
S-C 4060
STORED PROGRAM RECORDING SYSTEM .

SOFTWARE DESCRIPTION
AND

SPECIFICATIONS

9500236

Stromberg -CarlsonASUbSid ia~ Of General Dynamics
1895 HANCOCK ST. P.O. BOX 2449, SAN 01 EGO, CALI F. 92112 TEL. (714) 298-8331

Checked

S-C 4060

STORED PROGRAM RECORDING SYSTEM

SOFTWARE DESCRIPTION

and

SPECIFICATIONS

Revision A
9500236

R. C. Foster J. J. Konen, Jr. ____ _

Stromberg-CClrlsonAS "..,.'''"-i''

1895 HANCOCK ST. P.O. BOX 2449, SAN DIEGO, CALIF. 92112 TEL. (714) 298-8331

ABSTRACT

This document describes the software packages

which are delivered with the Stromberg-Carlson

4060 Microfilm Plotter-Printer Data Recording

System.

ii

TABLE OF CONTENTS

I. INTRODUCTION.

A. Primary Software Packages

B. Standard Operating Environment

C. Supplementary Software Packages

n. EXTERNAL COMPUTER SOFTWARE .;,. IGS

A. Background.

B. Description.

C. Special Features

D. Advantages of IGS

m. S-C 4060 INTERNAL SOFTWARE - SCRIP.

A. Background.

B. Scrip Executive Program - MCS

C. Scrip Library Programs .

D. S-C 4060 Supplementary Software.

FIGURES

1. S-C 4060 Standard Operating Environment

2. S-C 4060 CHARACTRON Set .

Page

1

1

1

3

4

4

5

5

8

9

9

10

12

13

2

7

iii

APPENDICES

Page

A. Meta-Language Description . A-I

B. S-C 4060 Standard Raster. B-1

C. Mode Set Function/Code. C-l

D. Messages During Execution D-l

E. MCS Operating Features. E-l

F. DAP-16 Symbol ic Language F-l

G. ASA Fortran G-l

H. S-C 4060 Test Programs. H-l

I. Operator Instructions to the S-C 4060 I-I

)
iv

" , '~

I. INTRODUCTION

A. Primary Software Packages

The two primary software packages which are delivered with the S-C 4060

Microfilm Recorder PI otter-Printer are the Integrated Graphic Software

(IGS) package and the Stromberg-Carlson Recorder Input Processing (SCRIP)

package.

IGS was developed by the RAND Corporation for the S-C 4060. It is a high

level (Fortran language) graphic application oriented software package,

which when run on a general purpose computer produces output in the form

of a meta-language (see Appendix A.)

SCRIP, developed by Stromberg-Carlson, is a low level (machine language)

package of routines which controls the operation of the S-C 4060; in particu­

lar, the SCRIP system contains the necessary routines to control the input of

the meta-language (either off-line or on-line) output by IGS, and supervise the

processing of the metalanguage into commands which cause the S-C 4060 to

generate the desired graphical and/or printed output. SCRIP routines also

monitor the film and hard copy control functions and provide additional input

processing capabilities as specified in Section III.

B. Standard Operating Environment

The standard operating environment of the S-C 4060 is defined as one in

which a remote (external to the S-C 4060) general purpose computer uses

IGS to produce the input (off-line, or optionally on-line) to the S-C 4060.

This environment (see Figure 1), also referred to as an External System

Configuration, is fully supported by the standard SCRIP software package.

This system has the following advantages:

1. Simplified Programming - any desired display may be produced
by using IGS subroutines either singly or in combination.

1

.....
Q) ;:s
c.
S
0
u .
~ rn

0 ~

User Program

--~
Application

Routines

Basic Graphic
Function
Routines

Written in Fortran, PL/I
or user's machine language

Display Characters
Draw Joined Lines
Draw Line Segments
Draw Grids
Plot Symbols

Mode Setting
Display I. D. Information
Advance Frame
Form Flash
Plot Points and Characters
Print Lines of Characters

Meta-language
Generation and

----l----- ---A Portion to be Written in
I User's Machine Language

Transmission
Routines

-1 :
I

On-line Off-line

r----'---,---...... :--, -- - - -
S-C 4060
SCRIP
Routines

Controls Input and Processing
of meta-language data,
generates graphic output

Figure 1. S-C 4060 Standard Operating Environment

2

''I

2. S-C 4020/SCORS Compatibility - SCORS programs can be used
in this environment.

3. Softw~re Control Flexibility - software control of the S-C 4060
permits special user requirements to be incorporated into the
system without the necessity of expensive equipment modifica­
tion; only the SCRIP package need be extended. Thus, if the
user wanted to implement any other generalized output graphic
language from a remote general purpose computer he could add
an appropriate non-standard SCRIP processor.

C. Supp_~~!ll~ntary Software Packages

In addition to the IGS package and the SCRIP package, the following supple­

mentary software packages are delivered with the S-C 4060:

1. DAP-16 Assembler - a symbolic assembly language package
which will enable the user to write routines to be added to the
SCRIP software (which is written in DAP-16 - see Appendix F).

2. Fortran IV Compiler - will process the standard Fortran language
specified by the American Standards Association (ASA - see Appendix
G) and permit the use of the S-C 4060 as a "stand-alone" computer
for small problems when it is not fulfilling its prime function - the
recording and output of graphical and/or printed displays. A library
of standard math and utility routines is included.

3. An EDITOR - to create or update the SCRIP system tape thus allowing
the user to tailor the system to his own needs.

4. Utility Routines - Checkout and debugging aid; core dump routines to
ASR-33, printhead, paper tape, and magnetic tape; card to tape pro­
gram; punch program (for self-loading object tapes); one and two pass
loaders; tape dump and copy program; cold start and library bootstraps.

3

II. EXTERNAL COMPUTER SOFTWARE - IGS

A. Background

In order to enable the programmer to utilize the S-C 4060 as a graphic out­

put device effectively and efficiently, a graphic software package was

developed to produce the input for the S-C 4060. This package, called Inte­

grated Graphic Software (IGS), was designed after a careful study of the

S-C 4020 SCORS package and other graphic output packages, in par-

ticular the SHARE committee report on Standard Graphic Output

Subroutines.

S-C 4060 Users familiar with the SCORS package will note many

differences between it and the IGS package. Since the SCORS pack­

age was originally designed for an S-C 4020/IBM 7090 combination,

it reflects the hardware limitations of each. IGS was designed

to provide for the powerful capabilities of the S-C 4060, and to eliminate

as many of the previous limitations as pOSSible, to be more efficient,

and be easier to understand. Thus special features of the S-C 4060, such

as automatic character rotation, line \\<idth, stroke characters, dashed

lines, etc., and control features such as frame butt, on-line processing,

expose hardcopy, on-line messages, void frames, etc., are programmable.

IGS also was designed to take advantage of the new generation of computer

hardware and software; it will operate in a time sharing environment,

and is callable from PL/I. In addition to the above mentioned features,

SC ORS compatibility· is maintained.

The IGS package will be given to the user in source form and is intended

to be added to the system library of his computer. With the exception of

the packing, transmission (output), and conversion routines, the sys­

tem is written in Fortran and is thus "computer independent." The

4

packing, transmission, and conversion routines may require machine

dependent subroutines which will normally be supplied by the user.

B. Description

The Integrated Graphic Software package is a computer-independent set of

subroutines designed to remove the user from the hardware considerations

of the S-C 4060. The subroutines are written in Fortran, but may be called

from PL/I, Fortran or the computer I s Assembly Language. When called by

the user the individual subroutines supply the details necessary to perform

the desired graphic functions (e. g., construct a grid, draw a line, plot a

character, etc.). These details principally consist of structuring, for­

matting, and outputting (either on-line or onto a magnetic tape) a position

keyed, character string meta-language for input to the S-C 4060

(see Appendix A). Thus, the user is allowed to think in terms of his dis­

plays rather than in terms of the hardware features which actually create

the displays.

The heart of the IGS package consists of five subroutines which display char-

acters, draw joined lines, draw line segments, plot symbols, and draw

grids (linear, non-linear). The subroutines are easy to use, easy to

understand, and place as few restrictions on the user as possible.

C. Special Features

1. Automatic Scaling - the user may set up his own cO'Jrdinate system,
and an IGS subroutine computes the scale factors needed and auto­
matically scales the data.

2. Default Values - A powerful feature of IGS is the ability to assume
appropriate default values for items the user chooses to ignore. For
example, if the user does!!", . ~'Jcify the plotting area he desires on
the tube face, the system will assume it to be the full 4096 x 3072
raster size of the S-C 4060 (Appendix B describes the S-C 4060
Standard Raster).

5

3. Mode Set Array - One of the most important concepts in IGS is the
use of a Mode Set array. This array contains all of the information
needed about both the user's and the installation's display environ­
ment. When the IGS system is mitialized or reset, all the appropriate
default values are stored in the array. They remain in effect until the
user specifically changes them (see Appendix C-ll).

A major advantage of the Mode Set concept is that it allows the user
to specify a minimum number of parameters in calling the graphic
subroutines. Consider a subroutine to display characters: In its
minimal form, the user only need specify an X, Y location of the
first character, the number of characters, and the characters
themsel ves. In its most complex form, the user might want to
specify character size, character orientation, character spacing,
right and left margins, line spacing, and line orientation.

It would be unreasonable to expect a user to specify all of these para­
meters each time he wanted to display a line of characters. Therefore,
the call to the character subroutine requires only the minimum infor­
mation needed to display characters. All the other parameters are
obtained automatically from the Mode Set array. The user may make
changes in the array when he wants to change a value such as char­
acter orientation or left margins; the modified Mode Set will stay in
effect until the user resets it, or until the 1GS system is reinitialized.

4. Vector Characters - IGS contains the ability to draw vector char­
acters of variable size and orientation.

5. Grid, Plot, Label - 1GS contains a comprehensive set of subroutines
to draw grids, plot symbols, and label graphs.

6. Addressable CHARACTRON Set - the full CHARACTRON character set
will be addressable by normal 8-bit or 6-bit characters. Special con­
trol characters appearing in a 6-bit character string will select lower
case characters and other special symbols. (See Figure 2)

7. S-C 4020 Software Comp':ltibility - SCORS compatibility is maintained.

SCORS subroutines have been modified to call on the IGS subroutines
to produce the S-C 4060 input in meta-language form. None of the
SCORS calling sequences need be changed. SCORS programs, running
under the IGS system, will produce comparable output on the S-C 4060
with as good or better efficiency as they would have on the S-C 4020.

6

[) -II ? ..1-1_ ,
-IT T

f @ , % · -I <-) -
\. • ()

\ -) & I I () ,1/ / /1' -,

Y r; B j~ D E F)7 J I f\ } \....J V

1J rl f y- J
.

c a e 1 " rv
\....- v

I- n L IV} 1\T I-I P f\ P rr S ~T \".t -\;

&t
'--' I 111 11 11 • • 1J C1 r t s -I
t! tJ \/ VV X K Z • (3 • • / /

iI \l VV ~x }~ z {\ 1 2 'J 0
v J

/~ 4 I, 6 7 p. 9 , -() v 0 -, -
I- e< "- /' -r [] .J / " J_

/\ a S3 (/; ~ c
. 1 L

Figure 2. S-C 4060 CHARACTRON Set

7

D. Advantages of IGS

1. The basic S-C 4020 SCORS package is upwardly compatible with and
is supported by the IGS system.

2. It is based on concepts which already have been analyzed and con­
sidered by major contributors and users of existing UAIDE (Society
for Users of Automatic Information Display Equipment) software.
Continued participation, review, and approval of these users will
be invited in order to obtain the widest possible UAIDE consensus.
Accordingly, IGS will be updated periodically to provide each user
with the latest improvements to the package.

3. Much of the basic design was suggested by the SHARE specification
for a standard graphic output language (GRAFPAC).

4. It is coded in ASA Standard Basic Fortran where possible; thus it
may be compiled on less sophisticated compilers.

5. Emphasis is placed on machine independence. While the working
package was developed and checked out on IBM 360 and 7044
computers, specific dependencies on word and character formats
and machine language operations were avoided except for packing
and transmission routines. Thus the package is substantially
transferable to other computers such as IBM 7090/94, Univac
1107, 1108, RCA Spectra 70, GE 625, 635, CDC 3600, 6600, etc.

6. It is coded using re-entrant or serially re-usable techniques wher­
ever possible, thus providing particular appeal for users of time­
sharing computing systems and other multi-programming systems.

7. The package is usable by PL/I programs.

8

m. S-C 4060 INTERNAL SOFTWARE - SCRIP

A. Background

The S-C 40'30 Microfilm Plotter-Printer was designed to have a software

interface and to operate under software control, thus permitting a higher

degree of flexibility than is normally associated with fully hard-wired

equipment. The Stromberg-Carlson Recorder Input Processor (SCRIP)

software package is a set of routines written in the DAP-16 language (see

Appendix F) which efficiently implements the design criteria. The SCRIP

package is modular in nature; the standard package supports the S-C 4060

hardware configuration (without optional hardware equipment) and the

Standard Operating Environment (External System Configuration using the

Integrated Graphic Software package). As the user adds optional hardware

equipment to his configuration, the appropriate software module necessary

to effectively use that option will be provided by Stromberg-Carlson.

The advantages afforded by software control of the S-C 4060 are as follows:

1. Minimum Operator Intervention - the basic software design provides
for automatic production operation with operator activities restricted
to tape mounting, bootstrap loading for cold starts, film and paper
loading, and taking appropriate action in the case of an irrecoverable
tape error.

2. Simplified Operational Control - An ASR-33 teleprinter is included
as part of the operational system which provides the medium for
operator communication with the S-C 4060. It provides for system
access as well as system status printouts (see Appendices D and I).

3. No Equipment Modifications - special user requirements may be
incorporated into the system without equipment modifications. Non­
standard character and line spacing, special on-line data servicing,
special plotting symbols and character fonts, non-standard input
translation, and many other non-standard requirements may effec­
tively be added to the system throug)1 modification of the SCRIP
software, rather than by requiring the user to make hardware
modifications.

9

B. SCRIP Executive Program - MCS

The executive program of SCRIP is called the Master Control System

(MCS) j during S-C 4060 operation it is the resident program in the

Product Control Unit (PCU)* and is responsible for the following

functions:

1. Total Operational Control of Execution

a. MCS Manages ASR-33 Teleprinter Communications - instructions,
status queries, and direct data may be entered into the system while
execution and processing status, errors, direct messages, and other
monitoring information are being returned. Operator communication
with the S-C 4060 is in terms of phrases and meaningful mnemonics
rather than through the method of interpreting panel light configura­
tions and switch settings. (See Appendices D and 1.)

b. MCS provides a complete Input/Output Control System for all peri­
pheral devices - I/O buffers are assigned and printhead interrupts
are serviced automatically, as are all operator override instruc­
tions pertaining to magnetic tape transport functions.

1) MCS thus performs all magnetic tape I/O activities * * , such
as input tape and library tape read, tape write, record and
file backspacing and skipping, tape rewind, and character
packing and unpacking. Tape format, parity, and execution
errors are detected; the MCS recovery procedure informs
the operator of the error, determines the level of the error,
and either continues or halts S-C 4060 operation pending
operator action.

*The PCU is an 8K (16 bit word) general purpose computer; its execution of MCS
performs a function similar to that of a hard-wired interface.

**Input tape searches and special tape label handling are not included in the standard
SCRIP system; the implementation of these func~ions will require a minimum pro­
gramming effort either by the user or by Stromberg-Carlson by special request.

10

c. MCS monitors film processing - film exposure is coordinated
with 1ilm developing to prevent over-development of exposed
frames during periods of interrupted execution.

d. MCS provides for continuous job processing - job initialization
and termination procedures are designed for optimum operating
efficiency. MCS outputs a complete log of each job in an S-C
4060 run. See Appendix E for a description of the principal
operating features of MCS.

e. MCS furnishes for SCRIP an overall constants pool and a sub­
program communications region. All co~stants and subprogram
communications regions are kept in the resident MCS Nucleus.

2. Total Operational Control of Processing

a. MCS reads into the PCU from the library tape the programs that
are necessary to process graphic instructions from the external
device (tape unit if off-line, remote computer if on-line) into
printhead circuit commands. Processing generally consists of:

1) Interpretation of the instruction;

2) Conversion of the instruction to the appropriate
printhead command(s);

3) Output of the resulting command (''hardware logic")
to the printhead.

b. The interpretations and conversions of the instructions are
performed by subroutines in the library programs. These
subroutines are the ultimate means by which the user's
deSired graphiC output function is implemented. The stand­
ard SCRIP package allows the user to accomplish the follow­
ing:

1) Plot any of the CHARACTRON matrix characters at any
addressable point on the standard raster in any of four
sizes and in either of two orientations (vertical or hori­
zontal).

2) Type a string of matrix or stroke characters beginning
at any addressable point on the standard raster and
continuing horizontally or vertically to the limits of the

11

· ,

raster. Standard character spacing and line spacing (with
carriage return) will be provided according to the selected
character size. The character size may be any of the four
allowable character sizes and in either of two orientations
(vertical or horizontal).

3) Draw a solid or dashed line segment between any two address­
able pOints on the standard raster. Line segments may be
drawn in any of four widths and either of two densities.

4) Perform a frame advance.

5) Project a single form onto,the film either on command or
automatically with each frame advance.

6) "Fast Plot" - plot a string or cluster of characters such that
each character is plotted within 80 raster units of the pre­
viously plotted character to enable a plotting rate greater than
the normal plotting rate.

