
Security controls in the ADEPT-50 
time-sharing system 

by C. WEISSMAN 

System Development Corporation 
Santa Monica, California 

"Authority intoxicates/And makes mere 
sots of magistrates"—Butler 

FOREWORD 

At present, the system described in this paper has not 
been approved by the Department of Defense for 
processing classified information. This paper does not 
represent DOD policy regarding industrial application 
of time- or resource-sharing of EDP equipment. 

INTRODUCTION 

Computer-based, resource sharing systems are, and 
contain, things of value; therefore, they should be 
protected. The valuables are the information data 
bases, the processes that manipulate them, and the 
physical plant, equipment, and personnel that form the 
system plexus. An extensive lore is developing on the 
subject of system protection.1-2 Petersen and Turn8 

discuss in considerable detail the substance of protection 
of non-military information systems in terms of threats 
and countermeasures. Ware4,5 contrasts "security" and 
"privacy" for viewing protection in militarys ystems as 
well. This paper describes the security controls imple
mented in the ADEPT-50 time-sharing system6—a re
source sharing system designed to handle sensitive 
information in classified government and military 
facilities.* 

Our approach to security control is based on a set 

* Development of ADEPT was supported in part by the Ad
vanced Research Projects Agency of the Department of Defense. 

theoretic model of access rights. This approach appears 
natural, since the important objects of security are sets 
of things—users, terminals, programs, files-—and the 
operators of set theory—membership, intersection, 
union—are easily programmed for, and quickly per
formed by, computer. The formal model defines 
time-sharing security control of user, terminal, job and 
file security objects in terms of equations of access based 
upon their security profiles—a triplet of Authority, 
Category, and Franchise property sets. The correspond
ence of these properties to government and military 
Classification, Compartments, and Need-to-Know is 
demonstrated. Implementation of the model in the 
ADEPT-50 Time-Sharing System is described in detail, 
as are features that transcend the model including 
initialization of the security profiles, the LOGIN 
decision procedure, system integrity checks, security 
residue control, and security audit trails. Other novel 
features of ADEPT security control are detailed and 
include: automatic file classification based upon the 
cumulative security history of referenced files; the 
"security umbrella" of the ADEPT job; and once-only 
passwords. The paper concludes with a recapitulation 
of the goals of ADEPT security control, approximate 
costs of implementation and operation of the security 
controls, and suggested extensions and improvements. 

Historically, protection of a sensitive computer 
facility has been attained by limiting physical access to 
the computer room and shielding the computer complex 

119 



120 Fall Joint Computer Conference, 1969 

from electromagnetic radiation. This "sheltered" 
approach promotes one-at-a-time, batch usage of the 
facility. Modern hardware and software technology has 
moved forward to more powerful and cost/effective 
time-shared, multi-access, multiprogrammed systems. 
However, three features of such systems pose a challenge 
to the sheltered mode of protection: (1) concurrent 
multiple users with different access rights operating 
remote from the shielded room; (2) multiple programs 
with different access rights co-resident in memory; and 
(3) multiple files of different data sensitivities simul
taneously accessible. These features appear to violate 
traditional methods of accountability based upon a 
single user (or multiple users with like clearances) 
operating within strictly controlled facilities. The 
problem is of such magnitude that no time-sharing 
system has yet been certified for use in the manner 
described! However, some multi-access systems are in 
operation in a classified mode,7-8 and a number of 
design approaches have been suggested.9,10'11,12 

In addition to the usual goal of building an effective 
time-sharing system,18 the ADEPT project began with a 
number of security objectives as well: 

1. Build a security control mechanism that supports 
heterogeneous levels and types of classifications. 

2. Design the security control mechanism in such a 
manner that it is itself unclassified until primed 
by security configuration parameters, a point 
strongly supported by Baran14 regarding com-
municatons security. 

3. Construct the security control mechanism as an 
isolated portion of the total time-sharing system 
so that it may be carefully scrutinized for 
correctness, completeness, and reliability. 

4. Do the above in as frugal a manner as possible, 
considering costs to design, fabricate, and 
operate. Good system performance is our prin
cipal criterion in selecting among alternative 
technical solutions, as noted by the author 
elsewhere.15 

In approaching our task, we recognize security as a 
total system problem involving hardware, communica
tion, personnel, and software safeguards. However, our 
focus is primarily on monitor software, and its interfaces 
with the other areas. This view is not parochial: our 
hardware is a standard IBM 360 model 50; communica
tion security is an established field of study with 
considerable technological know-how;14 and the policy, 
doctrine, and procedures for personnel behavior in 
classified environments are extensive, with legal founda

tions. Thus, our only degree of freedom is the control we 
build into the time-sharing executive software. 

A security control formalism 

A formal model of software security control for access 
to sensitive portions of ADEPT is developed here. 

Security objects 

Four kinds of security objects are to be managed by 
our model: user, terminal, job, and file. Let u denote 
some user; t some terminal; j some job; and /some file. 

Security properties 

Each security object is described by a security profile 
that is an ordered triplet of security properties—Au
thority (A), Category (C), and Franchise (F). Authority 
is a set of hierarchically ordered security jurisdictions. 
Category is a set of discrete security jurisdictions. 
Franchise is a set of users licensed with privileged 
security jurisdiction. 

The property "Authority" is defined as a set A, where 

A = {a0 < a1 < , • • • , < aw} (1) 

and the specific members, a*, of the set are security 
jurisdictions hierarchically ordered. 
"Category" is a discrete set of specific compartments, c*, 

C = {c°,cS . . . , c * } (2) 

Compartments are mutually exclusive security sanc
tuaries with discrete jurisdictions. 
"Franchise" is a security jurisdiction privileged to a 
given set of users, i.e., 

F = {u|u is a user} (3; 

For a given terminal, t, let a given Authority set, A, 
be denoted by At, or in general, let a given security 
object, a, denote a given property, P, for a as P a . Hence 
we can speak of A«, or Cy, etc., to mean the specific 
Authority set for a given user, u, or the specific Category 
set for a given job, j , respectively. 

Four important sets (of users) arise with respect to 
the Franchise property, namely, Franchise; for files, 
terminals, jobs, and users. To distinguish the sense in 
which a given user is being considered, we subscript u 
by the security object under consideration. Hence, u/ 
means the user with jurisdiction to file / ; u« and Uj are 
similarly defined. For completeness, we define uu as 



Security Controls in ADEPT-50 Time-Sharing System 121 

simply u. We can now define Franchise for each 
security object. 

