READ statement, with or without the KEY or KEYTO options, copies
the contents of one file record into a previously defined variable.
Reminder: a file must be opened for INPUT or UPDATE in order to be
read. The READ statement format is:

READ FILE(filename) INTO(var) [KEY(kewvar)] [KEYTO(curkey)] ;

The KEY and KEYTO Options

The KEY (keyvar) option finds the record whose key matches the one
specified by keyvar. KEY is used in keyed reads only (see Keyed Reads
below); if omitted, the next sequential record is read. The keyvar
argument should match the data type and size of the primary key as
defined in the program that wrote entries to the file. For example, if
you wrote records using a primary key declared as FIXED(4), you should
read the file with the primary key declared as FIXED(4) .

The KEYTO option copies the key value for the current record into the
curkey argument. (The key value is read from the primary index
subfile.) The curkey argument must always be declared as CHAR(32)
VARYING, because of the way in which PL/I handles the MIDAS index
subfile entries.

9 - 9 October 1980

SECTION 9 IDR4558

Note

The KEY and KEYTO options cannot appear together in the same
READ statement. KEY is generally used for keyed reads when the
key value of a record is known; KEYTO, on the other hand, is
used during sequential reads when you want to determine the
primary key value of the current record. KEYTO is especially
useful where keys are not stored in the actual data file
record.

The "Read" Variable

The record is read into the var variable, which must be declared
according to the following rules:

e For Pl/I-created files, var must match in size and type the
WRITE argument which was used in writing this record. For
example, the recvar argument, as used in:

WRITE FILE(filename) FROM(recvar) KEYFRM(pkey) ;

must match the var argument as used in the above format.

e For non-PL/I-created MIDAS files with fixed-length records,
simply use the fixed record size value in declaring the INTO
argument. See Reading Fixed-Length Records, below.

e For variable-length records in a file not created by PL/I, see
Reading Variable-length Records later in this section.

Keyed Reads

Keyed reads are performed by specifying a valid key value with the KEY
option. "Valid" means that the value must occur in the primary index
subfile of the MIDAS file being read. Key values that do not appear in
the MIDAS file cause KEY errors and program halts. If a match is
found, this record becomes the current record, and the contents of the
record are placed in the specified read variable. For example:

DECLARE SAMPLE FILE KEYED SEQUENTIAL;
DECLARE PKEY CHAR(32);

DECLARE READVAR CHAR(30) ;

PKEY = 'aaaa';

READ FILE(SAMPLE) INTO(READVAR) KEY(PKEY) ;
PUT LIST(READVAR) ;

Sequential Reads

A MIDAS file can be read sequentially, in primary key order, by using
READ without the KEY option. The current record pointer simply
advances to the next record in the file every time a READ operation is

REV. @ 9 - 10

IDR4558 THE PL/I INTERFACE

performed. An error occurs if the pointer is at the bottom of the file
because there are no more records to be read. An example of a
sequential read might be:

ON ENDFILE(SAMPLE) GOTO CLOSE FILES;
DO WHILE('1'B); /* infinite loop */
READ FILE(SAMPLE) INTO(READVAR) ;

PUT SKIP LIST(READVAR) ;

END;

All the records in the file from the current record on will be read as
the program loops; then the ENDFILE condition will be signalled and

control sent to the part of the program labelled "CLOSE FILES" where
the file is closed.

Reading Key Values

The KEYTO option can be used to obtain the value of the primary key of
the record ccurrently being read:

DECLARE KVAR CHAR(32) VAR;

READ FILE(SAMPLE) INTO(READVAR) KEYTO(KVAR) ;

PUT SKIP LIST('RECORD:', READVAR);

PUT SKIP EDIT('KEY VALUE:', KVAR) (A, X(2), A(4));

The "PUT EDIT" statement is useful when you want PL/I to print only the
first few characters of the primary index subfile entry. Otherwise,
PL/I prints a 32-character version of the primary key which in this
case consists of the four characters originally passed to MIDAS plus 28
blanks.

Sample Read Program: Below is a listing of a sample program which
performs keyed and sequential reads on the file created by the OPENIT

program listed earlier, along with the ocutput from the program:
read:

proc options(main) ;
dcl sample file keyed sequential;
dcl pkey char(32); /* primary key */
dcl readvar char(30) var;
/* make it the same as recvar */
dcl kvar char(32) var; /* reads keys */

/* KVAR is used with KEYTO option and must be CHAR VARYING */
/* set up an on-unit to handle end of file */

on endfile(sample) begin;
close file(sample);
put skip list('End of file');
stop;
end;
open file(sample) input;

9 - 11 October 1980

SECTION 9 IDR4558

/* read with a key */
/* Note: the first READ doesn't have to be a keyed one */

pkey = '0001';
read file(sample) into(readvar) key(pkey):;
put skip list(readvar);

/* now read sequentially (without key) */

read file(sample) into(readvar);
put skip list(readvar);

/* read with KEYTO option */

/* now read next record and return the key value with KEYTO
option */

read file(sample) into(readvar) keyto(kvar);
put skip list(readvar);
put skip edit('Key value:', kvar) (a, x(2), a(4));
close file(sample);
end;
/* now run the program */

OK, seg firead

first file record
second file record
third file record
Key value: @003
OK,

UPDATING FILE RECORDS
Record updates in PL/I are performed with the REWRITE statement, which

replaces either the current record (that is, the one just read) or the
specified record with a new record value.

The REWRITE Statement

Records in an existing MIDAS file can be updated with the REWRITE
statement:

REWRITE FILE(filename) FROM(datavar) [KEY(keyvar)];

datavar is the variable containing the data which will replace the
record being updated. You can't update just part of a record -- you
must rewrite the whole thing. Bear in mind that keys cannot be changed
—— so 1if you've made an error while adding the original key field,
delete the record and then WRITE it over the way you want it.

REV. @ 9 - 12

IDR4558 THE PL/I INTERFACE

Sample Update Program: This program performs an update on the MIDAS
file Sample. The output from the program is also included:

update:
proc options(main) ;
dcl sample file keyed sequential;
dcl pkey char(32); /* primary key */
dcl readvar char(38) var;
/* make it same as recvar */
dcl kvar char(32) var; /* reads keys */

/* KVAR is used with KEYTO option and must be CHAR VARYING */
/* set up an on-unit to handle end of file */

on endfile(sample) begin;
close file(sample) ;
put skip list('End of file');
stop;
end;
open file(sample) update;
pkey = '0002';
read file(sample) into(readvar) key(pkey);
put skip list(readvar);

/* update this record */
readvar = 'New second record';
/* use the KEY option to be sure */

rewrite file(sample) from(readvar) key(pkey);
read file(sample) into(readvar) key(pkey) ;
put skip list('New record:', readvar);
close file(sample) ;
end;

/* now run the program */

OK, seg #update

second file record

New record: New second record
OK'

REWRITE's KEY Option

The KEY option is used when you want to specify exactly which record is
to be updated. Without the KEY option, REWRITE updates the current
record, which is the record just read by the last READ statement, or
the one just written by the last WRITE statement. This means that a
current record position must have already been established (by a READ,
WRITE or another REWRITE, this one with the KEY option) prior to a
REWRITE without the KEY option. 1In this case, the MIDAS communication

9 - 13 Cctober 1980

SECTION 9 IDR4558

array is used by PL/I to determine where the current record is and
which record should be updated. However, it is not necessary to
perform either a READ or WRITE prior to REWRITE if the KEY option is
used with REWRITE.

In any event, it's good practice to use the KEY option to avoid
confusion about which record is being updated. If the key value
indicated by keyvar does not exist in the file, a KEY error is
triggered and the program aborts.

What REWRITE Does

REWRITE uses either the communications array value or the supplied key
value to determine which record is "current". The current record is
automatically locked during a REWRITE and kept locked until another I/0
operation is performed. 1In other words, the current record position is
not updated after the REWRITE operation is complete.

DELETING RECORDS
Records are deleted from a MIDAS file by primary key; the index

subfile entry is marked for deletion and the corresponding primary
index value is deleted.

The DELETE Statement

To delete a record from a MIDAS file, use the DELETE statement. DELETE
may be used with a KEY option to indicate which record is to be
deleted:

DELETE FILE(filename) [KEY(keyvar)];

If specified, keyvar must be a key value that occurs in the MIDAS file,
otherwise a KEY error occurs. If no KEY is specified, the current
record is deleted. (It is assumed that the previous READ or REWRITE
statement established the current record position.) DELETE does not
update the file pointer location -- thus, the current record is always
left undefined.

For example, this program excerpt deletes a record from the Sample
file:

delete:
proc options(main) ;
dcl sample file keyed sequential; /* existing file
*/
dcl pkey char(32); /* primary key */

dcl recvar char(3@) var;
dcl readvar char(3@) var;
dcl kvar char(32) var; /* reads keys */

PTUB9 REV. 19 MIDAS

On page 9-15, the second and third comment lines from the top of
the page should be omitted, This program contains no on-units for
the KEY oondition {using an invalid key in a file access
operation). This is why the error messages shown in the output
occur. To help clarify this, the following sentence should be
added before Reminders, on page 9-15:

"The error conditions are raised because there is no on—unit to
trap KEY errors: see ERROR HANDLING below."

IDR4558 THE PL/I INTERFACE

/* KVAR is used with KEYTO option and must be CHAR VARYING */
J*_Set up on-unit-te—hardie file read errors */
__/* set-up-an-on-unit-toharmdlieend of file */

open file(sample) update;

/* UPDATE mode required for rewrites or deletes */
pkey = '0002°';
read file(sample) into(readvar) key(pkey);
put skip list(readvar);

/* delete this record */

delete file(sample);
/* check to see if this record is gone */
/* if it is, a KEY error will be raised */

read file(sample) into(readvar) key('@0@2');
close file(sample);
end;

/* now run the program */

0K, seg #delete

New second record
KEY(SAMPLE) raised in DELETE at 4001(3)/1211
(record not found in READ)

ERROR (file = SAMPLE) raised in DELETE at 4001(3)/1211
(no on-unit for KEY)
ER!

Reminders: A file must be opened for UPDATE in order to delete records

from it. A READ or WRITE operation performed immediately after a

DELETE works fine; however, a DELETE (with or without a KEY) or a

REWRITE operation subsequent to a DELETE will signal an error.

THE ERROR Conpi1710hs pRe RAI15€LP BECAUSE THERE |15 O on-vnsr
T/ TRAPICIEREORS: se€ [SRROR [HAnPLlinag fe o,

LOCKED RECORDS

Because the PL/I READ and REWRITE statements always lock the current
record, there are no specific lock/unlock statements in PL/I. The lack
of such statements can cause some problems if the user hits CTRL-P or
BREAK immediately after a READ or REWRITE operation. Frequently, the
current record will remain locked, since READ automatically sets and
locks the current record even though it never updates the current file
position. When this happens, run the MPACK utility to unlock this
record. MPACK is documented in Section 12.

9 - 15 October 1980

SECTION 9 IDR4558

ACCESSING CREATK-DEFINED FILES

MIDAS files that are not created through PL/I can still be accessed
from PL/I programs. However, keep in mind the restrictions on READ and
WRITE argument size. It's easier to determine how the arguments should
be declared if the file in question has fixed-length records.

Caution
It may be a good idea to avoid updating the same MIDAS file

with more than one high-level language interface, as this
practice can result in file anomalies.

Reading Fixed-Length Records

When opening an existing CREATK-defined MIDAS file with fixed-length
records, determine the record size so you can use it in defining the
READ or WRITE statement arguments. Use CREATK's PRINT function and
enter "data" in response to the "INDEX NO?" prompt (See Section 12.)

The data size in words is displayed next to "ENTRY SIZE". (Since PL/I
cannot create a MIDAS file with fixed-length records, the ENTRY SIZE is
displayed as "“USER-SUPPLIED" for PL/I-created MIDAS files.) For
example, the CUSTQMER file, created in Section 2, has fixed-length
records of 35 words. It can be opened and accessed as shown in this
PL/I program excerpt:

DCL FILE CUSTOMERS KEYED SEQUENTIAL;

OPEN FILE CUSTQMERS INPUT; /* could open it for UPDATE also */

DCL READVAR CHAR(70) ; /* variable into which record is read */
DCL PKEY CHAR(5) ;

PKEY = '@212G*;

READ FILE(CUSTOMERS) INTO(READVAR) KEY(PKEY) ;

Since the record size is already known, the readvar variable is set at
70 characters. Similarly, the primary key, defined here as pkey, was
declared as 5 characters when the file was created with CREATK.

Sample Program: This program, from which the previous excerpt was
taken, opens and reads the sample MIDAS file CUSTQMER, which is a
CREATK—defined file:

custread:
proc options(main) ;

/* this program opens and reads from */
/* a previously-created MIDAS file CUSTOMER */
/* wvwhich has fixed-length records */

dcl customer file keyed sequential;
dcl pkey char(5);

dcl readvar char(70);

/* reads keys */

REV. @ g - 16

IDR4558 THE PL/I INTERFACE'

/* KVAR is used with KEYTO option and must be CHAR VARYING */
/* set up an on-unit to handle end of file */

on endfile(customer) begin;
close file(customer) ;
put skip list('End of file');
stop;
end;
open file(customer) input;
pkey = '2194G';
read file(customer) into(readvar) key(pkey) ;
put skip list(readvar);
close file(customer) ;
end;

When run, the following is printed at the terminal:
2194GSpectrographics NWOR

This program could easily be modified to perform updates and/or
additions to the file.

RROR HANDLING

oy LAl Nz

The most commonly encountered errors in the PL/I interface are KEY and
RECORD errors. It is a good idea to include on-units for these
conditions in your programs, as well as an ENDFILE on-unit for files
opened for INPUT or UPDATE.

Key Errors

The KEY condition may be raised for several reasons, including:

e The record with the indicated KEY cannot be found during a READ
or REWRITE.

e The program attempted to add a record with a KEY value that
already exists in the file; duplicate keys are not allowed.

e A partial KEY value is used during a READ or REWRITE (the use of
partial keys is not supported).

e The size used in declaring the KEY variable during a READ is
smaller than the default size indicated for the key in the index
subfile (default for PL/I-created files is 32 characters).

e There is no more room to add keys in the primary index subfile
(very rare; see Section 15 if this happens) .

e The key value is in the wrong format or was not specified

9 - 17 October 1980

SECTION 9 IDR4558

properly; for example, the key might have been written as a
fixed decimal and you are trying to read it back as a character
string. (The reverse of the situation is also true.)

As an aid in debugging, the ONKEY function (built-in) returns the value
of the key that caused the KEY error. The following program contains
KEY and ENDFILE on-units to trap errors that may occur while performing
file reads:

readerr :
proc options(main) ;

/* this program shows the use of on-units in trapping KEY errors
during file reads */

dcl err file file output;

/* erp;file is for error messages */

dcl onkey builtin;

/* returns key value that caused error condition to be raised */
dcl badkey char(32) var;

dcl sample file keyed sequential;

dcl pkey char(32);

dcl readvar char(30) var;

dcl kvar char(32) var;

/* KVAR is used with KEYTO option and must be CHAR VARYING */
/* Set up on-unit to handle file read errors */

on key(sample) begin;

/* KEY condition is a common error */
badkey = onkey;

/* assign value of error—causing key to BADKEY and print it out */
put skip file(err file) list ('Bad key is:', badkey);
goto pick up;
end; - /* end on-unit */

/* set up an on-unit to handle end of file */

on endfile(sample) begin;
close file(sample);
put skip list('End of file');
stop;
end;
open file(sample) input;
open file(err file);

/* the first READ doesn't have to be a keyed one */

read file(sample) into(readvar);
put skip list(readvar) ;

/* now read with bad key */

REV. @ 9 - 18

IDR4558 THE PL/I INTERFACE

pkey = '0006'; /* no such key */
/* this should trigger on-unit for KEY */

read file(sample) into(readvar) key(pkey);
put skip list(readvar);

/* control comes here in event of an error */

pick up:
read file(sample) into(readvar) key('@@01');

/* read top of file */

put skip list(readvar) ;
close file(sample);
close file(err file);
end; -

end; -

/* run it */

OK, seg #readerr

first file record
first file record

OK,

Note

Both the KEY and the RECORD conditions are always enabled and
cannot be disabled.

The RECORD Condition

The RECORD error condition is generally raised during a READ, WRITE or
REWRITE operation when the size of the record in the data subfile does
not match the size of the variable into which the record is being read
or from which it is being written. The variable used may be too small
or too large to accommodate the size of the data being read into it.
PL/I demands that the record size and read-variable match exactly. In
PL/I Subset G, the only way to avoid this error is to program carefully
(and cross your fingers).

9 - 19 October 198¢

SECTION 9 IDR4558

Other Possible Error Conditions

The UNDEFINEDFILE condition may be raised during an unsuccessful
attempt to open a file. This can occur for a variety of reasons:

e 'The filename is misspelled when opening the file for INPUT or
UPDATE. (Use of these access modes assumes the file exists.)

® An attempt is made to open a non-existent file for INPUT or
UPDATE.

e Incomplete or conflicting attributes are specified during an
OPEN or DECLARE FILE statement.

e Your version of PL/I has not been loaded with the proper MIDAS
interface routines and/or proper libraries.

e Your compiler is malfunctioning.
In MIDAS files, if one of the segment subfiles is 1left open (due to
program error or failure) an attempt to re-open the file will trigger

this condition. Use CLOSE ALL (PRIMOS level command) to close the file
before attempting to re-run the program.

Iocked Records

If the program aborts and a record on the file remains locked, you must
run MPACK to unlock the record as the record cannot unlock itself.
Iocking usually occurs when the user hits CTRL-P or BREAK immediately
following a READ operation. The only way to tell if a record is locked
is that when you attempt to read that record an ERROR condition is
signalled and the program will fail. At this point, you should run the
MPACK utility using the UNLOCK option. (See Section 12.)

REV. ¢ 9 - 20

IDR4558 THE RPG INTERFACE

SECTION 10

THE RPG INTERFACE

INTRODUCTION

REG can be used to access MIDAS files just like any other type of file

supported by Prime's RPG. Prime's RPG supports both Kkeyed-index and
direct access MIDAS files. In RPG, keyed-index MIDAS files are called
Indexed files; they must be indicated with an "I" in column 32 of the
File Description statement. (This section refers to the standard RPG
coding "Specifications Sheet" as a "statement.") Direct access MIDAS
files are specified as Direct files, with a "D" in column 32. COBOL
calls these files INDEXED SEQUENTIAL and REIATIVE files respectively.

About This Section

This section assumes you know RPG and ‘understand the terms and concepts
related to RPG file-handling. The purpose of this section is not to
teach you how to use RPG, but rather how to use RPG to access a MIDAS
file. In this section, you'll find the basic information needed to
correctly describe and operate on a MIDAS file with an RPG program.

LANGUAGE-DEPENDENT FEATURES

Secondary keys and secondary data are not supported by RPG, so a file
written and updated by RPG programs should not have these features.
However, RPG can access a MIDAS file that has secondary keys and
secondary data, but only by primary key. Other RPG restrictions on
MIDAS files are:

o The primary key in an Indexed file must be in the data record,
but it does not have to be the first field in the record.

e The primary key in an Indexed file must be no more than 32
characters long.

e The primary key in a Direct file must be defined as
single-precision floating-point, using the "S" data type option.
This is done during template creation: see Section 2.

e The primary key in a Direct file is called the relative record
number. It is not physically resident in the data record and is
therefore not defined as part of the data record in an RPG
program. The RPG program describes the record number as a
standard numeric - item. - The only time you worry about defining
the relative record number is during template creation when you
define the primary key as a single- precision floating-point
number (see above).

19 - 1 October 1980

CTION 19 IDR4558

® Records cannot be deleted from a MIDAS file in RPG.

e Primary key values cannot be changed in MIDAS, so the only part
of a MIDAS file that can be updated from an RPG program is the
data record. If the data record contains a copy of all the key
values for that record, be careful not to change the key values
while updating, or you'll end up with severe discrepancies
between the key values in the data file records and the key
values in the secondary indexes. This applies only to MIDAS
files that were built by an application program in another
language or by KBUILD.

e MIDAS files can be accessed randomly by key, if they're Indexed,

or by relative record number, if they are Direct files, but only
if designated as Chained files.

Program Execution Requirements

To run an RFG program that accesses a MIDAS file, the following
statements must be included in every LOAD sequence to properly load all
the libraries:

LI RPGLIB /* REG library
LI KIDALB /* MIDAS library
LI /* FORTRAN library

RPGLIB is the RPG library, KIDALB is the MIDAS library and the FORTRAN
library is loaded with LI. For an example of a complete load sequence,
see Compiling and lLoading later in this section.

DESCRIBING A MIDAS FILE IN RPG

The first part of MIDAS file-handling in RPFG is the definition process,
which consists of correctly describing the MIDAS file to RPG via the
File Description statement. Table 10-1 shows how to define a
keyed-index or a direct access MIDAS file. Where necessary, the
individual attributes are described in further detail below.

N

[

Table 1¢-1.

Attribute

File Type

File Designation

File Format

Record Length

Mode of Processing

Key-Field lLength

File Organization

Key Col. Position

IDR4558

THE RPG INTERFACE

RPGII File Description Specifications
For MIDAS Files

Column (s)

15

16

19

24-27

28

29-3¢

32

35-38

12

What to Specify

Input (I), Output (0) or
Update (U) but not Display (D)

Primary (P), Secordary (S),
Chained (CQ) or Demand (D) :
left blank if an Output file

Fixed length (F)

The MIDAS data record length:
includes primary key length

Specify R for random, L for
sequential within 1limits - for
Indexed files only, or leave
blank for sequential by key

The length of the primary key
in characters: for Indexed
files only

Indexed or Direct (I or D)
Column where the primary key
starts in the data record - for
Indexed files only

Must be disk (DISK)

To add records to a non-empty
Indexed file, specify an A in

colunn 66. The records need
not be added in sequential
order. To load records into an

empty Indexed file, define the
file as an Output file (with an
"O" in column 15) and put a U
or a blank in column 66. U
implies an unordered load;
where records may be input in
random key order; a blank
implies an ordered load.

3 October 1980

SECTION 10 IDR4558

Terms Used in File Description

Some of the attributes mentioned in Table 10-1 require a bit more
explanation, as it may not be clear how they relate to MIDAS. This is
just a brief explanation of how these terms apply to MIDAS file
processing in RPG, so refer to a standard RPG text if you need further
assistance.

File Type Specification: The following restrictions apply to MIDAS
files as described in column 15 of the File Description statement:

The file type (column 15) can be one of these:
e I — Input (for reading only) *
e O -- Output (for writing only)
e U — Update (for reading and writing) *
* If an A occurs in column 66 of the File Description statement,
new records may also be added to the file, if an ADD entry

appears in column 16-18 of the Output statement.

For further information on what these file types mean, and the
restrictions on them, see The RPG Programmer's Guide.

Notice that a MIDAS file cannot be described as a Display (D) file in
Rm.

File Designation Restrictions: The legal file designations for a
MIDAS file, as indicated in column 16 are:

e P — Primary: main file from which records are read —— only one
primary file should be specified per program. The Primary file
can be opened for input or update.

e S — Secondary: one or more files from which records are read
after Primary file is processed, if "matching" is not specified
in columns 61-62 of the Input statement. If matching is
indicated, secondary files are processed by standard RPG
matching algorithms. Secondary files can be Input or Update
files, and they are processed in the order in which they appear
in the File Description statements.

REV. ¢ g -

e

IDR4558 THE RPG INTERFACE

@ C —— Chained: can be read randomly or loaded directly wvia the

CHAIN operation code. (Chained files can be opened for Input,
Output or Update.

@ D — Demand: can be input or update files. Use the READ
operation code in the Calculation statement to read from a
Demand file. These files are processed sequentially by key.

File Addition Specifications: Records can be added either
sequentially or randomly to an Indexed (MIDAS) file. Records cannot be
added to a file opened for access under the sequential within limits
processing mode, however. For an 1Indexed file opened for Input,
Output, or Update, if an A is specified in column 66, new records can
be added in any order. For an Indexed file opened for OQutput, a blank
indicates a load to an initially empty file where the records must be
supplied in key order; a U in column 66 indicates an unordered load to
an initially empty file. It is more efficient to add records in sorted
order (by primary key value), because then MIDAS doesn't have to sort
them during the loading process.

Records can be initially loaded to Direct files by specifying the file
as Output Chained: use an "O" in column 15, and a "C" in column 16.
Records can be added to a Direct file that already contains entries by
specifying the file as Update Chained: use a "U" in column 15 and a
"C" in colunn 16. In either case column 66 of the File Description
statement, as well as coiumns i6-18 of the Cutput statement, should be
left blank when processing Direct files. Note that relative record
number values cannot exceed the number of records pre-allocated during
template creation.

Modes of Processing

The method in which a MIDAS file is to be processed is indicated in
colunn 28 of the File Description Specifications statement. The three
modes of processing allowed on MIDAS files are:

e L —— Sequential within limits (for Indexed files only)

e R — (1) Random by relative record number (Direct files) or (2)
random by key (Indexed files)

e blank —- Sequential by key

These modes of processing can be applied to MIDAS files depending on
how these file are described in the File Designation column.

19 - 5 October 1980

SECTION 14 IDR4558

Primary, Secondary or Demand Files: can be accessed by non-random
access methods only. The particular access method (mode of processing)
depends on on the file's organization.

Organization Mode of Processing
Direct Sequential by relative record number
Indexed Sequential by key, Sequential within
limits

For Chained Files: MIDAS files declared as Chained files may be
processed according to their organization. If the MIDAS file is
Indexed, it can be accessed randomly by key. If the file is Direct, it
can be accessed randomly by relative record number only. MIDAS files
can only be accessed by key if they are defined as Chained files.

Demand Files: Demand files can be processed sequentially by key
(applies to both Indexed and Direct files), or sequentially within
limits (for Indexed files only). ‘There are two methods of
accomplishing limits processing: wusing the SETLL operation in a
Calculation statement, or using a record address file (RAF). (Record
address files are sequential files used to perform limits processing on
Indexed files.) 'The first method specifies a lower 1limit for the
primary key wvalue with SETLL: the file can then be positioned to the
proper record and can be processed from that point. The record address
file method requires the creation of a separate "limits" file
(sequential) which contains records that specify the "low" value from
which to start processing, and the "high" wvalue at which to stop
processing. To use the record address file method, you must specify
the name of this file in the Extensions statement (in columns 11-18),
along with the name of the MIDAS file that is to be processed (columns
19-26) . See The RPG Programmer's Guide for details.

FILE OPERATIONS

The operations that can be performed on a MIDAS file vary with the file
description in the File Description statement. ‘The standard file

operations that can be performed on MIDAS files with an RPG program
are:

e Reading records —— can be done sequentially or randomly by
primary key or relative record number (Direct files). A read
always implies a position operation, and implies a lock
operation if the file is opened for Update. (See Positioning
the File for further details.) Reads are done in the nommal
Input cycle, or by a READ or CHAIN operation in a Calculation
statement.

e 2dding records —— is the addition of new records to a non-empty
file. PFor indexed files this is possible for Input, Output, or
Update files where an A appears in column 66 of the File

IDR4558 THE RPG INTERFACE

Description statement, and when ADD appears in columns 16-18 of
the OQutput statement. Refer to Updating Records for an
explanation of adding new records to a Direct file.

e Ioading records —— is the initial addition of records to an

empty MIDAS file. ‘This applies to both Indexed and Direct
files. :

e Updating records -- works only for files opened as Update files:
an "update™ is simply a read followed by a write. This applies
to Indexed or Direct files. The only way to add entries to an
existing Direct file is to use an update operation.

These operations are elaborated upon below.

Positioning the File

File position is thought of in terms of a "file pointer" which always
points to some record in the file. The record to which the file
pointer is positioned is called the "current record", or the current
file position. Only a file designated as "Chained" (using a C in
column 16 of the File Description), can be positioned to a specific
record in the file. File position is established using a CHAIN
operation in the Calculation Specifications statement. When a file is
CHAINed, using a specific primary key value, the file pointer positions
to the record with this key wvalue. This record then becomes the
current record and is read. If the file is opened for Update, the
record will also be 1locked. However, if the file is a Direct file
defined as Output Chained, the CHAIN operation causes a position only.

Demand files can also be positioned, but only indirectly. This can be
done by SETLL or with a record address file. The file position is
established in two steps: first by setting the lower limit for the
primary key with the SETLL operation in a Calculation statement, or by
RAF, and then performing a READ operation. The record positioned to
will be the one whose primary key value matches the lower limit wvalue,
if one exists. If this primary key value does not exist, the record
whose primary key value is greater than the lower 1limit specification
becomes the current record.

Reading Records

MIDAS files can be read as part of the normal Input cycle, or as part
of the Calculation cycle, depending on their designation. Files whose
records are read as part of the Input cycle are declared as Primary or
Secondary and are read sequentially. Files declared as Demand can also
be read sequentially from beginning to end using a SETLL operation, or
by using a record address file to set an initial file position.

10 - 7 October 1980

SECTION 10 IDR4558

The read occurs during the READ operation of the Calculation statement.
Records read from files declared as Chained are read randomly by
primary or relative record key value using the CHAIN operation of the
Calculation statement. If the file is an Update file, the record will
also be locked when positioned to and read.

Sequential Reads on Indexed Files: Indexed files read as a part of
the normal Input cycle are read sequentially by key. Each record is
read in primary key order, that is, in the order in which key values
appear in the primary index subfile. After a record is read, RPG
automatically advances the file pointer, making the next record (in
primary key order) the current record. The next read operation then
reads the current record, and again advances the file pointer to the

next record, making it current. Files opened as primary or secondary
files cannot be read randomly.

Demand files can be read sequentially within limits in the two ways
described earlier: see Demand Files under Modes of Processing, above.

Random Reads: Random reads can be done only on files designated as
Chained files. 'This applies both to Indexed and Direct files. Random
reads are performed by using the CHAIN operation in the Calculation
statement. This method can be used on both Indexed files and Direct
files. The primary key or relative record number is supplied to MIDAS,
and the next record whose primary key matches this value will be
returned. The indicator for "no record found" should be set (in
columns 54 and 55 of the Calculation statement), enabling the program
to recover if there is no record in the file with that key value or a
given record number.

Note

In Direct files, space is pre-allocated for every record upon
template creation. If a legal record number is supplied in a
CHAIN operation, but there is no corresponding record for that
number, the record will be returned as blanks. Note that this
is different from COBOL which returns a "record not found"
error in this case. RPG does not treat a read of a
non-existent record as an error, as long as the record number
is within the pre-allocated limit on record numbers.

Adding Records

Records can be added to a MIDAS file through standard RPG output

methods or by using the KBUILD utility. See Section 3 for details on
KBUILD.

IDR4558 THE RPG INTERFACE

In Indexed files that contain entries, if colunn 66 of the File
Description statement contains an A and columns 16-18 of the Output
statement specify the ADD Operation, RPG can add records to the file.
The file can be opened for Input, Output, or Update. This applies only
to files that have been initially loaded, that is, files that already
contain entries.

Direct access files do not support ADD because of their file structure:
instead, addition of records is accomplished by an update. See
Updating Records below.

Loading Records

To load an Indexed file, specify a Uor a blank in colunn 66 of the
File Description statement: U implies an unordered load whereas blank
implies an ordered (sequential by key) load. Note that ADD is not
entered in columns 16-18 of the Output statement during a load. T

To load a Direct file, specify it as Output Chained and use the CHAIN

operation in the Calculation statement to indicate the relative record
number for each record to be loaded.

Updating Records

To update a MIDAS file record in RPG, the record must first be read and
then updated in the Output cycle. Be careful not to change the primary
key value when rewriting a record, because MIDAS does not allow the
primary key value to be changed. This applies to both Indexed and
Direct files.

The only way to add new records to a Direct file that contains entries
is to perform an update. This is because RPG assumes that any record
for which space has been pre-allocated (by CREATK), but which was not
added during the initial load, exists as all blanks. Thus, any attempt
to add a new entry to a direct access file is simply an update of the
blanks that already appear in this "slot" in the file.

Deleting Records

There is no delete operation in RPG. In order to delete records, write
a program to "flag" the records to be deleted, then copy the file to a
new file, omitting the records which were flagged for deletion. For an
idea of how this can be done, see the sample program called UPDATE
under DIRECT FILE EXAMPLES.

10 - 9 October 1980

SECTION 10 IDR4558

Error Handling

REG flags all MIDAS errors but can only recover from conditions of
"record locked" and "record not on file". The messages are described
below. The general format of the messages are shown here.

The general MIDAS error message is reported as:
MIDAS [MIDAS error message number] filename

(In some messages, the word MIDAS may be returned as "KIDA" instead,
but the user should not be concerned, as the two terms mean the same
thing.) When a message of this type is encountered during file
processing, the user should look up the error message number in
2ppendix A of this book to determine the nature of the error. Note
that MIDAS errors cannot be handled by typing an S followed by a
carriage return. In general, such action should only be taken when the
message returned by RPG explicitly permits this method of recovery.

Record Iocked: The general "record locked" message is:

filename keyfield RECORD IN USE. TYPE S(CR) TO TRY AGAIN.

The record has been locked in anticipation of an update. Keyfield is
the key that MIDAS was processing when the error occurred. If no other
user is accessing the file, the file was not properly closed after
previous usage. If another user is accessing the file, take the S(CR)
option, otherwise close all files and perform the necessary steps,
depending upon your application, to have a reliable file. If you type
S followed by (CR), the operation is executed again.

CHAIN Errors: An unsuccessful CHAIN operation will invoke the
message:

**** INSUCCESSFUL CHAIN TO ABOVE RECORD. TYPE S(CR) TO SKIP PAST OUTPUT.

This message is returned when a CHAIN operation has been attempted on
the file and MIDAS was unable to retrieve the record. This is a
serious message and indicates that the file is probably corrupted, or
that the file is not a valid MIDAS file. Typing S(CR) restarts the RPG
program cycle, skipping all the operations that would involve this
record.

Read Errors: The message for a general read error occurring at PRIMOS
level is returned as:

**%*UNSUCCESSFUL READ AT LINE nn.

This indicates an I/0 error at the system level: users have no control
over such errors.

IDR4558 THE RPG INTERFACE

MIDAS Concurrency Errors: The MIDAS concurrency error message which
RPG users may encounter 1s returned through RPG as:

MIDAS CONCURRENCY ER 13, filename
key

key represents the key value which RPG was processing at the time the
error occurred.

In a multi-user environment, it's possible for more than one user to
access the same segment subfile (index) and get in each other's way.
Usually, this message occurs when one user deletes a record that
another user has locked for reading and/or update. Although this can't
happen with two RPG users, it's conceivable that some FORTRAN or COBOL
user may have the same file open for update while an RPG user is simply
reading from it. ‘The RPG user may get this mesage when attempting to
update a now-deleted record.

INDEXED FILE EXAMPLES

To give you a general idea of how a MIDAS template can be created,
populated and accessed through RPG, we've assembled the following
examples:

e Creating the template for a keyed-index MIDAS file called MASTER

e Listing of a record-loading program that adds employee data
records to the empty MASTER file

e Listing of a file-reading program which verifies that all
desired records were loaded

e I[oading the two programs

e Output from the read program -- a sample report

Creating the Template

The Indexed file MASTER is created using CREATK as shown in this sample
session. The primary key is defined as an ASCII key of 10 characters
in length. The data size is defined as 32 words (64 characters). User
input is underlined to distinguish it from CREATK's prompts.

10 - 11 October 1980

SECTION 10 IDR4558

[CREATK rev 17.6]
MINIMUM OPTIONS? yes
FILE NAME? master

NEW FILE? yes

DIRECT ACCESS? no
DATA SUBFILE QUESTIONS
PRIMARY KEY TYPE: a
PRIMARY KEY SIZE = : b 10
DATA SIZE = : 32
SECONDARY INDEX

INDEX NO.? (CR)

OK,

Because RPG does not support secondary keys, we didn't define any for
this file template: instead, we hit a carriage return (CR).

Loading the File

The following program, LOAD, loads the file MASTER with employee
records from a sequential disk file called SFILE. The primary key
values are taken from the employee number values in the sequential data
file records. Remember, only empty files can be loaded sequentially.

The "H'" that appears at the top of the program is a Header card, and
is optional if no entries are to be included in it.

H

F* LOAD

F*

F* THIS PROGRAM LOADS THE INDEXED FILE MASTER WITH EMPLOYEE
F* RECORDS FROM THE SEQUENTIAL DISK FILE SFILE. THE EMPLOYEE
F* NUMBER IS USED AS THE INDEX.

F*

F*

FSFILE IPE F 64 DISK

FMASTER O F 64 B5AI 2 DISK

ISFILE NS g1

I 2 6BEMPNO

I 7 64 DATA

OMASTER D g1

0 1'p!

0 EMPNO 6

0 DATA 64

REV. ¢ g - 12

IDR4558 THE RPG INTERFACE

The sequential file SFILE contains the following records:

P4416124ATAMS WJB123456780¢MH 200 3808002 32000
22236124BRONN HY2345678900@MH20000 800000 60000
25781125CO0PER IG333445555@02SH 45@ 750000 52000
39840124DAVIS TV44455666601IMH 250 400000 30000
47124123EVANS AS34567890910@MH350001400000 120000
66031123F0X FL4567890120@MH 350 660000 26000
73315125HOLMES EB5678901230¢MH10000 400000 30000
80P81125JONES CO@@@11222200SH 400 640000 64000
86789123KELLER ND99988777701MS 300 520000 38000
9857@124LAKE MP88877666604SS300001200000 80000

Reading an Indexed File

hWhen the program above is run, the records in the sequential file are
added to the MIDAS file MASTER . To read the records back from the
file and print out a report showing what's in the file, we use the READ
program, listed below. ‘The program reads MASTER sequentially and
prints out a report in the file PRINT.

H

F* READ

F*

2 THIS PROGRAM READS THE INDEXED MASTER FILE IN SEQUENTIAL ORDER
F* AND PRODUCES AN EMPLOYEE LISTING REPORT FRQM THE DATA. TOTALS
F* ARE CALCULATED FOR CERTAIN CATEGORIES AND ARE SHOWN IN THE

F* REPORT.

