JOSS: A DESIGNER'S VIEW OF AN EXPERIMENTAL
ON-LINE COMPUTING SYSTEM

J. C. Shaw

August 1964

P-2922
Copyright € 1964
THE RAND CORPORATION

JOSS: A DESIGNER'S VIEW OF AN EXPERIMENTAL
ON-LINE COMPUTING SYSTEM

*
J. C. Shaw

The RAND Corporation, Santa Monica, California
ABSTRACT

JOSS (JOHNNIAC Open-Shop System) is an experimental
on-line, time-shared computing service. It is in daily
use by staff members of The RAND Corporation for the solu-
tion of small numerical problems. The users compose stored
programs and interact with JOSS through remote typewriter
consoles by using a single, high-level language.

The system is described with emphasis on those features
which have led users to accept it as a convenient new tool.
JOSS provides use of familiar typewriters, exact input/
output, decimal arithmetic, high-level algebraic language
with English punctuation rules, easy modification and repair

of programs, and report-quality formatted output.

Any views expressed in this paper are those of the
author. They should not be interpreted as reflecting the
views or opinions of The RAND Corporation or the official
opinion or policy of any of its governmental or private
research sponsors. Papers are reproduced by The RAND
Corporation as a courtesy to members of its staff.

This paper was prepared for presentation at the 1964
Fall Joint Computer Conference, sponsored by the American
Federation of Information Processing Societies, October
27-29, 1964, at San Francisco, California.

INTRODUCTION

The JOHNNIAC Open-Shop System (JOSS) is an experi-
(1)

been in daily use by staff members of The RAND Corporation

mental, on-line, time-shared computing system which has
since January 1964.* It was designed to give the individual
scientist or engineer an easy, direct way of solving his
small numerical problems without a large investment in
learning to use an operating system, a compiler, and de-
bugging tools, or in explaining his problems to a profes-
sional computer programmer and in checking the latter's
results. The ease and directness of JOSS is attributable
to an interpretive routine in the JOHNNIAC computer which
responds quickly to instructions expressed in a simple
language and transmitted over telephone lines from con-
venient remote electric-typewriter consoles. An evaluation
of the system has shown that in spite of severe constraints
on speed and size of programs, and the use of an aging
machine of the vacuum-tube era, JOSS provides a valuable
service for computational needs which cannot be satisfied
by conventional, closed-shop practice.

This paper concentrates on the numerous, small,
hardware and software design decisions which have influenced
the acceptance of the system by its intended users. Several
figures, produced on-line, are included, providing readable

examples of features of the JOSS language.

*
An austere version of the system saw limited use

during most of 1963.

BACKGROUND

From the earliest days of construction of the JOHNNIAC
computer, a Princeton-class machine built at The RAND
Corporation in 1950-53, it has been the author's dream to
have an economical, personal, remote communication station
for on-line control and programming of a computer. With
so much to be learned about programming and operating large,
general-purpose computers, it isn't surprising that the
additional investment in communications equipment, remote
stations, and corresponding software was postponed.

In its early days, JOHNNIAC served well as a production
machine. Then, because it has only a 4096-word core memory,
a slow 12,288-word drum, slow copy-logic for card 1/0 and
printing, no tapes, and a very austere order code, produc-
tion computing was gradually shifted to more modern IBM
equipment. Yet, the very accessibility to this unsaturated
second machine made JOHNNIAC attractive as the basis for
simplified programming systems for small, open-shop problems
and for experimental work in heuristic programming, new
software systems, and hardware for better iﬁteraction with
a computer. In November 1960, after years of discussion
of personal remote consoles with T. 0. Ellis, I proposed
to the management of RAND's Computer Sciences Department
that JOHNNIAC be committed full time to providing a modest
computing service to the open-shop via remote typewriters.

The purpose of the JOSS experiment was not to make
JOHNNIAC machine language available, but rather to‘provide
a service through a new, machine-independent language which
had to be designed specifically for the purpose. It was

to be an experiment with the goal of demonstrating the value

of on-line access to a computer via an appropriate language,
and was intended to contribute to a project with the long-
rangé goal of a sophisticated information processor. T. O.
Ellis, I. Nehama, A. Newell, and K. W. Uncapher were the
other participants in that project.

