e e e s ee———————

Pl 7:/10(§® ‘

[ae}

VA A L

TeleVideo®

GWBASIC”%ser's Manual

TeleVideo Part Number 125681-00 Rev. Al

January 1984

Copyright (c) 1984 by TeleVideo Systems, Inc. All rights
reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in retrieval system, or
translated into any language or computer language, in any form or
by any means, electronic, mechanical, magnetic, optical,
chemical, manual, or otherwise, without prior written permission
of TeleVideo Systems, Inc., 1170 Morse Avenue, P.0. Box 3568,
Sunnyvale, California 94088,

Disclaimer

TeleVideo Systems, Inc. makes no representations or warranties
with respect to this manual. Further, TeleVideo Systems, Inc.
reserves the right to make changes in the specifications of the
product described within this manual at any time without notice
and without obligation of TeleVideo Systems, Inc. to notify any
person of such revision or changes.

TeleVideo is a registered trademark of TeleVideo Systems, Inc.
TeleDOS™ is a trademark of TeleVideo Systems, Inc.
GWBASIC is a trademark of TeleVideo Systems, Inc.

TeleVideo Systems, Inc.
1170 Morse Avenue
P.0O. Box 3568
Sunnyvale, CA 94088
408/745-7760

GWBASIC User's Manual

TABLE OF CONTENTS

INTRODUCTION

How To Use This Manual . . « o o o o o &
Notation Conventions e o e e o o o

USING GWBASIC

Starting GWBASIC . . ¢ & « ¢ o o s o o &
Command Line Options c s e s s »
Redirection of Standard Input and Output
Redirecting the Standard Input . . .
Redirecting the Standard Output . .
Examples of Redirecting the Standard
Output . « ¢ ¢ ¢ o ¢ « &
Modes of Operation .
Direct Mode . .
Indirect Mode .
Keyboard Usage . . .
Main Keyboard .
Numeric Keypad
S

o L] L] L] e

L]
.
.
L]
®

Special Key Combination
GWBASIC Program Editor . .
Program Editor Keys .

® e e o0 o s o
® e o 0o ® e © o o
Ld L[] . o ° L[] L] e .
e o o 0o e s o o
e e © 9o e e o e o

@ e e ® 0 e o o o

e o . . .
=]

o-oo.nlolcordounco

e o & o0 © o o o o

Entering Text Using the Program Editor

o

Changing Characters on the Current Line
Deleting Characters on the Current Line
Adding Characters to the Current Line

Deleting a Portion of the Current Line

Cancelling the Current Line . . .
Entering or Changing a BASIC Program .
Adding a New Program Line
Changing an Existing Program Line
Deleting a Program Line
Syntax Errors .« ¢ « ¢ ¢ ¢ ¢ o o o

GENERAL PROGRAMMING INFORMATION

Line Format . ¢« ¢ ¢ ¢ o o o &
Character Set + ¢« « ¢« ¢ o« « @
Constants « o « o « o « o o @
Precision for Numeric Con
Variables « ¢ « o« ¢ o o o o o
Variable Names . « « «
Declaring Variable Types
Array Variables
Numeric Type Conversion . . .

L]

t

e o o o o N e o o

e o o o o Qe o o
3

e o o o o (Te o o
0n

e o ®© o o o 8 o o

e o e e o o o e ©

(Feo o o s o

® © ® o e 8 ® e © s © e & e ® 0 o o o s e

e @ o o e e o o o

e © e 8 ® o e e ©® o o e & ® O 0 @ & © & o D e o e o o

3

Oie o o o o

®» o o e

e © e e o e e e ©* & & ° e e O 0 9 e © e o

o
[} L[] L[]
N

N
L]
=

DN N
e o L] * o
(SN0 6, N

e o 0 e o o o o
HHEONNNOO

NN

NN N NN
L] . [] [] L]
b
AU

2.17

NN N NN
L] L] [] L] (]
e
WO 0 ©

2.20

WWWWwwwwww
. L] [] L] L] L] [] L] o
ONONUTUT WK

Integer Division and Modulus Arithmetic
Relational Operators

Logical Operators
How Logical Operators Work

Functional Operators
Order of Execution

Arithmetic Operators
Sting Operators

String Functions

Expressions and Operators
Concatenation

GWBASIC User's Manual

COr-Hr—mMmmi~ OricNMUNUVOMNSNOHMT LS
l [an Mo M as TR s i Ve Ve BV T o e ol o) B B B B B B B | — 3456891111111122222
® e o o & o © & & ©° © & © o © s e a o ° s o o® o o o o o e o o o o o o o o
4 A RS AR U U R RS U U S R R S S RS n 5555555555555555555
e © e o ¢ e o O ® e o © e © s O @ o e @ e o o © o o ¢ o o 0 & O° o ©° o o o
@ ®© o © o © ¢ o & & o O° ® o & ° & ° o ® ® e e 8 2 & & © 6 o © ° e e ¢ ° o »
s ® o e © © & o ® 5 e o s s © © & ° 9 ® o & o @ @ o ® o ° e 6 s e e ° o © o
e ®© o © o e © ©° ®» © 6 © & ° e O° o v o ® & o 8 ® 6 & ©® e © e 6 o ® 9 ° © ° o
e ° ¢ & & © ¢ O e ® e © » & s 6 o ° o e ® & © © ® o © © © & ° e © 0 5 e 2
s ® o © e & o 8 o © o © & e o & o o o wn e ® © 5 e © o © & 6 6 © o & e o e o o
=
® ® o o e © e 9 o 6 e 5 o o ° ° e o o (@) e ® o 6 ®» © e © o © s © o 6 s © & © o
=~
e o o o & ® & o ® o o ¢ o & 0 e o o =] e & e o & © o © 6 & o © s 0©o o © e ° o
0] Q
® o o & ® () °© & e o o © o o° e ° o o o =z e o & o o & e 6 © o e s e © e © o o o
+ j
s o e o e @ * o o o ® o & o 3 o o ° = e ® e o o o o e o o o L4 . e e e e o o
o 0
o e o o e~ o ¢ o o DY e o o o (P o o D @ o a3 e © e ¢ ° © 6 ¢ © e 3 & o o o o
el - 0 — Z
s o & & o Ly e & & o Ly~ ® & ° S.f ° @ <G e ® e o 3 ® o © ° ©° o 5 e e o ° 0 o
o O -~ <3
e o o & e O e o o o)[1, « o s o e e ~ e ® 6 © o ® o © @ & o ® o© & o & o o o
O 19} — 92}
e o o e o e e -em e o e o (@ (] T ® e & ®» @ ® 2 ® ° © & ¢ o ¢ o 6 ©° o o
9] - © -~ 0 =
e o o o) e o 8 0. by e e o e D o = ® o o o o ® © 6 s e o © e & o & s o o
[~ Ao oo =
e o o O L e e e 0 (o] e +e N QO -H [z af e o o o o & o o o e o o e & o° o o o o
— o O N W (=R TN} 551
s NP O M ¢ o o ¢ O O ¢ o0~ O (0] < @ o 8 © © ® @ 6 e & o & ® 6 e o o ° o
O O 3 ~ —i QO W N K
~ o.dltG e D W e N Ml Ul NN T wn @ ® o s 6 O o6 e o o © & © © s o o o
E H o 03 Qo P OMm M [ORE= —~
oD NE N o4 E OW QN oCcO0OC ~ ® & o & o & o o o o o o o e o s o o[
[a1] jepg O} (O eI = -~ © 3 TQUm O o 0 9}
=) QT N Wn--— oFNerseml.lgAF o e ®© 0 @ e e o o o o e © e ° © © o e |
o] o O 0 Q >y ELPTCTPRLIAHPDC = —~ G
(@) UEIHEMWH DY OoOLUDEmL oHAEDO < ® e o s o 0 s e o e e e s e e o PO
O S 3 o= cO0Oc !l @O D OO\ = » @©
[a) MPOYUYA S0 o1 QOO EPWIICI OOCH = ® 6 o 5 o e o 9o e o e o o & o o o D M
= X ©T OO E>HO0EO0OHL O o ©] B O
<G SNO M OOy o @ Ot O MM TOCS © Q ® © s ® o © o e e o s o o s & o
CEHOE D0 2O0REBHOAMMANOM G [£1]
Ho 0 O LA AME Z M HMAE M
D o o K] O H o> ddHH®YEHUCS®HN OO
Aoow — 7] O 0 NUZHEHOIACAMKZAMEQ WIS
=4 - o - Q, MUEHEDHJN<SADHNODHHIIJ300
H (] <] a n MO KM MOMAMOOLVDOLVLLOLLVLLDLLDLLLO
< Te}

GWBASIC User's Manual

COM(n)

COMMON
CONT .
cos . .
CSNG .
CSRLIN

e o o o o

Ccvi, Cvs,

DATA .

DATES (Functlon)

CvD

DATES$ (Statement)

DEF FN

DEF SEG
DEFtype
DEF USR
DELETE

DIM . .
DRAW .
EDIT .
END . .
EOF . .
ERASE .
ERR and
ERROR .
EXP . .
FIELD

FILES .
FIX . .

FOR...NE

FRE . .

3 e
d

X

3 °
.]
. 3
* 3
3 .
. .
. .
. o
. .
° *
. 3
L .
. L]
.]
. L]
e e
° .

]
. .

GET (Files)

GET (Graphlcs)
GOSUB. . .RETURN

GOTO .
HEXS$.
IF . .
INKEYS
INP . .
INPUT .
INPUT#
INPUTS
INSTR .
INT ., .

KEY (Key Trapp

KEY (Soft

KEY (n)

KILL .
LEFTS .
LEN . .
LET . .
LINE .

LINE INPUT
LINE INPUT#

LIST .
LLIST .
LOAD .

Keys

e e e o o o

-o-o-.coovl—‘oc..-

e @ o e e e e @ e e e & 0 s O & ° ° ° S & © o e o o ° o

ll.o‘o...o.o@.-..

e o e e ® o ® & e 0 © o o o o o ¢ @ o o o o ¢ s o e o e © o o o o o o

e & e e o o © o & o o o

e o o e e o e o ® o o o o o e @ e e 9o o & e o e ° & & o & 2 & & o

e e o e @© o ©® o © 0o © o o e e o

e o ® e e e e 8 e e e e ©° 2 9 © 8 e © 8 ° 9 ° e © ° 6 & ° 0 o o

e e e e e e e 0o e 8 e @ o 3 & o e o e e e e o e e @ o o e o o o o

* e e ® e e 8 e e e e o * o & ©°© 9 0 e 9 o o

e @ o o o o e e o o e e © o & e @ 0o ° s o @

L] . L] . L] . L] L] L]) L] L]

® e @ 0 e e e e ® o & 8 6 e ° e 8 0 & @ 9 e & e ©° o o s oo o e o e 9 e & © o 0 o o o o

e e e e 8 e e & @ ® e o @ ® 0 & & ° s ° o .

e e o o o o o

e e o o o e e @* e o o o o

6 e e e o e @ o e © o o o o

e e o e e o 0o e e ° e o o e e o o & & o e« o e o e o o o o o s o

e o o 0 ® e e 3 o o

e o e e e o e© & @ e O e ° s ° & o e o o o

@ 6 o @ e o o @ e o e & 0 © s o o

® e @ o o e & o o o e o o

e @ @ e @ e e & @6 & e e @ e & 0 © o © ° @ e S 92 & & e s ° 02 & e o o o

e o o e o o o s o o e @ ® o e 0 & a3 @& e o o e o o o 8 o e o o e © o ° s & o o o o

8 e e e e o e o e e & e e e © o & 0o e o o o [] e & e o e o o o o o

e e o & 8 o o o o

e e o e o o o e o e o o o o

* e e e @ o ° & ° e 9 & o o e ©o © e e e e e & @ & 2 * e & 0 ° o o e o o e o o o o

e o o e o o ® o & e o o o o e o o o

e e o e 0 e e © * © o ® 0o & o & o o 0

e e o o ® o & o o o

5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.40
5.42
5.43
5.44
5.45
5.47
5.51
5.52
5.53
5.54
5.55
5.57
5.59
5.60
5.62
5.63
5.64
5.67
5.68
5.69
5.72
5.74
5.75
5.76
5.78
5.79
5.80
5.82
5.83
5.84
5.85
5.86
5.88
5.90
5.91
5.92
5.93
5.94
5.95
5.97
5.98
5.99
5.101
5.102

GWBASIC User's Manual

LOC ® L] 5.103

LOCATE . © o « o o o o o s o o o o o o o o o o« o o« o 5,104
LOF & o ¢ o o o o o s o s o o o o o o o o o o o« o o« « 5,106
LOG 4 o o o o o o o o o o s s o o o s s o o o o « o« o« 5,107
LPOS & &« ¢ o o o o o o o o o o o o o o o o o « o « « 5,108
LPRINT and LPRINT USING . o« o « « « o o o« o s« o o« » « 5,109
LSET and RSET . ¢ o o « ¢ o o o o o o « o o o « o s « 5,111
MERGE ¢ ¢« & ¢ o o © o o o o o o o s o o s o o o « o « 5,112
MIDS (Function) . o o ¢ ¢ o o o o o o o o o« o o o o« « 5,113
MID$ (Statement) e o o o o o & o o o e e s s o e o e 5,114
MEDIR . o ¢ ¢ o o o « o o o o o o o o o o o« o o« o s o 5,115
MKIS, MEKSS, MEDS ¢ ¢ o o o o o o o o o o« e o o « o o 5,116
NAME . ¢ ¢ o ¢ o o o o o o o o o s o o o o o o o« « » 5117
NEW ¢ ¢ o ¢ o o o o o o o « o o s o o o o o« o « o s o 5,118
OCTS & ¢ ¢ o o o o o o o o o o o o o o o o« o « « o « 5,119
ON COM(N) & o o o o o o o o o o o o o « o o o o « » o« 5,120
ON ERROR ¢ « o &« o o o o o o o s s o o« o o o o o o« o 5.122
ON...GOSUB and ON...GOTO ¢ v ¢ o o s o o o o« o o o« o« 5,124
ON KEY(N) & ¢ ¢ o o o « o o o o o o o o s o o o « o« « 5,125
ON PEN & v ¢ ¢ o o o o o o o o o o o o s o o o o o o bo127
ON PLAY(N) ¢ o o o o o o o o o o o o o o o o o o « o« 5,129
ON STRIG(N) &« o o o o o o o o o o o o o o o o o o o « 5,131
ON TIMER . « o o o o s o o o o o o o o o o« o o o« o« « 5,133
OPEN & v ¢ o o o o o o e o o o o o o o o o o« o« « o« « 5,135
OPEN COM . & & o o o o s o o o o s o o o o o o o« o« o« 5.137
OPTION BASE o &« o o e o o o o o s o o« o o o o« o o o« « 5,140
OUT & 4 o o o o o o o o o o o o o o o o o o o« o« « o« o« 5,141
PAINT o o o o o o o o o o o o o s o o s s o« o o o« » o« 5,142
PEEK & & ¢ ¢ o o o o o o o o o o o o o o« o o « o« » « 5,146
PEN (Function) e e o o s s e e o e e o o e o o e o o 5,147
PEN (Statement) . o ¢ o ¢ ¢ o o o o o o o o o o o o« » 5,149
PLAY (Function) . « o « ¢ ¢ ¢ ¢ o o o o o o o « o« o« « 5,150
PLAY (statement) .« « ¢ o o o ¢ o o o« o« o o o o o« « « 5.151
PLAY ON, PLAY OFF, PLAY STOP e o o o e e o o o e o o 5,155
PMAP . o 4 o o o o o o o o o o o s s s s o o o o « o« 5,156
POINT (Function) e ¢ o e o o & o o e o e s e e o e o 5,157
POINT (Statement) . « ¢ o o« o o o o » « e o o« o« o« « o« 5,158
POKE e o o o e o o o o o o o o e o o e o o 5,159
POS 4 & o o o o o o o o o s o o s o o o o a o o« o« « « 5160
PRESET & ¢ ¢ o o o « o o o o o o o o o o s s o o o o« 5,161
PRINT . & ¢ ¢ o o o o o o s o o s o o s o o o« » o« » o« 5.162
PRINT USING ¢ o o o o s o s o o o o o s« o o o « o « o« 5,164
PRINT# and PRINT# USING . + ¢« « « o « o o o o o o« « « 5.169
PSET & o o o o o o o o o s o o o« o o o o e o o o« o« » 5,172
PUT (F1il€S) & o« ¢ o o o o s o o o o o o o o o o o o« « 5,173
PUT (GraphicCsS) « & o o o ¢ o o o o o o o o« o o « o « 5,174
RANDOMIZE . o ¢ o o o o o o o o o o o o o o o o o o « 5,177
READ & & ¢ o o e o o o o o s o o s o o o o o o« o o « 5,178
REM o ¢ ¢ o o o o o o o o s o o o o o o o o o o« o & « 5,179
RENUM . ¢ & ¢ ¢ ¢ o « o o o o o o o o o o o« o« o o« &« o 5,180
RESET . e o o o o e o s s e e e s & e & e e o e« o o b.,181
RESTORE &« & ¢ « ¢ o e o o o o o s o s s« o o o« o« o« o« « 5182
RESUME . o & ¢ ¢ o « o o s o o o o o o« o o« s« o o o« o« 5,183
RETURN . ¢ o o o o o o o o o s o o « o o s o o o« o« » 5,184
RIGHTS e o o o o o o s o s o e e e s e e o e e o &« & 5,185

GWBASIC User's Manual

RMDIR

RND . ¢« ¢ o o o o
RUN . ¢« ¢ ¢ ¢ o o o«
SAVE . ¢ ¢ o o o @
SCREEN (Function) .
SCREEN (Statement)
SGN ¢ ¢ o« o« o o &
SIN ¢« ¢ o ¢ o « @
SOUND . &« ¢ o o &«
SPACES . ¢« « o
SPC . ¢ ¢ ¢ o« o @
SOR ¢ ¢ ¢ ¢ o o
STICK (n) e o o o
STOP ¢ & « ¢ o
STRS e o o o o o
STRIG ¢« o« ¢ o o
STRIG(n) e o o o
STRINGS « . « «
SWAP . o« o o o
SYSTEM . . . « &
TAB ¢ ¢ « o o o @
TAN

TIME$ (Function)
TIMES$ (Statement)
TIMER . .

@ e e o e & o ® o o & o°o o o o e e e o o o e o o e ® o e e @ e o o © o & o

4 e e e e e e e e © e 5 © O e O e e e ©6 o & e * e o o e ° e o o

TRON/TROFF ., . .
USR ¢ ¢« ¢ ¢ « o« &
VAL ¢« ¢ ¢ ¢ o o &
VARPTR
VARPTRS
VIEW .« « « « o &
VIEW PRINT . . .
WAIT . . « « o
WHILE...WEND . .
WIDTH . « « . .« .
WINDOW . o o
WRITE . « « . .+ &
WRITE#

Error Codes and Error
ASCII Character Codes
Keyboard Scan Codes .
GWBASIC Reserved Words
Mathematical Functions

Technical Information

e o 8 ® e o e o e o o s o e e e & o & @ e © e o

L] L] . e L[] L[] L] e L[] e L] L] L] ° L L] L] L] L] L] L[] L] L] L] 9 L] L] L] L] e L] L] ° L] L] L] L] L]
e ® o e e e o ¢ e e @ ©° © © 8 & 85 © o ©° o © e o o e e © o ® & © @ 0 @ ¢ o o
e ® e ® & @ e @ e e e © @ © e © @ © & O e © o © e © o & 0o 9 @ & 0o © e ¢ o o

e o e e o o
e« @& e ® o & e o

APPENDICES

Messages .

. . ° . °
®] [° °
o o L] 3]

e © e e e e e 6 o & e O© © 8 e % 0 @ e © o 9 @ 5 6 O© o 6 e 9 e & 2 o o o o °

e ® e e e e e @ o @ e O o ° e O o e o °© o © o o o ® @ ©® e @ e ©° o e e o o L]

e @€ ®o e e e & © o e e ® @ e e © e e & e o © o © e 9 ©° O e 6 e & o © 3 @ o o

e @ o e e © o e e e e e 9 0 € e © 8 © a & ¢ © & © o * e & o o

e e e o © e o & e € o € 9 © & O @ © @ e o © o o o © o o e o

L] L] L] L L] L[] L] e . L] L] L] o L[] . L] L[] L] L] L] L] L] L] * ° * L] ° L] L] L[] L] L] L] L] L] e L

. L] . L] o . L] L] L[] L] L] L e ° ° L[] L] L] ° L) ° L] L] L] L] ° L] L] L] L] L] L] . e L]

5.186
5.187
5.188
5.189
5.190
5.191
5.193
5.194
5.195
5.197
5.198
5.199
5.200
5.201
5.202
5.203
5.205
5.206
5.207
5.208
5.209
5.210
5.211
5.212
5.213
5.214
5.215
5.216
5.217
5.219
5.220
5.223
5.224
5.225
5.226
5.228
5.231
5.232

GWBASIC User's Manual

LIST OF FIGURES

2-1 The Keyboard .
2-2 Main Keyboard .
2-3 Numeric Keypad
4-1 Text Screen . .
4-2 Graphics Screen

e & e o o
L] © o o o
e o e o
L] * e L] ®
e e o o o
e L] e ° 3
L] L[] L[] L[] ®
e e o © e
e o & o o
e © e & o

LIST OF TABLES

Notation Conventions . .
Main Keyboard Special Keys
Special Key Combinations
Program Editor Keys . . .
Special Character Keys .
Device Names . . « « « &
Program File Commands . . .
Additional I/0 Support Dev1ces
Error Message Quick Reference Gui
Error Messages . « « o o o
ASCII Character Codes .
Extended ASCII Codes .
Mathematical Functions
GWBASIC FCB & ¢« ¢ o «

[I (I |
® e o o
s e o o ®
e e e o e © o

|
HHEHNHNMHWNNRHWND

e ® e e ® e o © o e o o o
Qs
¢ o o ¢ o (D e o e o e o e ¢

mtuniw:bus?n>¢>wronawr~

e o ¢ o o
e o e o o
® e e o o
e e e o o
e e o o @
L] L] L] . L]
e e o & o
e o o e e

NN

® o © o e e e o o o & e o o
¢ e © o ® o © o o o & e o o
L] . ® L] L) L] ° ® L] L] L] ® @ L]
e o © e e e ©® e © o @ & o @
e © 6 o o e © & o ° o o o o
L] L] ® L) L] L] ® e L] L] e e Ll L]
@ & © o ® e e e © e o ® o @
L
DP' o e o
NHHIHe o Hide o ide
oONNWONKHENONDNMDNDEHEOOON

i les v liee]

GWBASIC User's Manual Introduction

1. INTRODUCTION

BASIC is an easy-to-learn, easy-to-use, high-level programming
language. BASIC stands for Beginner's All-purpose Symbolic
Instruction Code.

GWBASIC is the BASIC interpreter for TeleVideo's personal
computers using the TeleDOS disk operating system. GWBASIC is a
powerful programming language providing advanced features like
color graphics, sound and music, and event trapping.

HOW TO USE THIS MANUAL

This manual is intended as a reference manual to describe the
many features of GWBASIC. To use this manual effectively, you
should have a working knowledge of the BASIC programming language
and general programming concepts.

The manual is divided into five chapters plus a number of
appendices.

Chapter 1 is an introduction to the GWBASIC manual and includes
a listing of the syntax notation used throughout the manual.

Chapter 2 tells you how to get started using GWBASIC. 1Included
is information on loading the GWBASIC interpreter into the
computer, the modes of operation, and how to create and edit a
BASIC program,

Chapter 3 covers a variety of topics you need to know to program
using the GWBASIC language. This chapter discusses line format,
the GWBASIC character set, constants and variables, and
expressions and operators.

Chapter 4 discusses input and output (I/0) in GWBASIC. This
chapter includes sections on using the screen modes, naming
files, use of sequential and random disk files, and other special
I/0 features.

Chapter 5 is a reference section. It contains a listing with
detailed descriptions of the GWBASIC commands, statements, and
functions.

The Appendices include useful reference information, such as a
list of error codes and error messages, the extended ASCII
character chart, how to derive additional mathematical functions,
and a listing of GWBASIC's reserved words.

TeleVideo Systems, Inc. Page 1.1

GWBASIC User's Manual Introduction

Notation Conventions

Several notation conventions are used throughout the manual to
make it easier to describe the syntax for GWBASIC's many
commands, statements, and functions. Table 1-1 is a listing of
these conventions.

Table 1-1
Notation Conventions

Symbol Description

[1] Square brackets indicate that the enclosed entry is
optional.
< > Angle brackets indicate data you enter. When the angle

brackets enclose lower-case text, type in an entry
defined by the text; for example, <filename>. When the
angle brackets enclose upper-case text (or a capital
followed by lower-case), you must press the key named
by the text; for example, <Ctrl>.

{1} Braces indicate that you have a choice between two or
more entries. At least one of the entries enclosed in
braces must be chosen unless the entries are also
enclosed in square brackets. The choices are separated
by the bar (1) symbol.

I Vertical bars separate the choices within braces. At
least one of the entries separated by bars must be
entered unless the entries are also enclosed by square
brackets.

coe Ellipses indicate that an entry may be repeated as many
times as needed or desired.

<CR> Indicates you are to press the <Enter> key. . CR
stands for Carriage Return.

The caret is often used as a shorthand notation for the
control key; therefore, the notation "Z indicates you
are to press the <Ctrl> key and the upper-case Z key at
the same time.

/ This symbol, when used between two or more keys,
indicates that you are to press the keys
simultaneously. For example, <Ctrl>/<Break> indicates
you are to press the <Ctrl> and <Break> keys at the
same time.

CAPS Capital letters indicate portions of statements or
commands that must be entered exactly as shown.

All punctuation (except those notation items listed above) must
be entered as shown in the format for the statement or command.

TeleVideo Systems, Inc. Page 1.2

GWBASIC User's Manual Using GWBASIC

2. USING GWBASIC

This chapter tells how to start GWBASIC. It then explains how to
use the GWBASIC editor to write and edit programs.

STARTING GWBASIC

Your GWBASIC interpreter comes on your TeleDOS operating
diskette. The interpreter resides in the file labeled BASIC.EXE
and is started similar to other utility or applications programs.
To start BASIC:

1. Turn on your computer.

2, Insert the TeleDOS system diskette in drive A and load
TeleDOS into the computer.

3. Enter the following command in response to the A> system
prompt:

BASIC<KCR>

GWBASIC displays an identifying sign-on message along with
the number of free bytes in memory for you to use. GWBASIC
then displays the Ok prompt. This indicates that GWBASIC is
at the command level and is waiting for a command.

Command Line Options

GWBASIC allows optional parameters to be included on the command
line when GWBASIC is started. These parameters allow the
environment in which GWBASIC operates to be altered, or requests
GWBASIC to immediately load and run a BASIC program.

GWBASIC will work without these options. If you are new to
BASIC, you may wish to skip over this section for now. You can
refer back to this section when you become more familiar with the
BASIC language and the capabilities of GWBASIC.

The complete format of the GWBASIC command line is as follows:

BASIC [<filespec>]
[<standard input]l[[>]>standard outputl
[/F:<# of files>]
[/S:<record size>]
[/C:<buffer size>]
[/D]
[/1]
[/M: [<maximum workspace>][,<maximum block size>]]

TeleVideo Systems, Inc. Page 2.1

GWBASIC User's Manual Using GWBASIC

filespec This is the name or file specification of a
BASIC program to be loaded and run
immediately. If the file is found, GWBASIC
proceeds as if a RUN <filespec> command were
given in response to the Ok prompt.
<filespec> must conform to the rules for
naming files as described in Chapter 4 and
may contain a path. A default file extension
of .BAS is used if none is included. The
file specification should not be enclosed in
quotation marks.

<standard input A GWBASIC program normally receives its input
from the keyboard (the standard input
device). This option allows the input to be
received from a specified file. When you use
the <standard input option, it must be
positioned before any of the slash (/) type
parameters. Refer to the following section
on Redirection of Standard Input and Output
for more information.

[>1>standard output A GWBASIC program normally sends its output
to the screen (the standard output device).
This option allows the output to be sent to a
specified file or device. When you use the
>standard output option, it must be
positioned before any of the slash (/) type
parameters. Refer to the following section
on Redirection of Standard Input and Output
for more information.

/F:<# of files> This parameter is ignored unless the /I
parameter is also specified.

This parameter sets the number of files that
may be open simultaneously during execution
of a BASIC program. If omitted, the default
value is five files.

The maximum number of files supported by
GWBASIC is 15, The actual number of files
that can be open simultaneously is limited by
the value of the FILES= parameter in the
CONFIG.SYS file. If FILES= is not specified
in the CONFIG.SYS file, the default value is
8. In this case, since GWBASIC uses three
files by default, you are limited to five
additional files (/F:5).

Each open file requires 188 bytes of memory

for the file control block (FCB), plus the
record length for random access files.

TeleVideo Systems, Inc. Page 2.2

GWBASIC User's Manual Using GWBASIC

/S:<record size>

/C:<buffer size>

/D

/1

This parameter is ignored unless the /I
parameter is also specified.

This parameter sets the maximum record size
in bytes used for random access files. If
this parameter is included, the record length
parameter of the OPEN statement cannot exceed
this record size value. The maximum value
allowed is 32767 bytes.

This parameter sets the buffer size in bytes
for receiving data on the RS-232 asynchronous
communications port. The buffer for
transmitting data is always set to 128 bytes.
If this parameter is omitted, the default
value is 256 bytes. A maximum value of 32767
is allowed.

RS-232 support can be disabled by setting the
buffer size to 0 (/C:0). 1In this case, no
buffer space is reserved for communications
and the communications support is not
included when GWBASIC is loaded.

This parameter loads the support for the
double-precision Transcendental math package.
This allows the functions ATN, COS, EXP, LOG,
SIN, SQR, and TAN to work with double-
precision numbers. This package increases
the resident size of GWBASIC by approximately
2,000 bytes.

GWBASIC is able to dynamically allocate the
space required to support file operations;
therefore, the /S and /F parameters need not
be supported. However, certain applications
packages have been written so that certain
BASIC internal data structures must be
static. In order to provide compatibility
with these BASIC programs, GWBASIC statically
allocates the space required for file
operations based on the /S and /F parameters
when the /I parameter is also specified.

TeleVideo Systems, Inc. Page 2.3

GWBASIC User's Manual Using GWBASIC

/M: [<maximum workspace>][,<maximum block size>]

GWBASIC is able to use a maximum of 64 Kbytes
of memory. When the /M: parameter is
omitted, GWBASIC allocates all available
memory up to a maximum of 64 Kbytes for a
workspace. This workspace includes the
interpreter work area, the GWBASIC stack
area, and space for your programs and data.

The <maximum workspace> option is used to set
the maximum number of bytes used for the
GWBASIC workspace. By limiting the GWBASIC
workspace to less than 64 Kbytes, you can
reserve space for machine language
subroutines or for special data storage above
the GWBASIC workspace.

The <maximum block size> option is used to
set the maximum number of bytes to be used by
the GWBASIC workspace and for special user
storage. The <maximum block size> is entered
as the number of 16 byte paragraphs to
reserve, When omitted, the default value is
4096 (16 x 4096 = 64K). By specifying more
than 4096 paragraphs, you can reserve user
storage space above the GWBASIC workspace
without decreasing the size of the GWBASIC
workspace.

NOTE! The values for <# of files>, <record size>, <buffer
size>, <maximum workspace>, and <maximum block size>
may be entered as decimal, octal (preceded by &0), or
hexadecimal (preceded by &H) numbers.

Examples:

BASIC PAYROLL GWBASIC is loaded into memory using a
64K maximum workspace and allows five
files to be open simultaneously. Once
GWBASIC is loaded, the BASIC program
PAYROLL.BAS is loaded and run.

BASIC /C:0 /M:32768 GWBASIC is loaded into memory with the

RS-232 support disabled. Sixty-four
Kbytes are reserved for GWBASIC
workspace and user program space. The
GWBASIC workspace uses the lower 32
Kbytes and the upper 32 Kbytes are
available for the user.

TeleVideo Systems, Inc. Page 2.4

GWBASIC User's Manual Using GWBASIC

BASIC /M:,4112 GWBASIC is loaded into memory with 66048
bytes (16 x 4112 = 66048) allocated for
the GWBASIC workspace and user
workspace. The GWBASIC workspace uses
the lower 64 Kbytes (65536 bytes), with
512 bytes available above GWBASIC for
the user.

BASIC /M:32000,2048 GWBASIC is loaded into memory with 32
Kbytes (16 x 2048 = 32768 = 32K)
allocated for GWBASIC workspace and user
program space. The GWBASIC workspace
uses the lower 32000 bytes, leaving 768
bytes available above GWBASIC for the
user,

REDIRECTION OF STANDARD INPUT AND OUTPUT

GWBASIC allows you to redirect your BASIC input and output by
including a new standard input or output on the GWBASIC command
line. The form of the command line is:

BASIC [<filespec>] [<standard input] [[>][>standard output]]
Redirecting the Standard Input

GWBASIC normally reads input from the keyboard, but can be
directed to read input from the standard input file specified on
the GWBASIC command line. When the input is redirected, the
INPUT, LINE INPUT, INPUTS$, and INKEY$ statements read from the
specified standard input file.

GWBASIC continues to read from the specified standard input file
until a "Z end-of-file character is detected. This condition may
be tested using the BASIC EOF function. If the file is not
terminated by a "Z end-of-file character, or a BASIC input
statement tries to read beyond the end-of-file character, all
open files are closed, the program is terminated, and the error
message "Read past end" is sent to the standard output.

File input from "KYBD:" is always read from the keyboard,
regardless of the standard input. GWBASIC also continues to trap
keys from the keyboard when the ON KEY(n) statement is used.

Redirecting the Standard Output

GWBASIC normally writes output to the screen, but can be directed
to write to the standard output file or device specified on the
GWBASIC command line. When output is redirected, all PRINT
statements write to the specified standard output. Error
messages are also sent to the standard output.

TeleVideo Systems, Inc. Page 2.5

GWBASIC User's Manual Using GWBASIC

If two greater—-than (>) symbols are entered in front of the new
standard output file, all output sent to the file is appended to
the end of the file.

File output to "SCRN:" is always written to the screen,
regardless of the standard output.

The <Ctrl>/<PrtSc> echoing to the printer feature is disabled
when the standard output is redirected.

Examples of Redirecting the Standard Input and Output
BASIC MYPROG <DATA.IN

GWBASIC is loaded into memory and loads and runs the BASIC
program MYPROG.BAS. If MYPROG.BAS requires standard input, the
data is read from the file DATA.IN. All standard output from
MYPROG.BAS is sent to the screen. The files BASIC.EXE,
MYPROG.BAS, and DATA.IN are located on the default drive.

BASIC MYPROG <DATA.IN >B:DATA.OUT

GWBASIC is loaded into memory and loads and runs the BASIC
program MYPROG.BAS (BASIC.EXE and MYPROG.BAS are located on the
default drive). If MYPROG.BAS requires standard input, the data
is read from the file DATA.IN on the default drive. All standard
output from MYPROG.BAS is written to file DATA.OUT on drive B.

BASIC SALES >>B:\SALES\SALES.DAT

GWBASIC is loaded into memory and loads and runs the BASIC
program SALES.BAS (BASIC.EXE and SALES.BAS are located on the
default drive). All standard input to the SALES program comes
from the keyboard. All standard output is appended to the file
SALES.DAT located in the SALES directory on drive B. (For more
information on directories and the use of paths, refer to Chapter
3 of the TeleDOS User's Manual.)

MODES OF OPERATION

Once GWBASIC is started, it displays the Ok prompt. The Ok
indicates that GWBASIC is ready and waiting for your command.
This state is often referred to as the command level. From the
command level, you have a choice of two modes of operation: the
direct mode or the indirect mode.

TeleVideo Systems, Inc. Page 2.6

GWBASIC User's Manual Using GWBASIC

Direct Mode

The direct mode is used to send instructions directly to the
interpreter. The BASIC statements and commands are entered
without being preceded by line numbers. When the <Enter> key is
pressed, the statements and commands are executed immediately.
Results of arithmetic and logical operations may be displayed
immediately and stored for later use, but the instructions are
lost (not stored in memory) after execution. The direct mode is
useful for program debugging and for making quick calculations
that do not require a complete program. For example:

Ok

PRINT "THE SQUARE ROOT OF 7 IS" SQR(7) (you enter)

THE SQUARE ROOT OF 7 IS 2.645751 (GWBASIC responds)
Ok

Indirect Mode

The indirect mode is used to write BASIC programs. To indicate
the line is part of a program, you start the line with a line
number. When the <Enter> key is pressed, the entered line is
stored in memory as part of the program. To execute the program
in memory, enter the RUN command. For example:

Ok

10 REM THIS PROGRAM CALCULATES THE SQUARE ROOT OF SEVEN
20 PRINT "THE SQUARE ROOT OF 7 IS" SQR(7)

30 END

RUN

THE SQUARE ROOT OF 7 IS 2.645751

Ok

KEYBOARD USAGE
The keyboards on TeleVideo personal computers using GWBASIC are

divided into three sections: the main keyboard, the numeric
keypad, and the function keys.

