
If A1 is the Answer, What was the Question?
An Edgy Naïf’s Retrospective on Promulgating

the
Trusted Computer Systems Evaluation Criteria

Marvin Schaefer
Books With a Past, LLC

bwapast@erols.com

Abstract

This paper provides an introspective retrospective

on the history and development of the United States
Department of Defense Trusted Computer System
Evaluation Criteria (TCSEC). Known to many as the
Orange Book, the TCSEC contained a distillation of
what many researchers considered to be the soundest
proven principles and practices for achieving graded
degrees of sensitive information protection on
multiuser computing systems. While its seven stated
evaluation classes were explicitly directed to
standalone computer systems, many of its authors
contended that its principles would stand as adequate
guidance for the design, implementation, assurance,
evaluation and certification of other classes of
computing applications including database
management systems and networks. The account is a
personal reminiscence of the author, and concludes
with a subjective assessment of the TCSEC’s validity in
the face of its successor evaluation criteria.

1. Introductory: From the primordial ooze

In the beginning, there was no computer security
problem.1 There was no external threat. There was no
intrusion problem.

You could ask almost anyone who used or operated
computers in those days of yesteryear. Computers were
expensive, so they were kept and operated in physically
protected rooms. Only authorized, trained personnel

1 Earl Boebert would dispute this, having exploited a flaw in

the early 1960s at Stanford University to read and modify memory
[now called storage] to plant a Trojan horse. Boebert spoke of this as
his locked room mystery.

were allowed physical access to mainframes or
peripherals. Users submitted jobs on punched card
decks or on tape, jobs were run successively, and every
job had a stated duration in which to run or be “kicked
off” the machine. If one was lucky, an aborted or failed
job would produce a dump before being
unceremoniously dumped. Common belief was that
physical protection and personnel background checks
were adequate to protect data in the government, at
banks, and in industry.

This paper is a personal account of my involvement
in the events leading to the development, writing, trial
use, promulgation, official use, and misuse of the
United States Department of Defense Trusted
Computer System Evaluation Criteria (TCSEC). Even
after it became a Department of Defense Standard,
many came to know it by its paper cover as the Orange
Book. Orange was the final color of an evolving series
of published drafts that began on 24 May of 1982 with
powder blue, and progressed through white and a sickly
shade of olive green, until it reached its distinctive final
draft shade of orange on 15 August 1983.

1.1. Early education in computer security

I2 first left academia in 1965 for an experimental
summer research and technology training program in
Santa Monica at the System Development Corporation
(SDC), a non-profit spin-off of the RAND Corporation.
The atmosphere provided to our group of “special
trainees” at SDC was a radical departure from that of

2 Because this is a personal account, I use both the first person
singular and plural pronouns. The latter are used for most contexts,
as important results often came not from individuals but as a result
of close collaboration with many colleagues in several research and
development institutions in academia, industry and government.

the UCLA mathematics department. SDC had a staff of
academic mathematicians and researchers from the
social and hard sciences in addition to its computing
staff. SDC received the majority of its funding from the
Department of Defense and other government agencies.
The company teemed with modern vacuum tube and
semitransistorized computers, consuming fully half of
the electric power generated for the city of Santa
Monica. Our three-month training class and the
opportunities to which we were exposed were so
exciting that most of us cancelled our future plans and
stayed on afterward in the Research and Technology
Directorate.

The young people in our training class held freshly-
minted degrees in mathematics, physics, music,
literature, and philosophy. We were assigned to use the
new experimental IBM A/N-FSQ-32(V) Time Sharing
System3. In our three months of training, we received
lectures from pioneering researchers in hardware and
operating system design, assemblers, programming
language design, compilers, interpreters,
metacompilers, natural language processing, database
management, list processing (LISP 1.5), and time
sharing system design. But the most exciting was our
chance to use the Q-32 for our classwork. The Q-32
would support up to 24 interactive users at a time. Our
class got to share this computer with SDC’s
researchers, and we were given individual login IDs so
that our projects could be billed for the time we used.
These IDs were not used for identification or
authorization.

Occasionally we were asked to get off the machine
to allow a remote demonstration of the system to run
smoothly and rapidly. Many of these demonstrations
were scheduled and conducted from overseas by
telephone dataphone and teletypewriter. Other than for
these demonstrations, there were no public or employee
dialup services on the Q-32.

There were no access controls on data, and files
were generally meant to be shared with colleagues.
Indeed, the concept of protection was soon revealed to
be nonexistent as a few of us inadvertently discovered
how to subvert careful operating system policies and
mechanisms on the single protection state Q-32
architecture.

1.1.1. Modifying an operating system. It was here that
my first experiences penetrating computer system took

3 Developed under contract to ARPA as one of two “competing”

projects. The other contemporaneous time sharing system was the
Compatible Time Sharing System (CTSS) at MIT’s Project MAC
and Bell Labs designed in 1959 and operational from 1961-71.

place. While we could code in the full systems
programming language JOVIAL, this required overnight
batch-mode compilation before we could interact with our
programs under time-sharing. This time delay could be
avoided by programming in the fully-interactive Time
Shared Interpreter (TINT) for rapid prototyping, a subset
time-shared compiler JOVIAL Time Sharing Subset (JTS),
and LISP 1.5. However, Q-32 TSS required that adequate
space be available in a contiguous block on one of the
swap drums in order to load the entire compiler or LISP or
to do any work with a user program. This was because
dynamic paging had not yet been invented. So I and a
couple of colleagues managed to write a very small
program (appropriately named CANCER) that would usurp
the operating system, repack the drums that contained
other user programs, modify the internal systems tables,
and make room for our own programs to load. All of this
had to be completed inside of a single quantum.
Sometimes it didn’t. The resulting system crash got other
users angry. It was also less than amusing to the operating
systems staff. Our actions were dismissed as those of
college kids having fun, and not those of malicious users.
Besides, until our program (CANCER) was developed and
fully debugged, everyone had to waste time waiting for
adequate space to become available.

1.1.2. Cat and MOUSE. Q-32 TSS scheduling was
initially a “democratic” system. Every program4 was
given a 300 ms quantum in a strictly round robin
scheme. This proved to interfere with the performance
of highly interactive programs, and it resulted in very
long compilation time. So Clark Weissman decided to
implement queues for different kinds of jobs: initially,
there were two queues an “interactive” queue and a
“production” queue. Membership in the interactive
queue depended on the program performing an input or
output during every few quanta, and a program that
failed to do this was moved into the production queue.
Here, a program would execute less frequently, but
once it reached the head of the queue it would alternate
through ten quanta interleaved with members of the
interactive queue prior to being sent to the back of the
queue. In practice, users needed to get their work done,
and they found ways to avoid being placed in the
production queue. Soon most user-written programs
were soon laced with code that would perform useless
single-character output operations to the terminal to
avoid being moved out of the interactive queue. This
did nothing to shorten compilation time for people

4 Process was not yet a developed concept and ‘program’ was

synonymous with the executing context as well as with the code
image. Privilege state was not yet a well-recognized concept either.

using compilers or LISP, so additional dodges were
found to avoid the production queue.

On learning of these, Weissman and his staff added
intermediate queues and introduced foils to the user’s
avoidance techniques. Ultimately, a few users
collaborated on a set of means to modify the operating
system’s scheduling algorithms, during execution of
course, in their favor. As there was no protected
memory, and there were no privileged instructions,
there was little other than procedural controls that
could be applied by the operating system staff to
control usage. Soon, passwords were associated with
user IDs, and audit logs were generated out to tape
along with the billing information. But, since there was
no protection on the machine, these proved to be
illusory at best—nothing in the hardware could prevent
any program from accessing system audit files. The
systems programming staff introduced monitoring
programs that would check on the behavior of specific
users and programs, and we found means to use
programs to abort or replace the monitoring programs.
And so, for each protective or regulatory move made
by the defenders, the researchers soon found
themselves forced to launch offensive countermoves in
order to feel that they could get their work done on the
system.

In effect, the system’s design was still a prototype,
and if future system versions were to evolve, test users
were needed to provide useful data and feedback. Q-32
TSS was not designed with security or protection in
mind, and because of hardware inadequacies, no form
of strong security could have been provided in any
case. To the best of my knowledge, the only
penetrations or subversions of the system were
performed in order to get work done more rapidly, and
no user data was maliciously corrupted or spied-upon.
But such acts of user anarchy resulted in a
semideclared “state of war” between users and the
operating system staff.

1.1.3. Concepts in absentia but not forgotten. The
primitive understandings of protection mechanisms
made early time sharing systems look like the Wide
Open Old West. The following important concepts
were soon learnt to be absent in contemporaneous
computers and systems:

• Protection policy
• Multiple privilege states
• Segmented memory
• Privileged instructions
• The process as subject concept

• Access controls on objects
• Individual accountability
• Protected audit trails

It soon became obvious that if systems were to
control users, such concepts would need to be
implemented. But, of course, we didn’t know that
then…. Many of these lacking controls remained
AWOL through the 1970s and 1980s on a majority of
ARPANet sites, and thence well into the 1990s and early
21st century on the Internet. But, it must be observed,
there was “no known security problem that wasn’t
caused by improper management and that couldn’t be
corrected by proper procedural controls.”

1.2. The Ware Report

In our research lab, as elsewhere, there was no
perceived computer security problem. All SDC
employees had a Defense Department clearance
because there were some classified projects in SDC’s
buildings. Guests had to sign in with a guard and wear
a visitor badge while being escorted.

However, a series of events in the spring and
summer of 1967 focused the Department of Defense’s
attention to the question of security control in resource-
sharing systems. In June of that year, Bob Taylor,
director of the Office of Information Processing
Techniques at ARPA was tasked to “form a Task Force
to study and recommend hardware and software
safeguards that would satisfactorily protect classified
information in multi-access, resource-sharing computer
systems.” The RAND Corporation’s Willis Ware was
asked to chair the Task Force under the authority of the
Defense Science Board, and began meeting in October.
The Task Force and its panels included a number of
future security visionaries and colleagues, including
E.L. (Ted) Glaser, Pat Haverty, Art Bushkin, Bob
Mosier, Jerry Moskowitz, Larry Roberts, Bob von
Buelow, Roy McCabe, Barry Wessler, James P.
Anderson, Ed Bensley, Dan Edwards, Jerry Saltzer,
Hilda Faust [later Mathieu], Bob Balzer, and Clark
Weissman.5

Their landmark report, Security Controls for
Computer Systems [27], was published as a classified
CONFIDENTIAL RAND report in February 1970. Its
findings are still of interest today, but unfortunately,
were not widely disseminated at the time because of the
classification.6

5 SDC was well represented on the Task Force by Mosier, von
Buelow, McCabe and Weissman. This eventually proved to benefit
my education in computer security.

6 In the preface to the publicly reissued version of the report,
Ware states: “At that time it was felt that because representatives

The Ware Report was prescient in its presentation
of:

1. Security risks and the nature of security

vulnerabilities. In addition, computer network
vulnerabilities were enumerated to include:
hardware and software failures; emanations;
wiretaps and crosstalk; sabotage from operators,
maintenance staff, systems programmers, and subtle
software modifications by users, and attachment of
bugs to terminals. Identified difficulties of securing
a computer system included:

2. consideration of the difficulty and complexity of
security controls on a range of ranging from the
most easily controlled processing environments:
local-access batch, remote-access batch, local-
access multiprogramming, remote-access
multiprogramming, to the most difficult of all,
remote-access time-shared systems

3. consideration of the challenges presented by
increasing user capability and the complexity of
security controls based on the simplest risks posed
by template-based file query systems, through a
scale of increasing challenges of programming via
interpretation, programming via limited languages
and checked-out compilers,7 up to users having full-
programming capabilities as the most risky
environment

4. The specifics of access control policy to specific
files were to be-based on system-confirmed
authentication of the user’s identity and clearance,
the clearance of the facility from which the user
would access the file, and the clearances of
designate output devices

5. Defense Department needs were identified for
adaptive access control policies in the face of
degraded operation or national emergency. The
Report specifically addressed the costs, financial to
mission-specific, of implementing access controls.

from government agencies participated in the work of the Task
Force, the information in the report would appear to be of an official
nature, suggestive of the policies and guidelines that would
eventually be established. Consequently, it was felt prudent to
classify the report CONFIDENTIAL overall….”