In 1961-62, Ellis and M. R. Davis designed and directed
the construction of the required multiple typewriter com-
munication system adjunct to JOHNNIAC. The hardware was
ready well in advaﬁce of the first version of the system
program, and only a few select users were subjected to this
very limited system. Their feedback, including encouraging
remarks on the usefulness of JOSS, helped shape the full

. *
version.

COMPARISON

Other on-line, time-shared computing systems have

(2-6) All are pioneer-

become operational in recent years.
ing efforts. By comparison, JOSS is special-purpose, even
though it encompasses a wider class of problems than one
might guess at first reading. Most of the others provide
the user with access to machine language. F. J. Corbatd
has aptly described them as open systems and JOSS as a
closed system. In the open systems, an executive routine
is prepared to help the user at the machine-language level
or to pass control to one of several subsystems providing

adaptations of pre-existing programming systems. JOSS,

*We wanted to do a controlled evaluation of the system
at the time of the introduction of the full version of JOSS,
but the new users taught others so quickly that we had to
resort to after-the-fact questionnaires!

however, was designed with on-line interaction in mind, and
resources were devoted to making it smooth and easy to use,
The future lies with the open systems, but it remains to be
seen whether the open-system executive will absorb JOSS-like
systems simply as additional subsystems, or whether JOSS-
like systems will absorb the executive function and thus
serve as the user's computing aide and single contact with

the computer,

HARDWARE COMPONENTS OF JOSS

Physically, JOSS consists of the JOHNNIAC computer,
ten remote consoles, and a multiple typewriter communica-

tion system to mediate between JOHNNIAC and the consoles.

JOHNNIAC

RAND, as did several universities and research in-
stitutions in the early 1950s, constructed a computer
(called "JOHNNIAC'" for John von Neumann) more or less on
the pattern of the machine of the Institute for Advanced
Study at Princeton. JOHNNIAC was upgraded in 1954 with
the replacement of the original 256-word Selectron memory
with a 4096-word magnetic core memory. The word length
is 40 bits. Because JOHNNIAC was ill-equipped to handle
the message traffic required in JOSS service, a special-
purpose buffering system was built to process characters
within messages and to monitor the remote stations. The
alternative of modifying the main frame to handle the
message traffic directly would have required a major re-
work of the JOHNNIAC control and would still have yielded

degraded performance in JOSS service. Thus, JOHNNIAC re-
mains a very primitive machine with no indexing, no in-
direct addressing, no floating point, no error checking,
no memory protect, no interrupts, no channels, no compare,
no zero test, a miserable format of two single-address
instructions per word, and a 50-ks add time.

The JOSS system program runs about 6000 words, the
low-frequency portions residing on drum and overlaying each
other in core when called in for execution. A large part
of the JOSS system program resides permanently in core.

It was a considerable challenge to compress it sufficiently
to leave room for the processing of a user's block in core.
More than once I regretted the lack of an adequate sub-
routine linkage operation; it would have saved much space
in this deeply hierarchical program.

The 12,288-word JOHNNIAC drum is divided into three
sections, accessed by moving heads at a rate not quite so
fast as a modern disk unit unless the heads are luckily
in the correct position. Average swap time (i.e., the
time to write one user's block of information out onto
drum and read a second user's block into core for proces-

sing) is, therefore, quite slow at about half a second.

COMMUNICATION SYSTEM

The multiple typewriter communication system provides
sixteen line-buffers, controls the states of all ten remote
consoles, and registers signals from them. The limit is
81 consoles--well beyond our needs and our budget. The
JOSS system program in JOHNNIAC commands block transfers

between core and the line buffers. It also commands the

communication system to enable or disable a console, re-v
quest or relinquish control of a console, clear a line
buffer, assign a line buffer to a console, or transmit a
line buffer to a console. It also commands the communica-
tion system to report any signals from consoles indicating
a carriage return, a page ejection, or the depression of

one of the console control keys.

