Part Number: 800-4888-10
Revision A, of 11 June 1990

SunView, XView, and OpenWindows are trademarks of Sun Microsystems, Inc.

News, Sun Workstation, Sun Microsystems, and the Sun logo €p
.are registered trademarks of Sun Microsystems Inc.

POSTSCRIPT is a registered trademark of Adobe Systems Inc. Adobe owns
copyrights related to the POSTSCRIPT language and the POSTSCRIPT interpreter.
The trademark POSTSCRIPT is used herein to refer to the material supplied by
Adobe or to programs written in the POSTSCRIPT language as defined by Adobe.

The X Window System is a trademark of Massachusetts Institute of Technology.

UNIX is a registered trademark of AT&T.
OPEN LOOK is a trademark of AT&T.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

Copyright © 1990 Sun Microsystems, Inc. — Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be reproduced in any form or by any
means — graphic, electronic, or mechanical — including photocopying, recording, taping, or storage in an information
retrieval system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013
(October 1988) and FAR 52.227-19 (June 1987).

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun ack-
nowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user inter-
faces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface,
which license also covers Sun’s licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485 4,688,190 4,527,232 4,745,407
4,679,014 4,435,792 4,719,569 4,550,368 in addition to foreign patents and applications pending.

Chapter 1 Introduction

Contents

1.1. News Programming: An Overview

The POSTSCRIPT Language

News Types

News Operators
The X11/News Server ...

NeWs Processes .

Client-Server Communication

C Client Interface

Canvases ...

Memory Management

Color Support

Font Support

Multiple Screen Support

1.2. POSTSCRIPT Language Files Used with the Server
Classes

Debugging

o - Y- MO Y. Y. T N U O FCRRE FORE N S NC TR N T N SRS

Utilities

Chapter 2 Canvases

The canvastype Extension

Canvas Operators

—iii—

Contents — Continued

2.1.

2.2,

2.3.

24.

2.5.
2.6.

2.7.

Basic Terms and Concepts

Using Multiple Canvases to Create a Window

The Canvas Hierarchy

Opaque and Transparent Canvasesmemssssese

Visibility and Mapping ...
Canvas Damage

Retained and Unretained Canvases

Rooted and Unrooted Canvases .,

Coordinate Systems

Basic Canvas Operations

Creating Canvases

Setting a Canvas’ Shape and Coordinate System

Mapping Canvases to the Screen

Setting the Current Canvas

Drawing on Canvases

Moving Canvases ...

Getting the Location of a Canvas

Destroying Canvases

Using the Transparent and Opaque Properties of Canvases ...
Opaqueness and Transparency

Painting on a Transparent Canvas

Making a Parent Canvas Transparent

Canvas Damage: When to Expect It, How to Fix It, How to
Avoid It

When is a Canvas Damaged?

...

Repairing Canvas Damage ...

Avoiding Canvas Damage with Retained Canvases

Avoiding Canvas Damage with SaveBehind Canvases

Restricting the Drawing Area with the Canvas Clip

Manipulating the Canvas Hierarchy

Changing Sibling Relationships

Establishing a New Parent

Overlay Canvases

—iv—

10
12
13
13
13
14
14
15
15
16
17
18
18
20
22
22
22
23
25
27

28
28
29
29
32
33
35
36
39
40

Contents — Continued

Creating and Using Overlays ... 41
Restrictions for Drawing on Overlays 44

The Framebuffer Overlay ... 44

2.8. Canvases, Files, and Imaging Procedurescoeeemreneesssssssien 44
Writing Canvases to Files 45
Reading Canvases from FIIES ... 47
Imaging a Canvas to the Screen 47
Building a Canvas Image 49

2.9. Cursors 51
CUTSOT ODJECLS ..o sssssssssssssss s ssessss s sesssssssss s 51
StaNAArd CUTSOTSccccoovvoieeremsrssesssssseesssssssessssssssesssss s e sssss s 52
Changing a Canvas’ CUTISOT ... sessase s 53
Changing a Cursor’s Color 54

2.10. Using Multiple Screens 54
The GIobal ROOE CANVAScccccoeveererrerserss s ssssesssssssssesssssssss 55
Creating the Framebuffer Canvases .. SOOI 55
Allowed Operations for the Global Root Canvas ... 55
Benign Operations for the Global Root Canvas ... 56
Disallowed Operations for the Global Root Canvas ... 56
CRAPLET 3 PTOCESSES ... e sssessosn 57
The processtype EXENSION ... ssessimmssssssssssssssssesos 58
PIOCESS OPETALOTS ... eeesssessessssssssssssssssssssssssssssssss s sesssssssssssses 58

3.1. BasiC Process OPETALIONSoooooocveceesineesssssssssmsssseseesssssssssssssssssssssssssss 59
Establishing a Client Connection ProcCess ... 59
Returning the Current PrOCESS ... sssesssssssssssssssseess 60
Examining the Process Stacks ... i 60
1070153 621 410 BN #: 163N 60
Execution Stack ... 61
DICHONATY STACKoooooooeeeee e ssresessssesssssee s ssssssss s 61
GraphiCs State STACKorvvemrerecsseresssiss s s sssssssssssse s 61
Creating @ NEW PIOCESS ... s sssssssssssees 62
Process Scheduling: Allowing Other Processes to Run ... 63

Contents — Continued

Pausing
WRILILEooccoe e ssssss s s s s ssssssssssssssss s s sssssre s

SIEEPING ..o sessess s ssessssssssss s

Examining the Process EXecution State ...

Destroying Processes

Suspending and Restarting Processes
USING the DPSPS ULLLYoooooeeeeeeoeeeeeeesecesessesesesesssesesesesssssssssseesmesessessssssssssssesenseees

3.2. Creating and Manipulating Process Groups

3.3. Using Monitors for Synchronization
3.4. Handling Errors

3.5. Controlling Dictionary Sharing Between Parent and Child
Processes

Chapter 4 Events

The eventtype EXIENSIONoooeeeeeeeesseeeesesssoeeeeesessse e sessseseseesesssssoes

EVENt OPETALOTSoooceeeooeerescsensssnns e ssensssesssssssssnsssssesssssssesnees
4.1. Overview of Event DiSEIDULON ... eeesesscesseseressn
4.2, BasiC Event OPEIations ... s smssessssesssen
Creating an Event

EXPIessing INTEIESTS ... scssessssmeessessssssssssessssssssssssssssss s
Copying an Event Before Expressing Interest ...,
Changing and Reusing Interests

Sending an Event into Distribution

AWRITNG EVEIILSo.ccocceee e seeee e seessessessenesesseesmesseessesssssenseeee
Using Arrays in an Interest’s Name, Action, or Canvas Key ...
Setting and Inspecting an Event’s Location ...,
Specifying the Time of an Event’s Distribution ...,
Specifying Additional Event Information ...,

Recalling Events and Revoking Interests

4.3. Rules for Matching Events to Interests
Rules for Matching Name And Action Key Values
Rules for Matching Process Key Values

Rules for Matching Serial Key Values

—-vi—

65
66
67
67
69
70
70
73
76

77

Contents — Continued

4.4. Post-Match Processing: Specifying a Dictionary for an

Interest’s Name, Action, or CanvasKey ... 92
Specifying Non-Executable Dictionary Values ... 92
Specifying Executable Dictionary Values ... 94

4.5. Event Distribution: Matching an Event to Multiple Interests ... 96
Canvas INLErest LiSLSocvvevrmnersrsssssesssssssssssssseseessnen . 96
Pre-Child and Post-Child INTEIESLSccwomeremmesmneesssesssssessesnes 96
Assigning Interests to Canvas Interest Lists ... 96

Interest List Order e s e s s s 97

Order of Interest Matching: Searching the Canvas Hierarchy ... 97

If the Event’s Canvas Value is a Single Canvas ... 97

If the Event’s Canvas Value is an Array or Dictionary ... 98

If the Event’s Canvas Value isnull ... 98

Search Path EXAMPIE ... 98
Stopping the SEAICHooooevcee e ssessss s 99
Canvas Event Consumption ... 99
Exclusive INterestsoerererrenee e 100
Redistributing an Event Stopped by an Exclusive Interest 100
Modified Search Path EXamPpIeooivreeemssnsssssssssssssnne 101

Hints for Using Pre-Child and Post-Child Interests ... 102
Example: Matching Multiple Interests e 102

4.6. System-Generated EVENLSo.erooevevcorensssssssssss s ssssessssesessssesssses 109
Keyboard EVENLSooooovrmevevnssosssss s sssssssss s ssss s ssssesssseses 109
ODSOIESCENCE EVEINLSccooor e errsrssnrs s sssssssssssessssssss st s 109
ProcessDied EVENLS ... ssses s ssssssssssmssssesssssssssses 109
Mouse Events 110

Enter and Exit Events 113
FOCUS EVENLSoooooerrevrervs s s sssss s sssss s sssssssss s 118
Damage EVENLS ... ssescsmsensesessessssessssssssssssssssssssssssssssssssses 120

4.7. Synchronizing Input with Multiple Processes ... 122

Blocking the Global Event Queue with blockinputqueue 122
Blocking the Global Event Queue with the Synchronous Key

Synchronizing All Events for a PIOCESS ... 126

—vii —

Contents — Continued

4.8. Restricting Distribution of an Event to a Specific Process ...

4.9. Creating an Event-Logger Process

Chapter 5 Classes

5.1. Basic Terms and Concepts

Classes and Instances ...

Instance Variables, Class Variables, and Methods

Inheritance and the Class Tree .

Superclasses and SUDCLASSESevvevceeveereeee e esseneeeesssses e
The Immediate Superclass

Inheritance

Single Inheritance and Multiple Inheritance

The Inheritance Array

A Single Inheritance Example

Summary of Termscoerveeerrvsnn

5.2. Creating a New Class
The Class Definition

classbegin

classend

redef

Initializing a New Class
\

5.3. Sending Messages With the send Operator ...
The Usual Form of send

The Steps Involvedinasend

Using send to Invoke a Method
A Nested send

Using send to Create a New Instance

Another Form of send

Using send to Change the Value of an Instance Variable ...
Using send to Change the Value of a Class Variable ...
5.4. The Pseudo-Variables self and super

The self Pseudo-Variable

The super Pseudo- Variable

131
131
131
132
133
133
133
134
134
135
135
137
139
139
139
139
140
140
140
140
141
141
142
143
144
144
145
145
147

Contents — Continued

Using super to Send a Message Up the Superclass Chain 150
Restrictions on the Use of self and SUPer ... 150
5.5. Method Compilation e84 428 R AR R AR R R AR R R R R e 150
Compiling self send e e s e 151
Compiling super send ... 151
LoCal DICHONALIES ..o occveeesesseressnsssesssesssssssssssssssssssssssss s sesssessnsess 151
Controlling Method Compilation ... 152
/methodcompile ... s ssssieens 152
/INStaAlIMethOd ... 153
JAOIE ... s s s s s s s 153
SEtLOCAIDICEScccve e st 154
5.6. Creating @ New INSLATICEcccomuvemmvrvoeersnessssssesssesissesssssessnseses 156
IIW ..o 157
IMEWODJECL ..o e s 157
TOUEWIIL ... s sseses 158
IMEWIMAZICoooooeeee e 159
5.7. Intrinsic Classes and Default CIaASSESmmmmmnersrsermeemsmsmssssssssssesns 161
The DefaultClass Variable ... 161
IEWAEEAUIE e 161
TAEfAUILCIASS ... 162
/SubClassRespOnSIibIlIty ... 162
5.8. Overriding Class Variables With UserProfile ... 162
Overriding DefaultClass ... sssssssssesne 163
5.9. Promoting Class Variables to Instance Variables ..o 163
PIOINOLEoooovercecnieeresinrece s ssinessssessssssnsssesssssssssssossnsns 163
UNPTOIMOLEooovvoecnrveecssine s ensssnsecsssassissssesssssssssss s sssssss s ssssssssisssssoes 164
PIOMOLEA?c.coooeecvs e s et 164
Avoiding an Accidental PromOtOIc...cooeevveerseerssersmseesss e 164
5.10. Destroying Classes and INSTANCESoveoreeenensssiesessssmssssessoen 165
JACSETOY ... s 165
/destroydependentoooreovressnen 165
CLASSAESLIOY ..o st s ssnes 165
/cleanoutclass 165

—ix—

Contents — Continued

5.11. Obsolete Objects in the Class SYSIEIMcceeeernnensssmmmsssssnsesssseseen
/obsolete ...

5.12. Multiple Inheritance
A Simple Multiple Inheritance Example: a Utility Class

A More Complex Multiple Inheritance Example
Rules for Valid Inheritance Array Orders ...
Possible Inheritance Arrays for this Example ...
Which Order Do You Choose?
Constraining the Order of the Inheritance Arraycccrurenen

super and Multiple Inheritance

5.13. Utilities for Setting and Retrieving an Object’s Name and
Classname

/name e eesseseseesasee e enesessesssssss s senes

/setname

/mamed? ceness et s ene s SRR RRR S 5 RS RRR A0

[classname ...

5.14. Utilities for Inquiring About an Object’s Status

iSODJECE? oo

isclass?

isinstance? ...

5.15. Utilities for Inquiring About an Object’s Heritage ...,

/superclasses ...

/subclasses ...

/instanceof? .
1deSCendantOr? ...
TUNAErStANAS?ooooooeeeerese s
JCLASS ... s

5.16. Utilities for Finding Objects on the send Stack

/topmostinstance

/topmostdescendant

/sendtopmost ...

5.17. Syntax Summary for Class Operators

5.18. Syntax Summary for Class Methods

Contents — Continued

Chapter 6 C Client INEITACE ... ssssssssssssss s 179
6.1. The Three Parts of a CPS Client 180
Creating the . cps Fle ... sssies 180
Creating the .h File 180
Creating and Compiling the . c Fileinsssissesssssnn 180
Including Other Header Files in the . c and . cps Files ... 181
6.2. cps Connection Utilities v s 181
Establishing a Connection v enene 181
Flushing the Output Buffer 182
Closing the CONNECtionmmmmmmmeenes e e 182
Connection Example 182
6.3. The cdef Command 183
The cdef Syntax ... 183
CPS Argument Types 184
The Three Types 0f cdef MACIOSveeememsmsssesssssessssssscssesien 185
Sending POSTSCRIPT Language Code without Returning

VAALUESooo oo ssss s sssss s s sssns st sisssse s snsss s sssssss s 186
Receiving Synchronous Replies ... 186
Receiving Asynchronous Replies 188

6.4. cps Utilities for Retrieving Input from the Input Connection
FILEooooeeees s s et ssss s s s st s s s s s s 190
6.5. cps Utilities for Common POSTSCRIPT Language Operators ... 191
6.6. Defining User Tokens for Efficient Communication ... 191
News Operators for Manipulating the User Token List 193
Using setfileinputtoken to Define a User Token ... 194
| 2 : 1441 0) (ST . 194
Using cPs Utilities to Define a User Token e e 195
Declaring the USer TOKENoummecrmmmmssmmnssinessms s 195
Defining the Token’s VaIUE ... 195
EXAIMPIESocooovvevvvrnvssesssrssssssssss e ssess s esssessssssssssss s s s 196
6.7. Debugging CPS CLICILLS ..o scsssnsssssss s s sssssssssssssssssssssnes 197
6.8. An Example CPS Client: The Lunar Lander Game ... 198
Splitting the Code Between Client and Server 199

—Xi—

Contents — Continued

The Lunar Lander . c File

The Lunar Lander . cps File

The Lunar Lander lunartags.hFile ...

Program Overview

Set-Up and Connection to the Server

Initialization

The Main Control Loop
Clean-Up

Making the Shards: A Special Type of cdef
6.9. Creating an Interface for Clients Not Written in C
Hints for Creating a Facility Equivalent to CPS ..

Contacting the Server

Chapter 7 Debugging
7.1. Loading the Debugger
7.2. Starting the Debugger

7.3. Using the Debugger ...

Multi-Process Debugging

7.4. Client Commands

7.5. User Commands ...

7.6. Debugging Hints
Using Aliases

Using Multiple Debugging Connections

Chapter 8 Memory Management

8.1. Reference Counting ...

Counted and Uncounted Objects

References to Counted Objects

Counted References ...

Uncounted References .

Soft References and Obsolescence Events

Hard References

Reference Tallies

— xii —

199 (

204
208
208
208
208
209
210
210
211
211
211

213
213
213 (
214
214
215
219

219
220

Contents — Continued

8.2. Memory Management Operators s kR s e 224
Softening a Reference ..o, 224
Hardening a Reference ... 224
Determining a Reference’s Type ... 225

8.3. Memory Management Debugging Operatorso.cmmmreemsnn 225
Counting the Number of Server ObJECESoevverocvvrrsessisseesssen 225
Returning an Object’s Reference Count e 226
Printing Information on All Current References ... 227
Inspecting Memory Usage 228

8.4. Memory Management Debugging TOOIS ... 228

8.5. Hints for Debugging Memory Leaks ... 229
Identifying @ MemoOry Leak ... s ssssssssne 229
Gathering DAta ...t ssssssssssssnssssnss 230
Filing Bug Reports e R e e R eR R RS 230

8.6. The Unused FONt CaChie ... sessssesssssesssessssesssesese 231
Setting and Inspecting the Size of the Cachemncin 231
Flushing the CAChE ... s ssssssssene 232
ADDHCALONSooooo v sssss s s sssss s s sssss s sssens 232

Chapter 9 NeWS Type EXLENSIONS ... sesssssssss s 233

9.1. NeWS Objects as DICHONATIESoooocoomevevrscreesssssssrsssssssssssssssssssssss s 233

9.2. LiSt OFNEWS TYPESooooveerrecessse s ssssssssssssssssssssssssssssssss s s sssss s 234
POSTSCRIPT LaNGUAZE TYPESoovooooeeeeeosecereeesssseses s sssmsssssssesssssssssns 234
News Type Extensions e RS R R 235

9.3. colortype et AR SRR AR 5 e 0 025 8RR R0 235

9.4. graphicsstatetype .. e s e s 235

0.5, MNOMILOTEYPE ..o sssess e st snsss e 235

0.6. PACKEAATTAYLYPEoooooroeoeeeee e eesesesse s ssesenesssesssesssesnsssssssssssssssss 230

9.7. pathtype ...

9.8. CaNVASLYPE ...

9.9. colormaptype ...

9.10. colormapentrytype
9.11. cursortype

— Xiii —

Contents — Continued

9.12,
9.13.
9.14.
9.15.
9.16.

Chapter 10 News Operator Extensions

environmenttype

eventtype
fonttype

processtype

visualtype

Chapter 11 Extensibility through

11.1.

11.2.

11.3.
11.4.
11.5.
11.6.
11.7.

News Procedure Files

Initialization Files

init.ps

redbook.ps

basics.ps

.....

cursor.ps

statdict.ps

compat.ps

util.ps

class.ps

User-Created Extension Files

.startup.ps

.user.ps

Other Extension Files

debug.ps

eventlog.ps

journal.ps

repeat.ps

Extension File Contents

Miscellaneous Utilities

Array Utilities

Conditional Utilities

Input Utilities

Rectangle Utilities

xiv.

244 (

246
249
250
255

257

291
201
201
201
201
201
291
292
202 (
200
292
202
202
202
202
202
202
202
292
293
297
299
300
303

Contents — Continued

11.8. Graphics ULHLIESccoccemooeerreresssnssssssssnssssssesssssssesesesesassssssssssssssssssssssnes 303
11.9. File Access Utilities 305
11.10. CID UGHLESoooccccveersereerresssresesressssssssssssssssssessseesssssssossssssessssssssssesssses 306
11.11. Journalling Utilities 307
Journalling Internal Variables 307
11.12. Constants 308
11.13. Key Mapping Utilities w309
11.14. Repeating Keysmeeeseeersssssionns 310
11.15. Logging Events v s 310
UnloggedEVeNntSooeeeeeeenesesesrninrnn s 311
Appendix A NeWS OPETALOLS ... 313
A.1. News Operators, AIphabetiCally ... 313
A.2. News Operators, by FUNCHONALILYomeeereresssnne s sssnesess 316
CaANVAS OPETALOLSooooooeveeeescsise e ssnssss s sssssss s sssssssssssssssssssssssssssssssssssss 316
EVent OPEIALOTSccoooooimveeeessssissesessissssssesssssssssesssssssssssssss 317
Mathematical OPETALOTScc.coooevvemeenrrrsmssssses s s s ssssssssss s 318
PTOCESS OPCTALOTSoocoreooeemeemmemsesssesessssssesesseseee 318

Path Operators ... 318

FAlE OPETALOTScocc v evve s ssnssesssenses s s ssssssessssssssssssssssssssss s s s 319
COLOT OPCTALOLSooooecveveeresssss s ssessessssssssssssssssssesssssesssssssssssessssssssssssnsos 319
Keyboard and Mouse OPEratorsooeeeeeennsssssinensen 319
Cursor Operators ... 320

FONL OPCTALOLS ..oooooeeeee e sssmssssssssss s sssasssssssessnsssssssssesssses 320
Miscellaneous OPETALOTSc.mmmmmmmimssseseeess s ssmsssssssssssssssssessssseees 320
Appendix B Byte Stream Format e s s s s s 323
B.1. Encoding For Compressed TOKENSoemereemssssssssssesssessees 323
B.2. TOKEN LISLSccooooeerevreenressnne s ssssssse s esssssesssssesssssssses st s sssess 325
SYSEIM TOKEIN LLISTooooo oo snssssese s sssssssssssssssssssssssssssssssssses 326

User ToKen List ... 326

B.3. Encoding EXAMPIE ..o ssssosssssssssssssss s ssssessssssessssses 326
B.4. Sending Tagged Replies from Server to Client ... 327

— XV —

Contents — Continued

Appendix C The Extended Input System ...

C.1. Building on News Input Facilities

C.2. The Lit€UI INLETEACE .o...ooooeooeeeoeeeeeeeeee s ossosssessmssseans

C.3. Keyboard Input

C4.

Cs.

Appendix D Omissions and Implementation Limits

D.1.
D.2.
D.3.
DA4.
D.5s.

Keyboard Input: Simple ASCII Characters ...

Revoking Interest in Keyboard Events ...

Keyboard Input: FUnction KeYS ... seosceoeeeeeeeeeenen

Assigning Function Keys

Keyboard Input: Editing and Cursor Control ...

Selections

Selection Data STIUCLUIESoooooovooeoveeeeeeeeeeseeeeeeee oo eessessessssesesessessnes

Selection Procedures

Selection Events ...

/SetSelectionAt ...

/ExtendSelectionTo

/SelectionRequest

Input Focus

Operator Omissions and Limitations

Font Dictionary Limitations ..

The statusdict Dictionary

Implementation Limits

Other Differences with the POSTSCRIPT Language

—Xxvi—

329 (

329
330
331
331
331
331
332
332
333
333
335
336
337
338
339
339
340
340

Tables

Table 4-1 Action Values for Enter and Exit Events 114
Table 4-2 Action Values for Keyboard Focus Events 119
Table 5-1 Summary Of TEIMS ... seeeeesesessseneeese 138
Table 6-1 CPS Argument Types 185
Table 6-2 CPs Utilities for POSTSCRIPT Language Operatorso....... 191
Table 8-1 Uncounted ODJECE TYPESoovoeeeeeeressoeeeresess e eeesssseessessesesssserseesssne 222
Table 8-2 Counted ODJECE TYPES ... eseeeresesssseesessesessosesssesseesessssesse 222
Table 9-1 Standard Object Types in the POSTSCRIPT Language ... 234
Table 9-2 Additional News Object Types ... SN 235
Table 10-1 Events sent to incanvas and itS Parentsooooorversssrsse 2717
Table 10-2 Events sent to outcanvas and itS Parents ... 277

Table 10-3 Rasterop Code Values

Table 11-1 Standard News Cursors

Table B-1 Token names and their associated values (j

Table B-2 Bytes for binary encoding example (givé

Table C-1 Selection-Dict Keys
Table C-2 System-defined Selection Attributes

—Xvii —

Tables — Continued

Table C-3 Request-dict Entries
Table C-4 High-Level Selection-Related Events
Table C-5 Input Focus

Table D-1 Implementation Limits

.................

Table D-2 News Versions of Various POSTSCRIPT Language Operators

— Xviii —

335
335
341

Figures

Figure 2-1 A simple window 9
Figure 2-2 Two overlapping windows ... 11
Figure 2-3 Example hierarchy 11
Figure 2-4 FirstCanvas mapped and filled with gray 19
Figure 2-5 FirstCanvas with star ... 20
Figure 2-6 FirstCanvas with text string 20

Figure 2-7 FirstCanvas moved to 25, 25 in framebuffer canvas’

coordinate system 21

Figure 2-8 FirstCanvas and its child, SecondCanvas 24

Figure 2-9 Newly painted FirstCanvas beneath opaque SecondCanvas 24

Figure 2-10 FirstCanvas beneath transparent SecondCanvas 25
Figure 2-11 Newly painted FirstCanvas beneath transparent

SecondCanvas ... 25

Figure 2-12 FirstCanvas beneath opaque SecondCanvas 26

Figure 2-13 FirstCanvas beneath unmapped opaque SecondCanvas 26
Figure 2-14 Image of painted, transparent SecondCanvas on

FirstCanvas ... 27

Figure 2-15 Transparent FirstCanvas beneath opaque Second 28

Figure 2-16 Damage on unretained GrayCanvas after mo
BlackCanvas

Figure 2-17 No damage on retained GrayCanvas afte
BlackCanvas

Figure 2-18 Unretained GrayCanvas damaged by unmappin

BlackCanvas 32

Figure 2-19 GrayCanvas not damaged by unmapping SaveBehind
BIackCanvasrseossmssseseessssssss s 33

— Xix —

Figures — Continued

Figure 2-20 Results of filling FirstCanvas after setting a canvas
clipping path

Figure 2-21 Results of eoclipcanvas

Figure 2-22 BlackCanvas obscuring WhiteCanvas

Figure 2-23 WhiteCanvas made to obscure BlackCanvas
Figure 2-24 Canvas hierarchy

Figure 2-25 WhiteCanvas is now the child of SecondParent
Figure 2-26 New canvas hierarchy

Figure 2-27 A canvas and its overlay

Figure 2-28 A canvas and its erased overlay

Figure 2-29 StarCanvas

Figure 2-30 FileCanvas imaged onto SecondCanvas

Figure 2-31 StarCanvas imaged onto SecondCanvas

Figure 2-32 Image built with buildimage and imaged with
imagemaskcanvas

Figure 2-33 Image with O bits painted black

Figure 2-34 The framebuffer’s default cursor

Figure 2-35 MyCanvas with a crosshair cursor ..

Figure 4-1 The five steps in an event’s distribution ..

Figure 4-2 Circles drawn in the canvas

Figure 4-3 Example canvas hierarchy

Figure 4-4 Example canvas hierarchy as it might appear on the screen

Figure 4-5 Example canvas hierarchy

Figure 4-6 The first pre-child interest matched
Figure 4-7 The second pre-child interest matched

Figure 4-8 The third pre-child interest matched

Figure 4-9 The first post-child interest matched

Figure 4-10 The second post-child interest matched

Figure 4-11 An example of drawing in the canvas

Figure 4-12 Mouse cursor over CanvasC

Figure 4-13 Moving the mouse from CanvasC to CanvasD

Figure 4-14 Moving the mouse from CanvasC to the framebuffer
canvas

- XX —

34
35
38
38
39
40
40
43
44
46
48
49

51
51
52
54

81
89
98

101
106
106
106
107
107
113
117
117

118

Figures — Continued

Figure 5-1 A simple class tree ... 133
Figure 5-2 A class tree with multiple inheritance 134
Figure 5-3 A single inheritance example 136
Figure 5-4 Dictionary stack before and during a send to MyScrollBar 142
Figure 5-5 Dictionary stack before and during anested send ... 143
Figure 5-6 Class tree for self and super example 146
Figure 5-7 Basic class hierarchy for the multiple inheritance examples ... 166
Figure 5-8 Class hierarchy with a utility class ... 168
Figure 5-9 Class tree for LabeledDial example 170
Figure 5-10 A breadth-first order for LabeledDial’s inheritance array 171
Figure 5-11 A depth-first order for LabeledDial’s inheritance array ... 172

Figure 6-1 The lunar 1ander Sameoveooeooessmssesssse s ssssssss s 199

— XXi—

Summary of Contents

Preface

This manual provides a guide to programming in the News® language. This
language is supported as part of the X11/News server, which itself forms a part
of the OpenWindows environment. !