C . SCRIP Library Programs '

The following list gives brief functional descriptions of the programs con­

tained on the S-C 4060 system library tape.

1. MET A Processor - interprets the standard meta-language in­
put tape functions generated by the external software (1GS) , con­
verts these functions to the required printhead commands, and
outputs the resulting commands ("hardware logic") to the print­
head.

2. S-C 4020 Simulator - reads an S-C 4020 binary input,tape,
converts the instructions to the necessary S-C 4060 printhead
commands, and outputs the commands to the printhead to per­
form an S-C 4020 simulation. The following restrictions affect
the simulation:

a. A shortened film pulldown is substituted for the
expand image command since i:rnage expansion
is not included in the S-C 4060 circuitry.

12

b. Camera selection commands are treated as follows:

1) Select camera 1 turns off the hard copy
mode.

2) Select camera 2 and select both cameras
is interpreted as Expose Hardcopy.

3. BCD Tape Printing - interprets an input tape that has been formatted
for a standard line printer and provides the corresponding printed out­
put.

4. Test and Maintenance Programs - exercises the internal circuits of
both the Printhead and the Product Control Unit. The routines test
the Product Control Unit memorYt basic machine instructions t logic
and arithmetic units t input/output devices t and provide alignment
and performance testing for the recording head (see Appendix H).

5. Optional Programs - are incorporated into the library when the
user obtains the corresponding optional hardware.

a. Film and Hardcopy Processing Monitor.

b. On-line Control Monitor.

c. Stroke Generator Routine.

d. Card Reader Input Translator.

e. High Speed Paper Tape Monitor.

D. S-C 4060 Supplementary Software

The two software packages which supplement the primary software packages

(IGS and SCRIP) of the S-C 4060 system are the DAP-16 Assembler and the

Fortran IV Compiler. Both assembler and compiler will operate from mag­

netic tape and will treat the S-C 4060 print head as a line printer thus allow­

ing listings to be generated on microfilm.

The DAP-16 Assembler will enable the user to write routines which may be

incorporated into the SCRIP packaget and thus take full advantage of the

flexibility provided by the software control of the S-C 4060.

13

1. DAP-16 Assembler - generates a set of machine instructions
which correspond to a program written in the DAP-16 symbolic
language (see Appendix F); it may perform a one pass or two
pass assembly. It interprets all symbols and mnemonics,
allocates storage blocks, assigns buffers, provides sub­
routine linkage, allows Fortran compatibility, and provides
an object program (either paper tape or magnetic tape) and
an assembly listing on the ASR-33 or the S-C 4060 print
head showing appropriate diagnostics.

The following routines are included as part of the DAP-16
Assembler package:

a. DAP/Fortran relocating loaders (ASR-33, High Speed
Paper Tape, and Magnetic Tape).

b. I/o Supervisor for DAP and Fortran.

c. Memory dump on ASR-33 and Print Head.

d. A debug program which enables dynamic tracing.

e. Routine to punch a program from or onto paper tape
preceeded by a bootstrap loader.

Source input on punched paper tape may be prepared on the ASR-
33 in the off-line mode and then read by the DAP-16 Assembly
program from the ASR-33 (or the optional high speed reader);
source input may also be prepared on punched cards and read
in via the optional card reader or on magnetic tape. Object
tapes are punched via the ASR-33 or the optional high speed
punch.

2. Fortran IV Compiler - processes the standard Fortran language
specified by the American Standards Association (ASA - see
Appendix G). It is a one-pass compiler which requires a minimum
of 8 K core storage* with one of each of the following peripheral
equipment:

* The standard S-C 4060 PCU has 8 K core storage.

14

a. Source input device:

1) ASR-33 key-in or ASR-33 punched paper
tape reader.

2) Magnetic tape.

3) Card reader (optional).

4) High speed punched paper tape reader (optional).

b. Listing device:

1) ASR-33 printer.

2) S-C 4060 film.

c. Object output:

1) Magnetic tape.

2) High speed paper tape punch (optional).

15

APPENDIX A

Meta-Language Description

The basic building unit for the meta-language is the 6-bit or 8-bit byte, depending upon

the host computer. Each display function (i. e., plot, vector, fast plot, etc.) will be

of the same logical structure. The first byte will be the delimiter, the second byte

will be the function code, and the succeeding bytes will specify positional information,

characters, or control codes.

The S-C 4060 internal matrix code for alphanumeric characters differs from any exis-

ting standard code while the ASR-33 requires ASCII. MCS is designed to perform the

necessary conversion of the inherent alphanumeric code from the external computer

by means of conversion tables.

Any intermediate language which does not conform either logically or physically to the

meta-language, will require the addition of a software input translator by the user as

part of the S-C 4060 operating system.

A-l

)

APPENDIX B

S-C 4060 Standard Raster

The standard raster of the S-C 4050 is defined as a rectangular array of pOints 3072

vertically by 4096 horizontally, making a total of 12, 582, 912 p')ints. Each point is

addressable which means that it may be specifically referred to by common rectangu­

lar coordinate notation. The coordinates specifying the raster pOints must be positive

integers and the standard raster is to be considered as first quadrant.

The standard raster with an accompanying six perforation pull down (normal frame

advance) will produce an image on film which will yield 11 x 14 hardcopy. For 8-1/2

x 11 hardcopy, the raster size will be partitioned to the raster area as shown in the

following figure. Normal pull down will also be six perforations.

0,3071 4095,3071 1854,3071 4095,3071

0,0 4095,0 1854,0 4095,0

Standard Raster and Partitioned Raster

(NOTE: The standard raster as it physically appears on the face of the CHARACTRON

tube has for its origin t~e coordinates (0, 512). The programmer, however, need not

be concerned with these values because the SCRIP software automatically performs

the required translations on all data to be plotted. For the partitioned standard raster

(8-1/2 x 11), the physical origin is at (1854,512). Again, automatic translation by the

SCRIP software enables the programmer to use (0,0) for his origin.)

B-1

APPENDIX C

§-C 4060 Meta-Language

1. FUNCTION STRING PARTS

A. Delimiter

6 bit mode 11 I 0 1 11 i 1 0 1 I 1 /1 11 I 1 I 0 1 Octal 5676

8 bit mode
1 0 I

0 1
1 0 I 1 0 1 I 0 I Hex 2A Octal 052

The delimiter is the start flag for a function string. It must be followed

by either a null or a function code (See Appendix A).

B. Function Code (f)

6 bit mode

8 bit mode

List of Function Codes (decimal).

o

1

2

3

4

6

7

.~
9

10

11

12

Set Mode Matrix

Plot Specified Point #1

Plot Specified Point #2

Plot Current Point

Plot Specified Point #3

Type Specified Point

Type Current Point

Pause

Draw Joined Vectors

Draw Line Segments

No operation (NOP)

Tab Set

Form Flash

---eii Advance Frame
/

14 Stroke Table Input

15 Operator Message

16 Retrieval Codes

17 Start of Job

18 Frame ID

19 Repeat Frame

20 Reset Mode Matrix

21 End of Job

- 22 End of Run

23 Stroke Write Bit Pattern

24 Draw Vector Family

-

C-l

C.

The Function Code must be the first non-null character following a delimiter.

Raster Coordinates (X, Y)

6 bit mode 1 - 6 7 - 18 19 - 24 25 36

Sign 0000 Sign 0000
00 == + to 00 == + to
01 == - 77778 01 ==- 77778

I
I

I
I

X Y

8 bit mode 1 - 4 5 - 16 17 - 20 21 32

Sign o to 77778 Sign o to 77778
I I I I

I
X Y

The position within the function string is defined by the function code. Note

leading zero bits. If S == 0, X (or Y) is taken as positive. If S == I, X (or Y)

is taken as two's complement (Module 409) negative value.

D. Plot or Type Characters (C)

E.

6 bit mode

8 bit mode

The position within the function string is defined by the function code. The

6 bit character may be BCD, Fieldata, or Excess 3. The 8 bit code may be

ASCII or EBCDIC.

Null Byte (NUL)

6 bit mode 1 0 1 1 11 I 0 [1 1 1 1 1 1 Octal 5677

8 bit mode 1 1 1 1 I 1 I 1 I 1 1 Hex FF Octal 377
,

The null byte may occur within a function stdng between any two function

parts but must not break a function part._ The occurrence of the null byte

within a function string in no way changes the function of the string.

C-2

F. Control Bytes

1. Single Byte (8 bit Mode only)

Descriptio!! Octal

Delimiter 052

Null Byte 377

Null (typing control) 000

Tab 005

Carriage Return/Line Feed 025

Shift Case 1 066

Shift Case 2 006

Shift Case 3 051

Superscript Shift 004

Subscript Shift 060

2. Double Byte (Both 6 and 8 bit Mode)

Description Control Byte (byte #1)

6 bit 8 bit

Delimiter

Null

Hexadecimal

2A

FF

00

05

15

36

06

29

04

30

Control Code (byte #2)

6 bit 8 bit

C-3

TYPING CONTROL

Function Code 2nd Character ----

6 bit 8 bit C

Null (typing) $N 45 325 N

Tab $T 63 343 T

Carriage Return/
Line Feed $E 25 305 E

Shift Case 1 $U 64 344 U

Shift Case 2 $L 43 323 L

Shift Case 3 $S 62 342 S

Superscrip $+ 20 216 +

Subscript $- 60 140

Capitalize Next $C 23 203 C

Backspace $B 22 302 B

Next Page $P 47 327 P

NOTE: (Cod=-for $ is 538 in 6 bit or 1338 in 8 bit)

C-4

)

II. Modeset Function String (M)

M N

1

2

3

4

5

6

7

8

12

13

14

o
1

2

3

o

o
1

2

3

o
1

2

3

4

o
1

2

3

o

1

o
1

o

o
1

2

o
1

o
1

Character size for plotting Normal size (default)
Small size
Medium size
Large size

Character orientation for plotting - vertical (default)
horizontal

Line weight

Dash length

Normal (default)
Light
Heavy
Heaviest

Solid
32 raster units
64 raster units
128 raster units
256 raster units

Character size for typing Normal size (default)
Small size
Medium size
Large size

Character and line orientation for typing - (default) vertical chars,
horizontal line

- horizontal chars, vertical
line

Vector speed - normal (default)
fast

Plot Mode . normal (default)
fast

Plotting character case

Page overflow in typing

Set hardcopy for 4020

1 (upper) (default)
2 (lower)
3 (special) ..

Same page (default)
Frame advance

11 x 14 (default)
8-1/2 x 11

C-5

M N

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

o
1

o
n

o
1

2

o
n

o
1

o
1

o
1

o
1

o
1

o
1

2
3

o
1

Void mark flag no void (defmdt)
Void this frame

Multiple line spacing for typing single space (default)
skip n + 1 lines

Typing character case - upper (default)
- lower

Character font

- Special

CHARACTRON Characters (default)
font n required for stroke write

Programmer selection of
Block Mode

On (default)
Off

Print list flag for PRNT Off, Print normal (default)
On, print list

Corner Marks No corner marks (default)
Corner marks required

Automatic Frame ID - No automatic frame ID (default)
- Automatic frame ID requi red

Automatic Form Flash No automatic form flash (default)
Automatic form flash required

Output Mode

Input Mode.

None (default)
Cut mode 11 x 14
Cut mode 8-1/2 x 11
Strip chart

8 bit mode (default)
6 bit mode

Character spacing for typing follows - horizontal displacement
default 31 (Normal Size Character)

Character spacing for typing follows - vertical spacing
default 0

Line spacing follows
default 52

Next frame number follows initially == 1

Working raster: X-min default == 0

C-6

M N

32 Working raster: Y-min ::: 512

33 Working raster: X-max 4095

34 Working raster: Y-max 3583

35 Typing margins XLFT default 0

36 (relative YBOT 0

37 to working XRGT 4095

38 rasters) YTOP 3071

39 Lines per page for PRNT default ::: 58

C-7

III. Function String Formats

Function
Code

1

2

3

4

5

6

7

Name Format and Description

Plot Specified Point #1
t lCX1Y1X2Y2 - - - - - - XnYn
Plot a single character at different X and Y points.

Plot Specified Point #2

t 2C1X1Y1C2X2Y2 - - - - CnXnYn

Plots different characters at different specified
X and Y points.

Plot Current Point
t 3C C C - - - - - - - -C

1 2 3 n
Plot different characters all at current point.

Plot Specified Point #3

t 4X1 Y 1 C 1 C 2 C 3 - - - - - -C n

Plot different characters all at specified point.

Type Specified Point #1

t 5X1 Y 1 C 1 C 2 C 3 - - - - - C n

Types a series of characters beginning at a specified
point X, Y.

Type Current Point #1

t 6C 1 C 2 C 3 - - - - - - - C n

Types a series of characters beginning at current
point.

Pause
t 7 (no argmnents)
Causes the SCRIP operating progtan, (MCS-Master

Control System) to enter an idle state in the PCU
for S-C 4060 operator action. This action should
have been communicated to the operator either
personally or by a preceding function code to type
out an on-line message 6n the ASR (see function
code 15).

C-8

Function
Code

8

9

10

11

12

13

14

15

16

Name Format and Description

Draw Joined Vectors
:t 8X 'y X Y X Y ------ X Y
. 112233 nn
Draws series of joined (head to fail) vectors.

Dra w Line Segments

t 9Xl Y l X2Y 2 ---------- Xn_l Y n-lXn Y n

Draws series of separate line segments (n must be even)

No Operation
t 10

Communicate Table of Tabsets (f = 11)

+ f T T T ----- T
+, , l' 2' 3' n

T. represents the horizontal tab stop in raster units
1
relativ~ to XMIN (Mode 318) or YMIN (Mode 328)

dependlllg on value of ORTP (Mode 68),

Form Flash (f = 12)

t, f

Frame Advance (f = 13)

t, f, N
N represents the number of frame advances to be

performed (one byte)

Transmit Stroke Table (f = 14)

t f, n, h, sl' s , ------- s , 0,' h, sl' s -- (n = Stroke
, 2 n 2,
Table Font Number in Octal)

Each byte string from the height adjust designator
n to the end of that stroke character terminated
by aO (zero) repeats until a delimiter follows the O.

Message to Operator (f = 15)

t, f, c l ' c 2 ' c3 ' c4 '---- cn n-

Retrieval Code (f:= 16)

t, f, T, cd
T represents the code type (Miracode or kodamatic)

and cd is a fixed length bit string representing the
, code.

C-9

Function
Code

17

18

19

20

21

22

23

24

Name Forma! and Description

Start of Job (f := 17)
t, fcc c ------ c (71 character maximum)

, l' 2' 3' n

1. The character string is typed on the ASR-33.

2. The character string is placed on the ID frame.

3. The function executes the user supplier accounting
routine, if present.

Frame ID (f:= 18)

t, f, c1, c , c , ----- c
2 3 n

First 20 characters are retained for use by the frame
ID routine.

Repeat Frame (f := 19)

t, f, n
n represents the number of times the previous frame

is to be repeated.

Reset Mode Matrix (f := 20)

t, f
Resets the mode matrix to the default state

End of Job (f:= 21)

t, f
Type comment to operator, proceed to next job.

End of Run (f := 22)

L f
Type comment to operator, halt for operator action.

Stroke Character (f := 23)

to f, x, y, sz, h, sl' s2' s3' ------- sn' 0)

SZ is size and H is height adjust.
SZ := 0 normal size, normal orientation

I large size, normal orientation
S, represents the stroke patterns.

1

Draw vector Family (f:= 24)

to f, n, Xl' YI' x2 ' Y2

Draws n equidistant vectors between the two specified

by xl' Y I and x2 Y 2

n:= 2 bytes

C-IO

APPENDIX D

Examples of ASR-33 Messages

A complete list of messages is contained in Document Number
HMO-208, S-C 4060 Stored Program Recording System,
Operator's Handbook.

**NO PGM

JOB

FRAME

**STOPPED

**READY

**OK

**END OF JOB

**WHAT?

**FILM LOW

**PAPER LOW

**PAUSE

Requested program is not available for
execution.

Part of STATUS reply, ERROR print out,
and END OF JOB print out.

Part of STATUS reply, ERROR print out,
and END OF JOB print out.

Signals operator that system has entered
the 'STO P state.

Signals operator that system has entered
the READY State.

Previously specified command has been
successfully executed or issued.

End of Job sensed on input tape.

System is unable to interpret ASR-33 input.

Operator Warning

Operator Warning

Programm~r requested system halt.
Operator action will be required.

D-l

APPENDIX E

MCS OPERATION

The following is a brief description of the principal operating features of MCS:

A. Initialization

Initialization is a process which automatically occurs after MCS is initially

loaded, at the end of job, and after the RESTART, CNCL, or NEXT com­

mand is input from the ASH-33. This process sets all default conditions

and interrogates the print head and input tape unit sense lines for the ready

condition.

B. System Status

During MCS operation the system will be in .either the RUN status or the

IDLE status. The RUN status means that MCS is processing input data

and outputting printer circuit commands to the print head. IDLE status

signifies that the input data is not being processed and the system is

waiting for an input from the ASR-33. Monitoring of film developing,

however, is maintained during IDLE status.

Two separate conditions exist during IDLE status: Ready state and Stop

state.

1. Ready State: The Ready state is that condition which immediately
succeeds the initialization process and precedes processor execution.

