PRIMOS SUBROUTINES
REFERENCE GUIDE
PDR3621

MAN 3251-001

PRIMOS SUBROUTINES
PDR3621
Revision A

This guide documents the operation of the Prime Computer and its
supporting systems and utilities as implemented at Master Disk Revision
Level 17 (Rev., 17).

PRIML

PRIME Computer, Inc.
5¢0¢ 01d Connecticut Path
Framingham, Massachusetts 01791

ACKNONLEDGEMENTS

We wish to thank the members of the documentation team and also the
non-team members, both customer and Prime, who contributed to and
reviewed this book.

Copyright © 1980 by
Prime Computer, Incorporated
53¢ 01d Connecticut Path
Framingham, Massachusetts 01741

The information in this document is subject to change without notice
anmd should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET and THE PROGRAMMER'S COMPANION are trademarks of Prime
Computer, Inc.

First Printing January 19380

All correspondence on swygested charges to this document should be
directed to:

Katherine S. Abrams

Technical Publications Department
Prime Computer, Inc.

50@ 0l1d Connecticut Path
Framingham, Massachusetts @1701

ii

PDR3621 |

CONTENTS

PART I - OVERVIEW
1 INTRODUCTION TO MANUAL

Docunent Organization 1-1
Conventions 1-1

2 INTRODUCTION TO SUBROUTINES

Location of Libraries 2-1

File Handling Subroutines 2-3

Input OQutput (I/0) Subroutines 2-4
FORTRAN Library 2-5

Matrix Library 2-5

Applications Library 2-5

Sort Libraries 2-6

Synchronous and Asynchronous Controllers
Real-Time Subroutines 2-6

Calling Sequence Conventions 2-6

3 FILE MANAGEMENT SYSTEM CONCEPTS

Purpose of File System 3-1

Using the File System 3-1

File Types 3-4

File Directories 3-10

Disk Structures 3-12

File Access 3-12

PRIMOS-Level User Interaction 3-15

PART IT - PRIMOS SUBROUTINES

4 MANIPUIATION SUBROUTINES

Introduction 4-1
Subroutine Descriptions 4-3

5 MISCELLANEOUS PRIMOS SUBROUTINES
6 SAMPLE PROGRAMS
Writing a SaM File 6-1
Writing a DAM File 6-2

Reading a SAM or DAM File 6-3
Creating a Segment Directory 6-6

Reading a Logical Record from a File 6-8
6-12

Reading a File in a Segment Directory

iii

2-6

CONTENTS

January 1980

CONTENTS PDR3621

PART III MATH AND APPLICATION LIBRARY SUBROUTINES

7 FORTRAN STANDARD FUNCTIONS

Introduction 7-1

Function References 7-1

Single Argument Scientific Functions 7-2
FORTRAN 77 Functions 7-2

8 LOGICAL FUNCTIONS
9 ARITHMETIC OPERATIONS

Single Argument Functions 9-4
Two-Argumnent Functions 9-4

10 MATHIB (FORTRAN MATRIX SUBROUTINES)

Scope of MATHLB 10-1
Subroutine Conventions 10-1

11 APPLICATION LIBRARY (APPLIB)

General Description 11-1

APPLIB Routines 11-1

Naming Conventions 11-3

Library Implementation and Policies 11-4

String Manipulation Routines - Detailed Description
User Query Routines - Detailed Description 11-16
System Information Routines - Detailed Description
Conversion Routines - Detailed Description 11-22
File System Routines - Detailed Description 11-26
Parsing Routine - Detailed Description 11-39
APPLIB Summary and Keys 11-45

SYSCOM > ASKEYS 11-48

12 SORT LIBRARIES

Sort Subroutines Overview 12-1

SRTLIB (R-MODE) - Subroutine Descriptions 12-4
VSRTLI (V-MODE) - Subroutine Descriptions 12-6
SETUSS, RLSESS, CMBNSS, RTRNSS, CLNUSS 12-13
Sample User Input Procedure 12-17

MSORTS - Subroutine Descriptions 12-20

PART IV INPUT/QUTPUT LIBRARY SUBROUTINES
13 INTRODUCTION TO IOCS
Ooverview of IOCS 13-1

Temporary Device Assigmment 13-5
CONIOC 13-6

January 1980 iv

11-4

11-19

14

15

16

17

18

19

21

22

PDR3621 CONTENTS

I/0 SUBROUTINES
Error Handling for I/0 Subroutines 14-4
DEVICE INDEPENDENT DRIVERS

Data Formats 15-4
Subroutines for Device-Independent Drivers 15-5

DEVICE DEPENDENT DRIVERS

Subroutine Calling Sequence 16-1
DISK SUBROUTINES

Subroutine Description 17-1
USER TERMINAL SUBROUTINES

Calling Sequence 18-1
Keyboard Terminals and Paper Tape Subroutines 18-2

PERIPHERAL DEVICES
Line Printer Subroutines 19-2
Printer/Plotters 19-7
Magnetic Tapes 19-21
PART V — COMMUNICATION CONTROLLERS AND REAL-TIME SUBROUTINES

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

Synchronous Controllers 20-1
Asynchronous Controllers 20-16

REAL-TIME AND SYNCHRONIZATION SUBROUTINES

Real-Time and Inter User Communication Facilities 21-1
User Semaphores and Timers 21~1

PART VI - LIBRARY MANAGEMENT
LIBRARY MANAGEMENT
LIBEDB 22-1

EDB 22-1
EXAMPLES 22-5

v January 1980

CONTENTS PDR3621

PART VII - CONDITION MECHANISM SUBROUTINES
23 CONDITION MECHANISM SUBROUTINES
Introduction 23-1
Creating and Using On-Units 23-1
Condition Mechanism Subroutines 23-4
System-Defined Conditions 23-10
Crawlout Mechanism 23-19

Recursive Mode Software 23-19
Data Structure Formats 23-21

APPENDICES
A FORTRAN INTERNAL SUBROUTINES
Internal Subroutines A-1
Intrinsic Functions A-4
Floating Point Exceptions A-4

B INDICATION AND CONTROL SUBROUTINES

Overview B-1
Subroutine Descriptions B-1

C SVC INFORMATION
SVC's Called by PRIMOS Subroutines C-1
SVC Interface for I-0 Calls C-3
Operating System Response to SVWC C-6
D KEYS (SYSCOM > KEYS.F)
E INTERNAL FILE FORMATS
DSKRAT Formats E-1
Record Header Formats E-2
UFD Header and Entry Formats E-3
Segment Directory Formats E-5
DAM File Organization E-6
F OBSOLETE FILE SYSTEM SUBROUTINES
G ERROR MESSAGES AND CODES (SYSCOM ERRD.F)
Introduction G-1
New File System Error Handling Conventions G-3
Standard System Error Code Definitions G-4
Error Handling Routines G-5
INDEX

Index to Subroutine Names

January 1984 vi

Part I
Overview

PDR3621 LIBRARY DESCRIPTIONS

SECTION 1

INTRODUCTION

This book describes the subroutines (including the operating system

subroutines) that can be called from PRIME's high-level languages or
the Prime Macro Assembler (PMA).

Procedures relating to building and modifying 1libraries and changing
Input/Output Control System device assignments are included for user
convenience. An overview of PRIMOS file system concepts and usage is
in Section 3.

Libraries with subroutines that are useful for programmers are
discussed in this guide. Other libraries, such as the COBOL (VCOBLB),
REG (RPGLIB), or PL/I (PL1GLB) libraries contain subroutines which are
used exclusively by the appropriate compiler; the use of these
libraries is discussed in the corresponding language user guide. (See
Section 2 for a more detailed discussion).

DOCUMENT ORGANTIZATION

This manual is divided into six parts which are described in the Table
of Contents. ’

Overview

PRIMOS Subroutines

Math and Applications Library Subroutines
Input/Output Library Subroutines

Communication and Real-Time Library Subroutines
. Library Management

YLD W N
L]

CONVENTIONS
The following conventions are used in this guide.

Filename Conventions

filename source file
B filename Binary (object) file; compiler convention
L _filename Listing file; compiler convention

M filename Map file
*filename Saved executable memory image (R-mode)

Ffilename Saved executable segmented runfile (V-mode)

1 - 1 January 1980

SECTION 1 PDR3621

C_filename Command file
PH filename Phantom command input file.
O_filename Command output file
Filenames may be up to 32 characters long, the first character of which
must be alphabetic (A-Z). Filenames can be composed only of the
following characters: A-%Z, #-9, _# $ & - * ., and /.

Note

On some devices, underline () may print as back
arrow (<-).

Terminal Functions

(CR) or CR Carriage return
Character erase; deletes last character in current line
? Line kill; deletes all characters in current line

XXX Escape key for entry of non-printing character with
ASCII code xxx

REV. A 1 - 2

PDR3621 INTRODUCTION TO SUBROUTINES

SECTION 2

INTRODUCTION TO SUBROUTINES

The subroutines described in this guide include PRIMOS System

subroutines, Application Library subroutines and FORTRAN Mathematical
subroutines. In addition to the standard FORTRAN math functions,

Prime's library includes many other subroutines which can simplify

high-level language programming. PMA programmers can make explicit use
of the many low-level math and input/output subroutines that primarily

support the 1language translators, but high-level language programmers
will not normally need to call any of these low-level subroutines,

LOCATION OF LIBRARIES

The standard FORTRAN library subroutines for PRIMOS are contained in
the files FINLIB (R mode) and PFINLB and IFINLB (V mode) in UFD=LIB.

To get a list of all the libraries in the UFD LIB, use the commands:

ATTACH LIB
LISTF

To find the names of all the subroutines in any individual library, use
the commands:

ATTACH LIB
EDB library
FIND ALL
QUIT -

Shared FORTRAN, COBOL, FORMS, and MIDAS libraries may be installed at
system startup time. Note that Rev. 15 or Rev. 16 shared libraries
will not work with Rev. 17 PRIMOS and Rev. 17 shared libraries will

not work with earlier versions of PRIMOS. For more information refer
to the System Administrator's Guide.

A cross-reference of all subroutines described in this guide appears at
the conclusion of the index.

The libraries described in this manual are:

Library R mode V mode

Applications APPLIB VAPPLB

Fortran and FTNLIB PFTNLB
operating system IFTNLB

In-memory sorts MSORTS

Matrix MATHLB

2 - 1 January 1980

SECTION 2 PDR3621

Sort SRTLIB VSRTLI
Spool SPOOLS VSPO0S

There are other libraries not described in this manual. They are:

Library R mode V mode
Block device BDVLIB
interface
COBOL ~ COBLIB VCOBLB
COBKID *
FORMS RF'ORMS VFORMS
MIDAS KIDALB VKDALB
PL/T PL1GLB
PRIMENET WETLB
RPG RPGLIB
RPGKID *
Unimplemented UII
Instruction
Interrupt

* if MIDAS files are used

The subroutines in some of these libraries, such as PRIMENET, The Block
Device Interface and MIDAS are discussed in other manuals. The calls
to subroutines in other libraries, such as RPG, are generated
automatically by compilers, etc., The details need never concern the
programmer.

Note

At Rev, 17 of PRIMOS, the FORTRAN, MIDAS, COBOL and FORMS
libraries and the UII package are assumed to be shared.

REV. A 2 - 2

PDR3621 INTRODUCTION TO SUBROUTINES

FILE-HANDLING SUBROUTINES

All file handling is done by a collection of special subroutines
(Section 4), some internal to PRIMOS, and others available as library
routines. These routines are used in common by PRIMOS and all Prime
system software for simplified and uniform file handling. They can
also be called from user programs. PRIMOS file handling subroutines
are described in Section 4.

All the file handling subroutines called by the user are loaded when
the FORTRAN library is loaded. Most of these subroutines are interlude
subroutines which issue supervisor calls to PRIMOS in R-mode. Many
file-handling subroutines are direct entrance calls to PRIMOS in
V-mode. The appropriate subroutine in PRIMOS address space then
executes the appropriate file operation.

File Handling in User Programs

The file-handling subroutines simplify communication between the PRIMOS
file structure and user programs. In FORTRAN programs, for example,
the symbolic device unit numbers in formatted READ and WRITE statements
can be associated with PRIMOS file units. The following default
assignments are set up by the compiler:

FORTRAN Unit (u) File Unit (Funit)

5 1
6 2
7 3
8 4
9 5
16 6
11 7
12 8
13 9
14 10
15 11
16 12
17 13
18 14
19 15
20 16

Example: to write a record to file Unit 1 (FORTRAN Unit 5), the user
could enter the command OPEN filename 1 2. The OPEN command associates
the file Filename with the file unit 1 and opens the file for writing
(code 2). During subsequent execution of a program containing a
formatted WRITE statement such as:

WRITE (5, 19) LINE

the contents of array LINE are written to the FORTRAN Unit 5 (File Unit

2 - 3 January 1980

SECTION 2 PDR3621

1), according to FORMAT statement 1.

At the program level, a filename and funit number can be associated by
the PRIMOS subroutine SRCHS, as in:

CALL SRCHSS (KSWRIT, 'TEXT', 4, 1, type, code)
See Section 4 for a more thorough discussion of SRCHSS.
File Input/Output: With the aid of the PRIMOS subroutine PRWF$S, the

user can bypass formatted FORTRAN I/0 and write directly from memory
arrays to the file system, as in:

CALL PRWFS$$S (KSREAD, 1, LOC(text), 36, 000000, words, code)

This subroutine reads 36 words from the file associated with funit 1 to
memory array text. words and code are returned values (words - number
of words transferred, code - error code). 000008 is a 32-bit constant
g.