Figure 2-1
The Keyboard

TeleVideo Systems, Inc. Page 2.7

GWBASIC User's Manual Using GWBASIC

The Main Keyboard

Key positions in the main Kkeyboard are similar to a standard
typewriter. Unlike a typewriter, the alphanumeric and
punctuation keys are typematic, meaning if they are held down,
the character is automatically repeated. GWBASIC uses some of
the main keyboard keys to perform special functions. Table 2-1
lists GWBASIC's usage of some of these keys.

Figure 2-2
Main Keyboard

Table 2-1
Main Keyboard Special Keys

Key Description

The <Ctrl> (control) key is used to enter special
characters or codes not represented by keys on the
keyboard. For example, <Ctrl>/<G> (<"G>) is the
bell character. When this character is printed,
the speaker beeps.

The <Ctrl> key is also used with other keys to
edit your programs while using the program editor
(refer to the section on the GWBASIC program
editor in this chapter).

TeleVideo Systems, Inc. Page 2.8

GWBASIC User's Manual Using GWBASIC

The main keyboard has two <Shift> keys. Pressing
either of the <Shift> keys shifts the alphanumeric
and punctuation keys to the upper-case mode.
Alphabet characters are displayed as capital
letters. All other character keys when pressed
with the <Shift> key, display the character shown
on the upper portion of the key. If the upper-
case mode is set with the <Caps Lock> key, the
<Shift> keys shift the alphabet characters to
lower-case.

The <Alt> (alternate) key may be used to enter
commonly-used BASIC commands or statements using a
single keystroke. The BASIC keywords are entered
by holding down the <Alt> key and then pressing
one of the alphabet keys (A-Z or a-z). The BASIC
keywords are assigned as follows:

A AUTO N NEXT
B BSAVE 0] OPEN
C COLOR P PRINT
D DELETE 0 (none)
E ELSE R RUN

F FOR S SCREEN
G GOTO T THEN
H HEX$ U USING
I INPUT \Y/ VAL

J (none) W WIDTH
K KEY X X0OR

L LOCATE Y (none)
M MOTOR 7 (none)

The <Caps Lock> key locks characters A through Z
in the upper-case mode. Pressing <Caps Lock>
again returns you to the lower-case mode. The
<Caps Lock> key switches or toggles between lower-
and upper-case for the characters A through Z.

Pressing the <Shift> key and <PrtSc> (print
screen) key simultaneously (<KShift>/<PrtSc>) sends
a copy of the information displayed on the screen
to the printer (LPTl:).

The <Enter> or <CR> (carriage return) key is used
to send a command to the GWBASIC interpreter,
enter a line into the program in memory, or to
place a newly edited program line into memory in
place of the line currently there.

The <Backspace> key erases the character to the
left of the cursor and moves the cursor one
position to the left.

TeleVideo Systems, Inc. Page 2.9

GWBASIC User's Manual Using GWBASIC

Numeric Keypad

The numeric keypad keys can be operated in two ways: as typical
numerical keys, or as cursor movement and editing keys. You can
use the <Num Lock> key to switch or toggle between the two modes.
While using GWBASIC, you might find it convenient to use the
numeric keypad in the cursor movement and editing mode for easy
program editing. The functions of the numeric keypad keys are
discussed in detail in the section on the program editor later in
this chapter.

Figure 2-3
Numeric Keypad

Function Keys

GWBASIC allows the function keys, labeled F1 through F10, to be
used as soft keys or as program interrupt keys. When GWBASIC is
initially started, the function keys are set as soft keys and are
displayed at the bottom of the screen. Soft keys allow you to
enter GWBASIC keywords with a single keystroke. For more
information about soft keys and the values initially assigned to
them, refer to the KEY statement in Chapter 5.

The function keys can also be used as interrupt keys using the ON
KEY(n) statement. In this usage, GWBASIC continually checks to
see if the function keys have been pressed. If a key is pressed,
program execution is transferred to the program segment specified
in the ON KEY statement. For a more complete explanation of how
to use the function keys as interrupts, refer to the ON KEY(n)
statement in Chapter 5.

TeleVideo Systems, Inc. Page 2.10

GWBASIC User's Manual Using GWBASIC

Special Key Combinations

Certain key combinations perform special hardware related
functions. Table 2-2 lists the key combinations and their
functions.

Table 2-2

Special Key Combinations

Keys Function Description
<Ctrl>/<Alt>/ Reset Stops all program activity

and the computer loads the
operating system from the
diskette in drive A.

<Ctrl>/<Num Lock> Pause Stops the scrolling of the
screen display so you can read
the screen. Press any
character key to continue.

<Ctrl>/<Break> Break Interrupts the current program
and returns control to the
GWBASIC command level.

<Ctrl>/<PrtSc> Echo Pressing the <Ctrl>/<PrtSc>
toggles in and out of the Echo
mode. When in the Echo mode,
everything that is displayed
on the screen is also sent to
the printer (LPT1:).

GWBASIC PROGRAM EDITOR

Whenever you are entering text at the GWBASIC command level, you
are using the program editor. The GWBASIC program editor is
called a screen line editor. This means you can edit a line
anywhere on the screen, but the edits are entered one line at a
time.

The blinking underline, called the cursor, indicates where

the next character will be displayed or deleted on the screen.
The program editor keys are used to move the cursor around the
screen to edit lines. The line the cursor is on is placed in
memory (or sent to the interpreter when in the direct mode) when
the <Enter> key is pressed.

The program editor can be a powerful tool during program
development. To become familiar with the features of the program
editor, read through the following editing key descriptions and
then practice using them on a sample program.

TeleVideo Systems, Inc. Page 2.11

GWBASIC User's Manual Using GWBASIC

Program Editor Keys

Table 2-3 lists the editing keys used by the program editor. It (j
describes how they are used to move the cursor around the screen
to add, change, or delete characters or 1lines.

Table 2-3
Program Editor Keys

Function

Performs the Break function, returning you to
the command level without saving changes to
the line currently being edited.

The <Home> key moves the cursor to the upper-
left corner of the screen, called the Home
position.,

Clears the screen and moves the cursor to the
Home position.

The <Cursor Up> key moves the cursor to the
character position one line above the current
position.

The <Cursor Left> key moves the cursor one
character position to the left without (j
deleting any characters. If the cursor is
presently at the left edge of the screen, the
cursor moves to the right edge of the screen

on the preceding line.

The <Previous Word> key sequence moves the
cursor left to the previous word. The
previous word is the first letter or number
to the left of the cursor that is preceded by
a space or a special character. For example,
consider the line

10 PRINT TAB(15) "HELLO"_

Pressing <Ctrl>/<Cursor Left> moves the
cursor to the H in HELLO.

10 PRINT TAB(15) "HELLO"

Pressing <Ctrl>/<Cursor Left> again moves the
cursor to the 1 in 15.

10 PRINT TAB(l5) "HELLO"

TeleVideo Systems, Inc. Page 2.12

GWBASIC User's Manual Using GWBASIC

The <Cursor Right> key moves the cursor one
character position to the right without
deleting any characters. If the cursor is
presently at the right edge of the screen,
the cursor is moved to the left edge of the
screen on the next line down.

The <Next Word> key sequence moves the cursor
right to the next word. The next word is the
first letter or number to the right of the
cursor that is preceded by a space or a
special character. For example, consider the
line

10 PRINT TAB(15) "HELLO"

Pressing <Ctrl>/<Cursor Right> moves the
cursor to the T in TAB.

10 PRINT TAB(15) "HELLO"

Pressing the <Ctrl>/<Cursor Right> again
moves the cursor to the 1 in 15,

10 PRINT TAB(l1l5) "HELLO"

The <End> key moves the cursor one

position to the right of the last character

on the logical line the cursor is presently

on. Characters can then be added to the end
of the line.

The <Ctrl>/<End> key sequence erases all the
characters from the current cursor position
to the end of the logical line.

The <Cursor Down> key moves the cursor to the
character position one line below the current
cursor position.

The <Ins> (insert) key switches or toggles
between the insert and overwrite modes. 1In
the overwrite mode, a character typed at the
keyboard replaces the character at the cursor
position. The overwrite mode is the default
mode for the program editor.

TeleVideo Systems, Inc. Page 2.13

GWBASIC User's Manual Using GWBASIC

In the insert mode, a character typed at the
keyboard is inserted into the current line at
the cursor position. When a character is (i
inserted, the cursor, the character it was
on, and all the characters to the right of
the cursor are moved one position to the
right. 1If the inserted characters increase
the size of the line to greater than 80
characters, the extra characters are moved to
the beginning of the next line. This is
known as line wrapping.

To make it easy to identify when you are in
the insert mode, the cursor is changed from
an underline to a square covering the lower
half of the character box.

The Insert mode is automatically turned off
if any of the cursor movement keys or the
<Enter> key is pressed.

The (delete) key deletes the character

at the current cursor position. All

characters to the right of the deleted

character are moved one position to the left.

If the logical line spans more than one line

on the screen, characters move up to fill any
space left at the end of a preceding line, (j

The <Esc> (escape) key erases from the screen
the logical line the cursor is currently on.
The line is not sent to the interpreter, and
if it is a program line, it is not erased
from the program in memory. The cursor is
returned to the beginning of the line. This
provides you with a blank line so you can
enter a command or new program line.

The <Tab> key moves the cursor to the next
tab stop. Tab stops occur every eight
character positions (1,9,17,...). In the
insert mode, the <Tab> key inserts spaces
from the current cursor position to the next
tab stop. For example, consider the program
line

10 REM THIS IS AN EXAMPLE

The cursor is presently at position 10 on the
line. Pressing the <Tab> key while in the
insert mode inserts seven spaces and moves
the characters to the right of the I in THIS
to the right.

10 REM TH IS IS AN EXAMPLE (:

TeleVideo Systems, Inc. Page 2.14

GWBASIC User's Manual Using GWBASIC

If the added spaces increase the size of the
line to greater than 80 characters, line
wrapping occurs as described under the <Ins>

key.

In the overwrite mode, the <Tab> key moves the
cursor over characters until it reaches the
next tab stop. Using the above example:

10 REM THIS IS AN EXAMPLE

Pressing the <Tab> key moves the cursor
to the 17th position, which is the N in AN.

10 REM THIS IS AN EXAMPLE

The <Backspace> key deletes the character to
the left of the cursor and moves the cursor
one position to the left. All the characters
to the right of the deleted character are
moved one position to the left. If the
logical line spans more than one line on the
screen, characters move up to fill any space
at the end of the preceding line.

Entering Text Using the Program Editor

Since any text entered at the GWBASIC command level is processed
by the program editor, you can use the program editor keys to
make changes to the text. GWBASIC is at the command level after
the Ok prompt is displayed, and remains at the command level
until the RUN command is given.

GWBASIC treats an entered string of text as a logical line. A
logical line can contain up to 255 characters. This means a
logical line can extend to more than one physical line on the
screen. If you enter more than 80 characters on a screen line,
the cursor wraps down to the beginning of the next line and the
logical line continues on that line. The logical line is not
processed until a terminating <Enter> is pressed.

You can also use a line feed (KCtrl>/<Enter>) to continue a
logical line on the next screen line. Entering a line feed fills
the remainder on the current line with blanks and moves the
cursor to the beginning of the next line. The added blanks are
included in the 255 allowed characters, but the line feed
character is not added. Again, the logical line is not processed
until a terminating <Enter> is pressed.

TeleVideo Systems, Inc. Page 2.15

GWBASIC User's Manual Using GWBASIC

Changing Characters on the Current Line
If you are entering a line of text and discover you typed a wrong
character, you can use the cursor movement keys to go back and
type the correct character over the wrong character. For
example, suppose you are entering the command:

RUN "V:PAYR_
A V was entered instead of a B for the drive designation. To
correct it, press the previous word key sequence twice
(<Ctrl>/<Cursor Left>) to move the cursor back to the V.

RUN "V:PAYR

Since the program editor is normally in the overwrite mode,
simply type a B over the V to correct the mistake.

RUN "B;PAYR

Now press the <End> key to return to the end of the line to
continue entering the command.

RUN "B:PAYR_

Finish typing in the command and then press the <Enter> key to
process the command.

RUN "B:PAYROLL.BAS"
Deleting Characters on the Current Line
If you notice you have typed an extra character in the line you
are entering, you can use the key or the <Backspace> key
to delete it. For example, suppose you are entering the
following command:

LOAD "B:PAYYROLL_

To delete the extra Y, press the <Cursor Left> key five times to
move the cursor back to the second Y.

LOAD "B:PAYYROLL
Press the key to delete the extra Y.
LOAD "B:PAYROLL

Press the <End> key to return to the end of the line to continue
entering the command. Suppose you type an extra character again:

LOAD "B:PAYROLL.BAA_

TeleVideo Systems, Inc. Page 2.16

GWBASIC User's Manual Using GWBASIC

To delete the extra A, press the <Backspace> key.
LOAD "B:PAYROLL.BA_

Now continue entering the command.
LOAD "PAYROLL.BAS"_

Adding Characters to the Current Line

If you are entering text and notice that you have omitted a
character, the insert mode can be used to insert characters into
the middle of a line. Suppose you are entering the following
command:

LOAD "B:PAYROL.BAS"_

You notice you forgot the second L in PAYROLL. Press the
<Cursor Left> key five times to move the cursor back to the
period after the L.

LOAD "B:PAYROL,BAS"

Now press the <Ins> key to enter the insert mode and type in the
missing L.

LOAD "B:PAYROLL,BAS"

The command can now be processed by pressing the <Enter> key.
Note, the cursor does not have to be at the end of the line to
enter the whole line for processing.

Deleting a Portion of the Current Line

The <Ctrl>/<End> key sequence can be used to delete text from
the cursor position to the end of the line. Suppose you are
working on a program and decide you want to edit 1line 240. You
can display line 240 on the screen for editing by using the EDIT
command.

EDIT 240
240 PRINT TAB(20) "Main Editing Menu" : PRINT : PRINT

You have decided you only want one blank line after the menu
header, so you need to delete the second PRINT statement. One
way of doing this is to move the cursor to the space after the
first PRINT statement using the <Cursor Right> key.

240 PRINT TAB(20) "Main Editing Menu" : PRINT_: PRINT

Now press the <Ctrl>/<End> key sequence to delete the characters
from the cursor position to the end of the 1line.

240 PRINT TAB(20) "Main Editing Menu" : PRINT_

TeleVideo Systems, Inc. Page 2.17

GWBASIC User's Manual Using GWBASIC

Now press the <Enter> key to place the new program line in
memory.

Cancelling the Current Line

If you decide you do not want to process the line or command you
are presently entering, press the <Esc> key. Suppose you had
entered the following command:

DELETE 120-200_

To cancel the command and not delete lines 120 through 200, press
the <Esc> key.

The line is deleted from the screen and the cursor returns to the
beginning of the line.

ENTERING OR CHANGING A BASIC PROGRAM

Lines of text entered that begin with a 1ine number are
considered BASIC program lines and are stored in memory as part
of the current program. A program line can contain a maximum of
255 characters, including the line number and the terminating
<Enter>. If more than 255 characters are entered, the program
editor will truncate the extra characters when the terminating
<Enter> is pressed. (Note: the extra characters will still
appear on the screen.)

BASIC keywords (statements, commands, and functions) and variable
names are stored in memory as upper-case letters. The program
editor converts all text entered in lower-case letters to upper-
case letters except for remarks, items in DATA statements, and
strings enclosed in quotes.

Adding a New Program Line

To add a program line to your program, enter a valid line number
(0-65529), at least one space, the desired program text, and a
terminating <Enter>. For example:

10 REM This is the first line of my program

When the <Enter> key is pressed, the program editor saves this
line as line number 10 of your program. The program editor does
not check the program line for proper syntax (correctness) before
storing it in memory. Syntax is checked as the line is

executed when you RUN your program.

If youenter a line with the same line number as a line already
stored in memory, the new line replaces the o0ld one.

TeleVideo Systems, Inc. Page 2.18

GWBASIC User's Manual Using GWBASIC

If you try to add a line to your program when there is no more
room in memory, an "Out of memory" error message is displayed and
the new line is not added.

The AUTO command (described in Chapter 5) can be used to aid in
program entry. The AUTO command automatically enters the line
number and following space on each line for you.

Changing an Existing Program Line

Program lines can be changed in one of three ways. The first
method, described above, is by entering a line with the same
line number as a line already stored in memory. The new line
replaces the existing line in memory. For example, if you
enter

10 REM Program SALES FORECAST

the new line 10 REMark statement replaces the previous one
(10 REM This is the first line of my program).

The second method is using the GWBASIC EDIT command. Entering
EDIT 10

lists the current line 10 from memory on the screen and places
the cursor under the 1 in 10. The program editor keys can then
be used to make the desired changes. When the changes are
made, press the <Enter> key to place the edited version of the
program line in memory. This method also makes it easy to
duplicate or move a line by changing only the line number. For
example, suppose you find that you need the statement in line
number 180 again in line number 430. To save typing, enter

EDIT 180
180 If PLUS = 0 THEN PRINT "No Positive Values"

To duplicate this line as line number 430, type 43 (remember, the
overwrite mode is the program editor's default mode).

EDIT 180
430 IF PLUS = 0 THEN PRINT "No Positive Values"

Press the <Enter> key to enter the line as line number 430 (Note
that the cursor does not have to be at the end of the line when

the <Enter> key is pressed). Lines 180 and 430 now contain the

same IF...THEN statement.

TeleVideo Systems, Inc. Page 2.19

GWBASIC User's Manual Using GWBASIC

The third method is using the full screen editing features of the
program editor. If the line is not currently displayed, the
GWBASIC LIST command can be used to display the line, or a

range of lines. Once the line is displayed on the screen, use
the program editor cursor movement keys to move the cursor to the
line requiring change. Use the editing keys to make the required
changes. Press the <Enter> key to place the edited version in
memory. For example, suppose you have just listed the following
segment of your program:

LIST 110-130

110 FOR INDEX =1 TO 10

120 IF TEST(INDEZ) < 0 THEN MINUS = MINUS + 1 ELSE
PLUS = PLUS + 1

130 NEXT INDEX

Ok

You see that the reason the FOR...NEXT loop is not working
properly is that you misspelled the variable INDEX in line 120.
Press the <Cursor Up> key four times to move the cursor to the
first screen line of logical line number 120. Press the Next
Word key sequence (KCtrl>/<Cursor Right>) three times to move to
the I in INDEZ and the <Cursor Right> key four times to move to
the 2 in INDEZ. Now type X to replace the Z and press the
<Enter> key to store the newly-corrected version in memory.
(Note that the cursor does not have to be at the end of the
logical line when the <Enter> key is pressed. The program editor
knows where the logical line ends and processes the whole line.)

NOTE! When you edit lines using the above techniques, you
only change the program in memory. To save the edited
version of the program on disk, use the GWBASIC SAVE
command.

Deleting a Program Line

There are two methods of deleting program lines from the program
in memory. One method is to enter the line number of the line to
be deleted and then press the <Enter> key. For example,
entering:

110

and pressing the <Enter> key deletes line number 110 from the
program in memory. If line 110 does not exist in memory, the
error message "Undefined line number" would be displayed.

The second method is using the GWBASIC DELETE command. The
DELETE command can be used to delete a single line, or a group of
lines. Refer to Chapter 5 for instructions on how to use the
DELETE command.

TeleVideo Systems, Inc. Page 2.20

GWBASIC User's Manual Using GWBASIC

Syntax Errors

When the GWBASIC interpreter discovers a syntax error while
running your program, the program is halted, an error message is
displayed, and the line in error is listed. For example, if you
misspell the BASIC keyword PRINT in line number 90 of your
program, the following is displayed on your screen:

RUN

Syntax error in 90

Ok

90 PRIT "Your monthly payment is"™ PAYMENT

The program editor displays the line containing the error

and then positions the cursor under the first digit of the line
number. You can now use the <Cursor Right> key to move the
cursor to the T in PRINT. Press the <Ins> key to enter the
insert mode, and type N. Now press the <Enter> key to store the
corrected line in memory.

TeleVideo Systems, Inc. Page 2.21

GWBASIC User's Manual General Programming

3. GENERAL PROGRAMMING INFORMATION

This chapter covers a variety of topics you need to know to
program using the GWBASIC language. Included are the program
line format, the GWBASIC character set, constants and variables,
and expressions and operators.

LINE FORMAT

GWBASIC program lines have the following format (square brackets
indicate optional input):

nnnnn [BASIC statement[:BASIC statement]...]['comment]
and are terminated by pressing the <Enter> key.

nnnnn Represents a line number from 0 to 65529.
Every program line begins with a line number.
Line numbers indicate the order in which the
program lines are stored in memory. Line
numbers are also used as references in
branching and editing.

BASIC statement BASIC statements are either executable
instructions or non-executable statements.
Executable statements are instructions that
tell GWBASIC what to do. Examples of
executable statements are PRINT, INPUT, GOTO,
and OPEN. Non-executable statements do not
cause any program action, but can provide the
program with needed information. Examples of
non—-executable statements are REM, DATA, and
FIELD.

More than one BASIC statement may be included
in one program line, but each must be
separated from the previous one by a colon.
For example:

50 FOR I =1 TO 10 : PRINT I : NEXT I

'comment Comments may be added to the end of a program
line by using the single quote mark (') to
separate the comment from the rest of the
line. When the program is being RUN, the
interpreter ignores everything on the
line after the quote mark. Comments are
convenient ways of reminding yourself what
each line or group of lines do in your
program.

TeleVideo Systems, Inc. Page 3.1

GWBASIC User's Manual General Programming

A program line may contain a maximum of 255 characters. This
includes the line number, BASIC statements, comments, and one
character position for the terminating <Enter>. The program
line, or logical line, can extend to more than one physical line
on the screen. If you enter more than 80 characters on a screen
line, the cursor wraps down to the beginning of the next line and
the logical line is continued. The logical line is not processed
until the terminating <Enter> is pressed.

You can also use a line feed (KCtrl>/<Enter>) to continue a
logical line on the next screen line. Entering a line feed fills
the remainder on the current line with blanks and moves the
cursor to the beginning of the next line. The added blanks are
included in the 255-allowed characters, but the line feed
character is not added. Again, the logical line is not processed
until a terminating <Enter> is pressed.

CHARACTER SET

The GWBASIC character set consists of alphabet characters,
numeric characters, and special characters.

The alphabet characters in GWBASIC are the upper-case and lower-
case letters of the alphabet. The numeric characters are the
digits 0 through 9.

The following keys act as special characters and have specific
meanings in GWBASIC.

Table 3-1
Special Character Keys

Character Meaning

Blank (Space Bar)

Equals sign or assignment symbol

Plus sign or concatenation symbol

Minus sign

Asterisk or multiplication symbol

Slash or division symbol

Caret or exponentiation symbol

Left parenthesis

Right parenthesis

Percent sign or integer type declaration
character

Number (or pound) sign or double-precision type
declaration character

Dollar sign or string type declaration character
Exclamation point or single-precision type
declaration character

Left bracket

Right bracket

Comma or data item delimiter

Single quotation mark (apostrophe) or remark
delimiter

— £ P~~~ DN * | + 1l

- d ey

TeleVideo Systems, Inc. Page 3.2

GWBASIC User's Manual General Programming

Character Meaning

Double-quotation mark or string delimiter
Semicolon

Colon or statement separator

Ampersand

Question mark or PRINT statement abbreviation
Less than

Greater than

Backslash or integer division symbol

At sign

Underscore

@/VA'\J?’""

GWBASIC is also capable of displaying many other characters that
have no special meaning in the BASIC language. Refer to Appendix
B for a complete listing of the GWBASIC character set.

CONSTANTS

Constants are the values GWBASIC uses during execution of your
program. There are two types of constants: string (character)
constants and numeric constants.

A string constant is a sequence of up to 255 alphanumeric
characters enclosed in double quotation marks.

Examples:

"HELLO"

"$25,000.00"

"Number of Employees"
"B:DATAFILE.DAT"

Numeric constants are positive or negative numbers. A plus sign
(+) is optional on positive numbers. GWBASIC numeric constants
cannot contain commas. There are five types of numeric
constants:

1. Integer Whole numbers between -32768 and 32767,
inclusive. Integer constants do not
contain decimal points.

2. Fixed-point Positive or negative real numbers; that
is, numbers that contain decimal points.

TeleVideo Systems, Inc. Page 3.3

/

GWBASIC User's Manual . General Programming

3. Floating-point Positive or negative numbers represented
in exponential form (similar to
scientific notation). A floating-point
constant consists of an optionally-
signed integer or fixed-point number
(the mantissa) followed by the letter E
and an optionally-signed integer (the
exponent). Double-precision floating
point constants use the letter D instead
of E. The allowable range for floating-
point constants is from 2.938736E-39 to
1.701412E+38.

For example:
4 ,35E-2

In this example, 4.35 is the mantissa,
and -2 is the exponent. The number

is read as 4.35 times ten to the
negative two power and can also be
written as .0435,

4. Hex Hexadecimal numbers with up to four
digits and preceded by the &H prefix.

Examples:

&H76
&H32B
&HFFFF

5. Octal Octal numbers with up to six digits and
preceded by the & or &0 (letter 0)
prefix.

Examples:

&347 or &0347
&1234 or &01234

Precision For Numeric Constants

Numeric constants are stored as either integer, single-precision,
or double-precision numbers. Constants entered as integer, hex,
or octal numbers are stored in two bytes of memory and are
treated as whole numbers. Single-precision numeric constants are
stored in four bytes of memory with seven digits of precision and
are displayed with seven digits of precision. Double-precision
numeric constants are stored in eight bytes of memory with 17
digits of precision and are displayed with up to 16 digits.

TeleVideo Systems, Inc. Page 3.4

(

GWBASIC User's Manual General Programming

A single-precision constant is any non-integer type numeric
constant that is written with

l. Seven or fewer digits
2. Exponential form using E

3. A trailing exclamation point (1!)

Examples:

46 .8
-1.09E-06
3489.0

22.5!

A double-precision constant is any numeric constant that is
written with

1. Eight or more digits

2, Exponential form using D

3. A trailing number sign (#)
Examples:

345692811
-1.09432D-06

3489.04#

7654321.1234

VARIABLES

Variables are names used to represent values used in a BASIC
program. Variables can be used to represent both numeric and
string constants. Your program may assign a value to a variable
using the BASIC LET statement, using a data input statement, or
as the result of a calculation.

Variable Names

GWBASIC variable names may be any length, but only the first 40
characters are significant. Variable names can contain letters,
numbers, and the decimal point. The first character of a
variable name must be a letter.

Special type declaration characters that identify the type of
variable are also allowed as the last character of the variable
name. If a type declaration character is used, the variable name
cannot exceed 40 characters (with the type declaration character
as the 40th character). See the following section for more
information on declaring variable types.

TeleVideo Systems, Inc. Page 3.5

GWBASIC User's Manual General Programming

GWBASIC has certain keywords, called reserved words, that cannot
be used as variable names. Reserved words include GWBASIC
commands, statements, function names, and operator names (see
Appendix D for a listing of the GWBASIC reserved words).

Reserved words can be embedded within a variable name, but cannot
be used alone as a variable name. If a variable begins with FN,
it is assumed to be a call to a user-defined function (see the
DEF FN statement in Chapter 5).

Examples:

Illegal Legal
DATA = 5 NEW.DATA = 5
ERRORS$ = "OUT OF MEMORY" ERROR.MES$ = "OUT OF MEMORY"

Note, a variable name cannot be a reserved word with a type
declaration character at the end.

Declaring Variable Types

Variables may represent either a numeric value or a string. The
variable name determines its type.

String variable names are written with a dollar sign ($) as the
last character. For example:

A$ = "SALES REPORT"

The dollar sign is the string variable type declaration
character. It declares that the variable represents a string.

The length of a string variable is not fixed and can be from 0 to
255 characters. If you try to use a string variable before you
assign a value to it, it will be assigned a null value. A null
string contains no characters and has length zero.

Numeric variable names may declare integer, single-precision, or
double-precision values. The type declaration characters and
the number of bytes required to store each type are as follows:

% Integer variable (2 bytes)
! Single-precision variable (4 bytes)
Double-precision variable (8 bytes)

If youuse a numeric variable before before you assign a value to
it, it is assigned a value of zero.

If a type declaration character is not included at the end of a

variable name, GWBASIC declares the variable as a single-
precision numeric variable.

TeleVideo Systems, Inc. Page 3.6

GWBASIC User's Manual General Programming

Examples of GWBASIC variable names:

PI# Declares a double-precision value
MINIMUM! Declares a single-precision value
LIMIT% Declares an integer value

N$ Declares a string value

ABC Represents a single-precision value

Variable types may also be declared by using the GWBASIC DEFINT,
DEFSTR, DEFSNG, and DEFDBL statements in a program. These
statements are described in detail in Chapter 5 under DEFtype
statements.,

Array Variables

An array is a group or table of values referenced by the same
variable name. Each value, or element, in an array is itself a
variable of the type indicated by the array variable name. Each
element can be used in any expression, statement, or function
that uses variables.

The size or dimension of an array variable is usually set using
the DIM statement. The DIM statement declares the array variable
type, the number of dimensions, and the number of elements in
each dimension. Each element of the array is referenced by the
array variable name and subscripts or indexes into the array.

The subscripts are integers or expressions that evaluate to
integer values. The number of subscripts indicate the number of
dimensions in the array. For example:

DIM AS$(4)

This DIM statement declares a one-dimensional string array with
five elements. In the default option base (option base 0), the
first element is referenced by the subscript 0; therefore, the
five elements would be referenced as AS$(0), AsS(l), As$(2), AS$(3),
and A$(4). The dimension statement sets aside space for the
array and sets the initial values of each of the elements to zero
(string array elements are set to the null value).

DIM B(2,2)

This DIM statement declares a two-dimensional numeric array with
single-precision values and three elements in each dimension
(assuming option base 0). The following table could be used to
represent this array.

dimension 2 0 1 2

0 2.0 3.0 2.5

dimension 1 1 - 3.2 3.4 3.7
2 1.8 2.2 1.6

TeleVideo Systems, Inc. Page 3.7

GWBASIC User's Manual General Programming

The value 3.0 would be represented by the variable name B(0,1).

GWBASIC allows a maximum of 255 dimensions per array, with a
maximum of 32767 elements per dimension.

If an array name is encountered in a BASIC program before a DIM
statement declares the array, GWBASIC automatically dimensions
the array with a maximum subscript value of 10. With the default
zero option base, this sets an array with eleven elements per
dimension. For example, if the following statements are
encountered

115 FOR COUNTER = 1 TO 5
120 INPUT SCORES (COUNTER)
125 NEXT COUNTER

and the array SCORES are not declared in a DIM statement, GWBASIC
dimensions SCORES as a one-dimensional numeric array with eleven
elements numbered SCORES(0) through SCORES(10).

NUMERIC TYPE CONVERSION

When necessary, GWBASIC converts a numeric constant from one type
to another. The following rules and examples apply to
conversions.

1. If a numeric constant of one type is set equal to a numeric
variable of a different type, the number is stored as the
type declared in the variable name. When a higher precision
value is assigned to a lower precision variable, rounding
occurs as opposed to truncation.

Examples:

10 A% = 23,42 10 B = 55,88
20 PRINT A% 20 PRINT B$%
RUN RUN

23 56
Ok Ok

2, When converting from a lower precision to a higher precision
number, the resulting higher precision number cannot be more
accurate than the original lower precision number. For
example, if a double-precision variable is assigned a
single-precision value, only the first seven digits of the
converted number are valid. This is because only seven
digits of accuracy are supplied with the single-precision
value. The absolute value of the difference between the
printed double-precision number and the original single-
precision value are less than 6.3E-8 times the original
single-precision value. This is stated mathematically
as

ABS(A# - A) < 6.3E-8 * A

TeleVideo Systems, Inc. Page 3.8

GWBASIC User's Manual General Programming

Example:
10 A = 2.04
20 A# = A
30 PRINT A ; A#
RUN
2,04 2.039999961853027
Ok

3. When an expression is evaluated, all of the operands in an
arithmetic or relational operation are converted to the
precision of the most precise operand. The result of an
arithmetic operation is returned to this degree of
precision.

Examples:
10 D# = 6% / 7
20 PRINT D#
RUN
.8571428571428571
Ok

The arithmetic operation was performed in double-precision
and the result was returned in D# as a double-precision
value.

10 D = 6% / 7
20 PRINT D
RUN

.857143
Ok

The arithmetic operation was performed in double-precision,
and the result was rounded to single-precision and returned
to D.

4, Logical operators (see Logical Operators) convert their
operands to integers and return an integer result. Operands
must be in the range -32768 to 32767 or an "Overflow" error
occurs.

EXPRESSIONS AND OPERATORS

An expression may be a string or numeric constant, a variable, or

a combination of constants and variables with operators. An

expression always produces a single value.

Operators perform mathematical or logical operations on values.
GWBASIC operators may be divided into four categories:

1. Arithmetic

2. Relational

TeleVideo Systems, Inc. Page 3.9

GWBASIC User's Manual General Programming

3. Logical
4., Functional
Arithmetic Operators

The arithmetic operators perform the basic arithmetic operations
we are all familiar with, such as addition and subtraction. The
arithmetic operators GWBASIC recognizes are listed below in order
of precedence. Precedence is the order in which they are
evaluated in an expression.

Operator Operation Sample Expression
” Exponentiation 1072 = 100
- Negation -2
*, / Multiplication, Floating- 2 %3 =6

point Division 6 / 3 =2
\ Integer division 3\2 =1
MOD Modulus arithmetic 5mod 2 =1

(5/2=2 with remainder 1)

+, - Addition, Subtraction g + g = i

If two or more operations of the same level appear in an
expression, they are performed in order from left to right.

You can change the order of evaluation by using parentheses.
Operations within parentheses are performed first. Inside
parentheses, the usual order of operations is maintained. For
example, in the expression

T -1/ %
the variable Z is divided into 1 first. The result of the
division is then subtracted from the variable T. If the
expression is rewritten with parentheses as

(T -1) / 2

first 1 is subtracted from variable T, then the variable Z is
divided into the result of the subtraction.

TeleVideo Systems, Inc. Page 3.10

GWBASIC User's Manual General Programming

The following list gives some sample algebraic expressions and
their GWBASIC counterparts.

Algebraic Expression BASIC Expression
X + 2Y X + 2 *Y
X -Y X -Y / 2
2

XY X *Y [/ 2

Z
X +. Y (X +Y) / 2

Z

(X2)Yy (X*2) "y

X(-Y) X * (-Y) Two consecutive operators must

be separated by parentheses.
Integer Division And Modulus Arithmetic

In addition to the six standard operators (addition, subtraction,
multiplication, division, negation, exponentiation), GWBASIC
supports integer division and modulus arithmetic.

Integer division is denoted by the backslash (\). The operands
are rounded to integers (they must be in the range -32768 to
32767) before the division is performed, and the quotient is
truncated to an integer.

Examples:

10 FIRST = 10 \ 4

20 SECOND = 25,68 \ 6.99
30 PRINT FIRST SECOND
RUN

2 3
OK

Modulus arithmetic is denoted by the operator MOD. Modulus
arithmetic yields the integer value that is the remainder of an
integer division.

Examples:

Ok

PRINT 7 MOD 2 (7 / 2 = 3 with a remainder of 1)
1

Ok

PRINT 25.68 MOD 6.99 (26 / 7 = 3 with a remainder of 5)
5

Ok

TeleVideo Systems, Inc. Page 3.11

GWBASIC User's Manual General Programming

Relational Operators

Relational operators are used to compare two values. The values
may be either both numeric or both string. The result of the
comparison is either "true" (-1) or "false" (0). This result may
then be used to make a decision regarding program flow. (See the
IF statement in Chapter 5.)

The relational operators are as follows:

Operator Relation Tested Example
= Equality X =Y
<> Inequality X <>
< Less than X<y

> Greater than X >Y
<= Less than or equal to X K=Y
>= Greater than or equal to X >=%

(The equal sign is also used to assign a value to a variable.
See the LET statement in Chapter 5.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y<(T-1) / Z

is true if the value of X plus Y is less than the value of T-1
divided by Z.