2. Stop State: The Stop state is that condition which results from either
the STOP command being input from the ASR-33, or when MCS
detects an error which is of such a consequence as to require operator
action, or when a PAUSE function code is encountered in processing
meta-language.

E-l

C. Error Detection

MCS provides for continuous monitoring of all the major functions of the

S-C 4060. If an error or a serious condition occurs, a comment will be

printed on the ASR-33.

D. ASR-33 Communication

One of the principal features of the S-C 4060 operating system is that it

enables direct communication with the S-C 4060 via the ASR-33. Because

of this, the entire operation, with the exception of a cold start, is under

control of the ASR-33.

Appendix I contains examples of input instructions and the system action

resulting from them.

E. Library Director and Loader

MCS performs all loading from the library. The LOAD instruction when

given by the operator (see Appendix I) causes MCS to locate the requested

processor on the library tape and load it into a pre-designated location in

core.

F. Input/Output Supervisor

lOS provides for general magnetic tape handling. It enables reading (and

optionally, writing) in either even or odd parity; at all densities up to 800

bpi; and in either the 7 or 9 track configuration. It provides for back­

spacing and skipping of single records and files and performs a rewind.

All I/o operations are fully monitored for parity errors and when detected

initializes corrective action. For example, nine attempts will be made to

read when a read-error is encountered and, in the case of a 9 track tape,

a CRC (Cylic Redundancy Check) test will be made to correct the error.

E-2

APPENDIX F

SUMMARY OF S-C 4060 SYMBOLIC INSTRUCTIONS (DAP-16)

Octal
Mnemonic Code Instruction Cycles

ACA 141216 Add C to A 1
ADD 06 Add 2
ALR 0416 Logical Left Rotate 1 +n/2
ALS' 0415 Ar ithmetic Left Shift 1 +n/2
ANA 03 AND to A 2
AOA 141206 Add One to A 1
ARR 0406 Logical Right Rotate 1 +n/2
ARS 0405 Arithmetic Right Shift 1 +n/2
CAL 141050 Clear A, Left Half 1
CAR 141044 Clear A, Right Half 1
CAS 11 Compare 3
CHS 140024 Complement A Sign 1
CMA 140401 Complement A 1
CRA 140040 Clear A 1
CSA 140320 Copy Sign and Set Sign Plus 1
ENB 000401 Enable Program Interrupt 1
ERA 05 Exclusive OR to A 2 ,
HLT 000000 Halt

lAB 000201 Interchange A and 0 1
ICA 141340 Interchange Characters in A 1
ICL 141140 Interchange and Clear Left Half 1

of A

ICR 141240 Interchange and Clear Right 1
Half of A

lMA 13 Interchange Memory and A 3
INA 54 Input toA 2
INH 001001 Inhibit Program Interrupt 1
INK 000043 Input Keys 1
IRS 12 Increment, Replace and Skip 3
JMP 01 Unconditional Jump 1
JST 10 Jump and Store Location 3
LDA 02 Load A 2
LDX 15 Load X 3
LGL 0414 Logical Left Shift 1 +n/2

F-l

APPENDIX F (Cont)

SUMMARY OF S-C 4060 SYMBOLIC INSTRUCTIONS (DAP-16)
,-

Octal
'Instruction· .. Cycles Mnemonic Code

LGR 0404 Logical Right Shift 1 +n/2
LLL 0410 Long Left Logical Shift 1 +n/2
LLR 0412 Long Left Rotate 1 +n/2
LLS 0411 Long Arithmetic Left Shift 1 +n/2
LRL 0400 Long Right Logical Shift 1 +n/2
LRR 0402 Long Right Rotate 1 +n/2
LRS 0401 Long Arithmetic Right Shift 1 +n/2
NOP 101000 No Operation 1
OCP 14 Output Control PuIs e 2
OTA 74 Output From A 2
OTK 171020 Output Keys 2
RCB 140200 Reset C Bit 1
SCB 140600 Set C Bit 1
SKP .. 100000 Unconditional Skip 1
SKS 34 Skip if Ready Line Set 2
SLN - 101100 Skip if (A 16) is ONE 1
SLZ 100100 Skip if (A 16) is ZERO 1
SMI 101400 Skip if A Minus 1
SMK 74 Set Mask 2
SNZ 101040 Skip if A Not ZERO 1
SPL 100400 Skip if A Plus 1
SRC 100001 Skip if C Reset 1
SRI 100020 Skip if Sense Switch 1 is Reset 1
SR2 100010 Skip if Sense Switch 2 is Reset 1
SR3 100004 Skip if Sense Switch 3 is Reset 1
SR4 100002 . Skip if Sense Switch 4 is Reset 1
SSC 101001 Skip if C Set 1
SSM 140500 Set Sign Minus 1
SSP 140100 Set Sign Plus 1
SSR 100036 Skip if noSens.e Switch Set 1
SSS 101036 Skip if any Sense Switch is Set 1
SSl 101020 Skip if Sense Switch 1 is Set 1
SS2 .101010 Skip if Sense Switch 2 is Set 1
SS3 101004 Skip if Sense Switch 3 is Set 1
SS4 101002 Skip if Sens e Switch 4 is Set 1
STA 04 Store A 2
STX 15 Store X 2

F-2

APPENDIX F (Cont)

SUMMARY OF S-C 4060 SYMBOLIC INSTRUCTIONS (DAP-16)

Octal
Mnemonic Code Instruction Cycles

SUB 07 Subtract 2

SZE 100040 Skip if A ZERO 1

TCA 140407 Two's Complement A 1.5

F-3

APPENDIX G
PROPOSED AMERICAN STANDARD

FORTRAN

The lollou·ing Proposed American Standard
01 the FORTRAN language was del·e1oped by
X3.4.:1-FORTRAN Group under the American
Standards Association Sectional Committee X.1.
Computers and Tnformation Processing. The
committf'e u'as established under the sponsor­
ship 01 the Business Equipment 1I1anulacturers
Association. Here is prcsented the most recent
issue 01 the proposed standard al'ailable at this
printing. Any further issucs are not expected to
alter the technical mntent.

Inquirics regardinf.! copics of the Proposed
Standard should be addressed to the X3 Secre­
tary. BEMA. 2.'J/j E. 42nd Street. New York.
N.Y.

G-I

.·TABLE·OF CONTENTS

SECTION

1. INTRODUCTION

2. BASIC TERMINOLOGY

3. PROGRAM FORM
3.1 The FORTRAN character set
3.2 Lines
3.3 Statements
3.4 Statement label
3.5 Symbolic names
3.6 Ordering of characters

4. DATA TYPES .
4.1 Data type association
4.2 Data type properties

5. DATA AND PROCEDURE IDENTIFICATION
5.1 Data and procedure names

5.1.1 Constants
5.1.2 Variable
5.1.3 Array
5.1.4 Procedures

5.2 Function reference
5.3 Type rules for data and procedure identifiers
5.4 Dummy arguments

6.' EXPRESSIONS
6.1 Arithmetic expressions
6.2 Relational expressions .
6.3 Logical expressions
6.4 Evaluation of expressions

7. STATEMENTS.
7.1 Executable statements

7.1.1 Assignment statements
7.1.2 Control statements

7.1.2.1 GO TO statements
7.1.2.2 Arithmetic IF statement

.,-io:"

SECTION

7.1.2.3 Logical IF statement
7.1.2.4 CALL statement
7.1.2.5 RETURN statement
7.1.2.6 CONTINUE statement

7.L2.7 Program control statements
7.1.2 .. 8 DO statement

7.1.3 Input/Output statements
7.1.3.1 READ and WRITE statements
7.1.3.2 Auxiliary Input/Output
7.1.3.3 Printing of formatted records

7.2 Nonexecutable statements.
7.2.1 Specification statements

7.2.1.1 Array declarator
7.2.1.2 DIMENSION statement

7.2.1.3 COMMON statement
7.2.1.4 EQUIVALENCE statement
7.2.1.5 EXTERNAL statement
7.2.1.6 Typestatement

7.2.2 Data initialization statement
7.2.3 FORMAT statement

8. PROCEDURES AND SUBPROGRAMS
8.1 Statement functions
8.2 Intrinsic functions and their reference
8.3 External functions
8.4 Subroutine
8.5 Block data subprogram

9. PROGRAMS
9.1 Program components
9.2 Normal execution sequence

10. INTRA· AND INTERPROGRAM RELATIONSHIPS
10.1 Symbolic names
10.2 Definition
10.3 Definition requirements for use of entities

PROPOSED AMERICAN STANDARD
FORTRAN

1. INTRODUCTION
1.1 PURPOSE. This standard establishes the form for

and the interpretation of programs expressed in the FORTRAN
language for the purpose of promoting a high degree of
interchflngeability of such programs for use on a variety of
automatic data processing systems. A processor shall con­
form to this standard provided it accepts, and interprets
as specified, at least those forms and relationships described
herein.

Insofar as the interpretation of the form and relation­
ships described are not affected, any statement of require­
ment could be replaced by a statement expressing that the
standard does not provide an interpretation unless the
requirement is met. Further, any statement of prohibition
could be replaced by a statement expressing that the
standard does not provide an interpretation when the pro­
hibition is violated.

1.2 SCOPE. This standard establishes:
(1) The form of a program written in the FORTRAN

language.
(2) The form of writing input data to be processed

by such a program operating on automatic data processing
systems.

(3) Rules for interpreting the meaning of such a
program.

(4) The form of the output data resulting from the
use of such a program on automatic data processing systems,
provided that the rules of interpretation establish an inter­
pretation.

This standard does not prescribe:
(1) The mechanism by which programs are trans­

formed for use on a data processing system (the combination
of this mechanism and data processing system is called a
processor) .

(2) The method of transcription of such programs or
their input or output data to or from a data processing
medium.

(3) The manual operations required for set-up and
con,trot of the use of such programs on data processing
equipment.

(4) The results when the rules for interpretation fail
to establish an interpretation of such a program.

(5) The size or complexity of a program that will
exceed the capacity of any specific data processing system
or the capability of a particular processor.

(6) The range or precision of numerical quantities.

2. BASIC TERMINOLOGY
This section introduces some basic terminology and

some concepts. A rigorous treatment of these is given in
later sections. Certain assumptions concerning the meaning

. of grammatical forms and particular words are presented.
A program that can be used as a self-contained com­

puting procedure is called an executable program (9.1.6).
An executable program consists of precisely one main

program and possibly one 'or more subprograms (9.1.6).

A main program is a set of statements and comments
not containing a FUNCTION, SUBROUTINE, or BLOCK
DATA statement (9.1.5).

A subprogram is similar to a main program but is
headed by a BLOCK DATA, FUNCTION, or SUB­
ROUTINE statement. A subprogram headed by a BLOCK
DATA statement is called a specification subprogram. A
subprogram headed by a FUNCTION or SUBROUTINE
statement is called a procedure subprogram (9.1.3, 9.1.4).

The term program unit will refer to either a main pro­
gram or subprogram (9.1.7).

Any program unit except a specification subprogram
may reference an external procedure (Section 9).

An external procedure that is defined by FORTRAN
statements is called a procedure subprogram. External pro­
cedures also may be defined by other means. An external
procedure may be an external function or an external
subroutine. An external function defined by FORTRAN
statements headed by a FUNCTION statement is called
a {unction subprogram. An external subroutine defined by
FORTRAN statements headed by a SUBROUTINE state­
ment is called a subroutine subprogram (Sections 8 and 9).

Any program unit consists of statements and comments.
A statement is divided into physical sections called lines,
the first of which is called an initial line and the rest of which
are called continuation lines (3.2).

There is a type of line called a comment that is not a
statement and merely provides information for documentary
purposes (3.2).

The statements in FORTRAN fall into tw:o broad classes­
executable and nonexecutable. The executable statements
specify the action of the program while the nonexecutable
statements describe the use of the program, the character­
istics of the operands, editing information, statement func­
tions, or data arrangement (7.1, 7.2).

The syntactic elements of a statement are names and
operators. Names are used to reference objects such as data
or procedures. Operators, including the imperative verbs,
specify action upon named objects.

One class of name, the array name, deserves special
mention. An array name must have the size of the identi­
fied array defined in an array declarator (7.2.1.1). An array
name qualified only by a subscript is used to identify a
particular elemel'lt of the array (5.1.3).

Data names and the arithmetic (or logical) operations
may be cQnnected into expressions. Evaluation of such an
expression develops a value. This value is derived by per­
forming the specified operations on the named data ..

The identifiers used in FORTRAN are names and num­
bers. Data are named. Procedures are named. Statements
are labeled with numbers. Input output units are numbered
(Sections 3, 6, 7);

G-3

At various places in this document there are statements
with associated lists of entries. In all cases the list is assumed
to contain at lease one entry unless an explicit exception
is stated. As an example, in the statement

SUBROUTINE s (aI, a2, ... an)
it is assumed that at least one symbolic name is included
in the list within parentheses. A list is a set of identifiable
elements each of which is separated from its successor by
a comma. Further, in a sentence a plural form of a noun
will be assumed to also specify the singular form of that
noun as a special case when the context of the sentence does
not prohibit this interpretation.

The term reference is used as a verb with special meaning
as defined in Section 5.

3. PROGRAM FORM
Every program unit is constructed of characters grouped

into lines and statements.
3.1 THE FORTRAN CHARACTER SET. A program unit

is written using the following characters: A, B, C, D, E,
F, G, H, I, J, K, L, M, N, 0, P, Q, R, S, T, U, Y, W, X,
Y, Z, 0,1,2,3,4,5,6,.7,8,9, and:

Character Name of Character
.Blank
Equa)s

+ Plus
Minus

* Asterisk
/ Slash
(Left Parenthesis
) Right Parenthesis

Comma
Decimal Point

$ Currency Symbol

The order in which the characters are listed does not
imply a collating sequence.

3.1.1 Digits. A digit is one of the ten characters:
0, 1,2, 3, 4, 5, 6, 7, 8, 9. Unless specified otherwise, a string
of digits will be interpreted in the decimal base n\lmber
system when a number system base interpretation is ap­
propriate.

An octal digit is one of the eight characters: 0, 1, 2, 3,
4, 5, 6, 7. These are only used in the STOP (7.1.2.7.1) and
PAUSE (7.1.2.7.2) statements.

3.1.2 Letters. A letter is one of the twenty-six char­
acters: A, B, C, D, E, F, G, H, I, J, K, L, M, N, 0, P,
Q, R, S, T, U, Y, W, X, Y, Z.

3.1.3 Alphanumeric Characters. An alphanumeric
character is a letter or a digit.

3.1.4 Special Characters. A special character is one
of the eleven characters blank, equals, plus, minus, asterisk,
slash, left parenthesis, right parenthesis, comma, decimal
point, and currency symbol.

3.1.4.1 Blank Character. With the exception of the
uses specified (3.2.2, 3.2.3, 3.2.4, 4.2.6, 5.1.1.6, 7.2.3.6, and
7.2.3.8), a blank character has no meaning and may be
used freely to improve the appearance of the program subject
to the restriction on continuation lines in 3.3.

3.2 LINES. A line is a string of 72 characters. All
characters must be from the FORTRAN character set except
as described in 5.1.1.6 and 7.2.3.8.

The character positions in a line are called columns
and are consecutively numbered 1, 2, 3, "', 72. The number
indicates the sequential position of a character in the line
starting at the left and proceeding to the right.

G-4

3.2.1 Comm.ent Line. The letter C in column 1 of a
line designates that line as a comment line. A comment
line must be immediately followed by an initial line. another
comment line, or an end line.

A comment line does not affect the program in any
way and is available as a convenience for the programmer.

3.2.2 End Line. An end line is a line with the char­
acter blank in columns 1 through 6, the characters E, N,
and D, once each and in that order, in columns 7 through
72, preceded by, interspersed with, or followed by the
character blank. The end line indicates to the processor,
the end of the written description of a program unit (9.1.7).
Every program unit must physically terminate with an
end line.

3.2.3 Initial Line. An initial line is a line that is
neither a comment line nor an end line and that contains
the digit 0 or the character blank in column 6. Columns 1
through 5 contain the statement label or each contains the
character blank.

3.2.4 Continuation Line. A continuation line is a line
that contains any character other than the digit 0 or the
character blank in column 6, and does not contain the
character C in column 1.

A continuation line may only follow an initial line or
another continuation line.

3.3 STATEMENTS. A statement consists of an initial
line optionally followed by up to nineteen ordered con­
tinuation lines. The statement is written in columns 7
through 72 of the lines. The order of the characters in the
statement is columns 7 through 72 of the initial line followed,
as applicable, by columns 7 through 72 of the first continu­
ation line, columns 7 through 72 of the next continuation
line, etc.

3.4 STATEMENT LABEL. Optionally, a statement may
be labeled so that it may be referred to in other statements.
A statement label consists of from one to five digits. The
value of the integer represented is not significant but must
be greater than zero. The statement label may be placed
anywhere in columns 1 through 5 of the initial line of the
statement. The same statement label may not be given to
more than one statement in a progra,m unit. Leading zeros
are not significant in differentiating statement labels.

3.5 SYMBOLIC NAMES. A symbolic name consists of
from one to six alphanumeric characters, the first of which
must be alphabetic. See 10.1 through 10.1.10 for a discus­
sion of classification of symbolic names and restrictions on
their use.

3.6 ORDERING OF CHARACTERS. An ordering of char­
acters is assumed withiri a program unit. Thus, any meaning­
ful collection of characters that constitutes names, lines,
and statements exists as a totally ordered set. This ordering
is imposed by the character position rule of 3.2 (which
orders characters within lines) and the order in which lines
are presented for processing.