The News interpreted programming language is based on the POSTSCRIPT®
language.? Developed at Adobe Systems, the POSTSCRIPT language is a general
programming language used primarily for specifying the visual appearance of
printed documents. The NeWs language uses POSTSCRIPT language operators to
display text and images on a graphics console. The NeWs language also provides
operators and types that are extensions to the POSTSCRIPT language; many of
these extensions handle the interactive aspects of window management that the
POSTSCRIPT language does not consider. (

This manual describes all the basic concepts of NeWs programming. The manual
is a combination guide and reference to the NeWs language; the conceptual
chapters are placed toward the front of the manual, and the reference chapters are
placed toward the end. The conceptual chapters include code examples that
demonstrate the use of NeWs operator and type extensions. The reference
chapters provide descriptions of all the NeWS operators, types, and utilities. This
manual assumes that the reader is familiar with the POSTSCRIPT language.

Chapter 1, “Introduction,” provides an overview of NeWS programming.

Chapter 2, “Canvases,” provides an introduction to NeWs canvases and canvas
operations.

Chapter 3, “Processes,” explains NeWS processes, process op
server’s scheduling policy.

Chapter 4, “Events,” discusses NeWS events, event operat
event distribution mechanism.

Chapter 5, “Classes,” describes the NeWs class mechan
methods of the base class Object.

Chapter 6, “C Client Interface,” describes the interface (knowr
provided for C clients.

1 X Window System is a product of the Massachusetts Institute of Technology. (
2 PoSTSCRIPT is a registered trademark of Adobe Systems Inc. 7

— XXii —

Preface — Continued

For More Information

Chapter 7, “Debugging,” describes the debugging facility provided with the
server.

Chapter 8, “Memory Management,” explains the server’s reference counting and
garbage collection facility and provides hints for debugging memory manage-
ment problems.

Chapter 9, “NeWs Type Extensions,” provides a reference to all the NeWs types,
including descriptions of all the dictionary keys.

Chapter 10, “NeWs Operator Extentions,” provides an alphabetical reference to
all the NeWs operators.

Chapter 11, “Extensibility through NewS Procedure Files,” provides an alphabeti-
cal reference to all the NeWs utilities, as well as a description of the POSTSCRIPT
language files that the server loads when it is initialized.

Appendix A, “News Operators,” contains an alphabetical list of all NeWS opera-
tors, including the syntax and a one-line description for each operator.

Appendix B, “Byte Stream Format,” provides a reference to the server’s byte
stream format, including a description of all the server’s token types.

Appendix C, “The Extended Input System,” contains information about the Lite
user interface; this user interface is still supported by the server, but is no longer
being enhanced.

Appendix D, “Omissions and Implementation Limits,” lists the operators that are
provided by the POSTSCRIPT language but are not provided by the News
language, and it also summarizes the server’s implementation limits.

For information about the POSTSCRIPT language, see:

o POSTSCRIPT Language Tutorial and Cookbook>

o POSTSCRIPT Language Reference Manual*

For information about OpenWindows, see:

o OpenWindows User’s Guide

o DeskSet Environment Reference Guide

o OpenWindows Installation and Startup Guide

For information about using the X11/NeWs server, see:

O XI1/NewS Server Guide

For a summary of the changes to OpenWindows since the last release, see:

o OpenWindows Release Notes

3 Adobe Systems, PosTScrIPT Language Tutorial and Cookbook, Addison-Wesley, July, 1985.
4 Adobe Systems, PosTSCrIPT Language Reference Manual, Addison-Wesley, July, 1985.

— Xxiii -

Preface — Continued

Notational Conventions This manual uses the following notational conventions: ('
o bold listing font

This font indicates text or code typed at the keyboard during an interactive
session with the operating system shell or with psh.

o 1listing font

This font indicates information displayed by the computer during an interac-
tive session. It it also used in code examples and textual passages to indicate
use of the C programming language, and it is used for filenames, command
names, and error names.

o sans serif font

This font is used in code examples to indicate use of the POSTSCRIPT
language or NeWS extensions.

o bold font

This font is used in textual passages to indicate names of NeWs operators,
NeWs types, and system-defined dictionaries.

o italic font

This font is used in code examples and textual passages to indicate user-

specified parameters for insertion into programs or command lines. It is also

used to introduce new terms or phrases the first time they are used in the (
text.

o gray boxes

o plain boxes

Examples of POSTSCRIPT language code or C language code are shown in
plain boxes.

- XXiv —

1.1. NewS Programming:
An Overview

The POSTSCRIPT Language

News Types

Introduction

The X11/NeWs server can be used either by a single computer or by multiple com-
puters linked across a communication network; thus, it is a distributed window
system. When the X11/NeWs server is used with multiple computers, an applica-
tion run by one machine can use the windows displayed by another.

The NeWs interpreted programming language is based on the POSTSCRIPT
language. Developed at Adobe Systems, the POSTSCRIPT language is used pri-
marily for specifying the visual appearance of printed documents. A
POSTSCRIPT program consists of operations that are sent to a POSTSCRIPT
language interpreter residing within a printer; when interpreted, the operations
define text, graphics, and page coordinates.

The News language uses POSTSCRIPT language operators to display text and
images on a graphics console. Programs are interpreted and executed by the
X11/News server, which is resident on the machine to which the graphics console
is attached. The News language also provides operators and types that are exten-
sions to the POSTSCRIPT language; many of these extensions relate to the interac-
tive and multi-tasking aspects of a window system, which are not handled by the
POSTSCRIPT language.

This section provides an overview of NeWS programming. Detailed information
is provided in later chapters.

The POSTSCRIPT language is a high level language designed to describe page
appearance to a printer. It possesses a wide range of graphics operators.
Nevertheless, only about a third of the language is devoted to graphics; the
remainder provides a general purpose programming capability.

The POSTSCRIPT language is extensible, allowing programmers to use the sup-
plied operators to define their own procedures. This extensibility facilitates the
creation of modular code, encourages the design of well-structured and
comprehensible programs, and helps keep programs small.

The News language implements all the standard types provided by the
POSTSCRIPT language. In addition, the NeWSs language provides special types as
extensions to the POSTSCRIPT language.

Some of the NeWS type extensions can be accessed as if they were POSTSCRIPT
language dictionaries. These objects are known as magic dictionary objects.

Ssun 1 Revision A of 11 June 1990

microsystems

2 News Programmer’s Guide

Magic dictionaries have keys with predefined names. The programmer can (
change the value associated with many of the keys; other keys are read-only.
The programmer can add new keys to magic dictionaries.

Other NeWS type extensions are opaque and cannot be accessed as dictionaries. A
full description of all NeWs type extensions is provided in Chapter 9, “News Type
Extensions.”

News Operators The NeWs language implements most of the standard operators provided by the
POSTSCRIPT language; many of the omitted operators relate to page-description
requirements, which are not relevant for a window system. Conversely, the NeWs
language provides many operators as extensions to the POSTSCRIPT language;
many of these operator extensions relate to interactivity requirements, and many
of them exist to create and manipulate the NeWS type extensions.

A full description of all NeWs operator extensions is provided in Chapter 10,
“News Operator Extensions.”

The X11/NeWs Server The X11/NeWS server is a process that can exist on any graphics machine within a
network, its function being to interpret and execute programs written in the News
language and to display the resulting graphics on the screen. The X11/News
server is neither a toolkit nor a user interface; it provides neither standards nor
defaults for the creation and appearance of windows. The X11/NeWs server sim-
ply interprets and executes NeWs programs. User interfaces can thus be designed
entirely by the programmer. (

News Processes The X11/NeWs server contains multiple lightweight processes, some of which
communicate with client processes. A lightweight process is not a UNIx® pro-
cess; it is a process that lives in the server’s address space and is scheduled to be
run by the server.! Each lightweight process can perform operations on the
display and can receive messages from the keyboard, the mouse, or another light-
weight process. A lightweight process can share data with other lightweight
processes. Many lightweight processes can be created with relatively little over-
head. Lightweight processes are also known as NeWs processes.

A full description of NeWs processes is provided in Chapter 3, “Processes.”

Client-Server Communication = The X11/NeWs server communicates with client programs that run either locally
or remotely. Clients can send NeWs code to the server. The server runs this code
on behalf of the clients.

Typically, a client program contains two main sections. One section, which can
be written in C, FORTRAN, or any other language, is used to perform the
application’s basic computations; this section is executed in the client process.
The other section, which must be written in the NeWs language, is used to provide
corresponding windows or graphics; this section is interpreted by the server pro-
cess. The News section of the client program can be detatched, sent to the server,
and executed remotely with function calls. Sending code to the server in this

1 UNIX® is a registered trademark of AT&T.

&229 S u n Revision A of 11 June 1990

microsystems

Chapter 1 — Introduction 3

C Client Interface

Canvases

way provides a significant speed advantage when the client and server reside on
different machines.

The ability to download News programs to the server gives the programmer great
freedom in designing the communication protocol and the split in functionality
between server and client. The server does not directly notify the client program
of events such as mouse manipulation; instead, the server notifies interested
lightweight processes, and the client’s NeWS code may either handle the informa-
tion itself or write the information across the connection to the client program.
Thus, the way in which the client and server communicate is specified by the
NeWs language contents of the client application.

Most programmers are likely to use C as the language of the client application.
Therefore, the server provides a special interface facility that supports C client
communication. The C client interface, named CPS, converts the client’s NeWs
code into functions callable by the client’s C code. The C client interface is dis-
cussed in Chapter 6, “C Client Interface.”

Programmers can also create their own interface facility for use with other
languages. The server’s byte stream format is discussed in Appendix B, “Byte
Stream Format.”

A NeWS canvas is a region of the screen in which the client application can
display text and graphics. Canvases provide the basic drawing surfaces in NeWs
and are thus the raw material from which windows are created; each window is
usually composed of more than one canvas. Canvases need not be rectangular
since their boundaries are defined by POSTSCRIPT language paths. When visible
on the screen, canvases can overlap. When this occurs, the hidden portion of a
canvas can be stored offscreen and redisplayed when the canvas is re-exposed.

A canvas is implemented as a NeWS type extension that can be accessed as a dic-
tionary. Many canvas characteristics can be set by changing the values of the
keys in the canvas dictionary. For example, a canvas can be opaque or tran-
sparent, mapped or unmapped. An opaque canvas visually hides all canvases
underneath it; a transparent canvas does not. When drawing operations are per-
formed on a mapped canvas, the image is visible on the screen (unless it is over-
lapped by another canvas); drawing operations can be performed on an
unmapped canvas, but the image is not visible on the screen.

Canvases exist in a hierarchy. The root of the server’s canvas hierarchy is known
as the global root canvas. (See “Multiple Screen Support,” below, for the impli-
cations of the global root canvas.) Each canvas in the hierarchy can have any
number of children; the display of each child canvas is clipped to the edges of its
parent. Canvases overlap according to their positions in the hierarchy. When
visible on the screen, opaque children obscure their parent. A canvas’ children
exist in an ordered list that determines their overlapping relationships. For a can-
vas to be visible on the screen, the canvas and all its ancestors must be mapped.

A canvas can be repositioned in the hierarchy, causing adjustments to the display
of any overlapping canvases on the screen. A canvas can also be repositioned
horizontally and vertically on the screen, and it can be reshaped and resized.

S u n Revision A of 11 June 1990

microsystems

4 News Programmer’s Guide

Imaging Model

Events

Memory Management

N,

L

Each NeWs process has a current canvas, which is the canvas that is manipulated
by the drawing operations performed by that process.

The NeWs language provides operator extensions for creating and manipulating
canvases. A full account of canvases is provided in Chapter 2, “Canvases.” The
canvas dictionary keys are described in Chapter 9, “News Type Extensions.”

The NeWs imaging model, which is essentially that of the POSTSCRIPT language,
can be described as a stencil/paint model. A stencil is an outline specified by an
infinitely thin boundary; the boundary can be composed of straight lines, curves,
or both. Paint is a color, texture, or image that is applied to the drawing surface;
the paint appears on the drawing surface within the boundary of the stencil.

Note that the stencil/paint model differs from the pixel-based imaging model
used by most window systems. The pixel-based model requires that rectangular
source and destination areas of pixels be combined using logical operations such
as AND, OR, NOT, and XOR. The stencil/paint model allows images of any
shape or size, rectangular or non-rectangular, to be specified; it thus provides a
more natural and comprehensible way to define images.

A NeWs event is an object that represents a message between NeWs processes. An
event is implemented as a NeWs type extension that can be accessed as a diction-
ary. Events can transmit any kind of information and thus serve as a general
interprocess communication mechanism. Some events report user manipulation
of input devices and are therefore known as input events.

An event can be generated by the server or by any NeWs process. The server
automatically generates input events when the user manipulates the keyboard or
mouse. The server also generates events to report when a canvas is damaged,
when an object becomes obsolete (see Memory Management, below), when a
process dies while it is still referenced, and when the mouse pointer leaves one
canvas and enters another.

The NeWs language provides operators that allow any NeWS process to create an
event and send it into the server’s event distribution mechanism. System-
generated events are automatically sent into the distribution mechanism as soon
as they are generated. After an event enters the distribution mechanism, the
server gives a copy of the event to NeWs processes that are interested in the event.
The NeWs language provides an operator that allows processes to describe the
types of events that interest them; each such description of events that interest a
process is known as an interest.

A full account of events is provided in Chapter 4, “Events.” The event dictionary
keys are described in Chapter 9, “NewsS Type Extensions.”

The X11/NeWs server provides an automatic garbage collection facility that
removes objects from virtual memory when the objects are no longer needed.
Objects survive as long as they are referenced. If an object’s last reference is
removed, the server destroys it to reclaim the memory that it occupied.

The NeWs language provides the notion of soft references for programs that want
to track objects without affecting the lifespan of the objects. A window manager

sun Revision A of 11 June 1990

microsystems

Chapter 1 — Introduction 5

Color Support

Font Support

Multiple Screen Support

is an example of this type of program. A window manager has references to the
canvases that it tracks, but the window manager does not want its references to
prevent canvases from being garbage collected. In this type of situation, client
programs should use soft references.

If all the references to an object are soft, the object is considered to be obsolete.
When an object becomes obsolete, the server sends notice, in the form of an
event, to all processes that have expressed interest in obsolescence events for that
object. The processes should then remove their references to the object so that
the server can destroy it.

Note that the server does not count references for all objects. Simple objects
such as booleans, numbers, and names never have more than one reference. The
server only counts references to composite objects such as arrays, dictionaries,
canvases, and events.

The NeWs language provides operators that aid in memory management. A full
account of the memory management facilities is provided in Chapter 8, “Memory
Management.”

The News language includes types and operators that provide color support for
appropriate displays. A NeWs color object consists of either red/green/blue or
hue/saturation/brightness components. The NeWs language also provides color-
map objects, which function as color lookup tables, and colormapsegment
objects, which are groups of entries within a colormap. Facilities are provided
for using bitmasks and planemasks, which permit colors to be determined accord-
ing to arithmetic operations.

Full information on all color-related types is provided in Chapter 9, “NeWs Type
Extensions.”

The server allows bitmap fonts to be defined and placed in the News font library.
Cursor fonts and icon fonts can be created, and existing text fonts can be con-
verted into NeWs format. The server provides the commands convertfont,
bldfamily, and mkiconfont, which are used in font definition. See the
manual pages in the X11/News Server Guide for further information.

For a description of the News font dictionary structure, see Chapter 9, “NeWs
Type Extensions.”

You can run the server with more than one display screen attached to your
machine. Each display screen has an associated canvas, known as a framebuffer
canvas or device canvas, that covers the entire background of the screen. Each
framebuffer canvas is a child of the server’s global root canvas. The global root
canvas and the framebuffer canvases are created when the server is initialized.

For information about programming with multiple screens, see Chapter 2, “Can-
vases.” For information about installing multiple screens, see the X11/News Server
Guide.

Ssun Revision A of 11 June 1990

microsystems

6 News Programmer’s Guide

1.2. POSTSCRIPT Language

Files Used with the
Server

Classes

Debugging

Utilities

@

In addition to the operator and type extensions that are part of the server itself,
the server also provides various POSTSCRIPT language files that support the News
programming environment; most of these POSTSCRIPT language files are loaded
automatically when the server is initialized. The user can examine the supplied
files and modify the procedures that they contain.

This section describes some of the more important POSTSCRIPT language files.
Full information on these files is provided in Chapter 11, “Extensibility through
NeWws Procedure Files.”

The POSTSCRIPT language files loaded by the server provide support for object-
oriented programming; client applications can create objects known as classes
and instances. A class is a template for a set of similar instance objects. A class
is essentially a blueprint from which any number of instances can be created.
Each instance inherits the characteristics of its class but can override some of
these characteristics. Classes and instances are represented as POSTSCRIPT
language dictionaries that contain variables and procedures.

NeWs classes belong to a class hierarchy. The root of the hierarchy is class
Object, which is implemented by the server. Other classes in the hierarchy can
be provided by the client or by a toolkit.

Any class in this system can have subclasses, each of which inherits the charac-
teristics of its superclass. A subclass can add new characteristics and can over-
ride its inherited characteristics. A subclass can also inherit characteristics from
more than one branch of the class tree, a feature known as multiple inheritance.

The class system is especially useful for defining user interfaces. For example,
class Canvas might be a subclass of class Object, and class Canvas might have
subclasses such as Menu, Scrollbar, Frame, and Window.

Information on the class system is provided in Chapter 5, “Classes.”

The server provides a debugging facility that allows the user to set breakpoints
and print to debugging output windows. The POSTSCRIPT language file contain-
ing the debugger code is not loaded when the server is initialized; a command
must be given to load this file.

Full information on using the debugger is provided in Chapter 7, “Debugging.”

The server provides many utilities that can be used in your NeWs code. These
utilities are defined in POSTSCRIPT language files that are loaded when the server
is initialized. For definitions of these utilities, see Chapter 11, “Extensibility
through News Procedure Files.”

u n Revision A of 11 June 1990

microsystems

(

The canvastype Extension

Canvases

A NeWs canvas is a region of the screen in which the client application can
display text and graphics. Canvases are the basic drawing surfaces used to create
objects such as windows and menus. Canvas boundaries are defined by
POSTSCRIPT language paths and thus can be any shape; they need not be rec-
tangular or even contiguous.

When visible on the screen, canvases can overlap. When this occurs, the hidden
portion of a canvas can be stored offscreen and redisplayed when it is re-exposed.
A canvas can be repositioned in the stack of overlapping canvases on the screen.
A canvas can also be moved, reshaped, and resized.

Windows are usually composed of more than one canvas. For example, a win-
dow might use a separate canvas for each of the following items: a frame,
scrollbars, a title bar, command buttons, and the drawing surface itself.

Each NeWs process can have a current canvas, which is the canvas that is mani-
pulated by the drawing operations performed by that process. Any of the stan-
dard POSTSCRIPT language operators can be used to display text and graphics in
NeWs canvases. In addition, the NeWs language provides operator extensions and
utilities for manipulating canvases.

This chapter describes NeWS canvases and basic canvas operations.
Each canvas is an object of type canvastype, which is a NeWs extension to the
POSTSCRIPT language. Each canvastype object can be accessed as a

POSTSCRIPT language dictionary. A canvas dictionary includes keys that
describe the following properties (the keys are listed in parentheses):

o Ancestor and sibling relationships between canvases (TopCanvas, Bottom-
Canvas, CanvasAbove, CanvasBelow, TopChild, Parent)

o The appearance of canvases on the screen (Transparent, Mapped)
o The handling of canvas storage (Retained, SaveBehind)

o How a canvas affects the distribution of events (EventsConsumed,
Interests)

o The color properties of the canvas (Color, Colormap, Visual, VisualList)

o The cursor associated with the canvas (Cursor)

sun 7 Revision A of 11 June 1990

microsystems

8 News Programmer’s Guide

Canvas Operators

2.1. Basic Terms and
Concepts

o Properties for keeping a canvas in shared memory (SharedFile, RowBytes) (

o Xll1-related properties (OverrideRedirect, Border Width, VisibilityIn-
terest, SubstructureRedirect, XID)

o The grabbed state of a canvas (Grabbed, GrabToken)

Many of these keys are discussed in this chapter; a full description of each key is
provided in Chapter 9, “News Type Extensions.” See Chapter 4, “Events,” for a
description of how the EventsConsumed and Interests keys affect the distribu-
tion of events.

The News language includes a variety of operator extensions to be used on can-
vases. The canvas operators provide the following functionality (the operator
names are listed in parentheses):

o Creating canvas objects and overlays (buildimage, createdevice, createo-
verlay, newcanvas)

o Changing sibling relationships between canvases (canvastobottom, canvas-
totop, insertcanvasabove, insertcanvasbelow)

o Setting and getting a canvas’ shape (eoreshapecanvas, reshapecanvas,
getcanvasshape)

o Setting and getting canvas locations (movecanvas, getcanvaslocation)
o Setting and getting the current canvas (setcanvas, currentcanvas) (

o Setting and getting a canvas’ clipping path (clipcanvas, eoclipcanvas, clip-
canvaspath)

o Writing a canvas to a file and reading the file back into a canvas (eowri-
tecanvas, eowritescreen, writecanvas, writescreen, readcanvas)

o Imaging a canvas onto the current canvas (imagecanvas, imagemaskcan-
vas)

o Returning the global root canvas (globalroot)

o Returning the canvases under the current path or a specified point (can-
vasesunderpath, canvasesunderpoint)

Most of the canvas operators are described in this chapter. A list of all the NeWs
operators is provided for quick reference in Appendix A, “News Operators.” A
syntactic analysis and description of all NeWs operators is provided in Chapter
10, “News Operator Extensions.”

This section explains basic terms and concepts that you need to understand
before you read the rest of this chapter.

(

J u . Revision A of 11 June 1990

Chapter 2 — Canvases 9

Using Multiple Canvases to An application’s window usually consists of more than one canvas. The follow-
Create a Window ing example shows a simple window that could be made of four canvases:

Figure 2-1 A simple window

window button

_r‘@/ Eschet’s Fish s frame
e : '
S client canvas

 Complexity 0 resize corner

The four canvases in this example are listed below:

o The client canvas
A window’s drawing surface is known as the client canvas.

o The frame canvas
A window commonly has a frame canvas that manages the user interface for
the window. The client canvas sits on top of the frame canvas.

o The window button canvas
A window’s frame often has command buttons that sit on top of it. The
command buttons implement user interaction. In this example, a window
button is provided; the user can click the mouse over the button to close the
application’s window to an icon.

o The resize comers canvas
A window’s frame often provides resize corners. The user can drag the
mouse inward or outward from one of these corners to resize the window. In
this example, the four resize corners make up a single canvas that sits on top
of the frame canvas; each corner is one part of this noncontiguous canvas.
(You can make a noncontiguous canvas by assigning any number of closed
paths, four in this example, to be the canvas’ shape.)

6229 sSsun Revision A of 11 June 1990

microsystems

10 News Programmer’s Guide

The Canvas Hierarchy

L 4

The canvases that compose an application’s window are part of a canvas hierar- (
chy, as is explained in the next section.

The server maintains a canvas hierarchy. The root of the canvas hierarchy is the
global root canvas. Each canvas in the hierarchy can have any number of chil-
dren. The global root canvas has one child canvas, known as the framebuffer
canvas, for each display screen (framebuffer) that is attached to the machine on
which the server is running. A screen’s framebuffer canvas, sometimes called
the screen’s root canvas or device canvas, covers the entire background of the
screen. The global root canvas and the framebuffer canvases are created when
the server is initialized.

Clients can create children of the framebuffer canvases, and each such canvas can
have its own children and grandchildren. The canvases form a hierarchy much
like a family tree, except that each child canvas has just one parent.

Most of the time, only one display screen is used. Therefore, the rest of this
chapter discusses the case in which only one framebuffer canvas exists. For
more information about programming with multiple screens, see Section 2.10,
“Using Multiple Screens.” For more information about installing multiple
screens, see the X11/News Server Guide.

Canvases overlap according to their positions in the canvas hierarchy. Each child
canvas sits on top of its parent. The display of each child canvas is clipped to the
edges of its parent. If part or all of a child canvas is moved off its parent canvas,
the part of the child canvas that extends beyond its parent’s edges is not visible
on the screen.

The following figure illustrates two overlapping windows on the screen, and it
shows one way these two windows could be subdivided into canvases:

Ssun Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 11

Figure 2-2 Two overlapping windows

CanvaskE

CanvasF

Escher’s Fish Canvas2

"/ - l“;,:, A r,v

'\‘!‘“

CanvasD

CanvasB

Canvas1

CanvasA

Complexity

framebuffer

CanvasC

The example hierarchy associated with these overlapping canvases is shown in
the following figure:

Figure 2-3 Example hierarchy

global root |

framebuffer

top child Canvas2| bottom child

|CanvasA] |CanvasB| |CanvasC| |CanvasD| |CanvasE] |CanvasF|

top child bottom child top child bottom child

In this example, Canvas1 and Canvasz2 are children of the framebuffer canvas.
Canvas1 and Canvas2 each have three children.

é%% un Revision A of 11 June 1990

microsystems

12 News Programmer’s Guide

Opaque and Transparent
Canvases

L 4

When a parent canvas has more than one child, its children are known as siblings
of each other. Sibling canvases exist in an ordered list that determines their over-
lapping relationships. When two siblings overlap, the sibling that is closer to the
head of its parent’s sibling list overlaps the sibling that is closer to the tail of the
sibling list. The sibling that is at the head of the list is known as its parent’s top
child, and the sibling that is at the tail of the list is known as the bottom child.
The top child is on top of its parent’s stack of sibling canvases on the screen, and
the bottom child is on the bottom of the stack. The terms front and back are
sometimes used for top and bottom.

In this example, Canvas1 and Canvas2 are siblings. Canvasf is the top child
of the framebuffer canvas; Canvas2 is the bottom child of the framebuffer can-
vas. Thus, Canvas1 obscures Canvas2 where they overlap.

The children of Canvas1 are ordered in their own sibling list, as are the children
of Canvas2. However, these siblings do not overlap. If the children of Can-
vas1 overlapped each other, CanvasA would obscure CanvasB, and CanvasB
would obscure CanvasC. If the children of Canvas2 overlapped each other,
CanvasD would obscure CanvasE, and CanvasE would obscure CanvasF.
(The above illustration of the canvas hierarchy orders siblings left to right from
the head of the list to the tail of the list.)

By default, a newly created child canvas becomes the top child of its parent. The
canvas hierarchy can be changed with various operators and with some of the
canvas dictionary keys. A canvas can be inserted into a different position in its
sibling list, or a canvas can be given a different parent.

A canvas’ descendants (the canvas’ children, grandchildren, etc.) are located on
the hierarchy branches that emanate leafward from the canvas. A canvas’ ances-
tors (the canvas’ parent, grandparent, etc.) are located on the hierarchy branch
that emanates rootward from the canvas. In the previous example, the descen-
dants of Canvas1 are CanvasA, CanvasB, and CanvasC. The ancestors of
CanvasA are Canvas1, the framebuffer canvas, and the global root canvas. If
CanvasA had a child, that child’s ancestors would be CanvasA, Canvasf, the
framebuffer canvas, and the global root canvas.

A canvas is either opaque or transparent, depending on the boolean value of its
Transparent key. An opaque canvas visually hides all canvases undemeath it; a
transparent canvas does not. If drawing operations are performed on a tran-
sparent canvas, the drawn images appear on the canvas(es) immediately beneath
the transparent canvas (that is, on its parent or on siblings that are immediately
beneath it). Although a transparent canvas does not have its own drawing sur-
face, it can define screen areas that are sensitive to input just as any opaque can-
vas can. See Chapter 4, “Events,” for an explanation of events, interests, and
input handling.

By default, children of the framebuffer canvas are opaque and all other canvases
in the hierarchy are transparent. You can change a canvas’ opaque/transparent
status by changing the value of its Transparent key.

S u n Revision A of 11 June 1990

microsystems

(

()

Chapter 2 — Canvases 13

Visibility and Mapping

Canvas Damage

Retained and Unretained
Canvases

A canvas is visible if an image can be seen on the screen when drawing opera-
tions are performed on the canvas. This definition applies to transparent can-
vases as well as opaque canvases; if a transparent canvas is visible, drawing
operations on the transparent canvas result in an image on the canvas(es) beneath
it.

A canvas is either mapped or unmapped, depending on the boolean value of its
Mapped key. A canvas must be mapped before its contents can be visible on the
screen. In fact, all of the following conditions must be fulfilled before a canvas is
visible:

o The canvas and all of its ancestors must be mapped (the value of their
Mapped keys must be true).

o The canvas must not be clipped away by its parent. The portions of a canvas
that fall outside the boundary of its parent are not visible.

o The canvas must not be overlapped by an opaque canvas. The portions of a
canvas that are overlapped by opaque canvases are not visible.

If no drawing operations have been performed on a canvas that meets the above
three criteria, the empty canvas might not be noticed on the screen. Such a can-
vas is still considered to be visible because drawing operations can be performed
at any time to render images to the screen and because the canvas visibly affects
the display of other canvases beneath it.

The server considers a canvas to be damaged if all or part of its image is
incorrect and needs to be redrawn. For example, a canvas may be damaged when
a canvas by which it was previously obscured is moved away; the damaged
region is the newly exposed area.

