

Chapter l

CLanguage

LEXICAL CONVENTIONS•....• 2-1
SYNTAX NOTATION 2-5

"NAMES .. 2-5
OBJECTS AND LV ALUES . • .. 2-7
CONVERSIONS•........ 2-8
EXPRESSIONS .. "•.......................... 2-12
DECLARATIONS 2-24
STATEMENTS .. 2-39
EXTERNAL DEFINITIONS .. ~ 2-44
SCOPE RULES .. 2-47
COMPILER CONTROL LINES• ; 2-49
IMPLICIT DECLARATIONS .•............•.............. 2-53
TYPES REVISITED 2-53
CONSTANT EXPRESSIONS 2-57
PORTABILITY CONSIDERATIONS •...................... 2-58
SYNTAX SUMMARy••................... 2-59

Chapter'2

CLANGUAGE

LEXICAL CONVENTIONS

There' are six classes of tokens - . identifiers, keywords, constants,
strings, operators, and other separators. Blanks, tabs,new~lines, and
comments (collectively, "white space") as described below are ignored
except as they serve to separate tokens. Some white space is required
to separate otherwise adjacent identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given
character, the next token is taken to include the longest string of
characters which could possibly constitute a token.

Comments

The characters '* introduce a comment which terminates with the
characters *'; Comments do not nest.

Identifiers (Names)

An identifier is a sequence of letters and digits. The first character
must be ,fl letter. The underscore (_) counts as a letter. Uppercase
and lowercase letters are different. Although there is no limit on the
length of a name, only initial characters are significant: at least eight
characters of a non-external name, and perhaps fewer for external
names. Moreover, some implementations may collapse case
distinctions for external names. The external name sizes include:

5000 Series
7000 Series

>100 characters. 2 cases
>100 characters. 2 cases

2-1

Keywords

The following identifiers are reserved for use as keywords and may
not be used otherwise:

auto do for return typedef
break double goto short union
case else if sizeof unsigned
char enum int static void
continue external long struct while
default fioat register switch

Some implementations also reserve the words fortran and asm.

Constants

There are several kinds of constants. Each has a type; an
introduction to types is given in "NAMES." Hardware characteristics
that affect sizes are summarized in "Hardware Characteristics"
under "LEXICAL CONVENTIONS."

Integer Constants

An integer constant consisting of a sequence of digits is taken to be
octal if it begins with 0 (digit zero). An octal constant consists of the
digits 0 through 7 only. A sequence of digits preceded by Ox or OX
(digit zero) is taken to be a hexadecimal integer. The hexadecimal
digits include a or A through f or F with values 10 through 15.
Otherwise, the integer constant is taken to be decimal. A decimal
constant whose value exceeds the largest signed machine integer is
taken to be long; an octal or hex constant which exceeds the largest
unsigned machine integer is likewise taken to be long. Otherwise,
integer constants are into

Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by
I (letter ell) or L is a long constant.

2-2

Character Constants

A character constant is a character enclosed in single quotes, as in
'x'. The value of a character constant is the numerical value of the
character in the machine's character set.

Certain nongraphic characters, the single quote (') and the backslash
(\), may be represented according to the following table of escape
sequences:

new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backs lash \ \\
single quote \'
bit pattern ddd \ddd

The escape \ddd consists of the backs lash followed by 1, 2, or 3 octal
digits which are taken to specify the value of the desired character. A
special case of this construction is \0 (not followed by a digit), which
indicates the character NUL. If the character following a backslash is not
one of those specified, the behavior is undefined. A new-line character is
illegal in a character constant. The type of a character constant is into

Floating Constants

A floating constant consists of an integer part, a decimal point, a
fraction part, an e or E, and an optionally signed integer exponent.
The integer and fraction parts both consist of a sequence of digits.
Either the integer part or the fraction part (not both) may be
missing. Either the decimal point or the e and the exponent (not
both) may be missing. Every floating constant has type double.

2-3

Enumeration Constants

Names declared as enumerators (see "Structure, Union, and
Enumeration Declarations" under "DECLARATIONS") have type
into

Strings

A string is a sequence of characters surrounded by double quotes, as
in " .. :'. A string has type "array of char" and storage class static
(see "NAMES") and is initialized with the given characters. The
compiler places a null byte (\0) at the end of each string so that
programs which scan the string can find its end. In a string, the
'double quote character (n) must be preceded by a \; in addition, the
same escapes as described for character constants may be used.

A \ and the imJtlediately following new-line are ignored. All strings,
even when written identically, are distinct.

Hardware Characteristics

The following figure summarizes certain hardware properties.

2-4

5000 and 7000 Series
(ASCII)

char
int
short
long
float
double

float range

8 bits
32
16
32
32
64

·±.38 ±10

double range ±10 ±308*

*On 7000 double radge is ±10 ±38

Figure 2-1. HARUWARE CHARACTERISTICS

SYNTAX NOTATION

Syntactic categories are indicated by italic type and literal words and
characters in bold type. Alternative categories are listed on separate lines.
An optional terminal or nonterminal symbol is indicated by the subscript
"opt," so that

{ expression opt}

indicates an optional expression enclosed in braces. The syntax is sum­
marized in "SYNTAX SUMMARY".

NAMES

The C language bases the interpretation of an identifier upon two attributes
of the identifier - its storage class and its type. The storage class deter­
mines the location and lifetime of the storage associated with an identifier;
the type determines the meaning of the valuetl found in the identifier's
storage.

Storage Class

There are four declarable storage classes:

Automatic
Static
External
Register

Automatic variables are loc.al to each invocation of a block (see "Com­
pound Statement or Btbckl'inI'STATEMENTS") andJl:e discarded upon
exit from the~lock .. Static variables are local to a bloarbut retain tlteit

,.-',' -<

2-5

values upon reentry to a -block even after control has left the block.
External variables exist and maintain their values throughout· the execu­
tion of the entire program and may be used for communications between
functions, even separately compiled functions. Register variables are (if
possible) stored jntqe fast registers of the machine; like automatic
variables, they areJocalto each block and disappear on the exit from the
block.

Type

The C language supports several fundamental types of objects. Objects
declared as characters (char) are large enough to store any member of the
implemenation's character set. If a genuine character from that character
set is stored in a char variable, its value is equivalent to the integer code
for that character. Other quantities may be stored into character variables.
In particular, char may be signed or unsigned by default.

Up to three sizes of integer, declared short int, int, and long int, are
available. Longer integers provide no less storage than shorter ones, but
the implementation may make either short integers or long integers, or'
both, equivalent to plain integers. "Plain" integers. have the natural size
suggested by the host machine architecture. The other sizes are provided
to meet special needs.

The properties of enum types (see "Structure, Union, and Enumeration
Declarations" under "DECLARATIONS") are identical to those of some
integer types. The implementation may use the range of values to deter .. ":
mine how to allot storage.

Unsigned integers, declared unsigned, o~tQe laws of arithmetic modulo

2n where n is the number. of bits in the represe~tation.

2-6

Chapter 5

COMPILER AND C LANGUAGE
This chapter describes the UNIX System's C compiler, cc, and the C
programming language that the compiler translates.

The C compiler converts C programs into assembly language programs
that are ultimat.ely translated into object files by the assembler, as.
The link editor, ld, collects and merges object files into executable load
modules. Each of these tools preserves all symbolic information
necessary for meaningful symbolic testing at C-Ianguage source level.
In addition, a utility package aids in testing and debugging.

The current manual page for the C compiler can be obtained with the
SGS command:

man cc

USE OF THE COMPILER

To use the compiler, first create a file (typically by using the UNIX
system text editor) containing C source code. The name af the file
created must have a special format; the last two characters of the file
name must be .c as in filel.c.

Next, enter the command

cc options file.c

to invoke the compiler on the C source file file.c with the appropriate

5-1

options selected. The compilation process creates an absolute binary
file named a.out that reflects the content~ of file.c and any
referenced library. routines. The resulting binary file, a.out, can then
be executed on the target system.

Options can control the steps in the compilation process. When none
of the controlling options are used, and only one file is named, cc
automatically calls the assembler, as, and the .link editor, ld, thus
resulting in an executable file, named a.out. If more than one file is
named in a command,

cc filel.c file2.c file3.c

then the output will be placed on files file1.o, file2.o, and file3.o.
These files can then be linked and executed through the ld command.

The cc compiler also accepts input file names with the last two
characters .s. The.s signifies a source file in assembly language.
The cc compiler passes this type of file directly to as, which
assembles the file and places the output on a file of the same name·
with .0 substituted for .s.

Cc is based on a portable C compiler and translates C source files
into assembly code. Whenever the command cc is used, the standard
C preprocessor (which resides on the file llih/cpp) is called. The
preprocessor performs file inclusion and macro substitution. The.
preprocessor is always invoked by cc and need not be called directly
by the programmer. Then, un1ess the appropriate flags are set, cc
calls the assembler and the link editor to produce an executable file.

5-2

COMPILER OPTION~
All options recognized by the. cc command are h. d below:

Option Argument Description

-c none Suppress the link-editing phase
of compilation and force an
object file to be produced
even if only one file is
compiled.

-g none Produce symbolic debugging
information.

-p nOne Reserved for invoking a profiler.

-D identifier{=constantJ Define the external symbol identifier
to the preprocessor, and
give it the value constant
(if specified).

-E none Same as the -P option except
output is directed to the
standard output.

-I directory Change the algorithm that searches
for #include files whose names
do not begin with / to look in the
named directory before looking in
the directories on the standard list.
Thus, #include files whose names are
enclosed in "" are searched for
first in the directory of the file
being compiled, then in directories
named by the -I options, and last
in directories on the standard list.
For #include files whose names are
enclosed in <>, the directory of the
file argument is not searched.

5-3

-0 none

-p none

-u identifier

-v none

-w c,argl[,arg2 ... j

Invoke an object code optimizer.

Suppress compilation and loading;
i.e., invoke only the preprocessor
and leave out the output on
corresponding files suffixed .i.

Undefine the named identifier to
the preprocessor.

Print the version of the assembler
that is invoked.

Pass along the argument(s) argi
to pass c, where c is one of
[p012al], indicating preprocessor,
compiler first pass, compiler second
pass, optimizer, assembler, or link
editor, respectively.

This part provides additional information for those options not
completely described above.

By using appropriate options, compilation can be terminated early to
produce one of several intermediate translations such as relocatahi<·
object files (-c option), assembly source expansions for C code (-8
option), or the output of the preprocessor (-P option). In general, th,'
intermediate files may be saved and later resubmitted to the cc
command, with other files or libraries included as necessary.

When compiling C source files, the most common practice is to US"

the -c option to save relocatable files. Subsequent changes to one fil"
do not then require that the others be recompiled. A separate call to
cc without the -c option then creates the linked executable a.out file.
A relocatable object file created under the -c option is named by
adding a ,0 suffix to the source file name.

The -W option provides the mechanism to specify options for each
step that is normally invoked from the cc command line. These steps
are preprocessing, the first pass of the compiler, the second pass of
the compiler, optimization, assembly, and link editing. At this time,

5-4

only assembler and link editor options can be used with the -W
option. The most common example of use of the -W option is "-Wa,­
m", which passes the -m option to the assembler. Specifying "-wl,­
m" passes the -m option to the link editor.

When the -P option is used, the compilation process stops after only
preprocessing, with output left on file.i. This file will be unsuitable
for subsequent processing by cc.

The -0 option decreases the size and increases the execution speed of
programs by moving, merging, and deleting code. However, line
numbers used for symbolic debugging may be transposed when the
optimizer is used.

The -g option produces information for a symbolic debugger.

5-5

Chapter 6

A C Program Checker-"lint"

GENERAL. 6-1
Usage............................. 6-1

TYPES OF MESSAGES 6-3
Unused Variables and Functions.............. 6-3
Set/Used Information. 6-5
Flow of Control. .. 6-5
Function V slues. .. 6-6
Type Checking..................................... 6-7
Type Casts " 6-9
Nonportable Character Use. 6-9
Assignments of "longs" to uints" 6-10
Strange Constructions.................... 6-10
Old Syntax .. 6-12
Pointer Alignment 6-13
Multiple Uses and Side Effects 6-13

Chapter 6

A C PROGRAM CHECKER-"lint"

GENERAL
The lint program examines C language source programs detecting a
number of bugs and obscurities. It enforces the type rules of C
language more strictly than the C compiler. It may also be used to
enforce a number of portability restrictions involved in moving
programs between different machines andlor operating systems.
Another option detects a number of wasteful or error prone
constructions which nevertheless are legal. The lint program accepts
multiple input files and library specifications and checks them for
consistency.

Usage

The lint command has the form:

lint [options) files ... library-descriptors .. ,

where options are optional flags to control lint checking and
messages; files are the files to be checked which end with .c or .In;
and library-descriptors are the names of libraries to be used in
checking the program.

The options that are ·currently supported by the lint command are:

-a

-b

-c

Suppress messages about assignments of long values to
variables that are not long.

Suppress messages about break statements that cannot
be reached.

Only check for intra-file bugs; leave external
information in files suffixed with .In.

