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ABSTRACT

This report describes the CPU of the Stanford
Enulation Laboratory, known as the EMMY systen. The
EMMY CPU is a 32 bit nicroprogrammable processor
desipgned specifically for the ¢task of enulation
research. The control store is dynamie, that is, it
is writable by the CPU and thus serves for data
storage as well as for microinstruction storage.

This report is a reissue of two previous
reports, of the same title, issued at Johns Hopkins
University as Hopkins Computer Research Reports 28
and #28.1. However, the rmaterial in this report
differs somewhat from the previous reports in that
the previous reports provided a design specification,
and this report describes the system as it is now
inplenented Specifically, this report provides an
EMMY system user with the basic information necessary
to microprogran the EMHY CPU and to design hardware
and softuare interfaces to the systen bus.
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EHITY PROCESGSOR -- PRINCIPLES OF OPERATION

1. General Introduction

The EMNY processor is a dynanically microprogrammable nachine
specifically designed for emulation oriented tasks in research,
education and production environments. By making use of high
speed RAll technology in the processor control store, this system
allows for convenient user microprogramming. In fact, the EMIY
system is designed to allow the end user to become directly
involved with the manipulation of the processor’s prinitive
computational and storage resources.

This report provides the user with the information necessary
to design microprograms for the EMMY processor and to design
hardware and software interfaces to the bus system. Principles of
operation for the various system bus devices currently available
in the laboratory will be the subject of a future report.

1.7 Principal Features

One of the principal design objiectives of EMMY has been to
give the user direct access to the primitive resources such as
adders, shifters and storage. This 1s necessary if the user is to
enulate conventional processor structures efficiently. Primitive
resources in the processor are directed in their operation by a
microprogram stored in a 4096 word control store, whose locations
may be written in a time comparable to the read cycle. This
dynamic accessing capability of control store allows the user to
quickly load and modify control microprograms for the purpose of
debugging and experimentation. Jecond, because the control store
may be accessed under the direction of the current
nicroinstruction word, control store may serve as the primary fast
storage resource in a target machine emulation. Thus, control
store locations may be used, for example, to hold data emulating
the registers of a target machine. Finally, the two level storage
hierarchy consisting of main menmory and control store allows the
user to establish an explicit caching situation in which low usage
nicroinstruction and data sequences may be held in main store and
subsequently moved into control store on a demand basis.

In choosing the nmicroinstruction set of EMMY the prinmary
objective was to give the user explicit access to primitive
resources in a way which reflects the implicit usage of primitive
resources in conventional processors. For purposes of discussion
the primitive resources of EMMY may be divided into three classes:

1) Functional -~ adder, shifter, etc.,
2) Memory, and
3) Procedural -- testing, branching, etc..



To control these resources efficiently the 32 bit nicroincoruction
word has been divided into two halves. In esnence, one haif
controls functional resources and the other half controls memorv
resources, with both halves having the capability of controllinﬁ
procedural resources. In conventional terms one may think of the
microinstruction as being a hybrid of ‘horizontal’ and ‘vertical ’
control organization in that half of the microinstruction appears
to be “vertically’ microprogramming a subset of the available
resources. This hybrid approach allows the user to capture in the
enulator the implicit parallelism available in conventionally
structured target machines.

Primitive resources in the EMMY have been designed to be
ninimally structured and easily accessible, in order to allow the
user to structure them as required. All internal data paths are
32 bits in width, the same as the microinstruction word width.
The principal functional resources available include a fast
arithmetic/logical unit and a fast single and double word shifter.
liemory resources consist of an eight register file, control store
and the processor bus system where main memory resides. For
purposes of specifying the sequencing of microinstructions a full
range of condition codes are generated and stored by the
processor. These codes maybe tested flexibly by the
microprogrammer and used to influence the sequencing of
microinstructions.

Since it is intended as an emulator host for a wide class of
machines, the EMHY processor is capable of handling a variety of
resource requirements with respect to word size. This is
accomplished by using the fast shifter resource in conjunction
with immediate mask data from the current microinstruction word to
allow the microprogrammer to manipulate directly bits and fields
within data words. Thus, the EM!IY processor provides the user
with a great deal of freedom when matching the resources in the
processor to particular target machine requirements., While the
general design philosophy has been to provide generality in the
EMMY resources and their access, several microinstruction classes
have been specified which give the microprogrammer the capability
of build specific high level operations such as multiply and
divide efficiently.

1.2 Processor Specifications and Implementation
1.2.1 General Specifications

All data paths in the EMMY are 32 bits in width, which is the
sane as the microinstruction word width. Within the processor are
eight programmer accessible registers of which seven are general
purpose and one is reserved for machine state information.

Control store consists of 4K words, which may be used for both
microinstruction and dynamic data storage. All EMMY arithmetic
operations including micreoinstruction address formation are two's



coriplermient arithmetic.

The processor host bus system has a 32 bit data word
capability and is based on a 24 bit addressing schene, thus
allowing direct access to 16M discrete locations. Logically, the
host bus system uses an asynchronous intercormunication scheme to
allow devices of various speeds to cooperate efficiently. Ia the
basic system configuration the main memory system consists c? 64K
bytes of storage with a cycle time of approximately 1 usec.

{icroinstruction execution times require varying lengths of
time to complete based on muitiples of the 35 nsec internal
nachine cyecle. In a simple situation in which control memory is
referenced only for the microinstruction a complete cycle consunmes
385 nsec or eleven internal cycles, of which 6 cycles are used in
the microinstruction fetch and the remainder are spent in actual
operand processing. If subsequent data accesses to control store
arz required the cycle will be extended by 180 nsec.

Host bus interactions (with the processor as either active or
passive participant) require varying anmounts of time depending on
the particular bus units involved. When the EMMY CPU initiates
the access, however, it is able to resume processing while
awalting the response.

1.c..2 Implementation

The EMHMY system is based on several technologies,
specifically:

1) Processor Logic -- Emitter coupled logic (MECL 10K)
2) Control Store -- N-channel M0OS - (AMS 7001)
3) Bus System -- Open Collector TTL

Figure 1-1 shows the system layout. The majority orf the CPU is
contained on a single 12" x 15" wirewrap board and consists of
approximately 300 IC packages. Below the processor board is a
card frame which holds the control store and peripheral bus units.
Interconnection on the backplane of this card rack serves as the
physical system bus. Control store consists of nine cards each
containing a 4 bit by 4K slice of the total system (one card is
used to store the parity check bit) and a single additional card
containing miscellaneous address circuitry. The CPU communicates
with the bus and the control store through another card called the
‘I-Board”’. This card is used to control micromemory sequencing
and some aspects of bus communications., Access to the bus is
controlled by an “Arbiter Card’ which performs the access control
functions described in section 4.

The remaining card slots are available for bus devices, such
as, the Datapoint Interface, Maintenance Console, and Main Memory
Controller.



1.3 EMMY System Configuration

Figure 1-2 illustrates a typical system confipguration of the
ENMMY processor. The particular confipuration shown is intended to
serve as an enulation research laboratory in which various machine
architectures, both “hard” and ‘soft”, may be studied and
analyzed. Laboratory facilities enable the experimenter to
renerate emulator microprograms and target machine test progsranms,
load these programs, control their operation during the experiment
and gather results for analysis upon termination,

Accessibility and observability of the EMMY and other
laboratory resources is the key to success in this environment and
is dependent upon efficient inter~unit cormunications. Primary
cormunications in the laboratory system take place on the host bus
system which provides a 32 bit, asynchronously controlled data
path between units. In addition to the basie EMMY processor,
consisting of the EMMY CPU, control store and an emulation
oriented, main menory, the host bus may also include the
following:

) Disk controller,’

) Programmer’ s console,

) Block access controller,
)

)

S S

Datapoint 2200 interface, and
5) Auxiliary bus translator.

Host bus structure is such that any two units (with adequate
logical capability) may use the bus for communication without the
intervention of the EMMY CPU. Furthermore, the EMMY CPU and
control store are directly accessible from the bus, thus allowing
the experimenter to control the system from an external bus unit
such as Datapoint 2200 terminal. The Datapoint 2200 is an
“intelligent  terminal system consisting of a processor, 8K
(bytes) of memory, a CRT, keyboard and two cassette tape drives.
During laboratory operation the experimenter will use the
Datapoint 2200 to initialize the EMMY processor and control its
operation. By using the limited, though specialized, processing
capabilities of the Datapoint 2200 to handle user/system
interaction the EMMY processor system can be devoted to the
emulation task.

For special purpose applications auxiliary bus translators
may added to match the EMMY host bus electrically and logically to
the requirements of a particular manufacturer s peripheral line.
Also included on the host bus system is a block access controller
designed to move blocks of data between the host bus menmory
devices in an efficient manner without constant CPU supervision.