The first time a canvas is damaged since its last repair, the server informs
interested processes of the damage by sending them a damage event. Client
applications should be prepared to repair canvas damage on any of their can-
vases. See Section 2.4, “Canvas Damage: When to Expect It, How to Fix It,
How to Avoid It,” for a complete description of canvas damage. See Chapter 4,
“Events,” for a description of how to express interest in events and for an expla-
nation and example of damage events.

A canvas is either retained or unretained, depending on the boolean value of its

Retained key. Any portion of a retained canvas that is not visible (because it is

obscured, clipped, or unmapped) is saved offscreen. When an invisible area of a
retained canvas is exposed, the offscreen copy is simply moved onto the screen,

eliminating the need to redraw the newly exposed area. Thus, retained canvases
can be used to reduce canvas damage.

Retained canvases usually perform much better than unretained canvases with
window management operations such as moving and mapping canvases. How-
ever, retained canvases can be extremely costly in terms of memory, especially
on color displays. Also, a slight performance penalty is associated with painting
on a retained canvas.

S ll n Revision A of 11 June 1990

microsystems

14 News Programmer’s Guide

{
Setting a canvas to be retained is just a hint to the server; the server may choose (
to ignore the hint. Clients should not depend on the server saving a copy of a
retained canvas’ invisible areas.

A transparent canvas does not have its own retained image. Instead, a tran-
sparent canvas shares the retained image of its parent. Changing the retained
status of a transparent canvas has no effect on either the transparent canvas or its

parent.
Rooted and Unrooted A rooted canvas is part of the canvas hierarchy; an unrooted canvas is not. An
Canvases unrooted canvas can never be mapped, but its image can be painted onto the

current canvas. See Section 2.8, “Canvases, Files, and Imaging Procedures,” for
more information about unrooted canvases and imaging.

Coordinate Systems In the standard use of the POSTSCRIPT language, a user coordinate system is
associated with the page and a device coordinate system is associated with the
printer. A current transformation matrix, or CTM, contains the current transfor-
mation from user coordinates to device coordinates. The CTM can be changed at’
any time with operators such as scale, rotate, or translate.

In the NeWS language, each canvas represents a separate “user space” with its

own coordinate system, and the device space corresponds to the screen rather

than to a printer. A current transformation matrix is still used to store the current
transformation between the user and device coordinate systems, but in News, -
each process has its own CTM as a part of its graphics state. A process’ current (
coordinate system is given by its CTM.

Each News canvas has a default coordinate system determined by its default
transformation matrix. A canvas’ default transformation matrix specifies the ini-
tial transformation from the canvas’ coordinate system to the screen’s coordinate
system. After a new, empty canvas is created with newcanvas, the canvas’ shape
and default coordinate system should be set with reshapecanvas. The
reshapecanvas operator sets the canvas’ shape to be the same as the current path
and sets the canvas’ default coordinate system to be the same as the current coor-
dinate system.

When a canvas is made the current canvas with the setcanvas operator, the CTM
is set to that canvas’ default transformation matrix. The CTM can then be
changed with standard POSTSCRIPT language operators. To change an existing
canvas’ default transformation matrix and shape, simply set the CTM and current
path to the desired values and execute reshapecanvas.

When the first NeWs process is created, its current coordinate system is initialized
to the default coordinate system of the framebuffer canvas. A child process
inherits the current coordinate system of its parent.

The default coordinate system of the framebuffer canvas is initialized so that the
origin is in the screen’s lower-left comer, the positive y axis extends vertically
upward, and the positive x axis extends horizontally to the right. In the current
implementation, the framebuffer canvas’ default coordinate system is initialized
so that the length of a unit in the y coordinate direction corresponds to the verti-
cal pixel dimension, and the length of a unit in the x coordinate direction

S
é%{; sun Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 15

2.2. Basic Canvas
Operations

Creating Canvases

NOTE

corresponds to the horizontal pixel dimension; in a future implementation, the
framebuffer canvas’ default coordinate system might be initialized so that a unit
in either coordinate direction corresponds to exactly 1/72 of an inch, consistent
with the standard POSTSCRIPT language.

The default coordinate system of the screen (the device coordinate system) typi-
cally has its origin in the upper-left corner, the positive y axis extending verti-
cally downward, the positive x axis extending horizontally to the right, and units
of one pixel in both coordinate directions. Because the default coordinate system
of the screen typically has its origin in the upper-left corner, whereas the default
coordinate system of the framebuffer canvas has its origin in the lower-left
corner, the initial CTM simply provides the appropriate transformation between
these two coordinate systems. You can use the POSTSCRIPT language operator
currentmatrix to inspect the CTM.

These coordinate system definitions and canvas operators are illustrated in this
chapter’s examples.

This section describes basic canvas operations such as creating, mapping, shap-
ing, and moving canvases. An example is given for each operation, but the
examples in this section are cumulative; be sure to try these examples in the
given order. You can start an interactive psh session and type each short exam-
ple sequentially. You start an interactive psh session by typing the word psh
followed by a and then typing the word executive followed by a

(see the psh manual page in the X11/News Server Guide for more infor-
mation).

When the server is initialized, the createdevice operator is called to create a can-
vas that covers the entire background of the initial display screen. The initial
display screen is given by the value of the FRAMEBUFFER environment variable,
which defaults to /dev/£b. You can create background canvases for additional
screens with the createdevicecanvas utility (see Section 2.10, “Using Multiple
Screens”). A screen’s background canvas is known as its device canvas or
framebuffer canvas. The framebuffer canvas associated with the screen that
currently contains the mouse pointer is known as the current framebuffer canvas.
The framebuffer variable in systemdict can be used to refer to the current
framebuffer canvas.

When a client program makes a connection to the server, a copy of the frame-
buffer value from systemdict is placed in that News process’ userdict. Any can-
vas that you wish to create immediately on top of this background must have that
framebuffer canvas specified as its parent.

The following operator creates a canvas with a specified parent:

pcanvas newcanvas ncanvas

This operator creates a new canvas, ncanvas, whose parent is pcanvas. If a
framebuffer canvas is used as the pcanvas argument, the new canvas is opaque
by default. If the parent is not the framebuffer, the new canvas is transparent by
default.

?& un Revision A of 11 June 1990

4

microsystems

16 News Programmer’s Guide

Setting a Canvas’ Shape and
Coordinate System

The following example uses newcanvas to create a new canvas that has the
framebuffer canvas as its parent:

FirstCanvas is opaque by default, since the framebuffer canvas is its parent.

A newly created canvas such as FirstCanvas is not immediately ready for use.
First, you must set the canvas’ shape and default coordinate system. Before you
can use standard drawing operators, you must make the canvas be the current
canvas. And before you can see an image on the screen, you must map the can-
vas to the screen. These steps are described and demonstrated in the following
three sections. '

After you create a canvas, you must give it a shape and default coordinate sys-
tem. The following operator accomplishes these two tasks:

canvas reshapecanvas —

This operator sets the shape of canvas to be the same as the current path. It also (
sets canvas’ default transformation matrix so that canvas’ default coordinate sys-

tem is the same as the current coordinate system. If canvas is the current canvas,
reshapecanvas sets canvas’ default transformation matrix so that the same
default coordinate system is maintained after canvas changes shape; it also per-
forms an implicit initmatrix and sets the current clipping path (in the graphics
state) to be the same as canvas’ new shape. If you reshape a parent canvas, each
child canvas maintains the same distance from the upper-left corner of the
bounding box of the parent.

The following example uses reshapecanvas to establish a shape and default
coordinate system for the canvas defined in the previous example. This example
uses the rectpath utility to create a path to which the canvas can be shaped. The
rectpath utility is provided by the POSTSCRIPT language extensibility files asso-
ciated with the server; rectpath adds a rectangle to the current path, given the x
and y coordinates of the rectangle’s origin, the rectangle’s width, and the
rectangle’s height. See Chapter 11, “Extensibility through NeWs Procedure
Files,” for a complete definition of rectpath.

sun Revision A of 11 June 1990

microsystems

(J

Chapter 2 — Canvases 17

Mapping Canvases to the
Screen

When a psh process is first started, its CTM is initialized to the default coordi-
nate system of the framebuffer canvas. This example did not change the CTM
before calling reshapecanvas. Therefore, the default coordinate system of Fir-
stCanvas is set to be the same as the CTM, which is still the default coordinate
system of the framebuffer canvas. Thus, the default coordinate system of Fir-
stCanvas has its origin in the lower-left corner of the screen with the positive x
axis to the right and the positive y axis up. The canvas is shaped so that its
lower-left corner is at the origin of its coordinate system. The lower-left corner
of a canvas is often chosen to be its origin; however, you can use reshapecanvas
to place a canvas anywhere with respect to the origin of its default coordinate
system.

The News language also provides an operator named eoreshapecanvas. This
operator is identical to reshapecanvas except that it uses the even-odd rule,
rather than the non-zero winding number rule, to interpret the path argument.
For information on these rules, see the POSTSCRIPT Language Reference Manual.
For a description of eoreshapecanvas, see Chapter 10, “NewS Operator Exten-
sions.”

No operator exists for mapping canvases to the screen; instead, you map can-
vases by setting the Mapped key of the canvastype dictionary to true. When
you map a canvas, it becomes visible on the screen within the borders of its
parent, provided that the following conditions are fulfilled:

o All of the canvas’ ancestors are also mapped.

o The canvas is not clipped away by its parent or obscured by any overlapping
canvases.

To retrieve and establish values for any read/write News dictionary key, you can
use the POSTSCRIPT language operators get and put respectively. The following
example uses get to inspect the value of FirstCanvas’ Mapped key, and then it
uses put to set the values of FirstCanvas’ Retained and Mapped keys:

S ll n Revision A of 11 June 1990

microsystems

18 News Programmer’s Guide

Setting the Current Canvas

Drawing on Canvases

Notice that you cannot see FirstCanvas on the screen even after it is mapped; a
mapped canvas might not be noticeable on the screen if you have not drawn on it.
Before you draw on FirstCanvas, you need to make FirstCanvas be the current
canvas.

Each NeWs process can have a current canvas as part of its graphics state. Many
NeWs canvas and graphics operators do not take a canvas argument, but simply
use the current canvas. To set the current canvas, you use the following operator:

canvas setcanvas —

This operator sets canvas to be the current canvas, executes newpath, and sets
the current coordinate system to be the same as canvas’ default coordinate sys-
tem. The current coordinate system can then be changed with scale, rotate, and
translate. The setcanvas operator also sets the current clipping path to be the
same as canvas’ shape.

The following example sets the current canvas to be FirstCanvas:

Once a canvas is the current canvas, you can perform drawing operations on it.
For example, you can use the fillcanvas utility to fill a canvas with a color. The
fillcanvas utility is included in the POSTSCRIPT language extensibility files pro-
vided with the server. The utility takes a single argument, which can be an
integer or a color; fillcanvas paints the canvas and sets the current color to be the
specified value. See Chapter 11, “Extensibility through News Procedure Files,”
for a complete description of fillcanvas.

The following example fills FirstCanvas with gray:

When FirstCanvas is painted gray, it appears at the bottom-left corner of the
framebuffer canvas because that is where it was previously positioned with the
reshapecanvas operator. FirstCanvas’ appearance is illustrated in the follow-
ing figure:

Revision A of 11 June 1990

(

(

Chapter 2 — Canvases 19

Figure 2-4 FirstCanvas mapped and filled with gray

—

The example below draws a black star on FirstCanvas.

The following figure illustrates FirstCanvas with the star drawn on it:

Q% sun Revision A of 11 June 1990

microsystems

20 News Programmer’s Guide

Moving Canvases

Figure 2-5

Figure 2-6

)
FirstCanvas with star (

You can also draw text strings on canvases, using any of the POSTSCRIPT
language operators or the NeWs extensions. The following example writes a
string on FirstCanvas. This example uses the cshow utility, which is provided
by the POSTSCRIPT language extensibility files. The cshow utility centers and
prints a text string at the current point. See Chapter 11, “Extensibility through
News Procedure Files,” for a complete description of cshow.

The following figure illustrates the text string written on FirstCanvas:

FirstCanvas with text string

You can move a canvas to any location. However, the display of a canvas is
clipped to its parent’s boundaries. If a canvas is moved or reshaped so that parts
of the canvas fall outside of its parent’s boundaries, those parts of the canvas do
not appear on the screen when the canvas is mapped.

The following operator moves a canvas to the specified location: (

sSsun Revision A of 11 June 1990

Chapter 2 — Canvases 21

Figure 2-7

L 4

Xy movecanvas —
X y canvas movecanvas —

If no canvas argument is specified, this operator moves the current canvas so that
the origin of its default coordinate system is at the coordinates x and y, where

(x, y) is a vector from the origin of the parent canvas’ default coordinate system
to the origin of the repositioned current canvas’ coordinate system, measured in
units of the current coordinate system.

If the canvas argument is specified, the operator moves that canvas so that the
origin of its default coordinate system is at the coordinates x and y in the current
coordinate system.

In the following example, FirstCanvas is moved so that its origin is at (25, 25)
in the framebuffer canvas’ coordinate system:

The appearance of FirstCanvas is now as follows:

FirstCanvas moved to 25, 25 in framebuffer canvas’ coordinate system

The same result could have been obtained with the following code:

Note that the movecanvas operator moves both the canvas and its default coordi-
nate system. In this example, the origin of FirstCanvas’ default coordinate sys-
tem remains at FirstCanvas’ lower-left comer, but FirstCanvas and its default
coordinate system are now offset from the framebuffer canvas’ default coordinate
system.

sun Revision A of 11 June 1990

microsystems

22 News Programmer’s Guide

Getting the Location of a
Canvas

Destroying Canvases

2.3. Using the Transparent
and Opaque Properties
of Canvases

The following operator returns the coordinates of a canvas’ origin: (

canvas getcanvaslocation xy

This operator returns two integers, which specify the x and y location of the ori-
gin of canvas’ default coordinate system. This location is given relative to the
origin of the current coordinate system (rather than the origin of the parent can-
vas).

FirstCanvas was moved in the previous example. The following example
returns the new coordinates of FirstCanvas, relative to the framebuffer canvas’
default coordinate system:

The NeWs language does not provide an operator for destroying a canvas; even

when unmapped, a canvas continues to exist. A canvas is destroyed only when

the last reference to the canvas is removed (see Chapter 8, “Memory Manage- (
ment”). If a canvas is still mapped when the last reference to it disappears, the
canvas’ image is removed from the screen as part of the garbage collection pro-

cess.

In this section’s examples, FirstCanvas has only one reference to it: the name
FirstCanvas. This reference can be removed with the undef operator, as fol-
lows:

In the above example, FirstCanvas would have been destroyed even without
undef when psh was exited. (When the psh connection is broken by the quit
operator, all objects defined in the psh process’ userdict are undefined and the
associated memory is reclaimed.)

By default, children of the framebuffer canvas are opaque and all other canvases
in the hierarchy are transparent. This section uses examples to illustrate the fol-
lowing aspects of transparent and opaque canvases:

o An opaque canvas visually hides all canvases underneath it; a transparent :
canvas does not. (

4 ll n Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 23

Opaqueness and
Transparency

o Anything painted on a transparent canvas is actually painted on the
canvas(es) immediately beneath it.

o Making a parent canvas transparent does not affect the opaque status of its
opaque children.

A transparent canvas is especially useful for defining an area that is sensitive to
input but that has no drawing surface of its own. Input handling is described in
Chapter 4, “Events.”

The example in this section demontrates that opaque canvases obscure other can-
vases, but transparent canvases do not. The example uses two canvases:
FirstCanvas and SecondCanvas. FirstCanvas is a child of the framebuffer
canvas, and SecondCanvas is a child of FirstCanvas. By default, FirstCan-
vas is opaque and SecondCanvas is transparent. To make SecondCanvas
opaque, its Transparent key is set to false. FirstCanvas is painted gray;
SecondCanvas is painted black.

The following figure illustrates SecondCanvas and FirstCanvas:

un Revision A of 11 June 1990

microsystems

24

News Programmer’s Guide

Figure 2-8

Figure 2-9

FirstCanvas and its child, SecondCanvas (

Next, FirstCanvas is painted white. Because SecondCanvas is opaque, it
obscures FirstCanvas beneath it.

The new appearance of FirstCanvas is illustrated below:

Newly painted FirstCanvas beneath opaque SecondCanvas

Now, SecondCanvas is made transparent, allowing FirstCanvas to show
through:

The following figure illustrates the disappearance of SecondCanvas when it is
made transparent:

(

S u n Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 25

Figure 2-10

Figure 2-11

Painting on a Transparent
Canvas

@

FirstCanvas beneath transparent SecondCanvas

If FirstCanvas is painted while SecondCanvas is transparent, SecondCan-
vas does not obscure the new painting in FirstCanvas:

The following figure illustrates the newly painted FirstCanvas:

Newly painted FirstCanvas beneath transparent SecondCanvas

This subsection continues the previous example to illustrate how painting on a
transparent canvas differs from painting on an opaque canvas. First, Second-
Canvas is made opaque again and painted black. (When a canvas is changed
from transparent to opaque, it automatically becomes unretained and receives
damage. Therefore, SecondCanvas must be repainted regardless of its original
retained status. See Section 2.4, “Canvas Damage: When to Expect It, How to
Fix It, How to Avoid It,” for a complete discussion of damage.)

FirstCanvas and SecondCanvas now have the following appearance:

S u n Revision A of 11 June 1990

microsystems

26 News Programmer’s Guide

Figure 2-12 FirstCanvas beneath opaque SecondCanvas (

When the opaque SecondCanvas is unmapped, its image disappears.

The disappearance of SecondCanvas is shown below:

Figure 2-13 FirstCanvas beneath unmapped opaque SecondCanvas

Next, SecondCanvas is made transparent, is mapped, and is painted black.
When SecondCanvas is painted black, its black image is actually painted on
FirstCanvas beneath it.

SecondCanvas and FirstCanvas now appear as follows:

(

4:2‘/4 S u n Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 27

Figure 2-14

Making a Parent Canvas
Transparent

Q},

Image of painted, transparent SecondCanvas on FirstCanvas

If the transparent SecondCanvas is now unmapped, its black image remains on
the screen because it was painted onto FirstCanvas. To prove that its image has
become a part of FirstCanvas, you can unmap and map FirstCanvas and the
black image remains.

When a parent canvas is made transparent, its opaque children are not affected
and remain opaque. This behavior is demonstrated by the following code (a con-
tinuation of the previous example):

The following figure illustrates the disappearance of transparent FirstCanvas
beneath opaque SecondCanvas:

sun Revision A of 11 June 1990

microsystems

28 News Programmer’s Guide

Figure 2-15

2.4. Canvas Damage:
When to Expect It,
How to Fix It, How to
Avoid It

When is a Canvas Damaged?

N

S

Transparent FirstCanvas beneath opaque SecondCanvas (

If you drew on FirstCanvas now, the images would be painted on the frame-
buffer canvas because FirstCanvas is transparent.

The following code makes the parent opaque again and restores its previous
appearance:

(

This section lists the situations in which damage can occur, explains the damage
repair procedure, and discusses how to reduce damage by using retained canvases
and SaveBehind canvases. Note that canvas damage cannot be eliminated alto-
gether; clients must be prepared for damage on any of their canvases.

The server considers a canvas to be damaged if all or part of its image is
incorrect and needs to be redrawn. Canvas damage can occur in the following
ways:

o Anunretained canvas is damaged when a canvas by which it was previously
obscured is unmapped or moved away; only the newly exposed parts of the
unretained canvas are damaged.

o The visible parts of an unretained canvas are damaged when the canvas is
mapped to the screen.

o The invisible parts of an unretained canvas are damaged when its Retained
key is changed from false to true. Also, a canvas that is retained by default
is damaged when it is created (for details, see the NOTE in the subsection
“Avoiding Canvas Damage with Retained Canvases”).

o A mapped canvas, either retained or unretained, is damaged when it is
reshaped.

o Anunmapped, retained canvas is damaged when it is reshaped. (

sun Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 29

Repairing Canvas Damage

Avoiding Canvas Damage
with Retained Canvases

o When a transparent canvas is made opaque, it becomes unretained and the
visible parts of the canvas are damaged.

o When a canvas is made transparent, the unretained canvases beneath it are
damaged.

o Damage occurs to an unretained canvas when invisible portions of the can-
vas are copied onto visible portions of the canvas with the copyarea opera-
tor; damage only occurs to the visible portions of the copied area’s destina-
tion that are to receive the image of previously invisible parts of the canvas.
See Chapter 10, “News Operator Extensions,” for a description of copyarea.

A transparent canvas never receives damage. Instead, damage may be received
by the canvas(es) beneath the transparent canvas.

When a canvas is initially damaged, the server sends a damage event to processes
interested in damage on that canvas; a damage event has /Damaged in its Name
field and a copy of the affected canvas in its Canvas field. After receiving a
damage event, the client program should repair the damage by drawing the dam-
aged parts of the canvas. The client can determine which parts of a canvas are
damaged by executing the damagepath operator; damagepath returns a path
that outlines the damaged regions (see the description of the damagepath opera-
tor in Chapter 10, “News Operator Extensions™).

If the client does not immediately repair the canvas and damage continues to
occur, the server sends no additional damage events to the client. Instead, the
server updates the record of the canvas’ damage by adding the outline of the
newly damaged region to the path returned by damagepath. Eventually, the
client should request a copy of this record and repair all the damage. For an
example of a damage event and subsequent repair, see the subsection “Damage
Events” in Section 4.6, “System-Generated Events,” of Chapter 4, “Events.”

One strategy for avoiding damage on a canvas is to make the canvas retained.
When an invisible portion of a retained canvas is exposed, the canvas does not
usually receive damage. On monochrome screens, retained canvases usually per-
form much better than unretained canvases when they are mapped or moved. On
color screens, retained canvases usually consume too much memory to be useful.

Retaining an image offscreen cannot eliminate damage in all situations. For
example, a retained canvas is damaged when it is reshaped. Also, the Retained
key is just a performance hint that may be ignored. Clients should always be
prepared for canvas damage, even on retained canvases.

Each system has a retain threshold that specifies the number of bits per pixel
below which a canvas has its Retained key automatically set to true when the
canvas is created. However, if your application desires that a canvas be retained,
you should always set the Retained key explicitly. On all screens, the frame-
buffer canvas is unretained by default.

The default retain threshold is one bit per pixel, meaning that canvases on mono-
chrome screens are retained by default and canvases on color screens are unre-
tained by default. You may set the default retain threshold with the

S u n Revision A of 11 June 1990

microsystems

30 News Programmer’s Guide

setretainthreshold operator. For example, 8 setretainthreshold (
would cause new canvases on a color screen to be retained.The server handles
damage events for the framebuffer canvas, repainting the background as neces-

sary.

A transparent canvas does not have its own retained image. Instead, a tran-
sparent canvas shares the retained image of its parent. Changing the retained
status of a transparent canvas has no effect on either the transparent canvas or its
parent.

The following example demonstrates the damage that occurs to an opaque unre-
tained canvas when another opaque canvas is moved across it. This example
uses the rrectpath utility, which is similar to rectpath except that the rectangu-
lar path is given rounded corners (see Chapter 11, “Extensibility through NeWs
Procedure Files,” for more information).

The damage caused by moving BlackCanvas is illustrated in the following
figure:

S
%@ SUun Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 31

Figure 2-16

Figure 2-17

NOTE

L 4

Damage on unretained GrayCanvas after moving BlackCanvas

If the damaged parent canvas is repainted (to repair the damage) and then
retained, the child canvas can be moved over its surface without damage occur-
ring:

The following figure illustrates BlackCanvas moved to its new position on
undamaged GrayCanvas:

No damage on retained GrayCanvas after moving BlackCanvas

When a canvas is made retained, the server sets to zero the value of the bits that
represent the offscreen memory of the invisible portions of the canvas. The can-
vas then receives damage on its invisible areas and the client can repaint those
areas. If the canvas is mapped to the screen after it is made retained and before
the client repaints it, the previously invisible portions of the canvas will appear
on the screen with whatever color is assigned to the pixel value of zero (usually

S u n Revision A of 11 June 1990

microsystems

32 News Programmer’s Guide

Avoiding Canvas Damage
with SaveBehind Canvases

Figure 2-18

white on a monochrome screen). Thus, you might see the image of a mapped (
retained canvas on the screen even before you draw in it.

The SaveBehind key of a canvas can be used to prevent damage from occurring
to other canvases. When the key is set to true, the server saves the values of the
pixels that the canvas obscures when it is mapped. Even if the pixels belong to
unretained canvases, they can be restored directly to the screen when the Save-
Behind canvas is unmapped. Note that SaveBehind does not prevent damage if
the canvas is moved — only if it is unmapped.

If drawing occurs on an area of a canvas while that area is obscured by a Save-
Behind canvas, that area will receive damage; the server does not keep an
updated record of the pixel values that the SaveBehind canvas obscures. There-
fore, SaveBehind canvases are only useful if they are mapped for short periods
of time. The SaveBehind key is useful for pop-up menus and other canvases that
are small and are not required to be visible for long; when used with such can-
vases, the key can greatly enhance server performance.

The following example (a continuation of the example in the previous subsec-
tion) shows that damage occurs to unretained GrayCanvas when BlackCanvas
is unmapped:

The following figure illustrates that although BlackCanvas is unmapped, its
image is still visible because GrayCanvas is damaged:

Unretained GrayCanvas damaged by unmapping BlackCanvas

The following code repairs GrayCanvas and makes BlackCanvas a Save-
Behind canvas. Then BlackCanvas is mapped and unmapped with no damage
to GrayCanvas.

(

Revision A of 11 June 1990

Chapter 2— Canvases 33

Figure 2-19

2.5. Restricting the
Drawing Area with the
Canvas Clip

L 4

The following figure illustrates that, this time, GrayCanvas is not damaged
when BlackCanvas is unmapped:

GrayCanvas not damaged by unmapping SaveBehind BlackCanvas

Each NeWs process has a current clipping path defined as part of its current
graphics state. Drawing operations performed by a process are restricted to the
area enclosed by the process’ current clipping path.

Likewise, each NeWS canvas can have a canvas clipping path associated with it.
Drawing operations performed on a canvas are restricted to the area given by the
intersection of the canvas’ clipping path, the process’ current clipping path, and
the canvas’ shape. The canvas clipping path is typically used to limit the portion
of a canvas that is painted during damage repair (by setting the canvas clipping
path to be the path returned by damagepath before repairing the damage).

The following operators can be used to set and inspect a canvas’ clipping path
(for more detailed descriptions, see Chapter 10, “News Operator Extensions”):

— clipcanvas —

This operator sets the clipping path of the current canvas to be the same as the
current path; if the current path is empty, clipcanvas removes any existing clip-
ping restriction of the current canvas.

— clipcanvaspath -
This operator sets the current path to be the same as the clipping path of the
current canvas.

S ll n Revision A of 11 June 1990

microsystems

34

News Programmer’s Guide

Figure 2-20

— eoclipcanvas — (
This operator is the same as clipcanvas, except that it uses the even-odd rule
instead of the non-zero winding number rule to interpret the path.

The following example demonstrates the clipcanvas operator:

When the above fillcanvas is executed, the area that is filled is the intersection of
the current clipping path, the canvas shape, and the triangular canvas clipping
path. In this case, that intersection is the entire interior of the triangular clipping
path. The appearance of FirstCanvas is now as follows:

Results of filling FirstCanvas after setting a canvas clipping path

The next example (a continuation of the previous example) demonstrates the
eoclipcanvas operator: (

un Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 35

The following figure illustrates the new appearance of FirstCanvas. Because
this example uses eoclipcanvas, only the points of the star are filled.

Figure 2-21 Results of eoclipcanvas

2.6. Manipulating the Each canvas has a key that points to its parent (Parent), a key that points to the
Canvas Hierarchy sibling immediately above it (CanvasAbove), and a key that points to the sibling

immediately below it (CanvasBelow). The Parent key establishes the
parent/child relationships of the canvas hierarchy. The CanvasAbove and Can-
vasBelow keys effectively arrange a canvas’ children into an ordered list from
the bottom child to the top child. A canvas’ position in the hierarchy can be
manipulated by changing the value of any of these three keys. A canvas’ chil-
dren can also be rearranged in their sibling list with four NeWsS operators.

This section discusses how to use these keys and operators to manipulate the can-
vas hierarchy.