7 There was a long-standing belief that allowing assembly-
language programming would pose the greatest threats to computer
security. Programming languages like FORTRAN did not explicitly
support assembly-language programming, although the systems
programming language JOVIAL did. Hence, FORTRAN was consider
“safer” at the time of the Ware Report. A few years later, this fallacy
was corrected through a demonstration that EQUIVALENCE and
DIMENSION declarations could be used in a way that would enable
the execution of assembled code posing as binary data.

6. Hardware and software, acting together, were to
provide isolation from user programs of all
operating system security controls, including the
audit trail. The emerging design of Multics was
specifically given salutary comments in an
explication of how this could be reliably achieved.

7. Specific hardware features were identified as
necessary for access control, including a minimum
of a supervisor state and a user state, program
isolation mechanisms such as base and bounds
mechanisms, machine fault detection, etc.

8. Operating system complexity was recognized as an
impediment to actually proving that the design and
implementation were correct. To compensate for
this, the Ware Report called for detailed
documentation in text and flowcharts of the
modules on which access control was based.

9. Penetration testing was required on a periodic basis,
and it was highly recommended that some of these
tests would necessarily be conducted by outside
personnel not connected with the design or
implementation of the system.

The system would need to periodically perform
dynamic operating system integrity tests and to validate
the efficacy of specific security tests by running
attempts to subvert the access control policy.

Although incomplete by contemporary standards,
many of the Ware Report’s recommendations and
findings are still valid. The Report contained an
appendix in which system access controls were
formally specified as a set of transformation rules in
Backus-Naur Form (BNF).

Ultimately, the Report’s technical recommendations
came from the research community. Many ideas,
including segmented virtual memory and privilege
states are reflected in the Task Force’s conclusions and
recommendations. The significant outgrowth of the
Task Force’s work was the funded development of two
multiprocessing systems that were designed
incorporating computer security principles from the
start. These were the refined security design of Multics
at MIT (first specified in 1965), and the multilevel
time-sharing system adept-50 in 1967-8 at SDC.

1.2.1. Multics. The Multics project introduced a
number of security principles to the technology. The
system was designed as a collaboration between MIT,
General Electric and Bell Labs under arpa Funding to
run a modified GE 635 computer, renamed the GE
645.. Early management and technical contribution
spanned the three organizations, and included principal
contributions from Fernando “Corby” Corbató, Ed

Vance, Vic Vyssotsky, Peter Neumann, Jerry Saltzer,
Ted Glaser, Butler Lampson, Tom Van Vleck and
Charlie Clingen.

Many of the concepts I mentioned above were
ultimately incorporated in Multics, including:
Segmented virtual memory, protection and privilege
rings, the operating system was coded in PL/I instead
of assembler, and it incorporated modular design and
least privilege.8

Multics design, implementation, and use ran over
the period 1963-2000. Multics history is documented at
http://www.multicians.org/.

Because of the lack of an identified computer
security problem, Bell Labs’ participation in the
Multics project ended after a few years. A laboratory
version of a stripped-down Multics-like system soon
came about that had no file access controls because
they weren’t perceived as necessary in the lab
environment. Peter Neumann suggested the name for
the system should be Unics (making the pun of an
emasculated single-user Multics) because of the many
Multics features that had been eliminated. It was Brian
Kernighan who claims credit for naming it UNIX.9

1.2.2. ADEPT-50. ARPA awarded a contract in 1966 to
Sdc to implement a Time Shared Database
Management System (TDMS) on an IBM S/360 model
50 computer. TDMS was specified to support rapid
retrieval on ad-hoc queries over any field combination
as a recursively-defined hierarchical fully-inverted
database. The underlying operating system reflected a
multilevel security design created by Clark Weissman,
who directed a staff that included Dick Linde, Sal
Aranda, Martha Bleier, Barry Gold, Steve Sherman,
and Clay Fox.

In 1967, Weissman asked me to prepare a formal
mathematical formulation of the ADEPT-50 [28]
interpretation of the military security policy-based
model described in the Ware Report. The model
addressed clearance, compartments/categories,
franchise (specific permissions), and need-to-know for
authenticated users. It implemented a dynamic user-
specific High Water-Mark (HWM) access policy that
determined the level at which objects and files created
by the user could be read or stored to media.10

I ported META6, the compiler-compiler I had been
developing, to ADEPT-50 which served as a base for

8 A military version, AFDSC Multics, was derived from
Multics that provided for hierarchical and compartmented security
clearances/classifications. This later version implemented a version
of the Bell-LaPadula security policy models.

9 Peter Neumann, private communication.
10 ADEPT-50 was certified and accredited for use by part of

the U.S. Intelligence Community and in the Pentagon.

producing tools for converting flat-structure record-
based databases automatically into the TDMS data
model. In 1967-8, I ended up commuting on a weekly
basis from Santa Monica to the Pentagon,11 which had
a growing need to convert classified databases over to
TDMS. Keypunch errors and semantic confusions
among the military users were the causes of my many
trips to the National Military Command System
Support Center (NMCSSC) during the Vietnam War.

ADEPT-50 was being used to support multilevel
operation, and its dynamic HWM policy, in
anticipation of the *-Property, proved to be confusing
and frustrating to nmcssc users. The most plaguing of
problems was that a user would create a new file or
modify an old one such that it could not be accessed
once closed. This was because the new file’s security
level would be the least upper bound of the
<classification, category, franchise> attributes of all
files opened during the user’s session. The new file’s
access control list became the intersection of the access
control lists (and rights) of all open files that had been
accessed during the session. This rapidly became a
singleton access control list, thereby isolating the new
or modified file from all other users.

ADEPT-50 was in use through the Vietnam War and
well into the 1970s.

1.3. The Anderson Report

The U.S. Air Force awarded a contract in 1972 to
the James P. Anderson Company to produce a
computer security planning study. A panel of experts,
chaired by E.L. “Ted” Glaser, met between February
and September 1972 to produce an UNCLASSIFIED two-
volume report [2]. Additional participants included
Eldred Nelson, Bruce Peters, Dan Edwards, Hilda
Faust, Steve Lipner, Roger Schell, Clark Weissman and
Chuck Rose. The Anderson Report outlined a sound
approach to the development of multiuser multilevel
computer systems.

The most important contribution of the Anderson
Panel was its strong direction toward the use of
formalisms in addressing controlled sharing in terms of
an access control policy model, the design of the
security mechanisms, and the production of security
assurances. The concept of an access control model, or
security policy model, soon led to formalisms. G. Scott
Graham and Peter Denning had published a model in
which the accesses by subjects to objects were
represented in a matrix M wherein: rows represented
subjects S, columns represented objects O, and

11 This was a difficult period for me. I was working full-time

both at SDC and at UCLA on a doctorate in mathematics.

elements Ms,o represented the specific modes of access
or permissions subjects had to objects. It was possible
in this model to identify all subjects who had any form
of access to any specified object as well as to identify
all objects to which each subject had any specified
form of access. In this model, interprocess
communication implied that subjects also be viewed as
objects, a deduction that ultimately resulted in the
recognition of a subject as a <process, domain>-pair,
wherein domain included all of the attributes of the
executing process (including security, integrity, and
privilege-state attributes). In a large system, it was
tacitly assumed that M would be a large sparse matrix.
Thus, implementation concerns suggested that M either
have its attributes stored in lists associated with
subjects (capability lists) or with objects (access
control lists). Harrison, Ruzzo and Ullman [10] also
showed that discretionary access control (DAC), the
form of access modeled in M, had a degree of
uncertainty equivalent to the Turing Halting Problem.

The Anderson Study also resulted in publication of
a series of formal models that addressed abstractions of
military classifications and clearances, so-called
nondiscretionary access control (later to be known as
mandatory access control or MAC). The most popular
of these models were those of Case Western Reserve
University [26] and of D. Elliott Bell and Leonard
LaPadula [3]. At the time of their publication and
refinement, these models were reputed to have formally
provable security properties. This was later questioned
by John McLean [17] and others.

Central to the Anderson Study’s framework is its
elaboration of the reference monitor concept. Its
implementation is a reference validation mechanism
(RVM), often called a “security kernel,” a term
introduced by Major Roger R. Schell at an early
Stockton Gaines workshop. Specifically, the Study
prescribed three requirements characterizing the RMC:

a. The reference validation mechanism must be tamper

proof.
b. The reference validation mechanism must always be

invoked.
c. The reference validation mechanism must be small

enough to be subject to analysis and tests, the
completeness of which can be assured.

It elaborated:
Each of these requirements is significant, for without
them the mechanism cannot be considered secure.
The first is obvious, since if the reference validation
mechanism can be tampered with, its validity is
destroyed, as is any hope of achieving security
through it. The second requirement of always
invoking the reference validation mechanism simply

states that if the reference validation is (or must be)
suspended for some group of programs, then those
programs must be considered part of the security
apparatus, and be subject to the first and last
requirements. The last requirement is equally
important. It states that because the reference
validation mechanism is the security mechanism in
the system, it must be possible to ascertain that it
works correctly in all cases and is always invoked. If
this cannot be achieved, then there is no way to know
that the reference validation takes place correctly in
all cases, and therefore there is no basis for certifying
a system as secure. [2, vol. I, p. 10]
The Anderson Report recognized that operating

systems were larger and more complex than most
programs, and that exhaustive testing was out of the
question. So the report called for modularization that
would support analysis and credible testing. There is an
interesting consideration of the possibility of subjecting
operating systems to mathematical proofs of
correctness, but this was understood to be well-beyond
the capability of human individuals. There is a
discussion of the potential for research that would
support generation of computer-aided formal
verification assurances sometime in the future.

Like the Ware Report, the Anderson Report
recognized the need to consider system use
environment and functional characteristics as part of
the overall risk and vulnerability assessment. It
considered secure transaction systems to be the least
threatening and most achievable of the “open use”
multiprogrammed system contexts. The next most risky
category to be considered was the High-Order-
Language (HOL)—the only system described in the
Ware Report which raises the possibility of breaking
out of the confines of FORTRAN. No explicit details on
how this might be achieved are presented.

The Report outlines several development plans for
research and development needed to achieve secure
open-use systems. There is specific reference to
planning research programs on secure networks,
security models, security software engineering, security
surveillance, certification techniques, architecture
research, data integrity and reliability, automatic
classification, magnetic media, and computer aided
integrated design. Of interest is an allusion to

The possibility of internal encryption of computer
programs and data was first advanced in 1966 prior
to the Defense Science Board Task Force on
Computer Security. Since that time it has received
sporadic attention. It appears that it is possible to
apply this technique either as an appliqué or as an
integral part of the design of computer systems [2,
vol. II, p. 44].

It is interesting to note that the Anderson Panel had
the foresight to predict that:

Perhaps the most interesting potential of modern
technology will be the radical reduction of cost of
computer main frames. We can, for all intents and
purposes assume that computer main frames will be
effectively “free” in the not too distant future. As a
consequence, if it is really necessary to separate
various users, each can be given his own computer.
However, more often than not, they are dealing with
common data bases and must hand off certain
common data to one another and, on occasion share
programs. As a result, we are still in need of secure
computing systems. With very low cost computer
logic however, we have the possibility of a
distributed system. By this is meant a system in
which the various system functions may be
distributed among different machines which are
“netted” together. Netting does not imply a number
of machines doing identical tasks, nor does it imply a
number of necessarily identical machines… [2, vol.
II, p. 102].

2. Principles, perceptions, and worked
examples

Following publication of the Ware and Anderson
studies, interest in “secure” systems and products
appeared to have increased in number and depth. Donn
Parker began to publish books on computer crime, but
most of what appeared in the popular press described
variants on insiders automating white collar crime
against financial institutions. Among institutions that
had potential computer security vulnerabilities, their
identified concerns focused in on reliability and
protection from disruption of service. Very few
organizations expressed concern over protecting
confidential information from unauthorized
modification or display.12 At the beginning of the
1970s, however, there was still no consensus that
technical measures were required to counter any
identified computer security threats. From Parker’s
books on through banking, commercial and military
users, the expressed belief was that trained system
managers and the use of guards, badges, personnel
background examinations, and encrypted external
communications would suffice to meet their protection
requirements.

During this period, several security working groups
were formed that brought security researchers together.
One, hosted at the RAND Corporation, was chaired by
R. Stockton Gaines. In addition to members of the

12 Banks were far more concerned over unauthorized

modification of transactions than breeches of confidentiality.