6-1

-h

-n

-0 name

-p

-u

-v

-x

Do not apply heuristics (which attempt to detect bugs,
improve style, and reduce waste).

Do not check for compatibility with either the standard
or the portable lint library.

Create a lint library from input files named llib­
Iname.1n.

Attempt to check portability to other dialects of C
language.

Suppress messages about function and external variables
used and not defined or defined and not used.

Suppress messages about unused arguments in functions.

Do not report variables referred to by external
declarations but never used.

When more than one option is used, they should be combined into a
single argument, such as, -ab or -xha.

The names of files that contain C language programs should end with
the suffix .c which is mandatory or lint and the C compiler.

The lint program accepts certain arguments, such as:

-ly

These arguments specify libraries that contain functions used in the
C language program. The source code is tested for compatibility with
these libraries. This is done by accessing library description files
whose names are constructed from the library arguments. These
files all begin with the comment:

f* LINTLIBRARY Of

which is followed by a series of dummy function definitions. The
critical parts of these definitions are the declaration of the function

6-2

return type, whether the dummy function returns a value, and the
number and types of arguments to the function. The V ARARGS and
ARGSUSED comments can be used to specify features of the library
functions.

The lint library files are processed almost exactly like ordinary
source files. The only difference is that functions which are defined
on a library file but are not used on a source file do not result in
messages. The lint program does not simulate a full library search
algorithm and will print messages if the source files contain a
redefinition of a library routine.

By default, lint checks the programs it is given against a standard
library file which contains descriptions of the programs which are
normally loaded when a C language program is run. When the -p
option is used, another file is checked containing descriptions of the
standard library routilies which are expected to be portable across
various machines. The -n option can be used to suppress all library
checking.

TYPES OF MESSAGES
The following paragraphs describe the major categories of messages
printed by lint.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and
arguments to functions may become unused. It is not uncommon for
external variables or even entire functions to become unnecessary
and yet not be removed from the source. These types of errors rarely
cause working programs to fail, but are a source of inefficiency and
make programs harder to understand and change. Also, information
about such unused variables and functions can occasionally serve to
discover bugs.

The lint program prints messages about variables and functions
which are defined but not otherwise mentioned. An exception is

6-3

variables which are declared through explicit extern statements but
are never referenced; thus the statement

extern double sinO;

will evoke no comment if sin is never used. Note that this agrees
with the semantics of the C compiler. In some cases, these unused
external declarations might be of ' some interest and can be discovered
by using the -x option with the lint command.

Certain styles of programming require many functions to be written
with similar interfaces; frequently, some of the arguments may be
unused in many of the calls. The -v option is available to suppress
the printing of messages about unused arguments. When -v is in
effect, no messages are produced about unused arguments except for
those arguments which are unused and also declared as register
arguments. This can be considered an active (and preventable) waste
of the register resources of the machine.

Messages about unused arguments can be suppressed for one function
by adding the comment:

/* ARGSUSED * /

to the program before the function. This has the effect of the -v
option for only one function. Also, the comment:

/* V ARARGS * /

can be used to suppress messages about variable number of
arguments in calls to a function. The comment should be added
before the function definition. In some cases, it is desirable to check
the first several arguments and leave the later arguments unchecked.
This can be done with a digit giving the number of arguments which
should be checked. For example:

/* V ARARGS2 • /

will cause only the first two arguments to be checked.

6-4

There is one case where information about unused or undefined
variables is more distracting than helpful. This is when lint is
applied to some but not all files out of a collection which are to be
loaded together. In this case, many of the functions and variables
defined may not be used. Conversely, many functions and variables
defined elsewhere may be used. The -u option may be used to
suppress the spurious messages which might otherwise appear.

Set/Used Information

The lint program attempts to detect cases where a variable is used
before it is set. The lint program detects local variables (automatic
and register storage classes) whose first use appears physically
earlier in the input file than the first assignment to the variable. It
assumes that taking the address of a variable constitutes a "use",
since the actual use may occur at any later time, in a data dependent
fashion.

The restriction to the physical appearance of variables in the file
makes the algorithm very simple and quick to implement since the
true flow of control need not be discovered. It does mean that lint
can print messages about some programs which are legal, but these
programs would probably be considered bad on stylistic grounds.
Because static and external variables are initialized to zero, no
meaningful information can be discovered about their uses. The lint
program does deal with initialized automatic variables.

The setlused information also permits recognition of those local
variables which are set and never used. These form a frequent source
of inefficiencies and may also be symptomatic of bugs.

Flow of Control

The lint program attempts to detect unreachable portions of the
programs which it processes. It v:m print messages about unlabeled
statements immediately following goto, break, continue, or
return statements. An attempt is made to detect loops which can
never be left at the bottom and to recognize the special cases
while(l) and for(;;) as infinite loops. The lint program also prints
messages about loops which cannot be entered at the top. Some valid

6-5

programs may have such loops which are considered to be bad style
at best and bugs at worst.

The lint program has no way of detecting functions which are called
and never returned. Thus, a call to exit may cause an unreachable
code which lint does not detect. The most serious effects of this are
in the determination of returned function values (see "Function
Values"). If a particular place in the program cannot be reached but
it is not apparent to lint, the comment

/* NOTREACHED *f

can be added at the appropriate place. This comment will inform
lint that a portion of the program cannot be reached.

The lint program will not print a message about unreachable break
statements. Programs generated by yacc and especially lex may
have hundreds of unreachable break statements. The -0 option in
the C compiler will often eliminate the resulting object code
inefficiency. Thus, these unreached statements are of little
importance. There is typically nothing the user can do about them,
and the resulting messages would clutter up the lint output. If these
messages are desired, lint can be invoked with the -b option.

Function Values

Sometimes functions return values that are never used. Sometimes
programs incorrectly use function .. values" that have never been
returned. The lint program addresses this problem in a number of
ways.

Locally, within a function definition, the appearance of both

return(expr);

and

return;

6-6

statements is cause for alarm; the lint program will give the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a function
return is implied by flow of control reaching the end of the function.
This can be seen with a simple example:

f (a){
if(a)return(3);
gO;
}

Notice that, if a tests false, f will call g and then return with no
defined return value; this will trigger a message from lint. If g, like
exit, never returns, the message will still be produced when in fact
nothing is wrong.

In practice, some potentially serious bugs have been discovered by
this feature.

On a global scale, lint detects cases where a function returns a value
that is sometimes or never used. When the value is never used, it
may constitute an inefficiency in the function definition. When the
value is sometimes unused, it may represent bad styfe (e.g., not
testing for error conditions).

The dual problem, using a function value when the function does not
return one, is also detected. This is a serious problem.

Type Checking

The lint program enforces the type checking rules of C language
more strictly than the compilers do. The additional checking is in
four major areas:

• Across certain binary operators and implied assignments

• At the structure selection operators
6-7

• Between the definition and uses of functions

• In the use of enumerations.

There are a number of operators which have an implied balancing
between types of the operands. The assignment, conditional (?:),
and relational operators have this property. The argument of a
retu,"", statement and expressions used in initialization suffer
similar conversions. In these operations, char, short, int, long J

unsigned, float, and double types may be freely intermixed. The
types of pointers must agree exactly except that arrays of x's can, of
course, be intermixed with pointers to x's.

The type checking rules also require that, in structure references, the
left operand of the -> be a pointer to structure, the left operand of
the . he a structure, and the right operand of these operators be a
member of the structure implied by the left operand. Similar
checking is done for references to unions.

Strict rules apply to function argument and return value matching.
The types float an,1 double may be freely matched, as may the
types char, short, int, and unsigned. Also, pointers can be
matched with the associated arrays. Aside from this, all actual
arguments must agree in type with their declared counterparts.

With enumerations, checks are made that enumeration variables or
members are not mixed with other types or other enumerations and
that the only operations applied are ~, initialization, ~=, !~, and
function arguments and return values.

It it is desired to turn off strict type checking for an expression, the
comment

1* NOSTRICT */

should be added to the program immediately before the expression.
This comment will prevent strict type checking for only the next line
in the program.

6-8

Type Casts

The type cast feature in C language was introduced largely as an aid
to producing more portable programs. Consider the assignment

p.= 1;

where p is a character pointer. The lint program will print a
message as a result of detecting this. Consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a character
pointer. The programmer obviously had a strong motivation for
doing this and has clearly signaled his intentions. It seems harsh for
lint to continue to print messages about this. On the other hand, if
this code is moved to another machine, such code should be looked at
carefully. The -c flag controls the printing of comments about casts.
When -c is in effect, casts are treated as· though they were
assignments subject to messages; otherwise, all legal casts are passed
without comment, no matter how strange the type mixing seems to
be.

Nonportable Character Use

On some systems, characters are signed quantities with a range from
-128 to 127. On other C language implementations, characters take
on only positive values. Thus, lint will print messages about certain
comparisons and assignments as being iliegal or nonportable. For
example, the fragment

char c;

if((c = getchar(» < 0) ...

will work on one machine but will fail on machines where characters
always take on positive values. The real solution is to declare c as an
integer since getchar is actually returning integer values. In any
case, lint will print the message "nonportable character comparison".

6-9

A similar issue arises with hit fields. When assignments of constant
values are made to hit fields, the field may be too small to hold the
value. This is especially true because on some machines bit fields are
considered as signed quantities. While it may seem logical to
consider that a two-bit field declared of type int cannot hold the
value 3, the problem disappears if the bit field is declared to have
type unsigned

Assignments of "longs" to "ints"

Bugs may arise from the assignment of long to an int, which will
truncate the contents. This may happen in programs which have
been incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop working
because some intermediate results may be assigned to ints, which are
truncated. Since there are a number of legitimate reasons for
assigning longs to ints, the detection of these assignments is
enabled by the -a option.

Strange Constructions

Several perfectly legal, but somewhat strange, constructions are
detected by lint. The messages hopefully encourage better code
quality, clearer style, and may even point out bugs. The -h option is
used to supress these checks. For example, in the statement

*p++ ;

the • does nothing. This provokes the message "null effect" from lint.
The following program fragment:

unsigned x ; .
if(x < 0) •..

results in a test that will never succeed. Similarly, the test

if(x > 0) ...

6-10

s equivalent to

if(x!= 0)

which may not be the intended action. The lint program will print
the message "degenerate unsigned comparison" in these cases. If a
program contains something similar to

if(1 != 0) ...

lint will print the message "constant in conditional context" since
the comparison of 1 with 0 gives a constant result.

Another construction detectp.d by lint involves operator precedence.
Bugs which arise from misunderstandings about the precedence of
operators can be accentuated by spacing and formatting, making such
bugs extremely hard to find. For example, the statement

if(x&077 == 0) ...

or

x«2 + 40

probably do not do what was intended. The best solution is to
parenthesize such expressions, and lint encourages this by an
appropriate message.

Finally, when the -h option has not been used, lint prints messages
about variables which are rededared in inner blocks in a way that
conflicts with their use in outer blocks. This is legal but is
considered to be bad style, usually unnecessary, and frequently a
bug.

6-11

Old Syntax

Several forms of older syntax are now illegaL These fall into two
classes - assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =-, •.. J could cause
ambiguous expressions, such as:

a =-1 ;

which could be taken as either

a =- 1;

or

a = -1 ;

The situation is especially perplexing if this kind of ambiguity arises
as the result of a macro· substitution. The newer and preferred
operators (e.g., +=, -=, ...) have no such ambiguities. To encourage
the abandonment of the older forms, lint prints messages about these
old-fashioned operators.

A similar issue arises with initialization. The older lan~age allowed

int xl;

to initialiie x to 1. This also caused syntactic difficulties. For
example, the initialization

int x (-1);

looks somewhat like the beginning of a function definition:

int x (y) { ..

6-12

and the compiler must read past x in order to determine the correct
meaning. Again, the problem is even more perplexing when the
initializer involves a macro. The current syntax places an equals sign
between the variable and the initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

Pointer Alignment

Certain pointer assignments may be reasonable on some machines
and illegal on others due entirely to alignment restrictions. The lint
program tries to detect cases where pointers are assigned to other
pointers and such alignment problems might arise. The message
"possible pointer alignment problem" results from this situation.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpres­
sions may be highly machine dependent. For example, on machines in
which the stack runs backwards, function arguments will probably be best
evaluated from right to left. On machines with a stack running forward,
left to right seems most attractive. Function calls embedded as arguments
of other functions mayor may not be treated similarly to ordinary argu­
ments. Similar issues arise with other operators which have side effects,
such as the assignment operators and the increment and decrement
operators.

In order that the efficiency of C language on a particular machine
not be unduly compromised, the C language leaves the order of
evaluation of complicated expressions up to the local compiler. In
fact, the various C compilers have considerable differences in the
order in which they will evaluate complicated expressions. In
particular, if any variable is' changed by a side effect and also used
elsewhere in the same expression, the result is explicitiy undefined.

6-13

The lint program checks for the important special case where a
simple scalar variable .is affected. For example, the statement

ali] = b[i++];

will cause lint to print the lI,lessage

warning: i evaluation" order undefined

in order to call attention tblhis condition.