4. DATA TYPES

Six different types of data are defined. These are integer,
real, double precision, complex, logical, and Hollerith. Each
type has a different mathematical significance and may have
diire~nternal representation. Thus the data type has a
s:gn;~ -~~ m the interpretatlon of the associated opera­
tions with' which a datum is involved. The data type of a
function defines the type of the datum it supplies to the
expression in which it appears.

4.1 DATA TYPE ASSOCIATION. The name employed
to identify a datum or function carries the data type asso­
ciation. The form of the string representing a constant
defines both the value and the data type.

A symbolic name representing a function, variable, or
array must have only a single data type association for
each program unit. Once associated with a particular data
type, a specific name implies that type for any differing
usage of that symbolic name that requires a data type
association throughout the program unit in which it is
defined.

Data type may be established for a symbolic name by
declaration in a type-statement (7.2.l.6) for the integer,
real, double precision, complex, and logical types. This
specific declaration overrides the implied association avail­
able for integer and real (5.3).

There exists no mechanism to associate a symbolic
name with the Hollerith data type. Thus data of this type,
other than constants, are identified under the guise of a
name of one of the other types.

4.2 DATA TYPE PROPERTIES. The mathematical and
the representation properties for each of the data types are
defined in the following sections. For real, double precision,
and integer data, the value zero is considered neither positive
nor negative.

4.2.1 Integer Type. An integer datum is always an
exact representation of an integer value. It may assume
positive, negative, and zero values. It may only assume
integral values.

4.2.2 Real Type. A real datum is a processor ap­
proximation to the value of a real number. It may assume
positive, negative, and zero values.

4.2.3 Double Precision Type. A double precision
datum is a processor approximation to the value of a real
number. It may assume positive, negative, and zero values.
The degree of approximation, though undefined,must be
greater than that of type real.

4.2.4 Complex Type. A complex datum is a processor
approximation to the value ofa complex number. The
representation of the approximation is in the form of an
ordered pair of real data. The first of the pair represents the
real part and the second, the imaginary part. Each part has,
accordingly, the same degree of approximation as for a
real datum.

4.2.5 Logical Type. A logical datum may assume
only the truth values of true or false.

4.2.6 Hollerith Type. A Hollerith datum is a string
of characters. This string may consist of any characters
capable of representation in the processor. The blank char­
acter is a valid and significant character in a Hollerith
datum.·

Ii. DATA AND PROCEDURE IDENTIFICATION
Names are employed to reference or otherwise identify

data and procedures.
The term reference is used to indicate an identification

of a datum implying that the current value of the datum
will be made available during the execution of the statement
containing the reference. If the datum is identified but not
necessarily made available, the datum is said to be named.
One case of special interest in which the datum is named is
that of assigning a value to a datum, thus defining or re­
defining the datum.

The term, reference, is used to indicate an identification
of a procedure implying that the actions specified by the
procedure will be made available.

A complete and rigorous discussion of reference and
definition, including redefinition, is contained in Section 10.

5.1 DATA AND PROCEDURE NAMES. A data name
identifies a constant, a variable, an array or array element.
or a block (7.2.1.3). A procedure name identifies a function
or a subroutine.

5.1.1 Constants. A constant is a datum that is always
defined during execution and may not be redefined. Hull'S
for writing constants are given for each data type.

An integer, real, or double precision constant is said to
be signed when it is written immediately following a plus
or minus, Also, for these types, an optionally signed con­
stant is either a constant or a signed constant.

5.1.1.1 Integer cons/ant. An integer constant is
written as a nonempty string of digits. The constant is the
digit string interpreted as a decimal numeral.

5.1.1.2 Real Constant. A basic real constant is written
as aninteger part, a decimal point, and a decimal fraction
part in that order. Roth the integer part and the decimal
part are strings of digits; either one of these strings may be
empty but not both. The constant is an approximation to
the digit string interpreted as a decimal numeral.

A decimal exponent is written as the letter, E, followed
by an optionally signed integer constant. A decimal ex­
ponentis a multiplier (applied to the constant written
immediately preceding it) that is an approximation to the
exponential form ten raised to the. power indicated by the
integer written following the E.

A real constant is indicated by writing a basic real
constant, a basic real constant followed by a decimal ex­
ponent, or an integer constant followed by a decimal
exponent.

5.1.1.3 Double Precision Constant. A double precision
exponent is written and interpreted identically to a decimal
exponent except that the letter, D, is used instead of the
letter, E.

A double precision constant is indicated by writing a
basic real constant followed by a double precision exponent
or an integer constant followed by a double precision ex­
ponent.

5.1.1.4 Complex Constant. A complex constant is
written as an ordered pair of optionally signed real con­
stants, separated by a comma, and enclosed within paren­
theses. The datum is an approximation to the complex
number represented by the pair.

5.1.1.5 Logical Constant. The logical constants, true
and false, are written .TRUE. and .FALSE. respectively.

5.1.1.6 Hollerith Constant. A Hollerith constant is
written as an integer constant (whose value n is greater
than zero) followed by the'letter H, followed by exactly n
characters which comprise the Hollerith datum proper.
Any n characters capable of representation by the processor
may follow the H. The character blank is significant in the
Ho!!erith datum dtring. This type of constant may be
written only in the argument list of a CALL statement and
in the data init'ialization statement.

5.1.2 Variable. A variable is a datum that is identi­
fied by .a symbolic name (3.5). Such a datum may be
referenced and defined.

5.1.3 Array. An array is an ordered set of data of
one, two, or three dimensions. An array is identified by a
symbolic name. Identification of the entire ordered set is
achieved via use of the array name.

5.1.3.1 Array Element, An array element is one of
the memi>ers of the set of data of an array. An array element

G-5

is identified by immediately following the array name with
a qualifier, called a subscript, which points to the particular
element of the array.

An array element may be referenced and defined.
5.1.3.2 Subscript. A subscript is written as a paren­

thesized list of subscript expressions. Each subscript ex­
pression is separated by a comma from its successor, if
there is a successor. The number of subscript expressions
must correspond to the declared dimensionality (7.2.1.1),
except in an EQUIVALENCE statement (7.2.1.4). Follow­
ing evaluation of all of the subscript expressions, the array
element successor function (7.2.1.1) determines the identi­
fied array element.

5.1.3.3 Subscript Expressions. A subscript expression
is written as one of the following constructs:

c*v + k
c*v - k
c*v
v + k
v - k
v
k

where c and k are integer constants and v is an integer
variable reference. See Section 6 for a discussion of evalua­
tion of expressions and 10.2.8 and 10.3 for requirements
that apply to the use of a variable in a subscript.

5.1.4 Procedures. A procedure (Section 8) is identi­
fied by a symbolic name. A procedure is e. statement
function, an intrinsic function, a basic external function,
an external function, or an external subroutine. Statement
functions, intrinsic functions, basic external functions, and
external functions are referred to as functions or function
procedures; external subroutines as subroutines or sub­
routine procedures.

A function supplies a result to be used at the point of
reference; a subroutine does not. Functions are referenced
in a manner different from subroutines.

5.2 FUNCTION REFERENCE. A function reference con­
sists of the function name followed by an actual argument
list enclosed in parentheses. If the list contains more than
one argument, the arguments are separated by commas.
The allowable forms of function arguments are given in
Section 8.

See 10.2.1 for a discussion of requirements that apply
to function references.

5.3 TYPE RULES FOR DATA AND PROCEDURE IDENTI­
FIERS. The type of a constant is implicit in its name.

There is no type associated with a symbolic name that
identifies a subroutine or a block.

A symbolic name that identifies a variable, an array,
or a statement function may have its type specified in a
type-statement. In the absence of an explicit declaration,
the type is implied by the first character of the name: I,
J, K, L, M, and N imply type integer; any other letter
implies type real.

A symbolic name that identifies an intrinsic function
or a basic external function when it is used to identify this
designated procedure, has a type associated with it as
specified in Tables 3 and 4.

In the program unit in which an external function is
referenced, its type definition is defined in the same manner
as for a variable and an array. For a function subprogram,
type is specified either implicitly by its name or explicitly
in the FUNCTION statement.

The same type is, associated with an array element as
is associated with the array name.

G-6

5.4 DUMMY ARGUMENTS. A dummy argument of an
external procedure identifies a variable, array, subroutine,
or external function.

When the use of an external function name is specified,
the use of a dummy argument is permiSsible if an external
function name will be associated with that dummy argu­
ment. (Section 8.)

When the use of an external subroutine name is speci­
fied, the use of a dummy argument is permissible if an
external subroutine name will be associated with that
dummy argument.

When the use of a variable or array element reference
is specified, the use of a dummy argument is permissible if
a value of the same type will be made available through
argument· association.

UnleSs specified otherwise, when the lise of a variable,
array, or array element name is specified, the use of a
dummy argument is permissible provided that a proper
association with an actual argument is made.

The process of argument association is discussed in
Sections 8 and 10.

6. EXPRESSIONS
This section gives the formation and evaluation rules

for arithmetic, relational, and logical expressions. A rela­
tional expression appears only within the context of logical
expressions. An expression is formed from elements and
operators. See 10.3 for a discussion of requirements that
apply to the use of certain entities in expressions.

6.1 ARITHMETIC EXPRESSIONS. An arithmetic expres­
sion is formed with arithmetic operators and arithmetic
elements. Both the expression and its constituent elements
identify values of one of the types integer, real, double
precision, or complex. The arithmetic operators are:

Operator Representing
+ Addition, positive value (zero + element)

Subtraction, negative value (zero - element)
* Multiplication
/ Division
** Exponentiation

The arithmetic elements are primary, factor, term,
signed term, simple arithmetic expression, and arithmetic
expression.

A primary is an arithmetic expression enclosed in
parentheses, a constant, a variable reference, an array
element reference, or a function reference.

A factor is a primary or a construct of the form
primary**primary

A term is a factor or a construct of one of the forms
,term /factor

or
term*term

A signed term is a term immediately preceded by
+ or -.

A simple arithmetic expression is a term or two simple
arithmetic expressions separated by a + or -.

An arithmetic expression is a simple arithmetic expres­
sion or a signed term or either of the preceding forms
immediately followed by a + or - immediately followed
by a simple arithmetic expression.

A primary of any type may be exponentiated by an
integer primary, and the resultant factor is of the same
type as that of the element being exponentiated. A real or
double precision primary may be exponentiated by a real
or double precision primary, and the resultant factor is of
type real if both primaries are of type real and otherwise

of type double precision. These are the only cases for which
use of the exponentiation operator is defined.

By use of the arithmetic operators other than ex­
ponentiation, any admissible element may be combined
with another admissible element of the same type, and the
resultant element is of the same type. Further, an admissible

. real element may be combined with an admissible double
precision or complex element; the resultant element is of
type double precision or complex, respectively.

6.2 RELATIONAL EXPRESSIONS. A relational expres­
sion consists of two arithmetic expressions separated by a
relational operator and will have the value true or false as
the relation is true or false, respectively. One arithmetic
expression may be of type real or double precision and the
other of type real or double precision, or both arithmetic
expressions may be of type integer. If a real expression and
a double precision expression appear in a relational expres­
sion, the effect is the same as a similar relational expression.
This similar expression contains a double precision zero as
the right hand arithmetic expression and the difference of
the two original expressions (in their original order) as the
left. The relational operator is unchanged. The relational
operators are:

Operator Representing
.LT. Less than
.LE. Less than or equal to
.EQ. Equal to
. NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

6.3 LOGICAL EXPRESSIONS. A logical expression is
formed with logical operators and logical elements and has
the value true or false. The logical operators are:

Operator Representing
.OR. Logical disjunction
. AND. Logical conjunction
. NOT. Logical negation

The logical elements are logical primary, logical factor,
logical term, and logical expression.

A logical primary is a logical expression enclosed in
parentheses, a relational expression, a logical constant,a
logical variable reference, a logical array element reference,
or a logical function reference.

A logical factor is a logical primary or .NOT. followed
by a logical primary.

A logical term is a logical factor or a construct of the
form:

logical term .AND. logical term
A logical expression is a logical term or a construct of

the form:
logical expression .OR. logical expression

6.4 EVALUATION OF EXPRESSIONS. A part of an ex­
pression need be evaluated only if such action is necessary
to establish the value of the expression. The rules for
formation of expressions imply the binding strength of
operators. It should be noted that the range of the sub­
traction operator is the term that immediately succeeds it.
The evaluation may proceed according to any valid forma­
tion sequence (except as modified in the following para­
graph).

When two elements are combined by an operator, the
order of evaluation of the elements is optional. If mathe­
matical use of operators is associative, commutative, or
both, full use of these facts may be made to revise orders
of combination, provided only that integrity of parenthe­
sized expressions is not' \·iolated. The results of different
permissible orders of combination even though math­
ematically identical need not be computationally identical.

The value of an integer factor or term is the nearest integer
whose magnitude does not exceed the magnitude of the
mathematical value represented by that factor or term. The
associative and commutative laws do not apply in the
evaluation of integer terms containing division, hence the
evaluation of such terms must effectively' proceed from
left to right.

Any use of an array element name requires the evalua­
tion of its subscript. The evaluation of functions appearing
in an expression may not validly alter the value of any
other element within the expressions, assignment statement,
or CALL statement in which the function reference appears.
The type of the expression in which a function reference or
subscript appears does not affect, no'r is it affected by, the
evaluation of the actual arguments or subscript.

No factor may be evaluated that requires a negative
valued primary to be raised to a real or double precision
exponent. No factor may be evaluated that requires raising
a zero valued primary to a zero valued exponent.

No element may be evaluated whose value is not
mathematically defined.

7. STATEMENTS
A statement may be classified as executable or non­

executable. Executable statements specify actions; non­
executable statements describe the characteristics and
arrangement of data, editing information, statement
functions, and classification of program units .

7.1 EXECUTABLE STATEMENTS. There are three types
of executable statements:

(1) Assignment statements.
(2) Control statements.
(3) Input output statements.
7.1.1 Assignment Statements. There are three types

of assignment statements:
(1) Arithmetic assignment statement .
(2) Logical assignment statement .
(3) GO TO assignment statement.
7.1.1.1 Arithmetic Assignment Statement. An arith­

metic assignment statement is of the form:
v = e

where v is a variable name or array element name of type
other than logical and e is an arithmetic expression. Execu­
tion of this statement causes the evaluation of the expression
e and the altering of v according to Table 1.

7.1.1.2 Logical Assignment Statement. A logical as­
signment statement is of the form

v = e
where v is a logical variable name or a logical array element
name and e is a logical expression. Execution of this state­
ment causes the logical expression to be evaluated and its
value to be assigned to the logical entity.

7.1.1.3 GO TO Assignment StatemPnt. A GO TO
assignment statement is of the form:

ASSIGN k TO i
where k is a statement label and i is an integer variable
name. After execution of such a statement, subsequent
execution of any assigned GO TO statement (Section
7.1.2.1.2) using that integer variable will cause the statement
identified by the assigned statement label to be executed

. next, provided there has been no intervening redefinition
(9.2) of the variable. The statement label must refer to an
executable statement in the same program unit in which
th .. "SSIGN statement appears.

Once having been mentioned in an ASSIGN statement,
an integer variable may not be referenced in any statement
other than an assigned GO TO statement until it has been'
redefined (Section 10.2.3).

G-7

TABLE 1. RULES FOR ASSIGNMENT OF e TO U

If u Type Is Ande Type Is The Assignment Rule Is*

Integer Integer Ass:ign
Integer !teal Fix & Assign
Integer Double Precision Fix & Assign
Integer Complex P

Real Integer Float & Assign
Real Real Assign
Real Double Precision DP Evaluate & Real Assign
Real Complex P

Double Precision Integer DP Float & Assign
Double Precision Real DP Evaluate & Assign
Double Precision Double Precision Assign
Double Precision Complex P

Complex Integer I'
Complex Heal P
Complex Double Precision P
Complex Complex Assign

*NOTES.
(1) P means prohibited combination.
(2) Assign means transmit the resulting value, without

change, to the entity.
(3) Real Assign means transmit to the entity as much

precision of the most significant part of the resulting value
as a real datum can contain.

(4) DP Evaluate means evaluate the expression ac­
cording to the rules of 6.1 (or any more precise rules) then
DP Float.

(5) Fix means truncate any fractional part of the result
and transform that value to the form.of an integer datum.

(6) Float means transform the value to the form of a
real datum.

(7) DP Float means transform the value to the form
of a double precision datum, retaining in the process as
much of the precision of the value as a double precision
datum can contain.

7.1.2 Control Statements. There are eight types of
control statements:

(1) GO TO statements.
(2) arithmetic IF statement.
(3) logical IF statement.
(4) CALL statement.
(5) RETURN statement.
(6) CONTINUE statement.
(7) program control statements.
(8) DO statement.
The statement labels used in a control statement must

be associated with executable statements within the same
program unit in which the control statement appears ..

7.1.2.1 GO. TO Statements. There are three types of
GO TO statements:

(1) Unconditional GO TO statement.
(2) Assigned GO TO statement.
(3) Computed GO TO statement.
7.1.2.1.1 Unconditional GO TO Statement. An un­

conditional GO TO statement is of the form:
GO TO k

where k is a statement label.
Execution of this statement causes the statement

identified by the statement label to be executed next.
7.1.2.1.2 Assigned GO TO Statement. An assigned GO

TO statement is of the form:
GO TO i, (k l , k2, ... , k n)

where i is an integer. variable reference, and the h's are
statement labels.