F*

F*

FMASTER IPEAF 64 5AI 2 DISK

FPRINT O F 96 PRINTER

IMASTER NS @1 1 CP
2 6QEMPNO
7 9 DEPT
19 16 NAME
17 18 INIT
19 27 SSN
28 290QEXEM
30 30 MSTAT
31 31 PSTAT
32 362PRATE
37 432YTDG
44 5p2YTDT
62 62 DEL 19

19 PSTAT Cavp 'H' 20

19 YTDG SUB YTDT NETPAY 72

10 TOTAL ADD NETPAY TOTAL 82

19 GROSS ADD YTDG GROSS 82

10 TAX ADD YTDT TAX 82

19 PRATE COMP 300.00 a2

19 20 HOURLY ADD 1 HOURLY 20

1gN29 SALAR ADD 1 SALAR 20

QOO0 HHMHHH M H H H H -

10 - 13 October 1980

SECTION 10 IDR4558

OR OF
UDATE Y 8
47 'EMPLOYEE LISTING'
73 'PAGE'
PAGE Z 78

OR OF

8 'EMPLOYEE'
19 'EMPLOYEE'
32 'DEPARTMENT'
39 'RATE'

50 'Y-T-D'

62 'Y-T-D'

74 'Y-T-D'

0

o

0

0

0

0

o

0

o

0

o

o

0

0

0

o OR OF

0 7 'NUMBER'
0 17 'NAME'
0 30 'NUMBER'
0 50 'GROSs'
0 61 'TAX'

o 72 'NET'

0

] EMPNO 7

0 NAME 17

o INIT 20

0o DEPT 29

0 PRATE 1 40

0 YIDG 1 52

0 YIDT 1 64

0 NETPAY1 76

0 02 78 '*!

0 T1 LR

0 14 'TOTAL SALARIED'
0 25 'EMPLOYEES:'
0 SALAR 2 28

0] GROSS 1 52

0 TAX 1 64

0 TOTAL 1 76

0]
o
0
0

12 'TOTAL HOURLY'

23 'EMPLOYEES:'
HOURLY2 28

When compiled, loaded and executed, the program produces a report that
looks like this:

REV. @ 16 - 14

9/23/80

EMPLOYEE EMPLOYEE

NUMBER

04416
22236
25781
398490
47124
66031
73315
80081
86789
98570

NAME

ADAMS
BROWN
COOPER
DAVIS
EVANS
FOX
HOLMES
JONES
KELLER
LAKE

WJ
HY
IG
v
AS
FL
EB
Cco
ND
MP

NUMBER

124
124
125
124
123
123
125
125
123
124

TOTAL SALARIED EMPLOYEES:2
TOTAL HOURLY EMPLOYEES: 8

IDR4558

EMPLOYEE LISTING
DEPARTMENT RATE

10

2.00
200.00
4.50
2.50
350.00
3.50
100.00
4.00
3.00
300.00

15

Y-T-D
GROSS

3,800.00
8,000.00
7,500.00
4,000.00
14,000.00
6,600.00
4,000.00
6,400.00
5,200.00
12,000.00

71,500.00

THE RPG INTERFACE

Y-T-D
TAX

320.00
600.00
520.00
300.00
1,200.00
260.00
300.00
640.00
380.00
800.00

5,320.00

PAGE
Y-T-D
NET

3,480.00
7,400.00
6,980.00
3,700.00
12,800.00
6,340.00
3,700.00
5,760.00
4,820.00
11,200.00

66,180.00

October 1980

1

SECTION 10 IDR4558

DIRECT FILE EXAMPLES

Direct files require a slightly different type of template. The user
must answer "yes" to the "DIRECT ACCESS?" question which CREATK always
asks after requesting the file name and status. MIDAS then sets up the
template for direct access, allowing each record to have, and be
accessed by, a unique floating-point record number. The RPG user, when
creating a template for a Direct file, must always define the PRIMARY
KEY TYPE as "S", which is the symbol for single-precision
floating-point keys in MIDAS in an RPG program. ‘The primary key is
never mentioned in the description of the data record. The example
below shows the sample user-CREATK dialog needed to set up the Direct
file MASTD used in the remaining examples in this section.

Creating a Direct File Template

The following CREATK session shows the input needed to define the
Direct file MASTD, which is used in the remaining examples to
demonstrate Direct file processing in RFG.

OK, creatk
[CREATK rev 17.6]

MINIMUM OPTIONS? yes

FILE NAME? mastd

NEW FILE? yes

DIRECT ACCESS? yes

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: s

DATA SIZE = : 32

NUMBER OF ENTRIES TO ALLOCATE? 100

SECONDARY INDEX

INDEX NO.? (CR)

SETTING FILE LOCK TO N READERS AND N WRITERS
In this case, the file has fixed-length records of 32 words (64
characters). CREATK allocates 10¢ records for this file when it sets

up the template. Only record numbers between @ and 99 are legal for
this file.

REV. @ 12 - 16

IDR4558 THE RPG INTERFACE

Ioading the File

The following program, DALOAD, loads an empty Direct file using a
sequential disk file, FILEIN. The sequential file appears below the
program listing.

H

F* DALOAD

F*

F* THIS PROGRAM LOADS THE DIRECT ACCESS FILE MASTD WITH EMPLOYEE
% RECORDS FRQM THE SEQUENTIAL DISK FILE FILEIN. THE REIATIVE
F* RECORD NUMBERS OF THE FILE ARE SELECTED FRQM THE FIRST TWO
F* DIGITS OF THE EMPLOYEE NUMBER,

F*

P*

FFILEIN IPE F 64 DISK

FMASTD OC F 64R D DISK

IFILEIN NS g1

I 2 30EMPNO

I 4 6¢EMP1

I 7 64 DATA

c gl EMPNO CHAINMASTD 929

QMASTD D g1

0 1'p’

0 EMPNO 3

O EMP] 6

o) DATA 64

When compiled and loaded, the program is run to add records to the
MASTD file.

Reading the File

The following program uses the just-loaded Direct file as a master file
against which data in a transaction file can be checked. The
transaction file is a sequential file containing employee record
information. Records are read from the sequential file called TRANS
and the MASTD file is then read to see if the information matches. 2ny
data in the transaction file which does not match the data in the MASTD
file is marked with an asterisk (*) in the edit listing produced by the
program. Note that the relative record number does not appear as part
of the record description.

1@ - 17 October 1980

SECTION 10 IDR4558

H
F* DAREAD
F*
F* THIS PROGRAM CHECKS THE SEQUENTIAL TRANSACTION FILE FOR ERRORS
F* AND PRODUCES A CURRENT EARNINGS EDIT LISTING. TESTS ARE MADE
F* FOR THE CORRECT TRANSACTION CODE, FOR THE CORRECT DEPARTMENT
F* NUMBER, AND ALSO FOR A EMPLOYEE NUMBER MATCH WITH THE DIRECT
F* ACCESS FILE MASTD.
F*
F*
FMASTD IC F 64dR D DISK
FTRANS IPE F 64 DISK
FLISTL O F 120 PRINTER
ITRANS NS 01
I 1 1CODE
I 8 9QEMPNO
I 10 12@EMPNO2
I 13 15@DEPT
I 25 282RHOURS
I 29 3220HOURS
I 33 372GROsS
I 38 422TAX
IMASTD NS @92 1CP
I 2 30MEMPNO
I 4 60EMPNO2
cC 0l SETON 30
c 0l DEPT CaMp 125 20
C 0IN20 DEPT CaMP 124 20
C @IN20 DEPT CoMp 123 20
c 0l EMPNO CHAINMASTD 21
C N20¢ 91 ERRDEP ADD 1 ERRDEP 20
C 21 41 ERREMP ADD 1 ERREMP 20
cC 0 CODE cavp 'C' 22
C N22 g1 ERRRC ADD 1 ERRRC 20
c a1 TOTRH ADD RHOURS TOTRH 52
C 1 TOTOH ADD OHOURS TOTOH 52
c o TOTG ADD GROSS TOTG 62
c 2 TOTT ADD TAX TOTT 62
c 01 TOTAL ADD 1 TOTAL 20
OLIST1 H 1P
0 OR OF
o 38 'CURRENT EARNIN'
0 53 'GS EDIT LISTING'
o H 11 1p
0 OR OF
0 4 'CODE'
0 12 'EMP NO'
0 21 'DEPT NO'
0 30 'REG HRS'
o 39 '0TM HRS'
0 48 'GROSS'
0 57 'TAX'
o) D1 3¢
0 CCDE 3

REV. 0 g - 18

0

0

0

0

0]

0

0

0 D 1
0 OR
0 OR

O

0

0

0

0 T 2
0

(0

0

0

0

o T1
0

0

0

0

0

0

0

o T1
0

0

0

The sequential disk file TRANS,

04416123
22236124
25781125
39840122
47124123
66013123
68726124
73315125
74249123
80081152
86789123
98570124

QOO OO0O000O0nNn

After the program has been compiled, loaded and run, the printer

30N22

30 21

30N20
N22

21
N2g

LIST1, looks like this:

IDR4558

THE RPG INTERFACE

EMPNO 9
EMPNO2 12
DEPT 19
RHOURS1 29
OHOURS1 38
GROSS 1 48
TAX 1 58
3 ki
10 '*?
18 'x
76 'CHECK FOR ERRORS'
21 '"TOTALS!
TOTRH 2 29
TOTOH 2 38
TOTG 2 48
TOTT 2 58
14 'ERROR RECORDS:'
27 'RECORD CODE-'
ERRRC 2 29
47 "EMPLOYEE NUMBER-'
ERREMP2 43
69 'DEPARTMENT NUMBER-'
ERRDEP2 71
15 '"TOTAL RECORDS P!
24 'ROCESSED:'
TOTAL 2 27

4000
0020
4000
4000
2000
4000
2000
0000
101400
3500
4000
0000

10

.
formation:

AL UL

500 9500 950
00020000 1500
00018000 1300
00010000 750
00035000 3000
30915575 808
00040000 4000
00010006 750
00025000 1750
00014000 1400
00012000 950
00030000 2000

whose data records are checked for

file,

October 1988

SECTION 10

CODE EMP NO DEPT NO REG HRS OTM HRS

C

C

* O

(@]

g4416
22236
25781
39840

47124
66031

68726
*

73315

74249
*
80081

86789

98570

123
124
125

122
*

123
123

124

125

123
152
*

123

124

IDR4558

CURRENT EARNINGS EDIT LISTING

40.00
.00
40.00

49.00

.00
40.00

.00

.00

.00

35.00

40.00

.gﬂ

TOTALS 235.00

5.00
.90
.00

.00

.00
3.00

.00

.00

.00

.00

.00

.09

GROSS
95.00
200.09
180.00

100.00

350.00
155.75

400.00

100.00

250.00

140.00

120.00

300.00

8.00 2,398.75 191.58

TAX

9.50
15.00
13.00

7.50

30.00
8.08

40.00

7.50

17.50

14.00

9.50

20.00

CHECK FOR ERRORS

CHECK FOR ERRORS

CHECK FOR ERRORS

CHECK FOR ERROCRS

ERROR RECORDS: RECORD CODE- 2 EMPLOYEE NUMBER- 2 DEPARTMENT NUMBER- 2

TOTAL RECORDS PROCESSED:

REV.

]

12

10

IDR4558 THE RPG INTERFACE

Updating Records

In Update mode, new records can be added to a file (if it already
contains data), and existing data records can be rewritten. Updates to
a Direct file can be done using a sequential file which tells the
update program what to do with certain records in the Direct file. The
sample program UPDATE shown below uses the file MAINT to indicate which
records in the MASTD file will be updated, added or effectively
"deleted". Records are not deleted physically, but appear to have been
deleted when the report which UPDATE produces 1is printed out. ‘The
report is done to verify that all the proper alterations have been made
to the file.

The file MAINT contains the following information:

MA23712123CARSON BG99977555500SH 300 470000 47000
MA70345125HARRIS CH44466888802MS325001150000 105000
MD39840

MD8¢@81

MD98574

MU22236124MORGAN 2MS26000

MU25781125COOPER @2SH 500

MU74249124IRVING @3MS25000

MU86789123KELLER 1MS15000

A listing of the UPDATE program begins on the next page.

10 - 21 October 1980

SECTION 10 IDR4558

UPDATE

THIS PROGRAM UPDATES THE DIRECT ACCESS MASTD FILE VIA THE SEQUENTIAL
MAINTENANCE FILE. THIS RESULTS IN ADDITIONS, DELETIONS AND UPDATES.

A REPORT IS GENERATED TO LIST THE CHANGES THAT WERE MADE TO THE
MASTER FILE.

FEEEEEE NS

FMASTD UC F 64R D DISK

FMAINT IPE F 64 DISK

FLIST2 O F 120 PRINTER

IMASTD NS 1cCp

2 30EMPNO
4 6QEMPNO2
7 90DEPT
10 16 NAME
17 18 INIT
19 27 SSN
28 290EXEM
30 30 MSTAT
31 31 PSTAT
32 362PRATE
37 432YTDG
44 502YTDT
62 62 DEL

EHHHHHHHHHHHHH
=)
2z
-

AA g1 1M 2QCA
3 40TEMPNO
5 70TEMP2
8 100TDEPT
11 17 TNAME
18 19 TINIT
20 28 TSSN
29 300TEXEM
31 31 MSTAT
32 32 TPSTAT
33 372TPRATE
38 442TYTDG
45 512TYTDT
BB g2 1CM 2CD
3 4QTEMPNO
70TEMP2
ccC g3 1M 2CU
3 49TEMPNO
5 T70TEMP2
8 1P@TDEPT
11 17 TNAME
18 190QTEXEM
20 20 MSTAT
21 21 TPSTAT
22 262TPRATE
NO1 TEMPNO CHAINMASTD H1
g1 TEMPNO CHAINMASTD 49
a3 DEPT caMp TDEPT 11

QOO 4 bt HH e A
u

REV. @ g - 22

c o3 NAME
cC @23 EXEM
c a3 MSTAT
c @3 PSTAT
cC a3 PRATE
cC a ADDS
c 02 DELS
Cc o3 CHNGES
OLIST2 H1

0 OR

0

0

o) H1

0 OR

0o

0

0

0

0

o)

0]

0

0 H 2
0] OR

0

C

0

0

0

0

o)

o)

0

G

0

0

0

0 D 1
0

0

0

0

0]

0

0

0

0

0

o)

o

0

0] D 1
0

0

1p
OF

1p
OF

1p
OF

g1

a2

IDR4558

COMP TNAME

COMP TEXEM

COMP TMSTAT
COMP TPSTAT
COMP TPRATE
ADD 1

ADD 1

ADD 1

TEMPNO
TEMP2
TDEPT
TNAME
TINIT
TSSN
TEXEM 1
TMSTAT
TPSTAT
TPRATEL
TYTDG 1
TYTDT 1

EMPNO

10 -

THE RPG INTERFACE

12
13
14
15
16

ADDS 20
DELS 20
CHNGES 20

43
60

12
24
39
42
45
77

11
18
24
35
39
42
45
53

eA
04

73
77

11
20
24
34
39
42
45
53
64
74
88

23

' EMPLOYEE MASTER'
'FILE MAINTENANCE'

ICI
lmpl
' DEPT
lFMI
'NOI
IMI
ISI
lDEl

IDI

=NOS

lNOl

' NAME"

'II'

'SOC SEC NO!
IEXI

lSl

lHl

* RATE"

'YTD GROSS'
'YTD TAX"
ICDI

'NEW RECORD'

Ipl

October 1980

SECTION 18

REV.

OOOOOOOOOOOO%OOO

a

3

T1

D

23

N11

N12

N13

N14

N15

N16

LR

g1 40

IDR4558
EMPNO2 7
DEPT 11
NAME 20
INIT 24
SSN 34
EXeM 1 39
MSTAT 42
PSTAT 45
PRATE 1 53
YIDG 1 64
YIDT 1 74

77

84

1

EMPNO 4
EMPNO2 7
TDEPT 11
12

TNAME 20
21

INIT 24
SSN 34
TEXEM 1 39
40

TMSTAT 42
43

TPSTAT 45
46

TPRATE1 53
54

YIDG 1 64
YIDT 1 73
84

14

ADDS 2 16
40

DELS 2 42
62

CHNGES2 64
1

TEMPNO 6
TDEPT 9
TNAME 16
TINIT 18
TSSN 27
TEXEM 29
TMSTAT 30
TPSTAT 31
TPRATE 36
TYTDG 43
TYTDT 50

18 -

24

) DI
'DELETE'

IPI

Tkt

1kt

[FX]
1]
Tkt

Tx?

' CHANGE'
"RECORDS ADDED-'
'"RECORDS INACTIVATED-'

'RECORDS CHANGED-'

IPI

IDR4558 THE RPG INTERFACE

0 62 ' '
0 D @2

0 62 'D!
0 D 23

0 N11 TDEPT 9

0 N12 TNAME 16

0 N13 TEXEM 29

0 N14 TMSTAT 30

0 N15 TPSTAT 31

0 Nl6 TPRATE 36

When run, the UPDATE program produces this report:

19 - 25 October 1980

SECTION 19

C EMP DEPT
D NO NO NAME

23712 123 CARSON

70345 125 HARRIS
P 39849 124 DAVIS
P 80081 125 JONES
P 98570 124 [LAKE

M
II

BG
CH
™
Cco
MP

P 22236 124 MORGAN * HY

P 25781 125 COOPER
P 86789 123 KELLER

RECORDS ADDED- 2

IG
ND

IDR4558

EMPLOYEE MASTER FILE MAINTENANCE

SOC SEC NO

999775555
444668888
444556666
000112222
888776666
234567890
333445555
999887777

NO
EX

00
@2
g1
0]
o4
p2*
@2
a1

n=

Z2EN2ODNEn

RECORDS INACTIVATED- 3

10

S

H RATE YTD GROSS
H 3.00 4,700.00
S 325.90 11,500.00
H 2.50 4,000.00
H 4.00 6,400.00
S 300.00 12,000.00
S* 200.00 8,000.00
H 5.00* 7,500.00
S 150.90* 5,200.00

RECORDS CHANGED- 3

26

DE

YTD TAX CD

479.00
1,050.00
300.00
640.00
800.00
600.00
520.00
380.00

NEW RECORD
NBEW RECORD

D DELETE

D DELETE

D DELETE
CHANGE
CHANGE
CHANGE

IDR4558 DIRECT ACCESS

SECTION 11

DIRECT ACCESS

INTRODUCTION

Direct access MIDAS files are supported by the FORTRAN, COBOL and RPGII
interfaces. However, such files are particularly well-suited for use
with COBOL, which treats them as standard REIATIVE files. This section
explains the structure of a direct access file and how to create a
direct access file template. Since each of the three language
interfaces to MIDAS that support direct access files do things a little
differently, we make no attempt to lump them all together. Instead,
only the COBOL direct access interface is discussed in this section.
For information on using direct access in FORTRAN and in RPG, see
sections 6 and 1@ of this book.

What Is Direct Access?

Direct access in MIDAS is based on record numbers; each record in the
file has a unique floating-point record number (single-precision) that
identifies that record absolutely. To get a particular record, one
simply provides MIDAS with the right record number and the record is
found and returned. ‘There's nc need tc search through many index
blocks in search of a value (which may have mistakenly gotten inserted
in the wrong spot), because direct access involves calculating the
exact physical location of the record in the file using an algorithm
that takes into account the record size, segment size, and so forth.
The user doesn't need to worry about this except to know that MIDAS
takes care of it all internally. The only drawback to direct access is
that the user must keep track of the correlation between record numbers
and record values in order to locate individual records.

Direct Access File Structure

A direct access file template is created with CREATK in much the way as
are keyed-index MIDAS files. 1In fact, the dialogs used are virtually
identical, except for a few prompts, which are shown in the sample
dialog a bit later in this section. The basic differences between
keyed-index and direct access MIDAS files are:

e A direct access (RELATIVE) file must have fixed-length records;
the user must supply the record lergth (data size) in words.

e FEach record in a direct access file must have a unique record
number. The record number may or may not have to be the primary
key: this restriction depends on the language interface being
used to access the file.

11 - 1 October 1980

SECTION 11 IDR4558

e Storage space must be pre-allocated for a direct access file,
which means that the user must estimate the maximum number of
entries which will eventually reside in the data subfile.
CREATK then allocates the proper amount of space required to
accommodate a file with the number of records the user
indicated.

e Direct access MIDAS files take up a bit more disk space than
keyed-index files because a two-word record number is stored
with each primary index entry. (This 1is true even when the
primary index is defined as the record number.)

As mentioned in section 1, direct access files are accessible by the
MIDAS direct access method, but they can also be accessed by the
keyed-index method if keys are included in the file template. ‘This
applies to FORTRAN only.

DIRECT ACCESS IN EACH LANGUAGE
The three language interfaces that support the direct access feature of

MIDAS each implement it a bit differently. The following paragraphs
summarize the treatment of direct access in COBOL, FORTRAN and RPG.

Direct Access in COBOL

COBOL treats direct access MIDAS files as REIATIVE files, using the
standard RELATIVE file I/0 statements, with a few minor enhancements,
as COBOL's interface to direct access MIDAS files. The RELATIVE KEY in
a RELIATIVE file is the primary key you defined for that MIDAS file
during template creation. It is a COBOL requirement that the RELATIVE
KEY be the relative record number field in each record: therefore, the
primary key for a direct access MIDAS file to be accessed as a COBOL
RELATIVE file must be defined in a special way.

Defining the Primary Key (in CREATK): From the COBOL programmer's
point of view, the primary key would be thought of as a character
string from one to six characters (bytes) in length. However, you must
specify the primary key in bit stri form when creating a direct
access template with CREATK. This means that the primary key is always
defined as being from 8 bits to 48 bits in length: this corresponds to
a character string with a minimum size of one character and a maximum
size of six characters. This allows for a maximum of 999,999 entries
in the file, because 999999 is the largest relative record number
possible in a RELATIVE file under Prime's COBOL.

REV. @ 11 - 2

IDR4558 DIRECT ACCESS

Declaring the REIATIVE KEY in the Program: A corresponding PICTURE
clause must be used to define the REIATIVE KEY in any program that
accesses a REIATIVE file: for example, a 48-bit string would have a
PICTURE clause of 9(6).

Observe that reducing the REIATIVE KEY size from 48 bits decreases the
maximum number of entries that the file can accommodate. For example,
if the KEY is defined as a 32-bit string, the file can have a maximum
of 9999 entries, as opposed to 999,999 entries. The PICTURE clause
that would describe this particular key in a program is PIC 9(4). In a
COBOL program that accesses a REIATIVE file, the RELIATIVE KEY cannot be
declared as part of the data record; instead, it is declared in the
WORKING STORAGE section.

Secondary keys are not supported in REIATIVE files because COBOL

provides no mechanism for adding entries to secondary index subfiles.
These points are explained further under RELATIVE FILE ACCESS, below.

Direct Access in FORTRAN

Direct access files in FORTRAN do not require that the record number be
defined as a primary or secondary key. However, the user may define
the record number as the primary or a secondary key if desired, keeping
in mind that the record number is stored by MIDAS as a single-precision
floating—point number., If the user dces nct want the record number tc
be a key field, the primary key should be defined as some other unique
field in the record. In addition, up to 17 secondary indexes may be
defined during template creation.

If you choose not to make the record number a key field, you don't have
to worry about it at all during template definition. The only time you
need to be concerned about the record number is when adding entries to
the file. Then, a unique record number must be supplied for each
record to be added to the data subfile. MIDAS takes care of storing

(= 010} —aliT po L B &L T

the record numbers in the proper place.

Direct access files can be built (populated) by KBUILD, as described in
Section 3; record numbers must be supplied by the user and must appear
in the same word position in each record. To access direct access
files by record number (instead of by key), the same basic subroutine
calls are used, but the communications array format is slightly
different. Details on access methods are covered in Section 6.

11 - 3 October 1980

SECTION 11 IDR4558

Direct Access in REG

RPGII supports direct access MIDAS files as standard RPG direct files.
When a direct access MIDAS file template is created specifically for
use with RPG, the primary key must be defined as a single-precision
floating-point number. Specify "S" in response to the "PRIMARY KEY
TYPE:" prompt of the CREATK dialog. In RPG programs that process
direct access files, the file organization must be specified as Direct
(D) and the file can only be opened as a ¢Chained file. Records are
read randomly by record number. See Section 10 for specifics.

CREATING A DIRECT ACCESS FILE

The CREATK dialog for setting up a direct access template is very much
the same as the dialog used to set up a keyed-index file template. To
invoke the dialog, simply type CREATK, and answer "YES" to the "DIRECT
ACCESS?" prompt. The important parts of the dialog are discussed
below, and several examples are provided to illustrate how it is used.
In creating a direct access file, you may choose either the minimum
options path by answering "YES" to the MINIMUM OPTIONS?" prompt, or
the extended options path, which is described in Section 15.

CREATK Dialog for Direct Access

The dialog used to set up a direct access template under minimum
options is explained below. Most of the prompts are identical to those
already shown in Section 2.

REV. 0 11 - 4

Prompt
MINIMIM OPTIONS?

FILENAME?

DIRECT ACCESS?

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE:

DATA SIZE=:

NUMBER OF ENTRIES TO
ALLOCATE?

SECONDARY INDEX
INDEX NO?

11

IDR4558

Response
YES.
of file to be

Enter pathname
created.

Enter YES: signifies that file
is to be set up for direct
access and that it can be
accessed by record number:
records will be stored in the
data subfile in sequential order
by record number.

For files to be used with COBOL,
enter "b" for bit string; for
files used with RPG, specify
for FORTRAN, any of the
key types supported by CREATK
are okay. (See Table 2-2 in
Section 2.)

n sll ;

For COROL, specifiy a bit string
from 8 to 48 bits; for FORTRAN,
replies should be made in
accordance with the data type
specified above. (See Section
2.)

Supply a value other than zero:
direct access files must have
fixed-length records. Do not
simply hit (CR) 1in response to
this prompt. Record size should
be supplied in words.

Enter maximum number of entries
(records) for which to reserve
room in the data subfile.
CREATK must pre-allocate space
for a direct access file.

Enter an index number from 1-17
if secondary keys are desired.
This feature applies to FORTRAN
only; COBOL or RPG users should
simply hit carriage return (CR),
as a response to this prompt.

DIRECT ACCESS

October 1980

SECTION 11 IDR4558

The remaining prompts in the dialog are the same as those of the
keyed-index dialog discussed in section 2.

Sample CREATK Session

The following is taken from a terminal session in which a direct
access template was created for a MIDAS file to be used with COBOL.

OK, creatk
[CREATK rev 17.6]

MINIMUM OPTIONS? yes

FILE NAME? dacust
NEW FILE? yes
DIRECT ACCESS? yes

DATA SUBFILE QUESTIONS

PRIMARY KEY TYPE: b

PRIMARY KEY SIZE = : b 48

DATA SIZE = : 35

NUMBER OF ENTRIES TO ALLOCATE? 15

SECONDARY INDEX

INDEX NO.? (CR)
SETTING FILE LOCK TO N READERS AND N WRITERS
OK,

Because we want to use the file in a COBOL application, no
secondary keys were defined for this file template.

RELATIVE FILE ACCESS

As stated earlier, COBOL's method of accessing direct access files
is the standard COBOL REIATIVE file interface. It consists of the
READ, WRITE, REWRITE, DELETE and START statements. The standard
OPEN and CLOSE statements are used to open and close the file from
a COBOL program as shown in Section 7.

The remainder of this section deals with COBOL's RELATIVE file I/0
statements and how they are used in reading, writing, rewriting and
deleting records from a direct access MIDAS file. Because they are
so similar in syntax and usage to the INDEXED SEQUENTIAL
statements, the reader is often referred to Section 7 for
explanations to avoid duplication.

REV. @ 11 - 6

IDR4558 DIRECT ACCESS

Defining the File

The SELECT statement, discussed in Section 7, defines the file's
logical name and organization. The differences between the SELECT
statement for an INDEXED SEQUENTIAL file and a SELECT for a
REIATIVE file are the ORGANIZATION clause specification and the the
terms used to describe the primary key. The format indicates these
differences:

SELECT filename
ASSIGN TO PFMS
ORGANIZATION IS REIATIVE

SEQUENTIAL
[ACCESS MODE IS RANDOM]
DYNAMIC

[RELATIVE KEY IS key-name-1]
[FILE STATUS IS status-code].

REIATIVE KEY is the primary key and represents the record number in
a direct access file. It should be defined as a bit string during
template creation. However, when accessing the file through a
program, the RELATIVE KEY is treated as a character string with a
minimum size of one character and a maximum size of six characters.
This REIATIVE KEY should not be included in the DATA RECORD
description in the File Definition section of the program.
Instead, it should be defined only in the WORKING STORAGE section.
The key need not be specified if the file is opened for SEQUENTIAL
access. (See Access Modes below.)

Basically, all the rules that govern the RECORD KEY definit

INDEXED SEQUENTIAL files apply to REIATIVE files, wi
following additions:

"
i

3

3
1
4

th the

-
-

e 'The REIATIVE KEY is a character string defined as a bit
string during template definition and must represent the
record number in each file record.

e The RELIATIVE KEY cannot have a value larger than 999,999 or
a PICTURE clause larger than 9(6).

e The REIATIVE KEY named by key-name-1 must be defined in the

Working Storage section, and not in the Record Description
for that file.

11 - 7 October 1980

SECTION 11 IDR4558

Access Modes: The access modes are the same as for INDEXED
SEQUENTIAL files; see Section 7 for details. The correspondence
between access modes and "open" modes and what can be done in each
situation is shown in Table 11-1. If the file is opened for
SEQUENTIAL OUTPUT, it is not necessary to define the RELATIVE KEY
in the program because it 1is supplied by the COBOL run-time
library. If you do not define a key in the SELECT statement, it
defaults to a 6-byte character string, which is the maximum size
allowed.

The status codes returned in status-code are listed in Table 11-2.

Condition Handling

The INVALID KEY and AT END clauses may be included in RELATIVE file
I/0 statements as 1indicated in the formats given here. These
statements are identical in format to those used in INDEXED file
handling, explained in Section 7. The status codes returned to the
program during RELATIVE file processing are listed in Table 11-2.
Be sure to handle all common file processing conditions 1like
"end-of-file" and "record not found" and so forth.

Here is a summary of the condition handlers that can be used to
trap run-time errors and conditions during RELATIVE file
processing:

o The AT END clause, which defines one or more statements
which are executed when an "end-of-file" is detected. This
statements or statements may or may not direct control to
some "end-of-file-handling" statements or procedure at
another location in the program.

e The INVALID KEY clause, which 1is executed when an error
occurs; it specifies a statement or series of statements
which perform some useful action or series of actions in the
event of a KEY error. ‘This statements or series of
statements may or may not direct control to another location
in the program where the error can be handled appropriately.
(Can be used in START, READ, WRITE, REWRITE and DELETE
statements.)

e The USE AFTER ERRCR statement which indicates the name of a
procedure in the program which will be executed in the event
of an I-0 error, in addition to the System's standard I-O
procedures.

REV. @ 1 - 8

IDR4558

RELATIVE I/O

DIRECT ACCESS

File Access
Mode

Statement

Sequential

READ

Input-Output

‘
‘
o |

,

WRITE

REWRITE

START

DELETE

Random

READ

WRITE

REWRITE

START

DELETE

Dynamic

READ

WRITE

REWRITE

START

DELETE

11 - 9

October 198¢

SECTION 11

Status Code

REV.

1Y)
10
21

22

23

24

30

IDR4558

Table 11-2. RELATIVE File Status Codes

Interpretation

Successful completion of operation.
Ind of file encountered during a READ,

User has attempted to write beyond predefined
boundaries of the file.

Record already exists in data subfile; user
attempted to add a record with a non-unique
record number.

Record not found; no record found with the
specifed key value.

Boundary violation: wuser has attempted to
read or write beyond pre-allocated file
boundaries. (Boundaries are allocated by
CREATK during template creation.)

Permanent I/0 error; could be a parity error,
data check or transmission error.

(Status Codes beginning with 9 are Prime-defined condition

codes.)

g

90

91

94

95

96

Locked record; attempt to access a record
already locked by another user or process.

Unlocked record; REWRITE attempted without
first locking the record with a READ.

MIDAS concurrency error: another user has
deleted the record you were trying to access.

User has supplied a record length for a
REIATIVE file that does not match the record
size assigned to the file during template
creation.

Relative record number error; user supplied a

record number larger than the number
pre-allocated by CREATK.

11 - 190

98

99

IDR4558 DIRECT ACCESS

Attempt to do an indexed add to a direct
access file; can't add entries to a REIATIVE
file even if it's opened for INDEXED access.

System error; possibly serious. Before
panicking, verify that error is not due to a
START that encountered a locked record.

11 - 1 Cctober 1980

SECTION 11 IDR4558

Opening and Closing the File

A direct access file is opened using the OPEN statement:

INPUT
OPEN 1{ OUTPUT; filename
I-0

Direct access files may be opened for INPUT, OUTPUT or I-O:
e INPUT means READ only.
e OUTPUT means WRITE only.

e I-O means all operations are legal including READ, UPDATE,
DELETE and WRITE.

In SEQUENTIAL access mode, a RELATIVE file cannot be opened for I-O
if a WRITE statement is included for this file; instead, it must
be opened for OUTPUT only. nly empty files can be opened for
SEQUENTIAL OUTPUT. OUTPUT mode prevents the accidental movement of
the record pointer while COBOL is trying to add records in
sequential record order, because the only operation legal in OUTPUT
mode is a WRITE. COBOL provides its own record numbers in
SEQUENTIAL WRITEs, ignoring any values the user might have supplied
for the relative record number field.

Note

When a RELATIVE file is opened for writing in SEQUENTIAL

access mode, it must be OPENed for OUTPUT: it cannot be
opened for I-0. The file is assumed to be empty (that is,
it contains no entries).

Closing the File: ‘The file is closed using the CLOSE statement:

CLOSE filename-1 [,filename-2...]

Put the CLOSE statement at the 1logical end of the program or in an
error-handling routine. It's possible to close more than one file with
a single CLOSE statement.

ADDING RECORDS TO A REIATIVE FILE

Because RELIATIVE files in COBOL do not support the use of secondary
keys, adding a record to a direct access file consists of simply
supplying the record number and the data to be added to the data
subfile. It is not possible to add secondary index entries to a
RELATIVE file.

REV. @ 11 - 12

IDR4558 DIRECT ACCESS

Two Ways to Add Records

Because of their structure, REIATIVE files must be handled a little
differently than INDEXED files when populating them. 1If a file is
empty (contains no record or index subfile entries), you can add
records to that file in any of the three access modes. However, once a
file contains entries, you can no longer add records to it in
SEQUENTIAL access mode. This is because SEQUENTIAL access mode is
specifically intended for intial loading of records, that is, for
populating empty files. RANDOM and DYNAMIC access modes are most
useful for inserting records anywhere in a file that already has
entries. Both RANDOM and DYNAMIC access modes allow users to supply
their own record numbers for each record to be added to the file.

The WRITE Statement

The WRITE statement is used, in all three access modes, to add records
to a REIATIVE file. There are two methods of record addition possible:
the first, available in SEQUENTIAL mode, lets COBOL supply the record
nunbers for each record — the user Jjust supplies the data record
information. This is known as "loading" or "initially loading" a file.
The file must be empty in order to be loaded. The "random" method,
available in the other two access modes, requires that the user supply
a record number for each record added. In this type of record
addition, there are *slots" pre-allocated for them in the data subfile.
In other words, each record will get put in the proper slot according
to its assigned record number.

Sequential Record Addition

In SEQUENTIAL access mode, the file must be opened for OUTPUT, not I-O,
as mentioned previously in the note following Opening and Closing the
File. The other restriction on sequential record addition is that once
the file contains entries, you can't add records to it in SEQUENTIAL
mode: you must use RANDOM or DYNAMIC access mode. In SEQUENTIAL
access mode, the user does not supply record numbers for each entry
added, but instead lets COBOL take care of providing a unique number
for each record. COBOL always starts numbering with the lowest
possible number in the sequence which happens to be 000001, if the
REIATIVE KEY is declared as 6 characters (48 bits), and is incremented
by 1 each time a new record is added. Although it's not illegal for
the user to provide record numbers during sequential record addition
they are ignored by COBOL anyway. In fact, if the REIATIVE KEY field
is defined by the user in the program (this is not required, as
mentioned above), COBOL will return, in the RELATIVE KEY field, the
record number of each record you add after each WRITE operation is
complete.

11 - 13 October 1980

SECTION 11 IDR4558

Note

Follow this rule when adding records to a RELATIVE file: once
a file contains entries, whether they were added sequentially
or randomly, the file should not be opened for SEQUENTIAL
OUTPUT. New records can only be added to the file if it is
opened for DYNAMIC or RANDOM access.

The format of the WRITE statement is:

WRITE record-name [FROM new-record]
[INVALID KEY imperative-statement].

record-name is the name of a record description associated with the
file in the DATA DIVISION of the program. The "FROM new-record" clause
is optional; without it, the user must explicitly MOVE the new record
information to record-name so it can be written to the file.

For Example: The example below shows how records can be added
interactively to a REIATIVE file. (User input is underlined to
distinguish it from program output.)

ID DIVISION.
PROGRAM-ID. ADD-PROG.
AUTHOR. LJD.
INSTALLATION. TPUBS.
DATE-WRITTEN. @9/02/80.
DATE-COMPILED. @9/02/80.
SECURITY. NONE.
REMARKS. PROGRAM TO TEST DACUST FILE ADDS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE COMPUTER. PRIME.
OBJECT COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DACUST ASSIGN TO PFMS
ORGANIZATION IS REIATIVE
ACCESS MODE IS SEQUENTIAL
RELATIVE KEY IS RECORD-NO
FILE STATUS IS STATUS-CODE.
DATA DIVISION.
FILE SECTION.
FD DACUST
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "DACUST"
DATA RECORD IS CUST-FILE-RECORD.
@1 CUST-FILE-RECORD.
§2 CUST-ID PIC X(5).
@2 CUST-NAME PIC X(25).
§2 LOCATION-CODE PIC X(4).
@2 FILLER PIC X(35).