More examples:

IF 2 > 1 THEN PRINT "CORRECT" ELSE PRINT "WRONG"
CORRECT
Ok
PRINT 2 > 1
-1 (Remember -1 indicates True)
Ok
PRINT 2 < 1
0 (Remember 0 indicates False)
Ok
IF "A"<"B"™ THEN PRINT "TRUE" ELSE PRINT "FALSE"
TRUE
Ok

TeleVideo Systems, Inc. Page 3.12

(N

GWBASIC User's Manual General Programming

The last example shows how string values can be compared. String
characters are compared by comparing their ASCII code value (see
Appendix B for a listing of the ASCII character codes). A
character with a smaller ASCII code value is considered less than
a character with larger ASCII code value; therefore, letters at
the beginning of the alphabet are considered less than letters at
the end of the alphabet. This also means that numbers in a
string are less than letters and upper-case letters are less than
lower-case letters.

Multi-character strings are compared character by character.
When the corresponding characters of both strings have the same
ASCII codes, the strings are considered equal. If corresponding
characters are found with different ASCII codes, the string
containing the character with the smaller code value is
considered smaller, or less than the other string. When the end
of one string is reached before a difference in the strings is
found, the shorter string is considered less than the longer
string. '

Examples: "3" < "Cc"
llan > IIAII
IIAII < IIA n
"Filename" = "Filename"
"DOG"™ > "CAT"
"HOME"™ < "HOMEWARD"
"HOMES" > "HOMEGROWN"

PRINT 5>"F"
Type mismatch
Ok

The last example shows what happens when you try to compare a
number to a string.

Logical Operators

Logical operators perform logical, or Boolean, operations on
numeric values. The logical operator performs a bit-by-bit
calculation (this is explained in more detail in the next
section) and returns a result which is either true (non-zero) or
false (zero). In an expression, logical operations are performed
after arithmetic and relational operations. The result of a
logical operation is determined as shown in Table 3-2. (T is
used to represent true, or non-zero values. F is used to
represent false, or zero values.) The operators are listed in
order of precedence.

Table 3-2
Logical Operator Truth Table
NOT X NOT X
T F
F T

TeleVideo Systems, Inc. Page 3.13

GWBASIC User's Manual General Programming

AND X Y X AND Y

T T T

T F F

F T F

F F F
OR X Y X OR Y

T T T

T F T

F T T

F F F
XOR X Y X XOR Y

T T F

T F T

F T T

F F F
EQV X Y X EQV Y

T T T

T F F

F T F

F F T
IMP X Y X IMP Y

T T T

T F F

F T T

F F T

Just as the relational operators can be used to make decisions
regarding program flow, logical operators can connect two or more
relations and return a true or false value to be used in a
decision (see the IF statement in Chapter 5). For example:

140 INPUT "Enter Y for YES, N for NO" ,ANSWERS$
145 IF (ANSWERS$ = "Y") OR (ANSWER$ = "y") THEN GOSUB 450

In this example, if the response to the INPUT statement is Y or
y, the program transfers control to line 450.

50 INPUT "Enter the 5 digit account number - " ,ACCOUNTS$
55 IF LEN(ACCOUNTS$) = 5 AND VAL(ACCOUNTS) >= 10000 THEN 65
60 PRINT ACCOUNTS$ "is not valid" : GOTO 50

Here the response to the input statement is checked for validity.

The program will continue only if ACCOUNTS$ has a value greater
than or equal to 10000 and is 5 digits in length.

TeleVideo Systems, Inc. Page 3.14

GWBASIC User's Manual General Programming

How Logical Operators Work

Logical operators work by first converting their operands to
unsigned integer values. The operands must be in the range
-32768 to 32767 or an "Overflow" error message is displayed. The
integer values are stored in two bytes of memory, meaning each
integer value is represented by 16 binary digits (the two's
complement format is used for negative values). The given
logical operation is performed on these integer values by
performing the logical operation on each corresponding bit;
therefore, each bit of the result is determined by the
corresponding bits in the two operands. 1In relation to the
operator truth tables listed in Table 3-2, a 1 bit corresponds to
a true value, and a 0 bit corresponds to a false value.

This allows logical operators to test bytes for a particular bit
pattern. For instance, the AND operator may be used to mask all
but one of the bits of a status byte at a machine I/0 port. The
OR operator may be used to merge two bytes to create a particular
binary value. The following examples demonstrate how the logical
operators work.

63 AND 16 = 16 00000000 00111111 (63)
AND 00000000 00010000 (16)
= 00000000 00010000 (16)

4 OR 2 =6 00000000 00000100 (4)
OR 00000000 000OOO1O0 (2)
= 00000000 00000110 (6)

-1 AND 8 8 11111111 11111111 (-1)
AND 00000000 00001000 (8)

= 00000000 00001000 (8)

To understand how to find the binary representation of a negative
number, the following equation can be used:

= (NOT ABS(X)) + 1

Therefore, to find the representation of -1, first take the
absolute value of -1, which is 1. Now perform the NOT logical
operation on 1, and then add 1 to that value.

ABS(-1) =1 = 00000000 00000001
NOT 1 = 11111111 11111110
(NOT 1) + 1 = 11111111 11111111 = -1

If both operands of a logical operator are 0 or -1, the result is
always 0 or -1.

TeleVideo Systems, Inc. Page 3.15

GWBASIC User's Manual General Programming

Functional Operators

A function is a predetermined operation that is performed on an
operand. GWBASIC provides many built-in functions such as SQR
(square root) and SIN (sine). The GWBASIC built-in functions are
described in the alphabetic listing in Chapter 5.

GWBASIC also allows you to define your own functions using the
DEF FN statement. Refer to the DEF FN statement in Chapter 5.

Order of Execution

The following is a summary of the order of precedence in which
the types of numeric operations are executed in an expression,
and the order of precedence of operators within each type.

1. Function calls
2. Arithmetic operations

1 -

2) - (negation)
3) *,/

4) \

5) MOD

6) +,-

3. Relational operations

4, Logical operations

1) NOT
2) AND
3) OR
4) XOR
5) EQV
6) IMP

Operations at the same level in the listing are performed in a
left-to-right order. The above order can be changed by using
parentheses. Operations within parentheses are performed first.

STRING OPERATORS

GWBASIC provides two categories of string operators to allow you
to combine or alter string constants: concatenation and
functions.

TeleVideo Systems, Inc. Page 3.16

GWBASIC User's Manual General Programming

Concatenation

Concatenation means combining serially, or in the case of
strings, adding one string to the end of another string. Strings
are concatenated by using the plus sign (+). For example:

10 A$ = "FILE"™ : B$ = "NAME"
20 PRINT AS$ + BS$

30 PRINT "NEW " + A$ + BS$
RUN

FILENAME

NEW FILENAME

Ok

String Functions

GWBASIC provides many built-in functions that return string
values. For example, the MIDS$, LEFT$, and RIGHTS$ functions
return portions of a specified string. Refer to Chapter 5 for a
description of the string functions available.

The GWBASIC DEF FN statement can also be used to create your own

string functions. For more information on the DEF FN statement,
refer to Chapter 5.

TeleVideo Systems, Inc. Page 3.17

GWBASIC User's Manual Input and Output

4. INPUT AND OUTPUT

This chapter contains information on input and output (I/0) in
GWBASIC. Included are the following topics:

* text and graphics display modes
* filenames and tree-structured directories
* disk I/O0
* special I/0 features of GWBASIC
DISPLAY SCREEN I/0

The most commonly-used output device is the display screen.
GWBASIC allows you to access the different text and graphics
screen modes available on your TeleVideo computer. If you have a
color display, or you have connected an external color monitor,
GWBASIC also allows you to display text or graphics in sixteen
different colors.

Text Modes

GWBASIC allows you to use two basic text modes; a 40-column mode,
where the screen is divided into 25 vertical lines of 40 columns,
or the 80-column mode, where the screen is divided into 25
vertical lines of 80 columns. When you first start GWBASIC, the
screen mode is set to the 80-column text mode.

When you are using the text modes, character positions on the
screen are referenced by their row (vertical line) and column
(horizontal position) values. Row values are numbered 1 to 25
from top to bottom. Column values are numbered 1 to 80 (or 1 to
40) from left to right. Therefore, the character position in the
upper left corner of the screen is row 1, column 1 (see Figure
4-1). These character positions are used by the LOCATE statement
and the TAB, POS(0), CSRLIN, and SCREEN functions to reference
positions on the screen.

Characters are normally placed on the screen using the PRINT or
WRITE statements. These characters are displayed at the current
cursor position, as the cursor moves from left to right across
each row, and from row 1 down to row 24, When the cursor would
normally move down to row 25, the screen is scrolled up one line
instead. This means rows 1 through 24 are moved up one line,
moving the characters presently in row 1 off the screen and
leaving row 24 blank. The printing continues on row 24,

TeleVideo Systems, Inc. Page 4.1

GWBASIC User's Manual Input and Output

Figure 4-1
Text Screen

—— e f G» Gna o G G o G e G S G G0 R S G G S S G GRS GNe R G e G D S S M S e S G N S D o R G G S - —. G G G

Row 25 of the screen is normally reserved for the soft key
display (refer to the KEY statement in Chapter 5 for a
description of soft keys). If the soft key dlsplay is turned
off, you can display characters on row 25 using the LOCATE
statement to move the cursor down to row 25, or you can change
the screen viewing size to include row 25 using the VIEW PRINT
statement.

Characters displayed on the screen in the text mode are limited
to the 256 characters listed in the ASCII character code table in
Appendix B. These include the regular character set consisting
of letters, numbers, and punctuation, plus foreign language
support characters, Greek characters, scientific characters,
block graphics characters, and special game support characters.

The displayed characters are composed of two parts; a foreground
and a background. The foreground is the shape of the character
itself. The background is the remaining points in the character
box. The text mode allows you to choose foreground and
background color from 16 different colors using the COLOR
statement. If you have a black and white (green) display, the
different colors show up as 16 shades of gray. The colors
available are:

0 Black 8 Gray

1 Blue 9 Light Blue

2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Brown 14 Yellow

7 White 15 High-intensity White

TeleVideo Systems, Inc. Page 4.2

GWBASIC User's Manual Input and Output

Adding sixteen to the above numbers for the foreground color
produces a blinking character.

The COLOR statement can also be used to set the color of the
border area of the screen, For more information on setting the
text mode colors, refer to the test mode COLOR statement in
Chapter 5.

The text modes also offer the use of multiple display pages. In
the 40-column mode, there are 8 display pages numbered 0 to 7; in
the 80-column mode, there are 4 display pages numbered 0 to 3,
Multiple display pages allow you to display one page on the
screen while you are writing to a different page. This allows
you to instantly change the text displayed on the screen by
changing the display page being viewed. For more information on
the use of multiple display pages, refer to the SCREEN statement
in Chapter 5.

The following is a list of the GWBASIC statements that you can
use to display information on the screen in the text modes:

CLS SCREEN
COLOR WIDTH
LOCATE WRITE
PRINT VIEW PRINT

The following is a list of the GWBASIC functions relating to
screen positions in the text modes:

CSRLIN SPC
POS TAB
SCREEN

Graphics Modes

The graphics modes allow you to display the first 128 (0-127)
ASCII characters and/or draw complex pictures using the GWBASIC
graphics statements. There are two graphics modes available; a
320 by 200 pixel (picture element) medium resolution mode
allowing you to use four colors, or a 640 by 200 high resolution
black and white mode. The graphics modes are selected using the
SCREEN statement.

In addition to the display statements available in the text
modes, the following graphics statements are also available:

CIRCLE PRESET
COLOR PSET
DRAW PUT
GET SCREEN
LINE VIEW
PAINT WINDOW

The only additional graphics function is the POINT function.

TeleVideo Systems, Inc. Page 4.3

GWBASIC User's Manual Input and Output

Medium Resolution

Medium resolution divides the screen into 320 pixels horizontally
by 200 pixels vertically. Each pixel can be displayed in one of
four colors. The four colors available to the screen are chosen
using the COLOR statement. A pixel is displayed in one of the
four colors by using one of the graphics statements with a color
argument of 0, 1, 2, or 3. The 0 argument indicates the
background color, while colors 1, 2, and 3 are selected from one
of two preset palettes of three colors. Changing the background
color changes every pixel displayed in color 0, while changing
the selected palette changes every pixel displayed in colors 1,
2, or 3. For more information on selecting screen colors, refer
to the COLOR statement in Chapter 5.

When text is displayed in medium resolution, characters are
displayed in the font and format used in the 40-column text mode.
Color 3 is used as the foreground color, color 0 is used as the
background color.

High Resolution

High resolution divides the screen into 640 pixels horizontally
by 200 pixels vertically. Each pixel can be displayed in either
black, color 0, or white, color 1.

When text is displayed in high resolution, characters are
displayed in the font and format used in the 80-column text mode.
White is used as the foreground color and black is used as the
background color; therefore, white characters are displayed on a
black background.

Specifying Graphics Coordinates

The graphics statements require you specify where on the screen
you want to draw. You enter this information in the form of
graphic coordinates. Graphic coordinates are generally given in
the form (x,y), where x is the horizontal position on the screen
(0-319 in medium resolution, 0-639 in high resolution), and y is
the vertical position (0-199 in both resolutions). This form of
coordinates is known as the absolute form, because it specifies a
specific point on the screen.

Positions are numbered from left to right and from top to bottom;
therefore, the upper left position on the screen is (0,0) and the
lower right position on the screen is (319,199) or (639,199),
depending on which resolution you are in.

TeleVideo Systems, Inc. Page 4.4

(

GWBASIC User's Manual Input and Output

Figure 4-2
Graphics Screen

- e ———— — (o - —— T o T — —— — — ———— — — T ——— — {—" fo W—_— — G — G S —— — ———t—— o —————

Increasing x -->

I I
I I
| I
I I
| I
I Increasing y I
| I
I I (High Resolution Screen) I
I I I
I \/ l
I I
I I
I I
I |

(639,199)

Note, in the text mode, character positions are referenced by
(vertical position, horizontal position), whereas in the graphics
mode, points are referenced by (horizontal position, vertical
position) .

Many of the graphics statements also allow the use of a relative
form of coordinates. This form of coordinates gives the graphics
statement an offset from the current graphics position and is
entered in the following format:

STEP (xoffset,yoffset)

The current graphics position is the last point referenced by the
last graphics statement used. The last point referenced is
usually the last point drawn by the graphics statement (refer to
each graphics statement to find out what point is considered the
last point referenced for that statement). The POINT function can
be used to determine the coordinates of the current graphics
position. When a program is RUN from a graphics mode, or a
SCREEN mode change is made to a graphics mode, the current
graphics position is set to the middle of the screen; position
(160,100) in medium resolution, position (320,100) in high
resolution.

The xoffset and yoffset values indicate the number of pixels
(points) in the x and y directions to move. Positive values of x
and y move you to the right and down respectively; negative
values of x and y move you to the left and up respectively. For
example, the statements:

10 SCREEN 1

20 PSET (320,100)
30 PSET STEP(-20,0)

TeleVideo Systems, Inc. Page 4.5

GWBASIC User's Manual Input and Output

plot two points on the screen. Line 20 plots a point at position
(320,100). Line 30 plots a point at position (300,100).

FILES

A file is a collection of information which is normally stored
somewhere other than in the random access memory of your
computer. For example, you normally store program and data files
on a diskette or hard disk. Before the file can be used for
input and output (I/0), you must tell GWBASIC where the
information is located. Filenames and file numbers are used for
this purpose.

GWBASIC supports the concept of general device I/0 files. This
means that any type of I/0 may be treated 1ike I/0 to a file; the
keyboard can be used as an input file, the printer can be used as
an output file, or the serial communications port can be used as
an I/0 file.

Naming Files
Files are located or referenced by a file specification, or
filespec for short, A filespec is a string expression of the

form:

[<device>:]1<filename>[.<ext>]

'where the device tells GWBASIC where to look for the file, and

the filename and extension (ext) tell GWBASIC which file to look
for on the device. The device portion of the filespec is
optional; if omitted, GWBASIC assumes the file is a disk file
located on the TeleDOS default drive, if included, the colon must
be included between the device and the filename.

When you enter a filesPpac as a string constant, you must enclose
it in quotes. For example:

70 OPEN "B:SALES.DAT"™ FOR INPUT AS #1
Device Names
The device name consists of up to four characters followed by a
colon (:). Table 4-1 is a list of the device names recognized by

GWBASIC, and includes the device it refers to and the type of
I/0 available to the device,

TeleVideo Systems, Inc. Page 4.6

GWBASIC User's Manual Input and Output

Table 4-1

Device Names

Name 1/0 Device

KYBD: I Keyboard

SCRN: o Display screen

LPT1: 0 Parallel printer port (PARALLEL PRINTER)

LPT2: 0 A second, optional printer

LPT3: 0 A third, optional printer

COM1: I/0 RS-232C serial port (RS-232C)

COM2: I/0 An optional asynchronous communications
adapter

A: I/0 First diskette drive

B: I/0 Second diskette drive

C: I/0 First hard disk drive

D: I1/0 Second hard disk drive

Optional printers, communications adapters, and hard disk drives
are attached using the expansion slot.

Filenames

Filenames used in GWBASIC conform to the naming conventions used
in the TeleDOS operating system. This consists of a filename and
an optional filename extension in the format:

<filename>I[.<ext>]

where the extension, when included, must be separated from the
filename by a period (.). The filename itself can be from one to
eight characters in length, and the extension can be up to three
characters in length.

If an entered extension is longer than three characters, the
extra characters are truncated. If a filename is entered with
more than eight characters and an extension is not included,
GWBASIC inserts a period after the eighth character and uses up
to the next three characters as an extension., If a filename is
longer than eight characters and an extension is included,
GWBASIC uses the first eight characters in the entered

filename, truncates the extra letters up to the period, and then
adds the entered extension.

TeleVideo Systems, Inc. Page 4.7

GWBASIC User's Manual Input and Output

The following characters are allowed in a filename and extension:

Letters A - % 1 e # $¢ "
Numbers 0 - 9 - vy

& ()
F{ 3
Some examples of valid filenames are:

PROGRAM1 .BAS

2ND_TRY

(1@$%) .123

The following examples show how GWBASIC truncates filenames and
extensions when they are too long:

TEST_PROGRAM becomes TEST_PRO.GRA
TEST.PROGRAM becomes TEST .PRO
TEST_PROGRAM,BAS becomes TEST_PRO.BAS

Tree-Structured Directories

GWBASIC allows you to use the tree-structured directory system of
the TeleDOS operating system (see Chapter 3 of the TeleDOS User's
Manual for a complete description of tree-structured
directories)., When using tree-structured directories, you might
need to add a directory path to the filespec to tell GWBASIC how
to find the specified file. The filespec would then be in the
following format:

[<device>:1[\][<Kdirectory] [\<directory>]...[\1<filename>[.<ext>]
where

[<device>:][\][<directoryl] [\Kdirectory>l...
is called a path. The path tells GWBASIC what part of the
directory system the file is located in. The total length of the

filespec cannot exceed 128 characters. The following example
shows a simple directory structure:

ROOT
|

| |
SALES ACCOUNTING

| |
JOHN e

| I |

REPORTS STEVE SUE

TeleVideo Systems, Inc. Page 4.8

GWBASIC User's Manual Input and Output

When a disk is formatted, a single directory is created. This
directory is known as the root directory. In addition to
containing the names of files, the root directory can also
contain the names of other directories. These directories are
called subdirectories of the root directory. A subdirectory is a
file that can contain files or other subdirectories. The format
for a directory name is the same as for a filename.

In the above example, SALES and ACCOUNTING are subdirectories of
the root directory. STEVE and SUE are subdirectories of
directory ACCOUNTING, and JOHN is a subdirectory of directory
SALES. REPORTS is a subdirectory of directory JOHN,

When GWBASIC is started, the current directory is set to the
current TeleDOS directory. This directory is called your current
directory. To specify a file that is in a different directory,
you must give the directory path from the current directory to
the directory containing the file. To access a file called
WEEK2,RPT in the REPORTS directory while in the root directory,
the following filespec is entered:

"SALES\JOHN\REPORTS\WEEK2 ,RPT"

If you plan on working only on files in the REPORTS directory,
you can use the CHDIR command to make the REPORTS directory the
current directory.

CHDIR "SALES\JOHN\REPORTS"

GWBASIC now searches the REPORTS directory for any filespec
entered without a directory path. To specify the WEEK2.RPT file,
the following filespec is entered:

"WEEK2.RPT"

To specify a file SALES.RPT in the SALES directory while the
REPORTS directory is the current directory, you again must
indicate the directory path.

"\SALES\SALES ,RPT"

In this example, a backslash is used before the SALES directory
entry to indicate the directory search starts at the root
directory. If the first backslash had not been entered,
GWBASIC would try to find a file named SALES.RPT in a
subdirectory SALES in the current directory REPORTS.

Commands for Program Files
The most common usage of filespec entries is in the commands
referring to your program files. The following list gives you a

brief description of their usage. For a more detailed description
of these commands, refer to Chapter 5.

TeleVideo Systems, Inc. Page 4.9

GWBASIC User's Manual Input and Output

Table 4-2

Program File Commands

Command Description

SAVE <filespec> Writes the program currently in memory

to the specified disk.

LOAD <filespec> Loads the specified program file into
memory from the specified disk.

RUN <filespec> Loads the specified program from disk
into memory and runs it.

MERGE <filespec> Loads the specified program from disk
into memory and merges it with the
program currently in memory.

KILL <filespec> Deletes the specified program from disk.
NAME <filespec> AS <filename>

Changes the name of the specified
file.

Protected Files

GWBASIC provides a feature to let you protect your program files.
When the ,P (protect) option is used when you SAVE a file, the
file is saved in an encoded binary format. This format prevents
the file from being listed, edited, or saved. Since there is no
way of unprotecting the file, it is a good idea to save an
unprotected version of the program in case you need to make
‘changes.

File Numbers

GWBASIC performs I/O operations by referring to a file by a file
number. The file number is assigned to a file through the use of
the OPEN or OPEN COM statement. The file number is a unique
number that is associated with the actual file while it is open
for I/0. The file number is a numeric constant, a variable, of a
numeric expression in the range 1 ton, where n is the maximum
number of files allowed. The default value of n is 5, but n can
be set to a maximum of 15 by changing the maximum number of files
supported by TeleDOS. For more information on how to assign a
file number to a file, refer to the OPEN and OPEN COM statements.

TeleVideo Systems, Inc. Page 4.10

GWBASIC User's Manual Input and Output

DISK DATA FILES

GWBASIC supports two types of data files; sequential files and
random access files.,

Sequential Files

A sequential data file is as the name implies, a file where the
data is stored sequentially, one item after the next. Sequential
files are easier to learn to use, but they lack the convenience
and speed when accessing data that is available with random
access files.

To read a data item from a sequential file, you must start at the
beginning of the file and read each item in the order it was
placed in the file until you come to the item you are looking
for.

The following statements and functions are used with sequential
files:

CLOSE LOF

EOF OPEN

INPUT # PRINT #

LINE INPUT # PRINT # USING
LOC WRITE #

A sequential file is created using the following steps:

1) Open a sequential file for output using the OPEN
statement.

2) Place data into the file using the PRINT #, PRINT #
USING, or WRITE # statements.

3) Close the file using the CLOSE statement. This
statement makes sure any data remaining in the file
buffer is written out to the file.

To access the data in a sequential file, use the following steps:

1) Open the file for input using the OPEN statement.

2) Read data from the sequential file using the INPUT # or
LINE INPUT # statements.

TeleVideo Systems, Inc. Page 4.11

GWBASIC User's Manual Input and Output

The following simple program example shows how to create a
sequential file containing a list of names.

10 OPEN "NAMES" FOR OUTPUT AS #1

20 PRINT "ENTER NAMES, PRESS ENTER WITHOUT AN ENTRY TO END"
30 INPUT "NAME";NAMESS

40 WHILE NAMESS <> ""

50 WRITE #1,NAMESS$

60 INPUT "NAME";NAMESS$

70 WEND

80 CLOSE

RUN

ENTER NAMES, PRESS ENTER WITHOUT AN ENTRY TO END
NAME? SANDY

NAME? LYNN

NAME? SUSAN

NAME? ANN

NAME? TOM

NAME?

Ok

This program has opened a sequential file called NAMES, and
placed the names SANDY, LYNN, SUSAN, ANN, and TOM in the file in
that order. To read the names back out of the file, the
following program could be used.

10 OPEN "NAMES" FOR INPUT AS #1
20 WHILE NOT EOF (1)
30 INPUT #1,NAMESS
40 PRINT NAMESS

50 WEND

60 CLOSE

RUN

SANDY

LYNN

SUSAN

ANN

TOM

Ok

This program reads the names out of the sequential file and
displays them on the screen. The EOF function is used to make
sure the program does not try to read past the end of the file.
When a file is created, the ASCII code 26 (hex 1A) is written to
the file after the last data item to mark the end of the file,
The EOF function looks for this end-of-file character. If the
end-of-file character is found, EOF returns a true value,
otherwise EOF returns a false value. In our example, as long as
EOF returns a false value, line 30 in the WHILE...WEND loop reads
the next item in the file.

TeleVideo Systems, Inc. Page 4.12

GWBASIC User's Manual Input and Output

Changing a Sequential File

If you have a created a sequential file on disk, and later want
to add more data to the file (after the file has been closed),
you cannot simply open the file for output and start writing data
to the file. Each time you open a sequential file for output,
the file pointer points to the beginning of the file. The first
data item written to the file becomes the first item in the file.
Any data that was in the file is lost.

To add data items to the end of the file, you must open the file
for APPEND, This opens the file for output, but sets the file
pointer to the end of the file. The next data item written to
the file is added on to the end of the file.

To make changes to data items currently in a sequential file, you
must open the file for input, read in and store in memory every
data item in the file, make the changes to the appropriate data
item(s), open the file for output, and then write the entire file
back out to disk.

Random Access Files

Random access files require more programming steps to use, but
they provide the convenience of being able to access and change
any data item in the file without having to read through all the
information placed before it in the file.

Data in random access files are stored and accessed in units of
storage called a record. When you place a data item in a random
access file, you specify which record in the file to store the
data in. To access a data item, you simply specify which record
the data item is in.

Records can randge in length from 1 to 32767 bytes long, depending
how much information you want to put in each record. The record
length is set when the file is opened with the OPEN statement.

The following statements and functions are used with random
access files:

CLOSE LSET
CvD MKD $
CvI MKIS$
CVsS MKS$
FIELD OPEN
GET PUT
LOC RSET
LOF

A random access file is created using the following steps:
1) Open a random access file using the OPEN statement. If

a record length is not specified in the OPEN statement,
a default value of 128 bytes is used.

TeleVideo Systems, Inc. Page 4.13

GWBASIC

2)

3)

4)

5)

The foll
containi
record.

10
20

30
40
50
60
70
80
90
100
110
120
130
140
150
160

In this
integer
The vari
the next

User's Manual Input and Output

Use the FIELD statement to allocate space in the random
access file buffer. The FIELD statement assigns
variable names to bytes of storage in the record;
therefore, the total amount of space allocated with the
FIELD statement cannot exceed the length of the record
specified in the OPEN statement. The fielded variables
are used to move data in and out of the file buffer.

Use LSET or RSET to place data into the file buffer.
Numeric data must first be converted to a string
representation using the MKI$, MKS$, or MKDS$ functions.
MKIS$ converts an integer value to a 2-byte string, MKSS$
converts a single-precision value to a 4-byte string,
and MKD$ converts a double-precision value to an 8-byte
string.

Write the data from the file buffer to the file using
the PUT statement.

Close the file with the CLOSE statement to make sure
all the information in the file buffer is written to
file.

owing example shows how to create a random access file
ng a name, age, and social security number in each

OPEN "INFORM.DAT" AS #1 LEN = 38 'STEP 1
FIELD #1,25 AS INFORM1$,2 AS INFORM2%,11 AS INFORM3$
'STEP 2

PRINT "ENTER NAME, PRESS ENTER WITHOUT AN ENTRY TO END"
COUNTER$ = 1
INPUT "NAME"; NAMESS$
WHILE NAMESS$ <> ""
INPUT "AGE";AGES
INPUT "SOCIAL SECURITY # (XXX-XX-XXXX)";SOCSECS$
LSET INFORM1$ = NAMESS 'STEP 3
LSET INFORM2$ = MKIS$ (AGE%)
LSET INFORM3$ = SOCSECS$
PUT #1,COUNTERS 'STEP 4
COUNTER% = COUNTER% + 1
INPUT "NAME"; NAMESS$
WEND
CLOSE 'STEP 5

example, each record contains a string value name, an
value age, and a string value social security number.
able COUNTER% is used to place each record of data into
available record in the file.

Data in a random access file is accessed using the following

steps:

1)

TeleVide

Open the file for random access using the OPEN
statement.

o Systems, Inc. Page 4.14

(!

GWBASIC User's Manual Input and Output

2) Use the FIELD statement to allocate space in the file
buffer for the variables used to read the data from the
file.

NOTE! In a program that performs both input and
output on the same random access file, only
one OPEN and one FIELD statement are
required.

3) Use the GET statement to move the data from the file
into the file buffer.

4) Use the variables defined in the FIELD statement to
access the data in the file buffer. Numeric values
must be converted back to numbers using the CVI, CVS,
or CVD functions., CVI converts 2-byte strings back to
integers, CVS converts 4-byte strings back to single-
precision numbers, and CVD converts 8-byte strings back
to double-precision numbers.

The following program lines could be used to access the data in
the INFORM.DAT random access file created above.

10 OPEN "INFORM,DAT" AS #1 LEN = 38 'STEP 1
20 FIELD #1,25 AS NAMES$,2 AS AGES$,11 AS SOCSECS
'STEP 2

30 INPUT "ENTER THE NUMBER OF RECORDS TO READ";RECORDS$%
40 PRINT "NAME" TAB(30) "AGE" TAB(40) "SOCIAL SECURITY #"

50 PRINT

60 FOR COUNTER% = 1 TO RECORDS%

70 GET #1,COUNTERS% 'STEP 3
80 PRINT NAMESS$ TAB(30) CVI(AGES) TAB(40) SOCSECS

'STEP 4
90 NEXT COUNTER$
100 CLOSE

The following program uses a random access file to store the
assignment of company phone extensions. The phone extensions
range form 101 to 299. The extension number minus 100 is used as
the record number for the information on each extension. The
first byte of each record contains the letter Y or N, to indicate
whether that extension is being used. The next 25 bytes of the
record hold the name the extension is assigned to, and the last
10 bytes contain the department the person belongs to.

10 'PROGRAM PHONE EXTENSIONS

20 OPEN "EXTENS" AS #1 LEN = 36

30 FIELD #1, 1 AS USEDS$, 25 AS NAMESS$, 10 AS DEPTS

40 SCREEN 0 : WIDTH 80

50 CLS

60 PRINT : PRINT TAB(30) "PHONE EXTENSION MENU" : PRINT
70 PRINT TAB(30) "1 - LIST EXTENSION"

TeleVideo Systems, Inc. Page 4.15

GWBASIC User's Manual Input and Output

80 PRINT TAB(30) "2 - ENTER LISTING"
90 PRINT TAB(30) "3 - DELETE LISTING"

100
110
120
130
140
150
160
170
180
200
210
220
230

240
250
260
270
280
300
310
320
330
340
350
360
370
380
390
400
410
420
430
450
460
470
480
490
500
510
550
560
570
580
590
600
610
620
630
640
650
660
700

PRINT TAB(30) "4 - INITIALIZE FILE"

PRINT TAB(30) "5 - EXIT PROGRAM" : PRINT

PRINT TAB(30) : INPUT "ENTER SELECTION";SELS$

SEL = VAL(SELS$)

IF SEL < 1 OR SEL > 5 THEN GOTO 170

ON SEL GOSUB 200, 300,450,550,800

GOTO 50

PRINT : PRINT CHR$(7) TAB(30) "INVALID SELECTION"

LOCATE 10,1 : PRINT SPC(79) : LOCATE 10,1 : GOTO 120

1%% L TST EXTENSION **%*

CLS : GOSUB 700 'GET EXTENSION NUMBER

GET #1,EXT - 100

IF USED$ = "N" THEN PRINT EXT "IS NOT BEING USED"
: GOTO 270

PRINT "EXTENSION -" EXT

PRINT "NAME: " NAMESS$

PRINT "DEPARTMENT: " DEPTS$

PRINT : INPUT "PRESS ENTER TO RETURN TO THE MENU",A$

RETURN

'*%% ENTER LISTING **%*

CLS : GOSUB 700 'GET EXTENSION NUMBER

GET #1,EXT - 100

IF USED$ = "N" THEN 370

PRINT : PRINT EXT "IS ALREADY ASSIGNED"

INPUT "DO YOU WANT TO CHANGE THE ASSIGNMENT (Y/N)";ANS$

IF ANS$ = "N" THEN RETURN

INPUT "ENTER NAME";N$

INPUT "ENTER DEPARTMENT";D$

LSET USED$ = "y"

LSET NAMESS = N$

LSET DEPT$ = D$

PUT #1,EXT - 100

RETURN

1%%% DELETE LISTING **%*

CLS : GOSUB 700 'GET EXTENSION NUMBER

LSET USED$ = "N"

LSET NAMESS = ""

LSET DEPT$ = ""

PUT #1,EXT - 100

RETURN

'%%% TNITIALIZE FILE *%%

CLS : PRINT "INITIALIZING THE FILE DESTROYS ALL DATA ";

PRINT "IN THE FILE" : PRINT

INPUT "ARE YOU SURE (Y/N)";ANS$

IF ANS$ = "N" THEN RETURN

FOR I =1 TO 199

LSET USED$ = "N"

LSET NAMESS = ""

LSET DEPT$ = ""

PUT #1,I

NEXT I

RETURN

1%%* ENTER EXTENSION NUMBER SUBROUTINE *%%*

TeleVideo Systems, Inc. Page 4.16

(

GWBASIC User's Manual Input and Output

710 INPUT "ENTER EXTENSION NUMBER (101-299)";EXTS$

720 PRINT : EXT = VAL (EXTS)

730 IF EXT >= 101 AND EXT <= 299 THEN RETURN

740 PRINT : PRINT "INVALID EXTENSION NUMBER"

750 GOTO 710

800 '*** EXIT PROGRAM ***

810 RETURN 820

820 CLOSE

8306 CLS : END
SPECIAL I/0 FEATURES
In addition the standard input and output mentioned above,
GWBASIC supports I/O to the devices listed in Table 4-3,
Table 4-3
Additional I/0 Support Devices

Function/
Device Statement Purpose
System Clock DATES To set or retrieve the date known
to the system,

ON TIMER Provides event trapping based on a
defined period of time having
elapsed.

TIMES$ To set or retrieve the time known
to the system.

TIMER Returns the number of seconds that
have elapsed since midnight or the
last system reset.

Speaker BEEP Beeps the speaker.

ON PLAY Provides music event trapping to
allow continuous background music
during program execution,

PLAY Plays music by specifying the music
to be played using a music macro
language.

SOUND Makes the sound specified by the
entered frequency and duration.

Light Pen ON PEN To provide event trapping for light
pen activity.

PEN To read the position of the light

pen.

TeleVideo Systems, Inc. Page 4.17

GWBASIC User's Manual

Joysticks ON STRIG

STICK

STRIG

TeleVideo Systems, Inc.

Input and Output
To provide event trapping for
joystick activity.

Returns the coordinates of the
joysticks.

Returns the status of the joystick
buttons.

Page 4.18

GWBASIC User's Manual Commands, Statements, and Functions

5. BASIC COMMANDS, STATEMENTS, AND FUNCTIONS

This chapter contains descriptions of all the GWBASIC commands,
statements, and functions. The distinction between commands,
statements, and functions will be defined as follows:

Command An instruction that returns control to the command
level after the instruction has been performed.
Commands are normally entered in the direct mode and
generally operate on a program. For example, RUN, LIST
and SAVE are commands.

Statement An instruction that is normally entered in the indirect
mode as part of a program to direct the flow of the
program, For example, PRINT, LET and GOTO are
statements.

Function A function converts a value into some other value
according to a fixed formula. The functions described
in this chapter are built-in, or "intrinsic" to
GWBASIC, These functions may be called from any
program without further definition.

The descriptions of the commands, statements, and functions are
presented using the following format:

NAME
Type (Command, Statement, or Function)

o G G . G S . G S S G — — G G — " G — — G Go G " - - (e G . G S e S S ——_—— — — — G G- ——— - ———— - G—t——

Purpose Describes what the command, statement, or function
does.