Ware Panel, the group periodically included additional
researchers from UCLA, USC Information Sciences
Institute (USC-ISI), MIT, RAND, SDC, MITRE, NSA,
ESD, and other institutes. A second group, organized
later by Steve Walker while he was at DARPA, added
principals from Carnegie-Melon, Bell Labs and various
DARPA contractors This latter working group evolved
into a kernel of the Department of Defense's Computer
Security Initiative. Participants who met in these two
groups included: Jim Anderson, Roger Schell, Dan
Edwards, Ann Marmor-Squires, Anita Jones, Butler
Lampson, Jerry Saltzer, Gerry Popek, Clark Weissman,
Dick Bisby, Dennis Hollingsworth, Jim Gillogly, David
Bonyun, Mike Schroeder, Peter Neumann, Ed Burke,
Steve Lipner, and me.

From the Anderson Report and refined by these
groups also came the notion of the security perimeter,
which consisted exclusively of security-relevant code
and the minimal subset of the operating system
required to support it. The code within the security
perimeter became known as the security kernel, the
minimal body of code required to enforce the system
security policy. Almost as a mantra, many in the
research community claimed that if “the good guys
write the code inside the security perimeter, then the
system will be secure, even if the adversary writes the
remainder of the operating system and its utilities.”

2.1. Access control policy considerations

Up through the early 1970s, I worked closely with
clients in both military and commercial application
sectors. I became aware of the wide range of
discretionary access controls that were asked for by
different user groups. Their requirements included:
• Password protected files: where knowledge of a

password suffices to gain complete file access
• Time-based access controls: where specific actions

could only be performed on specified days and/or
during identified time periods. One such defined
mode of access may be no access.

• Group-based access controls: where access modes
are uniformly applied to users assigned membership
in named groups, e.g., only members of the salary
administrator group may modify salaries. One such
defined mode of access may be no access.

• Rôle-based access controls: where, e.g., persons
acting in the rôle of salary administrator may only
perform specified accesses and no others (e.g., no
general programming while acting in the rôle of
salary administrator. One such defined mode of
access may be no access.

• User-specific access controls: associated with each
user and each protected object is a set of specific
modes of access that the user is permitted to have
for the object; this is the form of access control
typified by access control lists. As in the Graham-
Denning model, one mode of access may be control
access, a mode that allows the user to grant or deny
access for other users. One such defined mode of
access may be no access.

• Prohibited-access controls: sets of users for whom
specific forms of access to objects are specifically
prohibited. These prohibitions may be broader than
the no access form described supra.

• Combinations of the above: e.g., a specified user in
a particular rôle at a given time from an
administrator’s terminal may access a controlled
object in only a specified set of modes.

• Formularies: a term coined by Lance Hoffman
wherein access to a specific object is computed by a
specified, possibly ad hoc, function. More robust
than the foregoing access controls, a formulary may,
e.g., restrict a salary administrator to modifying
only the salaries of those reporting to managers in a
specific department providing that the new salary
does not exceed a stated percentage of the
employee’s manager’s salary.

In full generality, discretionary access control was

recognised as being much more complex than a simple
label-based policy. Further, the undecidability issues
raised by Harrison, Ruzzo and Ullman and additional
implementation complexity issues suggested strongly
that high-assurance systems could not be uniquely
based on DAC mechanisms.

2.2. Implementation considerations

Early attempts at implementing robust, production-
quality secure operating systems proved to be
surprisingly difficult, despite the application of sound
principles. In part, this was because of the lack of
experience in dealing with the problems of reducing
theoretical objectives of layered architectures, least
privilege and least common mechanism to engineering
practice within the framework of information flow
confinement.

2.2.1. Multics. It has become common contemporary
practice for scarcely tested and inadequately debugged
software products to be sold commercially. Various
vendors, notably Microsoft, have been accused of
launching products that have never been subjected to
beta testing. Disgruntled customers have complained

and lampooned such companies and their programming
staffs’ capabilities, not entirely without justification.

Knowledge gained from penetration studies had
made it clear that complexity is a strong contributing
cause of system vulnerabilities. Complex designs are
harder to implement than simple ones. Complex
programming languages are more difficult to use than
simpler ones, but complex coding sequences—in any
language—are more difficult to understand weeks or
months later than simpler ones. Any error in a security-
relevant code sequence provides a potential foothold
for a penetration attack.

This and related observations led the programming
methodology and software engineering communities to
espouse the use of high-order type-safe programming
languages for the development of all programs and, to
the extent possible, of systems. Modularity and data
hiding were considered essential to a divide-and-
conquer strategy for breaking down systems into
manageable and easily programmed bodies of correct
code. Beginning with the seminal early 1970s’ work of
Edsger Dijkstra and C.A.R. Hoare, system developers
had begun to decompose their designs into strictly
ordered hierarchies of modules in which there were no
“upward” or circular functional dependencies.13

Dave Parnas subsequently produced worked
examples of system decompositions of independent
modules wherein the internal implementation and all
internal variables were “hidden” and where there were
no global variables – thus requiring that intermodule
communication would require explicit parameter
passing as values rather than as references. All modules
were to “advertise” their external interface, and each
was required to validate its inputs prior to accepting
them. Niklaus Wirth moved forward and designed
Modula, a systematically refined family of system
programming languages that supported “toy” system
implementation from such modules. Similar
programming languages were proposed for production
work, including Euclid, a Defense Department-
sponsored effort to produce a fully-verifiable systems
programming language that supported the modularity
and data-hiding methodology. Eventually, this led to
the development of the programming language Ada.14

Corporate misunderstandings of the philosophy of
“structured programming” and its call for the abolition
of the GO-statement and FOR-loops resulted in added
code complexity. Some companies naïvely
misunderstood the modularity concept and restricted

13 Coincidentally, penetration teams had identified and

exploited such functional dependencies in systems.
14 In 1972, I participated in Jean Ichbiah’s design of the system

programming language LIS, the direct predecessor of Ada.

their programmers to writing modules no longer than a
certain number of statements or lines of code. While
this achieved modules that appeared to be small, in
reality, modules were often prematurely terminated
with a call on another module that continued from
where the first left off. This resulted in obscure, and
sometimes complex, calling sequences. Many also
insisted that in a strict hierarchy of modules, a function
call could only be between adjacent levels (or identical
levels if within a tree of the same module) in the
hierarchy.

The Anderson Report’s prescriptions called for a
RVM that was “small enough to be subject to analysis
and tests, the completeness of which can be assured.”
This requirement represented a misconception that
smallness implied conceptual simplicity. As will be
seen, additional understanding gleaned from
experiential missteps led to a restatement of this
attribute. The rationale introduced in the first (powder-
blue) draft of the TCSEC [8] restated it as “[the RVM]
must be of sufficiently simple organization and
complexity to be subjected to analysis and tests, the
completeness of which can be assured.” This revision
persisted into the published DoD standard. [7, p. 67]

2.2.2. Efficiency considerations. Early attempts to
implement systems along the lines of a Parnas
decomposition uncovered problems in efficiency and
size. Parameter passing and the lack of global variables
proved to be cumbersome and inefficient. Attempts to
work around the inefficiencies led to larger modules
and to greater complexity. In some cases, the work-
arounds involved linkages to machine language
structures.

In addition, calls to different modules or different
privilege states required a context change, and even in
rapid, specially-designed hardware, several
“unnecessary” instructions needed to be executed for
both the calling and return sequence, thereby adding
even more overhead to the program. This became a
fundamental clash between the principles of least
privilege and least common mechanism on the one
hand, and performance efficiency, which called for
placing as much as possible in the same domain of
execution.

2.3. False senses of security

Most operating system vendors subjected their
products to extensive internal testing prior to their
release. In those days, most systems were sold (or
provided gratis along with the hardware) “bundled”
with assemblers, compilers, and utilities. For various
reasons, testing was performed far more aggressively

prior to product release than it is today, and even after
product release, patches to identified errors were
regularly distributed to users as part of vendors’
product maintenance programs.

However, even then, new features tended to be
included in the maintenance releases. Experience
showed that the patches and new features introduced
new bugs into the systems. System reliability was
always a problem area, and denials of service had
always been a focus area for testing. Grafted-on
features proved to be most vulnerable to runaway
programs. A form of testing, known as stress testing or
security penetration testing, became more common.

Vendors started to make isolated product security
claims. Some vendors even asked tiger teams to try to
penetrate their products. When security testing failed to
find a problem, vendors advertised the fact as a system
strength.

The failure of security testers to find flaws did not
suffice to prove their absence. It showed, instead, the
limitations of resources or imagination on the part of
the penetration team. Indeed, a new team was generally
able to penetrate such systems in a matter of a couple
of weeks. Even on systems whose identified flaws had
all been “corrected”, testing by a new team usually
found exploitable security vulnerabilities, often of a
completely different kind than found by their
predecessors. And, tiger teams soon focused on
penetrating patches rather than the original code.

2.4. Tiger team efforts

Security research and development were seriously in
need of funding in the 1970s. Without a validated
requirement statement, military funding was limited
and shaky. Many a study or seed project was cancelled
in order to fund military acquisitions of war matériel.

So, the researchers mobilized to create legitimate
demand for security research and development
programs.

One form of “consciousness-raising” involved the
almost romanticized activities of tiger teams. Most
prominent of these was the USAF ESD team, which
included Major Roger Schell, 1Lt. Paul Karger, Ed
Burke, and Steve Lipner. In addition to their
documented successful penetrations of Multics and
DIAOLS, this and other tiger teams seemed always to
succeed in penetrating their targeted operating systems.

After a number of documented penetration studies,
the Anderson Study made it clear that a necessary
condition for securing an operating system was
hardware that provided, as a minimum, a distinct
hardware state for the protection of the security
mechanism. Another way of stating this was that the

security relevant instruction set needed to be a subset
of the privileged instruction set that could only be
executed in supervisor state.

Bob Abbott directed the Research Into Secure
Operating Systems (RISOS) study [1] in 1976 which
led to a characterization of seven general classes of
system flaws:

a. Incomplete parameter validation
b. Inconsistent parameter validation
c. Implicit sharing of privileged/confidential data
d. Asynchronous validation/inadequate serialization
e. Inadequate identification/authentication/-

authorization
f. Violable prohibition/limit
g. Exploitable logic error

Matt Bishop and colleagues at Purdue University
produced and documented some startling penetration
exploitations of commercial Unix Systems in the late
1970s.

Another tiger team, at SDC, was put together by
Weissman. In 1972-3, SDC was given a contract to
conduct research jointly on the security of IBM’s
VM/370. Like Multics, VM/370 provided three
execution states: one fully-privileged hardware
supervisor state for the VM/370 hypervisor, one
emulated virtual supervisor state for virtual operating
systems, and a hardware problem state for user
programs. VM/370 hypervisor was small, and much of
its design and code was based on a conceptually simple
model. The implementation was well-structured for its
time (though written in assembler) and was properly
structured to resist attack. Unlike Multics’ use of
special hardware and protection rings, VM/370 had to
emulate virtual supervisor state, which was not
supported by the IBM S/370 hardware base. The
security relevant instructions on the S/370 were a
proper subset of its privileged instruction set. The IBM
hardware was capable of trapping attempts to execute
privileged operations so that the VM/370 hypervisor
could legality-check them prior to their execution.

In relatively short order, the joint team succeeded in
identifying and exploiting a number of subtle technical
flaws in the design and implementation of VM/370 that
resulted in their achieving full control over the system.
In many cases, the exploited vulnerabilities were not a
flaw in coding, but were faithfully-emulated security
flaws in the S/370 hardware architecture that were
virtualized away from users’ direct access. As a result,
the VM/370 hypervisor could be conscripted into
abetting its own penetration.

In addition to producing a proprietary vulnerability
report, the team produced a jointly authored paper for

the IBM Systems Journal. Dick Linde and Ray Phillips,
who led the SDC team, produced a formalization of the
approach to identifying potential security flaws, now
known as the Flaw Hypothesis Methodology.