REV. @ 11 - 14

IDR4558 DIRECT ACCESS

WORKING-STORAGE SECTION.
@1 STATUS-CODE PIC 99 VALUE ZERO.
21 READ-REC PIC X(35) VALUE SPACES.
@1 RECORD-NO PIC 9(6) VALUE ZEROES.
PROCEDURE DIVISION.
FIRST-PROC.
OPEN OUTPUT DACUST.
GET-DATA.
DISPLAY 'ENTER DACUST ID - - PIC X(5) OR ENTER XX TO QUIT'.
ACCEPT CUST-ID.
IF CUST-ID = *XX' GO TO FINIS.
GET-REST.
DISPLAY 'ENTER CUST-NAME -- 25 CHARS'.
ACCEPT CUST-NAME.
DISPLAY 'ENTER LOCATION CODE —— 4 CHARS (REGION-STATE)'.
ACCEPT LOCATION-CODE.
WRITE CUST-FILE-RECORD INVALID KEY GO TO CHECK.
GO TO GET-DATA.
CHECK.
IF STATUS-CODE NOT = @¢ DISPLAY 'RECORD NOT ADDED'
ELSE GO TO GET-REST.
GO TO GET-DATA.

FINIS.
IF STATUS-CCDE = @@ DISPLAY 'ALL DONE'
ELSE
DISPLAY 'STATUS CODE IS:' OSTATUS-CODE.
CLOSE DACUST.
STOP RUN.

ok, seg #add.da

ENTER FILE ASSIGNMENTS:
>/

FILE ASSIGNMENTS COMPLETE.

ENTER DACUST ID - - PIC X{5) OR ENTER XX TO QUIT
A4A56D

TIUL

ENTER CUST-NAME —— 25 CHARS

LESLEY'S PASTE-UP SHOP

ENTER LOCATION CODE —— 4 CHARS (REGION-STATE)
NEMA

ENTER DACUST ID - - PIC X(5) OR ENTER XX TO QUIT
3378T

ENTER CUST-NAME —— 25 CHARS

AUTCMAT TYPESETTERS

ENTER LOCATION CODE —— 4 CHARS (REGION-STATE)
MAID

ENTER DACUST ID - - PIC X(5) OR ENTER XX TO QUIT
XX

ALL DONE

When read back sequentially, the records will be returned in the order
added. See Reading Sequentially, below.

11 - 15 October 1980

SECTION 11 IDR4558

Note

START operations are not 1legal in RELIATIVE files opened for
SEQUENTIAL access in OUTPUT mode — so there's no way to start

adding records at any point in the file other than the
beginning of the file.

Adding Records Randomly

In random writes, the user must supply a record number for each record
added. The format is the same as that shown for sequential reads,
above. The file can be opened for OUTPUT or I-O.

Example: This program opens a file for I-O in DYNAMIC access mode and
does random, interactive adds. Naturally, records can be added by
reading in the data from another disk file as well, but a record number
must be supplied with each record added. The important thing to note
about adding records randomly is that record numbers must be supplied
in the proper form -- don't forget those leading zeroes!

ID DIVISION.
PROGRAM-ID. ADD-PROG.
AUTHOR. LJD.
INSTALLATION. TPUBS.
DATE-WRITTEN. 09/02/80.
DATE-CCMPILED. 09/02/80.
SECURITY. NONE.
REMARKS. PROGRAM TO TEST DACUST FILE WRITES.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE COMPUTER. PRIME,
OBJECT COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DACUST ASSIGN TO PFMS
ORGANIZATION IS REIATIVE
ACCESS MODE IS DYNAMIC
REIATIVE KEY IS RECORD-NO
FILE STATUS IS STATUS-CODE.
DATA DIVISION.
FILE SECTION.
FD DACUST
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "DACUST"
DATA RECORD IS CUST-FILE-RECORD.
@1 CUST-FILE-RECORD.
g2 CUST-ID PIC X(5).
#2 CUST-NAME PIC X(25).
@2 LOCATION-CODE PIC X(4).
@2 FILLER PIC X(35).
WORKING-STORAGE SECTION.
@1 STATUS-CODE PIC 99 VALUE ZERO.
@1 READ-REC PIC X(35) VALUE SPACES.

REV. @ 11 - 16

IDR4558 DIRECT ACCESS

@1 RECORD-NO PIC 9(6) VALUE ZEROES.
PROCEDURE DIVISION.
FIRST-PRCC.
OPEN OUTPUT DACUST.
GET-DATA.
DISPLAY 'ENTER RECORD NUMBER'.
ACCEPT RECORD-NO.
DISPLAY 'ENTER DACUST ID - - PIC X(5) OR ENTER XX TO QUIT'.
ACCEPT CUST-ID.
IF CUST-ID = 'XX' GO TO FINIS.
GET-REST.
DISPLAY 'ENTER CUST-NAME — 25 CHARS'.
ACCEPT CUST-NAME.
DISPLAY 'ENTER LOCATION CODE —- 4 CHARS (REGION-STATE)'.
ACCEPT LOCATION-CODE.
WRITE CUST-FILE-RECORD INVALID KEY GO TO FINIS.
GO TO GET-DATA.
FINIS.
IF STATUS-CODE = @@ DISPLAY 'ALL DONE'
ELSE
DISPLAY 'STATUS CODE 1IS:' STATUS-CODE.
CLOSE DACUST.
STOP RUN.
OK,

Some sample input to the program might be (user input is underlined):

ENTER RECORD NUMBER

2009085

ENTER DACUST ID - - PIC X(5) OR ENTER XX TO QUIT
5556X

ENTER CUST-NAME — 25 CHARS

MISCELLANEOUS SUPPLIERS

ENTER LOCATION CODE —-- 4 CHARS (REGION-STATE)
SEGA

ENTER RECORD NUMBER

000006

ENTER DACUST ID - - PIC X(5) OR ENTER XX TO QUIT
5556A

ENTER CUST-NAME — 25 CHARS

ROCKY POINT ART SHOP

ENTER LOCATION CODE -- 4 CHARS (REGION-STATE)
NENY

etc.

You can add entries in any order. Don't try to write a record that
already exists and don't try to write beyond the pre-allocated file
boundaries. If you only allocated 15 records, then don't try to add a
record with number @@@@16 or above. Remember that CREATK asks for a
nunber of records for which to allocate space for in an index subfile.

11 - 17 October 1980

SECTION 11 IDR4558

READING A REIATIVE FILE
There are two types of READ formats for RELATIVE files: the sequential

read format and the random read format. The formats are similar to
those used in reading INDEXED SEQUENTIAL files.

Sequential Reads

In a direct access file opened for SEQUENTIAL access, the READ
operation retrieves records in order by record number. ‘The initial
record number value with which to begin is established by a MOVE and
START, by setting an initial value in WORKING STORAGE, or by default,
in which the initial position is set to the first record in the file.
The first file record by definition has the lowest record number in the
entire file. Sequential READs are generally associated with SEQUENTIAL
access mode, although they are possible in DYNAMIC mode also.

The READ statement format used for sequential retrieval is:

READ filename [NEXT RECORD] [INTO read-var]
[AT END imperative-statement].

filename is the name of the REIATIVE file. The "INTO read-var" clause
causes the record read to be moved from the record buffer associated
with the file into the read-var variable. The NEXT clause is used only
in DYNAMIC access mode; it is not necessary if the file is opened for
SEQUENTIAL access mode because a READ operation automatically causes
the file pointer to move to the next record in the file. The "AT END"
clause is required unless there 1is a USE AFTER procedure under the
DECLARATIVES for handling errors that occur while processing the file.

Example: The following program reads values from a RELIATIVE file
sequentially by record number. Note that the file is opened for INPUT,
which means that the file is opened for reading only, as opposed to
writing and/or update.

ID DIVISION.
PROGRAM-ID. DACUST-TST.
AUTHOR. LJD.
INSTALLATION. TPUBS.
DATE-WRITTEN. @9/02/80.
DATE-COMPILED. @9/02/80.
SECURITY. NONE.
REMARKS. PROGRAM TO TEST DACUST FILE READS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE COMPUTER. PRIME.
OBJECT COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DACUST ASSIGN TO PFMS
ORGANIZATION IS RELATIVE
ACCESS MODE IS SEQUENTIAL

REV. @ 11 - 18

IDR4558 DIRECT ACCESS

REIATIVE KEY IS RECORD-NO
FILE STATUS IS STATUS-CCDE.
DATA DIVISION.
FILE SECTION.
FD DACUST
[ABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "DACUST"
DATA RECORD IS CUST-FILE-RECORD.
@1 CUST-FILE-RECCRD.
@2 CUST-ID PIC X(5).
g2 CUST-NAME PIC X(25).
@2 LOCATION-CODE.

#5 REGION PIC XX.
@5 STATE PIC XX.

WORKING-STORAGE SECTION.
@1 STATUS-CODE PIC 99 VALUE ZERO.
@1 RECORD-NO PIC 9(6) VALUE ZEROES.
@1 READ-REC PIC X(35) VALUE SPACES.
PROCEDURE DIVISION.
FIRST-PROC.
OPEN INPUT DACUST.
MOVE LON-VALUES TO RECORD-NO.
START DACUST KEY IS NOT LESS THAN RECORD-NO INVALID KEY
GO TO END-FILE.

READ-LOOP.
READ DACUST INTO READ-REC AT END GO TO END-FILE,
DISPLAY 'RECORD NO. IS:' RECORD-NO.
DISPLAY READ-REC.
GO TO READ-LOOP.
END-FILE.
CLOSE DACUST.
IF STATUS-CODE =@g@ DISPLAY 'SUCCESSFUL CCMPLETION.'
ELSE
DISPLAY 'STATUS CODE 1IS:' STATUS-CODE.
STOP RUN.

When run, the program output is:

RECORD NO. IS:000001
C4456PLESLEY'S PASTE-UP SHOP NEMA
RECORD NO. IS:000002

3378TAUTOMAT TYPESETTERS MWID
SUCCESSFUL COMPLETION.

OK,

Reading the Current Record: In DYNAMIC access mode, READ without the
KEY IS or NEXT RECORD clauses returns the current record. In RANDOM
access mode, READ without the KEY IS clause also returns the current
record. (Remember that sequential reads are not possible in RANDOM
mode.) current record is the one just read or positioned to by a START
operation (START is not legal in RANDOM access). In SEQUENTIAL access
mode, the file pointer is advanced automatically to the next record in
the file each time a READ statement is encountered.

11 - 19 Cctober 1988

SECTION 11 IDR4558

Ke Reads

Keyed reads (random reads) are permitted in DYNAMIC and RANDOM access
modes, using the RELIATIVE KEY. To do a keyed read, simply MOVE the
appropriate record number value to the RELATIVE KEY field, then use
this form of the READ statement:

READ filename [INTO read-var]
[INVALID KEY imperative-statement].

The " INTO read-var" option is used to move the data record from the
buffer into which it is read to some program-specified temporary
storage area (named by read-var) so the user can do something with it
like DISPLAY, for instance. The INVALID KEY clause is required unless
a USE AFTER procedure under the DECLARATIVES specifies what to do when
errors occur during processing of that file.

This format requires that a new value be moved to the RELATIVE KEY
field before each READ, or the same record will be returned over and
over again. Remember, the only way to do a keyed READ on a RELATIVE
file is to supply a record number value for the REIATIVE KEY field.

Keyed READ Example: The following example shows an excerpt from a
program that does random READs on the DACUST file.

PROCEDURE DIVISION.
FIRST-PROC.
OPEN INPUT DACUST.
MOVE 000982 TO RECORD-NO.
READ-RANDCM.
READ DACUST INTO READ-REC
INVALID KEY GO TO KEY-ERR.
DISPLAY 'RECORD NUMBER IS:' RECORD-NO.
DISPLAY READ-REC.
READ-CUR.
READ DACUST INTO READ-REC
INVALID KEY GO TO KEY-ERR.
DISPLAY 'KEY FIELD NOT UPDATED:'.
DISPLAY 'READ RETURNS CURRECT RECORD.'.
DISPLAY READ-REC.
GO TO FINIS.
KEY-ERR.
DISPLAY 'STATUS CODE 1IS:' STATUS-CODE.
FINIS.
IF STATUS-CODE = @@ DISPLAY 'ALL DONE'.
CLOSE DACUST.
STOP RUN.

REV. # 11 - 20

IDR4558 DIRECT ACCESS

hwhen run, the program prints the following:

RECORD NUMBER 1S:000002
3378TAUTQMAT TYPESETTERS MWID
KEY FIELD NOT UPDATED:

READ RETURNS CURRENT RECORD.
3378TAUTOMAT TYPESETTERS MWID
ALL DONE

OK,

Reading the Current Record: In DYNAMIC and RANDQM access modes, if the
REIATIVE KEY field is not updated between the last READ or START and
the current READ, a READ without the NEXT RECORD clause will return the
current record; that is, the record just read or positioned to by a
START operation. See the above example.

UPDATING RECORDS

The REWRITE statement simply replaces the current record with a new
text string, completely destroying the original. 1It's essential to
remember that REWRITE does not establish or alter file position:
therefore, you must do a READ before a REWRITE in order to tell MIDAS
which record is to be updated and to lock the record. This is true in
all access modes. Remember also that the file must be opened for I-O
in order to update it.

The REWRITE format is:

REWRITE record-name [FROM new-record]
[INVALID KEY imperative-statement].

record-name is the name of a record associated with a file described in
the File Description under the File Section of the program. The “FROM
new-record" clause is optional because you can always move the new
record value to record-name before you do the REWRITE. The INVALID KEY
clause is mandatory in RANDOM and DYNAMIC modes, unless the
DECLARATIVES includes a USE AFTER procedure for dealing with errors
that occur while processing this file. The INVALID KEY clause should
not be included in REWRITE statements when the file is opened for
SEQUENTIAL access.

Example: This program opens the DACUST file for DYNAMIC access and
updates an existing record:

ID DIVISION.

PROGRAM-ID. UPDATES.

AUTHOR. LJD.

INSTALLATION. TPUBS.

DATE-WRITTEN. 09/02/80.

DATE-COMPILED. @9/02/88.

SECURITY. NONE.

REMARKS. PROGRAM TO TEST DACUST FILE UPDATES.

11 - 21 October 1980

SECTION 11 IDR4558

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE COMPUTER. PRIME.
OBJECT COMPUTER. PRIME.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DACUST ASSIGN TO PFMS
ORGANIZATION IS RELATIVE
ACCESS MODE IS DYNAMIC
RELATIVE KEY IS RECORD-NO
FILE STATUS IS STATUS-CODE.
DATA DIVISION.
FILE SECTION.
FD DACUST
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "DACUST"
DATA RECORD IS CUST-FILE-RECORD.
#1 CUST-FILE-RECORD.
@2 CUST-ID PIC X(5).
P2 CUST-NAME PIC X(25).
#2 LOCATION-CODE.
@5 REGION PIC XX.
@5 STATE PIC XX.
WORKING-STORAGE SECTION.
@1 STATUS-CODE PIC 99 VALUE ZERO.
@1 READ-REC PIC X(35) VALUE SPACES.
@1 RECORD-NO PIC 9(6) VALUE ZEROES.
@1 NEW-RECORD PIC X(35) VALUE SPACES.
PROCEDURE DIVISION.
FIRST-PROC.
OPEN I-O DACUST.
MOVE 000081 TO RECORD-NO.
READ-THIS.
READ DACUST INTO READ-REC
INVALID KEY GO TO KEY-ERR.
DISPLAY 'CURRENT RECORD IS:' READ-REC.
CHANGE-VAL.
MOVE '2334PSEACOAST FINISHERS WRCA' TO NEW-RECORD.
UPDATE.
REWRITE CUST-FILE-RECORD FROM NEW-RECORD
INVALID KEY GO TO KEY-ERR.
READ DACUST INTO READ-REC INVALID KEY
GO TO KEY-ERR.
DISPLAY 'UPDATED RECORD IS:' READ-REC.
GO TO FINIS.
KEY-ERR.
DISPLAY 'STATUS CODE 1IS:' STATUS-CODE.
FINIS.
IF STATUS-CODE = @@ DISPLAY 'ALL DONE'
ELSE DISPLAY 'STATUS CODE IS:' STATUS-CODE.
CLOSE DACUST.
STOP RUN.

REV. ¢ 1 - 22

IDR4558 DIRECT ACCESS

OK, seg #up.da
ENTER FILE ASSIGNMENTS:

> //

FILE ASSIGNMENTS COMPLETE.

CURRENT RECORD IS:4456PLESLEY'S PASTE-UP SHOP NEMA
UPDATED RECORD IS:2334PSEACOAST FINISHERS WRCA
ALL DONE

OK,

DELETING RECORDS

The DELETE statement removes an indicated record from a direct access
file. Deletes can be done 1in any access mode: RANDOM, DYNAMIC or
SEQUENTIAL, but the file must be opened for I-O in all cases. The
DELETE format is:

DELETE filename RECORD [INVALID KEY imperative-statement].

In RANDOM and DYNAMIC modes the INVALID KEY clause must be used unless
a USE AFTER procedure for trapping errors is included under the
DECLARATIVES. The INVALID KEY clause is not legal in SEQUENTIAL access
mode because the record to be deleted is established by a READ and not
by the DELETE operation itself.

Deletes in SEQUENTIAL Mode

In SEQUENTIAL access mode the record to be deleted must be READ before
a DELETE can be executed. This is because the DELETE statement in
SEQUENTIAL acess mode cannot establish a current record position and
must instead depend on a READ to do so. The INVALID KEY clause should
not be included in the DELETE statement when the file is opened for
SEQUENTIAL access.

Deletes in DYNAMIC and RANDOM Modes

In DYNAMIC and RANDOM access modes, it is not necessary to do a READ
prior to a DELETE because a DELETE establishes the current record
position on its own. The user must supply a value for the REIATIVE KEY
before a DELETE which is then used to position to that record before
deleting it.

DELETE Examples

The first program excerpt shown below is from a program in which a
RELATIVE file has been opened for I-0 in SEQUENTIAL access mode. In
order to delete a record from this file, the record number must be
MOVEd to the RELATIVE KEY field, then read, and then deleted:

11 - 23 October 1989

SECTION 11 IDR4558

PROCEDURE DIVISION.
FIRST-PROC.
OPEN I-O DACUST.
MOVE @00081 TO RECORD-NO.
START DACUST KEY IS NOT LESS THAN RECORD-NO INVALID KEY
GO TO KEY-ERR.
READ DACUST INTO READ-REC AT END GO TO FINIS.
DISPLAY READ-REC.
DEL-REC.
DELETE DACUST.

The program prints out the record to be deleted just before the DELETE
statement is actually executed. If you want to keep track of the
records being deleted from a file, opening the file in SEQUENTIAL
access mode forces you to read each record first, which makes it easy
to keep an "audit file" of the records deleted.

When a REIATIVE file is opened for DYNAMIC access, the record to be
deleted does not have to be read first and no START statement is
required either, as this program excerpt shows:

PROCEDURE DIVISION.
FIRST-PROC.
OPEN I-O DACUST.
MOVE @@06@2 TO RECORD-NO.
DEL-REC.
DELETE DACUST INVALID KEY GO TO KEY-ERR.

REV. 0@ i1 - 24

Part IV
and Administration

IDR4558 MAINTAINING A MIDAS FILE

SECTION 12

MAINTAINING A MIDAS FILE

INTRODUCTION

MIDAS file maintenance generally involves monitoring MIDAS file index
subfile and data subfile usage, and making minor adjustments to
increase file efficiency. Maintenance also involves the periodic
restructuring of the index subfiles and the data subfile with the MPACK
utility to reclaim space "wasted" by data entries and index subfile
entries which have been marked for deletion. Occasionally, records in
the data subfile may become locked during use due to program abort or
error, and the MPACK utility must be run to unlock these records.

This section discusses the CREATK options which can be used to monitor
MIDAS file use and size, and the MPACK utility which can help you
maintain an efficiently organized MIDAS file.

EXAMINING THE TEMPLATE

CREATK has other uses besides template creation. This section
discusses the PRINT, USAGE, SIZE and VERSION options of CREATK. CREATK
calls them "functions" -- we use functions and options interchangeably
in referring to them. These functions provide details on file size,
template structure, index usage and can estimate the number of
segements needed, given a hypothetical number of entries for a data
subfile. The CREATK options which can be used to modify a file are

dealt with in Section 14.

Option Summary

To examine an existing file template, enter CREATK, provide the file's
name or pathname when requested, and enter "no" to the "NEW FILE?"
prompt as indicated in the example below. CREATK then prompts you to
enter a function in response to the "FUNCTION?" prompt. To obtain a
complete list of options, type "HELP". A list of functions and a brief
description of each one is then displayed. Minimum abbreviations for
each function are indicated with brackets; the portion enclosed in
brackets is optional.

12 - 1 October 1980

SECTION 12 IDR4558

OK, creatk
[CREATK rev 17.6]

MINIMUM OPTIONS? yes

FILE NAME? customer
NEW FILE? no

FUNCTION? help

A[DD] = ADD AN INDEX

D[ATA] = CHANGE DATA RECORD SIZE
E[XTEND] = CHANGE SEGMENT & SEGMENT DIRECTORY LENGTH
F[ILE] = OPEN A NEW FILE

H[ELP] = PRINT THIS SUMMARY

M[ODIFY] = MODIFY AN EXISTING SUBFILE
P[RINT] = PRINT DESCRIPTOR INFORMATION
QO UIT] = EXIT CREATK

(C/R) = IMPLIED QUIT

S{IZE] = DETERMINE THE SIZE OF A FILE
U[SAGE] = DISPLAY CURRENT INDEX USAGE
V[ERSION] = MIDAS DEFAULTS FOR THIS FILE

The options available for examining the template are:
PRINT Prints description of various index structures.

USAGE Displays number of entries in each index and the version
of MIDAS last used to modify the file.

SIZE Estimates number of segments and disk records needed to
accommodate a given number of data file entries.

VERSION Displays version of MIDAS used to create file.

The minimum abbreviation for each option is underlined. ‘The function
of each option is expanded upon in the following paragraphs.

The PRINT Option

PRINT displays index and data subfile information. It automatically
prompts for an index subfile number with this prompt:

INDEX NO?

Fnter a number from @ to 17 if you want to see information on a
particular index subfile. Inter the word "DATA" to examine data
subfile information.

J
|
-
~
0
j—
N

IDR4558 MAINTAINING A MIDAS FILE

If an index subfile is being examined, CREATK displays:
& Number of segments allocated

® Index capacity (approximate number of entries that can be
accommodated)

e Key type and size
e Number of index levels as of last MPACK.

For each index level in a particular index subfile, the PRINT option of
CREATK displays this information:

o Block size (number of words per block)
e Key length

e Number of control words

e Maximum number of entries per block

e Iength of an index entry

e Number of blocks in that level

For Example: The next example shows how PRINT (abbreviated "p") can
be used to obtain information about all of the indexes in a MIDAS file.
In this case, the statistics shown pertain to the CUSTOMER file. DMNote
that the size for character type keys is displayed in both words and
bytes. Since there is only one level of indexing for this file, (it
contains only 5 entries) statistics are displayed for the "last level”
of indexing only. In order to obtain the latest information on a
file's index levels and number of blocks at each level, the file must
have been MPACKed after the latest round of changes made to the file,
See Section 15, Index Levels, for details on levels of indexing in the
subfiles,

12 - 3 October 1980

SECTION 12 IDR4558

FUNCTION? print

INDEX NO.? @

10 SEGMENTS ALLOCATED WHICH CAN HOLD ABOUT 774144. ENTRIES
KEY TYPE: CHARACTER

KEY SIZE 5 BYTES (3 WORDS)
LEVELS: 1 SYNONYM ENTRIES NOT SUPPORTED
LAST LEVEL

ENTRY SIZE: 6 WORDS BLOCK SIZE: 1024 WORDS # CONTROL WORDS: 10
MAX ENTRIES/BLOCK: 169 # BLOCKS THIS LEVEL: 1.

FUNCTION? p

INDEX NO.? 1

10 SEGMENTS ALLOCATED WHICH CAN HOLD ABOUT 285696. ENTRIES
KEY TYPE: CHARACTER

KEY SIZE 25 BYTES (13 WORDS)

LEVELS: 1 SYNONYM ENTRIES SUPPORTED

LAST LEVEL
ENTRY SIZE: 16 WORDS BLOCK SIZE: 1024 WORDS # CONTROL WORDS: 10
MAX ENTRIES/BLOCK: 63 # BLOCKS THIS LEVEL: 1.

FUNCTION? p

INDEX NO.? 2

190 SEGMENTS ALLOCATED WHICH CAN HOLD ABOUT 926231. ENTRIES
KEY TYPE: CHARACTER

KEY SIZE 4 BYTES (2 WORDS)
LEVELS: 1 SYNONYM ENTRIES SUPPORTED
LAST LEVEL
ENTRY SIZE: 5 WORDS BLOCK SIZE: 1@24 WORDS # CONTROL WORDS: 10

MAX ENTRIES/BLOCK: 202 # BLOCKS THIS LEVEL: 1.

REV. @ 12 - 4

IDR4558 MAINTAINING A MIDAS FILE

If the "data" option is specified, CREATK displays:
¢ File type (keyed-index or direct-access)
e Number of index subfiles defined
e MNumber of entries currently indexed as of last MPACK
® Intry size (record size)
e Primary key size
FUNCTION? p

INDEX NO.? d ("d" for data)
DATA SUBFILE:

FILE TYPE: KI # INDEXES: 3 # ENTRIES: g.
ENTRY SIZE 35 WORDS
PRIMARY KEY SIZE: 5 BYTES (3 WORDS)

Note that the DATA option returns the file configuration (FILE TYPE:)
as either KI (keyed-index) or DA (direct access).

The SIZE Option

The SIZE option determines the number of segments and disk records
required for an index subfile, a data subfile, or an entire file, given
a projected number of records for a MIDAS file. The user supplies the
number of records in response to this prompt:

NUMBER OF ENTRIES:
CREATK then asks for an index number:

INDEX NO:
to which the user should respond with one of the following:

e A number from @-17 —— obtain estimate for an individual index
subfile

e DATA — obtain an estimate for a data subfile

e TOTAL — obtain an estimate for the entire file, including all
index subfiles and data subfiles

e (CR) — terminates the SIZE option dialog and returns you to the
"FUNCTION?" prompt.

12 - 5 October 1980

SECTION 12 IDR4558

If the user specifies an index number or the DATA option, CREATK
returns the following:

o Number of disk records needed for the index or data subfile
e Number of segments required to contain these index blocks

e Number of segments currently allocated for the index blocks
already in the index or data subfile

FUNCTION? size
NUMBER OF ENTRIES: 400 (try 400 records)

INDEX NO.? @

INDEX @: 8 449 WD. RECS, 5 1924 WD. RECS
2 SEGMENTS REQUIRED, 1@ SEGMENTS ALLOCATED

INDEX NO.? 1

INDEX 1: 18 440 WD. RECS, 9 1024 WD. RECS
2 SEGMENTS REQUIRED, 1¢ SEGMENTS ALLOCATED

INDEX NO.? 2

INDEX 2: 7 440 WD. RECS, 4 1924 WD. RECS

2 SEGMENTS REQUIRED, 1@ SEGMENTS ALLOCATED

INDEX NO.? data
DATA : 37 440 WD. RECS, 16 1024 WD. RECS
1 SEGMENTS REQUIRED, 327 SEGMENTS ALLOCATED

INDEX NO.? (CR)

Should the MIDAS file have variable length records, you'll get this
message when you use the "data" option:

VARIABLE LENGTH DATA, NO COQMPUTATION

If the TOTAL option is specified in response to the INDEX NO.? prompt,
CREATK prints all the above information for each index subfile and the
data file plus the number of disk blocks needed to accommodate all
index subfiles and the data subfile. For example:

REV

FUNCTION? size
NUMBER OF ENTRIES: 2000
INDEX NO.? total

INDEX @: 30 440 WD. RECS, 14 1024 WD. RECS
2 SEGMENTS REQUIRED, 1@ SEGMENTS ALLOCATED

INDEX 1: 78 440 WD. RECS, 35 10924 WD. RECS
2 SEGMENTS REQUIRED, 1@ SEGMENTS ALLOCATED

INDEX 2: 26 440 WD. RECS, 12 1024 WD. RECS
2 SEGMENTS REQUIRED, 1@ SEGMENTS ALLOCATED

DATA : 182 440 WD. RECS, 79 1024 WD. RECS

1 SEGMENTS REQUIRED, 327 SEGMENTS ALLOCATED

TOTAL DISK RECCRDS: 316 448 WD. RECS, 149 1924 WD. RECS

=

—

o
i
)

IDR4558 MAINTAINING A MIDAS FILE

The USAGE Option

The USAGE option helps determine how many entries you've got in each
index subfile. It displays the following information:

e Data records indexed as of last MPACK

e Data records added since last MPACK

o Data records deleted since last MPACK

e Total number of data records (entries) in the file

e The version of MIDAS which last modified the file
This example shows how many entries are currently in the primary and
secondary index subfiles of a certain MIDAS file:

FUNCTION? usage

INDEX? @

ENTRIES INDEXED: 7

ENTRIES INSERTED: @

ENTRIES DELETED: 2

TOTAL ENTRIES IN FILE: 5

LAST MODIFIED BY MIDAS REV. 17.6

FUNCTION? u

INDEX? 1

ENTRIES INDEXED: 7
ENTRIES INSERTED: 0
ENTRIES DELETED: 0
TOTAL ENTRIES IN FILE: 7
LAST MODIFIED BY MIDAS REV. 17.6
FUNCTION? u

INDEX? 2

ENTRIES INDEXED: 7
ENTRIES INSERTED:
ENTRIES DELETED:)
TOTAL ENTRIES IN FILE: 7

LAST MCDIFIED BY MIDAS REV. 17.6

12 - 7 October 1980

SECTION 12 IDR4558

The VERSION Option

The VERSION option displays the following information:

e The version of KIDALB (the MIDAS library) which was used in
building the template

e The default DAM file length (524288 words)
e The default segment directory length (512 segments)
e Maximum segments allocated per index (10)

e The maximum number of indexes (including the primary) which can
be defined for the file (18)

FUNCTION? v
[CREAT?(rev 17.6]

FILE CREATED BY KIDALB REV. 17.6

DEFAULT PARAMETERS FOR FILE

DAM FILE LENGTH 524288 WORDS

BASIC SEGMENT DIRECTORY LENGTH 512 SEGMENTS
MAXIMUM SEGMENTS PER INDEX 10

MAXIMUM NUMBER OF INDEXES 18

When debugging MIDAS applications, remember to check the version of
MIDAS you're using —— it may help you to pinpoint the problem.

THE MPACK UTILITY

When you delete an index subfile entry, MIDAS automatically recovers
the space formerly occupied by that entry. However, this is not the
case for data subfile records: they are marked for deletion but are
not physically removed until the MPACK utility is run. MPACK's chief
function is to recover the space occupied by data records marked for
deletion, freeing that space for additional records and increasing file
efficiency — but it does a lot of other things as well, like unlocking
locked records and restructuring index subfiles.

Note

When making changes to the template structure with the ADD,
DATA, EXTEND and MODIFY options of CREATK (covered in Section
14), you must MPACK the file after you've specified the
changes. The desired modifications do not take effect until
MPACK is executed on the file.

REV,

«
o>
|
N
|
20

IDR4558 MAINTAINING A MIDAS FILE

MPACK's Functions and Options

MPACK's specific functions are summarized below:
e Reclamation of space occupied by "deleted" data records
e Packing up of indexes to minimize disk space used

e Unlocking of all data records left locked after program abort or
failure

e Reordering the data subfile to match the order of primary index
subfile entries (complete file restructure)

e Iogging errors and milestones to keep tabs on errors and to
monitor the ongoing operation

Milestone/Error logging: MPACK allows you to open an error/log file
to keep track of any errors that occur during unlock or MPACK; in
addition, an optional milestone status report can be recorded for a
given number of records processed by MPACK. The milestone count is a
user-specified number. The milestone statistics include date, time (in
24-hr. format), CPU and disk time used and the time expired between
the current milestone and the previous one. For an example of a
milestone event, see the sample output at the end of this section.

THE MPACK DIALOG
The MPACK dialog offers you two basic choices:
@ You can restructure the file
or
e You can simply unlock the locked file entries
To restructure index subfiles or the entire file, use the MPACK option,
optionally abbreviated to M. The MPACK option then asks what part of

the file is to be restructured. These options are described below. To
perform the unlock operation, type UNLOCK or U.

The UNLOCK Option

The UNLOCK option simply goes through the data subfile entries looking
for locked records. All locked records are unlocked and MPACK prints
out a total count of unlocked records. The index subfiles are not
touched during the "UNLOCK" option path.

12 -9 October 1980

SECTION 12 IDR4558

The Restructure Option (MPACK)

The "MPACK" option path lets you restructure one or more index
subfiles, all of the index subfiles, or the entire file. During an
index restructure operation, MPACK searches the index subfile entries
for entries that have been marked for deletion or for entries that are
out of order. If any keys are out of sequence, MPACK reports them to
the user, but does not reorder them. Secondary index entries which
point to data subfile entries which have been marked for deletion are
deleted so their space can be re-used.

In a data subfile restructure, the entries are reordered to correspond
to the primary index order, and space wasted by "deleted" records is
reclaimed for use. Space in the data subfile is reclaimed by copying
the old data subfiles to new ones. At the end of the MPACK run, the
old subfiles are deleted and the new ones replace them. Because of
this copying procedure, the user must make sure that MPACK has enough
disk space to make a copy of the original file being MPACked.

Quickly summarized, the restructure options are:

e The index-number option: you simply specify which individual
index subfiles are to be restructured.

e The DATA option: restructures the data subfile and all indexes.

e The ALL option: reclaims wasted space from all the index
subfiles.

The DATA Sub-option: To restructure the entire file, use the DATA
option. The chief benefit of the DATA option is that it not only
checks and reorders the index subfile entries, but it also reorders the
data subfile entries to correspond to the order of key entries in the
primary index subfile and recovers data subfile spaces. In other
words, it sorts the data subfile by primary key, using the key order in
the primary index subfile. This makes sequential file processing a lot
faster and makes key searches more efficient.

If the DATA option is specified, MPACK then asks if you want to
overwrite the existing file or make a copy and work on that.

It is highly recommended that you always say NO to the "OK TO
OVERWRITE?" query. This ensures that you will always have a copy of
the original file in case you need it. 1In this case, MPACK asks you to
specify the name of a file to which you want the restructured file to
be written. The original file will be left intact and all the changes
will be made to a copy of the file. If you accidentally specify the
name of an existing file, (MIDAS or non-MIDAS), MPACK will display a
message like:

FILENAME ALREADY EXISTS - TRY AGAIN.

This should prevent accidental overwrite of existing files and possible
retribution by their owners.

REV. @ 12 - 10

IDR4558 MAINTAINING A MIDAS FILE

The ALL Sub-option: ‘The ALL sub-option of the MPACK option simply

packs all the existing index subfiles, but does not touch the data
subfile.

what If MPACK Aborts

If the MPACK process aborts for any reason, the original file is left
unchanged, regardless of whether you are working on the old file or a
"new* copy of it. If you're not overwriting the old file, but
restructuring a copy of it, the new file will not be in very good
shape, so you probably want to delete it. If overwriting an old file
when an error or abort occurs, use KIDDEL and the "JUNK" option to
delete all the partially used "scratch" space which MPACK uses during
restructure.

The MPACK Dialog

The MPACK dialog is shown below with annotations. Step numbers have
been included for clarity.

MPACK Dialog Prompts User Responses
1. ENTER MIDAS FILENAME: Enter pathname of existing
MIDAS file.
2. MPACK OR UNLOCK? Enter M(PACK) or U(NLOCK) .

If MPACK, dialog skips to
step 3. If UNLOCK, dialog
skip to step 6.

Enter one of the
following:

Note

In order to do an MPACK on a file, you need to have enough
space for two copies of the file. MPACK always makes a copy of
the file to work on so that in case of error, the original
stands a lesser chance of being damaged.

/ 3. ENTER LIST OF INDEXES, ALL OR DATA: index number(s): to be
\

MPACKed, separated by
commas or spaces; dialog
continues at prompt 6.

A(LL) : restructures all
indexes in file and
unlocks all data records;
dialog resumes at step 6.

D(ATA) : restructures data

12 - 1 October 1980

SECTION 12 IDR4558

file and indexes; dialog
continues with prompt 4.

(DATA Option)

4. OK TO OVERWRITE FILE? Answer YES or NO. If YES,
file ~— is — merely
restructured and replaced
(the original vanishes).
If NO, the next prompt

appears:

5. NEW FILENAME: Enter the name which MPACK
should give to the
restructured file. After
the MPACK, you end up with
the original file (intact)
and a restructured version
of this file with the
filename you specified
here. If you enter the
name of an existing file,
MPACK will return an error
message.

6. ERR/LOG FILE? Specify optional error/log
filename for errors and
milestone counts: enter a
(CR) if no err/log file is
desired.

7. MILESTONE COUNT? Enter appropriate number
of records after which a
milestone report should be
generated. (optional)

The file is then unlocked and restructured, and the user is returned to
PRIMOS command level.

Some Examples

The example below shows how a somewhat lopsided version of the CUSTOMER
file could be reorganized with MPACK. The file was accessed both by
BASIC/WM and PL/I programs, causing a disparity in the number of
primary and secondary index entries. There are more entries in the
secondary index subfiles than there are records in the data subfile
because PL/I does not know how to read (or delete) secondary index
subfile entries. By using the ALL or DATA options, the file can be
restructured. The first example uses the "ALL" option; the second,
the "DATA" option.