G-8

At the time of execution of an assigned GO TO state­
ment, the current value ofi must have been assigned by the
previous execution of an ASSIGN statement to be one of
the statement labels in the parenthesized list, and such an
execution causes the statement identified by that statement
label to be executed next.

7.1.2.1.3 Computed GO TO Statement. A computed
GO TO statement is of the form: .'.' '~

GO TO (kJ, k2, ... , k n), i
where the k's are statement labels and i is an integer variable
reference. See 10.2.8 and 10.3 for a discussion of req4ire~
ments that apply to the use of a variable in a compute"
GO TO statement.

Execution of this statement causes the statement identi­
fied by the statement label kj to be executed next, where j
is the value of i at thtHime of the execution. This statement
is defined only for values such that 1 ;;; j ;;; n.

7.1.2.2 Arithmetic IF Statement. An arithmetic IF
statement is of the form:

IF (e) hI, k2, ka
where e is any arithmetic expression of type integer, real.
or double precision, and the k's are statement labels.

The arithmetic IF is a three-way branch. Execution of
this statement causes evaluation of the expressione following
which the statement identified by the statement label k"
k2, or k3 is executed next as the value of e is less than zero,
zero, or greater than zero, respectively.

7.1.2.3 Logical IF Statement. A logical IF statement
is of the form:

IF (e) S
where e is a logical expression and S is any executable
statement except a DO statement or another logical IF
statement. Upon execution of this statement, the logical
expression e is evaluated. If the value of e is false, statement
S is executed as though it were a CONTINUE statement.
If the value of e is true, statement S is executed.

7.1.2.4 CALL Statement. A CALL statement is of
one of the forms:

CALL s (ai, a2, •.. , an)
or

CALLs
where s is the name of a subroutine a,nd the a's are actual
arguments (8.4.2).

The inception of execution of a CALL statement
references the designated subroutine.· Return of control
from the designated subroutine completes execution of the
CALL statement.

7.1.2.5 RETURN Statement. A RETURN statement
is of the form:

RETURN
A RETURN statement marks the logical end of a

procedure subprogram and, thus, may only appear in a
p~'l~f\dnre subprogram.

Execution' of this statement when it appears in a sub­
routine subprogram causes return of control to the current
calling program unit.

Execution.of this statement when it appears in a func­
tion subprogram causes return of control to the current
calling program unit. At this time the value of the function
(8.3.1) is made available.

7.1.2.6 CONTINUE Statement. A CONTINUE
statement is of the form:

CONTINUE
Execution of this statement causes continuation qf

normal execution sequence.

7.1.2.7 Program Control Statements. There are two
types of program control statements:

(1) STOP statement.
(2) PAUSE statement.
7.1.2.7.1 STOP Statement. A STOP statement is of

, one of the forms:
STOPn

or
STOP

where n is an octal digit string of length from one to five.
Execution of this statement causes termination of

execution of the executable program.
7.1.2.7.2 PAUSE Statement. A PAUSE statement is

of one of the forms:
PAUSE.n

or
PAUSE

where n is an octal digit string of length from one to five.
The inception of execution of this statement causes a

cessation of execution of this executable program. Execution
must be resumable. At the time of cessation of execution
the octal digit, string is accessible. The decision to resume
execution is not under control of the program, but if exe­
cution is resumed without otherwise changing the state of
the processor, the completion of the PAUSE statement
causes continuation of normal execution sequence.

7.1.2.8 DO Statement. A DO statement is of one of
the forms:

where:

DO n i = m" m2, m3
or

DO n i = ml, m2

(1) n is the statement label of an executable statement.
This statement, called the terminal statement of the asso­
ciated DO, must physically follow and be in the same
program unit as that DO statement. The terminal state­
ment may not be a GO TO of any form, arithmetic IF,
RETURN, STOP, PAUSE, or DO statement, nor a logical
IF containing any of these forms.

(2) i is an integer variable name; this variable is
called the control variable.

(3) m!, called the initial parameter; m2, called the
terminal parameter; and ms, called the incrementation
parameter, are each either an integer constant or integer
variable reference. If the second form of the DO statement
is used so that ms is not explicitly stated, a value of one is
implied for the incrementation parameter. At time of exe­
cution of the DO statement, mi, m2, and ms must be greater
than zero.

Associated with each DO statement is a range'that is
defined to be those executable statements from and in­
cluding the first executable statement following the DO,
to and including the terminal statement associated with
the DO. A special situation occurs when the range of a DO
contains another DO statement. In this case, the range of
the contained DO must be a subset of the range of the
containing DO. .

A completely nested nest is a set of DO statements and
their tanges, and any DO statements contained within
their ranges, such that the first occurring terminal statement
of any of those DO statements physically follows the last
occurring DO statement and the first occurring DO state­
ment of the set is not in the range of any DO statement.

A DO statement is used to define a loop. The action
succeeding execution of a DO statement is described by the
following five steps:

1. The control variable is assigned the value repre­
sented by the initial parameter. This value must be less
than or equal to the value represented by the terminal
parameter.

2. The range of the DO is executed.
3. If control reaches the terminal statement, and after

execution of the terminal statement, the control variable of
the most recently executed DO statement associated with
the terminal statement is incremented by the value repre­
sented by the associated incrementation parameter.

4. If the value of the control variable after incre­
mentation is less than or equal to the value represented by
the associated terminal parameter, the action as described
starting at step 2 is repeated with the understanding that
the range in question is that of the DO, the control variable
of which was most recently incremented. If the value of the
control variable is greater than the value represented by
its associated terminal parameter, the DO is said to have
been satisfied and the control variable becomes undefined.

5. At this point, if there were one or more other DO
statements referring to the terminal statement in question,
the control variable of the next most recently executed DO
statement is incremented by the value represented by its
associated incrementation parameter and the action as
described in step 4 is repeated until .all DO statements
referring to the particular termination statement are satis­
fied, at which time the first executable statement following
the terminal statement is executed. In the remainder of
this section (7.1.2.8) a logical IF statement containing a
GO TO or arithmetic IF statement form is regarded as a
GO TO or arithmetic IF statement respectively.

Upon exiting from the range of a DO by execution of a
GO TO statement or an arithmetic IF statement, that is,
other than by satisfying the DO, the control variable of
the DO is defined and is equal to the most recent value
attained as defined in the foregoing.

A DO is said to have an extended range if both of the
following conditions apply:

(1) There exists a GO TO statement or arithmetic IF
statement within the range of the innermost DO of a com­
pletely nested nest that can cause control to pass out of
that nest.

(2) There exists a GO TO statement or arithmetic IF
statement not within the nest that, in the collection of all
possible sequences of execution in the particular program
unit could be executed after a statement of the type de­
scribed in (1), and the execution of which could cause
control to return into the range of the innermost DO of
the completely nested nest. '

If both of these conditions apply, the extended range
is defined to be the set of all executable statements that
may be executed ,between all pairs of control statements,
the first of which satisfies the condition of (1) and the
second of (2). The first of the pair is not included in the
extended range;. the second is. A GO TO statement or an
arithmetic IF statement may not cause control to pass
into the range of a DO unless it is being executed as part
of the extended range of that particular DO. Further, the
extended range of a DO may not contain a DO of the same
program unit that has an extended range. When a pro­
cedure reference occurs in the range of a: DO the actions of
that procedure are considered to be temporarily within
that range, i.e., during the execution of that reference.

The control variable, initial parameter, terminal para­
meter, and incrementation parameter of a DO may not be

G-9

redefined during the execution of the range or extended
range of that DO.

If a statement is the terminal statement of more than
one DO statement, the statement label of that terminal
statement may not be used in any GO TO or arithmetic
IF statement that occurs anywhere but in the range of the
most deeply contained DO with that terminal statement.

7.1.3 Input/Output Statements. There are two types
of input/output statements:

(1) READ and WRITE statements.
(2) Auxiliary Input/Output statements.
The first type consists of the statements that cause

transfer of records of sequential files to and from internal
storage, respectively. The second type consists of the
BACKSPACE and REWIND statements that provide for
positioning of such an external file, and ENDFILE, which
provides for demarcation of such an external file.

In the following descriptions, u and f identify input,out­
put units and format specifications, respectively. An in­
put/output unit is identified by an integer value and u may
be either an integer constant or an integer variable reference
whose value then identifies the unit. The format specifica­
tion is described in Section 7.2.3. Either the statement label
of a FORMAT statement or an array name may be repre­
sented by f. If a statement label, the identified statement
must appear in the same program unit as the input/output
statement. If an array name, it must conform to the speci­
fications in 7.2.3.10.

A particular unit has a single sequential file associated
with it. The most general case of such a unit has the fol­
lowing properties:

(1) If the unit contains one or more records, those
records exist as a totally ordered set.

(2) There exists a unique position of the unit called
its initial point. If a unit contains no records, that unit is
positioned at its initial point. If the unit is at its initial
point and contains records, the first record of the unit is
defined as the next record.

(3) If a unit is not positioned at its initial point, there
exists a unique preceding record associated with thatposi­
tion. The least of any records in the ordering described by
(1) following this preceding record is defined as the next
record of that position.

(4) Upon completion of execution, of a WRITE or
ENDFILE statement, there exist no records following the
records created by that statement.,

(5) When the next record is transmitted, the position
of the unit is changed so that this next record becomes the
preceding record.

.If a unit does not provide for some of the properties
given in the foregoing, certain statements that will be
defined may not refer to that unit. The use of such a state­
ment is not defined for that unit.

7'.1.3.1 READ and WRITE Statements. The READ
and WRITE statements specify transfer of information.
Each such statement may include a list of the names of
variables, arrays, and array elements. The named elements
are assigned values on input and have their values trans­
ferred on output.

Records may be formatted or unformatted. A formatted
record consists of a string of the characters that are permis­
sible in Hollerith constants (5.1.1.6). The transfer of such
a record requires that a format specification be referenced
to supply the necessary positioning and conversion specifi­
cations (7.2.3). The number of records transferred by the

G,...10

execution of a formatted READ or WRITE is dependent
upon the list and referenced format specification (7.2.3.4l.
An unformatted record consists of a string of values. When
an unformatted or formatted READ statement is executed,
the required records on the identified unit must be, re­
spectively, unformatted or formatted records.

7.1.3.1.1 Input Output Lists. The input list specifies
the names of the variables and array elements to which
values are assigned on input. The output list specifies the
references to variables and array elements whose values
are transmitted. The input and output lists are of the
same form.

Lists are formed in the follo~ing manner. A simple list
is a variable name, an array element name, or an array
name, or two simple lists separated by a comma.

A list is a simple list, a simple list enclosed in paren­
theses, a DO-implied list, or two lists separated by a comma.

A DO-iinplied list is a list followed by a comma and a
DO-implied specification, all enclosed in parentheses.

A DO-implied specification is of one of the forms:
= mI, m2, m:i

or
i = mJ, m2

The elements i, mJ, m2, and m" are as defined for the
DO 'statement (7.1.2.8). The range of DO-implied speci­
fication is the list of the DO-implied list and, for input
lists, i, ml, m2, and m:l may appear, within that range, only
in subscripts.

A variable name or array element name specifies itself.
An array name specifies all of the array element names
defined by the array declarator, and they are specified in
the order given by the array element successor function
(7.2.1.1.1) .

The elements of a list are specified in the order of their
occurrence from left to right. The elements of a list in a
DO-implied list are specified for each cycle of the implied
DO.

7.1.3.1.2 Formatted READ. A formatted READ
statement is of one of the forms:

READ (u, f) k
or

READ (u, f)
where k is a list.

Execution of this statement causes the input of the
next records from the unit identified by u. The information
is scanned and converted as specified by the format speci­
fication identified by f. The resulting values are assigned to
the elements specified by the list. See however 7.2.3.4.

7.1.3.1.3 Formatted WRITE. A formatted WRITE
statement is of one of the forms:

WRITE (u, f) k
or

WRITE (u, f)
where k is a list.

Execution of this statement creates the next records
on the unit identified by u. The list specifies a sequence of
values. These are converted and positioned as specified by
the format specification identified by f. See however 7.2.3.4.

7.1.3.1.4 Unformatted READ. An unformatted
READ statement is of one of the forms:

where k is a list.

READ (u) k
or

READ (u)

Execution of this statement causes the input of the
next record from the unit identified by u, and, if there is a
list, these values are assigned to the sequence of elements
specified by the list. The sequence of values required by
the list may not exceed the sequence of values from the
unformatted record.

7.1.3.1.5 Unformatted WRITE. An unformatted
WRITE statement is of the form:

WRITE (u) k
where k is a list.

Execution of this statement creates the·next record on
the unit identified by u of the sequence of values specified
by the list.

7.1.3.2 Auxiliary Input Output Statements. There
are three types of auxiliary input 'output statements: .

(1) REWIND statement.
(2) BACKSPACE statement.
(3) ENDFILE statement.
7.1.3.2.1 REWIND Statement. A REWIND state­

ment is of the form:
REWIND u

Execution of this statement causes the unit identified
hy u to be positioned at its initial point.

7.1.3.2.2 BACKSPACE Statement. A BACKSPACE
statement is of the form:

BACKSPACE u
If the unit identified by u is positioned at its initial

point, execution of this statement has no effect. Otherwise,
the execution of this statement results in the positioning
of the unit identified by u so that what had been the pre­
ceding record prior to that execution becomes the next
record.

7.1.3.2.3 ENDFILE Statement. An END FILE
statement is of the form:

ENDFILE u
Execution of this statement causes the recording of an

endfile record on the unit identified by u. The endfile record
is an unique record signifying a demarcation of a sequential
file. Action is undefined when an endfile record is encoun­
tered during execution of a READ statement.

7.1.3.3 Printing of Formatted Record. When for­
matted records are prepared for printing, the first character
of the record is not printed.

The first character of such a record determines vertical
spacing as follows:

Character
Blank

o
1

+

Vertical Spacing Before Printing
One line
Two lines
To first line of next page
No advance

7.2 NONEXECUTABLE STATEMENTS. There are five
types of nonexecutable statements:

(1) Specification statements.
\2) Data initialization statement:
(3) FORMAT statement.
(4) Function defin:ng statements.
(5) Subprogram statements.
See 10.1.2 for a discussion of restrictions on appearances

of symbolic names in such statements.
The function defining statements and subprogram state­

ments are discussed in Section 8.
7.2.1 Specification Statements. There are five types

of specification statements:
11 \ DIMENSION statement.
\2) COMMON statement.

(3) EQUIVALENCE statement.
(4) EXTERNAL statement.
(5) Type-statements.

7.2.1.1 Array-Declarator. An array declarator speci­
fies an array used in a program unit.

The array declarator indicates the symbolic name, the
number of dimensions (one, two, or three), and the size of
each of the dimensions. The array declarator statement
may be a type-statement, DIMENSION, or COMMON
statement.

An array declarator has the form:
v (i)

where:
(1) v, called the declarator name, is a symbolic name,
(2) (i), called the declarator subscript, is composed of

1, 2, or 3 expressions, each of which may be an integer
constant or an integer variable name. Each expression is
separated by a comma from its successor if there are more
than one of them. In the case where i contains no integer
variable, i is called the constant declarator subscript.

The appearance of a declarator subscript in a declarator
statement serves to inform the processor that the declarator
name is an array name. The number of subscript expressions
specified for the array indicates its dimensionality. The
magnitude of the values given for the subscript expressions
indicates the maximum value that the subscript may attain
in any array element name.

No array element name may contain a subscript that,
during execution of the executable program, assumes a
value less than one or larger than the maximum length
specified in the array declarator.

7.2.1.1.1 Array Element Successor Function and Value
of a Subscript. For a given dimensionality, subscript
declarator, and subscript, the value of a subscript pointing
to an array element and the maximum value a subscript
may attain is indicated in Table 2. A subscript expression
must be greater than zero.

The value of the array element successor function is
obtained by adding one to the entry in the subscript value
column. Any array element whose subscript has this value
is the successor to the original element. The last element
of the array is the one whose subscript value is the maximum
subscript value and has no successor element.

TABLE 2. VALUE OF A SUBSCRIPT

Dimen~ Subscript
Maximum

sionality Declarator Subscript Subscript Value

1 IA) la) a
2 lA, B) la. b) a + A·lh 1)
3 lA, R, C) la, b. c! a+A·(b-l)+

A·B·(c -1)

NOTES. (1) a, b, and c are subscript expressions.
(2) A, B, and C are dimensions.

Subscript
Value

A·
A·B

A·Jl·C

7.2.1.1.2 Adjustable Dimension. If any of the entires
in a declarator subscript is an integer variable name, the
array is called an adjustable array, and the variable names
are called adjustable dimensions. Such an array may only
appear in a procedure subprogram. The dummy argument
list of the subprograms must contain the array name and
the integer variable names that represent the adjustable
dimensions. The values of the actual arguments that repre­
sent array dimensions in the argument list of the reference

G:-ll

, must be defined 110.2) prior to calling the Ilubprogram' and
may not be redefined or undefined during execution of the
subprogram. The maximum size of the actual array may
not be exceeded. For every array appearing in an executable
program (9:1.6), there must be a~ least one constant array
declarator associated thr.ough subprogram. " "

In a subprogram, a symbolic name that appe<trs in a
COl\tMON statemen(may not identify an adjustable array.

7.2.1.2 DIMENSION Statement. A DIMENSION
statement is of the form:

DIMENSION VI (il), V2(i2),"', vniin)

where each vU) is an array declarator.