S
% sSsun Revision A of 11 June 1990

microsystems

36 News Programmer’s Guide

Changing Sibling
Relationships

L 4

When the newcanvas operator is executed, the newly created canvas becomes (
the top child of its parent. You can change a canvas’ position in its sibling list by
changing the value of its CanvasAbove or CanvasBelow key. The canvas dic-
tionary keys that relate to sibling hierarchy are described below.

o CanvasAbove (read/write)

The value of a canvas’ CanvasAbove key is the canvas that is immediately
above it in its sibling list; if no such canvas exists, the value of the key is
null. This key can be set to any of the canvas’ siblings. When the value is
changed, the canvas is inserted in the list at a position directly below the
specified sibling; the canvas does not change its (x, y) position on the screen,
but the appearance of the canvas and its siblings changes to reflect their new
overlapping relationships.

o CanvasBelow (read/write)

The value of a canvas’ CanvasBelow key is the canvas that is immediately
below it in its sibling list; if no such canvas exists, the value of the key is
null. This key can be set to any of the canvas’ siblings. When the value is
changed, the canvas is inserted in the list at a position directly above the
specified sibling; the canvas does not change its (x, y) position on the screen,
but the appearance of the canvas and its siblings changes to reflect their new
overlapping relationships.

o TopCanvas (read-only) (

The value of a canvas’ TopCanvas key is the canvas’ top sibling. If the
canvas has no siblings, the value is the canvas itself.

o BottomCanvas (read-only)

The value of a canvas’ BottomCanvas key is the canvas’ bottom sibling. If
the canvas has no siblings, the value is the canvas itself.

o TopChild (read-only)

The value of a canvas’ TopChild key is the canvas’ top child or null if the
canvas has no children.

Note that when you change the value of a canvas’ CanvasAbove or Canvas-
Below key, the server automatically changes the value of the other relevant can-
vas keys (CanvasBelow or CanvasAbove, TopCanvas, and BottomCanvas) to
reflect the new sibling order. The server also makes any necessary adjustments
to the keys of the other siblings in the list, and it updates the TopChild key of
the parent if necessary.

In addition to changing the value of the CanvasAbove and CanvasBelow keys,
you can also manipulate the sibling list with the following operators:

canvas canvastobottom -
Moves canvas to the bottom of its list of siblings.

canvas canvastotop - (7 J
Moves canvas to the top of its list of siblings.

S u n Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 37

canvas x y insertcanvasabove -

Inserts the current canvas into the list at the position immediately above canvas.
Also moves the current canvas to (x, y) relative to its parent’s default coordinate
system.

canvas x y insertcanvasbelow —

Inserts the current canvas into the list at the position immediately below canvas.
Also moves the current canvas to (x, y) relative to its parent’s default coordinate
system.

All the above operators cause adjustments to the keys of the affected siblings and
parent. For the operators insertcanvasabove and insertcanvasbelow, the
current canvas must be a sibling of the specified canvas.

The following example uses three canvases: FirstParent, WhiteCanvas, and
BlackCanvas. WhiteCanvas and BlackCanvas are children of FirstParent.
Because BlackCanvas is created after WhiteCanvas, it is placed at the top of
the sibling list and thus obscures its sibling.

ll n Revision A of 11 June 1990

microsystems

38

News Programmer’s Guide

Figure 2-22

Figure 2-23

&

The newly created parent and children are illustrated in the following figure: (!

BlackCanvas obscuring WhiteCanvas

The following code uses insertcanvasabove to insert WhiteCanvas above
BlackCanvas:

The appearance of the canvases is now as follows:

WhiteCanvas made to obscure BlackCanvas (

The following example uses canvastotop to make BlackCanvas the top sibling
again:

The following code also makes BlackCanvas the top sibling, but it uses a can-
vas dictionary key instead of a canvas operator:

Ssun Revision A of 11 June 1990

microsystems

Chapter 2— Canvases 39

Establishing a New Parent

Figure 2-24

You can specify a new parent for a canvas by setting the value of the Parent key
in the canvastype dictionary. Note that you cannot make one of a canvas’ des-
cendants be its parent, nor can you reparent a canvas so that it moves from one
framebuffer canvas’ subhierarchy to another framebuffer canvas’ subhierarchy.

The following example builds on the previous example to demonstrate changing
a canvas’ parent. At this point, the example’s canvas hierarchy can be
represented by the following tree:

Canvas hierarchy

global root
framebuffer
FirstParent
/ \
BlackCanvas WhiteCanvas
top child bottom child

The following code creates a new canvas, SecondParent, that is a child of the
framebuffer. The code then changes the parent of WhiteCanvas to be
SecondParent:

The canvases now appear as follows (note that WhiteCanvas is placed in the
same position relative to SecondParent’s upper-left corner as it had relative to
FirstParent’s upper-left corner):

éf:?? S u n Revision A of 11 June 1990

microsystems

40 News Programmer’s Guide

Figure 2-25 WhiteCanvas is now the child of SecondParent (

The new hierarchy is shown in the following figure:

Figure 2-26 ~ New canvas hierarchy

global root
framebuffer
(
FirstParent SecondParent
BlackCanvas WhiteCanvas
2.7. Overlay Canvases The server allows you to create overlay canvases. An overlay canvas, which can

only be created over an existing non-overlay canvas, does not obscure the can-
vases beneath it. However, unlike transparent canvases, graphic objects drawn
on an overlay appear on the overlay itself rather than on the canvas below. Thus,
drawing in an overlay does not interfere with drawing in its associated canvas,
and drawing in the canvas does not interfere with drawing in the overlay. An
overlay is like a sheet of cellophane that floats over a canvas and all the canvas’
children. The overlay is always the same size as the canvas that it overlays.

Opverlays are intended for use in transient or animated drawing procedures. For
example, they can be used to create “rubber-band” boxes, which expand or con-
tract according to mouse movement when a user is resizing a window. In gen-
eral, overlays are useful when you want to draw a temporary image over a canvas
without having to repaint the canvas after you erase the temporary image.

You should not change the keys in an overlay’s dictionary. For example, you (
should not attempt to map or unmap an overlay; an overlay assumes the mapped

S
% S u n Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 41

Creating and Using Overlays

state of its asociated non-overlay. To remove the images drawn in an overlay,
you can use the erasepage operator. To destroy an overlay, you must remove all
references to it, as you would for any other canvas.

Other features of overlays are as follows:

o Each non-overlay canvas (whether transparent or opaque) can possess one
overlay canvas only. If a canvas possesses an overlay, any subsequent
attempt to create an overlay of the canvas returns the existing overlay.

o An overlay canvas cannot receive any events. If you express interest on an
overlay, the interest is placed on the pre-child interest list of the canvas over
which the overlay was created. For a complete description of events and
interests, see Chapter 4, “Events.”

o An overlay never receives damage and, therefore, never requires repainting.
o Anoverlay cannot have a parent, nor can it have children.

o If anoverlay’s corresponding non-overlay canvas has children, these chil-
dren may have their own overlays. A canvas’ overlay appears above the
overlays of the canvas’ children.

o Anoverlay cannot be reshaped; attempting to reshape an overlay produces
no result. An overlay always has the shape of its associated non-overlay
canvas.

o Anoverlay cannot be possessed by more than one non-overlay, nor can it
change owners.

The following operator creates an overlay canvas:

canvas createoverlay ocanvas

The canvas argument must be an existing canvas, and the canvas object returned
is the created overlay. Note that the overlay is not a child of the specified can-
vas; it is considered a part of that canvas.

The createoverlay operator is demonstrated in the following example. This code
creates a canvas and an associated overlay. A grid is drawn on the overlay, and
then a simple picture of a house is drawn on the canvas beneath the overlay,
using the grid as a guide.

You may notice that the overlay flashes on the screen when you move the mouse
or type; this flashing is an artifact of the way overlays are implemented on some
machines. You may also notice some decrease in performance when typing this
example. The flashing and performance problems are discussed in the following
subsection, “Restrictions for Drawing on Overlays.”

Because of the flashing problems, you might prefer to type the code shown in the
next box into a file, enter an executive psh session, and then load your file into
the psh session with the following command:

@ § un Revision A of 11 June 1990

icrosystems

42 News Programmer’s Guide

Loadfile is a utility provided by the POSTSCRIPT language extensibility files. (

The following figure illustrates the grid on the overlay and the house image on
the canvas beneath the overlay:

&Q?g sun Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 43

Figure 2-27 A canvas and its overlay

An overlay has the same mapped status as the canvas it overlays. The following
example unmaps and maps MyCanvas, demonstrating that the overlay is also
unmapped and mapped.

When you no longer want the overlay to be visible, you simply erase the drawing
that it contains. The following example erases the grid from OverCanvas:

The following figure illustrates the erased overlay and the canvas underneath:

S
&%\@ sun Revision A of 11 June 1990

microsystems

44 News Programmer’s Guide

Figure 2-28 A canvas and its erased overlay

Restrictions for Drawing on Due to the way in which overlays are implemented on some machines, perfor-
Overlays mance problems may occur if too many objects are drawn on an overlay.

The current color is usually ignored when drawing operations are performed on
overlays. This behavior is deliberate; it allows the implementation of overlays to
vary on different kinds of hardware.

On the machine that was used to generate the house example above, the house
canvas was XOR’d to produce the colors used for each bit of its overlay. Ona
monochrome screen, this XOR procedure results in an overlay that always uses
the opposite color of the image underneath. Where a grid line lay over the white
background, it was painted black; where a grid line lay over a black line of the
house, it was painted white (see Figure 2-27 in the previous subsection). Over-
lays may be implemented differently on other machines.

After an image is drawn in an overlay, the overlay’s image may flash when any
portion of the screen is repainted. For example, flashing may occur when the
mouse cursor moves across the screen or when input is typed into a window.
Flashing may also occur when a canvas that owns an overlay is damaged and
repainted. To avoid problems with flashing, images drawn in an overlay should
not be maintained for too long. This restriction limits the use of overlays to spe-
cial situations such as implementing rubber-band boxes.

The Framebuffer Overlay When the server is initialized, the framebuffer canvas and an associated overlay
are created. The framebuffer’s overlay is named fboverlay. You can use
fboverlay in the same way as any other overlay canvas. NeWs applications com-
monly use fboverlay to implement their rubber-band boxes.

2.8. Canvases, Files, and You can save in a file the image drawn on a canvas and read it back into a canvas
Imaging Procedures object. You can also image canvas objects onto the current canvas. This section
describes the operators that you can use to accomplish these tasks.

Q?} sun Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 45

Writing Canvases to Files The following operator writes a canvas image to a file:

file or string writecanvas —

This operator writes the current canvas image to a raster file. The raster file can
be specified either as a file or as a string that is the name of a file in the server’s
file name space. The operator creates a raster file that contains an image of the
region outlined by the current path in the current canvas. If the current path is
empty, the whole canvas is used.

The writecanvas operator uses the non-zero winding number rule. To write a
canvas image to a file using the even-odd rule, use eowritecanvas. See the
POSTSCRIPT Language Reference Manual for information about these rules.
Note that an unretained rooted canvas should be mapped before using writecan-
vas or eowritecanvas.

The following operator writes a region of the screen, outlined by the current path
in the current canvas, to a file:

file or string writescreen —

This operator is the same as writecanvas except that if the current canvas is par-
tially obscured by one or more canvases that lie on top of it, writescreen
includes the overlapping canvases in the image. Thus, a screendump can be per-
formed by setting the current canvas to be the framebuffer canvas and then exe-
cuting writescreen.

The writescreen operator uses the non-zero winding number rule. To perform
the same operation using the even-odd rule, use eowritescreen instead.

The writecanvas operator is demonstrated by the following example. This
example creates a canvas named StarCanvas and paints a star on it. The canvas
image is then written to a file named starfile.

NOTE writecanvas and writescreen store images in a fixed-resolution raster image
Sformat, not as s executable files.

@ Sun Revision A of 11 June 1990

microsystems

46 News Programmer’s Guide

The canvas created in the above code is illustrated in the following figure:

Figure 2-29 StarCanvas

In the next two subsections, starfile is read back into a canvas and then imaged
to the screen.

NOTE The raster files created by writecanvas, eowritecanvas, writescreen, and
eowritescreen are rectangular. If the canvas that is written to the file is not rec-
tangular, the bits between the canvas’ bounding box and the canvas’ shape are
given 0 values.

@:2’4 sSun Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 47

Reading Canvases from Files

Imaging a Canvas to the
Screen

N

A file created with writecanvas, writescreen, eowritecanvas, or eowritescreen
can be read back into a NeWs canvas object. The following operator creates a
canvas from such a file:

string or file readcanvas canvas

This operator creates a new canvas and reads a raster file into it. The raster file
can be specified either as a file or as a string that is the name of a file in the
server’s file name space. The created canvas is retained and has the depth
specified in the raster file. The readcanvas operator sets the default coordinate
system of the canvas so that the canvas’ four corners correspond to the unit
square. The canvas has no parent, is not mapped, and is not a part of the canvas
hierarchy (it is an unrooted canvas).

If the filename specified by the string cannot be found, an undefined-
filename erroris generated. If the file cannot be interpreted as a raster file, an
invalidaccess erroris generated.

The readcanvas operator is demonstrated by the following example, which reads
the canvas saved in the previous example into a new canvas named FileCanvas:

A canvas read with readcanvas cannot be mapped to the display. To image the
canvas to the screen, you must use the imagecanvas operator, described in the
next section. If you change the value of an irrelevant key of an unrooted canvas
(such as the Mapped key), the change has no effect; if you attempt to execute an
irrelevant operator (such as movecanvas or reshapecanvas) you will receive an
error message.

The following operator paints a canvas’ image onto the current canvas:

canvas imagecanvas —

This operator paints canvas onto the current canvas. The entire source canvas is
imaged onto the current canvas in such a way that the unit square of the source
canvas is mapped onto the unit square of the current canvas. This operator is
similar to the image operator provided by the POSTSCRIPT language except that
the image comes from a canvas instead of a POSTSCRIPT language procedure.

Any type of canvas can be used as a source for the imagecanvas operator: a
rooted canvas, an unrooted canvas created with readcanvas, or an unrooted can-
vas created with buildimage. When you use imagecanvas, you must consider
the default coordinate systems of both the source canvas and the destination can-
vas to ensure that the resulting image has the desired scale and position. If the
source canvas is rooted, its default transformation matrix was assigned when it
was last reshaped. If the source canvas is an unrooted canvas created with read-
canvas, its default transformation matrix was assigned by readcanvas to map the
entire canvas to the unit square. If the source canvas is an unrooted canvas
created with buildimage, its default transformation matrix was assigned as the
matrix argument to buildimage.

S u n Revision A of 11 June 1990

microsystems

48 News Programmer’s Guide

The following example creates a new canvas named SecondCanvas and sets it (
to be the current canvas. It then scales up the CTM by a factor of 200 so that the
subsequent imagecanvas fills all of SecondCanvas. The canvas that is imaged

is FileCanvas, which is an unrooted canvas that was created with readcanvas in

the previous example.

The following figure illustrates FileCanvas imaged onto SecondCanvas:

Figure 2-30 FileCanvas imaged onto SecondCanvas

The next example demonstrates that a rooted canvas can be imaged onto the
current canvas. In this case, StarCanvas is imaged directly onto SecondCan-
vas. The CTM is translated and scaled to map the image onto the center of
SecondCanvas, leaving a border around the image.

0%2; Ssun Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 49

Figure 2-31

NOTE

Building a Canvas Image

D

The new appearance of SecondCanvas is shown in the following figure:

StarCanvas imaged onto SecondCanvas

The following operator can be used to paint a 1-bit deep canvas onto the current
canvas, using a boolean argument and the current color to specify how the canvas
should be painted:

boolean canvas imagemaskcanvas —

This operator paints canvas onto the current canvas, just as imagecanvas does.

If boolean is true, imagemaskcanvas paints the 1 bits with the current color; if
boolean is false, imagemaskcanvas paints the 0 bits with the current color.
Thus, the operator essentially defines a mask through which color is painted. The
operator is only valid for 1-bit deep source canvases.

For an example of imagemaskcanvas, see the example of buildimage given in
the following section.

In the current implementation, the imagecanvas and imagemaskcanvas opera-
tors paint the region within the source canvas’ bounding box, rather than paint-
ing just the canvas’ interior. This difference becomes apparent if you image a
non-rectangular canvas.

If you image an unretained canvas that is non-rectangular, the bits outside the
canvas’ shape but inside the canvas’ bounding box are imaged with whatever
color they have on the screen. If you image a retained canvas that is not rec-
tangular (either rooted or unrooted), the bits outside the canvas’ shape but
inside the canvas’ bounding box are imaged with whatever color is assigned to 0
(usually white on monochrome screens); these bits were assigned a 0 value when
the canvas was made retained.

If you want to omit the area between the canvas’ shape and its bounding box,
simply clip to the canvas’ shape when you image onto the current canvas.

The following operator builds an image that is stored in a canvas object:

width height bits/sample matrix proc buildimage canvas

The News operator buildimage provides functionality similar to that of the
image operator provided by the POSTSCRIPT language. The buildimage operator
uses the binary representation of a specified string to create a sampled image as a

Sun Revision A of 11 June 1990

microsystems

50

News Programmer’s Guide

canvas object. The canvas object is retained, has no parent, and is not a part of (
the canvas hierarchy (it is an unrooted canvas). The canvas cannot be mapped; it

can be imaged to the screen with the imagecanvas operator, or it can be written

to a file with the writecanvas operator.

The width, height, bits/sample, and proc arguments are the same as for the
POSTSCRIPT language image operator. The matrix argument defines the default
coordinate system of the canvas. The arguments to the buildimage operator are
described fully in Chapter 10, “News Operator Extensions.”

To create an empty unrooted canvas, you can give a null procedure to the
buildimage operator. You can draw or image to the resulting canvas as with any
other offscreen canvas. The following example uses buildimage to construct an
image. The image is stored in a canvas object named source and is then painted
onto the current canvas, dest, with the imagemaskcanvas operator.

The appearance of dest is now as follows:

u n Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 51

2.9. Cursors

Cursor Objects

Figure 2-32

Figure 2-33

Image built with buildimage and imaged with imagemaskcanvas

The following example shows how the image changes if the O bits, instead of the
1 bits, are painted black:

The following figure illustrates the new image:

Image with 0 bits painted black

The canvastype dictionary contains a Cursor key, which specifies the cursor
object that is used whenever the mouse is positioned over the canvas. When a
canvas is created with newcanvas, its Cursor value is initially null; unless the
canvas’ Cursor key is given some non-null value, its parent’s cursor is displayed
whenever the mouse is over the canvas.

A cursor is composed of a cursor image and a mask image; the complete cursor is
produced by superimposing these two images. The mask and cursor images each
have three attributes: a font, a character in the font, and a color. The default
color for the cursor image is black, and the default color for the mask image is
white. The two images are superimposed by aligning the origins associated with

S u n Revision A of 11 June 1990

microsystems

52 News Programmer’s Guide

Standard Cursors

Figure 2-34

their characters.

Each cursor has a hot spot, which is the pixel coordinate to which the mouse
points. The hot spot resides at the superimposed origin of the mask and cursor
images.

A cursor object is implemented as a dictionary with the following six keys:
o CursorChar and MaskChar (read-only)

The integer that corresponds to the character used for the cursor image and
mask image, respectively.

o CursorFont and MaskFont (read-only)
The font used for the cursor image and mask image, respectively.
o CursorColor and MaskColor (read/write)
The color.used to paint the cursor image and mask image, respectively.
The server provides a set of standard cursor and mask characters in a special font
named cursorfont. For example, the default cursor for the framebuffer canvas is

an arrow that points up and to the left. The following figure illustrates the
framebuffer’s default cursor:

The framebuffer’s default cursor (

The framebuffer’s default cursor is created with a cursor character named basic
and a mask character named basic_m. These character names are keys in a dic-
tionary named cursordict; the value of each key in cursordict is the integer that
corresponds to that character in cursorfont. (The names in cursordict are easier
to remember than the integers associated with the characters in cursorfont; also,
the integers are subject to change but the names are not.) For example, the
integer associated with basic is 0. Therefore, the default value of the
framebuffer’s CursorChar key is 0.

The cursordict dictionary is located in the file
$OPENWINHOME/etc/NeWS/cursor.ps. The cursor.ps file is loaded
when the server is initialized. See Chapter 9, “News Type Extensions,” for more
information about the standard cursors provided by cursorfont. (

Ssun Revision A of 11 June 1990

microsystems

Chapter 2 — Canvases 53

Changing a Canvas’ Cursor

To change a canvas’ cursor, you must create the new cursor object and then
assign that cursor to the canvas’ Cursor key. You can create a new cursor object
with any of the characters in cursorfont or with characters that you create your-
self. The newcursor operator creates a new cursor object from existing cursor
and mask characters, as described below:

cchar mchar font hewcursor cursor
cchar mchar cfont mfont newcursor cursor

The newcursor operator creates an object of type cursor. Two syntactic forms
can be used. With the first form, a cursor is constructed using the cursor charac-
ter cchar and the mask character mchar, both are selected from font. With the
second form, a cursor is constructed using cchar from the font cfont and mchar
from the font mfont. In both forms, the new cursor is initialized with a Cursor-
Color value of black and a MaskColor value of white.

The following example creates a canvas, MyCanvas, that is a child of the frame-
buffer canvas. The default cursor of MyCanvas is the same as the default cursor
of the framebuffer canvas. The example then creates a new cursor and sets it to
be MyCanvas’ cursor.

MyCanvas and its new crosshair cursor are illustrated in the following figure:

Ssun Revision A of 11 June 1990

microsystems

54 News Programmer’s Guide

Figure 2-35 MyCanvas with a crosshair cursor

Changing a Cursor’s Color You can change a cursor’s color by changing the value of its CursorColor and
MaskColor keys, which default to black and white respectively. The cursor
colors are not guaranteed to be displayed as requested, but the mask and cursor
images will always be given contrasting colors.

The following example changes the value of CursorColor and MaskColor for
MyCanvas’ crosshair cursor; the example reverses the cursor colors so that the
cursor image is white and the mask image is black. (

2.10. Using Multiple This section describes the characteristics of the global root canvas and discusses
Screens some aspects of programming with multiple screens. To learn how to install
multiple screens to run with your server, see the X11/News Server Guide. If you (
are running the server with only one display screen, you do not need the informa-
tion in this section.

S
% S u n Revision A of 11 June 1990

% microsystems

Chapter 2 — Canvases 55

The Global Root Canvas

Creating the Framebuffer
Canvases

Allowed Operations for the
Global Root Canvas

The global root canvas, which is the root of the server’s canvas hierarchy, is
created when the server is initialized. The global root canvas is a transparent,
mapped, unretained, very large canvas with null as its parent. The coordinate
system of the global root canvas has its origin in the center of the canvas, the
positive y axis extending vertically upward, the positive x axis extending hor-
izontally to the right, and units of pixels in both coordinate directions. The glo-
bal root canvas has dimensions of 32767 by 32767 pixels. (In the future, the
server may change from units of pixels to units of 1/72 of an inch, consistent
with the standard POSTSCRIPT language.)

Each display screen has an associated framebuffer canvas that is a child of the
global root canvas. When the server is initialized, the createdevice operator is
called to create a canvas that covers the entire background of the initial display
screen. The initial display screen is given by the value of the FRAMEBUFFER
environment variable, which defaults to /dev/fb. You can create background
canvases for additional screens with the createdevicecanvas utility:

string createdevicecanvas canvas or boolean

This utility creates and initializes additional framebuffer canvases. The string
argument, which is system dependent, indicates the framebuffer canvas that is to
be initialized (for example, /dev/cgtwo0). If createdevicecanvas fails to
create the framebuffer canvas, it returns false. If it succeeds, it returns the frame-
buffer canvas. This utility should only be used during system initialization (for
example, from a . startup.ps file).

The placement of your framebuffer canvases on the global root canvas should
closely parallel the placement of your display screens on your desktop; the rela-
tive layout of the framebuffer canvases on the global root canvas determines how
the mouse will track from one screen to another. You can use movecanvas or
reshapecanvas on your framebuffer canvases (in fact, you can use any canvas
operator on a framebuffer canvas). For more information about positioning your
framebuffer canvases on the global root canvas, see the X11/News Server Guide.

You can use the following keys of the global root canvas:

EventsConsumed

Interests

Parent (getting)

TopChild (getting and setting)

TopCanvas (getting)
BottomCanvas (getting)
CanvasAbove (getting)
CanvasBelow (getting)

You can use the following operators on the global root canvas:

setcanvas
currentcanvas
clippath
clipcanvaspath
reshapecanvas

S u n Revision A of 11 June 1990

microsystems

56 News Programmer’s Guide

Benign Operations for the The following operations have no visible effect when used on the global root (‘
Global Root Canvas canvas, but they will not generate any errors:
Any graphics operation

Any damage recovery operation
Any operation that does not return a value, but draws to the screen

Disallowed Operations for the You will recieve on invalidaccess errorif you try to use any of the follow-
Global Root Canvas ing keys of the global root canvas:

Parent (setting)
TopCanvas (setting)
BottomCanvas (setting)
CanvasAbove (setting)
CanvasBelow (setting)
Mapped

Transparent
Retained

SaveBehind

Color

You will receive an invalidaccess error if you try to perform any of the fol-
lowing operations on the global root canvas:

createoverlay

readcanvas (
writecanvas

writescreen

eowritecanvas

eowritescreen

newcanvas

canvastotop

canvastobottom

insertcanvasabove

insertcanvasbelow

Any operation that returns a value and is not listed as allowed or benign

(

&z?y SUun Revision A of 11 June 1990

microsystems

S
L4

Processes

The X11/News server maintains a set of simultaneously executing lightweight
processes. A lightweight process is not a UNIX process; it is a process that
resides in the server’s address space and is scheduled to be run by the server.
Lightweight processes are also known as NeWs processes.

Each NeWs process is an individual thread of control with its own graphics con-
text, graphics state context, dictionary stack, execution stack, and operand stack.
Each process can perform operations on the display and can receive events from
the system (such as keyboard and mouse events) or from another NeWs process.
Many processes can be created with relatively little overhead.

When the server first starts to run, it creates a single process that executes the
startup file. At this time, code may be downloaded into the server and many
more NeWs processes may start. Some NeWS processes communicate with client
processes. Each connection to the server obtains its own NeWs process.

A new process is created with the fork operator; the newly created process is a
child of the process that executed fork. A child process inherits its parent’s dic-
tionary stack, operand stack, and graphics state. Although a child process starts
out with the same name space as its parent, each process can control the extent to
which its name space is shared by pushing and popping dictionaries to and from
its stack. When a child process is created, it is put in the same process group as
its parent. Once created, the child process is not dependent on its parent for any
resources. A process can be moved to its own, new process group if desired, and
if the parent process dies for some reason, the child continues.

The server currently uses a non-preemptive round-robin scheduling policy.
Processes must block periodically to allow other processes to run; if a process
runs for more than 15 seconds without pausing, the server suspends the process
and allows the next process to run. The server may adopt a preemptive schedul-
ing policy in the future.

A NeWs process can kill its child processes, or it can wait for them to die and
obtain a return value from them. A process can temporarily suspend itself or
another process. The process that is currently running is known as the current
process.

Monitor objects are provided for situations that require synchronization. For
example, monitors should be used when writing replies from the server to the
client.

sSsun 57 Revision A of 11 June 1990

microsystems

58 News Programmer’s Guide

This chapter describes NeWs processes and process operations. (

The processtype Extension Each NeWs process is an object of type processtype, which is a NeWs extension to
the POSTSCRIPT language. Each processtype object can be accessed as a
POSTSCRIPT language dictionary. A process dictionary includes keys that
describe the following properties (the keys are listed in parentheses):

o The process stacks (DictionaryStack, Execee, ExecutionStack,
OperandStack, SendContexts, SendStack)

o The process name (ProcessName)

o The process execution state (State)

o Standard files associated with the process (Stdout, Stderr)

o The process scheduler priority (Priority)

o The interest list of the process (Interests)

o Error information ($error, errordict, ErrorCode, ErrorDetailLevel)

o The process bind mode (BindOverride)

o The process packed array mode (PackedArrays)

Many of the process keys are described in this chapter. All of the NeWs types and

their associated dictionaries are described in Chapter 9, “NeWs Type Extensions.”

Process Operators The News language includes operator extensions to be used on processes. The
process operators provide the following functionality (the operator names are
listed in parentheses):

o Creating a new process or processgroup (fork, newprocessgroup)

o Controlling process execution (breakpoint, continueprocess, pause,
suspendprocess, waitprocess)

o Destroying processes and processgroups (killprocess, killprocessgroup)

o Returning an array of processes or process groups (getprocesses, getpro-
cessgroup)

o Returning the current process (currentprocess)

o Creating and using monitor objects (createmonitor, monitor, monitor-
locked)

o Producing the process $error dictionary (defaulterroraction)
o Clearing the process send stack (clearsendcontexts)

Most of the process operators are described and demonstrated in this chapter.
For a description of all News operators, see Chapter 10, “News Operator Exten-
sions.”

(

S
% u n Revision A of 11 June 1990

microsystems

Chapter 3 —Processes 59

3.1. Basic Process
Operations

Establishing a Client
Connection Process

This section describes basic process operations such as creating, pausing, stop-
ping, restarting, and destroying processes. The examples use the psh command
to establish a connection with the server. Some of the examples are interactive
sessions with psh; other examples specify a code file as an argument to the psh
command. Interactive sessions with psh or with the operating system shell are
shown in gray boxes. Code examples that are meant to be typed into files are
shown in plain boxes.

