RCA

ELECTRONIC | DATA PROCESSING SYSTEM

501

THE RCA 501
SCIENTIFIC INTERPRETER
MANVUAL

Eiecironic Data
@ RADIO CORPORATION OF AMERICA | Processing Division
® Camden, New Jersey

The data herein presented is subject

to minor change without notice.

November 1960

CONTENTS

Page
INTRODUCTION
What Is An Interpretive System 1
Introduction To The RCA 501 Electronic Data Processing System 2
The RCA 501 COMPULET . oo vvn ittt te ettt e e 2
Peripheral Equipmentoueietanrontiiiiiii i 2
FEATURES
LS Y=Y 2 A R 6
Interpreter Operationeeiiiiiiiinaiie i 6
Interpreter Computer Hardwareooiiiiiiiiiiii ., T
Program Testingc.ouuiiui it e T
Memory SEPUCTULEottt 8
Subroutines of the Systemiiiiii i e 8
Interpretive Memory and Interpretive Addressingcovevinens 9
Pseudo-Code CharacteriStiCso.ieeniiiii i i 9
Pseudo-Code Instruction Character Symbols 10
The Patch Number (P)ooiiiii e 10
The Operator (OPR) Characterscoooiiiiiiiiiiiiiiiiiiiin, 11
The Address Modifier (i) Characterty 11
The A-Address (a) Field of Characters i, 11
The B-Address (b) Field of Characters i, 11
The C-Address (¢) Field of Charactersc i, 11
THE PSEUDO-CODE
The Pseudo-INnStructionscouirveiii i e . 12
Floating-Decimal Arithmetic Operations ...t 12
Transcendental Operationscooiiiiiie i i 14
Fixed Point Operationsccoiiiiin.. e 15
Logical OPerationsouiniinrmneanmone it 16
Data Manipulation and Input/Output oo 18
Specialized OpPerationsoiiveieon i 20
Pseudo-Address Modificationooiiiniiiiii i 21
6]+ R 23
Miscellaneous Operationsc..ueennnunnteueiniiiiiieie .. 24
Floating Point Constantsouiiiiiiiiiain i, 24

PROGRAMMING AIDS

GEIIETAL . v v vttt et e e e e
Program Editoooiooee

Tracing 8 PrOgramoeeoeviiiniiiii
Tape Trunk Designation ...

Insertion of Subroutinesoiiiiiiiii i
Ability To Write Pseudo-Code In Parts ...,

OVETIAYS v e vt vttt ettt et e et

MACHINE CODE

GETIETAL .+ v vttt ettt e e e
Machine Code .. .vvviit it e e e et e
Transfer to Machine Codeoouuiiiii i e

PREPARATION OF A PROGRAM

TREFOQUCEION .« o v ettt et e e e e e et e e
Paper Tape Preparationooeveieieiiiiii i
Main Body of Programc.oeoeeiieiineniiiii i
Corrections and Patchesot
Paper Tape Format of Corrections and Patchesoooienn.

APPENDICES

Input Data Formatcoueiiiiiiiiiiiiiii i
Sample Problemoutiutii
Location of Pseudo-Address Modifiers P
Interpreter Patch/Edit Routine
Pseudo-Code Unload Routineot .
Operating Instructions for the RCA 501 Interpreter
Error Stops and Restart Procedures oot
Reference Table of Instructionsc.vvuiiiiiii i

meEES QW

iv

Page :

34
35
37
38

CHAPTER

INTRODUCTION

WHAT IS AN INTERPRETIVE SYSTEM?

All Electronic Computing Systems are designed to recognize and respond to a code
which is unique to the system. The code that is recognized by a particular machine system
is called its machine code. The machine code consists of a number of instructions which
cause some internal operations to take place. Usually, the operation caused by any one
machine instruction is very small in relation to the processing required for the solution
of any problem.

A trained person, called a programmer, is generally required to effect the solution of
a problem on an electronic computing system. The programmer must be thoroughly
familiar with the machine code and the logical operations of the machine system with
which he is working. The person desirous of a solution to some problem must, therefore,
present his problem to a programmer. He must make the programmer thoroughly familiay
with every detail of the problem before the programmer can write a “program” to
effect a solution of the problem.

The program is a series of machine instructions, which when executed by the computer
will perform the desired processing.

An Interpretive System is a program written in machine code. It causesthe computer
to operate upon a program written in some code other than machine code. This other
code is called a pseudo-code. The Interpretive System is written to recognize a set of
pseudo-code instructions, called pseudo-instructions, and to initiate a set of machine
instructions, called a subroutine, for each pseudo-instruction in the pseudo-code program.
The subroutine will cause the computer to perform the operation specified by the
pseudo-instruction.

The RCA 501 Scientific Interpreter System is designed for the inexperienced pro-
grammer who desires to use the RCA 501 Data Processing System for the solution of
engineering and mathematical problems. As such, its pseudo-code is directly related to
the natural language of mathematics. The user of the RCA 501 Scientific Interpreter
System need not become familiar with the internal workings of the machine system.
He need only acquire some basic concepts of computer technique, must know enough
mathematics to solve the problem and must understand the problem to be solved thoroughly.

Thus, with the use of the Scientific Interpreter, the scientist, the man with the problem,
with little additional training, can write the program and achieve the solution directly on
the RCA 501 Computing System.

The RCA 501 Scientific Interpreter System is convenient and simple to use, economical
in its memory requirements, and performs at speeds which enable the user to employ it
effectively.

In order for the user of the Scientific Interpreter to make better use of the system,
he should have some general knowledge of the RCA 501 Electronic Data Processing
System. The following pages are, therefore, a general description of the machine system.

1

INTRODUCTION TO THE RCA 501 ELECTRONIC

DATA PROCESSING SYSTEM

The RCA 501 Electronic Data Processing System is a machine system designed to
process information. It can perform mathematical and logical operations. Mathematical
operations include the arithmetic functions of addition, subtraction, multiplication and
division. Logical operations include comparisons, transfer of information, and determination
of the next instruction to be performed.

The RCA 501 System .receives information and performs the proper mathematical and
logical operations upon it to produce the desired solutions. Since it is an electronic data
processing system, it is capable of handling large volumes of information and performing
long series of complex caleulations with extreme accuracy.

All these functions are accomplished with lightning speed. The System is currently
being used to great advantage in both business and scientific applications. Let us examine
the components of the RCA Data Processing System and see how they combine to make
a complete system. ‘

THE RCA 501 COMPUTER

Specific instructions are written to control the operation of the Computer. These
instructions are called the Program. Under the control of these programmed instructions,
the Computer is the element which performs the mathematical and logical operations.

High Speed Memory

The High Speed Memory is a magnetic core device within which information is stored.
The memory is available in increments of 16,384 character locations and may be expanded
to a maximum of 262,144 locations. Each location is individually addressable and can store
any one of sixty-four characters.

Program Control

The Program Control interprets the Program and thereby directs the Computer in
the performance of the various mathematical and logical operations upon the data stored
in the High Speed Memory. Simultaneously, automatic accuracy checks are executed.

The Console

The Console provides a means of monitoring the operations of the Computer. Automatic
and manual operation, maintenance, program insertion and program testing are
accomplished at the Console.

PERIPHERAL EQUIPMENT

The RCA 501 System has certain component parts that are referred to as peripheral
gear. The peripheral gear that is directly controlled by the Computer is known as On-Line
equipment. Those pieces of equipment that operate independently of the Computer are
referred to as Off-Line equipment. Therefore as each component is described herein, it
will be specified as On-Line or Off-Line equipment.

2

Tape Stations — On-Line (Input-Output Device)

The Tape Stations are the major input-output devices of the RCA 501 System. ’Ihey
are directly controlled by the Computer. Information is read into and written out of the
Computer on magnetic tape through the Tape Stations. A Computer may have as few as
two and as many as sixty-two Tape Stations that are directly connected to it. Tape Stations
can magnetically read or write information on magnetic tape at the rate of 33,333
characters per second.

Paper Tape Reader — On-Line (Input Device)

Punched paper tape is read into the Computer through an input device called the
Paper Tape Reader. This device reads information at the rate of 1,000 characters per second.

Tapewriter and Tapewriter Verifier — Off-Line (Input Device)

The Tapewriter and Tapewriter Verifier is a keyboard-operated, input device.
Information is punched on paper tape and simultaneously printed on hard copy on the
Tapewriter. In conjunction, the Tapewriter Verifier automatically checks punched
information for accuracy by comparison with a previously prepared punched paper tape
(prepared on a Tapewriter). Both devices function at a typing speed of up to 10 characters
per second.

Monitor Printer — On-Line (Output Device)

The Monitor Printer is an output device that is directly controlled by the Computer.
This is an on-line device that prints information received from the High Speed Memory
as hard copy. When desired, information can be punched into paper tape and printed
as hard copy at the same time.

The Monitor Printer prints at the rate of 10 characters per second, and its primary
use is for printing low-volume outputs, operational program control and program testing.

Computer Paper Tape Punch — On-Line (Output Device)

The Computer Paper Tape Punch is an output device that is electrically connected
to the Computer. It is capable of producing either 5-level punched paper tape or 7-level
punched paper tape.

This device operates at the rate of 100 characters per second and a tape speed of up to
10 inches per second.

Also available is a High Speed Paper Tape Punch which operates at the information
rate of 300 characters per second and a tape speed of up to 30 inches per second.

Card Transcriber — Off-Line (Input Device)

The Card Transcriber is an input conversion device. It accepts punched cards, translates
the information from 80-column punched cards to RCA coded characters onto magnetic
tape at the rate of up to 400 cards per minute. The magnetic tape is then used as an input
device to the Computer.

The Card Transcriber consists of two units: the Card Reader and the Card Editoy.
The Card Readerrmay be used without the Editor. In this case, the Computer must provide
the translation and editing. |

In either case, each card is read through two card reading stations to provide an
automatic accuracy check.

Transcribing Card Punch — Off-Line (Output Device)

.

The Transcribing Card Punch is an output conversion device. It accepts information,
recorded in RCA code, on magnetic tape and translates it into 80-column card code, punching
the information into cards. It punches cards at the rate of approximately 150 cards
per minute. :

The device reads the information from magnetic tape through two reading stations
which provide for an automatic accuracy check. The Card Punch can be utilized without
its editor in that the Computer must translate the information from RCA code into
80-column card code. It then arranges and selects the information under program control
pefore writing onto tape from which the information is to be punched. '

On-Line Printer (Output Device)

The On-Line Printer is a high speed printer that is electrically connected to and
controlled by the Computer. Information is printed from the Computer High Speed Memory
onto the output documents. The printer unit prints typographical characters on continuous
edge-perforated (blank or pre-printed) paper as instructed by the Program. The On-Line
Printer prints at the rate of 600 lines per minute, with as many as 120 characters per line.

Electro-Mechanical Printer — Off-Line (Output Device)

The Electro-Mechanical Printer is a High Speed Printer that operates independently
of the Computer and has its own mechanical and electronie unit.

The Off-Line Printer operates under the control of a plugboard. Selection, arranging
and editing of data is provided by manually wiring the plugboard (external programming)
and inserting it into the printer unit. Information to be printed is read from a magnetic
tape through the Off-Line Printer Tape Station,

The Off-Line Printer prints at the rate of 600 lines per minute. A line is composed
of as many as 120 characters. '

Paper Tape

Fe———————r - —_ ._!
i [} T
| 1 |
TAPEWRITER PAPER TAPE COMPUTER MONITOR
TAPEWRITER VERIFIER READER CONSOLE PRINTER
HIGH-SPEED PROGRAM POWER
STORAGE CONTROL SUPPLY
TAPE SELECT.
& BUFFER UNIT-A
ON.-LINE
PRINTER | l | !
COMPUTER
@_ COMPUTER FILE CONTROL
PUNCH UNIT

TAPE SELECT,
UNIT-BI

RANDOM ACCESS
FILES

I l | ‘ | I Power Suppl
. TAPE — Y
STATION
— TAPE SELECT. TAPE
— UNIT-B2 STATION
[TTTTTTY
TAPE
STATION
TAPE TAPE TAPE
STATION STATION STATION
1 ‘ \
CARD TRANSCRIBING CARD ELECTRO-MECH.
TRANSCRIBER CARD PUNCH CARD PUNCH READER PRINTER
1 \ \
3 A
TAPE TAPE
STATION STATION

RCA 501 System—Example of Equipment Interconnection

5

CHAPTER

FEATURES

GENERAL

The RCA 501 Scientific Interpreter is designed to provide a {acile programming tool
for the inexperienced coder. Its pseudo-code consists, in the main, of a set of easily
remembered instructions which permit the user to perform the usual arithmetic operations,
obtain the elementary transcendental functions of a single variable, and express recursive
processes in a form which is close to the basic notions of programming a digital computer.
The sundry chores which are a part of most machine code programs are absorbed by the
subroutines of the system, with which the user need not concern himself. In addition,
the instructions are designed so as to approximate the manner in which one normally
thinks of a computer operation.

The RCA Scientific Interpreter also includes a number of features designed for us
by the experienced programmer. Some of these features are: '

a. Segmentation.
b. The ability to write a program in parts.
c. The ability to use machine code if desired.

d. The ability to include interpretive subroutines as part of his current program.

INTERPRETER OPERATIONS
The interpretive pseudo-code provides for the following operations:
a. Floating-Point Arithmetic Operations.

1. Add

Subtract

Multiply

Negative Multiply

Divide

Negative Divide

. Vector Multiply

8. Polynominal Multiply

Bor 1o

Lo o

b. The Logarithmic Functions of a Single Variable.
1. Common Logarithm
2. Natural Logarithm

c. The Trigometric. Functions of a Single Variable.
1. Sine
2. Cosine
3. Arctangent

Exponentiation.
1. e®
2. 107

e. The Square Root of a Number.

-

=

a.
b.
c.
d. On-line or off-line electromechanical printer.
e.

It should be emphasized that the hardware mentioned above is the absolute minimum.
Additional hardware will, in general, enhance the operations of the interpreter system.

b. A tracing routine which documents only those pseudo-instructions which break
the normal sequence of pseudo-instruction execution.

fa— F‘%‘-

Fixed Point Operations.

Logical Operations.

A greater than test

An equality test

A less than test

An exponent test

Comparison of significance

. Unconditional transfer of control
7. Transfer to Machine Code

Data Handling Control.
Execute Subroutine.
Address Modification.
Looping.

Stop.

S o o=

. Skip.
. Overlay Operations.

INTERPRETIVE COMPUTER HARDWARE

The interpretive system is designed so that it will operate with only a minimum
configuration of RCA 501 Computer hardware which includes the following:

One module of core storage.
Two tape stations.
On-line monitor printer.

Paper tape reader.

PROGRAM TESTING

To assist the user in checking and correcting any errors that might occur in
programming, the following features are incorporated into the system:

a. A tracing routine which prints the complete result of the execution of each

pseudo-instruction as it is executed.

7

c. Complete editing of the program.

d. A routine by which the user may make corrections to his problem with a minimum'
of effort.