REV. @ 12 - 12

IDR4558

Example 1: The ALL Option:

QOK, creatk
[CREATK rev 17.6]

MINIMUM OPTIONS? yes

FILE NAME? customer
NEW FILE? no

FUNCTION? u
INDEX? @

ENTRIES INDEXED: 7
ENTRIES INSERTED: 7}
ENTRIES DELETED: 2
TOTAL ENTRIES IN FILE: 5

LAST MODIFIED BY MIDAS REV. 17.6
FUNCTION? u

INDEX? 1

TAIND VI .
ENTRIES INDEXED:

ENTRIES INSERTED: g
ENTRIES DELETED: 2
TOTAL ENTRIES IN FILE: 7

~J

LAST MODIFIED BY MIDAS REV. 17.6
FUNCTION? u

INDEX? 2

ENTRIES INDEXED: 7
ENTRIES INSERTED: 0
ENTRIES DELETED:

TOTAL ENTRIES IN FILE: 7

OK, mpack
[MPACK rev 17.6]

FILE NAME? customer

'"MPACK' OR 'UNLOCK': mpack

ENTER LIST OF INDEXES, 'ALL', OR 'DATA': all

ENTER LOG/ERROR FILE NAME:
ENTER MILESTONE COUNT: 1

12 -

13

MAINTAINING A MIDAS FILE

October 1980

SECTION 12 IDR4558

BEGINNING PRIMARY INDEX (INDEX 0)

COUNT DATE TIME CPU MIN DISK MIN
@ ©07-21-88 15:47:12 0.000 0.000
1 @7-21-80 15:47:14 0.002 0.010
2 @7-21-8@ 15:47:15 @.003 0.010
3 @7-21-80 15:47:15 0.003 0.010
4 (7-21-80 15:47:15 g.004 0.010
5 @7-21-80 15:47:15 0.004 0.010
INDEX @ MPACK COMPLETE, 5. ENTRIES INDEXED
5 @7-21-80 15:47:17 0.005 g.011
BEGINNING SECONDARY INDEX 1
COUNT DATE TIME CPU MIN DISK MIN
g 07-21-80 15:47:17 3.000 0.000
1 @7-21-80 15:47:19 g.001 g.001
2 @7-21-80 15:47:21 0.002 0.002
3 07-21-80 15:47:21 2.003 g.002
4 @7-21-80 15:47:21 9.003 0.002
5 @7-21-80 15:47:21 @.003 0.002
6 07-21-80 15:47:23 0.004 0.002
7 07-21-88 15:47:23 2.004 7.002
INDEX 1 MPACK COMPLETE 5. ENTRIES INDEXED
7 @7-21-88 15:47:25 0.006 0.003
BEGINNING SECONDARY INDEX 2
COUNT DATE TIME CPU MIN DISK MIN
@ @7-21-80 15:47:25 0.000 ?.000
1 @7-21-80 15:47:27 7.001 0.001
2 @7-21-8¢ 15:47:27 7.002 73.001
3 07-21-8@0 15:47:27 g.002 @.001
4 @7-21-80 15:47:28 2.003 3.002
5 @7-21-8¢ 15:47:28 0.003 2.002
6 07-21-80 15:47:28 ?2.004 @.002
7 ©7-21-88 15:47:28 g.084 2.882
INDEX 2 MPACK COMPLETE 5. ENTRIES INDEXED
7 ©@7-21-88 15:47:29 7.006 ?.002
OK, creatk

[CREATK rev 17.6]
MINIMUM OPTIONS? yes

FILE NAME? customer
NEW FILE? no

FUNCTION? u

INDEX? @

ENTRIES INDEXED: 5
ENTRIES INSERTED: 0

ENTRIES DELETED:]
TOTAL ENTRIES IN FILE: 5

REV. 0 12 - 14

TOTAL ™
0.000
g.012
P.012
0.013
0.013
g.014

g.016

TOTAL TM
?.000
0.003
0.005
9.005
@.006
2.006
0.006
0.007

g.099

TOTAL T™
2.000
0.003
2.003
2.003
@.005
7.905
2.0085
g.006

9.008

DIFF
2.000
g.012
0.001
0.000
0.000
0.000

0.002

DIFF
@.000
9.003
0.002
?.000
g.001
0.000
0.000
2.001

0.002

DIFF
2.000
?.0083
0.000
0.000
2.001
0.000
0.000
g.000

9.002

LAST MODIFIED BY MIDAS REV.

FUNCTION? u

INDEX? 1

ENTRIES INDEXED:
ENTRIES INSERTED:
ENTRIES DELETED:

5
0
g

TOTAL ENTRIES IN FILE:

5

IDR4558

17.6

LAST MODIFIED BY MIDAS REV. 17.6

FUNCTION? u
INDEX? 2
ENTRIES INDEXED:

ENTRIES INSERTED:
ENTRIES DELETED:

5
2
]

TOTAL ENTRIES IN FILE:

5

LAST MODIFIED BY MIDAS REV. 17.6

FUNCTION? g
OK,

Example 2: The DATA Option:

OK, mpack
[MPACK rev 17.6]

FILE NAME? customer

'MPACK' OR 'UNLOCK': m

ENTER LIST OF INDEXES, 'ALL', OR 'DATA': d

OK TO OVERWRITE THE FILE? n
ENTER NEW MIDAS FILE NAME: cust.redone

ENTER LOG/ERROR FILE NAME: out

ENTER MILESTONE COUNT: 1

BEGINNING PRIMARY INDEX (INDEX @)

COUNT DATE

07-24-80
g7-24-80
07-24-80
P7-24-80
07-24-80
07-24-80

N W -~

TIME
10:22:07
10:22:08
10:22:08
10:22:08
10:22:08
16:22:09

INDEX @ MPACK COMPLETE,

5 07-24-80¢

10:22:09

MAINTAINING A MIDAS FILE

CPU MIN DISK MIN
?.000 ?.000
B.002 2.009
2.003 2.009
0.003 g.009
g.004 7.009
?.005 g.009

5. ENTRIES INDEXED

12

?.006

2.009

TOTAL ™
0.000
g2.011
#.012
g.012
#.013
g.013

g.014

DIFF
f.000
g.011
2.001
7.001
g.001
2.001

g.0a1

October 1980

SECTION 12 IDR4558

BEGINNING SECONDARY INDEX 1

COUNT DATE TIME CPU MIN DISK MIN
g @7-24-80 10:22:09 0.000 0.000
1 07-24-80 10:22:09 7.001 ?.001
2 07-24-80 10@:22:10 9.002 3.002
3 @7-24-80 10:22:10 0.002 g.002
4 @7-24-80 10:22:10 3.003 9.002
5 @7-24-80 1@:22:12 ?.003 0.002
6 97-24-80 10:22:12 @g.004 0.002

INDEX 1 MPACK COMPLETE 5. ENTRIES INDEXED
6 07-24-80 10:22:13 9.005 0.002

BEGINNING SECONDARY INDEX 2

COUNT DATE TIME CPU MIN DISK MIN
g 07-24-80 1@:22:13 0.000 0.000
1 @7-24-80 10:22:16 2.001 0.002
2 @7-24-80 10:22:16 7.002 0.002
3 @7-24-80 10:22:16 3.002 9.002
4 @7-24-8¢0 10:22:17 7.903 9.002
5 @7-24-80 1@:22:17 0.004 7.002
6 07-24-80 10:22:18 0.004 7.002

INDEX 2 MPACK COMPLETE 5. ENTRIES INDEXED
6 07-24-80 10:22:19 ?.005 2.003

OK, creatk

[CREATK rev 17.6]
MINIMUM OPTIONS? yes

FILE NAME? cust.redone
NBW FILE? no

FUNCTION? u

INDEX? @

ENTRIES INDEXED: 5
ENTRIES INSERTED: 0
ENTRIES DELETED: 0
TOTAL ENTRIES IN FILE: 5
LAST MODIFIED BY MIDAS REV. 17.6
FUNCTION? u

INDEX? 1

ENTRIES INDEXED: 5
ENTRIES INSERTED: 0
ENTRIES DELETED: 0

TOTAL ENTRIES IN FILE: 5

[AST MODIFIED BY MIDAS REV. 17.6

REV. @ 12 - 16

TOTAL ™
0.000
2.002
2.003
2.004
g.004
7.005
2.006

0.007

TOTAL ™
2.000
2.003
2.004
0.004
?.005
9.006
g.006

0.008

DIFF
7.000
?.002
7.001
2.001
0.001
0.001
9.001

9.001

DIFF
0.000
0.003
g.001
7.000
9.001
?.000
9.001

0.002

IDR4558 MAINTAINING A MIDAS FILE

MPACK ERROR MESSAGES

In addition to the messages returned through it by KXSRFC (those
messages are listed in Appendix A), MPACK returns the following error
messages. A "fatal" error means that MPACK cannot continue processing
as a result of the error, and will promptly abort. A "non-fatal"™ error
is a warning only and does not impair the MPACK process.

P> UNABLE TO REACH BOTTOM INDEX LEVEL

MPACK was unable to find a last level index block for an index: the
file is damaged. (Fatal)

P> INDEX SUBFILE DOES NOT EXIST

User supplied an index number that was not defined for this file.
(Non-fatal)

P> FILE ALREADY EXISTS — TRY AGAIN

User specified name of existing file in response to "ENTER NEW MIDAS
FILE NAME?" prompt of "DATA" option path. MPACK will not overwrite an
existing file in this case; the user must enter the name of a
non-existent file. (Non-fatal)

P> INVALID KEY SEEN (IGNORED)
This can happen when a key is out of order in the index or the key is a

duplicate and duplicates are not allowed in the primary index.
(Non-fatal)

P> INVALID DIRECT ACCESS ENTRY NUMBER SEEN (IGNORED)
Can occur when a record number is not greater than zero, or is not a

whole number, or is greater than the pre-allocated record number limit.
(Non-fatal)

12 - 17 October 1988

SECTION 12 IDR4558

P> DATA SUBFILE FULL
This may occur if MPACK is being used to implement smaller index

blocks, smaller segment subfiles or smaller segment directories.
(Fatal)

P> INDEX FULL

Same as above, only an index subfile is suffering in this case.
(Fatal)

P> ABORTING MPACK

Message appears when a "fatal" error occurred. The user should then
delete the MPACK—created scratch files by using the "Junk"™ option of
KIDDEL; or, if doing a "DATA" MPACK, delete the "new file."

3
"~
L]
—
N

|

|—t
20

IDR4558 FOR THE AIMINISTRATOR

SECTION 13

FOR THE AIMINISTRATOR

INTRODUCTION
This section is intended primarily for the MIDAS Administrator, or

anyone else who is involved in setting up MIDAS and monitoring its
daily use. It addresses the following fundamental concerns:

e Concurrent process handling

e Setting MIDAS file read/write locks

e Using MIDAS with networks

e Initializing MIDAS with IMIDAS

e Library modifications

e The new V-mode interlude

e Releasing the internal lock using MCLUP

® Recovering/restructuring MIDAS file entries using MPACK
e Concurrency error detection

e Debugging tips

Important!

Many of the tasks involved in MIDAS administration are directly related
to the present method of concurrent process handling. This affects all
new users of MIDAS, users of existing applications, and particularly
network users, making it imperative that you familiarize yourself with
the information in this section before bringing up the 1latest version
of MIDAS on your system.

CONCURRENT PROCESS HANDLING

Overview

Concurrent process handling refers to MIDAS's method of regulating
simul taneous access to a MIDAS file by two or more processes. Ideally,

such a method should not impair program performance and should prevent
conflicting updates.

13 -1 October 1980

SECTION 13 IDR4558

Implementation Method

The concurrent process handling mechanism is implemented through the
use of several constructs:

e MIDAS file read/write locks are set at 3; n readers and m
writers.

e A "lock" in shared memory that keeps track of who's currently
executing a MIDAS operation

e A semaphore wait list - a queue of processes waiting to perform
MIDAS operations

e The MIDAS file open and close routines, OPENM$ and CLOSMS$ (see
Section 4), and the "notify MIDAS" routine, NTFYMS$, which tells

MIDAS when a file is opened and closed (a substitute for OPENMS
and CLOSM$; used with PRIMOS SRCHS$S routine)

Setting File Read/Write ILocks

MIDAS no longer closes segment subfiles (index subfiles) between MIDAS
operations. This requires that users set MIDAS file read/write locks
to 3 (n readers and m writers); otherwise, concurrent processes will
be unable to open a file segment which had already been opened by
another process. This allows more than one person to have the file
open for writing. CREATK automatically sets the MIDAS file read/write
lock to 3 whenever it creates a new file. However, you should take
care to set the locks on existing MIDAS files to 3 when bringing up the
latest revision of MIDAS.

Note

FUTIL automatically sets the read/write 1locks to the system
default when it copies a MIDAS file from one place to another;
reset the lock by typing:

SR filename 3

where filename is the name of the copied MIDAS file.

The Shared Lock

To prevent the loss of file integrity by conflicting updates which
could conceivably occur with read/write locks set at 3, MIDAS employs a
"lock-testing" procedure to allow only one user to execute a MIDAS
operation at a time. This is known as "single-threading".

IDR4558 FOR THE ADMINISTRATOR

Every time a call is made to MIDAS, a shared lock, located in shared
memory segment 2020, is tested. If the lock value is zero when tested,
the lock is set to the testing process's user number and the testing
process is allowed to perform a MIDAS operation. A process can only
obtain the lock if the lock is set at zero when the process checks it.
Otherwise, some other process "owns" the 1lock, forcing the testing
process to wait until the lock is freed.

Each time a process completes a MIDAS operation, the lock 1is released
and the value is reset to zero. During the lock-test operation, no
other process is allowed to access the lock, making the "test-and-set"
operation non-interruptible. This eliminates the problem of having a
process alter the lock value while another process is testing it.

The Semaphore Wait List

Should the lock have a non-zero value when tested, some other process
"owns" MIDAS and the testing process must wait its turn on a "semaphore
wait 1list". The wait list is just a queue of processes waiting in an
idle state to obtain exclusive access to MIDAS so they can perform
their respective operations. Only one process can access MIDAS at a
time, thus preventing damage to file integrity by simultaneous updates
to the same file record. While more than one process may have the same
MIDAS file open at a time, only one of these processes can actually
operate on the file at any given time because only the process that
owns the lock can actually touch the file. When a process releases the
MIDAS lock, it performs a "notify" operation on the semaphore, telling
it to activate the first process waiting on the queue (it's a FIFO
queue) ; the next user is then released from the wait list.

What This Means to New Users

This concurrency handling method is entirely invisible to new users;
however, note that OPENMS and CLOSM$S or NTFYM$S should be used in
opening and closing a MIDAS file in order for the concurrency handler
to operate properly. These routines are documented in Section 6; they
are handled automatically by COBOL and REG. Network users, however,
cannot use this method of handling concurrent processes. (See below
for details.)

Impact on Existing Applications

Users with existing MIDAS application programs written prior to Rev.
16.5 have two choices:

1. Disable the concurrent process handling method; no changes to
existing programs are necessary. This would result in no
performance optimization, but detection and correction of
currency errors will still occur. Follow the steps under
"Disabling Concurrent Process Handling", below. PRIMENET
users: see Note, below.

13 - 3 October 1980

SECTION 13 IDR4558

2. Some or all applications programs can be modified, achieving
increased performance. Follow the directions for program
modification, listed below.

Note

PRIMENET users should disable the concurrent process
handling method by following the steps listed below.
If this is not done, MIDAS will not single-thread MIDAS
use or correct concurrency errors for files accessed
over the net. ‘When the current method of concurrent
process handling is disabled, MIDAS defaults to the
"01d" method of concurrency handling. See OLD METHODS
in Apperdix D.

Modifying Existing Programs

If you want to use the new method of handling concurrent processes,
MIDAS must be notified both when a process is to begin using a MIDAS
file and when the process has completed operations on the file. For
FORTRAN and PMA users of the MIDAS call level interface, this
requirement means that application programs must be modified in one of
two ways, described below. COBOL, BASIC/W, PL/I and RPGII users are
not required to make any modifications to existing or new applications
programs written in these languages. All programs which use an
unshared library must be reloaded. See also LIBRARY MODIFICATIONS and
The V-Mode Interlude.

Method 1: Use NTFWMS$S: One method of program modification involves
inserting calls to subroutine NTFYMS$. The first call to NTFYM$ should
be inserted following the call to open the MIDAS file and just prior to
the first MIDAS file operation. The other call to NTFYMS$ should be
inserted just before the call to close the MIDAS file. ‘This is
described in detail in Section 6. When using NTFYM$, a MIDAS file can
be opened and closed by general methods like the SRCH$$ routine.

Method 2: Use OPENMS and CLOSMS: The second method is to replace the

calls which open and close MIDAS files with calls to OPENM$ and CLOSMS$
respectively. Details are provided in Section 6.

Disabling Concurrent Process Handling

Users may disable the new concurrent process handler, thereby returning
to the method used in previous releases of MIDAS. Note that programs
which use the new NTFYM$, OPENMS, and CLOSMS$ routines will still work
correctly, even if this process 1is disabled. However, performance
degradation may result.

REV. @ 13 - 4

PTUBY REV. 19 MIDAS

On page 13-5, there should -be a step 4 indicating that the
read/write file locks on all MIDAS files should be changed to 2 (n
readers and 1 writer) when disabling concurrent process handling.

IDR4558 FOR THE ADMINISTRATOR

The following steps should be followed in disabling concurrent process
handling:

1.

2.

4.

In file KPARAM, change the value of parameter SHDSEG from
.TRUE. to .FALSE..

For the unshared MIDAS library NVKDALB, run the command file
C NVKDALB and C_INSTALIMIDAS and reload applications programs
which use the unshared libraries.

For the shared V-mode library VKDALB, rebuild the library using
C VKDALB and re-install MIDAS using C INSTALIMIDAS and
C_SHAREMIDAS. Application programs which use the shared
library do not need to be reloaded.

see Pruxg

INITIALIZING MIDAS

MIDAS installation information is included with the release of the
master disk at each major revision. Directions for installation are

covered there and are not dealt with in this book. A summary of what
the new command files do and where they're located is included below
for quick reference, along with a list of the sub-UFDs contained in the
MIDAS UFD:
Sub-UFD's in MIDAS UFD
CMDNC@ Contains MIDAS utilities CREATK, KBUILD, KIDDEL, IMIDAS,
MCLUP, REVERT, REMAKE, and MPACK.
LIB Contains MIDAS libraries VKDALB, NVKDALB and KIDALB.
SOURCE Contains all source and command files: see below for

details.

SYSTEM Contains files K40¢0@, K2@14A and K2014B.

Command Files in MIDAS

C MIDAS Builds MIDAS by calling C KIDALB, C NVKDALB,

C VKDALB, C IMIDAS, C MCLUP, C CREATK, C KIDDEL,
C KBUILD, and C MPACK. Coples PARM.K and
PARM.K.PLI (PL/I insert file) from MIDAS>SOURCE to
MIDAS>SYSCQM.

C_INSTALIMIDAS Installs MIDAS by copying various MIDAS command

files and utilities to system UFD's SYSTEM, SYSCOM,
LIB and CMDNC@.

C SHAREMIDAS Shares MIDAS library, shared lock segment and runs

SYSTEM>IMIDAS to intialize all of MIDAS. This file
can only be run from the system console.

13 - 5 October 1980

SECTION 13 IDR4558

Command Files in MIDAS>SOURCE

C_CREATK Builds CREATK in MIDAS>CMDNC@.

C_IMIDAS Builds utility IMIDAS in UFD MIDAS>SYSTEM.

C_KBUILD Builds KBUILD in MIDAS>CMDNCH.

C KIDALB Builds the R-mode library in UFD MIDAS>LIB.

C_KIDDEL Builds KIDDEL in MIDAS>CMDNC@.

C_LCREATK Builds long index version of CREATK; see Section 15.

C_LIST MIDAS Makes a compilation 1listing of the major MIDAS
routines.

C MCLUP Builds utility MCLUP in UFD MIDAS>CMDNCH.

C MIDAS Builds MIDAS libraries and utilities.

C _MPACK Builds MPACK in MIDAS>CMDNC@. (See Section 12 for

information on options.)

C_NVKDALB Builds the unshared V-mode 1library NVKDALB in UFD

MIDAS>LIB.

C REMAKE Builds obsolete utility REMAKE in MIDAS>CMDNC@. See
Appendix C.

C_REVERT Builds obsolete utility REVERT in MIDAS>CMDNCO. See
Appendix C.

C_VKDALB Builds the shared V-mode library, VKDALB. VKDALB is

put in MIDAS>LIB. K4@po, K2014A, and K2@14B are
placed in UFD MIDAS>SYSTEM.

IMIDAS: Initialization Utility

The present method of concurrent process handling requires a special
initialization procedure to be run during each and every cold start.

This must be run to share the segment containing the shared lock, and
to set the lock value to zero. Make sure that no MIDAS applications
programs are running at the time IMIDAS is invoked. You may want to
install the command file C SHAREMIDAS in the cold start procedure to

ensure that IMIDAS is executed and that the lock segment is shared
during every cold start.

Lock Parameters: Currently, MIDAS uses semaphore number -16 and word

number '177777 of segment 2020 (the lock). These parameters, defined
in file KPARAM, may be modified:

REV. @ 13 - 6

IDR4558 FOR THE ADMINISTRATOR

MSEMA1 semaphore number
SLSEG segment number of the shared lock
SLWORD word number of the shared lock

If any of these parameters are modified, the MIDAS utilities MCLUP (see
below) and IMIDAS must also be rebuilt and installed. In addition,
command file C SHAREMIDAS must be modified so that the correct segment
gets shared. Remember that the MIDAS libraries, MCLUP and IMIDAS must
be rebuilt also. See Section 15 for information on modifying these and
other MIDAS parameters.

Note

See also MCLUP, under MIDAS CLEANUP/RECOVERY UTILITIES, below.

LIBRARY MODIFICATIONS
There have been several changes to the MIDAS libraries at this rev,

resulting in greater flexibility for both R-mode and V-mode users, and
in overall program performance improvement.

The Interlude

At this rev of MIDAS, the R-mode MIDAS library, KIDALB, and the R-mode
runtime routines have been replaced by an interlude to the V-mode
library, VKDALB. This change results in several positive benefits,
including:

e reduced memory requirements —— only one copy of the shared
V-mode library, VKDALB, is needed instead of one copy of the
R-mode routines per user.

e reduced I/O (CPU) time -- V-mode library uses the PCL
instruction which is much quicker than the SVC instruction used
by the R-mode library to implement a file system call. Since a
single MIDAS call may result in many file system calls, the
implications are obvious.

e only one library to worry about

e R-mode programs using only the MIDAS library don't need to be
reloaded. However, R-mode programs using other R-mode routines
only need re-loading once. 'Te new shared library Iis
dynamically linked during each execution, it is only necessary
to reload KIDAIB initially when the new version of MIDAS is
installed.

13 - 7 October 1980

SECTION 13 IDR4558

Note

This interlude is not available to users of the PRIME P-3¢d.

Impact of Interlude

The new interlude brings with it a few miscellaneous changes in the
availability of certain internal and offline routines. ~The only
internal MIDAS routines callable by R-mode and V-mode users are:
ERROPN, FILERR, FILHER and KX$TIM. Also available are the offline
routines PRIBLD, SECBID and BILDSR.

Previously, V-mode users were not granted access to any internal
routines at all, so this represents an enhancement to V-mode users. To
R-mode users, this represents a restriction, as they used to have
access to all internal routines. Since the R-mode library essentially
tracks the V-mode library in functionality, only these four routines
just mentioned will be available. Users who've included calls to these
routines in the past should note that the calling sequences have
changed; see Appendix D for more information.

MIDAS CLEANUP/RECOVERY UTILITIES

MIDAS provides two utilities for cleanup and recovery: one for
reinitializing the shared lock after an abnormal program termination

and one to recover or restructure deleted index entries in a MIDAS
file.

MCLUP: Releasing the Internal Iock

in the event of abnormal MIDAS program termination, MCLUP must be used
to re-initialize the shared lock and to notify the semaphore to awaken
any MIDAS process waiting on the lock. If the lock is not released,
all MIDAS processes will be suspended indefinitely. 1It's quite
possible that such a condition might go unnoticed for quite some time.
Should this condition be suspected, use MCLUP to determine who "owns"
the lock.

The MCLUP command takes the following form:

MCLUP [-USER userno]

If used without options, MCLUP re-initializes the shared lock only if
it is held by the user who issued the command. If this user is not the
"owner" of the lock, MCLUP prints the user number of the user that does
own it,

When used with the "-USER userno” option, MCLUP initializes the lock

only if held by the indicated user number; otherwise, it prints the
number of the user that holds the lock. Simply reissue MCLUP with the

REV. 0 13 - 8

IDR4558 FOR THE ADMINISTRATOR

proper user number to release the lock so other processes can proceed.

Automatic Notify: Sometimes when a user quits out of a process or logs
off the system, the lock is released but the subsequent "notify" to the
MIDAS semaphore does not have a chance to happen and MIDAS will cease
to function. The MCLUP utility should then be invoked in its
optionless form. In this circumstance, MCLUP will generate an
automatic notify to the semaphore as long as there is at least one user
on the wait-list, and nobody else has "grabbed" the lock. This
"automatic notify" feature prevents MIDAS from hanging up indefinitely
because it can't signal another waiting process to ask for the LOCK.
MCLUP prints out this message at the terminal of the user who invokde
MCLUP whenever an automatic notify successfully generated:

Cleanup for unknown user successful

HANDLING CONCURRENCY ERRORS

Although most concurrency errors can be avoided through the lock method
described above, there are some that single-threading cannot prevent.
MIDAS is able to detect and correct most concurrency errors, which may
occur when more than one user accesses the same MIDAS file at the same
time. These errors are usually associated with operations that involve
the current record (the recerd just read, written or updated), and
occur when the current index entry has been deleted or physically moved
since the time the entry became current. If MIDAS discovers that the
entry has been deleted, an error code of 13 is returned. 1In the event
that the entry has been moved, MIDAS automatically locates the entry
and continues normally.

How MIDAS Traces the Current Record

At the FORTRAN call level interface, the concept of current record and
current entry is implemented as a l4-word communication array. The
communication array is an argument in most subroutine calls to MIDAS.
The communications array format is described below. Other information
on this array can be found in Section 6.

13 - 9 October 1980

SECTION 13 IDR4558

Communications Array Format

The fourteen words of the array contain the following information:
Word 1: (input) if @ or 1, the array contents are used
if -1 then MIDAS array contents are not used
(output) error status
Word 2-4: current index entry address
word 2 bits 1-8 entry number
word 2 bits 9-16 segment file number
words 3 - 4 (32 bits) word offset of index block

Word 5: hash value (based on current key value)
(for keys longer than 8 bytes (4 words)

Words 6-~9: current key value (or first four words of key)

Words 10-12: current record address

word 10 bit 1 "record locked" flag
word 1@ bits 7-16 segment file number
words 11 - 12 word offset of record

Word 13: data control word

bits 1-8 flag bits
bits 9-16 primary key size (bits)

Word 14: data record length (in words)

Note that words 2 through 9 of the communication array specify a
current index entry and words 1@ through 12 specify a current record.

How MIDAS Uses the Array: During operations involving the current
entry (for example, "get next record"), words 2 through 4 are used to
locate the expected position of the entry. To verify that the position
contains the correct entry, MIDAS compares the data pointer in the
entry with the data pointer in words 1@ through 12 of the communication
array. If the pointers don't match, then the entry is the wrong one.

Even if the pointers do match, MIDAS compares the key value in the
index entry to the key value in the array. If they don't match, then
the entry is the wrong one. When a wrong entry is detected, MIDAS
searches for the correct entry. If the correct entry is not found,
MIDAS returns an error code of 13. Note that versions of MIDAS between
Rev 16.80 and Rev 16.5 returned an error code of 13 when a concurrency
error was detected. Users of these earlier releases may have modified
their applications to attempt to recover from an error 13. Since an
error 13 presently indicates that the current index entry has been
deleted, attempts to handle an error 13 in existing applications may

REV. 0 13 - 10

IDR4558 FOR THE ADMINISTRATOR

have to be modified.

Limitations on Error Detection

For indexes with keys longer than eight bytes, MIDAS may fail to detect
a concurrency error or to correctly recover from one. To understand
how this may occur, observe that a maximum of eight bytes of a key may
be stored in the communication array. For keys longer than eight
bytes, MIDAS stores a hash value in word 5 of the array. The hash
value is based on the portion of the key beyond the eighth byte. MIDAS
will fail to detect a concurrency error only if:

e The data pointers match and the first eight bytes of the key
match the eight bytes stored in the communication array

or

e The data pointers match and the hash code, based on the
remaining bytes, is the same as the hash code in the array

DEBUGGING TIPS

The MIDAS administrator will doubtless be confronted with occasional
MIDAS-related problems. Before attempting to tackle them, it is
suggested that you take time to check the following points.

MIDAS Revision Number

Do you have all the documentation pertaining to the particular revision
of MIDAS you're using? Use the VERSION option of CREATK to determine
vhat software revision of MIDAS you're running and which version the
file was created under.

Incompatible Interfaces

Does the application program in question use both a language interface
like COBOL and direct calls to MIDAS through FORTRAN/PMA subroutines in
the same program? ‘This can lead to confusion on the part of the user
and ultimately to a damaged file.

Restructure History

When was MPACK last run against the file in question? With the USAGE
option of - CREATK, check each index and determine the percentage of the
file that has been deleted. Performance degradation can result when
there are lots of deleted entries in secondary indexes that contain
many duplicates. Use MPACK to unlock records; see Section 12.

13 - 11 OCctober 1980

SECTION 13 IDR4558

Hint: always use the "NEW' option of MPACK to prevent possible damage
to the original file in case of error or program failure.

Check the Iocks

The latest version of MIDAS has two locks with which users must be
concerned; the per file read/write lock and the shared internal 1lock.

Read/Write Iocks: Check to make sure that per file read/write locks on
MIDAS files have been set to 3. Prior to Rev. 16.5, MIDAS read/write
locks were set at 2 (the standard system-wide setting), but must be set
at 3 to permit the new method of concurrent process handling to
operate. Note that the lock setting is not preserved by MAGSAV or
FUTIL TRECPY, so check the lock each time a file is processed by either
of these operations. See Setting File Read/Write ILocks, above.

Internal Iock: The shared internal lock, used in gating concurrent
processes, must be initialized with IMIDAS as described under
INITIALIZING MIDAS, earlier in this section. The latest version of
MIDAS specifies the shared lock to be word number '177777 of segment
2020. The lock segment is not protected from being accidentally
overwritten by any user, so be careful!

New Calls and Libraries

Are all FORTRAN/PMA programmers using the new OPENM$ and CLOSMS or
NTFYM$ calls? If not (and intentionally), has the concurrent process
handler been disabled correctly as described earlier? 1If not,
performance may be noticeably degraded. Have all other language
interface programs been reloaded with the new libraries?

Check the Semaphore

The semaphore for the concurrent process wait list has gone through a
series of values since its debut. Currently, the semaphore value is
-16; this value works only on MIDAS versions 17 and above. Earlier
versions of MIDAS used a setting of 64, which works for both Rev 16 and
17 versions of MIDAS.

Are you using Networks?

Remember that network users cannot operate with the shared lock and
semaphore-based concurrent process handler; either make sure that the
this has been disabled according to the instructions outlined earlier
in this section, or set the MIDAS file locks to 2. This causes the old
method of concurrent process handling to be used. See Appendix D for a
description. Network users may still use the new OPENM$, CLOSMS$ and
NTFYMS$ calls in their programs, as these routines are not affected by
disabling the lock-testing procedure.

REV. @ 13 - 12

IDR4558 FOR THE ADMINISTRATOR

Note

For systems using earlier versions of MIDAS and/or MIDAS files
created under previous versions, see also Appendix D.

Multiple Libraries

Network users may want to make a separate copy of the MIDAS library for
their own use. This would be an unshared library and would contain all
the modifications indicated previously under Disabling Concurrent
Process Handling and IMIDAS: Initialization Utility, above. Making
all the necessary changes once and saving them in a separate copy of
the library which can be used whenever needed is a lot easier than
making the changes every time you want to use MIDAS across the net.

13 - 13 October 198¢

PartV
More Midas

IDR4558 OFFLINE ROUTINES

SECTION 14

OFFLINE ROUTINES

INTRODUCTION

The current version of MIDAS makes many offline routines available for
general use. Most of these routines, including the file-building
routines and error-logging routines have been used by MIDAS prior to
this revision, and were previously made available to R-mode MIDAS users
only. In conjunction with the file-building routines, a few
newly-added routines make it possible for the user to design, create,
and populate a MIDAS file without using the MIDAS utilities CREATK or
KBUILD.

What's In This Section

To simplify matters, this section is divided into three parts: the
first part shows how to create and look at a MIDAS file template using
the KXSCRE and KXSRFC routines; the second part deals with the offline
file-building routines, PRIBLD, SECBLD, and BILDSR, and the third part
covers miscellaneous routines like ERROPN and KX$TIM, some of which may

v .)
be familiar to users of previous versions of MIDAS,

PART I. CREATING/EXAMINING A MIDAS FILE

ALTERNATIVES TO CREATK

Available for the first time at this revision of MIDAS are the
user—callable internal routines KX$CRE and KX$SRFC. KXSCRE is the "work
horse" of the CREATK utility, while KXSRFC is used by nearly every
MIDAS utility to return the configuration of a MIDAS file. These two
routines can be used in place of CREATK as an alternate method of
building and looking at the configuration of a MIDAS file.

Users will find this material useful only if they want to write their
own programs to create file templates and read file configurations
instead of using command files that invoke CREATK and/or KBUILD. One
advantage of programs over command files is that they can handle errors
neatly and are not subject to subtle changes made in utility
interfaces.

14 - 1 October 1980@

SECTION 14 IDR4558

KXSCRE

KXSCRE is a user—callable routine that can be used to create a MIDAS
file from a program. It is the same routine used by CREATK to create
new MIDAS files and exists in all the MIDAS libraries.

KXSCRE Calling Sequence

The calling sequence of KXSCRE is:
CALL KXS$CRE (filnam,namlen,flags,alloc,pridef,secdef,errcod)

The arguments used in the above call and their data types (in
parentheses) are:

filnam The pathname of the file to be opened, two characters
per word (INT*2).
peFraLT
namlen Length of filnam in characters (INT*2).
flags Global flags (INT*2): see The Flags Argument, below.
alloc Number of data records to pre-allocate if direct

access is enabled for this file (REAL*4), Specify
this number only if MSDACC is set in flags. ‘This
argument is ignored when creating a keyed-index file
and may be set at 4.

pridef (6) Definition array for the primary index (INT*2). See
Table 14-1.

secdef (6,17) Definition array for the 17 secondary indexes
(INT*2) , secdef(l...6,i) contains the definition for
secondary index "i," where i ranges from 1 to 17.
See Table 14-1.

errcod(2) Error code returned by MIDAS (INT*2). If the error
code in errcod(l) is @, it indicates successful
completion. If the code is less than 5000, then it
is a file system error and KXSCRE tries to delete the
partially created file, ignoring any errors incurred
in the process. 1If errcod(l) is 5000 or greater,
then the error code relates an error in the MIDAS
file definition passed by the user, errcod(2)
containing an index number, if applicable. See
Non-File System Error Codes below.

REV. 0@ 14 - 2

PTU8Y9 REV. 19 MIDAS

On page 14-2, the argumént namlen does not have to be declared as
INT*2, as implied in the boo_k. This is the default however. '

IDR4558 OFFLINE ROUTINES

The Flags Argument: The flags argument indicates the file type and
the READ/WRITE lock setting of the file to be created in this call.

The flags argument value is set with the following keys:

Key Function
MSDACC Enables file for direct access. alloc

contains the initial number of records to
pre-allocate.

MSNRNW Sets file lock to n readers and n writers.
This is the default even if MSNRNW is not
specified.

MSNR1W Sets file lock to n readers and 1 writer.

This must be used if the file is intended for
access by more than one user at a time and at
least one of those users is to access the file
over PRIMENET.

Note

The file lock keys, MSNRNW and MSNRIW, are mutually
exclusive.

The Pridef and Secdef Arrays: The pridef and secdef arrays must be
assigned values (by the user) to indicate the characteristics of the
primary index and any secondary indexes to be included in the file
template. These arrays are passed by the user's program to KXSCRE,
which then uses this information to build the file template.

The six-element one-dimensional array pridef(l...6), contains the
information needed to define the primary index. Similarly, secondary
indexes are defined by the two-dimensional secdef array, where
secdef(1l...6,1i) defines secondary index "i."™ All the elements in these
arrays are INTEGER*2,

The six elements of each array are listed in Table 14-1. The flags
listed in Table 14-2 are divided into three groups. The first group
defines special index subfile characteristics; the second defines key
type and the third tells whether the key size is supplied in bits,
bytes or words. These flags are passed to KXSCRE in much the same way
as the MIDAS flags are passed to the various MIDAS subroutines as
discussed in Section 6.

14 - 3 October 1980

SECTION 14

Table 14-1.

Array Element

pridef (1)

secdef (1,1)

pridef (2)

secdef (2,1)

pridef (3)

secdef (3,1)

pridef (4)

secdef (4,1)

pridef (5)

secdef (5,1)
pridef (6)

secdef (6,1)

(]

IDR4558

Pridef and Secdef Array Elements

Description

Contains one or more flag values specifying the key
type and key size, plus whether or not the primary
index is to be double length. See Table 14-2.

Defines the key type and size of the "ith" secondary
key: also determines the duplicate status of the
key and defines the length of the index subfile
(i.e., tells if it's double-length). See Table 14-2
for key-type flags.

Primary key size in bits, bytes or words,
on key size flag specified in pridef(l).

depending

Secondary key size in bits, bytes or words, as
indicated by key size flag supplied in secdef(l,i).
If this element is @, the index does not exist.

Data record size.
records.

If @, means variable-length

Secondary data size: see Appendix C.
this feature is not desired.

Supply a @ if

Level 1 block size.
size (1024 words).

Supply a @ to use default block

Level 1 block size: same as above.

Level 2 block size.
size.

Supply a @ to use default block

Level 2 block size: same as above.

[ast level block size: @ = use default.

Same as above.

IDR4558 OFFLINE ROUTINES

Table 14-2. Flags for pridef(l) and secdef (1)

Index—-Specific Flags

Flag Meaning
MSDLNG Double length index
M$SDUPP Duplicates permitted for this key

(illegal for the primary key)

Key Type Flags
Flag Meaning
MS$BSTR Bit String
MSSPFP Single-precision floating point (REAL*4)
MSDPFP Double-precision floating point (REAL*8)
MSSINT Short (one-word) integer (INT*2)
MSLINT Long (two-word) integer (INT*4)
MSASTR ASCII string

Key Size Flags

Flag Meaning

M$BIT Key length is specified in bits
M$BYTE Rey length is specified in bytes
MSWORD Key length is specified in words

14 - § October 1980

SECTION 14 IDR4558

Using the Flags: To use the flags, select the appropriate flags, one
from each of the three groups, except for the first group from which
you may choose none, one or both flags. Assign them to the first word
of the pridef or secdef array in the following manner:

SECDEF(1,1) = MS$SDUPP + MSASTR + MSWORD

This defines an ASCII key that allows duplicates, and whose length,
defined in words, is supplied in SECDEF(2,1).

Non-File System Error Codes

Errors encountered during the building of a template may originate in
the file system or in MIDAS, and may result from bad user arguments or
from some internal MIDAS problem. The error codes which the user is
most likely to see are listed in Table 14-3.