Some of the interactive examples are continuations of previous examples; you
can tell that an example is a continuation if it does not start a new psh session at
the top of the example code. You must type all the code sequentially from the
start to the quit of each interactive psh session. For a complete description of
the psh facility, see the psh manual page in the X11/NeWS Server Guide.

When the server first starts, it creates a process that executes the initialization
files. All other NeWs processes are descendants of this first process. One of the
processes that the server forks is a listener process that listens for News client
connection requests. When a client connection is established, the listener process
forks a process to serve that client, and it also creates a connection file associated
with the newly forked process; the client’s connection process executes the News
code that the client sends to the connection file. All processes forked by the
client’s code are children of its connection process. Thus, NeWS processes are
arranged in a hierarchy. The main significance of the process hierarchy is that
each child process inherits its parent’s environment.

A C client program can establish a connection to the server with the
ps_open_PostScript function (see Chapter 6, “C Client Interface™). If you
want to execute pure NeWS code, you can use the psh command to establish a
connection to the server.

When you execute the psh command, the server’s News listener process forks a
lightweight process for the psh connection. If you give a filename as an argu-
ment to the psh command, the lightweight process executes the code that is con-
tained in the file. If you enter an interactive psh session, the lightweight process
executes code that you type or code that you load from a file with the LoadFile
procedure (see the description of LoadFile in Chapter 11, “Extensibility through
News Procedure Files™).

The following example establishes an interactive session with the server, creating
a lightweight process associated with the psh connection:

The lightweight process associated with a psh session exits when the quit opera-
tor is executed or when the process encounters an EOF. When the lightweight
process exits, the reference count on the associated connection file usually drops
to zero, causing the connection file to be closed and destroyed. (When the total
number of references to an object is zero, the server destroys the object and

S ll n Revision A of 11 June 1990

microsystems

60 News Programmer’s Guide

Returning the Current
Process

Examining the Process Stacks

Operand Stack

S

reclaims its memory; see Chapter 8, “Memory Management,” for details.) When
the connection file is closed, the psh program exits, returning you to the operat-
ing system prompt.

The following operator returns the current process:

— currentprocess process

The currentprocess operator places the current process object onto the operand
stack.

The following example returns the current process, which is the process created
previously with the psh command.

Notice that four items are printed: a unique process identification number, the
process name, the process state, and the object that is on top of the process exe-
cution stack. The name of a client connection process defaults to the name of the
host. In this case, the process name defaults to quakes NeWS client
because the host’s name is quakes. The process state can be one of eight
values, as described in the subsection “Examining the Process Execution State.”

This process has a runnable state, which indicates that the process is currently (

running or is scheduled to be run.

Each News process has an operand stack, an execution stack, a dictionary stack,
and a graphics state stack. These four process stacks are described in detail in the
PostScript Language Reference Manual. This section demonstrates how to
access these stacks in a NeWsS process.

The following example puts some objects on the operand stack of the psh pro-
cess created previously, and then it prints the contents of the operand stack with
the POSTSCRIPT language pstack operator:

The following example also prints the contents of the operand stack, but this
example uses the process OperandStack key instead of the pstack operator:

(

Ssun Revision A of 11 June 1990

microsystems

Chapter 3 —Processes 61

Execution Stack The value of a process’ ExecutionStack key is the entire execution stack of the
process. The value of a process’ Execee key is the top item on the process’ exe-
cution stack. These read-only keys can be useful when debugging.

Dictionary Stack You can view the dictionary stack of a process by printing the contents of its Dic-
tionaryStack key. If a dictionary in the stack is very large, the == operator only
prints part of its contents. For example, the == operator only prints some of the
many entries in systemdict. (If you need to see all the entries in a large diction-
ary, you can write a procedure that uses the POSTSCRIPT language forall operator
to print all the entries.)

The following example defines a procedure in the process’ userdict; the pro-
cedure, named average, computes the average of two numbers. The example
uses the procedure to compute the average of 4 and 2. Then the example prints
the contents of the dictionary stack using the DictionaryStack key.

The first dictionary is the systemdict, and the second dictionary is the process’
userdict. You can see that the previously defined average procedure is defined
in the userdict. For brevity, the entries in systemdict are not shown in the box
above but, when you try the example, you will see that some of the systemdict
entries are printed. You will also notice that the userdict contains a key named
OriginatingHost that contains the host’s name; this key is automatically pro-
vided for a client connection process.

Graphics State Stack No NeWs operator or process key returns the entire graphics state or graphics state
stack. Instead, individual components of the graphics state can be set and
inspected with POSTSCRIPT language operators and NeWS operator extensions. A
list of the NeWs graphic state operators and their syntax is provided in Appendix
A, “News Operators.” (The graphics state operators are listed in the miscellane-
ous category.)

The graphics state of the current process can be saved with the POSTSCRIPT
language gsave operator; gsave places the current graphics state on the process’
graphics state stack. The saved graphics state can be restored at a later time by
executing the POSTSCRIPT language grestore operator.

In addition to the standard save and restore operators, the NeWS currentstate
operator can be used to save the current graphics state as a NeWsS graphics state
object. The graphics state can be set to a given graphics state object with the

@ S u n Revision A of 11 June 1990

microsystems

62 News Programmer’s Guide

Creating a New Process

setstate operator. See Chapter 10, “News Operator Extensions,” for detailed (
descriptions of these operators. Note that a graphics state object cannot be
accessed as a dictionary; it can only be saved and restored.

To create a new process, you use the fork operator:

procedure fork process

The fork operator creates a new process that is a child of the process that exe-
cutes fork. The newly created child executes procedure in an environment that
is a copy of its parent’s environment. The fork operator does not start the child
process running; the new process must wait its turn to run. The child process
exits after executing procedure.

The next example forks a child process that executes a very simple procedure.
The procedure performs the following tasks:

1. Prints the process information associated with the child process.
2. Prints the contents of the child process’ operand stack.

3. Places the string (hello) on the child process’ operand stack.

4, Prints the child’s operand stack again.
5

Defines a key/value pair in the child’s userdict.

In an interactive psh session, each line of your code is executed immediately
when you press the key; the client connection process pauses and allows
other processes to run while it waits for you to type each line. In this example,
the child process runs immediately after you type fork pop and press (Return).

You can see that the child process has a different process identification number
than its parent. Because the child was not given a name, its name defaults to
Unnamed process. When the child prints its initial operand stack, you can
see that the child inherited a copy of its parent’s operand stack. The child then
adds the string (hello) to the top of its operand stack.

If you type currentprocess == now, you will see that the parent is the current
process again because the child exited after executing its procedure. If you then
access the parent’s dictionary stack for the new key defined by the child, you will
see that the key is found in the parent’s userdict. The child received a copy of

S u n Revision A of 11 June 1990

microsystems

]
4

Chapter 3 — Processes 63

Process Scheduling: Allowing
Other Processes to Run

its parent’s dictionary stack, so the child’s changes to its dictionary stack are seen
by the parent.

The parent and child do not share operand stacks. When you print the parent’s
operand stack, you do not see the string (hello) that the child placed on its
operand stack.

Each NeWs process that has not yet exited can be either in a runnable state or a
blocked state. A runnable process is ready to be run or is running. A blocked
process is not ready to be run; a blocked process is waiting for some specified
action to complete (for example, a blocked process might be waiting for another
process to exit or an event to be delivered).

The server can only run one NeWS process at a time, so it keeps a list of all runn-
able processes and runs each one in turn (round-robin style scheduling). A pro-
cess must be a cooperative client and periodically allow the next process to run,
either by executing the pause operator (described in detail below) or by blocking.
When a process executes the pause operator, the server gives all other runnable
processes a chance to run; the process that executes pause is still runnable, and in
fact, it will run immediately if no other runnable processes exist. If a process
continues to run for 15 seconds without pausing or blocking, the server suspends
the process and allows the next process to run.

A process may block in any of the following situations:
o The process is waiting for an event.

If a process executes the awaitevent operator and no event is currently in the
process’ local event queue, the process blocks until an event is delivered (see
Chapter 4, “Events,” for details).

o The process is waiting for file 1/O.

The server may temporarily block a process while the process is reading
from or writing to a file. Therefore, programmers should consider the possi-
ble synchronization problems when handling file I/O. See Section 3.3,
“Using Monitors for Synchronization,” for a description of how to use moni-
tors to ensure proper synchronization.

sun Revision A of 11 June 1990

microsystems

64 News Programmer’s Guide

Pausing

A\

o The process is waiting at a locked monitor. (

If a process attempts to lock a monitor that is already locked, the process
blocks until the monitor is unlocked; see Section 3.3, “Using Monitors for
Synchronization,” for details.

o The process is waiting for another process to exit.

When a process executes the sleep procedure or the waitprocess operator
(both described below), the process blocks until another process exits.

o The process is suspended.

A process can be blocked idefinitely with the suspendprocess operator or
the breakpoint operator. A suspended process cannot run until it is expli-
citly unblocked with the continueprocess operator. See Section 3.1.8,
“Suspending and Restarting Processes, ” for details.

The following subsections describe pause, waitprocess, and sleep.

You can use the pause operator to give all other runnable processes a chance to
run:

— pause —
The pause operator causes the server to stop running the current process, giving
all other runnable processes a chance to execute. (
The following example demonstrates the pause operator:
r 3
{
5
(child is running\n) print
pause
} repeat
} fork
5
(parent is running\n) print
pause
} repeat
S J

This example forks a child process that prints the string child is running and
then pauses. The child repeats this procedure 5 times. The parent also enters a
loop that repeats 5 times. The parent prints the string parent is running and
then pauses.

Type this example into a file and then give the filename as an argument to the
psh command as follows:

()

S ll n Revision A of 11 June 1990

microsystems

Chapter 3 — Processes 65

Waiting

When this example executes, the parent and child processes alternate between
running and pausing. Thus the following output is printed to the screen:

You can use the waitprocess operator to block the current process until another
process exits:

process waitprocess any

The waitprocess operator waits until process completes and then returns the
value that was on top of process’ operand stack at the time of completion. Until
process completes, the process that executes waitprocess is not runnable.

The next example demonstrates the waitprocess operator. Edit your file so that
it contains the following code:

(h

5{
(child is running\n) print
} repeat
(child is done)
} fork waitprocess pstack

5 {

(parent is running\n) print
} repeat
_ J

Instead of using pause, this example uses the waitprocess operator after forking
the child process. The waitprocess operator causes the child process to execute
until it completes its procedure. Then the parent process executes again. When
you run this example with psh, the following results are printed to the screen:

42% sun Revision A of 11 June 1990

microsystems

66 News Programmer’s Guide

Sleeping You can use the sleep procedure to temporarily block a process; this procedure is
provided by the POSTSCRIPT language files associated with the server (see
Chapter 11, “Extensibility through News Procedure Files”). The sleep procedure
is described below:

num sleep —

Blocks the current process for aum amount of time, where aum is in units of 216
milliseconds (65.36 seconds). Until the specified time has elapsed, the process is
not runnable.

The sleep procedure is implemented with the waitprocess operator. The sleep
procedure forks a process that exits after the specified amount of time; the sleep
procedure executes a waitprocess on this forked process, causing the current pro-
cess to block for the specified amount of time.

To demonstrate the sleep procedure, edit the code file you used in the previous
two examples. Remove the waitprocess operator and add the sleep procedure as

follows:
- 2
{
5
(child is running\n) print
.01 sleep
} repeat
} fork
5{
(parent is running\n) print
.01 sleep
} repeat
L)

When you run the above example, you will get the same results as you did with

pause, but more time will elapse between the printing of each line. (|
e%% Sun Revision A of 11 June 1990
microsystems

Chapter 3 — Processes 67

Examining the Process
Execution State

Destroying Processes

NOTE

Y

Each process has a read-only State key that indicates its current execution state.
The State key can have one of the following values:

runnable The process is running or is scheduled to be run.

dead The process is dead; the process has exited and no references to
it remain. (Note that this value will never be seen by the user.)

zombie The process has exited, but other processes still have references
to it.

input_wait The process is waiting for an event.

10_wait The process is waiting for file input/output.
mon_wait The process is waiting at a monitor.
proc_wait The process is waiting for another process to exit.

breakpoint The process is suspended, normally for debugging.

Note that the last five State values listed above represent various types of
blocked processes.

You can determine a process’ execution state by examining the value of its State
key. The following example forks a process that prints its State value and then
exits. While the child is running, its State is runnable. After the child process
exits, it is left on its parent’s operand stack. Because it is still referenced but has
exited, the child’s state is then zombie.

In an interactive psh session, you do not need the pause or waitprocess opera-
tor to allow a child process to run; each line of your code is executed immedi-
ately when you press the key, and there is an implicit pause when the
server is waiting for you to type.

When a process finishes executing its procedure, it exits. If no references to it
exist, its state is dead, and it is garbage collected. If references do exist, its state
is zombie, and the server sends a ProcessDied event to each process that has
expressed interest (see the subsection “ProcessDied Events” in Section 4.6,
“System-Generated Events,” of Chapter 4, “Events”).

You can kill a runnable process with the killprocess operator:

S u n Revision A of 11 June 1990

microsystems

68

News Programmer’s Guide

process Killprocess -

Sends a killprocesserror error to the specified process. If that process is
not able to catch or handle that error, the process exits. (The POSTSCRIPT
language stopped operator can be used to catch all errors encountered during a
given piece of POSTSCRIPT language code. The errordict dictionary can contain
code to handle any run time error. See Section 3.4, “Handling Errors,” for more
information.) ’

The following example demonstrates the killprocess operator. The example
forks a child process and lets the child run while the parent sleeps. The child
loops, printing the string hello to the screen. When the parent finishes its sleep,
it prints the child’s State, which is runnable. The parent then kills the child pro-
cess and prints the child’s State again. Because the parent still has a reference to
the child process, the child’s State is zombie. To remove the reference, the
parent undefines the child’s name from its userdict; the child process can then be
garbage collected by the server. You can type this example into a file and run it
with psh.

(A
/ChildProcess {
{ (hello\n) print pause } loop

} fork def

0.001 sleep
ChildProcess /State get ==

ChildProcess killprocess
pause
ChildProcess /State get ==

L userdict /ChildProcess undef

When you run this example, the following lines are printed to the screen:

You will often want to kill a whole process group at once; see Section 3.2,
“Creating and Manipulating Process Groups,” for details.

sun Revision A of 11 June 1990

microsystems

(

Chapter 3 —Processes 69

Suspending and Restarting
Processes

In addition to temporarily pausing, waiting, or sleeping, a process can
indefinitely suspend itself or another process. The suspendprocess operator
suspends a specified process:

process suspendprocess —

This operator suspends process. The process will not run again until another pro-
cess executes continueprocess on it.

A process can restart a suspended process with the continueprocess operator:

process continueprocess —
This operator restarts process, which had been suspended.

A process might want to suspend itself after asking another process for informa-
tion; the other process would restart the suspended process after sending the
requested information.

The breakpoint operator can be used to suspend the current process:

— breakpoint —
This operator suspends the current process. It is usually used for debugging.

The following example demonstrates the suspendprocess and continueprocess
operators. This example creates a canvas and a togglecolor procedure that alter-
nates painting the canvas black and white. The example forks a child process
that executes the togglecolor procedure. When you type this example in an
interactive psh session, the child process runs, causing the canvas to flash.
When you suspend the child by typing ChildProcess suspendprocess, the
canvas stops flashing. You can restart the child by typing ChildProcess con-
tinueprocess.

un Revision A of 11 June 1990

microsystems

70 News Programmer’s Guide

Using the psps Utility

3.2. Creating and
Manipulating Process
Groups

You can use the psps utility to print information about all the processes
currently in the server. Just type psps to a shell prompt; the utility prints eight
items of information for each process, including the process ID, state, priority,
name, and size of the execution, operand, and dictionary stacks. See the manual
page for psps in the X11/News Server Guide for a more detailed description of
the information printed by psps.

As discussed previously, NeWsS processes exist in a process tree. Within the tree,
the processes are grouped into process groups. When a child process is forked, it
is placed in its parent’s process group. A process can be removed from its pro-
cess group and placed in its own, new process group with the following operator:

process newprocessgroup —

Removes process from its process group, and puts process in a new process
group of its own. Children forked by process will be in the new process group.

You can inspect the processes in a process group with the getprocessgroup (
operator:

@?@ Ssun Revision A of 11 June 1990

microsystems

Chapter 3 — Processes 71

process getprocessgroup array
null getprocessgroup array

If process is specified as the argument, getprocessgroup returns an array of all
the processes in the process group of process; if null is specified as the argument,
getprocessgroup returns an array of all the processes in the current process’s
process group. If process is a zombie process, it is the only process in the array
because zombie processes are not associated with any process group. (If a pro-
cess becomes a zombie, it is removed from its process group.)

The following example demonstrates the newprocessgroup and getprocess-
group operators:

4 A

{ (hello! \n) print } fork pop
{ (goodbye!\n) print } fork
getprocessgroup ==
pause

} fork newprocessgroup

pause
. J

This example forks a child process and places it in a new process group. The
child process forks two children of its own; these two children are in the same
process group as their parent. The getprocessgroup operator is used to return
the processes in the newly formed process group.

When you type this example into a file and run it with psh, the following results
are printed to the screen:

One of the main advantages of using process groups is that you can kill all the
processes in one process group with the following operator:

process killprocessgroup —
This operator kills process and all other processes in the same process group.

The getprocesses operator can be used to return an array of all processes
currently in the server:

D
@:@ sun Revision A of 11 June 1990

microsystems

72 News Programmer’s Guide

— getprocesses array (j

This operator returns an array of process groups and zombie processes. Each
process group is returned as an array that contains all the processes in the process
group. Each zombie process is returned as an array containing only itself.

The following example demonstrates the killprocessgroup and getprocesses

operators:
()
{
{ (hello!\n) print pause } loop
} fork pop
{
{ (goodbye! \n) print pause } loop
} fork pop
pause

} fork dup newprocessgroup

0.001 sleep

getprocesses ==
killprocessgroup

pause

(processgroup killed \n) print
getprocesses ==

| A

This example is similar to the previous example, except that the two grandchild
processes both enter loops. Instead of waiting until the grandchild processes exit
their procedures, the killprocess operator is used to kill all the process in the
newly formed process group. The getprocesses operator is used to show the
processes that exist before and after the killprocess operator is executed.

When you type this example into a file and give the filename as an argument to
the psh command, the following results are printed to the screen:

contents of the arrays will vary depending on the applications and tools you are

The arrays returned by getprocesses are not enumerated in the box above; the (
running when you execute this example (the getprocesses operator returns all the

@ S u n Revision A of 11 June 1990

microsystems

Chapter 3 — Processes 73

3.3. Using Monitors for
Synchronization

processes currently running in the server). You will notice that the process group
you created in this example is listed by getprocesses before, but not after, you
kill the process group with killprocessgroup.

Note that when a connection to the server is established, the server places the
client’s connection process in its own process group. When the connection pro-
cess reaches the end of file on the connection, its process group is killed with
currentprocess killprocessgroup.

When two processes access the same data structure, you must ensure proper syn-
chronization. For example, if two processes are writing to the same file, you
must ensure that one process completes its changes to the file before the other
process begins to make its changes to the file. Synchronization problems may
occur because the server may block a process at any time during a file I/O opera-
tion; the changes made by the first process could still be in progress when the
server blocks the process, allowing the second process to run.

The following example illustrates this situation. Two processes are forked, and
both processes print strings to the standard output file. One process prints ones;
the other process prints zeroes. Neither process pauses, so you might expect one
process to run to completion before the other process starts. However, the server
periodically blocks these processes while they are writing to the file, causing
ones and zeroes to be mixed in the output that is printed to the standard output
file.

{)

5000 { (1) print } repeat
} fork

5000 { (0) print } repeat
} fork

.01 sleep
\ J

When you run this example, the output looks something like the following:

Sun Revision A of 11 June 1990

microsystems

74

News Programmer’s Guide

To allow the first process to finish printing all its ones before the second process
starts printing zeroes, you must use a monitor. A monitor is a NeWs object that
can be in one of two states: locked or unlocked. A monitor can be accessed by
only one process at a time; thus, monitors can be used to implement synchroniza-
tion.

You create a monitor with the following operator:

— createmonitor monitor (

The createmonitor operator creates a new monitor object and leaves it on the -
operand stack.

To use a monitor, you execute the following operator:

monitor procedure monitor —

The monitor operator executes procedure with monitor locked. At any given
time, only one process may have monitor locked. If a process attempts to lock a
monitor that is already locked, the process blocks until the monitor is unlocked.

You can use the monitorlocked operator to inspect the state of a monitor object:

monitor monitorlocked boolean
This operator retumns true if monitor is locked; otherwise, it returns false.

The following example demonstrates the use of monitors. The code is the same
as the previous example, except that each forked process locks a monitor before
entering the loop that prints characters to the screen.

un Revision A of 11 June 1990

microsystems

Chapter 3 — Processes 75

/mymonitor createmonitor def

{
mymonitor {
5000 { (1) print } repeat
} monitor
} fork

{
mymonitor {
5000 { (0) print } repeat
} monitor
} fork

.01 sleep
§ J

When you run this example with psh, the following output is printed to the
screen:

This time, all the ones are printed first, followed by all the zeroes. The first pro-
cess locks a monitor before starting to print ones. When the server blocks the
first process, the second process tries to lock the monitor so that it can execute its
procedure (printing zeroes), but the monitor is already locked. Thus, the second
process blocks. The server gives the first process a chance to run again. Until
the first process unlocks the monitor by finishing printing its ones, the second
process cannot run. After the first process finishes and the monitor is unlocked,
the second process locks the monitor and prints zeroes. Thus, the ones and
zeroes are not mixed in the resulting output.

This example has important implications for client applications. Whenever two
or more processes access a shared data structure, monitors should be used. For
example, monitors are necessary when writing results from the server to the
client’s input connection file (see Chapter 6, “C Client Interface,” for details).

&%4 sSsun Revision A of 11 June 1990

microsystems

76 News Programmer’s Guide

(

3.4. Handling Errors Error handling in the X11/NeWs server is much like standard POSTSCRIPT
language error handling, except that each process has its own, private errordict
and $error located in systemdict. Accessing the errordict and $error keys in
systemdict is equivalent to accessing these same keys in the current process.
Each process dictionary has the following read/write keys:

o errordict

The value of this key is a dictionary that maps each type of error the process
might receive to an error handler (a procedure). Each client connection pro-
cess receives a copy of the NeWs listener’s errordict, which by default maps
each error that the server can generate to the defaulterroraction operator
(described below). When a child process is forked, it shares its parent’s
errordict.

a S$error

The value of this key is a dictionary that contains information about the last
error that the process encountered. The dictionary is filled by the defaulter-
roraction operator when an error occurs. The $error dictionary is similar to
the POSTSCRIPT language $error dictionary, but it has one additional key
named message; if the value of the process’ ErrorDetailLevel key is greater
than zero, message contains a string that describes the context of the error.
If the defaulterroraction operator has not been executed, the value of

$error is null. (

The defaulterroraction operator is described below.

any errorname defaulterroraction —

This operator produces an $error dictionary for the current process as if the error
specified by errorname had been encountered while executing the object any.
The operator then executes the POSTSCRIPT language stop operator.

You can control the amount of information written in the $error dictionary with
a process’ ErrorDetailLevel key:

o ErrorDetailLevel

This key’s value is an integer that controls the amount of detail that is
included in the default error handler’s error report. Setting ErrorDetail-
Level to 0 (the default) produces a minimum of error reporting. Setting it to
1 records a more descriptive message in the $error dictionary, and setting it
to 2 records the contents of the dictionary, execution, and operand stacks.

Each process also has an ErrorCode key that contains the current error code of
the process. The error code can be any of the standard POSTSCRIPT language
error codes or one of the News error codes. See Chapter 9, “News Type Exten-
sions,” for a list of all the error codes and a description of the NeWs error codes.

éz\% sun Revision A of 11 June 1990

microsystems

Chapter 3 — Processes 77

3.5. Controlling Dictionary

Sharing Between
Parent and Child
Processes

When you fork a child process, the child inherits its parent’s dictionary stack.
Most of the time, this default behavior is desirable. However, you may occasion-
ally want to prevent a child process from inheriting its parent’s userdict. The
following code fragment demonstrates one way in which you can keep the
parent’s userdict private:

r)
systemdict /myuserdict userdict put % Save userdict as myuserdict.
end % Pop it off of dict stack.
growabledict begin % Push a new dict on stack.
{

% Fork child process that now has
% the new dictionary as its
% userdict.

} fork
end % Pop off child’ s userdict.
myuserdict begin % Push parent’ s userdict back on stack.
systemdict /myuserdict undef % Remove reference to myuserdict.
. J

Note that this example uses the growabledict procedure, which is provided by
the POSTSCRIPT language extensibility files loaded when the server is initialized.
The growabledict procedure creates a large, growable dictionary and leaves it on
the operand stack.

&{?& S u n Revision A of 11 June 1990

microsystems

78

News Programmer’s Guide

Revision A of 11 June 1990

Events

An event is an object that represents a message between NeWs processes. An
event can be generated by the server or by any NeWs process. Events that ori-
ginate from the server are known as system-generated events; events that ori-
ginate from NeWS processes are known as process-generated events.

An event can be delivered to any NeWs process. Events can transmit any kind of
information and thus serve as a general interprocess communication mechanism.
Some system-generated events report user manipulation of input devices and are
therefore known as input events.

An event is implemented as a NeWs type extension that can be accessed as a dic-
tionary. A NeWs process can create an event object with the createevent opera-
tor. The newly created event dictionary contains keys with system-supplied
names and initial values of null or zero. The process can then give the desired
values to the keys and send the event into distribution.

A process sends an event into the server’s distribution mechanism with the
sendevent operator. System-generated events are automatically sent into distri-
bution immediately after they are generated. The server’s distribution mechan-
ism accumulates events in a global event queue and distributes a copy of each
event to NeWs processes that are interested in receiving the event.

A process indicates its interest in receiving a certain type of event by construct-
ing that type of event and passing it as an argument to the expressinterest opera-
tor. An event object used in this way is known as an interest. A process’
interests serve as templates that tell the server what types of events the process
wants to receive.

This chapter describes NeWs events, event operations, and the server’s event dis-
tribution mechanism.

The eventtype Extension Each event is an object of type eventtype, which is a NeWS extension to the
POSTSCRIPT language. Each eventtype object can be accessed as a POSTSCRIPT
language dictionary. An event dictionary contains keys that describe the follow-
ing properties (the keys are listed in parentheses):

o The identity of the event (Action, Name, Serial, Process)

o The location or destination of the event (Coordinates, XLocation, YLoca-
tion, Canvas)

éé:z? S u n 79 Revision A of 11 June 1990

microsystems

80 News Programmer’s Guide

o The time after which the event can be distributed (TimeStamp,
TimeStampMS)

o Whether the event is in the server’s global event queue (IsQueued)
o The interest that matched the event (Interest)

o The characteristics of an interest event (Exclusivity, IsInterest, IsPreChild,
Priority, Synchronous)

o The keyboard keys and mouse buttons that were down at the time the event
was generated (KeyState)

o Additional client-specific information included in the event (ClientData)
Most of the event keys are discussed in this chapter; a description of each key is
provided in Chapter 9, “News Type Extensions.”

Event Operators The News language includes a variety of operator extensions to be used on
events. The event operators provide the following functionality (the operator
names are listed in parentheses):

o Creating events (createevent)
o Distributing events (sendevent, deliverevent)

o Enabling and disabling reception of events (expressinterest, revokein-

terest) (

o Retrieving an event from the process’ local event queue (awaitevent)

o Manipulating the event distribution mechanism (blockinputqueue, recal-
levent, redistributeevent, unblockinputqueue)

o Counting the number of events in a process’ local event queue (countinput-
queue)

o Returning the keystate, time, and coordinates of the last event distributed
from the global event queue (lasteventkeystate, lasteventtime, lasteventx,
lasteventy)

o Creating canvas crossing events (postcrossings)

o Creating and returning an event-logger process (seteventlogger,
geteventlogger)

o Setting and inspecting the event synchronization state of a process (setcom-
patinputdist, getcompatinputdist)

Most of the event operators are described in this chapter. A description of all
NeWs operators is provided in Chapter 10, “News Operator Extensions.”

4.1. Overview of Event The distribution of an event consists of five basic steps. The following figure is a
Distribution schematic representation of these five event distribution steps. The figure shows
one lightweight process sending an event and another lightweight process receiv-
ing it. Each of these five steps occurs at a separate instant in time, but all five (
steps are shown on the same diagram for compactness. Therefore, all six E’s

Q?g Ssun Revision A of 11 June 1990

microsystems

Chapter 4 — Events 81

Figure 4-1

shown in the diagram represent the same event at different times.

The five steps in an event's distribution

/

N

\ 2. Expressing Interest

1. Creating
\ 3. Sending 4. Distributing | 5. Awaiting
E] E|—
| Hn
™ |E Han
|| a |—{ operand
operand L [E| stack
stack global local
event event
/ queue Qleue J
lightweight process lightweight process

The five steps in an event’s distribution are described below.