At the applications 1level, the Applications Library for file
manipulation is also available for use.

INPUT OUTPUT (I/O) SUBROUTINES

The I/0 subroutines are those relating to data transfers and device
operations. The subroutines are managed by the Input/Output Control
System (IOCS). The IOCS subroutines perform input/output between the
Prime computer and the disks, terminals and peripheral devices within
the system configuration. The I/O subroutines include:

® Device Independent Drivers which allow the user to maintain
device independence by routing an I/O request to the independent
driver (See Section 15).

e Device Dependent subroutines for non-data transferring functions
required by I/0 devices (See Section 16).

e File system subroutines which perform file system input/output
operations (See Section 17).

e User Terminal subroutines which transfer data between a user
terminal or ASR Reader/Punch and memory (See Section 18).

® Peripheral Device routines include routines that control 1line
printers, drive a printer/plotter, drive serial and parallel
card readers and drive 7-track and 9-track tapes (See Section
19).

REV. A 2 - 4

PDR3621 INTRODUCTION TO SUBROUTINES

FORTRAN LIBRARY

The FORTRAN Library File contains FORTRAN function subroutines and Math
Subroutines.

@ The FORTRAN function Library computational subroutines include
the ANSI-standard functions. (See Section 7 for a description
of these functions).

@ Arithmetic subroutine calls are generated by the FORTRAN
compiler when certain operations are specified in the FORTRAN
program. These routines perform arithmetic operations on single
precision integers, single and double-precision floating point
and complex numbers. (See Section 9).

e Bit manipulation functions are provided by the FORTRAN compiler.
In some cases the compiler will generate in-line code for these
functions. However, in general, the 1library subroutine is
needed. (See Section 8 for a description of these functions).

MATRIX LIBRARY
MATHIB (FORTRAN Matrix Subroutines)) contains subroutines to perform
matrix operations, solve systems of simultaneous linear equations and

generate permutations and combinations of elements. (See Section 10
for the scope and use of this library).

APPLICATIONS LIBRARY
The Application Library (APPLIB and VAPPLB) provides users with an
easy-to-use library of service routines. They range from the very
simple, which do little more that call a lower level routine, to those
that are fairly complex because of the function desired. This library
provides relatively high-level functions such as:

e String handling routines

e User query routines.

e System information routines.

® Mathematical routines

e Conversion routines

e File system routines.

® Parsing routines.

2 - 5 January 1980

SECTION 2 PDR3621

SORT LIBRARIES

There are three libraries containing sort subroutines:

® SRTLIB subroutines are used to perform file sorting operations.
@ VSRILI is the V-Mode version of SRTLIB.

@ MSORTS library contains several in-memory sort subroutines and a
binary search subroutine.

SYNCHRONOUS AND ASYNCHRONOUS CONTROLLERS

These subroutines perform the moving of raw data for assigned AMIC or
SMIC lines. (Section 28).

REAL-TIME SUBROUTINES

PRIMOS supports user applications that have real-time requirements or
the need to synchronize execution with other user programs. This
support is a set of subroutines that provide access to Prime's
semaphore primitives and to internal timing facilities. (See Section
21).

CALLING SEQUENCE CONVENTIONS

FORTRAN - Assembly Language Interface: The form of a call statement in
FORTRAN is:

CALL name
CALL name (argument-1)
CALL name (argument-1, argument-2,...,argument-n)

where name is the subroutine name and argument-1,...,argument-n is a
list of arguments. FORTRAN translates the CALL statement into a JST or
PCL in the same way as the PMA CALL pseudo-operation. When arguments
are specified,the compiler generates a pointer in the the same way as a
PMA DAC statement for S-mode or R-mode code, or an AP statement for
V-mode or I-mode code. Figure 2-1 illustrates three calling sequences
for S-mode or R-mode: with no arguments, with one argument, and with
three arguments. The associated code is also presented. Table 2-2
illustrates the corresponding calling sequences for V-mode or I-mode.

REV. A 2 - 6

PDR3621

Main Program

No Arguments One Argument
CALL SUBX CALL SUBX
DAC A
Subroutine
ENT SUBX ENT SUBX
REL REL
SUBX DAC ** SUBX DAC **
first instruction CALL FSAT
. DEC 1
. APTR DAC**
. ' first instr.
JMP SUBX,*
JMP SUBX,*
Note: CALL SUBX is equivalent to EXT SUBX

JST SUBX

Figure 2-1.

INTRODUCTION TO SUBROUTINES

Two or More Arguments

SUBX

APTR
BPIR
CPTIR

nPTR

CALL SUBX
DAC A
DAC B
DAC C

DAC 4

ENT SUBX
REL

DAC **
CALL FSAT
DEC n
DAC * %k
DAC **
DAC **

DAC **
first instruction

JMP SUBX,*

S-mode and R-mode Subroutine CALL Conventions

January 1984

SECTION 2 PDR3621

Main Program

No Arguments One Argument Two or More Arguments
CALL SUBX CALL SUBX CALL SUBX
AP A,SL AP A,S
AP B,S
AP c,s
AP n,SL
Subroutine
ENT SUBX,SBX1 ENT SUBX, SBX1 ENT SUBX,SBX1
SEG SEG SEG
SUBX first instruction SUBX ARGT SUBX ARGT
first instruction first instruction
PRTN PRTN PRTN
LINK
SBX1 ECB SUBX DYNM APTR(3) DYNM APTR(3)
LINK DYNM BPTR(3)
SBX1 ECB SUBX, ,APTR, 1 DYNM CPTR(3)
DYNM DPTR (3)
DYNM nPTR(3)
LINK

S5BX1 ECB SUBX, ,APTR,n

Note: CALL SUBX is equivalent to EXT SUBX
PCL SUBX

Figure 2-2. V-mode and I-mode Subroutine CALL Conventions

REV. A 2 - 8

PDR3621 FMS CONCEPTS

SECTION 3

FILE MANAGEMENT SYSTEM CONCEPTS

PURPOSE OF FILE SYSTEM

The purpose of the file system is to simplify the manipulation of large
quantities of data using the computer. The major goals of the file
system are:

1. Automatic (not manual) allocation of disk storage space for
files

-

2. Referencing files by name
3. Clustering related information together

To accomplish the first goal, PRIMOS keeps a special file on each disk
to record the available space on that disk. PRIMOS uses this
information to allocate disk space automatically, and the average user
need not concern himself with the allocation process, other than to
know that it works.

Referencing files by name means selecting the desired file by giving
the File Management System string of alphanumeric characters. The file
system reserves one special file as a directory; it contains the names
of other files and their locations on the disk. The system can find
this Master File Directory (MFD) readily because both its name and its
location are always the same.

The third goal is achieved in two ways. The first is to have many file
directories; this allows like files to have their names and locations
saved in one file directory. The second way is to allow nested file
directories (i.e., a file directory may contain names not only of
files, but also of other file directories.) Thus, each user may divide
his files into appropriate groups and subgroups as he sees fit.

File directories also provide some degree of access protection to the
files contained within them, because a password may be associated with
each file directory. To examine the files in a directory, the user
must first supply the password for that directory.

USING THE FILE SYSTEM

To access files, the user must be attached to some file directory. A
file directory is a file that contains the names of other files on the
disk and the location on the disk of these files. A file directory may
contain the names of other file directories. To access files stored in
a directory, the user must give the password for that directory. A

3 - 1 January 1980

SECTION 3 ' PDR3621

user is properly attached when the file system has been supplied with
the proper file directory name and password, and it has found and saved
the name and location of the file directory. It can therefore find and
operate on all files contained in that file directory.

File Operations

The major operations on files are: 1initialization for access (open);
access; shutdown and resource deallocations (close); and deletion.

File Units

A disk file which is opened for reading and/or writing has a set of
associated pointers and status indicators. They comprise a file unit,
and serve as an access port for the exchange of data between the disk
file and the active program. One file at a time can be assigned to
each unit. The files may be open on several different 1logical disk
units at once. There are 128 file units available per user (16 under
PRIMOS III, 15 under PRIMOS II). Units 1 thru 126 may be used for any
purpose. Unit @ is reserved for the system and unit 127 is reserved
for the COMOUTPUT File.

Opening a File

A file may be opened for reading only, for writing only, or for both
reading and writing. If a file is opened for reading only, it may be
read, but it cannot be changed.

The operation of opening a file does the following :

1. Searches the file directory to see if the filename requested is
there

2. Sets up tables and initializes buffers in the operating system

3. Defines a pseudonym for the file. This pseudonym is called the
file unit number, and is the only name used for transfer of
data to and from the file.

If a file is opened for writing only, or for reading and writing, it
may be changed; if the filename is not found in the directory, the
filename is added to the file directory, and a new file is created.
When a new file is created at the time of opening, no information is
contained in the file.

Using an Open File

Once a file has been opened, a file pointer is associated with the
file. The file pointer indicates the next binary word to be accessed.

REV. A 3 - 2

PDR3621 FMS CONCEPTS

To understand how the file pointer works, imagine that the words in a
file are serially numbered from @#. The file pointer is then the number
of the next word to be accessed in a file.

Use of the Open and Close Commands

Various ways are provided to associate a specific filename (Filename)
with a PRIMOS file unit number. One method is the OPEN command.
Example:

OPEN filename funit key

Where filename is the name of a file listed in the UFD to which the
user is currently attached; funit is a PRIMOS file unit number
(1-126) , and key is 1 for reading, 2 for writing, 3 for reading and
writing, etc.

From the terminal, the user can open files with the OPEN command, and
can close them with the CLOSE command. The OPEN command allows a user
to assign a file to a unit and specify the activity - reading, writing,
or both. For complete descriptions of commands, refer to the PRIMOS
Commands Reference Guide (FDR3148). File units 1 to 126 (1-15 under
PRIMOS II) may be specified by the user.

Unit 16 is reserved for system use under PRIMOS II.

When the user is communicating with the file structure through one of
the standard Prime translator or utility programs, files are referred
to by name only. PRIMOS, or the program itself, handles the details of
opening or closing files and assigning file units. For example, the
user can enter an external command such as ED FILEl, which loads and
starts the text editor and takes care of the details of assigning the
file FILEl to an available unit for reading or writing.

Because open—for-write files are subject to alteration (deliberate or
accidental), the user must keep files closed except when they are being
accessed. Open files absorb system resources and may also make these
opened files unavailable to other users. The CLOSE ALL command returns
all open file units to a closed and initialized state (except the
command output file). When control returns to PRIMOS via _ an _error
condition, files are not closed.

On an open file, information may be read from the file starting at the
file pointer into high-speed memory, or information may be written to
the file starting at the file pointer.

Access and File Pointer

When a file is accessed, the file pointer is incremented once for each
binary word accessed.

3 - 3 ' January 1984

SECTION 3 PDR3621

Positioning a File

The file pointer may also be moved backward and forward within a file
without moving any data. This is called positioning a file. The value
of a file pointer is called the position of the file. Positioning a
file to its beginning is often called rewinding a file.

Truncation of a File

It is possible to shorten a file by truncating it. When a file is
truncated, the part of the file that is located at or beyond the file
pointer is eliminated from the file. If the file pointer is positioned
at the beginning of the file, all of the information in the file 1is
removed but the filename remains in the file directory.

/
Closing a File

A file that has been opened may be closed. The file unit number
(pseudonym) and the corresponding table areas in the operating system
are "cleaned up" and released for reuse.

Deleting a File

A deleted file has its filename removed from the file directory, and
all of the disk memory that the file occupied is released for use by
other files.

Write-Protected Disks

Using the file management system, it is possible to run with
WRITE-PROTECTED disks.

FILE TYPES

A disk storage medium is composed of many separate blocks of data
recording space (disk records or sectors). How these blocks are put
together to make a file can greatly affect the efficiency of
positioning. Because of this, the file system has two different ways
of linking physical disk records together to form a file. The SAM
(Sequential Access Method), results in more compact storage on the disk
and requires less high-speed memory for efficient operation, but is
much slower for repeated random positioning over a file. The DAM
(Direct Access Method), results in quicker positioning over a file, but
requires more disk space and more high-speed memory. SAM and DAM files
are functionally equivalent in all other respects. The structural
differences between these two file types are transparent to the user.

REV. A 3 - 4

PDR3621 FMS CONCEPTS

SAM Files

A SAM file is the basic way of structuring disk records into an ordered
set; (i.e., a threaded 1list of physical disk records.) See Figure
3-1 .

BEGINNING
RECORD

Figure 3-1. SAM File Structure

A SAM file is a collection of disk records chained together by forward
and backward pointers to and from each record (See Appendix E). Each
record in a SAM file (or any file) contains a pointer to the beginning
record address (BRA) of the file. The first record has a pointer to
the directory in which this file is an entry (father pointer). The
file system maintains the record headers and is responsible for the
structure of the records on the disk.

3 - 5 January 1980

SECTION 3 PDR3621

DAM Files

DAM (direct access method) file organization uses the SAM file method
of making an ordered set; a special technique is used to rapidly
access the i'th data record.

1. Logical file record @ of a DAM file is reserved for use by the
system. No user data is ever written in this record which is
always the top level index.

2. The top level index is always one record long (exactly). If
the file is short, the record address pointers point to records
containing user data. Otherwise, the pointers point to records
containing a lower level index. See Figure 3-2.