CM = Ch(e - 1) U CI e > 0 (14) 

F„ = Jul 

F , = { u t u j , . - . - , ^ } 

F , = {u?,u}, . . . , u^} 

(4) 

(5) 

(6) 

(7) 

Equation (4) states that the Franchise for a user is 
restricted to himself; his jurisdiction is unique, and no 
other user is so endowed. Equation (5) states that the 
terminal Franchise is possessed by X different users who 
have jurisdiction over the terminal t. Likewise, equa
tions (6) and (7) define the job and file Franchise sets. 

In security discussions, one hears the familiar phrase, 
"he needs a higher-level clearance." We can now define 
"higher level" with our model. 

Let a and /3 be security objects and let p be some 
function such that p(Aa)eA. 
Then, 

Aa > Ap <-• p(A a) > p(Ap) 

C „ > C ^ C a D C ^ 

F « > * > F„ => F, 

(8) 

(9) 

(10) 

Equation (8) claims that the Authority of a security 
object, A a is at a "higher level" than another security 
object A^ when the specific authority, aa is greater than 
the specific authority, a^. 

I t is implicit in equations (1) and (8) that the specific 
authorities, a{, must be numerically encoded for the 
magnitude relationships to hold. Equations (9) and (10) 
define P a to be greater than P^ if and only if P^ is a 
subset of P a . 

Events may alter the membership of property sets. 
Let P} be the eth P / in a given context. 

Define the Authority history, Ah, at the eth event as 

A»(0) = Ekf (11) 

AM = max (Ah(e — 1), P(A})), e > 0 (12) 

Likewise, define the Category history Ch, at the eth 
event* i=t 

Equations (11) through (14) recursively define two 
useful sets that accumulate a history of file references as 
a function of file reference events, e. A history of the 
highest Authority, Ah, is defined by equation (12) as 
either the previous set, Ah(e — 1), or the current set, 
p(Ap, whichever is larger in the sense of equation (8). 
Equation (11) gives the initial condition as some low 
specific file authority, a°. Equation (14) defines the 
highest Category history as the union of the previous 
set, Ch(e — 1), and the current set, C*; while equation 
(13) states that the union is initially the empty set. 

Though Fh could be defined in our model, no need is 
seen at this time for a Franchise history. More will be 
said about these history sets later. 

Property determination 

Table I presents in a 3 X 4 matrix a summary of the 
rules for determining the security profile triplets, P a . 
We shall examine these rules here. For the user u, 
Au and Cu are given constants, and Fw is given by 
equation (4). For the terminal t, At and Ct are given 
constants, and Ft is given by equation (5). Given Au and 
At, we determine Ay as: 

min (A„, At) (15) 

L'kewise, given C„ and Ct, we determine C,- as: 

c y = cM n ct (16) 

Equation (6) gives F, to complete the job security 
profile triplet. 

An existing file has its security profile predetermined 
with A/ and Cf as given constants, and Ff as given by 
equation (7). However, a new file—one just created— 
derives its security profile from the job's file access 
history according to the following: 

A/ = Afc(e) 

C , = Ch(e) 

Ff = u!-

(17) 

(18) 

(19) 

C*(0) = 0 (13) 

From equations (11) through (14) we see how the 
Authority and Category histories accumulate as a 
function of event e. These events are the specific times 
when files are accessed by a job. To maintain security 



122 Fall Joint Computer Conference, 1969 

TABLE I—Security property determination matrix 

Property 
Object 

Authority 
A 

Category 
C 

File, f 
Existing file 

Given Constant 
Existing file 

Given Constant 

New file New file 
maxl(A(»e-l), p(Af)), e > 0 Ch(e - 1) U Cf, e > 0 

Franchise 
F 

User, u 

Terminal, t 

Job, j 

Given Constant 

Given Constant 

min(Aw At) 

Given Constant 

Given Constant 

cM^c< 

u 

i4 

u} 

integrity, these histories can never exceed (i.e., be 
greater than) the job security profile. This is specified as, 

AA(OO) —> A; 

Cfc(°o)->Gy 

(20) 

(21) 

For e=» 0, we see the properties initialized to their 
simplest form. However, as e gets large, the histories 
accumulate, but never exceed thej upper limit set by the 
job. Ah(e) and Ch(e) are important new concepts, 
discussed in further detail lateri We speak of them, 
affectionately, as the security "high-water mark," with 
analogy to the bath tub ring that marks the highest 
water level attained. 

The Franchise of a new file is always obtained from 
the Franchise of the job given by equation (6). When 
% = M = 0, the job is controlled by| the single user uy who 
becomes the owner and creator of the file w^th the sole 
Franchise for the file. 

Access control 

Our model is now rich enough to express the equations 
of access control. We wish to contlrol access by a user to 
the system, to a terminal, and to a file. Access is granted 
to the system if and only if 

ueU (22) 

where U is the set of all sanctioned users known to the 
system. 
Access is granted to a terminal if land only if 

u e Ft (23) 

If equations (22) and (23) hold, then by definition 

u = u t = Uy (24) 

Access is granted to a file if and only if 

Py > P / (25) 

for properties A and C according to equations (8) and 
(9), and 

Uy 6 F / (26) 

If equations (25) and (26) hold, then access is granted 
and Aft(e) and Ch(e) are calculated by equations (12) 
and (14). 

Model interpretation 

Three different dimensions for restricting access to 
sensitive information and information processes are 
possible with the security profile triplet. The generality 
of this technique has considerable application to public 
and military systems. For the system of interest, 
however, the Authority property corresponds to the Top 
Secret, Secret, etc., levels of government and military 
security Category corresponds to the host of special 
control compartments used to restrict access by project 
and area; such as those of the Intelligence and Atomic 
Energv communities; and the Franchise property 
corresponds to access sanctioned on the basis of 



Security Controls in ADEPT-50 Time-Sharing System 123 

need-to-know. With this interpretation, the popular 
security terms "classification" and "clearance" can be 
defined by our model ii the same dimensions—as a 
min/max test on the security piofile triplet. Classifica
tion is attached to a security object to designate the 
minimum security profile required for access, whereas 
clearance grants to a security object the maximum 
security profile it has permission to exercise. Thus, legal 
access obtains if the clearance is greater than or equal 
to the classification, i.e., if equation (25) holds. 