REMOTE CONSOLE (Fig. 1)

Lights and switches in a small box augment the IBM
model 868 typewriter to indicate the status and to control
the functions of the local communication terminal electronics.
The switches are: a POWER switch; an ON switch to connect
the terminal to JOSS; an OFF switch to disconnect; a READY
switch to reactivate the typewriter after inserting a fresh
supply of paper; an IN switch to request control of the
typewriter for input; and an OUT switch to relihquish control
for output. Indicators are provided as follows: a POWER
light; an ENABLE light showing that JOSS service is avail-
able; a READY light showing that output is acceptable at
the typewriter; a red light to show that JOSS controls the
typewriter; a green light to show that the user controls
it; an IN REQUEST light to show that the user has depfessed
the IN button for control but JOSS hasn't yet responded;
and an OUT REQUEST light to inform the user that JOSS has
an administrative message for him (such as "Shutting down
at_2330."). |

The READY light goes out if the paper supply is ex-

hausted or if the paper jumps the sprockets. The user

may also switch the READY light off any time he wants to

Fig. 1—JOSS console and station local control ¢o

hold up output momentarily. To continue with the output,
the READY light is turned back on; no information is lost.
The philosophy is one of exclusive control of the type-
writer. When JOSS has control, the red light is on, the
keyboard is locked, and the typewriter ribbon color is
black. As JOSS turns control of the typewriter back to the
user, the light changes to green, the keyboard unlocks, the
ribbon color changes to green, and a soft gong rings. These
visual, tactile, and audible signals leave no doubt as to
who controls the station.

If a remote typewriter console is to be a personal
instrument, it must also serve as a simple typewriter. This
consideration dictated that the console allow for off-line
use and that the character set include all the normal punctu-
ation of a typewriter. The sprockets and paging mechanisms
restrict the stations from being entirely satisfactory as
personal typewriters, because of the problem of changing
paper aﬁd the excessive noise. However, the hard copy
produced is excellent--quite acceptable for reports without

further transcription and chance for error.

KEYBOARD (Fig. 2)

The choice of character set and key positions for
any on-line keyboard input device isn't to be taken lightly,
especially if one hopes to encourage senior technical
people to use the keyboard in the direct solution of their
problems. It is customary for these people to pay others
to drive teletypewriters, keypunches, and even typewriters.
' For the JOSS remote typewriters, we left the comma, period,

semicolon, colon, slash, question mark, quotes, space sign,

‘ ‘

OOOOEOOOOO0g

00000000000
00000000066

000 00000COECH

Fig. 2—JOSS typewriter keyboard

-11-

dollar sign, parentheses, and hyphen in their customary
positions. The less essential characters of standard sets
were sacrificed in order to make room for all six numerical
relation symbols.

To linearize numerical expressions requires an explicit
sign for exponentiation, for which we chose a five-pointed,
upward-pointing, slightly elevated asterisk in upper case
(all of which contribute proper associations for exponentia-
tion). The plus, minus (hyphen), centered dot (for multi-
plication), slash (for division), and equals sign are all
in lower case. Left and right brackets were included, in
place of the upper-case comma and period, in order to improﬁe
readability of linearized expressions (otherwise, such
expressions tend to become cluttered with parentheses). The
absolute value bar also contributes somewhat to readability.
Parentheses and brackets are interchangeable in pairs for
all grouping functions: subexpressions, arguments for func-
tions, indices, and interval size in iteration expressions.

The punctuation and capitalization rules for JOSS are
quite conventional, but three symbols are used in very
special ways. The space sign (#) is used as a strikeover
character, causing a character already in the input line
buffer to be replaced by a space. This is needed since,
if the typed line is to reflect the contents of the input
buffer, the space bar and backspace key must never enter
any character into the buffer (although they do control
position). The asterisk (*) at either end of an instruc-
tion input line leads JOSS to ignore the line and thus
provides a device for annotating one's work and for cancel-

ling lines. (For most errors, however, the process of

-12-

simply backspacing and striking over is adequate.) The
dollar sign ($) may be used in any expression and carries
a numerical value equal to the line number (from 1 to 54)
of the typewriter's current position on the page. This
value is updated by JOSS so the user can easily control
format on the page. If no format is specified, JOSS sup-
plies an automatic one-inch margin at the top and bottom
of each page. ;
The tab may be used to speed output typing by skipping
instead of spacing over blank positions. The typing speed
of ten characters per second, less shifting time, has not
been a source of dissatisfaction. A key interlock, intended
to insure that only one key at a time was depressed, was
abandoned because of the frustrating effect on the user.
The action of the keys without the interlock is édmirable,
but it is possible to hit two keys at once, superimposing
their character codes for transmission. This risk is more
acceptable than the interlock, but it means that JOSS must
be prepared to receive any 7-bit character code--not just
the legal ones. The keyboard lock (not to be confused
with the now-abandoned key interlock) is incomplete in that
it locks only the typing keys, and even then it can be
overriden. This deficiency has not been a problem however
since, at most, the user can spoil only his own output by

trying to use the typewriter out of turn.
SOFTWARE

- JOSS services the requests of users at the remote

consoles in such a way that the users' activities are

-14-

logically independent of one another. Up to eight of the
ten stations may be served concurrently by time-sharing
techniques. In addition to administering input/output
and swaps of user blocks, JOSS interprets and executes
both direct and indirect (i.e., stored-program) instruc-

tions couched in a readable and easily learned language.