EXPANSION
AREA

cPU

VENT

CONSOLE
MEMORY

MEMORY

PONER SUPPLY

EMMY SYSTEM FRAME

CPU - T and A machines

PERIPHERAL UNIT
INTERFACES

CONTROL MEMORY

1 - BOARD

ARBITER

CPU and CARD RACK
EMMY SYSTEM - PHYSICAL ARRANGEMENT

FIGURE 1-1




MAIN HOST BUS

daeIene

L2121 Bk

52 3
BLOCK PDP-11
EMMY ACCESS BUS
MAIN CpPU cTL XLATER
MEMORY
MICRO
MEMORY
DATAPOINT BUS AUXILIARY BUS
[ 16
Y R -
[« CASS
Aéf?§ 1 ICRT KBD 2200 MAG Disx PRT
. - cPU TAPE
CASS
2

TTY

SLOW
PRT

Figure 1.2 Structure of Emulation Laboratory Facility



2. Processor Structural Details

In order to microprogram the EMMY processor effectively the
user nust be familiar with the peneral principles of the
processor s internal structure., However, unlike many other
nicroprogrammnable machines, the user is not required to conprehend
minute details of the processor operation. Likewise, due to the
‘hybrid’ nature of the processor’s instruction set,
microinstruction specification is as straight forward as in a
“vertical  architecture but retains the resocurce access
characteristic of ‘horizontal’ organizations. In this section the
user will be introduced to the basic structural aspects of EMMY,
the general microinstruction formats, and a procedure for
estimating the timing of microinstructions. . In the following
section (3) the syntactic and senantic details of each instruction
type are presented.

2.1 Processor Structure
2.1.1 General Principles

Microprogramming is an activity concerned with the direct
control of machine resources. Within the EMMY CPU machine
resources fall roughly into three catagories:

1) Functional - concerned with data transformation,

2) Memory - concerned with storage access, and

3) Procedural - concerned uwith the selection (perhaps
conditionally) of the next mieroinstruction.

The organization of EHMMY allows the programmer to access and
control these resources independently.

Figure 2~1 illustrates the functional structure of the EMMY
resources (the actual stucture is discussed later and is shown in
figures 2-2 through 2-5). To control the three resource groups
(functional, memory and procedural) the microinstruction word is
divided into two halves: the left half (bits 31-18) whiech controls
the functional resources and the right half (bits 17-0) which
controls the memory resources. Hicroinstructions are normally
selected sequentially from control store. This order may be
changed conditionally or unconditionally by instructions from
either half of the current nicroinstruction word.

Associated with the control of the resource groups in EMMY
are three finite state sub-machines designated as follows:

1) T-machine (Transformation) - controls functional
resources
2) A-machine (Auxiliary) - controls memory

resources, and



3) I-machine {(Instruction fetch) - controls procedural
resources.

These sub-machincs cach control their associated resources under
the direction ol the applicable :sepment of the micreinstruection
word. Each machine functions independently of the others except
when data dependent conflicts occur. Thus, for example, the
I-machine is continually attempting to fetch the next
nicroinstruction except when it finds the control memory busy,
possibly answering a request by the A-machine,

In addition to the three sub-machines discussed above the
EMMY also has a forth sub-machine, the bus controller. The bus
controller is not under the direct control of the microinstruction
word but rather answers requests presented to it by the A-machine
or the system bus. When requested by the A-machine the bus"
controller will oversee the movement of data between EMMY internal
storage (i.e. registers or control store) and the EMMY bus systen.
Once initialzied the bus controller will carry out the bus
operation requested independently thus allowing the A-machine (and
consequently the EMMY CPU) to continue processing
microinstructions. THe bus controller also handles bus requests
for aceess to EMHMY repisters and control store by intervening in
the normal sequencing of the I-machine.

2.1.2 Specific Structure

Figure 2-2 illustrates the important data paths and units
which comprise the EMMY processor. In general, the processing of
an EMMY microinstruction proceeds in three steps each under
control of one processor sub-nachine. The normal sequencing is:
I-machine first, T-machine second and A-machine last. Depending
on the particular microinstruction one or more of the sub-machine
sequences nay be omitted. In addition to these sequences, EMMY
may also carry out special purpose sequences associated with bus
access and interrupt handling.

2.1.2.1 I-pachine Sequence (Figure 2-2)

The address of the next microinstruction and other state
information is maintained in register 0 of the register file. At
the start of the I-sequence this address is fetched from RO and
placed in uMAR, the micromemory address register. The micromemory
is cycled and the results of the read operation are deposited in
the MIR (microinstruction register) for decoding. Simultaneously,
RO is incremented, using the ALU, so that it points to the next
(assumed) microinstruction.



2.1.2.2 T-machine Sequence (Figure 2-3)

A typical T-machine sequence begins with the fetching of one
or two operands from the register file, These operands are placed
in the auxiliary registers Ra and Rb. Operands are processed as
required by the ALU and the result is returned to the register
Tile. 1If condition codes are renerated by the result then the
machine state information contained in RO of the register file is
updated. A functional instruction may obtain one operand from the
IR as irmediate data via the data path between the MIR and the
sacond operand input to the ALU.

On microinstructions requiring a shift or rotate operation
the auxiliary registers Ra and Rb are used together to form a 04
bit shift and rotate unit. Shifting is controlled by the shift
counter and ALU.

2.1.2.2 A-machine Sequence (Figure 2-4)

Generally, A-machine sequences move data between two memory
resources (e.g. register to micromemory, nicromemory to bus
rnemory). In addition, some A-machine sequences may update
registers using the ALU to perform simple operations such as
addition. Address input to the micromemory is via the micromemory
acdress register (uMAR). During A-machine sequences the uMAR
obtains an address from either the register file, the current
microinstruction word residing in the MIR or the EMMY bus systen.
Data input to micromemory resides in the micromemory data register
(uMDR). Inputs to the uMDR originate in the register file or on
the system bus. Hicromemory outputs are directed to either the
bus system via the bus data register (BDR) or the register file
via the ALU.

A-nachine sequences which involve the EMMY bus system begin
by moving an address into the BDR and initializing the bus control
unit. On bus write operations the BDR is loaded with data (fron
the register file or micromemory) after the address is accepted by
the bus system. On bus read operations data is returned to the
CPU and is deposited in the register file or mieromemory as
required. :

Due to the asynchronous nature of the EMMY bus system, the
A-pnachine only initiates the bus transfer action., while the
actual transaction is completed later. In the meantime,
nicroinstruction fetching may continue unles another attempt is
made to access the bus system. In this case the A-machine will
not proceed until the previous transaction is completed.



2.1.2.4 Special Sequences (Figure 2-5)

Bus units external to the EMMY processor may read or write
refrister filz and micromemory locations on a shared basis with the
CPU. For sach operations address information from the bus is
directed :c =ziiner the uMAR or rerister file access controller
(not shown;. Datca paths and sequences correspond to the CPU
initiated se;:ences described above for register file, micromemory
and bus svstew transfer.

An-inter-upt sequence begins with a special command from the
bus system. iic data is transferred, but instead the address
received fror the bus system is used to address micromemory via
the uMAR. Rna-~ister 0 from the register 0 from the register file
is then placed in this micromemory location. New contents for
register C ere retrieved from the even-odd pair associated with
the given 1o-a2tion and loaded into RO of the register file. By
this pracess the cid machine state is saved and the new machine
state saft withcut any intervening CPU processing.

2.2 Microinstruction Set Structure
2.2.1 Generc: Structure

EMMY m..roinstructions are designed to allow the
microprograomer to access primitive resources in a direct manner.
This accompii:zhed by logically dividing the 32 bit
microinstruccicn into two halves; a left half, 14 bits wide, and a
right half., 2 pdts wide. The three resource groups discussed
earlier are cesignated functional, memory and procedural (F, M,
and P respec‘ivelv). Each half may designate control for one
group of rescurces and additionally the right half may be used as
innmediate cata in functional resource operations. This then gives
rise to five tasic microinstruction formats which designate
control for particular resources:

LEFT HALF RIGHT HALF
F~contrecl F-data
F~control M-control
F~-control P-control
P-control M-control
P-control P-control

For each microinstruction (F, M or P) a 'NOP’ code exists thus
allowing the microprogrammer to use a specific resource
independently.

Unless nicroinstruction sequencing is explicitly modified the
normal sequence of microinstruction fetch is sequential by control
store location. Because the current microinstruction address is
maintained in the register file the microinstruction fetch
sequence nay be modified by a functional or memory

2- 4



riicroinstruction.
2.2.2 Briel Description of the Microinstruction Set

Becauses “he microinstruction word in EMMY is a hybrid of
vertical and horizontal format, the microinstruction set consists
of several thousand instructions even where register and menory
address designations are excluded. To make discussion easier the
microinstructicons have been divided into classes and sub-classes.
The basic <.us33es of microinstrutions are:

1) Functional - data transformation,
2) Memecry ~ data storage and address calculation, and
3) Procedural - microinstruction flow of control.

In the discussion below the general features and characteristics
of each class are examined., Specific details are given in Section
3.