Another observation on the model is the "job 
umbrella" concept implied by equations (22) through 
(26); i.e., the derived clearance of the job (not the-
clearance of the user) is used as the security control 
triplet for file access. The job umbrella spreads a 
homogeneous clearance to normalize access to a 
heterogeneous assortment of program and data files. 
This simplifies the problem of control in a multi-level 
security system. Also note how the job umbrella's 
Irgh-water mark (equations (11) through (14)) is used 
to automatically classify new files (equations (17) and 
(18)); this subject is discussed further below. 

A final observation on the model is its application of 
need-to-know to terminal access, equation (23). This 
feature allows terminals to be restricted to special 
people and/or special groups for greater control of 
personnel inteifaces—i.e., systems programmers, com
puter operators, etc. 

Security control implementation 

The selection of a set theoretic model of security 
control was not fortuitous, but a deliberate choice biased 
toward computational efficiency and ease of implemen
tation. I t permits the clean separation and isolation of 
security control code from the security control data, 
which enables ADEPT'S security mechanisms to be 
openly discussed and still remain safe—a point advo
cated by others.14-16 We achieve this safety by "arming" 
the system with security control data only once at 
start-up time by the SYSLOG procedure discussed later. 
Also, the model improves the credibility of the security 
system, enhancing its understanding and thereby pro
moting its certification. 

Security objects: Identity and structure 

Each security object has a unique identification (ID) 
within the system such that it can be managed individu
ally. The form of the ID depends upon the security-
object type; the syntax of each is given below. 

User identification 

For generality of definition, each user is uniquely 
identified by his user:id, which must be less than 13 
characters with no embedded blanks. 

The user:id can be any meaningful encoding for the 
local installation. For example, it can be the individual's 
Social Security number, his military serial number, his 
last name (if unique and less than 13 characters), or 
some local installation man-number convention. The set 
of all user:ids constitutes the universal set, U. 

Terminal identification 

AH peripheral devices in ADEPT are identified 
uniquely by their IBM 360 device addresses. Besides 
interactive terminals, this includes disc drives, tape 
drives, line printer, card reader-punch, drums, and 1052 
keyboard. Therefore, terminal:id must be a two-digit 
hexadecimal number corresponding to the unit address 
of the device. 

Job identification 

ADEPT consists of two parts: the Basic Executive 
(BASEX), which handles the allocation and scheduling 
of hardware resources, and the Extended Executive 
(EXEX), which interfaces user programs with BASEX. 
ADEPT is designed to operate itself and user programs 
as a set of 4096-byte pages. BASEX is identified as 
certain pages that are fixed in main core, whereas EXEX 
and user programs are identified as sets of pages that 
move dynamically between main and swap memory. 
A set of user programs are identified as a job, with page 
sets for each program (the program map) described in 
the job's environment area, i.e., the job's "state tables." 
Every job in ADEPT has an environment area that 
is swapped with the job. I t contains dynamic system 
bookkeeping information pertinent to the job, including 
the contents of the machine registers (saved when the 
job is swapped out), internal file and I /O control tables, 
a map of all the program's pages on drum, user:id, and 
the job security control parameters. The environment 
page(s) are memory-protected against reading and 
writing by user programs, as they are really swappable 
extensions of the monitor's tables. 

The job:id is then a transitory internal parameter 
which changes with each user entrance and exit from the 
system. The job:id is a relative core memory address 
used by the executive as a major index into central 
system tables. I t is mapped into an external two-digit 
number that is typed to the user in response to a 
successful LOGIN. 



124 Fall Joint Computer Conference, 1969 

File identification 

ADEPT'S file system is quite rich in the variety of 
file types, file organization, and equipment permitted. 
There are two file types: temporary and permanent. 

Temporary files are transitory "scratch" disc files, 
which disappear from the system!inventory when their 
parent job exits from the system. They are always 
placed on resident system volumes, and are private to 
the program that created them. 

Permanent files constitute the majority of files 
cataloged by the system. Their permanence derives from 
the fact that they remain inventoried, cataloged, and 
available even after the job that created or last refer
enced them is no longer present, and even if they are not 
being used. Permanent files may be placed by the user 
on resident system volumes or on demountable private 
volumes. 

There are six file organizations from which a user may 
select to structure the records of his file: Physical-
sequential, SI; non-formatted,S2; index-sequential, S3; 
partitioned, S4; multiple volume fixed record, S5; and 
single volume fixed record, S9. Regardless of the 
organization of the records, ADEPT manages them as a 
collection, called a file. Thus, security control is at the 
file level only, unlike more definitive schemes of 
sub-element control.8,10-12 

All the control information of a file that describes 
type, organization, physical storage' location, date of 
creation, and security is distinct from the data records 
of the file, and is the catalog of the file. 

All cataloged ADEPT files are uniquely identified by 
a four-part name; each part has various options and 
defaults (system assumptions). This name, the file:id, 
has the following form: 

fileiid :: = name, form, user:id, volumeiid 

Name is a user-generated character string of up to 
eight characters with no embedded blanks. I t must be 
unique on a private volume as well as for Public files 
(described below). 

Form is a descriptor of the internal coding of a file. 
Up to 256 encodings are possible, although only these 
seven are currently applicable: 

1 = 
2 = 
3 = 
4 = 
5 = 
6 = 
7 = 

binary data 
relocatable program 
non-relocatable program 
card images 
catalog 
DLO (Decayed Output) 
line images 

Vseriid corresponds to the owner of the file, i.e., the 
creator of the file. 

Volume:id is the unique file storage device (tape, disc, 
disc pack, etc.) on which the file resides. For various 
reasons, including reliability, ADEPT file inventories 
are distributed across the available storage media, 
rather than centralized on, one particular volume. Thus, 
all files on a given disc volume are inventoried on 
that volume. 

Security properties: Encoding and structure 

Implementation of the security properties in ADEPT 
is not uniform across the security objects as suggested 
by our model, particularly the Franchise property. Lack 
of uniformity, brought about by real-world considera
tions, is not a liability of the system but a reflection of 
the simplicity of the model. Extensions to the model are 
developed here in accordance with that actually 
implemented in ADEPT. 

Authority 

Authority is fixed at four levels (to = 3 for equation 
(1)) in ADEPT, specifically, UNCLASSIFIED, CON
FIDENTIAL, SECRET, and TOP SECRET in 
accordance with Department of Defense security 
regulations. The Authority set is encoded as a logical 
4-bit item, where positional order is important. Magni
tude tests are used extensively, such that the high-order 
bits imply high Authority in the sense of equation (8). 