KXS$RFC

KXSRFC is a user—callable routine that returns the file configuration
of an already existing MIDAS file. Its calling sequence is essentially
the same as that of KXS$CRE, except that most of the arguments are
returned by KXSRFC instead of being set by the user. Its calling
sequence and arguments are described below.

REV. @ 14 - 6

IDR4558 OFFLINE ROUTINES

Table 14-3. KXSCRE Error Codes

Code Meaning
MESBAS Allocation size is bad. The number specified in

alloc was: (@) less than 1.8, (b) not a whole
number, or (c) too big to allocate alloc records
(the user-supplied number passed 1in the alloc
argument) given the default segment directory
and segment subfile lengths.

ME$BDS Data size is bad for one of these reasons:
e Data size is negative.
e Data size in pridef(3) is @ meaning
variable-length data records, but the file

is configured for direct access which
requires fixed-length data records.

MES$BKS Key size is bad. For example:
& Key size is too big. The limit is 16 words
except for ASCII strings which may be up to
32 words.
e Key size is negative.
e Primary key size is 4.
MES$BKT Key type is bad.
MES$SBL1 Level 1 block size is bad. The block size must

be positive, not 1larger than RECINT (1024
words), and must hold at least two index
entries.

14 - 7 October 1980

SECTION 14 IDR4558

Table 14-3. Error Codes (continued)

MESBL2 Level 2 block size is bad.

MESBLL Last level block size is bad. When building a
secondary index, this error may also be caused
when the secondary data size, secdef(3,i), is
too large, in comparison to the block size, to
fit the mandatory two entries per block.

MES$SCBD Index can't be double length. The user may have
specified the primary index as double length and
then defined secondary index one, or specified
secondary index 1 as double length and then
defined secondary index i+l, or the user may
have specified secondary index 17 as double
length.

MESNDA No duplicates allowed. The user specified the
flag MSDUPP in pridef(l) that is not permissible
because duplicates are not allowed for the
primary key.

Note

All of the flags and codes listed above are defined in
SYSCOM>PARM. K.

REV. & 14 - 8

IDR4558 OFFLINE ROUTINES

KXSRFC Calling Sequence

The KXS$RFC calling sequence is:
CALL KXS$RFC (filnam,namlen,flags,alloc,pridef,secdef,errcod)

The arguments, their meanings and their data types are:

filnam The pathname of the MIDAS file whose configuration is
to be returned (INT*2). (supplied by user)

namlen Length of filnam in characters (INT*2). (supplied by
user)

flags Global flags: M$DACC is the only possible flag

returned (INT*2). (returned by KX$RFC)

alloc Number of data records pre-allocated if direct access
enabled, otherwise #.4 is returned (REAL*4) .
(returned by KXSRFC)

pridef (6) Definition array for the primary index (INT*2) .
(returned by KX$RFC)

secdef (6,17) Definition array for the 17 secondary indexes
(INT*2) . secdef(l...6,i) contains the definition for
secondary index i. (returned by KXSRFC)

errcod Error code or @ if no error (INT*2). (returned by
KXS$RFC)

The arguments are very similar to those used in calls to KX$CRE, and,
with the exception of a few minor notes which appear below, the user is
referred to the previous discussion on KX$CRE for details on the
arguments used in this call.

Notes on KXS$RFC Arguments

The flags argument is not supplied by the user in a call to KXSRFC, but
is instead returned by a successful call to that subroutine. If the
file is a direct access file, the flag MSDACC is returned; otherwise,
flags is returned as #. If the file is not enabled for direct access,
the alloc argument will be zeroed by KXS$RFC.

14 - 9 October 1980

SECTION 14 IDR4558

Pridef and Secdef Flags: ‘The flags returned on this call are:

e MSBSTR,MSMSPFP, MSDPDP, MS$SINT, MSLINT and MS$ASTR represent
possible settings for bits 1-4.

e MSDING and MSDUPP represent the setting of bits 5 and 6
respectively.

e MSBIT, MSBYTE, MSWORD represent possible values of bits 6 - 7.
(MSWORD is generally not returned by KXSRFC.)

Element secdef(2,i) is returned as @ if there is no index "i" in this
file.

Errcod: This is a one-word argument in this call instead of a two-word
array. Error codes less than 500@ indicate file system errors. The
only returned code greater than 5000 is:

MESNMF

which means this file is not a MIDAS file. ‘This could be true for
several reasons, including:

e The file is not a SAM segment directory
e Segment subfile # (file descriptor subfile) does not exist
or

e Segment subfile @ does not contain the appropriate flags to
indicate that the file is a MIDAS file

There are other messages returned by KXSRFC. They are listed in
Appendix A along with the other MIDAS error messages that are common to
several MIDAS routines. KXSRFC is called by nearly all of the MIDAS
utilities, and therefore, any message it returns is more than likely to
be associated in the user's mind with the routine that was just called
when the error occurred. Thus, these messages are treated in the place
where the user is most likely to look for explanations of error
messages.

REV. ¢ 14 - 18

PTU89 REV. 19 MIDAS

On page 14-11, the statement under Why Use Offline Routines?
states that off-line routines are faster because they are not
shared. This is only part of the actual story. Offline routines
are not meant to be shared and therefore are not concerned with
multi-user access to a file, Therefore they don't write out index
blocks after each index entry is added to a file, as ADDIS$ does.
(Online routines must always write index blocks out to the file
after each operation on the block so that the file will not be
damaged by concurrent access and so each user will have a
consistent view of the file while accessing it.) By not writing
out the index blocks each time, a considerable amount of 1/0
overhead is saved, making off-line routines faster than their
online counterparts. In addition, the off-line routines bypass the
concurrent process handling method which normally single-threads
MIDAS use for online routines. Thus only one person can have
access to a MIDAS file at a time when that file is being processed
by an off-line routine. -

IDR4558 OFFLINE ROUTINES

PART II. FILE-BUILDING ROUTINES

ALTERNATE FILE-BUILDING METHODS

The second part of this section describes several ways of building
MIDAS files which were not covered in Section 3. Specifically, there
are three offline file-building routines available in the current MIDAS
library: PRIBLD, SECBLD and BILDSR. These routines can be called from
any user program to add index and data subfile entries to keyed-index
or direct access MIDAS files. Data entries can have fixed or
variable-length records and can be sorted or unsorted. R-mode users
may already be familiar with these routines -- they were previously
kept only in the R-mode library. People who've used these routines in
the past should consult Appendix D for an explanation of changes made
to them with the current version of MIDAS.

Briefly, the functions of these routines are:

e BILDSR builds MIDAS data and index subfiles from sorted/unsorted
input data.

® PRIBLD builds an empty primary index subfile and data subfile
from sorted input data.

e SECBLD builds an empty secondary index subfile from sorted input
data.

LELG s

You can use these routines by calling them from programs written in
FTN, BASIC/VM, PL/I, or any other Prime 1language. Consult the
appropriate reference guides and user manuals for details on calling
external routines. However, it 1is assumed that the offline routines
described in this section are most useful to FORTRAN or PMA
programmers.

Why Use Offline Routines?

Because offline routines are not shared, only one user can "have" them
at a time; thus they are faster than the online routines 1like ADD1S.
If you have networks, you might use PRIBLD, SECBLD and BILDSR as part
of your "network library"” package; see Section 13 for details.

These routines also provide the user with tools for building files with
concatenated keys or adding secondary data entries, neither of which
are supported by KBUILD.

s€e PTUSsY9

14 - 11 October 1980

SECTION 14 IDR4558

Restrictions

Offline routines cannot be called by more than one user to operate on
the same file. Once the file is opened by one of these routines, no
one else can invoke any MIDAS routine to work on that file. However,
it is possible for more than one of these routines to be called from
the same program to work on the same file, as long as they don't access
the same index subfile concurrently. This allows the user to build an
entire file from a single program by calling the file-building routines
in the proper sequence.

It is also not possible to build more than one MIDAS file at a time
from the same program using offline routines. In addition, it is not a
good idea to access a file being built by one or more offline routines
or a utility with any of the online routines. Doing so can damage the
file.

The offline routines do check to see that they are not accessing the
same index subfile of a given MIDAS file simultaneously while building
it. However, they cannot guarantee that the file is not being accessed
by an online routine or utility while it's being built.

Which Routine to Use

Review these guidelines before deciding which routines to use for MIDAS
file-building. Make sure you understand which routines should be used
together when building a file.

Note

When using any of the routines discussed in this section,
remember to $INSERT all of the following insert files into your
FORTRAN programs:
SYSCOM>PARM,K
SYSCOM>ERRD. F
SYSCOM>DKEYS.F
Use PRIBLD: Use PRIBLD when all of the following are true:
e You want to build a primary index and data subfile

e Your data is sorted on primary key

e 'The MIDAS file being built contains NO entries whatsoever: see
Note below.

REV. 0@ 14 - 12

IDR4558 OFFLINE ROUTINES

Use SECBLD: Use SECBLD when all of the following are true:
@ You are building one or more secondary index subfiles
e Your input data is sorted on a secondary key field

e The secondary index subfile(s) to be built contain NO entries
(See Note below.)

The input data must contain a copy of the primary key associated with
each particular secondary key entry you want added to the file. SECBLD
locates the primary key entry in the index subfile so the secondary
index entry can be added.

PRIBLD and SECBLD are much faster than BILDSR, so try to use them

whenever possible unless one or more of the above conditions are not
true.

Note

If you're attempting to re-build an existing file that
previously contained entries, make sure that each index you
want to build from sorted data is truly empty, and does not
contain obsolete pointers to data subfile entries that no
lornger exist. Use MPACK or KIDDEL to clean out the index
subfiles before attempting to re-build them with sorted input
data.

Use BILDSR: Use BILDSR when these conditions occur in the combinations
indicated:

e Your input data is not sorted by the index to be built
and/or

e Your output (MIDAS) file already contains entries in the subfile
to be built

Calls to PRIBLD, SECBLD and BILDSR can be made from the same program to
build a single MIDAS file as long as you don't attempt to build the
same index subfile from both BILDSR and PRIBLD or SECBLD at the same
time.

14 - 13 October 1989

SECTION 14 IDR4558

Cautions

There are several important points you should keep in mind when using
the offline file-building routines:

e Programs that make calls to BILDSR should beware of making calls
concurrently to PRIBLD and/or SECBLD (and vice versa) because
conflicts may occur when two routines try to access or modify
the same index subfile. When this happens, the second routine
to access that subfile will report an error and will abort
unless an alternate return is provided by the program. (See the
list of error messages that follows each routine.)

e Programs that use any of these routines to build a MIDAS file
should not be run at the same time as application programs which
access the same MIDAS file.

e A MIDAS file opened for use by any of the file-building routines
cannot be in use by any other user or process, for reading or
writing.

e PRIBLD, SECBLD, and BILDSR can only be used to build a single
MIDAS (output) file. There is no capability for processing more
than one output file through any of these file-building
routines.

The remainder of this section describes the calling sequences and the
functions of PRIBLD, BILDSR and SECBLD.

Event Sequence Flag

PRIBLD, SECBLD and BILDSR each use the same "flag" argument in their
calling sequence. This flag, called segflag in the argument 1list, is
used as a communications tool between the routine and the user. With
it, you tell the routine when to start and stop processing. In return,
the routine tells you the state of the build operation. It can have
one of four values as shown in Table 14-4, When first calling one of
these routines from a program to add an entry, supply a flag value of @
in the calling sequence; this is essentially an initialization request
to the routine. It tells the routine to start processing the data
provided by your program. When the first record has been successfully
processed, the routine sets the flag value to 1; the flag remains set
at 1 until the 1last entry is processed. At this point, the user's
program should issue a "finalization" request, setting the event
sequence flag to 2. This is done by making another call to the routine
in which segflg has a value of 2; every other argument in the calling
sequence, except for the unit and altrtn arguments, is ignored, and may
have a value of #. A finalization request must be used to close the
currently opened index subfile before another index subfile can be
opened. When the finalization request is fulfilled, the routine will
set the segflg value to 3, indicating that the particular subfile has
been closed.

REV. @ 14 - 14

IDR4558 OFFLINE ROUTINES

Table 14-4. rent Sequence Flag Values

Value Meaning

g Set by user and passed to routine to
signal that first record of input data is
to be processed; this is essentially an
initialization request.

1 Set by routine after first record has
been processed. Remains set at 1 until
user sets it to 2.

2 Finalization request: set by the user
and passed to routine after last entry in
input data has been processed.

3 Set by the routine to indicate that

finalization is complete; if more than
one index subfile is open, a separate
finalization request must be made for
each one. The routine acknowledges the
closing of each index by setting the flag
to 3.

Since these routines are all serially reusable, the build process can
be restarted for a new index subfile by setting segflg to @ again

(especially useful in BILDSR and SECBLD).

General Use of Sequence Flag: This is a very generalized example of

how the process control flag is used:

C INITIALIZATION REQUEST
SEQFIG =

C SET UP ARGUMENTS FOR CALL

.

CALL routine-name (SEQFLG, argumentS...cece.)

C FINISH UP
C MAKE CLOSE REQUEST
SEQFLG =2

/*REQUEST TO CLOSE

CALL routine-name (SEQFLG, argumentSe.eeseees)

14 - 15

October 1988

SECTION 14 IDR4558

Error Handling

Although the alternate return feature is an acceptable method of
handling errors, it is not consistent with the ever growing trend
towards modular programming. The use of non-local "GOTO's" is frowned
upon by all proponents of modular structure, and the use of flags to
pass error status codes between the main program and the routines it
calls is highly favored. Errors are then handled through a normal
return to the calling program at which point the flag is checked and
some sort of action is taken, usually by an on-unit (PL/I) or other
exception handler.

Recording Errors: Errors that occur during the file-building process
can be written to a disk file instead of appearing at the terminal.
Use ERROPN to open and name such a file. Similarly, milestones can be
recorded in this file by calling KX$TIM.

PRIBLD

The PRIBLD routine builds a primary index subfile and adds the
corresponding data records to the data subfile. The input file must be
sorted by primary key field and the MIDAS (output) file must be empty.
This is because PRIBLD cannot add sorted primary key entries to an
index subfile that already contains key values. PRIBLD is the fastest
method of building a primary index subfile; if you're concerned about
speed and performance, use PRIBLD instead of BILDSR whenever possible.

REV. @ 14 - 16

IDR4558 OFFLINE ROUTINES

PRIBLD Calling Sequence

PRIBLD's calling sequence is:

CALL PRIBLD (segflg, primkey, data, dlength, unit, altrtn, danum)

The arguments are all integer (INT*2) except for danum, which is a
floating-point (REAL*4) number used in building direct access MIDAS

files only.

seqflg

pr imkey

data

dlength

unit

altrtn

The event sequence flag, see Table 14-4, above.

A numeric variable or a one-dimensional array, which can
be an integer or real number, depending on the key type,
which contains the primary key value to use on this
call.

A one-dimensional array containing the data to be added.
If dlength is zero, data may also be zero.

The length of data in words. For fixed-length records,
if dlength is less than the record size originally
defined for the file, the entry written to the MIDAS
file will be padded with @'s. Excess data is ignored.
For variable-length records, specify the exact length of
the record being added.

The file unit on which the MIDAS file is opened.

The number of a statement in the program to be used as
an alternate return; if @ is supplied for the altrtn
argument, control returns to PRIMOS in the event of an
error. See Error Handlers, below.

The entry number for direct access files; this is a
REAL*4 number. If the indicated entry slot is already
occupied, the entry is added to the end of the data
subfile. Specify a @ for this argument if the MIDAS

file being built is a keyed-index file. °*

14 - 17 October 1980

SECTION 14 IDR4558

PRIBLD Error Messages

When using PRIBLD, one has to be careful of other users accessing the
file that is being built. If this happens, PRIBLD may not be able to
recover from the error and the file will probably be garbled. If one
of the following error messages 1is encountered, the user can call
PRIBLD to finish building the index, (set SEQFLG to 2) and the file
will be reasonably complete, except for the problem as indicated by the
error message. If a file system error occurs (i.e., one that doesn't
appear in the list below), you can be sure that the file will be
damaged. In this case, =zero the file with KIDDEL, attempt to figure
out what happened, and try again. In both kinds of errors, PRIBLD
usually prints out the key supplied by the user (i.e., the entry it was
trying to process), along with the error message.

P> CAN'T USE PRIBLD AND BILDSR SIMULTANEOUSLY

This is a fairly obvious message warning the user against simultaneous
access to the primary index subfile. This can happen when the user has
added one or more entries to the primary index with BILDSR and has now
called PRIBLD which generates this message. Either continue adding
entries or finish building index @ with the appropriate calls to
BILD$R, but not PRIBLD.

P> ILLEGAL SEQFIG

The value of SEQFLG is incorrect. Remember, the first call to PRIBLD
to add an entry must have a SEQFLG of @ which PRIBLD will return as a
1. Subsequent calls to PRIBLD to add additional entries must continue
to have a SEQFLG of 1. The final call to PRIBLD to close building
index 8 for that MIDAS file must have a SEQFLG of 2 and PRIBLD will
return it as a 3.

P> NOT A VALID MIDAS FILE

The first time PRIBLD is called to add an entry (SEQFLG = @) to the
primary index of an MIDAS file, PRIBLD calls KXS$RFC both to verify that
the file is indeed a wvalid MIDAS file and to gather certain
configuration data needed to build the file. See Appendix A for a list
of other messages that may be returned by KXSRFC through PRIBLD.

P> INDEX @ NOT ZEROED

The file must not contain any entries if PRIBLD is to be used to build
the primary index. Use KIDDEL to zero the file.

IDR4558 OFFLINE ROUTINES

> INDEX @: INDEX BLOCK SIZE GREATER THAN MAXIMUM DEFAULT

This is a fatal error that may occur on the first call to PRIBLD to add
an entry. 'The argument RECINT in the MIDAS paramter file KPARAM is
less than the block size specified for some index 1level. Either fix

the file or fix RECLNT in KPARAM and rebuild MIDAS before continuing.
(See Section 15 for additional details.)

P> KEY SEQUENCE ERROR

The key provided in the current call is less than or equal to the key
provided in the previous call to PRIBLD.

. INDEX @#: +@.nnnnnnn E+nn INVALID DIRECT ACCESS ENTRY NUMBER
This error occurs during direct access file processing only. It can
happen for one of three reasons:

1. The record number supplied was less than zero

2. The record number supplied was not a whole number

3. 'The supplied number exceeds the number of entries
pre-allocated by CREATK

It is possible the user may have changed this number with CREATK and
forgot to MPACK the file to effect the change. Try MPACKing the file.

P> DATA SUBFILE FULL
No more entries may be added to the data subfile and therefore to the

primary index. However, a call to PRIBLD to finish building the
primary index (with SEQFLG = 2) may still be made.

14 - 19 October 198@

SECTION 14 IDR4558

SECBLD

The SECBLD routine builds secondary index subfiles from input data
sorted by secondary key. The index subfile being built must not
contain any entries prior to the calling of SECBLD. A copy of the
primary key must be included as one of the arguments in the call so
that SECBLD can make the appropriate connections between the data
subfile entries already in the file and the secondary index entries
being added.

When making calls to SECBLD in a program, avoid making calls to BILDSR
that attempt to open the same secondary index subfile. If BILDSR
already has the secondary index subfile open when SECBLD is called,
SECBLD will return the error message:

P> CAN'T USE SECBLD AND BILDSR SIMULTANEOUSLY

SECBLD Calling Sequence

The calling sequence of SECBLD is:
CALL SECBLD (segflg,seckey,pkey,index,secdat,sdsiz,unit,altrtn)

There are no special arguments for direct access files; this is
because the data entries have already been added and the record numbers
need not be supplied in order to add secondary index entries. The
complete argument 1list is given below. Data types are given in
parentheses,

o)
]
=]
&
(s
'-—-‘
o>
1
n
=

IDR4558 OFFLINE ROUTINES

seqfl The event sequence flag, described in Table 14-4
(INT*2) .
seckey The secondary key value to be added to the index

subfile (INT*2).

pkey The primary key value that references the same
record as seckey (INT*2).

index The secondary index subfile number being built
during this call to SECBLD (INT*2).

secdat The secondary data to be stored in this index entry
(INT*2) . This applies only to indexes for which
the secondary data feature was chosen during index
definition. Specify 0 if you don't want to add any
secondary data for this particular index.

sdsiz The size of the secondary data supplied in this
call; specify in words (INT*2). Specify a @ if
you supplied @ for the previous argument.

unit The file unit on which the MIDAS file is open
{INT*2).

altrtn The number of the statement in the calling program
to which control returns in the event of an error
(INT*2). If @ (no alternate return in program),
SECBLD exits to PRIMOS when an error occurs.

SECBLD Error Messages

Like PRIBLD, SECBLD is fast and efficient but is not able to protect
the file it is working on from damage caused by outside interference
during the file-building process. Many of the error messages returned
by SECBLD are quite similar to those returned by PRIBLD. The same
error-handling method described under PRIBLD applies to SECBLD, so it
wiil not be repeated here. The symbols "##" as used in the message
representations below are replaced by a secondary index number when
actually returned by SECBLD.

P> INDEX ##: DOES NOT EXIST
The indicated index is either an invalid index number or simply doesn't

exist in the MIDAS file. Either go back and ADD the index with CREATK
and try again or remove all references to this index from the program.

14 - 21 October 1988

SECTION 14 IDR4558

P> INDEX ##: CAN'T USE SECBLD AND BILDSR SIMULTANEOUSLY

This means that the user may have added one or more entries to this
index with BILDSR and has now called SECBLD to add an entry to it. The
user may continue adding entries or finish building this index with the
appropriate calls to BILDSR, but not to SECBLD.

P> INDEX ##: ILLEGAL SEQFIG

The value of SEQFIG is incorrect. See the discussion for this error
under PRIBLD Error Messages, above.

P> INDEX ##: NOT A VALID MIDAS FILE

This message is returned for the same reasons given for PRIBLD, above.

P> INDEX ##: NOT ZEROED

The index must not contain any entries if you're trying to use SECBLD
to build it. Use KIDDEL to zero this index or to zero the entire file.

P> INDEX ##: INDEX BLOCK SIZE GREATER THAN MAXIMUM DEFAULT

See the discussion under PRIBLD Error Messages, for an explanation of
this error message.

P> INDEX ##: KEY SEQUENCE ERROR

The supplied secondary key is either less than the secondary key
supplied in the last call to SECBLD for this index, or is a duplicate
of the secondary key supplied in the last call to SECBLD for this
index, and the index does not allow duplicates.

REV. @ 14 - 22

IDR4558 OFFLINE ROUTINES

P> INDEX ##: CAN'T FIND PRIMARY KEY IN FILE

SECBLD was unable to find the key value supplied for the pkey argument.
The index subfile does not contain this value. When this error occurs,

both the primary key (index @) and the secondary key supplied in the
call to SECBLD are displayed with the above error message.

P> INDEX ##: INDEX FULL
No more entries may be added to this particular secondary index, but a

call to SECBLD to finish building this index (set SEQFLG to 2) may
still be made.

14 - 23 October 198¢

SECTION 14 IDR4558

BILDSR

BILDSR can be used to build the primary index subfile and data subfile,
as well as any or all of the secondary index subfiles associated with a
particular MIDAS file. BILDSR processes both sorted and unsorted data,
and can add entries to files that already contain index entries in
primary and/or secondary subfiles; it can also work on MIDAS files
that are essentially empty.

Calls to BILDSR should not be made concurrently with calls to PRIBLD or
SECBLD or the calling program will abort (in the absence of an
alternate return).

BILDSR Calling Sequence

The calling sequence of BILDSR is:
CALL BILDSR (segflg,key,pbuf,bufsiz,danum,index,unit,altrtn)

The arguments for BILDSR are described below. Data types are shown in
parentheses.

segflg The event sequence flag; see Table 14-4 above
(INT*2) .

key The primary or secondary key value to be added on
this call (INT*2).

pbuf If a primary index entry is being added, this is

the data subfile entry only (INT*2). If adding a
secondary index entry, this is the primary key that
references the same data record as the secondary
key entry being added. (If you're using secondary
data, it should be placed in uf, immediately
following the primary key value.)

bufsiz The size of pbuf in words (INT*2). See Note below.
danum The record entry number for direct access files;

this is a REAL*4 number. If the indicated entry
slot is already occupied, the entry is added to the
end of the data subfile. Specify a @ for this
argument if the MIDAS file being built is a
keyed-index file, or if adding a secondary index
entry.

index The number of the index subfile being built on this
call to BILDSR (INT*2). (Supply @ if building the
primary index.)

unit The file unit number on which the MIDAS file is
opened (INT*2).

REV. 0 14 - 24

IDR4558 OFFLINE ROUTINES

altrtn The alternate return in the calling program to

which control is passed in the event of an error
(INT*2). If specified as @, the program will abort
and return you to PRIMOS command level.

Note

when adding a primary index entry, the bufsiz argument is
ignored unless the file contains variable ' length records. In
this case, bufsiz represents the length of the data record
oniy. When adding a secondary index entry, supply a 8 if
you've already put the desired secondary data into pbuf If
non-zero, bufsiz indicates the total size of the primary key
and the size of the secondary data supplied in Eguf Extra
secondary data is ignored and insufficient data is padded with
@'s. Note that this differs from the way PRIBLD and SECBLD
treat a data size specification of #.

BILDSR Error Messages

Like PRIBLD and SECBLD, BILDSR cannot recover from simultaneous access
errors, so the user should beware of them. Both file system errors and
BILD$R-specific errors may be- returned while using BILDSR to build a
file. The BILDSR-specific ones are listed below. Where the error
messages are the same as those given previously for PRIBLD and SECBLD,
the reader is referred to those error message discussions.

For both types of errors, BILDSR will close all the internal files it
has opened and usually will print the key supplied by the user along
with the appropriate error message.

D> INDEX ##: DOES NOT EXIST

The indicated index is either an invalid index number or doesn't exist
in the MIDAS file. The user may go back and ADD the index with CREATK
and try again or remove all references to this index from the program.

> INDEX ##: CAN'T USE BILDSR AND PRIBLD/SECBLD SIMULTANEOUSLY

This can happen when the user has added one or more entries to this
index with PRIBLD or SECBLD and then calls BILDSR to add an entry to
the same index. You can either continue adding entries or finish
building this index by making the appropriate calls to either PRIBLD or
SECBLD, but not to BILDSR.

14 - 25 October 1988

SECTION 14 IDR4558

D> INDEX ##: ILLEGAL SEQFIG

The value of SEQFLG is incorrect; refer to the discussion of this
under PRIBLD Error Messages above.

P> INDEX ##: NOT A VALID MIDAS FILE

See the discussion for this under PRIBLD Error Messages.

P> INDEX ##: INDEX BLOCK SIZE GREATER THAN MAXIMUM DEFAULT

See the discussion for this under PRIBLD Error Messages.

P> INDEX @: DIRECT ACCESS FILE - INDEX OF -1 AND ENTRY # REQUIRED FOR
PRIMARY KEY

The user is attempting to build the primary index of a direct access

file. In such cases, an index number of -1, not @, must be used and a
REAL*4 entry number must be supplied in array(3-4).

P> INDEX #: +@.nnnnnnn Etnn INVALID DIRECT ACCESS ENTRY NUMBER

See explanation under PRIBLD Error Messages above.

P> INDEX ##: KEY SEQUENCE ERROR

The supplied key is a duplicate of a key already entered in the
indicated index and the index does not allow duplicate entries. BILDSR
does check for the case where there is an entry already present in an
index that does not allow duplicates to see if this entry points to a
deleted record. In such cases, the new entry will be made on top of
the old entry.

P> INDEX ##: CAN'T FIND PRIMARY KEY IN FILE

See SECBLD Error Messages above.

REV. @ 14 - 26

IDR4558 OFFLINE ROUTINES

P> INDEX ##: INDEX FULL

No more entries may be added to this particular index, but a call to
BILDSR to close building this index (seqflg = 2) may still be made.

p> INDEX @: DATA SUBFILE FULL

No more entries may be added to the primary index, but a call to BILDSR
to finish building the primary index (seqflg = 2) may still be made.

Offline Routine Example

Suppose an airline has a file containing flight number, origin,
destination, departure time, arrival time, etc. information. Each
record has several fields containing this information, but there are no
keys by which the file can be searched. Furthermore, the airline
desires to search on a key that is a combination of several fields, for
example, flight number, origin and destination. The airline decides to
put this information into a MIDAS file. The flight number, origin and
destination fields will be concatenated to form the primary key, and
the date, departure time, and arrival time fields will become secondary
keys in the MIDAS file. Because KBUILD cannot handle concatenated
keys, the offline file-building routines are the ideal tools for
building the MIDAS file. The original sequential disk file is used for
input, and it is listed below, along with a COMOUT file of the CREATK
session in which the MIDAS template used in this application was set
up. The example program uses all three file-building routines, as some
fields in the input file are sorted and others aren't.

The Input File: The sequential input file, called INPUT FILE, is made
up of eight fields:

195 BOS LOG NWK EWR 11/05/80 12:00 13:00
205 BOS LOG NYC JFK 11/05/80 12:15 12:50
395 BOS LOG NYC LGA 11/05/80 12:30 13:18
696 CHI ORD WOR WOR 11/05/80 10:45 12:15
106 NWK EWR ORL ORL 11/06/88 £8:48 11:55
749 NYC LGA CHI ORD 11/05/80 16:00 18:30
650 WOR WOR BOS LOG 11/05/80 12:45 13:15

The only fields that are in sorted order are the origin and date
fields.

The MIDAS Template: The MIDAS file, called FLIGHTS, has four keys,
which are defined in the following CREATK session:

14 - 27 October 1986

SECTION 14 IDR4558

OK, CREATK
[CREATK rev 17.6]

MINIMUM OPTIONS? YES
FILE NAME? FLIGHTS

NEW FILE? YES

DIRECT ACCESS? NO

DATA SUBFILE QUESTIONS
PRIMARY KEY TYPE: A

PRIMARY KEY SIZE = : B 9
DATA SIZE = : 20

SECONDARY INDEX

INDEX NO.? 1

DUPLICATE KEYS PERMITTED? YES
KEY TYPE: A

KEY SIZE = : B 8

SECONDARY DATA SIZE = : @
INDEX NO.? 2

DUPLICATE KEYS PERMITTED? YES
KEY TYPE: A

KEY SIZE = : B 5

SECONDARY DATA SIZE = : @
INDEX NO.? 3

DUPLICATE KEYS PERMITTED? YES
KEY TYPE: A

KEY SIZE = : B 5

SECONDARY DATA SIZE = : @
INDEX NO.? (CR)

SETTING FILE LOCK TO N READERS AND N WRITERS

The AIRLINE Program: The program that buils the FLIGHTS file from the
data in INPUT FILE is AIRLINE:

IDR4558 OFFLINE ROUTINES

C AIRLINE PROGRAM
C
C THIS PROGRAM BUILDS A MIDAS FILE FROM A SEQUENTIAL DISK FILE
C USING THE OFFLINE ROUTINES PRIBLD, SECBLD AND BILDSR.
C THE PRIMARY KEY IS MADE UP OF THREE FIELDS FROM
C THE INPUT FILE AND IS THUS A CONCATENATED KEY.
C
INTEGER*2 FILNAM(40), /* FILE NAME BUFFER
+ IFUNIT, /* INPUT FILE FUNIT
+ MFUNIT, /* MIDAS OUTPUT FILE FUNIT
+ PSQFLG, /* PRIBLD'S SEQFLG
+ SSQFLG, /* SECBLD'S SEQFLG
+ BSQFLG(2) , /* BILDSR'S SEQFIG'S
+ INPREC(20) , /* INPUT RECORD BUFFER
+ PRIKEY(5) , /* PRIMARY KEY BUFFER
+ SECKEY(3), /* SECONDARY KEY BUFFER
+ CHRPOS(2) , /* POSITION SIZE ARRAY FOR TSRCS$
+ ERRCOD, /* ERROR CODE
+ I
C
$INSERT SYSCOM>KEYS.F
C
$INSERT SYSCOM>ERRD.F
C
C
C—-INPUT AND OPEN THE INPUT FILE
C
5 CALL TNOUA ('ENTER INPUT FILE NAME: ', 23)

READ (1, 19) FILNAM
18 FORMAT (40A2)

CHRPOS (1) = @

CHRPOS (2) = 80

IFUNIT = @

CALL TSRC$$ (KSREAD + K$GETU,

+ FILNAM, IFUNIT, CHRPOS, I, ERRCOD)

IF (ERRCOD .EQ. ESFNTF) GOTO 5
IF (ERRCOD .NE. @) GOTO 9000

CALL ATTDEV (IFUNIT, 7, IFUNIT, 8¢) /* TELL IOCS ABOUT DISK FILE UNIT

C

C—-INPUT AND OPEN THE MIDAS OUTPUT FILE.

C

C NOTICE THAT (1) IT IS OPENED FOR READING AND WRITING (KSRDWR), AND
C (2) WE DO NOT (!) CALL NTFYMS OR OPENM$/CLOSMS

C

20 CALL TNOUA ('ENTER MIDAS OUTPUT FILE NAME: ', 30)
READ (1, 10) FILNAM

CHRPOS(1) = @

CHRPOS(2) = 80

MFUNIT = @

CALL TSRCS$S (KSRDWR + KSGETU,

+ FILNAM, MFUNIT, CHRPOS, I, ERRCOD)

IF (ERRCOD .EQ. ESFNTF) GOTO 20
IF (ERRCOD .NE. @) GOTO 9009

14 - 29 October 1980

SECTION 14 IDR4558

C—-INIT SEQFLG'S

C
PSQFLG = @ /* PRIBLD SEQFLG FOR INDEX @
SSQFIG = @ /* SECBLD SEQFLG FOR INDEX 1
BSQFLG(1l) = @ /* BILDSR SEQFLG FOR INDEX 2
BSQFIG(2) = @ /* BILDSR SEQFLG FOR INDEX 3
C

C—-MAIN LOOP TO READ A RECORD FROM THE INPUT FILE AND MAKE

C THE APPROPRIATE CALLS TO PRIBLD, SECBLD, AND BILDSR TO ADD THE DATA
C RECORD AND VARIOUS ENTRIES.

C

199 READ (IFUNIT, 110, END = 5@@) INPREC /* READ THE INPUT RECORD
116 FORMAT (20A2)

C
C.....BUILD THE PRIMARY KEY -
Cc A CONCATENATION OF THE ORIGIN, DESTINATION, FLIGHT NUMBER.
C
PRIKEY (1) = INPREC(3)
PRIKEY(2) = LT (INPREC(4), 8) + RS (INPREC(7), 8)
PRIKEY(3) = LS (INPREC(7), 8) + RS (INPREC(8), 8)
PRIKEY(4) = INPREC(1)
PRIKEY(5) = LT (INPREC(2), 8)
C
CALL PRIBLD (PSQFLG, PRIKEY, /* ADD THE PRIMARY KEY + DATA RECORD
+ INPREC, 2@, MFUNIT, 4, @)
C
Co.ot'oADD SEle)ARY KEY l - THE mTE.
Cc SINCE IT IS SORTED, WE USE SECBLD.
C ALSO, SINCE IT IS WORD ALIGNED, WE DON'T HAVE TO MOVE THE
C KEY TO THE BUFFER 'SECKEY'.
C
CALL SECBLD (SSQFLG, INPREC(11),
+ PRIKEY, 1, @, @, MFUNIT, @)
C
C.....ADD SECONDARY KEY 2 ~ THE DEPARTURE TIME.
C IT IS UNSORTED, SO WE CALL BILDSR AND IS UNALIGNED, SO
C WE MOVE IT TEMPORARILY TO THE BUFFER 'SECKEY'.
C
SECKEY(1l) = LS (INPREC(15), 8) + RS (INPREC(16), 8)
SECKEY(2) = LS (INPREC(16), 8) + RS (INPREC(17), 8)
SECKEY(3) = LS (INPREC(17), 8)
C
CALL BILDSR (BSQFLG(1), /* NOTE BSQFLG(1l) IS FOR INDEX 2.
+ SECKEY, PRIKEY, @, @, 2, MFUNIT, @)
Cc
C.....ADD SECONDARY KEY 3 - THE ARRIVAL TIME.
C THIS FOLLOWS THE SAME PATTERN OF MOVING THE KEY AND
C CALLING BILDSR AS WE DID WITH SECONDARY KEY # 2.
C
SECKEY(1) = LS (INPREC(18), 8) + RS (INPREC(19), 8)
SECKEY(2) = LS (INPREC(19), 8) + RS (INPREC(2¢), 8)
SECKEY(3) = LS (INPREC(20), 8)
c
CALL BILDSR (BSQFLG(2), /* NOTE BSQFLG(2) IS FOR INDEX 3)

REV. @ 14 - 3¢

IDR4558 OFFLINE ROUTINES

+ SECKEY, PRIKEY, @, @, 3, MFUNIT, 0)
C
GOTC 129 /* LOOP ON READING ADDING ENTRIES
C
C—INPUT FILE IS EXHAUSTED.
C SET THE SEQUENCE FLAG TO '2' AND MAKE A FINAL CALL TO THE
C APPROPRIATE ROUTINE FOR EACH INDEX BEING BUILT; THEN CLOSE
C THE INPUT AND OUTPUT FILES.
C

500 PSQFIG = 2
CALL PRIBLD (PSQFLG, ¢, @, @, MFUNIT, @, @) /* FINALIZE PRIMARY KEY

o
SSQFIG = 2
CALL SECBLD (SSQFIG, @, @, 1, @, @, MFUNIT, @) /* FINALIZE SECONDARY KEY 1
C
BSQFLG(1) = 2
CALL BILDSR (BSQFLG(l), @, @, @, @, 2, MFUNIT, ¢) /* FINALIZE SEC. KEY 2
C
BSQFLG(2) = 2
CALL BILDSR (BSQFLG(2), @, @, @, 8, 3, MFUNIT, @) /* FINALIZE SEC. KEY 3
C
CALL SRCH$S (K$CLOS, @, @, IFUNIT, I, ERRCOD) /* CLOSE INPUT FILE
IF (ERRCOD .NE. @) GOTO 990@
C
CALL SRCH$S (K$CLOS, ©, @, MFUNIT, I, ERRCOD) /* CLOSE MIDAS OUTPUT FILE
IF (ERRCOD .NE. §) GOTO 9@06@
C
CALL EXIT /* EXIT TO PRIMOS
C
C—-ERROR HANDLER
o TAKES THE BRUTE FORCE APPROACH OF CLOSING INPUT OUTPUT FILES,
C IGNORING ANY ERRORS ENCOUNTERED, EXITING WITH A CALL TO ERRPRS.
C
9900 CALL SRCH$S (K$CLOS, @, @, IFUNIT, I, I) /* CLOSE INPUT FILE
C
CALL SRCH$S (K$CLOS, @, @, MFUNIT, I, I) /* CLOSE MIDAS OUTPUT FILE
C
CALL ERRPRS (KSNRTN, 'EXAMPLE', 6, @, 0)
o

END

14 - 31 October 1980

SECTION 14 IDR4558

Sample Output: When the program is run, the user simply enters the

names of the input and output (MIDAS) files and the offline routines
take care of the rest. For example:

OK, SEG #AIRLINE
ENTER INPUT FILE NAME: INPUT FILE
ENTER MIDAS OUTPUT FILE NAME: FLIGHTS

PRIMARY INDEX AND DATA

SECONDARY INDEX 1

Index @: Entries indexed: 7
Index 1l: Entries indexed: 7
Index 2: Entries indexed: 7
Index 3: Entries indexed: 7
OK,

REV. @ 14 - 32

IDR4558 OFFLINE ROUTINES

PART III. OTHER MIDAS ROUTINES

OTHER OFFLINE ROUTINES

Several internal routines previously available only to R-mode users in
earlier versions of MIDAS are now generally available to all users.
They are limited in usefulness, and may appeal only to FORTRAN users
who are also making use of the offline routines discussed earlier in
this section. The routines covered here are: ERROPN, FILERR, FILHER,
and KX$TIM. Of these four routines, two are still used internally by
MIDAS: ERROPN and KXSTIM. FILHER and FILERR, no longer used by MIDAS,
have been kept for compatibility. All of these routines are described
briefly in Table 14-5,

Table 14-5. Other Offline Routines

Routine Function Comments

ERROPN Opens a logging file to Used by KBUILD to
record errors and milestone open and name
statistics (see KXSTIM, error/logfiie
below)

FILERR Sets up and writes error No longer used by
messages to terminal MIDAS, but still

available to users

FILHER Converts MIDAS error code to No longer used by
corresponding text and MIDAS, but still
passes it to FIL available to users

KXSTIM Prints milestone statistics, Used by KBUILD to

including CPU, disk and wall generate milestones
clock time elapsed since last

milestone — statistics are

written to err/log file if

ERROPN was called to open it

14 - 33 October 1980

SECTION 14 IDR4558

ERROPN

ERROPN is a routine used to open an error/logging file. Its calling
sequence is:

CALL ERROPN (funit)

funit is the INT*2 file unit on which the error/logging file is to be
opened. It is returned as @ if no file was opened. musr Be A VARIABLE,

What It Does: ERROPN asks the user for a pathname for the
error/logging file with the question:

ENTER LOG/ERROR FILE NAME:

If you enter just a carriage return or blank line, funit is set to @
and ERROPN returns. If a valid pathname is entered, a new SAM file is
created if necessary and opened for writing on the PRIMOS file unit
returned in funit (via the key KSGETU), and truncated. If an error
occurs on the "open" call, the user is asked to enter another pathname.
The purpose of the truncate operation is to make sure that the file is
empty, in case the indicated file already exists. If an error occurs
on the truncate operation, it is noted with the message: "COULDN'T
TRUNCATE LOG/ERROR FILE" and ERROPN returns.