MEMORY STRUCTURE

The high-speed memory of the RCA 501 Computer provides storage area for the
program, the interpreter system and data. Information is represented in memory by the
decimal digits 0 to 9, the letters A through Z, punctuation symbols, typewriter symbols, ete.
The minimum configuration of computer hardware (one module of core storage) is
capable of storing 16,384 characters, however, the interpreter system can make use of
three modules of core storage (if available) which have the combined capacity of storing

49,152 characters. The available memory is considered to be divided into three specific areas:

a. Area occupied by the subroutines of the system (sequences of instructions used
to implement the various interpreter functions).

b. Area occupied by the machine coding inserted into the program by the experienced
programmer.

c¢. Area occupied by the interpretive memory.

Subroutine Space in the Memory

The space in machine memory occupied by the machine coding which constitutes the
interpreter program is denoted by the symbol M0. The amount of memory space occupied
by MO varies from program to program, since certain subroutines of the interpreter are
stored in machine memory only if they are required by the pseudo-code program.

Machine Coding Space in the Memory

The memory space occupied by any machine coding written to supplement the pseudo-
coding is called M#. When M# exists in a program, it immediately follows MO.

Interpretive Memory Space

The space in the memory provided for the interpretive program is denoted by the
symbol MP and begins wherever M# ends. The interpretive memory stores the following
types of quantities:

a. Pseudo-code instructions.

b. Fixed and floating-point constants.

c. Floating-point data.

SUBROUTINES OF THE SYSTEM

The subroutines of the system divide into two parts: the mandatory subroutines
which are automatically placed in a fixed sector of memory by the interpreter system;
the optional subroutines which are inserted in the memory at the request of the programmer.
The latter are placed in memory in such a manner that one follows the other without any
waste of memory space. The entrance addresses are stored in a list of subroutine entries.
As each optional subroutine is brought into memory, the subroutine name and its location
in memory are printed by the Monitor Printer.

8

INTERPRETIVE MEMORY AND INTERPRETIVE ADDRESSING
Starting Point ,
The interpretive memory section begins at the first available machine address following
the storage of the necessary interpreter subroutines and machine coding. The starting
address of the interpretive memory is always called A00. The actual value of the beginning
address of the interpretive memory, A00, is computed and stored for internal use by a
pre-edit routine. For purpose of general information the actual value is printed in the
course of the edit phase of the pre-edit.-

Units of the Interpretive Memory

Interpretive memory is divided into twelve-character words. The words are arranged
in banks, 100 words to the bank. Interpretive memory may have a maximum of 26 banks
(lettered A through Z), in addition to MO and M#, provided that machine memory has
the capacity for the maximum number of words.

Addressing

Since the interpretive memory is thought of in terms of words and banks, all pseudo-
code addressing is in terms of these units only. Reference to a word is made by means of
three characters, the first being the bank designation and the last two the ordinal of the
word in the bank. For example:

A17 signifies the 18th word in bank A (the 1st bank).
B33 signifies the 34th word in bank B (the 134th word of the interpretive memory).
D14 signifies the 15th word in bank D (the 315th word of the interpretive memory).

A00 is by definition the 12-character sector of memory following the last line of
machine coding in memory.

Quantities Stored in Interpretive Memory

The types of quantities stored in the interpretive memory are: pseudo-code instructions,
fixed and floating-point constants, and floating-point data. Each of these quantities is an
interpretive word occupying 12 character locations. The floating-point constants and data
are numbers written to conform to the format acceptable by the Floating-Decimal Arith-
metic Routine. Fixed-point constants are strings of characters which are the operands
(any one of the quantities entering into an operation) of the fixed add and subtract inter-
pretive operations (See Fixed-Point Constants).

PSEUDO-CODE CHARACTERISTICS
General

A pseudo-code instruction is an interpretive word. The symbols assigned to each of
the 12 characters of this word are as follows:

CHARACTER 1|12{3[4|5|6| 7|8]|9]10]11]12
SYMBOL C1 C') C3 CA C5 Cb C7 Ca CQ C‘,O Cl] C‘?

The content of the various character positions vary from instruction to instruection;
in general the following can be stated:

4. The content of C,, denoted by (C,) or p, is the patch number (first character position
in the interpretive word).

b. The content of C,, denoted by (C,) or OPR, is the operation code (second character
position in the interpretive word).

c¢. The content of Cs, ‘dénoted by (C,) or i, is the pseudo-address modifier number
(third character position in the interpretive word).

d. Characters C,CsCs, C,C:Cs, and C,C, G, are treated as single units and usually
vepresent the addresses of the operands of instructions. In some instances these
characters are decimal numbers whose meaning is defined by the particular in-
struction. Whenever the triple-character unit refers to a pseudo-code address, then
we denote:

the content of C.C;C., by a
the content of C,C.Cs, by b
the content of C..C;,C., by ¢

Pseudo-Code Instruction Format
Each pseudo-code instruction consists of 12 RCA characters. The names attached to
each character are shown in the following table:

CHARACTER POSITION 1l 2 18l4f{5|6|7| 8| 9]10 11 | 12
CHARACTER NAME p|OPR|i | a | a: | as b.| b.|bs| ¢ [cajCs

THE PSEUDO-CODE INSTRUCTION CHARACTER SYMBOLS
The set of triples a,a,a, bib.bs, €.€:C, act as units of information and are referred to
as a, b, ¢ respectively.
A psuedo-code instruction is therefore the string of symbols represented by:
p OPR i abec
The elements of the instruction code are further identified below.

THE PATCH NUMBER (p)

The first character position in a pseudo-code word is occupied by the patch number
denoted by p. The use of the pateh number is covered in detail in Chapter 6. It is used
as a correction aid. Initially all instructions are written with p designated as an item
separator symbol (ISS) e.

In Chapter 3, where the formats of the pseudo-instructions are given, an item separator
symbol entered in the p position indicates that this instruction may have no other p number.
A check symbol (/) in this position means that some number may be entered there.

10

THE OPERATOR (OPR) CHARACTER

The operator character, the second character in the pseudo-instruction, is symboligally
represented by OPR and represents the operation to be executed. The range of symbols
assumed by the OPR is:

0 through 9
%

i& through Z
THE ADDRESS MODIFIER (i) CHARACTER

The address modifier character, the third character in the pseudo-code instruction,
is represented symbolically as i and represents the number of the pseudo-address modifier
which is to be used to effect automatic address modification of the operand addresses in
the pseudo-instruction prior to its execution. The instruction is executed as if the contents
of the modifier were added to the addresses of the instructions. However, the instruction
stored in interpretive memory remains unchanged.

The Intrepreter provides seven pseudo-address modifiers denoted by the decimal
numbers 1 through 7; a zero character in the i position implies that no address modification
is required prior to the execution of the instruction. A pseudo-address modifier occupies

nine contiguous RCA characters in order that simulataneous modification of the three
operand addresses may be made at once.

There are some exceptions to the meaning of the i characters. These will be covered
as they arise. In Chapter 3, where the formats of pseudo-instructions are given, a zero
entered in the i position indicates that this instruction may not make use of the automatic
address modifier. A check (/) in this position means that the i character may be used.

THE A-ADDRESS (a) FIELD OF CHARACTERS

The fourth, fifth, and sixth character positions of the pseudo-instruction, denoted by
a,, Q,, a4, respectively, constitute the A-Address-field characters which are a pseudo-address
(bank letter and two decimal numbers) or a three-digit decimal number. Usually the

a-field contains the address of an operand; however, there are a number of exceptions and
these are described in detail as these exceptions arise.

THE B-ADDRESS (b) FIELD OF CHARACTERS

The seventh, eighth, and ninth character positions of the pseudo-code instruction,
denoted by b,, b, b, respectively, constitute the B-Address-field of characters which are a
pseudo-address (bank letter and two decimal numbers) or a three-digit decimal number.
Usually the b-field is used to show an address of an operand; however, there are a number
of exceptions and these are described in detail as the exceptions arise.

THE C-ADDRESS (c) FIELD OF CHARACTERS

The tenth, eleventh, and twelfth character positions of the pseudo-code instruction,
denoted by e, ¢, ¢, respectively, constitute the C-Address-field of characters which are
a pseudo-address (bank letter and two decimal numbers) or a three-digit decimal number.
Usually the c-field contains the address of an operand; however, there are a number of
exceptions and these are described in detail as these exceptions arise.

11

CHAPTER
THE PSEUDO-CODE

The pseudo-code program is written on the RCA 501 Scientific Interpreter Program
Record Sheet, Form RCA 1213, shown on page 13. In the column headed “HSM LOCATION”,
the programmer enters the address (bank letter and two decimal digits) of each instruction.
Instructions or fixed-point constants are written on consecutive lines. Instructions are
performed by the Interpreter System in sequential order, unless the sequence is interrupted
by some instruction whose function it is to interrupt the sequence. When an interruption
of a sequence occurs, it is said that a transfer of control has occurred. The next instruction
to be executed, then, is not the next instruction in sequence, but some other instruction
in the program. The address of this instruction is given in the sequence-interrupting
instruction. When a transfer of control occurs, the Interpreter System continues sequential
operations from that point in the program to which control was transferred until another
sequence-interrupting instruction is encountered.

THE PSEUDO-INSTRUCTIONS
The pseudo-code is designed to provide the user with a convenient tool to perform
the following operations:
a. Arithmetic Operations.
1. Arithmetic Floating-Decimal Operations
2. Transcendental Operations
3. TFixed-Point Arithmetic Operations
Logical Operations.
Manipulation of Data Input/Output.

2o o

Specialized Operations.
e. Miscellaneous Operations.
A complete list of symbols used in the pseudo-code instructions is given in Appendix H.

FLOATING-DECIMAL ARITHMETIC OPERATIONS

The format of the arithmetic operations is as follows:

CHARACTER POSITION || 1 2 34|56 7]8]9 10|11 12

CHARACTER NAME p| OPR |ila|a]as b, | b.| bafci € |cCa

FIELD CONTENT V|A/B/C|y |alsa b is a cis a
D/E/F Pseudo- Pseudo- Pseudo-
G/H address address address

These operations, without exception, are interpreted as follows:

The contents of location a and the contents of location b are the operands, and the
result of the operation is stored in location ¢. Symbolically this is written as:

(a) OPR (b) — (c)

12

€1

@ TITLE

RCA 501 INTERPRETER PROGRAM RECORD

PSEUDO — CODE

DATE
CODER NAME
REMARKS BLOCK NC.
SEGMENT NO.
| >
FROM HSM & OPR] ¢ CHART

NSTRUCTION|| LOCATION

10

1

12

REMARKS

REF.

FORM NO. 1213 2.5M 4-60

Repertoire of Arithmetic Instructions |
The following chart shows the repertoire of the arithmetic instructions indicating
the type of operation, associated OPR symbol, and interpretation.

OPERATION OPR SYMBOL INTERPRETATION
Add A (a) + (b) = (¢)
Subtract B @) — b - (©
| Multiply c @ x (b) - (€
Divide D (@) = (b) = (¢) 'ﬁ
Negative Multiply E @ x b))
Negative Divide P @ - b~
Vector Multiply G (a) x (b) i—F_(C) - (C) 4
Polynominal Multiply H (a) x (b) : (c#)7—> (a) ﬁ
Examples:
1. eCO A10 All CO0

is interpreted to mean:

(A10) x (Al1l) — (C00)

where: the contents of the a and b operands are
floating-point numbers, and the floating-
point result will be stored in c.

2. oGO A10 All CO00
is interpreted to mean:
(A10) X (Al1l) + (C00) — (C00)
where: the contents of all shown words are
floating-point numbers.

TRANSCENDENTAL OPERATIONS

The pseudo-code provides a convenient means for obtaining the elementary trans-
cendental functions of a single variable. Both function and argument are floating-point
numbers expressed in appropriate units. The format of a transcendental operation is:

CHARACTER POSITION]| 1 2 3l 4151671819]10]11}12

CHARACTER NAME p| OPR |i|a,|a|a;|b |b|bsjei|cC:]Cs

FIELD CONTENT V[S/T/U/ |y | ais a b is cis a
V/W/X/ Pseudo- 0 0 0 |Pseudo-
Y/Z/ address address

14

Repertoire of Transcendental Instructions

The following chart shows the repertoire of the transcendental instructions indicating
the type of operation, associated OPR symbol, and interpretation.

OPERATION OPR SYMBOL INTERPRETATION

Square Root S Square root (a) — (c¢)

Common Logarithm T Log., (a) = (¢)

Natural Logarithm U Log. (a) = (c) -
10 to a Power \" 10® — (¢)

e to a Power W e® — (c)

Sine X Sin (a)! = (e¢)

Cosine Y Cos (a)' = (e¢)

Arctangent Z Arctan (a) — (¢)*

1 (a) is assumed to be a number in radians.
® (¢) is an argument expressed in radians.

The b field remains unused in this set of operations; three zeros must be placed there.

FIXED-POINT OPERATIONS

Fixed-peint arithmetic is made available for purposes of address modification only.
Since the address portion of a pseudo-instruction occupies the a, b, ¢ field, a fixed point
constant is written in the form

e00 a,a,a, b,b.b; cic.Co
where: a,a.,as, b.b,b;, c,c.c, are either
decimal numbers or pseudo-addresses.

Repertoire of Fixed-Point Instructions

The following chart shows the repertoire of the fixed point instructions indicating
the operation, associated OPR symbol, and interpretation.

OPERATION OPR SYMBOL INTERPRETATION
Add N (a) + (b) — (o)
Subtract 0] (a) — (b) — (c)
Examples: |
1. eNO Al10 Bl12 C13

where: (A10) = oC0 F22 F23 G29
(B12) = 00 001 002 093
then (C13) = eC0 F23 F25 H22

2. eN0O Bl12 Al10 C13
for the same (A10) and (B12)
(C13) = e00 F23 F25 H22

15

The a, b, and ¢ fields of the operands are added separately to form three independent
sums stored as a single word. Note that the leftmost three characters of the result are
those which are found in the leftmost three characters of the operand specified in the a-
address of the fixed-point arithmetic instruction.

It should be pointed out that decimal complementation cannot be performed. The
fixed-point subtract must be used.
Care should be taken not to add, say,

E14 = 000 A14 B13 C59
to
D17 = 000 B93 A&l C59

. because the sum.is not likely to be of use to the programmer. As a practical rule the
programmer should either add constants, or augment a constant employing bank desig-
nations by a constant which has no bank designations in it.

LOGICAL OPERATIONS

This set of pseudo-instructions is made up of instructions which can interrupt the
sequence of program execution. These instructions are usually called logical instructions,

Repertoire of Logical Instructions

The following chart shows the repertoire of the logical instructions indicating the
operation, associated symbol, and interpretation.

OPERATION OPR SYMBOL INTERPRETATION

Test if Greater I If (a) > (b) — transfer control to ¢
Test if Equal
Test if Smaller

If (a) = (b) — transfer control to ¢

If (a) < (b) — transfer control to ¢

Test Exponents exp (a) < exp (b) — transfer control to ¢

Compare Significance significance < a — transfer control to ¢

Compare to Z’s a : Z’s If = — transfer controltob. If 4, toe

IOl R|

Unconditional Transfer

Transfer control to ¢

The first four test operations have the following format:

CHARACTER POSITION 1 2 314|616 7|8]9 110(11{12

CHARACTER NAME p |OPR i |a,|a,|as|b |b.|bs|c |c.]|c
FIELD CONTENT VI 1/ |y lais a b is a cisa
K/L Pseudo- Pseudo- Pseudo-

address address address

i.e., the contents of the a and b addresses are used for testing and the result is used as a
criterion for transfer of control to ¢, according to the operator symbol used. Failure of the
test results in the execution of the next instruction in sequence.