Category 

Category is limited to a maximum of 16 compart
ments (^ < 15 for equation (2)), encoded as a logical 
16-bit item. Boolean tests are used exclusively on this 
datum. The definition of (and bit position correspond
ence to) specific compartments is an installation option 
at ADEPT start-up time (see SYSLOG). Typical 
examples of compartments are EYES ONLY, 
CRYPTO, RESTRICTED, SENSITIVE, etc. 

Franchise 

Property Franchise corresponds to the military 
concept of need-to-know. Essentially, this corresponds 
to a set of user:ids; however, the ADEPT implementa
tion of Franchise is different for each security object: 

1. User: All users wishing ADEPT service must be 
known to the system. This knowledge is imparted 
by SYSLOG at start-up time and limited to 
approximately 500 user:ids (max(C/) < 500). 



Security Controls in ADEPT-50 Time-Sharing System 125 

2. Terminal: Equatioa (5) specifies the Franchise 
of a given terminal, Ft, as a set of user:ids. In 
ADEPT, Ft does not exist. One may define all 
the users for a given terminal, i.e., F*; or alterna
tively, all the terminals for a given user. Because 
SYSLOG orders its tables by user:id, the latter 
definition was found more convenient to 
implement. 

3. Job: The Franchise of a job is the useriid of the 
creator of the job at the time of LOGIN to the 
system. Currently, only one user has access t© 
(and control of) a job (M = 0 for equation (6)). 

4. File: Implementation of Franchise for a file (Ff), 
is more extensive than equation (7). In ADEPT, 
we wish to control not only who accesses a file, 
but also the quality of access granted. We have 
defined a set of four exclusive qualities of access, 
such that a given quality, q, is defined if 

q e {READ, WRITE, READ-AND-
WRITE, READ-AND-WRITE-
WITH-LOCKOUT-OVERRIDE} (27) 

ADEPT permits simultaneous access to a file by 
many jobs if the quality of access is for READ 
only. However, only one job may access a file 
with WRITE, or READ-AND-WRITE quality. 
ADEPT automatically locks out access to a file 
being written to avoid simultaneous reading and 
writing conflicts. A special access quality, how
ever, does permit lockout override. Equation (7) 
can now be extended as a set of pairs, 

F , = {(U/°, qo), (uj, qi), • • •, (uj, q^)} ; (28) 

where q * are not necessarily distinct and are given 
by equation (27). 
The implementation of equation (28) is depend
ent upon 7, the number of franchised users. 
When T = 0, we have the ADEPT Private file, 
exclusive to the owner, u°; for y = max(C/), we 
have the Public file; values of 7 between these 
extremes yield the Semi-Private file. 7 is 
implicitly encoded as the ADEPT "privacy" 
item in the file's catalog control data, and takes 
the place of Ff for all cases except a Semi-Private 
file. For that case exclusively, equation (28) holds 
and an actual Ff list of user:id, quality pairs 
exists as a need-to-know list. The owner of a file 
specifies and controls the file's privacy, including 
the composition of the need-to-know list. 

Security control initialization: SYSLOG 

SYSLOG is a component of the ADEPT initialization 
package responsible for arming the security controls. I t 
operates as one of a number of system start-up options 
prior to the time when terminals are enabled. SYSLOG 
sets up the security profile data for useriid and 
terminaliid, i.e., the "given constants" of Table I. 

SYSLOG creates or updates a highly sensitive 
system disc file, where each record corresponds to an 
authorized user. These records are constructed from a 
deck of cards consisting of separate data sets for 
compartment definitions, terminaliid classification, and 
useriid clearance. The dictionary of compartment defini
tions contains the less-than-9-character mnemonic for 
each member of the Category set. Data sets are formed 
from the card types shown in Table II . Use of passwords 
is described later in the LOGIN procedure. 

An IDT card must exist for each authorized user; the 
PWD, DEV, SEC, and CAT card types are optional. 
Other card types are possible, but not germane to 
security control, e.g., ACT for accounting purposes. 
More than one PWD, DEV, and CAT card is acceptable 
up to the current maximum data limits (i.e., 64 pass
words, 48 terminaliids, and 16 compartments). 

A variety of legality checks for proper data syntax, 
quantity, and order are provided. SYSLOG assumes the 
following default conditions when the corresponding 
card type is omitted from each data set: 

PWD No password required 
DEV All terminaliids authorized 
SEC A = UNCLASSIFIED 
CAT C = null (all zero mask) 

This gives the lowest user clearance as the default, 
while permitting convenient user access. Various options 
exist in SYSLOG to permit maintenance of the internal 
SYSLOG tables, including the replacement or deletion 
of existing data sets in total or in part. 

The sensitivity of the information in the security 
control deck is obvious. Procedures have been developed 
at each installation that give the function of deck 
creation, control, and loading to specially cleared 
security personnel. The internal SYSLOG file itself is 
protected in a special manner described later. 

Access control 

A fundamental security concern in multi-access sys-
is that many users with different clearances will be 
simultaneously using the system, thereby raising the 



126 Fall Joint Computer Conference, 1969 

TABLE II—SYSLOG control cards 

Card Type 
DICT 
Gompartmenti • • • 

TEEMINAL 
UNIT terminaliid 
IDT user:id 
PWD password • 
DEV terminal:idx 

SEC Authority 
CAT compartment 

compartment^ 

password 
terminaliid^ 

compartment^ 

Purpose 
Identifies start of data set of compartment definitions. 
Defines up to 16 compartments. 

Identifies start of data sets of terminal definitions. 
Identifies start of a terminal data set. 
Identifies start of a user data set. 
Defines legal passwords for user:id up to 64. 
Defines legal terminals for useriid up to 48. 

Defines useriid Authority. 
Defines useriid Category set. 

possibility of security compromise. Since programs are 
the "active agents" of the user, the system must 
maintain the integrity of each and of itself from 
accidental and/or deliberate intrusion. A multifile 
system must permit concurrent access by one or more 
jobs to one or more on-line, independently classified files. 

ADEPT is all these things—multiuser, multiprogram, 
and multifile system. Thus, this section deals with access 
control over users, programs, and files. 

User access control: LOGIN 

To gain admittance to the system, a user must first 
satisfy the ADEPT LOGIN decision procedure. This 
procedure attempts to authenticate the user in a fashion 
analogous to challenge-response practices. 