2.2.2.1 Functional Instructions

Funational microinstructions are designed primarily to
perform operations which transform data (i.e. arithmetic and
logical operations). These microinstructions are performed by the
T-machine anc are specified by the left half field of the
microinstruction word. Figure 2-6 shows bit formats of the six
currently implemented functional microinstructions. By sub-class
the functional microinstructions are:

Lcpical - performs bitwise Boolean operations,
Aritnmetic performs two’'s complement arithmetic and
compare operations,

performs single and double length shift
and rotate operations,

St

1
2

3) Shift/Rotate

L) Exiended - performs fragments of specialized
arithmetic operations,

5) Extract - isolates a specific field within a data
word, and

6) Insert - inserts a specific field into a data word.

The left three bits of the left half field of the microinstruction
specify the microinstruction sub-class as shown in figure 2-6.

For the first four sub-classes (Logical, Arithmetic, Shift/Rotate
and Extended) the use of the remaining bits is the same. Four
fields are identified: )

1) I - use or non-use of immediate data,

2) op - specific operation,

3) BF or BF/VAL - operand register or small immediate value
4) aF - operand source and sink register.



Generally speaking, these nicroinstructions process two operands
and produce a single result which is returned to the register
specified by the AF field. The I field determines the source of
one operand; either from the register file (as specified by the BF
field) or from the right half of the microinstruction word
(expanded as described below).

For the Insert and Extract instructions the fields designated
have the following meaning:

1) POS - amount of field rotation,
2) AF - operand source and sink register, and
3) BF - operand source.

The insert and extract instructions always use immediate data from
the right half field of the current microinstruction. When used
for irmediate data the 18 bit quantity in the right half field is
expanded to form a 32 bit quantity as shown in figure 2-7. The
right 16 bits cf the field are data and the left two bits (17 and
16) specify whether the 16 bit data quantity given is to b2 right
or left justified and whether the remaining 16 bits are to be zero
or one filled.

2.2.2.2 Memory HMicroinstructions

Menory microinstructions are used by the microprogrammer to
move data between the various memory resources of the EMMY system
and to perform simple memory related arithmetic operations, such
as address calculation. All memory type microinstructions are
specified in the 18 bit right half field of the microinstruction
word. Execution of these microinstructions is controlled by the
A-machine. Five memory microinstrucetins are specified:

1) Load Register - load register from control store,

2) Store Register - store register to control store,

3) Load Immediate ~ load register with immediate data,

4) Indirect Access -~ memory to memory transfer, and

5) Pointer Modification - register address calculation and
test.

The first three bits of the 18 bit field are used to designate the
particular memory sub-microinstruction desired (figure 2-8). For
the first three sub-classes (Load Register, Store Register and
Load Immediate) have two flelds specified:

1) CF - designates a register, and
2) ADR - designates a control store address or immediate data.

The Load Immediate instruction is used primarily to locad control
store addresses into registers. An operation useful in
microprogram branching.



The remaining two sub-classes (Indirect Acce and Pointer
lodification) have five fields specified:

CF - source and/or sink operand rerister,
DF ~ sink operand or small immediate value,
EF - sub-opcode field,

XOP - sub-opcode field, and

VAL - immediate value (-8 to +7).

Ul WPy —
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The pointer modification instruction, in addition to its adcress
calculation capability, is also used to directly control the
sequencing of the microinstruction stream. Its primary usefulness
is in the microprogramming of short counting loops.

2.2.2.3 Procedural Microinstructions

Procedural microinstruction are used to control the
sequencing of the nicroinstruction stream. A procedural
microinstruction may be specified in either half of the
miroinstruction word. This class of microinstructions may be
considered to control the I machine, in that procedural
instructions may modify the current microinstruction address in
register 0 either directly or indirectly. Figure 2-9 shows the
formats of the three procedural class microinstructions:

1) Conditional,
2) Branching, and
3) Looping (Pointer Modification).

A Conditional microinstruction appears only in the left half field
‘of the nmicroinstruction word. Two fields are given:

1) CMASK - code test mask, and
2) cop - test type specification.

The Conditional microinstruction performs a test on the condition
or indicator codes (see section 2.4.2) maintained in register O.
Depending on the outcome of this test the microinstruction
specified in the right half field of the microinstruction word is
executed or skipped. Since the microinstruction in the right half
field may, among other things, modify the current microinstruction
address in register 0, conditional branching may be implicitly
specified.

In performing the test specified, the Conditional instruction
uses the CMASK field as a mask to identify relevant bits in the
condition or indicator codes and uses the COP to specify the test
type and the logical sense (i.e. true or false) of the result.

The nature of the conditional test is explained nmore fully in
section 2.4.2 and the exact definition is given in section 3.



The Branch microinstruction, which appears only in the right
half field of the microinstruction word, performns tests on the
condition or indicator codes in the same manner as the Conditional
microinstruction. An additonal field, the VAL field, is
specified. 1If the test result is logically “true’ then the sign
extended value of the VAL field is added to the next
microinstruction address pointer, thus causing a short relative
branch. The fields BMASK and XOP correspond functionally to the
CMASK and COP fields of the Conditional microinstruct.on.

The ‘Looping  procedural microinstruction is another aspect
of the Pointer Modification microinstruction described in the
preceeding section. In addition to performing simple arithmetic
calculations (addition, subtraction) on two registers, the Pointer
Modification microinstruction may test the results of the
calculationr and based on these results perform a short relative
branch. The distance of the relative branch is given by the VAL
field (sign extended). The Pointer Modification or ’‘Looping’
nicroinstruction is intended primarily to allow the
nicroprogrammer to specify short counting loops in microcode, such
&s might be required in nultiply or normalize coperations.

2.3 Address Structure

Basic memory resources within the EMMY system consist of
Tregisters, control store and the bus memory system. Nearly all
memory locations are general purpose in nature. Those which have
special segnificance will be discussed below.

2.3.1 Registers

Eight registers are provided in the EMMY CPU. One of these,
register 0, is dedicated (in hardware) as the machine state
register containing information such as the next microinstruction
address pointer and the current condition codes. The remaining
seven registers are available for general use by the
microprogramnmer.

2.3.2 Control Store

Control store consists of 4096 locations. All locations are
available for general purpose use by the programmer except
locations 044 through O4D which are reserved, by convention, for
interrupt information according to the following scheme:

Address - Interrupt Source
o4y-0U4s5 Programmer s Console
046-047" Main Memory System
048-~049 Datapoint Interface
OU4A~-CUB Block Access COntroller
O4C-04D Bus Time-out.



When an interrupt occurs the EMMY hardware wilil store the current
contents of register 0 into the odd location of the appropriate
interrupt address pair. Then the contents of the even location
are used to replace the current caontents of register 0 and thus
initialize 2 new machine state. No other reristers are chanred.

2.3.3 Bus Addresses

Bus addresses are specifiied by a 2k bit quarntity which allows
the microprogrammer to directly access 16M locations. The
follcwing locations have been assigned specific purposes:

Address Purpose

FFOGO0-FFOFFF Control Store Access (000 to FFF)
FF1000-FF 1007 CPU Register Access (0 to 7)
FEQOO0O-FE0003 Programmer ‘s Console (see Appendix)
FDO0OO Datapoint Interface (see Appendix)
000000-03FFFF Main Memory. (see Appendix)

2.4 Machine State Word (Register 0)

Register O of the register file contains information about
the current state of the EMMY processor. Bit formats of this
register are given in figure 2-10. The contents of register 0 may
be divided logically into four groups:

1) Microaddress Register (MAR),
2) State,

3) Indicator Codes, and

4) Condition Codes.

The MAR (bits 11-0) contains the pointer to the next
nicroinstruction. By manipulating this pointer, either directly
with functional or memory nicroinstructions or indirectly with

" procedural microinstructions, the microprogrammer may change the
normal sequential fetching of microinstructions.

In the four bit State field only two bits are currently used.
One bit (15) designates whether the EMMY processor is halted or
running, and the other bit (14) specifies whether interrupts are
enabled or disabled. .

The high 8 bits (31-24) of register 0 contain the processor
set condition codes and the following 8 bits (23-16) contain the
programnmer set indicator codes. The contents of either code group
may be tested using the Conditional or Branch microistruction
described in the previous section.

Indicator codes are intended for use by the microprogrammer
to maintain temporary information which is used directly in
conditional tests. Indicator codes are not disturbed by the
processor when it updates other register 0 information, such as

2~ 9



the MAR or the condition codes. The indicator codes usually finc¢
application in holdinr state information about the emulated target
machine, such as whether the current emulated instruction starts
on a full or half word boundary.

2.4.1 Condition Code Semantics

Eight condition code bits are specified. Condition codes are
set according to the results of Logical, Arithmetic and some
Extended class microinstructions. Bit semantics, as shown in
figure 2-17, are relatively independent thus facilitating complex
conditional testing using the Conditional or Branch
microinstruction.