How ERROPN Works: The file unit number (funit) on which the
error/logging file is opened is stored in an internal common area
called /ERRFIL/. If any of the offline routines generates an error
message, or if KXSTIM is called to print a milestone, the error message
or the milestone is sent to the error/log file opened on /ERRFIL/ as
well as to the terminal.

/ERRFIL/ only remembers the last error/logging file opened and does not
notice that the user may have in fact closed the file in the meantime.
Errors arising from attempts to write to this file are taken as a sign
that the file has been closed and are therefore ignored.

PTU89 REV. 19 MIDAS

On page 14-34 under ERROPN: the tunit argqument should always be

specified as a variable and not a constant, because it returns a

value of 0 if the call to ERROPN is unsuccessful.

IDR4558 OFFLINE ROUTINES

FILERR

FILERR is a user-callable routine that prints out the text of an error
message which corresponds to a code returned by one of the system
routines. Its calling sequence is:

CALL FILERR (caller-name, optmsg, msglen, altrtn)
The arguments shown above, their meanings and their data types are:

caller-name Six—character name of calling routine (INT*2)

optmsg Optional error message to print out (INT*2)
msglen Length of optmsg in characters (INT*2)
altrtn Statement number of alternate return or @ (no

alternate return) (INT*2)

How It Works: FILERR indirectly calls the system routine ERRPRS to
print out the system error message corresponding to an error code
returned by one of the system routines. The optional message, optmsg,
is a user-supplied message to be printed along with the system-supplied
one. The error code, understood to be in the variable CODE in the
common area /CODE/ (defined in KPARAM), is translated into an actual
error message by the internal MIDAS routine ERRTDS. The resulting
error message, along with an optional error message (if its 1length is
greater than @), plus the caller's name, is printed out at the terminal
and to the error/logging file if there is one in the same format as
would ERRPRS. If altrtn is @, FILERR exits to PRIMOS, otherwise it
returns normally to the caller.

Note

This routine is of limited use considering that users can get
at the common area /CODE/ only by using the unshared V-mode
MIDAS library NVKDALB.

FILHER

FILHER is a user-—callable routine to convert and print a MIDAS error
code to ASCII form, calling FILERR to print it out. If you want to use
PRIBLD, SECBLD or BILDSR, and you want to open your own error/logging
files, all three of these internal routines should be used together.
FILHER's calling sequence is:

CALL FILHER (errcod, altrtn)

errcod is an INT*2 argument representing a MIDAS error code, and altrtn
is a user-supplied alternate return.

14 - 35 October 1989

SECTION 14 IDR4558

How It Works: If errcod is less than or equal to 13, or if there is a
Tog/error file opened (see ERROPN), FILERR is called with /CODE/ set to
ESNULL (null error message), the optional message is set to "FILE
HANDLER ERROR xx", where xx is the ASCII representation of errcod, and
the alternate return in the calling sequence to FILERR set to altrtn.
If FILERR returns to FILHER, then FILHER returns normally to the user.

If errcod is greater than 13 and /ERRFIL/ indicates that an
error/logging file is not open, FILHER will take an alternate return
throuwgh altrtn or, if that is @, it will return through ERRPR$ with a
null error message.

KX$TIM

KXSTIM is a user-callable routine that displays milestones for the
offline file-building routines PRIBLD, SECBLD and BILDSR. These
milestones are displayed at the terminal and optionally recorded in an
error/logging file opened by ERROPN.

Its calling sequence is:
CALL KXSTIM (numrec, optmsg, msglen)
numrec Indicates the number of records processed for this milestone

(INT*4) . Special case values of @ and -1 make it possible to
generate headers and so forth — details below.

optmsg Supplied by the user only if desired (INT*2). If supplied,
the length of optmsg, in words, must be passed in msglen.

msglen The length of the optional optmsg, in characters (INT*2).
Set it to @ if there is no optional message.

How KXSTIM Works: First, if there is an optional message, it is
printed to the terminal and to the optional error/logging file. Then a
"milestone" consisting of numrec, date and time, number of CPU minutes
used since the last call to KXSTIM, number of disk I/O minutes used
since the last call to KXSTIM, total CPU and disk time used so far, and
the difference in the total since the 1last call, is printed in a
similar fashion. If numrec has a value of @, all counters will be
initialized to @ and a header will be printed out before the milestone
line. By using a numrec value of -1, a milestone of @ without a header
or initialization, can be generated.

For a description of the milestones generated by KX$TIM, see Section 3.
KBUILD itself calls KX$TIM to produce milestones during file-building.

'-_l
>
|
(¥
[4)})

IDR4558 ADVANCED USES OF MIDAS

SECTION 15

ADVANCED USES OF MIDAS

INTRODUCTION

This section is intended for users who are interested in modifying
MIDAS parameters in hopes of obtaining better performance or in
handling problems that are beyond the scope of standard MIDAS defaults.
Users who want to use the extended options feature of CREATK or to
explore the concept of index 1levels will also find this section
helpful. It also describes what 1is in the MIDAS parameter file,
KPARAM, and which parameters can be modified by the user.

Section Topics

Topics covered in this section are presented in this order:
e CREATK's extended options path —— dialog and description

e Double-length indexes -- using the version of CREATK that
was created by C_LCREATK

e Adding new secondary indexes —-- CREATK's ADD option

e Altering data subfile record 1length —- CREATK's DATA
option

e Extending segment subfile 1length —— CREATK's EXTEND
option

e Modifying template parameters -- CREATK's MODIFY option

® Modifying MIDAS defaults —— KPARAM's user-modifiable
parameters

CREATK'S EXTENDED OPTIONS PATH

Most users will find the minimum options path of CREATK quite suitable
for their needs and may want to limit the amount of space allocated for
each index subfile. CREATK's extended options path offers a way to
alter, on a per-file basis, some of the default file parameters used by
CREATK in initializing MIDAS files.

15 - 1 October 1980

SECTION 15 IDR4558

The Purpose of Extended Options

The extended options feature of CREATK allows the user to specify the
size of an index block at each index level in the index subfile. Index
levels are described in detail under Index levels, below. Generally,
an index block contains key entries that point to records in the data
subfile. 2An index subfile block entry includes:

e A key value, supplied by the user during data entry (file
building)

® A three-word pointer to a data subfile record (in
keyed-index access files)

e A five-word pointer to a data subfile record (in direct
access files)

e Secondary data in secondary indexes (optional)

Defining Block Size

Under minimum options, CREATK doesn't ask for a block size. Instead,
it assumes the default value of 1024 words per block. Space may be
wasted with 1024 words per block, depending on the average index entry
length. For instance, short files with small keys may be able to get
by with smaller index blocks. On the other hand, increasing block size
may improve access time by reducing the height (number of levels) in an
index tree. (The fewer number of levels to search, the faster the
access time.) By modifying the block size, the user may be able to
optimize access time and the use of storage space.

The default setting of 1824 words per block may waste space even if
long keys and secondary data are used. So it may be worthwhile to
reduce block size in many cases to economize resource usage. However,
bear in mind that search-efficiency is increased by keeping block size
large enough to hold a maximum number of entries without wasting space.
Such an ideal index would be "dense," with many entries packed into
fewer levels than there would be if the block size was smaller. In
addition, larger blocks probably mean fewer blocks. The fewer the
blocks that MIDAS has to search through, the better the performance.
It is faster to search through one block with many entries than to
search through many shorter index blocks. Keep in mind that 1024 words
is the physical disk record size, and I/0 is more efficient when
physical and logical block sizes match. Also, if block sizes are made
too small, frequency of block splitting can degrade performance.

Block Size Specifications

The block size at the first, second, and last index levels (see Index
Block Levels, below) can be changed with the extended options version
of CREATK. 'The minimum acceptable block size must be at least large
enough to hold 6 or 1@ control words and two entries at that particular

REV. @ 5 - 2

IDR4558 ADVANCED USES OF MIDAS

level. The maximum block size is 32767 words. 'The minimum required
block size varies with level: the last level index block always has 10
control words, while upper levels have 6 control words. CREATK checks
to see whether or not your proposed block size will accommodate the
minimum number of entries and control words, and lets you know whether
it's acceptable. LlLast level index blocks also contain entry numbers if
the file is direct access and, in secondary index subfiles that support
the secondary data feature, last level index blocks also .contain
secondary data. This should be taken into account when modifying the
block size.

If desired, the block size can be changed globally by modifying the
RECINT parameter in the KPARAM file; see MODIFYING MIDAS below. Once
changed, this size will be applied to every file subsequently created
with CREATK. However, existing files will retain the block size
specified for them when they were created. It is recommended that if
the block size is changed, it should be specified as a power of 2.
Changing this parameter, however, is not guaranteed to buy you

anything.

Index Block levels

All of the entries in an index subfile are contained in blocks, and
each block is associated with an "index level." When space is first
allocated for an index subfile, that subfile has only one index level,
which is called the "last" level. BAs the file grows in size and
complexity, more index levels are created to help maintain search
efficiency. Blocks in these index levels are collectively called

"upper level" index blocks.

Why Index levels?: The purpose of multi-level indexing is to maximize
search and access efficiency. The important thing to remember here is
that only the last level index blocks contain the index entries that

consist of key values plus pointers to record entries in the data
subfile.

As mentioned before, a "new" index subfile has only one 1level of
indexing, the 1last level. At first, it contains only one block.
Entries in this block point directly to the appropriate data subfile
records. When this index block becomes full, it is split in half,
producing two index blocks that are each half-filled. Each of these
blocks is the same size as the original block. Another index level is
then created above the last level index blocks. This newly—created
"upper" index level has one block to start with, and it initially
contains two entries that point to the blocks in the last level. When
MIDAS searches for a particular index entry in an index subfile, it
starts with the topmost index level and, using a search algorithm,
follows special pointers that tell MIDAS which block in the next level
down contains the desired index entry. As the file grows larger, the
index blocks at various levels will become full and must be split in a
similar fashion. Such splitting may require the creation of additional
index levels so that the search process will not be impaired.
Multi-level indexing refines the search process by eliminating the need

15 - 3 October 1980

SECTION 15 IDR4558

for MIDAS to search through every block at each index level in order to
find the object of the search, which is always located in a last level
index block.

Extended Options Dialog

To enter the extended options path of CREATK, answer "no" to the
"MINIMUM OPTIONS?" prompt at the beginning of the CREATK dialog. The
annotated dialog follows.

Prompt Response
1. MINIMUM OPTIONS? Enter N[O].
2. FILE NAME? Enter name of file to be

created or name of existing
file to be modified or
examined.

3. NEW FILE? Enter Y[ES]. (Enter NO to
obtain information about an
existing file template.)
See below.

4., DIRECT ACCESS? Enter Y[ES] or N[O],
depending on whether the
direct access feature is
desired or not.

DATA SUBFILE QUESTIONS

5. PRIMARY KEY TYPE: Enter A,B,I,L, or S; same
as for minimum options.
(See Table 2-2 in Section
2.)

6. PRIMARY KEY SIZE=: Enter Bnn or Whn, where nn
is the number of bits or
bytes or words that the key
should contain; same as for
minimum options dialog.

7. DATA SIZE=: For fixed-length records,
enter record length.
Include the key size in this
figure for COBOL files.

REV. 0 15 - 4

9.

1ﬂ.

11.

12.

13.

14.

15.

le.

17.

18.

19.

NUMBER OF ENTRIES
TO ALLOCATE?

FIRST LEVEL INDEX BLOCK
SIZE=:

SECOND LEVEL INDEX
BLOCK SIZE=:

LAST LEVEL INDEX
BLOCK SIZE=:

SECONDARY INDEX

INDEX NO?

DUPLICATE KEYS
PERMITTED?

KEY TYPE:

KEY SIZE=:

SECONDARY DATA SIZE=:

FIRST LEVEL INDEX

BLOCK SIZE=:

SECOND LEVEL INDEX
BLOCK SIZE=:

LAST LEVEL INDEX
BLOCK SIZE=:

15

IDR4558

Asked only if you answered
YES to "DIRECT ACCESS?"
prompt above. Enter number
of records for which to
reserve room in the data
subfile.

Enter number of words per
block desired (default is
1924). See Defining Block
Size, above.

Should be same as above
response.

Should be same as above.

Indicates beginning of
secondary index subfile
questions.

Enter number from 1-17, or
simply hit (CR) if no
secondary indexes are
needed.

Enter Y[ES] or N[O].

Same as for minimum options.
See Table 2-2 in Section 2.
Returned only if A and B
type key is specified above.
Enter Bnn or Wnn as
described above.

Specify secondary data size
(FIN only) or hit (CR).

Enter desired number of

words per block. See above.
Same as above.

Same as above.

5 October 1980

ADVANCED USES OF MIDAS

SECTION 15 IDR4558

20. INDEX NO? Enter index number from 2-17
or hit carriage return if no
more secondary indexes are
needed. Prompts 13-19 are
repeated if an index number
is supplied. If you simply
hit (CR), the dialog ends,
and this prompt appears:

SETTING FILE LOCK TO N READERS AND N WRITERS
If the double-length index feature has been enabled, the prompt:
DOUBLE LENGTH INDEX?

will appear immediately after the "SECONDARY DATA SIZE" prompt in the
dialog above. Double-length indexes are described in the following

paragraphs.

DOUBLE-LENGTH INDEXES

For very large files that require index subfiles longer than the
default of 10 segment subfiles per index, MIDAS offers the
"double-length index" feature. If double-length indexes are desired,
CREATK must be modified to include the double-length index request.
There is a command file in MIDAS>SOURCE called C LCREATK that creates a
special version of CREATK allowing double-length indexes to be
specified on a per-file basis. Note that the default version of CREATK
does not ask if the user wants double-length indexes but instead
assumes all indexes are the default length. However, files created
under a long-index version of CREATK are supported by the default
version of CREATK.

A double-length index, also called a "long index", is made up of two
"regular" index subfiles that are 10 segment subfiles in length. Thus,
each double-length index really contains 2@ segment subfiles.

[6)}

REV. @ 15 -

IDR4558 ADVANCED USES OF MIDAS

Specification of double-length indexes is selective; that is, the user
decides which indexes will be double-length and which will be the
default length. This option requires a bit of caution on the users's
part because each double-length index takes up two single-length
indexes. For example, if you define the primary key as a double-length
index, you cannot define a secondary index 1; the next available index
would be secondary index 2. If secondary index 2 is defined as a
double-length index, the next available index would be secondary index
4, not index 3. Bear in mind, however, that secondary index 17 cannot
be defined as a double-length index or else it would overwrite the data
subfile segments.

MODIFYING A TEMPLATE

_CREATK offers four file-modification options for changing an existing

file template. These options should be used only when necessary to
increase index subfile length, to alter the data subfile length, or to
add a new secondary index. Although it is possible to change block
size, secondary data size, duplicate support, and so forth, it is not
possible to change key length or key type without recreating the file
or index from scratch.

These options are invoked like all the other CREATK "old file" options,

- ~ .] 3 3 3
as explained in Section 12.

Note

Don't forget that any of the changes made to a MIDAS file with
these options won't be put into effect until the MPACK utility
is run on the file. MPACK is documented in Section 12.

Adding Secondary Indexes

The ADD function allows a new secondary index to be added to an
existing file. The dialog is similar to that used in creating a
secondary index during template creation. If the secondary index
already exists, an error message is displayed. Remember, only 17
secondary indexes can be defined per file. Be careful if you've
already defined double-length indexes for the file!

Changing Record Length

The DATA function alters the length of a data subfile entry. This Iis
the same thing as saying it alters the data size or record size in a
MIDAS file. The DATA dialog is similar to the data subfile questions
asked during template creation. Remember, the new data size will not
go into effect until you MPACK the file. (Use the DATA option of
MPACK.) When MPACK is run on the modified file, existing records in
the file will be suitably truncated or padded with @'s to make them
compatible with the new data size.

15 - 7 October 198¢

SECTION 15 IDR4558

Extending the Subfile

The EXTEND function allows the user to change the length of the segment
subfiles and the 1length of the segment directory itself. The user is

asked to supply the segment directory length in mmwdk-and the segment
subfile (index) 1length in words. If a @ or (CR) is supplied, CREATK
default values are used. The minimum subfile size is 64K words. 'The
minimum segment directory size is 185 (segments), but this reflects a
file with only one segment allocated for the data subfile. As the file
grows, it will use up more segments. The current segment number at
which the data subfile ends is called the "data growth point."

S€E pruvs?

a oF
Modifying Other Template Parameters vumé

The MODIFY function enables a user to change the following parameters
in an existing MIDAS file template:

e Index block length (only if you're using non-minimum options
path of CREATK)

e Secondary data size - see Note below
e Support for duplicate key occurrences

e Changing a single-length to a long (double-length) index,
and vice-versa (if supported by the CREATK version in use).
This is only permitted if you're not already using up all
the available index subfile slots. In fact, CREATK doesn't
even ask if you want to make an index a double-length one if
it would prove physically impossible.

If the index you're attempting to MODIFY doesn't exist, an error
message will be displayed.

Note

When secondary data size is modified for a particular index,
the existing secondary data entries will be truncated or padded
with @'s when the file is MPACKed. This ensures that all the
secondary data entries in that index will conform to the new
secondary data size.

MODIFYING MIDAS

All of the user-modifiable MIDAS parameters are stored in the file
KPARAM, located in the UFD MIDAS. This file contains all the
parameters used by the MIDAS routines, but not all of them are subject
to user modification. Modifiable parameters appear at the beginning of

REV. @ 15 - 8

et
2€ B

LU

-

i

s

PIUB9 - REV. 19 Mmas

Page 15-8 discusses the EXTEND option of CREATK as a method ot
making the index subfile longer. This method is preferable to the
double-length index method which can also be used to lengthen an .
index subfile, Users are urged to use the EXTEND option whenever
they need to enlarge an index subfile. Please note this carefully,
as it was not explicitly stated anywhere in the book.

On page 15-9, in the section on RECINT, the third sentence should
read: ®Users may change this value depending on what type of disk
they are using.®™ The following paragraph should be inserted
between the two existing paragraphs in the RECLNT section:

The RECLNT parameter must be large enough to ensure that each index
block can fit two key/pointer entries plus the 10 control words
required in the last block level. However, RECINT should not be
given a value greater than 4095.

IDR4558 ADVANCED USES OF MIDAS

the KPARAM file, after the variable and constant declarations. The
line separating parameters that users can modify from parameters that
are fixed (not user-modifiable) reads: THE REMAINING PARAMETERS ARE
FIXED. Refrain from tampering with the parameters that appear below
this line, as the consequences are likely to be unpleasant.

Effecting Changes

Any changes made to parameters in KPARAM require that MIDAS be
completely rebuilt by running the appropriate command files (see
Section 13). R-mode users and users of unshared libraries should
reload their program runfiles with the new version of the MIDAS library
in order to take advantage of the changes made in the KPARAM file.
Once MIDAS 1is rebuilt with the "new" KPARAM file, any files
subsequently created with CREATK will have the new KPARAM-specified
default measurements.

RECLNT: Index Block Length

The RECINT parameter specifies the default index block size (length) in
words, for each MIDAS file. As delivered, the RECLNT parameter is set
to 1024 words. Users maydg%e this value depending on what type of
disk they are using. Most Prime users have storage module disks with
default physical record sizes of 1924 words. The physical record size
is also called the physical index block size. Index block sizes should
be specified in integral multiples or fractions of the physical disk
record size for optimal performance.

see pProze

Remember that extended options (CREATK) can be used to change the block
size on a per-file basis. If there are only a few files for which the
index block size needs adjustment, it may be easier to use extended
options on each one than to change RECLNT and then rebuild all of
MIDAS. If you want this change applied to existing MIDAS files, you
can do a MODIFY on each index in every file, and then MPACK each file.
Alternatively, you can re-create each file with the just rebuilt
version of CREATK.

SEGLNT: Segment Directory Length

The length of a MIDAS segment directory is set to 512 segment subfiles.
Every index subfile 1is allowed 10 segment subfiles, also called
"segments," albeit incorrectly, and the data subfile can have up to 327
segment subfiles, assuming that SEGILNT is set to 512. See Figura B-1
for a representation of a MIDAS file as a segment directory. This
parameter may be increased to allow more entries per data subfile. The
segment directory length can also be changed on a per-file basis with
the EXTEND option of TCREATK. ~If you want any charge made to this
parameter to be applied to existing MIDAS files, re-create them with
the newly-rebuilt wversion of CREATK to make them compatible with the
newly—created ones.

15 - 9 October 1980

SECTION 15 IDR4558

IWRAP: Segment Subfile Size

IWRAP specifies the number of words per segment subfile. The default
setting of this parameter is 524288 words. This segment subfile length
enables a single file system DAM file index level to handle up to
524288 words (on a storage module disk only).

This value can be increased to allow more entries per index, or it can
be decreased if you want to limit the number of entries that can fit in
an index subfile. Do not set IWRAP to a value lower than 64K words.
Increasing the value of IWRAP is a good idea if you don't (and can't)
have double-length indexes and you need more room for entries in an
index subfile. However, in most cases, changing this parameter will
not alter performance significantly, so leave it alone unless you know
what you are doing. To make this change apply to files existing prior
to the modification of IWRAP, re-create them with the newly-rebuilt
version of CREATK.

BREAKI: Program Interrupt Control

BREAKI is set to a value of 1, indicating that MIDAS has control over
when keyboard interrupts are allowed during MIDAS file processing. In
the default break-handling method, user-initiated breaks, caused by
hitting CTRL-P or BREAK, are disabled during calls to on-line MIDAS
routines. MIDAS then re-enables breaks after these operations are
completed. Users can control the enabling and disabling of breaks
themselves by making calls to BREAKS. If BREAKs were disabled already
when MIDAS was called, MIDAS will 1leave them disabled when control
returns to the user. If BREAKI is set to 4, MIDAS will not disable
breaks, which can be a problem, especially if a BREAK occurs during
file update.

RECYLA: Recycle Control

The RECYLA parameter is of interest only to people who are not using
the current method of concurrent process handling as explained in
Section 13. Possible reasons for this might be because they haven't
upgraded their programs intentionally or because they are operating
over networks, in which case the concurrent process handling method of
Rev 17.6 will not work. In some cases, users may not have upgraded to
the current version of MIDAS. In any of these events, MIDAS defaults
to the "o0ld" method of handling simultaneous MIDAS file usage.

Under the "old" method of concurrency handling, MIDAS attempts to
change the access rights on a MIDAS file (segment directory) from "read
only" to "read and write," in order to operate on that file. If
another user already has the file open for writing, the attempt to open
it for writing will fail. 1In this event, MIDAS will call RECYCL and
try again. This is repeated until the attempt is sucessful or until
the number of tries exceeds the maximum number specified in the RECYLA
parameter (default = 19@0@). The latter triggers a MIDAS error 24.
This situation is not uncommon on systems where many users are

REV. 0 15 - 1@

IDR4558 ADVANCED USES OF MIDAS

attempting to access the same MIDAS file (using this "old" method)
and/or the system 1is heavily-loaded in general. If MIDAS error 24 is
occurring with troublesome frequency on your system, try increasing the
value of RECYLA — it may alleviate the problem. RECYLA specifies the
number of times that MIDAS should attempt to change the access rights
before it gives up. The default setting is 1008, which should be
enough unless the system is overloaded or many users are working on the
same MIDAS file. If RECYLA isn't large enough, MIDAS may return an
error code of 24. Most people will never need to adjust this parameter
unless they access a lot of files over the network and are repeatedly
getting a MIDAS error 24. Increasing the value of RECYLA can reduce
the occurrence of this error.

SHDSEG: Shared lLocks

The SHDSEG parameter indicates whether or not the MIDAS "lock," which
single-threads the use of MIDAS, is available. As delivered, this
parameter is set to .TRUE., indicating that a shared data segment is
available for the 1lock. The next three parameters in KPARAM indicate
where the lock is located. Network users can disable this 1lock; see
Section 13.

SLSEG: Shared lock Segment

The shared lock resides 1in segment :202@, as defined by the default
setting for SLSEG. Unless the user has some vitally important reason
for moving the 1lock to another segment, this parameter should be left
alone. Be careful when altering this value as you may wind up with
unpleasant side-effects. There is no way to anticipate what users are
doing with various segments, so if you move the lock from 2020 to some
other location, be sure to edit the command file C SHAREMIDAS to share
the new segment. Also, be careful that this segment isn't being used

by someone else for some other purpose.

SIWORD: Shared Lock Table Iocation

SIWORD, set by default to :177777, is the word number of the shared
lock table. If the lock table is moved to another 1location, be sure
the new location is not being used for anything else.

MSEMAl: Semaphore Number

The parameter MSEMAl is currently set to -16; it specifies the
semaphore number for the MIDAS lock. The semaphore is used in
establishing a wait 1list for processes waiting to obtain the MIDAS
lock.

15 - 11 October 198¢

SECTION 15 IDR4558

STSIZ: Files Open Between Calls

The STSIZ parameter specifies the maximum number of segment subfiles
which MIDAS can leave open between calls. It is set to 20 as
delivered, meaning that MIDAS can leave at most 20 segment subfiles
open between one MIDAS call and the next. Previously, all segment
subfiles were closed after each call, significantly eroding performance
times. If ©performance is a problem, try increasing this
number -- performance should improve due to less file opening and
closing overhead. Be careful, however, of making this number too
large, or you will find yourself short of file units! The maximum
setting for STSIZ is 128, which is the maximum number of file units
available per user. 1It's obvious that you'd never want to make STSIZ
that big anyway.

NOFUNS: Offline Routine File Units

The NOFUNS parameter limits the number of file units simultaneously
useable by the offline routines PRIBLD, SECBLD, BILDSR, KBUILD and
MPACK. NOFUNS is currently set at 40. Some performance improvement
may be had by increasing this number, but again, beware of

short—changing yourself on file units by granting too many of them to
MIDAS.

NOLVLS: Index Levels

NOLVLS indicates the maximum number of index levels per index subfile
that PRIBLD, SECBLD, and BILDSR can attempt to build during a single
build operation. The default NOLVLS setting is 18. Based on the index
entry size and the block size defined for each level in the index to be
built, these utilities estimate and reserve the amount of memory needed
to house this index on the assumption that it will have 18 levels.
However, this space is only reserved during the index build, and any
unused space is always freed up after the index is built.

REV, @

iive K

ot
9]
|
[
(]

Appendices

IDR4558 MIDAS ERROR MESSAGES

APPENDIX A

MIDAS ERROR MESSAGES

INTRODUCTION

This appendix lists all the MIDAS error codes that the user is.likely
to encounter during MIDAS file handling. Such errors are returned by
internal MIDAS routines, some of which users can call directly. Also
explained in this appendix are error messages returned by KXSRFC, an
internal MIDAS routine used by the four MIDAS utilities: CREATK,
KBUILD, KIDDEL and MPACK.

For information on the error messages returned by KX$CRE, PRIBLD,
SECBLD, BILDR, KXSTIM and other offline routines, see Section 14.

RUN-TIME ERROR CODES

The following is a 1list of all MIDAS run-time error codes. Included
for each error are: the number of the error, the routines in which
each is 1likely to occur, the cause of the error, and, in some cases,
what can be done to recover from or avoid the error. Where
appropriate, the COBOL STATUS-CODE equivalent is given. If the COBOL
equivalent is missing, the MIDAS error is either not returned to the
COBOL user at all, or, as in the case of MIDAS errors 40 and above, the
STATUS-CODE equivalent is 99. These error codes are returned directly
to the user unless error traps are included in the program. In each
interface, MIDAS codes are returned to the user through different
mechanisms. For example, in COBOL, condition codes are returned in the
STATUS word, as a two-digit code in STATUS-KEY-1 and STATUS-KEY-2.
FORTRAN users will recognize that these codes are returned in word 1 of
the MIDAS communications array.

Code Routine Explanation
1 KXSELP, KXSNX1 Indicates that duplicates exist for
the current key. COBOL STATUS-CODE
is og.
7 KX$NX1, KXSESH, Indicates that the sought-after entry
KXSEDA, KXSELP, does not exist in the file. COBOL
KXSGPT, KX$GNE, STATUS-CODE is 23 except in INDEXED
KXSULV MIDAS files opened for SEQUENTIAL

access: COBOL STATUS-CODE is 10 in
this case, and 22 when a REWRITE is
attempted without a prior READ.

A - 1 October 1980

APPENDIX A

REV.

10

11

12

13

14

20

21

22

)

LOCK$, KX$LDR

UPDATS

KXDAD, KXSADD

KX$SCCE

FINDS, UPDATS,
NEXTS, DELETS,
ADD1S$, LOCKS,
GDATASS

KX$WPR

KXSRPR

KX$OIT

IDR4558

The data record has the "locked" bit
set. COBOL STATUS-CODE is 94.

The data record does not have the
"locked" bit set when it should.
This happens when an update is
attempted without first 1locking the
record. (Method differs in each
interface.) COBOL STATUS-CODE is 91.

Duplicate keys not allowed. COBOL
STATUS-CODE is 22 for attempt to add
a duplicate primary key. COBOL
STATUS-CCDE is 92 on attempt to add
duplicate secondary key where
duplicates are not allowed.

An unrecoverable concurrency error
has occurred; for example, the
user's current entry was deleted by
another user. COBOL STATUS-CODE is
94.

MIDAS unable to obtain internal

after call to semaphore wait-list
manager. Also may indicate internal
problems with use of shared lock.
This is serious if returned
repeatedly on a call. COBOL
STATUS-CODE is 94.

Error encountered while writing a
record or index block. COBOL
STATUS-CODE is 30 for INDEXED files,
96 for RELATIVE files.

Error encountered while reading a
data record or index block. COBOL
STATUS-CODE is 30 for INDEXED files,
96 for RELATIVE files.

Error on a call to SRCH$S. Check
CODE. COBOL STATUS-CODE is 30 for
INDEXED files, 96 for RELATIVE files.

23

24

25

26

27

29

30

31

32

33

34

KX$OIT

ADD1S

ADD1S

KXSMYB

KX$RAD

KXSCLS, KXSCIT

NEXT$, LOCKS$,
NEXTS$, KXSGET

UPDATS

KX$DAD, KXSIDE
KXS$IIE, KXSRIT
KXSWIT

NEXTS, ADD1S,
NEXT$S, KXSESH,
KX$EDA, BILDSR,
KXSULV

NEXTS, NEXTSS

IDR4558

MIDAS ERROR MESSAGES

Error on a call to SGDR$S. Check

CODE, COBOL STATUS-CODE is 30 for
INDEXED files, 96 for RELATIVE files.

Can't open MIDAS file for reading and
writing after trying RECYLA times.
(In KPARAM: default setting = 1000.)
COBOL STATUS-CODE is 3@ for INDEXED
files, 96 for RELATIVE files.

An error occurred on a call to
SRCHSS. Check CODE. COBOL
STATUS-CODE is 30 for INDEXED files,
96 for RELATIVE files.

An error occurred on a call to PRWFS$
while trying to read an index block.
COBOL STATUS-CODE is 3@ for INDEXED
files, 96 for RELATIVE files.

An error occurred on a call to PRWFSS
while writing an index block. COBOL
STATUS-CODE is 3@ for INDEXED files,
96 for RELATIVE files. In RELATIVE
files, this happens when writing a
RELATIVE key that doesn’t match the
key as defined in the template.

An error occurred on a call to SRCHSS
while trving to close a segment.
COBOL STATUS-CODE is 3@ for INDEXED
files, 96 for RELATIVE files.

The user did not ask for the array to
be return r.i\en i+ must., Sot PLS T

AL Ll WLITI1I 4+ Ay & Vi &

in flags on the call.

The array must be supplied but was
not.

User supplied a bad length, for

example, a bad data record length.
COBOL STATUS-CODE is 95.

The user-supplied array is bad.

Use of NEXTS is not allowed in direct
access files. COBOL STATUS-CODE is
97.

- 3 October 1980

APPENDIX A

REV.

35

36

42

44

45

46
47

49

50

51

52

64

71

@

KXSADD

DELET$

KX$LVL

KXSEDA, KXS$REC

KX$GPE, KXSLVL

KXSNX1

KXSDLT

KXSDLT

KX$SDCD

KXSELP

KX$GIB

CLOSSS

KXSDAD

TDR4558

Cannot do an indexed add to a direct
access file. COBOL STATUS-CODE is
98.

The user set FLSUSE in flags but the
current array involved a different
index than the one supplied by the
user in this call.

No offspring pointer or no next block
found.

Got an index block but expected a
data record.

Got a data record but expected an
index block.

Expected duplicate key was not found.

Attempting to delete an entry from an
empty block. (KX$DLT deletes index
entries.)

Invalid entry number; it could be
negative or out of range.

Overflow entries discovered: for old
files only. (Time to REMAKE the
file!)

Bad index pointer in index entry.
For example, segment number is g.

Index subfile overflow: too many
segments. (Increase index subfile
length with EXTEND, then MPACK file;
or use MODIFY to make double-length
indexes if your version of CREATK
permits it. (See L CREATK in
Sections 13 and 15.) -

Unable to unlock a data record (the
last entry referenced) upon closing
the file.

An error occurred on a direct access
search. That 1is, the search was
successful when it should not have
been.

IDR4558 MIDAS ERROR MESSAGES

84 KXS$ADD Error on an attempt to write an index
block. The error probably occurred
in KXSWBK, which writes the current
block (the top entry in the access
stack), out to disk. May happen if
MIDAS is unable to open or write the

segment.

85 KX$ADD The error actually occurred in
KXSIIE. Either the user supplied a
bad key length or MIDAS tried to
insert an entry into a block that was
already full. This means the data
subfile is full.

86 KX$ADD An error occurred in KX$SIB which
splits index blocks. Could be any
one of many problems.

87 KX$ADD An error occurred in KXSGNE while
attempting to get the next index
entry. This could occur if there
were no more entries in the index
subfile.

88 KX$ADD An error occurred in KXSGPE (gets
previous entry) while attempting to
get the preceding entry. ‘The entry
may not exist.

Explanation of Error Code Numbers

In case you're wondering why there are "holes" in the numbering
sequence, here is a brief explanation:

e Error code numbers 1-13 are non-fatal errors; they will not be
printed if your program contains an alternate return. They deal
mainly with "find" and update errors which can usually be
trapped if you take the time to write good error handlers in the

program.

o Error codes 20-28 are disk errors and are generally fatal. They
generate error messages that consist of a MIDAS error code plus
a file system message. These errors cause the program to abort,
returning control to the user. However, they too can be handled
in most of the language interfaces to MIDAS by including error
traps in your programs.

A - 5 October 1980

APPENDIX A IDR4558

e Error codes 30¢-36 are file handler errors, usually generated
when arguments are supplied incorrectly to the FORTRAN call
level routines like ADD1$ and NEXTS. Some of them (32, 33) deal
specifically with inmproper use of the communications array.
Check all the calls to the routine in which the error was
generated and fix any bad arguments.

® Error codes 40-48 are MIDAS errors which you shouldn't see.

@ Error codes 51 and 52 will only appear if you run out of room in
a MIDAS file; at this point, you can use the CREATK EXTEND
option to increase the segment subfile size. You must then
MPACK the file to effect the change. See Section 15 for
details.

e Error codes 71-88 are mostly caused by internal MIDAS errors.