The syntax of the ADEPT LOGIN command, typed 
by a user on his terminal, is as follows: 

/LOGIN useriid password accounting 

Figure 1 pictorially displays the LOGIN decision 
procedure based upon the user-specified input param
eters. Useriid is the index into the SYSLOG file used to 
retrieve the user security profile. If no such record exists 
(i.e., equation (22) fails), the LOGIN is unsuccessful and 
system access is denied. If the security profile is found, 
LOGIN next retrieves the terminaliid for the keyboard 
in use from internal system tables, and searches for a 
match in the terminaliid list for which the useriid was 
franchised by SYSLOG. An unsuccessful search is an 
unsuccessful LOGIN. 

If the terminal is franchised, then the current pass
word is retrieved from the SYSLOG file for this useriid 
and matched against the password entered as a keyboard 
parameter to LOGIN. An unsuccessful match is again 

an unsuccessful LOGIN. Furthermore, the terminal is 
ignored (will not honor input) for approximately 30 
seconds to frustrate high-speed, computer-assisted, 
penetration attempts. If, however, the match is 
successful (equation (22) holds), the current password in 
the SYSLOG file for this useriid is discarded and 
LOGIN proceeds to create the job clearance. 

Equaticm (22) 

Equations (15) and (16) 

C Exit J 

Figure 1—LOGIN decision procedure 



Security Controls in ADEPT-50 Time-Sharing System 1 2 7 

Passwords in ADEPT obey the same syntax conven
tions as user:id. (See the earlier description of User 
Identification.) Although easily increased, currently 
SYSLOG permits up to 64 passwords. Each successful 
LOGIN throws away the user password; 64 successful 
LOGINs are possible before a new set of passwords 
need be established. If other than random, once-only 
passwords are desired, the 64 passwords may be encoded 
in some algorithmic manner, or replicated some number 
of times. Once-only passwords is an easily implemented 
technique for user authentication, which has been 
advocated by others.2-7 I t is a highly effective and 
secure technique because of the high permutability of 
12-ch&ra,cter-passwords and their time and order 
interdependence, known only to the user. 

Once the authentication process is completely satis
fied, LOGIN creates the job security profile according to 
equations (15) and (16) of our model. That is, the lower 
Authority of the user and the terminal becomes Ay, and 
the intersection (logical AND) of the user and terminal 
Category sets becomes the Category of the job, Cy. For 
example, a user with TOP SECRET Authority and a 
Category set (1001 1001 0000 1101) operating from a 
SECRET level terminal with a Category set (0000 0000 
0000 0010) controls a job cleared to SECRET with an 
empty Category set. 

Program access control: LOAD 

As noted earlier, the ADEPT Executive consists of 
two parts: BASEX, the resident part, and EXEX, the 
swapped part. EXEX is a body of reentrant code 
shared by all users; however, it is treated as a distinct 
program in each user's job. Up to four programs can 
exist concurrently in the job. Each operates with the job 
clearance—the job clearance umbrella. 

LOAD is the ADEPT component used to load the 
programs chosen by the user; it is part of EXEX and 
hence operates as part of the user's job with the job's 
clearance. Programs are cataloged files and as such may 
be classified with a given security profile. As is described 
in "File Access Control" below, LOAD can only load 
those programs for which the job clearance is sufficient. 
Once loaded, however, the new program operates with 
the job clearance. 

In this manner, we see the power of the job umbrella 
in providing smooth, flexible user operation concurrent 
with necessary security control. Program files may be 
classified with a variety of security profiles and then 
operate with yet another, i.e., the job clearance. By this 
technique security is assured and programs of different 
classifications may be operated by a user as one job. I t 

permits, for example, an unclassified program file (e.g., 
a file editor) to be loaded into a highly classified job to 
process sensitive classified data files. 

File access control: OPEN 

Before input/output can be performed on a file, 
a program must first acquire the file by an OPEN call 
to the Cataloger. Each program must OPEN a file for 
itself before it can manipulate the file, even if the file is 
already OPENed for another program. A successful 
OPEN requires proper specification of the file's descrip
tors—some of which are in the OPEN call, others of 
which are picked up directly by the Cataloger from the 
job environment area (e.g., job clearance, user:id)—and 
satisfactory job clearance and user:id need-to-know 
qualifications according to equations (25) and (26) of 
our model. Equation (25) is implemented as (8) as a 
straightforward magnitude comparison between Ay and 
A/. Equation (25) is implemented as (9) as an equality 
test between Cf and (Cy A C/). We use (Cy A Cf) to 
ensure that Cf is a subset of the job categories; i.e., the 
job umbrella. Lastly, equation (26) is a NOP if t he file 
is Public; a simple equality test between uy and U/ if the 
File is Private; and a table search of F / for uy if the file 
is Semi-Private. These tests do increase processing time 
for file access; however, the tests are performed only 
once at OPEN time, where the cost is insignificant 
relative to the I/O processing subsequently performed 
on the file. 

The quality of access granted by a successful OPEN, 
and subsequently enforced for all I /O transfers, is that 
requested, even if the user has a greater Franchise. For 
example, during program debugging, the owner of a file 
may OPEN it for READ access only, even though 
READ-AND-WRITE access quality is permitted. He 
thereby protects his file from possible uncontrolled 
modification by an erroneous WRITE call. 

Considerable controversy surrounds the issue of 
automatic classification of new files formed by subset or 
merger of existing files. The heart of the issue is the poor 
accuracy of many such classification techniques17 and 
the fear of too many over-classified files (a fear of 
operations personnel) or of too many under-classified 
files (a fear of the security control officers). ADEPT 
finesses the problem with a clever heuristic—most new 
files are created from existing files, hence classify the new 
file as a private file with the composite Authority and 
Category of all files referenced. This is achieved in 
ADEPT by use of the "high-water mark." 

Starting with the boundary conditions of equations 
(11) and (13), the Cataloger applies equations (12) and 



128 pan joint Computer Conference, 1969 

(14) for each successful file OPEN, and hence maintains 
the composite classification history of all files referenced 
by the job. For each new and temporary file OPEN, the 
Cataloger applies equations (17), (18), and (19); they 
are reapplied for each CLOSE of a'new file, to update 
the classification (due to changes in the high-water mark 
since the OPEN) when the file becom.es an existing 
cataloged file in the inventory. The scheme rarely 
underclassifies, and tends to overclassify when the new 
file is created late in the job cycle, as shown by boundary 
equations (20) and (21). 