The first two bits of the condition codes rive direct data
relating to arithmetic results., The overflow combination is set
if the carry into the sign bit (bit 31) differs from the carry
out. Bits 29,28 and 27 of the condition code correspond to the
generated carry and the high and low bits of the result. Bit 26
designates whether all bit positions of the result are the same or
not, and bit 25 indicates whether the result had even parity (bit
25 = 1) or not (bit 25 = Q). Bit 24 (BUSY) indicates the status
of the last bus operation issued by the CPU. If it is uncompleted
bit 24 is "1, otherwise bit 24 is 07,

2.4.,2 Condition Code Testing

Testing of the condition and programmer codes is by means of
the Conditional or Branch microinstructions. Test information
consists of an eight bit mask and a three bit test type. The mask
indicates the subset of the condition codes to be tested and, the
test type specification indicates how the test is to be carried
out, The three bits in the test type are:

1) V - sense (normal or inverted),
2) C - complement codes before masking, and
3) S - code to be tested (condition or indicator).

Generation of the test result proceeds as follows. Depending
upon the “S’ bit either the condition or indicator codes are
selected for testing. The selected codes are then complemented or
not according to the 'C” bit. Results are then product masked
(i.e. ANDed) with the eight bit mask given in the test instruction
and all bits of the result are ORed together. The resulting bit
gives the sense of the test (i.e. valid or invalid) and may be
further complemented by the ‘V° bit to get the desired sense of
the test. This procedure, though complex, allows the
nicroprogrammer a great deal of flexibility in defining
conditional statements.

In effect, the programmer isolates a group of bits from the
appropriate code field (condition or indicator) using the mask and



tests these bits as follows:

Test

Any bit is set

Any bit is not set
All bits are not set
All bits are set

- 200 <
O -200

2.5 Determination of Microinstruction Execution Time

Determination of microinstruction execution times in EHMMY is
conplicated by several factors, some of which, in a practical
sense, are not under the direct control of the microprogrammer.
Because of various indeterminate and uncontrollable factors (such
as bus contention) exact timing for a given sequence of microcode
nay be impossible. However, microinstruction timing may be made
with sufficient accuracy to allow the microprogrammer to choose
between alteraative sequences which perform the same function.

To estimate execution time the microprogrammer nust consider
the following:

1) Basic microinstruction execution time
2) Possible degradation due to contention for control store
3) Effects of bus accessing

2.5.1 Basic Hieroinstruction Execution Time

Figure 2-11 illustrates the components of a complete EMMY
cycle. The basic cyele (in execution order) consists of a
nicroinstruction fetch (IFETCH), execution of the T-machine
operation and execution of the A-machine operation. CPU accesses,
by other bus units, may occur prior to the IFETCH or between the
T- and A-machine execution phases.

Ignoring external accesses to the CPU, the execution time for
a given microinstruction may be determined by adding the time
required for the IFETCH, T-operation and A-operation. The times
given in figure 2-11 are in terms of the number of minor cycles
each stage of execution consumes. In the current wire wrapped
implementation a minor cycle is 35 nsec in length.

Some microinstructions, such as Indirect Access, take
variable amounts of time depending upon the options specified.
Others, such as Pointer Modifiy and Multiply Step take varying
lengths of time in a data dependent manner. Further, the
A-machine execution stage may be skipped entirely for one of the
following reasons:



1) Conditional test fails
2) The ACF field is used as immediate data
3) Bit 28 is sel on Extended Arithmetic microinstructions

2.5.2 Control Store Contention

Conceptually, the control store cycle in the current EMMY
implementaticn consists of two phases; an access phase and a
recovery phase. !icreinstruction processing will continue
immediately following the access phase. However, a subseguent
control store access may encounter delay if it begins before the
recovery phase is complete. There are two sources of control
store contention of concern to the microprogrammer: first,
contention between the IFETCH and a following control store access
and, second, between the bus and the A-machine.

Nine minor cycles must elapse between the start of an IFETCH
and the next control store access. Usually there is no conflict,
since the IFETCH consumes s8ix ninor cycles and most T-machine
instructions consume three or more. Currently, only the Extended
Arithmetic “transfer  operation consumes less than three cycles,
If this T-instruction is followed by a control store access
(either from the bus or the A-machine) then a delay of one minor
cycle will result.

if the A-machine instruction requires an immediate access to
control store and a bus operation occurs between the T- and
A-execution cycles, a delay of two minor cycles will occur. This
happens on all bus accesses even those which involve only the
register file,

2.5.3 Bus Access Timing

CPU delays due to bus accescing are, in general, to determine
exactly. Roughly speaking, there are four sources of delay:

1) Completion of deferred operation

2) Initialization of access

3) Response time of the accessed device
4) Asynchronous slave access

Operations in which the CPU reads slave bus devices (R <- X
or M <~ X) are termed deferred operations, since the access is
only initiated by the CPU. Later, the data requested will be
returned at which time the CPU must ‘give up’ cycles to the slave
device. ' Completion of “deferred’ bus operations requires six or
eight minor cyecles depending upon where in the microinstruction
cycle the completion occurs and the delay due to coptention for
control store.



Whenever the CPU initiates a bus access it will be delayed
until its request for bus access has been answered (see section
4). This delay depends upon bus traffic and the contention for
specific bus devices. Once the bus access request has been
accepted, CPU processing may proceed. If another bus access is
attempted before completion of a pending request the CPU will
delay until the first request is conpleted.

- Bus devices have widely varying response times which may
cause delays in nicroinstruction execution. After bus access is
obtained there may be a sipgnificant delay before the addressed
slave device recognizes its address and responds. This delay is
device dependent.

The final consideration in CPU timing is the effect of
asynchronous slave accesses to the CPU. At a minimum, a read of
the CPU requires six minor cycles, and a write requires fourteen
cycles, Much longer delays may occur if the accessing slave
device is slow in sending data or responding to a read.
Interrupts require a minimum of sixteen cycles.

To summarize, the determination of microinstruction timing
should proceced as follows: :

1) Determine the sum of times consummed in the IFETCH,
T- and A~ mincroinstruction execution phases,

)} Add delays associated with control store contention,

) Account for delays due to deferred-operations,

)} Consider possible effects due to contention for the
system bus, and

) Allow for delays due to asynchronous slave accesses.

E=J UV I\V]

(8]

2.6 Exceptions

Two error conditions are detected by the EMMY processor
during normal operation:

1) Control store parity fault, and
2) Bus time-out.

Each control store word is protected by a single parity bit.
Parity is generated on write operations and is checked on read
operations. If a parity failure is detected during a read
operation, the EMMY CPU will halt and indicate a "1 on the bus
PARITY ERROR line. The parity error condition may be reset using
the PARITY RESET bus line, however, the EMMY CPU will not resume
processing until the RUN line is pulsed.

Bus tine-out occurs when a single device holds the system bus
for longer than 75 usec. A bus time-out will cause an interrupt
to the control store address pair O4C-O4D and indicate a “1° on
the TIMEOUT bus line. The time-out condition may be cleared by

2-13



issuing a MASTER CLEAR sifnal. 1In general, bus time-outs occur
when an attempt is made to address a non-existant device or use a
device inmproperly in a data transfer operation.

Both the PARITY RESET and MASTER CLEAR lines are available on
the system bus (see section 4.) but are not accessible directly by
the CPU. Thus, from the viewpoint of the microprogrammer, the CPU
is unable to clear the parity or time-out conditions
independently.
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31 30 29 28 27 26 25_2& 23 22 21 20 19 18 17 mmeem 00

LOGICAL [0 0 o] 1[ 0P [ BF | &F ] ACF (1) ]
ARITHMETIC [[)_0 ] 0P | BF/VAL | AF | ACF_ (1)}
SHIFT/ROT [ 3 T 0] I] OF [ BF/VAL ] AF | ACF (1))
EXTENDED [0 1 1] I[ oP [ BF 1 aF ] ACF __(2) ]
EXTRACT [T 0 0] POS [ BF [ AF | ACF__(3) ]
INSERT (o 1] POS [ BF 1 aF ] ACF_ (3) ]
coNDITIONAL [ 1__1_ 0] (See figure 2-9) | ]
T-SPARE R T ]
NHotes: The ACF field is used as follows:

(1)

(2)

(3)

As immediate data or as an A-machine instruction
depending upon the I bit (28):

I=0 => A-machine instruction
I=1 => Immediate data

As A-machine instruction or A-machine NQOP depending
upon the I bit (28):

I=0 => A-machine instruction
I=z1 => A-machine NOP (skip A-cycle)

As immediate data only

FUNCTIONAL MICROINSTRUCTION FORMATS
FIGURE 2-6



ACF 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

LEXP | IF
EXP -~ Expansion specification
0 Right justify IF field
1 Left justify IF field
0 Zero fill remainder
1 One fill remainder
IF -- Sixteen bit immediate

data quantity

Notes: Example of expansion

EXP RESULTING IMMEDIATE DATA

k) [ ——— 16 15 —mmemmemaman 00
00 0] IF ]
01 L] —emmmmm e 1] IF ]
10 L IF [0 ——coommme - 0]
11 L IF | 7]

EXPANSION OF ACF. FIELD TO FORM IMMEDIATE DATA

FIGURE 2-7



ACF 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0C

BRANCH Lo o of (see figure 2-9) ]

STORE REG [0_0 1] CF ] ADR

A-SPARE1 Lo 1 of ) T

LOAD REG [0 1 1 cF_ T ADR 7
POINTER MOD [1_0 O CF_ T —DF T EF I _xop ] VAL

IND ACCESS |1 0 1] _CF I‘ DF_| EF ] XoP | VAL
A-SPARE2 (b1 ol ‘1
LOAD IMED | T 1 1] CF 1 ADR

llotes: The pointer modification instruction also acts as
a procedural instruction (see figure 2-9).