8-14

Chapter 7

Symbolic Debugging Program-"sdb .. ··

GENERAL........ 7-1
USAGE.. 7-1

Printing a Stack Trace. 7-3
Examining Varisbles................................ 7-3

SOURCE FILE DISPLAY AND MANIPULATION 7-7
Displaying the Source File. 7-7
Changing the Current Source File or Function. 7-8
Changing the Current Line in the Source File. 7-8

A CONTROLLED ENVIRONMENT FOR PROGRAM
TESTING ~ .. 7-9

Setting and Deleting Breakpoints. .7-10
Running the Program 7-11
Calling Functions................................... 7-1'2

MACHINE LANGUAGE DEBUGGING 7-13
Displaying Machine Language Statements 7-13
Manipulating Registers 7-14

OTHER COMMANDS 7-14

Chapter 7

SYMBOLIC DEBUGGING PROGRAM-"sdb"

GENERAL
This chapter describes the symbolic debugger sdb(l) as implemented
for C language and Fortran 77 programs on the UNIX operating
sy'stem. The sdb program is useful both for examining "core images"
of aborted programs and for providing an environment in which
execution of a program can be monitored and controlled.

The sdb program allows interaction with a debugged program at the
source language level. When debugging a core image from an aborted
program, sdb reports which line in the source program caused the
error and allows all variables to be accessed symbolically and to be
displayed in the correct format.

Breakpoints may be placed at selected statements or the program
may be single stepped on a line-by-line basis. To facilitate
specification of lines in the program without a source listing, sdb
provides a mechanism for examining the source text. Procedures
may be called directly from the debugger. This feature is useful both
for testing individual procedures and for calling user-provided
routines which provided formatted printout of structured data.

USAGE
In order to use sd\:) to its full capabilities, it is necessary to compile
the source program with the -g option. This causes the compiler to
generate additional information about the variables and statements
of the compiled program. When the -g option has been specified,
sdb can be used to obtain a trace of the called functions at tbe time
of the abort and interactively display the values of variables.

7-1

A typical sequence of shell comman<\s for debugging a core image is

$ cc -g prgm.c -0 prgm
$prgm
Bus error - core dumped
$ sdb prgm
main:25: xli] = 0;
*

The program prgm was compiled with the -g option and then
executed. An error occurred which caused a core dump. The sdb
program is then invoked to examine the core dump to determine the
cause of the error. It reports that the bus error occurred in function
main at line 25 (line numbers are always relative to the beginning of
the file) and outputs the source text of the offending line. The sdb
program then prompts the user with an * indicating that it awaits a
command.

It is useful to know that sdb has a notion of current function and
current line. In this example, they are initially set to main and "25",
respectively.

In the ahove example, sdb was called with one argument, prgm. In
general, it takes three arguments on the command line. The first is
the name of the executable file which is to be debugged; it defaults to
a.out when not specified. The second is the name of the core file,
defaulting to core; and the third is the name of the directory
containing the source of the program being debugged. The sdb
program currently requires all source to reside in a single directory.
The default is the working directory. In the example, the second and
third arguments defaulted to the correct values, so only the first was
specified.

It is possible that the error occurred in a function which was not compiled
with the .g option. In this case, sdb prints the function name and the
address at which the error occurred~ The current line and function are set
to the first executable line in mai1l. The sdb program will print an error

, message if main. was not compiled with the .g option, but debugging can
continue for those routines compiled with the .g option. Figure 7·1 shows
a typical example of sdb usage (see page 7-16).

7·2

Printing a Stack Trace

It is often u8eful to obtain a listing of the function calls which led to
the error. This is obtained with the t command. For example:

*t
sub(x,;,,2,y=3) [prgm.c:25)
inter(i=16012) [prgm.c:96)
main(argc=I,argv=Ox7fffff54,envp=Ox7fffff5c)[prgm.c:15)

This indicates that the error occurred within the function sub at line
25 in file prgm.c. The sub function was called with the arguments
x=2 and y=3 from inter at line 96. The inter function was called
from main at line 15. The main function is always called by the
shell with three arguments often referred to as argc, argv, and envp.
Note that argv and envp are pointers, so their values are printed in
hexadecimal.

Examining Variables

The sdb program can be used to display variables in the stopped
program. Variables are displayed by typing their name followed by a
slash, so

*errflagl

causes sdb to display the value of variable err/lag. Unless otherwise
specified, variables are assumed to be either local to or accessible
from the current function. To specify a different function, use the
form

*sub:il

to display variable i in function sub. F77 users can specify a common
block variable in the same manner.

7-3

The sdb program supports a limited form of pattern matching for
variable and function names. The symbol * is used to match any
sequence of characters of a variable name and? to match any single
character. Consider the following commands

x/
·sub:y?f
.of

The first prints the values of all variables beginning with x, the
second prints the values of all two letter variables in function sub
beginning with y, and the last prints all variables. In the first and
last examples, only variables accessible from the current function are
printed. The command

**.*j

displays the variables for each function on the call stack.

The sdb program normally displays the variable in a format
determined by its type as declared in the source program. To request
a different format, a specifier is placed after the slash. The specifier
consists of an optional length specification followed by the format.
The length specifiers are:

b One byte

h Two bytes (half word)

Four bytes (long word).

The lengths are effective only with the formats d, 0, x, and u. If no
length is specified, the word length of the host machine is used. A
numeric length specifier may be used for the s or a commands.
These commands normally print characters until either a null is
reached or 128· characters are printed. The number specifies how
many characters should be printed.

7-4

There are a number of format specifiers available:

c

d

u

o

x

f

g

s

a

p

Character.

Decimal.

Decimal unsigned.

Octal.

Hexadecimal.

32-bit single· precision floating point.

64-bit double-precision floating point.

Assume variable is a string pointer and print characters
starting at the address pointed to by the variable until a
null is reached.

Print characters starting at the variable's address until
a null is reached.

Pointer to function.

Interpret as a machine-language instruction.

For example, the variable i can be displayed with

*i/x

which prints out the value of i in hexadecimal.

The sdb program also knows about structures, arrays, and ·pointers
so that all of the following commands work.

*array[2][3jl
·sym.idl
*psym->usagel
'xsym[20j.p->usagel

7-5

The only restriction is that array subscripts must be numbers.
Depending on your machine, accessing arrays may be limited to 1-
dimensional arrays. Note that as a special case:

·psym->/d

displays the location pointed to by psym in decimal.

Core locations can also be displayed by specifying their absolute
addresses. The command

*1024/

displays location 1024 in decimal. As in C language, numbers may
also be specified in octal or hexadecimal so the above command is
equivalent to both

*020001

and

·Ox4001

It is possible to mix numbers and variables so that

·1000.xl

refers to an element of a structure starting at address WOO, and

*1000->xl

refers to an element of a structure whose address is at 1000. For
commands of the type "lOOO.xl and *lOOO->x/, the sdb program uses
the structure template of the last structured referenced.

7-6

The address of a variable is printed with the =, so

*i=

displays the address of i. Another feature whose usefulness will
become apparent later is the command

*j

which redisplays the last variable typed.

SOURCE FILE DISPLAY AND MANIPULATION
The sdb program has been designed to make it easy to debug a
program without constant reference to a current source listing.
Facilities are provided which perform context searches within the
source files of the program being debugged and to display selected
portions of the source files. The commands are similar to those of
the UNIX system text editor ed(l). Like the editor. sdb has a notion
of current file and line within the file. The sdb program also knows
how the lines of a file are partitioned into functions, so it also has a
notion of current function. As noted in other parts of this document,
the current function is used by a number of sdb commands.

Displaying the Source File

Four commands exist for displaying lines in the source file. They are
useful for perusing the source program and for determining the
context of the current line. The commands are:

p

w

z

control·d

Prints the current line.

Window; prints a window of ten lines around the
current line.

Prints ten lines starting at the current line.
Advances the current line by ten.

Scrolls; prints the next ten lines and advances the
current line by ten. This command is used to
cleanly display long segments of the program.

7·7

When a line from a file is printed, it is preceded by its line number.
This not only gives an indication of its relative position in the file but
is also used as input by some sdb commands.

Changing the Current Source File or Function

The e command is used to change the current source file. Either of
the forms

*e function
*e file.c

may be used. The first causes the file containing the named function
to become the current file, and the current line becomes the first line
of the function. The other form causes the named file to become
current. In this case, the current line is set to the first line of the
named file. Finally, an e command with no argument causes the
current function and file named to be printed.

Changing the Current Line in the Source File

The z and control-d commands have a side effect of changing the
current line in the source file. The following paragraphs describe
other commands that change the current line.

There are two commands for searching for instances of regular
expressions in source files. They are

* / regular expression/
*?regular expression?

The first command searches forward through the file for a line
containing a string that matches the regular expression and the
second searches backwards. The trailing I and ? may be omitted
from these commands. Regular expression matching is identical to
that of ed(l).

The + and - commands may be used to move the current line
forwards or backwards by a specified number of lines. Typing a

7-8

new-line advances the current line by one, and typing a number
causes that line to become the current line in the file. These
commands may be combined with the display commands so that

*+15z

advances the current line by 15 and th,m prints ten lines.

A CONTROLLED ENVIRONMENT FOR
PROGRAM TESTING
One very useful feature of sdb is breakpoint debugging. After
entering sdb, certain lines in the source program may be specified to
be breakpoints. The program is then started with a sdb command.
Execution of the program prllceeds as normal until it is about to
execute one of the lines at which a breakpoint has been set. The
program stops and sdb reports the breakpoint where the program
stopped. Now, sdb commands may be used to display the trace of
function calls and the values of variables. If the user is satisfied the
program is working correctly to this point, some breakpoints can be
deleted and others set; then program execution may be continued
from the point where it stopped.

A useful alternative to setting breakpoints is single stepping. The
sdb program can be requested to execute the next line of the
program and then stop. This feature is especially useful for testing
new programs, so they can be verified on a statement-by-statement
basis. If an attempt is made to single step through a function which
has not been compiled with the -g option, execution proceeds until a
statement in a function compiled with the -g option is reached. It is
also possible to have the program execute one machine level
instruction at a time. This is particularly useful when the program
has not been compiled with the -g option.

7-9

Setting and Deleting Breakpoints

Breakpoints can be set at any line in a function which contains
executable code. The command format is:

*12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file. The
line numbers are relative to the beginning of the file as printed by
the source file display commands. The second form sets a breakpoint
at line 12 of function proc, and the third sets a breakpoint at the first
line of proc. The last sets a breakpoint at the current line.

Breakpoints are deleted similarly with the commands

*12d
*proc:12d
*proc:d

In addition, if the command d is given alone, the breakpoints are
deleted interactively. Each breakpoint location is printed, and a line
is read from the user. If the line begins with a y or d, the
breakpoint is deleted.

A list of the current breakpoihts is printed in response to a B
command, and the D command deletes all breakpoints. It is
sometimes desirable to have sdb automatically perform a sequence of
commands at a breakpoint and then have execution continue. This is
achieved with another form of the b command.

*12b t;x/

7-10

causes both a trace back and the value of 1C to be printed each time
execution gets to line 12. The a command is a variation of the above
command. There are two forms:

*proc:a
'proc:12a

The first prints the function name and its arguments each time it is
called, and the second prints the source line each time it is about to
be executed. For both forms of the a command, execution continues
after the function name or source line is printed.

Running the Program

The r command is used to begin program execution. It restarts the
program as if it were invoked from the shell. The command

*r args

runs the program with the given arguments as if they had been typed
on the shell command line. If no arguments are specified, then the
arguments from the last execution of the program are used. To run a
program with no arguments, use the R command.

After the program is started, execution continues until a breakpoint
is encountered, a signal such as INTERRUPT or QUIT occurs, or the
program terminates. In all cases after an appropriate message is
printed, control returns to sdb.

The c command may be used to continue execution of a stopped
program. A line number may be specified, as in:

*proc:12c

This places a temporary breakpoint at the named line. The
breakpoint is deleted when the c command finishes. There is also a c
command which continues but passes the signal which stopped the

7-11

program back to the program. This is useful for testing user-written
signal handlers. Execution may be continued at a specified line with
the g command. For example:

*17 g

continues at line 17 of the current function. A use for this command
is to avoid executing a section of code which is known to be bad. The
user should not attempt to continue execution in a function different
than that of the breakpoint .

. The s command is used to run the program for a single line. It is
useful for slowly executing the program to examine its behavior in
detail. An important alternative is the S command. This command
is like the s command but does not stop within caned functions. It is
often used when one is confident that the called function works
correctly but is interested in testing the cailing routine.

The i command is used to run the program one machine level
instruction at a time while ignoring the signal which stopped the
program. Its uses are similar to the s command. There is also an I
command which causes the program to execute one machine level
instruction at a time, but also passes the signal which stopped the
program back to the program.

Calling Functions

It is possible to call any of the functions of the program from sdb.
This feature is useful both for testing individual functions with
different arguments and for calling a function which prints
structured data in a nice way. There are two ways to call a function:

'proc(arg1, arg2, ...)
*proc(arg1, arg2, .. .)/m

The first simply executes the function. The second is intended for
cailing functions (it executes the function and prints the value that it
returns). The value is printed in decimal unless some other format is
specified by m. Arguments to functions may be integer, character or
string constants, or values of variables which are accessible from the
current function.