A DAM file index can exceed 512 entries on a storage module (220
entries for other devices). A multi-level index is maintained so that
any record in the file can be directly accessed. (See Section 6 for
DAM file creation example).

Figure 3-3 shows a typical relationship of DAM files within the PRIMOS
file hierarchy.

REV. A 3 - 6

PDR3621 FMS CONCEPTS

RECORD
HEADER

413

425

450

451

1230 —_—1 439 r 2 y 1 y O

b —— — — ——

Figure 3-2 DAM File Structure

3 - 7 January 1980

SECTION 3

MFD

DSKRAT O

ALPHA O+

BETA O
UFD
BETA

Figure 3-3.

REV. 0@

PDR 3621
DSKRAT A1
UFD
ALPHA A2
A1
A2
B
o1 —
B SEG B SEG (1)
[. BSEG
1 O4—
2 O N
3 O
B SEG (2)
4 O——\
J
L B SEG (4)
L L B SEG (3)
//,__———»
B SEG (4) 2 O
IN ANOTHER "
SEGMENT 3 O’/_.
DIRECTORY s O

Hypothetical PRIMOS File Hierarchy with SAM and DAM

File Structures

PDR3621 FMS CONCEPTS

Record Formats

All files on PRIMOS disks are stored in fixed-length 448-word records,
(104@-word records for storage module disks), chained together by
forward and backward pointers. The number of records in a file is
limited only by physical storage space.

The first eight words of the record make up the record header (first 16
words for storage module record). Specific content of record headers
is discussed in Appendix E. All remaining words within the record,
following the record header, may be used to store ASCII character pairs
or 16-bit .words. For further information about disks and storage
modules, refer to the the System Administrator's Guide.

File Formats

A file is a series of records of the type described above, with the
distinction that the £first record in such a chain is reached from a
pointer within a. User File Directory or an entry in a segment
directory.

Every file contains a series of 16-bit words. The format depends on
the type of data in the file and how they were originally entered into
the file system. The following types of files are in general use in
PRIMOS systems:

File Description
ASCII ASCII character text, packed two
uncompressed characters per word, as entered from a

terminal or from the Prime card reader,
paper-tape reader, etc. Each record is
followed by a word containing a new-line
character. This is the format of Source
files, text and data records for
sequential access.

ASCII Same as above, but successive spaces are

Compressed - replaced by a relative horizontal tab
character followed by a space count, and
lines are terminated by a LINE FEED
character.

Object Translation of a source file as generated
by the Macro Assembler and FORTRAN
compiler for processing by the linking

loader.
Memory Header block followed by a direct
Image transcription of high-speed memory. These

files are created by LOAD and applications
programs to be used as Runfiles.

3 - 9 January 1980

SECTION 3 PDR3621

Directories See Appendix E for format details.
(UFD and
Segment)

FILE DIRECTORIES

Directories are specialized files containing entries that point to
files or other directories. Directories are the nodes in the file
system tree structure hierarchy; files are the branches. Figure
3-3 illustrates this concept. Directories are either User File
Directories (UFD's) or segment directories. Each disk pack (or
device, in the case of non-removable media) has one special UFD
called a Master File Directory (MFD) that contains an entry for
each User File Directory (UFD) in the MFD. In turn, each UFD
contains an entry for every file or directory file in that
directory. UFDs and MFDs are accessed in the same way as other
files.

Segment directories differ from UFD's in one fundamental respect:
they contain file locations but not file names. As far as the file
system is concerned, the files in a segment directory have no
symbolic names. However the user may refer to files within a
segment directory by their entry number, which is a decimal number
enclosed in parentheses as:

(1)
(2)
(185)

All of the above are 'names' of files in segment directories.

Master File Directory (MFD)

Each disk unit contains one MFD file as an index to the first
physical record of each UFD in the MFD. The MFD has the same
format as any UFD. The first record of the MFD begins at physical
record 1 of the disk. Figure 3-3 shows a chain of pointers
extending from the MFD to UFD and segment directories, and to a DAM
or SAM file.

User File Directory (UFD)

A User File Directory (UFD) is a file that links PRIMOS filenames
to the physical record of a file.

A UFD 1is associated with each user, project, etc. The UFD header
includes the two passwords for the UFD. After the header, the UFD
contains an entry for every file or directory named by the user.
Each entry includes a filename and 2 words (INTEGER*4) that

REV. A 3 - 10

PDR3621 FM5 CONCEPTS

contains the address of the first physical record of the file
(called the beginning record address or BRA).

(See Appendix E for UFD header and entry details.)

UFDs can span multiple records; there is no limit to the number of
files in a UFD. ~

UFD entries include an identification of special files; i.e.,
files having unique use in the file system and not normally
accessed by the user. These files are BOOT, DSKRAT, BADSPT, and
MFD.

Segment Directory Use

The segment directory file is opened for reading/writing on a unit
of the user's choice. The f£file directory segment is then
positioned to the segment directory entry number containing the
desired file,

A desired file may be opened, closed, deleted, or truncated by
giving the file unit number of the segment directory file rather
that the filename. Segment directories are organized as SAM files
or DAM files, consistent with the file structure the user wishes to
build.

Segment Directory Formatting

A segment directory 1is formatted in a manner similar to a UFD
except that entries are identified by a single entry number (from @
to 65535) which is the pointer to the beginning record of a file.
Segment directories are therefore 1limited to 65536 ('200900)
entries.

A UFD entry in a segment directory is illegal. The only file types
allowed in a segment directory are SAM, DAM, and other segment
directories. See Section 6 for an example of creating segment
directories.

Date/Time Stamping

There is a field in a file's UFD entry that records the date and
time when the file was last modified. This field is updated when a
file is closed, and either of the following conditions exist:
e A old file has been opened for writing or reading and
writing, and a write operation has been performed.

e A new file has been created.

3 - 11 January 1980

SHCTION 3 PDR3621

Notes

The father UFD is updated whenever entries are changed
added, or deleted in that UFD.

The use of "last modified" rather than "last used" allows
the use of WRITE-PROTECTED disks.
DISK STRUCTURES

Disk Record Availability Table (DSKRAT)

PRIMOS maintains a file, whose name is the partition name (packname),
containing the used/unused status of every physical record on the disk.
The partition name is given when the disk is created by the MAKE
command. For example, the name of the documentation disk is DOCUMN,
and the name of the DSKRAT file for this disk is DOCUMN. Each record
is represented by a single binary bit; a 'l1' means the record is
available, and a '@' means it is in use. On a typical PRIMOS disk, the
DSKRAT file 1is allocated several contiguous records. The DSKRAT file
is maintained as a file on the disk, starting at physical record 2.
The format of DSKRAT is shown in Appendix E.

Disk Organization

PRIMOS supports all Prime disk options. Prime software provides
facilities for keyed indexed direct access files. Multiple disks are
organized so that every fixed disk and every removable disk or
partition is a self-consistent volume with its own bootstrap, DSKRAT,
and MFD. Iogical record zero is cylinder zero, head zero, sector zero
on all options.

FILE ACCESS

Attaching to a UFD

To access files or use PRIMOS utility functions, the user must be
attached to a UFD. Typically, during program development, each user
attaches to a UFD reserved for program files with the ATTACH command.
For further information, refer to PRIMOS Commands Reference Guide.
Within executable programs, the user can attach to other UFDs; for
example, to access data. At the program level, this is accomplished by
the subroutine ATCHSS (see Section 4).

REV. A 3 - 12

PDR3621 ' FMS CONCEPTS

File Access Control

PRIMOS (including PRIMOS III) gives a user who attaches with owner
password (owner) the ability to open file directories to other users
with restricted rights to the owner's files. Specifically, the "owner"
of a file directory can declare, on a per-file-basis, the access rights
a "nonowner" has over each of the owner's files. These rights are
separated into three categories:

® Read Access (includes Execute Access)
® Write Access (includes over-write and append)
® Delete/Truncate rights

The owner of a UFD can establish protection keys for any file in the
UFD: the owner access rights and the nonowner access rights. The
owner password is required to obtain owner privileges. The nonowner
password (if any) 1is required to obtain nonowner privileges. The
command :

PASSWD owner-password nonowner-password

replaces the existing passwords in the UFD with a new owner—password
and a nonowner-password. This command must be given by the owner while
attached to the UFD. A nonowner is returned a "NO RIGHT" error. The
command

PROTECT filename okey nkey

replaces the existing protection keys on filename in the current UFD

ot e

with the owner (okey) and nonowner (nkey) protection keys. Valid
numbers for these keys are:

@ no Access allowed
1 read Access only
2 write Access only
3 read and Write Access
4 delete/Truncate only
5 delete/Truncate and Read
6 delete/Truncate and Write
7 all Access allowed (Read/Write/Delete/Truncate)
The owner can restrict access to a file by the protection mechanism,

which can be wuseful in preventing accidental deletion or overwriting.
A nonowner cannot give the PROTECT command and achieve desired results.

3 - 13 January 1984

SECTION 3 PDR3621

The command will return the message "NO RIGHT" and return to PRIMOS
command level.

A user obtains owner status to a UFD by attaching to the UFD, giving
its name and owner password in the ATTACH command. A user obtains
nonowner status to a UFD by giving its name and nonowner password in
the ATTACH command.

A user can find out his owner status through the LISTF command. LISTF
types the name of the current UFD, its logical device and O, if the
user is an owner, or N if the user is a nonowner. LISTF then types the
names of all files in the current UFD. An owner can determine the
protection keys on all files in the current UFD through use of the file
utility, FUTIL.

Other Features of File Access

The owner/nonowner status is updated on every ATTACH command and
separately maintained for the current UFD and home UFD.

A user's privileges to files under a segment directory are the same as
his privileges with the segment directory.

The protection keys of a newly created file are:

owner has all rights (7)

nonowner has none (2)
The passwords of a newly created UFD are:

owner password is blank

nonowner password is zero (any password will match)
A nonowner cannot create a new file in a UFD, or successfully give the
CNAME, PASSWD, or PROTECT commands and a nonowner cannot open his
current UFD for reading or writing (see the ATCHSS command, Section 4
for further details).
In the context of file access control, the MFD has all the features of
a UFD. Therefore, an MFD can be assigned owner/nonowner passwords, and
the UFDs subordinate to the MFD may have their access controlled by

protection keys, via the PROTECT command. If file access is violated,
the error message is: NO RIGHT

PRIMOS II File Access Control

The PRIMOS II operating system does not observe file access control
over individual files, but it is compatible to a degree with PRIMOS III
and PRIMOS. Under PRIMOS II, a user cannot obtain access to a UFD by

REV. A 3 - 14

PDR3621 FMS CONCEPTS

ATTACHing with the nonowner password. If the owner password has been
given, the ATTACH is successful, but subsequent access to files in the
directory is not checked. Files created under PRIMOS II are generated
with the same protection keys as under PRIMOS III and PRIMOS and the
passwords of a newly created UFD are the same.

File Data Access Methods

Under PRIMOS, the means of file access is the Sequential Access Method
(SAM) or the Direct Access Method (DAM) which are discussed earlier in
this section. With both methods, the file appears as a linear array of
words indexed by a current position pointer. The user may read or
write a number of words beginning at the pointer, which is advanced as
the data are transferred. A file service call (PRWFS$S) provides the
ability to position the pointer anywhere within an open file. File
data can be transferred anywhere in the addressing range. When a file
is closed and re-opened, the pointer is automatically returned to the
beginning of the file. The pointer can be controlled by both the
FORTRAN REWIND statement and PRWFS$$ positioning.

With the DAM method of access, the file also appears to be a linear
array of words, but this method has faster access times in positioning
commands. PRIMOS keeps an index described earlier in this section to
allow fast random positioning. User calls to manipulate SAM and DAM
files are identical.

PRIMOS-LEVEL USER INTERACTION
PRIMOS commands fall into two major categories: the internal commands
(implemented by subroutines that are memory-resident as part of PRIMOS)

and external commands (executed by programs saved as disk files in the
command UFD, CMDNC@).

Command Activity

On receiving a command at the system terminal, PRIMOS checks whether it
is an internal command, and if so, executes it immediately. Otherwise,
PRIMOS looks in the command directory of Logical Disk Unit @ for a file
of that name. If the file is found, PRIMOS RESUMEs the file (loads it
into memory and starts execution). All files in the command directory
are assumed to be SAVEd memory image files, ready for execution. Most
are set up to return automatically to PRIMOS when their function is
complete or errors occur. The command line that caused the execution
of the saved program is retained and may be referenced by the program
to obtain parameters, options, and filenames via the RDTKSS subroutine.
To add new external commands, the user simply files a memory image
program (SAVEd file) under the command directory UFD (CMDNC@). Memory
image files may also be kept in other directories and executed by the
RESUME command.

3 - 15 January 1980

SECTION 3 PDR3621

Command Files

As an alternative to entering commands one at a time at the terminal,
the user can transfer control to a command file by the command:
COMINPUT. This command switches command input control from the
terminal to the specified file. All subsequent commands are read from
the file. One can assign any unit for the COMINPUT file and command
files may call other command files. For detailed information on the
COMINPUT command, refer to the PRIMOS Commands Reference Guide
(FDR3108) .

Command files are primarily useful for performing a complicated series
of commands repeatedly, such as loading an extensive system. Command
files are also useful in system building when many files must be
assembled, concatenated, loaded, etc., (for example, generating library
files).