Format Shows the correct syntax. Syntax notation rules to
remember are:

* Items listed in upper-case letters are keywords
and must be entered as listed. They may be
entered in lower- or upper-case letters, or a
combination of both. The program editor converts
these keywords to upper-case.

* You are to supply items listed in lower-case
letters within the < > symbols.

* TItems listed in square brackets ([]) are optional.

TeleVideo Systems, Inc. Page 5.1

GWBASIC User's Manual Commands, Statements, and Functions

* Braces ({}) indicate you have a choice between two
or more items. The choices will be separated by
a vertical bar (l). At least one of the entries
must be selected unless the entries are also
enclosed in square brackets.

* An ellipse (...) indicates the preceding item may
be repeated as many times as desired.

* All punctuation (except those items noted above)
must be included as shown.

* When the term filespec is used as an entry item,
it refers to a combination of an optional device
name, an optional path, a filename, and an
optional file extension. GWBASIC uses the
filename conventions described in Chapter 3 of
your TeleDOS User's Manual.

Comments A complete and detailed description of how the command,
statement, or function is used.

Example Sample programs, program segments, or direct mode
statements that demonstrate the use of the command,
statement, or function.

Notes Describes special cases or provides additional
pertinent information.

Many of the parameters used in the formats of the commands,
statements, and functions will use the following abbreviations:

X, Vr Z represent numeric expressions
i, j, k, m, n represent integer expressions
Xx$, y$ represent string expressions
If a single- or double-precision value is entered where an

integer value is required, GWBASIC rounds the fractional
portion and uses the resulting integer.

TeleVideo Systems, Inc. Page 5.2

GWBASIC User's Manual Commands, Statements, and Functions

ABS
Function

Purpose To return the absolute value of an expression.

Format ABS (x)
X is any numeric expression.

Comments The ABS function returns the magnitude of the numeric
expression x; therefore, the value is always positive
or zero. '

Example 10 A -5
20 B ABS (7*A)
30 PRINT B
RUN
35
Ok

In this example, the ABS function returns the absolute
value of -35, which is 35.

TeleVideo Systems, Inc. Page 5.3

GWBASIC User's Manual Commands, Statements, and Functions

ASC
Function

Purpose To return a numerical value that is the ASCII code for
the first character in the specified string. (See
Appendix B for ASCII codes.)

Format ASC(x$)
Xx$ is any string expression.

Comments If x$ is a null string (contains no characters), an
"Illegal function call"™ error message is displayed.

Example 10 X$="TEST"
20 PRINT ASC(XS$)
RUN
84
Ok

~In this example, the ASC function returns the ASCII
code of upper-case T, which is 84,

Notes The CHR$ function is the complement of the ASC function
and converts an ASCII code to a character.

TeleVideo Systems, Inc. Page 5.4

GWBASIC User's Manual Commands, Statements, and Functions

ATN
Function

Purpose To return in radians the trigonometric arctangent of
the specified numeric expression.

Format ATN(x)
X is any numeric expression,

Comments The evaluation of the ATN function is performed in
single-precision. If the /D parameter was entered on
the GWBASIC command line, evaluation is performed in
double-precision.

To convert radians into degrees, multiply radians by
180 / pi, where pi = 3.141593,

Example 10 INPUT X
20 PRINT ATN (X)
RUN
? 3
1.249046
Ok

TeleVideo Systems, Inc. Page 5.5

GWBASIC User's Manual Commands, Statements, and PFunctions

AUTO
Command

Purpose

Format

Comments

T G 4 7 G e e o G G G Gt TR G G W ES S R G e S G G G W S0 (S (e D G> Kie SR M G SR OIS MR WS G GO S G GO G T O A

To automatically generate line numbers during program
entry.

AUTO [<line number>][,[<increment>]]

line number is the line number AUTO begins numbering
at. A period (.) may be entered to
indicate the current line number.

increment is the value AUTO uses to add to the
present line number to get the next line
number in the sequence.

When the AUTO command is entered, AUTO displays the
first line number in the sequence and a following
space, and then waits for you to enter a program line.
When you have entered your program line and pressed the
<Enter> key, AUTO displays the next line number and the
following space. The next line number is equal to the
last line number plus the increment.

Each time the <Enter> key is pressed, AUTO generates
the next line number in the sequence. If <Enter> is
pressed without entering any text, a program line is
not stored in memory for that line number.

When both <line number> and <increment> are omitted,
both values default to ten (10)., If the <increment>
and comma are omitted, the increment defaults to ten
(10). When the <line number> and comma are entered,
but the <increment> is omitted, the increment defaults
to the last increment used in an AUTO command. If no
previous increment has been specified, the increment
defaults to ten (10). When a comma and <increment> are
entered, but the <line number> is omitted, the first
line number defaults to zero (0).

If AUTO generates a line number that already exists in
the program, an asterisk (*) is displayed after the
line number to warn you that any input will replace the
existing line. Pressing the <Enter> key immediately
after the asterisk saves the existing line and
generates the next line number.

To exit the AUTO mode and return to the command level,
press the <Ctrl>/<Break> key sequence. The line in
which the <Ctrl>/<Break> is entered is not saved.

TeleVideo Systems, Inc. Page 5.6

GWBASIC User's Manual Commands, Statements, and Functions

AUTO

Command

Examples AUTO Generates line numbers 10, 20, 30, ...
AUTO 10,5 Generates line numbers 10, 15, 20, ...
AUTO ,2 Generates line numbers 0, 2, 4, ...

Notes When in the AUTO mode, if you move the cursor to

another line number on the screen and press the <Enter>
key, that 1ine is stored in memory and AUTO resumes
line numbering from that line number.

TeleVideo Systems, Inc. Page 5.7

GWBASIC User's Manual Commands, Statements, and Functions

BEEP
Statement

Purpose To beep the speaker at 800 Hz for 1/4 second.

Format BEEP

Comments The BEEP statement sounds the ASCII bell character.
This statement has the same effect as PRINT CHRS$(7).

Example 120 'IF X IS OUT OF RANGE, BEEP THE SPEAKER
130 IF X < 20 THEN BEEP

In this program segment, the program beeps the speaker
if the value of variable X is less then 20.

TeleVideo Systems, Inc. Page 5.8

GWBASIC User's Manual Commands, Statements, and Functions

BLOAD
Command

To load a specified memory image file into memory from

Purpose

Format

Comments

Example

Notes

disk.

BLOAD <filespec> [,<offset>]

filespec

offset

is a string expression for the name of the
file to be loaded. The <filespec> must
conform to the rules for naming files or a
"Bad file name" or "File not found" error
message is displayed.

is a numeric expression returning an unsigned
integer in the range of 0 to 65535, This is
an offset into the segment declared by the
last DEF SEG statement indicating the address
where loading will begin. If a DEF SEG has
not been issued, the GWBASIC data segment

is used as the default value.

The BLOAD statement allows a program or data that has
been saved as a memory image file to be loaded anywhere

in memory.

A memory image file is a byte-for-byte copy

of what was originally in memory. See the BSAVE
Statement for information about saving memory image

files.

If the <offset> is omitted, the segment address and
offset contained in the file (the address specified by
the BSAVE statement when the file was created) are
used. Therefore, the file is loaded into the same
location from which it was saved.

10 'Load subroutine at 6000:F000

20 DEF SEG

= §H6000 'Set segment to 6000 Hex

30 BLOAD "PROG1",&HF000 'Load PROG1

This example sets the segment address at Hex 6000 and
then loads PROGl at an offset of Hex F000 into the

segment.

BLOAD does not perform an address range check. It is
therefore possible to load a file anywhere in memory.
You must be careful not to BLOAD the file over
GWBASIC or TeleDOS.

TeleVideo Systems, Inc. Page 5.9

GWBASIC User's Manual Commands, Statements, and Functions

BSAVE
Command

Purpose

Format

Comments

Example

— G G - G O S W G SO G — G —— T W > (e (et Gy G (e G G GO G G G Cano M S e GO Gt e I G S G G - G G

To save the contents of the specified area of memory
as a disk file.

BSAVE <filespec>,<offset>,<length>

filespec is a string expression for the name of the
file to be saved. The <filespec> must
conform to the rules for naming files or a
"Bad file name" or "Too many files" error
message is displayed and the save is aborted.

offset is a numeric expression returning an unsigned
integer in the range of 0 to 65535. This is
an offset into the segment declared by the
last DEF SEG statement, indicating the
starting address of the save. If a DEF SEG
has not been issued, the GWBASIC data
segment is used as the default value.

length is a numeric expression returning an unsigned
integer in the range of 1 to 65535
representing the length in bytes of the
memory image to be saved.

The BSAVE statement allows data or programs to be saved
as memory image files on disk. A memory image file is
a byte-for-byte copy of what is in memory.

If the <offset> or the <length> is omitted, a "Syntax
error" error message is displayed and the save is
aborted.

10 'Save 256 bytes at 6000:F000 as file PROG1
20 DEF SEG = &H6000
30 BSAVE "PROG1",&HF000,256

This example saves 256 bytes of memory starting at
address 6000:F000 in the file PROG1l on the default
drive. '

TeleVideo Systems, Inc. Page 5.10

GWBASIC User's Manual Commands, Statements, and Functions

CALL
Statement

Purpose To call an assembly language subroutine.
Format CALL <variable>[(<argument>[,<argument>]...)]

variable is a numeric variable containing the starting
memory address of the subroutine being
called. The address is an offset into the
segment defined by the last DEF SEG
statement. <variable> cannot be an array
variable name.

argument is the name of a variable being passed as an
argument to the external subroutine,

Comments The CALL statement is one way to transfer program flow
to an external subroutine. The other method is using
the USR function.

Example 100 DEF SEG = &H1800
110 START = 0
120 CALL START(FIRST,LAST)

In this program segment, line 100 sets the current
segment to Hex 18000, The variable START is assigned
the value zero and used as an offset into the segment
to indicate the starting address of the subroutine.

The variables FIRST and LAST are passed as arguments to
the subroutine.

TeleVideo Systems, Inc. Page 5.11

GWBASIC User's Manual Commands, Statements, and Functions

CDBL
Function

Purpose

Format

Comments

Example

To convert a numerical expression to a double-precision
number.

CDBL (x)
X is any numeric expression.

The CDBL function converts the result of numeric
expression x to a double-precision number using the
rules for numeric type conversion as described in
Chapter 3.

10 A = 454,67
20 PRINT A CDBL(A)
RUN
454,67 454.6700134277344
Ok

In this example, the value of CDBL(A) is only accurate
to two digits to the right of the decimal point because
that is the accuracy that was supplied to variable A,
The additional digits are meaningless.

TeleVideo Systems, Inc. Page 5.12

GWBASIC User's Manual Commands, Statements, and Functions

CHAIN
Statement

- S ——————— ————— ——— T — > " - G S - G G G . - G . G e e GRS G G S G G (s S G G S - G G- o - G . - — ———

Purpose To call and transfer control to another program and
optionally pass variables to it from the current
program.

Format CHAIN [MERGE]<filespec>[,[<line number>][,ALL]
[,DELETE <range>]]

filespec is a string expression for the name of
the program to be called. <filespec>
must conform to the rules for naming
files or a "Bad file name" or "Path not
found" error message is displayed and
the chain is aborted.

line number is a line number or an expression that
- evaluates to a 1line number in the called
program. It is the starting point for
execution of the called program. If it
is omitted, execution begins at the
first line. The <line number> value is
not affected by the RENUM command.

range is the first and last line numbers of
the range of lines to be deleted by the
DELETE option. If the last line number
specified in the range does not exist,
an "Illegal function call" error message
is displayed. The <range> line numbers
are affected by the RENUM command.

Comments With the ALL option, every variable in the current
program is passed to the called program. If the ALL
option is omitted, the current program must contain a
COMMON statement to pass variables to the called
program,

If the ALL option is used and <line number> is omitted,
a comma must hold the place of <line number>. For
example:

135 CHAIN "NEXTPROG",,ALL
is correct;

135 CHAIN "NEXTPROG",ALL
is incorrect. 1In the latter case, ALL would be

considered a variable name and evaluated as a line
number expression.

TeleVideo Systems, Inc. Page 5.13

GWBASIC User's Manual Commands, Statements, and Functions

CHAIN
Statement

Notes

TeleVideo

The MERGE option allows a subroutine to be brought into
the BASIC program as an overlay. That is, the

current program and the called program are merged (see
the MERGE command for more information on merging
programs). To transfer control to the merged
subroutine, the beginning subroutine line number must
be included in the CHAIN statement or control is
transferred to the beginning of the resulting merged
program. The called program must have been stored in
an ASCII format using the /A option with the SAVE
command if it is to be merged. For example:

185 CHAIN MERGE "OVERLAY1",500

would merge program OVERLAY1 from the default drive
into the current program and transfer control to line
number 500.

When using several overlays, it is usually desirable to
delete the o0ld overlay before the new overlay is
brought in. To do this, use the DELETE option. The
delete option deletes the lines in the specified range
before bringing in the new program. For example:

185 CHAIN MERGE "OVERLAY1l",500,DELETE 500-780

would delete lines 500 through 780 from the current
program. Then program OVERLAY1l is merged into the
current program from the default drive and control is
transferred to line number 500.

The CHAIN statement leaves files open and preserves the
current OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not preserve
variable types or user-defined functions for use by the
chained program. That is, any DEFINT, DEFSNG, DEFDBL,
DEFSTR, or DEF FN statements containing shared
variables must be restated in the chained program.

When using the MERGE option, user-defined functions
should be placed before any CHAIN MERGE statements in
the program. Otherwise, the user-defined functions
will be undefined after the merge is complete.

Systems, Inc. Page 5.14

(

GWBASIC User's Manual Commands, Statements, and Functions

CHDIR
Command

- —— e G G —— G S G - S S " s v Gt B Ben e TS G G G S S - S G G- G - S G - S Gum S G (W SIS —— G S - -

Purpose To change the current directory.

Format CHDIR <path>

path is a string expression of up to 128
characters indicating the new directory.

Comments The CHDIR command allows you to change the current
directory, eliminating the need for including a path
when referencing files in that directory.

Examples ROOT

JOHN = e
I I I
REPORTS STEVE SUE

To change to the directory JOHN from the ROOT
directory, you would enter:

CHDIR "SALES\JOHN"

To then change to the directory REPORTS from the
directory JOHN, you would enter:

CHDIR "REPORTS"

To return to the directory JOHN from the directory
REPORTS, you could enter:

CHDIR ".." or CHDIR "\SALES\JOHN"

To return to the ROOT directory from any sub-directory,
enter:

CHDIR "\"

TeleVideo Systems, Inc. Page 5.15

GWBASIC User's Manual Commands, Statements, and Functions

CHRS
Function

Purpose

Format

Comments

Example

Notes

To convert an ASCII code to the character it
represents. (ASCII codes are listed in Appendix B.)

CHRS (x)
X must be a numeric expression in the range 0 to 255.

CHRS$ evaluates x, rounds it to an integer, and then
returns the appropriate character. If x is not in the
range 0 to 255, an "Illegal function call"™ error
message is displayed.

CHR$ is commonly used to send special characters to the
display screen or the printer. For example, GWBASIC
supports Greek, scientific, and graphic characters that
are not represented by keys on the keyboard. To
display or print these characters, the CHR$ function is
used with the ASCII code for these characters as its
argument,

The CHR$ function can also be used to send control
functions like line feed, form feed, or carriage return
from within your program.

150 FOR INDEX = 1 TO 150

160 LPRINT NAMES (INDEX) TAB(20) ADDRESSS$ (INDEX) ;

170 LPRINT TAB(50) TOWNS (INDEX) TAB(74) ZIP(INDEX)
180 IF INDEX/50 = INT(INDEX/50) THEN LPRINT CHR$(12)
190 NEXT INDEX

In this example, the program is printing out a listing
of names and addresses. The IF THEN statement in line
180 checks to see if a multiple of 50 names have been
printed. If an even multiple of 50 has been printed, a
form feed (ASCII code 12) is sent to the printer to
advance the printer to the top of the next page.

ASC is the complement of the CHR$ function and converts
a string character to its ASCII code.

' TeleVideo Systems, Inc. Page 5.16

GWBASIC User's Manual Commands, Statements, and Functions

CINT
Function

Purpose To convert a number to an integer by rounding the
fractional portion,

Format CINT (x)

X must be a numeric expression in the range -32768
to 32767. If x is out of this range, an
"Overflow" error message is displayed.

Comments The conversion is made by rounding x to the closest
integer.

Examples PRINT CINT(45.67)
46
Ok
PRINT CINT(-1.75)
-2
Ok

Notes The FIX and INT functions can also be used to return
integer values.

Also see the CSNG and CDBL functions for details on
converting numbers to single- or double-precision.

TeleVideo Systems, Inc. Page 5.17

GWBASIC User's Manual Commands, Statements, and Functions

CIRCLE
Statement

O @ e e e € e G G G e e G G GBS e G D G e G G S G G G Cu P S GO e S S (S e G G MR G D S S S A G . G S - o > e G S thme e €D

Purpose To draw an ellipse on the screen with the specified
center and radius (graphics mode only).

Format CIRCLE (x,y),r[,<color>[,<start>,<end>[,<aspect>11]

(x,y) are the x and y coordinates for the center of
the ellipse. The coordinates may be entered
in either absolute or relative coordinate
form. (Refer to the Graphics Mode section of
Chapter 4 for information on absolute and
relative coordinates.)

r is the radius of the major axis of the
ellipse in pixels (points).

color is a numeric expression specifying the color
of the ellipse. 1In the medium resolution
mode, <color> may be in the range 0 to 3, 0
selects the background color, while colors 1
to 3 select a color from the current palette
(see the COLOR statement for information on
selecting the palette). The default color is
the foreground color, color number 3. 1In the
high resolution mode, color 0 is black and
color 1 is white (default).

start,end are numeric expressions in the range -2*pi to
2*pi (where pi = 3.141593) indicating the
start and end angles in radians. These
angles allow you to specify where an ellipse
will begin and end. Placing a negative sign
in front of an angle will connect that end of
the ellipse to the center point with a line,
and the angle will be treated as if it were
positive. The start angle may be less than
the end angle. If <start> and <end> values
are omitted, a complete ellipse is drawn (0
to 2*pi).

aspect is a numeric expression for the aspect ratio,
or the ratio of the x radius to the y radius.
The default aspect ratios are 5/6 for the
medium-resolution mode, and 5/12 for the
high-resolution mode. These default ratios
were chosen to draw a circle on a standard
screen with an aspect ratio of 4/3.

If the aspect ratio is less than one, r
indicates the radius for the x axis. If it
is greater than one, r is the radius for the
y axis.,

TeleVideo Systems, Inc. Page 5.18

GWBASIC User's Manual Commands, Statements, and Functions

CIRCLE
Statement

Comments The CIRCLE statement can only be used in the graphics
mode.

The CIRCLE statement is used to draw an ellipse, or arc
segments of an ellipse, on the screen. A circle is a
special case of anellipse, and is drawn when the
default <aspect> value is used.

The angles used for the <start> and <end> values

are positioned around the ellipse in the standard
mathematical way, with 0 in the three o'clock position
and increasing in a counterclockwise direction as shown
below.

Examples The following program segment shows how to draw a pie
shaped wedge.

10 PI = 3.141593

20 SCREEN 1
30 CIRCLE (160,100),80,,-7*P1/4,-P1/4

TeleVideo Systems, Inc. Page 5.19

GWBASIC User'

CIRCLE
Statement

The
sev

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

Notes The
seg

s Manual Commands, Statements, and Functions

following short program uses the CIRCLE statement
eral times to draw the curved lines for a cup.

PI = 3.141593

SCREEN 1 'MEDIUM RESOLUTION GRAPHICS
COLOR 0,1 'SET BACKGROUND = BLACK, PALETTE = 1
CLS 'CLEAR THE SCREEN
CIRCLE (140,30),50,,,,5/20 'DRAW TOP RIM OF CUP
CIRCLE (140,120),50,,PI,2*PI,5/20 'DRAW BOTTOM
LINE (90,30)-(90,120) 'DRAW LEFT SIDE
LINE (190,30)-(190,120) 'DRAW RIGHT SIDE

'DRAW HANDLE

CIRCLE (190,72),30,,3/2%PI,PI/2,1

CIRCLE (190,72),40,,3/2%P1,P1/2,1

PAINT (140,75),2,3 'COLOR CUP MAGENTA

PAINT (225,72),2,3 'COLOR HANDLE MAGENTA
PAINT (140,30),1,3 'COLOR INSIDE CYAN

END

last point referenced after an ellipse (or ellipse
ment) is drawn, is the center point indicated by the

X and y coordinates in the CIRCLE statement. That is,

if
you
the

you use relative coordinates in your next statement,
are giving directions relative to the center of
ellipse.

Points that are off the screen are not drawn by the
CIRCLE statement.

TeleVideo Systems, Inc. Page 5.20

GWBASIC User's Manual Commands, Statements, and Functions

CLEAR
Statement

" s e e e e G o G S S T e D G e GO B G G (S G G (e S G S G G G e e G G S G - S S > G — - G G e e G S G G S G G G

Purpose To set all numeric variables to zero, all string
variables to null, to close all open files, and
optionally to set the end of memory and the amount of
stack space.

Format CLEAR [,I[n]l[,ml]]

n is the maximum number of bytes to be set aside for
the GWBASIC workspace. This includes the
interpreter workarea, program area, and data area.
You would normally enter a value for n if you need
to reserve space above GWBASIC for a machine
language subroutine. The default and maximum
workspace size is 65,534 bytes (64K).

m sets aside stack space for GWBASIC. The default
stack size is 512 bytes or one-eighth of the
available memory, whichever is smaller. If you
use many nested GOSUB statements or FOR,..NEXT
loops, or use the PAINT statement to do complex
fills, you might need to enter a value for m to
reserve additional stack space.

Comments The CLEAR command is used to clear the memory area used
for data storage without erasing the program currently
in memory. The CLEAR command performs the following
actions:

Closes all files

Clears all COMMON variables

Resets numeric variables to zero

Resets string variables to null

Resets arrays dimensioned with a DIM statement
Resets the stack and string space

Releases all disk buffers

Resets all DEF FN and DEF/SNG/DBL/STR statements
Turns off any sound that is running

Resets to Music Foreground

Resets PEN and STRIG to OFF

® % % F o % * ¥ % F *

TeleVideo Systems, Inc. Page 5.21

GWBASIC User's Manual Commands, Statements, and Functions

CLEAR
Command
Examples CLEAR

The data is cleared from memory without erasing the
program currently in memory.

CLEAR,32768

The data is cleared from memory and the maximum
workspace is set to 32768 bytes.

CLEAR ,,2000

The data is cleared from memory and the stack size is
set to 2000 bytes.

CLEAR ,32768,2000

The data is cleared from memory, the maximum workspace
is set to 32768 bytes, and the stack size is set to
2000 bytes.

Notes The ERASE statement can also be used to free memory by
erasing arrays that will no longer be used.

TeleVideo Systems, Inc. Page 5.22

GWBASIC User's Manual Commands, Statements, and Functions

CLOSE
Statement

- T ———— — — = S - (o S ——— T " —— — e C=> G W G e S e Chm e G T M S G O G 0 G — S G —ne — G - -

Purpose To close I/0 to a file or a device. The CLOSE
statement is the complement to the OPEN statement.

Format CLOSE [[#]1<file number>[,[#]1<file number>l...]

file number is the number under which the file was
opened in an OPEN statement.

Comments A CLOSE with no arguments closes all open files or
devices.,

The association between a file or device and its file
number ends when the CLOSE statement is executed. The
file or device may be reopened using the same or a
different file number, or the file number may be used
to open a different file or device.

A CLOSE writes the final buffer of output to a file or
device opened for sequential output and places a "Z
end-of-file character (hex 26) at the end of the file.
A CLOSE statement is automatically executed when an
END, NEW, RESET, SYSTEM, or RUN (without the R option)
is executed. The STOP statement does not execute a
CLOSE.
Examples 450 CLOSE #1,2

Closes the files or devices associated with file
numbers 1 and 2.

790 CLOSE

Closes all open files or devices.

TeleVideo Systems, Inc. Page 5.23

GWBASIC User's Manual Commands, Statements, and Functions

CLS
Statement

—— e — — —— - G o — I G . D G G e G G NS G CER Gwe GER G G G G G G S S WS G W G G GO G G G e G (e e e G S s GM G € S e I S G — G — G

Purpose To erase or clear the display screen.

Format CLS

Comments In the text mode, CLS clears the active screen page to
the background color and returns the cursor to the home
position. The active screen page is set with the
SCREEN statement, and the background is set with the
COLOR statement.

In the graphics mode, CLS clears the screen buffer, and
therefore the screen, to the background color. The
last referenced point becomes the center of the screen.
In the medium-resolution mode, this is 160,100; in the
high-resolution mode, this is 320,100.

Example 10 CLS 'Clears the screen

Notes The SCREEN and WIDTH statements perform a CLS when they
change the screen mode.

Pressing the <Ctrl>/<Home> key sequence also clears the
screen.

TeleVideo Systems, Inc. Page 5.24

GWBASIC User's Manual Commands, Statements, and Functions

COLOR
Statement (Text)

—— ——— — ———————— O ——— T > " T . o S - " G N Sue Gme . G G S Gne S G - — ——— — G Sha S e T G " G = ——— €

Purpose To select the foreground, background, and border colors
for the display.

Format COLOR [<foreground>]l [, [<background>][,<border>1]]

foreground is a numeric expression in the range 0
to 31 representing the text color.

background is a numeric expression in the range 0
to 7 representing the background color.

border is a numeric expression in the range 0
to 15 representing the color for the
border of the screen.

Comments If you are using a color monitor, the following sixteen
colors are available for the foreground and border:

0 Black 8 Gray

1 Blue 9 Light Blue

2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Brown 14 Yellow

7 White 15 High-intensity White

You can make characters blink by adding 16 to the
foreground color. Therefore, to display blinking Red
characters, you would enter a foreground color of 20.

The background color may be chosen from any of the
first 8 colors (colors 0 through 7).

If you are using a monochrome display (black and
white), the COLOR statement allows you to use 16 shades
of gray from black to high-intensity white. Colors 0
through 15 may be entered as foreground or border
colors, and colors 0 through 7 may entered as a
background color. Adding 16 to the foreground color
displays blinking characters.

TeleVideo Systems, Inc. Page 5.25

GWBASIC User's Manual Commands, Statements, and Punctions

COLOR
Statement (Text)

Example The following simple program demonstrates the use of
the COLOR statement to set different screen attributes.

10 SCREEN 0 'SET SCREEN TO TEXT MODE

20 CLS 'CLEAR SCREEN

30 COLOR 7,0,0 'SET SCREEN TO DEFAULT VALUES

40 PRINT "THIS IS A NORMAL LINE OF TEXT" : PRINT

50 COLOR 15 'SET HIGH INTENSITY

60 PRINT "THIS LINE IS IN HIGH INTENSITY" : PRINT
70 COLOR 23 'SET SCREEN TO BLINKING CHARACTERS
80 PRINT "THIS IS A BLINKING LINE OF TEXT" : PRINT
90 COLOR 0,7 'SET REVERSE VIDEO

100 PRINT "THIS LINE IS IN REVERSE VIDEO" : PRINT
110 COLOR 16,7 'SET BLINKING REVERSE VIDEO

120 PRINT "THIS LINE IS BLINKING REVERSE VIDEO®" : PRINT
130 COLOR 7,0 'SET DISPLAY BACK TO DEFAULT VALUES
140 END

Notes An "Illegal function call" error message is displayed
if a parameter is entered outside of the specified
range. In this case, previous values are retained.

Setting the foreground color the same as the background
color makes the characters invisible.

Any parameter can be omitted. If a parameter is
omitted, the current value is retained. If the COLOR
statement is entered without any parameters, an
"Illegal function call" error message is displayed.

TeleVidec Systems, Inc. Page 5.26

GWBASIC User's Manual Commands, Statements, and Functions

COLOR

Statement (Graphics)

Purpose

Format

Comments

Examples

Notes

T —- e - ——— —— — T — G - " - (- - S — — ——— —— - — ——— - G B — D

To set the background color and current palette for the
medium resolution graphics mode.

COLOR [<background>][,[<palette>]]

background is a numeric expression in the range 0
to 15 representing the background color.
(See the text COLOR statement for a
listing of the available colors.)

palette is a numeric expression selecting one of
the two available palettes.

The colors in each palette are assigned as follows:

Color Palette O Palette 1
1 Green Cyan

2 Red Magenta

3 Brown White

Palette 0 is selected if <palette> evaluates to an
even number. Palette 1 is selected if <palette>
evaluates to an odd number.

If either of the parameters is omitted from the COLOR
statement, that parameter retains the current value.

The COLOR statement is used to set the colors available
to the PSET, PRESET, LINE, CIRCLE, PAINT, and DRAW
statements.

10 SCREEN 1,0
20 COLOR 1,3

Sets the background color to blue and selects palette
1. Text is printed in color 3 (white). To later
change to palette 0, the following statement could be
used:

120 COLOR ,4

If a <background> value of 16 to 32 is entered, the
intensity of the entire screen is increased.

An "Illegal function call" error message is displayed
if a parameter is entered outside the range 0 to 255.
If a value larger than 31 is entered for the background
color, COLOR uses the value returned by formula:

<background> MOD 32

TeleVideo Systems, Inc. Page 5.27

GWBASIC User's Manual Commands, Statements, and Functions

COM (n)
Statement

Purpose To enable or disable event trapping of communications
activity on the specified communication channel.

Format COM(n) ON
COM(n) OFF
COM(n) STOP

n is the number of the communications channel (1 or
2).

Comments The COM(n) ON statement enables communications event
trapping by an ON COM(n) statement. After executing
the COM(n) ON statement, GWBASIC checks between every
statement to see if characters have come in to the
specified communications channel. If characters have
come in and a non-zero line was specified in the ON
COM(n) statement, control is transferred to the
specified 1line.

COM(n) OFF disables the communications event trapping.
If an event takes place, it is not remembered.

COM(n) STOP disables the communications event trapping,
but if an event occurs, it is remembered. The GOSUB
statement is executed as soon as trapping is enabled
with the next COM(n) ON statement.

Example 10 ON COM(1) GOSUB 500
20 COM(1) ON

Enables trapping of communications activity on channel
1.

Notes For additional information on communications event
trapping, see the ON COM(N) Statement.

TeleVideo Systems, Inc. Page 5.28

GWBASIC User's Manual Commands, Statements, and Functions

COMMON
Statement

T —————— ——— > > - G S T ———— — —— o — oo — — > G ———— —— G e - . G ——— ——— O G G - — W — S W ———————

Purpose To pass variables to a chained program.
Format COMMON <variable>[,<variable>]...

variable 1is the name of a variable to be passed to the
chained program. Array variables are
indicated by adding "()" after the variable
name.

Comments The COMMON statement is used in conjunction with the
CHAIN statement. COMMON statements may appear anywhere
in a program, though it is recommended that they appear
at the beginning. The same variable cannot appear in
more than one COMMON statement.

Example 100 COMMON COUNT,NAMES () ,AGE ()
110 CHAIN "PROG3",10

This example chains program PROG3 from the default
drive and passes the numeric variable COUNT, the string
array NAMES$, and the numeric array AGE.

Notes If all the variables are to be passed from the current
program to the chained program, use the ALL option with
the CHAIN statement.

The "()" symbols after the array name passes arrays of
all sizes and dimensions.

TeleVideo Systems, Inc. Page 5.29

GWBASIC User's Manual Commands, Statements, and Functions

CONT
Command

Purpose To continue program execution after a <Ctrl>/<Break>
has been entered, or a STOP or END statement has been
executed.

Format CONT

Comments Execution resumes at the point where the break
occurred. If the break occurred after a prompt from an
INPUT statement, execution continues with the
reprinting of the prompt ("?" or prompt string).

CONT is usually used in conjunction with the STOP
statement for debugging. When execution is stopped,
variables can be examined and changed using direct mode
statements. Execution is resumed at the break point
with the CONT command. CONT may be used to continue
execution after an error has occurred.

Example 10 A = 10
20 PRINT A
30 STOP
40 PRINT A
RUN

10
BREAK IN 30
Ok
A = 20
Ok
CONT
20
Ok

Notes CONT is invalid if a program line is edited during the
break.

The GOTO statement may be used from the direct mode to
resume execution at a specified line number.

TeleVideo Systems, Inc. Page 5.30

GWBASIC User's Manual Commands, Statements, and Punctions

COoS
Function

- G e G s € e o G T ——— ———— —— — — - — . - — — ———— ——— {— T T — — o T - (" o - f—————

Purpose To return the trigonometric cosine value of the
specified argument.

Format COS (x)

X is an angle in radians. To convert degrees to
radians, multiply degrees by pi/180 (where pi =
3.141593).

Comments The calculation of COS is performed in single-
precision., If the /D option was included when
GWBASIC was started, COS is performed in double-
precision.

Example 10 PI = 3,141593
20 DEGREES = 360
30 RADIANS = DEGREES * PI / 180
40 PRINT COS(RADIANS)
RUN
1
Ok

TeleVideo Systems, Inc. Page 5.31

GWBASIC User's Manual Commands, Statements, and Functions

CSNG
Function

Purpose To convert a number to single-precision.

Format CSNG (x)
X is any numeric expression.

Comments The CSNG function converts the result of numeric
expression x to a single-precision number using the
rules for numeric type conversion as described in
Chapter 3.

Example 10 PI# = 3.14159265
20 PRINT PI# CSNG(PI#)
RUN
3.14159265 3.141593

Notes See the CINT and CDBL functions for converting numbers
to integer and double-precision.

TeleVideo Systems, Inc. Page 5.32

GWBASIC User's Manual Commands, Statements, and Functions

CSRLIN
Function

Purpose To return the line (vertical) position of the cursor.

Format CSRLIN

Comments The CSRLIN function returns a value from 1l to 25
indicating the current line on the active page. (See
the SCREEN statement for information on the active
page.)

The CSRLIN function, along with the POS function, is
used to store the current cursor position to allow the
cursor to be moved to another part of the screen and
then returned to the original position,

Example 50 ROW CSRLIN 'STORE CURRENT LINE
60 COL POS(0) 'STORE CURRENT COLUMN
70 INPUT "ENTER 5 DIGIT PART NUMBER";PARTNOS
80 IF LEN(PARTNOS) = 5 THEN 120
90 LOCATE ROW,COL : PRINT SPC(35)
100 LOCATE ROW,COL
110 GOTO 70

In this program segment, the POS and CSRLIN functions
are used to store the location of the first character
position of the INPUT prompt. If a 5-character
response is not entered, line number 90 erase the
prompt and the response. Line number 100, 110, and 70
repeat the prompt in the same place on the screén as
the prompt originally appeared.

TeleVideo Systems, Inc. Page 5.33

GWBASIC User's Manual Commands, Statements, and Functions

Cvi, Cvs, CVD
Functions

O o e o e G e R W e G G S G e e ST G G e s S G M G SR s e SR G O B G G G S € G e e S8 e G G e G e S S e S . e S G S G W G T

Purpose To convert string variables to numeric variables.

Format CVI (<2-byte string>)
CVS (<4-byte string>)
CVD (<8-byte string>)

Comments When numeric variables are stored in random access
files, they are first converted to string variables.
The CVI, CVS, and CVD functions are used to convert
these string variables back to numeric variables. The
CVI function is used to convert 2-byte strings back to
integers. CVS converts 4-byte strings back to single-
precision numbers. CVD converts 8-byte strings back to
double-precision numbers.

Example 60 OPEN "DATAFILE" AS 1 LEN = 8
70 FIELD #1,4 AS Al$,4 AS A2$
80 GET #1,10
90 FIRST = CVS(AlsS)
100 SECOND = CVS(A2$)

This example opens file DATAFILE as random file number
one and reads in record number 10. The two 4-byte
string variables in record 10 are converted to single-
precision variables labeled FIRST and LAST.

Notes Refer to the MKI$, MKS$, and MKD$ functions for

information on converting numeric variable types to
string variable types.

TeleVideo Systems, Inc. Page 5.34

GWBASIC User's Manual Commands, Statements, and Functions

DATA
Statement

o ——— S E—— " — G T - ————— — S G - - — G G S G G G G - - S e G S G . G S G G . G G G

Purpose To store numeric and string constants that are accessed
by the program's READ statements,

Format DATA <constant>[,<constant>]...

constant may be a string constant or a numeric
constant in fixed-point, floating-point,
integer, hex, or octal format. Numeric
expressions are not allowed. String
constants do not need to be surrounded by
double quotation marks, unless they contain
commas, colons, or significant leading or
trailing spaces.