7-12

An unfortunate bug in the current implementation is that if a
function is called when the program is not stopped at a breakpoint
(such as when a core image is being debugged) all variables are
initialized before the function is started. This makes it impossible to
use a function which formats data from a dump.

MACHINE LANGUAGE DEBUGGING
The sdb program has facilities for examining programs at the
machine language leveL It is possible to print the machine language
statements associated with a line in the source and to place
breakpoints at arbitrary addresses. The sdb program can also be
used to display or modify the contents of the machine registers.

Displaying Machine Language Statements

To display the' machine language statements associated with line 25
in function main, use the command

*main:25?

The? command is identical to the / command except that it displays
from text space. The default format for printing text space is the i
format which interprets the machine language instruction. The
control-d command may be used to print the next ten instructions.

Absolute addresses may be specified instead of line numbers by
appending a : to them so that

*Oxl024:?

displays the contents of address Oxl024 in text space. Note that the
command

·OxlO24?

7-13

displays the instruction corresponding to line Oxl024 in the current
function. It is also possible to set or delete a breakpoint by
, specifying its absolute address;

·Oxl024:b

sets a breakpoint at address Oxl024.

Manipulating Registers

Individual registers may also be displayed. The SOOO Series uses the
register name prepended with a % so that

*%d3

displays the value of register d3. The 7000 Series uses the register
appended with a % so that

*r3%

displays the value of register r3.

OTHER COMMANDS
To exit sdb, use the q command.

The! command is identical to that in ed(l) and'is used to have the
sbell execute a command.

It is possible to change the values of variables when the program is
stopped at a breakpoint. This is done with the command

·variable!value

which sets the variable to the given value. The value may be a
number, character constant, register, or the name of another
variable. If the variable is of type float or double, the value can also
be a floating-point constant.

7-14

$ cat testdiv2.c
main(argc, argv, envp)

. char **argv, **envp; {
int i;
i = div2(-1);
printf(" -1/2 = %d\n" , i);

}
div2(i) {

int j;

}

j = i»1;
return(j);

$ cc -g testdiv2.c
$ a.out
-1/2 =-1
$ sdb
No core image
*1"div2
7: div2(i) {

/I Warning message from sdb
/I Search for function" div2"
/I It starts on line 7

*z /I Print the next few lines
7: div2(i) {
8: intj;
9: j = i»1;
10: return(j);
11: }
*div2:b # Place breakpoint at beginning of " div2"
div2:9 b # Sdb echoes proc name and line number
*r /I Run the function
a.out /I Sdb echoes command line executed
Breakpoint at # Executions stops just before line 9
div2:9: j = i»1;
't # Print trace of subroutine calls
div2(i=-1) [testdiv2.c:9)
main(argc=1;argv=0x7fffff50,envp=Ox7fffff58)[testdiv2.c:4)
*il /I Print i
-1
Os /I Single step
div2:1O: return(j); /I Execution stops before line 10
*jl # Print j
-1
09d # Delete the breakpoint
*div2(1)1 /I Try running" div2" with different arguments
o

7-15

*div2(-2)/
-1
*div2(-3)/
-2
*q
$

7-16

Figure 7-1. EXAMPLE OF sdb USAGE

Chapter 8

FORTRAN UNIX SYSTEM COMMANDS
A UNIX system Fortran 77 user should be familiar with the
following commands:

• 177 [options) files - This command in vokes the UNIX system
Fortran 77 compiler

• ratfor [options) [files) - This command invokes the Ratfor
preprocessor

• efl [options) [files) - This command compiles a program written in
Extended Fortran Language (EFL) into clean Fortran

• asa [files) - This command interprets the output of Fortran
programs that utilize ASA carriage control characters

• fsplit options files - This command splits the named file(s) into
separate files, with one procedure per file.

For more information about the above commands, see the User
Reference Manual book.

8-1

8-2

Chapter 9

FORTRAN 77

USAGE.. 9-1
LANGUAGE EXPRESSIONS........................... 9-2

Double Complex Data Type. .. 9-2
Internal Files. .. 9-2
Implicit Undefined Statement. .. 9-2
Recursion. .. 9-3
Automatic Storage.............. 9-3
Variable Length Input Lines...... 9-3
Include Statement.................................. 9-4
Binary Initialization Constants. .. 9-4
Character Strings................................... 9-4
Hollerith. 9-5
Equivalence Statements. .. 9-5
One-Trip DO Loops......... .. 9-6
Commas in Formatted Input. .. 9-6
Short Integers. .. 9-6
Additional Intrinsic Functions. .. 9-7

VIOLATIONS OF THE STANDARD 9-10
Double Precision Alignment. .. 9-10
Dummy Procedure Arguments. .. 9-11
T and TL Formats 9-11

INTERPROCEDURE INTERFACE 9-11
Procedure Names 9-11
Data Representations 9-12
Return Values.. .. 9-12
Argument Lists 9-14

FILE FORMATS 9-14
Structure of Fortran Files 9-14
Preconnected Files and File Positions. 9-15

Chapter 9

FORTRAN 77
This chapter describes the compiler and run-time system for Fortran
77 as implemented on the UNIX system. This chapter also describes
the interfaces between procedures and the file formats assumed by
the 1/0 system.

USAGE
The command to run the compiler is

f77 options file

The f77(1) command is a general purpose command for compiling
and loading Fortran and Fortran-related files into an executable
module. EFL (compiler) and Ratfor (preprocessor) source files will
be translated into Fortran before being presented to the Fortran
compiler. The f77 command invokes the C compiler to translate C
source files and invokes the assembler to translate assembler source
files. Object files will be link edited. [The f77(1) and ee(l)
commands have slightly different link editing sequences. Fortran
programs need two extra libraries (libI77.a, libF77.a) and an
additional startup routine.] The following file name suffixes are
understood:

.f Fortran source file

.e EFL source file

.r Ratfor source file

.e C language source file

.8 Assembler source file

• 0 Object file .

9-1

LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. The most
important additions are a character string data type, file-oriented
input/output statements, and random access I/O. Also, the language
has been cleaned up considerably.

In addition to implementing the language specified in the Fortran 77
American National Standard, this compiler implements a few
extensions. Most are useful additions to the language. The
remainder are extensions to make it easier to communicate with C
language procedures or to permit compilation of old (1966 Standard
Fortran) programs.

Double Complex Data Type

The data type ~ ~ is added. Eacll datum is represented by a
pair of double-precision real variables. A double complex version of ev~
.I:lllIIllklr. built-in function is provided. The specific function names begm
with % rather than c.

Internal Files

The Fortran 77 American National Standard introduces internal files
(memory arrays) but restricts their use to formatted sequential I/O
statements. This I/O system also permits internal files to be used in
direct and unformatted reads and writes.

Implicit Undefined Statement

Fortran has a rule that the type of a variable that does not appear in
a type statement is integer if its first letter is i, i, k, I, m or n.
Otherwise, it is real. Fortran 77 has an implicit statement for
overriding this rwe. An additional type statement, undefined, is
permitted. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will
issue a diagnostic for each variable that is used but does not appear
in a type statement. Specifying the -u compiler option is equivalent
to beginning each procedure with this statement.

9-2

Recursion

Procedures may call themselves directly or through a chain of other
procedures.

Automatic Storage

Two new keywords recognized are static and automatic. These
keywords may appear as "types" in type statements and in implicit
statements. Local variables are static by default; there is exactly one
copy of the datum, and its value is retained between calls. There is
one copy of each variable declared automatic for each invocation of
the procedure. Automatic variables may not appear in equivalence,
data, or save statements.

Variable Length Input Lines

The Fortran 77 American National Standard expects input to the
compiler to be in a 72-column format: except in comment lines, the
first five characters are the statement number, the next is the
continuation character, and the next 66 are the body of the line. (If
there are fewer than 72 characters on a line, the compiler pads it
with blanks; characters after the first 72 are ignored.) In order to
make it easier to type Fortran programs, this compiler also accepts
input in variable length lines. An ampersand (&) in the first position
of a line indicates a continuation line; the remaining characters form
the body of the line. A tab character in one of the first six positions
of a line signals the end of the statement number and continuation
part of the line; the remaining characters form the body of the line.
A tab elsewhere on the line is treated as another kind of blank by the
compiler.

In the Fortran 77 Standard, there are only 26 letters

- Fortran is a one-case language. Consistent with ordinary system
usage, the new compiler expects lowercase input. By default, the
compiler converts all uppercase characters to lowercase except those
inside character constants. However, if the -U compiler option is
specified, uppercase letters are not transformed. In this mode, it is
possible to specify external names with uppercase letters in them and
to have distinct variables differing only in case. Regardless of the
setting of the option, keywords will only.be recognized in lowercase.

9-3

Include Statement

The statement

include" stufr'

i. replaced by the contents of the file stuff. Includes may' be nested
to a reasonable depth, currently ten.

Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data
statement by a binary constant, denoted by a letter followed by a
quoted string. If the letter is b, the string is binary, and only zeroes
and ones are permitted. If the letter is 0, the string is octal with
digits zero through seven. If the letter Is z or x, the string is
hexadecimal with digits zero through nine, a through f. Thus, the
statements

integer a(3)
data a/b'lOlO',0'12',z'a'/

initialize all three elements of a to ten.

Character Strings

For compatibility with C langu!'ge usage, the following backslash
escapes are recognized:

\n New-line

\t Tab

\b Backspace

\f Form feed

9-4

\0 Null

\' Apostrophe (does not terminate a string)

\" Quotation mark (does not terminate a string)

\\ \

\x Where x is any other character.

Fortran 77 only has one quoting character - the apostrophe ('). This
compiler and I/O system recognize both the apostrophe and the
double quote ("). If a string begins with one variety of quote mark,
the other may be embedded within it without using the repeated
quote or backslash escapes.

Every unequivalenced scalar local chara@ter 'variable and every
character string constant is aligned on an integer word. boundary.
Each character string constant appearing outside a data statement is
followed by a null character to ease communication with C language
routines.

Hollerith

Fortran 77 does not have the old Hollerith (nh) notation though the
new Standard recommends implementing the old Hollerith feature in
order to improve compatibility with old prograins. In this compiler,
Hollerith data may be used in place of character string constants and
may also be used to initialize non character variables in data
statements.

Equivalence Statements

This compiler permits single subscripts in equivalence statements
under the interpretation that all missing slibscripts are equal to 1. A
warning message is printed for each such incomplete subscript.

9-5

One-Trip DO Loops

The Fortran 77 American National Standard requires that the rang.
of a do loop not be performed if the initial value is already past th •
. limi t value, as in

do 10 i = 2, 1

The 1966 Standard stated that the effect of such a statement waf
undefined, but it was common practice that the range of a do 100I
would be performed at least once. In order to accommodate old
programs though they were in violation of the 1966 Standard, th,
-onetrip compiler option causes nonstandard loops to be generated.

Commas in Formatted Input

The I/O system attempts to be more lenient than the Fortran 77
American National Standard when it seems worthwhile. When doing
a formatted read of non-character variables, commaS may be used as
value separators in the input record overriding the field lengths given
in the format statement. Thus, the format

(ilO, f20.10, i4)

will read the record

-345,.05e-3,12

correctly.

Short Integers

On m;'chines that support half word integers, the compiler accepts
declarations of type integer·2. (Ordinary integers follow the
Fortran rules about occupying the same space as a REAL variable;
they are assumed to be of C language type long int; half word
integers are of C language type short int.) An expression involving
only objects of type integer·2 is of that type. Generic functions
return short or long integers depending on the actual types of their
arguments. If a procedure is compiled using the -12 flag, all small

9-6

nteger constants will be of type integer*2. If the precision of an
nteger·valued intrinsic function is not determined by the generic
'unction rules, one will be chosen that returns the prevailing length
integer*2 when the ~12 command flag is in ·effect).· When the -12.
)ption is in effect, all quantities of type logical will be short. Note
;hat these short integer and logical quantities do not obey the
;tandard rules for storage association.