1.

Sun

Creating the event.

An event is created by the server or by any NeWS process. A process creates
an event with the createevent operator.

Expressing interest in the event.

Before a process can receive an event, the process must express interest in
that type of event with the expressinterest operator.

Sending the event to the server’s global event queue.

A process sends an event to the global event queue with the sendevent
operator. System-generated events are automatically sent to the global event
queue after the server creates them. Sending an event to the server’s global
event queue is commonly referred to as sending the event into distribution or
sending the event into the event distribution mechanism.

When an event is sent to the global queue, it is sorted into the queue accord-
ing to the value of its TimeStamp key; events with smaller timestamp
values are placed closer to the head of the queue. When the server generates
an event, the current time is stored in the event’s TimeStamp key. Other
events have whatever TimeStamp value is specified by the process that
creates them. An event is never distributed before the time indicated in its
TimeStamp key. Therefore, processes can specify that an event be distri-
buted at some time in the future. For more information about setting an
event’s TimeStamp, see the subsection “Specifying the Time of an Event’s
Distribution” in the next section.

In the figure above, the event represented by E is sorted into the middle of
the global event queue (step 3). Then the events above E are distributed,

Revision A of 11 June 1990

microsystems

82 News Programmer’s Guide

leaving E at the head of the global event queue. When the current time is (
equal to or larger than E’s TimeStamp, the server distributes E to interested
processes (step 4).

4. Distributing the event to the local event queues of interested processes.

Distribution of an event is initiated whenever the event at the head of the
global event queue has a TimeStamp that is less than or equal to the server’s
current time. When this occurs, the event is removed from the queue and is
compared with the interests to locate matches. An event is not necessarily
compared to all the interests; the value of the event’s Canvas key deter-
mines which interests are compared to the event. (The search procedure is
described in detail in Section 4.5, “Event Distribution: Matching an Event to
Multiple Interests.”)

When an event is compared to an interest, the server attempts to match four
of the dictionary keys in the event to the same four keys in the interest: the
Name, Action, Process, and Serial keys must match according to specific
rules before an interest is said to match an event. (The matching rules are
given in Section 4.3, “Rules for Matching Events to Interests.”)

When a matching interest is found, a copy of the event is distributed to the
process that has the matching interest; the copy is placed on the local event
queue of the process. A process’ local event queue is a first-in, first-out

queue. If a process has more than one matching interest, it receives one

copy of the event for each matching interest. (

This distribution procedure allows the server to distribute a single event to
many processes that are interested in that event. If a matching interest has
its Synchronous key set to true or the process that has a matching interest
has executed the setcompatinputdist operator to set its event synchroniza-
tion mode to true, the process is given a chance to run before the next event
is removed from the global event queue. Otherwise, the server continues to
distribute events.

In the figure above, the server finds that the second process has a matching
interest for event E; therefore, the server distributes a copy of E to the local
event queue of the second process. The figure depicts E being placed at the
bottom of the process’ local event queue. After the process retrieves any
events that are ahead of E in the queue, E is then at the head of the queue,
ready to be retrieved.

5. Retrieving the event from the local event queues of processes with matching
interests.

To retrieve a delivered event from its local event queue, a process must exe-

cute the awaitevent operator. If an event is present on the process’ local

event queue, the awaitevent operator removes the event from the local

queue and puts a copy of the event on the process’ operand stack. The pro-

cess can examine the keys in the event dictionary to determine what action it

should take. If no event is waiting on the process’ local event queue when (\
the process executes awaitevent, the process blocks until an event is ‘
delivered.

D
é{i@ sun Revision A of 11 June 1990

microsystems

Chapter 4 — Events 83

4.2. Basic Event
Operations

Creating an Event

If a process receives an event that has matched a Synchronous interest, the
process is responsible for unblocking the global event queue with the
unblockinputqueue operator. See Section 4.7, “Synchronizing Input with
Multiple Processes,” for more information about event synchronization.

This section discusses basic event operations such as creating and sending
events, expressing and awaiting interests, setting and inspecting an event’s loca-
tion, recalling events, and revoking interests.

You can use the psh command to run the examples in this chapter. The first two
examples in this section must be typed in an interactive psh session. Be sure to
type all the code sequentially from the start to the quit of each interactive psh
session. To run most of the other examples in this chapter, you can type the
example into a file and then give the filename as an argument to the psh com-
mand as follows:

See the psh manual page in the X11/News Server Guide for more information
about psh.

To create an event, you use the createevent operator:

— createevent event

This operator creates an event object and places it on the top of the operand stack
for the current process. The event keys with non-numeric values are initialized
to null, and the event keys with numeric values are initialized to zero.

The following example creates an event and specifies values for its Name and
Action fields. Each of these fields can take any type of NeWs object as its value.
Here, each value is specified as a string.

An event’s Name and Action fields are two of the four fields that the server uses
to match the event to interests; for an interest to match the example event created
here, the interest’s Name and Action must contain the same strings as the event.

S ll n Revision A of 11 June 1990

microsystems

84 News Programmer’s Guide

Expressing Interests

Copying an Event Before
Expressing Interest

Changing and Reusing Interests

Before a process can receive an event, it must express an interest in receiving
that type of event. To express an interest, you use the expressinterest operator:

event expressinterest —
event process expressinterest —

This operator allows all events that match the event argument to be received by
the specified process or by the current process if no process argument is
specified. The event is known as an interest. The process for which the interest
is expressed is stored in the interest’s Process key. The interest is added to the
array of interests stored in the process’ Interests key. If event is already an
active interest, the call to expressinterest is ignored.

An interest’s type is still eventtype. Interests can be distinguished from other
events by the IsInterest key; when an event is expressed as an interest, the server
sets the event’s IsInterest key to true.

Although events and interests use identical structures, the server does not allow
you to send into the event distribution mechanism an event that has already been
expressed as an interest, nor does it allow you to express interest in an event that
has been sent into the event distribution mechanism but not yet delivered.

If you want to send an event into distribution and also express interest in it, you
can perform the following steps:

1. Create the event.

2. Make a copy of the event.

3. Express interest in the copy.

4. Send the event into distribution.

To make a copy of an event, you can create a new, empty event and then use the
POSTSCRIPT language copy operator as follows:

The values of an interest’s Name and Action keys can be changed after the
interest has been expressed; the interest continues to be expressed and assumes
the new Name and Action values that you have specified. These new values are
used in all future comparisons with distributed events.

However, none of the other key values can be changed once an interest has been
expressed. If you attempt to change another key’s value, an invalidaccess

S u n Revision A of 11 June 1990

microsystems

(

(

Chapter 4 — Events 85

error is generated and all the key values remain the same. To change any of the
other key values, you must revoke the interest (using the revokeinterest opera-
tor) and then change and re-express the interest. See the subsection ‘“Recalling

Events and Revoking Interests” for details.

Sending an Event into After an event has been created, it can be sent into the server’s event distribution
Distribution mechanism with the sendevent operator:

event sendevent —

This operator sends event into the server’s distribution mechanism; it places
event in the server’s global event queue to be distributed to interested processes.
The event is sorted into the global event queue according to the value of its
TimeStamp key, which should be given a value by the process that creates the
event.

The server removes an event from the head of the global event queue when the
event’s TimeStamp value is less than or equal to the server’s current time.
When an event is removed, it is compared with interests to locate matches.
When a match is found, a copy of the event is distributed to the process that has
the matching interest; the copy is placed on the local event queue of the process.

In the following example, the previously defined event is sent into the event dis-
tribution mechanism. Since the value of the event’s TimeStamp is zero by
default, the event is immediately removed from the global event queue. A copy
of the event is successfully matched to the interest previously expressed by the
current process. Therefore, a copy of the event is placed on the process’ local
event queue.

- % event queue.

Awaiting Events To retrieve the events from a process’ local event queue, you use the awaitevent
operator:

— awaitevent event

Retumns event from the process’ local event queue. When no event is contained
in the process’ local event queue, this operator causes the process to block; when
an event arrives in the local event queue, awaitevent places the event on top of
the process’ operand stack and unblocks the process. If an event is waiting on
the local queue when awaitevent is called, the event is immediately placed on
the process’ operand stack.

The following example executes awaitevent to retrieve the event that was placed
in the process’ local event queue in the previous example. This example then
prints the values of the event’s Name and Action keys.

@ Ssun Revision A of 11 June 1990

microsystems

86 News Programmer’s Guide

Using Arrays in an Interest’s
Name, Action, or Canvas Key

To allow an interest to match more than one type of event, you can use an array
of values for the interest’s Name, Action, or Canvas key. An array in one of
these keys allows the interest to match an event that has any of the array values
in the event’s corresponding key.

For example, suppose the Name key of an interest has the following array as its
value:

[(Hello) (GoodBye)]

This interest can match an event that has either the string (Hello) or (GoodBye)
as the value of its Name key.

The following example creates an interest with an array in its Name key,
expresses the interest, and then sends two matching events; each matching event
has a different value in its Name key. The events are then retrieved from the
local event queue, and their Name values are printed to the screen. Try typing
this example into an interactive psh session.

Revision A of 11 June 1990

Chapter 4 —Events 87

Setting and Inspecting an
Event’s Location

The eventtype dictionary contains XLocation and YLocation keys, which hold
the x and y coordinates, respectively, at which the event occurred. The eventtype
dictionary also contains a Coordinates key, which holds an array of length two;
the first array element is the event’s x coordinate, and the second array element is
the event’s y coordinate. Although it is not usually necessary, a process can set
these keys before sending an event into distribution. The server sets these keys
before sending most system-generated events; the server sets an event’s coordi-
nates to the location of the mouse pointer at the time the event is generated.
When the event coordinates are retrieved, they are given with respect to the
current coordinate system. (Thus, if an event’s coordinates are retrieved both
before and after changing the current coordinate system, the coordinate numbers
will be different, but they will correspond to the same position on the screen.)

The following example demonstrates the use of the XLocation and YLocation
keys. This example uses system-generated mouse button events. When a mouse
button is pressed, the server generates an event that has the value of its Name key
set to /LeftMouseButton, /MiddleMouseButton, or /RightMouseButton,
depending on which mouse button is pressed; the value of the Action key is set
to /DownTransition. When the mouse button is released, another event is gen-
erated with the same Name and with an Action of /UpTransition. Mouse events
are described in detail in Section 4.6, “System-Generated Events.”

This example creates and maps a canvas, and then it expresses interest in left and
right mouse button presses on that canvas. The interest has an array in its Name

sun Revision A of 11 June 1990

microsystems

88

News Programmer’s Guide

field; the array contains the names /LeftMouseButton and /RightMouseButton,
allowing this interest to match either left or right button events.

After expressing interest in left and right button presses, the example enters an
awaitevent loop. When a left button press event is returned, the x and y coordi-
nates of the event are retrieved. The example then draws a circle centered about
the (x, y) location of the event. The loop is exited when the right mouse button is
pressed.

(1\
/MyCanvas framebuffer newcanvas def % Create MyCanvas.
25 25 translate

0 0 250 250 rectpath

MyCanvas reshapecanvas

MyCanvas /Mapped true put

MyCanvas setcanvas

1 fillcanvas

createevent dup begin % Create interest.
/Name [/LeftMouseButton /RightMouseButton] def
/Action /DownTransition def
/Canvas MyCanvas def
end expressinterest % Express interest.
% Print instructions.
(Press the left mouse button over MyCanvas to draw some \n) print
(circles. Press the right mouse button to quit the loop. \n) print

4 setlinewidth 0 setgray

{
awaitevent begin % Retrieve event.
Name dup
/LeftMouseButton eq { % If left press,
XLocation YLocation 20 0 360 arc stroke % draw circle.
}if
end % If right press,
/RightMouseButton eq {exit} if % exit.
} loop
\ : _

Run this example with psh and draw some circles by clicking the left mouse
button over the canvas. The following figure illustrates an example of some cir-
cles drawn in this way:

S u n Revision A of 11 June 1990

microsystems

(

(

Chapter 4 — Events 89

Figure 4-2

Specifying the Time of an
Event’s Distribution

W

Q

Circles drawn in the canvas

The eventtype dictionary contains a TimeStamp key, whose value indicates the
time after which the event may be removed from the global event queue for com-
parison with interests. When an event is sent to the global event queue, it is
sorted into the queue according to its TimeStamp value; events with smaller
timestamps are placed closer to the head of the queue. An event cannot be
removed from the global event queue before the current time is equal to the time
specified by the event’s TimeStamp value. Thus, when an event contains a
TimeStamp value that specifies a time in the future, the event must remain in the
global event queue until the specified time is reached. The TimeStamp key’s
value is measured in units of 2'® milliseconds (65.5 seconds).

The server also offers another interface to an events’s timestamp: the eventtype
dictionary’s TimeStampMS key. This key’s value is similar to the TimeStamp
key, except that it is given in units of milliseconds instead of 2!® milliseconds and
is an integer instead of a real number. The TimeStampMS key is useful for pre-
cise integer arithmetic with event timing.

Before you send an event into distribution, you can set the value of either the
TimeStamp key or the TimeStampMS key. The following example demon-
strates how the TimeStamp value can be used:

sun Revision A of 11 June 1990

microsystems

90

News Programmer’s Guide

g
/MyCanvas framebuffer newcanvas def % Create MyCanvas.)

25 25 translate

0 0 250 250 rectpath

MyCanvas reshapecanvas

MyCanvas /Mapped true put

MyCanvas setcanvas

1 filicanvas

createevent dup begin % Create interest in timer events
/Name [/Timer /RightMouseButton] def % and right button presses.
/Canvas MyCanvas def

end expressinterest % Express interest.
/delay .007 def % Initialize variables.
/color O def

(Watch the canvas change color.\n) print % Print instructions.
(Click right mouse button to quit. \n) print

{

createevent dup begin % Create timer event.
/Name /Timer def
/Canvas MyCanvas def
/TimeStamp currenttime delay add def

end sendevent % Send timer event.
awaitevent /Name get % Retrieve event.
/RightMouseButton eq { exit } if % If right button event, exit.
color fillcanvas % If timer event, paint MyCanvas.
/color 1 color sub def % Toggle color.
} loop
- J

This example creates and maps a canvas, and then it expresses interest in timer
events and right mouse button events for that canvas. Two variables are initial-
ized: a delay variable is initialized to approximately one-half of a second (.007
in timestamp units), and a color variable is initialized to O (black).

The main loop starts by sending a timer event with a TimeStamp equal to the
current time plus the delay. The code then executes awaitevent. When an event
is returned, the value of its Name is placed on the operand stack. If the event is a
right mouse button event, the exit operator is executed. If the event is a timer
event, the previously created canvas is painted with color. The color is then tog-
gled between black and white. While the loop executes, the canvas changes
color from white to black to white to black.

Run the example and watch the canvas change color. Then edit the code file to
change the value of the delay variable to be .014 instead of .007. Run the exam-
ple again and watch the canvas change color at a slower rate. Each timer event is
released from the global event queue when the current time equals its
TimeStamp, so the canvas changes color more slowly after the delay is
increased.

sun Revision A of 11 June 1990

microsystems

Chapter 4 —Events 91

Specifying Additional Event
Information

Recalling Events and
Revoking Interests

4.3. Rules for Matching
Events to Interests

Rules for Matching Name And
Action Key Values

4

The eventtype dictionary contains a ClientData key that can hold any type of
NeWs object. This key is useful if you need only one additional key in the event
dictionary. Although new keys can be added to any NeWs magic dictionary, the
addition of the first new key uses a significant amount of memory. If you only
need to use one additional key, this memory cost can be avoided by using the
ClientData key.

To recall an event from distribution, you can use the recallevent operator:

event recallevent -

Removes event from the server’s global event queue to prevent it from being dis-
tributed. This operator is only effective if event has not yet been distributed.
This operator is useful when you are waiting for several mutually exclusive
events; when the first event occurs, you can immediately recall the other events.
For example, you might use recallevent to recall a timer event.

To revoke an interest, you can use the revokeinterest operator:

event revokeinterest —
event process revokeinterest —

Revokes interest in event, where event is an interest that has been previously
expressed. The optional process argument specifies the process on whose behalf
the interest is revoked; if no process is specified, interest is revoked on behalf of
the current process. If you specify a process argument that is not the same as the
value of the interest’s Process key, you will receive an invalidaccess error.
Likewise, if you specify no process argument, but the current process is not the
same as the Process value of the interest, you will receive an invalidaccess
error.

To determine whether an event matches an interest, the server examines the
values of the Name, Action, Process, and Serial dictionary keys. For each of
these keys, the distributed event’s value is compared to the interest’s value;
values are considered to match according to a set of rules enforced by the server.
When the values of all four of these keys match, the event and interest them-
selves match. This section summarizes the rules used to match events to
interests.

The Name and Action keys can contain values of any type. For an event to
match an interest, the Name and Action keys must satisfy the following require-
ments:

o Ifthe interest’s key value is null, it matches anything in the key of the event.

o Ifthe interest’s key value is an array, at least one of the array’s elements
must be identical to the event’s key value. If the interest’s key value is a
dictionary, at least one of the dictionary’s keys must be identical to the
event’s key value.

o Ifthe interest’s key value is anything other than an array, a dictionary, or
null, it must be identical to the event’s key value.

S U n Revision A of 11 June 1990

microsystems

92 News Programmer’s Guide

o Ifthe interest’s key value is the name AnyValue or is an array or dictionary (
that contains AnyValue, it matches anything in the key of the event. If a
dictionary contains both AnyValue and a value identical to the event’s key
value, the identical value is used as the match. (Note that AnyValue can be
used as the name of a dictionary key, whereas null cannot be used as a key
name.)

o Ifthe event’s key value is null or AnyValue, it matches only null or
AnyValue in the corresponding key of the interest.

Rules for Matching Process The value of an event’s Process key can be either a reference to a specific pro-

Key Values cess or null. An interest’s Process key value is never null; it is always set by
expressinterest to be the process for which the interest is expressed. For an
event to match an interest, the Process keys must satisfy the following rules:

o . Ifthe event’s Process key value is null, it matches anything in the Process
key of the interest. Thus, an event with null in its Process key can be
delivered to any process that has a matching interest.

o Ifthe event’s Process key value is a specific process, this value must be
identical to the value of the interest’s Process key. Thus, an event with a
process specified in its Process key may only be delivered to that specified
process.

Rules for Matching Serial Key The value of an event’s Serial key, which is read-only, is used to indicate the (
Values order in which events are removed from the global event queue. When an event
is removed from the head of the global event queue, the value of its Serial key is
set to a numeric value given by a monotonically increasing counter (the counter
is incremented each time an event is removed from the global queue). If the
event is then successfully matched with an interest, the interest’s Serial key is
automatically set to the value that the event’s Serial key contains. The server
allows an event to match an interest only if the interest’s serial number is less
than that of the event; this restriction prevents an event passed to the redistribu-
teevent operator from repeatedly matching the same interests.

For a description of the redistributeevent operator, see the subsection
“Exclusive Interests” in Section 4.5, “Event Distribution: Matching an Event to

Multiple Interests.”
4.4. Post-Match When an interest has a dictionary as the value of its Name, Action, or Canvas
Processing: Specifying key, the server performs some post-match processing when a matching event is
a Dictionary for an found; the type of post-match processing depends on whether the event’s key
Interest’s Name, value matches a key with an executable or non-executable value in the interest’s

Action, or Canvas Key dictionary. These two cases are described in the next two subsections.

Specifying Non-Executable If the dictionary value associated with the interest’s matching key is non-
Dictionary Values executable, the value is stored in the corresponding field of the event copy (that
is, in the Name, Action, or Canvas field). The copy of the event is then placed
in the local event queue of the process that had the matching interest. When the
event is returned with awaitevent, the newly substituted key value can be -
retrieved.

éﬁ:?? sun Revision A of 11 June 1990

microsystems

Chapter 4 —Events 93

This post-match behavior for non-executable dictionary values is demonstrated

by the following example:
r 3
createevent dup begin % Create an event.
/Name 3 dict dup begin % Create dict for the Name field.

/LeftMouseButton (Left Button Went Down) def
/MiddleMouseButton (Middle Button Went Down) def
/RightMouseButton (Right Button Went Down) def

end def
/Action /DownTransition def % Make Action be button presses.
/Exclusivity true def
end expressinterest % Express interest in the event.
createevent dup begin % Create an event.
/Name 3 dict dup begin % Create dict for the Name field.

/LeftMouseButton (Left Button Went Up) def
/MiddleMouseButton (Middle Button Went Up) def
/RightMouseButton (Right Button Went Up) def

end def
/Action /UpTransition def % Make Action be button releases.
/Exclusivity true def

end expressinterest % Express interest in the event.

% Print instructions.
(Try pressing the left and middle mouse buttons. \n) print
(Then press the right mouse button to exit. \n) print

{

awaitevent
/Name get dup (Right Button Went Up) eq {
== exit

H

} ifelse
} loop

In this example, two interests are created: one interest in /UpTransition mouse
button events and one interest in /DownTransition mouse button events. Each
interest has a dictionary as the value of its Name key. Each Name dictionary
contains three entries (one for each mouse button). Each entry has the Name of a
mouse button event as the dictionary key and a string as the associated value; the
string simply describes which button was pressed or released.

The Exclusivity key of each interest is set to true so that the interests are
exclusive; an event that matches an exclusive interest is not compared to any
other interests. For more information about exclusive interests, see the subsec-
tion “Exclusive Interests” in Section 4.5, “Event Distribution: Matching an Event
to Multiple Interests.”

After expressing these two interests, this example enters an awaitevent loop.
When an event is retrieved from the process’ local event queue, the event’s
Name value is printed to the screen. If the event’s Name value is (Right Button

f\%f un Revision A of 11 June 1990
N\

icrosystems

94 News Programmer’s Guide

Went Up), the loop is exited. (

Run this example with psh and then press the left and middle mouse buttons.
Each time you press or release a mouse button, a message is printed to the screen
in your psh session. To exit the loop, press and release the right mouse button.

Notice that for each matching button event, the string assigned in the interest’s
Name dictionary is substituted for the event’s Name value before the event is
distributed to the process. Thus, when the event’s Name value is printed, the
string is printed to the screen. For example, when the left mouse button is
pressed, the string (Left Button Went Down) appears on the screen, instead of

the name /LeftMouseButton.
Specifying Executable If the dictionary value associated with the interest’s matching key is executable,
Dictionary Values the corresponding event field is not modified; instead, the executable dictionary

value is executed immediately after the received event is placed on the top of the
process’ operand stack by awaitevent. If more than one of the fields have exe-
cutable values in their dictionaries, the Name value is executed first, followed by
the Action value, followed by the Canvas value. An executable value associated
with one of these three keys in an interest is often referred to as an executable
match.

The post-match behavior for executable dictionary values is demonstrated by the
following example:

(

f}%a un Revision A of 11 June 1990

microsystems

Chapter 4 — Events 95

N
(createevent dup begin % Create an event.
/Name 3 dict dup begin % Create dict for the Name field.
/LeftMouseButton { % event => —
/Action get /UpTransition eq {
(Left Button Up) ==
(Left Button Down) ==
} ifelse
} def
/MiddleMouseButton { % event => —

/Action get /UpTransition eq {
(Middle Button Up) ==

(Middle Button Down) ==
} ifelse
} def
/RightMouseButton { % event => —
/Action get /UpTransition eq {
(Right Button Up) ==
exit

H
(Right Button Down) ==
} ifelse
} def
end def
/Exclusivity true def
end expressinterest % Express interest in the event.
% Print instructions.
(Try pressing the left and middle mouse buttons. \n) print
(Then press the right mouse button to exit. \n) print

{

awaitevent
} loop
g J

In this example, only one interest is expressed. By default, the interest contains
null in its Action field. Therefore, this interest can match both up and down
mouse button events. A dictionary is assigned to the interest’s Name field. In
this case, the dictionary values are executable; they are procedures that examine
the Action field of the event returned by awaitevent and then print the appropri-
ate string. Each procedure also pops the event from the process’ operand stack.
A release of the right mouse button causes an exit from the awaitevent loop.

When any mouse button is pressed or released, the server generates an event and
distributes a copy of it to the process. After awaitevent places the event on the
process’ operand stack, the executable dictionary key value associated with the
event’s Name is executed immediately, printing the appropriate string to the
screen. Run this example with psh and press the three mouse buttons to see how
it works.

S
&%& S u n Revision A of 11 June 1990

microsystems

96 News Programmer’s Guide

NOTE Dictionaries with executable values, which are permitted in the Canvas, Name, (
and Action keys of interests, provide a highly efficient way of executing code
according to the interest that has been matched. This feature avoids the need for
constructs such as case, which would otherwise be required to direct a matched
event to the correct handler. (For a description of the case utility, see Chapter
11, “Extensibility through NeWS Procedure Files.”)

4.5. Event Distribution: This section describes how the server searches through the currently expressed
Matching an Event to interests to find matches for the event most recently removed from the head of
Multiple Interests the global event queue. It also describes how you can restrict this search. A code

example of multiple interest matching is given in the last subsection.

Canvas Interest Lists Each interest that is expressed is either a pre-child interest or a post-child
interest. Each canvas has an interest list which contains its pre-child interests
followed by its post-child interests. When an interest is expressed, it is assigned
to the interest list of one or more canvases. The interest list of a canvas can be
retrieved with the canvas’ Interests key (the key’s value is an array that holds the
canvas’ interests). This subsection describes how interests are assigned to canvas
interest lists; the next subsection describes how the server searches canvas
interest lists to find interests that match the event it is trying to distribute.

NOTE Each NeWws process also has an interest list. The list contains all interests
currently expressed by the process. The interest list of a process can be retrieved
with the process’ Interests key. The process interest lists are not used during the (
server’s search for matching interests; they merely provide a convenient way to
see the current interests of any particular process.

Pre-Child and Post-Child The event dictionary contains a key named IsPreChild. This key’s value is only

Interests meaningful for interests. When the key’s value is set to true in an interest, the
interest is a pre-child interest. When the value is set to false, the interest is a
post-child interest. The value of the IsPreChild key defaults to false, making
interests post-child by default. If a process wants a pre-child interest, it must set
the interest’s IsPreChild key to true before expressing the interest.

Assigning Interests to Canvas The event dictionary contains a Canvas key, whose value can be a canvas, a dic-
Interest Lists tionary or array that contains canvases, or the null value. An interest is assigned
to one or more canvas interest lists based on the value of its Canvas key:

o When an interest is expressed with a single canvas specified as its Canvas
key value, the interest is inserted into the interest list of the specified canvas.

o When an interest is expressed with an array or dictionary specified as the
value of its Canvas key, the interest is inserted into the interest list of each
canvas in the array or dictionary.

o When an interest is expressed with a null value for its Canvas key, the
interest is inserted into the pre-child interest list of the global root canvas
(regardless of the value of its IsPreChild key).

N
% u n Revision A of 11 June 1990
mi

icrosystems

Chapter 4 — Events 97

Interest List Order

Order of Interest Matching:

Searching the Canvas
Hierarchy

NOTE

If the Event’s Canvas Value is

a Single Canvas

4

¥V

The canvas interest list is used during the server’s search for matching interests.
The interest list order is important because the server searches a canvas interest
list from the head of the list to the tail of the list. When an interest is added to a
canvas interest list, it is sorted into the list according to the following rules:

o First, pre-child interests are placed before post-child interests in the canvas’
interest list.

o Within the pre-child and post-child parts of the interest list, higher priority
interests are placed before lower priority interests. An interest’s priority is
given by the value of its Priority key; the value can be any number, includ-
ing negative or fractional values. The default priority value is zero. Larger
numbers indicate higher priority.

o Among interests with the same priority, exclusive interests are placed before
non-exclusive interests. An interest’s exclusivity is given by the value of its
Exclusivity key, which can be true or false. The default value is false. (See
the subsection “Exclusive Interests” for a description of the Exclusivity
key’s role in the interest matching process.)

o Among exclusive interests of the same priority, more recently expressed
interests are placed before less recently expressed interests.

o Among non-exclusive interests of the same priority, more recently expressed
interests are placed before less recently expressed interests.

Thus, the newest, exclusive, pre-child interest with highest priority is always the
first interest in that list with which a distributed event is compared and may thus
be the first interest in that list that is matched; the oldest, non-exclusive, post-
child interest with lowest priority is always the last interest in that list with which
the event is compared. The search procedure is described in detail in the next
subsection.

When an event is distributed, the server does not necessarily search all the
interests of all the processes. An event is usually only relevant to certain can-
vases. Therefore, the server only searches the interest lists of the relevant can-
vases. The value in the event’s Canvas key determines which canvas interest
lists are searched for potential matches. The exact search path through the can-
vas hierarchy depends on whether the event’s Canvas value is a single canvas, an
array or dictionary containing multiple canvases, or null. These search paths are
described below.