7.2.1.3 COMMON Statement. A COMMON state-
ment is oCthe form: , . ,!

COMMON / X.I / al / ••• /x.n / Un

where each a is a nonempty list of variable names, array
names, or array declarators (no dummy arguments are per­
mitted) and each x is a symbolic name or is empty. If XI

is empty, the first two slashes are optional. Each X is a
block name, a name that hears no relationship to any
variable or array having the same name. This holds true
for any such variable' or array in the same or any other
program unit. See 10.1.1 for a discussion of restrictions of!
uses of block names. '

In any given COMMON statement, the entities occur­
ring between' block name x and the next block mime (or
the end of the statement if no block name follows) are
declared to be in common block x. All entities from the
beginning of the statement until the appearance of a block
name, or all entities in the ,statement if no block name
appears, are declared to be in blank or" unlabeled common.
Alternatively, the appearance of two slashes with no block
name between them declares the entities that follow to be
in blank comnion.

A given common block name may occur more than
once in a COMMON statement or in a program unit. The
processor will string together in a given common block all
entities so assigned in the order of their appearance (10.1.2).
The first element of an array will follow the immediately
preceding entity, if one exists, and the last element, of an
array will immediately precede the next entity, if one
exists.

The size of a common block in a program unit is the
sum of the storage required for the e~ements introduced
through COMMON and EQUIVALENCE statements. The
sizes of labeled common blocks with the same label in the
program units that comprise an executable program must
be the same. The sizes of blank common in the various
program units that are to be executed together need not be
the same. Size is measured in terms of storage units
l7.2.1.3.1).

7.2.1.3.1 Correspondence of Common Blocks. If all of
the program units of an executable program that contain
any definition of a common block of a particular name
define that block such that:

(1) There is identity in type for all entities defined in
the corresponding position from the beginning of that block,

(2) If the block is labeled and the same number of
entities Is defined for the block.

Then the values in the corresponding positions (counted
by the number of preceding storage units) are the same
quantity in the executable program. ,

A double precision or a complex entity is counted as
two logically consecutive storage units; a logical, real, or,
integer entity, as one" storage unit.

0-12

Then' for 'common' blocks with the same n~mber of
storrtge units' or blank common:

(I)' In all program units which have defined the identi­
cal type toa -given position (counted by the mimber of
preceding'storage units) references to that position refer to
the same quantity. , '

,(2) 'A correct reference is made to a particular position
assuming a given type if the most recent value assignment
to that position was of the same type.

7.2.1.4 EQUIVALENCE Statement. An EQUIVA­
LENCE statement is of the form:

EQUIVALENCE (k l), (k2), , (k ll)

in which each k is a list of the form:
ali Q2, •.. , am_

Each a is either a variable name or an array element
name (not a dummy argument), the subscript of which
contains only constants, and mis greater than or equal to
two. The number of subscript 'expressions of an array
element name must correspond in number to the dimen­
sionality of the array declarator or must be one (the array
element successor function defines a relation by which an
array can be made eqUivalent to a one dimensional array
of the same length). ,

The E'QUIVALENCE statement is used to permit the
sharing of storage by two or more entities.' Each element
in a given list is assigned the same storage (or part of the
same storage) by the processor. The EQUIVALENCE
statement should not be uSed to equate mathematically
two or 'more entities. 'If a two storage unit entity'is eqUiva­
lenced to a- one storage unit entity, the latter will share,
space with the first storage unit of the former.

The assignment of storage, to variables and arrays
declared directly in a COMMON statement is determined
solely by consideration of their type and the COMMON
and array declarator statements. Entities so declared are
always assigned unique storage, contiguous in the order
declared in the COMMON statement.

The effect of an EQUIVALENCE statement upon
common assignment may be the lengthening of a common
block; the only such lengthening permitted is that which
extends a common block beyond the last assignment for
that block 'made directly by a COMMON statement.

When two varia bles or array ~lements share storage
because of the effects of EQUIVALENCE statements, the
symbolic names of the variables or arrays in question may
not both appear in COMMON statements in the same
program unit.

Information contained in 7.2.1.1.1, 7.2.1.3.1, and the
present section suffices to describe the possibilities of addi­
tional cases of sharing, of storage between array elements
and entities of common blocks. It is incorrect to cause either
directly or indirectly a single storl!-ge unit to contain more
than one element of the same array.

7.2.1.5 EXTERNAL Statement. An EXTERNAL
statement is of the form:

, EXTERNAL V" V2, ..• , Vn

where each V is an external procedure name.
Appearance of a name in an EXTERNAL statement

declares that nalJl,e to be an external procedure name. If
an external procedure name is used as an argument to
another external procedure, it must appear in an EXTER­
NAL statement in the program unit in which it is ,so used.

7.2.1.6 Type-statements. A type-statement is of the
form:

t Vi> V2, , Vn ~
where is INTEGER, REAL, DOUBLE PRECISION, ,

COMPLEX, or LOGICAL, and each v is a variable name,
an array name, a function name, or an array declarator.

A type-statement is used to override or confirm the
implicit typing, to declare entities to be of type double
precision, complex, or logical, and may supply dimension
information.

The appearance of a symbolic name in a type-statement
serves to inform the processor that it is of the specified
data type for all appearances in the program unit. See,
however, the restriction in B.3.1 second paragraph.

7.2.2 Data Initialization Statement. A data initial­
ization statement is of the form:

DATA k, / d, / , k2/ d2 / , ... , k n / dn /

where:
(1) Each k is a list containing names of variables and

array elements,
(2) Each d is a list of constants and optionally signed

constants, any of which may be preceded by j*,
(3) j is an integer constant.
If a list contains more than one entry, the entries are

separated by commas.
Dummy arguments may not appear in the list k. Any

subscript expression must be an integer constant.
When the form j* appears before a constant it indicates

that the constant is to be specified j times. A Hollerith con­
stant may appear in the list d.

A data initialization statement is used to define initial
values of variables or array elements. There must be a
one-to-one correspondence between the list-specified items
and the constants. By this correspondence, the initial value
is established.

An initially defined variable or array element may not
be in blank common. A variable or array element in a
labeled common block may be initially defined only in a
block data subprogram.

7.2.3 FORMAT Statement. FORMAT statements
are used in conjunction with the input/output of formatted
records to provide conversion and editing information be­
tween the internal representation and the external character
strings.

A FORMAT statement is of the form:
FORMAT (q,t,Z,t2Z2 ... zn-dnq2)

where:
(1) (q,t,Z,t2Z2'" zn-,tnQ2) is the format specification.
(2) Each Q is a series of slashes or is empty.
(3) Each t is a field descriptor or group of field de-

scriptors.
(4) Each z is a field separator.
(5) n may be zero.
A FORMAT statement must be labeled.
7.2.3.1 Field Descriptors. The format field descriptors

are of the forms:

where:

srFw.d
srEw.d
srGw.d
srDw.d
rIw
rLw
rAw
nHh,h2 ... hn

nX

(1) The letters F, E, G, D, I, L, A, H, and X indicate
the manner of conversion and editing between the internal
and external representations and are called the conversion
codes.

(2)w and n are nonzero integer constants representing
the width of the field in the external character string.

(3) d is an integer constant representing 'the number
of digits in the fractional part of the external character
string (except for G conversion code).

(4) r, the repeat count, is an optional nonzero integer
constant indicating the number of times to repeat the suc­
ceeding basic field descriptor.

(5) s is optional and represents a scale factor desig­
nator.

(6) Each h is one of the characters capable of repre­
sentation by the processor.

For all descriptors, the field width must be specified.
For descriptors of the form w.d ,the d must be specified,
even if it is zero. Further, w must be greater than or equal
to d.

The phrase basic field descriptor will be used to signify
the field descriptor unmodified by s or r.

The internal representation of external fields will cor­
respond to the internal representation of the corresponding
type constants (4.2 and 5.1.1).

7.2.3.2 Field Separators. The format field separators
are the slash and the comma. A series of slashes is also a
field separator. The field descriptors or groups of field
descriptors are separated by a field separator.

The slash is used not only to separate field descriptors,
but to specify demarcation of formatted records. A for­
matted record is a string of characters. The lengths of the
strings for a given external medium are dependent upon
both the processor and the external medium.

The processing of the number of characters that can
be contained in a record by an external medium does not
of itself cause the introduction or inception of processing of
the next record.

7.2.3.3 Repeat Specifications. Repetition of the field
descriptors (except nH and nX) is accomplished by using
the repeat count. If the input/output list warrants, the
specified conversion will be interpreted repetitively up to
the specified number of times.

Repetition of a group of field descriptors or field
separators is accomplished by enclosing them within paren­
theses and optionally preceding the left parenthesis with an
integer constant called the group repeat count indicating
the number of times to interpret the enclosed grouping. If
no group repeat count is specified, a group repeat count of
one is assumed. This form of grouping is called a basic group.

A further grouping may be formed by enclosing field
descriptors, field separators, or basic groups within paren­
theses. Again, a group repeat count may be specified. The
parentheses enclosing the format specification are not con­
sidered as group delineating parentheses.

7.2.3.4 Format Control Interaction with an I nput/Out­
put List. The inception of execution of a formatted READ
or formatted WRITE statement initiates format control.
Each action of format control depends on information
jointly provided respectively by the next element of the
input/output list, if one exists, and the next field descriptor
obtained from the format specification. If there is an in­
put/output list, at least one field descriptor other than nH
or nX must exist.

When a READ statement is executed under format
control, one record is read when the format control is
initiated, and thereafter additional records are read only
as the format specification demands. Such action may not
require more characters of a record than it contains.

0-13

When a WRITE statement is executed under format
control, writing of a record occurs each time the format
specification demands that a new record be started. Ter­
mination of format control causes writing of the current
record.

Except for the effects of repeat counts, the format
specification is interpreted from left to right.

To each I, F, E, G, D, A, or L basic descriptor inter­
preted in a format specification, there corresponds one
element specified by the input/output list, except that a
complex element requires the interpretation of two F, E,
or G basic descriptors. To each H or X basic descriptor
there is no corresponding element specified by the input/out­
put list, and the format control communicates information
directly with the record. Whenever a slash is encountered,
the format specification demands that a new record start
or the preceding record terminate. During a READ oper­
ation, any unprocessed characters of the current record
will be skipped at the time of termination of format control
or when a slash is encountered.

Whenever the format control encounters an I, F, E,
G, D, A, or L basic descriptor in a format specification, it
determines if there is a corresponding element specified by
the input/output list. If there is such an element, it trans­
mits appropriately converted information between the
element and the record and proceeds. If there is no cor­
responding element, the format control terminates.

If, however, the format control proceeds to the last
outer right parenthesis of the format specification, a test is
made to determine if another list element is specified. If
not, control terminates. However, if another list element is
specified, the format control demands a new record start
and control reverts to that group repeat specification ter­
minated by the last preceding right parenthesis, or if none
exists, then to the first left parenthesis of the format speci­
fication. Note, this action of itself has no effect on the
scale factor.

7.2.3.5 Scale Factor. A scale factor designator is
defined for use with the F, E, G, and D conversions and is
of the form:

nP
where n, the scale factor, is an integer constant or minus
followed by an integer constant.

When the format control is initiated, a scale factor of
zero is established. Once a scale factor has been established,
it applies to all subsequently interpreted F, E, G, and D
field descriptors, until another scale factor is encountered,
and then that scale factor is established.

7.2.3.5.1 Scale Factor Effects. The scale factor n
affects the appropriate conversions in the following manner:

(1) For F, E, G, and D input conversions (provided
no exponent exists in the external field) and F output con- ,
versions, the scale factor effect is as follows:

externally represented number equals internally
represented number times the quantity ten raised
to the nth power.

(2) For F, E, G, and D input, the scale factor has no
effect if there is an exponent in the external field.

(3) For E and D output, the basic real constant part
of the output quantity is multiplied by IOn and the exponent
is reduced by n.

(4) For G output, the effect of the scale factor is
suspended unless the magnitude of the datum to be con­
verted is outside the range that permits the effective use of
F conversion. If the effective use of E conversion is required,
the scale factor has the same effect as with E output.

G-14

7.2.3.6 Numeric Conversions. The numeric field de­
scriptors I, F, E, G, and D are used to specify input/output
of integer real, double precision, and complex data.

(1) With aU numeric input conversions, leading blanks
are not significant and other blanks are zero. Plus signs
may be omitted. A field of all blanks is considered to be
zero.

(2) With the F, E, G, and D input conversions, a
decimal . point appearing in the input field overrides the
decimal point specification supplied by the field descriptor.

(3) With all output conversions, the output field is
right justified. If the number of characters produced by
the conVersion is smaller than the field width, leading
blanks will be inserted in the output field.

(4) With all output conversions, the external repre­
sentation of a negative value must be signed; a positive
value may be signed.

(5) The number of characters produced by an output
conversion must not exceed the field width.

7.2.3.6.1 Integer Conversion. The numeric field de­
scriptor Iw indicates that the external field occupies w
positions as an integer. The value of the list item appears,
or is to appear, internally as an integer datum.

In the external input field, the character string must be
in the form of an integer constant or signed integer constant
(5.1.1.1), except for the interpretation of blanks (7.2.3.6).

The external output field consists of blanks, if necessary,
followed by a minus if the value of the internal datum is
negative, or an optional plus otherwise, followed by the
magnitUde of the internal value converted to an integer
constant.

7.2.3.6.2 Real Conversions. There are three conver­
sions available for use with real data: F, E, and G.

The numeric field descriptor Fw.d indicates that the
external field occupies w positions, the fractional part of
which consists of d digits. The value of the list item appears,
or is to appear, internally as a real datum.

The basic form of the external input field consists of an
optional sign, followed by a string of digits optionally con­
taining a decimal point. The basic form may be· followed
by an exponent of one of the following forms:

(1) Signed integer constant.
(2) E followed by an integer constant.
(3) E followed by a signed integer constant;
(4) D followed by an integer constant.
(5) D followed by a signed integer constant.
An exponent containing D is equivalent to an ex­

ponent containing E.
The external output field consists of blanks, if necessary,

followed by a minus if the internal value is negative, or an
optional plus otherwise, followed by string of digits con­
taining a decimal point representing the magnitude of the
internal value, as modified by the established scale factor,
rounded to d fractional digits.

The numeric field descriptor Ew.d indicates that the
external field occupies w positions, the fractional part of
which consists of d digits. The value of the list item appears,
or is to appear, internally as a real datum.

The form of the external input field is the same as for
the F conversion.

The standard form of the external output field for a
scale factor of zero is l

.EO.XI .,. XdY

I~ signifies no character position or minus in that position.

where:
(1) Xl'" Xd are the d most significant rounded digits

of the value of the data to be output.

(2) Y is of one of the forms:
E ± YlY2 or ± Y1Y2Ya

. and has the significance of a decimal exponent (an alter­
native for the plus in the first of these forms is the character
blank).

(3) The digit 0 in the aforementioned standard form
may optionally be replaced by no character position.

(4) Each Y is a digit.
The scale factor n controls the decimal normalization

between the number part and the exponent part such that:
(1) If n ~ 0, there will be exactly - n leading zeros

and d + n significant digits after the decimal point.
(2) If n > 0, there will be exactly n significant digits

to the left of the decimal point and d - n + 1 to the right
of the decimal point.

The numeric field descriptor Gw.d indicates that the
external field occupies w positions with d significant digits.
The value of the list item appears, or is to appear, internally
as a real datum.

Input processing is the same as for the F conversion.
The method of representation in the external output

string is a function of the magnitude of the real datum being
converted. Let N be the magnitude of the internal datum.
The following tabulation exhibits a correspondence between
N and the equivalent method of conversion that will be
effected:

Magnitude of Datum Equivalent Conversion Effected
0.1 ~ N < 1 . F(w - 4).d, 4X
1 ~ N < 10 F(w - 4).(d - 1), 4X

1Od- 2 ~ N < 1Od- 1 F(w - 4).1, 4X
1Od- 1 ~ N < 10d F(w - 4).0, 4X
Otherwise sEw.d

Note that the effect of the scale factor is suspended unless
the magnitude of the datum to be converted is outside of
the range that permits effective use of F conversion ..

7.2.3.6.3 Double Precision Conversion. The numeric
field descriptor Dw.d indicates that the external field

. occupies w positions, the fractional part of which consists
of d digits. The value of the list item appears, or is to appear,
internally as a double precision datum.

The basic form of the external input field is the same
as for real conversions.

The external output field is the same as for 'the E
conversion, exce.pt that the character D may replace the
character E in the exponent.

7.2.3.6.4 Complex Conversion. Since a complex da­
tum consists of a pair of separate real data, the conversion
is specified by two successively interpreted real field de­
scriptors. The first of these supplies the real part. The
second supplies the imaginary part.

7.2.3.7 Logical Conversion. The logical field descrip­
tor Lit' indicates that the external field occupies w positions
as a string of information as defined below. The list item
appears, or is to appear, internally as a logical datum.

The external input field must consist of optional blanks
followed by a T or F followed by optional characters, for
true and false, respectively.

The external output· field consists of w - 1 blanks
~ followed by a T or F as the value of the internal datum is
,:J true or false, respectively.

7.2.3.8 Hollerith Field Descriptor. Hollerith informa­
tion may be transmitted by means of two field descriptors,
nH and Aw: .

(1) The nH descriptor causes Hollerith information to
be read into, or written from, the n characters (including
blanks) following the nH descriptor in the format specifi­
cation itself.