I\dditional Intrinsic Functions

rhis compiler supports all of the intrinsic functions specified in the
fortran 77 Standard. In addition, there are functions for performing
)itwise Boolean operations (or, and, xor, and not) and for accessing
;he command arguments (getarg and iargc).

rhe following lists the Fortran intrinsic function library plus some
odditional functions. These functions are automaticslly available to the
~ortran programmer and require no special invocation of the compiler.
rhe asterisk (*) beside some of the commands indicate they are not part
)f standard F77. In parentheses beside each function description listed
lelOW is the location for the command in the Programmer Reference
Ilanual book. These functions are as follows:

:thort·
.bs
ieas
limag
:tint
.log
.10glO
imaxO
lmaxl
:iminO
iminl
imod
lnd·
lnint
lsin
1tan
.tan2

Terminate program (ABORT(3F»
Absolute value (MAX(3F)
Arccosine (ACOS(3F»
Imaginary part of complex argument (AlMAG(3F»
Integer part. (AINT(3F»
Natural logarithm (LOG(3F»
Common logarithm (ALOGIO(3F»
Maximum value (MAX(3F»
Maximum value (MAX(3F»
Minimum value (MIN(3F»
Minimum value (MIN(3F»
Remaindering (MOD(3F»
Bitwise boolean (BOOL(3F»
Nearest integer (ROUND(3F»
Arcsine (ASIN(3F»
Arctangent (ATAN(3F»
Arctangent (ATAN2(3F»

9-7

cabs
ccos
cexp
char
clog
cmplx
conjg
cos
cosh
csin
csqrt
dabs
dacos
dasin
datan
datan2
dble
dcmplx·
dconjg*
dcos
dcosh
ddim
dexp
dim
dimag·
dint
dlog
dloglO
dmaxl
dminl
dmod
dnint
dprod
dsign
dsin
dsinh
dsqrt
dtan
dtanh
exp
float
getarg*
getenv·

9-8

Complex absolute value (ABS(3F»
Complex cosine (COS(3F»
Complex exponential (EXP(3F»
Explicit type conversion (FTYPE(3F»
Complex natural logarithm (LOG(3F»
Explicit type conversion (FTYPE(3F»
Complex conjugate (CONJG(3F»
Cosine (COS(3F»
Hyperbolic cosine (COSH(3F»
Complex sine (SIN(3F»
Complex square root (SQRT(3F»
Absolute value (ABS(3F»
Arccosine (ACOS(3F»
Arcsine (ASIN(3F»
Arctangent (ATAN(3F»
Double precision arctangent (ATAN2(3F»
Explicit type conversion (FTYPE(3F»
Explicit type conversion (FTYPE(3F»
Complex conjugate (CONJG(3F»
Cosine (DCOS(3F»
Hyperbolic cosine (COSH(3F»
Positive difference (DIM(3F»
Exponential (EXP(3F»
Positive difference (DIM(3F»
Imaginary part of complex argument «AIMAG(3F»
Integer part (AINT(3F»
Natural logarithm (LOG(3F»
Common logarithm (LOGIO(3F»
Maximum value (MAX(3F»
Minimum value (MIN(3F»
Remaindering (DMOD(3F»
Nearest integer (ROUND(3F»
Double precision product (DPROD(3F»
Transfer of sign (SIGN(3F»
Sine (SIN(3F»
Hyperbolic sine (SINH(3F»
Square root (SQRT(3F»
Tangent (TAN(3F»
Hyperbolic tangent (TANH(3F»
Exponential (EXP(3F»
Explicit type conversion (FTYPE(3F»
Return command-line argument (GETARG(3F»
Return environment variable (GETENV(3F»

iabs
iargc
ichar
idim
idint
idnint
ifix
index
int

Absolute value (ABS(3F»
Return number of arguments (IARGC(3F»
Explicit type conversion (FTYPE(3F»
Positive difference (DIM(3F»
Explicit type conversion (FTYPE(3F»
Nearest integer (ROUND(3F»
Explicit type conversion (FTYPE(3F»
Return location of substring (INDEX(3F»
Explicit type conversion (FTYPE(3F»

irand· Random number generator
isign Transfer of sign (SIGN(3F»
len Return location of string (LEN(3F»
Ige String comparison (STRCMP(3F»
Igt String comparison (STRCMP(3F»
lIe String comparison (STRCMP(3F»
lIt String comparison (STRCMP(3F»
log Natural logarithm (LOG(3F»
loglO Common logarithm (LOGIO(3F»
Ishift' Bitwise boolean (BOOL(3F»
max Maximum value (MAX(3F»
maxO Maximum value (MAX(3F»
maxI Maximum value (MAX(3F»
mclock* Return Fortran time accounting (MCLOCK(3F»
min Minimum value (MIN(3F»
minO Minimum value (MIN(3F»
minI Minimum value (MIN(3F»
mod Remaindering (MOD(3F»
nint Nearest integer (BOOL(3F»
not' Bitwise boolean (BOOL(3F»
or' Bitwise boolean (BOOL(3F»
rand' Random number generator (RAND(3F»
real Explicit type conversion (FTYPE(3F»
rshift' Bitwise boolean (BOOL(3F»
sign Transfer of sign (SIGN(3F»
signal·

sin
sinh
sngJ
sqrt
srand­
system·

Specify action on receipt of system signal
(SIGNAL(3F»
Sine (SINE(3F»
Hyperbolic sine (SINH(3F»
Explicit type conversion (FTYPE(3F»
Square root (SQRT(3F»
Random number generator (RAND(3F»
Issue a shell command (SYSTEM(3F»

9-9

tan
tanh
xor*
zabs·

Tangent (TAN(3F»
Hyperbolic tangent (TANH(3F»
Bitwise boolean (BOOL(3F»
Complex absolute value (ABS(3F».

For more information on the Fortran intrinsic function commands, see
the Programmer Reference Manual book.

VIOLATIONS OF THE STANDARD
The following paragraphs describe only three known ways in which
the UNIX system implementation of Fortran 77 violates the new
American National Standard.

Double Precision Alignment

The Fortran 77 American National Standard permits common or
equivalence statements to force a double precision quantity onto an
odd word boundary, as in the following example:

real a(4)
double precision b,c
equivalence (a(l),b), (a(4),c)

Some machines require that double precision quantities be on doublE
word boundaries; other machines run inefficiently if this alignmenl
rule is not observed. It is possible to tell which equivalenced and
common variables suffer from a forced odd alignment, but ever)
double-precision argument would have to be assumed on a baG
boundary. To load such a quantity on some machines, it would bE
necessary to use two separate operations. The first operation wouk
be to move the upper and lower halves into the halves of an alignec
temporary. The second would be to load that double-precisior
temporary. The reverse woulg be needed to store a result. AI
double-precision real and complex quantities are required to fall or
even word boundaries on machines with corresponding hardwarE
requirements and to issue a diagnostic if the source code demands,
violation of the rule.

9-10

Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy
procedure arguments of that procedure must be declared in an
external statement. This requirement arises as a subtle corollary of
the way we represent character string arguments. A warning is
printed if a dummy procedure is not declared external. Code is
correct if there are no character arguments.

T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab)
format codes is defective. These codes allow rereading or rewriting
part of the record which has already been processed. The
implementation uses "seeks"; so if the unit is not one which allows
seeks (such as a terminal) the program is in error. A benefit of the
implementation chosen is that there is no upper limit on the length
of a record nor is it necessary to predeclare any record lengths except
where specifically required by Fortran or the operating system.

INTERPROCEDUREINTERFACE
To be able to write C language procedures that call or are called by
Fortran procedures, it is necessary to know the conventions for
procedure names, data representation, return values, and argument
lists that the compiled code obeys.

Procedure Names

On UNIX systems, the name of a common block or a Fortran
procedure has an underscore appended to it by the compiler to
distinguish it from a e language procedure or external variable with
the same user-assigned name. Fortran library procedure names have
embedded underscores to avoid clashes with user-assigned subroutine
names.

9-11

Data Representations

The following is a table of corresponding Fortran and C language
declarations:

Fortran C Language
integer*2 x short int x;

integer x long int x;

logical x long int x;

real x float x;

double precision x double x;

complex x struct float r, i; } x;

double complex x struct double dr, di; } x;

char x[6);

By the rules of Fortran, integer. logical, and real data occupy the
same amount of memory.

'Reiurn Values

A function of type integer. logical. real. or double precIsion
declared as a C language function returns the corresponding type. A
complex or double complex function is equivalent to a C language
routine with an additional initial argument that points to the place
where the return value is to be stored. Thus, the following:

complex function f(...)

is equivalent to

Utemp)
struct { float r. i; } *temp;

9-12

A character-valued function is equivalent to a C language routine
with two extra initial arguments - a data address and a length.
Thus.

character'15 function g(...)

is equivalent to

g (result, length •...)
char result [I;
long int length;

and could be invoked in C language by

char chars[151;

lL(chars.15L •...);

Subroutines are invoked as if they were integer-valued functions
whose value specifies which alternate return to use. Alternate return
arguments (statement labels) are not passed to the function but are
used to do an indexed branch in the calling procedure. (If the
subroutine has no entry points with alternate return arguments. the
returned value is undefined.) The statement

call nret('I. *2. '3)

is treated exactly as if it were the computed goto

goto (1. 2, 3). nret()

9-13

Argument Lists

All Fortran arguments are passed by address. In addition, for every
argument that is of type character or that is a dummy procedure, an
argument giving the length of the value is passed. (The string
lengths are long int quantities passed by value.) The order of
arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external f
character*7 s
integer b(3)

call sam(f, b(2), s)

is equivalent to that in

int fO;
char s[7];
long int b[a];

sam_(f, &b[l], s, OL, 7L);

Note that the first element of a C language array always has
subscript 0, but Fortran arrays begin at 1 by default. Fortran arrays
are stored in column-major order; C language arrays are stored in
row-major order.

FILE FORMATS

Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted
and unformatted, and direct formatted and unformatted. On UNIX
systems, these are all implemented as ordinary files which are
assumed to have the proper internal structure.

Fortran I/O is based on "records." When a direct file is opened in a
Fortran program, the record length of the records must be given; and
this is used by the Fortran I/O system to make the file look as if it is
made up of records of the given length. In the special case that the
record length is given as· i, the files are not considered to be divided
into records but are treated as byte-addressable byte strings; i.e., as
ordinary files on the UNIX system. (A read or write request on such
a file keeps consuming bytes until satisfied rather than being
restricted to a single record.)

The peculiar requirements on sequential unformatted files make it
unlikely that they will ever be read or written by any means except
Fortran I/O statements. Each record is preceded and followed by an
integer containing the record's length in bytes.

The Fortran I/O system breaks sequential formatted files into
records while reading by using each new-line as a record separator.
The result of reading off the end of a record is undefined according to
the Fortran 77 American National Standard. The 110 system is
permissive and treats the record as being extended by blanks. On
output, the 1/6 system will write a new-line at the end of each
record. It is also possible for programs to write new-lines for
themselves. This is an error, but the only effect will be that the
single record the user thought was written will be treated as more
than one record when being read or backspaced over.

Preconnected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is
connected to the standard input, unit 6 is connected to the standard
output, and unit 0 is connected to the standard error unit. All are
connected for sequential formatted I/O.

All. the other units are also preconnected when execution begins.
Unit n is connected to a file named fort.n. These files need not exist
nor will they be created unless their units are used without first
executing an open. The default connection is for sequential
formatted 110.

The Fortran 77 Standard does not specify where a file which has
been explicitly opened for sequential 110 is initially positioned. In
fact, the I/O system attempts to position the file at the end. A
write will append to the file and a read will result in an "end of
file" indication. To position a file to its beginning, use a rewind
statement. The preconnected units 0, 5, and 6 are positioned as they
come from the parent process.

9-15

9·16

Chapter 10

Ratfor

GENERAL. 10-1
USAGE.. 10-1
STATEMENT GROUPING........................ .. 10-2
THE "if-else" CONSTRUCTION. .. 10-3

Nested "if" Statements. .. 10-4
THE "switch" STATEMENT.. 10-6
THE "do" STATEMENT.. .. 10-6
THE "break" AND "next" STATEMENTS.............. 10-7
THE "while" STATEMENT.............. 10-8
THE "for" STATEMENT. .. 10-8
THE "repeat-until" STATEMENT 10-10
THE "return" STATEMENT 10-10
THE "define" STATEMENT 10-n
THE "include" STATEMENT.. .. 10-12
FREE-FORM INPUT. .. 10-12
TRANSLATIONS 10-13
WARNINGS ... 10-14
EXAMPLE OF RATFOR CONVERSION 10-16

Chapter 10

RATFOR

GENERAL
This chapter describes the Ratfor(l) preprocessor. It is assumed that
the user is familiar with the current implementation of Fortran 77 on
the UNIX system.

The Ratfor language allows users to write Fortran programs in a
fashion similar to C language. The Ratfor program is implemented
as a preprocessor that translates this "simplified" language into
Fortran. The facilities provided by Ratfor are:

• Statement grouping
• if-else and switch for decision making
• while, for, ~, and repeat-until for l~oping
• break and next for controlling loop exits
• Free wrm----uiput such as multiple statements/lines and

automatic continuation
• Simple comment convention
• TranslatiQn of >, >=, etc., into .gt., .ge., etc.
• return statement for functions
• define statement for symbolic parameters
• include statement for including source files.

USAGE
The Ratfor program takes either a list of file names or the standard
input and writes Fortran on the standard output. Options include
-6x, which uses x as a continuation character in column 6 (the UNIX
system uses & in column I), -h, which causes quoted strings to be
turned into nH constructs and -C, which causes Ratfor comments to
be copied into the generated Fortran.

10-1

STATEMENT GROUPING
The Ratfor language provides a statement grouping facility. A group
of statements can be treated as a unit by enclosing them in the
braces { and). For- example, the Ratfor code

if (x > 100)
{ call error(" x> 100"); err = 1; return)

will be translated by the Ratfor preprocessor into Fortran
equivalent to

10

if (x .Ie. 100) goto 10
call error(5hx>I00)
err = 1
return

which should simplify programming effort. By using { and }, a
group of statements can be used instead of a single statement.