Comments DATA statements are non-executable and may be placed
anywhere in the program. A DATA statement may contain
as many constants as will fit on a line, and any number
of DATA statements may be included in the program. The
data contained in DATA statements may be thought of as
one continuous list of items, regardless of how many
items are on a line or where the lines are placed in
the program. The READ statements access the DATA
statements in the order in which they appear in the
program.

The variable type (numeric or string) given in the READ
statement must agree with corresponding constant in the
DATA statement or a "Syntax error" error message is
displayed.

Example 10 pATA 77,92,56,84,73
20 DATA 89,95,51,75,80
30 suM = 0
40 FOR INDEX =1 TO 10
50 READ SCORE
60 SUM = SUM + SCORE
70 NEXT INDEX
80 AVERAGE = SUM / 10
90 PRINT "THE AVERAGE IS" AVERAGE
100 END
RUN
THE AVERAGE IS 77.2
Ok

In this example, the FOR...NEXT loop is used to read
the values from the DATA statements and add them up.
The total is then divided by 10 to find the average.

Note The RESTORE statement can be used to restore the data
in the DATA statements, allowing the data to be read
again.

TeleVideo Systems, Inc. Page 5.35

GWBASIC User's Manual Commands, Statements, and Functions

DATES$
Function

Purpose To retrieve the current date.
Format DATES$

Comments The DATE$ function returns a ten-character string in
the form mm-dd-yyyy where:

mm represents the current month (01 through 12)
dad represents the current day (01 through 31)
YyYyy represents the current year (1980 through 2099)

The DATES$ function returns the date set by the most
recent DATE$ statement or TeleDOS DATE command.

Example PRINT DATES$

01-01-1980
Ok

TeleVideo Systems, Inc. Page 5.36

GWBASIC User's Manual Commands, Statements, and Functions

DATES
Statement

———— ———— G gl G T - G f— Ene S —— — — G T — T " S — - —— G S o — I — G -t G S — N G G G G G o G -

Purpose To set the current date known to the operating system.
Format DATES = x$

X$ is a string expression representing the current
date in one of the following formats:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

where:

mm is a one- or two-digit number from1l to 12
representing the current month.

dd is a one- or two-digit number from 1l to 31
representing the current day of the month.

vy is a two-digit number from 80 to 99
representing the current year (the 19 is
assumed) .

yyyy is a four-digit number from 1980 to 2099
representing the current year.

Comments The DATE$ statement performs a function similar to the
TeleDOS DATE command.

Example DATES$ = "7-1-83"
Ok
PRINT DATES$
07-01-1983
Ok

TeleVideo Systems, Inc. Page 5.37

GWBASIC User's Manual Commands, Statements, and Functions

DEF FN
Statement

Purpose

Format

Comment

Examples

To name and define a function that you create.

DEF FN<name>[(<variable>I[,variablel...)] = <function>

name is a valid variable name., This name,
preceded by FN, becomes the name of the
function.

variable is a variable name representing a dummy
variable that is used to define the function.
When the function is later used, the variable
holding that position in the variable list is
substituted everywhere the dummy variable
exists in the function (see the following
example) .

function 1is an expression returning a value of the
type indicated by the function <name>.
Variables used to define the function may or
may not appear in the variable list. If they
do, the actual value of the variable is
supplied when the function is called.
Otherwise, the current value of the variable
is used.

The DEF FN statement allows you to define a commonly
used calculation or expression as a function. You can
then use the function call in your program instead of
having to reenter the expression each time. The DEF FN
statement may be used to define either numeric or
string functions. The function type is determined by
the type of the <name> argument.

The DEF FN statement must define the function in a
program before the function can be called. If a
function is called before it is defined, an "Undefined
user function" error message is displayed.

10 PI = 3.141593

20 'DEFINE FNCIRCUM TO FIND THE CIRCUMFERENCE
30 'OF A CIRCLE OF A GIVEN RADIUS

40 DEF FNCIRCUM(R) = 2 * PI * R

50 INPUT "Enter the radius: " ,RADIUS

60 PRINT "The circumference is equal to";
70 PRINT FNCIRCUM(RADIUS)

80 END

RUN

Enter the radius: 1

The circumference is equal to 6.283186
Ok

TeleVideo Systems, Inc. Page 5.38

GWBASIC User's Manual Commands, Statements, and Functions

DEF FN
Statement

In this example, line 40 defines the function FNCIRCUM
for calculating the circumference of a circle from its
radius. The function multiplies two times the variable
PI, times the value passed as R when the function is
called. Line number 70 calls the function and tells it
to use the variable RADIUS as the value for R.

10 'DEFINE FNHYPOT TO FIND THE HYPOTENUSE OF A

20 'RIGHT TRIANGLE

30 DEF FNHYPOT(A,B) = SQR(A"2 + B"2)

40 PRINT "Enter the two sides of a right triangle ";
50 INPUT S1,S2

60 PRINT "The hypotenuse is equal to" FNHYPOT(S1,S2)
70 END

RUN

Enter the two sides of a right triangle ? 3,4

The hypotenuse is equal to 5

In this example, line number 30 defines the function
FNHYPOT for calculating the hypotenuse of a right
triangle given the two sides. Dummy variables A and B
are used in the function definition to represent the
two sides. Line number 60 calls the function FNHYPOT
and tells it to use variables S1 and S2 as the values
for A and B respectively.

Notes If the value type returned by the function does not

match the variable name type used to identify the
function, a "Type mismatch" error message is displayed.

TeleVideo Systems, Inc. Page 5.39

GWBASIC User's Manual Commands, Statements, and Functions

DEF SEG
Statement

Purpose

Format

Comments

Example

TeleVideo

To assign the current segment address to be referenced
by a subsequent BLOAD, BSAVE, CALL, CALLS, or POKE
statement, or by a USR or PEEK function.

DEF SEG [=<address>]

address is a numeric expression returning an unsigned
integer in the range -32768 to 65535
representing a 16-byte paragraph boundary.
If <address> is negative, DEF SEG uses the
value (65536 + <address>). The value entered
is shifted left four bits (multiplied by 16)
to indicate the beginning address of the
segment.

The DEF SEG statement is used to set the segment
address to be used in subsequent BLOAD, BSAVE, CALL,
CALLS, or POKE statements, or by a USR or PEEK
function. These statements and functions then indicate
an address by giving an offset into this segment.

GWBASIC initially sets this segment address to
GWBASIC's Data Segment (DS). The GWBASIC Data

Segment indicates the beginning of your user workspace
in memory. If the DEF SEG statement is entered without
an <address> parameter, the segment defaults to the
GWBASIC Data Segment.

10 SCREEN 0 : CLS '"CLEAR THE SCREEN

20 'SET THE SEGMENT TO VIDEO MEMORY AT HEX B8000
30 DEF SEG = &HBS80O

40 'PRINT SMILEY FACES ON LINE 1

50 FOR INDEX = 0 TO 160 STEP 4

60 POKE INDEX,1

70 NEXT INDEX

80 'RESET SEGMENT TO THE GWBASIC DATA SEGMENT
90 DEF SEG

100 PRINT

110 END

In line number 20, the DEF SEG statement is used to set
the segment to the video memory at hex B8000. The FOR
NEXT loop in lines 50 through 70 POKE ASCII character 1
(a smiley face) into every other character position of
the top line of the display memory. Line number 90
resets the segment to GWBASIC's Data Segment.

Systems, Inc. Page 5.40

GWBASIC User's Manual Commands, Statements, and Functions

DEF SEG
Statement

Notes If an <address> value is entered outside of the -32768
to 65535 range, an "Overflow" error message is
displayed and the current value is retained.

DEF and SEG must be separated by a space or the

statement will be interpreted as assign value <address>
to numeric variable DEFSEG.

TeleVideo Systems, Inc. Page 5.41

GWBASIC User's Manual Commands, Statements, and Functions

DEFtype
Statements

G G (e e Gy e e S > (e (o G> Go S G G o s G S G W G e W G e G S S e W e Ghe e G G S G D G - S — o G Sae S e s S

Purpose To declare variable types as integer, single-precision,
double-precision, or string.

Format DEF<type> <letter>[-<letter>][,<letter>[-<letter>ll...

type is INT for integer, SNG for single-precision,
DBL for double-precision, or STR for string.

letter is a letter of the alphabet (A-2).

Comments The DEFtype statement can be used to declare variables
starting with the designated letter or letters as
belonging to that variable type. Variable names with
these letters will not need the type declaration
character (%, !, #, $) to specify its type. An added
variable type declaration character takes precedence
over the DEF<type> statement.

DEF<type> statements should be located at the
beginning of your program before any of the declared
variables are used.

Example 10 DEFSTR A-D
20 DEFINT I-N
30 ALPHA = "CAT"
40 I = 3.4
50 LAST! = 12,7
60 PRINT ALPHA I LAST!
RUN
CAT 3 12.7
Ok

In this example, line 10 defines variables starting
with the letters A-D as string variables. Therefore
the variable ALPHA does not need the $ type declaration
character. Line 20 defines all variables starting with
the letters I-N as integer type. When 3.4 is assigned
to variable I in line 40, the value is rounded to an
integer before it is stored. The variable LAST! in
line 50 contains the ! single-precision type
declaration character, and therefore overrides the
integer definition of line 20.

TeleVideo Systems, Inc. Page 5.42

GWBASIC User's Manual Commands, Statements, and Functions

DEF USR
Statement

Purpose To specify the starting address of an assembly language
routine that will later be called by the USR function.

Format DEF USRI[nl=<offset>

n is a number from 0 to 9 identifying the USR
routine whose starting address is being
specified. If omitted, DEF USRO is assumed.

offset is an integer expression in the range -32768
to 65535 indicating the offset into the
current segment (see the DEF SEG statement).
If <offset> is negative, a value of (65536 +
<offset>) is used. The starting address is
obtained by adding the offset value to the
segment value.

Comments Any number of DEF USR statements may appear in a
program to redefine a subroutine starting address.

Example 20 DEF SEG = 0
30 DEF USR1 = 24000

150 ANSWER = USRI1 (Y)

This example sets the starting address for subroutine
one (1) at absolute memory address 24000,

TeleVideo Systems, Inc. Page 5.43

GWBASIC User's Manual Commands, Statements, and Functions

DELETE
Command

Purpose

Format

Comments

Examples

Notes

To delete program lines from the program currently in
memory.

DELETE [<start line>][-<end line>] or
DELETE [<start line>-]

start line . 1is the line number of the first line to
be deleted.

end line is the line number of the last line to
be deleted.

The DELETE command deletes the specified line or range
of lines from the program currently in memory and then
returns to the command level.

If only one line number is listed, only that line is
deleted. If both a start and end line are entered, the
start line, the end line, and any line number in
between is deleted.

Entering a dash and a 1line number will delete all
program lines from the beginning of the program up to
and including the entered line number. Entering a line
number and a trailing dash deletes that line number and
all subsequent line numbers in the program.

DELETE 40
Deletes line number 40 from the program in memory.
DELETE 40-100

Deletes all program lines in the range 40 through 100,
inclusive.

DELETE -40

Deletes all program lines in the range 0 to 40,
inclusive.

DELETE 40-

Deletes all program lines from line 40 to the end of
the program.

If you try to delete a line by only entering a <start
line>, and the line number does not exist in memory, an
"Illegal function call" error message is displayed.

TeleVideo Systems, Inc. Page 5.44

GWBASIC User's Manual Commands, Statements, and Functions

DIM
Statement

- G — —— - — - —— — S T} - ——" G GO G- G - - —— G T G G 0 Gan © e € e ey G W o Gus G i . G S G G GHD Gns S G G G Coe S G G S o= =

Purpose - To specify the maximum values for array variable
subscripts and to allocate enough memory storage for
the arrays.

Format DIM <variable>(<subscripts>)
[,<variable> (<subscripts>)l...

variable is a valid array variable name.

subscripts is a list of numeric expressions,
separated by commas, indicating the
subscript size for each dimension of
the array.

Comments Array variables are set with a default maximum
subscript value of ten (10) for each dimension in the
array. In Option Base 0, this allows eleven item per
dimension (using subscripts 0 through 10). To use
larger subscripts, and therefore more elements per
dimension, the DIM statement must be used.

The DIM statement sets the largest subscript value that
can be used in each dimension of the array. The DIM
statement initially sets each element of a numeric
array equal to zero, and each element of a string array
to the null string.

The maximum number of dimensions per array is 255, and
the largest subscript size per dimension is 32767.
These numbers are in reality limited by the amount of
memory available and the length of a program line.

A "Subscript out of range" error message is displayed
if a subscript larger than the dimensioned value is
used. This also applies to using a subscript larger
than ten (10) in an array that has not been dimensioned
using a DIM statement.

A "Duplicate Definition" error message is displayed if
you try to dimension an array more than once. This
message is also displayed if you try to dimension an
array after you have already assigned a value to one of
its elements.

TeleVideo Systems, Inc. Page 5.45

GWBASIC User'

DIM
Statement

Example 10
20
30
40
50
60
70
80
90

s Manual Commands, Statements, and Functions

DIM SCORES(20)

SUM = 0

FOR INDEX = 1 TO 20

PRINT "Enter score number"™ INDEX " ";
INPUT SCORES (INDEX)

SUM = SUM + SCORES (INDEX)

NEXT INDEX

PRINT

PRINT "Your average score is" SUM / 20

This example dimensions the one-dimensional numeric
array SCORES to a maximum subscript value of 20. The
array is then used to store twenty scores.

Notes The ERASE statement can be used to erase an array,
allowing you to dimension it again.

TeleVideo Systems, Inc. Page 5.46

GWBASIC User's Manual Commands, Statements, and Functions

DRAW
Statement

o i G o - — o —— ——— - —————— T f— — ——— ——————— (o (" (—— O —— —— . — — ——_— —— O — G —————

Purpose To draw an object on the screen in the graphics mode.

Format DRAW <string>

string is a string expression using subcommands to
describe the object to be drawn.

Comments The DRAW statement is used to draw objects using a
graphics definition language. The graphics definition
language subcommands are used in the <string>
expression to define the object to be drawn. These
subcommands describe motion (up, down, left, right),
color, angle, and scale factor.

Each of the following subcommands begins movement from
the current graphics position. The current graphics
position is the last point referenced by a graphics
command., This is usually the coordinate of the last
graphics point plotted with a command. The current
position defaults to the center of the screen when a
program is started.

Ulnl Move up
DInl Move down
LIn] Move left
RIn] Move right
Eln] Move diagonally up and right
FIn] Move diagonally up and left
GInl Move diagonally down and left
H(n] Move diagonally down and right
n indicates the distance to move. The number

of points moved is n times the scaling factor
(set by the S subcommand). If n is omitted,
a default value of 1 is used.

Mx,y Move absolute or relative. If x is preceded
by a plus (+) or minus (-), x and y are added
to the coordinates of the current graphics
position and a line is drawn from the current
position to the new position. Otherwise, a
line is drawn to point x,y from the current
position.

TeleVideo Systems, Inc. Page 5.47

GWBASIC User's Manual Commands, Statements, and Functions

DRAW
Statement

The following two prefix commands may precede any of
the above movement commands, and affect only the
command it precedes:

B

N

Move but don't plot any points.

Move but return to the original position when
done (the last point referenced or current
graphics position is not changed by the
command) .

The following additional commands are also available:

An

TAn

Cn

Sn

Set angle n. n may range from 0 to 3, where
0 is 0 degrees, 1 is 90, 2 is 180, and 3 is
270. Figures rotated 90 or 270 degrees are
scaled so they will appear the same size as
with 0 or 180 degrees on a monitor with the
standard aspect ratio of 4/3.

Turn angle n, n is in degrees and can range
from -360 to +360. If n is positive, the
angle rotates counterclockwise. If n is
negative, the angle rotates clockwise. An
"Illegal function call" error message is
displayed if a value outside of the range
-360 to +360 is entered.

Set color n. n may range from 0 to 3 in
medium resolution, and 0 to 1 in high
resolution. In medium resolution, n selects
the background color (0) or one of the three
colors (1-3) from the current palette. The
default value is the foreground color, color
3. In high resolution, 0 selects black, and
1 selects white (the default value).

Set scale factor. n may range from 1 to 255.
n divided by 4 gives the actual scale factor.
The scale factor multiplied by the distances
given with U, D, L, R, or relative M commands
gives the actual distance traveled. The
default value for n is 4, giving a default
scale factor of 1.

TeleVideo Systems, Inc. Page 5.48

(

GWBASIC User's Manual Commands, Statements, and Functions

DRAW
Statement

X<string variable>;

Execute substring. This powerful command
allows you to execute a second substring from
within a string, much like GOSUB in BASIC.
This allows you to create a string of
commands more than 255 characters long, or

to define portions of an object separate from
the entire object. A semicolon (;) is
required after the string variable name when
using the X subcommand.

P<color>,<border>

Paint using color <color> within a border of
color <border>. The P subcommand is a fill
command, painting the area enclosed by the
specified border color with the specified
color. <color> and <border> can range from 0
to 3 in medium resolution, 0 indicating the
background color, and 1 to 3 indicating the
three colors of the current palette. 1In high
resolution, <color> and <border> can be 0 or
1, 0 indicating black, and 1 indicating
white.

The numeric arguments n, x, and y used in the above
subcommands can be expressed as numeric constants, like
123, or as numeric variables in the form =<variable>;,
where <variable> is the name of a numeric variable and
the = sign and the semicolon (;) are required.

Examples The following three examples show three ways to draw
the same box on the screen.

10
20
30

10
20
30
40
50

SCREEN 1
DRAW "U40R48D40L48"
END

SCREEN 1

HORIZ = 48

VERT = 40

DRAW "U=VERT;R=HORIZ;D=VERT;L=HORIZ;"
END

TeleVideo Systems, Inc. Page 5.49

GWBASIC User's Manual Commands, Statements, and Functions

DRAW
Statement

Notes

TeleVideo

10 SCREEN 1

20 LEFTSIDES = "U40"

30 TOP$ = "R48"

40 RIGHTSIDES = "D40"

50 BOTTOMS = "L48"

60 BOX$ = LEFTSIDES$ + TOP$ + RIGHTSIDE$ + BOTTOMS
70 DRAW "XBOX§$;"

80 END

The following example shows the use of the TA
subcommand to create a starburst pattern.

10 SCREEN 1

20 CLS

30 FOR ANGLE = 0 TO 360 STEP 10
40 DRAW "TA=ANGLE;NU60"

50 NEXT ANGLE

60 END

The aspect ratio of the monitor determines the spacing
of points on horizontal, vertical, and diagonal lines.
The aspect ratio of a standard monitor is 4/3,
indicating that the horizontal axis of the screen is
4/3 as long as the vertical axis. This information is
needed to create horizontal and vertical lines of equal
length.

In medium resolution, with 320 horizontal pixels by 200
vertical pixels, a 1/1 aspect ratio would require 8
horizontal pixels to be the same length as 5 vertical
pixels. With a 4/3 aspect ratio, you must multiply the
vertical length by 3/4 to get an equal horizontal
length; therefore, to find an equal horizontal length
(x) for a known vertical length (y), use the formula:

X =6/5%y (8/5* 3/4 = 6/5)

To find an equal vertical length (y) for a known
horizontal length (x), use:

y = 5/6 * x
In high resolution, with 640 horizontal pixels by 200
vertical pixels, the formulas to f£ind equivalent
lengths are:

X =12/5 * y and y = 5/12 * x

Systems, Inc. Page 5.50

GWBASIC User's Manual Commands, Statements, and Functions

EDIT
Command

o —————] ——— T ——— — ———— G T G - G S e o G . G G G G G G S G - - G S S G G G S S G — S W

Purpose To enter the edit mode at a specified line.
Format EDIT <line number>

line number is a valid line number in the program
currently in memory.

Comments The EDIT command displays the specified line and then
positions the cursor under the first digit of the line
number. You can then use the editing keys of the
program editor to make any needed changes.

A period (.) can be entered in place of a line number
to refer to the current line (the last line edited or
referenced). If a period (.) is used, at least one
space must separate the T of EDIT and the period or a
"Syntax error" error message is displayed.

Example EDIT 40
40 RIGHTSIDES = "D40"

Note The LIST command may also be used to display program
lines for editing.

TeleVideo Systems, Inc. Page 5.51

GWBASIC User's Manual Commands, Statements, and Functions

END
Statement

e G S s Gl S G G X G Y G 0 G0 SR I G S G G W G G G G G o G s G G GRS WD S (> G G G G — - G G o S — O Gm- G S G ow G b 0 e Exn G G S a=D

Purpose To terminate program execution, close all files, and
return control to the command level.

Format END

Comments END statements may be placed anywhere in the program to
terminate execution. Unlike the STOP statement, END
does not cause a "Break in line nnnnn" message to be
displayed. An END statement at the end of a program is
optional.

Example 520 IF K>1000 THEN END
In this example, if the value of numeric variableK is

greater than 1000 the program terminates; otherwise,
execution continues with the next program line.

TeleVideo Systems, Inc. Page 5.52

GWBASIC User's Manual Commands, Statements, and Punctions

EOF
Function

Purpose To test for the end-of-file condition.
Format EOF (<file number>)

file number represents the number under which the
file you are checking was opened for
input in the OPEN statement.

Comments The EOF function can be used to avoid trying to read
past the end of a sequential file. The EOF function
returns -1 (true) if the end of the file has been
reached; otherwise, a 0 (false) value is returned.

When EOF is used with a communications device, the
definition of the end-of-file condition is dependent on
the mode (ASCII or binary) that the device was opened
in. In binary mode, EOF is true when the input queue
is empty (LOC(n)=0)., It becomes false when the input
queue is not empty. In ASCII mode, EOF is false until
a "7 character is received, and from then on it remains
true until the device is closed.

Example 10 OPEN "B:SCORES.DAT" FOR INPUT AS #1
20 INDEX = 0
30 DIM SCORE(50)
40 WHILE (NOT EOF(1)) AND (INDEX < 50)
50 INDEX = INDEX + 1
60 INPUT #1,SCORE (INDEX)
70 WEND
80 CLOSE

This example program segment opens up the sequential
file SCORES.DAT on drive B to read in scores. The
array SCORE is dimensioned to hold up to 51 scores.

The scores are read in using the WHILE...WEND loop in
lines 40 through 70. The counter INDEX is used to
place the scores in the array and to keep track of the
total number of scores read. The WHILE...WEND loop
continues to read in values until either the end of the
file is reached (NOT EOF(l) becomes false) or the
maximum dimension of the array is reached.

TeleVideo Systems, Inc. Page 5.53

GWBASIC User's Manual Commands, Statements, and Functions

ERASE
Statement

Purpose

Format

Comments

Example

- o e E - oo G Gam e @ e G e G35 GOD SIS G GS6 KNS G CaR) M e U6 G NS GES e G S SN Gmr e S S G T G G o G S —— 0 = 0 G G

To eliminate arrays from memory.
ERASE <array name>[,<array name>l...

array name is the name of a program array you want
to erase from memory.

The ERASE statement may be used to free program memory
by erasing the space allocated to an array or arrays.
The ERASE statement can also be used if you want to
redimension an array. If you try to redimension an
array without first erasing it, a "Duplicate
definition"™ error message is displayed.

30 DIM A(30),B(30)

250 ERASE A,B
260 DIM B(50)

In this example, numeric arrays A and B are originally
dimensioned to 30. Line 250 erases arrays A and B from
memory, and then line 260 redimensions array B to 50.
Any values originally placed in array B are lost when
line 250 is executed.

TeleVideo Systems, Inc. Page 5.54

GWBASIC User's Manual Commands, Statements, and Functions

ERR and ERL
Functions

- - —— G . - T G o —— —— — ——— S —— T S —— - - S —— - ——— " - — — — —— —————— ———

Purpose To return an error code and the line number the error
occurred 1in.

Format ERR
ERL

Comments ERR and ERL are used by error handling routines to
determine the type of error that has occurred. ERR
contains the error code for the error and ERL contains
the 1line number of the line in which the error was
detected. ERR and ERL are usually used in IF...THEN
statements to direct program flow in the error handling
routine.

ERR and ERL can not appear on the left side of the
equal sign in a LET (assignment) statement.

When ERL is used in a IF...THEN statement, use the
form:

IF ERL=line number THEN ...

so that the l1ine number can be renumbered by the RENUM
command. If ERL appears on the right side and the line
number on the left, the line number is not renumbered
by the RENUM statement.

The error code numbers returned by ERR are listed in
Appendix A.

Example The following program segments show how the ERR and ERL
functions can be used to avoid having a program
terminate in an error message. Two error handling.
routines are included to cover the cases when the user
forgets to place the data disk in drive B, or the wrong
data disk is placed in drive B. In these cases, a
message is displayed telling the user how to correct
the problem and then letting them continue with the
program.

TeleVideo Systems, Inc. Page 5.55

GWBASIC User's Manual Commands, Statements, and Functions

ERR and ERL

Functions

Notes

10 ON ERROR GOTO 1000

120 OPEN "B:INFO,.DAT" FOR INPUT AS #1

1000
1010
1020
1030
1040
1050
1060
1070
1080
1100
1110
1120
1130
1140
1150
1200

'ERROR HANDLING ROUTINES

IF ERR = 53 GOTO 1050 'WRONG DISK

IF ERR = 71 GOTO 1100 'NO DISK

PRINT "ERROR NUMBER" ERR "IN LINE NUMBER" ERL
END

'FILE NOT FOUND

PRINT "FILE INFO.DAT WAS NOT FOUND ON DRIVE B"
PRINT "PLACE THE CORRECT DATA DISK IN DRIVE B"
GOTO 1200

'NO DISK IN DRIVE B

PRINT "THERE IS NO DATA DISK IN DRIVE B"

PRINT "OR THE DRIVE DOOR IS OPEN"

PRINT

PRINT "PLACE THE DATA DISK IN DRIVE B"

PRINT "AND CLOSE THE DRIVE DOOR"

INPUT "THEN PRESS RETURN",A$: RESUME

If an error occurs when a direct mode statement is
executed, ERL will contain 65535,

TeleVideo Systems, Inc. Page 5.56

GWBASIC User's Manual Commands, Statements, and Functions

ERROR
Statement

Purpose To simulate the occurrence of a BASIC error, or to
allow error codes to be defined by the user.

Format ERROR n
n is a numeric expression in the range 0 to 255,

Comments If the value of n equals an error code already assigned
by GWBASIC (see Appendix A), the ERROR statement
simulates the occurrence of that error. If an error
handling routine has been defined using the ON ERROR
statement, program control is transferred to the error
handling routine. Otherwise, the corresponding error
message is displayed and program execution is
terminated.

To define your own error code, use a value that is
greater than any used by the GWBASIC error codes.

(We suggest you use the highest available values so
compatibility may be maintained when more error codes
are added to GWBASIC.) Your new error code may then
be handled in an error handling routine like the
GWBASIC error codes.

If an ERROR statement specifies a code for which no
error message has been defined, and you don't handle
the error with an error handling routine, the
"Unprintable error" error message is displayed.

Examples 10 S = 2
20 ERROR S
30 END
RUN
Syntax error in 20
Ok

ERROR 2
Syntax error

The above examples show how to simulate a syntax error
in both the indirect and direct modes.

TeleVideo Systems, Inc. Page 5.57

GWBASIC User's Manual Commands, Statements, and Functions

ERROR
Statement

(

The next example shows segments of a game program which
defines a bet of over 5000 as error code 210. The
error handling routine displays a message and then
returns control to the INPUT statement.

10 ON ERROR GOTO 400

110 INPUT "WHAT IS YOUR BET";B
120 IF B > 5000 THEN ERROR 210

400 'ERROR HANDLING ROUTINES
410 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
420 IF ERR = 210 AND ERL = 120 THEN RESUME 110

TeleVideo Systems, Inc. Page 5.58

GWBASIC User's Manual Commands, Statements, and Functions

EXP
Function

Purpose To calculate the exponential function (e to the power
of x).

Format EXP (x)

X is a numeric expression less than or equal to
88.02968.

Comments The EXP function returns the value of e raised to the x
power, where e is the base for natural logarithms
(2.718282)., If x is greater than 88.02968, an
"Overflow" error message is displayed.

Example PRINT EXP (1)

2.,718282
Ok

TeleVideo Systems, Inc. Page 5.59

GWBASIC User's Manual Commands, Statements, and Functions

FIELD
Statement

L T L L r e S S ——

Purpose To allocate space for variables in a random file
buffer.

Format FIELD [#]1<file number>,<width> AS <variable>
[,<width> AS <variable>] ...

file number represents the number under which the
file was opened in the OPEN statement.

width is a numeric expression indicating the
number of bytes (character positions) to
allocate for the field identified by the
following variable name.

variable is a valid string variable name used to
identify a record field.

Comments The FIELD statement is used to format the random file
buffer., It defines the variables used to transfer data
to and from the buffer. The FIELD statement must be
executed after the random access file is opened and
before a GET or PUT statement for that file is
executed.

The total number of bytes allocated in a FIELD
statement must not exceed the record length that was
specified when the file was opened. Otherwise, a
"Field overflow" error message is displayed. (The
default record length is 128 bytes.)

Any number of FIELD statements may be executed for the
same file, All FIELD statements that have been
executed for a file remain in effect. Each new FIELD
statement redefines the buffer from the first byte;
therefore, multiple field definitions may exist for the
same data in the buffer.

Examples FIELD 1,20 AS N$,10 AS ID$,40 AS ADDS$

This statement allocates the first 20 bytes (character
positions) in the random file buffer to the string
variable N$, the next 10 positions to ID$, and the next
40 positions to ADD$. FIELD does not place any data in
the random file buffer.

TeleVideo Systems, Inc. Page 5.60

GWBASIC User's Manual Commands, Statements, and Functions

FIELD
Statement

Note

10 OPEN "B:PHONELST" AS #1 LEN = 35

20 FIELD #1,2 AS COUNT$,33 AS DUMMYS$
30 FIELD #1,25 AS NAME$,10 AS PHONENBRS$
40 GET #1,1

50 TOTAL% = CVI(COUNTS)

60 PRINT "NAME" TAB(30) "PHONE NUMBER"
70 PRINT

80 FOR I = 2 TO TOTAL%

90 GET #1, I

100 PRINT NAMES$ TAB(30) PHONENBRS

110 NEXT I

120 CLOSE

130 END

This example shows the use of multiple FIELD statements
for the same file. The file PHONELST is used to store
names and phone numbers, with the first record storing
the number of the last record with valid information.
Lines 20 and 30 define the two variable formats that
will be used to transfer data from the buffer. Line 40
removes the last record number from record one (1)
using the FIELD format of line 20. Line 50 uses the
CVI function to convert the COUNT$ string back to an
integer containing the number of the last valid record.
The FOR...NEXT loop in lines 80 through 110 is used to
print out the names and phone numbers stored in the
remaining records using the FIELD format of line 30.

Do not use a variable name defined in a FIELD statement
on the left side of a LET statement or in a INPUT
statement. Once a variable name is defined in a FIELD
statement, it points to the correct place in the random
file buffer. If a subsequent INPUT or LET statement
with that variable name is executed, the variable's
pointer is moved to string space.

TeleVideo Systems, Inc. Page 5.61

GWBASIC User's Manual Commands, Statements, and Functions

FILES
Command

Purpose

Format

Comments

Examples

Notes

G o €D s e e - S S G o G S — . o G S G G (S SO G TN WS S G Cam e S W CI S G G e G5 G S G S S S G 08 G e (A 0 o T G S

To print the names of the files residing in the
specified directory of a disk. The FILES command
is similar to the TeleDOS DIR command.

FILES [<Kfilespec>]

filespec 1is a string expression indicating a file.
If a filespec is omitted, all the files in
the current directory on the default disk are
displayed.

All files with filenames matching a filename in
filespec are displayed. The filename may contain the

(?) and (*) wildcard characters in the name or
extension.

If a drive designation and path are included as part of
the filespec, all the files matching the filename in
the specified directory on that drive are displayed.

If the drive designation is omitted, the TeleDOS
default drive is used. If a path is omitted, the
current directory is used.

FILES

Displays all files in the current directory on the
TeleDOS default drive.

FILES "* ,BAS"

Displays all files on the default drive with a filename
extension of .BAS.

FILES "B:* ,*" or FILES "B:"

Displays all files on drive B.

FILES "B:\SALES"

Displays the subdirectory file SALES on drive B,
FILES "B:\SALES\"

Displays all files in the subdirectory SALES on drive

Subdirectory files displayed in a directory listing are
denoted by <DIR> after the directory name.

TeleVideo Systems, Inc. Page 5.62

(

GWBASIC User's Manual Commands, Statements, and Functions

FIX
Function

Purpose To truncate a number to an integer.

Format FIX(x)
X is any numeric expression,

Comments FIX strips all the digits to the right of the decimal
point and returns an integer value equal to the digits
to the left of the decimal point.

Examples 10 DATA -3.45,-0.79,0,50,58.75
20 FOR INDEX =1 TO 4
30 READ NUMBER
40 PRINT FIX (NUMBER)
50 NEXT INDEX
60 END
RUN
-3

0

0

58
Ok

Note Also see the INT and CINT functions for alternative
methods of returning integers.

TeleVideo Systems, Inc. Page 5.63

GWBASIC User's Manual Commands, Statements, and Functions

FOR. . . NEXT
Statements

Purpose To allow a series of instructions to be performed as a
loop a given number of times.

Format FOR <variable> = x TO y [STEP z]

NEXT I[<variable>]l[,<variable>] ...

variable is a valid integer or single-precision
variable name to be used as a counter to keep
track of the number of times the loop is
repeated.

X is a numeric expression representing the
initial value of the counter.

y is a numeric expression representing the
final value of the counter.

z is a numeric expression representing the
increment to use to change the counter from
the initial value to the final value. 2z may
be either positive or negative. ("
Comments Program execution of a FOR...NEXT loop proceeds as
follows:

1) When the FOR statement is executed, the counters
final value is established and then the counter
variable is set equal to the initial value.

2) The initial value is compared to the final value.
If the initial value does not exceed the final
value, program control continues with the first
statement after the FOR statement. If the initial
value exceeds the final value, program control is
transferred to the first statement after the NEXT
statement.

3) Program control continues in order from the

statement after the FOR statement until the NEXT
statement is encountered.

TeleVideo Systems, Inc. Page 5.64

GWBASIC User's Manual Commands, Statements, and Functions

FOR. . . NEXT
Statement

4) When the NEXT statement is encountered, the
counter is incremented by the step value and again
compared with the final value. If the new counter
value does not exceed the final value, program
control is transferred back to the first statement
after the FOR statement. If the new counter wvalue
now exceeds the final value, control continues
with the first statement after the NEXT statement.

If STEP is not specified, the increment defaults to
one. If STEP is negative, the counter is decremented
from the initial value to the final value and the loop
is executed until the counter is less than the final
value.

The counter must be an integer or single-precision
numeric constant. If a double-precision numeric
constant is used, a "Type mismatch" error message is
displayed.

The statements between the FOR and NEXT statements are
skipped if the initial value of the counter is greater
than the final value and step is positive, or the
initial value is less than the final value and step is
negative.

FOR...NEXT loops may be nested; that is, a FOR...NEXT
loop may be placed within another FOR...NEXT loop.
When loops are nested, each loop must have a unique
variable name as its counter. The NEXT statement for
the inside loop must appear before the NEXT statement
for the outside loop. If nested loops have the same
end point, a single NEXT statement with the variable
names may be used.

The level or number of nested FOR...NEXT loops is only
limited by the amount of stack space.

The variable name(s) may be omitted from the NEXT
statement, in which case the NEXT statement is matched
to the most recent FOR statement. If a NEXT statement
is encountered before its corresponding FOR statement,
a "NEXT without FOR" error message is displayed.

TeleVideo Systems, Inc. Page 5.65

GWBASIC User's Manual Commands, Statements, and Functions

FOR. . . NEXT
Statements

Examples 10 FINISH = 5 : TOTAL = 10
20 FOR INDEX = 1 TO FINISH
30 PRINT INDEX;
40 TOTAL = TOTAL + 10
50 PRINT TOTAL

60 NEXT
RUN

1 20

2 30

3 40

4 50

5 60
Ok

10 FINISH = 0

20 FOR INDEX = 1 TO FINISH
30 PRINT INDEX

40 NEXT INDEX

50 PRINT "COMPLETED"

RUN

COMPLETED

Ok

In this example, the loop does not execute because the ’
initial value of the loop exceeds the final value. (j

10 INDEX = 5
20 FOR INDEX = 1 TO INDEX + 5
30 PRINT INDEX;

40 NEXT

RUN

1 2 3 4 5 6 7 8 9 10
Ok

In this example, the loop executes ten times. The
final value for the loop variable is set before the
initial value is set.