(2) The Aw descriptor causes w Hollerith characters
to be read into, or written from, a specified list element.

Let g be the number of characters representable in a
single storage unit (7.2.1.3.1). If the field width specified
for A input is greater than or equal .to g, the rightmost g
characters will be taken from the external input field. If
the field width.is less than g, the w characters will appear
left justified with w - g trailing blanks in the internal
representation.

If the field width specified for A output is greater than
g, the external output field will consist of w - g blanks,
followed by the g characters from the internal representa­
tion. If the field width is less than or equal to g, the external
output field will consist of the leftmost w characters from
the internal representation.

7.2.3.9 Blank Field Descriptor. The field descriptor
for blanks is nX . On input, n characters of the external
input rec'ord are skipped. On output, n blanks are inserted
in the external output record.

7.2.3.10 Format Specification in Arrays. Any of the
formatted input/output statements may contain an array
name in place of the reference to a FORMAT statement
label. At the time an array is referenced in such a manner,
the first part of the information contained in the array,
taken in the natural order, must constitute a valid format
specification. There is no requirement on the infor~ation
contained in the array following the right parenthes18 that
ends the format specification.

The format specification which is to be inserted in the
array has the same form as that defined for a FORMAT
statement; that is, begins with a left parenthesis and ends
with a right parenthesis. An nH field descriptor may not
be part of a format specification within an array.

The format specification may be inserted in the array
by use of a data initialization statement; or by use of a
READ statement together with an A format.

8. PROCEDURES AND SUBPROGRAMS
There are four categories of procedures: statement

functions, intrinsic functions, external functions, and ex­
ternal subroutines. The first three categories are referred to
collectively as functions or function procedures; the last as
subroutines or subroutine procedures. There are two cate­
gories of subprograms: procedure subprograms and s~ci­
fication subprograms. Function subprograms and subroutme
subprograms are classified as procedure subprograms. Block
data subprograms are classified as specification subprograms.
Type rules for funj:tion procedures are given in 5.3.

8.1 STATEMENT FuNCTIONS. A statement function is
defined internally to the program unit in which it is refer­
enced. It is defined by a single statement similar in form to
an arithmetic or logical assignment statement.

In a given program unit, all statement function defini­
tions 'must precede the first executable statement of the
program unit and must follow the specification statements,
if any. The name of a statement function must not appear
in an EXTERNAL statement, nor as a variable name or
an array name in the same program unit.

..G-~

8.1.1 Defining Statement Functions. A statement
function is defined by a statement of the form:

{(at, a2, ... ,an) = e
where { is the function name, e is an expression, and the
relationship between { and e must conform to the assign­
ment rules in 7.1.1.1 and 7.1.1.2. The a's are distinct variable
names, called the dummy arguments of the function. Since
these are dummy arguments, their names, which serve only
to indicate type, number, and order of arguments, .may be
the same as variable names of the same type appearing
elsewhere in the program unit.

Aside from the dummy arguments, the expression e
may only contain:

(1) Non-Hollerith constants.
(2) Variable references.
(3) Intrinsic function references.
(4) References to previously defined statement func­

tions.
(5) External function references.
8.1.2 Re{erencing Statement Functions. A statement

function is referenced by using its reference (5.2) as a
primary in an arithmetic or logical expression. The actual
arguments, which constitute the argument list, must agree
in order, number, and type with the corresponding dummy
arguments. An actual argument in a statement function
reference may be any expression of the same type as the
corresponding dummy argument.

Execution of a statement function reference results in
an association (10.2.2) of actual argument values with the
corresponding dummy arguments. in the expression of the
function definition, and an evaluation of the expression.
Following this, the resultant value is made available to the
expression that contained the function reference.

S.2 INTRINSIC FUNCTIONS AND THEIR REFERENCE.
The symbolic names of the intrinsic functions (see Table 3)
are predefined to the processor and have a special meaning
and type if the name satisfies the conditions of 10.1.7.

An intrinsic function is referenced by using its reference
as a primary in an arithmetic or logical expression. The
actual arguments, which constitute the argument list, must
agree in type, number, and order with the specification in
Table 3 and may be any expression of the specified type.
The intrinsic functions AMOD, MOD, SIGN, ISIGN, and
DSIGN are not defined when the value of the second
argument is zero.

Execution of an intrinsic function reference results in
the actions specified in Table 3 based on the values of the
actual arguments. Following this, the resultant value is
made available to the expression that contained the function
reference.

S.3 EXTERNAL FUNCTIONS. An external function is
defined externally to the program unit that references it.
An external function defined by FORTRAN statements headed
by a FUNCTION statement is called a function sub­
program.

S.3.1 Defining Function Subprograms. A FUNCTION
statement is of the form:

t FUNCTION { (aI, a2, '" ,an)
where:

(1) t is either INTEGER, REAL, DOUBLE PRE­
CISION, COMPLEX, or LOGICAL, or is empty.

(2) {is the symbolic name of the function t'o be defined.
(3) The a's, called the dummy arguments, are each

either a variable name, an array name, or an external
procedure name.

G-16

TABLE 3. INTRINSIC FUNCTIONS

Intri118ic
Function Definition

Absolute Value I a I

Truncation Sign of a times

Remaindering*
(see Dote
below)

Choosing
Largest Value

Choosing
Sinallest
Value

Float

Fix

largest integer
;5 I a I

Max (ai, a2,' ..)

-Min (a1, a2,' .•)

Conversion from
integer to real

Conversion from
real to integer

Transfer of Sign Sign of a, times
I al I

Positive Differ- al - Min (al, a2)
ence

Obtain Moat
Significant
Part of
Double Preci­
sion Argument

Obtain Real
Part of Com­
plex Argu­
ment

Obtain Imagi­
nary Part of
Complex
Argument

Express Single
Precision Ar­
gument in
Double Pre­
cision Form

Express Two
Real Argu-
ments in
Complex
Form

Obtain Conju­
gate of a
Complex
Argument

Number Typeo!:
o! Symbolic -------

Argu- Name Argu­
ment Function men/s

2

2

2

ABS
lABS
DABS

AINT
INT
IDINT

AMOD
MOD

AMAXO
AMAXI
MAXO
MAXI
DMAXI
AMINO
AMINI
MINO
MINI
DMINI

Real
Integer
Double

Real
Real
Double

Real
Integer

Integer
Real
Integer
Real
Double
Integer
Real
Integer
Real
Double

Real
Integer
Double

Real
Integer
Integer

Real
Integer

Real
Real
Integer
Integer
Double
Real
Real
Integer
Integer
Double

FLOAT Integer Real

IFIX

SIGN
ISIGN
DSIGN

Real

Real
Integer
Double

Integer

Real
Integer
Double

DIM Real Real
IDIM Integer Integer

SNGL Double Real

REAL Complex Real

AIMAG Complex Real

DBLE Real Double

2 CMPLX Real Complex

CONJG Complex Complex

*The function MOD or AMOD (aI, a,) is defined as al - [at/a.)a., where Ix
i.. : J.." integer whose magnitude does not exceed the magnitude of x and
wbo8e sign is the same as x.

Function -subprograms are constructed as specified in
9.1.3 with the following restrictions:

(i) The symbolic name of the function must also
appear as a variable name in the defining subprogram.
During every execution of the subprogram, this variable
must be defined and, once defined, may be referenced or
redefined. The value of the variable at the time of execution
of any RETURN statement in this subprogram is called
the value of the function.

(2) The symbolic name of the function must not appear
in any nonexecutable statement in this program unit, except
as the symbolic name of the function in the FUNCTION
statement.

(3) The symbolic names of the dummy arguments may
not appear in an EQUIVALENCE, COMMON, or DATA
statement in the function subprogram.

(4) The function subprogram may define or redefine
one or more of its arguments so as to effectively return
results in addition to the value of the function.

(5) The function subprogram may contain any state­
ments except BLOCK DATA, SUBROUTINE, another
FUNCTION statement, or any statement that directly or
indirectly references the function being defined.

(6) The function subprogram must contain at least
one RETURN statement.

8.3.2 Referencing External Functions. An external
function is referenced by using its reference (5.2) as a
primary in an arithmetic or logical expression. The actual
arguments, which constitute the argument list, must agree
in order, number, and type with the corresponding dummy
arguments in the defining program unit. An actual argument
in an external function reference may be one of the following:

(1) A variable name.
(2) An array element name.
(3) An array name.
(4) Any other expression.
(5) The name of an external procedure.
If an actual argument is an external function name or

a subroutine name, then the corresponding dummy argu­
ment must be used as an external function name or a
subroutine name, respectively.

If an actual argument corresponds to a dummy argu­
ment that is defined or redefined in the referenced sub­
program, the actual argument must be a variable name, an
array element name, or an array name. Execution of an
external function reference as described in the foregoing,
results in an association (10.2.2) of actual arguments with
all appearances of dummy arguments in executable state­
ments, function definition statements, and as adjustable
dimensions in the defining subprogram. If the actual argu­
ment is as specified in item (4) in the foregoing, this associa­
tion is by value rather than by name. Following these
associations, execution of the first executable statement of

, the defining subprogram is undertaken. An actual argument
which is an array element name containing variables in the
subscript could in every case be replaced by the same
argument with a constant subscript containing the same
values as would be derived by computing the variable
subscript just before the association of arguments takes
place.

If a dummy argument of an external function is an
array name, the corresponding actual argument must be
an array name or array element name (10.1.3).

If a function reference causes a dummy argument in
the referenced function to become associated with another
dummy argument in the same function or with an entity
in common, a definition of either within the function is
prohibited.

Unless it is a dummy argument, an external function is
also referenced (in that it must be defined) by the appear­
ance of its symbolic name in an EXTERNAL statement.

S.3.3 Basic External Functions. FORTRAN processors
must supply the external functions listed in Table 4.
Referencing of these functions is accomplished as described

~i in (8.3.2). Arguments for which the result of these functions
~)

is not mathematically defined or is of type other than that
specified are improper.

8.4 SUBROUTINE. An external subroutine is defined
externally to the program unit that references it. An external
subroutine defined by FORTRAN statements headed by a
SUBROUTINE statement is called a subroutine subpro-
gram.

TABLE 4. BASIC EXTERNAL FUNCTIONS

Number Type of:
Basic External Definition of Symbolic

Function Argu- Name Argu- Function ments ment

Exponential ea 1 EXP Real Real
1 DEXP Double Double
1 CEXP Complex Complex

Natural Logs- log, (a) 1 ALOG Real Real
rithm I DLOG Double Double

1 CLOG Complex Complex

Common Loga- log,. (a) ALOGIO Real Real
rithm DLOGIO Double Double

Trigonometric sin (a) 1 SIN Real Real
Sine 1 DSIN Double Double

I CSIN Complex Complex

Trigonometric cos (a) COS Real Real
Cosine DCOS Double Double

CCOS Complex Complex

Hyperbolic tanh (a) TANH Real Real
Tangent

Square Root (a),/' 1 SQRT Real Real
1 DSQRT Double Double
1 CSQRT Complex Complex

Arctangent arctan (a) 1 ATAN Real Real
1 DATAN Double Double

arctan (a,/a.) 2 ATAN2 Real Real
2 DATAN2 Double Double

Ramaindering* a, (mod a.) 2 DMOD Double Double

Modulus 1 CABS Complex Real

*The function DMOD (al. a.) is defined as al - [aI/a,]a •• where [xJ ,is the
integer whose magnitude does not exceed the magnitude of x and whose
sign is the same as the sign of x.

8.4.1 Defining Subroutine Subprograms. A SUBROU­
TINE statement is of one of the forms:

where:

SUBROUTINE 8 (ab a2, .. ' , an)
or

SUBROUTINE 8

(1) s is the symbolic name of the subroutine to be
defined.

(2) The a's, called the dummy arguments, are each
either a variable name, an may name, or an external pro­
cedure name.

Subroutine subprograms are constructed as specified
in 9.1.3 with the following restrictions:

(1) The symbolic name of the subroutine must not
appear in any statement in this subprogram except as the
symbolic name of the subroutine in the SUBROUTINE
statement itself.

(2) The symbolic names of the dummy arguments may
,not appear in an EQUIVALENCE, COMMON, or DATA
statement in the subprogram.

(3) The subroutine subprogram may define or redefine
one or more of its arguments 80 as to effectively return
results.

(4) The subroutine subprogram may contain any state­
ments except BLOCK DATA, FUNCTION, another SUB-

,G-17

ROUTINE statement, or any statement that directly or
indirectly references the subroutine being defined.

(5) The subroutine subprogram must contain at least
one 'RETURN statement.

8.4.2 Referencing Subroutines. A subroutine is refer­
enced by a CALL statement (7.1.2.4). The actual arguments,
which constitute the argument list, must agree in order,
number, and type with the corresponding dummy argu­
ments in the defining program. The use of a Hollerith
constant as an actual argument is an exception to the rule
requiring agreement of type. An actual argument in a
subroutine reference may be one of the following:

(1) A Hollerith constant.
(2) A variable name.
(3) An array element name.
(4) An array name.
(5) Any other expression.
(6) The name of an external procedure.
If an actual argument is an external function name or

a subroutine name, the corresponding dummy argument
must be used as an external function name or a subroutine
name, respectively.

If an actual argument corresponds to a dummy argu­
ment that is defined or redefined in the referenced sub­
program, the actual argument must be a variable name, an
array element name, or an array name.

Execution of a subroutine reference as described in the
foregoing results in an association of actual arguments with
all appearances of dummy arguments in executable state­
ments, function definition statements, and as adjustable
dimensions in the defining subprogram. If the actual argu­
ment is as specified in item (5) in the foregoing, this associa­
tion is by value rather than by name. Following these
associations, execution of the first executable statement of
the defining subprogram is undertaken.

An actual argument which is an array element name
containing variables in the subscript could in every case be
replaced by the same argument with a constant slolbscript
containing the same values as would be derived by com­
puting the variable subscript just before the association of
arguments takes place.

If a dummy argument of an external function is an
array name, the corresponding actual argument must be
an array name or array element name (10.1.3).

If a subroutine reference causes a dummy argument in
the referenced subroutine to become associated with another
dummy argument in the same subroutine or with an entity
in common, a definition of either entity within the sub­
routine is prohibited.

Unless it is a dummy argument, a subroutine is also
referenced (in that it must be defined) by the appearance
of its symbolic name in an EXTERNAL statement.

8.0 BLOCK DATA SUBPROGRAM. A BLOCK DATA
statement is of the form:

BLOCK DATA

This statement may only appear as the first statement of
specification subprograms that are called block data sub­
programs, and that are used to enter initial values into
elements of labeled common blocks. This special subprogram
contains only type-statements, EQUIVALENCE, DATA,
DIMENSION, and COMMON statements.

If any entity of a given common block is being given an
initial value in such a subprogram, a complete set of specifi­
cation statements for. the entire block must be included,
even though some of the elements of the block do not appear

G-18

in DATA statements. Initial values may be entered into
more than one block in a single subprogram.

9. PROGRAMS
An executable program is a collection of statements,

comment lines, and end lines that completely (except for
input data values and their effects) describe a computing
procedure.

9.1 PROGRAM COMPONENTS. Programs consist of
program parts, program bodies, and subprogram statements.

9.1.1 Program Part. A program part must contain
at least one executable statement and may contain FOR­
MAT statements, and data initialization statements. It
need not contain any statements from either of the latter
two classes of statement. This collection of statements may
optionally be preceded by statement function definitions,
data initialization statements, and FORMAT statements.
As before only some or none of these need be present.

9.1.2 Program Body. A program body is a collec­
tion of specification statements, FORMAT statements or
both, or neither, followed by a program part, followed by
an end line.

9.1.3 Subprogram. A subprogram consists of a
SUBROUTINE or FUNCTION statement followed by a
program body, or is a block data subprogram.

9.1.4 Block Data Subprogram. A block data sub­
program consists of a BLOCK DATA statement, followed
by the appropriate (8.5) specification statements, followed
by data initialization statements, followed by an end line.

9.1.5 Main Program. A main program consists of
a program body.

9.1.6 Executable Program. An executable program
consists of a main program plus any number of subpro­
grams, external procedures, or both.

9.1.7 Program Unit. A program UIiit is a main
program or a subprogram.

9.2 NORMAL EXECUTION SEQUENCE. When an ex­
ecutable program begins operation, execution commences
with the execution of the first executable statement of the
main program. A subprogram, when referenced, starts ex­
ecution with execution of the first executable statement of
that subprogram. Unless a statement is a GO TO, arithmetic
IF, RETURN, or STOP statement or the terminal state­
ment of a DO, completion of execution of that statement
causes execution of the next following executable statement.
The sequence of execution following execution of any of
these statements is described in Section 7. A program part
may not (in the sense of 1.1) contain an executable state­
ment that can never be ~xecuted.

A program part must contain a first executable state­
ment.

10. INTRA- AND INTERPROGRAM
RELATIONSHIPS

10.1 SYMBOLIC NAMES. A symbolic name has been
defined to consist of from one to six alphanumeric characters,
the first of which must be alphabetic. Sequences of characters
that are format field descriptors or uniquely identify certain
statement types, e.g., GO TO, READ, FORMAT, etc. are
not symbolic names in such occurrences nor do they form
the first characters of symbolic names in these cases. In a
program unit, a symbolic name (perhaps qualified by a
subscript) must identify an element of one (and usually only
one) of the following classes:

Class I
Class II
Class III
Class IV
Class V

An array and the elements of that array.
A variable.
A statement function.
An intrinsic function.
An external function.