The search for matching interests is subject to restrictions imposed by the canvas
EventsConsumed key and the event Exclusivity key, described in later subsec-
tions, the search procedure described below may be stopped at any time by one
of these keys.

When a single canvas is specified as an event’s Canvas key value, the search
procedure is as follows:

1. The server searches the pre-child interests of each canvas on the branch of
the canvas hierarchy connecting the global root canvas to the specified can-
vas. This pre-child interest search starts with the pre-child interests of the

sun Revision A of 11 June 1990

microsystems

98 News Programmer’s Guide

If the Event’s Canvas Value is
an Array or Dictionary

If the Event’s Canvas Value is
null

Search Path Example

Figure 4-3

L 4

global root canvas and continues through the pre-child interests of the
specified canvas.

2. The server searches the post-child interests of the specified canvas.

Therefore, when a single canvas is specified as an event’s Canvas key value, the
only post-child interests to be searched are that of the specified canvas; the event
will not match post-child interests of the canvas’ ancestors.

When an array or dictionary is specified as an event’s Canvas key value, where
each element of the array or key in the dictionary is a canvas, each canvas is con-
sidered in turn according to the rules described above for a single canvas.

When null is specified as an event’s Canvas key value, the search procedure is

as follows:

1. The server searches the pre-child interest list of each canvas on the branch
of the canvas hierarchy that connects the global root canvas to the topmost
(leafmost) canvas under the (x, y) location specified in the event. This pre-
child interest search starts with the global root canvas and ends with the top-
most canvas under the event’s location.

2. The server searches the post-child interests of each canvas on the branch,
starting with the topmost canvas under the event’s location and ending with
the global root canvas.

Therefore, when null is specified as an event’s Canvas key value, the server
searches all pre-child and post-child interests of canvases in the search path.

The diagram below illustrates an example canvas hierarchy. The hierarchy
includes two children and three grandchildren of the framebuffer canvas.

Example canvas hierarchy

global root

framebuffer

CanvasA CanvasB
CanvasC CanvasD CanvasE
sun

microsystems

Revision A of 11 June 1990

(

(

(

Chapter 4 — Events 99

Figure 4-4

Stopping the Search

Canvas Event Consumption

L 4

The following figure illustrates how these example canvases might appear on the
screen:

Example canvas hierarchy as it might appear on the screen

CanvasA : CanvasB

CanvasC CanvasD CanvasE

If you press a mouse button over CanvasD, the server sends a mouse button event
to the global event queue. This event has null in its Canvas key. The event’s
Coordinates key contains the (x, y) coordinates of the pointer at the time the
mouse button was pressed. When the event is removed from the global event
queue for distribution, the server performs the following search for matching
interests:

o The pre-child interests of the global root canvas, the framebuffer canvas,
CanvasB, and CanvasD are searched (in that order).

o The post-child interests of CanvasD, CanvasB, the framebuffer canvas, and
the global root canvas are searched (in that order).

If a process sends an event with CanvasC in its Canvas key, the server performs
the following search for matching interests:

o The pre-child interests of the global root canvas, the framebuffer canvas,
CanvasA, and CanvasC are searched (in that order).

o The post-child interests of CanvasC is searched.

The search procedure described in the previous section can be stopped at any
time by a canvas’ EventsConsumed key or an interest’s Exclusivity key. This
section discusses ways in which the search for matching interests can be stopped.

The canvastype dictionary contains a key named EventsConsumed that affects
the testing of an event against post-child interests; the key specifies whether
events tested for a match with the canvas’ post-child interests are tested with the
post-child interests of the canvas’ parent. The following list describes the three
possible values for a canvas’ EventsConsumed key:

S ll n Revision A of 11 June 1990

microsystems

100 News Programmer’s Guide

Exclusive Interests

Redistributing an Event Stopped
by an Exclusive Interest

Q@

W

o /AllEvents

This value indicates that all events tested for a match with the canvas’ post-
child interests are consumed; they are not tested for a match with the post-
child interests of the canvas’ ancestors.

o /MatchedEvents

This value indicates that events successfully matched with one or more of
the canvas’ post-child interests are consumed; they are not tested for a match
with the post-child interests of the canvas’ ancestors. However, events not
successfully matched with the canvas’ post-child interests are tested against
the post-child interests of the canvas’ parent.

/MatchedEvents is the default for the EventsConsumed key of all can-
vases.

o /NoEvents

This value indicates that no events tested for a match with the canvas’ post-
child interests are consumed; they are all tested against the post-child
interests of the canvas’ parent.

Non-consumed events are tested against the post-child interests of the canvas’
grandparent depending on the EventsConsumed status of the canvas’ parent.
Thus, if all canvases in a branch extending to the global root canvas have their
EventConsumed keys set to /NoEvents, all events are tested against all post-
child interests of each canvas; this assumption was made for the example in the
previous subsection “Search Path Example.”

The eventtype dictionary contains an Exclusivity key. This key, which holds a
boolean value, is significant only for interests; its value is ignored in distributed
events. If the value of an interest’s Exclusivity key is true, a distributed event
successfully matched with the interest is not compared with any more interests.
Thus, the Exclusivity key can be used to consume events during pre-child or
post-child testing.

The following operator allows you to override the exclusivity of an interest:

event redistributeevent —

This operator resumes the distribution of event, where event is an event that has
matched an exclusive interest and has been returned by awaitevent. The redis-
tributeevent operator continues the distribution process; redistributeevent does
not reinsert event into the global event queue. No interest compared with event
since the last call to sendevent is allowed to match event again (see Section
4.3.3, “Rules for Matching Serial Key Values”).

sun Revision A of 11 June 1990

microsystems

¢

(

(

Chapter 4 —Events 101

Modified Search Path Example

Figure 4-5

@

This discussion uses the same canvas hierarchy as the previous “Search Path
Example” subsection, but this discussion shows how the EventsConsumed and
Exclusivity keys affect the search. The canvas hierarchy is shown again in the
following figure:

Example canvas hierarchy

global root

framebuffer
CanvasA CanvasB
CanvasC CanvasD CanvasE

If a mouse button is pressed over CanvasD, the following scenarios are possible:

o

The event could be compared with all pre-child and post-child interests of
the global root canvas, the framebuffer canvas, CanvasB, and CanvasD.
This scenario is possible if the framebuffer canvas, CanvasB, and CanvasD
have their EventsConsumed fields set to /NoEvents, and if none of the
matching interests have their Exclusivity keys set to true.

The search could be stopped at any time by an exclusive interest, even
before the search gets to CanvasD. For example, if CanvasB has a matching,
exclusive, pre-child interest, the search would stop after checking the pre-
child interests for the global root canvas, the framebuffer canvas, and Can-
vasB.

The search could be stopped at some point during testing against post-child
interests if the event matches an interest whose canvas has its EventsCon-
sumed key set to /MatchedEvents.

For example, the event could be compared with all the pre-child interests on
the search path, but only with the post-child interests of CanvasD. This
scenario would occur if CanvasD has a matching post-child interest and
CanvasD’s EventsConsumed key is set to /MatchedEvents. This scenario
is common because the default value for a canvas’ EventsConsumed key is
/MatchedEvents.

The event could be stopped at some point during testing against post-child
interests if CanvasD or CanvasB has an EventsConsumed value of
/AllEvents; in this case, the interest does not even have to match the event
for the search to stop. For example, if CanvasD consumes all events, an

4 S u n Revision A of 11 June 1990

microsystems

102 News Programmer’s Guide

event that is tested against CanvasD’s post-child interests will not be tested (
against the post-child interests of CanvasB, the framebuffer canvas, or the
global root canvas.

Hints for Using Pre-Child and You should use post-child interests instead of pre-child interests whenever possi-

Post-Child Interests ble because pre-child interests have higher performance costs. Even if an event
is sent to a specific canvas, all the pre-child interests along the search path are
checked for potential matches. Minimizing the number of pre-child interests
reduces this search time.

You will need to use pre-child interests in some cases. For example, suppose
you have a child canvas with a parent frame canvas beneath it. Also suppose that
the child canvas is used for text entry and that you have a click-to-type keyboard
focus convention. You might want the frame canvas to highlight itself when the
user clicks on the child canvas; the frame’s change of color would indicate that
the child canvas had become the keyboard focus. In this case, you would want
the frame canvas to have a pre-child interest for mouse presses. The child canvas
might consume the mouse press event, or its interest in mouse presses might be
exclusive; therefore, the frame canvas needs a pre-child interest in button presses
to assure that it will receive button press events.

NOTE Events are often directed at a particular canvas (for example, damage events) or
are only relevant to certain canvases (for example, input events). Therefore, a
canvas is often said to “receive” an event, or an event is said to be “sent” to a
canvas. These phrases are used for convenience. Strictly speaking, the event is (
sent to and received by the process that holds the matching interest; the canvas
Jjust has the matching interest on its canvas interest list, allowing the event to be
distributed to the process. After the process receives an event, it usually takes an
action based on the needs of the canvas whose interest was matched.

Example: Matching Multiple The following example demonstrates how an event is matched with more than
Interests one interest:
()
/MakeCanvas { % color x y w h parent => canvas
newcanvas

5 1 roll newpath rectpath

dup reshapecanvas dup setcanvas

dup begin
/Mapped true def
/EventsConsumed /NoEvents def
[Transparent false def

end
exch fillcanvas
} def
/paintfb { % Damage entire
framebuffer setcanvas % framebuffer so
clippath extenddamage % server will repaint it.
pause (
} def -
. _J
@:?@ sun Revision A of 11 June 1990

Chapter 4 —Events 103

/CanvasA 0 20 20 200 260 framebuffer MakeCanvas def)
/CanvasB 0 260 20 320 260 framebuffer MakeCanvas def
/CanvasC 1 40 40 160 120 CanvasA MakeCanvas def
/CanvasD 1 280 40 120 120 CanvasB MakeCanvas def
/Canvask 1 440 40 120 120 CanvasB MakeCanvas def

/rendentext { % event canvas x y => —

3 index /TimeStamp get time ne {
CanvasA setcanvas 0 fillcanvas
CanvasB setcanvas 0 fillcanvas
CanvasC setcanvas 1 fillcanvas
CanvasD setcanvas 1 fillcanvas
CanvasE setcanvas 1 fillcanvas
paintfb
3 index /TimeStamp get /time exch def

}if

2 index setcanvas

moveto

0 setgray

dup CanvasA eq { 1 setgray } if

CanvasB eq { 1 setgray } if

/Name get cshow

} def

% Repaint if needed.
% (Only repaint if
% event is first

% one for that

% button press.)

% Update time.

% Set current canvas.
% Set current point.

% Print Name (Got it).

createevent dup begin
/Name 1 dict dup begin
/LeftMouseButton (Got it) def

% Express a pre-child
% interest in left
% button presses for all

e

end def % the canvases.

/Action /DownTransition def

/Canvas 6 dict dup begin
CanvasA { CanvasA 120 220 rendertext } def
CanvasB { CanvasB 420 220 rendertext } def
CanvasC { CanvasC 120 120 rendertext } def
CanvasD { CanvasD 340 120 rendertext } def
Canvask { CanvasE 500 120 rendertext } def
framebuffer { framebuffer 300 350 rendertext } def

end def

/IsPreChild true def
end expressinterest

createevent dup begin

/Name 1 dict dup begin
/MiddleMouseButton (Got it) def

end def

/Action /DownTransition def
/Canvas 6 dict dup begin

CanvasA { CanvasA 120 220 rendertext } def
CanvasB { CanvasB 420 220 rendertext } def
CanvasC { CanvasC 120 120 rendertext } def

% Express a post-child
% interest in middle

% button presses for all
% the canvases.

J

un

microsystems

Revision A of 11 June 1990

104 News Programmer’s Guide

(CanvasD { CanvasD 340 120 rendertext } def (
Canvask { CanvasE 500 120 rendertext } def
framebuffer { framebuffer 300 350 rendertext } def
end def
end expressinterest
createevent dup begin % Express interest in
/Name 1 dict dup begin % right button presses.
/RightMouseButton { pop exit } def % Exit if right button
end def % event is returned.

/Action /DownTransition def
[Exclusivity true def
end expressinterest

ftime O def
/Helvetica findfont 26 scalefont setfont
% Print instructions.

(Click left and middle mouse buttons over various canvases. \n) print
(Watch the events that are distributed. Left presses match \n) print
(pre-child interests; middle presses match post-child interests. \n) print
(Press right mouse button to exit loop. \n) print

{ awaitevent .014 sleep } loop % Loop, pausing
% between each event. .
paintfb % Repaint framebuffer. £
\

This example uses the same canvas hierarchy as the previous “Search Path
Example” and “Modified Search Path Example” subsections. This example sets
each canvas’ EventsConsumed ficld to /NoEvents. After mapping the canvases,
this example expresses interest in left, middle, and right button presses. The
interest in middle and right button presses are post-child interests; the interest in
left button presses is pre-child. When you press the left or middle mouse button
over any canvas, the string “Got it” is printed in every canvas that receives that
event. If you press the right mouse button, you will exit the awaitevent loop and
quit the example.

Notice that this example uses a dictionary with executable values for the Canvas
field of the left and middle button press interests. The executable values set the
current point to a location appropriate for the canvas whose interest was matched.
Then the string “Got it” is printed at the current point.

Try this example; press the left and middle buttons over various canvases and
observe the distribution of each event. You can see the distribution of a left press
event make its way down the pre-child interests in the canvas hierarchy, and the
distribution of a middle press event make its way up the post-child interests.

If you are running the default window manager, o1wm, a middle mouse button
press does not cause the string “Got it” to be printed on the framebuffer canvas.

As an X11 client, the o1wm window manager expresses the equivalent of an (
exclusive post-child interest in button events on the framebuffer canvas; there-
fore, clients will not receive those events. If you are running some other window

M
&%& sun Revision A of 11 June 1990

microsystems

Chapter 4 — Events 105

manager, you may see “Got it” printed on the framebuffer canvas when you press
the middle mouse button. See the X11/NeWs Server Guide for more information
about window managers.

The following three figures illustrate the pre-child interests matched when the
left mouse button is pressed over CanvasD. (For clarity, the canvases are
labeled A through E in these figures. However, for simplicity, the labeling code
is not included in the example code given above; you will not see the labels on
your screen when you run this example.)

@ S u n Revision A of 11 June 1990

microsystems

106

News Programmer’s Guide

Figure 4-6 The first pre-child interest matched
Figure 4-7 The second pre-child interest matched
Figure 4-8 The third pre-child interest matched
The next two figures illustrate the post-child interests matched when the middle
mouse button is pressed over CanvasC:
@?& sun Revision A of 11 June 1990
% microsystems

(

Chapter 4 — Events 107

Figure 4-9 The first post-child interest matched

Figure 4-10 The second post-child interest matched

Now, edit your file to make the EventsConsumed field of CanvasC be
/MatchedEvents. You can make this change by adding the following line to the
code after CanvasC is defined:

[CanvasC /EventsConsumed /MatchedEvents put J

Now when you run the example and press the middle mouse button over
CanvasC, only the post-child interest of CanvasC is matched; the distribution
of the middle button press event is halted after the event matches the post-child
interest of CanvasC. Left button presses are still distributed to CanvasC’s
ancestors because they match pre-child interests; the EventsConsumed field
only affects testing against post-child interests.

Now, edit the code file again. Add the following line after CanvasD is defined:

(CanvasD /EventsConsumed /AllEvents put]

éf:?? sun Revision A of 11 June 1990

microsystems

108 News Programmer’s Guide

Also, comment out the line that assigns CanvasD a key/value pair in the Can- (
vas field of the middle button press interest. The interest should now appear as

follows:
-
createevent dup begin % Express a post-child
/Name 1 dict dup begin % interest in middle
/MiddleMouseButton (Got it) def % button presses for all
end def % the canvases.
/Action /DownTransition def
/Canvas 6 dict dup begin
CanvasA { CanvasA 120 220 rendertext } def
CanvasB { CanvasB 420 220 rendertext } def
CanvasC { CanvasC 120 120 rendertext } def
%CanvasD { CanvasD 340 120 rendertext } def
Canvask { CanvasE 500 120 rendertext } def
framebuffer { framebuffer 300 350 rendertext } def
end def '
end expressinterest
\ J

Now when you run the example and press the middle mouse button over
CanvasD, no events are distributed. CanvasD no longer has an interest in mid-
dle button presses, and its event consumption of /AllEvents prevents the middle
button press from matching the post-child interests of CanvasD’s ancestors. If
you press the middle button over CanvasB, you will see that the post-child
interest of CanvasB is still matched.

Now edit the file again. Give CanvasB a high priority pre-child interest in left
button presses by adding the following lines just before the awaitevent loop:

4 1
createevent dup begin
/Name 1 dict dup begin
/LeftMouseButton (Got it) def
end def
/Action /DownTransition def
/Canvas 1 dict dup begin
CanvasB { CanvasB 420 190 rendertext } def
end def
/Priority 1 def
NlsPreChild true def
end expressinterest
\. J

When you run the example and press the left mouse button over CanvasB, Can-
vasD, or CanvaskE, the higher priority interest for CanvasB is matched before
the lower priority interest for CanvasB. Thus, the string Got it is printed twice
in CanvasD, the first time lower on the screen than the second time.

Now edit the file one last time. Replace the line (
[Priority 1 def

A
% Ssun Revision A of 11 June 1990
microsystems

Chapter 4 —Events 109

4.6. System-Generated
Events

Keyboard Events

Obsolescence Events

ProcessDied Events

Vs

with the line
/Exclusivity true def

Now when you run the example and press the left mouse button over CanvasD
or CanvasE, only the pre-child interest of the framebuffer canvas and the
exclusive pre-child interest of CanvasB are matched; the exclusive interest of
CanvasB prevents left button press events from being distributed to CanvasB’s
descendants.

The server automatically creates and sends a system-generated event in the fol-
lowing circumstances:

o A keyboard key is pressed.
o An object becomes obsolete and its memory needs reclaiming.

o A process dies while it is still referenced or while waitprocess is being exe-
cuted on it.

o The mouse is dragged or a mouse button is pressed.

o The mouse pointer exits one canvas and enters another.

o The keyboard focus exits one canvas and enters another.
o A canvas is damaged for the first time since its last repair.

System-generated events are sent into distribution by the server, but once these
events enter the global event queue, they are treated no differently than process-
generated events; the NeWsS operators for expressing interest and awaiting events
must be used for system-generated events in the same way as is required for
process-generated events.

This section describes system-generated events and shows how they can be used.

Keyboard events are generated when the user presses a key on the keyboard.
These events have a Name value that is a number in the range of 28416 to 28671
(6FO00 to 6FFF hexidecimal) and an Action value of /UpTransition or /Down-
Transition. The name of the keyboard event does not represent the character
that is encoded on the key; it represents an implementation-dependent keyboard
encoding.

Obsolescence events are generated by the server for an object that becomes
obsolete. Obsolescence is defined as the state in which all the references to an
object are soft. (See the discussion of soft references in Chapter 8, “Memory
Management”.) The value of the event’s Name field is /Obsolete and the value
of the event’s Action field is the obsolete object.

A ProcessDied event is generated if a lightweight process dies when references
to it exist or a waitprocess is being executed upon it. The value of the event’s
Name key is /ProcessDied and the value of the Action key is the process itself.

The following interactive psh example demonstrates a ProcessDied event:

S u n Revision A of 11 June 1990

microsystems

110 News Programmer’s Guide

Mouse Events

Q

The server automatically generates mouse events when the user manipulates the
mouse. The server assigns appropriate values to the event’s Name, Action,
Coordinates, XLocation, and YLocation keys; the value of the Canvas key is (
always set to null. Mouse events are generated in the following circumstances:

o The mouse is dragged.

The value of the event’s Name key is set to /MouseDragged, and the value
of the Action key is set to null. The values of the Coordinates, XLocation,
and YLocation keys are set to the new location of the mouse pointer.

The server keeps generating /MouseDragged events as long as the user
keeps moving the mouse. Thus, a certain number of discrete events are gen-
erated to report a user action that is continuous. The number of events gen-
erated for any particular mouse drag is system dependent.

o A mouse button is pressed and released.

When the mouse button is pressed, the value of the event’s Name key is set
to /LeftMouseButton, /MiddleMouseButton, or /RightMouseButton,
depending on which button is pressed; the value of the Action key is set to
/DownTransition. When the button is released, another event is generated
with the same Name value and with the Action set to /UpTransition. Thus,
two events are automatically generated whenever a mouse button is pressed
and released. For each event, the values of the Coordinates, XLocation,
and YLocation keys are set to the location of the mouse pointer at the time
of the mouse press or release.

The following example demonstrates mouse events: (

Ssun Revision A of 11 June 1990

microsystems

Chapter 4 —Events 111

@

.

%

% Create canvas to play in.

%

/MyCanvas framebuffer newcanvas def
25 25 translate

0 0 400 400 rectpath
MyCanvas reshapecanvas
MyCanvas /Mapped true put
MyCanvas setcanvas

1 fillcanvas

0 setgray

3 setlinewidth

%
% Print (in the canvas) documentation
% on button usage.

%

/Times-Roman findfont 16 scalefont setfont

10 40 moveto

(Press left button to move currentpoint) show

10 25 moveto

(Press middle button and drag to draw a line) show

10 10 moveto
(Press right button to quit) show
200 200 moveto

%

% Create an interest in MouseDragged events on our play canvas
% (store in ldrag); this is an executable match that draws a

% line to the current mouse position each time the mouse moves
% while this interest is expressed. It also leaves the

% currentpoint at the mouse position.
%
/drag createevent dup begin
/Name 1 dict dup begin
/MouseDragged {
begin

XLocation YLocation lineto stroke % Consumes the path.

XLocation YLocation moveto
end
} def
end def
/Action null def
/Canvas MyCanvas def
end def

%

% Create an interest in Up and Down transitions of all
% three mouse buttons. Each button has its own handler
% associated with it (the value of the corresponding key

% in the [IName field of the interest).
%
createevent dup begin

% Create a canvas object.

% Move its origin.

% Make a rectangular path.

% Make our canvas that shape.

% Map the canvas.

% Make canvas the currentcanvas.
% Give it a white background.

% Draw with black lines.

% set starting point.

% event => —

% Set currentpoint to same.

J

sun

microsystems

Revision A of 11 June 1990

112

News Programmer’s Guide

(/Name 3 dict dup begin) (
/LeftMouseButton { % event => —
begin
XLocation YLocation moveto % Move the currentpoint.
end
} def
/MiddleMouseButton { % event => —
begin
Action /DownTransition eq {
drag expressinterest % We want drag events now.

XLocation YLocation lineto stroke % Stroke consumes the path.
XLocation YLocation moveto % So set currentpoint back.

H

drag revokeinterest % Don’t want drag events any more.
} ifelse
end
} def
/RightMouseButton { % event => —
/Action get % We're all done...
/UpTransition eq { % Break out of the {} loop.
exit
it
} def
end def
/Action [/DownTransition /UpTransition] def ‘ -
/Canvas MyCanvas def (

end expressinterest

{ awaitevent } loop % Loop, processing events.
\ J

This example creates a canvas and maps it to the screen. It then prints three
strings in the canvas to provide user instructions for the example. After prepar-
ing the canvas, an interest named drag is created for /MouseDragged events.
The interest uses an executable value in the Name dictionary; the procedure
strokes a line to the (x, y) location of the event and then sets the current point to
be the endpoint of the line. This interest is not expressed immediately.

A second interest is then created; this interest, which is for mouse button presses
and releases, also uses executable values in its Name dictionary. When a left
mouse button event is matched, a procedure moves the current point to the (x, y)
location of that event. When a middle mouse button event is matched, a pro-
cedure checks to see if the event is a /DownTransition. If so, drag is passed to
expressinterest. The drag interest is revoked when the button is released.
When a right mouse button event is matched, a procedure checks the Action
value of the event and exits the awaitevent loop if the event is a release of the
right mouse button.

Try running this example with psh and drawing in the canvas that is generated.
The figure below shows an example in which the word “hello” was drawn on the
canvas by dragging the mouse while pressing the middle mouse button. (

S u n Revision A of 11 June 1990

microsystems

Chapter 4 —Events 113

Figure 4-11

Enter and Exit Events

An example of drawing in the canvas

Press left button to move currentpoint
Press middle button and drag to draw a line
Press right button to quit

The server generates canvas crossing events whenever the mouse pointer moves
from one canvas to another. Each such event is directed to a particular canvas,
identified in the event’s Canvas field; the event specifies how the pointer moved
with respect to that canvas.

The server sets the Name key to /ExitEvent or /EnterEvent, depending on the
movement of the pointer with respect to the canvas. The server sets the Action
key to the numeric value 0, 1, 2, 3, or 4, depending on the hierarchical relation-
ships between the canvas that receives the event, the canvas from which the
pointer moves (the “source”), and the canvas into which the pointer moves (the
“destination”).

When the pointer crosses any canvas boundary, at least two events are generated:
an exit event for the canvas being exited and an enter event for the canvas being
entered. More than two events may be generated if the source and destination
canvases do not have a parent/child relationship. The pointer motion scenarios
can be categorized in three main groups:

o The pointer moves from a child canvas to its parent or from a parent canvas
to its child. The source canvas receives an exit event, and the destination
canvas receives an enter event.

o The pointer moves between two canvases, one of which is a descendant, but
not a child, of the other. The source canvas receives an exit event, the desti-
nation canvas receives an enter event, and all canvases between the source
and destination also receive events; the intermediate canvases receive exit
events if the source is a descendant of the destination, and they receive enter
events if the source is an ancestor of the destination.

o The pointer moves between two canvases that are not on the same branch of
the canvas hierarchy. The source canvas receives an exit event, the destina-
tion canvas receives an enter event, and all canvases on both branches up to
but not including the least common ancestor of the source and destination

un Revision A of 11 June 1990

microsystems

114 News Programmer’s Guide

Table 4-1

also receive events. The least common ancestor is the canvas at the junction (
of the two branches. Ancestors of the source canvas receive exit events, and
ancestors of the destination canvas receive enter events.

The following table describes the Action values for enter and exit events. Note
that a canvas is said to contain the pointer directly when it is the topmost canvas
under the pointer; a canvas is said to contain the pointer indirectly if it is an
ancestor of a canvas that directly contains the pointer. Note also that a canvas
does not receive a crossing event if it contains the pointer directly both before
and after the pointer movement, nor does it receive a crossing event if it contains
the pointer indirectly both before and after the pointer movement. When the
phrase “the canvas” or “this canvas” is used in the following table, it refers to the
canvas that receives the crossing event.

Action Values for Enter and Exit Events

Name Action Explanation

/EnterEvent 0 The canvas now directly contains the pointer,
the previous direct container was an ancestor of
this canvas.

1 The canvas now indirectly contains the pointer;

the previous direct container was an ancestor of

this canvas. ('
2 The canvas now directly contains the pointer;

the previous direct container was a descendant
of this canvas.

3 The canvas now directly contains the pointer;
the previous direct container was not an ancestor
or descendant of this canvas.

4 The canvas now indirectly contains the pointer,
the previous direct container was not an ancestor
or descendant of this canvas.

/ExitEvent 0 The canvas formerly contained the pointer
directly; the new direct container is an ancestor
of this canvas.

1 The canvas formerly contained the pointer
indirectly; the new direct container is an ances-
tor of this canvas.

2 The canvas formerly contained the pointer
directly; the new direct container is a descendant i
of this canvas. (

Revision A of 11 June 1990

Chapter 4 — Events

115

Table 4-1

@

Action Values for Enter and Exit Events— Continued

Name Action Explanation

3 The canvas formerly contained the pointer
directly; the new direct container is not an
ancestor or descendant of this canvas.

4 The canvas formerly contained the pointer
indirectly; the new direct container is not an
ancestor or descendant of this canvas.

The following example demonstrates enter and exit events. The example uses
the same canvas hierarchy as was used in the examples for multiple interest

matching, but the canvases are given different shapes and positions. After map-
ping the canvases, the example expresses interest in enter and exit events for all

the canvases.

When you run this example and move the mouse from one canvas to another, the

type of event that each canvas receives is written in that canvas; the string

“Enter” or “Exit” is written, and the numeric Action value is written beneath the
string. When you move the mouse to generate the next set of crossing events, all

the canvases are automatically repainted before the names and actions are

printed. Run this example with psh; move the mouse around the canvas hierar-
chy and observe the types of enter and exit events that are generated. Press the

right mouse button to quit.