16

Compare Significance

Since the Floating~-Decimal Arithmetic may be significance sensitive, a test of
significance is incorporated into the set of simple logical instructions. The operator symbol
is 7 and its format is:

4| 516|789 10111|12

<o

CHARACTER POSITION 1 2
OPR| il a.| az| as|by [ba| ba| € |Ca|Cs

CHARACTER NAME P

FIELD CONTENT VI 7 Y| aisa b is blank| ¢ is a
decimal 0 0 0 | Pseudo-
number address

The instruction is read to mean:

If the number of significant digits of the previous arithmetic result is smaller than or
equal to the decimal quantity a then transfer control to ¢. The number a is a decimal number
from 001 to 008.

Sentinel Z Test

The Q instruction compares the contents of a word to a sentinel automatically supplied
by the Read instruction (see page 19). It is used to test for the fact that the programmer
has exhausted the data contained in a block. Its format is: :

CHARACTER POSITION |i 1 2 13{4]5 |6 |7]|8]9 (10{11(12
CHARACTER NAME p OPR i a| az a; b] bz ba cl c2 c3

FIELD CONTENT | Q |/ |aisad- [|bisaddress|cis address
dress of |of Pseudo- |of Pseudo-
word to be | instruction |instruction
tested

The Q instruction compares the contents of the word specified by a to 000ZZZZZZLZZ.
If equal, control will be transferred to the pseudo-instruction whose address is specified
by b. If not equal, control will be transferred to the pseudo-instruction whose address is
specified by c.

Unconditional Transfer of Control ,
The instruction which provides for an unconditional transfer of control is of this form:

CHARACTER POSITION 1 2 3l 4|56 |7]|81]9 |10|11)12

CHARACTER NAME p |[OPR| ila |a:|as|b |bajbs]ci|ca|Cs

FIELD CONTENT e | 8 YV 1aisa b is blank| ¢ is a
decimal [0 0 0 | Pseudo-
number address

17

This instruction is interpreted as follows:

The decimal quantity a identifies a breakpoint button on the RCA 501 console. If g
is 000, or if a designates a breakpoint switch that is not set, control is transferred to ¢

The programmer can use the breakpoints 3, 4, 5, which are written in the pseudo-code
as 003, 004, 005, respectively. If the breakpomt button indicated in the instruction is on,
then the succeedmg pseudo-instruction is executed and the control is not transferred to ¢,

DATA MANIPULATION. AND INPUT/OUTPUT

There are five instructions designed to perform the commonly useful data handling
operations. These divide into:

1. Data transfer instruction

2. Read/write instructions

3. Printing instructions

The Data Transfer Instruction

The data transfer instruction is designed to move an arbitrary set of contiguous wor ds
in memory from one position to another. The MOVE operation, denoted by the operator
symbol M, is of the following format: '

CHARACTER POSITION 1 2 3145|6789 |10]|11]12

CHARACTER NAME p |OPR| i |a, [a;{a:|[b/|b.| bs|c: |C.]Cs
FIELD CONTENT VI M [ylaisa b is a cis a
Pseudo- Pseudo- Pseudo-

address address address

It is interpreted to mean: Move the sector of memory which begins with the word
stored in address a and terminates with the word stored in address b to the sector of
memory beginning with the address c; e.g,,

eMO Al5 A30 Ci15
means transfer the sector of memory from the pseudo-address A15 through A30 inclusive
to the sector of memory bounded by the pseudo-addresses C15 and C30.

Although ¢ of the M instruction indicates the beginning address of the destination

area, the actual transfer in the RCA 501 Computer takes place from right to left. Care
must be taken, therefore, not to overlap sections of memory thereby destroying desired

information. For example:
oM0O A8 A99 A84

operates in the following manner:

A99 moves to A98 overlapping the previous contents of A98.
A98, which has just been moved from A99, now moves to A97, etec.

When this instruction is completed the contents of A99 will have been transferred to
every word from A84 to A98. This overlap technique is useful for initializing a sector

of memory.

18

The Read-Write Operations

Floating-point data’ on magnetic tape or paper tape is assumed to be in blocks of
variable size; e.g., block 1 may contain 10 words of data, while block 2 may contain 27 words
of data, ete. A block of data is, as provided for by the RCA 501 System, an arbitrary string
of characters on magnetic tape separated by a gap from other units of information. To
perform a READ or WRITE instruction the tape trunk number must be specified. Tape
trunk numbers are written in pseudo-instructions as the decimal numbers 000 through 024.
Usually 000 is used to represent the Paper Tape Reader in the Read Instruction and the
Monitor Printer in the Write Instruction. The remaining numbers represent individual
trunk numbers. The programmer assigns a unique pseudo-numbper to each of his input
and output tapes, and uses these pseudo-numbers consistently throughout his program.
At the time of running the program, actual trunk numbers are assigned to each pseudo-
number used in the program through a simple operator action. The procedure for doing
this is covered in Chapter 4.

The format for the READ instruction is as follows:

CHARACTER POSITION 1 2 3l 4l5]6|7]8]9]|10)11}12
CHARACTER NAME p | OPR| i | a/| a.| 2 b, | b.| bajCi | €| Cs

FIELD CONTENT V 5 v | Trunk Number | Pseudo-
Number of blocks | address

The READ instruction causes the number of blocks specified in b to be read from the
tape station (or the Paper Tape Reader) specified in a, into consecutive memory locations
starting from the address specified in ¢. The sentinel, 000ZZZZZZZZZ, is then placed in
the word following the last word read in by this instruction. The actual machine address
of the location into which the last character read from tape was placed, is inserted into
machine memory location, (000577).

The format of the WRITE instruction is:

CHARACTER POSITION 1 2 sla4|l5|6|7]8]9|10]11}12

CHARACTER NAME p |OPR| i |a.|a.] 2 b, | bl bs|Ci|€C|Cs
FIELD CONTENT V| 6 v | Trunk b is a cis a
Number | Pseudo- Pseudo-

address address

Print Data Instructions
The pseudo-code provides for the following two printing operations:

OPERATION OPR SYMBOL
Print on Monitor Printer 3
Print on On-Line Printer 4

The format of the instruction is:

CHARACTER POSITION 1 2 314|516 7|89 |10]11f 12

CHARACTER NAME p |OPR| i |a/| a:| as| by| ba| bsjcifcaf
FIELD CONTENT /| 84y laisa b is a cis a
decimal Pseudo- | Pseudo-

number address address

and is interpreted to mean:

Print on the Monitor or On-Line Printer the sector of memory bounded by the b and ¢
addresses, a words per line of print, the range of a being 001 to 008. The information
printed will be edited according to the assumption that the sector of memory specified
contains only floating-point numbers.

SPECIALIZED OPERATIONS

Programming entails a set of operations of frequent occurrence which are not usually
present in machine code. A set of such operations, constructed so as to yield maximum
power, are incorporated into the pseudo-code.

Execute a Subroutine :
The operator (OPR) symbol used is R and the format of the instruction is:

CHARACTER POSITION 1(2 g3lals5|6| 7819 [10{11]12

CHARACTER NAME p |OPR| i|a:|a.| a|b b.| bs|ci|cf €
FIELD CONTENT e| R | /laisa b is a cis a
Pseudo- Pseudo- | Pseudo-

address address address

This instruction is interpreted to mean the following:

Transfer control to the instruction designated by e and execute the subsequent
instructions until the one designated by b is reached. At this point, transfer control to a.
It is assumed that the location specified by b is reserved by the programmer. Its previous
contents will be overlaid by a transfer of control instruction.

20

Example:

PSEUDO-ADDRESS PSEUDO-CODE
A01
A02 ®R0 A03 Al13 Al0
A03 eK0 B19 D27 A32
A04 eRO0 A01 Al13 A1l0
A05
-
Al10
All
Subroutine S <
Al2
80 000 000 AO03
LA13 30 000 000 AO01

The instruction in A02 instructs the program to insert the instruction “Transfer
Control to A03” in line Al3, and to follow this by a transfer of control to Al0 which
initiates the execution of the subroutine. Following execution of the subroutine, control
is transferred to A03. The instruction in A04 has a similar effect except that it places a
“Transfer Control to A01” into A13. Thus control, after the execution of the subroutine,
is now transferred to AO01.

PSEUDO-ADDRESS MODIFICATION

The principal vehicle of address modification is the pseudo-address modifiers, which
are fixed 9-character sectors of memory. There are seven of these, denoted by 1, 2, 3, 4,
5, 6, 7, and with each is associated an increment which is also a fixed, 9-character sector of

21

memory. Setting an address modifier involves the storage of fixed-point constants intoé
the address modifier and its increment.' ;

Since address modification is designed to operate on interpretive memory addresses,
and a pseudo-instruction contains three addresses, the content of the address modifier
consists of a triplet of addresses and the process of incrementation is the same as that
of fixed-point addition.

Set Address Modifier

Setting of address modifiers is effected by the instruction having the operator (OPR)
symbol 1, and has the format:

CHARACTER POSITION 1 2 3|1 41516 7]18[9]10]11]12

CHARACTER NAME p|OPR| i}a,|a |a|b|bfbs|ci|ecafecs

FIELD CONTENT V 1 V]aisa bis a cis a
decimal Pseudo- Pseudo-
number address address

a is the numeric tag (001, 002, ... 007) of the address modifier to be set, and the instruction
is interpreted as follows:

Transfer the 9-character fixed-point constant located in b into the pseudo- address
modifier a; transfer the 9-character fixed-point constant in ¢ into the increment associated
with address modifier a

Example: e10 002 A27 A28

where: (A27) = 000 000 000 000
(A28) = 000 001 000 010
is interpreted to mean:
Set address-modifier 2 to (0, 0, 0); i.e.,, 000 000 000
Set its increment to (1, 0, 10); i.e., 001 000 010

If this instruction is itself modified, it reads as follows: Set the content of pseudo-
address modifier a to be the sum of the contents of b and pseudo-modifier i; set the
increment of pseudo-address modifier a equal to the contents of c.

Example: e13 004 D17 E19

where: (D17) =000 A05 A00 BOO

(E19) = 000 000 001 001
pseudo-address modifier 3 = 000 010 003.
is executed as follows:

Address-modifier 4 is set to the sum of (b) and modifier 3; namely:
A05 A00 B0OO -+ 000 010 003 = AO05 A10 B03

The increment to address modifier 4 is set to (¢); namely:
000 001 001.

Note the unique function of address modification by pseudo-modifier i with this instruction;
i.e., a fixed-point addition of the modifier i to the content of b only.

! The actual memory locations of the address modifiers and their increments are listed in Appendix C.

22

LOOP

A convenient means for iterating through a set of instructions is provided by the
- LOOP instruction; the operator symbol employed is 2 and its format is: v

CHARACTER POSITION 1 2 3./41{5 (6| 7|18]9 [10]11]12

CHARACTER NAME p |OPR| i |a, [a.|as|bi|{ba|bs]ci [e€a] Ca
FIELD CONTENT ° 2 vy |aisa b is a cis a
decimal Pseudo- Pseudo-

number address address

This instruction is interpreted as follows: a denotes a pseudo-address modifier. The
increment associated with modifier a is added to the content of a and the sum is stored in the
location of modifier a. This new value of the modifier a is compared to the content of b.
If a is less than b control is transferred to ¢, otherwise the next instruction in sequence is
executed. (Note that the increment of address modifier a is not affected by this operation.)

Example: e20 007 B29 Al3

where: (B29) = 000 100 000 100
address modifier 7 == 072 000 072
increment to modifier 7= 0609 000 009

is executed as follows:
Pseudo-address modifier 7 is replaced by the
sum of 072 000 072 and 009 000 009, i.e.
081 000 081
This sum 081 000 081 is compared to 100 000 100, and
since the sum is less than b, control is transferred to c.

If a loop instruction is modified, it reads as follows: Store the sum of (a) and its
increment into (a). Compare this sum to the sum of the contents of b and address modifier
i. If (a) isless than (b) plus (i) transfer control to c; otherwise execute the next instruction
In sequence.

Example: e21 (002 Cl13 G1l6

where: (C13) = eA5 C00 D00 EO00
address modifierr 1 = 000 005 015

address modifier 2 = A05 B06 B0O

increment of modifier 2 = 001 001 001

Then this example is executed as follows:

Pseudo-modifier number 002 is replaced by the sum
A05 B06 B00 and 001 001 001

i.e.,
A06 B07 BO1

The sum of C00 D00 E00 and 000 005 015 is computed as
C00 D05 E15.

Then A06 B07 BO1 is compared against C00 D05 E15. Since the inequality A06 BO7
B01 < C00 D05 E15 is satisfied, control is transferred to the instruction located at .G16.

23

MISCELLANEOUS OPERATIONS

The STOP Instruction (,)
The STOP instruction is written:
v,0 000 000 000
This instruction will cause the computer to stop with the interpreter ready to execute
the next instruction in sequence. If the start button is depressed, the program execution
will continue.

The SKIP Instruction (0)
The SKIP instruction is written:

/00 000 000 000

This instruction will cause the interpreter to ignore this word. The a, b, and ¢ addresses,
nowever, may contain fixed-point constants to be used for address modification. It is
these nine (9) character locations which are generally used in conjunction with the set,
loop, fixed-point add, and fixed-point subtract instructions.

Overlay Instruction
— See Chapter 4

Transfer to Machine Code
— See Chapter 5

FLOATING-POINT CONSTANTS'

Since Floating Decimal Arithmetic instructions assume all operands to be in floating-
point format, the programmer must write constants which are to enter floating-point
arithmetic operations in proper format.:

Floating-point constants are considered to be separate blocks of coding, therefore,
the programmer can set aside a bank or more of memory for his constants. As the need for
a constant arises, he writes the constant on a separate sheet in the following format:

< o XXXXXXXX == EEE = >*
where: < is a special RCA 501 symbol called the Start Message Symbol.
is a special RCA 501 symbol called an Item Separator Symbol (ISS). The ISS
represents the decimal point.
is the sign associated with the constant.
is a three digit exponent.
is the sign of the exponent.
is a special RCA 501 symbol called the End Message Symbol.

Each floating-point constant will occupy one word. They are addressed by the same
pseudo-addresses as data; e.g., BI0, C15, D96, ete.

EE

v I e

1 For floating-point data format see Appendix A.
* Note that this message contains 14 characters. However, this is converted to proper 12 character format
during the pre-edit.

24

CHAPTER

PROGRAMMING AIDS

GENERAL

The interpreter system is designed to provide a number of features to facilitate the
coding, debugging, and operational flexibility of the system. These features include the
following:

a. An Edit of the Program

b. Means of tracing the programs via two modes

c. Flexibility of tape trunk designation

d. Automatic patching and correcting

e. Ability to insert subroutines written in pseudo-code into the body of a pseudo-
program
Ability to write pseudo-code in parts

g. Ability to write overlays (program part), which replace a portion of a program
segment

lad

PROGRAM EDIT

In the course of the pre-edit, the Scientific Interpreter prints on the On-Line printer,
or prepares a tape for printing on the Off-Line printer, a complete edit of the program.
A sample of a portion of an edit is shown on the following page. The edit shows each
instruction written by the programmer in two parts on a line. The left hand part is each
pseudo-instruction as written by the programmer. The right hand part is the same
pseudo-instruction with all pseudo-addresses replaced by their corresponding machine
addresses.