File Maintenance (FIXRAT)

To give the user an efficient and thorough way to check the integrity
of data on a PRIMOS disk, PRIMOS provides a file maintenance program,
FIXRAT, in the command directory, CMDNC@. When FIXRAT is invoked as an
external command, it checks for self-consistency in the structure of
pointers in every record, file, and directory on the disk. If there
are breaks in the continuity of double-strung pointers, discrepancies
between the DSKRAT file and the reconstructed Record Availability
Table, or other error conditions, FIXRAT prints appropriate error
messages. FIXRAT asks the user to specify whether or not to take
certain steps to repair a damaged file structure on a particular
logical disk unit. For details and examples, refer to the FIXRAT
description in the System Administrator's Guide (PDR31@9).

REV. A 3 - 16

Part 11
PRIMOS Subroutines

Part II (Sections 4, 5 and 6) describes the PRIMOS subroutines: A
complete description of parameters 1is given for each subroutine;
followed by notes on usage, brief examples of calls, and notes on
conpatibility with old file system functions.

e In Section 4, file manipulation subroutines are described.

e Section 5 describes other calls to I/0 control system
subroutines.

e The sample programs in Section 6 illustrate the use of the
subroutines.

e The real-time subroutines that set system-wide semaphores are
described in Section 22 and the old file system calls (obsolete)
are found in Appendix F.

PDR3621 FILE SUBROUTINES
SECTIN 4
FILE MANIPULATION SUBROUTINES

INTRODUCTION

Key Definitions for File System Calls

All keys and error codes are specified in symbolic, rather than
numeric, form. These symbolic names are defined as PARAMETERs (for
FORTRAN programs) and EQUs (for PMA programs) in $INSERT files present
in a UFD on the master disk named SYSCOM. The key definition files are
named KEYS.F for FORTRAN and KRYS.P for PMA. The error definition
files are ERRD.F and ERRD.P. The user is urged to use these symbolic
names. For convenience in recognizing old file system keys, these
files are listed in Appendix G.

Error Handling Conventions

There are two error handling schemes. One scheme, called the integer
error return code scheme (described in Appendix G) , handles file system
and semaphore subroutines. The other, involving alternate returns,
handles I/0 subroutines. (See Section 14.)

Filenames

Filenames may be 1--32 characters in length, the first character of
which must be alphabetic. Filenames can be composed only of the
following characters: A-Z -9 # $ & * — . and /. Filenames may not
contain embedded blanks. -

Direct-Entrance Calls to PRIMOS

PRIMOS supports direct-entrance calls to certain supervisory
procedures. Using this mechanism, routines such as SRCH$$, PRWFSS,
etc., can be invoked directly via a PCL instruction thereby
circumventing the overhead associated with a SVC entry into PRIMOS.
Direct-entrance calls are available only from V-mode programs and will
be correctly set up by using the V-mode FTN library.

Direct-entrance calls are through ECBs (entry control blocks) that are
contained in gate segment 5, of the supervisor. 1Invalid calls or other
references to segment 5 will cause the error messages UNDEFINED GATE or
TLLEGAL PAGE REF.

4 - 1 January 1980

SECTION 4 PDR3521

The PRIMOS routines that can be entered via direct call, described in
this section, are:

ATCHSS
CNAMSS
COMISS
CcoMOS$
CREASS
FORCEW
GPASSS
GPATHS
NAMEQS
PRWF'SS
RDENSS
RDLINS
RESTSS
RESUSS
SATRSS
SAVESS
SGDRSS
SPASSS
SRCHSS
TSRCSS
UPDATE
WILINS

The PRIMOS I/0 subroutines that can be entered via direct calls,
described in Section 14, are:

DSINIT
RRECL
WRECL

The error-handling subroutines that can be entered via direct calls and
are part of the error handling scheme via SVCs are (Section 14):

ERRSET

GETERR
PRERR

Wake-up and notify subroutines, useful for real-time programming and
synchroni zation between processes described in Section 21 are:

SEMSDR
SEMSNF
SEMSTN
SEMSTS
SEMSWT
SLEEPS

REV. A 4 - 2

PDR3621 FILE SUBROUTINES

Under R-mode memory images on PRIMOS II or PRIMOS III, all operating
systaen subroutines use the SVC interface described in Appendix C.

SUBROUTINE DESCRIPTIONS

The File Manipulation Subroutines are described below in alphabetical
order.

Caution

Do not omit any arguments in calls to the subroutines described
in this section. Do not specify as @ (or any constant) any
arguments returned by the subroutines. Never specify the
integer return code as #. Always check the error code to see
if the subroutine call was successful. It is essential to
refer to Appendix G which covers the error handling scheme for
these subroutines.

P ATCHSS

ATCHSS attaches to a UFD and, optionally, makes it the home UFD. In
attaching to a directory, the subroutine ATCHS$S specifies where to look
for the directory. ATCHSS specifies a User File Directory (UFD) in the
Master File Directory (MFD) on a particular logical disk, a
sub-directory in the current UFD, or the home UFD as the
target-directory of the ATCHSS operation.

CALL ATCHSS (ufdnam,namlen,ldisk,passwd,key,code)

ufdnam The name of the UFD to be attached. If key= and ufdnam
is the key KSHOME, the home UFD, is attached. If the
reference subkey is KSIMFD or KSICUR, ufdnam is either a
Hollerith expression or the name of a three-word array
that specifies a ufdname to attach to.

namlen The length in characters (1-32) of ufdnam. namlen may
be greater than the length of ufdnam provided that
ufdnam is padded with the appropriate number of blanks.
I1f ufdnam=KSHOME, namlen is disregarded.

1disk The nunber of the logical disk to be searched for ufdnam
when key=KSIMFD. The parameter, 1ldisk, must be a
logical disk that is started up. Other values are:

KSALLD Search all started-up logical devices in
logical device order, and attach to the UFD in
which ufdnam appears in the MFD of the lowest
numbered logical device.

KSCURR Search the MFD of the disk currently attached.

4 - 3 January 1980

SECTION 4 PDR3621

passwd A three-word array containing one of the passwords of
ufdnam. passwd can be specified as g if attaching to
the home UFD. If the reference subkey is KSIMFD or
KSICUR, passwd is either a Hollerith expression (1 to %
characters) or the name of a three-word array that
specifies one of the passwords of ufdnam. If passwd is
blank, it is specified as three words, each containing
two blank characters.

key Composed of two subkeys that are combined additively, a
REFERENCE subkey and a SETHOME subkey. The REFERENCE
subkey values are as follows:

KSIMFD Attach to ufdnam in MFD on 1ldisk.

KSICUR Attach to ufdnam in current UFD (ufdnam is a
subdirectory) .

The SETHOME subkey, KS$SETH, may be added to the
REFERENCE subkey, e.g., KSIMFD+KS$SETH, which will set
the current UFD to the home UFD after attaching. If the
REFERENCE subkey is KSICUR, or if ufdnam is ¢, 1ldisk is
ignored, and ldisk is usually specified as 0.

code An integer variable set to the return code.

To access files, the file system must be attached to some User File
Directory (UFD). This implies that the file system has been supplied
with the proper file directory name and either the owner or nonowner
password, and the file system has found and saved the name and location
of the file directory. After a successful attach, the name, location
and owner/nonowner status of the UFD is referred to as the current UFD.
As an option, this information may be copied to another place in the
system, referred to as the home UFD. The ATCHSS subroutine does not
charge the home UFD unless the user specifies a change in the
subroutine call. The user gets owner status if he gives the owner
password, or gets nonowner status if he gives the nonowner password.
The owner of a file directory can declare, on a per-file basis, what

access a nonowner has over the owner's files. The nonowner password

may be given only under PRIMOS and PRIMOS 1III. (Refer to the
description of the commands SPASS$S and SATRS$S in this section for more

information.)

A BAD PASSWD error condition does not return to the user's program.
PRIMOS command level is entered, and the user is not attached to any
UFD. Other errors leave the attach point unchanged.

REV. A 4 - 4

PDR3621 FILE SUBROUTINES

Examples

1. Attach to home UFD:
CALL ATCHSS (KSHOME,?,0,0,@,CODE)

2. Attach to UFD named 'G.S.PATTON', password 'CHARGE' in current
UFD:

CALL ATCHS$ ('G.S.PATTON',10,KSCURR,'CHARGE',K$SICUR,CODE)
P cnamss

CNAMSS changes the name of a file in the current UFD.
CALL CNAMSS (oldnam,oldlen ,newnam,newlen ,code)
oldnam The name of the file to be changed.

oldlen The length in characters of oldnam. :

newnam The new name of the file.
newlen The length in characters of newlen.
code An integer variable set to the return code.

The user must be the owner of the UFD of the file to change the name.
CNAMSS does not change the last modified date-time of the file or any
of the other attributes of the file. However, the last modified
date-time of the UFD in which the file resides is changed. CNAMSS may
cause the position of the file in the UFD to change with respect to the
other files if the new name is longer than the old name. It is illegal
to change the name of the MFD, BOOT, BADSPT. A NO RIGHT error message
is generated if this is attempted.

P coMIss
COMISS switches the command input stream from the user's teminal to a
command file, or from a command file to the terminal.
CALL COMIS$S (filnam,namlen,funit,code)
filnam The name of the command file to switch the command input
stream. If filnam is TTY, the command stream is

switched back to the terminal and funit is closed. If
filnam is PAUSE, the command stream is switched to the

4 - 5 January 1984

SECTION 4 PDR3621

terminal but the file unit specified by funit is not
closed, 1If filnam is CONTINUE, the command stream is
switched to the file already open on funit. The values:
-TTY, -PAUSE, and -CONTINUE cannot be used as option
names.

namlen The length in characters (1-32) of filnam.

funit The file unit (1-126 or 1-15 under PRIMOS II) on which
to open the command file specified by filnam. Normally,
File Unit 6 is used.

code An integer variable set to the return code.
p CcoMoss

COMOS$ switches terminal output to file or terminal.
CALL COMOSS (key,filnam,namlen ,xx ,code)
key A word of flags specifying the action to be taken:

:098001 Turn TTY output off.
1000902 Turn TTY output on.
1000034 Reserved.
:000010 Turn file output off.
: 0030203 Turn file output on.

1000040 Append to filnam if filnam is being opened;
close filnam if turning file output off.

1003130 Truncate filnam if Filnam is being opened.

filnam An array containing the name of the file to be opened or
7

namlen The length in characters (1-32) of filnam or 0.

XX Reserved. Should be specified as 4.

code An integer return code from the file system.

Routing of the terminal output stream is modified as indicated by the
key. If TTY output is turned off, all printing at the terminal is
suppressed until TTY output is re-enabled or until a wunit '77 error
message 1s generated. 1If a filename is specified, any current command
output file is first closed. The new file is opened for writing on the

REV. A 4 - 6

PDR3621 FILE SUBROUTINES

command output unit '77, and all subsequent terminal output is sent to
the file. TTY output continues unless explicitly suppressed. Unless
the APPEND option bit is set, the current contents of the file is
overwritten., The parameter can be omitted by specifying a pair of
blanks or a lergth of #.

Error messages (from ERRRTN, ERRPR$) force TTY output on, but leave the
command output file open (i.e., the error message will appear both on
the terminal and in the file). Disk error messages force TTY output on
and file output off for the supervisor user (the file is left open).

Unrecovered disk errors will do likewise for the user to whom the disk
is assigned. ‘

P> CREASS

CREASS creates a new UFD (a subUFD) in the current UFD and initializes
the new UFD entry.

CALL CREASS (filnam,namlen,opass,npass,code)

filnam The name to be given the new UFD.

namlen The length in characters (1-32) of filnam.

opass A three-word array containing the owner password for the
new UFD. If opass(l)=0, the owner password 1is set to
blanks.

npass A three-word array containing the nonowner password for

the new UFD. If npass(l)=@ the nonowner password is set
to 0's. Any password given to ATCHSS matches a nonowner
password of @'s.

code An integer variable to be set to the return code from
CREASS.

passwords can be set such that the password cannot be entered from the
keyboard (i.e., the directory is accessible only from a program) . In
any case, passwords can be, at most, six characters lorg. Passwords
less than six characters must be padded with blanks for the remaining
characters. Passwords are not restricted by filename conventions and
may contain any characters or bit patterns. It is strongly recommended
that passwords do not contain blanks, commas, or the characters = ! !
@{}YI[1 (); ~ <> or lower case characters. Passwords should not
start with a digit. If passwords contain any of the above characters
or begin with a digit, the passwords may not be given on a PRIMOS
command line to the ATTACH command.

4 - 7 January 1980

SECTION 4 PDR3621

Since the subroutine SRCHSS does not allow creation of a new UFD,
CREA$S must be used for this purpose. Under program control, CREAS$S
allows the action of the PRIMOS CREATE command.
CREASS requires owner rights on the current UFD.

For example, to create new UFD with default passwords of blanks for
owner and 3*g for nonowner:

CALL CREAS$ ('NEWUFD',G,0,0,CODE)

P> FORCEW

CALL FORCEW (9, funit)

funit A file unit number from 1 to 126 on which a file has
been opened.

The FORCEW subroutine immediately writes to the disk all modified
records of the file that is currently open on funit. Normally this
action is not needed, since the system automatically updates all

charged file system information to the disk at least once per minute.
Under PRIMOS II, the FORCEW routine has no effect.