The example code is given below.

e ™
/MakeCanvas { % color xy w h parent => canvas
newcanvas
5 1 roll newpath rectpath
dup reshapecanvas dup setcanvas
dup begin
/Mapped true def
/EventsConsumed /NoEvents def
/Transparent false def
end
exch fillcanvas
} def
/paintfb { % Damage entire
framebuffer setcanvas % framebuffer so
clippath extenddamage % server will repaint it.
pause
} def
/CanvasA 0 20 40 240 260 framebuffer MakeCanvas def
newpath 22 42 236 256 rectpath clipcanvas 0.75 fillcanvas
/CanvasB 0 240 20 340 260 framebuffer MakeCanvas def
newpath 242 22 336 256 rectpath clipcanvas 1 fillcanvas
. J
S u n Revision A of 11 June 1990

microsystems

116

News Programmer’s Guide

4

N

/CanvasC 0 80 40 180 140 CanvasA MakeCanvas def
newpath 82 42 176 136 rectpath clipcanvas 0.9 fillcanvas

/CanvasD 0 240 20 180 120 CanvasB MakeCanvas def
newpath 242 22 176 116 rectpath clipcanvas 0.75 filicanvas

/Canvask 0 360 40 200 120 CanvasB MakeCanvas def
newpath 362 42 196 116 rectpath clipcanvas 0.88 filicanvas

/rendertext { % event xy => —

2 index /TimeStamp get time ne {
CanvasA setcanvas 0.75 fillcanvas
CanvasB setcanvas 1 fillcanvas
CanvasC setcanvas 0.9 fillcanvas
CanvasD setcanvas 0.75 fillcanvas
CanvasE setcanvas 0.88 fillcanvas

paintfb

2 index /TimeStamp get ftime exch def

}if

2 index /Canvas get setcanvas

moveto
0 setgray

dup /Name get gsave cshow grestore
/Action get 10 string cvs 0 -40 rmoveto cshow

} def

createevent dup begin

/Name 2 dict dup begin
/EnterEvent (Enter) def
/ExitEvent (Exit) def

end def

/Canvas 6 dict dup begin
CanvasA { 120 240 rendertext } def
CanvasB { 420 240 rendertext } def
CanvasC { 160 100 rendertext } def
CanvasD { 300 100 rendertext } def
Canvask { 460 120 rendertext } def
framebuffer { 300 370 rendertext } def

end def

end expressinterest

createevent dup begin

/Name 1 dict dup begin
/RightMouseButton { pop exit } def

end def

/Action /DownTransition def

/Exclusivity true def

end expressinterest

ftime 0 def

/Helvetica findfont 26 scalefont setfont

% Repaint if needed.

% Update time.

% Set current canvas.
% Set current point.

% Print Name.
% Print Action.

% Express interest in
% enter and exit events
% for all the canvases.

% Express interest in
% right button presses.
% Exit if right button
% event is returned.

(Move mouse pointer from one canvas to another. Notice the \n) print

J/

sSun

microsystems

Revision A of 11 June 1990

(

Chapter 4 — Events 117

(events that are generated. Press right mouse button to exit loop. \n) print
{ awaitevent } loop

paintfb % Repaint framebuffer.

The following two figures illustrate the enter and exit events that are generated
when you move the mouse pointer from CanvasC to CanvasD:

Figure 4-12 Mouse cursor over CanvasC

Figure 4-13 Moving the mouse from CanvasC to CanvasD

The next figure illustrates the enter and exit events that are generated when you
move the mouse pointer from CanvasC to the framebuffer canvas:

Q?f Ssun Revision A of 11 June 1990

microsystems

118 News Programmer’s Guide

Figure 4-14 Moving the mouse from CanvasC to the framebuffer canvas (

Focus Events The keyboard focus is the canvas that is to receive keyboard input. The user
changes the keyboard focus with the mouse. In click-to-type mode, the user
clicks a mouse button in the canvas that is to become the keyboard focus; in
focus-follows-mouse mode, the user simply moves the mouse pointer into the
canvas that is to become the keyboard focus. The user can choose between these
two modes with the Properties submenu off of the root menu. The insertion (
point is the location in the keyboard focus canvas at which text will appear when
keyboard keys are pressed.

When the user changes the keyboard focus, the server’s focus manager sends
focus events to interested processes; a process can express interest in focus events
by registering its canvases as clients of the focus manager. When a process
receives a focus event indicating that one of its canvases has become the key-
board focus, the process should express interest in keyboard events for that can-
vas. Keyboard events are not automatically sent to the keyboard focus. Thus,
focus events are advisory in nature.

Focus events are canvas crossing events that are similar to mouse pointer events
(/EnterEvent and /ExitEvent), except that focus events indicate that the key-
board focus, rather than the pointer, has shifted from one canvas to another. A
focus event is sent to each canvas that loses or gains the keyboard focus (directly
or indirectly). A focus event contains the affected canvas in its Canvas field.
The Name of a focus event is always one of the following three values:

o /RestoreFocus

This value indicates that the insertion point has been restored to the position
it was in when this canvas was last the focus. This value is used for focus-
follows-mouse mode.

(

é}é?/ sun Revision A of 11 June 1990

microsystems

Chapter 4 —Events 119

Table 4-2

W

o /AcceptFocus

This value indicates that the insertion point has been placed wherever the
mouse button was clicked in this canvas. This value is used for click-to-type

mode.

o /LoseFocus

This value indicates that the focus has left this canvas.

The Action value of a focus event is an integer that specifies the nature of the
focus change. The possible values for the Action key are described in the fol-
lowing table (this table uses the same terms and conventions as the table given
previously for /Enter and /Exit events):

Action Values for Keyboard Focus Events

Name Action Explanation
/RestoreFocus 0 The canvas is now the focus; the previous focus
/AcceptFocus was an ancestor of this canvas.

1 The canvas is now the ancestor of the focus; the
previous focus was an ancestor of this canvas.

2 The canvas is now the focus; the previous focus
was a descendant of this focus.

3 The canvas is now the focus; the previous focus
was not an ancestor or descendant of this canvas.

4 The canvas is now an ancestor of the focus; the
previous focus was not an ancestor or descen-
dant of this canvas.

5 The canvas directly or indirectly contains the
pointer and is now a descendant of the focus.
The previous canvas is not equivalent to this
canvas nor is the previous canvas an ancestor or
descendant of this canvas.

6 The focus is now /ReDistribute (this value
means that the focus can be any canvas that is
currently under the mouse).

7 The focus is now None.

/LoseFocus 0 The canvas was previously the focus; the new
focus is an ancestor of this canvas.
S u n Revision A of 11 June 1990

microsystems

120 News Programmer’s Guide

Damage Events

Table 4-2

N

% Sui Revision A of 11 June 1990
microsystems

Action Values for Keyboard Focus Events— Continued (
Name Action Explanation
1 The canvas was previously an ancestor of the
focus; the new focus is an ancestor of this can-
vas.
2 The canvas was previously the focus; the new

focus is a descendant of this canvas.

3 The canvas was previously the focus; the new
focus is not an ancestor or descendant of this
canvas.

4 The canvas was previously an ancestor of the

focus; the new focus is not an ancestor or des-
cendant of this canvas.

5 The canvas directly or indirectly contains the
pointer and was previously a descendant of the
focus. The new canvas is not equivalent to this
canvas nor is the new canvas an ancestor or des-
cendant of this canvas.

6 The previous focus was /ReDistribute (this
value means that the focus can be any canvas
that is currently under the mouse).

7 The previous focus was None.

Damage events are generated for a canvas whenever it is damaged for the first
time since its last repair (a definition of damage is provided in Chapter 2, “Can-
vases”). If a damaged canvas is not repaired immediately and damage continues
to occur, the server does not send additional damage events for that canvas.
Instead, the damage accumulates. The client can use the damagepath operator
to retrieve the path that outlines the boundary of the damaged region. The client
can then clip to the damage path and repair the damage. When the damagepath
operator is executed, the damage path is cleared; the next time the canvas is dam-
aged, a damage event is sent and the damage path begins to accumulate again.
The value of a damage event’s Action key is null; the value of its Canvas key is
the canvas that is damaged.

The following example demonstrates damage events. This example maps a

parent canvas and its child. You can move the child by clicking the left mouse
button. Because both canvases are unretained, they can be damaged when the

child is moved. The code expresses interest in damage for both canvases; any
damage that occurs is repaired using executable values in a dictionary in the (
interest’s Canvas field.

Chapter 4 —Events 121

/ParentCanvas framebuffer newcanvas def % Make parent canvas.
25 25 translate

0 0 300 300 rectpath ParentCanvas reshapecanvas

ParentCanvas /Retained false put

ParentCanvas /Mapped true put

ParentCanvas setcanvas 0 fillcanvas

/ChildCanvas ParentCanvas newcanvas def % Make child canvas.
50 50 translate

0 0 75 75 rectpath ChildCanvas reshapecanvas

ChildCanvas /Transparent false put

ChildCanvas /Mapped true put

ChildCanvas setcanvas 1 fillcanvas

createevent dup begin % Express interest in left
/Name 2 dict dup begin % and right button presses.
/LeftMouseButton { % ev => -
begin
XLocation YLocation
ChildCanvas setcanvas
movecanvas
end
} def
/RightMouseButton { % ev => —
pop exit
} def
end def
/Action /DownTransition def
/Canvas ParentCanvas def
end expressinterest

createevent dup begin % Express interest in damage
/Name /Damaged def % on both canvases.
/Canvas 2 dict dup begin % Repair damage.
ParentCanvas{ % ev => —
pop

ParentCanvas setcanvas
damagepath clipcanvas 0 fillcanvas

} def

ChildCanvas { % ev => —
pop
ChildCanvas setcanvas
damagepath clipcanvas 1 fillcanvas

} def

end def
end expressinterest

(Press left mouse button to move child canvas. \n) print
(Press right mouse button to quit. \n) print

{ awaitevent } loop

N J
@:?a Sun Revision A of 11 June 1990
microsystems

122 News Programmer’s Guide

4.7. Synchronizing Input
with Multiple
Processes

Blocking the Global Event
Queue with blockinputqueue

Try running this example with psh. Click the left mouse button to move the
child canvas around on its parent. The unretained parent receives damage when
its child is moved, but the damage is repaired. Note that the damage repair is
accomplished by setting the canvas clipping path to the damage path and then
painting the damaged region. Note also that you can move the child canvas par-
tially off its parent (causing it to be clipped) and then back onto its parent again,
and the damage to both parent and child is repaired.

After the server distributes copies of an event to all interested processes, it
removes the next event from the global event queue and begins the search for
matching interests. For synchronization purposes, a process may want to ensure
that another event is not removed from the global event queue until the process
has performed some action based on the previously distributed event. Or, a pro-
cess might need to block the global event queue until it has time to express its
interests. The server provides several methods for achieving these types of syn-
chronization.

A process can execute the blockinputqueue operator to suspend the distribution
of events from the global event queue:

num or null blockinputqueue -

This operator prevents events from being removed from the server’s global event
queue. When the operator is executed, a release time is calculated for the block;
the release time is the sum of the current time and the argument to blockinput-
queue. The argument can be num or null; num is a number in units of 216 mil-
liseconds and null represents a system-defined default timeout. When the opera-
tor is executed, no event is removed from the global event queue until one of the
following has occurred:

o The amount of time specified by the release time has elapsed.
o The unblockinputqueue operator is executed.

When nested calls to blockinputqueue are made, no event is removed from the
global event queue until one of the following has occurred:

o The amount of time specified by the latest of the release times has elapsed.

o The unblockinputqueue operator has been executed once for each call to
blockinputqueue.

Because an event used as the argument to sendevent is inserted in the global
event queue, its distribution can be inhibited by blockinputqueue. However, an
event used as the argument to redistributeevent is not inserted in the global
event queue; thus, its redistribution cannot be inhibited by blockinputqueue.

un Revision A of 11 June 1990

microsystems

¢

(

(

Chapter 4 —Events 123

The unblockinputqueue operator is described below.

— unblockinputqueue -

This operator releases the event queue lock previously set by blockinputqueue.
If more than one event queue lock was set, additional calls to unblockinput-
queue may be required. When all locks are released, events are once again
removed from the global event queue for distribution.

The following example demonstrates one use of blockinputqueue. In this exam-
ple, a child process is forked to listen for Message events; if the child receives
such an event, it prints the string Got Event! to the screen. After forking the
child, the parent sends a Message event and then sleeps. While the parent
sleeps, the child runs. Therefore, the Message event is sent to the global event
queue before the child has a chance to express interest in it. Unless the global
event queue is blocked before sending the Message event, the child will not
receive the event (the server discards the event from the global queue if it finds
no matching interests). The solution is to block the global event queue before
forking the child, and then have the child unblock the queue when it is ready to
receive events.

In the code below, the blockinputqueue and unblockinputqueue operators are
commented out. Type the example into a file and run it with these two lines
commented out; no Got Event! message is printed to the screen. Then edit your
file to uncomment these two lines, and run the example again; the message Got
Event! is then printed.

(h
/proc {
createevent begin
/Name dictbegin
/Message { (Got Event\n) print exit } def
dictend def
currentdict end expressinterest
% unblockinputqueue
{ awaitevent } loop
} def

% null blockinputqueue

{ proc } fork

createevent begin
/Name /Message def

currentdict end sendevent

0.07 sleep killprocessgroup
\. . J

The type of synchronization demonstrated above might be used to implement a
menu. Assume that the menu becomes visible when the user presses and holds
down the right mouse button. To make a selection from the menu, the user drags

%:%ﬁ S u n Revision A of 11 June 1990

microsystems

124 News Programmer’s Guide

the mouse to the desired menu entry. The menu code expresses interest in right ()
mouse button presses. When it receives a right press event, the menu code maps

the menu canvas. Then the code might fork a process that handles the subse-

quent mouse drags and menu selection. This process expresses interest in mouse

drag events and right button releases. When the right button is released, the

menu is unmapped. The process must not miss the right button release; other-

wise, the menu would remain on the screen even after the user tried to dismiss it.
Therefore, the global event queue should be blocked before forking the process,

and the process should unblock the queue when it is ready to receive events.

Blocking the Global Event The eventtype dictionary contains a Synchronous key that can be used in an
Queue with the Synchronous interest to provide event synchronization. The value of the Synchronous key is
Key aboolean. If an event matches an interest that has its Synchronous key set to

true, the global event queue is blocked; no event is removed from the global
event queue until the process that holds the synchronous interest executes the
unblockinputqueue operator.

This key is especially useful when your code expresses or revokes interest upon
the delivery of other events, or when your code changes some aspect of the glo-
bal state (such as the canvas hierarchy) after receiving other events.

For example, when the user changes the keyboard focus, interest in keyboard

events must be expressed for the new focus canvas and revoked for the old focus
canvas. If the user is typing continuously on the keyboard both before and after
changing the focus, the keystrokes must be directed to the correct canvases; no ()
keystrokes should be missed, and no canvas should receive keystrokes that '
belong to another canvas.

The necessary synchronization can be achieved by blocking the global event
queue when focus events are distributed. The temporary suspension of event dis-
tribution gives the clients time to determine which canvases must express or
revoke interest in keyboard events. Once the keyboard interest changes are
made, the global event queue can be unblocked. The keyboard events are then
distributed properly.

The following code example demonstrates this type of situation. Like the exam-
ple in the previous subsection, this example forks a process that listens for
events. The blockinputqueue operator is used to ensure that the forked process
has time to express its interest before any events are distributed.

In this example, the forked process is interested in receiving events that tell it
when to express interest in another type of event. When the process receives an
ExpressOtherinterest event, it expresses interest in Message events. Thus,
the ExpressOtherInterest events are similar to focus events, and the Message
events are similar to keyboard events. When a Message event is received, the
forked process prints the string Got Event! to the screen.

In the code below, the Synchronous true def line is commented out, as is the
unblockinputqueue operator in the expressotherinterest procedure. Type this

code into a file and run it with psh; when the two lines are commented out, no
message is printed to the screen. Then edit your file to uncomment these two ()
lines, and run the example again; the message Got Event! is then printed.

Q?? S u n Revision A of 11 June 1990

microsystems

Chapter 4 —Events 125

/expressotherinterest {
createevent begin
/Name dictbegin
/Message { pop (Got Eventi\n) print exit } def
dictend def
currentdict end expressinterest
% unblockinputqueue
} def

/proc {
createevent begin
/Name dictbegin
/ExpressOtherinterest { pop expressotherinterest } def
dictend def
%/Synchronous true def
currentdict end expressinterest
unblockinputqueue
{ awaitevent } loop
} def

null blockinputqueue
{ proc } fork pop

createevent begin
/Name /ExpressOtherinterest def
currentdict end sendevent

createevent begin
/Name /Message def
currentdict end sendevent

0.07 sleep killprocessgroup
\ J

When the Synchronous true def line is commented out, the forked process
never receives the Message event; the server searches for matching interests for
the Message event immediately after it distributes the ExpressOtherinterest
event, leaving no time for the forked process to express interest in the Message
event before it is removed from the global event queue. In this case, the server
finds no matching interests for the Message event, so the event is simply
removed from the global event queue and no copies are distributed.

When the Synchronous key is used, the global event queue is blocked when the
forked process’ interest matches the ExpressOtherinterest event. A copy of
the ExpressOtherinterest event is placed on the local event queue of the forked
process, and the executable match in the Name key calls the expressotherin-
terest procedure. This procedure expresses interest in Message events and then
unblocks the global event queue, allowing the Message event to be distributed
to the forked process. When the Message event is received, the string Got
Event! is printed to the screen.

&2@ Ssun Revision A of 11 June 1990

microsystems

126 News Programmer’s Guide

Synchronizing All Events for The operators described here are intended for clients that were written for earlier (
a Process versions of NeWs in which synchronization was guaranteed. Clients written for
NeWs version 2.1 or later should use the Synchronous key for those interests that
need synchronization, instead of forcing synchronization of all events.

If a client requires event synchronization for all events delivered to some process,
the process can execute the setcompatinputdist operator to set its event syn-
chronization mode to true:

boolean setcompatinputdist —

This operator sets the state of the current process’ event synchronization mode.
When an event is delivered to a process whose synchronization mode is true, the
server gives the process a chance to run before the next event is removed from
the global event queue. The default synchronization state for new processes is
false; child processes inherit their parent’s synchronization state.

A process can examine the state of its synchronization mode with the getcompa-
tinputdist operator:

— getcompatinputdist boolean

This operator returns the boolean value of the current process’ event synchroni-

zation mode.

4.8. Restricting You can use the Process key of an event to restrict the event’s distribution to a
Distribution of an single process. If you specify a process in an event’s Process key and then send
Event to a Specific the event to the server’s global event queue with sendevent, the server only
Process allows the event to match interests that belong to the specified process. Note that

the value of an event’s Process key does not affect the search procedure
described in Section 4.5, “Event Distribution: Matching an Event to Multiple
Interests”; the value of the event’s Process key is simply compared with the
value of each interest’s Process key as part of the matching criteria (see Section
4.3, “Rules for Matching Events to Interests,” for a description of the matching
rules).

The example below demonstrates the use of the event Process key. This exam-
ple uses a parent process and a child process. Both processes express interest in
Message1 and Message?2 events. The interests use executable matches in the
Name key to print a message stating which process received the event and which
event was received. As explained in Section 4.7, “Synchronizing Input with
Multiple Processes,” the blockinputqueue operator is used before forking the
child process to ensure that the child has time to express its interest before the
parent sends the events; the child unblocks the event queue after expressing its
interest. The parent sends one Message1 event with the child process specified
in its Process key, and it sends one Message2 event with a null value in the
Process key.

Type this example into a file and run it with psh. You will see that Message1

is received only by the child process, but Message? is received by both

processes. Each process exits its awaitevent loop after it receives the Mes-

sage2 event. (

S ‘
42{& sun Revision A of 11 June 1990

microsystems

Chapter 4 —Events 127

createevent dup begin
/Name dictbegin
/Message1 { pop (Parent received Message1\n) print } def
/Message?2 { pop (Parent received Message2\n) print exit } def
dictend def
end expressinterest

null blockinputqueue

/ChildProcess {
createevent dup begin
/Name dictbegin
/Message1 { pop (Child received Message1\n) print } def
/Message2 { pop (Child received Message2\n) print exit } def
dictend def
end expressinterest
unblockinputqueue
{ awaitevent } loop
} fork def

createevent dup begin
/Name /Message1 def
/Process ChildProcess def
end sendevent

createevent dup begin
/Name /Message2 def
end sendevent

{ awaitevent } loop
. J

When you run this example, the following strings are printed to the screen:

Note that the interests expressed in this example are placed on the pre-child
interest list of the global root canvas because the interests have null in their Can-
vas keys. Because the interests are not exclusive and have default priority, they
are ordered in the global root canvas’ pre-child interest list according to when
they are expressed; more recently expressed interests are placed before less
recently expressed interests. The child process’ interests are more recently
expressed and, therefore, they are placed before the parent process’ interests in
the pre-child interest list of the global root canvas. Thus, the child’s interest in
Message? events is matched before the parent’s interest in Message2 events.

Also note that the interests have the default value of zero in their XLocation and
YLocation keys. Therefore, the search path through the canvas hierarchy

@ S u n Revision A of 11 June 1990

microsystems

128 News Programmer’s Guide

includes all the canvases on the branch of the canvas hierarchy that connects the (
global root canvas to the canvas directly under (0, 0). This example does not

create any canvases, but if a canvas is located at (0, 0), its interest lists are

searched. (However, only the global root canvas has interests in Message1 and
Message2 events; therefore, no other matching interests are found.) You could
ensure that only the global root canvas’ interest list is searched by making the
interests exclusive.

4.9. Creating an Event- As a development aid, the server provides the seteventlogger operator, which
Logger Process allows you to designate a process as an event-logger:

process or null seteventlogger —

The specified process becomes the event-logger. The process argument must be
a process that has expressed some interest and has entered an awaitevent loop.
The expressed interest, which must not match any distributed event, is required
to prevent awaitevent from returning an error. A copy of each event either
removed from the global event queue or redistributed with redistributeevent is
given to the event-logger process before it is given to any other process. The
existence of the event-logger does not affect the normal running of the event dis-
tribution mechanism.

To turn off a designated event-logger, you can specify null as the argument to
seteventlogger.

The file event log. ps, which is described in Chapter 11, “Extensibility (
through News Procedure Files,” provides a formatted display of events that can
be used in the context of the seteventlogger operator.

The current event-logger process is returned by the geteventlogger operator:

— geteventlogger process or null

This operator returns the process that is the current event-logger or null if there is
no event-logger.

The following example shows how to set an event-logger; it sets the current pro-
cess to be an event-logger that simply prints the Name, Canvas, and Serial
values of left mouse button events. The awaitevent loop is exited if a right but-
ton event is returned.

@ sun Revision A of 11 June 1990

microsystems

Chapter 4 — Events 129

4 h
createevent dup begin % Express an arbitrary interest
/Name -1 def % that won'’t ever be matched;
end expressinterest % prevents syntax error in later

% call to awaitevent.
(Press left mouse button several times. \n) print
(Press right mouse button to quit. \n) print

currentprocess seteventiogger % Create event-logger.
{
awaitevent begin
Name /LeftMouseButton eq {
(% % % \n) [Name Canvas Serial]
printf
}if
Name /RightMouseButton eq {
end exit
}if
end
} loop

null seteventlogger % Turn off event-logger.
_ J

You can run this example with psh, click the left mouse button, and observe the
event information printed to the screen. Notice that when you click the right
mouse button to exit the loop, a popup menu is displayed for the canvas under
the mouse; the menu is displayed because the event-logger did not affect the nor-
mal distribution of events.

This example uses the printf utility, which is provided by the POSTSCRIPT
language extension files. The printf utility is similar to the standard C printf
utility; for more information about printf, see Chapter 11, “Extensibility through
NeWws Procedure Files.”

N
@ S u n Revision A of 11 June 1990
microsystems

130 News Programmer’s Guide

@?ﬁ u n Revision A of 11 June 1990

microsystems

5.1. Basic Terms and
Concepts

Classes and Instances

Classes

An object-oriented programming scheme based on classes is provided with the
server. The code that implements the basic class mechanism is located in the
class.ps file (see Chapter 11, “Extensibility through

NeWs Procedure Files,” for information about the POSTSCRIPT language files).
Classes are especially useful for creating user interface components such as win-
dows, menus, and scrollbars.

The NeWs class system is extremely flexible. You can define your own classes to
build any user interface components you desire. You can also use the predefined
classes that are supplied wit% the News toolkit. The classes in the NeWs toolkit
implement the OPEN LOOK user interface.2

This chapter provides an introduction to the NeWs class system; it explains how
to use the operators and methods that reside in the class.ps file. Alphabetical
lists of the operators and methods are provided at the end of the chapter as a
quick reference to their syntax. Ycu should read this chapter if you want to
create your own classes, use the NeWs input classes, or use the NewS toolkit. The
toolkit classes use the basic class mechanisms described here. For a description
of the News toolkit classes, see the NeWs toolkit documentation.

This chapter uses special notation to help you distinguish between operators and
methods. Names of methods are preceded by a slash (for example, /new).
Names of operators are written without a slash (for example, send). Optional
arguments to operators and methods are listed in angle brackets (for example,
<args>).

This section explains some basic terms and concepts that are used throughout this
chapter. Some of the terms are common object-oriented programming terms;
others are specific to the News class system.

In the context of classes, an object consists of data and the procedures needed to
operate on that data. The NewS language represents these objects as POSTSCRIPT
language dictionaries. An object’s dictionary contains the object’s data
(represented as variables) and the object’s procedures (represented as
POSTSCRIPT language procedures).

2 OPENLOOK is a trademark of AT&T.

sun 131 Revision A of 11 June 1990

microsystems

132 News Programmer’s Guide

Instance Variables, Class
Variables, and Methods

A class is a template for a set of similar objects; the objects described by the
class are known as instances of the class. An instance of a class inherits the
characteristics of its class but can selectively alter some of these characteristics.
Classes and instances of classes are all objects; they are all represented by
POSTSCRIPT language dictionaries that store the object’s variables and pro-
cedures.

A class is like an architect’s plan for a house: it is a blueprint that specifies the
fundamental characteristics of a specific type of object. An instance of the class
is like the house itself: it is a particular object that is based on the blueprint.

When you create a class, you must specify its instance variables, class variables,
and methods. All of these items are stored in the class’ dictionary. Each variable
is stored with its variable name as a dictionary key and its variable value as the
dictionary key’s value. Each method is stored with its name as a dictionary key
and its procedure as the dictionary key’s value. Instance variables, class vari-
ables, and methods are explained below:

o instance variables

A class’ instance variables are variable data contained in each instance of the
class. Each instance receives its own copy of its class’ instance variables,
and each instance is free to change the values associated with its copy of the
instance variables. The instance variables are stored in an instance diction-
ary in the same way that they are stored in a class dictionary: each variable
name/value pair is stored as a key/value pair in the instance dictionary.

o class variables

Class variables are variable data shared by all the instances of a class. A
class’ class variables are stored in its class dictionary, but the instances of
the class do not receive a copy of the class variables. If you change the
value of a class variable, that change affects all the instances of the class.

o class methods

A class’ methods are procedures that you use to operate on the class’
instances. You send a message to an object to invoke the method associated
with that message; the message identifies the name of the method that you
want to invoke. Class methods are stored only in class dictionaries, not in
instance dictionaries.

To continue the house analogy, assume that a whole subdivision of houses is
built with the same blueprint. The houses have the same floor plan and the same
style, but each house is slightly different. For example, the paint and carpet
colors vary from house to house. Instances of a class are like the houses in the
subdivision; the instances have certain basic characteristics in common, and they
perform the same functions, but each instance is slightly different.

In this analogy, the physical aspects that vary from house to house correspond to
the instance variables. The physical aspects that are specified in the blueprint,
and thus do not vary from house to house, correspond to the class variables. The
blueprint also specifes certain functions that all the houses must perform. For

un Revision A of 11 June 1990

microsystems

(

(

Chapter 5 — Classes 133

Inheritance and the Class
Tree

Superclasses and Subclasses

Figure 5-1

The Immediate Superclass

@

example, each house must provide a working electrical system, plumbing system,
and heating system. These functions specified in the blueprint correspond to the
class methods. The “messages” that someone must send to invoke these func-
tions of a house are flipping on an a light switch, turning on a faucet, and turning
up the thermostat.

The classes in the NeWs class system belong to a class tree. The class tree is a
hierarchy that is similar to, but completely separate from, the canvas tree. The
root of the class tree is class Object. The server provides the implementation of
class Object (in the class . ps file), and the other classes in the tree are defined
by the client or by a toolkit.

Except for class Object, each class has at least one class that is above it on its
branch of the class tree; these classes that are above a class are called the class’
superclasses. A class can also have subclasses, which are located on branches
that emanate from beneath the class. Thus, a class’ superclasses are closer to the
root of the class tree, and a class’ subclasses are farther from the root.

The illustration below shows the structure of a simple class tree with class
Object at the root of the tree. This tree has just two short branches.

A simple class tree

Object

ClassA ClassC

ClassB ClassD

In this example, ClassA and ClassC are subclasses of class Object. Object is
the superclass of ClassA and ClassC. ClassB is a subclass of ClassA, and
ClassD is a subclass of ClassC. ClassB and ClassD each have two super-
classes: ClassB’s superclasses are ClassA and class Object, and ClassD’s
superclasses are ClassC and class Obj<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>