The edit prints each block as an entity, giving the block number, segment number
and starting location of each block.

TRACING A PROGRAM

Execution of the trace subroutine may be accomplished in two distinct modes, namely
the normal mode and the logical mode. In the normal mode, execution of the trace subroutine
implies that following the execution of each pseudo-instruction, information relevant to
the indicated operation is printed on the On-Line printer or is written into the tape for
Off-Line editing. In the logical mode, execution of the trace subroutine implies that following
the execution of a pseudo-instruction which involves a break in the sequence of program
step execution, the pseudo-address of the instruction executed and the one to which
transfer of control is to be made, are printed on the Monitor Printer.

Initiation of either the normal or logical trace mode is controlled by the breakpoint
function of the RCA 501 Computer. Whenever breakpoint 1 of the computer is set, the
normal trace mode is in effect. When breakpoint 2 is set, the logical trace print is in effect.
Following the execution of each pseudo-instruction, the instruction and pertinent results
are printed as listed on subsequent pages.

25

9¢

RCA 501 SCIENTIFIC INTERPRETER PRE-EDIT

PROGRAM ENTRY A 00 013120

BLOCK 1 FROM 000 013060

PAGE 01 OF SEGMENT O1
LINE CONTROLS OP A-ADDRESS NN B-ADDRESS LINE OP A-ADDRESS NN B-ADDRESS
000 # 88 12 000010 LO 770000 013060 12 000010 LO 770000
001 # 88 71 001700 00 0000CO 013070 71 001700 00 000000
002 # 88 L4 554301 56 L50161 013100 LL 554301 56 L50161
003 # 88 6L 557500 00 000000 013110 6L 557500 00 000000

Tracing in either mode can be initiated anywhere in the program by use of a memory
address stop (MASP). The programmer instructs the operator to set MASP to the
machine address' of the pseudo-instruction at which the trace is to start. When the program
stops at the MASP, the programmer then sets breakpoint 1 or 2, depending on which
mode of tracing he desires.

The trace in normal mode prints a single line in the following order:
. The word TRACE

. The pseudo-address in which the pseudo-instruction is stored

. The pseudo-instruction itself

. The content of a
. The content of b

a
b
c
d. The content of the pseudo-address modifier used in the instruction
e
f
g. The content of ¢

In all instances care is taken to print only relevant information in the input language
so that the results printed are of use to the programmer in debugging. (A sample of part
of a normal trace edit is shown on the next page.) :

In summary we have the following features:
a. A normal trace mode controlled by breakpoint 1.

b. A logical trace mode controlled by breakpoint 2.

¢. The beginning of either trace modes is controlled by memory address stop (MASP)
and by setting breakpoints 1 and 2 during program execution.

d. The printouts of a logical trace mode are written on the monitor printer.

e. The printouts from a normal trace mode are written on the On-Line printer or
onto tape for Off-Line editing.

TAPE TRUNK DESIGNATION

The user, in writing his program, employs symbolic designations for tape trunk
numbers (000 through 023). Their meaning in terms of RCA 501 trunk numbers is
determined by the contents of memory locations (000600) ;> through (000627),; where the
contents of (000600), determines the trunk number designated by 000, the contents of
(000601), determines the trunk number designated by 001, ete. Thus, actual trunk numbers
can be assigned to the pseudo-numbers by the operator, by modifying the sequence of
characters commencing in (000600), according to the needs of the program. It is assumed
that each installation maintains a permanent reference system, and that these modifications
need only be made at the beginning of each interpretive session.

1 The machine address will be the six digit number listed under “LINE” on the right side of the edit page.
2 Memory locations are addressed by octal numbers. For a complete description of the properties of octal
numbers, see the RCA 501 Electronic Data Processing System Programmers’ Reference Manual (page 5).

27

9%

TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
TRACE
TRACE

TRACE

TRACE

A0O+
AQ1*
AQ2%
AQ3x
AG2x%
A03%
A023x

A033

AQ5*
AQ6*
AQT++
AOBx
A09%
A0
AT
Al2x
Al 3
ATk

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

Q=

(@]

000
001
A50
001
AS52

001

A32
Al

ALl
A38

001
A22
A50
A2l
A52
A2l
ASL
A2l

000

ALO
A39
A36
000
000
ALT

SAMPLE OF A TRACE

A50
A23
A35
AQ2
A35
AQ2
A37
A02
A39
A39
ALO
ALO

ALO
A38
All
Ay
ALl
A38

0000 0000 0000

0002 0002 0001

000l 0004 0002

50000000

.10000000

20000000

.50000000
. 30000000
.10000000
. 20000000
. 20000000
.1,0000000
.1,0000000
. 70000000
. 70000000
. 26157513
-28757L72

E00O

E0O1

EOOL

00O

EO00L

EOOL

ECOL

EOO1

E002

EOOL

EOOL

E0O0L

E002

0097 6241 6241

0000 0000 0000

.50000000 EOO

0006 0006 0003

.10000000 EOO1

0006 0006 0003

.20000000 EOO1

0006 0006 0003

L6364 761 EOOO
.10000000 EO01
.20000000 EO0L
.50000000 E00L
.10000000 E002
.13909L28 EO0L

.10000000 EOO1

.16265766 E001

0002 0002 0001

.50000000 EO0O

0002 0002 0001

.10000000 ECOL

0004 000L 0002

. 20000000 EOOL

0006 0006 0003

.L636L.761 ECOO
.13909428 E001
.10000000 E0OL
.50000000 E00L
.10000000 E002
.1,0000000 E002
.28757L72 E002
.70000000 EOO1
.26457513 E0O1
.16265766 EOOL
.27130896 EQ02

Initially, the Scientific Interpreter provides for the following tape trunk references:

TRUNK NUMBER PSEUDO-NUMBER MEMORY LOCATION
(i 000 000600
10 001 000601
20 002 000602
30 003 000603
40 004 000604
50 005 000605
60 006 000606
70 007 000607

The remaining tape trunk designations 008-023 determined by locations (000610).-
(000627),, are all assigned to trunk number 01.

INSERTION OF SUBROUTINES

Subroutines written in pseudo-code are inserted in a pseudo-program by call commands
on paper tape input. The subroutines called for insertion must be on the ILT (Interpretive
Library Tape) as a block of coding preceded by its identification message (see Appendix E,
Pseudo-code Unload Routine). In addition the subroutine must possess the following
properties:

a. No patch numbers can appear; in other words, a subroutine prior to being stored
as a library routine, if necessary, must be changed so as not to require the
patching machinery in the course of its execution.

b. The routine must be written in interpretive pseudo-code. Thus, if called for as a
subroutine of another program, the program itself must be written to accommodate
this subroutine in the interpretive memory area. For example, assume that BETA
is a pseudo-program written to lie in pseudo-memory locations A00-AT73; then if
a program uses BETA as a subroutine, the program cannot occupy the interpre-
tive memory locations A00 - A73.

ABILITY TO WRITE PSEUDO-CODE IN PARTS

A program may be written in several parts by different coders if care is taken that
no memory locations are used for conflicting purposes in different parts of the program.
When the Pre-edit processes a program written in parts, it associates a different block
number with each part (the block number is used during program patching (see Patches
and Corrections). Block numbers are assigned sequentially, starting with 1 for machine
coding. If there is no machine coding, the number 1 is reserved, to permit future addition
of machine code.

29

OVERLAYS

An overlay is a block or segment which is not brought into memory when the pseudo-
program is initially loaded, but which is called in later by the pseudo-program to replace
coding which is no longer needed. The OVERLAY operation facilitates this replacement
py allowing the programmer to specify which part of the program on tape is to be used
as an overlay. The positioning of each overlay block in memory is determined by the tag
associated with the block (see Chapter 6 on format). The format of the OVERLAY
operation is:

®*)/ a,aa, bbb, ciccs

where: a is the (decimal) segment number of the overlay part
b is the (decimal) block number of the overlay part
¢ is the pseudo-address of the instruction to be executed after the overlay is
read into memory

If the segment specified is not the one currently in memory, b and ¢ should be zero, and
those parts of the segment designated as initial program parts will be read in.

30

CHAPTER 5

MACHINE CODING

GENERAL

To expand the flexibility of the interpretive system, machine code is made available
to the experienced programmer for handling problems involving the expression of complete
computing functions. Thus, the interpretive system is limited only by the ingenuity of
the experienced programmer in using the system.

MACHINE CODE

Special coding sheets, form RCA 1212, are provided to the user to facilitate his writing
of machine code. These coding sheets, shown on the following page, consist of eleven (11)
columns per line of coding to express a machine instruction. The first column is used to
insert the standard symbol #. This symbol, #, acts as a control and error check for the
instruction. The next two character positions, denoted by 1 and r respectively are used to
reference characters in a pseudo-word. For example, consider the instruction which refers
to floating-point data designated E10. Assume that this E10 is converted during pre:edit
to its octal address which is the leftmost character of E10. Machine instructions, however,
require both right-hand and left-hand addresses of quantities, depending on the instructions
in question. Also, references to character addresses are required in machine code. For this
reason, the following convention is adopted: when writing machine code, the 12 characters
of a pseudo-code word are referred to as A, B, C, D, E, F, G, H, I, J, K, and L, the
enumeration progressing from the left to right. If the A-address of a machine code
instruction requires a pseudo-address reference, the address of the character desired is
stated in the l-position; if the B-address of a machine-code instruction requires a pseudo-
address reference, the address of the character desired is stated in the r-position. For
example, the machine instruction which transfers the mantissa of a floating-point constant
stored in E10 to the rightmost end of the word E12 is:

#JL 21 442423 00 442425
The contents of E10 are of the form

Al Blc|Iole[rlae|lH|l1]JlklL
p|OPR|i [a,|a.|as| by |b| bi| €| .| €

o X] XQ X3 X4 X5 Xé X, Xe -+ e e

And the contents of K12 become

Al B |IC|ID|EJF|]G[H] I | J]|K|IL
p|OPR|i |a, |a,|[as| b |ba| ba| € | Cf €

VIiy (@ | x| x| x| Xe | Xs| X | X7 | X 2=

31

(44

&

RCA 501 INTERPRETER PROGRAM RECORD

MACHINE CODE

TITLE DATE
CODER NAME
REMARKS BLCCK NC.
SEGMENT NO.
FROM ARE r |op B
lNE;cR;K(T:BgN Log:’:lon <) P P 253:&"; REMARKS c:EA:T
4
1
2
3
4
5
6
7
°
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7

FORM NO. 1212 2.5M 4-60

The pseudo-addresses are written in the RCA octal equivalent, character by character
as follows: E10 becomes 442423 and E12 becomes 442425. The presence of pseudo-addresses
is indicated by these alphabetic characters in the 1 and r positions which instruct the
pre-edit to effect the necessary address translation.

References within machine code is obtained by use of the automatic address modifiers.
The coding is written self-relative, so that the first line of machine coding bears the
pseudo-address 000. In such cases, the l-position or r-position must be 8 to indicate that
the respective address is machine code. Each entry to machine code begins with the sequence
of instructions:

73 AM: 00 400000; Store the P-register in AM:
45 AM: 00 00667 Decrease AM: by (10),

and henceforth AM: is used to modify the internal address references. A typical in-

struction is:
<® #8838 25 000013 55 000573 >

if AM, was used to store the P-register. The relative addresses 000013 and 000573 are
converted to absolute addresses by the automatic addition of (P) — 10, in the course of
staticizing the instruction.

TRANSFER TO MACHINE CODE

The instruction which transfers control from pseudo-code to machine code is denoted
by the operator (OPR) symbol 9. The format for this transfer is:

CHARACTER POSITION 1 2 31 451671819 |10]11 12

CHARACTER NAME p |OPR|i|a |a,|a;|bi|bs|bs]ec [c.]|cs

FIELD CONTENT ° 9 O|ais a b is cis a
Pseudo- 0 0 O |decimal
address number

where: a is the address of the pseudo-instruction to be executed after the completion of
the machine code.
¢ is the line number of the starting location of the machine code to be executed.

To effect a return of control to the address given in the a-address, the programmer
writes a transfer of control to address (001700),, which returns control to the executive
routine; i.e.,

<e® #83 71 001700 00 000000 >

33

CHAPTER

PREPARATION OF A PROGRAM

INTRODUCTION

After the user has written his program on the forms provided with the Interpreter,
the program is then punched on paper tape for insertion into the system. This chapter
covers the format and procedure by which this paper tape is prepared.

PAPER TAPE PREPARATION

A representation of the format in which the paper tape is prepared is shown on
page 36.

The first message of this input enumerates the optional subroutines to be incorporated
as a fixed part of the program. These subroutines are a function of the entire program
and are requested only once. This message is of the form

<o XXX ... >

where: X’s represent the operation codes of the subroutines to be called in; these
need not be in order. The optional subroutines are as follows:

OPTIONAL SUBROUTINE OPERATIONS DESIGNATION
Sine X

Cosine

Arctan

Log,

LOge
10*

ex

Square Root

Print Data on Monitor Printer

Print Data on On-Line Printer

Read Data
Write Data

Overlay

slolo|slw »n S| 43N~

If no optional subroutines are required this message is omitted.

Following the statement of the optional subroutines are the program segments. Each
segment represents an independent running program part; the start of a segment is
indicated by the control symbol EF. This EF must always be present as the first element
of a segment.,

34

Program Entrance
This message must always be present for every segment to identify the starting
instruction of the segment. This message is in the following format:
< o SXX e FFF >

where: S identifies the assignment of the program entrance.
XX is the number of the segment.
FFF is the pseudo-address of the first instruction to be executed.

Calls for Pseduo-Code Subroutines

If the interpretive library tape, ILT, contains properly identified routines written
in pseudo-code and if the programmer requests their use as part of the current program,
he inserts the interpretive subroutine name in a message of the form

< e X/Y NAME >

where: Y is used if the subroutine is part of the program

but: X is used if the subroutine is used as an overlay (part of a program which
replaces a portion of the original program).

and: NAME is a four (4) character identification of the subroutine on the ILT.
The interpretive subroutines, unlike the optional subroutines of the program, are

considered parts of a segment and therefore each segment must request the subroutines
to be incorporated into that program segment. '

Main Body of Program

The main body of the program may contain three types of program blocks, that is,
machine coded block, pseudo-code block, and floating-point constant block.

MACHINE-CODED BLOCK

Machine-coded messages are punched as the first set. These messages represent one
block of coding only and do not require a block tag message.