Trans-formal security features 

ADEPT contains a host of features that transcend 
the formalism presented earlier. They are described here 
because they are integral to the total security control 
system and form a body of experience from which new 
formalisms can draw. 

Computer hardware 

ADEPT operates on an IBM System 360/50 and is, 
therefore, limited to the hardware available. Studies by 
Bingham9 suggest a variety of hardware features for 
security control, many of which are possessed by 
System 360. 

IBM System 360 can operate in one of two states: the 
Supervisor state, or the Problem state. ADEPT execu
tive programs operate in the Supervisor state; user 
programs operate in the Problem state. 

A number of machine instructions are "privileged" to 
the Supervisor state only. An attempt to execute them 
in the Problem state is trapped by the hardware and 
control is returned to the executive program for 
remedial action. ADEPT disposes of these alarms by 
suspending the guilty job. (A suspended job may be 
resumed by the user.) Clearly, instructions that change 
the machine state are privileged to the executive only. 

Another class of privileged instructions consists of 
those dealing with input/output. Problem state pro
grams cannot directly access information files on 
secondary memory storage devices such as disc, tape, or 
drum. They must access these files indirectly by 
requests to the executive system. The requests are 
subjected to interpretive screening by the executive 
software. 

Main memory is selectively protected against un
authorized change (write protected). We have also had 
the 360/50 modified to include fetch protection, which 
guards against unauthorized reading of—or executing 
from—protected memory. The memory protect instruc

tions are also privileged only in the Supervisor state. 
ADEPT software protects memory on a 4096-byte 

"page" basis (the hardware permits 2048-byte pages), 
allowing a non-contiguous mosaic of protected pages in 
memory for a given program. To satisfy multiprogram
ming, many different protection groups are needed. 
Through the use of programmable 4-bit hardware masks, 
up to 15 different protection groups can be accom
modated in core concurrently. ADEPT executive 
programs operate with the all-zero "master key" mask, 
permitting universal access by all Basic and Extended 
Executive components. 

There are five classes of interrupts processed by 
System/3C0 hardware: input/output, program, super
visor call, external, and machine check. Any interrupts 
that occur in the Problem state cause an automatic 
hardware switch to the Supervisor state, with CPU 
control flowing to the appropriate ADEPT executive 
interrupt controller. All security-vulnerable functions 
including hardware errors, external timer and keyboard 
actions, user program service requests, illegal instruc
tions, memory protect violations, and input/output, are 
called to the attention of ADEPT by the System/360 
interrupt system. The burden for security integrity is 
then one for ADEPT software. 

Monitor software 

Inducing the system to violate its own protection 
mechanisms is one of the most likely ways of breaking a 
multi-access system. Those system components that 
perform tasks in response to user or program requests 
are most susceptible to such seduction. 

On-Line debugging 

The debugging program provides an on-line capability 
for the professional programmer to dynamically look at 
and change selected portions of his program's memory. 
DEBUG can be directed to access sensitive core 
memory that would not be trapped by memory protec
tion, since, as an EXEX component operating in the 
Supervisor state, DEBUG operates with the memory 
protection master key. To close this "trap door," 
DEBUG always performs interpretive checks on the 
legality of the debugging request. These checks are 
based, upon address-out-of-bounds criteria, i.e., the 
requested debugging address must lie within the user's 
program, area. If not, the request will be denied and the 
user warned, but he will not be terminated as has been 
suggested.7 

http://becom.es


Security Controls in ADEPT-50 Time-Sharing System 

Input/output 

Input/output in System/360 is handled by a number 
of special-purpose processors, called Selector Channels. 
To initiate any I/O, it is necessary for a channel 
program to be executed by the Selector Channel 

SPAM, the BASEX component that permits symbolic 
input/output calls from user programs, is really a 
special-purpose compiler that produces I /O channel 
programs from the SPAM calls. These channel progams 
are subsequently delivered and executed by the ADEPT 
Input/Output Supervisor, IOS. 

SPAM permits a variety of calls to read, write, alter, 
search for, and position to records within cataloged files. 
To achieve these ends, SPAM depends upon a variety 
of control tables dynamically created by the Cataloger 
in the job environment. 

The initiating and subsequent monitoring of channel 
program execution is the responsibility of the BASEX 
Input/Output Supervisor, IOS. IOS is called to execute 
a channel program (EXCP). System components, such 
as SPAM, branch to IOS at a known entry point that is 
fetch-protected against entry in the Problem state. IOS 
is off-limits to user programs attempting to access 
cataloged storage. For protection against unauthorized 
EXCP requests, IOS always performs legality checks 
before executing a channel program. These checks begin 
by examination of the device addressed by the channel 
program. If it is the device address for cataloged 
storage, further checks are made to determine the 
machine state of the calling program. That state must be 
Supervisor state for the call to be honored. A call in the 
Problem state would indicate an illegal EXCP call from 
a user program. 

IOS m. k 1her checks to guarantee the validity of 
an 1/C request < checks to see that the specified buffer 
areas for the transfer do not overlay the channel 
program itself> an lie within the user's program 
memory area, i.e., do not modify or access system or 
protected memory. 

Covert I /O violations are also forestalled since I/O 
components take direction from information stored in 
the job environment—an area read- and write-protected 
from Problem state programs. 

Classified residue 

Classified residue is classified information (either code 
or data) left behind in memory (i.e., core, drum, or 
disc) after the program that referenced it has been 
dismissed, swapped out, or quit from the system. The 
standard solution to the problem is to dynamically 
purge the contaminated memory (e.g., overwrite with 

random numbers, or zeros). In a system supporting over 
14 billion bytes of memory, that solution is unreasonable 
and in conflict with high performance goals. ADEPT'S 
solution to the dilemma of denying access to classified 
residue while maintaining high performance depends 
upon techniques of controlled memory allocation. 

1. Core Residue 
As noted earlier, all core storage is allocated as 

4096-byte pages. These pages are always cleared 
to zero when allocated, thereby overwriting any 
potential residue. 

Via the program's page map, the ADEPT 
executive system labels all code and data pages 
(they need not be contiguous) belonging to a 
given program with a single hardware memory 
protection key, thereby prohibiting unauthorized 
reading or writing by other, potentially co
resident user programs that may be in execution. 
Furthermore, BASEX keeps a running account 
of the status and disposition of all pages of core. 