P> GPasss

GPASSS returns the passwords of a SUBUFD in the current UFD.
CALL GPASS$ (ufdnam,namlen ,opass,npass,code)

ufdnam The name of the UFD with passwords to be returned.
ufdnam is searched for in the current UFD.

namlen The lemgth in characters (1-32) of ufdnam.

opass A three-word array that is set to the owner password of
ufdnam.

npass A three-word array that is set to the nonowner password
of ufdnam.

code An integer variable set to the return code.

GPASS$$ requires owner rights to the current UFD.
For example, to read passwords of SUBUFD into PASS (6) array:

CALL GPASSS ('SUBUFD',6,PASS (1) ,PASS (4) ,CODE)

REV. A 4 - 8

PDR3621 FILE SUBROUTINES

P> GPATHS

GPATHS obtains a fully qualified pathname for an open file unit, or for
current or home attach points. GPATHS operates in V-mode only.

CALL GPATHS (key, funit, buffer, bufflen, pathlen, code)

key An integer variable specifying pathname to be returned
(INTEGER*2) . Possible values are:

KSUNIT Pathname of file open on file unit specified by
funit will be returned (KSUNIT = 1).

KSCURA Pathname of current attach point will be
returned (KSCURA = 2).

K$HOMA Pathname of home attach point will be returned
(KSHOMA = 3) .
funit Specifies file unit number if key is KS$UNIT, otherwise
ignored.
buffer The buffer where the pathname is to be returned.
bufflen Specifies maximun buffer length in characters. If the

pathname exceeds bufflen characters, data in buffer is
meaningless and a code of E$BFTS is returned.

pathlen Specifies the length in characters of the pathname
returned in buffer. Characters beyond pathlen in buffer
contain no useful information.

code A standard error code. Possible values are:

gag0gd No errors.
ESBKEY A bad key was specified.
ESBUNT A bad unit number was specified in funit.

ESUNOP Unit specified in funit is closed and name
cannot be returned.

4 - 9 January 1989

SECTION 4 PDR3621

ESNATT Not attached to any node (keys KS$CURA,KSHOMA) .

ESBFTS The buffer specified with character lergth
bufflen is too small to contain full pathname.
The buffer contains no valid data.

The following are examples of information returned as the result of
using GPATHS. The lower-case names define what information the
examples (in upper case) actually represent.

<d isk__name>MFD
<SPOOLD>MFD

<d isk_name> ufd name
<SPOOLD>SPOOLQ

<d isk_name> ufd namel> ufd name2>fil e name
<SALESD>WEST.COAST>YTD. 1979>MARCH

<disk name>ufd name>segment directory name
<OPSYST>PR4.64 >VPRM0OS

<disk _name>ufd name>segment directory ’_name>entry number>entry number
<DBDISK>DICTIONARY>WORDS>22>68

P> NAMEQS
NAMEQS is a LOGICAL function that compares two filenames for
equivalence.
LOG = NAMEQ$ (filnaml,namlenl,filnam2,namlen2)

filnaml The first filename for camparison.

namlenl The length in characters of filnaml.

filnam2 The second filename for comparison.

namlen2 The length in characters of filnam2.
NAMEQS per forms a character-by-character compare of filnaml and filnam2
for the length of namlenl or namlen2, whichever is shorter. The
trailing characters of the longer name (if the names are not the same

length) must be all blank for equality. The names supplied must be
valid filenames.

NAMEQS will work correctly on numeric fields only if namlenl=namlen2.

REV. A 4 - 19

P> PRWFSS

PDR3621 FILE SUBROUTINES

PRWFSS reads, writes, positions, and truncates SAM or DAM files.

CALL PRWFS$ (rwkey+poskey+mode,funit,LOC(buffer),nw,pos,rnw,code)

rwkey

poskey

mode

This subkey, which cannot be omitted, indicates the
action to be taken. Possible values are:

KSREAD

KSWRIT

KSPOSN

KSTRNC

KSRPOS

A subkey

Possible

KS$PRER

KSPOSR

KSPREA

KSPOSA

A subkey

Read nw words from funit into buffer,

Write nw words from buffer to funit.

Set the current position to the 32-bit integer
in pos.

Truncate the file open on funit at the current
position.

Return the current position as a 32-bit integer
word number in pos.

indicating the positioning to be performed.
values are: (If omitted, same as K$PRER)

Move the file pointer of funit the number of
words specified by pos relative to the current
position before per forming rwkey.

Move the file pointer of funit the number of
words specified by pos relative to the current
position after performing rwkey.

Move the file pointer of funit to the absolute
position specified by pos os before performing
rwkey.

Move the file pointer of funit to the absolute
position specified by pos after per forming
rwkey.

that may be omitted or used to transfer all or

a convenient number of words. Possible values are: (If

omitted,

read/write nw)

4 - 11 January 1980

SECTION 4 PDR3621

KSCONV Read/write a convenient number of words (up to
the number specified by the parameter nw) .

KSFROW Perform write to disk from buffer before
executing next instruction in the program.

funit A file unit number (1 to 15 for PRIMOS II,
1-126 for PRIMOS) on which a file has been
opened by a call to SRCH$S or by a command.
PRWFSS actions are performed on this file unit.

LocC The data buffer to be used for reading or writing.
(buffer) TIf buffer is not needed, it can be specified as INTL(?).

nw The nunber of words to be read or written (mode=g) or
the maximum nunber of words to be transferred
(mode=K$CONV) . nw may be between # and 65535.

pos A 32-bit integer (INTEGER*4) specifying the relative or
absolute positioning value depending on the value of
poskey.

rnw A 16-bit unsigned integer set to the number of words

actually transferred when rwkey=K$READ or K$WRIT. Other
keys leave rnw unmodified. For the keys KSREAD and
KSWRIT, rnw must be specified.

code An INTEGER*2 variable to be set to the return code,

Pos is always a 32-bit integer, not a <record-number, word-number>
pair. All calls to PRWFS$S must specify pos even if no positioning is
requested. An INTEGER*4 g can be generated by specifying 000000 or
INTL(3) in FTN, OL in PMA.

poskey is observed for all values of rwkey except KSRPOS, for which it
is ignored (the file position is never changed) .

If rwkey = K$POSN, nw and rnw are ignored, and no data are transferred.

A call to read or write nw words causes nw words to be transferred to
or from the file, starting at the file pointer in the file. Following
a call to transfer information, the file pointer is moved to the end of
the data transferred in the file. Using poskey of KS$PREA or K$POSA,
the user may explicitly move the file Pointer to pos before or after
the data transfer operation. Using a poskey of K$PRER or KSPOSR, the
user may move the file pointer backward pos words from the current
position, if pos is negative or forward pos words if pos if positive.
Positioning takes place before or after the data transfer, depending on
the key. If nw is @ in any of the calls to PRWF$$, no data transfer
takes place, and PRWF$$ perfoms a pointer position operation.

REV. A 4 - 12

PDR3621 FILE SUBROUTINES

The mode subkey of PRWFS$S is most frequently used to transfer a
specific number of words on a call to PRWFSS. In these cases, the mode
is @ and is normally omitted in PRWF$$ calls. In some cases, such as
in a program to copy a file from one file directory to another, a
buffer of a certain size is set aside in memory to hold information,
and the file is transferred, one buffer-full at a time. 1In the latter
case, the user doesn't care how many words are transferred at each call
to PRWFSS, so long as the number of words is less than the size of the
buffer set aside in memory.

Since the user would generally prefer to run a program as fast as
possible, the KSCONV subkey 1is used to transfer nw words, or less in
the call to PRWFSS. The number of words transferred is a number
convenient to the system, and therefore speeds up program run time.
The number of words actually transferred is set in rnw. For an example
of PRWF$S use in a program, refer to Section 6.

The subkey KSFRCW guarantees that PRWFSS will not return until the disk
record (s) involved are written to disk. The write to disk will be
performed before executing the next instruction in the program. Since
the KSFRCW defeats the disk buffering mechanism, it should be used with
care as it increases the actual amount of disk I/0. It should only be
Used when it is necessary to know that data is physically on a disk
(e.g., as when implementing error recovery schemes).

The programmer is responsible for ensuring that only one process (user)
is involved in the PRWFS$ call concurrently. The file may be open for
use by several processes. The forced write applies only to the data
written by the process performing the operation. See an example of the
use of the KSFRCW later in this section.

On a PRWFSS BEGINNING OF FILE error or END OF FILE error, the parameter
rnw is set to the number of words actually transferred.

On a DISK FULL error, the file pointer is set to the value it had at
the beginning of the call to PRWF$$. The user may, therefore, delete
another file and restart the program (by typing START after using the
DELETE command) . This feature does not work with PRIMOS II.

During the positioning operation of PRWFS$$, PRIMOS maintains a file
pointer for every open file. The file pointer is a two—word integer,
because files may be longer than 55,536 words. When a file is opened
by a call to SRCHSS, the file pointer is set in such a manner that the
next word that is read is the first word of the file. The file pointer
position is @, for the beginning of file. If the user calls PRWFSS to
read 499 words, and does no positioning at the end of the read
operation, the file pointer is set to 490.

4 - 13 January 1980

SECTION 4 PDR3521

Note

In V-mode, PRWFS$ only transfers words into the same segment as

buffer. An attempt to read across a segment boundary will

cause a wrap-around instead and read into the beginning of the

segment. This 1is also true of writing from the address space.
Examples

1. Read the next 79 words from the file open on unit 1:

CALL PRWFSS (K$READ,1,LOC(BUFFER) ,79,00007@, NMREAD,CODE)

N
.

Add 1924 words to the end of the file open on UNIT
(10000003 is just a very large number to get to the end of
the file):

CALL PRWFSS (XKSPOSNH+K$PREA,UNIT,LOC() ,0,10000000,NMW,CODE)
CALL PRWFSS (KSWRIT,UNIT,LOC(BFR),1024,000300,NVMW,CODE)

3. See what position is on File Unit 15 (INT4 is INTEGER*4):
CALL PRWFSS (X$RPOS, 15,L0C(7) ,#,INT4,?,CODE)

4. Truncate file 10 words beyond the position returned by the
above call:

CALL PRWFSS (KSTRNCHKS$PREA,15,L0C(4) ,8,INT4+10,0,CODE)

5. Position the file open on unit nunber UNIT to the tenth
word used in the file and the first 10 words of ARRAY will
be written to it:

INTEGER*2 ARRAY (441) , CODE,UNIT,RET
SINSERT SYSCOMDKEYS.F
CALL PRWFSS (KSWRIT+K$FRCWHKSPREA, UNIT, LOC (ARRAY) ,
X 1@, INTL (18) ,RET,CODE)
IF (CODE .NE. @) GOTO error_ processor

The above FORTRAN call will cause the file open on unit number UNIT to
be positioned to the tenth word in the file, and the first 10 words of
ARRAY will be written to it. The next instruction in the user's
program will not be executed until the data has actually been written
to disk. If an error is encountered while writing to disk, the error
code ESDISK (disk I/0 error) is returned. If more than one concurrent
user of the disk record is detected, the error code ESFIUS (file in
use) is returned. 1In this case, the write is not lost, but will not be
per fomed immediately.

REV. A 4 - 14

P> RDENSS

PDB3621 FILE SUBROUTINES

RDENSS positions in or reads from a UFD.

CALL RDENSS (key,funit,buffer ,buflen,rnw,filnam,namlen,code)

key

funit

buf fer

buflen

rnw

filnam

namlen

codé

An integer variable specifying the action to be taken.
Possible values are:

KSREAD Advance to the start of the first or next UFD
entry and read as much of the entry as will fit
into buffer. Set rnw to the nunber of words
read.

KSNAME Position to the start of the entry specified by
filnam and namlen. Read as much of the entry
as will fit into buffer. Set rnw to the number
of words read. If the entry is not in the
directory, the code ES$FNTF is returned. If
namlen is zero, the next entry is returned.

KSGPOS Return the current position in the UFD as a
32-bit integer in filnam.

KSUPOS Set the current position in the UFD from the
32-bit integer in filnam.

A unit on which a UFD is currently opened for reading.

(A UFD may be opened with a call to SRCHSS.)

A one dimensional array into which entries of the UFD
are read.

The length, in words, of buffer.

An integer variable that will be set to the nunber of
words read.

A 32-bit integer variable used for keys of K$GPOS and
K$SPOS or a name for use with KSNAME.

A 16-bit integer variable specifying the length in
characters (#-32) of filnam. This variable is only used
with K$SNAME

An integer variable to be set to the return error code.

4 - 15 January 1980

SECTION 4 PDR3621

RDENSS is used to read entries from a UFD. rnw words are returned in
buffer, and the file unit position is advanced to the start of the next
entry. Return code ESEOF means no more entries, ESBFTS means buffer is
too small for the entry.

In the file management system, UFDs are not compressed when files are
deleted, and vacant entries may be reused. Thus, a newly created file
is not necessarily found at the end of a UFD.

The complete format of currently defined entries is given here. (All
numbers are decimal unless preceded by a ':'.)