PSEUDO-CODED BLOCK

The message of each pseudo-coded block is punched in sequence with each block
preceded by a block tag message of the form

< e X/Y FFF >

where: Y is used if the block is an initial part of the program

but: X is used if the block is used as an overlay

and: FFF is the beginning pseudo-address of the block in question.
The pseudo-coded blocks are terminated by a sentinel of 12 Y’s of the form

< ® YYYYYYYYYYYY >

35

FLOATING-POINT CONSTANT BLOCK

All floating-point constant messages are punched following this sentinel of Y’s. Each
block is again preceded by the program block tag, as

< o X/Y FFF >

The final program segment must be terminated with the control symbols

EF
ED

PAPER TAPE FORMAT OF PROGRAM

OPTIONAL SUBROUTINES < @ XX...X >
SEGMENT 1 EF EF
PROGRAM ENTRANCE < e S01 ® FFF >
CALLS FOR PSEUDO- < o X/Y NAME >
CODE SUBROUTINES :
< ® X/Y NAME >
MACHINE CODE BLOCK < e #lr OPRanb >
< o #lr OPR.a nhbh >
PSEUDO-CODE BLOCK < ® X/Y FFF >
<

e® OPRiabe >
< e OPRiabec >

PSEUDO-CODE BLOCK < ® X/Y FFF >

< e® OPRiabec>
< e OPRiabec >
Y SENTINEL < ® YYYYYYYYYYYY >
FLOATING POINT CONSTANTS < o X/Y FFF >
<

& XXXXXXXX-4eeex >

0 XXXXXXXX-eeex >
e X/Y FFF >
& XXXXXXXX-teeex >

VANIVANIVAN

: < e XXXXXXXXieeei >
SEGMENT n EF

EF
ED

36

CORRECTIONS AND PATCHES

Additions and changes to the original blocks of coding are classified as corrections:
additions to the block reserved by the pre-edit as the “Patch Block” are called patches.
The format of correction and patch messages is:

< o LLL e P/F/M e WORD >

where LLL = pseudo-address of pseudo-instruction or floating-point constant to be
corrected; or
= decimal address of the machine code to be corrected.
P/F/M =P if WORD is a pseudo-instruction
=F if WORD is a floating-point constant
= M if WORD is a machine instruction.
WORD is either a pseudo-instruction, a machine instruction, or a floating-point constant.

Pseudo-Instructions

The Patch character, p, of the pseudo-instruction WORD differs from the original
pseudo-instruction: this p character must be two decimal digits rather than an item
separator symbol (see page 10). The maximum allowable value for this p character is the
decimal number 58,

The purpose of this 2-digit p character is to effect a transfer of control to an instrue-
tion in the Patch Block whenever this p character is not zero (00). (Note from the sample
edit preceding page 27 that all p characters are initially set to zero (00).)

Since it is not possible to correct a programming error or omission by inserting
additional coding between existing instructions of a program, a means must be provided
for effectively inserting additional coding. This is accomplished by a non-zero p character.
The running procedure would be as follows:

Each instruction is executed sequentially under control of the program until a
non-zero p character is encountered. The instruction accompanying this non-zero P
character is executed and then a search is initiated in the Patch Block for the identical
non-zero p character. When a match is found, the accompanying instruction in the
Patch Block is executed. This instruction is followed sequentially by instructions in
the Patch Block until a pseudo-instruction effects a transfer out of the patch.

In the following example, pseudo-instructions E18 — E15 would be executed following
B32. The instructions would appear in memory as follows: ‘

Example:
’ PSEUDO-
ADDRESS PSEUDO-CODE
B32 01 A 0 A13 A21 A00
B33 00 C 0 A79 A93 BO03
E13 01 D 0 A00 A10 AO00
E14 00 1 0 004 AO01 A02
E15 00 8 0 000 000 B33

37

The first pseudo-location of the Patch Block is assigned during the pre-edit, and thig
assignment is printed on the edit. (See edit of sample problem, Appendix B.) The first
line of the Patch Block is determined by this rule: it is always the pseudo-address immedi-
ately succeeding the highest bank number used by the initial program. For example, if a
program occupies pseudo-locations A00- A49, A75 - B14, B25 - B53 and C00 - C14, the first
patch instruction must be put in pseudo-address C15. All other patches must follow
sequentially. Note that the first instruction of each patch in the Patch Block must have
a non-zero p character. All succeeding instructions will have a zero p character unless it
is desired to insert additional coding within the patches.

Floating-Point Constants

The message to place the floating-point numbér 2.5 into memory location C13 would
appear as follows:
< o (Cl3 e F e 250000004001 -+ >

Machine Instructions

Patching of machine coding is accommplished through correction messages of the
following form:
032 e Me#88 71 000610 50 000000 >
049 e Me#L8 72 412426 00 600000 >
050 ® Me#AL 26 402531 00 402531 >
051 e Me#88 71 000410 50 000000 >

VANVANIVANIVAN
o 0o 0O

This example assumes that machine code in the program occupied the decimal memory
locations 000 - 048. The above corrections effect a transfer of control from memory location
032 to location 049 where the contents of A26 are moved to B13, and then control returned
to memory location 033. It is assumed that the machine location of pseudo-memory location
000 is stored in AMb for relative coding.

Paper Tape Format of Corrections and Patches

All patches and corrections may be punched on a single patch tape; the individual
message format is given above.

The format of this paper tape is as follows:

< o Sxx, ® Bxxx, >
< o LLL e P/F/M e WORD >
< o LLL e P/F/M e WORD >
®
°
°
< e Sxx, ® Bxx, >
< e LLL e P/F/M e WORD >
°
®
°

ED

38

The effect of the messages
< . SX]XT ® BXQXQ >

is to identify the particular block and segment to which the patch messages pertain. The
paper tape input for the preceding example would appear as follows, assuming the coding
is to go into blocks 3 and 5 of segment 1:

< e 801 e B03 >
< e B32 e P e 01 A 0 Al13 A21 A00 >
< e §01 e B0 >
< e K13 e P e (01 D 0 A00 Al10 A00 >
< e E14 e P e (00 1 0 004 AO01 A02 >
< e Fl15 e« P e (00 8 0 000 000 B33 >
ED

When addlng lines of coding to any block, they must. be assigned sequent1al bank
numbers immediately following the last one used in the respective block. It is not possible
to leave gaps within any single blocks. A gap in the sequence of utilized pseudo-memory
locations will cause an error stop'.

No given instruction in the program may be corrected twice during any one patch
run; ie., no two messages may have identical LLL pseudo-addresses when patching.

* See Appendix G, Error Stops of the Program Patch Routine, (005120)..

39

APPENDIX

INPUT DATA FORMAT

INPUT DATA

The Interpreter Read instruction is designed to bring into memory blocks of data
stored on magnetic tape or paper tape. It is assumed that when this data is floating-point
numbers it is in a form identical to that produced by the Pre-Edit pass of the Interpreter.
The conversion of a block of numbers to proper floating-point form on magnetic tape
may be accomplished by the SCALE routine of the Interpreter Library, where oo (see
" 501 Matrix System publication) would be 08.

In lieu of using the SCALE routine, the tape format of input data would be as follows:
OXXXXXXXX+ee

where: ® represents the decimal point.
X is the 8-digit decimal mantissa.
ee is an octal exponent obtained by adding the octal equivalent of the absolute.
exponent of the number to the octal excess (0150),. This is the form required
by FDA.
e.g. The number 3.141592 would be punched
031415920 _ _J
where: _J is the RCA character representation of the exponent
(0150), —+ (0001). = (0151),.
The number .186x10% would be punched
018600000 _ U
where: _ U is the RCA character representation of the exponent
(0150), -+ (0014)*, = (0164).
With this format, the largest number expressible is 0.99999999 x 10™; the smallest
number expressible is 0.10000000 x 107 [Notice that (104)., = (150)..]

CONSOLE OPERATION

If data is prepared in accordance with this procedure, BRB (Block Read Bypass) must
be set on the console to prevent decoding of these characters during the read.

* 14 is the octal equivalent of a decimal 12.

40

AprPENDIX B
SAMPLE PROBLEM

To illustrate the use of the RCA 501 Scientific Interpreter in a practical application,
a sample problem is shown in this Appendix. The sample problem is of the following form:

4(z + z°)
f , = = YT
(%, ¥, 2) 3 arctan x y

with the following limits:
x = 0.5 Ax = 0.1
y 1.0 Ay = 1.0
Z 2.0 Az = 0.5

The function is evaluated for 25 values of x, y, and z.

41

(44

&

RCA 501 INTERPRETER PROGRAM RECORD

PSEUDO — CODE

TITLE DATE
CODER NAME
REMARKS BLOCK NO. 2
SEGMENT NO.1
<|s[7v[afolo]>
FROM HSM <. OPR| i A B < REMARKS CHART
INSTRUCTION|| LOCATION 2 3 4 5 6 7 8 9 10 1 12 REF.
A00 <o cloflololoJojold1lals]o READ X, 84X, Y, AY, 7 A7
1 < 1jojoloj1faj2|l2]a]2]3 SET AMI = (0, 0, 0) AAMl = (2, 2, 1)
2 < Mi1]A]5i0!lal5]0]A]3]5
3 e 2 Joflol o1]lal2lhlalole LOOP ON AMI < (6, 6, 3)
L |<e Z o]l Al 3|50l 0]| 0f|A]3]9 ARCTAN X
5 <o C|OJA| 3/1 |A| 3] 91A 3|9 3 ARCTAN X -~-> DENOMINATOR
6 e MJlofla| 33 a3 3]a/])k]o || 1-->STORAGE
7 e cloflalslzlals3]l 7lalulo | 2ze+1
8 e clolal 3tz albhiolalblo |l z(z2+1)
9 e clolal3lolalb|olalklo L (z2+1)
A10 e DJOJ Al bjo}Al 3] 9]a 38 || 15 TRERM
11 ke clolal 3l2]lal3]l 6lallhla 7Y
12 e slola| bhirlolololabil | (7e7) 1/
13 i< slolalblilolololalhls | (7ey)1/h
1 <o Blo| A 38 |a| k| altal31]8 Y
15 <o L Jo}J 0} olLh A 3] 5|A 3|8 | PRINT RESULT
16 <o 1 j0|lO0] 0|2 |A| 2] 2|A|2]5 AM2 = (0, 0, 0) A AM2 = (1, 2, 1)
17 < Al2l Al 3|5 tals]alal3]s X+ X, Y+ £Y, 2+ L7
18 <o 2 |0l ol o2 Al 2] 6lal1lY LOCP ON AM2 < (3, 6, 3)
19 <o Ilotal 3/51al3) hia 23 |l is¥>Xmnax YES STOP
A20 <e 8 Q 6] 010 Q 0] Q1A 0 1L RECYCIE
L 21 li<e » 1010 0l0]loio0ol Ol0o]lo]0 STOP
22 <o o0 lolol olo]lolo}lojlo[oO]o
23 f<e 0loJojol2]olo] 2lolo]1
2L <o 0lojo]lojs6flolol slo]oi]s

FORM NO. 1213 2.8M 4-80

47

RCA 501 INTERPRETER PROGRAM RECORD

PSEUDC — CODE

@ TITLE DATE
CODER NAME
REMARKS BLOCK NO. 2
SEGMENT NO. 1
. \ ‘ >
e OPR c
FROM HSM CHART
NSTRUCTION LOCATION 2 4 9 10 1" 12 REMARKS CEE.
A25 || < 0 0 0| 210160 1
26 | < 0 0 olé6 ol o0l3

FORM NOo. 1213 2.5M 4-60

44

&3

RCA 501 INTERPRETER PROGRAM RECORD

PSEUDO — CODE

TITLE DATE
CODER NAME
REMARKS BLOCK NO. 3
SEGMENT NO. 1
<|-lylals]o]>
FROM HSM <. P OPR| i A B < REMARKS CHART
NSTRUCTION|| LOCATION 1 2 3 4 5 6 7 8 9 10 11 12 REF.
A0 Ike|l b JOJOolololoflolol +jololl + > CONSTANT
1 ke 3 j0Jojlololo]olol +]lololl | +> n
2 kel 7 lololololojolol+]lololr | +> "
3 kel 1 JoJolololololol+lalall + > "
L kel 2 |5 lolololoflolo]l +lololr | +> n
A35 X
6 Y
7 Z
8 f(XeYez)
9 DENOMINATOR
ALO NUMERATCR
1
2
3
I
ALS
6
7
8
9
A50

FORM NO. 1213 2.,5M 4-60

Sy

@ TITLE

RCA 501 INTERPRETER PROGRAM RECORD

PSEUDO — CODE

DATE
CODER NAME
REMARKS BLOCK NO. 3
SEGMENT NO.1
- | E
FROM HSM <. OPR < REMARKS CHART
NSTRUCTION| LOCATION 2 . s Lwoln | REF.

A25 <e 0 0 2 0|0 1
26 <9 0 0 6 0l0 3

FORM NO. 1213 2.5M 4-60

9%

BLOCK 1

RCA 501 SCIENTIFIC INTERPRETER PRE~EDIT
PROGRAM ENTRY A 00 017060

FROM A 00 017060

NO MACHINE CODE

PAGE 01 OF SEGMENT 01

Ly

LINE PATCH OP INDEX

R

BLOCK

00
01
02
03
ol
05
06
07
08
09
10
11
12
13
1
15
16
17
18
19
20
21
22
23
2l
25
26

2

5

OHNDEHFFOOODOQODOOQO@RAQANNNDE M

SO OO O

oleNoNeoNoNoNoNoNol VeoNoNeoNoNoNoNeoNoNeoNoNoNoNoNol LNoNe]

A-ADDRESS

000
001
A50
001
A35
A31
A33
A37
A3T7
A30
ALO
A32
Al
A1
A38
ool
002
A35
002
A35
000
000
000
002
006
001
003

B-ADDRESS

001
A22
A50
A2l
000
A39
A33
A37
ALO
240
A39
A36
000
000
Al
A35
A22
A51
A26
A3l
000
000
000
002
006
002
006

FROM

C~-ADDRESS

A50
A23
A35
A02
A39
A39
AL,0
ALO
41,0
ALO

000
001
003
001
003

A 00

TINE PATCH OP INDEX- A~ADDRESS

017060
01707k
017110
01712L
017140
017154
017170
01720L
017220
017234
017250
01726l
017300
01731
017330
0173LkL
017360
01737k
017410
01742l
017440
017L5h
017470
01750k
017520
017534
017550

€0
00
00
00
00
00
00
00
00
00
00
00
00
00
00
Q0
00
00
00
00
00
00
00
00
00
00
00

017060

OHMMPEPHEODDQUODOOARANND R HUL

OO O OO

olejololeoNoNoNoNeol ooloNoNoloNoNoNoNololNoloNol NoNe)]

PAGE 02 OF SEGMENT O1

000
000001
020210
000001
017724
0176LL
01767L
01775k
017754
017630
020020
017660
02003l
02003l
017770
00000k
000002
017724
000002
017724
000000
000000
000000
000030
000110
00001
00004k

B-ADDRESS

000001
017470
020210
017520
000000
02000l
01767k
017754
020020
020020
02000k
017740
000000
000000
02003l
01772k
017470
02022}
017550
017710
000000
000000
000000
000030
000110
000030
000110

C-ADDRESS

020210
017504
01772k
017110
02000
020004
020020
020020
020020
020020
017770
02003
02003l
02003k
017770
017770
01753l
017724
017374
017L5L
017140
000000
000000
00001
0000LL
00001k
0000k