Clark Weissman began offering penetration studies
as an SDC service. His motivation was to show clients
how vulnerable their systems were in hopes of
obtaining adequate funding to methodically eliminate
identified security vulnerabilities by reworking the
penetrated systems. This goal was not achieved,
however. The penetrators were altogether too
successful. Many clients did not believe the penetration
study’s results, and remained skeptical until they went
through the shock of watching a remote user
compromise their system. Some clients went into
denial, convincing themselves they were safe because
of an attack’s sophistication or obscurity -- too often,
one heard the phrase “no one would do that”. SDC was
unable to provide a quick, inexpensive “fix” to the
flawed systems, and their clients ordered SDC not to
reveal uncountered system vulnerabilities. Put simply,
the costs of correcting developers’ security flaws would
be too great for any single client company to bear
alone. System vendors, on the other hand, were not
faced with overwhelming customer demand that they
secure their products.

In the large, customers were after a simple round of
quick-fix “penetrate and patch” wherein the system
vendor would patch the system once the flaws were
identified. The penetrators found that the “repaired”
systems were easier to penetrate the next time around,
because the patches generally introduced new security
vulnerabilities.

So the tiger team activities did not produce a golden
age of funded security research and development.
However, they did provide an adequate number of
worked examples of security flaws from which to glean
understanding of those design and implementation
techniques that could be most resistant to attack or
conscription.

2.5. Secure system prototypes

Beginning with the convening of the Ware Panel,
the next decade saw the beginnings of various other
computer security-related activities. In part, with
tremendous influence from the findings of the
Anderson Panel, this activity was spurred by research
funding falling out from the Vietnam War and related
activities. The U.S. Department of Defense and its
agencies were the principal funding sources for
research as well as for development.

The private sector developed several security-
oriented commercial products and prototypes. Among

the independently-developed products were: IBM’s
Resource Access Control Facility (RACF) add-on to
MVS and the Virtual Machine Facility/370 (VM/370)
operating system, and Tymshare’s capability-based
operating system Gnosis.

The U.S. DoD sponsored system and prototype
developments for several prototypes and operational
systems, including:

• Multilevel AFDSC Multics
• MITRE UNIX 11/45 prototype
• Stanford Research Institute’s Provably Secure

Operating System (PSOS) design
• Two attempts at a multilevel secure version of

UNIX (Ford Aerospace’s KSOS-11 and
Honeywell’s KSOS-6)

• SDC’s Kernelized VM/370 (KVM/370)
• Ford Aerospace’s AUTODIN II
• ITT/IBM’s SACDIN
• SDC’s BLACKER project.

In addition to these, two forays into multilevel
database management were conducted. At SDC, Clark
Weissman reassigned me to perform computer security
research, abandoning my chosen research study on
applications of Petri nets. Tom Hinke and I produced a
study, model and design, under sponsorship from Rome
Air Development Center (RADC), for a multilevel
relational database management system that could run
under an unmodified AFDSC Multics. My Petri net
research proved to have an application and was used in
our model as a multilevel secure solution to
synchronizing database queries and updates.15 David
Bonyun and colleagues at I.P. Sharp Associates
(Canada) produced a multilevel DBMS model for the
Air Force Electronic Systems Division. The IP Sharp
model was designed to have been implemented within
Rings 1 and 2 of Multics and identified various security
primitives to support multilevel database management.

The Hinke-Schaefer multilevel DBMS work is
noteworthy because its implementation would contain
no security relevant code and was contractually
required not to require any modifications to the Multics
Security Kernel. It was instead constrained to operate,
under the Least Privilege concept, as a completely
unprivileged process in user rings.

2.6. Toward system security evaluation criteria

By 1978 researchers and developers had begun to
claim that they knew precisely how to implement

15 A variation of our technique was independently developed
by Reed and Kanodia, and is known as event counts.

secure (or “secure enough”) systems. While few
projects had produced fully operational, well-tuned
secure systems, such products were not readily
available. Although multilevel AFDSC Multics and
ADEPT-50 had been fielded and accredited, there was
an understanding that their performance left something
to be desired. They were far from being “user friendly”.
AUTODIN had been accredited for full multilevel use
(UNCLASSIFIED through compartmented TOP SECRET),
the consensus was that if AUTODIN were subjected to
recertification and accreditation analysis, it would fail
based on contemporary technical knowledge of
vulnerability analysis.

The research community had moved forward to
achieve a preliminary understanding of covert channel
analysis (CCA). The hubris of the moment had led
many to claim that with the new secure systems,
unauthorized direct access to files, spooling files,
printer queues, the address spaces of other processes,
etc., would be impossible. Thus, only by timed
modulation of various system artifacts could a pair of
coöperating Trojan horses communicate with each
other in violation of the system security policy
interpretation of confinement or the Bell-LaPadula *-
property. Various technologies had been created for
identifying, measuring and using covert channels [24],
and some formal analysis tools had been created [18] to
discover covert channels in formal system
specifications.

2.6.1. Security kernels bad, TCBs good. For several
reasons, many in the security research and development
community began to oppose the reference monitor
concept and its implementation as a security kernel. For
the most part, the criticism focused on the perceived
inefficiency of central mediation and context switching
forced by the RVM’s complete mediation requirement.
Many argued against the strict notion of having to
validate every reference to every system object.

One divide-and-conquer strategy, represented in the
Bell-LaPadula models, was achieved by having the
security kernel apply full policy mediation to every
initial request or attempt by a subject to access an
object in a specific mode. If that mode of access was
consistent with policy, a descriptor or token would be
generated that the kernel could rapidly consult to allow
or reject all subsequent access attempts.

This resolved most of the problem. But it left open
the question of how the controller of an object could
immediately revoke all or selective access modes to
that object. The custom hardware descriptor-based
architecture of Multics allowed this to be done
immediately. However, in other system architectures,
such a feature was deemed too costly, and system

security policies were modified to have access
revocations become effective only on new access
requests. For capability-based systems, where a process
could endure for days or weeks, this problem resulted
in many emotional arguments and dissents.

To some, a more significant issue became apparent
with respect to certain modules that were included
inside the security perimeter that were not directly
related to protection or to supporting the
implementation of protection-critical modules. Their
inclusion as security relevant code was clear, for their
improper operation could lead to a security policy
compromise. For example, a resource scheduler or
dispatcher could, in principle, operate in a less
privileged domain than that of the security kernel. But
many argued that a scheduler needed to have access to
system-wide information, as scheduling decisions made
only within a single security level could result in
thrashing or other inefficiencies. The only way a
scheduler could view such information under a
multilevel security policy model would be if it executed
as if it were a system-high subject. But in that case, any
request it made to dispatch a specific subject could be
misused to signal information as a covert channel in
violation of the *-property.

Indeed, no matter how it was structured, every
multilevel system had to have some internal processes
that allocated or modulated global system resources.
Covert channel analysis techniques showed that such
processes could always be conscripted to violate
information flow confinement requirements—even
when such processes were implemented correctly (i.e.,
in full conformity with their specifications). There was
growing awareness of this problem in KVM/370, which
called them the Global Processes and in KSOS and the
SCOMP, where they were called Non-Kernel Security-
Related processes (NKSR). In all cases, their direct
verification against the constraints of information flow
analysis was impossible.

The Bell-LaPadula models had provided for the
notion of trusted subjects whose functionality required
transferring information between classified containers
in apparent violation to the *-property. Global
processes were less obviously in this class. Isolating
such processes to operate in less privileged domains
only led to additional context-switching inefficiencies,
as nothing could be done directly to ensure that their
use would not compromise security. This observation
led to two dénouements:

1. It was concluded that because of the uncertainties of

discretionary access controls, the potential
exploitation of covert channels in multilevel
systems, and the nettlesome questions of global

process efficiencies, a system could no longer be
called secure but would henceforth be called
trusted;

2. The term security kernel was scrapped in favor of
the neologistic term trusted computing base (TCB).

As was to be seen in the sequel, ‘TCB’ was a
vaguely-defined term, and its adaptation as a concept
resulted in abandoning the third requirement of the
Anderson Study, conceptual simplicity of the RVM.

2.6.2. Distributed mediation, capabilities, PSOS,
and Gnosis. Still, the prejudice against the centralized
security kernel concept manifested itself in an
altogether different way. It was argued that automated
formal code verification (or mechanical “proof of
correctness”) was closer to becoming available, and
soon all operating system code – and then hardware
design and implementation – correctness could be
established as mathematical fact. Thus, it would be
possible to include all required security checking as
part of each system module or function, thereby
eliminating needless access-checking function calls and
their costly context switching. Moreover, there would
be no separation of call from function, and hence no
need for the access-checking functions to derive or
establish the relevant context of the requested operation
in concert with the semantics of the application.

And so, a movement gained momentum to design
and field systems structured along the lines of
distributed mediation and that had no distinct security
perimeter other than the [most] privileged (or most
primitive) part of the operating system itself. The first
such research study, the capability-based Provably
Secure Operating System (PSOS) [19] project yielded:

• A methodology for the design, implementation, and

proof of properties of large computing systems
• The design of a secure operating system using this

methodology
• The security properties to be proven about the

system
• Formal verification methods and tools that came to

be known as the Hierarchical Development
Methodology (HDM) and the formal specification
language SPECIAL

• Considerations for implementing such a system, and
• An approach to monitoring security and

performance.

PSOS was rigorously decomposed into a
hierarchical specification that had no upward
functional- or data-dependencies. The unique
protection mechanism was a capability, a form of

unforgeable, immutable token, possession of which
granted a set of specific access rights to the object to
which it was linked. The PSOS concept yielded
considerable new research, but left open the question of
how a secure system is to be initially configured, how
the first capability was to be created, and how one
could algorithmically examine a capability distribution
and determine whether or not a system was in a secure
state. In addition, there were no efficient means of
determining which users possessed capabilities to
which objects. Despite the open questions, it was
asserted that PSOS and its proven design could
implement a secure multilevel operating system.

Norm Hardy, Charlie Landau and Bill Frantz
designed the Great New Operating System In the Sky
(GNOSIS) [12] while at Tymshare, Inc. GNOSIS, unlike
PSOS, was commercially developed and implemented
a capability-based time sharing environment similar to
that of VM/370’s Cambridge Monitor System (CMS)
interface. Questions similar to those raised in PSOS
remained to be answered in GNOSIS and its successor
system KeyKOS.

2.6.3. Lee Panel, NBS 1978. The National Bureau of
Standards organized an invitational workshop on
standards for computer security and audit. One of its
panels focused on standardizing the assessment of
security controls in processors, operating systems and
nearby peripherals. This panel was chaired by Ted Lee,
with panelists Peter Neumann, Gerry Popek, Pete
Tasker, Steve Walker, and Clark Weissman [15].

The overall set of metrics divided into four aspects
of assurance features and four of protection
mechanism. These were displayed as sectors of a set of
concentric circles wherein the center circle represented
Null Confidence, and containing circles exhibited
greater assured protections.

The decompositions were:

1. ASSURANCE FEATURES
a. Hardware

i. Software Checks
ii. Hardware Fault Detection
iii. Design Correctness Formally Verified
iv. Fault Tolerant Hardware

b. Software
i. Formal Design Specifications
ii. Proven Design Specifications
iii. Design Correctness Formally Verified
iv. Verified Implementation

c. Development and Testing
i. Penetration Exercise
ii. Modern Programming Practices
iii. Automated Testing

d. Operation and Maintenance
i. Configuration Management
ii. Reverification Aids
iii. Read-Only Memory

2. PROTECTION MECHANISM
a. Prevention

i. Data Security Enforcement
ii. System Integrity
iii. Collusion Enforcement
iv. Sophisticated Threat (Denial of Service)

b. Detection
i. Audit Recording
ii. Security Officer Aids
iii. Detection Analysis

c. Authorization Granularity
i. Physical Devices
ii. Logical Devices
iii. Data Values

d. Policy Interface
i. Passwords
ii. Labels and Access Control Lists
iii. Security Administration Tools

These levels within these eight sectors were not

directly comparable as requirements. Rather, they
illustrated growing degrees of confidence in a system’s
security that would be gained along each of the
measures as additional requirements were satisfied
moving outwards along the sector’s axis from the Null
Confidence center. No evaluation methodology was
proposed.

