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Abstract 

 
This paper provides an introspective retrospective 

on the history and development of the United States 
Department of Defense Trusted Computer System 
Evaluation Criteria (TCSEC). Known to many as the 
Orange Book, the TCSEC contained a distillation of 
what many researchers considered to be the soundest 
proven principles and practices for achieving graded 
degrees of sensitive information protection on 
multiuser computing systems. While its seven stated 
evaluation classes were explicitly directed to 
standalone computer systems, many of its authors 
contended that its principles would stand as adequate 
guidance for the design, implementation, assurance, 
evaluation and certification of other classes of 
computing applications including database 
management systems and networks. The account is a 
personal reminiscence of the author, and concludes 
with a subjective assessment of the TCSEC’s validity in 
the face of its successor evaluation criteria. 
 
1. Introductory: From the primordial ooze 
 

In the beginning, there was no computer security 
problem.1 There was no external threat. There was no 
intrusion problem.  

You could ask almost anyone who used or operated 
computers in those days of yesteryear. Computers were 
expensive, so they were kept and operated in physically 
protected rooms. Only authorized, trained personnel 

                                                           
1 Earl Boebert would dispute this, having exploited a flaw in 

the early 1960s at Stanford University to read and modify memory 
[now called storage] to plant a Trojan horse. Boebert spoke of this as 
his locked room mystery. 

were allowed physical access to mainframes or 
peripherals. Users submitted jobs on punched card 
decks or on tape, jobs were run successively, and every 
job had a stated duration in which to run or be “kicked 
off” the machine. If one was lucky, an aborted or failed 
job would produce a dump before being 
unceremoniously dumped. Common belief was that 
physical protection and personnel background checks 
were adequate to protect data in the government, at 
banks, and in industry. 

This paper is a personal account of my involvement 
in the events leading to the development, writing, trial 
use, promulgation, official use, and misuse of the 
United States Department of Defense Trusted 
Computer System Evaluation Criteria (TCSEC). Even 
after it became a Department of Defense Standard, 
many came to know it by its paper cover as the Orange 
Book. Orange was the final color of an evolving series 
of published drafts that began on 24 May of 1982 with 
powder blue, and progressed through white and a sickly 
shade of olive green, until it reached its distinctive final 
draft shade of orange on 15 August 1983. 
 
1.1. Early education in computer security 
 

I2 first left academia in 1965 for an experimental 
summer research and technology training program in 
Santa Monica at the System Development Corporation 
(SDC), a non-profit spin-off of the RAND Corporation. 
The atmosphere provided to our group of “special 
trainees” at SDC was a radical departure from that of 
                                                           

2 Because this is a personal account, I use both the first person 
singular and plural pronouns. The latter are used for most contexts, 
as important results often came not from individuals but as a result 
of close collaboration with many colleagues in several research and 
development institutions in academia, industry and government. 



the UCLA mathematics department. SDC had a staff of 
academic mathematicians and researchers from the 
social and hard sciences in addition to its computing 
staff. SDC received the majority of its funding from the 
Department of Defense and other government agencies. 
The company teemed with modern vacuum tube and 
semitransistorized computers, consuming fully half of 
the electric power generated for the city of Santa 
Monica. Our three-month training class and the 
opportunities to which we were exposed were so 
exciting that most of us cancelled our future plans and 
stayed on afterward in the Research and Technology 
Directorate. 

The young people in our training class held freshly-
minted degrees in mathematics, physics, music, 
literature, and philosophy. We were assigned to use the 
new experimental IBM A/N-FSQ-32(V) Time Sharing 
System3. In our three months of training, we received 
lectures from pioneering researchers in hardware and 
operating system design, assemblers, programming 
language design, compilers, interpreters, 
metacompilers, natural language processing, database 
management, list processing (LISP 1.5), and time 
sharing system design. But the most exciting was our 
chance to use the Q-32 for our classwork. The Q-32 
would support up to 24 interactive users at a time. Our 
class got to share this computer with SDC’s 
researchers, and we were given individual login IDs so 
that our projects could be billed for the time we used. 
These IDs were not used for identification or 
authorization.  

Occasionally we were asked to get off the machine 
to allow a remote demonstration of the system to run 
smoothly and rapidly. Many of these demonstrations 
were scheduled and conducted from overseas by 
telephone dataphone and teletypewriter. Other than for 
these demonstrations, there were no public or employee 
dialup services on the Q-32. 

There were no access controls on data, and files 
were generally meant to be shared with colleagues. 
Indeed, the concept of protection was soon revealed to 
be nonexistent as a few of us inadvertently discovered 
how to subvert careful operating system policies and 
mechanisms on the single protection state Q-32 
architecture. 
 
1.1.1. Modifying an operating system. It was here that 
my first experiences penetrating computer system took 

                                                           
3 Developed under contract to ARPA as one of two “competing” 

projects. The other contemporaneous time sharing system was the 
Compatible Time Sharing System (CTSS) at  MIT’s Project MAC 
and Bell Labs designed in 1959 and operational from 1961-71. 

 

place. While we could code in the full systems 
programming language JOVIAL, this required overnight 
batch-mode compilation before we could interact with our 
programs under time-sharing. This time delay could be 
avoided by programming in the fully-interactive Time 
Shared Interpreter (TINT) for rapid prototyping, a subset 
time-shared compiler JOVIAL Time Sharing Subset (JTS), 
and LISP 1.5. However, Q-32 TSS required that adequate 
space be available in a contiguous block on one of the 
swap drums in order to load the entire compiler or LISP or 
to do any work with a user program. This was because 
dynamic paging had not yet been invented. So I and a 
couple of colleagues managed to write a very small 
program (appropriately named CANCER) that would usurp 
the operating system, repack the drums that contained 
other user programs, modify the internal systems tables, 
and make room for our own programs to load. All of this 
had to be completed inside of a single quantum. 
Sometimes it didn’t. The resulting system crash got other 
users angry. It was also less than amusing to the operating 
systems staff. Our actions were dismissed as those of 
college kids having fun, and not those of malicious users. 
Besides, until our program (CANCER) was developed and 
fully debugged, everyone had to waste time waiting for 
adequate space to become available. 
 
1.1.2. Cat and MOUSE. Q-32 TSS scheduling was 
initially a “democratic” system. Every program4 was 
given a 300 ms quantum in a strictly round robin 
scheme. This proved to interfere with the performance 
of highly interactive programs, and it resulted in very 
long compilation time. So Clark Weissman decided to 
implement queues for different kinds of jobs: initially, 
there were two queues an “interactive” queue and a 
“production” queue. Membership in the interactive 
queue depended on the program performing an input or 
output during every few quanta, and a program that 
failed to do this was moved into the production queue. 
Here, a program would execute less frequently, but 
once it reached the head of the queue it would alternate 
through ten quanta interleaved with members of the 
interactive queue prior to being sent to the back of the 
queue. In practice, users needed to get their work done, 
and they found ways to avoid being placed in the 
production queue. Soon most user-written programs 
were soon laced with code that would perform useless 
single-character output operations to the terminal to 
avoid being moved out of the interactive queue. This 
did nothing to shorten compilation time for people 

                                                           
4 Process was not yet a developed concept and ‘program’ was 

synonymous with the executing context as well as with the code 
image. Privilege state was not yet a well-recognized concept either. 



using compilers or LISP, so additional dodges were 
found to avoid the production queue.  

On learning of these, Weissman and his staff added 
intermediate queues and introduced foils to the user’s 
avoidance techniques. Ultimately, a few users 
collaborated on a set of means to modify the operating 
system’s scheduling algorithms, during execution of 
course, in their favor. As there was no protected 
memory, and there were no privileged instructions, 
there was little other than procedural controls that 
could be applied by the operating system staff to 
control usage. Soon, passwords were associated with 
user IDs, and audit logs were generated out to tape 
along with the billing information. But, since there was 
no protection on the machine, these proved to be 
illusory at best—nothing in the hardware could prevent 
any program from accessing system audit files. The 
systems programming staff introduced monitoring 
programs that would check on the behavior of specific 
users and programs, and we found means to use 
programs to abort or replace the monitoring programs. 
And so, for each protective or regulatory move made 
by the defenders, the researchers soon found 
themselves forced to launch offensive countermoves in 
order to feel that they could get their work done on the 
system. 

In effect, the system’s design was still a prototype, 
and if future system versions were to evolve, test users 
were needed to provide useful data and feedback. Q-32 
TSS was not designed with security or protection in 
mind, and because of hardware inadequacies, no form 
of strong security could have been provided in any 
case. To the best of my knowledge, the only 
penetrations or subversions of the system were 
performed in order to get work done more rapidly, and 
no user data was maliciously corrupted or spied-upon. 
But such acts of user anarchy resulted in a 
semideclared “state of war” between users and the 
operating system staff. 
 
1.1.3. Concepts in absentia but not forgotten. The 
primitive understandings of protection mechanisms 
made early time sharing systems look like the Wide 
Open Old West. The following important concepts 
were soon learnt to be absent in contemporaneous 
computers and systems: 
 
• Protection policy 
• Multiple privilege states 
• Segmented memory 
• Privileged instructions 
• The process as subject concept 

• Access controls on objects 
• Individual accountability 
• Protected audit trails 

It soon became obvious that if systems were to 
control users, such concepts would need to be 
implemented. But, of course, we didn’t know that 
then…. Many of these lacking controls remained 
AWOL through the 1970s and 1980s on a majority of 
ARPANet sites, and thence well into the 1990s and early 
21st century on the Internet. But, it must be observed, 
there was “no known security problem that wasn’t 
caused by improper management and that couldn’t be 
corrected by proper procedural controls.” 
 
1.2. The Ware Report 
 

In our research lab, as elsewhere, there was no 
perceived computer security problem. All SDC 
employees had a Defense Department clearance 
because there were some classified projects in SDC’s 
buildings. Guests had to sign in with a guard and wear 
a visitor badge while being escorted.  

However, a series of events in the spring and 
summer of 1967 focused the Department of Defense’s 
attention to the question of security control in resource-
sharing systems. In June of that year, Bob Taylor, 
director of the Office of Information Processing 
Techniques at ARPA was tasked to “form a Task Force 
to study and recommend hardware and software 
safeguards that would satisfactorily protect classified 
information in multi-access, resource-sharing computer 
systems.” The RAND Corporation’s Willis Ware was 
asked to chair the Task Force under the authority of the 
Defense Science Board, and began meeting in October. 
The Task Force and its panels included a number of 
future security visionaries and colleagues, including 
E.L. (Ted) Glaser, Pat Haverty, Art Bushkin, Bob 
Mosier, Jerry Moskowitz, Larry Roberts, Bob von 
Buelow, Roy McCabe, Barry Wessler, James P. 
Anderson, Ed Bensley, Dan Edwards, Jerry Saltzer, 
Hilda Faust [later Mathieu], Bob Balzer, and Clark 
Weissman.5 

Their landmark report, Security Controls for 
Computer Systems [27], was published as a classified 
CONFIDENTIAL RAND report in February 1970. Its 
findings are still of interest today, but unfortunately, 
were not widely disseminated at the time because of the 
classification.6 
                                                           

5 SDC was well represented on the Task Force by Mosier, von 
Buelow, McCabe and Weissman. This eventually proved to benefit 
my education in computer security. 

6 In the preface to the publicly reissued version of the report, 
Ware states: “At that time it was felt that because representatives 



The Ware Report was prescient in its presentation 
of: 

 
1. Security risks and the nature of security 

vulnerabilities. In addition, computer network 
vulnerabilities were enumerated to include: 
hardware and software failures; emanations; 
wiretaps and crosstalk; sabotage from operators, 
maintenance staff, systems programmers, and subtle 
software modifications by users, and attachment of 
bugs to terminals. Identified difficulties of securing 
a computer system included: 

2. consideration of the difficulty and complexity of 
security controls on a range of ranging from the 
most easily controlled  processing environments: 
local-access batch, remote-access batch, local-
access multiprogramming, remote-access 
multiprogramming, to the most difficult of all, 
remote-access time-shared systems 

3. consideration of the challenges presented by 
increasing user capability and the complexity of 
security controls based on the simplest risks posed 
by template-based file query systems, through a 
scale of increasing challenges of programming via 
interpretation, programming via limited languages 
and checked-out compilers,7 up to users having full-
programming capabilities as the most risky 
environment 

4. The specifics of access control policy to specific 
files were to be-based on system-confirmed 
authentication of the user’s identity and clearance, 
the clearance of the facility from which the user 
would access the file, and the clearances of 
designate output devices 

5. Defense Department needs were identified for 
adaptive access control policies in the face of 
degraded operation or national emergency. The 
Report specifically addressed the costs, financial to 
mission-specific, of implementing access controls.  

                                                                                          
from government agencies participated in the work of the Task 
Force, the information in the report would appear to be of an official 
nature, suggestive of the policies and guidelines that would 
eventually be established.  Consequently, it was felt prudent to 
classify the report CONFIDENTIAL overall….” 