17

BLOCK 3

NO PATCHES

YYYYYYYY

PAGE 03 OF SEGMENT Ol

BLOCK L

A30
A3l
A32
A33
ash

PATCH BLOCK 3

6¥

FROM A30

CONSTANT

,0000000
30000000
70000000
10000000

25000000

ECOL

EOOL

EOOL

EOO1

EOQL

FROM A35

017630
LINE
017630
01764
017660
01767h
017710
01772L

END OF PRE-EDIT

PAGE o}, OF SEGMENT 01

CONSTANT

L,O0D0000
30000000
70000000
10000000

25000000

E151
E151
E151
E151

E151

0g

X
50000000
60000000
70000000
80000000
90000000
10000000
11000000
12000000
13000000
1J,000000
15000000
16000000
17000000
18000000
19000000
20000000
21000000
22000000
23000000
2,000000

25000000

000

000

000

000

000

00l

001

001

001

001

001

001

001

001

001

001

001

001

001

001

001

SOLUTION

Y

10000000
20000000
30000000
10000000
50000000
60000000
70000000
80000000
90000000
10000000
11000000
12000000
13000000
11,000000
15000000
16000000
17000000
18000000
19000000
20000000

21000000

001

001

001

0oL
001
001
001
001
001
002
002
002
002
002
002
002
002
002
002
002

002

Z
20000000
25000000
30000000
35000000
1,0000000
115000000
50000000
55000000
60000000
65000000
70000000
75000000
80000000
85000000
90000000
95000000
10000000
10500000
11000000
11500000

12000000

001
001
001
001
001
001
001
001
001
001
001
001
001
001
001
00l
002
002
002
002

002

£(X,Y,2)

27130896
1,278L008
63355132
8933978l
12129150
15979232
202111216
25885288
3206LL3L
39114190
17187459

66L17336
77730716
90261070
10407198
11922706
13578998
15382138
17339369
19456228

002
002
002
002
003
003
003
003
003
003
003
003
003
003
003
ool
ook
ook
00k
o0k

ook

NOILLNTOS

AppPenpix C

HSM LOCATIONS OF

PSEUDO-ADDRESS MODIFIERS

ADDRESS MODIFIER

HSM LOCATION

HSM LOCATION OF INCREMENT

000300-000310

000400-000410

000311-000321

000411-000421

000322-000332

000422-000432

000333-000343

000433-000443

000344-000354

000444-000454

000355-000365

000455-000465

Qlo|olka|w| 0|~

000366-000376

000466-000476

51

APPENDIX

INTERPRETER PATCH/EDIT ROUTINE

The RCA 501 Interpreter System may occasionally require updating. The Patch/Edit
Routine is included in the system to facilitate this function. A new Interpreter Library
Tape will be produced by this updating routine.

The paper input specifies the block to be updated followed by the patches to that
block and terminated by an EF. A series of blocks may be updated with the restriction
that the blocks appear in sequence on the paper tape. For example:

< e BBB >
< MMSSCC X--m-mmmemeeeem x >

(EF) Terminates Patches to a block

< e BBB >
< MMSSCC X-----e-mmm x >
(EF)

(ED) Terminates Patch Routine

where xxx: Block Number to be updated
MMSSCC: Most Significant character location of line to be updated in Block BBB.
The locations to be updated need not be ordered.
) U x: 16 decimal-coded octal characters inserted in the line starting at
location MMSSCC.

To Edit specific blocks of the Interpreter Library Tape requires, in addition to the
paper tape input, the Interpreter Library Tape and a List Tape if off-line printing
is requested.

The Paper Tape Input is:

< e MMDDYY >
< e BBB e Title >

ED

52

where MM.:
DD:

YY:

BBB:

Title:

2-decimal number denoting month.

2-decimal number denoting day.

2-decimal number denoting year.

Block Number to be edited.

Name assigned (Alphanumeric) to the block for editing purposes. See
the operating instructions for options and program insertion.

53

APPENDIX

PSEUDO-CODE UNLOAD ROUTINE

The function of the Pseudo-Code Unload Routine is to copy the Interpreter Library
Tape, inserting or deleting pseudo-code subroutines on the Interpreter Library Tape (ILT).
A subroutine in the library consists of an identification message followed by a block of
batched messages comprising the subroutine.

It is assumed that the subroutines to be placed in the Library have been prepared in
accordance with the restrictions noted in the paragraph “Insertion of Subroutines” on
page 29 of the Interpreter Manual. The subroutine to be inserted in the Library may come
from either paper tape or a program tape generated by the Interpreter Pre-Edit.

OPTIONS

1. Delete subroutines from the Interpreter Library Tape. Delete requests must appear
first on the paper call tape and in the same sequence as the subroutines (to be:
deleted) appear on the Library Tape. '

o Tnsert a subroutine from a program tape to the Interpreter Library Tape.
Insert a subroutine from a paper tape to the Interpreter Library Tape.

4. All of the above options may be requested via paper call tape in a given run subject
to the restriction described in Option 1.

&

PAPER TAPE FORMATS
Option 1: < e NAME >
Option 2: < e NAME e M e X/Y FFF e Sxx e Bxx ® F/P >
Option 3: < e NAME e P e X/Y FFF e F/P >
This option requests a subroutine from paper tape. The messages compris-

ing the subroutine must follow the call message and terminate in an EF
followed by an ED.

DEFINITIONS

Name: is the four letter identification assigned to the subroutine by the programmer.
M: indicates the subroutine is on the program tape.
P: indicates the subroutine is to come from paper tape.

X/Y: X orY ischosen to match the corresponding character in the tag of the desired
block on the program tape.

FFF: is the entrance (pseudo-address) of the subroutine.
Sxx: is the segment number in the program containing the subroutine.
Bxx: is the block number of the subroutine in segment xx.

F: indicates the block consists of floating-point constants.

P: indicates the block consists of pseudo-code instructions.

b4

The paper tape input is terminated in an ED.

Option 4: A subroutine may be made up of one or two blocks. A one-block subroutine
may consist either of pseudo-code instructions or floating- point constants. A
subroutine consisting of two blocks may assume the same “Name” (see Name
under definitions). If this is the case then one of the blocks must be pseudo-
coding and the other floating-point constants. Furthermore, to insert the two
blocks onto the ILT requires two unload call messages (see Option 2 or 3)
with the same name. To delete a two (2) block subroutine will require two
call messages (Option 1) with the same name.

55

Appenpix F

0
T

The interpreter is a system designed to provide the user with facilities for constructing
and operating a program easily. The actual production of an operative program may
involve a number of functions. They are:

1.
2.

Pre-Edit: The purpose of which is to generate an “edited program” on tape.

Data Generation: To prepare floating-point constants in block format onto tape.
This task is handled by the Scale routine.

Program Insertion: The loading of the “edited-program” into memory. This task
is handled by the Program Tape Bootstrap.

Tracing: A debugging aid in which the Trace routine prints out information
regarding each pseudo-instruction in the course of program execution.

Patching /Correcting: A technique is provided via the program Patch routine for
updating the user’s program in the course of debugging.

In addition to the above functions the following two services are included in the
Interpreter System:

1.

2.

A program to add and/or delete Pseudo-Code Subroutines to the Interpreter
Library System.

A program to update and edit selected blocks of the Interpreter Library System.

The operating procedures to call in these functions are described below.

PRE-EDIT PASS

A. Mount
1. Paper Tape Input
2. Interpreter Library Tape (with ring)
3. Output (Program) Tape (with ring)

B. Operating Procedures

1.

&

Breakpoint 2

a. ON: Rollback is incorporated in the edit program.

b. OFF': Rollback is omitted from the edit program.

All other Breakpoints set to OFF.

Set Rollback Inhibit Switch OFF if Rollback is desired.

Set a 15 020000 00 t,t,0000 on the console to call in the first block of the Library
Tape into location (020000), of the memory (ILT Bootstrap).
where t,t, = trunk # of the Interpreter Library Tape.

a. If the character in location (020007), is an (01), then the edited output will go
to the on-line printer.

56

b. If the character in location (020007). is a (00), then the edited output will go
to tape for off-line printing.

The interpreter is set for on-line printing. The user may make the desired setting

manually at this point.

Set the P register to location (020000), and hit the start button.

“SET-B-REGISTER-TO-REQUIRED-TRUNK-NUMBERS-THEN-‘HIT-START-
BUTTON” will go to the monitor printer. The computer will then halt on a 76
instruction with 30, 40, 50 in the C1, C2, C3 positions of the B-register respecti\{ely.

The C1 position denotes the Library trunk #
The C2 position denotes the Output (Program) Trunk #
The C3 position denotes the List Tape Trunk #, if editing off-line is requested.
(If editing on-line then C2 and C3 should be the same.)
At this point the operator may reset the trunk numbers in the B register as desired

then hit the start button to continue with the Pre-Edit. Caution: DO NOT perform
a general reset on the console. If so, restart by returning to step 5 above.

The Pre-Edit pass will then automatically run to completion and rewind all tapes
to BTC. The computer will come to a halt on a 76 instruction with END-OF-PRE-
EDIT on the monitor printer. The output tape will contain the edited program.

C. Restart

1.

If conditions require a rerun, the procedure is simply to rewind the Interpreter
Library Tape to BTC, reposition the paper tape input and return to B (Oper-
ating Procedures), step 4.

PROGRAM OPERATION
A. Mount

1.
2.

Program Tape (without ring)
Other Input/Output tapes required.

B. Program Insertion

1.
2.

3.

Set Breakpoint options (see C of Program Operation).

Set Rollback Inhibit Switch OFF if Rollback is desired. This option is available
only if requested during the Pre-Edit Pass. (See B, step 1, of Pre-Edit Pass.)

Set a 15 001000 00 t.t,t,t.t;t; on the console to call the first block of the program
tape into location (001000), of the memory (Program Tape Bootstrap).

where: t.t, = Program Tape Trunk Number '

t.t; = tit; = (00),, trace output goes to the on-line printer.

t.t. = t;t; = XX, trunk number of trace ouput for off-line printing.

The Trace routine may be moved to another module by setting location (001006).,
to the module desired i.e., (01), for module 1, (02), for module 2 etc. The Bootstrap
is set for module 1.

Set the P register to location (001000), and hit the start button to initiate program
insertion.

57

C. Breakpoint Options
1. Breakpoint 1 |
a. ON: The Program Tape Bootstrap calls the trace routine into memory
starting at location (034630).".
b. OFF: The Trace routine will not be called into memory.
2. Breakpoint 0
a. ON: The Bootstrap comes to a halt with the printout: SET-T-REGISTER-
WITH-SEGMENT-# on the Monitor Printer. At this point the T reg-
ister contains (000001), to call in segment 1. Reset the T register to
the desired segment # (in octal) to be called into memory. Hit the
start button. The segment requested will be called into memory then
halt on a 76 instruction with the A-address containing the location (in

octal) of the first instruction to be executed. The program is now ready
for execution.

b. OFF: The Bootstrap automatically loads segment 1 into memory and when
completed comes to a halt on a 76 instruction. At this point the A-address
contains the location (in octal) of the first instruction to be executed.
The program is now ready for execution. :

8. Breakpoint 2
a. ON: The Interpreter is set to perform computations in the significant
arithmetic mode.

b. OFF: The Interpreter is set to perform computations in the normalized
arithmetic mode.

D. Program Execution

Following the halt which terminates the program insertion phase, Breakpoiht 0,1,2
must be reset to select the following options. Then the start button must be hit to proceed
with the program execution.

1. Breakpoint 0

a. ON: During execution, the program in operation will halt on a 76 instruction
following each program step. The A-address at this point will indicate
the location (in octal) of the next intsruction to be executed.

b. OFF: The execution of the program instructions will proceed continuously.
2. Breakpoint 1

a. ON: The program will be executed in the normal trace mode.

b. OFF: The normal trace mode is not requested.

3. Breakpoint 2

a. ON: e program will be executed in the logical trace mode.
b. OFF: 1e logical trace mode is not requested.

4. Memory = .. 'ss Stop (MASP): To begin tracing from a specific point in the
program g executed.

a. Set Bi akpoints 1 and 2 to off.

1 Subject to B (Program Insertion), step 4.

58

_ SQet MASP address on console to the exact location (in octal) at which it is

desired to begin tracing.

. Set the MASP indicator on the console to ON.
. Hit the start button to initiate program execution.
. When the requested location is reached the computer will come to a halt on a

22 (OCT) instruction. The A-address will contain the location (in octal) of the
instruction at which a stop was requested.

Set Breakpoints 1 and 2 as desired (see D, Program Execution, steps 2 and 3).

. If the programmer wishes to terminate tracing at a particular point, reset the

MASP address to that point, otherwise reset the MASP indicator to OFF.

. Hit the start button.

The program will proceed in the trace mode and stop if a terminal MASP was
set. To continue program execution without tracing reset the MASP indicator
to OFF and Breakpoints 1 and 2 to OFF. Then hit the start button.

E. Restart
1. If conditions require program reloading: Rewind program tape to BTC, position

other tapes as required and proceed from B, Program Insertion.

If the programmer desires to start at a particular point in the program without
reloading, set memory and tape conditions as desired, place the exact starting
location into (000671-3), of the memory and set P to (000670).. Then hit the start
button.

PATCHING (PROGRAM UPDATING)
A. Mount

&> o

Paper Tape Input
Program Tape (with ring)
Output Tape (with ring)
List Tape if required.

Operating Procedures

1. Set Breakpoint 3 ON

2. Set Rollback Inhibit Switch OFF if rollback is desired.

3. Set 15 001000 00 t.t,t,t,t.t, on the console to call in the first block of the program

tape into location (001000), of memory (Program Tape Bootstrap).

where: t.t, == Program Tape Trunk Number.

t,t, = Output Tape Trunk Number.

t,t, = List Tape Trunk Number, required for off-line printing.
t,t, = t,t; — output tape trunk number if editing on-line.

Location (001007), contains an (01), to indicate on-line editing. For off-line editing
this character must be set to (00)..

59

5.

Set the P register to (001000). and hit the start button. The Patch Routine will be
called into memory and halt on a 76 instruction. At this point Breakpoint 3 should
be reset to off (see C, Breakpoint Options, step 1). To proceed hit the start button.
The patch routine will call in the paper tape input to update the source language
at which point the Pre-Edit pass will be called on and the updated program generated
on the output tape.

C. Breakpoint Options

1.

Breakpoint 0

a. ON: The Patch routine will halt after the current paper tape input is proc-
essed (ED is sensed). At this point additional patch input may be "
mounted on the paper tape reader. Hit the start button. The computer
will again come to a stop. When all paper tape input is exhausted reset
Breakpoint 0 to OFF.

b. OFF: The patch routine will proceed to update the source program (the
paper tape input is preserved on the program tape) and then call in
the pre-edit pass. On completion the output tape will then contain the
updated version of the program tape.

D. Restart

1.

If conditions require a rerun the procedure is simply rewind the Program tape
to BTC, reposition the paper tape input and repeat the procedures starting with
B, Operating Procedures, step 3.

SCALING (DATA GENERATION)
A. Mount

1.
2.
3.

Paper Tape Input
Interpreter Library Tape or Program Tape
Output Tape (Data Tape).

B. Operating Procedure for Library Tape .

1.
2.

Set Breakpoint to ON.

Set a 15 020000 00 t,£,0000 on the console to call in the first block of the Library Tape
into location (020000), of the memory (ILT Bootstrap).

where: t,t, = the trunk number of the Interpreter Library Tape.
Set the p-register to (020000), and hit the start button.