2.6.4. Air Force Summer Study. Following the Miami
workshop, a month-long Air Force Summer Study in
Computer Security was conducted at the Draper Labs
in Cambridge, Massachusetts. Evaluation criteria and
methods were discussed at the Summer Study, along
with additional topics in database security, network
security, the utility of formal methods and other
assurance techniques. The Summer Study attracted the
active participation of security researchers, developers
and practitioners from the United States, Canada, the
United Kingdom, and Germany. Although much of the
Summer Study included status reports on a variety of
projects, it was mostly conducted as a workshop in
which ideas and proposals were voiced and discussed
at length.

Several spirited discussions raised controversies that
are yet to be resolved. These included: whether it is
possible to verify the security of a system built of
composed subsystems; whether it is possible to build a
secure multilevel database management system that
offers “full functionality”; and whether it is possible to
produce a “proof of correctness” for a system that will

be accepted as proof of security among the
mathematically sophisticated community [11]. The
database management security presentations and
discussions showed major problems from the use of
inference against the use of formulary-like data-
dependant access control policies. Dennis Tsichritsis
presented a damning indictment against least privilege
multilevel database management systems, such as the
Hinke-Schaefer model maligning them as “strait-jacket
DBMS”.

Participants in the evaluation criteria discussion
included Jack Adams (IBM); H.O. Lubbes (NRL); Pete
Tasker, Stan Ames and Grace Nibaldi (MITRE);
Christian Jahl (IABG, Germany); Clark Weissman and
me (SDC). The results of this set of discussions were
ripe for refinement.

2.6.5. The Nibaldi Report, 1979. Steve Walker, now
in the Office of the Secretary of Defense for C3I, tasked
MITRE to elaborate on the Lee Panel’s report’s
Security Metric. Grace Nibaldi produced a MITRE
technical report [20] in October 1979 in which seven
levels of protection were stated. These were:

0. No Protection: where there is no basis for

confidence in the system’s ability to protect
information.

1. Limited Controlled Sharing: where recognition of
some attempt to control access is given, but only
limited confidence in the viability of the controls is
indicated.

2. Extensive Mandatory Security: where minimal
requirements on the protection policy must be
satisfied; assurance is derived primarily from
attention to protection during the system design and
extensive testing.

3. Structured Protection Mechanism: where
additional confidence is gained through methodical
construction of the protection-related software
components of the operating system (i.e., the TCB
implementation), and modern programming
techniques.

4. Design Correspondence: formal methods are
employed to verify the design of the TCB
implementation.

5. Implementation Correspondence: where formal
methods are employed to verify the software
implementation of the design.

6. Object Code Analysis: where object code is
analyzed and the hardware support is strengthened.

Significantly, the Nibaldi report opens with a 15-
page tutorial section describing and going into issues of
“primary factors” (policy, mechanism, assurance) and

“supporting factors” such as ease of use and overall
functionality. Much of the lore characterizing the R&D
community’s state-of-the-art is presented in this
section, which includes nearly a page on denial of
service considerations. Additionally, confinement,
detection, coding and design methodologies, auditing,
and recovery are presented in an overview. The
Reference Monitor Concept is not enunciated, and the
term TCB is used in lieu of security kernel throughout
the report, and thus there are no explicit requirements
for minimization of either size or complexity of the
protection mechanism at the higher assurance levels.

Each of the six protection levels subsumed the
requirements of the prior level and had to satisfy
general criteria characterizing attributes of Protection
Policy, Specific Protection Mechanisms, and
Assurance. In addition, a section was provided to
address the “residual risk” associated with a
recommended operational environment deemed
appropriate for the system. The specific criteria are
presented in descriptive, rather than prescriptive, terms
based on the tutorial’s content. For example, the
treatment of storage channels from Level 4 reads:

A specific requirement of the system is that it be able
to audit the use of storage channels. These channels
might be detected as a result of the formal
verification techniques or by penetration analysis;
however, they may not be easily removed without
affecting the system in an adverse way. By imposing
restrictions on the way resources are being shared,
the system may no longer be allowed to use an
optimal algorithm for resource utilization. The use of
such channels can be detected with auditing
mechanisms, and the information obtained from the
auditing mechanisms can be analyzed later to find the
source and seriousness of the channels’ exploitation.

The Nibaldi proposal included the then

unachievable Level 6 criteria, which offered:

…a degree of confidence which is only imaginable
from today’s technology. Any threats at this level
would be a result of highly improbable hardware
errors, or, more likely, a failure in the personnel,
administrative, physical, or communications security
provisions…. At level 6, formal analysis of the object
code produced by the compiler is required.
Axiomatization of the underlying hardware base, and
formal verification of the security-relevant hardware
mechanisms, are also required. It is recognized,
however, that these requirements are beyond the
anticipated state-of-the-art of verification in the
1980s….

From the Pentagon, Steve Walker had put together a
few assorted teams of experts from academia and
industry with the intention of providing assistance to
vendors who were interested in developing trusted
products that could be used by the DoD. Ted Lee and I
participated in several of these efforts along with a
seasoned group of security practitioners like Pete
Tasker, John Woodward, Anne-Marie Claybrook,
Susan Rajunas, and Grace Nibaldi from MITRE
Bedford. Under nondisclosure agreements, the teams
were also performing ad hoc product “evaluations”
using the Nibaldi draft criteria.

One of the products under consideration didn’t
appear to fit Nibaldi’s working criteria at all well. This
was Tymshare Corporation’s capability-based Gnosis
system. Susan Rajunas, who had been leading the
evaluation, was particularly articulate about the Gnosis
design and strength of its mechanisms. But there were
numerous open questions about the definition of secure
state, of how one attained an initial secure state, how
individual accountability could be established in an
environment where capabilities were inscrutable, and
where possession of a capability could conceivably be
used by a Trojan horse. Rajunas was funded to
assemble a workshop to investigate assembling a set of
interpreted criteria for evaluating a trusted capability
base operating system.

I requested that Earl Boebert, who led a project to
develop a system based on PSOS, the Secure Ada
Target (SAT), write a paper for an NCSC Conference
showing that multilevel security confinement could not
be assured in a pure capability based operating
system.[4] A year earlier, Paul Karger had written a
paper [29] on a design that augmented capabilities to
overcome such intrinsic shortcomings.

About this time, I heard Butler Lampson’s
observation: “Capability based systems are the way of
the future—and they always will be.”

3. TCSEC publication

In February 1981, the Department of Defense
Computer Security Evaluation Center (DOD/CSEC)
was authorized under Directive 5215.1 and the DoD
Computer Security Center (DOD/CSC) was formed at
the National Security Agency (NSA) in July of that
year. Melville H. Klein and Colonel Roger Schell were
designated as Director and Deputy Director. The
Center grew from the DoD’s Computer Security
Initiative. The DoD was aware of the growing cost of
procuring and maintaining its special-purpose computer
systems—systems that became increasingly difficult to
maintain as manufacturers discontinued hardware lines
and developers moved on to new projects. Over time,

internals knowledge about these systems evaporated
and, critical as they may have been to the national
security, they became fragile and unreliable. Hence, the
Center was formed to implement the strategy of
encouraging the widespread availability of trusted
products produced and maintained by system vendors.
These trusted products would be evaluated gratis by the
Center and placed on an Evaluated Products List that
could be used by vendors in their advertising and by
procurement officers in their purchase specifications.

When I arrived as Chief Scientist early in April
1982, Dan Edwards was directing the Standards and
Products organization, with Mario Tinto responsible
for product evaluations; Steve Barnett directed the
Application Certifications organization.

3.1. The evolution of TCSEC drafts

Prior to my arrival at the Center, work had begun on
transforming the Nibaldi proposals into draft evaluation
criteria. Paragraphs characterizing selected
requirements had been written, and there was general
agreement as to a general feeling of what was salutary
and what was lacking among mechanisms and
assurance techniques. But, at best, there were more
open technical issues than resolved ones.

I had been unofficially involved in this
UNCLASSIFIED process while my clearance was being
finalized. Our writing group’s principal members were:
Roger Schell, Dan Edwards, Mario Tinto, Jim
Anderson, Pete Tasker, Grace Nibaldi, and myself.

3.1.1. First draft: powder blue. On my arrival at the
Center, we still lacked a unified document. The
previous week’s workshop on capability based systems
had failed to shed adequate light on how their
evaluation criteria could be structured. I received the
welcomed news that Sheila Brand was going to be
joining the Center, probably in May to lead the
Standards organization. I also learnt of a controversy
articulated by the MITRE Corporation over how
evaluation criteria should be structured. The Nibaldi
proposal consisted of a strictly-ordered set of seven
requirement-subsuming evaluation classes ranging from
no protection through attributes beyond the state of the
art. While Nibaldi’s work could be accepted as a
refinement of the Lee panel’s results, nearly 2-1/2 years
had passed since its publication, and critics observed
that the Lee panel had not prescribed a strict hierarchy
of fully subsuming levels.

A MITRE report written by Anne-Marie Claybrook
proposed that products be evaluated against criteria
drawn, by the product developer, from sets of policy,
mechanism and assurance requirements that are

perceived as desirable for an application. This was
described as following a “Chinese-Menu” approach.
There were many strong adherents to this position who
argued that not all requirements for, say Nibaldi Level
4 need apply to a multilevel transaction-only system
that is to operate in an environment that eliminates all
remote user capabilities. This proposal is not much
different from the contemporary trend that grew from
the German IT Security Criteria, the UK’s ITSEC, and
finally that of drawing “protection profiles” from the
Common Criteria. Many strong arguments were
presented on the value of flexibility that would come
from this approach, and the ability to tailor a system to
its envisioned use.

However, others argued that it would lead only to
confusion. Roger Schell was the strongest advocate of
preserving Nibaldi’s structure of a small number of
well-ordered levels. His rationale was based on his
years of experience in the DoD procurement process.
Put simply, procurement officers have expertise in
specifying purchases, not in performing comparative
assessments of which competing technical ideas best fit
a specific application. He argued that a procurement
officer needed to be presented with a strictly ordered
set of product characterizations that are keyed to the
security requirements under which an application
would operate. Thus, a procured system that would
have to operate in a remote-user environment with
CONFIDENTIAL through TOP SECRET data would
minimally have to have attained a specified (or higher)
degree of “certifiability”. This question could be
readily answered by having a frequently-updated
published Evaluated Products List from which to select
and qualify compliant trusted products.

The eloquence of Schell’s argument settled the
dispute. We agreed rapidly to argue requirement-by-
requirement among ourselves and to fit together seven
ordered levels of trusted systems criteria, plus one level
for products that failed to satisfy the requirements of
any level. To maintain our focus, Schell also suggested
that we select existing products or developments to
characterize each of the levels we were defining,
stressing the value of having worked engineering
examples for each evaluation class.

Finally, we agreed that we wanted to limit the
possibility of new intermediate evaluation classes being
introduced over time. We were particularly adamant on
there being no new classes added to water down the
minimum requirements for each of the obvious
divisions we had settled on. This called for a labeling
scheme that established minima for each of the four
major divisions we had envisioned: Minimal
Protection, Discretionary Protection; Mandatory
Protection; and Verified Protection. Dan Edwards

solved the problem by assigning evaluation classes a
digraph rating, patterned on bond ratings wherein the
divisions were ordered alphabetically with D<C<B<A
and the classes within a division were numbered in
increasing order of strength with a natural number. This
was done to preclude the introduction of a class less
restrictive than the entry level defined for the Division.

The initial class in each Division was intended to be
achievable by evolving a product that qualified for the
highest class in the preceding Division. This was not
expected to be easy, but we believed it would be
feasible. Hence, Class <C1> required principally the
addition of discretionary access controls to a seasoned
commercial product that could separate its users from
the operating system’s domain of execution. A <B1>
system, known to us as “MAC with Training Wheels”
would essentially be a <C2> product that performed
mediation and labeling on a defined subset of its users
and objects; and an <A1> product would essentially be
a <B3> product having a formal verified design.

The identified classes and identified worked
examples were, as drawn from our Final Draft [8]:

Class <D>: Common Practice. This evaluation class is
reserved for systems that have been evaluated and
failed to meet the requirements of a higher class.

Class <C1>: Discretionary Security Protection. This
class of systems has some form of mechanism
providing individual user authentication, provides
nominal discretionary access control among users and
data, and is self-protecting. Candidate: UNIX

Class <C2>: Controlled Access Protection. Systems
in this class have at least discretionary access control
enforced on users. The requirements of this class may
be met through the use of [a] security add-on or
security overlay package. The principal distinction
between Class <C2> and Class <C1> is that Class
<C2> requires individual accountability and security-
event auditing features. Candidate: RACF, ACF2 and
Secure add-on packages for IBM’s MVS/370.