TIME SHARING

The basic JOHNNIAC computer provides no parallel pro-
cessing. The multiple typewriter communication system does
provide for parallel activity at many consoles by high-speed
line-scanning and time-shared use of the logic circuits.
JOSS takes advantage of this independent parallel processing
in the communication system by time sharing--i.e., by switch-
ing its attention rapidly from one user to another to give
adequate service to all active users. Each active user is
represented by a block of information which resides on the
drum, except when JOSS is actually processing it in core.

. First priority for JOSS' attention goes to the servicing
of signals from the consoles: carriage return, page, on,
off, in, out, and end-of-transmission. JOSS looks for these
signals in the communication system when idling, and between
interpretive steps when executing a user's program. An
end-of-transmission signal requires only that JOSS record
that the line buffer is available, and direct the transmis-
sion of the next line of output to the same station if one
is ready. JOSS then continues with its previous activity.

A carriage return, however, like several other signals,
requires that JOSS break off its current activity, move

the current user's block out to drum, move the signaling

-14-

user's block into core, and, finally, interpret and act
on the line of input just released by the carriage return.
Second priority is given to users who have given JOSS
output-limited tasks which have been set aside until the
typewriters have nearly caught up. Third priority is given
to users with unfinished tasks, on which JOSS works for
two seconds apiece in round-robin fashion. A user's.
priority changes dynamically according to this discipline,
which successfully exploits the parallel processing of the
communication system. Under a typical load, JOSS responds
to simple requests in a fraction of a second and rarely
in as long as three seconds. Users who are skilled in
typing can maintain impressive rates of interaction with
JOSS. |

LANGUAGE

The reader will observe that throughout this section
on software, the term "JOSS" is used to refer to that single
active agent at the computer end of the telephone line
connecting the user's remote console. It is convenient to
consider JOSS to be a "computing aide'" interacting with
the user by means of a simple language. The reader should
now read the examples (Figs. 3a-3i) before continuing in
this section. The examples fall short of being an adequate
instruction manual for the system, but they suggest the
readability of the language, the high degree of interaction,
and the power of expression.

A striking feature of the system is that the user
commands JOSS directly in the same language that he uses

to define procedures for JOSS to carry out indirectly. A

-15-

Type 2+2,
P 242 = 4

Set x=3,
Type x. '
X = 3

Type x+2, x-2, 2-x, x/2, x*2,

X+2 = 5

X-2 = 1

2:x = 6

1

9

N Y I e

x/2 =
x*2 =

Type [(|x-5]-3+4)-2-15]-3+10,
[{7x-5|!3*4;-2-15]-3+10 = 25

o3

“e

U - Denotes inputs of the JOSS user; normally typed in- green.
J - Denotes outputs from JOSS; normally typed in black.

(3a)

Fig. 3—Samples of JOSS language and interaction

-16-

(SN

e

G o wCc

Type sqrt(3), sqrt(4).
sqrt(3 1.73205081
sqrt (4 2

Type sqrt(-1).
Error above: Negative argument for sqrt.

Set e=2,71828183,
Ty e log(l) 103(2), log(e).

log(2 1.69314718

log(e) =
Type exp(0), exp(5), exp(1).
exp(0) =
exp(.5 1 64872127
exp(i 2.71828183
Type sin(.5), cos(.5 sin(.5)*2+cos(.5)*2.
sin.3) = Ca3d428339
cos = .877582562

sin(. 5)*2+cos(.5)*2 =1
Type arg(i ,0), agg(o ,1), arg(-1,0), 4-arg(3,3).

arg(1,0
arg(0,1 1.57079633
arg(-1,0) = 3.14159265

4.arg(3,3) = 3.14159265

(3b)

-17-

[

e

“wae Gao

Set y = 123,456,
Type y, ip(y) fg(z). dp(y), xp(y).

ip(y) = 123

fp(y) = 456
dp(y) = 1,23456
xp(y) = 2

Type 1.23456.10%2,

1.23456-10*%2 = 123.456

ngi-ggg§ -3.5), ign(O), sgn(3.5).

sgn(0) 0

sgn 3.5) = 1

Type max(1,2,3), min(1,2,3).
fi 2,33 = 3

min(1 2,3 = 1

(3c)

-18-~

Delete all,
1.1 Do part 2 for b=1(1)a.