“SET-B-REGISTER-TO-REQUIRED-TRUNK-NUMBERS-THEN-HIT-START-
BUTTON” will go to the Monitor Printer. The computer will then halt on a 76
instruction with 30, 40, 50 in the C1, C2, C8 positions of the B register respectively.

At this point the operator should set t,t,0000 into the B register.
where: t.t, =— the trunk number of the Interpreter Library Tape.
Then hit the start button to call in the SCALE routine and halt. Hit the start button
to initiate SCALE routine. Caution: DO NOT perform a general reset on the console.

60

5.

The SCALE routine will read in the parameter message and halt on a 76 instruction
with t.t, t,t, tst, in the T register. (See SCALE description in the 501 Matrix
Arithmetic System Publication). Set breakpoint 4 to OFF, and the operator may
reset the trunk numbers in the T register as desired; then hit the start button to
process data into block format on t.t..

The SCALE routine finally prints onto the Monitor Printer the number of messages
called in and the number of blocks written on the output tape, then comes to a halt
on a 76 instruction.

‘C. Operating Procedure for Program Tape

1. Set Breakpoint 4 ON.

2 Set a 15 001000 00 t,t.t,t.tst, on the console to call in the first block of the program.
where: t.t, = Program Tape Trunk #

t.t, = t;t; = Output Tape Trunk #

3. Set P to (001000), and hit the start button.

4. Data from paper tape is processed (converted to floating-point format) in block
format onto the output tape and the tapes then rewound to BTC.

5. The routine prints onto the Monitor Printer the number of messages called in and
the number of blocks written on the output tape, then comes to a halt on a 76
instruction.

D. Restart
1. If conditions require a rerun the procedure is simply to rewind the Interpreter

Library Tape or Program Tape to BTC and position the output tape as desired.
The paper tape input is repositioned and the operating procedures repeated starting
from B (Operating Procedure for Library Tape) step 3, or C (Operating Procedure
for Program Tape) step 2.

PSEUDO-CODE UNLOAD ROUTINE
A. Mount

1. Paper Tape Input

2. Interpreter Library Tape, (without ring).
3.

4. Program Tape (optional), (without ring).

Output Tape, (with ring).

B Operating Procedure

1.
2.
3.

Set Breakpoint 5 ON.
Set Rollback Inhibit Switch OFF if Rollback is desired.

Set a 15 020000 00 t,t,0000 on the console to call in the first block of the Library
Tape (ILT Bootstrap).

where: t.t, = Library Tape Trunk #

61

4, Set P to (020000), and hit the start button.

5. “SET-B-REGISTER-TO—REQUIRED-TRUNK-NUMBERS-THEN-HIT-START-E
BUTTON” will go to the monitor printer. The computer will then halt on a 76
instruction with 30, 40, 50 appearing in the C1, C2, C3 positions of the B register

respectively.
C1 denotes the Library Tape Trunk #
C2 denotes the Output Tape Trunk #
C3 denotes the Program Tape Trunk # (when required, if not set C3 = C2).

At this point the operator may reset the B register to the desired trunk numbers
then hit the start button to continue.

6. The unload routine is called into memory and the unloading process initiated.

7. When the Routine is finished all tapes are rewound to BTC and the message:
UPDATED ILT on Trunk XX is printed on the monitor printer. The routine then
comes to a halt on a 76 instruction.

C. Restart

1. If conditions require a rerun the procedure is to rewind the Interpreter LibraryE
Tape to BTC, reposition the paper tape input, and return to the procedure starting
with B (Operating Procedure) step 3.

INTERPRETER LIBRARY PATCH/EDIT ROUTINE

A. Mount
1. Paper Tape Input.
2. Interpreter Library Tape (without ring).
3. Output Tape (with ring) when patching.
4, List Tape (with ring) when editing off-line.

B. Operating Procedure
1. To call in Patch/Edit Routine

a. Set Breakpoint 3 ON

b. Set Rollback Inhibit Switch OFF if Rollback is desired.

c. Set a 15 020000 00 t,t,0000 on the console to call in the first block of the Library
Tape (ILT Bootstrap).
where: t.t, = Library Tape Trunk Number

d. Set P to (020000), and hit the start button.

e. “SET-B-REGISTER-TO-REQUIRED-TRUNK-NUMBERS-THEN-HIT-START
-BUTTON” will go to monitor printer. The computer will then halt on a 76
instruction with 30, 40, 50 appearing in the C1, C2, C3 positions of the B register
respectively.

62

1. For editing, C1 — Library Tape Trunk Number
For off-line éditing, C2 = (C3 = List Tape Trunk Number
For on-line editing C2 = C3 = (00),

2. For patching, C1 — Library Tape Trunk Number
C2 = C3 = Output Tape Trunk Number

2. After the Patch/Edit routine is called in, the computer will halt on a 76 instruction.
At this point Breakpoint Options must be selected.

3. Breakpoint Options

a. Breakpoint 0 ON:
OFF:
b. Breakpoint 3 ON:
OFF':

c. Breakpoint 4 ON:

OFF:

Patches will be written to the Monitor Printer.

No printing of patches.

This requests the routine to operate in the edit mode only.
This requests the routine to operate in the patch mode
only.

In conjunction with Breakpoint 3, editing will go to tape
for off-line printing.

Editing will go to the on-line printer.

4. Hit the start button to begin execution of the program.
5. On completion the computer will halt on a 76 instruction.

C. Restart

1. If conditions require reloading the routine; rewind the Interpreter Library Tape
to BTC, reset all Breakpoints to OFF, reposition the paper tape input and return
to the procedures starting with B (Operating Procedure) step 1.

2. If the program is still in memory, reposition the paper tape input and set P to
(001500),, then hit the start button.

63

¥9

NO BREAKPOINT
SETTING

FUNCTIONS OF

INTERPRETER LIBRARY TAPE (ILT)

BREAKPOINT 2

CALLINILT
BOOTSTRAP

;

STOP

SET TRUNK NUMBERS
AND BREAKPOINTS

BREAKPOINT 3

BREAKPOINT 4

BREAKPOINT 6

'

'

'

'

CALL EXECUTIVE
WITHOUT
ROLLBACK

CALL EXECUTIVE
WITH
ROLLBACK

;

PRE-EDIT
RUN

CALL IN CALL IN CALL IN
PATCH/ EDIT SCALE UNLOAD
GENERATE NEW
PATGH AND CONVERT DATA
o LLT TO FLOATING- ILT WITH PSEUDO
CODE SUBROUTINE

POINT FORM

CALL IN
PROGRAM TAPE

BOOTSTRAP
NO BREAKPOINT BREAKPOINT BREAKPOINT
SETTING OR BREAK- 3 4
POINTS O,1,0R 2
ﬁé@i?ﬁm CALL IN CALL IN
AND PATCH SCALE
EXECUTION ROUTINE ROUTINE
STOP
BREAKPOINT 3 OFF
SET BREAKPOINT O CONVERT INPUT
DATA TO FLOATING—
<::>;* POINT FORM
A
IS BREAKPOINT
O ON
WRITE DATA
T0

PATCH
PROGRAM

PATCHED
PROGRAM TO '
NEW TAPE

EDIT OF
UPDATED
PROGRAM

FUNCTIONS OF

65

OUTPUT TAPE

'

PATCH
PROGRAM

STOP
SET BREAKPOINT
0o

THE PROGRAM TAPE

ApPenDIX G

ERROR STOPS AND RESTART
PROCEDURES

This Appendix describes the error stops and restart procedures for the following:
ILT Bootstrap ’

Pre-Edit Run

Program Tape Bootstrap

Program Patch Routine

Interpreter Patch/Edit Routine

Pseudo-Code Unload Routine

Interpreter Program

e A T

ILT BOOTSTRAP

The following table describes how to correct, at the computer, format errors which
are detected by the ILT Bootstrap before it loads the Pre-edit routine into memory. If a

correct message is unknown, the programmer or operator may continue processing by
substituting the pertinent dummy message:

DUMMY MESSAGE

Machine Code: < @ #887600000000000000 >
Pseudo-Code: < ®e® (00000000000 >
Floating-Point Constant: < @ 000000004000 >

66

L9

ERROR STOPS AND RESTART PROCEDURES FOR ILT BOOTSTRAP

HSM STOP
INSTRUCTION

MONITOR PRINTER

TYPE OF ERROR

METHOD OF CORRECTING

01 021130 01 XXXXXX

None

First message of paper tape
input must be an EF or op-
tional subroutine selection.
If first character is not EF
or SM, this error stop oc-
curs.

If paper tape not in error, reposi-
tion message in reader. Set P to
(021060), then hit start button. If
paper tape in error, note position of
input and read correct message into
(001000).. Replace paper tape input
at position noted and set P to
(021100),. Then hit start button.

01 021420 01 XXXXXX

Check machine code
format:
< Message-Read-In >

Format should be

< o #lr Machine Code >
This error stop occurs if the
ISS is missing or the mes-
sage is incorrect in length.

If input is in error, note position of
paper tape. Read correct message
into (001000).. Replace paper tape
input at position noted and set P to
(021230).. Then hit start button.

01 021560 01 XXXXXX

Specify block locator:
< Message-Read-In >

Check for X/Y in Block Tag
Message. Format:
< e X/Y FFF >

If input is in error, note position of
paper tape. Read correct message
into (001000),. Replace paper tape
input at position noted and set P to
(021450),. Then hit start button.

01 021630 01 XXXXXX

Check block locator

format:

< Message-Read-In >

Incorrect Block Tag Mes-
sage. Format:

< o X/Y FFF >

This error stop occurs if
ISS is missing or message
length incorrect.

If input is in error note position of
paper tape. Read correct message
into (001000).. Replace paper tape
input at position noted and set P to
(021450),. Then hit start buton.

01 022440 01 XXXXXX

None

This message should be a
Block Tag. Format:

< ® X/Y FFF >

This error occurs if the
character after the ISS is a
space.

If input is in error note position of
paper tape. Read correct message
into (001000).. Replace paper tape
input at position noted and set P to

(021660) .. Then hit start button. |

89

ERROR STOPS AND RESTART PROCEDURES FOR ILT BOOTSTRAP (Continued)

HSM STOP
INSTRUCTION

MONITOR PRINTER

TYPE OF ERROR

METHOD OF CORRECTING

01 022520 01 XXXXXX

Check Pseudo Code
format:

< Message-Read-In >

This message should be of
the form:
<ee®(QOPRiabe>
Note: If a sentinal of Y'sin
the segment is missing, this
error stop will also occur.
In this case the paper tape
input must be corrected and
the pre-edit restarted.

See note in type of error. If input is
in error note position of paper tape.
Read correct message into (001000)..
Replace paper tape input at position
noted and set P to (021660).. Then
hit start button.

01 022620 01 XXXXXX

Specify block locator:
< Message-Read-In >

Check for X/Y in Block
Tag Message. Format:
< o X/Y FFF >

If input is in error note position of
paper tape. Read correct message
into (001000),. Replace paper tape
input at position noted and set P to
(022560) . Then hit start button.

01 022670 01 XXXXXX

Check block locator

format:
< Message-Read-In >

Check Block Tag. Format:
< o X/Y FFF >

This error stop occurs if ISS
is missing or the message is
incorrect in length.

If input is in error note position of
paper tape. Read correct message
into (001000).. Replace paper tape
input at position noted and set P to
(022620),. Then hit start button.

01 023030 01 XXXXXX

None

Check for X/Y in Block Tag.
Format: < e X/Y FFF >

If input is in error note position of
paper tape. Read correct message
into (001000),. Replace paper tape
input at position noted and set P to
(022720),. Then hit start button.

01 023110 01 XXXXXX

Check constant format:
< Message-Read-In >

This error stop oceurs if ISS
is missing or message is in-
correct in length.

If input is in error note position of
paper tape. Read correct message
into (001000).. Replace paper tape
input at position noted and set P to
(022720),. Then hit start button.

69

ERROR STOPS AND RESTART PROCEDURES FOR ILT BOOTSTRAP (Continued)

HSM STOP
INSTRUCTION

MONITOR PRINTER

TYPE OF ERROR

METHOD OF CORRECTING

01 024020 01 XXXXXX

Not an EF:
< Message-Read-In >

An EF should appear after
the optional subroutine mes-
sage. If missing this error
stop occurs.

If the paper tape input is in error,
i.e., if the EF has been omitted leave
the paper tape in its current posi-
tion. Set P to (021150),. Then hit
start button.

01 024060 01 XXXXXX

Specify Entry Tag or
ED
< Message-Read-In >

Entry Tag Format:

< @ SXX e FFF >

At this point either the seg-
ment tag or ED should ap-
pear. ED terminates the
paper tape input.

If the input is in error note position
of the paper tape. Read correct mes-
sage into (001000).. Replace paper
tape input at position noted and set
P to (021150),. Then hit start button.

PRE-EDIT RUNS

The following error stops will occur only upon a malfunction of the computer
during processing of the program paper tape input. Restart the Pre-Edit pass, rewinding
all tapes.

01 003310 xx XXXXXX
01 004620 xxX XXXXXX
01 004710 xx XXXXXX
01 004720 xx XXXXXX
01 006510 xx XXXXXX
01 010740 xx XXXXXX

70

TL

ERROR STOPS AND RESTART

PROCEDURES FOR PRE-EDIT RUNS

HSM STOP
INSTRUCTION

MONITOR PRINTER

TYPE OF ERROR

METHOD OF CORRECTION

01 005310 XX XXXXXX

Line (XXX),. Improper mes-
sage format.

Machine code l-symbol is

neither an 8 or an alphabetic.

Correct character in (001653)..
Set P to (005260), and hit start

button.

01 005500 XX XXXXXX

Line (XXX),. Improper mes-

sage format.

Machine code r-symbol is

neither an 8 or an alphabetic.

Correct character in (001654)..
Set P to (005450) and hit start

button.

01 013550 XX XXXXXX

Line (XXX),. Improper mes-
sage format.

Illegal OPR symbol.

Correct character in (001653)..
Set P to (013530) and hit start

button.

THE PROGRAM TAPE BOOTSTRAP

The following list of error stops indicate a machine or interpretive system malfunction.
If there is nothing wrong with the hardware regenerate the pseudo-program by calling
on the Pre-Edit pass.
01 001430 01 xxXxXXX
01 001540 01 xxxXXX
01 001710 01 xxxXxXX
01 002020 01 xxXXXX
01 002050 01 xxXXXX

PROGRAM PATCH ROUTINE

The following error stops indicate a machine or interpreter system malfunction.
If there is nothing wrong with the hardware try a previous program tape or regenerate
the program by calling on the Pre-Edit pass.

01 000600 01 =xXXXXXX
01 000720 01 xxXXXX
01 002410 01 xxXXXXX
01 003400 01 xxXXXXX
01 003560 01 xxxXXXX
01 003750 01 xxXXXX
01 004250 01 xxXXXX
01 004310 01 xxXXXXX
01 005500 01 =xxxXXX
01 006600 01 xxXXXX

The following table lists the legitimate program error stops.

72

gL

ERROR STOPS AND RESTART PROCEDURES FOR PROGRAM PATCH ROUTINE

HSM ERROR STOP

MONITOR
PRINTER

TYPE OF ERROR

METHOD OF CORRECTING

01 001150 01 XXXXXX

None

Format of the Block Selection

Message incorrect:
< o SXX e BXX >

If the input is in error note the position of
the paper tape; read the correct message
into (003000), and replace the paper tape
input at the position noted. Set P to
(000770)., then hit start button.