TeleVideo Systems, Inc. Page 5.66

GWBASIC User's Manual Commands, Statements, and Functions

FRE
Function

Purpose To return the number of bytes in memory that are not
being used by GWBASIC.

Format FRE (x) or FRE (x§)
x and x$ are dummy variables.

Comments The FRE function used with a dummy numeric variable,
such as FRE(0), returns the number of free bytes in the
GWBASIC user workspace. This number does not include
the memory area reserved for the interpreter workarea.

GWBASIC manipulates strings dynamically, allowing
string lengths to vary. Because of this, string space
may become fragmented. Using the FRE function with a
dummy string variable, such as FRE(""), forces a
housecleaning before returning the number of free
bytes. The housecleaning compresses the string data
and frees unused areas of memory that had been used for
strings.

GWBASIC automatically performs the housecleaning
procedure when all free memory has been used up. To
reduce the delay for each housecleaning, you might want
to use FRE("") periodically.

Example PRINT FRE(0)
61706
Ok

Notes If the above direct mode command is entered immediately
after GWBASIC is started, the value returned should
equal the number of free bytes listed in the GWBASIC
version message.

TeleVideo Systems, Inc. Page 5.67

GWBASIC User's Manual Commands,_Statements, and Functions

GET
Statement (Files)

Purpose To read a record from a random access disk file into a
random buffer.

Format GET [#1<file number>I[,<record number>]

file number is the number under which the file was
opened in the OPEN statement.

record number is a numeric expression representing the
record to be read from the file.
<record number> must be in the range 1
to 32767. If <record number)> is
omitted, the next record (after the last
GET) is read into the buffer.

Comments The GET statement is used to read a random access file
record into the file buffer. Because GWBASIC and
TeleDOS block as many records as possible into a 512
byte sector, the GET statement may not always have to
physically read the record in from the diskette. Once
the record is in the buffer, references to the
variables defined in the FIELD statement are used to
read the data from the buffer.

The GET statement may also be used for input from
communications files. In this case <record number>
represents the number of bytes to read from the
communications buffer. This value cannot exceed the
maximum value set in the OPEN COM statement.

Example 10 OPEN "B:NAMES.DAT" AS #1 LEN = 25
20 FIELD #1,25 AS NAMESS
30 FOR INDEX% = 1 TO 10
40 GET #1,INDEX%
50 PRINT NAMESS$
60 NEXT INDEX%
70 CLOSE

In this example, line 10 opens file NAMES.DAT on drive
B for random access. Line 20 defines the length of
field variable NAMES$ at 25 bytes. The FOR...NEXT loop
in lines 30 through 60 read in the first ten records
and print the name stored in each record.

TeleVideo Systems, Inc. Page 5.68

GWBASIC User's Manual Commands, Statements, and Functions

GET
Statement (Graphics)

Purpose To read points from an area on the screen and store the
information in an array.

Format GET (x1,yl)-(x2,y2) ,<array name>

(x1,yl)-(x2,y2) represent the coordinates of
opposite corners of a rectangle on
the display screen. (The rectangle
is defined the same way as the
rectangle drawn by the LINE
statement using the ,B option.)

array name is a valid dimensioned numeric
array name used to hold the
information from the screen.

Comments The GET statement is used in the graphics mode to read
a portion of the screen into an array so the image can
be transferred to another part of the screen using the
PUT statement. The graphics GET and PUT statements
provide an easy method of creating high speed object
motion for animation.

The GET statement stores the colors of the points
within a specified rectangle of the screen. The
rectangle is specified by entering the coordinates of
two opposite corners. For example, the coordinates
(0,0) and (19,39) would specify a rectangle 20 points
wide by 40 points high enclosed by corners with
coordinates (0,0), (19,0), (19,39), and (0,39).

The array is used as a means of storing and referencing
the graphic image. The array must be numeric, but can
be of any precision. The data is stored in the array
with the x dimension in the first two bytes, they
dimension in the next two bytes, and the screen data in
the following bytes. Eight bits are stored in each
byte of memory, with each row of points being left
justified on a byte boundary. If there are less than a
multiple of eight bits stored, the rest of the byte is
filled with zeros. The following formula can be used
to calculate the number of bytes needed to store the
image:

4 + INT((x * bitsperpixel + 7) / 8) * y

TeleVideo Systems, Inc. Page 5.69

GWBASIC User's Manual Commands, Statements, and Functions

GET

Statement (Graphics)

Example

X is the number of points in the
horizontal direction (x direction).

y is the number of points in the vertical
direction (y direction).

bitsperpixel is the number of bits per pixel. 1In
medium resolution this value is 2, in
high resolution 1.

For example, if you wanted to GET a portion of the
screen 10 points wide by 12 points high, you would need
4+INT((10*2+7)/8*12, or 40 bytes. The number of bytes
per element in an array are:

* 2 bytes per integer
* 4 bytes per single-precision
* 8 bytes per double-precision

Therefore, you could dimension an integer array to 20
elements to hold the data.

The following example uses the GET and PUT statements
to move the TeleVideo logo (drawn in lines 60 through
80) from the left edge of the screen to the center.

10 'SET UP SCREEN IN GRAPHICS MODE

20 SCREEN 1,0 : COLOR 0,1 : CLS

30 'DIMENSION A TO HOLD A 71 x 76 POINT AREA

40 DIM A(343) 'SINGLE-PRECISION ARRAY

50 'DRAW LOGO

60 DRAW "BMO,35D30M30,85U30M0,35" 'LEFT SIDE

70 DRAW "BM5,30M35,10M65,30M35,50M5,30" 'TOP

80 DRAW "BM70,35D30M40,85U30M70,35" 'RIGHT SIDE
90 'PUT LOGO IN ARRAY A

100 GET (0,10)-(70,85) ,A

110 'ERASE LOGO

120 PUT (0,10),A

130 'USE FOR...NEXT LOOP TO MOVE LOGO

140 FOR I = 5 TO 125 STEP 20

150 PUT (I,10),A 'DRAW LOGO

160 FOR J = 1 TO 100 : NEXT J 'DELAY LOOP

170 PUT (I,10),A 'ERASE LOGO

180 NEXT I

190 PUT (130,10) ,A 'DRAW LOGO IN CENTER OF SCREEN
200 'FILL IN SIDES

210 PAINT (165,15),2,3 'FILL TOP

220 PAINT (150,65),2,3 'FILL LEFT SIDE

230 PAINT (180,65),2,3 'FILL RIGHT SIDE

240 LOCATE 12,25 : PRINT "R" 'ADD TRADEMARK SIGN
250 CIRCLE (195,91),8

TeleVideo Systems, Inc. Page 5.70

GWBASIC User's Manual Commands, Statements, and Functions

GET
Statement (Graphics)

Notes It is possible to examine the x and y dimensions and
even the data itself if an integer array is used. The
X dimension is in element 0 of the array, and they
dimension is found in element 1. Remember that
integers are stored low byte first, then high byte, but
the data is transferred high byte first (leftmost) and
then low byte.

TeleVideo Systems, Inc. Page 5.71

GWBASIC User's Manual Commands, Statements, and Functions

GOSUB. . . RETURN

Statements

Purpose

Format

Comments

Example

To branch to, and return from, a subroutine.

GOSUB <line number>

L]

RETURN [<line number>]

line number in the GOSUB statement is the first line
of the subroutine. In the RETURN
statement, the optional <line number>
indicates a specific line to return to
from the subroutine.

The GOSUB and RETURN statements allow you to create
subroutines that may be called any number of times from
anywhere in your program. A subroutine may also be
called from within another subroutine.

When the GOSUB statement is encountered, program
control is transferred to the specified line number.
Program control continues as normal from the specified
line number until a RETURN statement is encountered.

If the RETURN statement does not contain an optional
line number, program control is transferred back to the
statement following the most recently executed GOSUB
statement. If the RETURN statement contains an
optional line number, program control is transferred to
the specified line number.

A subroutine may contain more than one RETURN
statement if you need to return from different points
in the subroutine.

Subroutines may appear anywhere in the program, but it
is recommended that the subroutine be readily
distinguishable from the main program. To prevent
inadvertent entry into the subroutine, precede it with
a STOP, END, or GOTO statement that directs program
control around the subroutine.

10 GOSUB 40

20 PRINT "BACK FROM SUBROUTINE"
30 END

40 PRINT "SUBROUTINE";

50 PRINT " IN";

60 PRINT " PROGRESS"

70 RETURN

RUN

SUBROUTINE IN PROGRESS

BACK FROM SUBROUTINE

TeleVideo Systems, Inc. Page 5.72

GWBASIC User's Manual Commands, Statements, and Functions

GOSUB and RETURN
Statements

This example shows the general form of a subroutine.
The GOSUB statement in line 10 calls, or transfers
control to the subroutine at line 40. Program control
is transferred to line 40 and statements are executed
until the RETURN statement is encountered in line 70.
The RETURN statement transfers program control back to
the statement after the calling GOSUB, which in this
example is line 20, The END statement in line number
30 prevents the program from entering the subroutine a
second time.

Notes Care must be taken when using the RETURN with an
optional line number. All GOSUB, WHILE, and FOR
statements that were active at the time of the calling
GOSUB remain active.

The ON...GOSUB statement can be used to branch to a
subroutine based on the results of an expression,

TeleVideo Systems, Inc. Page 5.73

GWBASIC User's Manual

GOTO

Statement

Purpose

Format

Comments

Example

Notes

TeleVideo Systems, Inc.

Commands, Statements, and Functions

O G o o S G S . G G G T G - G0 G G G G G G TS S G G W S S G — G S . G EHS e G S S S e T T -

To branch unconditionally out of the normal program
sequence to a specified line number.

GOTO <line number>
line number is a valid line number in the program

containing the next statement to be
executed.

When the GOTO statement is executed, program control is
transferred to the specified line number. If <line
number> is the line number of an executable statement,
that statement and those following are executed. If
<line number> refers to a non-executable statement
(such as REM, DIM, or DATA), execution continues at the
first executable statement encountered after the
specified <line number>.

If <line number> does not exist, an "Undefined line
number" error message is displayed.

10 INPUT "Enter radius (0 to end)
20 IF RADIUS = 0 THEN END

30 PRINT "Radius =" RADIUS,

40 AREA = 3.14 * RADIUS"2

50 PRINT "Area =" AREA

60 PRINT

70 GOTO 10

RUN

Enter radius (0 to
Radius = 5 Area

- " ,RADIUS

end) - 5
= 78.5

end) - 7
Area = 153.86

Enter radius (0 to
Radius = 7
Enter radius (0 to end) - 0
Ok

The GOTO statement in line number 70 allows the program
to repeat, or loop until a value of 0 is entered for
RADIUS in the INPUT statement in line number 10.

The GOTO statement can be used in the direct mode to

enter a program at a specific line number. This can be
helpful in debugging a program.

Page 5.74

GWBASIC User's Manual Commands, Statements, and Functions

HEX $
Function

———— e . T — — ——— T —— S ———— — T —— T ——— —— ——— T o~ S —t——— - - T G———— O G ————

Purpose To return a string that represents the hexadecimal
value of the decimal argument.

Format HEX S (x)
X is a numeric expression in the range -32768 to
65535,

Comments The HEX$ function evaluates the numeric expression x,
rounds the result to an integer, and then returns the
hexadecimal equivalent. If the resulting integer is
negative, HEXS$ returns the value in the two's
complement form.

Examples PRINT HEXS$ (14)
E
Ok
PRINT HEX$(8.5)
9
Ok
PRINT HEX$(-1)
FFFF
Ok

TeleVideo Systems, Inc. Page 5.75

GWBASIC User's Manual Commands, Statements, and Functions

IF
Statement

Purpose

Format

Comments

—— - —— - — = G G " G — . — o G — —— (o — S — G S O G W G G A G G G G- G —— GG -

To make a decision regarding program flow based on the
result returned by an expression.

IF <expression> THEN <clause> [ELSE <clause>]
IF <expression> GOTO <line number> [ELSE <clause>]

expression is an expression composed of relational
and/or logical operators which evaluates
to a true (non-zero) or false (zero)
value,

clause is a BASIC statement, a sequence of
statements (separated by colons), or a
program line number.

line number is a valid program line number.

If the result of <expression> is true (non-zero), the
THEN or GOTO clause is executed. THEN may be followed
by either a 1line number for branching or one or more
statements to be executed. GOTO is always followed by
a line number.

If the result of <expression> is false (zero), the THEN
or GOTO clause is ignored and the ELSE clause, if
present, is executed. If not, execution continues with
the next executable statement.

The IF...THEN...ELSE statement is just one statement.
The ELSE portion of the statement cannot appear in the
next program line. For example:

10 IF A = B THEN PRINT "TRUE" ELSE PRINT "FALSE"
is valid; whereas, the following is invalid:

10 IF A = B THEN PRINT "TRUE"
20 ELSE PRINT "FALSE"

IF...THEN...ELSE statements may be nested. Nesting is
limited only by the length of the line. For example:

10 IF X>Y THEN PRINT "GREATER" ELSE IF Y¥Y>X
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN clauses, each
ELSE is matched with the closest unmatched THEN. For
example:

TeleVideo Systems, Inc. Page 5.76

(

GWBASIC User's Manual Commands, Statements, and Functions

IF
Statement

30 IF A=B THEN IF B=C THEN PRINT "A=C" ELSE PRINT "A<J>C"
will not print "A<>C" when A<>B.

Examples 200 IF I THEN GET#1,I
This statement GETs record number I if I is not zero.
100 IF(I<10) OR (I>20) THEN FLAG = 1 : GOSUB 500

In this example, a test determines if I is in the range
10 to 20. If I is not in this range, FLAG is set to 1
and the subroutine at line number 500 is executed. If
I is in this range, execution continues with the next
line.

210 IF IOFLAG THEN PRINT A$ ELSE LPRINT AS$

This statement results in A$ being displayed on the
screen or printed on the printer, depending on the
value of the variable IOFLAG. If IOFLAG is zero, AS is
printed on the printer; otherwise, A$ is displayed on
the screen.

Notes When using IF to test equality for a value that is the
result of a single- or double-precision calculation,
remember that the internal representation of the value
may not be exact. Therefore, the test should be
against the range over which the accuracy of the value
may vary. For example, to test a computed variable A
against the value 1,0, use:

This test returns true if the value of A is 1.0 with a
relative error of less than 1.0E-6 (0.000001).

If an IF...THEN statement is followed by a line number
in the direct mode, an "Undefined line" error message
is displayed unless the specified line number exists in
the program currently in memory.

TeleVideo Systems, Inc. Page 5.77

GWBASIC User's Manual Commands, Statements, and Functions

INKEYS
Function

—— i e s e e e G e G S G G e € S G > G G G S i G G G G S WA G | o G Go o G S G G e . . G G G T e (S = G ———— . - — - -

Purpose To read a character from the keyboard.

Format INKEYS$

Comments The INKEY$ function reads a single character from the
keyboard buffer. The value returned will be in one of
three forms:

* a null string (length zero) indicating no
characters are pending at the keyboard

* a one-character string containing the actual
character read from the keyboard

* a two-character string indicating a special
extended code. The first character returned will
be the null character (ASCII code 000). The
second character of the extended code is usually
the scan code for the key pressed. For a listing
of the extended codes refer to Appendix B.

The result of the INKEY$ function must be assigned to a
string variable before the character can be used in
subsequent statements or functions.

The INKEY$ function does not display the character on
the screen and passes all characters to your program
except for:

<Ctrl>/<Break> Break function
<Ctrl>/<Num Lock> Pause function
<Alt>/<Ctrl>/ System reset
<Ctrl>/<PrtSc> Echo on printer
<Shift>/<PrtsSc> Print screen

Example 40 PRINT "Press C to Continue, A to Abort ";
50 A$ = ""
60 WHILE A$ <> "C"™ AND A$ <> "A" : A$ = INKEYS$: WEND
70 PRINT A$ 'ECHO RESPONSE
80 IF As$ = "A"™ GOTO 1000 '"END PROGRAM

This program segment gives the user the choice of
continuing with or aborting the program. Line number
60 reads the user's selection from the keyboard and
accepts only an upper-case C or A as a valid answer.
The WHILE...WEND loop continues looping until an A or C
is pressed. Line 70 displays the user's choice, and
line 80 branches based on that choice.

TeleVideo Systems, Inc. Page 5.78

GWBASIC User's Manual Commands, Statements, and Functions

INP
Function

—_— — — ———— — — ———— — t—— —— —— {— —— — — € " ———————_— —————————————————— o —

Purpose To return the byte read from a port.

Format INP(n)

n is an expression in the range -32768 to 65535
representing a port to read from.

Comments INP is the complementary function to the OUT statement.

If n is negative, the INP function uses the value
(65536 + n) as the port to read.

INP performs the same function as the IN assembly
language instruction. Refer to the Technical Reference
for a description of valid port numbers (I/0
addresses) .

Example 100 A = INP(513)

This statement reads a byte from port 513 and assigns
the value to variable A,

In 8086/8088 assembly language, this is equivalent to:

MOV DX,513
IN AL,DX

TeleVideo Systems, Inc. Page 5.79

GWBASIC User's Manual Commands, Statements, and Functjions

INPUT
Statement

2 e e e o o e s S G G 0 SIS SN S G SIS G G GRS G (e SIS GO G GNO O Gem Chm e Su G S SUP M G G - G = S . - G G G- G G G - > S - T G G

Purpose To allow input from the keyboard during program
execution.

Format INPUTI[;] [<prompt>{;|,})<variable>[,<variable>]...

prompt is a string constant used to prompt for the
desired input.

variable is the name of a variable to accept the
input. The variable can be numeric, string,
or an array element.

Comments When an INPUT statement is encountered, program
execution pauses and a question mark is printed to
indicate the program is waiting for data. If a
<prompt> and semicolon (;) are included, the prompt
string is printed before the question mark. If a
{prompt> and comma are included, just the prompt is
displayed (the question mark is suppressed). The
required data must be entered at the keyboard and the
<Enter> key pressed to continue with program execution.

If the INPUT statement is immediately followed by a
semicolon, the carriage return/line feed sequence is
not produced when you press the <Enter> key at the end
of the input. This means the cursor remains on the
same line as your response.

The data that you enter is assigned to the variable(s)
listed. The number of data items you enter must be the
same as the number of variables in the 1ist, and must
be separated by commas.

The type of each data item that you enter must agree
with the type specified by the variable name. Strings
entered in response to an INPUT statement do not need
to be surrounded by quotation marks unless they contain
commas or significant leading or trailing spaces.

Responding to an INPUT statement with too many, too
few, or the wrong type of value (string instead of
numeric) results in the message "?Redo from start" to
be displayed. You must then reenter the correct
response. Assignment of input values is not made until
an acceptable response is received.

TeleVideo Systems, Inc. Page 5.80

GWBASIC User's Manual Commands, Statements, and Functions

INPUT
Statement

Examples

10 INPUT X

20 PRINT X " SQUARED IS" X2
30 END

RUN

?2 5

5 SQUARED IS 25

Ok

In this example, the 5 was entered by the user in
response to the question mark.

10 PI = 3.141593

20 INPUT "WHAT IS THE RADIUS";RADIUS

30 AREA = PI * RADIUS"2

40 PRINT "THE AREA OF THE CIRCLE IS" AREA
50 END

RUN

WHAT IS THE RADIUS? 7.4 (User enters 7.4)
THE AREA OF THE CIRCLE IS 172.0336

Ok

In this example, a prompt was added to the INPUT
statement. When the INPUT statement is executed, the
prompt and a question mark are displayed.

TeleVideo Systems, Inc. Page 5.81

GWBASIC User's Manual Commands, Statements, and Functions

INPUT#
Statement

8 s > e G o

Purpose

Format

Comments

Example

TeleVideo

To read data items from a sequential device or file and
assign them to program variables.,

INPUT #<file number>,<variable>[,<variable>] ...

file number is the number under which the file was
opened for input in the OPEN statement.

variable is the variable name to be assigned to
the next data item from the file or
device. The variable may be numeric,
string, or an array element, but it must
match the data type being assigned to
it.

The data items in the file should appear just as they
would if data were being typed in response to an INPUT
statement. With numeric values, leading spaces,
carriage returns, and linefeeds are ignored., The first
character encountered that is not a space, carriage
return, or linefeed is assumed to be the start of a
number. The number terminates on a space, carriage
return, linefeed, or comma.

If GWBASIC is scanning the sequential data file for a (j
string item, it will also ignore leading spaces, '
carriage returns, and linefeeds. The first character
encountered that is not a space, carriage return, or
linefeed is assumed to be the start of a string item.

If this first character is a quotation mark ("), the

string item will consist of all characters read between

the first quotation mark and the second. Thus, a

quoted string may not contain a quotation mark as a
character. If the first character of the string is not

a quotation mark, the string is an unquoted string and
terminates on a comma, carriage return, or linefeed (or
after 255 characters have been read). If the end of

the file has been reached when a numeric or string item

is being INPUT, the item is cancelled and an "Input

past end" error message is displayed.

The space between the T of INPUT and the # sign is
optional.

50 INPUT #2,A,B,C
This line would read the next three numbers from the

file or device that was opened as #2 and assign them to
the variables A, B, and C.

Systems, Inc. Page 5.82

GWBASIC User's Manual Commands, Statements, and Functions

INPUTS$
Function

Purpose

Format

Comments

Examples

———————— T — ——— —— " G W S S S Gt G M S e e S S e G e S G S G G G G G NS GES Gew WA G e G G G S W

To return a string of characters from the keyboard or a
file .

INPUTS (nl,[#]1<file number>])
n is the number of characters to be read.

file number is the number under which the file was
opened in the OPEN statement.

If a <file number> is not entered, the characters are
read from the keyboard. The keyboard characters are
not echoed on the screen. All characters, including
control characters (except <Ctrl>/<Break> and
<Ctrl>/<Alt>/), are passed to the INPUT$ function.
The <Ctrl>/<Break> is used to interrupt the execution
of the INPUT$ function. The characters are read from
the keyboard as the keys are pressed and do not require
the <Enter> key to be pressed to send them to the
INPUTS$ function.

If a <file number> is entered, the INPUT$ function
reads in the next n characters in the file. The INPUTS$
function does not read in data items, but reads the
actual characters in the file; this includes delimiting
spaces, carriage return characters, and line feed
characters. The INPUT$ function will not read the "Z
end-of-file character; an "Input past end" error
message is displayed if attempted.

10 OPEN "I",1,"DATA"

20 WHILE NOT EOF (1)

30 PRINT ASC(INPUTS (1,#1));
40 WEND

50 CLOSE

This example opens the sequential file DATA and
displays the ASCII code for each character in the file.

100 PRINT "TYPE P TO PROCEED OR S TO STOP ";
110 X$=INPUTS$(1) : PRINT X$: PRINT

120 IF Xs$="P" THEN 500

130 IF X$="S" THEN 700 ELSE 100

This example reads a single character from the keyboard
in response to the statement displayed by the PRINT
statement in line 100. If a P or S is not input, the
program loops back to line number 100.

TeleVideo Systems, Inc. Page 5.83

GWBASIC User's Manual Commands, Statements, and Functions

INSTR
Function

o e e € e G S G (G G G e (e S S G S G B G S O e G G G > G I G o T S G G e e G S GG e G G G - G G G S G e ——— S —

Purpose

Format

Comments

Example

To search for the first occurrence of a string within
another string and return the position at which the
match is found.

INSTR(I[n,1x$,y$)

n is a numerical expression in the range 1 to 255
representing an optional offset into the searched
string to be used as the starting point for the
search.

X$ is a string variable, string expression, or string
constant to be used as the searched string.

y$ is a string variable, string expression, or string
constant to be used as the search string.

The INSTR function searches string x$ for the first
occurrence of string y$ and returns its position in xS$.
If an optional offset is included, the search starts at
that character position in string xS$.

If offset n is greater than the number of characters in
x$ (LEN(x$)), x$ is null, or y$ is not found in x§,
INSTR returns 0. If Y$ is null, INSTR returns n (or 1
if n is not specified).

10 X$ = "ABCDEB" : Y$ = "B"
20 OFFSET = 1 : POSITION = 1
30 WHILE POSITION <> 0
40 POSITION = INSTR(OFFSET,X$,YS$)
50 IF POSITION <> 0 THEN PRINT POSITION :
OFFSET = POSITION + 1
60 WEND
70 END
RUN
2
6
Ok

This example searches for string "B" within string
"ABCDEB". The WHILE...WEND loop is used to search for
all occurrences of string "B". Line number 20 sets the
initial offset into the searched string as 1, or the
beginning of the string. If "B" is found, line number
50 displays its location and then sets the offset to
the next character position in X$. The loop is
executed again looking for the next occurrence of "B".
The search is ended if INSTR returns a value of zero,
indicating Y$ was not found or the offset is now larger
than the length of the searched string.

TeleVideo Systems, Inc. Page 5.84

(

GWBASIC User's Manual Commands, Statements, and Functions

INT
Function

Purpose

Format

Comments

Examples

Notes

To return the largest integer less than or equal to the
specified number.

INT (x)

X is any numeric expression.

The INT function evaluates the specified numeric
expression and returns the largest integer that is less

than or equal to that value.

PRINT INT(99.89)
99

PRINT INT(-12.11)
-13

See the CINT and FIX functions for alternative methods
of returning integer values.

TeleVideo Systems, Inc. Page 5.85

GWBASIC User's Manual Commands, Statements, and Functions

KEY

Statement (Key Trapping)

Purpose

Format

Comments

o — - - G G — " S G S G G G e S I G S G D G G - G o R S G G S S S - O S S S G G G S S S

To define six key traps in addition to the function
keys and cursor movement keys.

KEY n,CHRS$ (<shift code>)+CHRS (<scan code>)

n is a numeric expression in the range 15
to 20 to be assigned to the key to be
trapped.

shift code is a mask used to indicate the shifted

state of the key being trapped. The
codes for the shifted states are:

Hex Decimal
Shift &HO01, &HO02, &HO3 1, 2, 3
Ctrl &HO4 4
Alt &HO8 8
Num Lock &H20 32
Caps Lock &H40 64

Key trapping treats the left and right
shift keys as the same; therefore, you
can use a value of 1, 2, or 3 (the sum
of 1 and 2). To trap a non-shifted key
state, use a shift code value of zero
(0).

scan code isa numeric expression in the rangel
to 83 representing the scan code for the
key to be trapped. Refer to Appendix C
for a keyboard diagram with scan codes.

The KEY statement allows you to define key trapping
sequences for six keys, or key sequences, in addition
to the function keys and cursor movement keys defined
in the ON KEY statement., This allows you to trap any
single key on the keyboard, or any of the Ctrl, Shift,
or Alt shifted key sequences. Multiple shift states,
such as <Ctrl>/<Alt>/..., can be trapped by using a
shift code equal to the sum of the individual shift
codes. Therefore, for a <Ctrl>/<Alt>/... shift
sequence, a shift code of 12 (&HC) would be used.

TeleVideo Systems, Inc. Page 5.86

GWBASIC User's Manual Commands, Statements, and Functions

KEY

Statement (Key Trapping)

Example

Notes

Key traps are processed in the following order:

1. The <Ctrl>/<PrtSc> key sequence, which activates
the printer echo feature. Defining the
<Ctrl>/<PrtSc> sequence as a user defined key trap
does not disable its function as a switch for the
print echo feature.

2. The function keys Fl1 to F10, Cursor Up, Cursor
Left, Cursor Right, and Cursor Down keys (1-14).
Because these keys are predefined as keys 1
through 14, defining scan codes 59-68, 72, 75, 77,
or 80 as a user defined key trap has no effect.

3. Keys 15 to 20 that you define using the KEY
statement.

10 KEY 15,CHR$(0)+CHR$(30) 'LOWER-CASE A
20 KEY 16,CHRS$ (64) +CHR$(30) 'UPPER-CASE A
30 KEY 17 ,CHR$ (1) +CHR$(30) 'SHIFT A

40 KEY 18,CHR$(4)+CHR$(30) 'CONTROL A

50 KEY 19,CHRS$(8)+CHRS$(30) 'ALT A

60 KEY 20,CHR$(12)+CHR$(30) 'CTRL ALT A
70 FOR = 15 TO 20

80 ON KEY(I) GOSUB 1000

90 KEY(I) ON

100 NEXT I

This example shows the statements used to trap six
different states of the A key. Line number 60 uses a
shift code of 12 (4 + 8) to indicate the <Ctrl>/<Alt>/
state is being trapped. The FOR...NEXT loop in line 70
through 100 is used to assign the same subroutine for
all key traps (line 80) and to turn each key trap on
(line 90).

Trapped keys are not placed in the keyboard buffer to
be read by BASIC.

You can prevent a user from breaking out of your
program by trapping the <Ctrl>/<Break> and
<Ctrl>/<Alt>/ key sequences.

TeleVideo Systems, Inc. Page 5.87

GWBASIC User's Manual Commands, Statements, and Functions

KEY

Statement (Soft Keys)

Purpose

Format

Comments

To assign soft key values to the function keys and
display the values.

KEY n,x$
KEY LIST
KEY ON
KEY OFF

n is a function key number in the range 1 to 10.

X$ is a string expression to be assigned to the
specified function key.

The KEY statement allows the function keys to be used
as soft keys. A soft key lets you enter a sequence of
characters by simply pressing that key. A string of up
to 15 characters may be assigned to each of the ten
function keys.

KEY n,x$ assigns the string x$ to function key Fn,
where n is in the range 1 to 10. x$ may be up to 15
characters in length. If x$ is longer than 15
characters, only the first 15 are assigned. Assigning
the null string (length zero) to a function key
disables it as a soft key. If a value for n is entered
outside the range 1 to 10, an "Illegal function call"
error message is displayed.

Initially, the soft keys are assigned the following
values:

F1 - LIST_ F6 - ,"LPT1:"<CR>

F2 - RUN<KCR> F7 - TRON<CR>

F3 - LOAD" F8 - TROFF<KCR>

F4 - SAVE" F9 - KEY_

F5 - CONT<CR> F10- SCREEN 0,0,0<CR>

<CR> indicates ASCII character 13, a carriage return
_ indicates a blank space

Once soft keys have been designated, they can be
displayed with the KEY ON, KEY OFF, and KEY LIST
Statements.

KEY ON causes the soft key values to be displayed on
the 25th line on the screen. When the screen width is
40 characters, the first five soft keys are displayed;
when the width is 80, all ten soft keys are displayed.
In either screen width, only the first 6 characters
assigned to each key are displayed. ON is the default
state for the soft key display.

TeleVideo Systems, Inc. Page 5.88

GWBASIC User's Manual Commands, Statements, and Functions

KEY

Statement (Soft Keys)

Examples

Notes

If the carriage return character, CHR$(13), is included
in the string, it is displayed as a left arrow on the
screen.

KEY OFF clears the soft key display from the 25th line,
making that line available for program use. It does
not disable the soft keys.

KEY LIST displays all ten soft key values on the
screen. All 15 characters of each soft key are
displayed.

10 KEY OFF 'CLEARS THE 25TH DISPLAY LINE
20 KEY 1,"PRINT "

30 KEY 2,"WHILE "

40 KEY 3,"WEND"

50 KEY 4,"INPUT "

60 KEY 5,"OPEN "

70 KEY 6,"INPUT#"

80 KEY 7,"PRINT#"

90 KEY 8,"DRAW "

100 KEY 9,"PAINT "

110 KEY 10,"RUN"+CHRS$ (13)
120 KEY ON

To aid in program entry, the above program could be
used to reassign the soft keys to some of the more
commonly used GWBASIC statements. The CHR$(13) used
in the assignment of function key 10 produces the same
result as pressing the <Enter> key.

20 FOR I =1 TO 10 : KEY I,"" : NEXT I
The above line would disable all ten soft keys.

When a soft key is assigned, the INKEY$ function
returns one character of the soft key string each time
it is called. If the soft key is disabled, the INKEYS
function will return the two character extended code
for that function key (refer to extended codes in
Appendix B).

TeleVideo Systems, Inc. Page 5.89

GWBASIC User's Manual Commands, Statements, and Functions

KEY (n)

Statement

Purpose

Format

Comments

Example

Notes

To enable or disable key trapping.

KEY (n) ON
KEY (n) OFF
KEY(n) STOP

n is a numeric expression in the range 1 to 20
representing the key to be trapped.

1-10 function keys F1 to F10

11 Cursor Up

12 Cursor Left

13 Cursor Right

14 Cursor Down

15-20 user defined (see KEY statement for key
trapping)

The KEY(n) ON statement enables the key trapping
defined by the ON KEY(n) statement. While trapping is
enabled, and if a non-zero line number is specified in
the ON KEY(n) statement, BASIC checks between execution
of each statement to see if the specified key has been
pressed. If it has, the GOSUB portion of the ON KEY(n)
statement is executed.

KEY(n) OFF disables the key trapping. If the key is
pressed, it is not remembered.

KEY(n) STOP disables the key trapping. If the key is
pressed, the event is remembered and the GOSUB portion
of the ON KEY statement is executed as soon as a KEY(n)
ON statement is executed.

10 KEY 1,"QUIT"

20 KEY ON 'TURN ON SOFT KEYS

30 ON KEY(1l) GOSUB 1000 'END PROGRAM
40 KEY(1) ON

This program segment sets up function key F1 to be used
as an easy way to terminate the program. Line 10
assigns the string "QUIT" to softkey Fl. Line 20
displays the soft keys on line 25 of the display
screen. Line 30 defines the key trap for function key
Fl, sending it to a routine at line 1000. Line 40
enables the key trapping for function key Fl.

For additional information on key event trapping, refer
to the ON KEY Statement.

TeleVideo Systems, Inc. Page 5.90

GWBASIC User's Manual Commands, Statements, and Functions

KILL
Command

- S — —— —_——— — — — —— T T T —— G o — " D" G G S o (s S —— G — G ———— T ——— - — - ————— —O—

Purpose To delete a file from disk.

Format KILL <filespec>
filespec is a valid file name.

Comments The KILL command can be used to delete all types of
disk files. If the file to be deleted has a filename
extension, the extension must be included in the KILL
command. The entered filespec may contain the question
mark (?) or asterisk (*) wildcard characters to delete
multiple files.

Examples KILL "DATAFILE.DAT"

10 X$ = "DATAFILE.DAT"
20 KILL X$

Both of the above examples could be used to delete the
file DATAFILE.DAT from the default drive.

KILL "B:SALES\SALES84\SOFTWARE ,DAT"

The above example deletes the data file SOFTWARE.DAT in
the SALES84 subdirectory on drive B.

Notes If a KILL command is given for a file that is currently
OPEN, a "File already open" error message is displayed.

If the filespec in the KILL command does not exist, a
"File not found" error message is displayed.

The KILL command cannot be used to delete a sub-
directory.

TeleVideo Systems, Inc. Page 5.91

GWBASIC User's Manual Commands, Statements, and FPunctions

LEFTS
Function

o - — — — " S - S G G G e N e G - S . — Gno Gun Gae e A G0 Gae G e e G SN G M e S S CH) MR M e G e G AR G SR N SR GO G G S S S S . Cwe G G S

Purpose

Format

Comments

Example

Notes

To return a string comprised of the leftmost n
characters of string xS$.

LEFTS$ (x$,n)
X$ is any string expression.
n is a numeric expression in the range 0 to 255,

The LEFT$ function is used to return a string from the
left n characters of string xS$.

If n is greater than the number of characters in x$
(LEN(x$)), the entire string (x$) is returned. If n is
zero, the null string (length zero) is returned.

10 A$ = "BASIC PROGRAMMING"
20 PRINT LEFTS$ (A$,5)

RUN

BASIC

Ok

The MIDS$ and RIGHTS functions can also be used to
return portions of a string.

TeleVideo Systems, Inc. Page 5.92

GWBASIC User's Manual Commands, Statements, and Functions

LEN
Function

o G e G S —————— ———— —— S - G G —— T— G G " S G Ga - G G — T " W . €2 S G — G G G G — —— — —— " - G — - —

Purpose To return the number of characters in a string
expression.

Format LEN(x$)
X$ is any string expression.

Comments The LEN function returns the number of characters in
the specified string expression. Unprintable
characters and blanks are counted as characters.

Example 10 LOCATIONS$ = "SUNNYVALE, CA"
20 PRINT LEN(LOCATIONS)
RUN
13
Ok

TeleVideo Systems, Inc. Page 5.93

GWBASIC User's Manual Commands, Statements, and Functions

LET
Statement

—— - ———— —— ———_— T ——— T — - — " G G - SR Dur . W S G = G G . . Cr. G G G — > S Gt v W G G- S G o e Gy G e G -

To assign the value of an expression to a variable.