ERRORS RETURNED BY UTILITIES

The four MIDAS utilities CREATK, KIDDEL, MPACK and KBUILD all share
some common messages which are returned by one MIDAS routine, KXSRFC.
This routine checks the file rev stamp to see if it is compatible with
the current version of MIDAS. (It's a user-callable routine discussed
in Section 14.) These utilities also check to see if the index length
defined for the file is compatible with the INDLNT setting in the
current version of MIDAS.

KXSRFC Messages

The following messages are returned by KXSRFC:

1. If a file has a major rev. stamp of Rev. 15 or earlier, the
message:

STOP! REMAKE THIS FILE!

will appear. No further processing will be allowed on this
file until the user runs the REMAKE utility. The file will
then be compatible with MIDAS versions stamped Rev.16 and
above. REMAKE is now in MIDAS>CMDNCA.

2. If the major rev stamp of the file is greater than that of the
version of MIDAS you're currently running, MIDAS would rather
not attempt any operation on the file that might endanger its
health. The warning message:

MAJOR REV STAMP OF FILE GREATER THAN THAT OF MIDAS
is displayed. The current version of MIDAS will work on any

file with a major rev stamp lower than its own (no 1lower than
Rev.16) and will automatically update the rev stamp of the

REV. 0@ A - 6

3.

4.

IDR4558 MIDAS ERROR MESSAGES

file. However, it is not possible to convert back to an
earlier major rev of MIDAS (for example, to go from 18.1 back
to 17.4) because the above message will result when you try to
access existing MIDAS files. It is possible to convert back
and forth between update revs, like 17.4 and 17.6.

The INDLNT parameter in KPARAM determines the number of
segments which are allocated per index. The default setting is
19. If this number is changed by the user (it's not supposed
to be!), problems may arise if a file contains a number
different than that of the current version of MIDAS. This can
result from a change to INDINT in a previous version of MIDAS,
giving all files created under that version INDLNT number of
segments per index. When a new version of MIDAS is installed,
with INDINT set to 18 (by default), problems will arise. The
same result occurs if you change INDINT in the new version of
MIDAS, making it different for the INDLNT value contained in
existing files. In either case, the following message is
returned:

BASIC INDEX LENGTH OF FILE DOES NOT MATCH THAT OF MIDAS

If INDINT has been changed in the current version of MIDAS,
change it back to a value compatible with the INDLNT setting in
the file or recreate all your old files with the new version of
MIDAS, ensuring that they are all built the same way and can be
properly used by all the current MIDAS utilities.

If the file name passed to a utility is not that of a MIDAS
file, KXSRFC returns the error message:

NOT A VALID MIDAS FILE (caller-name)

where caller-name is the name of the routine that called
KXSRFC., This can happen if:

e the named file is not a SAM segment directory,

e if segment subfile @ (the file descriptor subfile) is not
present, or

e if segment subfile @ does not contain the proper
information to indicate that it is a MIDAS file.

KX$OIT Message

Another message, returned by the KX$OIT routine (which is called by
every routine that wants to open an index subfile for update), occurs
if KXSOIT is unable to open the file, either because it does not exist
or because the use of this index is not supported by the access method
being used.

A - 7 October 1980

APPENDIX A IDR4558

The following message is returned:

Segdir unit not open. (KX$OIT)
UNABLE TO VERIFY/UPDATE MIDAS REV FOR INDEX xx

where xx is the number of the index subfile which KX$OIT tried to open.

This can happen in COBOL, for example, if a direct access file is
opened for indexed access and the user tries to access the file by
secondary key. The program will fail when KXS$OIT attempts to open the
secondary index subfile because secondary keys (and indexes) are not
supported by RELATIVE file structure.

This message can also happen if you are trying to access an index that
doesn't exist.

REV. @ A - 8

IDR4558 MIDAS AND THE FILE SYSTEM

APPENDIX B

MIDAS AND THE FILE SYSTEM

FILE SYSTEM BACKGROUND

For those users familiar with the PRIMOS file system, this appendix
explains how MIDAS file structure is related to file types you already
know. Those not familiar with Prime file structure will probably find
enough information here to make sense out of the subsequent discussion
of MIDAS file structure. See The Subroutine Reference Guide for more
information on Prime file structure.

SAM Files

Most files under PRIMOS are structured for sequential access, and are
called "sequential access method", or SAM, files. Their records are
"strung together" by forward and backward pointers. To get any record
in a SAM file, you must . step sequentially through the file records
until the desired one is found. You cannot randomly retrieve any
record in the file; but it is possible to get back to the beginning of
the file to reprocess it. From the user's viewpoint, records in SAM
file do not have to be the same length; hence they are called
"variable-liength® records. ‘The file system, however, stores SAM files
in 1K word records (1024 words). See Figure B-1 for a picture of SaM
file structure.

DAM Files

DAM files are basically SAM files with an extra set of pointers stored
in a separate index. DAM files are also called "random" files because
records can be accessed randomly in any order. Hwever, to get a
particular record, you have to know something about it, 1like its
starting address. From the file system's viewpoint, every record in a
DAM file has to be the same length so the starting and ending positions
(address) of each are known. ‘This makes random access possible.
Figure B-2 shows the logical structure of a simple DAM file. It should
be noted that the forward-backward inter-record pointers like those in
a SAM file also exist in DAM files so that records can be accessed
sequentially also.

B - 1 October 1980

APPENDIX B

UFD

DIRECTORY

FILE NAME

IDR4558

POINTER TO BEGINNING

T °F THIS FILE

POINTER TO DIRECTORY
IN WHICH THIS FILE IS

LOCATED

>

FORWARD

TowTern >

X

POINTER

BACKWARD
. BT

b »

DATA

1024
WORDS

DATA

FIRST
RECOROD
IN FILE

SAM File Structure

NOTE:

NON-ZERO INTER-RECORD POINTERS

ARE INDICATED BY ARROWS AND

DOTS (.); POINTERS WITH ZERO VALUES

ARE INDICATED WITH A “9°" AND DO NOT

REFERENCE, OR POINT TO, ANYTHING.

Figure B-1. SAM File Structure

w
1
8]

DATA

LAST
RECORD
IN FILE

IDR4558 MIDAS AND THE FILE SYSTEM

FWD/BKWD LINKAGE IS MAINTAINED

DIRECTORY FOR SAM FiLE ACCESS IF REQUIRED

-

FILE NAME |

DATA

TOP LEVEL
INDEX

o4

2 DATA

\

=y DATA ___j

Figure B-2. Simple DAM File Structure

B - 3 October 198p

APPENDIX B IDR4558

Multi-Level DAM File Structure

The DAM file structure represented in Figure B-2 is a "short" DAM file;
it only has a single-level index to the data records in the file. All
the individual record pointers are contained in that index level. For
larger files, one index level would neither be sufficient nor efficient
for quick look-up, and, after all, that's the purpose of direct access
files. More index levels have to be created, making one index level an
index to the next index level and so on. Figure B-3 shows a three
level index structure for a DAM file. MIDAS uses this multi-level
index concept in a similar fashion to implement its index subfile
structure.

Segment Directories

In PRIMOS terms, a MIDAS file is a special collection of both SAM and
DAM files, called a segment directory. A segment directory can be
thought of as a network of files, all related and connected by pointers
which ultimately reference entries in a data file. Think of it as a
large city, like New York, which is divided into several "boroughs"

like Manhattan, Brooklyn and the Bronx, but is technically a single
city.

A segment directory is a large file similar to a directory (sub-UFD).
Its "subordinate" files are not referenced by name as in a sub-UFD, but
by number. Refer to Figure B-4 for a picture of a MIDAS file viewed as
a segment directory. ‘The various files in a segment directory are
called segment subfiles and consist of one or more segments. There are
at least four types of segment subfiles in any MIDAS segment directory:

e A file descriptor subfile

e A primary index subfile

e From 1 to 17 secondary index subfiles
e A data subfile

Below is a description of each of these subfiles.

The File Descriptor Subfile: The first segment in a segment directory
(which is segment @) is the file descriptor subfile. This is nothing
more than a list of all the other index subfiles associated with a
particular segment directory. It is essentially an overview of the
entire segment directory's structure. Any time the structure of an
index subfile or a data subfile is changed, the modifications are
reflected in the descriptor subfile. This ensures that the description
of the file matches the actual state of the file at any given time.

The Data Subfile: The data subfile is the "core" of the MIDAS file.

REV. ¢ B - 4

IDR4558

UFD
DIRECTORY

MIDAS AND THE FILE SYSTEM

FILENAME

]

TOP LEVEL INDEX

LEVEL 2 BLOCK 1 BLOCK 2 BLOCK 512
INDEX POINTERS TO POINTERS TO POINTERS TO
BLOCKS DATA BLOCKS DATA BLOCKS BLOCK 3-511 DATA BLOCKS
0-511 512-1023 N - (N+811)
oo e
TO/FROM
BLOCK 3
FORWARD/BACKWARD TO/FROM
POINTERS BETWEEN BLOCK 511
INDEX BLOCKS
TA
g:OC!(DATA CATA DATA DATA DATA
0 BLOCK o0 0 > BLOCK BLOCK o0 0 > BLOCK BLOCK
(1024 WORDS) 1 512 513 N-1 N
FORWARD/BACKWARD

POINTERS ARE MAIN-
TAINED BETWEEN DATA
BLOCKS

Figure B-3. Multiple Level Index DAM File

October 1980

APPENDIX B

SEGMENT
DIRECTORY

IDR4558

SEGMENT
0

<¢——— FILE DESCRIPTOR SUBFILE

SEGMENTS
1-10

l«@—— PRIMARY INDEX SUBFILE

SEGMENTS
11-20

<f——— SECONDARY INDEX SUBFILE #1

?

SECONDARY INDEX SUBFILES #2-16

SEGMENTS
171-180

<§—————— SECONDARY INDEX SUBFILE #17

SEGMENTS
185-n

DATA SUBFILE
n =511 (DEFAULT MAXIMUM)

Figure B-4.

Segment Directory Structure

IDR4558 MIDAS AND THE FILE SYSTEM

It contains the actual data that we want to look up, report on, modify,
and so forth. Every record in the data subfile is referenced or
pointed to by an entry in one or more of the index subfiles associated
with that particular MIDAS file.

The Index Subfile: Every MIDAS file has at least one index subfile,
the primary index subfile, and up to 17 secondary index subfiles. Each
index subfile consists of one or more segments. The first segment,
called an index descriptor block, is a guide to the index subfile and
includes the root index block. It tells MIDAS what's in the remaining
segments of the subfile. These segments contain index blocks. The
number of index blocks per segment depends on the length of the
segment; the default value is 512 blocks per segment. However, this
can be modified by using the EXTEND option of CREATK. See Section 15.

The Index Block: Each index block contains many entries. Each entry
consists of a key-field value (from the data file) plus a three-word
pointer to either another index block in the subfile, or to an entry in
the data subfile. At the beginning of every index block is information
such as key type and length; this information is used in looking up a
particular key entry in that index block. Indexes have a hierarchical
structure governed by the B-tree algorithm as explained in Section 15.

B - 7 October 1980

IDR4558 OBSOLETE MATERIAL

APPENDIX C

OBSOLETE MATERIAL

INTRODUCTION

This appendix summarizes all the MIDAS routines that are no longer
available or are no longer supported. Users of past versions of MIDAS
should carefully remove any calls to obsolete routines from their old

programs. More information on things that have changed in MIDAS from
the previous revision to the present one is available in Appendix D.

OBSOLETE MATERIAL

For your convenience, the obsolete material is divided into three
parts:

e (bsolete command files
o (bsolete routines
& Effectively obsolete material
Make sure any obsolete command files or calls to obsolete routines are

taken out of all existing user command files and application programs,
as they will not work with the new version of MIDAS,

Obsolete Command Files

R a%] ~ am H -~ P 1 .
The following command files have been obsoleted:

e C FORM: was formerly used to produce an R-mode library with
in-line desectorization to help out memory-cramped users with
both MIDAS and FORMS running simultaneously. The new interlude
alleviates this problem.

e C NDA4: generated a V-mode library without direct access
support; designed for memory-cramped users — similar to
C FORM. There is no penalty if the user has VKDALB configured
for direct access but does not use it. In files that do use
direct access, there is a two-word overhead per primary .key
entry. See Note, below.

e C NODA: was used to generate an R-mode library without direct
access support. With the new V-mode interlude in place, the
R-mode library tracks the V-mode library for presence or absence
of direct access suppert making this file unnecessary.

c - 1 October 198@

APPENDIX C IDR4558

e C SPCR: generated a special version of CREATK called SPCR.
Both C _SPCR and SPCR are now obsolete.

e C MINIT and C MSHAR: have been replaced by C SHAREMIDAS, which
shares the MIDAS library, the MIDAS shared lock segment, and
intializes everything by running SYSTEM>IMIDAS.

e C FILL: has been replaced by the C_LIST MIDAS command file
which creates a listing of MIDAS called MIDAS>SOURCE>L MIDAS.

Note

If users of MIDAS libraries created by either C NODA or C_NDA4
opt for the default version of the V-mode library, two changes
will be apparent:

1. CREATK will ask if the file being created is to be
direct access or not.

2. Direct access calls will no longer produce errors.

Obsolete Routines

The following routines are no longer included in MIDAS:
FILSET
KXSBWT
KXSFCL
KX$01X
PRIRAN
SECRAN
SYSINI

The functionality of SECRAN and PRIRAN has essentially been taken over
by BILDSR (processes unsorted data) and therefore, it is no longer
necessary to keep them alive. Users who previously used PRIBLD, SECBLD
and BILDSR will note that FILSET has gone away, meaning that if you
haven't already done so, it's time to change all the calls to PRIBLD,
SECBLD and BILDSR in existing programs. See Appendix D and Section 14
for details.

Note

The $INSERT file OFFCOM has been removed from MIDAS and should
no longer be included in any application programs.

gj
o)
<
»
=
(@]
1
&)

IDR4558 OBSOLETE MATERIAL

Lesser-Known (bsolete Routines

A few miscellaneous routines have crept intc MIDAS over the years which
most users have never heard of; however, those users who have
incorporated them into their programs (FORTRAN or PMA) will want to be
aware of their absence from this version of MIDAS. They are:

e OPENS: User callable routine formerly used to open a MIDAS
segment directory: it should not be confused with OPENMS:,
currently used to open a MIDAS file.

e CLOSES: G(bsolete user callable routine used to close a MIDAS
segment directory: the companion routine of OPEN$:. Do not
confuse it with CLOSM$, which is the routine currently used to
close MIDAS files under the new concurrent process handling
method.

EFFECTIVELY OBSOLETE MATERIAL

Some command files and routines now considered obsolete or frozen,
appear in the current version of MIDAS for those users who have
recently been converted from a Rev 15 (or earlier), or for those users
who have files created under an ancient version of MIDAS.

Maintained for Compatibility

Below is a 1list of effectively obsolete routines, still available for
use, but not highly recommended for such:

e C REMAKE: compiles and loads the obsolete utility REMAKE,

producing an executable version of REMAKE in MIDAS>CMDNCS.
Since REMAKE comes already built in the MIDASMCMINCS, users
won't have much use for this command file. REMAKE should only
be used by users converting pre-Rev 15 files to run under a
later version of MIDAS. REMAKE used to be a resumable file

called *REMAKE.,

e C REVERT: compiles and loads the obsolete REVERT utility,
placing it in MIDAS>QMDNC@. It is unlikely that anyone will be
using REVERT except in rare cases where it is necessary to
convert files to run on previous versions of MIDAS. REVERT
comes already built in MIDAS>CMDNC@, so there's no need to run
this command file unless you delete the existing version of
REVERT. Note also that REVERT used to be a resumable file
called *REVERT.

c - 3 October 1980

APPENDIX C IDR4558

e UMODE$S: is another routine still present in MIDAS, and
formerly used in many applications, which signals single or
multi-user mode. It has been obsoleted by the new method of
concurrent process handling and should not be used at all under
the current version of MIDAS.

Maintained, But Not Enthusiastically

The secondary data feature has been maintained in this version of
MIDAS; however, its use is not encouraged. Most people used it to
"hide" data in the secondary index, along with a secondary key value.
However, if data is this sensitive, perhaps you ought to be using POWER
or DBMS to protect it. Although useful if properly implemented, the
secondary data feature has generated a lot of confusion among users and
needlessly complicates file modification and recovery. At this point,
users with secondary data are not being forced to remove it, but its
use in new MIDAS files is not condoned.

REV. 0 c - 4

IDRA558 THE MIDAS ARCHIVES

APPENDIX D

THE MIDAS ARCHIVES

INTRODUCTION

This appendix is meant only for MIDAS users who have used it in the
past and want to know what must be changed or deleted in their
application programs and command files. New users of MIDAS needn't
bother with this unless they are curious about the historical
development of MIDAS.

Basically, the information in this section covers these general areas:

e Administrative and installation changes
e Changes in certain methodology for this version of MIDAS

e Changes to utilities and routines that require program
modification

e Additions to the repertoire of MIDAS routines and command files

ADMINSTRATIVE/INSTALLATION CHANGES
Installation and administrative modifications involve changes to MIDAS

command file names and functions, and functional changes in the IMIDAS
and MCLUP utilities.

Command File Changes

Below is a summary, in list form, of the major changes that have
occurred to MIDAS in the administrative and installation areas at this
revision. Many of these changes will directly impact some user command
files, especially if the command files are wused routinely in
initializing and reloading MIDAS.

e MIDAS>C MIDAS no longer calls MIDAS>SOURCE>C REMAKE or
MIDAS>SOURCE>C REVERT. Both MIDAS>CMDNC@>REMAKE and
MIDAS>CMDNC@>REVERT come already built on the master disk and
most users will never need to rebuild them.

e MIDAS>C INSTALIMIDAS does not copy MIDAS>CMDNCO>REMAKE or
MIDAS>CMDNCO>REMAKE to the system UFD CMDNC@. However, it does
copy MIDAS>CMDNC@>MPACK to CMDNC@.

D - 1 October 1980

APPENDIX D IDR4558

e MIDAS>SOURCE>C FILL has been changed C LIST MIDAS, also in
MIDAS>SOURCE. It produces a listing of MIDAS called L MIDAS in
MIDAS>SOURCE.

e MIDAS>SOURCE>C MPACK now produces MIDAS>CMDNC@>MPACK rather than
MIDAS>SOURCE>*MPACK.

e MIDAS>SOURCE>C MSHAR and MIDAS>SOURCE>M INIT have been replaced
by MIDAS>C SHAREMIDAS which does everything the former command
files did, plus it runs IMIDAS.

e MIDAS>SOURCE>C REMAKE now produces MIDAS>CMDNC@>REMAKE instead
of MIDAS>SOURCE>*REMAKE. See Appendix C for more information.

e MIDAS>SOURCE>C REVERT now produces MIDAS>CMDNC@>REVERT instead
of MIDAS>SOURCE>*REVERT. See also Appendix C.

Changes to Administrative Utilities

Both the IMIDAS and MCLUP utilities have been changed at this revision
of MIDAS to improve MIDAS initialization and clean-up.

IMIDAS Changes: IMIDAS initializes the shared lock and semaphore for
single-threading MIDAS use. At this revision of MIDAS, IMIDAS can only
be run from the system console. If any other user attempts to run. it,
this message appears:

IMIDAS MUST BE RUN FROM THE SYSTEM CONSOLE (IMIDAS)

Make sure that no one else is using MIDAS when the IMIDAS utility is
run, or that person's opened MIDAS files may be corrupted.

MCLUP Changes: Although breaks are inhibited during most of a MIDAS
call, it is still possible for a MIDAS user, whether by forced-logout
or by breaking out of a program via CTRL/P, to exit MIDAS before the
next process on the wait list can be notified that the lock is free.
In this case, the user who quits out of MIDAS does release the lock,
but simply doesn't get a chance to generate the usual "notify" to the
semaphore wait list. The "notify" triggers the next process on the
list to attempt to obtain the lock. This doesn't happen often, but
when it does, all MIDAS operations come to a halt. All MIDAS users on
the semaphore wait 1list will sit idle, waiting for the notify that
never came.

Previously, the only recourse in this situation was to run IMIDAS from .
the system console. MCLUP, observing that the lock did not contain the
user number of a person owning the lock, could do nothing. Now, when
the lock is set to zero, indicating that it is free, and the semaphore
wait count 1is negative, indicating one or more users waiting on the
semaphore, MCLUP will assume the situation outlined above has occurred
and will generate a notify to the semaphore. However, this will only
happen if someone remembers to run MCLUP when MIDAS goes out of
commission.

REV. @ D - 2

IDR4558 THE MIDAS ARCHIVES

After generating the notify, MCLUP will print this message:
Cleanup for unknown user successful

at the terminal of the user who invoked MCLUP.

Changes to KPARAM

The KPARAM file, which contains all the parameters used by MIDAS
routines, has been modified at Rev. 17.6 to "fix" several formerly
user-modifiable parameters. This means that users who have previously
modified the following parameters will be unable to modify them from
now on:

e INDINT
e INDNUM
e MFILES
e MKEYSZ
e NFUNIT

e NOBUFS
e NOIDXS

This should prevent users from making inappropriate changes to these
parameters and thus getting into trouble. In most cases, it would not
buy users a great deal to modify them anyway, as these parameters have
already been set to achieve the maximum level of performance.
Parameters which users can currently modify are explained in Section
15.

NEW METHODS AND OLD METHODS

The new version of MIDAS incorporates two nhew methodologies for
handling old problems. These new methods involve concurrent process
handling and the elimination of R-mode processing via the new R-mode
library interlude.

D - 3 October 1980

APPENDIX D IDR4558

The R-Mode Interlude

At this revision of MIDAS, the runtime routines in the R-mode MIDAS
library, KIDALB, have been replaced by an interlude to the V-mode
library. This was done primarily to:

e Reduce memory requirements. Instead of xx copies of the R-mode
runtime routines for xx users, there will be just the one shared
V-mode MIDAS library copy (VKDALB) and XX copies of the much
smaller interlude.

e Speed up I/O time by using all V-mode calls which are much
faster than corresponding R-mode calls. Since one MIDAS call
typically generates many system calls, the impact should be
noticeable.

There is no need to reload R-mode programs using just the MIDAS library
if a new copy of the V-mode MIDAS library is brought up. Because the
library is dynamically linked with every execution, R-mode programs
will need only to be reloaded once to use this new 1library and never

again unless programs are saved after being run -- a rather uncommon
practice.

Gbviously, this interlude will not work on a P3@d.
Related Changes: The interlude brings with it several other changes

which have been mentioned briefly in other sections, but which are
gathered here to provide an overall summary:

e The R-mode library will now track the V-mode library both in the
presence or absence of direct access support.

e ERROPN, FILERR, FILHER, and KX$TIM will be the only internal
MIDAS routines callable by V-mode and R-mode users. Previously,
V-mode users had access to no internal routines at all. Since
the R-mode library tracks the V-mode library in functionality,
calls to internal routines have to be restricted. Several
routines have been dropped because of this, including FILSET,
KXSBWT, KXSFCL, KXSOIX, PRIRAN, SECRAN, and SYSINI which have
all been obsoleted or duplicated in functionality elsewhere in
MIDAS.,

Concurrent Process Handling

The new method of concurrent process handling involves new open and a
close routines, a shared lock and semaphore wait 1list which
single-thread MIDAS use. The current method improves MIDAS performance
significantly by reducing file system overhead. It may be helpful to
summarize how MIDAS previously handled concurrent access before
explaining how the ‘new method works.

REV. ¢ D - 4

IDR4558 THE MIDAS ARCHIVES

Previous Concurrency-Handling Methods: In previous releases, MIDAS
coordinated concurrent processes by gating processes at the segment
subfile (MIDAS file index) level. This method relied upon file system
read/write locks, which were previously set at 2, and required that
segment subfiles be opened at the start of each MIDAS file operation
and be closed upon completion of that operation.

With this method, only one process could access a file segment at a
time. A second process could only proceed after the first process
finished its MIDAS operation and the file segments were closed. This
method of synchronization required many calls to the file system
routine SRCH$$ to open and close file segments, thus imposing a
significant performance penalty.

For example, to retrieve a record, MIDAS opened the index segment
subfile(s) and the data segment subfile. When the retrieval was
completed, MIDAS closed these segment subfiles. This was repeated for
every operation on a MIDAS file, resulting in substantial disk I/0
overhead during sequential processing of large files.

The New Method

MIDAS's present method of handling concurrent processes improves
performance by greatly reducing the number of file system calls. By
using a semaphore and a "lock™ in shared memory, MIDAS simply allows
only one process at a time to execute a MIDAS file operation.
Therefore, MIDAS segment subfiles need not be closed at the end of each
operation only to be reopened at the start of the next call, as was the
case in the old method. See Section 13 for details,

For FORTRAN/PMA Users Only: This method also requires that the user
open and close MIDAS files with one of two methods, described in
Section 6. These methods use either the OPENM$ and CLOSMS routines, or
the NTFWM$ routine, all of which are recent additions to the MIDAS
repertoire. Section 6 tells you how to use them. See also NEW
ROUTINES below.

CHANGES TO EXISTING ROUTINES
Some routines have been rewritten and/or have had their calling

sequences changed. Make sure you make the appropriate adjustments in
your programs.

Changes to Offline Routines

The offline file building routines PRIBLD, SECBLD, and BILDSR have been
rewritten for 17.6 in V-mode. This was done to make better use of file
units by leaving them open between calls, reduce disk usage through a
different index build algorithm, and generate more useful diagnostics.
User application programs calling these routines will have to be

D -~ 5 October 1980

APPENDIX D IDR4558

changed to agree with the new calling sequences, taking care also to
delete SINSERT SYSCOM>OFFCOM statements from all programs because
OFFCOM no longer exists. You should also delete calls to FILSET,
KXSBWT, KXSFCL (which are all obsolete), and any calls to the file
system to open the MIDAS file descriptor subfile on some file unit
specified by ISUNIT. ISUNIT no longer exists either. The jtemps
argument, a three-word array formerly used in all calls to these
offline routines has been replaced by an INT*2 sequence flag. Details
on the sequence flag can be found in Section 14.

Calls to PRIBLD, SECBLD and BILDSR may still be made from the same
program to build different indexes at the same time, but these indexes
must all belong to the same MIDAS file. Indexes from different MIDAS
files cannot be built by these routines by the same program at the same
time.

PRIBLD, SECBLD and BILDSR are now able to build both output files with
variable-length data records and direct access MIDAS files. See
Section 14 for the new calling sequences for these routines and a list
of the new error messages they generate. It should be noted that when
one of these routines returns an error message other than the ones
listed in Section 14, it is almost guaranteed that the file being built
will be useless. In this case, it is suggested that the user zero the
file (use KIDDEL), try to figure out what went wrong and try again.

Changes to FORTRAN Subroutines

No new MIDAS subroutine calls have been added to the FORTRAN/PMA
interface, but the file-no parameter, present in the general calling
sequence as represented in the old MIDAS manual, has been obsoleted.
See the new calling sequence in Section 6. Also an addition to the
MIDAS flags parameter, which some users may already know about, was
made, allowing users access to the index entry immediately prior to the
current one. ‘This is done by setting bit 11 in flags, called FLSPRE.
See Section 6 for further information.

Changes to Utilities

All of the MIDAS utilities have been modified for this version of
MIDAS. Some of the dialogs have changed significantly, producing
different prompts and sometimes in new sequences; others have changed
internally, with 1little impact on the responses required of the user.
The utilities that have been changed in a major user-visible way are
discussed here, with additional information available in other sections
of this book as indicated. Users should read this information
carefully and make the appropriate changes to any command files that
invoke these utilities.

IDE‘V,C g D -)

IDR4558 THE MIDAS ARCHIVES

Changes to CREATK

CREATK and all of its subroutines have been rewritten. CREATK must now
run in in V-mode. User input to prompts is checked as thoroughly as
possible, and error messages, where they appear, are considerably more
informative than in previous versions.

Summary of Enchancements and Alterations: Although the rewrite of
CREATK attempted to maintaln a high degree of compatibility (for the
sake of veteran users with a plethora of command files), some
unavoidably incompatible changes were forced by the adoption of B-trees
at rev 16.5. The list below summarizes all of CREATK's major
user-visible changes, most of which were not specifically addressed in
Section 2 to spare new users additional trauma.

e Iowercase input is now accepted; in fact, a mixture of upper-
and lowercase input is fine.

e (Questions requiring a yes/no type of response will not accept a
carriage return or blank 1line as a valid reponse. Such
questions will accept "YES", "NO", "AYE", "NAY", or "OK" in
upper, lower, or mixed cases.

® Treenames (also called "pathnames®) are now accepted in place of
filenames, if this has not been stated previously.

e Hard-wired file units have been eliminated.

e When creating a new file, CREATK now asks for "PRIMARY KEY TYPE"
and "PRIMARY KEY SIZE" instead of "KEY TYPE " and "KEY SIZE ."
The messages for secondary indexes remain unchanged. ‘This
should make things clearer for new users.

e The key size scanner is now more lenient and does better key
size checking. The maximum key size is 16 words (32 bytes or
256 bits) for bit strings, and 32 words (64 bytes) for ASCII
strings. Integer and floating-point key types remain predefined
by the hardware.

e If the file, whether a new one under creation or an old one
being modified, is enabled for direct access, the number of
records specified by the user to be pre-allocated is checked to
make sure that: (1) it is greater than #.8, (2) it is a whole
number and (3) it can actually be pre-allocated given the file's
maximum segment directory size and maximum number of words per

segment.

e Secondary index numbers greater than 17 are not accepted. If
secondary indexes 18, 19 and 20 existed, they would overlay part
of the data segment subfiles.

D - 7 Cctober 1980

APPENDIX D IDR4558

If you are using a version of CREATK that allows double-length
indexes (i.e., one that was created by L CREATK), the new
version of CREATK will not allow index number 17 to be double
length. This, too, would overlay part of the data segment
subfiles.

The user provided secondary data size is checked to make sure
that at least two index entries can be inserted in a last level
index block. In case of an error, the maximum secondary data
size for that index is printed, given the maximum index block
size defined by the parameter RECINT in MIDAS>SOURCE>KPARAM,
normally set at 1024 words.

The user-specified block size for the extended options path is
checked to ensure that at least two index entries can be
inserted per index block on that level. On error, the minimum
bleck size for that index at that level is printed. The maximum
is: assumed to be defined by the parameter RECLNT in
MIDAS>SOURCE>KPARAM, normally 1624 words.

The key size is no longer requested at each index block level in
the extended options path. With the advent of B-trees, the

index key size is assumed to be uniform through all levels of an
index B-tree.

Previously, if running a version of CREATK with double-length
index support enabled, the query "DOUBLE LENGTH INDEX?" was
asked before the primary key type and key size were requested,
and after the key type and key size for each secondary index
were requested. CREATK now uniformly queries the user after the
key type and size have been entered, regardless of whether the
primary or secondary index is being defined.

The file read/write lock is set to n readers and n writers on
file creation by default. CREATK informs the user of this by
displaying the message "SETTING FILE LOCK TO N READERS AND N
WRITERS" at the end of each file creation session. You can have
CREATK set the file read/write locks to the system default
setting, usually n readers and one writer, by substituting the
key M$NRIW for MSNRNW in the call to KX$CRE in CREATK (MAIN).

A new file is not created until all the questions necessary to
define a template have been answered properly. A user may
therefore break (CTRL/P) out of CREATK any time before this and
not end up with a partially created file.

If a file system error is encountered, CREATK responds in a
reasonably polite manner, telling you what the file system error
is instead of just giving you a MIDAS error code. If the error
occurs while creating a new file, CREATK, through KXSCRE,
attempts to delete the partially created file and reports the
original file error, ignoring any errors it may have encountered
while attempting to delete it. If the file system error occurs
while processing an already existing file, the file(s) are just

O
]
€0

IDR4558 THE MIDAS ARCHIVES

closed and the original error is reported with errors
encountered in closing ignored.

e When you ask to work on an already existing file, MIDAS examines
it carefully to see that it is indeed a valid MIDAS file. ‘The
routine KXSRFC, documented 1in Section 14, is called to do this
verification. See Appendix A for messages commonly returned by
KX$RFC.

Changes to CREATK Options: The following changes apply spec1flca11y
to the various options of CREATK that have been changed in this version
of MIDAS.

e The EXTEND option now checks the user-specified segment
directory size to ensure that it is not smaller than the current
data file growth point. If it is, the message "ALREADY USED
THROUGH SEGMENT nnn" is displayed, where nnn is the data file
growth point, and the question is re-issued. As before, a @
response to either question of the extend options dialog causes
CREATK to assume the default sizes. The minimum segment subfile
size is still 64K words. See Section 15 also.

e The LUSAGE command is no longer displayed as a valid function by
the HELP command. The LUSAGE command is still supported, that
is, you can stiil use it, but it does the same thing as the
USAGE command. Previously, the only difference between the two
was that LUSAGE also printed the version of MIDAS that last
modified the file. Both commands now do this and LUSAGE is
being de-emphasized to avoid confusion.

e The MODIFY function no longer exits to Primos upon receipt of a
carriage return or blank line for an index number. Instead, it
will return to the questlon "FUNCTION?", making it consistent

ok~ £,
with the behavior of the other functions.

e hhen MODIFYing a double-length index, CREATK will first check to
see whether the index already contains enough entries to to
cause it to overflow a normal index. This means it would now be
using the additional space available in a double-length index.
If so, MODIFY will not ask whether the index should remain a
double-length one or not; it is assumed that the index must
remain a double-length index, preventing the user from trying to
create a new index on top of the already existing 1long index.
MODIFY will ask if an index is to remain a double-length index,
regardless of whether your wversion of CREATK supports
double-length indexes or not, only if the index already is
double-length and the index is not using its extra space vyet.
MODIFY will not ask if an index is to become double-length if
the index following it already exists, or if the index in
question is secondary index 17, or if the running version of
CREATK is not enabled to ask about double-length indexes.

D - 9 October 1980

APPENDIX D IDR4558

e The PRINT and SIZE functions always print the key size in words

and bits or bytes now. Previously, if the key type was integer
or floating point, the key size was printed in words only.

e The PRINT function, when giving statistics about index "DATA""
(the data subfile), will print "PRIMARY KEY SIZE" rather than
"KEY SIZE" to distiquish which index data key size is being
printed. Users are reminded that the number of entries printed
for index "DATA" are the number of entries as of the last MPACK
of the file.

e The VERSION function does not make reference to overflow blocks

or overflow chains anymore. The whole concept of overflow was
eliminated with the advent of B-trees at rev 16.5.

Changes to KIDDEL

KIDDEL has been rewritten to run in V-mode, and now accepts the use of
pathnames, does not use hard-wired file units, and can zero
(initialize) as well as delete the various parts of a MIDAS file.

Summary of Changes: Instead of asking the single question:

INDICIES?
KIDDEL now asks the following question:
DELETE INDEXES:
The user may answer with one of the following responses:

e A list of index numbers to be deleted — this deletes just
certain index subfiles

e ALL —- which deletes entire file

e JUNK — which gets rids of useless segment subfiles created as a
result of an aborted MPACK operation

e NONE - which causes KIDDEL to display the "ZERO INDEXES" prompt:
see below

If you supply a list of valid index numbers to be deleted, optionally
separated by commas, only these indexes will be deleted. KIDDEL then
exits to PRIMOS. The space occupied by these segement subfiles will be
reclaimed, and the deleted indexes will no longer exist. If you want
them back, re-add them with the ADD option of CREATK (See Section 15).
The numbers 18, 19, and 20 are not accepted as valid secondary index
numbers. An index number of @, representing the primary index, is not
accepted either, for to delete the primary index implies deleting the
entire file. Use the ALL option to delete the entire file.

(v
]
=

IDR4558 THE MIDAS ARCHIVES

The JUNK option may be specified by itself or with the list of indexes.
It will cause any useless segment subfiles created by an aborted MPACK
operation to be deleted. KIDDEL will then exit to PRIMOS.

ALL must be entered by itself and causes the entire MIDAS file to be
deleted from the user's UFD. Again, KIDDEL will then exit to PRIMOS.

The NONE option initiates the other KIDDEL dialog —- the one that lets
you initialize various parts of a MIDAS file so you can re-use part or
all of the template. A NONE response is not the same thing as just a
carriage return or blank line, both of which cause the question to be

re-asked.

The "zero indexes" dialog begins with this question:
ZERO INDEXES:

Enter one of the following in response to this prompt:

e A list of indexes to be zeroed — the same rules as above apply.
Indexes 18, 19, and 20 are not valid index numbers, and if you
want to zero index @, the primary index, use the "ALL" option.

® ALL — will cause the entire MIDAS file consisting of the the
primary index, the secondary index, and the pre-allocated
records of a direct access file to be zeroed. Disk space is
recovered by truncating the index levels back to just a root
block, and deleting the resultant empty segment subfiles. Empty
data segment subfiles are also deleted.

® NONE — will cause KIDDEL to exit to PRIMOS without doing
anything to the file.

Note that the "zero" operation will preserve the file read/write lock
and non-standard segment subfile and segment directory lengths. In
fact, if the user has specified the non-standard lengths with CREATK,
but has yet to put them into effect by running MPACK, KIDDEL will
effectively "MPACK" the indexes that is zeroes. Unlike previous
versions of KIDDEL, the current version will not continue if the user
inputs a blank line or index numbers that don't exist, but instead will
re-ask the last question until a suitable response is received.
KIDDEL, like all the other major utilities, calls KXSRFC to verify that
the user-specified filename is really that of a MIDAS file.

D - 11 October 1980

APPENDIX D IDR4558

Cthanges to KBUILD

The KBUILD utility has been re-written to provide for more flexibility,
greater speed and accuracy and better error—checking. KBUILD's dialog
has changed slightly, so check out the dialog explanation in Section 3
before using the new version. Other changes made to KBUILD are:

e KBUILD now supports binary files written by FORTRAN with the
routine 0$BD@7, under the new "FTNBIN" file type.

e Packed decimal keys, and primary keys that don't start in the
beginning of the data record are supported under the RPG file

tyw‘

e The YCOBOL" file type accepted by KBUILD now works with
uncompressed files: the "TEXT" file type should be used with
compressed files. (Files that have been edited by the PRIMOS
Editor (ED) are compressed.) -

e KBUILD now builds MIDAS files with variable-length records. The
output file must have had variable-length records specified for
it during CREATK.

e When the user specifies an input file or files as being sorted,
checking is now done to ensure that KBUILD will not attempt to
build an index that already contains entries.

e KBUILD will process secondary indexes that contain legal
duplicate key values.

e The error/logging milestones produced by KBUILD have been
altered to deal with times that cross midnight.