7 There was a long-standing belief that allowing assembly-
language programming would pose the greatest threats to computer 
security. Programming languages like FORTRAN did not explicitly 
support assembly-language programming, although the systems 
programming language JOVIAL did. Hence, FORTRAN was consider 
“safer” at the time of the Ware Report. A few years later, this fallacy 
was corrected through a demonstration that EQUIVALENCE and 
DIMENSION declarations could be used in a way that would enable 
the execution of assembled code posing as binary data. 

6. Hardware and software, acting together, were to 
provide isolation from user programs of all 
operating system security controls, including the 
audit trail. The emerging design of Multics was 
specifically given salutary comments in an 
explication of how this could be reliably achieved. 

7. Specific hardware features were identified as 
necessary for access control, including a minimum 
of a supervisor state and a user state, program 
isolation mechanisms such as base and bounds 
mechanisms, machine fault detection, etc.  

8. Operating system complexity was recognized as an 
impediment to actually proving that the design and 
implementation were correct. To compensate for 
this, the Ware Report called for detailed 
documentation in text and flowcharts of the 
modules on which access control was based.  

9. Penetration testing was required on a periodic basis, 
and it was highly recommended that some of these 
tests would necessarily be conducted by outside 
personnel not connected with the design or 
implementation of the system. 

The system would need to periodically perform 
dynamic operating system integrity tests and to validate 
the efficacy of specific security tests by running 
attempts to subvert the access control policy.  

Although incomplete by contemporary standards, 
many of the Ware Report’s recommendations and 
findings are still valid. The Report contained an 
appendix in which system access controls were 
formally specified as a set of transformation rules in 
Backus-Naur Form (BNF). 

Ultimately, the Report’s technical recommendations 
came from the research community. Many ideas, 
including segmented virtual memory and privilege 
states are reflected in the Task Force’s conclusions and 
recommendations. The significant outgrowth of the 
Task Force’s work was the funded development of two 
multiprocessing systems that were designed 
incorporating computer security principles from the 
start. These were the refined security design of Multics 
at MIT (first specified in 1965), and the multilevel 
time-sharing system adept-50 in 1967-8 at SDC. 

 
1.2.1. Multics. The Multics project introduced a 
number of security principles to the technology. The 
system was designed as a collaboration between MIT, 
General Electric and Bell Labs under arpa Funding to 
run a modified GE 635 computer, renamed the GE 
645.. Early management and technical contribution 
spanned the three organizations, and included principal 
contributions from Fernando “Corby” Corbató, Ed 



Vance, Vic Vyssotsky, Peter Neumann, Jerry Saltzer, 
Ted Glaser, Butler Lampson, Tom Van Vleck and 
Charlie Clingen.  

Many of the concepts I mentioned above were 
ultimately incorporated in Multics, including: 
Segmented virtual memory, protection and privilege 
rings, the operating system was coded in PL/I instead 
of assembler, and it incorporated modular design and 
least privilege.8 

Multics design, implementation, and use ran over 
the period 1963-2000. Multics history is documented at 
http://www.multicians.org/. 

Because of the lack of an identified computer 
security problem, Bell Labs’ participation in the 
Multics project ended after a few years. A laboratory 
version of a stripped-down Multics-like system soon 
came about that had no file access controls because 
they weren’t perceived as necessary in the lab 
environment. Peter Neumann suggested the name for 
the system should be Unics (making the pun of an 
emasculated single-user Multics) because of the many 
Multics features that had been eliminated. It was Brian 
Kernighan who claims credit for naming it UNIX.9 

 
1.2.2. ADEPT-50. ARPA awarded a contract in 1966 to 
Sdc to implement a Time Shared Database 
Management System (TDMS) on an IBM S/360 model 
50 computer. TDMS was specified to support rapid 
retrieval on ad-hoc queries over any field combination 
as a recursively-defined hierarchical fully-inverted 
database. The underlying operating system reflected a 
multilevel security design created by Clark Weissman, 
who directed a staff that included Dick Linde, Sal 
Aranda, Martha Bleier, Barry Gold, Steve Sherman, 
and Clay Fox.  

In 1967, Weissman asked me to prepare a formal 
mathematical formulation of the ADEPT-50 [28] 
interpretation of the military security policy-based 
model described in the Ware Report. The model 
addressed clearance, compartments/categories, 
franchise (specific permissions), and need-to-know for 
authenticated users. It implemented a dynamic user-
specific High Water-Mark (HWM) access policy that 
determined the level at which objects and files created 
by the user could be read or stored to media.10 

I ported META6, the compiler-compiler I had been 
developing, to ADEPT-50 which served as a base for 
                                                           

8 A military version, AFDSC Multics, was derived from 
Multics that provided for hierarchical and compartmented security 
clearances/classifications. This later version implemented a version 
of the Bell-LaPadula security policy models. 

9 Peter Neumann, private communication. 
10 ADEPT-50 was certified and accredited for use by part of 

the U.S. Intelligence Community and in the Pentagon. 

producing tools for converting flat-structure record-
based databases automatically into the TDMS data 
model. In 1967-8, I ended up commuting on a weekly 
basis from Santa Monica to the Pentagon,11 which had 
a growing need to convert classified databases over to 
TDMS. Keypunch errors and semantic confusions 
among the military users were the causes of my many 
trips to the National Military Command System 
Support Center (NMCSSC) during the Vietnam War.  

ADEPT-50 was being used to support multilevel 
operation, and its dynamic HWM policy, in 
anticipation of the *-Property, proved to be confusing 
and frustrating to nmcssc users. The most plaguing of 
problems was that a user would create a new file or 
modify an old one such that it could not be accessed 
once closed. This was because the new file’s security 
level would be the least upper bound of the 
<classification, category, franchise> attributes of all 
files opened during the user’s session. The new file’s 
access control list became the intersection of the access 
control lists (and rights) of all open files that had been 
accessed during the session. This rapidly became a 
singleton access control list, thereby isolating the new 
or modified file from all other users. 

ADEPT-50 was in use through the Vietnam War and 
well into the 1970s. 
 
1.3. The Anderson Report 
 

The U.S. Air Force awarded a contract in 1972 to 
the James P. Anderson Company to produce a 
computer security planning study. A panel of experts, 
chaired by E.L. “Ted” Glaser, met between February 
and September 1972 to produce an UNCLASSIFIED two-
volume report [2]. Additional participants included 
Eldred Nelson, Bruce Peters, Dan Edwards, Hilda 
Faust, Steve Lipner, Roger Schell, Clark Weissman and 
Chuck Rose. The Anderson Report outlined a sound 
approach to the development of multiuser multilevel 
computer systems. 

The most important contribution of the Anderson 
Panel was its strong direction toward the use of 
formalisms in addressing controlled sharing in terms of 
an access control policy model, the design of the 
security mechanisms, and the production of security 
assurances. The concept of an access control model, or 
security policy model, soon led to formalisms. G. Scott 
Graham and Peter Denning had published a model in 
which the accesses by subjects to objects were 
represented in a matrix M wherein: rows represented 
subjects S, columns represented objects O, and 

                                                           
11 This was a difficult period for me. I was working full-time 

both at SDC and at UCLA on a doctorate in mathematics. 



elements Ms,o represented the specific modes of access 
or permissions subjects had to objects. It was possible 
in this model to identify all subjects who had any form 
of access to any specified object as well as to identify 
all objects to which each subject had any specified 
form of access. In this model, interprocess 
communication implied that subjects also be viewed as 
objects, a deduction that ultimately resulted in the 
recognition of a subject as a <process, domain>-pair, 
wherein domain included all of the attributes of the 
executing process (including security, integrity, and 
privilege-state attributes). In a large system, it was 
tacitly assumed that M would be a large sparse matrix. 
Thus, implementation concerns suggested that M either 
have its attributes stored in lists associated with 
subjects (capability lists) or with objects (access 
control lists). Harrison, Ruzzo and Ullman [10] also 
showed that discretionary access control (DAC), the 
form of access modeled in M, had a degree of 
uncertainty equivalent to the Turing Halting Problem. 

The Anderson Study also resulted in publication of 
a series of formal models that addressed abstractions of 
military classifications and clearances, so-called 
nondiscretionary access control (later to be known as 
mandatory access control or MAC). The most popular 
of these models were those of Case Western Reserve 
University [26] and of D. Elliott Bell and Leonard 
LaPadula [3]. At the time of their publication and 
refinement, these models were reputed to have formally 
provable security properties. This was later questioned 
by John McLean [17] and others. 

Central to the Anderson Study’s framework is its 
elaboration of the reference monitor concept. Its 
implementation is a reference validation mechanism 
(RVM), often called a “security kernel,” a term 
introduced by Major Roger R. Schell at an early 
Stockton Gaines workshop.  Specifically, the Study 
prescribed three requirements characterizing the RMC: 

 
a. The reference validation mechanism must be tamper 

proof. 
b. The reference validation mechanism must always be 

invoked. 
c. The reference validation mechanism must be small 

enough to be subject to analysis and tests, the 
completeness of which can be assured. 

It elaborated: 
Each of these requirements is significant, for without 
them the mechanism cannot be considered secure. 
The first is obvious, since if the reference validation 
mechanism can be tampered with, its validity is 
destroyed, as is any hope of achieving security 
through it. The second requirement of always 
invoking the reference validation mechanism simply 

states that if the reference validation is (or must be) 
suspended for some group of programs, then those 
programs must be considered part of the security 
apparatus, and be subject to the first and last 
requirements. The last requirement is equally 
important. It states that because the reference 
validation mechanism is the security mechanism in 
the system, it must be possible to ascertain that it 
works correctly in all cases and is always invoked. If 
this cannot be achieved, then there is no way to know 
that the reference validation takes place correctly in 
all cases, and therefore there is no basis for certifying 
a system as secure. [2, vol. I, p. 10] 
The Anderson Report recognized that operating 

systems were larger and more complex than most 
programs, and that exhaustive testing was out of the 
question. So the report called for modularization that 
would support analysis and credible testing. There is an 
interesting consideration of the possibility of subjecting 
operating systems to mathematical proofs of 
correctness, but this was understood to be well-beyond 
the capability of human individuals. There is a 
discussion of the potential for research that would 
support generation of computer-aided formal 
verification assurances sometime in the future. 

Like the Ware Report, the Anderson Report 
recognized the need to consider system use 
environment and functional characteristics as part of 
the overall risk and vulnerability assessment. It 
considered secure transaction systems to be the least 
threatening and most achievable of the “open use” 
multiprogrammed system contexts. The next most risky 
category to be considered was the High-Order-
Language (HOL)—the only system described in the 
Ware Report which raises the possibility of breaking 
out of the confines of FORTRAN. No explicit details on 
how this might be achieved are presented.  

The Report outlines several development plans for 
research and development needed to achieve secure 
open-use systems. There is specific reference to 
planning research programs on secure networks, 
security models, security software engineering, security 
surveillance, certification techniques, architecture 
research, data integrity and reliability, automatic 
classification, magnetic media, and computer aided 
integrated design. Of interest is an allusion to 

The possibility of internal encryption of computer 
programs and data was first advanced in 1966 prior 
to the Defense Science Board Task Force on 
Computer Security. Since that time it has received 
sporadic attention. It appears that it is possible to 
apply this technique either as an appliqué or as an 
integral part of the design of computer systems [2, 
vol. II, p. 44]. 



It is interesting to note that the Anderson Panel had 
the foresight to predict that: 

Perhaps the most interesting potential of modern 
technology will be the radical reduction of cost of 
computer main frames. We can, for all intents and 
purposes assume that computer main frames will be 
effectively “free” in the not too distant future. As a 
consequence, if it is really necessary to separate 
various users, each can be given his own computer. 
However, more often than not, they are dealing with 
common data bases and must hand off certain 
common data to one another and, on occasion share 
programs. As a result, we are still in need of secure 
computing systems. With very low cost computer 
logic however, we have the possibility of a 
distributed system. By this is meant a system in 
which the various system functions may be 
distributed among different machines which are 
“netted” together. Netting does not imply a number 
of machines doing identical tasks, nor does it imply a 
number of necessarily identical machines… [2, vol. 
II, p. 102]. 

 
2. Principles, perceptions, and worked 
examples 
 

Following publication of the Ware and Anderson 
studies, interest in “secure” systems and products 
appeared to have increased in number and depth. Donn 
Parker began to publish books on computer crime, but 
most of what appeared in the popular press described 
variants on insiders automating white collar crime 
against financial institutions. Among institutions that 
had potential computer security vulnerabilities, their 
identified concerns focused in on reliability and 
protection from disruption of service. Very few 
organizations expressed concern over protecting 
confidential information from unauthorized 
modification or display.12 At the beginning of the 
1970s, however, there was still no consensus that 
technical measures were required to counter any 
identified computer security threats. From Parker’s 
books on through banking, commercial and military 
users, the expressed belief was that trained system 
managers and the use of guards, badges, personnel 
background examinations, and encrypted external 
communications would suffice to meet their protection 
requirements.  

During this period, several security working groups 
were formed that brought security researchers together. 
One, hosted at the RAND Corporation, was chaired by 
R. Stockton Gaines. In addition to members of the 

                                                           
12 Banks were far more concerned over unauthorized 

modification  of transactions than breeches of confidentiality. 