Purpose

Format

Comments

Examples

[LET] <variable> = <expression>

variable is a valid variable name used to receive

the value of <expression>. The variable
may be string, numeric, or an array
element.

expression is an expression whose value is assigned

The
for

110
120
130
140

The
the

to <variable>. The value of
<expression> must be of the same type
(string or numeric) as <variable>.

word LET is optional. The equal sign is sufficient
assigning an expression to a variable name.

LET D = 12 110 D = 12

LET E(1) = 1272 120 E(1) = 1272
LET F$ = "HELLO" 130 F$ = "HELLO"
LET SUM = D + E(1l) 140 SUM = D + E(1)

above examples show two ways of assigning values to
variables D, E(1), F$, and SUM.

TeleVideo Systems, Inc. Page 5.94

GWBASIC User's Manual Commands, Statements, and Functions

LINE
Statement

- o G - G G~ —— —— ——————— — — — ——————— S —— — ——t—— — —— — G ——— —— G — G —————— —————_ G

Purpose To draw a line or box on the screen in the graphics
mode.

Format LINE [(x1,y1)]1-(x2,y2)[,[<color>]1I[,I[BIF]]I[,<style>1]]

(x1,yl) is the coordinate for the starting point of
the line. If omitted, the current graphics
point (last point referenced) is used.

(x2,y2) is the ending point for the line.

color is the number of the color in which the line
should be drawn. In medium resolution, color
is in the range 0 to 3. 0 indicates the
background color, colors 1 to 3 indicate the
colors of the current palette (see the COLOR
statement). The default color is the
foreground color, color 3. In high
resolution, color can be 0 or 1. 0 (zero)
indicates black, 1 indicates white (the
default color). If <color> is not within the
above ranges, an "Illegal function call"
error message is displayed.

B option draws a rectangle using the two
indicated points as opposite corners. This
is equivalent to the following four LINE
statements:

LINE (x1,yl)-(x2,yl)
LINE (x2,yl)-(x2,y2)
LINE (x2,y2)-(x1,y2)
LINE (x1,y2)-(x1,yl)

+BF options draws the same box as the B option,
but also fills the box using the line color.

style is an expression representing a 1l6-bit mask
used to change the line style. The <style>
option can be used for lines and boxes (B
option), but cannot be used for filled boxes
(BF option). If <style> is used with the
filled box (BF) option, a "Syntax error"
error message is displayed. <style> must be
in the range -&HFFFF to &HFFFF, or -32768 to
32767 or an "Overflow" error message is
displayed. The default value for <style> is
hex FFFF,

TeleVideo Systems, Inc. Page 5.95

GWBASIC User's Manual Commands, Statements, and Functions

LINE
Statement

Comments The LINE command is used in the graphics mode to draw
straight lines or rectangles on the screen. The points
for the line can be given in either absolute or
relative form (refer to Chapter 4 for information on
specifying screen coordinates).

If lines or rectangles are specified that contain out-
of-range points, line clipping occurs and only those
points with valid screen coordinates are shown.

The line <style> option can be used to draw dotted or
dashed lines. The LINE statement uses the bit pattern
of the <style> entry to plot the points on the screen.
It rotates through the bit pattern, displaying points
in the specified color if the bit is 1 (one), skipping
over the point (leaving the current state) if the bit
is 0 (zero). To draw a dotted line using every other
point, a <style> entry of hex AAAA would be used. This
entry would provide a bit pattern of:

1010101010101010

Examples The following examples assume you are in the medium
resolution graphics mode.

40 LINE -STEP(10,0)

Draws a line 10 points to the right from the last point
referenced. The line is drawn in color 3 of the
current palette.

20 LINE (0,0)-(319,199)

Draws a diagonal line across the screen from point 0,0
to point 319,199.

30 LINE (0,100)-(319,100),2,,&HOFOF

Draws a horizontal dashed line across the middle of the
screen in color 2 of the current palette.

40 LINE (10,10)-(20,20),,BF

Draws a filled rectangle in color 3 of the current
palette with corner coordinates of (10,10), (10,20),
(20,20), and (20,10)

Notes The last point referenced after the LINE statement is
point (x2,y2).

TeleVideo Systems, Inc. Page 5.96

GWBASIC User's Manual Commands, Statements, and Functions

LINE INPUT

Statement

Purpose

Format

Comments

Example

—— o ——— ———— —————— T G — o G " E— —— — ————— — — — —] € — —————— — — ——————

To input an entire line (up to 255 characters) from the
keyboard into a string variable, ignoring delimiters.

LINE INPUTI[;][<prompt>;l<variable>

prompt is a string constant that is displayed
on the screen before input is accepted.
A question mark is not printed unless it
is part of prompt string.

variable is the name of a valid string variable
or string array element used to accept
the line input. All characters entered
up to the terminating <Enter> are
assigned to the <string variable>,
except trailing blanks.

The LINE INPUT statement allows you to assign an entire
line of input from the keyboard to a string variable.
The input line can contain commas, semicolons,
quotation marks, and other forms of punctuation
normally used as delimiters.

If a linefeed key sequence (KCtrl>/<Enter>) is entered,
the cursor is moved to the beginning of the next line,
the linefeed character (hex O0A) is placed in the
string, and input continues.

If LINE INPUT is immediately followed by a semicolon,
the <Enter> used to end the input line does not echo a
carriage return/linefeed sequence on the screen. The
cursor is left on the same line as the ycur input,

If <Ctrl>/<Break> is entered, the LINE INPUT statement
is aborted and GWBASIC returns to the command level.
You may enter CONT to resume execution at the LINE
INPUT statement.

10 LINE INPUT "ENTER SOMETHING ";AS$

20 PRINT : PRINT AS

RUN

ENTER SOMETHING THIS "EXAMPLE" SHOWS SOME OF THE

~ THINGS THE LINE INPUT CAN DO, RIGHT?

THIS "EXAMPLE" SHOWS SOME OF THE
THINGS THE LINE INPUT CAN DO, RIGHT?
Ok

The bold face shows what the user entered. A linefeed
was entered after the word "THE" to move the text to
the next line.

TeleVideo Systems, Inc. Page 5.97

GWBASIC User's Manual Commands, Statements, and Functions

LINE INPUT#
Statement

Purpose To read an entire line (up to 255 characters), ignoring
delimiters, from a sequential disk data file into a
string variable.

Format LINE INPUT #<file number>,<variable>

file number is the number under which the file was
opened in the OPEN statement.

variable is the name of a valid string variable
or string array element used to accept
the line input.

Comments LINE INPUT# reads all characters in the sequential file
up to a carriage return, It then skips over the
carriage return/linefeed character sequence and the next LINE
INPUT# reads all characters up to the next carriage
return. If a linefeed character is encountered, it is
returned as part of the string.

LINE INPUT# is especially useful if each line of a data
file has been broken into fields, or if a BASIC program
saved in ASCII format is being read as data by another

program. (j

Example 10 OPEN "O",1,"NAMES"
20 PRINT #1,"TELEVIDEO 1170 MORSE SUNNYVALE, CA 94086" |
30 CLOSE
40 PRINT "NAME ADDRESS" : PRINT
50 OPEN "1I",1,"NAMES"
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE
RUN
NAME ADDRESS

TELEVIDEO 1170 MORSE SUNNYVALE, CA 94086
Ok

This example places the TeleVideo name and address in
the sequential file NAMES. The LINE INPUT# statement
is used to read the name and address back out of the
file.

TeleVideo Systems, Inc. Page 5.98

GWBASIC User's Manual Commands, Statements, and Functions

LIST
Command

Purpose To list all or part of the program currently in memory
on the screen or optionally on a specified device.

Format LIST [<start line>l[-I<end line>ll[,<device>]

start line is a program line number in the range 0
to 65529 indicating the first line
number to be listed. A period (.) can
be used to indicate the current line.

end line is a program line number in the range 0
to 65529 indicating the last line number
to be listed. A period (.) can be used
to indicate the current line.

device is a string expression representing a
file specification or output device. 1If
<device> is omitted, the listing is
displayed on the screen,

Comments GWBASIC always returns to command level after a LIST
is executed.

If the LIST command is entered without any options, the
entire program currently in memory is listed on the
screen. The <Ctrl>/<Num Lock> key sequence can be used
to stop or pause the listing, allowing you to look at
the lines on the screen. Press any key to continue
with the listing. To interrupt the listing and return
to the command level, press the <Ctrl>/<Break> key
sequence.

If a <start line> and <end line> are entered, all the
program lines in the range <start line> to <end line>
inclusive are listed. If only the <start line> is
specified, only that line number is listed.

If a <start line> and a hyphen (-) are entered, all the
program lines from <start line> to the end of the
program are listed.

If a hyphen (-) and an <end line> are entered, all the
program lines from the beginning of the program up to
the <end line> are listed.

When an optional <device> is entered, the listing is
output to the device or file specification entered.
When you list to a disk file, the program lines are
stored in the ASCII format. This allows the program
lines to be used by the MERGE command.

TeleVideo Systems, Inc. Page 5.99

GWBASIC User's Manual Commands, Statements, and Functions

LIST Command

Examples

LIST

Lists the entire program currently in memory.

LIST 500

Lists line 500.

LIST 150-

Lists all lines from 150 to the end of the program.
LIST -1000

Lists all lines from the beginning of the program
through line 1000.

LIST 150-1000

Lists lines 150 through 1000, inclusive.
LIST 150-1000,"LPT1:"

Lists lines 150 through 1000 on the printer.
LIST ,"B:EXTRA"

Lists the current program to a file named EXTRA on
drive B. The program is stored in the ASCII format.

TeleVideo Systems, Inc. Page 5.100

GWBASIC User's Manual Commands, Statements, and Functions

LLIST
Command

Purpose To list all or part of the program currently in memory
on the printer (LPT1:).

Format LLIST [<start line>][-[<end line>]

start line is a program line number in the range 0
to 65529 indicating the first line
number to be listed. A period (.) can
be used to indicate the current 1line.

end line is a program line number in the range 0
to 65529 indicating the last line number
to be listed. A period (.) can be used
to indicate the current line.

Comments The LLIST command allows you to list the program
currently in memory on the printer. The <start line>
and <end line> options work the same as they do in the
LIST command.

GWBASIC always returns to the command level after a
LLIST is executed.

Examples LLIST
Lists the entire program currently in memory.
LLIST 500
Lists line 500.
LLIST 150~
Lists all lines from 150 to the end of the program.
LLIST -1000

Lists all lines from the beginning of the program
through line 1000.

LLIST 150-1000

Lists lines 150 through 1000, inclusive.

TeleVideo Systems, Inc. Page 5.101

GWBASIC User's Manual Commands, Statements, and Functions

LOAD
Command

Purpose To load a file from disk into memory and optionally
run it.

Format LOAD <filespec>I[,R]

filespec 1is the name of a disk file to be loaded into
memory. <filespec> may consist of an
optional drive name, an optional path, a
filename, and an optional filename extension.

Comments The <filespec> entered is the filename that was used
when the file was saved with the SAVE command. If a
filename extension is not included, GWBASIC assumes
an extension of .BAS. GWBASIC returns to the command
level after the program is loaded.

If the R option is added, GWBASIC automatically runs
the program after it has been loaded.

LOAD closes all open files and deletes all variables
and program lines currently residing in memory before
it loads the designated program. However, if the R
option is added, all open data files remain open.
Thus, LOAD with the R option may be used to chain
several programs (or segments of the same program).
Information may be passed between the programs using
their disk data files.

Examples LOAD "STARTREK",R

Loads and runs the program STARTREK.BAS from the
default drive.

LOAD "B:MYPROG"

Loads the program MYPROG.BAS from drive B, but does not
run the program.

Notes The command LOAD <filespec>,R is equivalent to the
command RUN <filespec>.

TeleVideo Systems, Inc. Page 5.102

GWBASIC User's Manual Commands, Statements, and Functions

LOC
Function

e G S G T — T T ——— T — " G G ————— T — - — — —— — T~ ——t———— T S —————— " t——— ———

Purpose To return the current position in a file. 1In a random
access file, LOC returns the number of the last record
read or written. 1In a sequential file, LOC returns the
number of 128-byte records read from or written to the
file since it was opened.

Format LOC(<file number>)

file number is the number under which the file was
opened in the OPEN statement.

Comments When a file is opened for sequential input, GWBASIC
reads the first sector of the file, so LOC will return
a 1 even before any input from the file occurs.

For a communications file, LOC returns the number of
characters in the input buffer waiting to be read. If
there are more than 255 characters in the buffer, LOC
returns 255,

Example 200 IF LOC(1) > 50 THEN END

In this example, the program will end after we've gone
beyond the 50th record in file number 1.

TeleVideo Systems, Inc. Page 5.103

GWBASIC User's Manual Commands, Statements, and Functions

LOCATE
Statement

Purpose To move the cursor to the specified position. Optional
parameters determine the shape of the cursor and turn
the cursor on or off.

Format LOCATE [<row>][,[<col>][,[<cursor>][,<start>[,<stop>111]

row is a numeric expression in the range 1 to 25
indicating a line number on the screen.

col is a numeric expression in the range 1 to 80
(1 to 40 in the 40 column mode) indicating a
column number (character position) on the
screen,

cursor is a value indicating whether the cursor
should be visible or not while a program is
running. A 0 (zero) turns the cursor off so
it is not visible, a 1 (one) turns it on,
making it wvisible.

start is a numeric expression in the range 0 to 31
indicating the starting scan line of the
cursor.

stop is a numeric expression in the range 0 to 31 (

indicating the ending scan line of the cursor.

{cursor>, <start>, and <stop> do not apply to the
graphics mode.

Comments The LOCATE statement with the <row> and <col> options
is used to move the cursor to a specified position on
the screen. This allows your program to print anywhere
on the screen.

The LOCATE statement also allows you to display
characters on line 25. When the soft keys have been
turned off with the KEY OFF statement, a LOCATE
25,<col> and PRINT... statement can be used to display
a messages on line 25. The screen will scroll up
normally from line 24, but if the screen is cleared
with CLS or PRINT CHR$(12), line 25 is also cleared.

Note that the LOCATE statement uses the <row>,<col>
format, with the vertical coordinate first, whereas the
graphics commands use a (x,y) format, with the
horizontal coordinate first.

TeleVideo Systems, Inc. Page 5.104

GWBASIC User's Manual Commands, Statements, and Functions

LOCATE
Statement

The LOCATE statement with the <cursor> option can be
used to turn the cursor on (visible) or off
(invisible). When GWBASIC is running your program,
the cursor is normally off. The LOCATE ,,l1 statement
could be used to display the cursor while your program
is running.

The <start> and <stop> options allow you to change the
shape of the cursor. The cursor shape is determined by
the number of scan lines that are turned on. The top
scan line is 0 (zero), and the bottom scan line is 8.
To display a full rectangle cursor, you would use the
LOCATE ,,,0,8 statement., If the <start> scan line is
larger than the <stop> scan line, youwill get a two
part cursor. The cursor wraps around from the bottom
to the top. Zero to 31 are valid <start> and <stop>
values, but only values 0 to 8 affect the visible shape
of the cursor.

If the <stop> option is omitted, the <stop> value is
set equal to the <start> value. The default underline
cursor would be set using the LOCATE ,,,7 statement.

If a parameter is omitted from the LOCATE statement, it
retains its current value.

If a parameter value is entered outside of the
specified range, an "Illegal function call" error
message is displayed. 1In this case, the previous
values are retained.

Examples 10 LOCATE 1,1

Moves the cursor to the home position in the upper-left
corner of the screen.

20 LOCATE ,,1

Makes the cursor visible; its position remains
unchanged.

30 LOCATE ,,,7

This LOCATE statement only changes the shape of the
cursor. It sets the cursor to display a single scan
line at the bottom of the character box, starting and
ending on scan line 7 (this is the default underline
cursor in the 80-column text mode).

TeleVideo Systems, Inc. Page 5.105

GWBASIC User's Manual Commands, Statements, and Functions

LOF
Function

Purpose

Format

Comments

Example

To return the length of a file in bytes.
LOF (<file number>)

file number is the number under which the file was
opened in the OPEN statement.

The LOF function returns the number of bytes allocated
to the specified file.

For communications, LOF returns the number of free
bytes in the input buffer. The number of characters in
the buffer can be determined by subtracting the value
of LOF from the input buffer size (256 bytes by
default).

110 IF REC*RECSIZE > LOF(1l) THEN PRINT "INVALID ENTRY"

In this example, the variables REC and RECSIZE contain

the record number and record length, respectively. The
calculation determines whether the specified record is

beyond the end-of-file.

TeleVideo Systems, Inc. Page 5.106

GWBASIC User's Manual Commands, Statements, and Functions

LOG
Function

Purpose

Format

Comments

Example

To return the natural logarithm of a specified number.
LOG (x)
X is a numeric expression greater than 0.

The LOG function returns the natural (base e) logarithm
of expression x. If x is not greater than zero, an
"Illegal function call" error message is displayed.

PRINT LOG(EXP(2))
2
Ok

TeleVideo Systems, Inc. Page 5.107

GWBASIC User's Manual Commands, Statements, and Functions

LPOS
Function

Purpose

Format

Comments

Example

To return the current position of the printer's print
head within the printer buffer.

LPOS (x)

X is numeric expression indicating which printer is
being tested. Printers are indicated as follows:

0 or1l LPT1:
2 LPT2:
3 LPT3:

LPOS does not necessarily give the physical position of
the print head.

100 IF LPOS(0) > 60 THEN LPRINT CHRS(13)
In this example, if the length of the line is greater

than 60 characters, a carriage return is sent to the
printer to advance to the next line.

TeleVideo Systems, Inc. Page 5.108

GWBASIC User's Manual Commands, Statements, and Functions

LPRINT and LPRINT USING

Statements

Purpose

Format

Comments

Examples

—— e —— = —————— (— —— - — " - G———— G —— ———— ——————— — T — S —— (——— ———— O (ot " S S

To print data on the printer.
LPRINT [<expression>][;] [<expression>] ...

LPRINT USING <string exp>;<expression>I[;]

[<expression>] ...

expression is a numeric or sting expression to be
printed. <expression>s may be separated
by commas or semicolons.

string exp is a string expression identifying the
format to be used for printing the
following expressions. (Refer to the
PRINT USING statement for a description
of formats.)

The LPRINT and LPRINT USING statements function like
the PRINT and PRINT USING statements, except the output
goes to the printer.

LPRINT assumes an 80-character wide printer. This
means GWBASIC automatically inserts a carriage
return/line feed after printing 80 characters. If you
need to print exactly 80 characters, end the LPRINT
statement in a semicolon, otherwise two carriage
return/line feed sequences are executed. The line
length can be changed using a WIDTH "LPT1l:" statement.

240 GOSUB 320

250 FOR I = START TO FINISH

260 LPRINT NAMES$(I) TAB(25) ADDRSS$(I) TAB(65) CITYS(I)
270 IF I/55 = INT(I/55) THEN GOSUB 310

280 NEXT I

290 RETURN

300 '**%kkkkk%x HEADER ***kkkkkkkkhkkkkkk

310 LPRINT CHR$(12)

320 LPRINT "NAME" TAB(25) "ADDRESS" TAB(65) "CITY"
330 LPRINT 'PRINT A BLANK LINE

340 RETURN

This program subroutine could be used to print a
listing of the names and address stored in the string
arrays NAMESS$, ADDRSS$, and CITYS$. The subroutine in
lines 310 to 340 is used to bring the paper to the top
of the form and to print the header and a blank line at
the top of the page. The FOR...NEXT loop in lines 250
to 280 prints the names and addresses. Line 270 is
used to limit the listing to 55 names per page. After
55 names are printed, the HEADER subroutine is called
to advance the paper to the next page.

TeleVideo Systems, Inc. Page 5.109

GWBASIC User's Manual Commands, Statements, and Functions

LPRINT and LPRINT USING
Statements

Notes A "Device Timeout" error message indicates the printer
did not respond within a predetermined amount of time
when GWBASIC is trying to write to the printer. This
could occur if you use an LPRINT statement when the
printer is not connected.

TeleVideo Systems, Inc. Page 5.110

GWBASIC User's Manual Commands, Statements, and Punctions

LSET and RSET
Statements

Purpose To move data into a random file buffer (in preparation
for a PUT statement).

Format LSET <string variable>=<string expression>
RSET <string variable>=<string expression>

string variable is the name of a string variable
that was used to define a record
field in a random file buffer with
the FIELD statement.

string expression is a string expression containing
the information to be placed into
the random file buffer in the field
identified by <string variable>.

Comments The LSET and RSET statements place data into the random
file buffer so it can be written from the buffer to the
file by the PUT statement.

If <string expression> requires fewer bytes than were
specified for the <string variable> in the FIELD
statement, LSET left-justifies the string in the field,
and RSET right-justifies the string. (Spaces are used
to pad the extra positions.) If the string is too long
for the field, characters are dropped from the right.

Numeric values must be converted to strings using the
MKI$, MKS$, or MKD$ functions before they can be LSET
or RSET.

Examples 150 LSET AMOUNTS$ = MKS$ (AMOUNT)

This example converts the numeric variable AMOUNT to a
4-byte string, and then left-justifies it in the buffer
field AMOUNTS in preparation for a PUT statement.

Notes LSET or RSET may also be used to left-justify or right-
justify a string in a given field, even though the
<string variable> was not defined in a FIELD statement.
For example, the program lines:

110 A$ = SPACES$ (20)
120 RSET AS$ = N$

right-justify the string N$ in a 20-character field.
This can be useful for formatting printed output.

TeleVideo Systems, Inc. Page 5.111

GWBASIC User's Manual Commands, Statements, and PFunctions

MERGE
Command

Purpose

Format

Comments

Example

To merge a specified disk file into the program
currently in memory.

MERGE <filespec>

filespec 1is a string expression indicating the name of
the file to be merged into the current
program. The file must have been saved in
the ASCII format (using the ,A option with
the SAVE command) or a "Bad file mode" error
message is displayed.

The MERGE command searches for the specified file, and
if found, merges the program lines from the disk file
with the program lines currently in memory. If any
lines in the disk file have the same line numbers as
lines in the program in memory, the lines from the file
on disk replace the corresponding lines in memory.

If <filespec> does not include a drive designation, the
TeleDOS default drive is assumed. If <filespec> does
not include a filename extension, GWBASIC assumes a
filename extension of .BAS.

GWBASIC always returns to the command level after
executing a MERGE command.

MERGE "B:NUMBERS"

This command merges the file named NUMBERS.BAS on drive
B into the program currently in memory.

TeleVideo Systems, Inc. Page 5.112

GWBASIC User's Manual Commands, Statements, and Functions

MIDS
Function

Purpose To return a specified portion of a string.
Format MID$(x$,nl[,m])
X$ is any valid string expression.

n is a numeric expression in the range 0 to 255
indicating the starting character position in x§.
(MIDS rounds n to an integer to determine the
starting character position.)

m is a numeric expression in the range 0 to 255
indicating the number of characters to be returned
form x$. (MIDS$ rounds m to an integer to
determine the number of characters.) If m is
omitted, or less than m characters remain in x§$
from position n, all the remaining characters are
returned.

Comments The MID$ function returns m characters from string x§,
starting at character position n. If n is greater than
the number of characters in x$ (LEN(x$)), MIDS returns
a null string.

Example 10 As "GOOD "
20 BS "MORNING EVENING AFTERNOON"
30 PRINT AS$ MIDS(BS,9,7)
RUN
GOOD EVENING
Ok

This example uses the MID$ function to select the
center word from string BS.

Notes Also see the LEFT$ and RIGHTS functions for alternative
ways of returning portions of a string.

TeleVideo Systems, Inc. Page 5.113

GWBASIC User's Manual Commands, Statements, and Functions

MIDS
Statement

Purpose

Format

Comments

Example

TeleVideo

e G T W G G - G- —— G G — S T — — S S - —— G G0 G G S S G S G T G € G - -

To replace a portion of one string with another string.
MID$ (x$,n[,m]) = y$§

X$ is a string variable or string array element that
will have its characters replaced.

n is a numeric expression in the range 0 to 255
indicating the character position where the
replacement will start. (MIDS$ rounds n to an
integer to determine the starting position.)

m is a numeric expression in the range 0 to 255
indicating the number of characters in y$ that
will be used in the replacement. (MID$ rounds m
to an integer to determine the number of
characters.) If m is omitted, the entire string
y$ is used in the replacement.

y$ is a string expression containing the characters
to be used in the replacement.

The MID$ statement replaces characters in string x$,
beginning at position n, with characters in string ys$.
The option m indicates the number of characters from
y$ that will be used in the replacement.

The length of string x$ does not change, regardless of
whether a value for m was entered or not.

If a value for n or m is entered out of the specified
range, an "Illegal function call" error message is
displayed.

10 CITY$ = "KANSAS CITY, KANSAS"
20 MID$(CITY$,14) = "MISSOURI"
30 PRINT CITYS

RUN .
KANSAS CITY, MISSOU

Ok

In this example, the MID$ statement is used to change
the state from Kansas to Missouri, but because the
length of CITY$ cannot change, only the first six
letters of the state name Missouri were used.

Systems, Inc. Page 5.114

GWBASIC User's Manual Commands, Statements, and Functions

MKDIR
Command

e T ————————— —————— - —— T " G G- > Gain W G U G e GO0 G e . G G S O S W — T — - — — - - ————

Purpose To create a directory on the specified disk.

Format MKDIR <path>

path is a string expression of up to 128
characters indicating the name of the new
directory.

Comments The MKDIR command works like the TeleDOS MKDIR command.
Example MKDIR "B:SALES"
This command creates the sub-directory SALES on drive
B. SALES is a sub-directory of the current directory
on drive B, To create the sub-directory JOHN in
directory SALES, the following command would be given:
MKDIR "B:SALES\JOHN"

The sub-directory JOHN could also be made using the
following commands:

CHDIR "B:SALES"
MKDIR "B:JOHN"

TeleVideo Systems, Inc. Page 5.115

GWBASIC User's Manual Commands, Statements, and Functions

MKIS$, MKS$, MKD$
Functions

- o G —— o —_——— — S - — > €3 S e Gan G S G G S (o G S e G e e ST D S S G G e S e S S G- e S . S G0 e ——— —— G ——

Purpose To convert numeric values to string values.

Format MKIS$ (<integer expression>)
MKS$ (<single-precision expression>)
MKDS$ (<double-precision expression>)

Comments Any numeric value that is placed in a random file
buffer with an LSET or RSET statement must be converted
to a string. MKI$ converts an integer to a 2-byte
string. MKS$ converts a single-precision number to a
4-byte string. MKD$ converts a double-precision number
to an 8-byte string.

These functions do not really change the bytes of data,
but just the way GWBASIC interprets the bytes.

Example 100 FIELD #1,20 AS Al$,4 AS A2S$
110 LSET Als ITEMS$
120 LSET A2$ MKS$ (AMOUNT)
130 PUT #1

This example uses a random file with field variables
defined by the FIELD statement in line 100. Field
variable Al$ holds an item description of up to 20
characters, and field variable A2$ is intended to hold
a single-precision numeric value. Line 120 uses the
MKS$ function to convert the single-precision variable
AMOUNT to a 4-byte string. The LSET statement places
the string representation into the file buffer. Line
130 actually writes the data from the buffer to the
file.

Notes Refer to the CVI, CVS, and CVD functions to convert the
string representation back to a numeric value.

TeleVideo Systems, Inc. Page 5.116

GWBASIC User's Manual Commands, Statements, and Functions

NAME
Statement

Purpose To change the name of a disk file. The NAME statement
performs the same function as the TeleDOS RENAME
command.

Format NAME <old filespec> AS <new filespec>

old filespec is the current filename. <o0ld filespec>
may include an optional device
designation, an optional path, a
filename, and an optional filename
extension., If <old filespec> does not
exist, a "File not found" error message
is displayed.

new filespec is the new filename. <new filespec>
must be a valid filename as described in
Chapter 4. If <new filespec> already
exists, a "File already exists" error
message is displayed.

Comments The NAME command does not move the file. The file
will exist on the same drive, in the same area on the
disk, with the new filename.

If you try to rename a file with a new drive
designation, a "Rename across disks" error message is
displayed.

If <old filespec> contains a path, and <new filespec>
does not, <new filespec> will be listed under the
current directory.
If <new filespec> does not include a filename
extension, the NAME command does not add a default
extension.

Example NAME "ACCTS.BAS" AS "LEDGER"

In this example, file ACCTS.BAS on the default drive is
renamed to LEDGER.

TeleVideo Systems, Inc. Page 5.117

GWBASIC User's Manual Commands, Statements, and Functions

NEW
Command

Purpose To delete the program currently in memory and clear all
variables.,

Format NEW

Comments The NEW command is usually entered in the direct mode
to clear memory before entering a new program.
GWBASIC always returns to the command level after the
NEW command is executed.

NEW closes all files and turns the trace off if it is
on (see the TRON and TROFF commands).

Example NEW
Ok

»

The program that was currently in memory has been
deleted.

TeleVideo Systems, Inc. Page 5.118

GWBASIC User's Manual Commands, Statements, and Functions

OCTS$
Function

——— - —— ———— G ——— — o~ [0 T — —— T ————— o —— ——] —— — T — o ——t——" G " " S - " " 7 > - o T G G oo S

Purpose To return a string that represents the octal value of
a specified decimal argument.

Format OCTS$ (x)

X is a numeric expression in the range -32768 to
65535,

Comments The OCT$ function rounds expression x to an integer and
returns its octal equivalent. If x is negative, the
two's complement form is used.

Example PRINT OCT$(24.3)

30
Ok

OCT$ rounds 24.3 to 24, and then returns the octal
representation of 24, which is 30.

TeleVideo Systems, Inc. Page 5.119

GWBASIC User's Manual Commands, Statements, and Functions

ON COM(n)
Statement

Purpose

Format

Comments

TeleVideo

To specify the first line number of a subroutine to be
performed when activity occurs on a communications
channel.

ON COM(n) GOSUB <line number>

n is the number of the communications
channel (1 or 2).

line number is the number of the first line of a
subroutine that is to be performed when
activity occurs on the specified
communications channel. A line number
of zero (0) disables event trapping.

The ON COM(n) and COM(n) ON statements allow your
program to trap communications activity. When
communications activity occurs, program control is
transferred to a specified subroutine. This routine
usually reads in an entire message before returning
back. The subroutine returns control back to the main
program by executing a RETURN statement.

The ON COM(n) statement will only be executed if a
COM(n) ON statement has been executed to enable event
trapping. If event trapping is enabled, and if a non-
zero <line number> is entered in the ON COM(n)
statement, GWBASIC checks between execution of each
statement to see if communications activity has
occurred on the specified channel. If communications
activity has occurred, a GOSUB to the specified line is
performed.

If a COM(n) OFF statement has been executed for the
specified communications channel, the GOSUB is not
performed and the event is not remembered.

If a COM(n) STOP statement has been executed for the
specified communications channel, the GOSUB is not
performed, but the data is remembered. The GOSUB is
performed as soon as a COM(n) ON statement is executed.

When an event trap occurs, an automatic COM(n) STOP is
executed so that recursive traps cannot take place.

The RETURN from the trap subroutine automatically
performs a COM(n) ON statement, unless a COM(n) OFF was
performed inside the subroutine.

Systems, Inc. Page 5.120

(

GWBASIC User's Manual Commands, Statements, and Functions

ON COM
Statement

Example

The RETURN <line number> form of the RETURN statement
may be used to return to a specific line number from
the trapping subroutine. Use this type of return with
care, however, because any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active, and errors such as "FOR without NEXT"
may result.

Event trapping does not take place when GWBASIC is
not executing a program, and event trapping is
automatically disabled when an error trap occurs.

20 ON COM(1) GOSUB 1000
30 COM(1) ON

1000 REM COMMUNICATIONS SUBROUTINE

1130 RETURN

This example shows how to set up a communications event
trap. In this case, the trapping subroutine is located
in lines 1000 to 1130.

TeleVideo Systems, Inc. Page 5.121

GWBASIC User's Manual Commands, Statements, and Functions

ON ERROR
Statement

D e (e e S o T G S G T G S G S G o G WD e G G S o T — S —— " G — G — o > e G G - W - " —— - O T > =" G —

Purpose To enable error trapping and to specify the first line
of the error handling subroutine.

Format ON ERROR GOTO <line number>

line number is the first line of the error handling
subroutine. If <line number> does not
exist, an "Undefined line number"™ error
message is displayed.

Comments Once error trapping has been enabled, all errors
detected (including direct mode errors) will cause a
jump to the specified error handling routine. The
RESUME statement is used to return control back to the
statement that caused the error.

To disable error handling, execute an ON ERROR GOTO 0.
Subsequent errors result in an error message being
displayed and execution halted. An ON ERROR GOTO 0
statement that appears in an error handling routine
causes GWBASIC to stop and display the error message
for the error that caused the trap. It is recommended
that all error handling routines execute an ON ERROR
GOTO 0 to handle any errors your routine does not have
a recovery action for.

Example 10 ON ERROR GOTO 1000

140 LPRINT

1000 '**** ERROR HANDLING SUBROUTINES ***%%%
1010 IF ERR = 27 THEN PRINT "CHECK PRINTER" : GOTO 1100

1090 ON ERROR GOTO 0

1100 PRINT "PRESS ANY KEY TO CONTINUE"
1110 As = ""

1120 WHILE A$ = "" : A$ = INKEY$: WEND
1130 RESUME

TeleVideo Systems, Inc. Page 5.122

GWBASIC User's Manual Commands, Statements, and Functions

ON ERROR
Statement

This example shows a possible format for using an error
handling routine. Line 10 enables the error trapping
and specifies line 1000 as the first line of the error
handling routine. If line 140 was executed and the
printer had not been turned on, the error handling
routine would display the message "CHECK PRINTER" and
then wait for the user to press a keyboard key. After
a key is pressed, control is returned to line 140. If
a recovery action has not been indicated for the
current error when line 1090 is executed, an error
message is displayed and the program is terminated.

Notes If an error occurs during execution of an error
handling routine, that error message is printed and
execution terminates. Error trapping does not occur
within the error handling routine.

TeleVideo Systems, Inc. Page 5.123

GWBASIC User's Manual Commands, Statements, and Functions

ON...GOSUB and ON...GOTO
Statements

Purpose To branch to one of several specified line numbers,
depending on the value of an expression.

Format ON x GOTO <line>[,<line>]l...
ON x GOSUB <line>[,<line>l...

X is a numeric expression in the range 0 to
255, x is used to select which of the
following <line> entries to branch to. (If x
is not an integer, it is rounded to an
integer before being used for selection.)

line is a line number in your program to branch
to.

Comments The value of x determines which line number in the list
will be used for branching. For example, if the value
is three, branching occurs to the third line number in
the list. If the value of x is zero (0) or greater than
the number of line numbers in the list, GWBASIC
continues with the next executable statement. If the
value of x is outside of the specified range, and
"Illegal function call" error message is displayed.

In the ON...GOSUB statement, each line number in the
list must be the first line number of a subroutine
which will eventually execute a RETURN statement to
return control to the statement following the
ON...GOSUB statement.

Example 150 CLS : LOCATE 3,1 '** DISPLAY MENU **
160 PRINT TAB(35) "SELECTION MENU" : PRINT
170 PRINT TAB(30) "1 - ENTER NEW ITEM"
180 PRINT TAB(30) "2 - EDIT ITEM"
190 PRINT TAB(30) "3 - DISPLAY LIST"
200 PRINT TAB(30) "4 - END PROGRAM" : PRINT
210 PRINT TAB(30);: INPUT "ENTER SELECTION"; ANSWERS
220 ANSWER = VAL (ANSWERS)
230 ON ANSWER GOSUB 300,800,1200
240 IF ANSWER = 4 THEN END ELSE GOTO 150

This program segment shows a possible format for a menu
routine. The menu is displayed and the user is asked
for a selection. If an invalid selection is entered,
control is returned to the beginning of the routine.

If ANSWER equals 1, 2, or 3, branching occurs to the
proper subroutine. Upon return from the subroutines,
line 240 transfers control back to line 150 to
redisplay the menu.

TeleVideo Systems, Inc. Page 5.124

GWBASIC User's Manual Commands, Statements, and Functions

ON KEY(n)
Statement

Purpose

Format

Comments

——— e —— ————_— ——— - G~ - —— = S S8 P S G G G - G o ————— G- G ———— — ——— S O — — =

To specify the first line number of a subroutine to be
performed when a specified key is pressed.

ON KEY(n) GOSUB <line number>

n is a numeric expression in the range 1
to 20 indicating the key to be trapped.