The Loader and Swapper components of 
ADEPT always work with full 4096-byte pages. 
Unfilled portions of pages at load time are kept 
cleared to zero as when they were allocated, and 
the full 4096 bytes are swapped into core, if not 
already resident, each scheduled time slice. 
Further, newly allocated pages are marked as 
"changed" pages, thus guaranteeing subsequent 
swap out to drum. 

With these procedures, ADEPT denies access 
by a user or program to those pages of core not 
identified as part of his program, and clears core 
residue by over-writing accessible core at load 
and swap times. 

2. Drum Residue 
ADEPT always clears a drum page to zero 

before it is allocated. The page may subsequently 
be cleared again to user-specified data. ADEPT 
also maintains a drum map that notes the 
disposition of all drum pages (800 pages for the 
IBM 2303 drum). Drum input/output, like all 
ADEPT I/O, is controlled by executive privileged 
instructions. 

3. Disc Residue 
Disc files in ADEPT are maintained as 

"dirty" memory. That is, the large capacity of 
the file system makes it infeasible to consider 
automatic over-writing techniques for residue 
control; therefore, deleted disc tracks are re
turned to the available storage pool contaminated 
and unclean. I t then becomes the burden of the 



Fall Joint Computer Conference, 1969 

ADEPT file system to control any unauthorized 
file access, whether to cataloged files or un-
cataloged disc memory. 

Team work between the Cataloger, SPAM and 
IOS components of ADEPT achieves this control 
via legality checking of all OPEN and I/O 
requests. 

For example, all disc packs are labeled 
internally and externally with their volumeiid, 
and this label is checked at the time of mounting 
by the Cataloger OPEN procedure to assure 
proper volume mounting. Tapes may also be 
labeled and checked as a user option. 

Of particular note, SPAM always assumes that 
an end-of-file (EOF) immediately follows the 
last record written in a new file, and it prohibits 
reading beyond that EOF. Contaminated tracks 
allocated to new files cannot be read until they 
are first written. The act of writing advances the 
EOF and the user simultaneously over-writes the 
classified residue with his own data. The user 
cannot skip over the EOF, and the EOF location 
is itself protected in the job environment area. 

Tape Residue 
No special features for tape residue control are 

implemented in ADEPT. Tape residue control is 
easily satisfied by manual, off-line tape de
gaussing prior to ADEPT use. 

System files 

Equation (28) led us to examine Private, Semi-
Private, and Public files. ADEPT possesses two 
additional file privacies that transcend our model; both 
are system files. Privacy-4 system files are the need-to-
know lists created by the Cataloger itself for Semi-
Private files. Privacy-5 system files are private system 
memory for the SYSLOG files and the catalogs 
themselves. 

Access to these files is restricted to the system only. 
Special access checks are made that differ from those of 
equations (25) and (26). First, a special useriid is 
required that is not a member of U (i.e., not in the 
SYSLOG file). Second, the program making the OPEN 
call must be in Supervisor state. Third, the program 
making the OPEN call must be a member of a short list 
of EXEX programs. The list is built into the Cataloger 
at the time of compilation. In this manner, access to 
system files is severely restricted, even to system 
programs. 

Security service commands 

ADEPT provides a variety of service commands that 
involve security control. The commands are listed in 
Table III . Note that commands VARYON, VARYOFF, 
REPLACE, LISTU, AUDIT, AUDOFF, and WRAP-
UP are restricted to a particular terminal—the Security 
Officer's Station. 

TABLE III—Security service commands 

Command 
AUDIT* 
AUDOFF* 
CHANGE 

CREATE 
LISTU* 
RECLASS 

RELOG 

REPLACE* 
SECURITY 

VARYON/VARYOFF* 

WRAPUP* 

Purpose 
T'urns on security audit recording. 
Turns off security audit recording. 
Enables the owner of a file to change any of the access control information of 
the file. 
Enables a user to create a Semi-Private file and its need-to-know list. 
Lists by terminakid all the current logged in user:ids. 
Enables a user to raise or lower his job clearance between the bounds of the 
original LOGIN and current high-water mark clearance. 
Like LOGIN, but reconnects a user to an already existing job, as when a remote 
terminal drops off the communications line. 
Enables a user to move his job to another terminal or to reclassify a given device. 
Print on the user's terminal approximately every 100 lines (or only by requestd 
the job high-water mark (or clearance by request) as a reminder to the user an) 
as a classification stamp of the level of current security activity. 
Permits terminals to be varied on- and off-line for flexibility in system 
maintenance and configuration control. 
Shuts down system after a specified elapsed time. 

* Restricted to Security Officer's Station only. 



Security Controls in ADFPT-50 Time-Sharing System 131 

Audit 

The AUDIT function records certain transactions 
relating to files, terminals, and users, and is the elec
tronic equivalent of manual security accountability logs. 
Its purpose is to provide a record of user access in order 
to determine whether security violations have occurred 
and the extent to which secure data has been com
promised. The AUDIT function may be initiated only 
at start-up time, but may be terminated at any time. 
AH data re recorded on disc or tape in real time so the 
data is safe if the system malfunctions. An auxiliary 
utility program, AUDLIST, may be used to list the 
AUDIT file. The information recorded is shown in 
Table IV. 

Implementation of AUDIT is quite straightforward, 
a product of general ADEPT recording and instrumen
tation.18-19 AUDIT is m EXEX component that is 
called by, and at the completion of, each function o be 
recorded. The information to be recorded is pass d to 
AUDIT in the general registers. Additional I/O 
overhead is the primary cost incurred in the operation 
of AUDIT, for swapping and file maintenance. This 
cost is nominal, however, amounting to less than one 
percent of the CPU time. 

SUMMARY 

In summary we may ask: How well have we met our 
goals? First, we believe we have developed and success-

TABLE IV—Security events and information audited by ADEPT-50 

LOGIN 

LOGOUT 

OPEN FILE 

REOPEN FILE 

CHANGE FILE 

CLOSE FILE 

DELETE FILE 

RECLASS 

REPLACE 

DEVICE LIST 

CATEGORY DICTIONARY" 

RESTART 

WRAPUP-

This is the "OPEN existing file" command. 

A list of all the terminal devices and their assigned security and categories is recorded at each system load. 

A list of the prose category names is recorded at each system load. 

Whenever the system is restarted on the same day (and AUDIT had been turned on earlier that day) the time of 
the restart is recorded. 

The time that the AUDOFF action was taken, or the time that the WRAPUP function called AUDIT, to terminate the 
AUDIT function. 