@ | ECW | ENTRY CONTROL WORD (TYPE/LENGTH)
1 |F I

I T I

| L |

l E |

| ... | FILENAME (BLANK PADDED)

IN I

| A |

l Mo

I E_|

17 | _PROTEC | PROTECTION (OWNER/NON-OWNER)

18 |RESERVED| RESERVED FOR FUTURE USE

19 | FILTYP | FILETYPE <-—— (END OF ENTRY FOR TYPE=l)
20 | DATMOD | DATE IAST MODIFIED

21 | TIMMOD | TIME LAST MODIFIED

22 |RESERVED| RESERVED F(R FUTURE USE

23 |RESERVED| RESERVED FCOR FUTURE USE

ECW Entry Control Word. An ECW is the first word in any entry
and consists of two 8-bit subfields. The high-order 8 bits
indicate the type of the entry, the low-order 8 bits give the
length of the entry in words including the ECW itself.
Possible values of the ECW are as follows:

1000001 Type=#, length=1. This entry indicates either a UFD
header or a vacant entry. No information other than
the ECW is returned.

1000424 Type=1, length=20. Type=1 indicates an old

partition UFD entry. Words @-19 in the diagram
above are returned.

REV. A 4 - 146

FILENAME

PROTEC

FILTYP

PDR3621 FILE SUBROUTINES

1001030 Type=2, length=24. Type=2 indicates a new partition
UFD entry. All the above information is returned.
Reserved fields should be ignored.

User programs should ignore any entry-types that are
not recognized. This allows future expansion of the
file system without unduly affecting old programs.

Up to 32 characters of filename, blank padded.

owner and nonowner protection attributes. The owner rights
are in the high-order 8 bits, the non-owner in the low~-order
8 bits. The meanings of the bit positions are as follows (a

set bit grants the indicated access right):

1-5,9-13 Reserved for future use.

6,14 Delete/truncate rights.
7,15 Write-access rights.
8,16 Read-access rights.

On a new partition, the low-order eight bits indicate the
type of the file as follows:

saM file.

paM file.

SAM Segment directory.
DAM Segment Directory.
UFD

S W N

Oon an old partition, the filetype is invalid. The file must
be opened with SRCH$S to determine its type. Oof the high
order 8 bits, six are currently defined as follows:

bit 1 set only for the BOOT and DSKRAT files if they are
on a storage module disk.

bit 2 The dumped bit. This bit can be set by a call to
SATRSS and is reset whenever the file is modified.
This bit is used by the utility program that dumps
only modified files to magnetic tape. Users are
normally not interested in this bit.

bit 3 This bit is set by PRIMOS II when it modifies the
file and reset by PRIMOS (and PRIMOS III) when it
modifies the file. If this bit is set, the
time-date field for the file will not be current
because PRIMOS II doesn't update the date-time stamp
when it modifies a file.

4 - 17 January 1980

SECTION 4 PDR3421

bit 4 This bit is set to indicate that this is a special
file. The only special files are BOOT, MFD, BADSPT,
and the DSKRAT file which has the name packname.
This bit, and this bit only is valid on both new and
old style partitions.

bits 5-6 Setting of the per-file read/write lock.
The PRIMOS file system supports individual values of the read/write
lock (RWLOCK) on a per-file basis, for those files residing on new
partitions. The read/write lock is used to regulate concurrent access
to the file, and was formerly alterable only on a system-wide basis.

The meaning of the lock values is:

vValue bits 5,6 Meaning
a 3,0 Use system-wide RNLOCK to regulate
concurrent access.
1 7,1 Allow arbitrary readers or one writer.
2 1,0 Allow arbitrary readers and one writer.
3 1,1 Allow arbitrary readers and arbitrary
writers,

New files are initially created with a per-file read/write lock of
zero.

UFDs do not have user-alterable read/write locks, though segment

directories do. Files in directory have the per-file read/write lock
of the segment directory.

The per-file read/write lock value is read by RDENSS. It is set by a
SATR$S call with a key of KSRWLK. The desired value is supplied in
bits 15 and 16 of ARRAY(l), the remaining bits of which must be zero.
On old partitions, the SATR$S call fails with an error code of ESOLDP.
Owner rights to the containing UFD are required, otherwise the call
fails with an error code of ESNRIT. An attempt to set the lock value
of a UFD fails with an error code of ESDIRE. If the SATR$SS call
requests a lock value which is more restrictive than the current usage
of the file, the file's lock value is changed and current users of the
file are unaffected, but any new openings subsequently requested are
governed by the new lock value. TIt is unspecified what happens when
bits 1-13 of ARRAY (1) are not zero.

The commands MAGSAV and MAGRST properly save and restore the per-file
read/write lock along with the file itself. Existing backup tapes
without saved read/write locks on them are restored with read/write

locks of zero, so the system-wide RWLOCK setting continues to control
access to such files,

REV. A 4 - 18

PDR3621 FILE SUBROUTINES

The FUTIL command copies the per-file read/write lock setting along
with the file when performing a TRECPY of a UFDCPY (but not a COPY)
operation. FUTIL prints the value of the per-file read/write lock if
the option RNLOCK is specified to the LISTF request.

DATMOD The date on which the file was last modified., The date,
which is wvalid only on new partitions, is held in the
binary form YYYYYYYMMMMDDDDD, where YYYYYYY is the year
modulo 199, MMMM is the month, DDDDD is the day.

TIMMOD The time at which the file was last modified. The time,
which is wvalid only in new partitions, is held in binary
seconds-since-midnight divided by four.

Examples
1. Read next entry from new or old UFD:

100 CALL RDENSS (KSREAD,funit,ENTRY,24,RNW,d,d,CODE)
IF (CODE .NE. @) GOTO <error handler>
TYPE=RS (ENTRY (1) ,8) /* GET TYPE OF ENTRY JUST READ
IF (TYPE.NE.1.AND.TYPE.NE.2) GOTO 1090 /* UNKNOWN

2. Position to beginning of UFD:

CALL RDENS$S (X$UPOS,funit,®,9,0,000000,0,code)
P> RDLINS
RDLINS reads a line of characters from a compressed or uncompressed

ASCII disk file.

CALL RDLINS (funit, buff, count, code)

funit A file unit (1-125) on which the file to be read is
open.
buff An array of count words in which the line of information

from the disk file is to be read.
count The size of buff in words.
code A return variable set to # if no errors, or an error

code if an error. See PRWFSS for a list of possible
error codes.

4 - 19 January 1980

SECTION 4 PDR3621

A line of characters from File Unit funit is read into Buffer buff, two
characters per word. Lines on the disk are separated by the new line
character. The character DC1 (221 octal) followed by a character count
when read from the disk is replaced by character-count blanks. If the
line on the disk is less than 2*count characters, the remalnlng space
in buff is filled with blanks. Tf the line on the disk is greater than
2*cont characters, only 2*count characters fill buff and the remaining
characters on the disk file line are ignored. In all cases, the new
line never appears as part of the line in buff. RDLINS is the same
routine as T$ADO7 except that the altrtn argument has been replaced by
the code argument.

P> RESTSS

RESTSS reads an R-mode memory image from a file in the current UFD into
memory. The SAVE'd parameters for a file previously written to the
disk by the GSAVE or SAVESS subroutine or the SAVE command are loaded
into the nine word array vector. The memory image itself 1is then
loaded into memory using the starting and ending addresses provided by
vector (1) and vector(2).

CALL RESTSS (vector,filnam,namlen,code)

vector A nine word array set by REST$$. vector(l) is set to
the first location in memory to be restored. vector(2)
is set to the last location to be restored. The rest of
the array is set as follows:

vector (3) saved P register
vector(4) saved A register
vector (5) saved B register
vector(5) saved X register
vector (7) saved Keys
vector(8) not used
vector(9) not used

filnam The name of the file containing the memory image.
namlen The length in characters (1-32) of filnam.
code An integer variable set to the return code.

Note

Use the PRIMOS command SEG to restore V-mode memory image from
a file.

REV. A 4 - 20

PDR3521 FILE SUBROUTINES

P RESUSS

RESUSS restores an R-mode memory image from a file in the current UFD,
initializes registers from the saved parameters, and starts executing
the program.

CALL RESUSS$ (filnam,namlen)
filnam The name of the file containing the memory image.
namlen The length (1-32) in characters of filnam.

RESUSS does not have a code argument. If an error occurs, an error
message is typed and control returns to command level.

P SATRSS

SATRSS allows the setting or modification of a file's attributes in its
UFD entry.

CALL SATRSS (key,filnam,namlen,array,code)

key An integer variable specifying the action to take.
Possible values are:

K$PROT Set protection attributes from array(l).
array(2) is ignored for old partitions and must
be § for new partitions (it is reserved for
expansion) . The meaning of the protection bits
in array(l) is-given under the description of
RDENSS.

KSDTIM Set date/time modified from array(l) and
array(2). The format of the date/time is given
under the description for RDENSS.

KSDMPB Set the dumped bit. This bit is set by the
utility program that dumps modified files and
is reset by the operating system whenever the
file is modified. Users should not use this
key.

KSRWLK Users can set the per-file read/write lock on a
per-file basis. Bits 15 and 16 of array(l) are
set by the user for specific lock values.
Refer to RDENSS for further information on the
read/write lock,

4 - 21 January 1980

SECTION 4 PDR3A21

Note

The date-time-modified and the dumped bit are modified by
PRIMOS. When these fields are changed for a file, the
date-time-modified field of the UFD containing that file
(parent UFD) 1is not charged. However, when the name or
protection attributes of the file are charged, the
date-time-modified and the dumped bit of the parent UFD are
updated; and the dumped bit for the file is reset.

filnam The name of the file whose attributes are to be
modified. The current UFD is searched for filnam.

namlen The length in characters of filnam.

array A two-word array containing the attributes. For KS$SPROT,
array(2) must be zero.

code An integer variable set to the return code.

Owner rights are required on the UFD containing the entry to be
modified. ‘

The formats of the attributes in array are the same as those in a UFD
entry obtained from RDENSS.

An attempt to set the date/time modified, the dumped bit, or the
read-write lock on an old partition will result in an ESOLDP error
(error message 'OLD PARTITION').

Since a call to SATRSS modifies the UFD, the date/time modified of the
UFD itself is updated.

Examples
1. Set default protection attributes on MYFILE:
ARRAY (1)=:3400 /* OWNER=7, NON-OWNER=J

ARRAY (2)=3 /* SECOND WORD MUST BE #
CALL SATRSS (K$PROT,'MYFILE',6,ARRAY (1) ,CODE)

N
.

Set both owner and non-owner attributes to read-only (note
carefully bit positioning in two-word octal constant) :

CALL SATRSS (K$SPROT,'NO-YOU-DON''T',12,:100200000,CODE)

REV. A 4 - 22

PDR3621 FILE SUBROUTINES

3. Set date/time modified from UFD entry read into ENTRY by

RDENSS:

CALL SATRSS
P SAVESS

SAVESS is used to save
UFD.

(K$DTIM,FILNAM,6,ENTRY (21) ,CODE)

an R-mode memory image as a file in the current

CALL SAVESS (vector ,filnam,namlen,code)

vector A nine word array the user sets up before calling SAVESS

vector(l)
location
the last

is set to an integer which is the first
in memory to be saved and vector(?) is set to
location to be saved. The rest of the array is

set at the user's option and has the following meaning:

vector (3)
vector(4)
vector (5)
vector(h)
vector (7)
vector(8)
vector (9)

filnam The name

saved P register
Saved A register
saved B register
saved X register
Saved Keys

not used

not used

of the file to contain the memory image.

nanlen The length in characters (1-32) of filnam.

code An integer return code.

P> SGDRS$S

SGDR$$ positions in a

segment directory, reads entries, and allows

modification of a directory's size.

CALL SGDR$S (key,funit,entrya,entryb,code)

key An integer specifying the action to be per formed.

Possible

K$SPOS

values are:

Move the file pointer of funit to the position
given by the value of entrya. Return 1 in

entryb if entrya contains a file, return 0 if

entrya exists but does not contain a file,
return -1 if entrya does not exist (is beyond
EOF) . If EOF 1is reached on K$SPOS, the file

4 - 23 January 1980

SECTION 4

KSFULL

KSFREE

KSGOND

KSGPOS

KSMSIZ

KSMVNT

PLR3621

pointer is left at EOF. The directory must be
open for reading or both reading and writing.

Move the file pointer of funit to the position
given by the value of entrya. If the position
contains a file, set entryb to the value of
entrya. If the position is empty, search for
the first non-empty entry following the
position specified. If a non-empty entry
exists, set entryb to the position of that
entry. If the EOF is reached and a entry with
a file has not been found, then return -1 in
entryb. If EOF is reached on KS$FULL, the file
Pointer is left at EOF.

Act in the same manner as K$FULL, but find an
entry that does not contain a file.

Move the file pointer of funit to the

end-of-file position and return in entryb the
file entry number of the end of the file.

Return in entryb the file entry number pointed
to by the file pointer of funit.

Make the segment directory open on funit entrya
entries long. The file pointer is moved to the
end of file. The directory must be open for
both reading and writing.

The entry pointed to by entrya is moved to the
entry pointed to by entryb. The entrya entry
is replaced with a null pointer. Errors are
generated by K$MUWNT if there is no file at
entrya, if there is already a file at entryb,
if either entrya or entryb are at or beyond
EOF. The file pointer is left at an undefined
position. The directory must be open for both
reading and writing.

funit The file unit on which the segment directory is open.

entrya An unsigned 16-bit entry number in the directory, to be
interpreted according to key.

entryb An unsigned 16-bit integer set or used according to key.

code An integer variable set to the return code.

When using SGDRS$S, the

write-only access.

REV. A

segment directory must not be opened for

PDR3621 FILE SUBROUTINES

A KSMSIZ call with entrya=g causes the directory to have no entries.
If the value of entrya is such as to truncate the directory, all
entries including and beyond the one pointed to by entrya must be null.
See SRCH$S for more segment directory information.