2.1 Set ¢ = sqrt(a*2 + b*2),
2.2 Type a, b, c in form 1,

Form 1:

a=__ b=_ c¢=__.___
Do part 1 for a=1(1)3.

a= 1 b= 41 c¢= 1,414
a= 2 b= 1 c¢= 2,236
a= 2 b= 2 c¢= 2,828
a= 3 b= 1 c¢= 3,162
a= 3 b= 2 c¢= 3,606
a= 3 b= 3 c¢c= 4,243

Type all steps.
1.1 Do part 2 for b=1(1)a.

2.1 Set ¢ = sqrt(a*2 + b*2),
2.2 Type a, b, c in form 1,

Type all forms,

Form 1:

as= b= c = .

Type all.
1.1 Do part 2 for b=1(1)a.

2.1 Set ¢ = sqrt(a*2 + b*2),
2.2 Type a, b, ¢ in form 1.

Form 1:

a=_ b=__ c¢=_.
"
b= 3
c= 4.,24264069

(3d)

-19-

G a4a o

2.15 Line if fp(c)=0.

2.2 Type a, b, ¢ in form 1 if fp(c)=0,
Type part 2.

2.1 Set ¢ = sqrt(a*2 + b¥*2),

2.15 Line 1if fp(c)=0,

2.2 Type a, b, ¢ in form 1 if fp(c)=0,
Do part 1 for a=1(1)15,

a= 4 b= 3 c= 5,000
a= 8 b= 6 ¢ =10,000

a=12 b= 5 ¢ =13,000
a=12 b= 9 ¢ = 15,000
a=15 b= 8 ¢ =17,000
Type pare 2. '

Error above: No such part,
Type all values.

am= 15
b= 15
c= 21,2132034

Delete all,

(3e)

-20-

3.1 Type x, sqrt(x), 108(x)o exp(x), __
Do step 3.1 for ifi 12,3,1

X =
sgrtg § - %
og(x) =
= 2,71828183
X = 2
sqrt(x) = 1.41421356
log x = .69314718
= 7.3890561
X = 3
sqrtzx) = 1.73205081
log xg = 1.,09861229
exp(x) = 20,0855369
X = 103
sqrt(x) =
q §x = 4,60517019
exp X) = 2.68811714-10%43

(3f)

-21-

3.1 T
Form

Do step 3.1 for x

8.50
8.51
8.52
o33
-1
«56
.58
.60
.00
.50

\O \© 00 0o 00 0o Co

gpe x, sqrt(x), log(x), exp(x) in form 3.

2,917
2,919
2,921
2,922
2,926
2,929
2,933
3.000

3.082

2.,1412
2,1424
2.1436
2,1448
2,1471
2.,1494
2,1518
2,1972
2,2513

4,964
5.014

L] 0000 O0QOGES

= 8,50(.01)8.54(.02)8.60, 9, 9.5.
01 4.9%5 03 >

03
03
03
03
03
03
03
03
04

(39)

-292-

4.2 Set s = s+b(i).
Set s=0.
Do part 4 for i=1(1)4.
J/U: bii = 543
b(2) = 237
b(3) = 411
T b(4) = 733
U: ype S.
J: s = 1924
U: 5.1 Set b(i) = b(i)/s.
Do part 5 for i=1(1)4.
Type b,
J: b(1) = 282224532
b(2) = .123180873
b 33 = .213617464
b(4) = 380977131
U: Set s=00
Do step 4.2 for i=1(1)4.
Type s.
J: 8 = 1
U: Delete all,

(3h)

-23-

i
2
3 Do part 7 for t=0(h)4.
i
2

Type t, a in form 62 if fp(t/.5)=0.
Do part 8 for x = t+h-(.5-k), t+h-(.5+k).

.1 Set y = c-exp(-x*2/2).
.2 Set as 3*.5‘h‘y.

Form 61:
t Integral
Form 62:

[) [)
e cgm—— - sap————

Set a=0,

Set k=1/sqrt(12).