Ware Panel, the group periodically included additional 
researchers from UCLA, USC Information Sciences 
Institute (USC-ISI), MIT, RAND, SDC, MITRE, NSA, 
ESD, and other institutes. A second group, organized 
later by Steve Walker while he was at DARPA, added 
principals from Carnegie-Melon, Bell Labs and various 
DARPA contractors This latter working group evolved 
into a kernel of the Department of Defense's Computer 
Security Initiative. Participants who met in these two 
groups included: Jim Anderson, Roger Schell, Dan 
Edwards, Ann Marmor-Squires, Anita Jones, Butler 
Lampson, Jerry Saltzer, Gerry Popek, Clark Weissman, 
Dick Bisby, Dennis Hollingsworth, Jim Gillogly, David 
Bonyun, Mike Schroeder, Peter Neumann, Ed Burke, 
Steve Lipner, and me.  

From the Anderson Report and refined by these 
groups also came the notion of the security perimeter, 
which consisted exclusively of security-relevant code 
and the minimal subset of the operating system 
required to support it. The code within the security 
perimeter became known as the security kernel, the 
minimal body of code required to enforce the system 
security policy. Almost as a mantra, many in the 
research community claimed that if “the good guys 
write the code inside the security perimeter, then the 
system will be secure, even if the adversary writes the 
remainder of the operating system and its utilities.” 
 
2.1. Access control policy considerations 
 

Up through the early 1970s, I worked closely with 
clients in both military and commercial application 
sectors. I became aware of the wide range of 
discretionary access controls that were asked for by 
different user groups. Their requirements included: 
• Password protected files: where knowledge of a 

password suffices to gain complete file access 
• Time-based access controls: where specific actions 

could only be performed on specified days and/or 
during identified time periods. One such defined 
mode of access may be no access. 

• Group-based access controls: where access modes 
are uniformly applied to users assigned membership 
in named groups, e.g., only members of the salary 
administrator group may modify salaries. One such 
defined mode of access may be no access. 

• Rôle-based access controls: where, e.g., persons 
acting in the rôle of salary administrator may only 
perform specified accesses and no others (e.g., no 
general programming while acting in the rôle of 
salary administrator. One such defined mode of 
access may be no access. 



• User-specific access controls: associated with each 
user and each protected object is a set of specific 
modes of access that the user is permitted to have 
for the object; this is the form of access control 
typified by access control lists. As in the Graham-
Denning model, one mode of access may be control 
access, a mode that allows the user to grant or deny 
access for other users. One such defined mode of 
access may be no access. 

• Prohibited-access controls: sets of users for whom 
specific forms of access to objects are specifically 
prohibited. These prohibitions may be broader than 
the no access form described supra. 

• Combinations of the above: e.g., a specified user in 
a particular rôle at a given time from an 
administrator’s terminal may access a controlled 
object in only a specified set of modes. 

• Formularies: a term coined by Lance Hoffman 
wherein access to a specific object is computed by a 
specified, possibly ad hoc, function. More robust 
than the foregoing access controls, a formulary may, 
e.g., restrict a salary administrator to modifying 
only the salaries of those reporting to managers in a 
specific department providing that the new salary 
does not exceed a stated percentage of the 
employee’s manager’s salary. 

 
In full generality, discretionary access control was 

recognised as being much more complex than a simple 
label-based policy. Further, the undecidability issues 
raised by Harrison, Ruzzo and Ullman and additional 
implementation complexity issues suggested strongly 
that high-assurance systems could not be uniquely 
based on DAC mechanisms. 

 
2.2. Implementation considerations 
 

Early attempts at implementing robust, production-
quality secure operating systems proved to be 
surprisingly difficult, despite the application of sound 
principles. In part, this was because of the lack of 
experience in dealing with the problems of reducing 
theoretical objectives of layered architectures, least 
privilege and least common mechanism to engineering 
practice within the framework of information flow 
confinement.  

 
2.2.1. Multics. It has become common contemporary 
practice for scarcely tested and inadequately debugged 
software products to be sold commercially. Various 
vendors, notably Microsoft, have been accused of 
launching products that have never been subjected to 
beta testing. Disgruntled customers have complained 

and lampooned such companies and their programming 
staffs’ capabilities, not entirely without justification. 

Knowledge gained from penetration studies had 
made it clear that complexity is a strong contributing 
cause of system vulnerabilities. Complex designs are 
harder to implement than simple ones. Complex 
programming languages are more difficult to use than 
simpler ones, but complex coding sequences—in any 
language—are more difficult to understand weeks or 
months later than simpler ones. Any error in a security-
relevant code sequence provides a potential foothold 
for a penetration attack. 

This and related observations led the programming 
methodology and software engineering communities to 
espouse the use of high-order type-safe programming 
languages for the development of all programs and, to 
the extent possible, of systems. Modularity and data 
hiding were considered essential to a divide-and-
conquer strategy for breaking down systems into 
manageable and easily programmed bodies of correct 
code. Beginning with the seminal early 1970s’ work of 
Edsger Dijkstra and C.A.R. Hoare, system developers 
had begun to decompose their designs into strictly 
ordered hierarchies of modules in which there were no 
“upward” or circular functional dependencies.13  

Dave Parnas subsequently produced worked 
examples of system decompositions of independent 
modules wherein the internal implementation and all 
internal variables were “hidden” and where there were 
no global variables – thus requiring that intermodule 
communication would require explicit parameter 
passing as values rather than as references. All modules 
were to “advertise” their external interface, and each 
was required to validate its inputs prior to accepting 
them. Niklaus Wirth moved forward and designed 
Modula, a systematically refined family of system 
programming languages that supported “toy” system 
implementation from such modules. Similar 
programming languages were proposed for production 
work, including Euclid, a Defense Department-
sponsored effort to produce a fully-verifiable systems 
programming language that supported the modularity 
and data-hiding methodology. Eventually, this led to 
the development of the programming language Ada.14 

Corporate misunderstandings of the philosophy of 
“structured programming” and its call for the abolition 
of the GO-statement and FOR-loops resulted in added 
code complexity. Some companies naïvely 
misunderstood the modularity concept and restricted 

                                                           
13 Coincidentally, penetration teams had identified and 

exploited such functional dependencies in systems. 
14 In 1972, I participated in Jean Ichbiah’s design of the system 

programming language LIS, the direct predecessor of Ada. 



their programmers to writing modules no longer than a 
certain number of statements or lines of code. While 
this achieved modules that appeared to be small, in 
reality, modules were often prematurely terminated 
with a call on another module that continued from 
where the first left off. This resulted in obscure, and 
sometimes complex, calling sequences. Many also 
insisted that in a strict hierarchy of modules, a function 
call could only be between adjacent levels (or identical 
levels if within a tree of the same module) in the 
hierarchy. 

The Anderson Report’s prescriptions called for a 
RVM that was “small enough to be subject to analysis 
and tests, the completeness of which can be assured.” 
This requirement represented a misconception that 
smallness implied conceptual simplicity. As will be 
seen, additional understanding gleaned from 
experiential missteps led to a restatement of this 
attribute. The rationale introduced in the first (powder-
blue) draft of the TCSEC [8] restated it as “[the RVM] 
must be of sufficiently simple organization and 
complexity to be subjected to analysis and tests, the 
completeness of which can be assured.” This revision 
persisted into the published DoD standard. [7, p. 67] 
 
2.2.2. Efficiency considerations. Early attempts to 
implement systems along the lines of a Parnas 
decomposition uncovered problems in efficiency and 
size. Parameter passing and the lack of global variables 
proved to be cumbersome and inefficient. Attempts to 
work around the inefficiencies led to larger modules 
and to greater complexity. In some cases, the work-
arounds involved linkages to machine language 
structures. 

In addition, calls to different modules or different 
privilege states required a context change, and even in 
rapid, specially-designed hardware, several 
“unnecessary” instructions needed to be executed for 
both the calling and return sequence, thereby adding 
even more overhead to the program. This became a 
fundamental clash between the principles of least 
privilege and least common mechanism on the one 
hand, and performance efficiency, which called for 
placing as much as possible in the same domain of 
execution. 
 
2.3. False senses of security 
 

Most operating system vendors subjected their 
products to extensive internal testing prior to their 
release. In those days, most systems were sold (or 
provided gratis along with the hardware) “bundled” 
with assemblers, compilers, and utilities. For various 
reasons, testing was performed far more aggressively 

prior to product release than it is today, and even after 
product release, patches to identified errors were 
regularly distributed to users as part of vendors’ 
product maintenance programs.  

However, even then, new features tended to be 
included in the maintenance releases. Experience 
showed that the patches and new features introduced 
new bugs into the systems. System reliability was 
always a problem area, and denials of service had 
always been a focus area for testing. Grafted-on 
features proved to be most vulnerable to runaway 
programs. A form of testing, known as stress testing or 
security penetration testing, became more common.  

Vendors started to make isolated product security 
claims. Some vendors even asked tiger teams to try to 
penetrate their products. When security testing failed to 
find a problem, vendors advertised the fact as a system 
strength. 

The failure of security testers to find flaws did not 
suffice to prove their absence. It showed, instead, the 
limitations of resources or imagination on the part of 
the penetration team. Indeed, a new team was generally 
able to penetrate such systems in a matter of a couple 
of weeks. Even on systems whose identified flaws had 
all been “corrected”, testing by a new team usually 
found exploitable security vulnerabilities, often of a 
completely different kind than found by their 
predecessors. And, tiger teams soon focused on 
penetrating patches rather than the original code. 

 
2.4. Tiger team efforts 
 

Security research and development were seriously in 
need of funding in the 1970s. Without a validated 
requirement statement, military funding was limited 
and shaky. Many a study or seed project was cancelled 
in order to fund military acquisitions of war matériel. 

So, the researchers mobilized to create legitimate 
demand for security research and development 
programs. 

One form of “consciousness-raising” involved the 
almost romanticized activities of tiger teams. Most 
prominent of these was the USAF ESD team, which 
included Major Roger Schell, 1Lt. Paul Karger, Ed 
Burke, and Steve Lipner. In addition to their 
documented successful penetrations of Multics and 
DIAOLS, this and other tiger teams seemed always to 
succeed in penetrating their targeted operating systems.  

After a number of documented penetration studies, 
the Anderson Study made it clear that a necessary 
condition for securing an operating system was 
hardware that provided, as a minimum, a distinct 
hardware state for the protection of the security 
mechanism. Another way of stating this was that the 



security relevant instruction set needed to be a subset 
of the privileged instruction set that could only be 
executed in supervisor state. 

Bob Abbott directed the Research Into Secure 
Operating Systems (RISOS) study [1] in 1976 which 
led to a characterization of seven general classes of 
system flaws: 

 
a. Incomplete parameter validation 
b. Inconsistent parameter validation 
c. Implicit sharing of privileged/confidential data 
d. Asynchronous validation/inadequate serialization 
e. Inadequate identification/authentication/-

authorization 
f. Violable prohibition/limit 
g. Exploitable logic error 

Matt Bishop and colleagues at Purdue University 
produced and documented some startling penetration 
exploitations of commercial Unix Systems in the late 
1970s. 

Another tiger team, at SDC, was put together by 
Weissman. In 1972-3, SDC was given a contract to 
conduct research jointly on the security of IBM’s 
VM/370. Like Multics, VM/370 provided three 
execution states: one fully-privileged hardware 
supervisor state for the VM/370 hypervisor, one 
emulated virtual supervisor state for virtual operating 
systems, and a hardware problem state for user 
programs. VM/370 hypervisor was small, and much of 
its design and code was based on a conceptually simple 
model. The implementation was well-structured for its 
time (though written in assembler) and was properly 
structured to resist attack. Unlike Multics’ use of 
special hardware and protection rings, VM/370 had to 
emulate virtual supervisor state, which was not 
supported by the IBM S/370 hardware base. The 
security relevant instructions on the S/370 were a 
proper subset of its privileged instruction set. The IBM 
hardware was capable of trapping attempts to execute 
privileged operations so that the VM/370 hypervisor 
could legality-check them prior to their execution.  

In relatively short order, the joint team succeeded in 
identifying and exploiting a number of subtle technical 
flaws in the design and implementation of VM/370 that 
resulted in their achieving full control over the system. 
In many cases, the exploited vulnerabilities were not a 
flaw in coding, but were faithfully-emulated security 
flaws in the S/370 hardware architecture that were 
virtualized away from users’ direct access. As a result, 
the VM/370 hypervisor could be conscripted into 
abetting its own penetration. 

In addition to producing a proprietary vulnerability 
report, the team produced a jointly authored paper for 

the IBM Systems Journal. Dick Linde and Ray Phillips, 
who led the SDC team, produced a formalization of the 
approach to identifying potential security flaws, now 
known as the Flaw Hypothesis Methodology.  