01 001270 01 XXXXXX

None

This error stop occurs if the
patch control symbol is not an
M, F or P.

If the input is in error note the position of
the paper tape; read the correct message
into (003000), and replace the paper tape
input at the position noted. Set P to
(000770),, then hit start button.

01 001410 01 XXXXXX

None

This error stop occurs if the
machine code format is incor-
rect: < ® LLLL. @ M ® Machine
Code Instruction >

Note the position of the paper tape, read
the correct message into (003000), and re-
place the paper tape input at the position
noted. Set P to (000770),, then hit start
button.

01 001600 01 XXXXXX

None

This error stop occurs if the
floating point message format
is incorrect: < @ LLL @ ' @
Floating Point constant >

Note the position of the paper tape, read
the correct message into (003000), and re-
place the paper tape input at the position
noted. Set P to (000770),, then hit start
button.

01 001710 01 XXXXXX

None

This error stop occurs if the
pseudo code instruction mes-
sage format is incorrect:

< o LLL ® P ® Pseudo-Code
Instruction >

Note the position of the paper tape, read
the correct message into (003000), and re-
place the paper tape input at the position
noted. Set P to (000700),, then hit start
button. ~

ERROR STOPS AND RESTART PROCEDURES FOR PROGRAM PATCH ROUTINE (Continued)

HSM ERROR STOP

MONITOR
PRINTER

TYPE OF ERROR

METHOD OF CORRECTING

01 001750 01 XXXXXX

None

This error stop occurs if the
patch number specified in the
pseudo - code instruction is
greater than (58),..

Note the position of the paper tape, read
the correct message into (003000), and re-
place the paper tape input at the position
noted. Set P to (000700),, then hit start
button.

01 005120 01 XXXXXX

None

This error stop occurs if the
address requested does not
equal the address of the
counter. This implies the
patches are not contiguous to
the existing program block.

Correct the paper tape and restart the
Patch Routine.

1 See explanation on page 39.

ERROR STOPS IN THE INTERPRETER PATCH/EDIT ROUTINE

The following list of error stops indicate a machine or interpreter system malfunction.
If any of these stops occur and there is nothing wrong with the hardware rerun with a
different Library Tape.
01 002330 01 XXxXXXX
01 002430 01 xXXXXX
01 003070 01 XXXXXX
01 006300 01 XXXXXX
01 006380 01 XXXXXX
01 011230 01 xXXXXX

The following table lists the legitimate program error stops.

75

9L

ERROR STOPS AND RESTART PROCEDURES FOR PATCH/EDIT ROUTINE

HSM ERROR STOP

MONITOR PRINTER

TYPE OF ERROR

METHOD OF CORRECTING

01 001760 01 XXXXXX |

None

Data Message format is:

< e MMDDYY >

This stop occurs if this mes-
sage is missing, the ISS is
missing or the message length
is incorrect.

Note the position of the paper tape. Read
the correct message into (015000),, replace
the paper tape at the position noted and
set P to (001710),. Then hit start button.

01 002250 01 XXXXXX

None

Block/Title Message format is:

< ® BBB e Title >
This stop occurs if the ISS’s
are missing or mispositioned.

Note the position of the paper tape. Read
the correct message into (015000),, replace
the paper tape at the position noted and
set P to (002070), .Then hit start button.

01 002610 01 XXXXXX

None

Block Message format is:

< e BBB >

This stop occurs if the ISS is
missing or the message is in-
correct in length.

Note the position of the paper tape. Read
the correct message into (015000),, replace
the paper tape at the position noted and
set P to (002070),. Then hit start button.

01 005510 01 XXXXXX

None

The format of the Patch Mes-
sage is:

< MMSSCC PATCH INSTR >
This stop occurs if the length
of the message is incorrect.

Note the position of the paper tape. Read
the correct message into (007300),, replace
the paper tape at the position noted and
set P to (005350),. Then hit start button.

PSEUDO-CODE UNLOAD ROUTINE

All error sivps in the Pseudo-Code Unload Routine are accompanied by a print-out
on the Monitor Printer describing the source of the error. The error, its print-out and
restart procedures are listed on the following page.

LL

ERROR STOPS AND RESTART

PROCEDURES FOR PSEUDO-CODE UNLOAD ROUTINE

LOCATION e ERINTER TYPE OF ERROR METHOD OF CORRECTING
001200 | Subroutine to be deleted is not | 1. Subroutine not on ILT. . Mount ILT that has subroutine on
located on ILT. 2. Incorrect subroutine identi- ILT trunk, reposition paper eall

fication on paper call tape.
If deleting more than 1 sub-
routine at one time, the
subroutine identifications on
paper call tape are not in
same sequence as they appear
on ILT.

tape. Restart at location (000300)..

. Repunch paper call tape with cor-

rect subroutine identification. Re-
start at location (000300)..

. Repunch paper call tape using cor-

rect sequence and restart at location
(000300) ..

001200

Incorrect call tape format. Sub-
routine to be deleted is not in
proper sequence.

A deletion message appears
on paper call tape following
an insertion message.

. Repunch paper call tape using cor-

rect format and restart at location
(000300) .

001200

Incorrect call tape format. Check
number of ISS’s in Call Message.

Call tape message contains
less than 3 items, options 2
and 3 of paper tape format.

. Repunch message in error using

correct format, read corrected mes-
sage into location (014744),, re-
mount original paper tape at posi-
tion after message in error. Restart
at location (000520).,.

001200

Incorrect call tape message.
Check item 3 for X or Y.

Item 3 on call tape starts
with a character other than
X or Y, options 2 and 3 of
paper tape format.

. Repunch message in error using

correct format. Read corrected
message into location (014744).. Re-
mount original paper tape at posi-
tion after message in error. Restart
at location (000520).,.

001200

Incorrect call tape format. Check
item 2 for M or P.

Item 2 on call tape starts
with a character other than
M or P, options 2 and 3 of
paper tape format.

. Repunch message in error using

correct format. Read corrected
message into location 014744. Re-
mount original paper tape at posi-
tion after message in error. Restart

at location (000520),.

ERROR STOPS AND RESTART PROCEDURES FOR PSEUDO-CODE

UNLOAD ROUTIN

ngg'&"' MO B NTER TYPE OF ERROR METHOD OF Ct
001200 | Incorrect call tape format. Last| 1. ED preceding EF at end of | 1. and 2.

subroutine read from Paper paper call tape. Punch paper tag

Tape not followed by EF. 2. Call tape does not end in mount on paper ta

' EF, ED. at location (0021%

003330 | Tag for block XX segment XX: | 1. Using wrong program tape. | 1. Mount Program

X/Y FFF, Tag on Call Tape | 2. X/Y FFF punched incorrect- desired block ¢

X/Y FFF. ly on paper tape. Program Tape "

paper call tape. I

(000300).. '

2. Repunch message

rect X/Y FFF. R

sage into locatic

mount original p

tion after messag

at location (0005

001200 | Check if block number on Call| 1. Aftempting to insert a ma-| L. Illegal procedure

Tape < 2. chine code subroutine. 2. Repunch messag

2. Block number incorrectly correct format. R

punched as 0 or 1. sage into locati

mount original

tion after messag

at location (0005

001200 | Block XX of segment XX not| 1. Using wrong Program Tape. [1. Mount Program

located. 2. Segment being searched does rect block num

not contain block number re-
quested.

number on Prog
Reposition paper
at location (000:
2. Repunch paper ¢
rect block numb
message into loce
mount original
message in erro
tion (000520)s,.

THE INTERPRETER PROGRAM

The following error stops indicate machine malfunctions. If there appears to
nothing wrong with the equipment re-insert the program from the Program Tape.

HSM LOCATION STP AT TIME
OF ERROR STOP OF STOP
006120 005500
006120 006000
006120 006220
006120 007050
006120 007600
000240 000370 + MSC of PRNT subroutine

002000 - MSC of EXPX subroutine

001230 + MSC of EXPX subroutine

79

be

08

ERROR STOPS AND RESTART PROCEDURES FOR INTERPRETER PROGRAM

HSM STOP
INSTRUCTION

MONITOR PRINTER

TYPE OF ERROR

METHOD OF CORRECTING

76 XXXXXX

EXCESS RANGE

The exponent of the result is less
than zero or greater than twice
the excess (0150),; i.e., (0320)..

None. The floating point operation may
be continued from this point by pressing
start. However, the subsequent results
may be incorrect.

76 XXXXXX

ZERO DIVISOR

The contents of OP2 in a divide
operation, ie., the divisor, zero.

The floating-point operation may not be
continued. However, program execution
may" be continued by setting P to
(XXXXXX), in the A-address of the
stop instruction. This is the location of
the instruection following the entrance
into the divide subroutine.

01 000000 04 001660 | None Requested patch character not | Patch the program properly.
found in Patch Block.
01 XXXXXX None P == (006120), The sign of a | The floating-point operation may not be
STP == (004500), floating-point |continued. However, program execution
operand is in- | may be continued by setting P to
valid. (XXXXXX), in the A-address of the
stop instruction. This is the location of
the instruction following the entry into
FDA.
01 XXXXXX If P = (006120), and The floating point operation may not be

None

STP — (005040), or

STP — (005100),, the two least
significant digits of a floating
point operand are not proper
decimal numbers.

continued. However, program execution
may be continued by setting P to
(XXXXXX), in the A-address of the
stop instruction. This is the location of
the instruction following the entry into
FDA.

18

ERROR STOPS AND RESTART

PROCEDURES FOR INTERPRETER PROGRAM (Continued)

HSM STOP
INSTRUCTION

MONITOR PRINTER

TYPE OF ERROR

METHOD OF CORRECTING

01 000250 - MSC
of PRNT option-
al subroutine*

None

The A-Address of the print in-
struction specifies more than 8
words per line.

Correct character in HSM location
(000505), to the proper octal equivalent
of the number of words per line. Set P to
(001400), ‘and press start.

01 000450 -- MSC
of LOGX option-
al subroutine*

None

Argument is not greater than
zZero.

To continue program execution with the
next pseudo-instruction, set P to (000670),
and hit start.

01 004050 -+ MSC
of SQRT optional
subroutine*

None

Argument is less than zero.

To continue program execution with the
next pseudo-instruction, set P to (000670),
and hit start.

01 002000 4 MSC

al subroutine*

of EXPX option-

None

If STP = (000500), + MSC, Ex-
ponent of argument is greater
than (1999),,.

To continue program execution with the
next pseudo-instruction, set P to (000670),
and hit start.

01 XXXXXX

None

EXPX and STP = (000070), -+
MSC of EXPX Subroutine, the
sign of argument x of e* is in-
valid.

To continue program execution with the
next pseudo-instruction, set P to (000670),
and hit start.

* See print on monitor printer for MSC’s of optional subroutines.

é8

REFERENCE TABLE OF INSTRUCTIONS

ool | INSTRUCTION NAME INSTRUCTION INTERPRETATION P
p | OPR i a b c

¥ Overlay o| ¥ | 0 | a,o| bio| ¢ | Read segment a block b 30

0 Skip V1 0 0 a b | ¢ | Skip Instruction 24

1 Set Pseudo v | 1 74 a. b ¢ | (AM) + (b) » (AMa) 22

Address Modifier (¢) = (AAMa).

2 Loop f.] 2 vV | awl| bw| ¢ | (AMa) + (AAMa) — (AMa) 23
If (AMa) < (b) + (AMa) Then TCtoc

3 Print on Monitor Printer V1 31 vV | asl b ¢ | Write the sector of memory from b to 20
¢ onto the on-line printer, a words
per line.

4 Print On-Line Vi 4| v | ae|l b | ¢ | Write the sector of memory from b to 20
¢ onto the monitor printer, a words
per line.

5 Read Magnetic Tape V1 5| vV | an| biw| ¢ | Read from tape a, b blocks of informa- 19
tion; read into memory starting at
location e.

6 Write to Magnetic Tape V| 6| v | an| b | ¢ | Write the sector of memory from b to 19
¢ onto tape trunk a.

7 Test Significance 7 0 | ao| — | e | If significance of result < a, TC to c. 17

8 Transfer Control L 8|1 V| ae|] — | ¢ | TC to ¢ (subject to breakpoint set- 17
ting a).

9 Transfer to Machine Code | ® | 9 | y | a | — | ¢.| TC to line ¢ of machine code. On re- 33
turn go to a.

’ Stop | ,| V| a| b| e| Stop 24

H XigN3ddy

REFERENCE TABLE OF INSTRUCTIONS (Continued)

€8

IR INSTRUCTION NAME INSTRUCTION INTERPRETATION PE
p |OPR| i | a b | e
A Add vV | Al y | a b | ¢ (a) + (b) = (¢) 13
B Subtract V1 Byl a| b| e (a) — (b) — (¢) 13
C Multiply V1 C |y | a|l b| ¢ (a) X (b) ~ (¢) 13
D Divide _ VI Dy | a b c (a) = (b) — (¢) 13
E Negative Multiply vy | E |V a b ¢ | —(a) X (b) > (c) 13
F Negative Divide VI F |y]| al b| e|—(a)=(b)—(c) 13
G Vector Multiply V1 G| /| a b | ¢ (a) X (b) + (¢) = (¢) 13
H Polynomial Multiply V| H| ¢y | a b | ¢ (a) X (b) + (¢)— (a) 13
I If Greater fr1 I vV | a b | ¢ |If (a) > (b)thenTCtoec 16
J If Equal fr1J |y | a b | ¢ | If (a) = (b) then TCtoc 16
K If Smaller ’ ' K|y | a b c | If (a) <(b)thenTCtoe 16
L If Exponent f'| L vV | a b ¢ | If Exponent (a) < Exponent (b) then 16
TC to ¢
M Move VI M| ¢y | a b | ¢ | Move [a, bl to [c,¢c + (b — a)] 18
N | Add (fixed) VINLIvLal bl el @+ m-© 15
0 Subtract (fixed) vy | Ol V| a b | ¢ (a) — (b) = (¢) 15
Q Test Z’s e | Q1 /| a b | ¢ (a) : Z’s,If =TCtob,If =TCtoec 17
R Do Subroutine e | R| /| a| b | ¢ ‘TCtoa’— (b) thenTCtoec 20
S Square Root X VI S| yv] al —| ¢ | ¢y(a)~ (¢) 15

1 The jump to the patch block for a non-zero p character is effected only when the test fails and control would pass to the next instruction
in sequence.

¥8

REFERENCE TABLE OF INSTRUCTIONS (Continued)

IR INSTRUCTION NAME INSTRUCTION INTERPRETATION PASE
p lorrR|l i| al b
T |Log, X I Tyl al — Log., (a) - (¢) 15
U Log. X Y1 Ul V| a| — Log. (a) — (¢) 15
\Y 10¢ Vi Viv] al — 10® - (c) 15
V' e y I W]y | a|] — e® - (¢) 15
X Sin X V| X |y | a| — Sin (a) - (c¢) 15
Y Cos X V1Y | V] a| — Cos (a) - (¢) 15
Z Arctan X Vi Z |V | a|— Arctan (a) ~ (c) 15

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84