Set h=.1,

Set c=1/sqrt(2-3.14159265).

Do part 6.
t Integral

.00 .0000

.30 «1915
1.00 .3413
1.50 4332
2,00 4772
2.50 .4938
3.00 .4987
3.50 4998
4.00 .5000

(3i)

-24-

numeric label as a prefix to a step is an implied command
to JOSS to store the step in sequence according to the
numerical value of the label. JOSS differs from other on-
line systems by requiring the user to supply his own step
numbers on all steps of his stored program. This seems
appropriate, for the user always has the option of typing

a direct command or an indirect step, without having to
explicitly call for another mode to get the desired option.
The numeric label determines whether an indirect step is

an addition, an insertion, or a replacement for another
step. The step numbers really do pay their way. Elsewhere,
the language is very explicit. For example, it requires
full words, in conjunction with numerical expressions, to
denote steps, parts, or forms. This too contributes to
readability. A step is limited to a single line, and a
line is limited to a single step, neither being much of a
constraint. As a result, a step number serves to identify
not only the logical step but the stored string and typo-
graphical line as well. Arbitrarily complex expressions
may be used everywhere, except as step label prefixes which
must be explicit decimal numerals. The 52 upper- and
lower-case letters are the only identifiers to which the
user can assign numerical values. (I1f pressed, he can
extend the set by indexing 1etters,vbut indexing is normally
used in the customary way--to identify elements of vectors
or matrices.) Again, generality of expression, single-
letter identifiers, and two sets of groupers all contribute
to readability. (For an experienced typist, readability
implies writeability as well--text is easy, expressions take
time but can be mastered, highly encoded‘implicit material

is difficultr.)

-25-

JOSS represents all numbers internally in scientific
notation--nine decimal digits of significance and a base-
ten scale factor with an integer exponent in the range -99
through +99. JOSS presents an exact input interface,
familiar decimal arithmetic internally, and an exact output
interface. Addition, subtraction, multiplication; division,
and square root are carried out by JOSS to give true results
rounded to nine significant decimal digits (except on over-
flow which yields an error message, or on underflow for
which zero is substituted). The decimal nature of JOSS gives
the user easy control over exact calculations that would
require especially careful attention in a binary system.

The functions in the language include a set of logical
functions which, together with the numerical relations and
and and or, lead to powerful direct expressions of conditions
which can be attached to any step. Care has been taken in
a basic set of elementary functions to hit certain "magic"
values on the nose and to provide reasonably full significance
of results. The general exponential routine to compute
a*b, for example, factors out error situations and the
special cases of b =0, a =0, b =1, b an integer and a an
integer power of 10, b = .5, b = -.5, and b an integer with
2 < b s 29, before resorting to explb-.-log(a)].

The interpretive technique on which JOSS is based
enables the user to edit his stored program freely and
quickly--even when JOSS interrupts at the user's request
or suspends work on a task to report an error. Inserting
and replacing steps or forms is implicit in the treatment
of any new line of input. Deleting and typing are called

for explicitly and the language provides "handles" at various

-26-

levels of aggregation so the user isn't forced to do his
editing piecemeal at the level of individual steps, forms,
and values. Steps are organized into parts according to

the integer parts of the step numbers. Parts then become
units that can be typed or deleted, as well as natural

units for specifyingkprocedures in hierarchical fashion.
Values, too, may be organized into vectors and arrays if
indexed letters are used, and the letters by themselves

may be used to refer to entire arrays for purposes of typing
or deleting. Still higher aggrégates may be typed or

deleted by using the expressions: all steps, all parts,

all forms, all values, and all.

JOSS and the user take turns controlling the type-
writer. It is critically important that the current status
of JOSS with/respect to any task it may have been working
on be perfectly clear each time control is returned to the
user. To this end, JOSS transmits error messages, in-
terrupt messages, and stop messages to distinguish these
states from the state of having just successfully completed
a task. The user obviously does not want a message for
successful completion, because it would be so frequent and
because it would intrude on his formal output. Error
messages are of two types: those that report violations
of language constraints (such as indices not within the
permissible range of integers from 0 to 99); and malforma-
tions of expressions, steps, etc. The first type is
infrequent and the message is long enough to be very
explicit about the violation. The second type covers a
multitude of situations which are easy for the human eye

to detect, but for which a precise error message is

-27-

extremely difficult. All these errors are reported by the
very briel message "Eh?". Thus, the user is forced to read
his step to find the error, rather than possibly being mis-
led by a message unrelated to the actual error. In every
error situatidn, the user is able to proceed. Frequently
he can repair an erroneous step or form and continue with
a Go command. Some errors may require that the user ask
JOSS to start over after the repair, which is accomplished
by simply giving JOSS the same Do command used to initiate
the task. Even when JOSS has run out of space in pursuing
the task, it stands ready to help. The user may ask JOSS
to delete portions of the program which are no longer
essential to getting final answers (such as forms or steps
no longer needed) and to continue with a Go command, this
time with additional space for JOSS to work in.