Clark Weissman began offering penetration studies 
as an SDC service. His motivation was to show clients 
how vulnerable their systems were in hopes of 
obtaining adequate funding to methodically eliminate 
identified security vulnerabilities by reworking the 
penetrated systems. This goal was not achieved, 
however. The penetrators were altogether too 
successful. Many clients did not believe the penetration 
study’s results, and remained skeptical until they went 
through the shock of watching a remote user 
compromise their system. Some clients went into 
denial, convincing themselves they were safe because 
of an attack’s sophistication or obscurity -- too often, 
one heard the phrase “no one would do that”. SDC was 
unable to provide a quick, inexpensive “fix” to the 
flawed systems, and their clients ordered SDC not to 
reveal uncountered system vulnerabilities. Put simply, 
the costs of correcting developers’ security flaws would 
be too great for any single client company to bear 
alone. System vendors, on the other hand, were not 
faced with overwhelming customer demand that they 
secure their products. 

In the large, customers were after a simple round of 
quick-fix “penetrate and patch” wherein the system 
vendor would patch the system once the flaws were 
identified. The penetrators found that the “repaired” 
systems were easier to penetrate the next time around, 
because the patches generally introduced new security 
vulnerabilities. 

So the tiger team activities did not produce a golden 
age of funded security research and development. 
However, they did provide an adequate number of 
worked examples of security flaws from which to glean 
understanding of those design and implementation 
techniques that could be most resistant to attack or 
conscription. 

 
2.5. Secure system prototypes 
 

Beginning with the convening of the Ware Panel, 
the next decade saw the beginnings of various other 
computer security-related activities. In part, with 
tremendous influence from the findings of the 
Anderson Panel, this activity was spurred by research 
funding falling out from the Vietnam War and related 
activities. The U.S. Department of Defense and its 
agencies were the principal funding sources for 
research as well as for development.  

The private sector developed several security-
oriented commercial products and prototypes. Among 



the independently-developed products were: IBM’s 
Resource Access Control Facility (RACF) add-on to 
MVS and the Virtual Machine Facility/370 (VM/370) 
operating system, and Tymshare’s capability-based 
operating system Gnosis. 

The U.S. DoD sponsored system and prototype 
developments for several prototypes and operational 
systems, including: 

 
• Multilevel AFDSC Multics 
• MITRE UNIX 11/45 prototype 
• Stanford Research Institute’s Provably Secure 

Operating System (PSOS) design 
• Two attempts at a multilevel secure version of 

UNIX (Ford Aerospace’s KSOS-11 and 
Honeywell’s KSOS-6) 

• SDC’s Kernelized VM/370 (KVM/370) 
• Ford Aerospace’s AUTODIN II 
• ITT/IBM’s SACDIN 
• SDC’s BLACKER project. 
 

In addition to these, two forays into multilevel 
database management were conducted. At SDC, Clark 
Weissman reassigned me to perform computer security 
research, abandoning my chosen research study on 
applications of Petri nets. Tom Hinke and I produced a 
study, model and design, under sponsorship from Rome 
Air Development Center (RADC), for a multilevel 
relational database management system that could run 
under an unmodified AFDSC Multics. My Petri net 
research proved to have an application and was used in 
our model as a multilevel secure solution to 
synchronizing database queries and updates.15 David 
Bonyun and colleagues at I.P. Sharp Associates 
(Canada) produced a multilevel DBMS model for the 
Air Force Electronic Systems Division. The IP Sharp 
model was designed to have been implemented within 
Rings 1 and 2 of Multics and identified various security 
primitives to support multilevel database management.  

The Hinke-Schaefer multilevel DBMS work is 
noteworthy because its implementation would contain 
no security relevant code and was contractually 
required not to require any modifications to the Multics 
Security Kernel. It was instead constrained to operate, 
under the Least Privilege concept, as a completely 
unprivileged process in user rings. 

 
2.6. Toward system security evaluation criteria 
 

By 1978 researchers and developers had begun to 
claim that they knew precisely how to implement 
                                                           

15 A variation of our technique was independently developed 
by Reed and Kanodia, and is known as event counts. 

secure (or “secure enough”) systems. While few 
projects had produced fully operational, well-tuned 
secure systems, such products were not readily 
available. Although multilevel AFDSC Multics and 
ADEPT-50 had been fielded and accredited, there was 
an understanding that their performance left something 
to be desired. They were far from being “user friendly”. 
AUTODIN had been accredited for full multilevel use 
(UNCLASSIFIED through compartmented TOP SECRET), 
the consensus was that if AUTODIN were subjected to 
recertification and accreditation analysis, it would fail 
based on contemporary technical knowledge of 
vulnerability analysis. 

The research community had moved forward to 
achieve a preliminary understanding of covert channel 
analysis (CCA). The hubris of the moment had led 
many to claim that with the new secure systems, 
unauthorized direct access to files, spooling files, 
printer queues, the address spaces of other processes, 
etc., would be impossible. Thus, only by timed 
modulation of various system artifacts could a pair of 
coöperating Trojan horses communicate with each 
other in violation of the system security policy 
interpretation of confinement or the Bell-LaPadula *-
property. Various technologies had been created for 
identifying, measuring and using covert channels [24], 
and some formal analysis tools had been created [18] to 
discover covert channels in formal system 
specifications. 

 
2.6.1. Security kernels bad, TCBs good. For several 
reasons, many in the security research and development 
community began to oppose the reference monitor 
concept and its implementation as a security kernel. For 
the most part, the criticism focused on the perceived 
inefficiency of central mediation and context switching 
forced by the RVM’s complete mediation requirement. 
Many argued against the strict notion of having to 
validate every reference to every system object.  

One divide-and-conquer strategy, represented in the 
Bell-LaPadula models, was achieved by having the 
security kernel apply full policy mediation to every 
initial request or attempt by a subject to access an 
object in a specific mode. If that mode of access was 
consistent with policy, a descriptor or token would be 
generated that the kernel could rapidly consult to allow 
or reject all subsequent access attempts.  

This resolved most of the problem. But it left open 
the question of how the controller of an object could 
immediately revoke all or selective access modes to 
that object. The custom hardware descriptor-based 
architecture of Multics allowed this to be done 
immediately. However, in other system architectures, 
such a feature was deemed too costly, and system 



security policies were modified to have access 
revocations become effective only on new access 
requests. For capability-based systems, where a process 
could endure for days or weeks, this problem resulted 
in many emotional arguments and dissents. 

To some, a more significant issue became apparent 
with respect to certain modules that were included 
inside the security perimeter that were not directly 
related to protection or to supporting the 
implementation of protection-critical modules. Their 
inclusion as security relevant code was clear, for their 
improper operation could lead to a security policy 
compromise. For example, a resource scheduler or 
dispatcher could, in principle, operate in a less 
privileged domain than that of the security kernel. But 
many argued that a scheduler needed to have access to 
system-wide information, as scheduling decisions made 
only within a single security level could result in 
thrashing or other inefficiencies. The only way a 
scheduler could view such information under a 
multilevel security policy model would be if it executed 
as if it were a system-high subject. But in that case, any 
request it made to dispatch a specific subject could be 
misused to signal information as a covert channel in 
violation of the *-property.  

Indeed, no matter how it was structured, every 
multilevel system had to have some internal processes 
that allocated or modulated global system resources. 
Covert channel analysis techniques showed that such 
processes could always be conscripted to violate 
information flow confinement requirements—even 
when such processes were implemented correctly (i.e., 
in full conformity with their specifications). There was 
growing awareness of this problem in KVM/370, which 
called them the Global Processes and in KSOS and the 
SCOMP, where they were called Non-Kernel Security-
Related processes (NKSR). In all cases, their direct 
verification against the constraints of information flow 
analysis was impossible. 

The Bell-LaPadula models had provided for the 
notion of trusted subjects whose functionality required 
transferring information between classified containers 
in apparent violation to the *-property. Global 
processes were less obviously in this class. Isolating 
such processes to operate in less privileged domains 
only led to additional context-switching inefficiencies, 
as nothing could be done directly to ensure that their 
use would not compromise security. This observation 
led to two dénouements: 

 
1. It was concluded that because of the uncertainties of 

discretionary access controls, the potential 
exploitation of covert channels in multilevel 
systems, and the nettlesome questions of global 

process efficiencies, a system could no longer be 
called secure but would henceforth be called 
trusted; 

2. The term security kernel was scrapped in favor of 
the neologistic term trusted computing base (TCB). 

As was to be seen in the sequel, ‘TCB’ was a 
vaguely-defined term, and its adaptation as a concept 
resulted in abandoning the third requirement of the 
Anderson Study, conceptual simplicity of the RVM. 

 
2.6.2. Distributed mediation, capabilities, PSOS, 
and Gnosis. Still, the prejudice against the centralized 
security kernel concept manifested itself in an 
altogether different way. It was argued that automated 
formal code verification (or mechanical “proof of 
correctness”) was closer to becoming available, and 
soon all operating system code – and then hardware 
design and implementation – correctness could be 
established as mathematical fact. Thus, it would be 
possible to include all required security checking as 
part of each system module or function, thereby 
eliminating needless access-checking function calls and 
their costly context switching. Moreover, there would 
be no separation of call from function, and hence no 
need for the access-checking functions to derive or 
establish the relevant context of the requested operation 
in concert with the semantics of the application.  

And so, a movement gained momentum to design 
and field systems structured along the lines of 
distributed mediation and that had no distinct security 
perimeter other than the [most] privileged (or most 
primitive) part of the operating system itself. The first 
such research study, the capability-based Provably 
Secure Operating System (PSOS) [19] project yielded: 

 
• A methodology for the design, implementation, and 

proof of properties of large computing systems 
• The design of a secure operating system using this 

methodology 
• The security properties to be proven about the 

system 
• Formal verification methods and tools that came to 

be known as the Hierarchical Development 
Methodology (HDM) and the formal specification 
language SPECIAL 

• Considerations for implementing such a system, and 
• An approach to monitoring security and 

performance. 
 

PSOS was rigorously decomposed into a 
hierarchical specification that had no upward 
functional- or data-dependencies. The unique 
protection mechanism was a capability, a form of 



unforgeable, immutable token, possession of which 
granted a set of specific access rights to the object to 
which it was linked. The PSOS concept yielded 
considerable new research, but left open the question of 
how a secure system is to be initially configured, how 
the first capability was to be created, and how one 
could algorithmically examine a capability distribution 
and determine whether or not a system was in a secure 
state. In addition, there were no efficient means of 
determining which users possessed capabilities to 
which objects. Despite the open questions, it was 
asserted that PSOS and its proven design could 
implement a secure multilevel operating system. 

Norm Hardy, Charlie Landau and Bill Frantz 
designed the Great New Operating System In the Sky 
(GNOSIS) [12] while at Tymshare, Inc. GNOSIS, unlike 
PSOS, was commercially developed and implemented 
a capability-based time sharing environment similar to 
that of VM/370’s Cambridge Monitor System (CMS) 
interface. Questions similar to those raised in PSOS 
remained to be answered in GNOSIS and its successor 
system KeyKOS. 

 
2.6.3. Lee Panel, NBS 1978. The National Bureau of 
Standards organized an invitational workshop on 
standards for computer security and audit. One of its 
panels focused on standardizing the assessment of 
security controls in processors, operating systems and 
nearby peripherals. This panel was chaired by Ted Lee, 
with panelists Peter Neumann, Gerry Popek, Pete 
Tasker, Steve Walker, and Clark Weissman [15]. 

The overall set of metrics divided into four aspects 
of assurance features and four of protection 
mechanism. These were displayed as sectors of a set of 
concentric circles wherein the center circle represented 
Null Confidence, and containing circles exhibited 
greater assured protections. 

The decompositions were: 
 

1. ASSURANCE FEATURES 
a. Hardware 

i. Software Checks 
ii. Hardware Fault Detection 
iii. Design Correctness Formally Verified 
iv. Fault Tolerant Hardware 

b. Software 
i. Formal Design Specifications 
ii. Proven Design Specifications 
iii. Design Correctness Formally Verified 
iv. Verified Implementation 

c. Development and Testing 
i. Penetration Exercise 
ii. Modern Programming Practices 
iii. Automated Testing 

d. Operation and Maintenance 
i. Configuration Management 
ii. Reverification Aids 
iii. Read-Only Memory 

2. PROTECTION MECHANISM 
a. Prevention 

i. Data Security Enforcement 
ii. System Integrity 
iii. Collusion Enforcement 
iv. Sophisticated Threat (Denial of Service) 

b. Detection 
i. Audit Recording 
ii. Security Officer Aids 
iii. Detection Analysis 

c. Authorization Granularity 
i. Physical Devices 
ii. Logical Devices 
iii. Data Values 

d. Policy Interface 
i. Passwords 
ii. Labels and Access Control Lists 
iii. Security Administration Tools 

 
These levels within these eight sectors were not 

directly comparable as requirements. Rather, they 
illustrated growing degrees of confidence in a system’s 
security that would be gained along each of the 
measures as additional requirements were satisfied 
moving outwards along the sector’s axis from the Null 
Confidence center. No evaluation methodology was 
proposed. 