Also note in the previous Ratfor example that the character> was
used instead of .GT. in the if statement. The Ratfor preprocessor
translates this C language type operator to the appropriate Fortran
operator. More on relationship operators later.

In addition, many Fortran compilers permit character strings in
quotes (like" x>l()(J'). But others, like ANSI Fortran 66, do not.
Ratfor converts it into the right number of Hs.

The Ratfor language is free form. Statements may appear anywhere
on a line, and several may appear on one line if they are separated by
semicolons. The previous example could also be written as

if (x > 100) {

10-2

call error(" x> 100")
err = 1
return

which shows grouped statements spread over several lines. In this
case, no semicolon is needed at the end of each line because Ratfor
assumes there is one statement per liIie unless told otherwise.

Of course, if the statement that follows the if is a single statement,
no braces are needed.

THE "if-else" CONSTRUCTION
The Ratfor language provides an else statement. The syntax of the
if-else construction is:

if (legal Fortran condition)
ratior statement

else
ratior statement

where the else part is optional. The legal Fortran condi~ion is
anything that can legally go into a Fortran Logical IF statement.
The Ratfor preprocessor does not check this clause since it doe3 not
know enough Fortran to know what is permitted. The" ratfor"
statement is any Ratfor or Fortran statement or any collection of
them in braces. For example:

if (a <= b)
{ sw = 0; write(6, 1) a, b }

else
{ sw = 1; write(6, 1) b, a }

is a valid Ratfor if-else construction. This writes out the smaller of
~ and ~, then the larger, and sets sw appropriately.

As before, if the statement following an if or an else is a single
statement, no braces are needed.

10-3

Nested "if" Statements

The statement that follows an if or an else can be any Ratfor
statement including another if or else statement. In general, the
structure

if (condition) action
else if (condition) action
else action

provides a way to write a multibranch in Ratfor. (The Ratfor
language also provides a switch statement which could be used
instead, under certain conditions.) The last else handles the
"default" condition. If there is no default action, this final else can
be omitted. Thus, only the actions associated with the valid condition
are performed. For example:

if (x < 0)
x=O

else if (x > 100)
x = 100

will ensure that x is not less than 0 and not greater than 100.

Nested if and else statements could result in ambiguous code. In
Ratfor when there are more if statements than else statements,
else statements are associated with the closest previous if statement
that currently does not have lln associated else statement. For
example:

if (x > 0)
if (y > 0)
write(6,l) x, y
else
write(6,2) y

is interpreted by the Ratfor preprocessor as

10-4

if (x > 0) {
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y

in which the braces are assumed. If the other association is desired
it must be written as

if (x > 0) {
if(y> 0)

write(6, 1) x, y
}
else

write(6, 2) y

with the braces specified.

THE "switch" STATEMENT
The switch statement provides a way to express multiway branches
which branch on the value of some integer-valued expression. The
syntax is

switch (expression) {
case exprl:
statements
case expr2, expr3:
statements

default:
statements

where each case is followed by an integer expression (or several
integer expressions separated by commas). The switch expression is
compared to each case expr until a match is found. Then the
statements following that case are executed. If no cases match

10-5

expression, then the statements following default are executed. The
default section of a switch is optional.

When the statements associated with a case are executed, the entire
switch is exited immediately. This is different from C language.

THE "do" STATEMENT
The do statement in Ratfor is quite similar to the DO statement in
Fortran except that it uses no statement number (braces are used to
mark the end of the do instead of a statement number). The syntax
of tbe ratfor do statement is

do legal-Fortran-DO-text {
rat/or statements

The legal-Fortran-DO-text must be something that can legally be
used in a Fortran DO statement. Thus if a local version of Fortran
allows DO limits to be expressions (which is not currently permitted
in ANSI Fortran 66), they can be used in a ratfor do statement.
The rat/or statements are enclosed in braces; but as with the if, a
single statement need not have braces around it. For example, the
following code sets an array to zero:

do i = I, n
xii) = 0.0

and the code

do i = l,n
do j = I, n

m(i,j) = 0

sets the entire array m to zero.

10-6

THE "break" AND "next" STATEMENTS

The Ratfor break and next statements provide a means for leaving
a loop early and one for beginning the next iteration. The break
causes an immediate exit from the do; in effect, it is a branch to tbe
statement after the do. The next is a branch to the bottom of the
loop, so it causes the next iteration to be done. For example, this
code skips over negative values in an array

do i = 1, n {
if (x(i) < 0.0)

next
process positive element

The break and next statements will also work in the other Ratfor
looping constructions and will be discussed with each looping
construction.

The break and next can be followed by an integer to indicate
breaking or .iterating that level of enclosing loop. For example:

break 2

exits from two levels of enclosing loops, and

break 1

is equivalent to break. The

next 2

iterates the second enclosing loop.

10-7

THE "while" STATEMENT
The Ratfor language provides a while statement. The syntax of the
while statement is

while (legal-Fortran-condition)
rat/or statement

As with the if, legal-Fortran-condition is something that can go
into a Fortran Logical IF, and ratfor statement is a single statement
which may be multiple statements enclosed in braces.

For example, suppose nextch is a function which returns the next
input character both as a function value and in its argument. Then a
while loop to find the first nonblank character could be

while (nextch(ich) == iblank)

where a semicolon by itself is a null statement (which is necessary
here to mark the end of the while). If the semicolon were not
present, the while would control the next statement. When the loop
is exited, ich contains the first nonblank.

THE "for" STATEMENT
The for statement is another Ratfor loop. A for statement allows
explicit initialization and increment steps as part of the statelllent.

The syntax of the for statement is

for (init ; condition; increment)
rat/or statemen t

where init is any single Fortran statement which is executed once
before the loop begins. The increment is any single Fortran
statement that is executed at the end of each pass through the loop
before the test. The condition is again anything that is legal in a

10-8

Fortran Logical IF. Any of init, condition, and increment may be
omitted although the semicolons mus.t always be present. A
nonexistent condition is treated as always true, so

for (;;)

is an infinite loop.

For example, a Fortran DO loop could be written as

for (i = 1; i <= n; i = i + 1) ...

which is equivalent to

i = 1
while (i <= n) {

i =i + 1

The initialization and increment of i have been moved into the for
statement.

The for, do, and while versions have the advantage that they will be
done zero times if n is less than 1. In addition, the break and next
statements work in a for loop.

The increment in a for need not be an arithmetic progression. The
program

sum = 0.0
for (i = first; i > 0; i = ptr(i))

sum = sum + value(i)

steps through a list (stored in an integer array ptr) until a zero
pointer is found while adding up elements from a parallel array of
values. Notice that the code also works correctly if the list is empty.

10-9

THE "repeat-until" STATEMENT
There are times when a test needs to be performed at the bottom of a
loop after one pass through. This' facility is provided by the
repeat-until statement. The syntax for the repeat-until
statement is

repeat
ratlor statement

until (legal-Fortran-condition)

where ratfor-statement is done once, then the condition is evaluated.
If it is true, the loop is exited; if it is false, another pass is made.

The until part is optional, so a repeat by itself is an infinite loop.
A repeat-until loop can be exited by the use of a stop, return, or
break statement or an implicit stop such as running out of input
with a READ statement.

As stated before, a break statement causes an immediate exit from
the enclosing repeat-until loop. A next statement will cause a skip
to the bottom of a repeat-until loop (Le., to the until part).

THE "return" STATEMENT
The standard Fortran mechanism for returning a value from a
routine uses the name of the routine as a variable. This variable can
be assigned a value. The last value stored in it is the value returned
by the function. For example, in a Fortran routine named equal, the
statements

equal = 0
return

cause equal to return zero.

10-.10

The Ratfor language provides a return statement similar to the C
language return statement. In order to return a value from any
routine, the return statement has the syntax

return (expression)

where expression is the value to be returned.

If there is no parenthesized expression after return, no value is
returned.

THE "define" STATEMENT
The Ratior language provides a define statement similar to the C
language version. Any string of alphanumeric characters can be
defined as a name. Whenever that name occurs in the input
(delimited by nonalphanumerics), it is replaced by the rest of the
definition line. (Comments and trailing white spaces are stripped
off.) A defined name can be arbitrarily long and must begin with a
letter.

Usually the define statement is used for symbolic parameters. The
syntax of the define statement is

define name value

where name is a symbolic name that represents the quantity of value.
For example:

define ROWS 100
define CLOS 50
dimension a(ROWS), b(ROWS, COLS)

if (i > ROWS I j > COLS) ...

IO-ll

causes the preprocessor to replace the name ROWS with the value
100 and the name COLS with the value 50. Alternately, definitions
may be written as

define(ROWS, 1(0)

in which case the defining text is everything after the comma up to
the right parenthesis. This allows multiple-line definitions.

THE "include" STATEMENT
The Ratfor language provides an include statement similar to the
#include < ... > statement in C language. The syntax for this
statement is

include file

which inserts the contents of the named file into the Ratior input
file in place of the include statement. The standard usage is to
place COMMON blocks on a file and use the include statement to
include the common code whenever needed.

FREE-FORM INPUT
In Ratior, statements can be placed anywhere on a line. Long
statements are continued automatically as are long conditions in if,
for, and until statements. Blank lines are iguored. Multiple
statements may appear on one line if they are separated by
semicolons. No semicolon is needed at the end of aJine if Ratfor can
make some reasonable guess about whether the statement ends there.
Lines ending with any of the characters

=+-*,1&(-

are assumed to be continued on the next line. Underscores are
discarded wherever they occur. All other characters remain as part
of the statement.

10-12

Any statement that begins with an all-numeric field is assumed to be
a Fortran label and placed in columns 1 through 5 upon output.
Thus:

write(6, 100); 100 format(" hello")

is converted into

write(6, 100)
100 format(5hhello)

TRANSLATIONS
When the -h option is chosen, text enclosed in matching single or
double quotes is converted to nR. .. but is otherwise unaltered (except
for formatting - it may get split across card boundaries during the
reformatting process). Within quoted strings, the backslash (\)
serves as an escape character; Le., the next character is taken
literally. This provides a way to get quotes and the backslash itself
into quoted strings. For example:

"\"

is a string containing a backslash and an apostrophe. (This is not the
standard convention of doubled quotes, but it is easier to use and
more generaL)

Any line that begins with the character % is left absolutely unaltered
except for stripping off the % and moving the line one position to the
left. This is useful for inserting control cards and other things that
should not be preprocessed (like an existing Fortran program). Use
% only for ordinary statements not for the condition parts of if,
while, etc., or the output may come out in an unexpected place.

10-13

The following character translations are made (except within single
or double quotes or on a line beginning with a %):

.eq.

!= .ne .

> . gt.

>~ .ge.

< .It.

<= .Ie.

& .and.

.or .

. not.

In addition, the following translations are provided for input devices
with restricted character sets:

$(

$)

WARNINGS
The Ratfor preprocessor catches certain syntax errors (such as
missing braces), else statements without if statements, and most
errors involving missing parentheses in statements.

10-14

All other errors are reported by the Fortran compiler.
Unfortunately, the Fortran compiler prints messages in terms of
generated Fortran code and not in terms of the Ratfor code. This
makes it difficult to locate Ratfor statements that contain errors.

The keywords are deserved. Using if, else, while, etc., as variable
names will cause considerable problems. Likewise, spaces within
keywords and use of the Arithmetic IF will cause problems.

The Fortran nH convention is not recognized by Ratfor. Use quotes
instead.

EXAMPLE OF RATFOR CONVERSION
As an example of how to use the Ratfor program, the following
program prog.r (where the .r· indicates a RatIor source program), is
written in the Ratfor language:

ICNT~O

10 WRITE(6,31)
31 FORMAT(" INPUT FIRST NUMBER")

READ(5,32) A
32 FORMAT(FI0.2)

WRITE(6,33)
33 FORMAT(" INPUT SECOND NUMBER")

READ(5,34) B
34 FORMAT(FI0.2)

IF(A<B)
WRITE(6,36) A,B

ELSE WRITE(6,37)A,B
36 FORMAT(FI0.2," <" ,FI0.2)
37 FORMAT(FI0.2," >- ",FlO.2)

ICNT-ICNT+l
IF(ICNT.EQ.5)

GOTO 100
GOTO 10

100 END

10-15

The command

ratfor prog.r > prog.f

causes the Fortran translation program prog.f to be produced. (The
Ratfor program prog.r remains intact.) The Fortran program prog.f
follows:

icnt~O

10 write(6,31)
31 format(" INPUT FIRST NUMBER")

read(5,32) a
32 format(f10.2)

write(6,33)
33 format(" INPUT SECOND NUMBER")

read(5,34) b
34 format(f10.2)

if(.not.(a.1t.b»goto 23000
write(6,36) a,b
goto 23001

23000 continue
write(6,37)a,b

23001 continue
36 format(flO.2," < ",flO.2}
37 format(flO.2," >-" ,flO.2}

icnt-icnt+l
if(.not.(icnt.eq.5}}goto 23002
goto 100

23002 continue
goto 10

100 end

The Fortran program prog.f is compiled using the command

f77 prog.f

10-16

An object program file prog.o and a final output file a.out are
produced. Sinee the output file a.out is an executable file, the
eommand

a.out

causes the program to run.