The user need do no preplanning in composing his
procedures before sitting down at the JOSS console, since
he can depend on interacting with JOSS to perfect his
program. This ideal situation holds for the two users
in RAND who have personal consoles. The other stations
are public and, because of heavy usage, some users prefer
to plan their work before going to the console--but it isn't
necessary.

All input to the system is free form. It is unreasonable
to demand that certain items of input be typed in specified
columns on the page. On output, however, it is important
that the user be able to require that JOSS type answers in
conveniently specified forms. It is also important that JOSS
choose a reasonable output form when the user hasn't specified

one. JOSS' choice here is one number per line. Each number

-28-

is identified by the very expression used in the step
calling for the output. JOSS tries to line up equals signs
and decimal points, and uses fixed-point notation except
when the magnitude of the number makes this unreasonable.

For formal output, the user has the entire width of
the line in which to specify the literal information and
the blank fields to be filled in with numeric answers.
Just two types of fields prove adequate. A string of under-
scores with an optional decimal point indication is used
for fixed point. A string of periods specifies a tabular
form of scientific notation in which only the digit part
and the corresponding exponent part are typed with the
base ten understood. The number of digits typed is deter-
mined by the length of the field, and JOSS rounds the answers
to fit the fields. Page and Line steps may be used to direct
JOSS in formatting the output. As mentioned above, JOSS
relieves the user of having to count output lines, by main-
taining the line number on the page as the value of the
dollar sign. The user can, for example, call for a new page

at line 50 (i.e., "Page if $=50."). JOSS provides margins

automatically, and identifies each page with time, date,
and user's initials typed at the very top, where it can be
clipped off if the page is to be incorporated into a report.
The saving of time and errors by eliminating necessity for
transcription of results is no small part of the system's
attractiveness.

It should now be clear that the user always interacts
with JOSS at a reasonable language level, never in machine
language, and that the suggestion to think of JOSS as a

computing aide is entirely appropriate. In fact, except

-29-

for machine malfunctions, no lower-level model of JOSS'
activities can be used to explain behavior of the system
which is not adequately explained in terms of the simple
higher-level model. Thus, theré are no JOSS system experts
to call in for consultations--the checked-out user can
explain every result even though he has no knowledge what-
ever of JOHNNIAC, the system routines comprising JOSS, or

the representations of the entities of his program.

IMPLEMENTAT ION

The administration of the time-sharing aspects, drum
slots, line buffers, states of remote consoles, selection
of tasks, etc., is accomplished!by detailed but straight-
forward machine-language routines in JOHNNIAC. The
priority scheme never shuts out any user indefinitely. It
responds quickly to input signals, such as carriage return,
and keeps output-limited stations typing at full speed.

The routines for interpretation, execution, and sequence
control of the user's program, however, represent solutions
to many new problems. The user's block of information
initially contains certain tables, storage for value as-
signments (to 52 letters), heads of empty pushdown lists,
working storage, and a list of available space units.

List processing routines are used to store away the
literal strings of characters for steps and forms as list
structures, and to perform inserts, replacements, and
deletes on these structures. Similar routines are used
to build list structures holding numerical representations
of the elements of arrays, and to perform inserts, re-

placements, and deletes on them. A vector, then, is

-30-

represented by a list of elements, each labeled explicitly
with its index. It need not be dense, since values are
looked up by scanning the list for a match on the explicit
index. Similarly, a matrix is represented by a list of
lists of elements where the lists for the rows'also carry
explicit indices. Pushdown lists for operators and operands,
as well as an auxiliary pushdown list, are used in the
process of evaluating a numerical expression. The evalu-
ation is programmed conveniently as a recursive routine.