 
2.6.4. Air Force Summer Study. Following the Miami 
workshop, a month-long Air Force Summer Study in 
Computer Security was conducted at the Draper Labs 
in Cambridge, Massachusetts. Evaluation criteria and 
methods were discussed at the Summer Study, along 
with additional topics in database security, network 
security, the utility of formal methods and other 
assurance techniques. The Summer Study attracted the 
active participation of security researchers, developers 
and practitioners from the United States, Canada, the 
United Kingdom, and Germany. Although much of the 
Summer Study included status reports on a variety of 
projects, it was mostly conducted as a workshop in 
which ideas and proposals were voiced and discussed 
at length.  

Several spirited discussions raised controversies that 
are yet to be resolved. These included: whether it is 
possible to verify the security of a system built of 
composed subsystems; whether it is possible to build a 
secure multilevel database management system that 
offers “full functionality”; and whether it is possible to 
produce a “proof of correctness” for a system that will 



be accepted as proof of security among the 
mathematically sophisticated community [11]. The 
database management security presentations and 
discussions showed major problems from the use of 
inference against the use of formulary-like data-
dependant access control policies. Dennis Tsichritsis 
presented a damning indictment against least privilege 
multilevel database management systems, such as the 
Hinke-Schaefer model maligning them as “strait-jacket 
DBMS”. 

Participants in the evaluation criteria discussion 
included Jack Adams (IBM); H.O. Lubbes (NRL); Pete 
Tasker, Stan Ames and Grace Nibaldi (MITRE); 
Christian Jahl (IABG, Germany); Clark Weissman and 
me (SDC). The results of this set of discussions were 
ripe for refinement. 

 
2.6.5. The Nibaldi Report, 1979. Steve Walker, now 
in the Office of the Secretary of Defense for C3I, tasked 
MITRE to elaborate on the Lee Panel’s report’s 
Security Metric. Grace Nibaldi produced a MITRE 
technical report [20] in October 1979 in which seven 
levels of protection were stated. These were: 
 
0. No Protection: where there is no basis for 

confidence in the system’s ability to protect 
information. 

1. Limited Controlled Sharing: where recognition of 
some attempt to control access is given, but only 
limited confidence in the viability of the controls is 
indicated. 

2. Extensive Mandatory Security: where minimal 
requirements on the protection policy must be 
satisfied; assurance is derived primarily from 
attention to protection during the system design and 
extensive testing. 

3. Structured Protection Mechanism: where 
additional confidence is gained through methodical 
construction of the protection-related software 
components of the operating system (i.e., the TCB 
implementation), and modern programming 
techniques. 

4. Design Correspondence: formal methods are 
employed to verify the design of the TCB 
implementation. 

5. Implementation Correspondence: where formal 
methods are employed to verify the software 
implementation of the design. 

6. Object Code Analysis: where object code is 
analyzed and the hardware support is strengthened. 

Significantly, the Nibaldi report opens with a 15-
page tutorial section describing and going into issues of 
“primary factors” (policy, mechanism, assurance) and 

“supporting factors” such as ease of use and overall 
functionality. Much of the lore characterizing the R&D 
community’s state-of-the-art is presented in this 
section, which includes nearly a page on denial of 
service considerations. Additionally, confinement, 
detection, coding and design methodologies, auditing, 
and recovery are presented in an overview. The 
Reference Monitor Concept is not enunciated, and the 
term TCB is used in lieu of security kernel throughout 
the report, and thus there are no explicit requirements 
for minimization of either size or complexity of the 
protection mechanism at the higher assurance levels. 

Each of the six protection levels subsumed the 
requirements of the prior level and had to satisfy 
general criteria characterizing attributes of Protection 
Policy, Specific Protection Mechanisms, and 
Assurance. In addition, a section was provided to 
address the “residual risk” associated with a 
recommended operational environment deemed 
appropriate for the system. The specific criteria are 
presented in descriptive, rather than prescriptive, terms 
based on the tutorial’s content. For example, the 
treatment of storage channels from Level 4 reads: 

 
A specific requirement of the system is that it be able 
to audit the use of storage channels. These channels 
might be detected as a result of the formal 
verification techniques or by penetration analysis; 
however, they may not be easily removed without 
affecting the system in an adverse way. By imposing 
restrictions on the way resources are being shared, 
the system may no longer be allowed to use an 
optimal algorithm for resource utilization. The use of 
such channels can be detected with auditing 
mechanisms, and the information obtained from the 
auditing mechanisms can be analyzed later to find the 
source and seriousness of the channels’ exploitation. 
 
The Nibaldi proposal included the then 

unachievable Level 6 criteria, which offered: 
 
…a degree of confidence which is only imaginable 
from today’s technology. Any threats at this level 
would be a result of highly improbable hardware 
errors, or, more likely, a failure in the personnel, 
administrative, physical, or communications security 
provisions…. At level 6, formal analysis of the object 
code produced by the compiler is required. 
Axiomatization of the underlying hardware base, and 
formal verification of the security-relevant hardware 
mechanisms, are also required. It is recognized, 
however, that these requirements are beyond the 
anticipated state-of-the-art of verification in the 
1980s…. 
 



From the Pentagon, Steve Walker had put together a 
few assorted teams of experts from academia and 
industry with the intention of providing assistance to 
vendors who were interested in developing trusted 
products that could be used by the DoD. Ted Lee and I 
participated in several of these efforts along with a 
seasoned group of security practitioners like Pete 
Tasker, John Woodward, Anne-Marie Claybrook, 
Susan Rajunas, and Grace Nibaldi from MITRE 
Bedford. Under nondisclosure agreements, the teams 
were also performing ad hoc product “evaluations” 
using the Nibaldi draft criteria. 

One of the products under consideration didn’t 
appear to fit Nibaldi’s working criteria at all well. This 
was Tymshare Corporation’s capability-based Gnosis 
system. Susan Rajunas, who had been leading the 
evaluation, was particularly articulate about the Gnosis 
design and strength of its mechanisms. But there were 
numerous open questions about the definition of secure 
state, of how one attained an initial secure state, how 
individual accountability could be established in an 
environment where capabilities were inscrutable, and 
where possession of a capability could conceivably be 
used by a Trojan horse. Rajunas was funded to 
assemble a workshop to investigate assembling a set of 
interpreted criteria for evaluating a trusted capability 
base operating system.  

I requested that Earl Boebert, who led a project to 
develop a system based on PSOS, the Secure Ada 
Target (SAT), write a paper for an NCSC Conference 
showing that multilevel security confinement could not 
be assured in a pure capability based operating 
system.[4] A year earlier, Paul Karger had written a 
paper [29] on a design that augmented capabilities to 
overcome such intrinsic shortcomings.  

About this time, I heard Butler Lampson’s 
observation: “Capability based systems are the way of 
the future—and they always will be.” 

 
3. TCSEC publication 
 

In February 1981, the Department of Defense 
Computer Security Evaluation Center (DOD/CSEC) 
was authorized under Directive 5215.1 and the DoD 
Computer Security Center (DOD/CSC) was formed at 
the National Security Agency (NSA) in July of that 
year. Melville H. Klein and Colonel Roger Schell were 
designated as Director and Deputy Director. The 
Center grew from the DoD’s Computer Security 
Initiative. The DoD was aware of the growing cost of 
procuring and maintaining its special-purpose computer 
systems—systems that became increasingly difficult to 
maintain as manufacturers discontinued hardware lines 
and developers moved on to new projects. Over time, 

internals knowledge about these systems evaporated 
and, critical as they may have been to the national 
security, they became fragile and unreliable. Hence, the 
Center was formed to implement the strategy of 
encouraging the widespread availability of trusted 
products produced and maintained by system vendors. 
These trusted products would be evaluated gratis by the 
Center and placed on an Evaluated Products List that 
could be used by vendors in their advertising and by 
procurement officers in their purchase specifications. 

When I arrived as Chief Scientist early in April 
1982, Dan Edwards was directing the Standards and 
Products organization, with Mario Tinto responsible 
for product evaluations; Steve Barnett directed the 
Application Certifications organization. 

 
3.1. The evolution of TCSEC drafts 
 

Prior to my arrival at the Center, work had begun on 
transforming the Nibaldi proposals into draft evaluation 
criteria. Paragraphs characterizing selected 
requirements had been written, and there was general 
agreement as to a general feeling of what was salutary 
and what was lacking among mechanisms and 
assurance techniques. But, at best, there were more 
open technical issues than resolved ones. 

I had been unofficially involved in this 
UNCLASSIFIED process while my clearance was being 
finalized. Our writing group’s principal members were: 
Roger Schell, Dan Edwards, Mario Tinto, Jim 
Anderson, Pete Tasker, Grace Nibaldi, and myself. 

 
3.1.1. First draft: powder blue. On my arrival at the 
Center, we still lacked a unified document. The 
previous week’s workshop on capability based systems 
had failed to shed adequate light on how their 
evaluation criteria could be structured. I received the 
welcomed news that Sheila Brand was going to be 
joining the Center, probably in May to lead the 
Standards organization. I also learnt of a controversy 
articulated by the MITRE Corporation over how 
evaluation criteria should be structured. The Nibaldi 
proposal consisted of a strictly-ordered set of seven 
requirement-subsuming evaluation classes ranging from 
no protection through attributes beyond the state of the 
art. While Nibaldi’s work could be accepted as a 
refinement of the Lee panel’s results, nearly 2-1/2 years 
had passed since its publication, and critics observed 
that the Lee panel had not prescribed a strict hierarchy 
of fully subsuming levels.  

A MITRE report written by Anne-Marie Claybrook 
proposed that products be evaluated against criteria 
drawn, by the product developer, from sets of policy, 
mechanism and assurance requirements that are 



perceived as desirable for an application. This was 
described as following a “Chinese-Menu” approach. 
There were many strong adherents to this position who 
argued that not all requirements for, say Nibaldi Level 
4 need apply to a multilevel transaction-only system 
that is to operate in an environment that eliminates all 
remote user capabilities. This proposal is not much 
different from the contemporary trend that grew from 
the German IT Security Criteria, the UK’s ITSEC, and 
finally that of drawing “protection profiles” from the 
Common Criteria. Many strong arguments were 
presented on the value of flexibility that would come 
from this approach, and the ability to tailor a system to 
its envisioned use. 

However, others argued that it would lead only to 
confusion. Roger Schell was the strongest advocate of 
preserving Nibaldi’s structure of a small number of 
well-ordered levels. His rationale was based on his 
years of experience in the DoD procurement process. 
Put simply, procurement officers have expertise in 
specifying purchases, not in performing comparative 
assessments of which competing technical ideas best fit 
a specific application. He argued that a procurement 
officer needed to be presented with a strictly ordered 
set of product characterizations that are keyed to the 
security requirements under which an application 
would operate. Thus, a procured system that would 
have to operate in a remote-user environment with 
CONFIDENTIAL through TOP SECRET data would 
minimally have to have attained a specified (or higher) 
degree of “certifiability”. This question could be 
readily answered by having a frequently-updated 
published Evaluated Products List from which to select 
and qualify compliant trusted products. 

The eloquence of Schell’s argument settled the 
dispute. We agreed rapidly to argue requirement-by-
requirement among ourselves and to fit together seven 
ordered levels of trusted systems criteria, plus one level 
for products that failed to satisfy the requirements of 
any level. To maintain our focus, Schell also suggested 
that we select existing products or developments to 
characterize each of the levels we were defining, 
stressing the value of having worked engineering 
examples for each evaluation class. 

Finally, we agreed that we wanted to limit the 
possibility of new intermediate evaluation classes being 
introduced over time. We were particularly adamant on 
there being no new classes added to water down the 
minimum requirements for each of the obvious 
divisions we had settled on. This called for a labeling 
scheme that established minima for each of the four 
major divisions we had envisioned: Minimal 
Protection, Discretionary Protection; Mandatory 
Protection; and Verified Protection. Dan Edwards 

solved the problem by assigning evaluation classes a 
digraph rating, patterned on bond ratings wherein the 
divisions were ordered alphabetically with D<C<B<A 
and the classes within a division were numbered in 
increasing order of strength with a natural number. This 
was done to preclude the introduction of a class less 
restrictive than the entry level defined for the Division. 

The initial class in each Division was intended to be 
achievable by evolving a product that qualified for the 
highest class in the preceding Division. This was not 
expected to be easy, but we believed it would be 
feasible. Hence, Class <C1> required principally the 
addition of discretionary access controls to a seasoned 
commercial product that could separate its users from 
the operating system’s domain of execution. A <B1> 
system, known to us as “MAC with Training Wheels” 
would essentially be a <C2> product that performed 
mediation and labeling on a defined subset of its users 
and objects; and an <A1> product would essentially be 
a <B3> product having a formal verified design. 

The identified classes and identified worked 
examples were, as drawn from our Final Draft [8]: 

 
Class <D>: Common Practice. This evaluation class is 
reserved for systems that have been evaluated and 
failed to meet the requirements of a higher class. 

Class <C1>: Discretionary Security Protection. This 
class of systems has some form of mechanism 
providing individual user authentication, provides 
nominal discretionary access control among users and 
data, and is self-protecting. Candidate: UNIX 

Class <C2>: Controlled Access Protection. Systems 
in this class have at least discretionary access control 
enforced on users. The requirements of this class may 
be met through the use of [a] security add-on or 
security overlay package. The principal distinction 
between Class <C2> and Class <C1> is that Class 
<C2> requires individual accountability and security-
event auditing features. Candidate: RACF, ACF2 and 
Secure add-on packages for IBM’s MVS/370. 