Note

When sequentially reading a directory (K$SPOS, entrya =
entrya+l, K$SPOS, ...), entryb=-1 indicates the end of the
directory, NOT the return code ESEOF. ESEOF is returned when
entrya indicates a position beyond EOF, i.e., the entry
following the first KSPOS to return entryb=-1.

Examples

1. Read sequentially through the segment directory open on 6:

CURPOS=-1
100 CURPOS=CURPOS+1
CALL SGDR$S (K$SPOS, 6,CURPOS, RETVAL,CODE)
IF (RETVAL) 200,300,400 /* BOTTOM, NO FILE, IS FILE

2. Make directory open on 2 as big as directory open on 1:
CALL SGDRS$S (KSGOND,1,9,SIZE,CODE)
IF (CODE.NE.@) GOTOQ <error handler>
CALL SGDRSS (K$MS1Z,2,SI1ZE,0,CODE)
P sPasss

SPASSS sets the passwords of the current UFD.
CALL SPASSS (opass,npass,code)

opass A three word array that contains the password to set as
the owner password.

npass A three word array that contains the password to set as
the nonwoner password.

code An integer variable set to the return code.

SPASSS requires owner rights to the current UFD. For passwords
intended to be typed from the terminal, passwords should not start with
a nunber nor should they contain blanks commas =t @ { } [1 () "<
or >. Passwords should not contain lower-case characters but may
contain any other characters including control characters.

pPasswords which are not intended to be typed from the terminal (i.e.,
access through program only) can be any bit pattern.

4 - 25 January 1980

SECTION 4

P> SRCHSS

PDR3621

SRCHS$ is used to open a file, close a file, delete a file, or check on

the existence of a file.

CALL SRCHS$ (actiontreftnewfil,filnam,namlen,funit,type,code)

action A subkey
Possible

KSREAD
KSWRIT
K$RDWR
K$CLOS
KSDELE

KSEXST

ref A subkey

KSIUFD

KSISEG

KSCACC

KSGETU

indicating the action to be performed.
values are:
Open filnam for reading on funit.
Open filnam for writing on funit.
Open filnam for reading and writing on funit.
Close file by filnam or by funit.
Delete file filnam.

Check on existence of filnam.
modifying the action subkey as follows:

Search for file filnam in the current UFD (this
is the default).

Perform the action specified by action on the
file that is a segment directory entry in the
directory open on file unit filnam.

Change the access mode of the file already open
on funit to action. (K$READ, KSWRIT, KSRDWR
only) .

Open filnam on an unused file-unit selected by
PRIMOS. The unit number is returned in funit.
When this key is used, SRCHSS supplies a unit
nunber not currently in use. See example of
use of this key later in this section.

PDR3621 FILE SUBROUTINES

newfil A subkey indicating the type of file to create if filnam
does not exist., Possible values are:

KSNSAM New threaded (SsaM) file (this is the default).
KSNDAM New directed (DAM) file.

KSNSGS New threaded (SAM) segment directory.

KSNSGD New directed (DAM) segment directory.

It is not possible to generate a new UFD with
SRCHSS; use CREASS instead.

filnam Name of the file to be opened (2 characters per word).
KSCURR can be used to open the current UFD (ACTION Keys
KSREAD, KSWRIT, or KSRDWR only). If ref is KS$SISEG,
filnam is a file unit from 1 to 62 (1 to 15 under PRIMOS
II) on which a segment directory is already open.

namlen The length in characters (1-32) of filnam.

funit The nunber (1-15 under PRIMOS II, 1-162 under PRIMOS) of
the file unit to be opened or closed, or returned
argument with K$GETU key.

type An integer variable that is set to the type of the file
opened. type is set only on calls that open a file —-
it is unmodified for other calls. Possible values of

tzgg are:

Sav file

DAM File

SAM Segment Directory
DAM Segment Directory
UFD

W N

code An integer variable set to the return code.

SRCHSS is a complex subroutine that has multiple uses. The most common
use is to open and close files.

Opening and Closing Files

Opening a file consists of connecting a file to the file unit. After a
file is opened, the file may be accessed to transfer information to or
from the file or to position the current position pointer of a file
unit (file pointer). These actions are accomplished by other
swbroutines, which reference the file through the attached file unit,
such as PRWF$S, SGDR$S, RDENSS, RDLINS, WTLINS, ISADO7, O$SADJ7, RDASC,

4 - 27 January 19809

SECTION 4 PDR3621

and WRASC. Information is also transferred through the statements in
specific languages, such as the READ and WRITE statements in FORTRAN.

On opening a file, SRCH$S specifies:

1. Allowable operations that may be performed by PRWF$S and other
routines (these operations are read-only, write-only or both
read ard write) .

2. Where to look for the file, or where to add the file if the
file does not currently exist. SRCH$$ either specifies a
filename in the currently attached user file directory or a
file unit number on which a segment directory is open. TIn the
segment directory reference, the file to be opened has its
beginning disk address given by the entry at the current
position pointer of the file unit.

Each file in a UFD has associated with it two sets of access rights,
one for the owner and one for the nonowner of the UFD. These access
rights are initially owner-has-all, nonowner-has none. They can be
changed using the PROTECT comand or the SATRSS subroutine. These
access rights (reading allowed, writing allowed, or delete allowed,
etc.) are checked on any attempt to open a file. A NO RIGHT error
code (ESNRIT) is set if the user does not have the required rights.

If the file cannot be found on open for reading, SRCHS$ generates the

file-not-found error code (ESFNTF). If the file unit is already in
use, SRCH$S generates the unit in use error code (ESUIUS).

The Read/Write Interlock

Under default conditions, the system allows any number of readers if
there are no writers or a single writer and no readers for the same
file. The system prevents one user from opening a file for writing
when another user has the file open for reading or writing., The system
prevents one user from opening the file for reading or writing while
another user has the file open for writing. Furthermore, these
interlocks hold for a single user attempting to open a file on multiple
file units he has available. 1If the interlock is violated, the FILE IN
USE error code is generated (ESFIUS).

This interlock may be changed on a per-file basis. (Refer to RDENSS.)

On closing a file, it is possible to close by name or by file unit.
SRCH$$ attempts to close by filnam unless filnam is specified as @ in
which case it closes the file unit specified. If filnam is not fourd,
an error 1is generated (code = ESFNTF), but 1f the file unit is
specified, SRCH$$S ensures that the file unit specified by funit is
closed and never generates an error code (unless funit is out of
range) . If the file has been modified while it was open, the date-time
stamp of the file is updated when the file is closed.

REV. A 4 - 28

PDR3621 FILE SUBROUTINES

Changing the Access Mode of an Qpen File

A user may change the access mode of a file that is open on funit to
open-for-reading, open-for-writing, or open for both reading and
writing, using the KSCACC key. Note that access rights and the
read/write interlock rules from the file are checked and the attempt to
change access may fail.

Adding and Deleting Files in UFDs

A call to SRCHSS to open a file for writing or both reading and
writing, causes SRCHS$S to look in the current UFD for the file. If the
file is not found in the UFD, a new file is created of # length and an
entry for the file is put in the UFD. The date/time of the file is set
to the current date/time, the access rights are set to
owner-has-all-rights, nonowner-has-none, the read/write interlock 1is
set to the system standard read/write lock and the file type to that
file type specified in the SRCHS$$ call. If the file type is not
specified, it is a SaM file. Note that nonowners cannot generate new
files (error code returned is ESNRIT) .

A call to delete a file must specify a legal funit although the file
system does not use that file unit during the delete. Deleting a file
returns the records of the file to the DSKRAT pool of free records ard
erases the entry from the UFD leaving a vacant hole. Vacant holes in
UFDs will be reused for new files if of the right size, so new files do
not always appear at the end of your UFD. These vacant holes take very
little room on the disk in most cases. These holes are compressed out
of UFDs when the FIXRAT maintenance program is run by the system
operator. See The System Administrator's Guide (PDR3109).

Checking the Existence of a File

If the user wishes to find out if a certain file exists in the current
ufd or segment directory, the SRCH$$ KSEXST key can be used. The file
is not affected in any way and access rights and the read/write
interlock are not checked.

Operations on Files that are UFDs

Files in the current UFD that are subUFDs can be opened only for
reading. The contents of entries of subUFDs can be read through calls
to RDENSS and GPASSS once the subUFD is open. The current UFD can be
opened for reading by specifying the key KS$CURR in the filnam field of
the SRCH$S call. Calls to the SATRSS or SPAS$S subroutines require
that the current UFD not be open or the FILE IN USE error is generated.
New UFDs can only be created using the CREA$S subroutine, not SRCHSS.
UFDs may be deleted with SRCHS$ only if the UFD contains no files. The
FUTIL command can delete a nested structure of UFDs.

4 - 29 January 1980

SECTION 4 PDR3A21

Operations Involving Segment Directories

Segment directories are directories in which the files are referenced
by their position in the directory rather than a name. Furthermore,
the directory entry associated with a file contains the attributes such
as date/time, protection or the read/write lock, of the highest level
segment directory in the UFD. Segment directories are not attached but
are operated on using SRCHSS and SGDRSS.

To create a segment directory, use SRCH$SS to open a new file for
reading and writing with the file type specified as SAM segment
directory or DAM segment directory.

With the file open, use SGIRS$$S to make the segment directory contain a
certain number of null file entries (KSMSIZ key).

To create a file in a segment directory, first open the directory for
reading and writing on a funit (e.g. SUNIT) if it is not already open.
Next, use SGDR$$ to position to the null file entry desired. Next, use
SRCH$S to open a new file for writing or reading and writing in the
segment directory by using the KSISEG reference key and placing the
SUNIT nunber of the segment directory in the filnam argument. The file
unit of the new file goes in the wusual field (funit). SRCHS$S will
create the new file and place a pointer to the new file in the segment
directory entry of SUNIT.

Use SRCH$S to close by unit or name (with KSISEG) a file in a segment
directory.

To open a file that already exists in a segment directory, open the
segment directory and position to the desired entry as explained above.
Use SRCHSS to open the file as explained above. If the directory entry
already contains a pointer to the file, that file will be opened. If
not, and the attempt is to open for reading, the file not found error
is generated. Any type of file except a UFD may be created in a
segment directory.

To delete a file in a segment directory, open the segment directory,
position to the file desired, then use SRCH$SS with the XK$ISEG and
KSDELE keys. SRCHSS returns the record of the file to the DSKRAT and
replaces the pointer to the file with a null pointer in the segment
directory entry.

Finally, to delete a segment directory, the user must first delete all
files in the directory, set the size of the directory to @ using
SGMR$$, close the directory, then delete it with SRCH$S. The FUTIL
command may be used to delete a segment directory at command level.

Files in a segment directory have the protection attributes of the

directory. The date/time field of the directory reflects the latest
charge made to the directory or any file in the directory.

REV. A 4 - 39

PDR3521 FILE SUBROUTINES

Filenames

Filenames may be 1-32 characters in length, the first character of
which must not be numeric. Filenames can be composed only of the
following characters: A-Z 9-9 # $ & * - . and /. Filenames may not
contain embedded blanks; filenames may be specified with trailing
blanks. An attempt to create a file with an invalid filename results
in the error code E$BNAM (illegal name) .

Examples

1. Open new SAM file named RESULTS for output on file unit 2:
CALL SRCHSS (KSWRIT,'RESULTS',7,2,TYPE,CODE)

2. Create new DAM file in the segment directory open on SGUNIT
and open for reading and writing on DMUNIT:

CALL SRCH$$(KSREWR+K$ISEG+K$NDAM,SGUNIT,1,DMUNIT,TYPE,CODE)
3. Close and delete the file created in the above call:

CALL SRCHSS (K$CLOS,@,9,DMUNIT,,CODE)
CALL SRCHS$S (KSDELE+KSISEG,SGUNIT,®,4,8,CODE)

4. See if filename 'MY.BLACK.HEN' is in current UFD:

CALL SRCHSS (KSEXSTHKSIUFD, 'MY.BIACK.HEN',12,8,TYPE,CODE)
IF (CODE.EQ.ESFNTF) CALL TNOU('NOT FOUND',9)

5. Create a new segment directory and a new SAM file as its
first entry:

CALL SRCHSS (KSRDWRHK SNSGS, ' SEGDIR' ,6,UNIT, TYPE,CODE)
CALL SRCHSS (K $WRIT+HK SNSAM+K SISEG,UNIT,d,7,TYPE,CODE)

6. Open the file named 'FILE' in the user's currently attached
UFD:

CALL SRCHS$ (KSREADHKSGETU,'FILE',4,UNIT,TYPE,
X CODE)
IF (CODE .NE. @) GOTO error_ processor

The above FORTRAN call will attempt to open the file named 'FILE' in
the user's currently attached UFD. If successful, the file unit number
on which 'FILE' has been opened is returned in UNIT. The type of the
file opened is returned in TYPE, and CODE is set to zero if there are
no errors, If there are any errors, CODE will be nonzero, and the
values of TYPE and UNIT are undefined.

4 - 31 January 1989

SECTION 4 PIR3621

If no file units are available, the error code ES$FUIU (all units in
use) is returned. This code is returned if either the process (user)
has exceeded the maximum number of file units the process (user) may
have, or the total number of file units in use for all processes
(users) exceeds the maximum number of file units available to all
processes (users).