Class VI A subroutine.
Class VII An external procedure which cannot be

classified as either a subroutine or an external function in
the program unit in question.

Class VIII A block name.
10.1.1 Restrictions on Class. A symbolic name in

Class VIII in a program unit may also be in anyone of the
Classes I, II, or III in that program unit.

In the program unit in which a symbolic name in Class
V appears immediately following the word FUNCTION in
a FUNCTION statement, that name must also be in
Class n.

Once a symbolic name is used in Class V, VI, VII, or
VIII in any unit of an executable program, no other pro­
gram unit of that executable program may use that name
to identify an entity of these classes other than the one
originally identified. In the totality of the program units
that make up an executable program, a Class VII name
must be associated with a Class V or VI name. Class VII
can only exist locally in program units.

In a program unit, no symbolic name can be in more
than one class except as noted in the foregoing. There are
no restrictions on uses of symbolic names in different pro­
gram units of an executable program other than those noted
in the foregoing.

10.1.2 Implications of Mentions in Specification and
DATA Statements. A symbolic name is in Class I if and
only if it appears as a declarator name. Only one such ap­
pearance for a symbolic name in a program unit is permitted.

A symbolic name that appears in a COMMON state­
I ment (other than as a block name) is either in Class I, or

in Class II but not Class V. (8.3.1) Only one such appearance
for a symbolic name in a program unit is permitted.

A symbolic name that appears in an EQUIVALENCE
statement is either in Class I, or in Class II but not Class V.
(8.3,1).

A symbolic name that appears in a type-statement
cannot be in Class VI or Class VII. Only one such ap­
pearance for a symbolic name in a program unit is permitted.

A symbolic name that appears in an EXTERNAL
statement is in either Class V, Class VI, or Class VII. Only
one such appearance for a symbolic name in a program unit
is permitted.

A symbolic name that appears in a DATA statement is
in either Class I, or in Class II but not Class V. (8.3.1)In an
executable program, a storage unit (7.2.1.3.1) may have its
value initialized one time at the most.

10.1.3 Array and Array Element. In a program unit,
any appearance of a symbolic name that identifies an array
must be immediately followed by a subscript, except for
the following cases:

(1) In the list of an input,ioutput statement.
(2) In a list of dummy arguments.
(3) In the list of actual arguments in a reference to an

external procedure.
(4) In a COMMON statement.
(5) In a type-statement.

't;

Only when an actual argument of an external procedure
reference is an array name or an array element name may
the corresponding dummy argument be an array name. If
the actual argument is an' array name, the length of the

w

dummy argument array must be no greater than the length
of the actual argument array. If the actual arg\lment is an
array element name, the length of the dummy argument
array must be less than or equal to the length of the actual
argument array plus one minus the value of the subscript
of the array element.

10.1.4 External Procedures. The only case when a
symbolic name is in Class VII occurs when that name ap­
pears only in an EXTERNAL statement and as an actual
argument to an external procedure in a program unit.

Only when an actual argument of an external procedure
reference is an external procedure name may the correspond­
ing dummy argument be an external procedure name.

In the execution of an executable program, a procedure
subprogram may not be referenced twice without the ex­
ecution of a RETURN statement in that procedure having
intervened.

10.1.5 Subroutine. A symbolic name is in Class VI
if it appears:

(1) Immediately following the word SUBROUTINE
in a SUBROUTINE statement.

(2) Immediately following the word CALL in a CALL
statement.

10.1.6 Statement Function. A symbolic name is in
Class III in a program unit if and only if it meets all three
of the following conditions:

(1) It does not appear in an EXTERNAL statement
nor is it in Class I.

(2) Every appearance of the name, except in a type­
statement, is immediately followed by a left parenthesis.

(3) A function defining statement (8.1.1) is present for
that symbolic name.

10.1.7 Intrinsic Function. A symbolic name is in
Class IV in a program unit if and only if it meets all four
of the following conditions:

(1) It does not appear in an EXTERNAL statement
nor is it in Class I or Class III.

(2) The symbolic name appears in the name column of
the table in Section 8.2.

(3) The symbolic name does not appear in a type-state­
ment of type different from the intrinsic type specified in
the table.

(4) Every appearance of the symbolic name (except in
a type-statement as described in the foregoing) is im­
mediately followed by an actual argument list enclosed in
parentheses.

The use of an intrinsic function in a program unit of an
executable program does not preclude the use of the same
symbolic name to identify some other entity in a different
program unit of that executable program.

10.1.8 External Function. A symbolic name is in
Class V if it:

(1) Appears immediately following the word FUNC­
TION in a FUNCTION statement

(2) Is not in Class I, Class Ill, Class IV, or Class VI
and appears immediately followed by a left parenthesis on
every occurrence except in a type-statement, in an EX­
TERNAL statement, or as an actual argument. There
must be at least one such appearance in the program unit in
which it is so used.

10.1.9 Variable. In a program unit, a symbolic name
is in Class II if it meets all three of the following conditions:

. (1) It is not in Class VI or Class VII.
(2) It is never immediately followed by a left paren­

thesis unless it is immediately preceded by the word FUNC.
TION in a FUNCTION statement.

0-19

(3) It occurs other than in a Class VIII appearance.
10.1.10 Block Name. A symbolic name is in Class

VIlI if and only if it is used lis a block name in a COMMON
statement. ",

10.2 DEFINITION. There 'are two levels of defini­
tion of numeric values, first level definition and second level
definition. The concept of definition on the first level applies
to array elements and variables; that of second liwel defini­
tion to integer variables only. These concepts are defined in
terms of progression of execution;'and thus, an executable
program; complete and in execution, is assumed in what
follows.

There are two other varieties of definition that should
be noted. The first, effected by GO TO assignment and
referring to an integer variable being defined with other than
an integer value, is discussed in 7.1.1.3 and 7.1.2.1.2; the
second, which refers to when an external procedure may be
referenced, will be discussed in the next section.

In what follows, otherwise unqualified use of the terms
definition and undefinition (or their alternate forms) as
applied to variables and array elements will imply modifica­
tion by the phrase on the first level.

10.2.1 Definition of Procedures. If an executable pro­
gram contains information describing an external procedure,
such an external procedure with the applicable symbolic
name is defined for use in that executable program. An ex­
ternal function reference or subroutine reference (as the
case may be) to that symbolic name may then appear ill the
executable program, provided that number of arguments
agrees between definition and reference. In addition, for an
external function, the type of function must agree between
definition and reference. Other restrictions on agreements
are contained in 8.3.1., 8.3.2, 8.4.1., 8.4.2., 10.1.3, and 10.1.4.

The basic external functions listed in (8.3.3) are always
defined and may be referenced subject to the restrictions
alluded to in the foregoing.

A symbolic name in Class III or Class IV is defined for
such use.

10.2.2 Associations That Effect Definition. Entities
may become associated by:

(1) COMMON association.
(2) EQUIVALENCE association.
(3) Argument substitution.
Multiple association to one or more entities can be the

result of combinations of the foregoing.' Any definition or
undefinition of one of a set of associated entities effects the
definition or undefinition of each entity of the entire set.

For purposes of definition, in a program unit there is no
association between any two entities both of which appear
in COMMON statements. Further, there is no other as­
sociation' for common and equivalenced entities other than
those $tated in 7.2.1.3.1 and 7.2.1.4.

If an actual argument of an external procedure reference
is an array name, an array element name, or a variable
name, then the discussions in 10.1.3 and 10.2.1 allow an
association of dummy arguments with the actual arguments
only between the time of execution of the first' executable
statement of the procedure and the inception of ,execution
of the next encountered RETURN statement of that pro­
cedure. Note specifically that this association can be carried
through more than one level of external procedure reference.

In what follows, variables or array elements associated
, by the information in 7.2.1.3.1 and 7.2.1.4 will be equivalent
if and only if they are of the same type.

If an entity of a .given type becomes defined, then all
associated entities of different type become undefined at the

G-20

same tune,' whlle" all aSsociated entities of the, same type
become defined unless otherwise noted.

Association by argument, substitution is only valid in
the case of identity of type, so, the rule in this case is that
an entity created by argument substitution is defined at
time of entry if and only if the actual argument was defined.
If, an entity created hy, argument substitution becomes
defined or undefined (while the assoCiation' exists) during
execution of a subprogram, then the corresponding actual
entities in all calling program units becomes defined or un-
defined' accordingly. ,

10.2.3 Events, That Effect Definition. Variables and
array elements become initially defined if and only if their
names are associated in a data initialization statement with
a, constant of the same type as the variable or array in
question. 'Any entity not initially defined is undefined at
the time of the first execution of the first executable state­
ment of the main program. Redefinition of a defined entity

,is always permissible except for certain integer variables
('1.1.2.8, 7.1.3.1.1, and 7.2.1.1.2) or certain entities in sub-
programs (6.4, 8.3.2, and 8.4.2). ,

Variables and array elements become defined or rede-
fined as follows: '

(1) Completion of execution of an arithmetic or logical
assignment statement causes definition of the entity that
precedes the equals.

(2) As execution of an input statement proceeds, each
entity, which is assigned a value of its corresponding type
from the input medium, is defined' at the time of such as­
sociation. Only at the completion of execution of the state­
ment do associated entities of the same type become defined.

(3) Completion of execution of a DO statement causes
definition of the control variable.

(4) ,Inception of execution of action specified by a DO­
implied list causes definition of the control variable.

Variables and array elements become undefined as
follows:

(1) At the time a DO is satisfied, the control variable
becomes undefined.

(2) Completion of execution of an ASSIGN statement
causes undefinition of the integer variable in the statement.

(3) Certain entities in function 'subprograIns (10.2.9)
become undefined.

(4) Completion of execution of action specified by a
DO-implied list causes undefinition of the control variable.

(5) When an associated entity of different type be-
comes defined. '

(6) When an associated entity of the same type be­
comes undefined.

10.2.4 Entities in 'Blank Common. Entities in blank
common and those entities associated with them !nay not
be initially defined.

Such entities, once defined by any of the rules previously
mentioned, remain defined until they become undefined.

10.2.5 Entities' in Labeled Common. Entities in la­
beled common or any associates of those entitieS may' be
initially defined.

A program unit contains a labeled common block namE
if the name appears as a block name in the program unit.
If a main program or referenced subprogram contains a

, labeled common block name, any entity in the block,(and its
associates) once defined re!nain defined until they become
undefined.

It should be noted that redefinition of an initially de­
fined entity will allow later undefinition of that entity. ~

Specifically, if a subprof{ram contains a labeled common
block name that is not contained in any program unit
currently referencinf{ the subprof{ram directly or indirectly,
the execution of a HETUHN statement in the subprof{ram
causes undefinition of all entities in the block (and their
associates) except for initially defined entities that have
maintained their initial definitions.

10.2.6 Entities Not in Common. An entity not in
common except for a dummy argument or the value of a
function may be initially defined.

Such entities once defined by any of the rules previously
mentioned, remain defined until they become undefined.

If such an entity is in a subprogram, the completion of
execution of a HETURN statement in that subprogram
causes all such entities and their associates at that time
(except for initially defined entities that have not been
redefined or become undefined) to become undefined. In
this respect, it should be noted that the association between
dummy arf{uments and actual arguments is terminated at
the inception of execution of the RETURN statement.

Again, it should be emphasized, the redefinition of an
initially defined entity can result in a subsequent undef­
inition of that entity. .

10.2.7 Hosie Block. In a program unit, a basic block
is a group of one or more executable statements defined as
follows.

The following statements are block terminal statements:
(1) DO statement.
(2) CALL statement.
(3) GO TO statement of all types.
(4) Arithmetic IF statement.
IS) STOP statement.
(6) RETURN statement.
(7) The first executable statement, if it exists, preceding

a statement whose label is mentioned in a GO TO or arith­
metic IF statement.

(8) An arithmetic statement in which an integer var­
iable precedes the equals.

(9) A READ statement with an integer variable in the
list.

(10) A logical I F containing any of the admissible forms
given in the foregoing.

The following statements are block initial statements:
II) The first executable statement of a program unit.
(2) The first executable statement, if it exists, follow-

ing a block terminal statement.
Every block initial statement defines a basic block. If

that initial statement is also a block terminal statement, the
basic block consists of that one statement. Otherwise, the
basic block consists of the initial statement and all ex­
ecutable ",tatements that follow until a block terminal state­
ment is encountered. The terminal statement is included in
the basic block.

10.2.7.1 Last Executable Statement. In a program unit
the last executable st'ltement (which cannot be part aLa
logical I F) must be one of the following statements: GO TO
statement, arithmetic IF statement, STOP statement, or
HETURN statement.

10.2.8 Second Level Df'/inition. Integer variables
must be defined on the second level when used in subscripts
and computed GO TO statements.

Hedefinition of an integer entity causes all associated
. variables to be undefined for use on the second level during

this execution of this program unit until the associated
integer variable is explicitly redefined.

Except as just noted, an integer variable is defined on
the second le\'el upon execution of the initial statement of

a basic block only if both of the following conditions apply:
(1) The variable is used in a subscript or in a computed

GO TO in the basic block in question. .
(2) The variable is defined on the first level at the time

of execution of the initial statement in question.
This definition persists until one· of the following

happens:
(1) Completion of execution of the terminal statement

of the basic block in question.
(2) The variable in question becomes undefined or re­

ceives a new definition on the first level.
At this time, the variable becomes undefined on the

second level.
In addition, the occurrence of an integer variable in the

list of an input statement in which that integer variable
appears following in a subscript causes that variable to be
defined on the second level. This definition persists until one
of the following happens:

(1) Completion of execution of the terminal statement
of the basic block containing the input statement.

(2) The variable becomes undefined or receives a new
definition on the first level.

An integer variable defined as the control variable of a
DO-implied list is defined on the second level over the range
of that DO-implied list and only over that range.

10.2.9 Certain Entities in Function Subprograms. If
a function subprogram is referenced more than once with an
identical argument list in a single statement, the execution
of that subprogram must yield identical results for those
cases mentioned, no matter what the order of evaluation
of the statement.

If a statement contains a factor that may not be
evaluated (6.4), and if this factor contains a function ref­
erence, then all entities that might be defined in that ref­
erence become undefined at the completion of evaluation of
the expression containing the factor.

10.3 DEFINITION REQUIREMENTS FOR USE OF EN­
TITIES. Any variable referenced in a subscript or a com­
puted GO TO must be defined on the second level at the
time of this use.

Any variable, array element, or function referenced as a
primary in an expression and any subroutine referenced by a
CALL statement must be defined at the time of this use.
In the case where an actual argument in the argument list
of an external procedure reference is a variable name or
an array element name, this in itself is not a requirement
that the entity be defined at the time of the procedure
reference; however, when such an argument is an external
procedure name, it must be defined.

Any variable used as an initial value, terminal value, or
incrementation value of a DO statement or a DO-implied
list must be defined at the time of this use.

Any variable used to identify an input output unit
must be defined at the time of this use.

At the time of execution of a RETURN statement in a
function subprogram, the value 18.3.1) of that function must
be defined.

At the time of execution of an output statement, every
entity whose value is to be transferred to the output medium
must be defined unless the. output is under control of a for­
mat specification and the corresponding conversion code is
A. If the output is under control of a format specification, a
correct association of conversion code with type of entity
is required unless the conversion code is A. The following
are the correct associations: I with integer; D with double
precision; E, F, and G with real and complex; and L with
logical.

G-21

APPENDIX H

S-C 4060 TEST PROORAMS

1. Card reader test (for card reader option)

2. Central processor test

3. Core memory test #1 (tests contiguous memory limits)

4. Core memory test #2 (to insure that the contents of core
memory are not disturbed when AC power is disconnected)

5 . Power failure interrupt test

6. Teleprinter test for ASR-33 keyboard, reader, and punch

7. Alignment and performance test for print head section

8. DAP assembler test

9. Magnetic tape read/write test

H-1

Input

APPENDIX I

A complete list of instructions is contained in Document Number
HMO-208, S-C 4060 Stored Program Recording System, Opera­
tor's Handbook.

Action Normal Reply
---------------------- ----------- -------- ---- -------------- ------------- -------------------------- ---

LOADp

S

The specified processor will be loaded from the
library. p may be 4020, META, P704, P709, P360

Execution will halt

**OK or **p
NOT FOUND

**STOPPED
----------------- ----------- --- ----------------------

REWTn Tape n will be rewound **OK

BKSRn Tape n will backspace one record

BKSFn Tape n will backspace one file

SKPRn Tape n will skip forward one file

SKPFn Tape n will skip forward one file

RESTART

NEXT

START

GO

STATUS

(OTHER)

Input tape will backspace to beginning of the
current job and system will be initialized.

Input tape will skip forward to beginning of
next job and system will be initialized.

Execution of the process will begin

Execution will be resumed

System status will be printed on ASR-33. Execu­
tion will be resumed upon completion of printout.

Not recognized by MCS

**OK

**OK

**OK

**OK

**READY

**READY

**ST ART JOB n

**OK

JOB NO.,
FRAME NO.,
and the name
of the processor

**WHAT?
----------------------------- ----------------- -----

INP== n Input tape will be set to logical unit n **OK

LIB= n Library tape \\ill be set to logical unit n **OK
--------------- - ----------- ------------------------

1-1

REVISIOR SHEET '"OR 9500236

Date Deacription of Chan,. R.vi.ion Approval

4/4/68 PRODUCTION RELEASE 68/248 "A" iff .Jfa (.(;' .. t.·~

I

...

.

~