Class <B1>: Labeled Security Protection. Class <B1> 
systems provide mandatory security access control. 
Discretionary access control suitable for DoD need-
to-know protection is provided. The notion of a well-
defined TCB appears even though a formal security 
model is not required. Security marking of data is 
required. Any serious flaws identified by penetration 
testing have been removed. Candidate: GCOS, 
security retrofitted third-generation operating system 

Class <B2>: Structured Protection. In this class of 
systems, mandatory security is extended to all objects 
visible outside the TCB, and information flow control 
and confinement channels are addressed. A model of 
the security policy enforced by the TCB is required. 
The TCB exhibits deliberate security structuring, and 



stringent configuration management controls are 
imposed. Authentication mechanisms are 
strengthened, and features to support trusted facility 
management are provided. Candidate: the commercial 
version of Multics incorporating the Access Isolation 
Mechanism (AIM) with class <B3> attention to 
storage channels. 

Class <B3>: Security Domains. The TCB of this class 
of system supports a defined security model. The 
principle of least privilege is pervasively applied 
within the TCB in this class of system. All security 
relevant code is clearly identified and the TCB is 
structured to separate security relevant and non-
security relevant code into different domains. 
Evidence that the TCB satisfies the reference monitor 
requirements is required. Hardware protection or 
some other form of very convincing argument is used 
to show that any unexpected software event in a non-
security relevant domain cannot affect the software in 
a security relevant domain. Candidate: the redesign of 
Project Guardian Multics. 

Class <A1>: Verified Design. The main 
characteristics of systems in this class are that a 
formal model exists, the top-level user interface of the 
TCB has been formally specified, and the TCB has 
been designed and developed in conjunction with 
formal verification techniques and verified to satisfy 
the model. Additional (non-verification) evidence is 
required to show that the TCB fulfills the reference 
monitor requirements. The facilities and procedures 
for trusted distribution become requirements here. In 
May 1982, this class of system appears to be just at 
the state-of-the-art for practical implementations. 
Candidate: Kernelized VM/370 (KVM), Kernelized 
Secure Operating System (KSOS), Honeywell 
SCOMP, and the Air Force’s SACDIN. 
Class <A2>: Verified Implementation. Systems in 
class <A2> use a formal machine checkable 
methodology to assure that the actual 
implementation of the system conforms to the 
verified top-level specifications. Formal hardware 
and firmware design and analysis become important, 
to demonstrate that the reference monitor 
requirements are met, as well as other development 
environment attributes (e.g., compilers). In May 
1982, this class of system appears to be well beyond 
the state-of-the-art for practical implementations. 
Candidate: [none was specified]. 
 
The writing style in this draft was imprecise and 

descriptive. The draft explicitly stated that the 
requirements were intended to apply both to general-
purpose and to embedded systems. As an example of 
the draft criteria’s requirement wording style, the 
storage channel requirement cited from Nibaldi’s Level 

4 can be found scattered among requirements in Class 
<B2>: 

Flow Control The TCB of the class <B2> system 
enforces information flow security (confinement). 
Information flow security is applied to all objects that 
are directly or indirectly visible outside the TCB. 
Control objects (e.g., number of free disk pages) and 
TCB responses (e.g., out of space) are included as 
well as objects normally thought of as storage 
objects. 

Audit See class <B1>. In addition, mechanisms are 
provided to record the use of channels that have been 
shown to have an exploitable bandwidth greater than 
some clearly identified small bandwidth. 
Because of controversy in the community, the Draft 

carefully avoided explicitly requiring the 
implementation of a security kernel. However, even 
without the wording, it was a clear objective that Class 
<B3> systems implemented a security kernel in the full 
minimal sense of the Anderson Study. 

 
3.1.2. Community response. Well, we announced that 
the first draft would be presented at the Computer 
Security Initiative Seminar, and we got a packed house. 
We naïvely assumed that we were close to getting it 
right, and we requested written comments from the 
participants. We set a tight review and publication 
schedule, because developers wanted to have firm 
criteria to work from as soon as possible. So the Draft 
invited a first round of comments with a deadline of 1 
July 1982, promising a second draft that responded to 
these comments by 1 August. Anticipated comments 
received by 1 September would be considered and the 
final TCSEC would be published in October 1982. 

We received a massive response, filling file-drawers 
with industry and government comments! Sheila Brand, 
newly arrived at the Center, was buried in 
correspondence and in requests for visits to discuss the 
Draft. There were complaints over the Draft’s 
imprecise language as well as its organization. For the 
most part, the cards and letters were politely supportive 
of our effort, and offered constructively stated 
reservations. We received several well reasoned 
proposals for wording along with rationales. In the 
Draft, the Criteria came last, following a prefatory 
introduction and rationale. A majority of reviewers 
stated they did not want to wade through our prose to 
get to the requirements, which they wanted to come 
first.  

Potential users wanted each evaluation class’s 
requirements to be self-contained. This would permit 
the requirements for a single evaluation class to be 
extracted and published in a procurement specification. 
This added to the bulk of the TCSEC, but removed 



internal cross-referencing. Additional requests came in 
for a glossary of terms, for guidelines on testing, on 
covert channels, and on configuring MAC features. The 
issue of giving extra credit for providing features or 
assurances beyond those required for a specific access 
class was also raised.16 

The group working most closely on the drafts and 
comments included, in addition to Sheila Brand and 
myself, close interaction with: Grace [Nibaldi] 
Hammonds, Pete Tasker, Dan Edwards, Mario Tinto, 
Roger Schell, Jim Anderson, Ted Lee, Steve Lipner, 
Clark Weissman, Steve Walker, Larry Noble, Jim 
Studer, Gene Epperly, Jeff Makey, Warren Shadle, and 
me. David Bell provided strong contributions after he 
joined the Center’s research organization. We later 
came to realize that no practitioners of contractual law 
were involved in the writing group’s activities or in the 
formal review process. 

Of necessity, our schedule slipped dramatically and 
continually. Comments often turned into lobbying. 
Developers wanted to ensure that their products would 
get the best possible earned rating and helped greatly to 
eliminate impossible or ambiguously-worded 
requirements. A series of drafts was published. These 
presented numbered lines and employed bold faced 
insertions and strikeout deletions to help reviewers 
make it through the growing document’s evolution. 
Drafts were published on 15 November 1982 (white 
cover), 15 January 1983, and a final Draft (in an ugly 
Olive Drab cover) on 27 January 1983. 

Brand maintained a growing file of comments and 
how each was accommodated. Rejected comments 
were noted as such and, depending on our perception 
of the source’s credentials, justification for the decision 
was written into the file and sent to the reviewer. Based 
on the number of received comments, Brand insisted 
that references to dominance in the security lattice be 
replaced with explicit wording on the rules for reading 
and modifying objects.  This proved to be a decision 
that aided readers unschooled in lattice theory and 
which removed ambiguities the authors did not 
perceive at the time. 

The definition of Class (A2) persisted into January 
1983. However, it was finally removed because it made 
no sense to include a class whose requirements were 
defined to be beyond the state of the art and that would 
have to be redefined at some point if code-level formal 
verification technology ever advanced to a practical 
state. It was replaced by a page entitled “Beyond Class 

                                                           
16 Some of us opposed this practice on the grounds that 

inclusion of some features without supportive assurances would 
provide a vendor with meaningless hype for advertising a false sense 
of security. The majority prevailed on this issue. 

(A1)” that only gave a characterization of what might 
be required for higher assurance. 

The Final Draft begat a broader stream of 
comments. Sheila Brand made a management decision 
on resolving the last of the remaining open issues and 
advised Mel Klein that the time had come to publish 
CSC-STD-001-83, The Department of Defense Trusted 
Computer System Evaluation Criteria. This appeared, 
in a bright orange cover, with a Forward by Klein, on 
15 August 1983. The new “Orange Book” weighed in 
at 117 pages.  

Several trusted products were being evaluated 
against drafts of the Criteria during this period. At first, 
vendors insisted that the draft version be identified 
explicitly in their contract with the Center and 
identified in the Final Evaluation Report. However, the 
vendors later realized that evaluation against any but 
the final published standard would be a mistake 
because to do so would be to give the appearance of 
failing to meet one or more of the “real” requirements. 
So in reality, products were being evaluated against a 
moving target during the period from early 1982 
through 15 August 1983. 

 
3.2. Lack of deeper understanding 
 
We thought we understood what we were writing. We 
also thought the community would understand what we 
had written – or at least what we intended to have 
written. That turned out not to be the case. Indeed, for 
all our belief that we were writing with precision, only 
experience could show that we weren’t. 

We were fully dedicated to not introducing faddish 
requirements and tried to justify each on the basis of an 
identifiable need and technical justification. We paid 
considerable attention to the entry-level criteria for 
each division, intending to ensure that it would be 
achievable from a well-designed product at the top of 
the predecessor division. We also tried to limit the 
nature of the hardest technical challenge in progressing 
to evaluation classes by constraining our desire to add 
additional requirements because of strong advocacy for 
them. This attempt at following a discipline sometimes 
led to an appearance of random placement of some 
requirements. 

An example of this is the placement of the first 
change in the DAC requirement after Class (C2) (the 
angle brackets morphed into parentheses after the 
Powder Blue Draft). This requirement is introduced at 
Class (B3)(!) and specifies (a) that there be access 
control lists, (b) that there be support for both 
individual and group access controls, and finally (c) 
that “it shall be possible to specify a list of named 
individuals and a list of groups of named individuals 



for which no access to the object is to be given.” Why 
at B3? Well, Dan Edwards produced the following 
argument. By definition the requirement could not be 
introduced at B1, because the rule for an entry-level 
product would be just the addition of labeling of a 
defined subset of named subjects and objects. It didn’t 
make sense to add the requirement at B2 because of the 
difficulty inherent in meeting the requirement to 
control access between all subjects and all objects and 
to address the more important covert channel issue and 
strong penetration-resistance requirements. Given that 
Class (A1) added the difficult formal specification and 
formal covert channel analysis requirements which 
were to be the only change from B3, we had the choice 
of adding the requirement at C2 or B3 or not to add it 
at all. We decided that audit was a hard enough 
addition to the C1 requirement, and that narrowed the 
choice to B3 or not at all. 

 
3.2.1. DAC algebra. We found out later that we made 
the wrong choice for Negative Access Control Lists (or 
NACLs) as the requirement came to be called. We 
either should not have added them or we should have 
proposed a model showing the relationship between 
ACLs and NACLs and submitted it to the community 
for comment. In fact, we did not realize at the time that 
there was an issue present for us to disagree on.  

The problems we did not identify focused on 
apparent contradictions between listings and 
determining which takes precedence. E.g., if a name 
appears both on a NACL and on an ACL, which takes 
priority? What if the name is in a group that appears on 
a NACL but the user’s name is explicit on an ACL for 
the object? What if the user created the object, gave 
herself full rights to the object, and creates its NACL as 
well, but a system administrator (not knowing of the 
NACL’s existence or its organization) then places this 
user in a group that is on that particular NACL? 

This problem came up a couple of times some years 
after publication of the final DoD Standard 5200.28-
STD version of the TCSEC had been adapted. To my 
knowledge, the issues were never satisfactorily 
resolved. 

 
3.2.2. Questions of “high-assurance” DAC. By 
definition, discretionary access control conveys rights 
between unlabeled (same access class) subjects and 
objects. Consider a simple Trojan horse attack. If a 
subject S can read A and modify B, then S can copy the 
contents of A into B (if this is consistent with the 
semantics of B, else S can encode A’s contents such 
that they are compatible with B’s semantics). But what 
if there exists a subject S´ who is explicitly listed on a 
NACL for A or on an ACL for B? Has S violated the 

access control policy? Or is the system required to 
modify the access controls on B such that a NACL is 
created on B that includes S´? If S has control access to 
B, can S remove that NACL? 

Now, under the MAC rules of the *-property, 
copying the contents of A into B is prohibited unless A 
and B are at compatible security levels. But is the 
above transaction a violation of DAC that must be 
closed at the B3 level? Is it an “obvious” flaw that must 
be closed? Well… no! Because it is an intrinsic 
property of information flow within an access class, 
and it cannot be eliminated. 

But this leads to a hard question that is sidestepped 
in the TCSEC. When the derivable principles of 
information theory and a security policy are in conflict, 
which must take precedence? Similarly, when derivable 
consequences of two aspects of a security policy are in 
conflict, which much take precedence? To my shock, I 
learned that some evaluators interpreted only to the 
explicit wording of the TCSEC, however impossible 
they might be in context, to take precedence over the 
mathematical properties of information science. 

The silence of the TCSEC on such points has led 
new practitioners into making assumptions that an A1 
system is “more secure” for single-level applications 
than a C2 system. This is true (because of the ability of 
a B2 or higher security architecture to fend off large 
classes of penetration attacks that exploit architectural 
or implementation flaws). But the full suite of 
structural and formal A1 assurances has no effect on 
information confinement within that single access class. 
Indeed, without the TCB integrity and recovery 
requirements, a single-level DAC-only implementation 
of an A1 architecture could fall victim to many attacks 
that are common in contemporary virus- or worm-
bearing e-mails. 