MEMORY MICROINSTRUCTION FORMATS
FIGURE 2-8



TCF

CONDITIONAL

ACF

BRANCH

LOOPING

Notes: 1)

2)

31 30 29 28 27 26 25 24 23 22 21 20 19 18

[170 1] CMASE | cop |

17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 o¢C

[0 0 0] BMASK [ BoP | VAL

J

T o o] CF | DF | ER | xor | VAL

Conditional microinstruction controls the A-machine
execution_of the ACF field.

"Looping” is another aspect of the Pointer Modification
nicroinstruction. '

PROCEDURAL MICROINSTRUCTION FORMATS
FIGURE 2-9



REGISTER 0 31 —==—=x 24 23 —omeee 16 15 ————- IR I ——— 00
C__CCODES___ 1 _ _ICODES | STATE ] MAR )

CCODES -- 31 30 29 28 27 26 25 24
Lcc T cTHLL] ST Pl B] ALU result on Logical or
Arithmetic operations

-- Zero

Less than

-~ Greater than

-~ Overflow/Underflow

Y o Y]
-0 -0
'

t

0 ~-=- CARRY
1 -- CARRY

0
1

0 -- HIGH bit (31)
1 -- HIGH bit (31)

0
1

0 -= LOW bit (00)
1 -~ LOW bit (00)

"o

0
0

0 -— Bits 31 - 00 not the same
1 ~-=- Bits 31 - 00 are the same

0 -- Even parity
1 -~ 0dd parity

0 -~ CPU bus access not in progress
1 -- CPU bus access in progress

ICODES -- 23 .22 21 20 19 18 17 16
i ] -- Programmer set, machine tested

STATE -- 15 14 13 12

Hf I} = = Processor State
0 -~ Running
1 -~ Halted
0 -= Interrupts disabled
1 -~ Interrupts enabled
MAR —— 11 10 09 08 07 06 05 04 03 02 01 QO
‘ L -~ Pointer to next

Microinstruction

FORMAT OF REGISTER O (PROCESSOR STATE WORD)

FIGURE 2-10
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INTERRUPT 16
SLAVE ACCESS| READ 8 (1)
WRITE [16 (1)
DEFERRED 4
NO ACTION ¢
{IFETCH 16 |
OGICAL f 3
ARITHMETIC .
SHIFT/ROTATE SINGLE 1 M+3 (2)
DOUBLE N+4 (2)
HULTIPLY 6/7
EXTENDED DIVIDE 7
ARITHMETIC EXCESS SIX 4
TRANSFER 2
[ INSERT N+6 (2)
TRACT N+3 (2)
CONDITIONAL
|POSSIBLE DELAY 1 1] (3)
|
SLAVE ACCESS| READ 6 (1)
WRITE 14 (1)
DEFERRED 6
HO ACTION 0
POSSIBLE DELAY 2 (3)
LOAD IMMEDIATE 2
) ()
STORE REGISTER 9 (4)
POINTER MODIFY Q _LOoOoP 4
LOQP 6
BRANCH 3
. XOP Register mods
zero | one | both
R <= X 3 5 8 (5) (6)
X <= R 3 5 8
INDIRECT. X <= M 9 9 i2 (4 (6)
ACCESS R <= M 9 9 1 (4)
M <= R 9 9 10 (4)
M <= X 3 5 8 (5) (6)
R <= R 3 5 8 (6)
FIG. 2-11 TINING ESTIMATION

(See notes

on following page)



NGTE 1:

NQOTE 2:

NOTE 3:

MOTE 4:

NOTE 5:

NOTE 6:

NOTES FOR FIGURE 2-11

Times for slave access to the EIMY CPU assume that
the accessing master device acts instantaneously.
Thus the times shown are minimum times and do not
take into consideration device characteristics.

‘N° stands for the number of bit shift steps required
to perform the operation.

A delay is possible here if the control store is
still busy serving a previous request and, it is
required by one of the A-machine instructions
indicated in note (4), Delays are as follows:

Delay of 1 cycle -~ If the contol store is still
busy with the IFETCH because
the T-machine operation executed
in fewer than 3 cycles. This
currently applies only to the
extended arithmetic transfer,

Delay of 2 cycles - If a slave access ar deferred.
operation takes place between
the T- and A-machine cycles.
The delay occurs even if the
operation involves only the
register files,

Operations shown require immediate use of the control
store and thus may affect the delay mentioned above.

Operations shown‘require a deferred access which will
occur at some future point in time.

An indeterminate delay is associated with the bus
operations shown since the CPU will not continue
processing until bus access is granted and the bus
address is accepted as valid. Aside from delay
caused by contention on the system bus, a delay may
may occur if a previous CPU bus request is still
outstanding,



3. MICROINSTRUCTION SYNTAX AND SEMANTICS
In this section the bit syntax and semantics of the EMMY
microinstruction set is given. Fach microinstruction class (e.p.
Logical) is explained on a separate pasre for convenient referencc.
The following symbols have been used to denote commonly
encountered operctions:

Logical NOT

+ Logical OR

® Logical EXCLUSIVE OR

# Logical AND

H Concatenation of bit fields

plus Two’'s complement addition

EXT External nemory (i.e. the system bus)

MEM Control store memory

REG Register file memory

MAR Microaddress register (bits 0 to 11 of Register 0)



31

30 29 28 27 26

--- LOGICAL ---

25 24

23 22 21 20 19 18

Lo 0 0oF 1] Op | BF I A ]
0 - OP2 <= REG[BF]
1 QP2 <= EXPANDED IMMEDIATE FIELD
op Sepanics Nane

0 0 0 O -REG{AF] COMPLEMENT

0 0 ¢ 1 ~-(REG[AF ]#0P2) NAND

0 0 1 0 -REG[AF ]J+0P2

0 0 1 1 LOGICAL 1 ONES

0 1 0 0 ~(REG[AF ]+0OP2) NOR

0 1 0 1 ~0P2 COMPLEMENT NUMBER

0 1 1 0 -(REGLAF J@oP2) XNOR

0 1 1 1 REG[AF ]+-~0P2

1 0 0 0 ~REG[AF ]*0P2

1 0 0 1 REG[AF l@0P2 XOR

1 0 1 Q oP2 TRANSFER

1 0 1 1 REG[AF ]+0P2 OR

1 1 0 0 LOGICAL 0O CLEAR

1 1 0 1 REG[AF ]®#.0P2

1 1 1 0 REG[AF ]1%QP2 AND

1T 1 1 1 REG[AF] TEST
NOTES: 1) Result is returned to REG[AF].

2)

2)

3)

OP field is the same

Operators used are:

for
for
for
for

stands
stands
stands
stands

1 9+

‘OR”
"EXCLUSIVE OR~
‘NOT
“"AND”

All condition codes except OVERFLOW are set as
required.

as function select on MC10181.



--~ ARITHHETIC --=~

21 30 29 28 27 20 2% 24 23 22 21 20 19 18

PO 0 1T 11 op [ BE/VAL | AV ]
0 . I0P <= REG[BF]
1 IOP <= EXPANDED IMMEDIATE FIELD
0 Store result in REG[AF)] and set condition coces
1 Set condition codes only
0 OP2 <= IOP
1 oP2 <= VAL

REG[AF] plus - OP2 pius 1
REG[AF] plus - 0OP2 plus C
REG[AF] plus OP2

REG[AF] plus OP2 plus C

- 00
—_ O -=O

tICTES: 1) Conditions codes are set on result.

2) OVERFLOW results when carry into sign bit is not the
same as the carry out of the sign bit.

3) VAL field is not sign extended when used as 0OP2.

b} The operator “plus’ is two’s complement addition.



3

-
|

SHIFT/ROTATE ---

30 29 28 2T 26 25 24 23 22 21 20 19 18

[

o

1

ol T1

oPp | _BE/VAL | AF ]

2)

3)

4)

5)

0 P <= REGIBF]
1 P <=

EXPANDED IMMEDIATE FIELD

0 Single length operation
1 Double length operation

0 Shift amount is specified by
1 Shift amount 1is specified by

LEFT ROTATE

—_— 0O
— O =0

Condition codes are not set.