Class <B1>: Labeled Security Protection. Class <B1>
systems provide mandatory security access control.
Discretionary access control suitable for DoD need-
to-know protection is provided. The notion of a well-
defined TCB appears even though a formal security
model is not required. Security marking of data is
required. Any serious flaws identified by penetration
testing have been removed. Candidate: GCOS,
security retrofitted third-generation operating system

Class <B2>: Structured Protection. In this class of
systems, mandatory security is extended to all objects
visible outside the TCB, and information flow control
and confinement channels are addressed. A model of
the security policy enforced by the TCB is required.
The TCB exhibits deliberate security structuring, and

stringent configuration management controls are
imposed. Authentication mechanisms are
strengthened, and features to support trusted facility
management are provided. Candidate: the commercial
version of Multics incorporating the Access Isolation
Mechanism (AIM) with class <B3> attention to
storage channels.

Class <B3>: Security Domains. The TCB of this class
of system supports a defined security model. The
principle of least privilege is pervasively applied
within the TCB in this class of system. All security
relevant code is clearly identified and the TCB is
structured to separate security relevant and non-
security relevant code into different domains.
Evidence that the TCB satisfies the reference monitor
requirements is required. Hardware protection or
some other form of very convincing argument is used
to show that any unexpected software event in a non-
security relevant domain cannot affect the software in
a security relevant domain. Candidate: the redesign of
Project Guardian Multics.

Class <A1>: Verified Design. The main
characteristics of systems in this class are that a
formal model exists, the top-level user interface of the
TCB has been formally specified, and the TCB has
been designed and developed in conjunction with
formal verification techniques and verified to satisfy
the model. Additional (non-verification) evidence is
required to show that the TCB fulfills the reference
monitor requirements. The facilities and procedures
for trusted distribution become requirements here. In
May 1982, this class of system appears to be just at
the state-of-the-art for practical implementations.
Candidate: Kernelized VM/370 (KVM), Kernelized
Secure Operating System (KSOS), Honeywell
SCOMP, and the Air Force’s SACDIN.
Class <A2>: Verified Implementation. Systems in
class <A2> use a formal machine checkable
methodology to assure that the actual
implementation of the system conforms to the
verified top-level specifications. Formal hardware
and firmware design and analysis become important,
to demonstrate that the reference monitor
requirements are met, as well as other development
environment attributes (e.g., compilers). In May
1982, this class of system appears to be well beyond
the state-of-the-art for practical implementations.
Candidate: [none was specified].

The writing style in this draft was imprecise and

descriptive. The draft explicitly stated that the
requirements were intended to apply both to general-
purpose and to embedded systems. As an example of
the draft criteria’s requirement wording style, the
storage channel requirement cited from Nibaldi’s Level

4 can be found scattered among requirements in Class
<B2>:

Flow Control The TCB of the class <B2> system
enforces information flow security (confinement).
Information flow security is applied to all objects that
are directly or indirectly visible outside the TCB.
Control objects (e.g., number of free disk pages) and
TCB responses (e.g., out of space) are included as
well as objects normally thought of as storage
objects.

Audit See class <B1>. In addition, mechanisms are
provided to record the use of channels that have been
shown to have an exploitable bandwidth greater than
some clearly identified small bandwidth.
Because of controversy in the community, the Draft

carefully avoided explicitly requiring the
implementation of a security kernel. However, even
without the wording, it was a clear objective that Class
<B3> systems implemented a security kernel in the full
minimal sense of the Anderson Study.

3.1.2. Community response. Well, we announced that
the first draft would be presented at the Computer
Security Initiative Seminar, and we got a packed house.
We naïvely assumed that we were close to getting it
right, and we requested written comments from the
participants. We set a tight review and publication
schedule, because developers wanted to have firm
criteria to work from as soon as possible. So the Draft
invited a first round of comments with a deadline of 1
July 1982, promising a second draft that responded to
these comments by 1 August. Anticipated comments
received by 1 September would be considered and the
final TCSEC would be published in October 1982.

We received a massive response, filling file-drawers
with industry and government comments! Sheila Brand,
newly arrived at the Center, was buried in
correspondence and in requests for visits to discuss the
Draft. There were complaints over the Draft’s
imprecise language as well as its organization. For the
most part, the cards and letters were politely supportive
of our effort, and offered constructively stated
reservations. We received several well reasoned
proposals for wording along with rationales. In the
Draft, the Criteria came last, following a prefatory
introduction and rationale. A majority of reviewers
stated they did not want to wade through our prose to
get to the requirements, which they wanted to come
first.

Potential users wanted each evaluation class’s
requirements to be self-contained. This would permit
the requirements for a single evaluation class to be
extracted and published in a procurement specification.
This added to the bulk of the TCSEC, but removed

internal cross-referencing. Additional requests came in
for a glossary of terms, for guidelines on testing, on
covert channels, and on configuring MAC features. The
issue of giving extra credit for providing features or
assurances beyond those required for a specific access
class was also raised.16

The group working most closely on the drafts and
comments included, in addition to Sheila Brand and
myself, close interaction with: Grace [Nibaldi]
Hammonds, Pete Tasker, Dan Edwards, Mario Tinto,
Roger Schell, Jim Anderson, Ted Lee, Steve Lipner,
Clark Weissman, Steve Walker, Larry Noble, Jim
Studer, Gene Epperly, Jeff Makey, Warren Shadle, and
me. David Bell provided strong contributions after he
joined the Center’s research organization. We later
came to realize that no practitioners of contractual law
were involved in the writing group’s activities or in the
formal review process.

Of necessity, our schedule slipped dramatically and
continually. Comments often turned into lobbying.
Developers wanted to ensure that their products would
get the best possible earned rating and helped greatly to
eliminate impossible or ambiguously-worded
requirements. A series of drafts was published. These
presented numbered lines and employed bold faced
insertions and strikeout deletions to help reviewers
make it through the growing document’s evolution.
Drafts were published on 15 November 1982 (white
cover), 15 January 1983, and a final Draft (in an ugly
Olive Drab cover) on 27 January 1983.

Brand maintained a growing file of comments and
how each was accommodated. Rejected comments
were noted as such and, depending on our perception
of the source’s credentials, justification for the decision
was written into the file and sent to the reviewer. Based
on the number of received comments, Brand insisted
that references to dominance in the security lattice be
replaced with explicit wording on the rules for reading
and modifying objects. This proved to be a decision
that aided readers unschooled in lattice theory and
which removed ambiguities the authors did not
perceive at the time.

The definition of Class (A2) persisted into January
1983. However, it was finally removed because it made
no sense to include a class whose requirements were
defined to be beyond the state of the art and that would
have to be redefined at some point if code-level formal
verification technology ever advanced to a practical
state. It was replaced by a page entitled “Beyond Class

16 Some of us opposed this practice on the grounds that

inclusion of some features without supportive assurances would
provide a vendor with meaningless hype for advertising a false sense
of security. The majority prevailed on this issue.

(A1)” that only gave a characterization of what might
be required for higher assurance.

The Final Draft begat a broader stream of
comments. Sheila Brand made a management decision
on resolving the last of the remaining open issues and
advised Mel Klein that the time had come to publish
CSC-STD-001-83, The Department of Defense Trusted
Computer System Evaluation Criteria. This appeared,
in a bright orange cover, with a Forward by Klein, on
15 August 1983. The new “Orange Book” weighed in
at 117 pages.

Several trusted products were being evaluated
against drafts of the Criteria during this period. At first,
vendors insisted that the draft version be identified
explicitly in their contract with the Center and
identified in the Final Evaluation Report. However, the
vendors later realized that evaluation against any but
the final published standard would be a mistake
because to do so would be to give the appearance of
failing to meet one or more of the “real” requirements.
So in reality, products were being evaluated against a
moving target during the period from early 1982
through 15 August 1983.

3.2. Lack of deeper understanding

We thought we understood what we were writing. We
also thought the community would understand what we
had written – or at least what we intended to have
written. That turned out not to be the case. Indeed, for
all our belief that we were writing with precision, only
experience could show that we weren’t.

We were fully dedicated to not introducing faddish
requirements and tried to justify each on the basis of an
identifiable need and technical justification. We paid
considerable attention to the entry-level criteria for
each division, intending to ensure that it would be
achievable from a well-designed product at the top of
the predecessor division. We also tried to limit the
nature of the hardest technical challenge in progressing
to evaluation classes by constraining our desire to add
additional requirements because of strong advocacy for
them. This attempt at following a discipline sometimes
led to an appearance of random placement of some
requirements.

An example of this is the placement of the first
change in the DAC requirement after Class (C2) (the
angle brackets morphed into parentheses after the
Powder Blue Draft). This requirement is introduced at
Class (B3)(!) and specifies (a) that there be access
control lists, (b) that there be support for both
individual and group access controls, and finally (c)
that “it shall be possible to specify a list of named
individuals and a list of groups of named individuals

for which no access to the object is to be given.” Why
at B3? Well, Dan Edwards produced the following
argument. By definition the requirement could not be
introduced at B1, because the rule for an entry-level
product would be just the addition of labeling of a
defined subset of named subjects and objects. It didn’t
make sense to add the requirement at B2 because of the
difficulty inherent in meeting the requirement to
control access between all subjects and all objects and
to address the more important covert channel issue and
strong penetration-resistance requirements. Given that
Class (A1) added the difficult formal specification and
formal covert channel analysis requirements which
were to be the only change from B3, we had the choice
of adding the requirement at C2 or B3 or not to add it
at all. We decided that audit was a hard enough
addition to the C1 requirement, and that narrowed the
choice to B3 or not at all.

3.2.1. DAC algebra. We found out later that we made
the wrong choice for Negative Access Control Lists (or
NACLs) as the requirement came to be called. We
either should not have added them or we should have
proposed a model showing the relationship between
ACLs and NACLs and submitted it to the community
for comment. In fact, we did not realize at the time that
there was an issue present for us to disagree on.

The problems we did not identify focused on
apparent contradictions between listings and
determining which takes precedence. E.g., if a name
appears both on a NACL and on an ACL, which takes
priority? What if the name is in a group that appears on
a NACL but the user’s name is explicit on an ACL for
the object? What if the user created the object, gave
herself full rights to the object, and creates its NACL as
well, but a system administrator (not knowing of the
NACL’s existence or its organization) then places this
user in a group that is on that particular NACL?

This problem came up a couple of times some years
after publication of the final DoD Standard 5200.28-
STD version of the TCSEC had been adapted. To my
knowledge, the issues were never satisfactorily
resolved.

3.2.2. Questions of “high-assurance” DAC. By
definition, discretionary access control conveys rights
between unlabeled (same access class) subjects and
objects. Consider a simple Trojan horse attack. If a
subject S can read A and modify B, then S can copy the
contents of A into B (if this is consistent with the
semantics of B, else S can encode A’s contents such
that they are compatible with B’s semantics). But what
if there exists a subject S´ who is explicitly listed on a
NACL for A or on an ACL for B? Has S violated the

access control policy? Or is the system required to
modify the access controls on B such that a NACL is
created on B that includes S´? If S has control access to
B, can S remove that NACL?

Now, under the MAC rules of the *-property,
copying the contents of A into B is prohibited unless A
and B are at compatible security levels. But is the
above transaction a violation of DAC that must be
closed at the B3 level? Is it an “obvious” flaw that must
be closed? Well… no! Because it is an intrinsic
property of information flow within an access class,
and it cannot be eliminated.

But this leads to a hard question that is sidestepped
in the TCSEC. When the derivable principles of
information theory and a security policy are in conflict,
which must take precedence? Similarly, when derivable
consequences of two aspects of a security policy are in
conflict, which much take precedence? To my shock, I
learned that some evaluators interpreted only to the
explicit wording of the TCSEC, however impossible
they might be in context, to take precedence over the
mathematical properties of information science.

The silence of the TCSEC on such points has led
new practitioners into making assumptions that an A1
system is “more secure” for single-level applications
than a C2 system. This is true (because of the ability of
a B2 or higher security architecture to fend off large
classes of penetration attacks that exploit architectural
or implementation flaws). But the full suite of
structural and formal A1 assurances has no effect on
information confinement within that single access class.
Indeed, without the TCB integrity and recovery
requirements, a single-level DAC-only implementation
of an A1 architecture could fall victim to many attacks
that are common in contemporary virus- or worm-
bearing e-mails.