Changes to Internal Routines

The routines affected by changes at Rev 17.6 are ERROPN and KXSTIM.
Although minor, the changes do require the user to alter existing
programs that call them.

Changes to ERROPN

In previous version of MIDAS, if a blank line was supplied for a
requested filename, ERROPN would fail. ERROPN now accepts a blank line
as meaning no file is to be opened and thus informs the caller by
returning an funit of @. Another change to ERROPN is that the caller
now receives the file unit that the error/logging file is opened on in
the funit parameter, as opposed to supplying an actual file unit number
on which to open the error/logging file, as was the case in the past.

IDR4558 THE MIDAS ARCHIVES

Changes to KX$TIM

The changes to KX$TIM involve both its function and its calling
sequence.

e KXS$TIM now uses ERRFIL (in common area) as set up by ERROPN to
figure out where the error logging file is opened. Previously,
there was a fourth argument located between what is now the
first and second arguments that specified the file unit on which
the error logging file was opened.

e The numrec parameter, which indicates the number of records to
be processed for a particular milestone, has a new "special
case" value. If set to -1, a milestone of @ with no header and
without intialization, can be generated.

e The counters have been enlarged and the computation of the
elapsed time has been fixed to take into account a milestone
interval that crosses midnight.

See Section 14 for KXS$TIM's calling sequence and an explantion of its
purpose.

Additions to PARM.K

The MIDAS parameter file that contains all the keys, variables etc.
used by the FORTRAN subroutines in MIDAS is PARM.K. It is copied to
the system UFD SYSCOM when MIDAS is installed. There are several new
parameters in this file as of Rev. 17.6. They are: MSDACC, MSNRNW,
MSNRIW, MSDLNG, MSDUPP, MSBIT, MSBYTE, MSWORD, MSBSTR, MSSPFP, MSDPFP,
MS$SINT, MSLINT, MSASTR, MESNMF, MESBAS, MESBDS, MESBKS, MESBKT, MESBL1,
MESBL2, MESBLL, MESCBD, and MESNDA. ‘They are used mainly by the
offline routines documented in Section 14.

NEW MIDAS ROUTINES

The new version of MIDAS contains several routines never before made
available to users. Two of these will be of interest only to people
that like using offline routines rather than the standard MIDAS
utilities to do their template creation and file building. The others
will be of immediate interest to all FORTRAN and PMA users, as they are
integral to the operation of the concurrency handler.

New Internal Routines

At rev 17.6, two routines KXSCRE and KXS$RFC have been added that allow
users to create and read the configuration of MIDAS files from
programs. KXSRFC is called by most of the utilities to find out

D - 13 October 1980

APPENDIX D IDR4558

whether the file is compatible with the current version of MIDAS, and
to discern its configuration. KX$CRE is actually part of the CREATK
utility which is called by that utility to set up a MIDAS file
template. Both of these routines are documented in Section 14.

New File I/0 Routines

FORTRAN and PMA users will need to use either OPENM$ and CLOSM$ to open
and close their MIDAS files, or they can keep their 0ld programs as is
as long as they insert calls to NTFYM$ before and after they process a
MIDAS file. ‘These three routines were released at Rev 17.2, but some
users may not have found out about them yet. See Section 6 for details
on how to use them.

New Install File

The C_INSTALIMIDAS command file is new at Rev 17.6. It installs MIDAS
by copying various files and command files to the UFD SYSTEM. It also
copies the MIDAS libraries to the system UFD LIB, and copies all the
parameter files to the system UFD SYSCOM, and copies all the MIDAS

utilities (except REVERT and REMAKE) from MIDAS>CMDNC@ to the system
UFD CMDNCO.

REV. @ b - 14

INDEX

SINSERT files:

changes to D-6
ERRD.F 14-12
KEYS.F 6-13
mnemonics in 6-12
OFFCOM C-2
PARM.K 6-12

Access methods, overview 1-8

Access modes:

coBoL 7-1, 7-19, 7-5

in PL/TI 9-5

in RELATIVE files 11-8
statements in (INDEXED) 7-12
statements in (RELATIVE) 11-9

Access operations, list of 5-1
Accessing MIDAS 1-2
ADD option (CREATK) 15-7
ADD statement (BASIC/VM) 8-7

ADD statemen

rt

(P‘I‘ /T

74 .\.) 9':'6

ADD1$ routine:
and FLSKEY
and FLSRET
arguments for
array in 6-28
calling sequence
direct access
example of 6-25
flags for 6-22
index values in
overview 6-19

6-23
6-24
6-21

6-20
6-28

6-20

Adding records randomly (COBOL)
11-16

Adding records:
in BASIC/WVM 8-7
in COBOL 7-25
in FORTRAN 6-19
in PL/TI 9-6
in REG 19-5, 10-8
logical view 1-7
REIATIVE files 11-12

Adding secondary index entries
3-13, 6-23, 6-24

Adding secondary indexes 15-7
Administrative tasks:
changes to D-2
cleaning up 13-8
debugging 13-11
initialization
list 13-1

13-5

Advanced MIDAS topics 15-1

All keys, deleting 6-68
ALL option (MPACK) 12-10

Alternate file-building methods
14-11

Alternatives to CREATK
14-11

14-1,

Archives, MIDAS, the D-1

Argument listing:
for ADD1S 6-21
for DELETS 6-59
for FINDS 6-31
for LOCKS 6-49
for NEXTS 6-40
for UPDATS 6-53

Array format:
complete 13-9
direct access
in keyed-index
partial 6-10

6-12
6-10

Array, MIDAS, the 6-10, 13-9

AT END clause 7-13

Attributes, file, PL/I 9-5

Automatic notify 13-9

BASIC/VM interface:
adding records 8-7
closing a file 8-4
current record 8-5
deleting records - 8-15
opening a file 8-2
overview 8-1
partial keys 8-13

record "locking" 8-5

restrictions 8-1
statement summary 8-3
updating records 8-14

BILDSR routine:
calling sequence
changes to D-6
error messages
overview 14-24
when to use 14-13

14-24

14-24

BINARY files 3-4
Binary trees 1-5
Bit settings of flags 6-13
Block size, defining 15-2
BREAKI parameter 15-10
Breaks, disabling 15-10

Building:
a MIDAS file 3-1

a template with CREATK 2-1
14-2

a template with KXSCRE
concatenated keys 14-27
direct access files 3-29
variable-length records
3-24

Calling sequence, general
(FORTRAN) 6-18

Cautions on offline routines
14-14

CHAIN errors 10-10

Chained files, RPG 10-6
Changing:
a template 15-7
index block length
record length 15-7
secondary data size
subfile length 15-8

15-9

15-8

Clause:
ACCESS MODE 7-5
AT END 7-13
DATA RECORD 7-9
FILE STATUS 7-6

INDEX

3-18,

INVALID KEY 7-13

RECORD CONTAINS 7-9
RECORD KEY 7-5

SELECT 7-5
VALUE OF FILE-ID 7-9

Cleaning out:

indexes 12-8
the data subfile 12-8
Cleanup utilities 13-8

CLOSE statement (COBOL) 7-1

Closing files:
in BASIC/WM 8-4
in CoBOL 7-1
in FORTRAN 6-4 , 6-7
INDEXED 7-1

CLOSMS routine:
calling sequence 6-7
ref. D-14

using 6-7, 13-4

COBOL interface:

access modes 7-5

adding records 7-25
CLOSE 7-1
current record 7-16

Data Division 7-8
DECLARATIVES 7-15
deleting records
direct access in
duplicates, reading
error-handling 7-13
FD entry 7-9

file organization 7-5
file position 7-15
FILE STATUS clause 7-6
introduction 7-1
key types 7-2
keyed reads 7-22
OPEN 7-5

opening files 7-4
overview 1-11
partial keys 7-19,
READ KEY statement
reading records
RELATIVE codes
restrictions
SELECT 7-5
sequential access
START 7-17

7-29
11-2
7-23

7-24
7-22

7-19

11-19
1-11, 7-2

7-29

status codes 7-7
terms 7-2

updating records
USE AFTER 7-14

WRITE statement

7-28
7-25

COBOL programs, loading 7-3

COBOL-type files 3-4

Codes returned by array 6-28

Codes, MIDAS, error A-l

Codes, status, INDEXED 7-7
Command files:
changes to
C CREATK
C FILL
C FORM C-1
C IMIDAS 13-6
C INSTALIMIDAS
CKBUILD 13-6
C KIDALB 13-6
C KIDDEL 123-6
C LCREATK 13-6
C LIST MIDAS 13-6
C MCLUP 13-6
C MIDAS 13-5,
C MINIT C-2
C MPACK 13-6
C MSHAR C-2
C NDA4 C-1
C NODA C-1
C NVKDALB 13-6
C REMAKE C-3,
C REVERT C-3,
C_SHAREMIDAS
C SPCR C-2
C VKDALB 13-6
MIDAS, list of
obsolete C-1

D-1
13-6
C-2

13-5

13-6

13-6
13-6
13-5

13-5

Common error messages A-6

Communications array (see Array,
MIDAS)
Complete array format 13-9

Concatenated keys, example
14-27

INDEX

Concepts, file access (FORTRAN)
6-10
Concepts, file system B-1
Concurrency (see Concurrent
Process Handling)
Concurrency errors in RPG 10-10
Concurrent process handling:
description 13-1
disabling 13-4
new method D-5
old methods 15-1¢, D-4
Condition handling (RELATIVE)
11-8

Conditions, PL/I 9-19

Converting error codes 14-35
Creating:
a direct access file 11-4
a Direct file (RPG) 1£-16
a KEYED SEQUENTIAL file 9-2
a keyed-index file 2-3
a MIDAS file 2-1
a MIDAS file from PL/I
an INDEXED file 7-2

an Indexed file 10-3

9-2

CREATK-defined files and PL/I

9-16

CREATK:
ADD option 2-12
alternatives to
changes to D-7
DATA option 2-12
dialog paths 2-2
direct access 11-4
enhancements D-7
example 2-7
EXTEND option 2-12,
extended options 15-1
extended options dialog
FILE option 2-12
HELP option 2-12
list of options 2-11
minimum options dialog
MODIFY option 2-12,
old file options 15-7

14-1

15-8

15-4

2-4
15-8

INDEX

option summary 12-1

PRINT option 2-12, 12-2
QUIT option 2-12

R/W lock setting 2-10
sample dialog 2-9

SIZE option 2-12, 12-5
USAGE option 2-12, 12-6
VERSION option 2-12, 12-8

Current index entry, tracking
13-9

Current record:
in BASIC/VM 8-5
in COBOL 7-16,
in FORTRAN 6-10
in PL/I 9-5

11-29

CUSTQMER file, description 2-7

C_INSTALIMIDAS D-1, 13-5,
D-14

C _LIST MIDAS D-2

C MIDAS D-1

C MIDAS command file 13-5

C_SHAREMIDAS 13-5

DAM files B-1

DAM files, multi-level B-4

Data Division requirements 7-8
Data entries, unlocking 6-52
DATA option (MPACK) 12-1¢

Data records, adding (see Adding
records)

Data records, unlocking 12-9
Data size, declaring 9-7

Data subfile:

definition 1-5, B-4
entries in 12-6
restructuring 12-1¢

DCL statement (PL/I) 9-4

Debugging tips 13-11

DECLARATIVES 7-15

Declaring data size (PL/I) 9-7
Default settings for:
block length 15-9
block size 15-2
BREAKI 15-10@
index levels 15-12
lock table 15-11
NOFUNS 15-12
NOLVLS 15-12
RECYLA 15-10
segment directory length
semaphore number 15-11
shared lock 15-11
shared lock segment
STSIZ 15-12
subfile size

15-9

15-11
15-10

DEFINE FILE statement 8-2

Defining keys 2-5

DELETS routine:
arguments for
calling sequence
direct access
example 6-60
flags for 6-59
overview 6-58

6-59
6-58
6-63

DELETE statement (COBOL) 7-29

DELETE statement (PL/I)
9-5

9-14,

DELETE statement, RELATIVE
11-23

Deleting:
a MIDAS file 4-1
an index subfile 1-8

duplicates (FORTRAN) 6-58
index entries 8-17
records in BASIC/VM 8-15
records in COBOL 7-29,
11-23

records in FORTRAN 6-58

records in PL/I 9-14

records in REG 10-9

secondary index entries 6-60

Demand files, RPG 10-6

Describing MIDAS files in RFG
19-2

Determining:
data size 12-3
entries in file 12-6
file type 12-2
index characteristics 12-2

Dialogs:

CREATK (ext. opts.) 15-4
CREATK (min. opts.) 2-4
CREATK, direct access 11-5
KBUILD 3-14

KIDDEL 4-2

MPACK 12-11, 12-9

Direct access files:
adding entries to 6-28,
10-4, 11-12
and KBUILD 3-29
creating 11-4
deleting entries in 6-63
see also Direct files
see also REIATIVE files

structure 11-1

Direct access:
adds 6-28

array format 6-12
array in ADD1$ 6-28
array in LOCKS 6-52
CREATK dialog 11-5
definition 1-8

in ADD1$ 6-28

in DELETS 6-63

in FINDS 6-38

in FORTRAN 11-3

in LOCKS 6-51

in REG 11-4
introduction 11-1
support of 11-2

Direct files 18-1 (see RPG
interface)

Directories, segment B-4

INDEX

Disabling concurrent process
handling 13-4

Double-length indexes 15-6

Duplicates:
deleting (FORTRAN) 6-58
reading (BASIC/VM) 8-13
reading (COBOL) 7-23
reading (FORTRAN) 6-46

Employee file, Fig. 1-1 1-4
Enhancements to CREATK D-7
Entries in data subfile 12-6

ERROPN routine:

calling sequence 14-34
error-handling 14-16
overview 14-33

Error code numbers, explained
A-1
Error codes, converting to text

14-35

Error detection, limitations on
13-11

Error handling:
in BASIC/VM 8-4
in COBOL 7-13
in PL/I 9-17
in RFG 10-10

Error logging 14-34

Error messages:
BILDSR 14-24
in RFG 10-16
KBUIILD 3-32
KIDDEL 4-5
KXSOIT A-7
KX$RFC A-1l, A-6
list of A-1
MPACK 12-17
PRIBILD 14-18
printing 14-35
SECBLD 14-21

Errors, concurrency 13-9
Estimating file size 12-5
Event sequence flag 14-14
Examining a template 12-2

Examples:
ADD1$ program (FIN) 6-25
CREATK 2-7
DELETS$ routine 6-60
Direct files (RPFG) 1¢-16,
19-25
Indexed files (REG) 18-11
KBUILD 3-17, 3-19, 3-24,
3-27
KBUILD and direct access 3-29
KBUILD, unsorted input 3-20
KIDDEL 4-2
MPACK 12-12
NEXT$ routine 6-43
offline routines 14-27
reading a file (FIN) 6-34
record layout 3-9
UPDATS routine 6-55
using FINDS 6-34

Existing files, PL/I access to
9-3

Existing programs, changing

EXTEND option (CREATK) D-7,
15-8

Extended options, CREATK 15-1
Extending the subfile 15-8
F77 interface 6-1

FD entry 7-9

File access concepts, FORTRAN
6-19

File access overview 5-1

File assignments, COBOL 7-4

INDEX

File attributes, PL/I 9-5

File Control requirements 7-4
File Description entry 7-9

File description specifications
19-3

File descriptor subfile B-4
File designation, RFG 10-4

File position:
in BASIC/VM = 8-4
in COBOL 7-15
in RFG 10-7

File read/write locks 13-2
FILE STATUS clause 7-6
File system concepts B-1

File-building alternatives 3-1,
3-2

FILERR routine:
calling sequence 14-35
description 14-35
overview 14-33

Files, SAM B-1

FILHER routine:
calling sequence 14-35
overview 14-33

FINDS routine:
arguments in 6-31
calling sequence 6-30
direct access 6-38
example 6-34
flags for 6-32
overview 6-30
retrieval options 6-37
the array in 6-38

Finding out:
data record size 12-3
entries in file 12-6
file rev. stamp 12-8

index statistics 12-2
key types 12-2
MIDAS rev. stamp 13-11

template info 12-2

Fixed-length records:
in KBUILD 3-7

in MIDAS files 2-2, 2-4
reading (PL/I) 9-16
FL$BIT flag 6-14, 6-32,
6-41
FLSKEY flag 6-14, 6-22,
6-32, 6-37, 6-50
6-41
6-41
FLSPRE flag 6-15, ©-32,
6-41
6-33, 6-41, 6-50
6-41
FLSUKY flag 6-15, 6-33,
6-37, 6-41
FLSULK flag 6-15
Flag listing:
for ADD1S 6-22
for DELET$ 6-59
for FINDS 6-32
for LOCKS 6-50
for NEXT$ 6-41
for UPDATS 6-54

Flag, event sequence 14-14

INDEX

Flags for KXSCRE 14-2, 14-5

Flags, MIDAS (see MIDAS flags)

Flags, MIDAS, precedence 6-16

Format, communications arrau
13-9

Format, communications array
6-10

Formatting input files 3-6

FORTAN interface:
unlocking records 6-52
FORTRAN interface:
SINSERT files 6-12
background concepts 6-2
closing files 6-4

current record in 6-10
DELETS example 6-60
deleting entries 6-58
direct access in 11-3

file access concepts 6-18
general calling sequence
introduction 6-1

list of subroutines 6-3
NEXT$ routine 6-39
opening files 6-4

6-18

partial keys in 6-36
reading files 6-29
record locking 6-1@

restrictions 1-12

special requirements 6-2

UPDATS example 6-55
updates in 6-48
user tasks 6-17

FORTRAN programs, loading 6-1

FORTRAN subroutines, changes to
D-6

FORTRAN, versions supported 6-1
FINBIN files 3-4

Full options path, CREATK 2-3

FUTIL:
setting r/w locks 13-2
SR command 2-11, 13-2
7

INDEX

GDATAS routine:

calling sequence 6-47
flags for 6-47
overview 6-47

ref. 6-19, 6-29

General calling sequence
(FORTRAN) 6-18

Generating milestones 4-36
Handling concurrency error 13-9
Handling concurrent access 13-2
Hints on MIDAS use 1-1

Historical aspects of MIDAS D-1

I/0 routines, new D-14

IMIDAS utility 13-6

Incompatible interfaces 13-11
Increasing index size 15-6
Index block levels 15-3
Index block size, defining 15-2
Index block, description of
B_’4 r B—7
Index size, increasing 15-6
Index subfile, max. 1levels in
15-12
Index subfiles:
cleaning out 12-8
contents of 1-5
definition 1-3
deleting 1-8
entries in 1-5
restructuring 12-10
structure B-4, B-7
Indexed files 10-1 (see RIG
interface)
INDEXED SEQUENTIAL files:
closing 7-1
error handling 7-13
X -

opening 7-10
status codes 7-7

Indexes:
double-length
long 15-6
secondary, adding

15-6
15-7

INDLNT parameter A-7

Initializing MIDAS 13-5

Input file, sample 3-9

Input files:
multiple 3-11
rules for 3-6
sorted 3-12
sorted, using
unsorted, using

3-22
3-20
Insert files, FORTRAN 6-12

Install files, new D-14
Interactive data entry 3-3

Interface requirements, summary
2-1

Interfaces, incompatible 13-11
Interlude, R-mode 13-7
Internal lock, checking 13-12

Internal routines, changes to
D-12

Internal routines, new D-13
Interrupts, controlling 15-10
Introduction to MIDAS 1-1
INVALID KEY clause 7-13

Invalid MIDAS file, message A-7
IWRAP parameter 15-10

KSGETU (OPENMS key) 6-6

KSRDWR (OPENMS key)
KSREAD (OPENMS key)
KSWRIT (OPENM$ key)

KBUILD:
adding secondaries
changes to D-12
dialog 3-14
direct access 3-29
direct access file, example
3-29
error logging
error messages
examples 3-19
file types 3-2
file types, supported by
handling keys in 3-7
input file rules 3-6
input record format 3-7
introduction to 3-1
milestone logging 3-17
multiple input files 3-11
sample record layout 3-8
sorted input files 3-12
unsorted input files 3-20
using MIDAS data 3-27
using sorted input 3-22
variable-length records
3-24

3-13

3-17
3-32

Key entries, deleting 6-60

KEY option (PL/I)

Key searches, partial 6—-36

Key, definition 1-2
Keyed reads:
in COBOL
in FORTRAN

in PL/I
RELATIVE

7-22
6-29
9-10
11-2¢

Keyed-index:
access method
adds (FORTRAN) 6-19
array format 6-16
file, definition

1-8

1-3

INDEX

3-4

3-19,

KEYFROM option (PL/I) 9-6

Keys:
concatenated, building
defining 2-5
finding types of
for OPENM$S 6-5
in data record
in input record
not in data record
primary, definition
secondary, definition
secondary, updating
SRCH$S, TSRCSS 6-6
storing in record 9-8
types of 2-6

12-2

3-8
3-7
3-8
1-3
1-3
6-55

KEYTO option (PL/I) 9-9

KIDALB D-4

KIDDEL:

changes to
DELETE option
dialog 4-2
erroy messages
example 4-2
introduction to
ZERO option 4-1

D-10
4-1

A_r-
494=3

4-1

KPARAM file D-3, 13-6,
KXSCRE routine:

calling sequence
error codes 14-7

14-2

ref. D-13

KX$OIT messages A-7
KX$RFC routine:
calling sequence [4-9
error messages A-6
overview 14-6
pridef, secdef flags
ref. D-13

14-9

KXSTIM routine:
calling sequence
changes to D-13
description {4-36
overview 14-33

14-36

14-27

15-8

Language interfaces:
direct access in
limitations 1-11
list of 1-2
requirements
routines 5-3
summary 5-2

11-2

2-2

Levels, index block 15-3

Levels, maximum 15-12

LIB sub-ufd 13-5

Libraries, multiple 13-13

Library modifications 13-7
Library:
R-mode
V-mode

D-4
D-4
Life cycle, MIDAS 1-9
List of:

error messages

file operations
MIDAS flags 6-14

A-1
5-1

Loading:
a Direct file (RFG)
COBOL programs 7-3
FORTRAN programs 6-1
PL/I programs 9-2
records 10-9
RPG programs

1¢-17

19-2

LOCKS$ routine:
arguments for
calling sequence
direct access
flags for 6-50
keys in 6-51
overview 6-48
the array in
using flags in

6-49
6-48
6-51

6-51
6-51

Locked records:
in PL/I 9-15,
in RFG 10-19¢
on START 7-18
unlocking 12-9

9-20

INDEX

X -

Locking a file entry 6-48
Locking records:
in COBOL 7-16
in FORTRAN 6~10,
6-48

6—48 ’

Locks, read/write 2-10

Logging file, opening 14-34

Long indexes 15-6

LUSAGE option (CREATK) D-7

MSDACC (KXSCRE key) 14-2

MSNRIW (KXSCRE key) 14-2

MSNRNW (KXSCRE key) 14-2

Maintaining a MIDAS file

Maximum index levels 15-12
MCLUP:
automatic notify
changes to D-2
introduction 13-8
using 13-8

13-9

Methods, file-building
14-1

3'1 r

MIDAS array:
direct access
in FINDS 6-38
returned values 6-28
see also Array format

6-28

MIDAS file maintenance 12-1

MIDAS files:
accessing 1-8
adding records to
building 3-1
creating 2-1
deleting records from
key types in 2-6
logical view 1-6
populating 3-1

1-7

1-7

19

12-1

INDEX

MIDAS flags: Modes of processing (REG) 18-5
bit numbers of 6-14
list of 6-14 Modes of processing, REC 1£-5
names of 6-14
octal values of 6-14 MODIFY option (CREATK) D-7,
overview 6-13 15-8
priority of 6-16
Modifying:
MIDAS utilities, changes to D-6 a template 15-7
existing programs 13-4
MIDAS: MIDAS parameters 15-8
administration of 13-1 secondary data size 15-8
advanced topics 15-1
array format 13-9 MPACK:
background information B-1 dialog 12-11
basic terms 1-2 error messages 12-17
changes to D-1 examples 12-12
cleanup/recovery 13-8 functions 12-9
command files in 13-5 introduction 12-8
communications array 13-9 UNLOCK option 12-9
concurrency handling in 13-2 when to use it 12-8
current record handling 13-9
definition 1-1 MSEMAl parameter 13-7, 15-11
error codes A-l
flags parameter 6-13 Multi-level DAM files B-1,
FORTRAN interface o6-1 B-4
historical overview D-1
initializing 13-5 Multiple Index Data Access System
interfaces to 1-2 1-1
legal key types 2-6
modifying 15-8 Multiple input files 3-11
new routines in D-13 ‘
obsolete material in C-1 Multiple libraries 13-13
offline routines 14-1
overview 1-1 Multiple sort keys 3-12
sub-ufd's in 13-5
subroutines, list of 1-10 Networks:
the array 6-10 and concurrency 13-3
utilities, overview 1-8 special considerations 13-12
when to use 1-1 special libraries for 13-13
MIDAS>SYSTEM, files in 13-5 New:
file I/0 routines D-14
MIDASERR function (BASIC/VM) install files D-14
8-4 internal routines D-13
methods D-3
Milestones, generating 4-36 MIDAS routines D-13
Milestones, recording 3-17 NEXTS routine:
arguments for 6-4¢9
Minimum options, CREATK 2-3 array settings 6-42

calling sequence 6-39
example 6-43
flags for 6-41

X- 11

overview 6-39
sequential retrieval in 6-42

NOFUNS parameter 15-12

NOLVLS parameter 15-12

NTFYM$ routine:
calling sequence
overview 6-7
ref. D-14
using 6-9,

6-7

13-4

Obsolete command files C-1
Obsolete routines:
CLOSES C-3
FILSET C-2
KX$@1X C-2
KX$BWT C-2
KXSFCL C-2
OPENS$ Cc-3
PRIRAN C-2
SECRAN C-2
SYSINI Cc-2
OFFCOM file C-2
Offline routines:
changes to D-5
comparison 14-13
data entry with
error handling in
example 14-27
introduction
miscellaneous
restrictions on
sequence flags
some cautions
when to use

3-3
14-16

14-1
14-33
14-12
14-14
14-14
14-11

0ld concurrency handling 15-10

0ld file options (CREATK) 15-7
0ld stuff C-1

ON ERRCR statement 8-4
ONKEY function 9-18

OPEN statement (COBOL) 7-

INDEX

X -

OPEN statement (PL/I) 9-3
Opening a MIDAS file:
in BASIC/WM 8-2
in COBOL 7-4
in FORTRAN 6-4 - 6-10
in PL/TI 9-2
in REG 10-2
Opening an error/log file 14-34
OPENMS routine:
calling sequence
keys for 6-5
overview 6-5
using 13-4

6-6

Operations, file, RPG 10-6

ORGANIZATION clause 7-5
Organization of COBOL files 7-5

Other file-building methods
14-1
Other offline routines 14-33

Output files, variable-length
3-10

Output record length, specifying
3-10

Overview of MIDAS file access
5-1

Parameters, MIDAS, changing
15-8

PARM.K, changes to D-13
Partial keys:
access on 5-35
access on (BASIC/VM) 8-13
access on (COBOL) 7-24
access on (FORTRAN) 6-36

PL/I and CREATK-defined files
9-16

PL/I interface:
accessing existing files
ADD statement 9-6

9-3

12

creating a template 9-2
current record 9-5
debugging aids 9-18
deleting records 9-14
errors 9-17

file attributes 9-5
fixed-length records 9-16
I/0 concepts 9-4

keyed reads 9-10

locked records 9-15
ONKEY function 9-18
OPEN statement 9-3
opening files 9-2
overview 9-1

READ statement 9-9
record size, declaring 9-7
restrictions 1-12, 9-1
sequential reads 9-1¢
statement summary 9-4
updating records 9-12
WRITE statement 9-6

PL/I programs, loading 9-2
PMA interface restrictions 1-12
Populating files 3-1

POSITION statement (BASIC/VM)
8-5

Precedence, MIDAS flags, of
6-16

Previous entry, reading 6-46

PRIBLD routine:
calling sequence
changes to D-6
error messages
overview 14-16
when to use 14-12

14-17

14-18

Pridef array 14-2
Primary files, RBG 10-6

Primary key:
definition 1-3
eliminating MIDAS copy of
6-23
in RELATIVE files 11-2

X -

INDEX

PRIMENET users, impact on
13-4

13"3'

PRINT option (CREATK) 12-2

PRINT option, changes to D-10
Printing error messages 14-35
Printing error text 14-35
Priority order, flags 6-16

Process handling, concurrent
13-1

Processing modes, RPG 14-5
Program interrupt control 15-10
R-mode interlude D-4, 13-7

R-mode library D-4

R-mode library, changes to 13-7

Random deletes, REIATIVE 11-23
Random reads:

in BASIC/WM g8-12

in COBOL 7-22

in FORTRAN 6-29

in REG 1¢-8

Read errors in RFG 19-19

READ KEY option (BASIC/VM) 8-13
READ KEY statement (COBOL) 7-22
READ statement:

in BASIC/VM 8-10

in COBOL 7-22,
in PL/T 9-9

11-18

Read/Write locks:
charging 2-11
checking 13-12
default 2-10

13

Reading data subfile entries
6-29

Reading duplicates:
(BASIC/VM) 8-13
(COBOL) 7-23
(FORTRAN) 6-46

Reading records:
in BASIC/VM 8-10
in COBOL 7-22,
in FORTRAN 6-29
in INDEXED files 7-19
in PL/T 9-9
in RPG 16-5, 19-8, 19-8
sequentially 6-42

11-18

RECLNT parameter 15-3, 15-9

RECORD condition (PL/I) 9-19
Record description clause 7-10
RECORD KEY clause 7-5

RECORD KEYED SEQUENTIAL files
9-1

Record length, changing 15-7
Record numbers,use of 11-1
Record, definition 1-2

Recording errors in offline
routines 14-16

Records:
adding (BASIC/VM) 8-7
adding (COBOL) 7-25,
adding (PL/I) 9-6
adding (RPG) 10-8
deleting (BASIC/VM) 8-15
deleting (COBOL) 7-29,
11-23
deleting (PL/I) 9-15
deleting (REG) 19-9
loading (RPG) 18-9
locking (BASIC/VM) 8-5
locking (COBOL) 7-16
locking (FORTRAN) 6-10,
6-30
reading (BASIC/VM) 8-14
reading (COBOL) 7-19,

11-12

11-18

X -

INDEX

reading (PL/I) 9-9
reading (RPG) 10-8
unlocking 6-52, 12-9
updating (BASIC/VM) 8-14
updating (COBOL) 7-28,
11-21

updating (PL/I) 9-12
updating (REG) 10-9

Recycling parameter 15-10

RECYLA parameter 15-10
Redundant primary keys 6-23

RELATIVE access modes and
statements 11-9

RELATIVE files:

adding records 11-12
closing 11-12

deleting records 11-23
opening 11-12, 11-7

random record addition 11-16

reading by key 11-20

sequential record addition

11-13

status codes 11-10

updating records 11-21
REIATIVE KEY rules 11-7
RELATIVE KEY, defining 11-2
Releasing the lock 13-8
REMAKE utility C-3

REMOVE statement (BASIC/VM)
8-16

Reporting milestones 3-17

Requirements for existing
programs 6-4

Restrictions on offline routines
14-12

Restructuring index subfiles
12-19

14

INDEX

Retrieving previous entry 6-46 updating records 18-9
Returning full key value 6-37 RPEG programs, loading 1@-2
Returning key values (BASIC/VM) RPG-type files 3-4

8-13

Run-time error codes A-1
Rev. 17.6 changes to:

$INSERT files D-6 SAM files B-1
administrative tasks D-2
CREATK D-7 SAMEKEY option (BASIC/VM) 8-10
ERROPN D-12
FORTRAN subroutines D-6 Sample CREATK dialog 2-9
KBUILD D-12
KIDDEL D-10 Search indexes, changing 7-22
KPARAM D-3
KX$TIM D-13 Search keys 1-3
LUSAGE D-7
MCLUP D-2 Searches, on partial key 6-36
offline routines D-5
PARM.K D-13 SECBLD routine:
utilities D-6 calling sequence 14-20
changes to D-6
REVERT utility C-3 error messages 14-21
overview 14-20
REWIND statement 8-7 when to use 14-13
REWRITE KEY option 9-13 Secdef array 14-2
REWRITE statement (COBOL) 7-28, Secondary data C-4
11-21
Secondary data size, modifying
REWRITE statement (PL/I) 9-12 15-8
Routines, MIDAS 14-1 Secondary files, REG 18-6
Routines, new D-13 Secondary index entries:
adding 6-23
RPG interface: adding (KBUILD) 3-13
adding records 1¢-5, 10-8 deleting 6-64, 8-16
deleting records 10-9
direct access in 10-4 Secondary indexes:
Direct file examples 10-16 adding 15-7
error handling 10-1¢ building 3-27
file descriptions 10-3 deleting 4-1
file designation 10-4
file position 10-7 Secondary key, definition 1-3
file types 10-4
Indexed file reads 10-8 SEGLNT parameter 15-9
Indexed file, example 18-11
introduction 10-1 Segment directories B-4

reading records 10-7
restrictions 1-12, 16-1
terms 19-1

X - 15

Segment directory length 15-9

Segment directory, definition
1-3

Segment subfile size 15-10

SELECT statement 7-5

Semaphore checking 13-12

Semaphore number, default 15-11

Semaphore wait list
13-3

13-2,

SEQ option (BASIC/VM) 8-10

Sequence flag 14-14
Sequential reads:

in BASIC/VM 8-11

in FORTRAN 6-29

in PL/I 9-10

on INDEXED files 7-29

on Indexed files (REG) 10-8

RELATIVE files 11-18

Sequential record addition
(CoBOL) 11-13

Setting file read/write locks
13-2

Shared lock:
function of 13-6
MIDAS 13-2
parameters 13-6
releasing 13-8
segment 15-11
setting 15-11

SHDSEG parameter 15-11

Simultaneous file access 13-1
Single-threading MIDAS 13-3
SIZE option (CREATK) 12-5

SIZE option, changes to D-10

X -

INDEX

Size, key, definingv‘ 2-6
SLSEG parameter 15-11
SLSEGH parameter 13-7
SLWORD parameter 13-7, 15-11
Sort keys, multiple 3-12
Sorted files, requirements 3-12
Sorted input files 3-12
SOURCE sub-ufd 13-5

Space reclamation, automatic
1-8

Space recovery 12-8
Specifications, RPG 16-3
Splitting index blocks 15-3
SR subcommand, FUTIL 2-11

SRCHSS routine (PRIMOS) 6-4,
6-5

START and locked records 7-18
START statement (COBOL) 7-17
Starting up MIDAS 13-5

Status codes:
INDEXED 7-6
RELATIVE 11-10

Storing keys in record 3-7,
9-8
STSIZ parameter 15-12
Subfile:
data, definition 1-5
extending 15-8
file descriptor B-4
index, definition 1-3

Subroutine list, FORTRAN
6-16, 6-3

1-14,

16

Summary of:

Rtements 8-3
omarges to MIDAS D-1
CREATK features 2-12
file access operations
file-building methods
FORTRAN subroutines
6-3
interface requirements
interface routines 5-3
interface statements 5-3
PL/I statements 9-5

RPG operations 10-6

5-3
3-2
6-16,

2-2

SYSCOM>ERRD.F file 14-12

SYSCOM>KEYS.F file
14-12

6_13’

SYSCOM>OFFCOM file D-6

SYSCOM>PARM.K file
14-12

6-12,

System, MIDAS, the 1-9

Tasks, administrative 13-1

Template:
changing
creating
definition
examining
initializing

15-7
1-7,
1-5
12-2
1-5

2-1

Terms and concepts 1-2

TEXT files 3-4

The MIDAS archives D-1

The MIDAS system, overview 1-9

Tips for the administrator
13-11
Tracing the current record 13-9

TSRCS$S routine (PRIMOS)
6-5

6—4'

Types, file, KBUILD 3-2

X -

INDEX

Types, keys, defining 2-6

UFD MIDAS, listing of 13-5

UMODES utility C-4

UNDEFINEDFILE condition

UNLOCK option (MPACK) 12-9

Unlocking records 6-52,

Unsorted input, using 3-20

UPDATS routine:
arguments for
array in 6-52
calling sequence
example 6-55
flags for 6-54
overview 6-52

6-53

6-52

UPDATE statement (BASIC/VM)
8-14

Updating records:

in BASIC/WM 8-14

in COBOL 7-28

in FORTRAN 6-48

in PL/T 9-12

in REG 10-9

RELATIVE 11-29
Updating secondary keys
USAGE option (CREATK) 12-6
USE AFTER statement 7-14
User tasks in FORTRAN 6-17
Utilities, MIDAS, overview
V-mode library D-4
Values for sequence flag
Variable-length records:

building 3-10

example 3-24
in KBUILD 3-10

17

9-20

6-55

14-15

INDEX

VERSION option (CREATK) 12-8,
13-11

Versions of FORTRAN supported
6-1

VKDALB D-4
Wait list 13-2
Wait list, notifying the 13-9

WRITE statement (COBOL) 7-25,
11-13

WRITE statement (PL/I) 9-6

Zeroing a MIDAS file 4-1

X - 18

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	02-00
	02-01
	02-02
	02-02a
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-10a
	02-11
	02-12
	02-13
	02-13a
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	04-01
	04-02
	04-03
	04-04
	04-05
	05-00
	05-01
	05-02
	05-03
	05-04
	05-04a
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-20a
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-30a
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-46a
	06-47
	06-48
	06-48a
	06-49
	06-50
	06-51
	06-52
	06-52a
	06-53
	06-54
	06-54a
	06-55
	06-56
	06-57
	06-58
	06-58a
	06-59
	06-60
	06-61
	06-62
	06-63
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-18a
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-14a
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	12-00
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	13-01
	13-02
	13-03
	13-04
	13-04a
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	14-00
	14-01
	14-02
	14-02a
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-10a
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	14-19
	14-20
	14-21
	14-22
	14-23
	14-24
	14-25
	14-26
	14-27
	14-28
	14-29
	14-30
	14-31
	14-32
	14-33
	14-34
	14-34a
	14-35
	14-36
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-08a
	15-09
	15-10
	15-11
	15-12
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	X-00
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18