Single length shift: REG[AF]

Double length shift: REG[AF]

REG[AF®1 ]
Bit 25 is direction: O => LEFT
1 => RIGHT

LEFT SHIFT LOGICAL

RIGHT SHIFT LOGICAL
RIGHT SHIFT ARITHMETIC

is source
nation.

is source
nation of
32 bits.
is source
nation of
32 bits.

On RIGHT SHIFT ARITHMETIC the sign bit is

3- 4

VAL

and desti-

and desti-
high order

and desti-
low order

preserved.



EXTENDED ARITHMETIC ---

21 30 29 28 27 26 25 24 23 22 21 20 19 18
0 1 T 1] 0P [ BF | _AF ]

0 Execute A-machine instruction
1 Skip A-machine instruction

OP

0 0 0

0 0 O

0O 0 1

0 0 1

0 1 0

0 1 0

0 1

0 1 1

1 0 0

1 ¢ o0

1 0 1

1 0 1

1 1 0

1 1 o0

T T

1 1 1
NOTES: 1) DIVIDE STEP
initialize:

finalize:

Sequence: 1)
2)
3)
L)
2) TRANSFER

Name
UNASSIGNED

-~

UNASSIGNED

DIVIDE STEP
TRANSFER
EXCESS SIX
MULTIPLY STEP

REG[AF]/RI.G[{AF®1] is dividend
REG[BF] is divisor

REG[AF] is remainder
REG[AF@1] is quotient

if REG[AF] minus REG[BF}20

then REG{AF] <= REG{AF] minus REG[BF]
Shift REG[AF]{REG[aF@1] LEFT LOGICAL by
one bit.
If result of step 1 was =2 0

then shift 1 into REG[AF®1]
No condition codes are set.

REG[AF] <= REG{BF]
{no condition codes are set)

--~ (Continued on next page) —=-



--- EXTENDED ARIHMETIC ~~-
{Cont.inued)

3) EXCESS CIX For each 4 bit dipit position of REG[DBF:
which is preater than 9 (1001) store 6
(0110) in the corresponding digit
position of REG[AF). No condition codes
are set

4) MULTIPLY STEP
initialize: REG[BF] is nmultiplicand.
REG[AF®1] is multiplier.

finalize: REG[AF]IREG[AF®1] holds double length
result.

-Sequence: 1) Shi.t REG[AF]1|REG[AF@®1] RIGHT ARITHMETIC
by c¢n¢ bit.

2) If OVERFLOW was set on previous MULT STE?
then Complement sign bit of REG[AF]

3) If bit O of REG[AF®1]} was a 1
then REG[AF] <= REG[AF]+REG[BF]

Set QVERFLOW if necessary

else clear OVERFLOW bit

4) No condition codes are set.



-—— EXTRACT ---

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 mmcmccweo— 00
[T 001 P03 I BF I AF 1 EXP | 1F ]
POS -- Amount of LEFT ROTATE

NOTES:

1) Sequence:

EXP IF
(immediate mask data)

1) Left rotate contents of REG[BF] by amount
specified by POS field.

2) 'AND® with MASK generated from expanded
ACF field.

3) Place result in REG[AF].

2) Algebraically, the sequence is defined as:

REG[AF] <= (left rotate(REG[BF],P0S))¥MASK

3) MASK is expanded immediate field.

4) Condition codes are not set.



--- INSERT ---

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 —=—en —===~_00
L1 0 1} POS i BF } AF 1 EXP { 1F ]
POS -- Amount of LEFT ROTATE

NOTES:

2)

3)
4)

1) Sequence:

2)

3)

EXP IF
(immediate mask data)

Left ~ctate contents of REG[BF] by amount
specified by the POS [ield.

Generate a MASK from the expanded ACF
field.

The result from step (1) will be ’inserted’
into REG[AF] bit by bit where ever the

the corresponding bit position of the MASK
is “1°. Where a bit position of the MASK
is “0° then the corresponding bit position
of REG[AF] is unchanged.

lpebraically, the sequence above may be expressed as:

REG[AF] <= (Left Rotate(REG[BF],POS))*MASK)+(REG[AF ]*-MASK)

ITASK is immediate data from expanded ACF field.

No condition codes are set.



--— CONDITIONAL ~~-

31 30 29 28 27 26 25 23 22 21 20 19 18 17 wmemmacecaea- 00
{1 1 ©6f CMASK | CoP | ACF ]

CMASK =~ Mask for code bit selection

cop -~ Test Specification
vV C S
0 llormal sense
1 Inverted sense
0 lHlormal codes
1 Inverted codes
0 Test condition codes
1 Test indicator codes

ACF -~
(Conditionally
executed A-machine
instruction)

HOTES: 1) Skip A-machine instruction specified by the ACF field if:
7 2
ve |J (CMASKi * (C @ ((-S*CCODEi) + (S*ICODEi))))
i=0 .

2) Semantically, the ‘S” bit selects either the condition
codes or the indicator codes for testing. The particular
bits of the selected codes to be tested are specified

by 1°s in the CMASK field. Bits ‘V’ and ‘C’ specify
the test of these bits as follows:

Skip A-machine instruction if:
Any bit is set

Any bit is not set

All bits are not set

All bits are set

—_—_ OO <
=S OO0
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--- STORE REGISTER ~--

17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Le_ 0 11 CF i ADR J
CF -~ Source register
ADR -- Destination address

in micromenory

NOTES: 1) The register designated by the CF field is stored in
the micromemory address given in the ADR field.
Algebraically:

tIEM[ADR] <= REG[CF]



--- LOAD REGISTER ---

17 16 15 14 13 12 11 10 09 08 d7 06 05 04 03 02 01 00

Lo 1 "1} CF | ADR 1
CF -~ Destination register
ADR -~ Source address in
micromemory

NOTES: 1) The contents of the micromemory address specified in the
ADR field is loaded into the register specified by CF.
Algebraically:

REGICF] <= MEM[ADR]



-=-= LOAD IMHEDIATE ---

17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0O

O 370 ¢crF T ADR ]
CF -- Destination register
ADR -~ Immediate data

NOTES: 1) The register designated by CF is loaded with the
immediate data specified by the ADR field. ADR is
sign extended to form the 32 bit immediate data
quantity.

3-12



~-~ INDIRECY ACCESS ---~

17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 Q0

L1 0 11 CF | DF | EF | XOP | VAL 1]
CF -~ JDestination address pointer
DF -- Source address pointer
EF -- Modification specification
0 0 No modification
0 1 REGIDF] <= REG[DF] plus VAL
1 0 REG[CF] <= REG[CF] plus VAL
1 1 REG[DF] <= REG{DF] plus VAL
(and)
REGI[CF] <= REG[CF] plus VAL
X0P -~ Transfer specification
0 0 « MEM[REG[CF]] <= EXT[REG[DF]]
0 0 1 REG[CF] <= EXT[REG[DF]]
o 1 0 EXTIREGICF]] <= REG[DF]
0 1 1 EXTIREGICF]] <= MEM[REG[DF]]
1 0 O REG[CF] <= MEM{REG[DF]]
1 0 1 MEM[REG[CF]] <= REG[DF]
1 1 0 REG[CF]’ <= REG[DF]
1 1 1 Unassigned
VAL -~ Immediate value for
pointer modification
NOTES: 1) Abbreviations in transfer specification are:

REG -- Register file address
HEM ~~ Micromemory address

EXT -- External bus system address

2) VAL is sign extended to form a 32 bit quantity for use
in the pointer modification step which follows the
transfer step.

3) When external bus operations are specified the address
pointer register involved is used as follows:

Bits Usage

15 - 00 Unit internal address
23 - 16 Unit address

31 -~ 24 Command

~—- (Continued on next page) ===
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~=~ INDIRECT ACCESS —---
(Continued)

Bit 24 of the command word is ignored and the
corresponding bit on the system bus is set explicitly
by the transfer specification as follows:

P Bit 24

[oNoNole]
-—-—0 00
-_- DO
—_—00

The access busy bit of register 0 is set whenever an
external access is started and cleared when the access

is completed. Once the external access has been started
the CPU may continue to execute microinstructions provided
the external memory ia not accessed while the busy bit

is “1°. If an external! access does occur while the busy
bit is set the CPU will cease execution until the busy

bit is cleared (i.e. when the previous CPU issued bus
operation finishes).