 
3.2.3. Failed “worked” examples. The “worked 
examples” identified in the Powder Blue Draft got 
forgotten along the way. Indeed, RACF, the prototype 
for C2 audit, failed to meet its own defining 
requirement because IBM understood that its customers 
wanted to have the ability to turn off audit to improve 
performance in some system environments. The 
consequence was that RACF became the only product 
ever to be “awarded” a C1 rating. Bob Brotzman, then 
Director of the NCSC, and I were more embarrassed 
over the situation than IBM’s Tom Russell, to whom I 
presented the C1 Certificate. 

A trusted UNIX candidate for B1 or B2 would have 
been automatically disqualified because its {Self, 
Group, World} form of access control would fail to 
meet even the C2 requirement on groups or named 



individuals unless it limited its number of possible 
users to a very small number. 

Though satisfying all the security architecture and 
formal verification requirements for A1, worked 
examples KVM/370 and another A1 candidate trusted 
VMM would also have failed. They were deficient in 
the C2 individual accountability requirement and C1 
individual discretionary access control requirement 
because the security kernel within the virtual machine 
monitor could not see how accesses were controlled 
within multiuser virtual machines. Their evaluation 
team wanted to insist that every virtual machine have 
no more than a single human user. These products 
would therefore have received a D rating, despite their 
architectures and assurances. 

 
3.2.4. Imprecise language. Other forms of imprecise 
wordings plagued evaluators and developers alike. 
Long position papers were written to address the 
meaning of requirements such as the C2 System 
Architecture requirement: “…Resources controlled by 
the TCB may be a defined subset of the subjects and 
objects in the ADP system. The TCB shall isolate the 
resources to be protected so that they are subject to 
the access control and auditing requirements.” 
Seemingly, questions were invented that put 
evaluations on hold for indefinite periods. For example, 
“what are the rules for access by a subject not defined 
to be under control of the TCB to an object defined to 
be under control of the TCB?” “Should the TCB be 
required to audit all accesses by subjects not under the 
TCB’s control?” Decisions were postponed for months 
at a time, at tremendous cost to trusted product 
developers and evaluators, until there was near 
unanimous agreement over interpretive topics as absurd 
as these. 

Similar problems showed up in the evaluations of 
Multics (AIM) for B2 and the SCOMP for A1. True, 
technical problems were detected and corrected in 
these product evaluations, but tremendous time was 
lost in attempts to resolve imprecisely stated evaluation 
requirements. 
 
3.3. Becoming a DoD standard 
 

Shortly after the TCSEC’s August publication, a 
movement was initiated within the Computer Security 
Center to promulgate it as a DoD Standard. Doing so 
was necessary in order to legitimize the Evaluated 
Products List as part of the certification, accreditation, 
and procurement processes. 

This turned into a monumental effort. In order to 
achieve this goal, the TCSEC needed to be acceptable 
to the DoD’s many departments, services and agencies. 

Copies of CSC-STD-001 were distributed for official 
comment, and official comments came in a near tidal 
wave.  

Some agencies objected that promulgation of the 
TCSEC would officially stifle research and 
experimentation. Others were concerned over wording 
that could have an adverse effect on their embedded 
system applications. Portions of the intelligence 
community objected that the TCSEC’s policies did not 
directly support their multilevel classification and 
caveat system of compartments, categories, warning 
notices, and other dissemination and selective-
declassification controls. Because B1 was established 
as the entry level into Division B, one agency insisted 
on the inclusion of a new class, C3, that would support 
their policy needs. 

Many of us spent a summer and fall in sometimes 
heated meetings with executives in the Pentagon and at 
various agencies. Sheila Brand, Mario Tinto, Grant 
Wagner, and I repeatedly found ourselves having to 
explain and defend such TCSEC requirements as 
closing high-bandwidth covert channel discovered in 
analysis on the one hand and the lack of explicit 
requirements to build in protections against deadlocks 
and other denials of service.17  This is not to suggest 
that the services and agencies concerns were trivial; 
many were very sophisticated and few were frivolous. 
Many comments came from a lack of knowledge or 
understanding of the vocabulary of computer security 
technology, understandable since this was largely an 
arcane field in the 1980s.  

More than one agency actively wanted to make the 
TCSEC optional since there was “no validated 
computer security threat” and it made no sense to build 
in costly defenses where there was no validated 
requirement. But the discussions were very time-
consuming and important to all parties, and policy 
coördination is an intricate prolonged process. 

Finally, and as a tribute to Sheila Brand’s skills and 
dedication, Assistant Secretary of Defense (C3I) 
Donald Latham signed off on the TCSEC as DoD 
5200.28-STD on 26 December 1985. 
 
4. TCSEC reconsidered 
 

As discussed above, products and systems were 
under evaluation while the TCSEC was going through 
its drafts and coördination reviews. Many problems 
were discovered. Some were fixed prior to the 15 
August 1983 Standard’s publication. These 

                                                           
17 In addition to robustness largely being a research area, there 

also were demonstrations that popular reliability algorithms 
generally introduce exploitable covert channels. 



modifications required consensus among the Center’s 
management, senior staff, researchers and evaluators 
(including contractual support staff from MITRE and 
Aerospace Corporation and other consultants). 
However, no changes were made unilaterally (i.e., 
based only on our own learning experiences) after 15 
August 1983. This is because of the Center’s top 
management’s decision that we needed to solidify 
agreement among the services and agencies on existing 
wording rather than for us to re-open issues that could 
delay the TCSEC becoming a DoD Standard. 
Defending criteria we knew to be flawed was a painful 
and bitter pill many of us had to learn to swallow. 

 
4.1. The education challenge 
 

We had no way of knowing then that not enough of 
what we thought was reduced to practice was reduced 
to practice. It took publishing the TCSEC and trying to 
perform evaluations for us to learn this. Simple terms 
like module had very different meanings in different 
communities and among professionals who learned 
their trade in different decades. Those of us who had 
extensive decadeant (sic) experience penetrating 
systems had a very different appreciation for the 
importance of certain structuring approaches than did 
staff (or developers) who had never defeated a 
protection mechanism or written a real-time I/O driver. 

There weren’t many professionals in the United 
States who had acquired years of experience working 
in computer security technology. Many were employed 
as researchers in universities, in a small number of 
industrial or government defense research 
organizations. A few were consultants. This meant that 
the NCSC needed to institute an intense training 
program for its evaluators and for developers in 
industry.  

We had intended that our evaluation teams would 
show vendors creative approaches to solving or 
working around architectural problems uncovered 
during an developmental evaluation. For two reasons, 
this happened rarely. One reason related to the legal 
context of a representative of the Government advising 
vs giving contractual direction to a contractor—even 
though the vendors under evaluation were not 
contractors.  
A second problem of advice-giving was more complex. 
Because the NCSC and its evaluation support 
contractors hired young graduate computing science 
graduates, we periodically received complaints from 
vendors that our evaluators had less experience and 
expertise than the developers whose efforts we were 
evaluating. They viewed our evaluators as being too 
“Ivory Tower” and “wet behind the ears” to give them 

any useful pragmatic advice. So, yet another challenge 
for our technical senior staff arose, this time requiring 
diplomatic crisis management skills. We needed to find 
an acceptable means of guiding the vendor and 
evaluator toward a viable solution without making 
either more defensive than they often were. This was a 
skill I have never been accused of! 
 
4.2. Send in the lawyers 
 

Early on, Dan Edwards and Mario Tinto decided 
that the evaluators would need to produce extensive 
documentation of technical decisions they made during 
the evaluation process. These decisions would be 
likened to judicial case law.  

For a while, various authors of the TCSEC were 
asked what a given wording or term meant. It was 
quickly discovered that we were individually not often 
in close agreement on these concepts, even though we 
did not think there was a question on the meaning when 
we were writing the criteria. So evaluators soon learned 
that something more than the memories of the authors 
was needed if evaluations were to be performed 
consistently. 

Because of the TCSEC’s widely distributed 
ambiguities and the unanticipatedly creative nature of 
developers, the Center’s evaluators were almost 
immediately faced with the need to make reasoned and 
defensible decisions on how TCSEC requirements 
would be applied to a given situation. This introduced 
an intricate and time-consuming process known as 
Criteria Interpretation. 

It made good sense for interpretations to be 
considered carefully prior to telling a vendor of a 
decision. But the process that became part of NCSC-
lore made slow look fast in comparison. The average 
interpretation process went through a number of 
proposal, review, comment, revision, review and 
publication phases that together took weeks to months 
to years. The effect of this process on product 
developers was devastating. Often, a product 
development hinged on making a critical decision to 
steer the architecture in one direction on another. A 
wrong decision would be extremely costly to correct 
later. But evaluation teams could furnish no advice (or 
at least no advice that might not later be refuted) until 
the interpretation process terminated. 

There was one other unanticipated consequence of 
interpretations being treated as case law. This became 
known as criteria creep. It seemed that interpretations 
always added new requirements rather than simply 
clarifying existing ones. This practice effectively 
extended the criteria that had to be satisfied by on-



going evaluations, and it added significantly to the cost 
and time required to complete the evaluation process. 

The result was very painful. I, and other seniors in 
the Center, received angry communications from 
vendors demanding a speedy decision. Evaluators 
resented any intervention on our part, since we lacked 
the context from which the evaluators were working—
and they did not want to have their authority undercut.  

In at least two cases, those of an A1 and a B2 
product evaluation, I took it upon myself to coerce 
NCSC senior management to break a stalemate and to 
accelerate the decision to grant or deny awarding an 
evaluation rating to the product. The problem here was 
that the evaluators had less guidance to work from to 
decide that they had indeed performed all of the needed 
validations and need not perform any more; and the 
vendor needed to see some revenue from their trusted 
product or to disband their development team. There 
were also some occasions where the evaluation process 
was so slow and mired down in interpretations that a 
vendor killed a project because the hardware had 
become obsolete. 

 
4.3. Send in the lawyers 
 

Another consequence of lengthy evaluations was 
that the evaluated product was several maintenance 
releases behind the commercially available product. 
The NCSC needed to find a means of evaluating 
incremental product evolutions without performing a 
complete re-evaluation of the product. Ultimately, the 
Ratings Maintenance Program (RAMP) came out of 
this process for products in the lower evaluation 
classes. Consensus was not reached during my tenure in 
the Center on how RAMP could be applied to products 
evaluated at or above the B2 level. 

 
4.4. Rainbows 
 

As interpretations came out, so also arose requests 
for guidance on numerous topics ranging from 
password selection to the algebra of DAC. So Sheila 
Brand instituted a process of publishing booklets on a 
range of evaluation-related topics. Even as the TCSEC 
was being written, the late George Jelen raised the 
question of how one could determine which evaluation 
class was required for a given processing environment. 
His scholarly dissertation [14] provoked many 
animated discussions inside the Center. It resulted in 
Roger Schell’s introduction of the risk range concept 
and an algorithm for addressing Jelen’s question. This 
was published as one of Brand’s Rainbow Series (so-
called because each volume’s cover had a unique 

color). Many volumes in the Rainbow series were 
scholarly and are still valuable. 

As use of the TCSEC became more common, 
additional questions provoked writing additional 
volumes. The Rainbow series became something of a 
self-perpetuating institution. Two definitive entries in 
the Rainbow series, the Trusted Network Interpretation 
(TNI) and the Trusted Database Interpretation (TDI) 
were published to controversy over an intense writing 
period. Each addressed portions of the problem of how 
to apply the TCSEC to the construction of a multilevel 
network or a multilevel database management system 
(or vice versa). Sometimes divisive controversy 
surrounded publication of each of these. Several of us 
argued against publication of either on the grounds that 
the state of knowledge for building multilevel networks 
and database management systems was far less 
developed than the theory and techniques behind 
building monolithic trusted operating systems. 

A somewhat disguised worked example of a 
counterexample to an A1-compliant TNI architecture 
was published by Schaefer, et al. in [23]. 

 
4.5. A1 is the answer; what was the question? 
 

One unanticipated problem showed up as the 
TCSEC was becoming accepted by the Military 
departments and agencies. These came from the 
procurement officers for whom we had insisted on the 
simple seven-class structure. Simply put, once there 
was a B2 product on the Evaluated Products List 
(commercial Multics), a procurement officer balked at 
the Air Force specifying a requirement for a B2 or 
equivalent operating system. The procurement officer, 
on learning that there was essentially no way for any 
product other than Multics to comply with the 
solicitation and its time limit, declared the requirement 
to be anticompetitive. He refused to allow it. 

The other unanticipated problem was likely intrinsic 
to human nature. A large number of procurements and 
development contracts came out specifying use of an 
A1 product. At least one demanded an A2 product so 
that it would not become obsolete! In many cases, the 
systems would be operating in a closed environment at 
system-high, so all users were assumed to be cleared 
for almost all information on the machine. A B1 
product would suffice for the application. But the 
customers for these products wanted the very best 
system money could buy, and not some inferior system 
that failed to meet the highest military standards. We 
found ourselves having to advocate the use of products 
from lower levels of the EPL (particularly necessary at 
the time, as there was not yet an entry above B2!). 