The Ratfor program prog.r can also be translated and compiled with
the single command

f77 prog.r

where the .r indicates a Ratfor source program. An object file
prog.o and a final output file a.out are produeed.

10-17

10-18

Chapter 11

The Programming Language EFL

INTRODUCTION. 11-1
LEXICAL FORM..................................... 11-2
PROGRAM FORM.................................... 11-8
DATA TYPES AND VARIABLES 11-10
EXPRESSIONS 11-13
DECLARATIONS 11-22
EXECUTABLE STATEMENTS 11-26
PROCEDURES 11-38
ATAVISMS .. 11-41
COMPILER OPTIONS 11-45
EXAMPLES. .. 11-48
PORTABILITY. .. 11-53
DIFFERENCES BETWEEN RATFOR AND EFL 11-54
COMPILER. .. 11-54
CONSTRAINTS ON EFL 11-57

Chapter 11

THE PROGRAMMING LANGUAGE EFL

INTRODUCTION
EFL is a clean, general purpose computer language intended to
encourage portable programming. It has a uniform and readable
syntax and good data and control flow structuring. EFL programs
can be translated into efficient Fortran code, so the EFL programmer
can take advantage of the ubiquity of Fortran, the valuable libraries
of software written in that language, and the portability that comes
with the use of a standardized language, without suffering from
Fortran's many failings as a language. It is especially useful for
numeric programs. Thus, the EFL language permits the programmer
to express complicated ideas in a comprehensible way, while
permitting access to the power of the Fortran environment.

The name EFL originally stood for "Extended Fortran Language."
The current compiler is much more than a simple preprocessor: it
attempts to diagnose all syntax errors, to provide readable Fortran
output, and to avoid a number of niggling restrictions.

In examples and syntax specifications, boldface type is used to
indicate literal words and punctuation, such as while. Words in
italic type indicate an item in a category, such as an expression. A
construct surrounded by double brackets represents a list of one or
more of those items, separated by commas. Thus, the notation

[item I

could refer to any of the following:

item
item, item
item, item. item

11-1

The reader should have a fair degree of familiarity with some
procedural language. There will be occasional references to Ratfor
and to Fortran which may be ignored if the reader is unfamiliar with
those languages.

LEXICAL FORM

Character Set

The following characters are legal in an EFL program:

letters

digits
white space
quotes
sharp
continuation
braces
parentheses
other

abcdefghijklm
nopqrstuvwxyz
0123456789
blank tab

{ }
()

= < >
+
& .

• I
$

Letter case (upper or lower) is ignored except within strings, so "a"
and "A" are treated as the same character. All of the examples
below are printed in lower case. An exclamation mark ("I") may be
used in place of a tilde ("."). Square brackets (,T' and 'T') may be
used in place of braces (" {" and "} ").

Lines

EFL is a line-oriented language. Except in special cases (discussed
below), the end of a line marks the end of a token and the end of a
statement. The trailing portion of a line may be used for a comment.
There is a mechanism for diverting input from one source file to
another, so a single line in the program may be replaced by a number
of lines from the other file. Diagnostic messages are labeled with the
line number of the file on which they are detected.

11-2

White Space

Outside of a character string or comment, any sequence of one or
more spaces or tab characters acts as a single space. Such a space
terminates a token.

Comments

A comment may appear at the end of any line. It is introduced by a
sharp (#) character, and continues to the end of the line. (A sharp
inside of a quoted string does not mark a comment.) The sharp and
succeeding characters on the line are discarded. A blank line is also
a comment. Comments have no effect on execution.

Include Files

It is possible to insert the contents of a file at a point in the source
text, by referencing it in a line like

include)oe

No statement or comment may follow an include on a line. In
effect, the include line is replaced by the lines in the named file, but
diagnostics refer to the line number in the included file. Includes
may be nested at least ten deep.

Continuation

Lines may be continued explicitly by using the underscore (_)
character. If the last character of a line (after comments and
trailing white space have been stripped) is an underscore, the end of
a line and the initial blanks on the next line are ignored.
Underscores are ignored in other contexts (except inside of quoted
strings). Thus

equals 109•

11-3

There are also rules for continuing lines automatically: the end of
line is ignored whenever it is obvious that the statement is not
complete. To be specific, a statement is continued if the last token on
a line is an operator, comma, left brace, or left parenthesis. (A
statement is not continued just because of unbalanced braces or
parentheses.) Some compound statements are also continued
automatically; these points are noted in the sections on executable
statements.

Multiple Statements on a Line

A semicolon terminates the current statement. Thus, it is possible to
write more than one statement on a line. A line consisting only of a
semicolon, or a semicolon following a semicolon, forms a null
statement.

Tokens

A program is made up of a sequence of. tokens. Each token is a
sequence of characters. A blank terminates any token other than a
quoted string. End of line also terminates a token unless explicit
continuation (see above) is signaled by an underscore.

Identifiers

An identifier is a letter or a letter followed by letters or digits. The
following is a list of the reserved words that have special meaning in
EFL. They will be discussed later.

11-4

array exit precision
automatic external procedure
break false read
call field readbin
case for real
character function repeat
common go return
complex goto select
continue if short
debug implicit sizeof
default include static
define initial struct
dimension integer subroutine
do internal true
double lengthof until
doubleprecision logical value
else long while
end next write
equivalence option writebin

The use of these words is discussed below. These words may not be
used for any other purpose.

Strings

A character string is a sequence 01 characters surrounded by
quotation marks. If the string is bounded by single-quote marks (,),
it may contain double quote marks ("), and vice versa. A quoted
string may not be broken across a line boundary.

'hello there'
" ain't misbehavin"'

Integer Constants

An integer constant is a sequence of one or more digits.

o
57
123456

11-5

Floating Point Constants

A floating point constant contains a dot and/or an exponent field.
An exponent field is a letter d or e followed by an optionally signed
integer constant. If I and J are integer constants and E is an
exponent field, then a floating constant has one of the following
forms:

Punctuation

.1
I.
I.J
IE
I.E
.IE
I.JE

Certain characters are used to group or separate objects in the
language. These are

parentheses ()
braces { }
comma
semicolon
colon
end-of-line

The end·of-line is a token (statement separator) when the line is
neither blank nor continued.

Operators

The EFL operators are written as sequences of one or more non·
alphanumeric characters.

11-6

+ - • / ..
< <= > >=
&& II &
+=
&&= 11=
-> . $

/= .. =
&= 1=

A dot (".") is an operator when it qualifies a structure element name,
but not when it acts as a decimal point in a numeric constant. There
is a special mode (see" ATAVISMS") in which some of the operators
may be represented by a string consisting of a dot, an identifier, and
a dot (e.g., .It.).

Macros

EFL has a simple macro substitution facility. An identifier may be
defined to be equal to a string of tokens; whenever that name appears
as a token in the program, the string replaces it. A macro name is
given a value in a deime statement like

define count n += 1

Any time the name count appears in the program, it is replaced by
the statement

n += 1

A define statement must appear alone on a line; the form is

define name rest-ol-line

Trailing comments are part of the string.

11-7

PROGRAM FORM

Files

A file is a sequence of lines. A file is compiled as a single unit. It
may contain one or more procedures. Declarations and options that
appear outside of a procedure affect the succeeding procedures on
that file.

Procedures

Procedures are the largest grouping of statements in EFL. Each
procedure has a name by which it is invoked. (The first procedure
invoked during execution, known as the main procedure, has the null
name.) Procedure calls and argument passing are discussed in
" PROCEDURES."

Blocks

Statements may be formed into groups inside of a procedure. To
describe the scope of names, it is convenient to introduce the ideas of
block and of nesting level. The beginning of a program file is at
nesting level zero. Any options, macro definitions, or variable
declarations are also aHevel zero. The text immediately following a
procedure statement is at level 1. After the declarations, a left
brace marks the beginning of a new block and increases the nesting
level by 1; a right brace drops the level by 1. (Braces inside
declarations do not mark blocks.) (See· " Blocks" under
"EXECUTABLE STATEMENTS.") An end statement marks the end
of the procedure, level 1, and the return to level O. A name (variable
or macro) that is defined at level K is defined throughout that block

11-8

and in all deeper nested levels in which that name is not redefined or
redeclared. Thus, a procedure might look like the following:

block 0
procedure george
real x
x=2

if(x> 2)
{ # new block
integer x# a different variable
do x = 1,7

write(,x)

• } # end of block
end # end of procedure, return to block 0

Statements

A statement is terminated by end of line or by a semicolon.
Statements are of the following types:

Option
Include
Define

Procedure
End

Declarative
Executable

The option statement is described in " COMPILER OPTIONS". The
include, define, and end statements have been described above;
they may not be followed by another statement on a line. Each
procedure begins with a procedure statement and finishes with an
end statement; these are discussed in " PROCEDURES" .
Declarations describe types and values of variables and procedures.
Executable statements cause specific actions to be taken. A block is
an example of an executable statement; it is made up of declarative
and executable statements.

11-9

Labels

An executable statement may have a label which may be used in a
branch statement. A label is an identifier followed by a colon, as in

read(, x)
if(x < 3) goto error

error: fatal(" bad input")

DATA TYPES AND VARIABLES

EFL supports a small number of basic (scalar) types. The
programmer may define objects made up of variables of basic type;
other aggregates may then be defined in terms of previously defined
aggregates.

Basic Types

The basic types are

logical
integer
field(m:n)
real
complex
long real
long complex
cbaracter(n)

A logical quantity may take on the two values true and false. An
integer may take on any whole number value in some machine­
dependent range. A field quantity is an integer restricted to a
particular closed interval ([m:n]). A "real" quantity is a floating
point approximation to a real or rational number. A long real is a
more precise approximation to a rational. (Real quantities are
represented as single precision floating point numbers; long reals are
double precision floating point numbers.) A complex quantity is an
approximation to a complex number, and is represented as a pair of
reals. A character quantity is a fixed-length string of n characters.

11·10

Constants

There is a notation for a constant of each basic type.

A logical may take on the two values

true
false

An integer or field constant is a fixed point constant, optionally
preceded by a plus or minus sign, as in

17
-94
+6
o

A long real ("double precision") constant is a floating point constant
containing an exponent field that begins with the letter d. A real
("single precision") constant is any other floating point constant. A
real or long real constant may be preceded by a plus or minus sign.
The following are valid real constants:

17.3
-.4
7.ge-6 (= 7.9XI0-6)

14e9 (= L4XIOIO)

The following are valid long real constants

7.9d-6 (= 7.9XI0-6)
5d3

A character constant is a quoted string.

11-11

Variables

A variable is a quantity with a name and" a location. At any
particular time the variable may also have a value. (A variable is
said to be undefined before it is initialized or assigned its first value,
and after certain indefinite operations are performed.) Each variable
has certain attributes:

Storage Class

The association of a name and a location is either transitory or
permanent. Transitory association is achieved when arguments are
passed to procedures. Other associations are permanent (static). (A
future extension of EFL may include dynamically allocated variables.)

Scope of Names

The names of common areas are global, as are procedure names:
these names may be used anywhere in the program. All other names
are local to the block in which they are declared.

Precision

Floating point variables are either of normal or long precision. This
attribute may be stated independently of the basic type.

Arrays

It is possible to declare rectangnlar arrays (of any dimension) of
values of the same type. The index set is always a cross-product of
intervals of integers. The lower and upper bounds of the intervals
must be constants for arrays that are local or common. A formal
argument array may have intervals that are of length equal to one of
the other formal arguments. An element of an array is denoted by
the array name followed by a parenthesized comma-separated -Jist of
integer values, each of which must lie within the corresponding
interval. (The intervals may include negative numbers.) Entire
arrays may be passed as procedure arguments or in input/output
lists, or they may be initialized; all other array references must be to
individual elements.

11-12

Structures

It is possible to define new types which are made up of elements of
other types. The compound object is known as a structure; its
constituents are called members of the structure. The structure may
be given a name, which acts as a type name in the remaining
statements within the scope of its declaration. The elements of a
structure may be of any type (including previously defined
structures), or they may be arrays of such objects. Entire structures
may be passed to procedures or be used in input! output lists;
individual elements of structures may be referenced. The uses of
structures will be detailed below. The following structure might
represent a symbol table:

struct tableentry
{
character(8) name
integer hash value
integer numberofelements
field(O:I) initialized, used, set
field(O:10) type
}

EXPRESSIONS

Expressions are syntactic forms that yield a value. An expression
may have any of the following forms, recursively applied:

primary
(expression)
unary-operator expression
expression binary-operator expression

In the following table of operators, all operators on a line have equal
precedence and have higher precedence than operators on later lines.
The meanings of these operators are described in .. Unary Operators"
and" Binary Operators" under" EXPRESSlONS"

11-13

->
••
• I unary+ - ++
+
< <= > >= ==
& &&
I II
$
= += -= *= 1= **= &= 1= &&:= 11=

Examples of expressions are

a<b&& b<c
-(a + sin(x» I (5+cos(x»**2

Primaries

Primaries al.'e the basic elements of expressions. They include
constants, variables, array elements, structure members, procedure
invocations, input/output mc:pressions, coercions, and sizes.