~-- POINTER MODIFICATION and LOQP ---

17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

O o of cF T o»oF 1 EF ] ___X0P ] VAL 1]
CF -~ Gource and sink register
DF -~ Scurce register
EF -- Modification specification

(REG[CF] gets result)

0 0 REG[CF] plus 1
0 1 REG[CF] plus -1
1 0 REGICF] plus REGIDF]
1 1 REGICF] plus -REG[DF] plus -1
X0P -~ Loop specification
0
1 Loop if REG{CF] < 0O
0
1 Loop if REG[CF] = 0
0
1 Loop if REG[CF] > 0
VAL == Amount of
relative
branch

HOTES: 1) VAL is sign extended
2) Seqguence: 1) Perform operation specified in EF field
and place result in REG[CF]
2) Test the resulting contents of register CF as
specified by the XOP field.
3) If the loop test is “true’
then MAR <= MAR plus VAL
else HAR is unchanged
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~--~ BRAICH ===

16 15 14 13 12 11 10 09 08 07 06 05 O4 03 02 01 00
0 BHASK [ BOP 1 VAL ]

:J

BMASK ~- Mask for code bit selection

BOP -- Test specification
vV C S
0 Normal sense
1 Inverted sense
0 Normal codes
1 Inverted codes
0 Test condition codes
1 Test indicator codes

VAL ~- Amount of
relative
branch

NOTES: 1) VAL is sign extended to form amount of relative branch

2) MAR <= MAR plus VAL if:

1
Ve \U (BMASKi * (C @ ((-S*CCODEi) + (S*ICODEi))))
i=0

3) Semantically, the 'S’ bit selects either the condition
codes or the indicator codes for testing. The particular
bits of the selected codes to be tested are specified
by “1°s in the BMASK field. Bits ‘V° and 'C” specify
the test of these bis as follows:

Branch to MAR plus VAL if:
Any bit is set :

Any bit is not set

All bits are not set

All bits are set

—_ 00w
- =000



b, DS SYSTEN TJTERIFACING

Tnis chapter supplies the hasic information necessary for an
“HilY cysiem user to desiprn and interface units with the processor
bus system., Both logical and electrical considerations are
discussed. To deternine the specific pin assignments on the
2ystem backplane and card slot assignments the user should refer
to the applicable system schematic drawings and wire list
docunmer:taticon.

4.1 Inter-unit Communication Philosophy

The EMMNY processor bus system is a bi-directional, 32 bit
wide data bus which makes use of a fully interlocked, asynchronous
data transfer scheme. Control is distributed among the bus units,
and any bus unit which is electrically and logically capable may
fFain control of the bus system for the purposes of transfering
data. Bus access is based on a ‘simple’ priority system in which
the highest priority device is always granted access.

Conceptually a complete bus operation sequence mnay be divided
into two sub-~sequences:

1) Access sequence, and
2) Data Transfer sequence.

During the access sequence, bus devices bid for control of the bus
system. A device which gains control of the bus during this
sequence is refered to as a ‘master’ device, and this device
controls the subsequent data transfer cycle. During this transfer
cycle the device will issue an address on the bus system which
will designate another bus unit as a participant in the data
transfer. This unit is refered to as a “slave” unit. All
unaddressed units remaln inactive with respect to the bus during
the data transfer phase of the bus operation. Any unit may be
designed to have ‘master’ and/or “slave’ capability. The CPU, for
example, has both accessing capabilities.

In addition to the data transfer capability outlined above,
the bus also contains a group of direct signalling lines which are
related to control and status functions of the CPU.

4.2 Bus Line Senmantics
4.,2.1 Electrical Semantics

Electrically, the processor bus system is based on open
collector TTL logic. Thus, a "1" on the bus (assuming positive
device logie) corresponds to 0 volts on the actual bus lines, and,
conversely, a "O" corresponds to +5 volts. In this section we
will refer to the bus signals ™1" and "O" as they appear to a



device pefore transmission and after reception.

K. 2.2 Logical Semantics

Bef'ore giving the details of inter-unit communications on the
EMMY bus system we will briefly outline the semantics of the bus
lines from a logical standpoint. These lines may be grouped as
follows:

'} Direct Lines ~- Used to directly indicate and
control the status of the EMMY
CPU.

~ Used to resolve multiple
requests for bus service.

2} Access Control Lines

3) Transfer Control Lines -- Used to synchronize data
transfer between a master and
slave unit.

L) Data Lines -~ Used to transfer address and
data information between units.
4,2.2.1 Direct Lines
The eight direct lines are divided into two groups: control
and status. These lines may be used by bus units to sense CPU

status and to influence the status of the CPU and other bus units.

Direct Status Lines

1 => CPU is halted
0 => CPU is running

RUN/HALT

PARITY ERROR

Indicates a control memory périty error has
been detected.

TIMEOQUT -~ Indicates that a bus operation has not been
conpleted within 75 usec.

INTERRUPT 1 => Interrupts enabled

0 => Interrupts disabled

Direct Control Lines
RUN - Signals the CPU to enter run mode.

HALT/STEP - Signals the CPU to halt. When the CPU is
halted a sipnal on this control line will
cause the CPU to execute one additional
microinstruction.



PARITY KESET -~ Resets the CPU parity error condition.

MASTER CLEAR —ASignals all bus units to initiazlize.

4.2.2,2 Access Control Lines

At the start of a bus cycle the four access control lines are
used by all devices which are requesting master status to resolve
possible conflicts.

BUSCLK - This line is driven by a 100 nsec clock
which operates whenever the bus is idle and
seeking requests.

REQUEST/USING - Signals that one or more devices are
requesting the bus, or that a sinple device
is currently in master status and is using
the bus.

AVAILABLE " ~ This signal is chained from one potential
naster unit to the next on the bus., When
REQUEST/USINGs "1" the senantics of
AVAILABLE at the input of a unit are:

1 => Bus is available for access by
receiving unit.

0 => Bus is being used by a higher
priority unit.

Semantics of AVAILABLE at a unit output are:
1 => AVAILABLE at the unit input is one
and the unit does not wish to use
the bus.
0 => AVAILABLE at the input is "0" or
AVAILABLE at the input is "1" and
the unit is using the bus.
CREJ ~ When "1", this line indicates that an access
control cycle has conmpleted.

4.,2.2.3 Transfer Control Lines

The six transfer control lines are used by master and slave
units to synchronize the transfer of data on the bus data lines.

ASIG - Indicates that the bus data lines contain
valid address information. '



ISIG - Indicates that the bus data lines contain a
valid CPU interrupt vector.

AACK - Indicates that bus data has been recornized
as a valid address by a slave unit or as an
interrupt voector by the CPU. ‘

REJECT - Indicates that information on the data lines
has been recognized as a valid address by a
slave unit, but that the slave unit cannot
respond at the present time.

DSIG -~ Indicates that the bus data lines contain
valid data.

DACK - Indicates that data on the bus data lines
has been accepted bty the receiving bus unit.

4,2.2.4 Data Lines

The thirty two data lines are used for the transfer of
address, interrupt vector and data information between
communicating bus units.

4.3 Sequencing of Bus Operations

A complete bus operation consists of two phases: competition
among requesting master units for control of the bus system and an
asynchronous transfer of data between a single master and slave
unit pair. Figure 4-1 schematically illustrates the sub-structure
of a typical ‘master’ device. Such a device has three internal
controllers:

1) Device controller,
2) Access controller, and
3) Transfer controller.

The device controller works directly with the device itself and
its associated internal storage mechanism. The access controller
handles the first phase of the bus sequence, gaining control of
the bus, while the transfer controller oversees the transfer of
data to the “slave’ bus unit once bus access has been obtained.
The three internal controllers are linked logically by three
internal signals:

1) REQ - Signals the access controller that the device
controller is ready to initiate a bus data transfer
operation.

2) GO - Indicates to the transfer controller that the



/

access controller has obtained the bus.

3) DONi: - tired by the transter controller to indicate to the
dovice controller that the transfer operation is
conplete.

In the following sections we will outline the logical structure of
the access and transfer controllers. The logical structure of the
device controller is, of course, dependent upon the
characteristics of the particular device involved.

4,3.1 Logical Structure of the Access Controller

Logically speaking, the access controller responds to
requests (via the REQ line) for bus service from the device
controller by using control access lines to obtain control of the
bus system. After doing this it signals the transfer controller
(via GO) to begin the transfer operation. 1In gaining control of
the bus the access controller uses the following lines:

1) BUSCLK

2) REQUEST/USING

3) AVAILABLE (IN and OUT)

4) REJECT (a signal from the transfer controller)
5) MASTER CLEAR

The AVAILABLE line originates at the bus controller and is chained
down the bus system from one potential master unit to the next.
Priority on the processor bus system is determined by access’
controller position on the AVAILABLE line with the device
electrically closest to the bus system controller having the
highest priority and the ellectrically most distant access
controller having lowest priority. This chaining is illustrated
in figure 4~2. HNote that the AVAILABLE(OUT) line of one unit
become the AVAILABLE(IN) line of the next. Further AVAILABLE(OUT)
from the last unit in the chain is returned to the bus system
controller where it is ‘OR‘ed with the ASIG and ISIG transfer
control lines to generate CREJ. Thus, semantically, the CREJ line
is used to signal all bus units that an access cycle has been
completed.

Figure U-3 sumarizes the logical requirements placed on
access controller operation in the form of a state diagram. A
controller begins its request sequence in state 0 (idle). When
the bus itself is idle the REQUEST/USING LINE will be ™"O" and the
BUSCLK line will show a 100 nsec clock signal. On the rising edge
of this clock all master devices receiving REQ from their
assoclated device controllers will enter state 1 (requesting bus).