1 -10 function keys F1 to F10

11 Cursor Up
12 Cursor Left
13 Cursor Right
14 Cursor Down
15 - 20 user defined, using the KEY
statement
line number is the number of the first line of a

subroutine that is to be performed when
the specified key is pressed. A line
number of zero (0) disables event
trapping.

The ON KEY(n) and KEY(n) ON statements provide key
trapping. Key trapping allows your program to transfer
control to a subroutine if a specified keyboard key is
pressed.

The ON KEY(n) statement specifies the first line number
of a subroutine to transfer control to when the trapped
key is pressed. The GOSUB portion of the ON KEY(n)
statement will only be executed if a KEY(n) ON
statement has been executed to enable key trapping for
that key. If key trapping is enabled, and if the <line
number> in the ON KEY(n) statement is not =zero,

GWBASIC checks between execution of each statement to
see if the specified key has been pressed. If so, the
GOSUB is performed to the specified line.

If a KEY(n) OFF statement has been executed for the
specified key, the GOSUB is not performed and the key
press is not remembered.

If a KEY(n) STOP statement has been executed for the
specified key, the GOSUB is not performed but the key
press is remembered. The GOSUB is performed as soon as
a KEY(n) ON statement is executed.

TeleVideo Systems, Inc. Page 5.125

GWBASIC User's Manual Commands, Statements, and Functions

ON KEY(n)
Statement

Example

Notes

TeleVideo

When a keytrap occurs and the GOSUB is performed, an
automatic KEY(n) STOP is executed so that recursive
traps cannot take place. The RETURN from the trap
subroutine automatically perform a KEY(n) ON statement,
unless an explicit KEY(n) OFF was performed inside the
subroutine.

The RETURN <line number> form of the RETURN statement
may be used to return to a specific line number from
the trap subroutine. Use this type of return with
care, however, because any other GOSUBs, WHILEs, or
FORs that were active at the time of the trapwill
remain active, and errors such as "FOR without NEXT"
may result.

Event trapping does not take place when GWBASIC is
not executing a program, and event trapping is
automatically disabled when an error trap occurs.

10 FOR INDEX = 1 TO 9 : KEY INDEX ,"" : NEXT INDEX
20 KEY 10, "EXIT" : KEY ON

30 ON KEY(10) GOSUB 1000 : KEY(10) ON

40 KEY 20,CHRS$ (&H4) +CHR$(70) 'TRAP CTRL/BREAK

50 ON KEY(20) GOSUB 950 : KEY(20) ON

950 'CTRL/BREAK KEY TRAP ROUTINE
960 RETURN

1000 'F10 KEY TRAP ROUTINE

1010 CLOSE : RETURN 1020

1020 SYSTEM

In this example, the FOR...NEXT loop in line 10 disable
soft keys 1 to 9. Line 20 defines soft key 10 to say
"EXIT" and turns on the soft key display. Line 30
defines and enables the key trap for function key F10.
The subroutine at line 1000 for the F10 key trap closes
all open files and then provides the exit from the
program and GWBASIC, returning the user to TeleDOS.
Lines 40 and 50 define key 20 as the <Ctrl>/<Break> key
sequence. The key trap routine for key 20 is simply a
return; this prevents a user from using the
<Ctrl>/<Break> sequence to end your program.

The key press causing a key trap is destroyed, and

therefore cannot be tested by an INPUTS$ or INKEYS$
statement.

Systems, Inc. Page 5.126

GWBASIC User's Manual Commands, Statements, and Functions

ON PEN
Statement

——————— ———————]— — —— - ———— —— G - s - — G T — - G S — G — S S - — T —— — — T —— ———C— ———

Purpose To specify the first line number of a subroutine to be
performed when the light pen is activated.

Format ON PEN GOSUB <line number>

line number is the number of the first line of a
subroutine that is to be performed when
the light pen is activated. A line
number of zero (0) disables event
trapping.

Comments A PEN ON statement must be executed to activate the ON
PEN statement. After the PEN ON statement, and if a
non-zero <line number> was entered in the ON PEN
statement, GWBASIC checks between execution of each
statement to see if the light pen has been activated.
If the light pen has been activated, a GOSUB is
performed to the specified line.

If a PEN OFF statement has been executed, the GOSUB is
not performed and the event is not remembered.

If a PEN STOP statement has been executed, the GOSUB is
not performed, but the event is remembered. The GOSUB
is performed as soon as a PEN ON statement is executed.

When an event trap occurs and the GOSUB is performed,
an automatic PEN STOP is executed so that recursive
traps cannot take place. The RETURN from the trap
subroutine automatically performs a PEN ON statement,
unless an explicit PEN OFF was performed inside the
subroutine.

The RETURN <line number> form of the RETURN statement
may be used to return to a specific line number from
the trap subroutine. Use this type of return with
care, however, because any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active, and errors such as "FOR without NEXT"
may result.

Event trapping does not take place when GWBASIC is

not executing a program, and event trapping is
automatically disabled when an error trap occurs.

TeleVideo Systems, Inc. Page 5.127

GWBASIC User's Manual Commands, Statements, and Functions

ON PEN
Statement

Example 10 ON PEN GOSUB 400
20 PEN ON

400 '*** LIGHT PEN TRAP ROUTINE *#*%*

490 RETURN

This example sets up a trap routine for the light pen.

TeleVideo Systems, Inc. Page 5.128

GWBASIC User's Manual Commands, Statements, and Functions

ON PLAY(n)
Statement

Purpose To allow continuous background music to play during
program execution.

Format ON PLAY(n) GOSUB <line number>

n is an integer expression in the range 1
to 32 indicating at what point the event
trap should occur.

line number is the line number of the first line of
a subroutine that is to be performed
when the PLAY event trap occurs. A line
number of zero (0) disables event
trapping.

Comments A PLAY ON statement must be executed to activate the ON
PLAY(n) statement. After the PLAY ON, and if a non-
zero <line number> was entered in the ON PLAY(n)
statement, GWBASIC checks between execution of each
statement to see if the Music Background buffer has
gone from n to n-1 notes. If so, the GOSUB portion of
the ON PLAY(n) statement is performed.

When the PLAY trap occurs and the GOSUB is performed,
an automatic PLAY STOP is executed so that recursive
traps cannot take place. The RETURN from the trap
subroutine automatically performs an PLAY ON statement,
unless an explicit PLAY OFF was performed inside the
subroutine.

A PLAY event trap only occurs when PLAY is in the Music
Background (MB) mode.

A PLAY event trap does not occur if the Music
Background buffer is empty when the PLAY ON statement
is executed.

The RETURN <line number> form of the RETURN statement
may be used to return to a specific line number from
the trapping subroutine. Use this type of return with
care, however, because any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active, and errors such as "FOR without NEXT"
may result.

Event trapping does not take place when GWBASIC is
not executing a program, and event trapping is
automatically disabled when an error trap occurs.

TeleVideo Systems, Inc. Page 5.129

GWBASIC User's Manual Commands, Statements, and Functions

ON PLAY(n)
Statement

Example 10 ON PLAY(4) GOSUB 1000
20 GOSUB 1000
30 PLAY ON

1000 '*** BACKGROUND MUSIC *#*%*

1090 RETURN

This example sets up a trap routine which is activated
when less than four notes are left in the music
background buffer. Line 20 initially fills the buffer,
so that when line 30 is executed event trapping will
take place.

TeleVideo Systems, Inc. Page 5.130

GWBASIC User's Manual Commands, Statements, and Functions

ON STRIG(n)
Statement

—— — o —— — —— o — — ——— — .t - - - " " - S G - S S (e - e - G Ge W G G G G G G O - G G S G (-

Purpose To specify the first line number of a subroutine to be
performed when a joystick trigger is pressed.

Format ON STRIG(n) GOSUB <line number>

n is the number of a joystick trigger as
follows:

0 button Al

2 button Bl
4 button A2
6 button B2
line number is the number of the first line of a

subroutine that is to be performed when
the joystick trigger is pressed. A
<line number> of zero (0) disables event
trapping.

Comments A STRIG(n) ON statement must be executed to activate
the ON STRIG(n) statement. After a STRIG(n) ON
statement, and if a non-zero <line number> was entered
in the ON STRIG(n) statement, GWBASIC checks between
execution of each statement to see if the joystick
trigger has been pressed. If it has, a GOSUB is
performed to the specified line.

If a STRIG(n) OFF statement has been executed, the
GOSUB is not performed and is the event not remembered.

If a STRIG(n) STOP statement has been executed, the
GOSUB is not performed, but the event is remembered.
The GOSUB is performed as soon as a STRIG(n) ON
statement is executed.

When an event trap occurs and the GOSUB is performed,
an automatic STRIG(n) STOP is executed so that
recursive traps cannot take place. The RETURN from the
trap subroutine automatically performs a STRIG(n) ON
statement, unless an explicit STRIG(n) OFF was
performed inside the subroutine.

The RETURN <line number> form of the RETURN statement
may be used to return to a specific line number from
the trapping subroutine. Use this type of return with
care, however, because any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active, and errors such as "FOR without NEXT"
may result.

TeleVideo Systems, Inc. Page 5.131

GWBASIC User's Manual Commands, Statements, and Functions

ON STRIG(n)
Statement

Event trapping does not take place when GWBASIC is
not executing a program, and event trapping is
automatically disabled when an error trap occurs.

Example 10 ON STRIG(0) GOSUB 400
20 STRIG(0) ON

400 '*** STRIG(0) SUBROUTINE ***%

520 RETURN

This example sets up a trap routine for the button on
the first joystick.

TeleVideo Systems, Inc. Page 5.132

GWBASIC User's Manual Commands, Statements, and Functions

ON TIMER
Statement

- T S T —— — — o G T — G~ o G —— - — - - S S (> G- S G Gun G G . G - > S G G . (. G G G T S - Sy S ——— G —

Purpose To provide an interval timer allowing program control
to be transferred to subroutine after a specified
number of seconds.

Format ON TIMER(n) GOSUB <line number>

TIMER ON

TIMER OFF

TIMER STOP

n is a numeric expression in the range 1
to 86400 indicating the number of
seconds between event traps (1 second to
24 hours). If a value for n is entered
outside of the specified range, an
"Illegal function call" error message is
displayed.

line number is the line number of the first line of

a subroutine to be executed when the
event trap occurs, A <line number> of
zero (0) disables event trapping.

Comments A TIMER ON statement must be executed to activate the
ON TIMER(n) statement, After a TIMER ON, and if a non-
zero <line number> was entered in the ON TIMER(n)
statement, GWBASIC checks between execution of each
statement to see if n seconds have elapsed since the
last TIMER event trap. If so, the GOSUB portion of the
ON TIMER(n) statement is executed.

If a TIMER OFF statement is executed, no TIMER event
trapping takes place and the event is not remembered.

If a TIMER STOP statement is executed, TIMER event
trapping is disabled, but the event is remembered. The
GOSUB portion of the ON TIMER(n) statement is executed
as soon as a TIMER ON statement is executed.

When a TIMER event trap occurs and the GOSUB is
performed, an automatic TIMER STOP is executed so that
recursive traps cannot take place. The RETURN from the
trap subroutine automatically performs a TIMER ON
statement, unless an explicit TIMER OFF was performed
inside the trap subroutine.

TeleVideo Systems, Inc. Page 5.133

GWBASIC User's Manual Commands, Statements, and Functions

ON TIMER
Statement

Example

TeleVideo

The RETURN <line number> form of the RETURN statement
may be used to return to a specific line number from
the trapping subroutine. Use this type of return with
care, however, because any other GOSUBs, WHILEs, and
FORs that were active at the time of the trap will
remain active, and errors such as "FOR without NEXT"
may result.

TIMER event trapping does not take place when GWBASIC
is not executing a program, and event trapping is
automatically disabled when an error trap occurs.,

10 ON TIMER(60) GOSUB 1000
20 TIMER ON
30 LOCATE 1,70 : PRINT TIMES

1000 OLDROW CSRLIN 'SAVE CURRENT ROW
1010 OLDCOL POS(0) 'SAVE CURRENT COLUMN
1020 LOCATE 1,70 : PRINT TIMES

1030 LOCATE OLDROW,OLDCOL

1040 RETURN

This example sets up a TIMER event trap to occur every
minute to update the time display in the upper-right
corner of the screen.

Systems, Inc. Page 5.134

(,

GWBASIC User's Manual Commands, Statements, and Functions

OPEN
Statement

Purpose To allow input and output (I/0) to a file or device.

Format OPEN <filespec>[FOR <mode>] AS [#]<file number>
[LEN=<record length>]

or

OPEN <mode>, [#]1<file number>,<filespec>
[,<record length>]

filespec is a string expression indicating the
file to be opened. Refer to Chapter 4
for information on valid file
specifications.

mode is one of the following:

format 1 format 2

OUTPUT o} Specifies sequential output
mode.

INPUT I Specifies sequential input
mode.

APPEND A Specifies sequential output

mode and sets the file pointer
at the end of file and the
record number as the last
record of the file. A PRINT#
or WRITE# statement will then
extend (append) the file.

* R Specifies random input/output
mode.
* If <mode> is omitted, the default random

access mode is assumed.

file number is an integer expression in the range 1
to 15 (or the maximum number of files
allowed, five by default). The file
number is associated with the file for
as long as it is OPEN and is used by
other disk I/O statements to refer to
the file.

TeleVideo Systems, Inc. Page 5.135

GWBASIC User's Manual Commands, Statements, and Functions

OPEN
Statement

Comments

Examples

TeleVideo

record length 1is an integer expression in the range 1
to 32767 that sets the record length for
random files. The default record length
is 128 bytes. If the /I and /S:
parameters were used when GWBASIC was
started, <record length> cannot exceed
the maximum value set with the /S:
parameter.

A disk file must be opened before any disk I/0
operation can be performed on that file. OPEN
allocates a buffer for I/0 to the file or device and
determines the mode of access that will be used with
the buffer.

The <file number> assigned to the file in the OPEN
statement is used by the following I/0 statements to
refer to the file:

PRINT# WRITE#
PRINT# USING INPUTS
INPUT# GET
LINE INPUT# PUT

A file can be opened under more than one file number at
the same time, with the exceptions of 1) a sequential
file can only be opened for output under one file
number, 2) a sequential file cannot be opened for
output if the file is currently open.

If a file is opened for input and the file does not
exist, a "File not found" error message is displayed.
If a file number or record number value is entered
outside of the specified range, an "Illegal function
call" error message is displayed.

10 OPEN "B:INVENTORY"™ FOR INPUT AS #1

10 OPEN "I",1,"B:INVENTORY"

These examples show the two forms of the OPEN statement
that could be used to open file INVENTORY on drive B
for sequential input.

40 OPEN "B:SALES\SALES.DAT" AS #1 LEN = 256

This example open the file SALES.DAT in directory SALES

on drive B for random access with a record length of
256 bytes.

Systems, Inc. Page 5.136

GWBASIC User's Manual Commands, Statements, and Functions

OPEN COM
Statement

Purpose To open and initialize a communications channel for
input/output (I/0).

Format OPEN "COMn: [<speed>][,[<parity>]I[,[<data>][,[<stop>]
[,Rsl[,CS[nllI,DSIn]I[,CDINn]]I[,LF]I[,PE]I]]]I"
AS [#1<device number> [LEN=number]

n is 1 or 2, indicating the communications
channel to be opened.

speed is the baud rate, in bits per second, of
the device to be opened. Valid entries
are 75, 110, 150, 300, 600, 1200, 1800,
2400, 4800, and 9600. If omitted, a
default value of 300 is assumed.

parity designates the parity of the device to
be opened. Valid entries are:

N None. No transmit parity, no
receive parity checking.

E Even. Even transmit parity, even
transmit parity checking.

o 0dd. 0dd transmit parity, odd
receive parity checking.

S Space. The parity bit is always
transmitted and received as a space
(0 bit).

M Mark. The parity bit is always
transmitted and received as a mark

(1 bit).
If omitted, a default value of even is
assumed.
data designates the number of data bits.

Valid entries are: 4, 5, 6, 7, or 8.

If omitted, a default value of 7 is
assumed. If you enter a value of 4, the
N response for <parity> is invalid. If
you enter a value of 8, you must enter a
{parity> response of N. If you plan to
transmit or receive numeric information,
you must specify a <data> value of 8
data bits because GWBASIC uses all 8
bits in a byte to store numbers.

TeleVideo Systems, Inc. Page 5.137

GWBASIC User's Manual

OPEN COM
Statement

stop

RS
CSInl
DSIn]l

CDhInl

LF

PE

device number

number

Commands, Statements, and Functions

indicates the number of stop bits.

Valid entries are 1 or 2. The default
value is 2 stop bits for baud rates of
75 or 110, 1 stop bit for all other baud
rates. If a value of 4 or 5 is used for
the number of data bits, a value of 2
stop bits results in 1 1/2 stop bits
being used.

suppresses RTS (Request To Send).
controls CTS (Clear To Send).
controls DSR (Data Set Ready).

controls CD (Carrier Detect, or
sometimes called Received Line Signal
Detect ,RLSD) .

specifies the the number of milliseconds
to wait for the signal before a "Device
Timeout" error message is displayed. n
must be in the range 0 to 65535, If n
is omitted or equal to zero (0), the
line status is not checked. The default
values are CS1000, DS1000, and CDO.

specifies that a linefeed is to be sent
after each carriage return.

enables parity checking.

is the number to be associated to the
communications channel for future I/0
statements to the device.

is the maximum number of bytes that can
be read from the communications buffer
when using the GET or PUT statements.
The default value is 128 bytes.

Comments The OPEN COM statement must be executed before a device
can be used for RS-232 communication.

Syntax errors in the OPEN COM statement result in a
"Bad File name" error message being displayed. The
incorrect parameter is not shown.

A "Device timeout" error message is displayed if Data

Set Ready (DSR)

TeleVideo Systems, Inc.

is not detected.

Page 5.138

GWBASIC User's Manual Commands, Statements, and Functions

OPEN COM
Statement

The <speed>, <parity>, <data>, and <stop> options must
be listed in the order shown in the above format. The
Rs, Cs, DS, CD, LF, or PE options may be listed in any
order, but they must be listed after the <speed>,
<parity>, <data>, and <stop> options.

LF allows communication files to be printed on a serial
line printer. When LF is specified, a linefeed
character (0OAH) is automatically sent after each
carriage return character (0CH). This includes the
carriage return sent as a result of the width setting.
Note that INPUT# and LINE INPUT#, when used to read
froma COM file that was opened with the LF option,
stop when they see a carriage return, ignoring the
linefeed.

If parity checking is enabled with the PE option, a
"Device I/O error" error message is displayed when a
parity error occurs. If there are 7 or less data bits,
the high order bit is turned on. The PE option does
not affect framing and overrun errors. These errors
always turn on the high order bit and display the
"Device I/O error" error message.

Example 10 OPEN "COM1:9600,N,8,1" AS #2
This example opens communications channel 1 at a speed
of 9600 baud with no parity bit, 8 data bits, and 1

stop bit. Other program lines may now access channel 1
as device number 2.

TeleVideo Systems, Inc. Page 5.139

GWBASIC User's Manual Commands, Statements, and Functions

OPTION BASE
Statement

o s o G o G 2t S G e G S e GRS G0 G Gy G G e S S G o G R G (e T e Mo Gam G S e SN (e SIS GSCH GO G G G I Ge R GNE GM GMS SR AN R Gon G GRS Gmme RS S SME S S Gne G S e

Purpose To declare the minimum value for array subscripts.

Format OPTION BASE n
n is 0 or 1.

Comments The default option base is 0. This indicates that the
lowest array subscript value is zero (0). If the
statement:

OPTION BASE 1

is executed, the lowest valid array subscript value is
one (1).

The OPTION BASE statement must be executed before you
define or use any arrays or a "Duplicate Definition"
error message is displayed.

Example 10 OPTION BASE 1

This statement changes the option base from the default
value of 0, to a value of 1.

TeleVideo Systems, Inc. Page 5.140

GWBASIC User's Manual Commands, Statements, and Functions

ouT
Statement

- — e S e e > G . (s o G S G G ——— T T G S —— D - — —— — - {— G f— - G T G T T —— T — S — T SO (h T G Gl ——t—

Purpose To send a byte to a machine output port.

Format OUT n,m

n is an integer expression in the range -32768 to
65535 representing the port number.

m is a integer expression in the range 0 to 255
representing the data to be transmitted.

Comments The OUT statement sends the character represented by
ASCII character code m to output port n.

If n is negative, OUT uses the value (65536 + n) as the
output port.

Example 100 OUT 12345,255

This example send a value of hex FF to output port
12345, 1In 8086 assembly language, this is equivalent
to:

MOV DX,12345

MOV AL,255
OUT DX ,AL

TeleVideo Systems, Inc. Page 5.141

GWBASIC User's Manual Commands, Statements, and FPunctions

PAINT
Statement

Bl D e e e el S ——

Purpose To £fill a graphics figure with a specified color or
pattern.

Format Painting
PAINT (x,y)[,<color>I[,<border>]
Tiling
PAINT (x,y),<color>,<border>I[,<background>]

(x,y) are the coordinates where painting is to
begin within the area to be filled.
Painting should always start on a non-
border point.

color is a numeric expression or a string
expression., If <color> is a numeric
expression, it indicates the color to
use for painting and must be in the
range 0 to 3 in medium resolution and 0
or 1 in high resolution. In medium
resolution, 0 indicates the background
color, and colors 1 to 3 indicate the
colors of the current palette (see the
COLOR statement for information on the
current palette). In high resolution, 0
indicates black, 1 indicates white.

If <color> is a string expression, paint
tiling is performed.

If <color> is omitted, painting is
performed using the default color, color
3 in medium resolution and color 1 in
high resolution.

border is in the range 0 to 3 and identifies
the border color of the area to be
filled. When the <border> color is
encountered, painting of the current
line and direction stops. If the
<border> color is not specified, <color>
is used.

background is a one-byte string expression used in
paint tiling.

TeleVideo Systems, Inc. Page 5.142

GWBASIC User's Manual Commands, Statements, and Functions

PAINT
Statement

Comments Painting

The PAINT statement can be used to paint or £ill the
area around point (x,y) which is bordered by color
<border>. The area is painted using color <color>. 1If
<color> is omitted, the foreground color is used (3 in
medium resolution, 1 in high resolution). If <border>
is omitted, <border> defaults to <color>.

If point (x,y) is presently displayed in color
<border>, the PAINT statement has no effect.

Since there are only two colors in high resolution,
specifying <color> different from <border> will have no
effect; therefore, the <border> parameter is not
needed.

The PAINT statement can be used to fill any figure, but
painting areas with jagged edges or painting very
complex figures increases the amount of stack space the
PAINT statement requires., To avoid an "Out of Memory"
error when painting complex figures, you might want to
use the CLEAR statement to increase the amount of stack
space available.

Paint Tiling

Paint tiling allows you to £ill the area around point
(x,y) with the pattern specified by the <color> string.
The area to be tiled is bordered by color <border>. If
<border> is omitted, the foreground color is assumed
(color 3 in medium resolution, color 1 in high
resolution). The <color> string is a string expression
in the form:

CHRS (&Hnn) [+ CHRS$(&Hnn)l...

where up to 64 bytes (CHR$(&Hnn) characters) can be
entered. EFach byte represents an 8-bit tile mask used
to display points along a horizontal line of the fill
area. The method used to display points is similar to
line styling used with the LINE statement. The tile
mask bytes are rotated as required to align the next
mask with the next vertical f£ill line. For example, .f
the entire screen is to be filled using an eight-byte
<color> string and the point (0,0) is the start point,
the following pattern would be used:

TeleVideo Systems, Inc. Page 5.143

GWBASIC User's Manual Commands, Statements, and Functions

PAINT
Statement

increasing x -->
bits of the tile mask bytes

X , Y 8 7 6 5 4 3 2 1 0

0, 0 X X X X X X X X X Tile byte 0
0,1 X X X X X X X X X Tile byte 1

0o, 2 X X X X X X X X X Tile byte 2

0, 6 X X X X X X X X X Tile byte 6

0o, 7 X X X X X X X X X Tile byte 7

o, 8 X X X X X X X X X Tile byte 0

0, 9 X X X X X X X X X Tile byte 1
where tile byte 0 is repeated all along the x = 0 line,
and tile byte 1 is repeated all along the x = 1 line,

and so on.

The following formula can be used to determine which
tile mask byte in the <color> string will be used on a
horizontal line (y coordinate):

tile byte mask = y MOD LEN(<color>)

In high resolution (SCREEN 2), each bit in the tile
mask byte is used to determine the state of a pixel on
the screen., If the bit is a 1, the point is plotted.

In medium resolution (SCREEN 1), two bits are required
to describe the color of a pixel; therefore, the bits
of a tile mask byte determine the color of four pixels
on the screen. The following table relates the mask
bit patterns to pixel colors:

Screen Color in Pattern to draw a solid line
Color Binary Binary Hexadecimal

0 00 00000000 &HOO

1 01 01010101 &H55

2 10 10101010 &HAA

3 11 11111111 &HFF

TeleVideo Systems, Inc. Page 5.144

(

GWBASIC User's Manual Commands, Statements, and Functions

PAINT
Statement

Examples

TeleVideo

Occasionally, you may want to paint over an area that
has already been painted in the color of two
consecutive lines (tile mask bytes) in the tile
pattern., Normally, this condition terminates the
tiling, because the point being painted is surrounded
by the same color. For example, you would not be able
to tile alternating red and green lines over a red
background. After the first red line is drawn,; the
tiling would be terminating.

The <background> parameter allows you to skip over a
terminating condition. In the above example, entering
a <background> value of CHR$(&HAA) (a red line) would
allow you to draw alternating red and green lines over
the red background. PAINT returns an "Illegal function
call" error message if you specify more than two
consecutive lines (tile mask bytes) in the <color>
string that are the same as the byte in the
<background> string.

10 SCREEN 1,0 : COLOR 0,1 : CLS
20 CIRCLE (160,100),50,3
30 PAINT (160,100),1,3

This example draws a circle in the middle of the screen
and uses the PAINT statement to paint it cyan.

10 SCREEN 2 : CLS 'HIGH RESOLUTION GRAPHICS

20 LINE (280,80)-(360,120),1,B

30 PAINT(320,100) ,CHRS (&H81) +CHRS$ (&H42) +CHRS (&H24)
+CHRS$ (&H18) +CHR$ (&H18) +CHRS (&§H24) +CHRS$ (&H42)
+CHRS (&H81)

This example uses the PAINT statement to fill the box
in the middle of the screen with an "X" pattern.

10 SCREEN 1,0 : COLOR 0,1 : CLS

20 LOCATE 4,1 : PRINT "WITHOUT BACKGROUND"

30 LINE (160,10)-(220,50),3,B

40 PAINT (190,30),2,3

50 PAINT (190,30) ,CHR$ (&H55) +CHRS (&HAA) ,3

60 ' *** WITH BACKGROUND TILE

70 LOCATE 17,3 : PRINT "WITH BACKGROUND"

80 LINE (160,110)-(220,150),3,B

90 PAINT (190,130),2,3

100 PAINT (190,130) ,CHRS$ (&H55)+CHRS (&HAA) ,3,CHRS (&HAA)

This example shows how the <background> parameter is

used to tile a magenta background with alternating cyan
and magenta lines.

Systems, Inc. Page 5.145

GWBASIC User's Manual Commands, Statements, and Functions

PEEK
Function

Purpose To return a byte of data from a specified memory
location,

Format PEEK (n)

n is a numeric expression in the range -32768 to
65535 representing the offset into the segment
defined by the last DEF SEG statement.

Comments The PEEK function returns an integer value in the
range 0 to 255 representing the ASCII code of the byte
of data located at the specified memory location.

PEEK rounds n to an integer before determining the
specified memory location. If n is negative, the
offset (65356 + n) is used.

Example 10 screen 0,1 : width 80
20 DEF SEG = &HB800
30 CLS
40 PRINT "HELLO"
50 FOR I = 0 TO 8 STEP 2
60 PRINT CHRS$ (PEEK(I));
70 NEXT I
RUN
HELLO
HELLO
Ok

In this example, line 20 sets the current segment to
the beginning of video memory. Lines 30 and 40 clear
the screen and place the word HELLO in the first 5
character positions on the screen. The FOR...NEXT loop
in lines 50 to 70 use the PEEK statement to print out
the characters in the first five character positions of
video memory.

Notes PEEK is the complementary function of the POKE
statement.

TeleVideo Systems, Inc. Page 5.146

GWBASIC User's Manual Commands, Statements, and Functions

PEN
Function

- o v - G T — G e e S G G o " G S S —— _— ————— — — T —— — — — o " —— G (- T (S " S (. S T e e G (e Gea . e e e S

Purpose To read the light pen.

Format PEN(n)

n is a numeric expression in the range 0 to 9
determining the value returned by the PEN
function as follows:

0 A flag indicating whether the pen was down
since the last poll. Returns -1 if down, 0
if not.

1 Returns the x coordinate of the pixel where

the light pen was last pressed (0 - 319 in
medium resolution, 0 - 639 in high
resolution).

2 Returns the y coordinate of the pixel where
the light pen was last pressed (0 - 199 in
both medium and high resolution).

3 Returns -1 if the light pen is down, 0 if it
is up.

4 Returns the last known valid x pixel
coordinate (0 - 319 in medium resolution, 0 -
639 in high resolution).

5 Returns the last known valid y pixel
coordinate (0 - 199 in both medium and high
resolution) .

6 Returns the character row position where the
light pen was last pressed (1 to 24).

7 Returns the character column position where
the light pen was last pressed (1 - 40 in 40-
column mode, 1 - 80 in 80-column mode).

8 Returns the last known character row where
the light pen was positioned (1 - 24).

9 Returns the last known valid character column

where the light pen was positioned (1 - 40 in
40-column mode, 1 - 80 in 80-column mode).

TeleVideo Systems, Inc. Page 5.147

GWBASIC User's Manual Commands, Statements, and Functions

PEN
Function

Comments A PEN ON statement must be executed before a pen read
can be made using the PEN function.

When the light pen is in the border area of the screen,
the coordinate values returned by the PEN function are

not accurate.

Example 10 CLS
20 PEN ON
30 P = PEN(3)
40 LOCATE 1,1 : PRINT "PEN IS";
50 IF P THEN PRINT "DOWN" ELSE PRINT "UP"
60 GOTO 20

This example produces an endless loop to print the

current pen switch status (UP/DOWN).

TeleVideo Systems, Inc. Page 5.148

GWBASIC User's Manual Commands, Statements, and Functions

PEN
Statements

T S G G G B T - T S T G — — — T - T — S —— — - - —— o G e G G B G G —— . —— G T— G S ——— T~ T

Purpose To enable the light pen read function and event
trapping .

Format PEN ON
PEN OFF
PEN STOP

Comments The light pen is initially off. A PEN ON statement
must be executed before a pen read using the PEN
function. The PEN ON statement also enables event
trapping using the ON PEN statement.

PEN OFF disables the light pen read function and event
trapping. If action by the light pen occurs, the event
is not be remembered.

PEN STOP disables event trapping of the light pen, but
if an event occurs it is remembered. The ON PEN
statement is executed as soon as a PEN ON statement is
executed.

Example 10 PEN ON

This statement enables event trapping and allows the
PEN function to be used.

TeleVideo Systems, Inc. Page 5.149

GWBASIC User's Manual Commands, Statements, and Functions

PLAY
Function

Purpose To return the number of notes currently in the music
background buffer.

Format PLAY (n)
n is a dummy argument that can be any value.

Comments Play(n) only returns the number of notes in the music
buffer when in the Music Background (MB) mode. The
value returned ranges from 0 to 32, which is the
maximum number of notes the buffer can hold.

PLAY(n) returns zero (0) when your program is running
in the Music Foreground (MF) mode.

Example 150 GOSUB 1000
160 AS = ""
170 WHILE AS$ = ""
180 A$ = INKEYS
190 IF PLAY(0) = 1 THEN GOSUB 1000
200 WEND

1000 PLAY "MB ML 02 CDEFGAB>C<BAGFEDC"
1010 RETURN

In this example, the PLAY function in line 190 is used
to refill the music background buffer so the scale
(using the PLAY statement in line 1000) plays in the
background while the program waits for a key to be
pressed.

TeleVideo Systems, Inc. Page 5.150

GWBASIC User's Manual Commands, Statements, and Functions

PLAY
Statement

Purpose To play music.
Format PLAY <string>

string is a string expression made up of the
following music commands:

A-G[{#!1+]-1}] Plays a note in the range A-G. # or +
after the note specifies sharp; -
specifies flat.

L n Sets the length of each note. The note
length is equal to 1/n. n must be an
integer in the range 1 to 64 or an
"Illegal function call" error message is
displayed.

Ll whole note

L2 = half note
L3 = 1/3 of a 4 beat measure
L4 = quarter note

L8 = eighth note

L64

sixty-fourth note

The length may follow the note if you
are only changing the note length. 1In
this case, Al6 is equivalent to L16A.

Pn Sets the pause (rest) length. The
length of the rest is calculated in the
same way as the note length, where n can
range from 1 to 64.

Dotted note. When a period (.) is
placed after a note or rest, the length
is multiplied by 3/2. If multiple
periods are placed after a note or
pause, the length is scaled accordingly.
For example, A. is 3/2, A.. is 9/4, and
A... is 27/4 as long as A.

TeleVideo Systems, Inc. Page 5.151

GWBASIC User's Manual

PLAY
statement

On

>>

<<

Nn

Tn

MF

TeleVideo Systems, Inc.

Commands, Statements, and Functions

Octave. Sets the current octave. There
are seven octaves numbered 0 through 6.
Each octave ranges from C to B, with
octave 3 starting at middle C. Octave 4
is the default octave.

Increment octave. The greater than
symbol (>) increments the current octave
by one. Increment octave will not
increment above octave 6.

Increment octave twice., Two greater
than symbols together (>>) increments
the current octave twice. Increment
twice will not increment above octave 6.

Decrement octave. The less than symbol
(<) decrements the current octave by
one., Decrement octave will not
decrement below octave 0.

Decrement octave twice. Two less than
symbols together (<<) decrements the
current octave twice. Decrement twice
will not decrement below octave 0.

Play note n, where n is in the range 0
to 84. 1In the seven octaves, there are
84 possible notes; N1 is the same as C
in octave 0, and N84 is the same as B in
octave 6, NO is a rest. The N
subcommand provides an alternate way of
selecting notes.

Sets the tempo of the music. n
indicates the number of quarter beats
per minute and may range from 32 to 255.
The default value is 120 beats per
minute.

Music foreground. Sets music created by
the PLAY and SOUND statements to run in
the foreground. That is, each
subsequent note or sound will not start
until the previous note or sound has
finished. This is the default setting.

Page 5.152

GWBASIC User's Manual Commands, Statements, and Functions

PLAY
Statement

Comments

MB Music background. Sets music created by
the PLAY and SOUND statements to run in
the background. That is, each note or
sound is placed in a buffer allowing the
your program to continue executing while
the note or sound plays in the
background. Up to 32 notes or rests can
be played in the background at one time.

MN Music normal. Each note is played 7/8
of the note length specified by the Ln
subcommand. This is the default

setting.

ML Music legato. Each note is played the
full note length specified by the Ln
subcommand.

MS Music staccato. Each note is played 3/4

of the note length specified by the Ln
subcommand.

X<variable>; Play a substring. The X subcommand
allows you to assign a string of music
subcommands to a string variable and
then use the X subcommand with the
variable name in the PLAY command. A
semicolon (;) must follow the variable
name.

PLAY uses a concept similar to that used in the DRAW
statement, by embedding a music macro language into one
statement. A set of subcommands, used as part of the
PLAY statement itself, specifies how music is played.

The n argument used in the subcommands can be a
constant like 6, or it can be a variable used in the
=variable; format, where the equal sign (=) and the
semicolon (;) are required.

Spaces embedded within the strings are ignored. A
semicolon may be used to separate subcommands within a
string, except after the MF, MB, MN, ML, and MS
subcommands.

TeleVideo Systems, Inc. Page 5.153

GWBASIC User's Manual Commands, Statements, and Functions

PLAY
Statement

Example 10 'MICHELLE BY J. LENNON & P. MCCARTNEY

20 REPEATS$ = "L2AA P4L4B-L2F L4EAEE DFA-F L2E"

30 OPENINGS "XREPEATS$; L4DF L1E"

40 CENTERI1S "XREPEAT$; L6DEF L2E.L4A L6>DC<A>DC<A
L4>EL2D. P8<L8AB-AL4B-F LI1F"

50 CENTER2$ = "PSLS8AAAL4>D<A ML GFL8FMNFL4G AAAA AAAA
A2L4GF LI1E"

60 CENTER$ = CENTER1$ + CENT<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>