The most elaborate list structure arises in the bookkeeping
JOSS must do to record the current step number at each

level in a hierarchical task. Each Do causes JOSS to

descend a level to perform the required part as a subroutine,
then return and advance from the Do. 1If the Do step carries
a for clause, then a list structure is built to record in-
formation esséntial to control of the iterations. This
discussion is to point out that list processing is a corner-
stone of the JOSS implementation.(7’9)

But, the list processing too is strictly an internal
matter to JOSS and is completely sealed off. The user.
reaps the benefits in flexibility and interaction at a
high language level. The challenge was not in the list
processing as such, but rather in the clean-up and backing
off to the beginning of a step to report an error to the
user. It was essential that no irreversible change be
made in the user's block until the interpretation of a
step could guarantee that the execution would proceed to
completfon without an ervor. This consideration had to be
modified slightly for the Do step with a for clause, but

satisfactory stopping positions were found, even for the

-31-

case where the user deletes a part being iterated. This
attention to detail has paid off. It is most satisfying

to watch open-shop users with no previous computer ex-
perience, and little JOSS training, extract themselves from

errors with JOSS' help, then continue with their problems.

CONCLUSION

JOSS now has more than 100 qualified users among staff
members at The RAND Corporation. Their most frequent re-
quests have been for more scheduled JOSS time, for more
storage space, and for long-term storage of programs.*

No one complains of the speed, although JOSS is slow. Every-
one is enthusiastic about the simple language and ease of
interaction. The distinguishing features of JOSS are:
typewriters with an excellent touch and carefully selected
keyboard; quick response to trivial requests; report-quality
output; highly readable language; English capitalization

and punctuation rules; exact input; familiar decimal arith-
metic; exact output; no declarations; easy editing; power-
ful language for small numerical problems; and high-level
language interaction at all times.

In this designer's view, the acceptance of an open-
shop computing system depends on the little things--
hundreds of them!

*In July of this year, JOSS service was extended into
the evening hours. At this writing, a version of JOSS
is being prepared to double the present user's block of
512 words and to record programs in punched cards.

-32-

ACKNOWLEDGMENTS

Many individuals have contributed to the building and
installation of JOSS. The critical feedback and enthus-
iastic response of N. Z. Shapiro, A. C. Smith, and the

other initial users of JOSS was invaluable.

-33-

REFERENCES

Baker, C. L., JOSS: Scenario of a Filmed Report, The
RAND Corporation, RM-4162-PR, June 1964,

Boilen, S., E. Fredkin, J.C.R. Licklider, and J. McCarthy,
"A Time-Sharing Debugging System for a Small Computer,"
AFIPS Conference Proceedings (1963 SJCC), v. 23,
Spartan Books, Baltimore, Maryland, 1963, pp. 51-57.

Coffman, E. G., Jr., J. I. Schwartz, and C. Weissman,
"A General-Purpose Time-Sharing System," AFIPS Con-
ference Proceedings (1964 SJCC), v. 25, Spartan Books,
Baltimore, Maryland, 1964, pp. 397-411.

Corbaté, F. J., M. Merwin-Daggett, and R. C. Daley,
"An Experimental Time-Sharing System," Proceedings
1962 Spring Joint Computer Conference, v. 21, The
National Press, Palo Alto, California, 1962,
pp. 335-344,

Dunn, T. M., and J. H. Morrissey, '"Remote Computing--
An Experimental System., Part I: External Specifica-
tions," AFIPS Conference Proceedings (1964 SJCC),

v. 25, Spartan Books, Baltimore, Maryland, 1964,
ppP. 413-423,

McCarthy, J., "Time-Sharing Computer Systems," Manage-
ment and the Computer of the Future, M.I.T. Press,
Cambridge, and John Wiley & Sons, Inc., New York,
1962, pp. 221-236.

Bobrow, D. G., and B. Raphael, "A Comparison of List-
Processing Computer Languages,' Comm. ACM, 7 (1964)
231-240.

Newell, A., and J. C. Shaw, '"Programming the Logic
Theory Machine," Proceedings of the Western Joint
Computer Conference (1957), Institute of Radio
Engineers, New York, 1957, pp. 230-240.

Shaw, J. C., A. Newell, H. A. Simon, and T. 0. Ellis,
"A Command Structure for Complex Information Pro-
cessing," Proceedings of the Western Joint Computer
Conference (1958), American Institute of Electrical
Engineers, New York, 1959, pp. 119-128. '

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33