Each access controller in state 1 will send "1" on the
REQUEST/USING line. REQUEST/USING 51gnals from all access
controllers are in the system are “OR “ed on the bus since this is



an open col-ector system. The bus systen controller upon
receiving this sifnal will stop the BUSCLK line and issue a "1" on
the AVAILABLE line. AVAILABLE passes from the hiphest priority
master unit to the lowest. If a master unit is in state 0 (idle)
it should aliow AVAILABLE to continue to the next unit in the
chain. However, if a master unit is in state 1 {(requestinp bus)
it should not pass AVAILABLE and instead transition to atate 2
(using bus).

At this point, of those units vhich initially requested the
bus only a single master unit will be in state 2. This unit will
continue to send "1" on the REQUEST/USING line and will issue a GO
signal to its associated transfer controller. During the
operation of the transfer controller an ASIG or ISIG will be
issued. Either of these signals will cause the bus controller to
send "1" momentarily on the CREJ line. Semantically, this event
indicates that an access c¢ycle has ended, and all units in state 1
should return to state 0 to await a new bus access cycle.

The current bus master will remain in state 2 awaiting the
completion of the data transfer phase of the bus operation. If
the transfer operation completes normally, the transfer controller
will signal DONE to the device controller which in turn will set
REQ to "0" returning the master to state 0. In state 0 the master
will release the REQUEST/USING line which in turn causes the bus
controller to set AVAILABLE to "0O" and restart the system clock.
The access cycle then begins anew.

Alternatively, the operation of the transfer controller may
cause a REJECT signal from the selected slave device, indicating
that the slave is busy servicing a previous request. In this
event the transfer controller will terminate the transfer sequence
and the access controller will release REQUEST/USING and enter
state 3.

Once a REJECT is received the rejected master unit enters a
state sequence in which it must wait for three complete access
cycles to pass before being allowed to obtain bus assess again,
This is represented in figure 4-3 by the sequence (3-4-5-6-7-8).
This state sequence is paired as follows: (3-4), (5-6) and (7-8).
Transitions between state pairs occur when the access controller
sees the CREJ signal. Transitions within a state pair occur when
the bus clock rises to "1™, 1In states 4,6 and 8 the accesss
controller must signal "1™ on the REQUEST/USING line, however, it
must allow AVAILABLE to pass through to lower priority devices.
This allows devices other than the rejected unit to gain the bus.
If, however, no other devices are requesting the bus, the
AVAILABLE(OQUT) signal from the last access controller will cause
the system bus controller to signal CREJ and thus advance the
state of the rejected access controller, In states 3, 5 and 7 the
rejected access controller must lower REQUEST/USING (as if it were
in state 0) and allow the bus clock to run. This will assure that
eventually the rejected access controller will be reset to state O



within three bus cycles even i{ it is the only device requesting
the bus. o

A device controller may elect to take special action when
rejected. It may, for examople, remove its request to the access
controller (i.e. set REQ to "™0"). 1In any event the access
controller will allow at least 2 complete access cycles to pass

before allowing a new REQ signal to be answered.

A "1" on the MASTER CLEAR line, by definition, should set all
access controllers tc state 0 and reinitialize their associated
device anu transfer controliers.

4.3.2 Logical Structure of the Transfer Controller

The transfer controller oversees the transmission of address
and data Information on the bus data lines. Typically, the
transfer control phases consists of two sub-phases in which the
data lines are used first for address transmission and then for
data transmission. FEach tiansmission is controlled in an
asynchroncus manner by naking use of the six transfer control
lines:

ASIG
ISIG
AACK
RECECT
D3IG
DACK

N EZWN)
N Nt N S N S

During the address transmission a slave device is identified.
During the data transmission data information is passed between
the master and the selected slave device.

Currently, three types of bus transmission sequences are
defined:

1) READ - A master unit receives data from a slave unit,

2) WRITE - A master unit sends data to a slave unit, and

3) INTERRUPT - A master unit sends an interrupt vector to the
CPU

The READ and WRITE operations are essentially similar (except for
the direction of data transmission) and both involve address and
data transmission cycles. The INTERRUPT operation, however,
requires only an address transmission.

4.3.2.1 Address Transmission Sequence

The standard address transmission sequence, as shown in
figure U-La, involves the use of the data lines and the ASIG and

b= 7



AACK transfer control lines. The master unit begins by placing
address information on the tus data lines. After a delay of at
least 60 nsec, to allow fcr cata skewing on the bus, it signals
with a "1" on ASIG. Upon receiving ASIG all slave devices on the
bus compare the address sent to th2ir own internally set address.
If the address is valid, a sinple slave unit will recognize it.
This unit shculd store any portion of tne address it needs for
future reference (e.g. the command and internal address) and senc
a "1" on the on the AACK {addrens acknowledre) line. The master
unit upon seeing AACK will remove the address information from the
lines and "lower" ASIG. In response, the slave unit will "lower™
AACK completing the address transmission cycle.

According to the transmission scheme discussed above the
semantices ¢f the ASIG and AACK lines are as follows:

ASIG AACK Semantics
0 0 Idle (transmission complete)
1 0 Valid address on data lines
1 i Address reccgnized by a slave unit
0 1 Address removed Irom data lines

There are two variations on the address scheme described
above: the interrupt and reject sequences.

The interrupt sequence (fipure U4-Ub) is essentially the same
as the normal address transmission except that the ISIG line is
used instead of the ASIG 1line to signal address validity. The low
12 bits of the interrupt vector sent on the hus data lines must be
even and specifies an even-odd pair of control store locations.
Register 0 is stored in the odd control store location, and a new
register 0 is fetched from the cven location of the pair. Control
store addresses are assigned by convention to the various bus
units for interrupt purposes as outlined in section 2.3.2.

Although the CPU may be interrupted at any time, bus devices
should not attempt to interrupt the CPU when the INTERRRUPT line
is "0". Interrupt sequences are not followed by a data
transmissicn sequence.

A slave unit which is addressed by a master may respond with
a REJECT signal instead of an AACK. This indicates that the
slave, while recognizing its address, is currently unable to serve
the master unit. This usually occurs when the slave is still busy
completing a previous request. The reject sequence is shown in
figure 4-4c. A master unit which is rejected will not begin a
data transmission sequence. t may resubmit its request to the
slave unit in accordance with the restrictions outlined in section
4.3.1.

Dhring the address transmission sequence the thirty-two data
lines are used to send address and command information according
to the following convention:



bata Lines Unage

Bits 15 to 00 Lnit Internal Address
Bits 2% to 10 Jrit Address
Bits 37 to 24 Ccmmand

Currently, slave unit addresses are assigned as follows:

Address Unit

FE , CEG

FE Console

FD Datapoint Interface
00 -- 03 [laiu liemory

Bit 24, the low bit of the command, determines the direction of
the data transmission on the bus:

Bit 24 Semantics
0 Read (mnaster receives from the slave)
1 Write (master sends to the slave)

The other bits of the command may be used as requlred by the
individua. bus units.

4,3.2.2 Deta Transmission Sequence

A data transmission sequence, as shown in figure 4-U44,
follcws the address transmission except in the case of an
interrupt or reject sequence. Depending upon the command sent
during the address transmission, either the master or the slave
unit will be desipgnated as the sender. The other unit will be the
receiver (e.g. on Writes the master unit is the sender while the
slave unit is the receiver). The sending unit begins by placing
data on the data lines and after a 60 nsec deskewing delay sends a
"1" on DSIG. Upon reception of DSIG the receiving unit stores
from the data line and sends a "1" on DACK (data acknowledpge).
Upon receiving DACK, the sending unit removes data from the data
lines and "lowers" DSIG. The response of the receiving unit is to
lower DACK completing the data transmission sequence. At this
point the the master device should release control of the bus
system.

Semantically, the states of the DSIG and DACK lines may be
represented as follows:

DSIG DACK Semantics
0 0 Idle (transmission complete)
1 0 Valid data on the data lines
1 1 Data latched at the receiving unit
0 1 Data removed from the data lines



4.3.2.3 Bus Error Conditions

A CPU timing circuit monitors the BUSCLK line and if BUSCLK
is "0" for longer than 75 usec the TIMEOUT line is "raised" and
the CPU is interrupted. A timeout interrupt indicates that a bus
master has failed to complete its operation in the allocated time.
Normally this is caused by addressing a non-existant slave unit.

4.4 Electrical Requirements of the Bus Systen

The processor bus system is based on open collector,
non-Schottky TTL lofic. Bus drivers in the system are 7438 and
8T26 gates capable of sinking 48ma and 40ma respectively. A
central pull-up resistor of 220 ohms is provided.

Each bus unit shall interface to a bus line through a sinrle
non-Schottky TTL driver and receiver. Further, a bus unit shall
noct extend the bus electrically from the backplane without
providing input/output buffering. The number of bus units is
linited electrically (but not logically) to 9.
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Figure 4.1 Schematic of a Bus Master Unit
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Figure 4.2 Bus System Structure
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