P> TSRCSS

TSRCS$ AND TREENAMES

TSRCSS is a subroutine to open a file anywhere in the PRIMOS file
structure.

CALL TSRCSS (actiontnewfil, treename, funit, chrpos, type, code)

action A subkey indicating the action to be performed.
Possible values are:
KSREAD Open treename for.reading on funit.
KSWRIT Open treename for writing on funit.
KSRDWR Open treename for reading and writing on funit.
KSDELE Delete file treename.
KSEXST Check on existence of treename.
KSCLOS Close treename (not funiv) .

newfil A subkey indicating the type of file to create if
treename does not exist. Possible values are:

KONSAM New threaded (SAM) file (this is default).
KSNDAM New directed (DaM) file.
K$NSGS New threaded (SAM) segment directory.
KSNSGD New directed (DAM segment directory.
treename A specification of any file in any directory or

subdirectory stored in array treename packed two
characters per word.

funit The number (1-126) of the file unit to be opened or
deleted. funit is closed before any action is
attempted.

REV. A 4 - 32

PDR3621 FILE SUBROUTINES

chrpos A two element integer array setup as follows:

chrpos(l) On entry, set to contain the first character
in the array that is part of the treename, the
count starting at @. On exit, it will be
pointing one past the last character that was
part of the treename. A coma, new line, or
carriage return will terminate the name, as
will end of array. In case of error,
chrpos(l) points one past the treename
component that caused the error. chrpos(l) is
always modified by this subroutine, therefore,
must be set up before each call.

chrpos(2) The number of characters in the treename
array.

type An integer variable set to the type of the file opened.
type is set only on calls that open a file; it is
umodified for other calls. Possible values for type

are:
2 SaM File
1 DAM File
2 SAM Segment Directory
3 DAM Segment Directory
4 UFD
code an integer variable set to the return code. If no

errors, code is d.

TSRCSS always closes the specified file unit then
attaches to the user's home UFD before attempting any
action. If the user's home UFD differs from his current
UFD before calling TSRC$$, he will find himself attached
to his home UFD following the call. See SRCH$$ for more
details on file manipulation.

Caution

Do not use TSRCSS to perform a charge access
(KSCACC) .

Treename Definition

A treename is a syntax convention that allows the specification of any
file in any directory or subdirectory. A treename may be used to open
or delete a file using subroutine TSRC$$. Treenames may also be used
in place of simple filenames in most external commands such as SLIST.
Treename as used here, is synonymous with "pathname" as described in
the PRIMOS Commands Guide.

4 - 33 January 1980

SECTION 4 PDR3621

The simplest form of a treename is a simple file name as allowed by
SRCH$S. The file is assumed to be located in the home directory.

The general form is a starting directory specifier, zero, one, or more
subdirectory specifiers, and then the file name.

The starting directory specifier has the following formats (square
brackets ([]) indicate an optional item):

1. UFDname [password]>

2. *®

3. <volumename> UFDname [password]>

4. <logical-disk-number> UFDname [password]>

In form 1, all MFDs are searched for the named directory in logical
disk order.

In form 2, the home directory is the starting directory.
In form 3, the volune with the specified name is searched for the
specified UFD name. If the volume name is a single asterisk (*), the

MFD in the home volume is searched.

In form 4, the volume with the specified octal logical disk number is
searched for the specified UFD name.

A subdirectory specifier has the following format:
ufdname [password]>
The UFD is assumed to be in the directory specified by the preceding

specifier. Spaces are not significant except that they may not occur
within a name and must separate a UFD from its password. If a name is

longer than 32 characters, the excess characters are ignored.

Exampl es
ABC File named ABC in home directory.
XYZ>ABC File naned ABC in UFD=XYZ.

<INV>XYZ>ABC File named ABC in UFD=XYZ on volume =INV.

<F>XYZOABC File named ABC in UFD=XYZ on home volume.
- <5>XYZ>ABC File named ABC in UFD=XYZ on logical disk 5.
*>XYZ>ABC File named ABC in subUFD=XYZ in home
directory.

REV. A 4 - 34

PDR3621 FILE SUBROUTINES

*>SXYZ>TIK>ABC File named ABC in subUFD IJK in subUFD=XYZ in
home directory.

XYZ DEF>ABC File named ABC in UFD=XYZ with password =DEF.
Treenames specified as parameters to external commands should not
contain spaces, as the space or comma is used to separate one parameter

from another. If a space must be specified due to a password, enclose
the entire treename in single quotes.

P> UPDATE

CALL UPDATE (key,®)
key 1

Update current UFD; DSKRAT buffers to disk,
if necessary; and undefine DSKRAT in memory.

This call is not normally used. This call is effective only under
PRIMOS II. Under PRIMOS III or PRIMOS it has no effect.

P WILINS

WILINS writes a line of characters in ASCII format to a file in
compressed ASCII format.

CALL WTLINS (funit, buffer, count, code)

funit A file unit (1-126) on which the file to be written is
open for writing.

buffer An array of count words from which the 1line of
characters is to be written. It should contain 2
characters per word

count The size of buffer in 15-bit words.
code A return variable set to 9 if no errors, or an error

code if an error has occurred. Refer to Appendix G for
a list of error codes.

4 - 35 January 1980

SECTION 4 PDR3621

Information is written on the disk in compressed ASCITI format.
Multiple blank characters are replaced by the character DC1 (271 octal)
followed by a character count. Trailing blanks are removed and the end
of record is indicated by adding a new line character, or a new line
character followed by null. WrLINS is the same routine as O$ADO7,
except the altrtn argument has been replaced by the code argument.

REV. A 4 - 36

PDR3621 PRIMOS SUBROUTINES

SECTION 5

MISCELLANEOUS PRIMOS SUBROUTINES

This section describes subroutines which perform miscellaneous PRIMOS
functions. The PRIMOS routines described in this section are: BATCHS,
BREAKS, C1IN, CL$GET, CNINS, COMANL, DUPLX$, ERKLSS, ERRPRS, EXIT,
GINFO, LOGOSS$, PHANTS, RDTKS$$, RECYCL, TEXTOS, TIMDAT.

P BATCHS

BATCHS starts a phantom user. BATCHS is the same as PHANTS, but has
the additional function of starting a phantom user under a different
login name (usrname) . BATCH$ is called by a procedure running under
control of the supervisor (user 1) or a phantom initiated by user 1.

CALL BATCHS$ (fname, fnlen, unit, usrnam, unlen, user, code)
fname Array containing name of command input file to be
started as a phantom (INTEGER*2).
fnlen Length (in characters) of fname (INTEGER*2) .

unit File unit on which to open fnam. If value specified is
@, default is unit 6 (INTEGER*2).

usrnam User name the phantom is to be started under.
(INTEGER*2)

unlen Length of usrnam (INTEGER*2).

user User number that usrnam was assigned.

code Code returned to the user, indicating any errors
(INTEGER*2) . Possible values are:
@ No error.

ESNRIT Not called from process initiated from system
console or insufficient access rights to fname.

ESDIRE Fname is directory, not a file name.

ESNPHA No phantoms available.

5 - 1 January 1984

SECTION 5 PDR35621

P> BREAKS

BREAKS inhibits or enables CONTROL-P for interrupting a program.

CALL BREAKS (.TRUE.)
CALL BREAKS (.FALSE.)

The LOGIN command initializes the user terminal so that the CONTROL-P
or BREAK key cause an interrupt. Under PRIMOS III and PRIMOS, the
BREAKS routine, called with the argument .FALSE., enables the CONTROL-P
or BREAK key to interrupt a running program.

On the other hand, the BREAKS routine called with the argument L.TRUE.,
inhibits the CONTROL-P or BREAK characters from interrupting a running
program.

This routine maintains a per—user QUIT inhibit master list. Each call
to BREAKS to inhibit or enable QUIT increments or decrements a counter.
QUITs are enabled only when the counter is zero; 1i.e., the counter
goes positive with inhibit and cannot be decremented below zero.

Under PRIMOS II, BREAKS has no effect.

p cin

This routine gets the next character from the terminal or a command
file, depending upon the source of the command stream.

CALL C1lIN (char)

The next character is read or loaded into char (right-justified and
zero—filled). If the character is .CR., char is set to .NL. (new
line).

Line feeds are discarded by the operating system, and are not detected
by the ClIN subroutine.

P CLSGET

CLSGET reads a single line of input text from the currently defined
commnand input stream. The 1line is returned as a varying character
string without the newline character at the end. An empty command line
or one consisting of all blanks will compare equal to the null string.

REV. A 5 - 2

PDR3621 PRIMOS SUBROUTINES

CALL CLSGET (comline, comlinesize, status)

comline Varying character string into which the text will be
read from the command input stream.

comlinesize Maximum length, in characters, of comline. Because
comline is a varying string, it is not blank padded
to this size.

status Return error code.

P CNINS

This subroutine is the raw data mover used to move a specified number
of characters from the terminal or command file to the user program's
address space.

CALL CNINS (buffer, char-count, actual-count)

buf fer A buffer in which the string of characters read from
the input stream are to be placed (two characters
per word) .

char-count The number of characters to be transferred from the

input stream to the buffer specified by buffer.

actual-count A return argument. It specifies the number of
characters read by the call to CNINS. If reading
continues until a new line character is encountered,
the count includes the line character.

CNINS reads from the input stream until either a NEW LINE character is
encountered or the number of characters specified by the char-count
argument are read. Characters are left-justified, and if an odd number
of characters are read, the remaining character space is not zero or
blank filled. The question mark and quotation mark characters are not
interpreted.

Input to CNINS is obtained from the temminal unless the user has
previously given the COMINPUT or PHANTOM commands, and these commands
are still in control. The COMINPUT or PHANTOM commands switch the
input stream so that it comes from a file rather than the terminal
(refer to the PRIMOS Commands Reference Guide (FDR3198) for fur ther
information) .

5 - 3 January 1989

SECTION 5 PDR3621

P covanL

COMANL causes a line of text to be read from the teminal or from a
command file, depending upon the source of the command stream.

CALL CQMANL

The line is read into a supervisor text buffer. This buffer may be
accessed by a call to RDIKS. The supervisor text buffer holds 87
characters. The supervisor text buffer is also used by CNINS and
T$AMLC. The contents of this buffer must be picked up by RDIKSS after
a call to COMANL and before calls to CNINS or TSAMIC.

P DuPLXS

The DUPLXS$ subroutine is called to control the manner 1in which the
operating system treats the user terminal.

CALL DUPLXS$ (mode)

It returns the terminal configuration word and internal buffer number
as the value of the function. In addition, if the mode passed to
DUPLX$ is equal to -1, no updating of the configuration word takes
place. 1In this case, the current value is returned. DUPLXS must be
declared as an INTEGER function if the returned value is to be used by
the calling program. Values for mode are:

Bit Mask Meaning if Bit is SET

1 100008 Half duplex

2 240000 Do not echo LINE-FEED after
CARRIAGE RETURN.,

3 020000 Turn on X-OFF/X-ON character
recognition.

4 Pl000¢ Output currently suppress
(X-OFF received).

5-8 007400 Reserved.
9-16 00B377 Internal buffer number (read-only) .

DUPLX$ has no effect under PRIMOS ITI.

REV. A 5 - 4

PDR3621 PRIMOS SUBROUTINES

The mode of a user terminal is not affected by the LOGIN or LOGOUT
commands. '

The mode of the user terminal may also be set at the supervisor
terminal by using the AMIC command.

User may use the PRIMOS TERM command to change their terminal
characteristics.

P> ERKLSS

The ERKLSS subroutine reads or sets erase and kill characters.

CALL ERKLSS (key,erase , kill,code)

key A parameter specifying the action to be taken. Possible
values are:

KSWRIT Set erase and kill characters.

KSREAD Read erase and kill characters.

erase On key KSWRIT, the character contained in the right byte
of erase replaces the operating system's per—user erase
character. If erase is @, no action takes place. On
key KSREAD, the current per—user system erase character
is placed in erase, right-justified with leading zeros.

kill On key = KSWRIT, the character contained in the right
byte of kill replaces the operating system's per-user
kill. The current per-user system kill character is
placed in kill right justified with leading zeros.

code An integer variable set to the return code. Possible
values are:
2 If no errors.

ESBPAR If attempt to set characters is improper.

Erase and kill characters are reset to default values upon a logout or
login. '

5 - 5 January 1980

SECTION 5 PDR3621

Erase and kill characters are interpreted by commands to the operating
system and through the subroutines COMANL, RTK$$, RDCOM, RDASC, IS$AAl2,
and ISAAPl. All language processors and I/0 statements call RDASC to
get terminal input and, therefore, are affected.

RDCOM, RDASC, 1IS$SAAl2, and ISAAQL are library subroutines that read the
system's per-user erase and kill character only once when they are
first invoked. Therefore, changing the erase and kill characters after
a call to those subroutines does not affect erase and kill processing
in these subroutines until the next program is invoked. The main
purpose for users calling the ERKLSS subroutine is to read or set these
characters when the user programs do their own erase and kill
processing.

Under PRIMOS II, the erase and kill characters may be read but any
attempt to set them is ignored. The erase and kill characters may be
set at command level by the PRIMOS TERM command.

P> ERRPRS

ERRPRS interprets a return code and, if non—-zero, prints a standard
message associated with the error return code, code, followed by
optional user text. See Appendix G for more details on error handling.

CALL ERRPRS (key,code,text,txtlen,