3.2.3. Failed “worked” examples. The “worked
examples” identified in the Powder Blue Draft got
forgotten along the way. Indeed, RACF, the prototype
for C2 audit, failed to meet its own defining
requirement because IBM understood that its customers
wanted to have the ability to turn off audit to improve
performance in some system environments. The
consequence was that RACF became the only product
ever to be “awarded” a C1 rating. Bob Brotzman, then
Director of the NCSC, and I were more embarrassed
over the situation than IBM’s Tom Russell, to whom I
presented the C1 Certificate.

A trusted UNIX candidate for B1 or B2 would have
been automatically disqualified because its {Self,
Group, World} form of access control would fail to
meet even the C2 requirement on groups or named

individuals unless it limited its number of possible
users to a very small number.

Though satisfying all the security architecture and
formal verification requirements for A1, worked
examples KVM/370 and another A1 candidate trusted
VMM would also have failed. They were deficient in
the C2 individual accountability requirement and C1
individual discretionary access control requirement
because the security kernel within the virtual machine
monitor could not see how accesses were controlled
within multiuser virtual machines. Their evaluation
team wanted to insist that every virtual machine have
no more than a single human user. These products
would therefore have received a D rating, despite their
architectures and assurances.

3.2.4. Imprecise language. Other forms of imprecise
wordings plagued evaluators and developers alike.
Long position papers were written to address the
meaning of requirements such as the C2 System
Architecture requirement: “…Resources controlled by
the TCB may be a defined subset of the subjects and
objects in the ADP system. The TCB shall isolate the
resources to be protected so that they are subject to
the access control and auditing requirements.”
Seemingly, questions were invented that put
evaluations on hold for indefinite periods. For example,
“what are the rules for access by a subject not defined
to be under control of the TCB to an object defined to
be under control of the TCB?” “Should the TCB be
required to audit all accesses by subjects not under the
TCB’s control?” Decisions were postponed for months
at a time, at tremendous cost to trusted product
developers and evaluators, until there was near
unanimous agreement over interpretive topics as absurd
as these.

Similar problems showed up in the evaluations of
Multics (AIM) for B2 and the SCOMP for A1. True,
technical problems were detected and corrected in
these product evaluations, but tremendous time was
lost in attempts to resolve imprecisely stated evaluation
requirements.

3.3. Becoming a DoD standard

Shortly after the TCSEC’s August publication, a
movement was initiated within the Computer Security
Center to promulgate it as a DoD Standard. Doing so
was necessary in order to legitimize the Evaluated
Products List as part of the certification, accreditation,
and procurement processes.

This turned into a monumental effort. In order to
achieve this goal, the TCSEC needed to be acceptable
to the DoD’s many departments, services and agencies.

Copies of CSC-STD-001 were distributed for official
comment, and official comments came in a near tidal
wave.

Some agencies objected that promulgation of the
TCSEC would officially stifle research and
experimentation. Others were concerned over wording
that could have an adverse effect on their embedded
system applications. Portions of the intelligence
community objected that the TCSEC’s policies did not
directly support their multilevel classification and
caveat system of compartments, categories, warning
notices, and other dissemination and selective-
declassification controls. Because B1 was established
as the entry level into Division B, one agency insisted
on the inclusion of a new class, C3, that would support
their policy needs.

Many of us spent a summer and fall in sometimes
heated meetings with executives in the Pentagon and at
various agencies. Sheila Brand, Mario Tinto, Grant
Wagner, and I repeatedly found ourselves having to
explain and defend such TCSEC requirements as
closing high-bandwidth covert channel discovered in
analysis on the one hand and the lack of explicit
requirements to build in protections against deadlocks
and other denials of service.17 This is not to suggest
that the services and agencies concerns were trivial;
many were very sophisticated and few were frivolous.
Many comments came from a lack of knowledge or
understanding of the vocabulary of computer security
technology, understandable since this was largely an
arcane field in the 1980s.

More than one agency actively wanted to make the
TCSEC optional since there was “no validated
computer security threat” and it made no sense to build
in costly defenses where there was no validated
requirement. But the discussions were very time-
consuming and important to all parties, and policy
coördination is an intricate prolonged process.

Finally, and as a tribute to Sheila Brand’s skills and
dedication, Assistant Secretary of Defense (C3I)
Donald Latham signed off on the TCSEC as DoD
5200.28-STD on 26 December 1985.

4. TCSEC reconsidered

As discussed above, products and systems were
under evaluation while the TCSEC was going through
its drafts and coördination reviews. Many problems
were discovered. Some were fixed prior to the 15
August 1983 Standard’s publication. These

17 In addition to robustness largely being a research area, there

also were demonstrations that popular reliability algorithms
generally introduce exploitable covert channels.

modifications required consensus among the Center’s
management, senior staff, researchers and evaluators
(including contractual support staff from MITRE and
Aerospace Corporation and other consultants).
However, no changes were made unilaterally (i.e.,
based only on our own learning experiences) after 15
August 1983. This is because of the Center’s top
management’s decision that we needed to solidify
agreement among the services and agencies on existing
wording rather than for us to re-open issues that could
delay the TCSEC becoming a DoD Standard.
Defending criteria we knew to be flawed was a painful
and bitter pill many of us had to learn to swallow.

4.1. The education challenge

We had no way of knowing then that not enough of
what we thought was reduced to practice was reduced
to practice. It took publishing the TCSEC and trying to
perform evaluations for us to learn this. Simple terms
like module had very different meanings in different
communities and among professionals who learned
their trade in different decades. Those of us who had
extensive decadeant (sic) experience penetrating
systems had a very different appreciation for the
importance of certain structuring approaches than did
staff (or developers) who had never defeated a
protection mechanism or written a real-time I/O driver.

There weren’t many professionals in the United
States who had acquired years of experience working
in computer security technology. Many were employed
as researchers in universities, in a small number of
industrial or government defense research
organizations. A few were consultants. This meant that
the NCSC needed to institute an intense training
program for its evaluators and for developers in
industry.

We had intended that our evaluation teams would
show vendors creative approaches to solving or
working around architectural problems uncovered
during an developmental evaluation. For two reasons,
this happened rarely. One reason related to the legal
context of a representative of the Government advising
vs giving contractual direction to a contractor—even
though the vendors under evaluation were not
contractors.
A second problem of advice-giving was more complex.
Because the NCSC and its evaluation support
contractors hired young graduate computing science
graduates, we periodically received complaints from
vendors that our evaluators had less experience and
expertise than the developers whose efforts we were
evaluating. They viewed our evaluators as being too
“Ivory Tower” and “wet behind the ears” to give them

any useful pragmatic advice. So, yet another challenge
for our technical senior staff arose, this time requiring
diplomatic crisis management skills. We needed to find
an acceptable means of guiding the vendor and
evaluator toward a viable solution without making
either more defensive than they often were. This was a
skill I have never been accused of!

4.2. Send in the lawyers

Early on, Dan Edwards and Mario Tinto decided
that the evaluators would need to produce extensive
documentation of technical decisions they made during
the evaluation process. These decisions would be
likened to judicial case law.

For a while, various authors of the TCSEC were
asked what a given wording or term meant. It was
quickly discovered that we were individually not often
in close agreement on these concepts, even though we
did not think there was a question on the meaning when
we were writing the criteria. So evaluators soon learned
that something more than the memories of the authors
was needed if evaluations were to be performed
consistently.

Because of the TCSEC’s widely distributed
ambiguities and the unanticipatedly creative nature of
developers, the Center’s evaluators were almost
immediately faced with the need to make reasoned and
defensible decisions on how TCSEC requirements
would be applied to a given situation. This introduced
an intricate and time-consuming process known as
Criteria Interpretation.

It made good sense for interpretations to be
considered carefully prior to telling a vendor of a
decision. But the process that became part of NCSC-
lore made slow look fast in comparison. The average
interpretation process went through a number of
proposal, review, comment, revision, review and
publication phases that together took weeks to months
to years. The effect of this process on product
developers was devastating. Often, a product
development hinged on making a critical decision to
steer the architecture in one direction on another. A
wrong decision would be extremely costly to correct
later. But evaluation teams could furnish no advice (or
at least no advice that might not later be refuted) until
the interpretation process terminated.

There was one other unanticipated consequence of
interpretations being treated as case law. This became
known as criteria creep. It seemed that interpretations
always added new requirements rather than simply
clarifying existing ones. This practice effectively
extended the criteria that had to be satisfied by on-

going evaluations, and it added significantly to the cost
and time required to complete the evaluation process.

The result was very painful. I, and other seniors in
the Center, received angry communications from
vendors demanding a speedy decision. Evaluators
resented any intervention on our part, since we lacked
the context from which the evaluators were working—
and they did not want to have their authority undercut.

In at least two cases, those of an A1 and a B2
product evaluation, I took it upon myself to coerce
NCSC senior management to break a stalemate and to
accelerate the decision to grant or deny awarding an
evaluation rating to the product. The problem here was
that the evaluators had less guidance to work from to
decide that they had indeed performed all of the needed
validations and need not perform any more; and the
vendor needed to see some revenue from their trusted
product or to disband their development team. There
were also some occasions where the evaluation process
was so slow and mired down in interpretations that a
vendor killed a project because the hardware had
become obsolete.

4.3. Send in the lawyers

Another consequence of lengthy evaluations was
that the evaluated product was several maintenance
releases behind the commercially available product.
The NCSC needed to find a means of evaluating
incremental product evolutions without performing a
complete re-evaluation of the product. Ultimately, the
Ratings Maintenance Program (RAMP) came out of
this process for products in the lower evaluation
classes. Consensus was not reached during my tenure in
the Center on how RAMP could be applied to products
evaluated at or above the B2 level.

4.4. Rainbows

As interpretations came out, so also arose requests
for guidance on numerous topics ranging from
password selection to the algebra of DAC. So Sheila
Brand instituted a process of publishing booklets on a
range of evaluation-related topics. Even as the TCSEC
was being written, the late George Jelen raised the
question of how one could determine which evaluation
class was required for a given processing environment.
His scholarly dissertation [14] provoked many
animated discussions inside the Center. It resulted in
Roger Schell’s introduction of the risk range concept
and an algorithm for addressing Jelen’s question. This
was published as one of Brand’s Rainbow Series (so-
called because each volume’s cover had a unique

color). Many volumes in the Rainbow series were
scholarly and are still valuable.

As use of the TCSEC became more common,
additional questions provoked writing additional
volumes. The Rainbow series became something of a
self-perpetuating institution. Two definitive entries in
the Rainbow series, the Trusted Network Interpretation
(TNI) and the Trusted Database Interpretation (TDI)
were published to controversy over an intense writing
period. Each addressed portions of the problem of how
to apply the TCSEC to the construction of a multilevel
network or a multilevel database management system
(or vice versa). Sometimes divisive controversy
surrounded publication of each of these. Several of us
argued against publication of either on the grounds that
the state of knowledge for building multilevel networks
and database management systems was far less
developed than the theory and techniques behind
building monolithic trusted operating systems.

A somewhat disguised worked example of a
counterexample to an A1-compliant TNI architecture
was published by Schaefer, et al. in [23].

4.5. A1 is the answer; what was the question?

One unanticipated problem showed up as the
TCSEC was becoming accepted by the Military
departments and agencies. These came from the
procurement officers for whom we had insisted on the
simple seven-class structure. Simply put, once there
was a B2 product on the Evaluated Products List
(commercial Multics), a procurement officer balked at
the Air Force specifying a requirement for a B2 or
equivalent operating system. The procurement officer,
on learning that there was essentially no way for any
product other than Multics to comply with the
solicitation and its time limit, declared the requirement
to be anticompetitive. He refused to allow it.

The other unanticipated problem was likely intrinsic
to human nature. A large number of procurements and
development contracts came out specifying use of an
A1 product. At least one demanded an A2 product so
that it would not become obsolete! In many cases, the
systems would be operating in a closed environment at
system-high, so all users were assumed to be cleared
for almost all information on the machine. A B1
product would suffice for the application. But the
customers for these products wanted the very best
system money could buy, and not some inferior system
that failed to meet the highest military standards. We
found ourselves having to advocate the use of products
from lower levels of the EPL (particularly necessary at
the time, as there was not yet an entry above B2!).