132 Fall Joint Computer Conference, 1969 

fully demonstrated a security control mechanism that 
more than adequately supports heterogeneous levels and 
types of classification. Of note in this regard is the 
LOGIN decision procedure, access control tests, job 
umbrella, high-water mark, and audit trails recording. 
The approach can be improved in the direction of more 
compartments (on the order of 1000 or more), extension 
of the model to include system files, and the imple
mentation of a single Franchise test for all security 
objects. The implementation needs redundant encoding 
and error detection of security profile data to increase 
confidence in the system—though we have not ourselves 
experienced difficulty here. The increase in memory 
requirements to achieve these improvements may force 
numerical encoding of security data, particularly 
Category, as suggested by Peters.7 

Second, SYSLOG has been highly successful in 
demonstrating the concept of "security arming" of the 
system at start-up time. Our greatest difficulty in this 
area has been with the human element—the computer 
operators—in preparing and handling the control deck. 
In opposition to Peters,7 we believe the operator should 
not be "designed out of the operation as much as 
possible," but rather his capabilities should be upgraded 
to meet the greater levels of sophistication and responsi
bility required to operate a time-sharing system.20 He 
should be considered part of line management. ADEPT 
is oriented in this direction and work now in progress is 
aimed at building a real-time security surveillance and 
operations station (SOS). 

Third, we missed the target in our attempt to isolate 
and limit the amount of critical coding. Though much 
of the control mechanism is restricted to a few com
ponents—LOGIN, SYSLOG, CATALOGER, AUDIT 
—enough is sprinkled around in other areas to make it 
impossible to restrict the omnipotent capabilities of the 
monitor, e.g., to run EXEX in Problem state. Some 
additional design forethought could have avoided some 
of this dispersal, particularly the wide distribution in 
memory of system data and programs that set and use 
these data. The effect of this shortcoming is the need for 
considerably greater checkout time, and the lowered 
confidence in the system's integrity. 

Lastly, on the brighter side, we were surprisingly 
frugal in the cost of implementing this security control 
mechanism. I t took approximately five percent of our 
effort to design, code, and checkout the ADEPT 
security control features. The code represents about ten 
percent of the 50,000 instructions in the system. Though 
the code is widely distributed, SYSLOG, security 
commands, LOGIN, AUDIT, and the CATALOGER 
account for about 80 percent of it. The overhead cost of 

operating these controls is difficult to measure, but it is 
quite low, in the order of one or two percent of total 
CPU time for normal operation, excluding SYSLOG. 
(SYSLOG, of course, runs at card reader speed.) The 
most significant area of overhead is in the checking of 
I/O channel programs, where some 5 to 10 msec are 
expended per call (on the average). Since this time is 
overlapped with other I/O, only CPU bound programs 
suffer degredation. AUDIT recording also contributes 
to service call overhead. In actuality, the net operating 
cost of our security controls may be zero or possibly 
negative, since AUDIT recordings showed us numerous 
trivial ways to measurably lower system overhead. 

ACKNOWLEDGMENTS 

I would like to acknowledge the considerable encourage
ment I received in the formative stages of the ADEPT 
security control design from Mr. Richard Cleaveland, of 
the Defense Communications Agency (DCA). I would 
like to thank Mrs. Martha Bleier, Mr. Peter Baker, and 
Mr. Arnold Karush for their patient care in designing 
and implementing much of the work I've described 
Also, I wish to thank Mr. Marvin Schaefer for assisting 
me in set theory notation. Finally, I would like to 
applaud the ADEPT system project personnel for 
designing and building a time-sharing system so 
amenable to the ideas discussed herein. 

REFERENCES 

1 A HARRISON 
The problem of privacy in the computer age: An annotated 
bibliography 
RAND Corp Dec 1967 RM-5495-PR/RC 

2 L J HOFFMAN 
Computers and privacy: A survey 
Stanford Linear Accelerator Center Stanford Univ Aug 
1968 SLAC-PUB-479 

S H E P E T E R S E N R TURN 
System implications of information privacy 
Proc SJCC Vol 30 1967 291-300 

4 W H WARE 
Security and privacy in computer systems 
Proc SJCC Vol 30 1967 279-282 

5 W H WARE 
Security and privacy: Similarities and differences 
Proc SJCC Vol 30 1967 287-290 

6 R L I N D E C WEISSMAN C FOX 
The ADEPT-50 time-sharing system 
Proc FJCC Vol 35 1969 Also issued as SDC Doc SP-3344 

7 B P E T E R S 
Security considerations in a multi-programmed computer 
system 
Proc SJCC Vol 30 1967 283-286 

8 RYE CAPRI COINS OCTOPUS SADIE Systems 



Security Controls in ABEPT-50 Time-Sharing System 133 

NOC Workshop National Security Agency Oct 1968 
9 H W BINGHAM 

Security techniques for EDP of multi-level classified 
information 
Rome Air Development Center Dec 1965 RADC-TR-65-415 

10 R M GRAHAM 
Protection in an information processing utility 
ACM Symposium on Operating Systems Principles Oct 
1967 Gatlinburg Tenn 

11 L J HOFFMAN 
Formularies—Program controlled privacy in large data bases 
Stanford Univ Working Paper Feb 1969 

12 D K HSIAO 
A file system for a problem solving facility 
Dissertation in Electrical Engineering Univ of Pa 1968 

13 J I SCHWARTZ C WEISSMAN 
The SDC time-sharing system revisited 
Proc ACM Conf 1967 263-271 

14 P BARAN 
On distributed communications: IX, security, secrecy, and 
tamper-free considerations 

RAND Corp Aug 1964 RM-3765-PR 
15 C WEISSMAN 

Programming protection: What do you want to pay? 
SDC Mag Vol 10 No 8 Aug 1967 

16 J P TITUS 
Washington commentary—Security and privacy 
CACM Vol 10 No 6 June 1967 379-380 

17 I E N G E R et al 
Automatic security classification study 
Rome Air Development Center Oct 1967 RADC-TR-67-472 

18 A KARUSH 
The computer system recording utility: A pplication and 
theory 
System Development Corp March 1969 SP-3303 

19 A KARUSH 
Benchmark analysis of time-sharing systems: Methodology and 
results 
System Development Corp April 1969 SP-3343 

20 R R L I N D E P E CHANEY 
Operational management of timesharing systems 
Proc 21st Nat ACM Conf 1966 149-159 