Finally, there was customer resistance—often 
intense resistance. Trusted systems were not known for 
having user friendly interfaces. Consequences of the *-
property and simple security condition proved to be 
confusing and frustrating to new users. This proved to 
be embarrassing. We found it impossible to influence 
the Center’s Director or most of its office chiefs to use 
any commercial product that was listed on the EPL—
including the Center’s flagship B2 Dockmaster system 
(Multics-AIM) or even the C2 Windows-NT during the 
Center’s “C2 by 92” drive. 

 
5. Reflections and lessons learned 
 

Publication of the TCSEC was, in retrospect, an 
important step in promoting research and development 
of trusted operating systems. Vendors would resist 
producing trusted systems unless they would be 
evaluated against a published, established standard. 
Beginning in the late 1970s, several funded and 
commercial efforts were underway to produce trusted 
systems or tools for the construction/verification of 
trusted systems. So the TCSEC or something very 
much like it needed to be published, and publication 
needed to happen no later than the 1980s.  

Unfortunately, there was a shortage of adequately 
educated and experienced developers of trusted 
operating systems. While there were several laboratory 
prototypes, only Multics (AIM) had a developed user 
community, and Multics was the only robust security 
product on the open market. Multics provided both 
multilevel security capabilities and a structured set of 
advanced integrity controls. But it was not widely 
available, its hardware base was not as popular as the 
less costly IBM or DEC mainframes, and its user 
interface was not as friendly as the increasingly 
popular, but vulnerable, UNIX. 

Unfortunate, also, was the consequence of the lack 
of experienced trusted system developers who were 
willing and able to be evaluators. Many wanted to 
create a product rather than to “look over someone 
else’s shoulder.” The lengthy and overly cautious 
evaluation and interpretation process ended up killing 
off vendor participation and trusted product 
development. This was largely because of the 
uncertainty of the costs and time associated with 
getting a product evaluated. 

We failed to think of asking experienced 
procurement officers to review our wording, and no 
one aggressively thought of making sure that we had 
written a sufficient and complete glossary of technical 
terms and concepts. Indeed, the TCSEC’s glossary was 
something of an afterthought, and it was not given the 
careful attention that the main body of the text was 

given. This oversight was a significant cause of the 
lengthy interpretation process. 

Another significant problem was our neglecting to 
write down what we considered to be obvious: the fact 
that we, the principal authors, did not consider all 
features and assurances to be created equal. In a bad 
paraphrase of George Orwell, “Some assurances are 
more equal than others.” Had we stated, e.g., that 
individual accountability under DAC is less significant 
than assured individual accountability under MAC, 
many bitter and divisive diversions would have been 
avoided – and possibly more A1 products would have 
been produced. 

I do not question the wisdom of our decision to limit 
the TCSEC to its seven all-or-nothing classes rather 
than taking the Chinese-menu approach that was 
advocated at the time. I think this was the right thing to 
do. In that sense, I consider the TCSEC to be an 
improvement over the criteria created afterwards, 
particularly the swollen and confusing Common 
Criteria with its extensible myriad of Protection 
Profiles and I think it is harmful to “roll your own if 
you don’t like what’s there.” True, this puts the 
interpretation in front of the evaluation, but it also has 
the capacity of producing a huge number of slightly 
different policies or assurances that will be very 
difficult for sophisticated consumers to compare or 
accurately comprehend. 

I am very much bothered by the way the industry 
has moved. Today, a generation after the début of the 
DoD Computer Security Initiative and the publication 
of the TCSEC, there are essentially no commercially 
available trusted systems in use offering protection 
equivalent to a equivalent to a B2 Multics or the A1 M-
component GEMSOS. [30] 

Instead, there are bloated, untested, feature-laden 
interoperating untrustworthy less-than-C2 products that 
are self-penetrating. Their alleged kernels consist of 
millions of lines of highly privileged code written by 
teams of people who’ve never met their coding 
counterparts. The illusion of system security is 
provided by software encryption algorithms that can 
often be coaxed to reveal their keys to a skilled 
interloper. Add-on security gadgetry in the form of 
pattern-matching virus scanners and restrictive 
firewalls belie the vendors’ claims of mature security 
architectures. And, of course, the periodic 
announcement of urgent several megabyte security 
patches only emphasizes the tawdry state of today’s 
commercial offerings. 

Never has compromising a system been easier! 
Never have so many effective penetration tools been 
provided off-the-shelf by the vendor to the would-be 
interloper! 



Also, one cannot but comment adversely on the 
current issue of electronic touch-screen voting systems. 
In at least one state, Maryland, the only legal way to 
vote is on a system that uses cryptography for some 
aspects of secrecy, but which is implemented on a 
version of Windows CE – a foundation that would not 
meet the unexacting standards of the TCSEC C1 class. 
Attacks against Windows operating system variants are 
common place, and the vendor’s flagship C2 systems 
(NT and 2000) require regular security patching 
because of Internet Malware, with no one questioning 
the presence of its gaping Active Desktop and other 
inviting security vulnerabilities. Several security 
studies were conducted that identified voting system 
security flaws, and of these several could be exploited 
through a prepared attack. The fact that there is no 
permanent and immutable audit trail and recovery 
system has been discussed and dismissed by the 
manufacturer and by the state election board.18 Most 
recently, the Maryland court system has dismissed 
concerns over the machines’ security on the grounds 
that the system is not going to be connected to hackers, 
need not to withstand “military style attacks,” and so 
where is the security threat? Surely, no one would want 
to invest expensive technical effort into controlling the 
results of a national election! O where have we heard 
these questions before?! 

The TCSEC was written and emended by the skilled 
computer security practitioners of the late 1970s and 
early 1980s. The derivative criteria, though written by 
large committees of skilled personnel, reflect the fact 
that they were written by committee, and with the goal 
of harmonizing protection philosophies rather than 
establishing more focused requirements and guidelines. 

It is doubtful that any vendor is going to produce a 
completely new operating system in the current 
internetworked environment. For commercial viability, 
it appears that operating systems need to accommodate 
everything from real-time wireless gaming to play-on-
demand multimedia presentations. With technology 
moving computer usage away from previous trends 
(i.e., computation and data processing), it appears that 
a new paradigm is needed for security engineering in 
today’s environment. Back to basics just doesn’t seem 
to be practicable any more. 

And one can legitimately ask whether there is yet a 
perceived, validated security requirement. 

 
 

                                                           
18 One excuse I’ve seen in print claims that even if there were a 

need for a secured voting system and/or hard copy backup ballot, 
there is no standard or Protection Profile for either. 

6. Acknowledgement 
 

Many people encouraged and helped with the 
writing of this paper. I would like to thank Dan 
Thomsen, LouAnna Notargiacomo, Steve Greenwald, 
and Ken Olthoff for their continuing encouragement 
and critiques in taking on this task from the cozy 
pastures of retirement. In particular, I am particularly 
indebted to LouAnna, who took extraordinary steps to 
ensure the paper’s timely completion. I received 
valuable assistance in reconstructing the past from Rich 
Graubart, Ronda Henning, Paul Karger, Ted Lee, Peter 
Neumann, Roger Schell, and Tom van Vleck. Thank 
you, dear friends! 

 
7. References 
 
[1] Abbott, Bob, J. Chin, J. Donnelley, W. Konigsford, 
S. Tokubo, and D. Webb, “Security Analysis and 
Enhancements of Computer Operating Systems,” 
Technical Report NBSIR 76-1041, ICET, National 
Bureau of Standards, 1976. 

[2] Anderson, James. P., Computer Security Planning 
Study, Electronic Systems Division, USAF Report 
ESD-TR-73-51 in two volumes.  

[3] Bell, D. Elliott, and L. J. LaPadula, “Secure 
Computer System: Unified Exposition and Multics 
Interpretation,” Tech. Report MTR-2997 Rev 1, 
MITRE Corp., March 1975. 

[4] Boebert, Earl, “On the Inability of an Unmodified 
Capability Machine to Enforce the *-Property,” Proc. 
7th DOD/NBS Computer Security Conf., 1984. 

[5] Brand, Sheila, ed., Trusted Computer System 
Evaluation Criteria, Final Draft, 27 January 1983, 109 
pp. as C1-FEB- 83- S3-25366. DoD Computer Security 
Center. 

[6] Corbató, F. J., and V. A. Vyssotsky, “Introduction 
and Overview of the Multics System”, 1965 Fall Joint 
Computer Conference. 

[7] Department of Defense, Trusted Computer System 
Evaluation Criteria, DoD 5200.28-STD, 26 December 
1985.  

[8] DoD Computer Security Center, Trusted Computer 
System Evaluation Criteria, Draft, 24 May 1982, 43 
pp. 

[9] DoD Computer Security Center, Trusted Computer 
System Evaluation Criteria, 15 August 1983, 117 pp, 
as CSC-STD-001-83. 



[10] Harrison, M., W. Ruzzo, and J. Ullman, 
“Protection in Operating Systems,”, Comm. ACM, vol. 
19, no. 8, 1977. 

[11] Demillo, R.A., R. J. Lipton, A. J. Perlis, “Social 
Processes and Proofs of Theorems and Programs,” 
Comm. ACM, Vol. 22, No. 5, 1979. 

[12] Frantz, Bill, Norm Hardy, Jay Jonekait, Charlie 
Landau, GNOSIS: A Prototype Operating System for 
the 1990’s, Tymshare, Inc., 1979. 

[13] Graham, G.S. and P.J. Denning, “Protection – 
Principles and Practice,” Spring Joint Computer 
Conference, AFIPS Conf. Proc., 1972.  

[14] Jelen, George F., Information Security: an Elusive 
Goal, Program on Information Resources Policy, 
Harvard University Center for Information Policy 
Research, April 1984. 

[15] Lee, Theodore M. P., “Processors, Operating 
Systems and Nearby Peripherals: A Consensus 
Report,” appearing as Section 8 of Ruthberg, op. cit., 
1980. 

[16] Lipner, Stephen B., A Comment on the 
Confinement Problem, Proc. 6th Symp. Operating 
Systems Principles, 1975 

[17] McLean, John, “Reasoning About Security 
Models,” Proc 1987 IEEE Symp. Security and Privacy, 
Apr. 1987. 

[18] Millen, Jonathan K., “Security Kernel Validation 
in Practice,” Comm. ACM, vol. 19, no. 5 (May 1976), 
pp. 243-250. 

[19] Neumann, Peter, Larry Robinson, Karl Levitt, R.S. 
Boyer, and A.R. Saxena, “A Provably Secure 
Operating System: Final Report,” Stanford Research 
Institute Report, June 1975. 

[20] Nibaldi, Grace H[ammond], Proposed Technical 
Evaluation Criteria for Trusted Computer Systems, 
MITRE Report, M-79-225, 25 October 1979. 

[21] Ruthberg, Zella, Audit and Evaluation of 
Computer Security II: System Vulnerabilities and 

Controls, NBS Special Publication No 500-57, 
MD78733, April 1980. 

[22] Schaefer, Marvin., “Symbol Security Condition 
Considered Harmful,” Proceedings 1989 IEEE 
Computer Society Symposium on Security and Privacy, 
pp. 20-46, May 1-3, 1989. 

[23] Schaefer, Marvin, W. C. Barker, C. P. Pfleeger, 
“Tea and I: an Allergy,” Proceedings 1989 IEEE 
Computer Society Symposium on Security and Privacy, 
pp. 178-182, May 1-3, 1989. 

[24] Schaefer, Marvin, R. R. Linde, et al., “Program 
Confinement in KVM/370,” in Proc. ACM National 
Conference, Seattle, October, 1997. 

[25] Vyssotsky, V.A., F. J. Corbató, and R.M. Graham, 
“Structure of the Multics Supervisor.”, AFIPS Conf 
Proc., vol. 27, part I, 1965. 

[26] Walter, K. G, W. Ogden, F. Bradshaw, S. Ames, 
and D. Shumway, “Primitive Models for Computer 
Security, ESD-TR-74-117, Air Force ESD, Hanscom 
AFB, Mass, 1974. 

[27] Ware, Willis H., ed. Security Controls for 
Computer Systems: Report of Defense Science Board 
Task Force on Computer Security, R-609-1, reissued 
by the RAND Corporation, 1979 

[28] Weissman, Clark. Security Controls in the ADEPT-
50 Time Sharing System. In AFIPS Conference 
Proceedings, volume 35, New Jersey, 1969. 

[29]  Karger, P.A. and A.J. Herbert. “An Augmented 
Capability Architecture to Support Lattice Security and 
Traceability of Access”. in Proceedings of the 1984 
Symposium on Security and Privacy,. pp. 2-12, 29 
April - 2 May 1984.  

[30] National Security Agency Trusted Product 
Evaluation Report, Gemini Trusted Network Processor 
(GTNP), available at http://www.radium. 
ncsc.mil/-tpep/epl/entries/CSC-EPL-
94-008.html 

 

 