Finally, there was customer resistance—often
intense resistance. Trusted systems were not known for
having user friendly interfaces. Consequences of the *-
property and simple security condition proved to be
confusing and frustrating to new users. This proved to
be embarrassing. We found it impossible to influence
the Center’s Director or most of its office chiefs to use
any commercial product that was listed on the EPL—
including the Center’s flagship B2 Dockmaster system
(Multics-AIM) or even the C2 Windows-NT during the
Center’s “C2 by 92” drive.

5. Reflections and lessons learned

Publication of the TCSEC was, in retrospect, an
important step in promoting research and development
of trusted operating systems. Vendors would resist
producing trusted systems unless they would be
evaluated against a published, established standard.
Beginning in the late 1970s, several funded and
commercial efforts were underway to produce trusted
systems or tools for the construction/verification of
trusted systems. So the TCSEC or something very
much like it needed to be published, and publication
needed to happen no later than the 1980s.

Unfortunately, there was a shortage of adequately
educated and experienced developers of trusted
operating systems. While there were several laboratory
prototypes, only Multics (AIM) had a developed user
community, and Multics was the only robust security
product on the open market. Multics provided both
multilevel security capabilities and a structured set of
advanced integrity controls. But it was not widely
available, its hardware base was not as popular as the
less costly IBM or DEC mainframes, and its user
interface was not as friendly as the increasingly
popular, but vulnerable, UNIX.

Unfortunate, also, was the consequence of the lack
of experienced trusted system developers who were
willing and able to be evaluators. Many wanted to
create a product rather than to “look over someone
else’s shoulder.” The lengthy and overly cautious
evaluation and interpretation process ended up killing
off vendor participation and trusted product
development. This was largely because of the
uncertainty of the costs and time associated with
getting a product evaluated.

We failed to think of asking experienced
procurement officers to review our wording, and no
one aggressively thought of making sure that we had
written a sufficient and complete glossary of technical
terms and concepts. Indeed, the TCSEC’s glossary was
something of an afterthought, and it was not given the
careful attention that the main body of the text was

given. This oversight was a significant cause of the
lengthy interpretation process.

Another significant problem was our neglecting to
write down what we considered to be obvious: the fact
that we, the principal authors, did not consider all
features and assurances to be created equal. In a bad
paraphrase of George Orwell, “Some assurances are
more equal than others.” Had we stated, e.g., that
individual accountability under DAC is less significant
than assured individual accountability under MAC,
many bitter and divisive diversions would have been
avoided – and possibly more A1 products would have
been produced.

I do not question the wisdom of our decision to limit
the TCSEC to its seven all-or-nothing classes rather
than taking the Chinese-menu approach that was
advocated at the time. I think this was the right thing to
do. In that sense, I consider the TCSEC to be an
improvement over the criteria created afterwards,
particularly the swollen and confusing Common
Criteria with its extensible myriad of Protection
Profiles and I think it is harmful to “roll your own if
you don’t like what’s there.” True, this puts the
interpretation in front of the evaluation, but it also has
the capacity of producing a huge number of slightly
different policies or assurances that will be very
difficult for sophisticated consumers to compare or
accurately comprehend.

I am very much bothered by the way the industry
has moved. Today, a generation after the début of the
DoD Computer Security Initiative and the publication
of the TCSEC, there are essentially no commercially
available trusted systems in use offering protection
equivalent to a equivalent to a B2 Multics or the A1 M-
component GEMSOS. [30]

Instead, there are bloated, untested, feature-laden
interoperating untrustworthy less-than-C2 products that
are self-penetrating. Their alleged kernels consist of
millions of lines of highly privileged code written by
teams of people who’ve never met their coding
counterparts. The illusion of system security is
provided by software encryption algorithms that can
often be coaxed to reveal their keys to a skilled
interloper. Add-on security gadgetry in the form of
pattern-matching virus scanners and restrictive
firewalls belie the vendors’ claims of mature security
architectures. And, of course, the periodic
announcement of urgent several megabyte security
patches only emphasizes the tawdry state of today’s
commercial offerings.

Never has compromising a system been easier!
Never have so many effective penetration tools been
provided off-the-shelf by the vendor to the would-be
interloper!

Also, one cannot but comment adversely on the
current issue of electronic touch-screen voting systems.
In at least one state, Maryland, the only legal way to
vote is on a system that uses cryptography for some
aspects of secrecy, but which is implemented on a
version of Windows CE – a foundation that would not
meet the unexacting standards of the TCSEC C1 class.
Attacks against Windows operating system variants are
common place, and the vendor’s flagship C2 systems
(NT and 2000) require regular security patching
because of Internet Malware, with no one questioning
the presence of its gaping Active Desktop and other
inviting security vulnerabilities. Several security
studies were conducted that identified voting system
security flaws, and of these several could be exploited
through a prepared attack. The fact that there is no
permanent and immutable audit trail and recovery
system has been discussed and dismissed by the
manufacturer and by the state election board.18 Most
recently, the Maryland court system has dismissed
concerns over the machines’ security on the grounds
that the system is not going to be connected to hackers,
need not to withstand “military style attacks,” and so
where is the security threat? Surely, no one would want
to invest expensive technical effort into controlling the
results of a national election! O where have we heard
these questions before?!

The TCSEC was written and emended by the skilled
computer security practitioners of the late 1970s and
early 1980s. The derivative criteria, though written by
large committees of skilled personnel, reflect the fact
that they were written by committee, and with the goal
of harmonizing protection philosophies rather than
establishing more focused requirements and guidelines.

It is doubtful that any vendor is going to produce a
completely new operating system in the current
internetworked environment. For commercial viability,
it appears that operating systems need to accommodate
everything from real-time wireless gaming to play-on-
demand multimedia presentations. With technology
moving computer usage away from previous trends
(i.e., computation and data processing), it appears that
a new paradigm is needed for security engineering in
today’s environment. Back to basics just doesn’t seem
to be practicable any more.

And one can legitimately ask whether there is yet a
perceived, validated security requirement.

18 One excuse I’ve seen in print claims that even if there were a

need for a secured voting system and/or hard copy backup ballot,
there is no standard or Protection Profile for either.

6. Acknowledgement

Many people encouraged and helped with the
writing of this paper. I would like to thank Dan
Thomsen, LouAnna Notargiacomo, Steve Greenwald,
and Ken Olthoff for their continuing encouragement
and critiques in taking on this task from the cozy
pastures of retirement. In particular, I am particularly
indebted to LouAnna, who took extraordinary steps to
ensure the paper’s timely completion. I received
valuable assistance in reconstructing the past from Rich
Graubart, Ronda Henning, Paul Karger, Ted Lee, Peter
Neumann, Roger Schell, and Tom van Vleck. Thank
you, dear friends!

7. References

[1] Abbott, Bob, J. Chin, J. Donnelley, W. Konigsford,
S. Tokubo, and D. Webb, “Security Analysis and
Enhancements of Computer Operating Systems,”
Technical Report NBSIR 76-1041, ICET, National
Bureau of Standards, 1976.

[2] Anderson, James. P., Computer Security Planning
Study, Electronic Systems Division, USAF Report
ESD-TR-73-51 in two volumes.

[3] Bell, D. Elliott, and L. J. LaPadula, “Secure
Computer System: Unified Exposition and Multics
Interpretation,” Tech. Report MTR-2997 Rev 1,
MITRE Corp., March 1975.

[4] Boebert, Earl, “On the Inability of an Unmodified
Capability Machine to Enforce the *-Property,” Proc.
7th DOD/NBS Computer Security Conf., 1984.

[5] Brand, Sheila, ed., Trusted Computer System
Evaluation Criteria, Final Draft, 27 January 1983, 109
pp. as C1-FEB- 83- S3-25366. DoD Computer Security
Center.

[6] Corbató, F. J., and V. A. Vyssotsky, “Introduction
and Overview of the Multics System”, 1965 Fall Joint
Computer Conference.

[7] Department of Defense, Trusted Computer System
Evaluation Criteria, DoD 5200.28-STD, 26 December
1985.

[8] DoD Computer Security Center, Trusted Computer
System Evaluation Criteria, Draft, 24 May 1982, 43
pp.

[9] DoD Computer Security Center, Trusted Computer
System Evaluation Criteria, 15 August 1983, 117 pp,
as CSC-STD-001-83.

[10] Harrison, M., W. Ruzzo, and J. Ullman,
“Protection in Operating Systems,”, Comm. ACM, vol.
19, no. 8, 1977.

[11] Demillo, R.A., R. J. Lipton, A. J. Perlis, “Social
Processes and Proofs of Theorems and Programs,”
Comm. ACM, Vol. 22, No. 5, 1979.

[12] Frantz, Bill, Norm Hardy, Jay Jonekait, Charlie
Landau, GNOSIS: A Prototype Operating System for
the 1990’s, Tymshare, Inc., 1979.

[13] Graham, G.S. and P.J. Denning, “Protection –
Principles and Practice,” Spring Joint Computer
Conference, AFIPS Conf. Proc., 1972.

[14] Jelen, George F., Information Security: an Elusive
Goal, Program on Information Resources Policy,
Harvard University Center for Information Policy
Research, April 1984.

[15] Lee, Theodore M. P., “Processors, Operating
Systems and Nearby Peripherals: A Consensus
Report,” appearing as Section 8 of Ruthberg, op. cit.,
1980.

[16] Lipner, Stephen B., A Comment on the
Confinement Problem, Proc. 6th Symp. Operating
Systems Principles, 1975

[17] McLean, John, “Reasoning About Security
Models,” Proc 1987 IEEE Symp. Security and Privacy,
Apr. 1987.

[18] Millen, Jonathan K., “Security Kernel Validation
in Practice,” Comm. ACM, vol. 19, no. 5 (May 1976),
pp. 243-250.

[19] Neumann, Peter, Larry Robinson, Karl Levitt, R.S.
Boyer, and A.R. Saxena, “A Provably Secure
Operating System: Final Report,” Stanford Research
Institute Report, June 1975.

[20] Nibaldi, Grace H[ammond], Proposed Technical
Evaluation Criteria for Trusted Computer Systems,
MITRE Report, M-79-225, 25 October 1979.

[21] Ruthberg, Zella, Audit and Evaluation of
Computer Security II: System Vulnerabilities and

Controls, NBS Special Publication No 500-57,
MD78733, April 1980.

[22] Schaefer, Marvin., “Symbol Security Condition
Considered Harmful,” Proceedings 1989 IEEE
Computer Society Symposium on Security and Privacy,
pp. 20-46, May 1-3, 1989.

[23] Schaefer, Marvin, W. C. Barker, C. P. Pfleeger,
“Tea and I: an Allergy,” Proceedings 1989 IEEE
Computer Society Symposium on Security and Privacy,
pp. 178-182, May 1-3, 1989.

[24] Schaefer, Marvin, R. R. Linde, et al., “Program
Confinement in KVM/370,” in Proc. ACM National
Conference, Seattle, October, 1997.

[25] Vyssotsky, V.A., F. J. Corbató, and R.M. Graham,
“Structure of the Multics Supervisor.”, AFIPS Conf
Proc., vol. 27, part I, 1965.

[26] Walter, K. G, W. Ogden, F. Bradshaw, S. Ames,
and D. Shumway, “Primitive Models for Computer
Security, ESD-TR-74-117, Air Force ESD, Hanscom
AFB, Mass, 1974.

[27] Ware, Willis H., ed. Security Controls for
Computer Systems: Report of Defense Science Board
Task Force on Computer Security, R-609-1, reissued
by the RAND Corporation, 1979

[28] Weissman, Clark. Security Controls in the ADEPT-
50 Time Sharing System. In AFIPS Conference
Proceedings, volume 35, New Jersey, 1969.

[29] Karger, P.A. and A.J. Herbert. “An Augmented
Capability Architecture to Support Lattice Security and
Traceability of Access”. in Proceedings of the 1984
Symposium on Security and Privacy,. pp. 2-12, 29
April - 2 May 1984.

[30] National Security Agency Trusted Product
Evaluation Report, Gemini Trusted Network Processor
(GTNP), available at http://www.radium.
ncsc.mil/-tpep/epl/entries/CSC-EPL-
94-008.html