Constants

Constants are described in "Constants· under" DATA TYPES AND
VARIABLES" .

Variables

Scalar variable names are primaries. They may appear on the left or
the right side of an assignment. Unqualified names of aggregates
(structures or arrays) may appear only as procedure arguments and
in inpl!t/output lists.

Array Elements

An element of an array is denoted by the array name followed by a
parenthesized list of subscripts, one integer value for each declared
dimension:

11-14

a(5)
b(6,-3,4)

Structure Members

A structure name followed by a dot followed by the name of a
member of that structure constitutes a reference to that element. If
that element is itself a structure, the reference may be further
qualified.

Procedure Invocations

a.b
x(3).y(4).z(5)

A procedure is invoked by an expression of one of the forms

procedurename ()
procedurename (expression)
procedurename (expression-i, ... , expression-n)

The procedurename is either the name of a variable declared
external or it is the name of a function known to the EFL compiler
(see" Known Functions" under" PROCEDURES"), or it is the actual
name of a procedure, as it appears in a procedure statement. If a
procedurename is declared external and is an argument of the
current procedure, it is associated with the procedure name passed as
actual argument; otherwise it is the actual name of a procedure.
Each expression in the above is called an actual argument. £xamples
of procedure invocations are

f(x)
work()
g(x, y+3, 'xx')

When one of these procedure invocations is to be performed, each of
the actual argument expressions is first evaluated. The types,
precisions, and bounds of actual and formal arguments should agree.
If an actual argument is a variable name, array element, or structure
member, the called procedure is per,mitted to use the corresponding

11-15

formal argument as the left side of an assignment or in an input list;
otherwise it may only use the value. After the formal and actual
arguments are associated, control is passed to the first executable
statement of the procedure. When a return statement is executed in
that procedure, or when control reaches the end statement of that
procedure, the function value is made available as the value of the
procedure invocation. The type of the value is determined by the
attributes of the procedurename that are declared or implied in the
calling procedure, which must agree with the attributes declared for
the function in its procedure. In the special case of a generic
function, the type of the result is also affected by the type of the
argument. See" PROCEDURES" .

Input/Output Expressions

The EFL input/output syntactic forms may be used as integer
primaries that have a non-zero value if an error occurs during the
input or output. See " Input/Output Statements" under
"EXECUTABLE STATEMENTS".

Coercions

An expression of one precision or type may be converted to another
by an expression of the form

attributes (expression)

At present, the only attributes permitted" are precision and basic
types. Attributes are separated by white space. An arithmetic value
of one type may be coerced to any other arithmetie type; a character
expression of one length may be coerced to a character expression of
another length; logical expressions may not be coerced to a nonlogical
type. As a special case, a quantity of complex or long complex
type may be constructed from two integer or real quantities by
passing two expressions (separated by a comma) in the coercion.
Examples and equivalent values are

11-16

integer(5.3) = 5
long real(5) = 5.0dO
complex(5,3) = 5+3i

Most conversions are done implicitly, since most binary operators
permit operands of different arithmetic types. Explicit coercions are
of most use when it is necessary to convert the type of an actual
argument to match that of the corresponding formal parameter in a
procedure call.

Sizes

There is a notation which yields the amount of memory required to
store a datum or an item of specified type:

sizeof (leftside)
sizeof (attributes)

In the first case, leftside can denote a variable, array, array element,
or structure member. The value of sizeof is an integer, which gives
the size in arbitrary units. If the size is needed in terms of the size
of some specific unit, this can be computed by division:

sizeof(x) I sizeof(integer)

yields the size of the variable x in integer words.

The distance between consecutive elements of an array may not equal
sizeof because certain data types require final padding on some
machines. The lengthof operator gives this larger value, again in
arbitrary units. The syntax is

Parentheses

lengthof (leftside)
lengthof (attributes)

An expression surrounded by parentheses is itself an expression. A
parenthesized expression must be evaluated before an expression of
which it is a part is evaluated.

11-17

Unary Operators

All of the unary operators in EFL are prefix operators. The result of
a unary operator has the same type as its operand.

Arithmetic

Unary + has no effect. A unary - yields the negative of its operand.

The prefix operator ++ adds one to its operand. The prefix operator
-- subtracts one from its operand. The value of either expression is
the result of the addition or subtraction. For these two operators,
the operand must be a scalar, array element, or structure member of
arithmetic type. (As a side effect, the operand value is changed.)

Logical

The only logical unary operator is complement (-). This operator is
defined by the equations

- true = false
- false = true

Binary Operators

Most EFL operators have two operands, separated by the operator.
Because the character set must be limited, some of the operators are
denoted by strings of two or three special characters. All binary
operators except exponentiation are left associative.

Arithmetic

The binary arithmetic operators are

+ addition
subtraction
multiplication

/ division
•• exponentiation

11-18

Exponentiation is right associative: a**b>*c ~ a •• (b •• c) ~ alb' J The
operations have the conventional meanings: 8+2 ~ lO, 8-2 ~ 6,
8.2 ~ 16, 8/2 ~ 4, 8 .. 2 ~ 82 ~ 64.

The type of the result of a binary operation A op B is determined by
the types of its operands:

Tl::pe of A

r
I r
c

I c

r r
I r I r
c c
I c I c

i ~ integer
r ~ real

Type of B

I r
I r
I r
I r
I c
I c

I r ~ long real
c ~ complex
I c ~ long complex

c I c
I c

c I c
I c I c
c I c
I c I c

If the type of an operand differs from the type of the result, the
calculation is done as if the operand were first coerced to the type of
the result. If both operands are integers, the result is of type integer,
and is computed exactly. (Quotients are truncated toward zero, so
8/1!~2.)

Logical

The two binary logical operations in EFL, and and or, are defined by
the truth tables:

A B A and B A orB
false false false false
false true false true
true false false true
true true true true

11·19

Each of these operators comes in two forms. In one form, the ordel
of evaluation is specified. The expression

a&&b

is evaluated by first evaluating a; if it is false then the expression is
false and b is not evaluated; otherwise, the expression has the value
of b. The expression

aUb

is evaluated by first evaluating a; if it is true then the expression is
true and b is not evaluated; otherwise, the expression has the value
of b. The other forms of the operators'(& for and and I for or) do
not imply an order of evaluation. With the latter operators, the
compiler may speed up the code by evaluating the operands in any
order.

Relational Operators

There are six relations between arithmetic quantities. These
operators are not associative.

EFL Operat~>r Meaning
< < less than
<= '" less than or equal to

equal to ,.. not equal to
> > greater than
>= ;" greater than or equal

Since the complex numbers are not ordered, the only relational
operators that may take complex operands are == and -= . The
character collating sequence is not defined.

11-20

Assignment Operators

All of the assignment operators are right associative. The simple
form of assignment is

basic-left-side expression

A basic-left-side is a scalar variable name, array element, or
structure member of basic type. This statement computes the
expression on the right side, and stores that value (possibly after
coercing the value to the type of the left side) in the location named
by the left side. The value of the assignment expression is the value
assigned to the left side after coercion.

There is also an assignment operator corresponding to each binary
arithmetic and logical operator. In each case, a op ~ b is equivalent
to a ~ a op b. (The operator and equal sign must not be separated
by blanks.) Thus, n+~2 adds 2 to n. The location of the left side is
evaluated only once.

Dynamic Structures

EFL does not have an address (pointer, reference) type. However,
there is a notation for dynamic structures,

leftside -> structurename

This expression is a structure with the shape implied by
structurename but starting at the location of leftside. In effect, this
overlays the structure template at the specified location. The leftside
must be a variable, array, array element, or structure member. The
type of the leftside must be one of the types in the structure
declaration. An element of such a structure is denoted in the usual
way using the dot operator. Thus,

place(i) -> st.elt

refers to the elt member of the st structure starting at the i th

element of the array place.

11-21

Repetition Operator

Inside of a list, an element of the form

integer-constant-expression $ constant-expression

is equivalent to the appearance of the expression a number of times
equal to the first expression. Thus,

(3,3$4,5)

is equivalent to

(3,4,4,4,5)

Constant Expressions

If an expression is built up out of operators (other than functions)
and constants, the value of the expression is a constant, and may be
used anywhere a constant is required.

DECLARATIONS
Declarations statement describe the meaning, shape, and size of
named objects in the EFL language.

Syntax

A declaration statement is made up of attributes and variables.
Declaration statements are of two forms:

attributes variable-list
attributes declarations

In the first case, each name in the variable-list has the specified
attributes. In the second, each name in the declarations also has the
specified attributes. A variable name may appear in more than one
variable list, so long as the attributes are not contradictory. Each

11-22

:lame of a nonargument variable may be accompanied by an initial
value specification. The declarations inside the braces are one or
more declaration statements. Examples of declarations are

Attributes

Basic Types

integer k=2

long real b(7,3)

common(cname)
{
integer i
long real array(5,O:3) x, y
character(7) ch
}

The following are basic types in declarations

logical
integer
field(m:n)
character(k)
real
complex

In the above, the quantities k, m, and n denote integer constant
expressions with the properties k>O and n >m.

Arrays

The dimensionality may be declared by an array attribute

Each of the b; may either be a single integer expression or a pair of
integer expressions separated by a colon. The pair of expressions
form a lower and an upper bound; the single expression is an upper
bound with an implied lower bound of 1. The number of dim';nsions
is equal to n, the number of bounds. All of the integer expressions

11-23

must be constants. An exception is permitted only if all of the
variables associated with an array declarator are formal arguments
of the procedure; in this case, each bound must have the property
that upper -lower + 1 is equal to a formal argument of the procedure.
(The compiler has limited ability to simplify expressions, but it will
recoguize important cases such as (O:n-l). The upper bound for the
last dimension (b.) may be marked by an asterisk (•) if the size of
the array is not known. The following are legal array attributes: .

Structures

array(5)
array(5, 1:5, -3:0)
array(5, .)
array(O:m-l, m)

A structure declaration is of the form

struct structname { declaration statements}

The structname is optional; if it is present, it acts as if it were the
name of a type in the rest of its scope. Each name that appears
inside the declarations is a member of the structure, and has a
special meaning when used to qualify any variable declared with the
structure type. A name may appear as a member of any number of
structures, and may also be the name of an ordinary variable, since a
structure member name is used only in contexts where the parent
type is known. The following are valid structure attributes

struct xx
{
integer a, b
real x(5)
}

struct { xx z(3); character(5) y }

The last line defines a structure containing an array of three xx's
and a character string.

11-24

Precision

Variables of floating point (real or complex) type may be declared
to be long to ensure they have higher precision· than ordinary
floating point variables. The default precision is short.

Common

Certain objects called common areas have external scope, and may be
referenced by any procedure that has a declaration for the name
using a

common (commonareaname)

attribute. All of the variables declared with a particular common
attribute are in the same block; the order in which they are declared
is significant. Declarations for the same block in differing
procedures must have the variables in the same order and with the
same types, precision, and shapes, though not necessarily with the
same names.

External

If a name is used as the procedure name in a procedure invocation, it
is implicitly declared to have the external attribute. If a procedure
name is to be passed as an argument, it is necessary to declare it in a
statement of the form

external (name J

If a name has the external attribute .and it is a formal argument of
the procedure, then it is associated with a procedure identifier passed
as an actual argument at IlIlch call. If the name is not a formal
argument, then that name is the actual name of a procedure, as it
appears in the corresponding procedure statement.

11-25

Variable List

The elements of a variable list in a declaration consist of a name, an
optional dimension specification, and an optional initial value
specification. The name follows the usual rules. The dimension
specification is the same form and meaning as the parenthesized list
in an array attribute. The initial value specification is an equal sign
(=) followed by a constant expression. If the name is an array, the
right side of the equal sign may be a parenthesized list of constant
expressions, or repeated elements or lists; the total number of
elements in the list must not exceed the number of elements of the
array, which are filled in column-major order.

The Initial Statement

An initial value may also be specified for a simple variable, array,
array element, or member of a structure using a statement of the
form

initial [var = val D

The var may be a variable name, array element specification, or
member of structure. The right side follows the same rules as for an
initial value specification in other declaration statements. .

EXECUTABLE STATEMENTS
Every useful EFL program contains executable statements, otherwise
it would not do anything and would not need to be run. Statements
are frequently made up of other statements. Blocks are the most
obvious case, but many other forms contain statements as consti­
tuents.

To increase the legibility of EFL programs, some of the statement
forms can be broken without an explicit continuation. A square (0)
in the syntax represents a point where the end of a line will be
ignored.

11-26

i!:xpression Statements

'1ubroutiDe Call

~ procedure invocation that returns no value is known as a
IUbroutine call. Such an invocation is a statement. Examples are

work(in, out)
run()

[nput/output statements (see .. Input/Output Statements" under
'EXECUTABLE STATEMENTS") resemble procedure invocations
but do not yield a value. If an error occurs the program stops.

AssigDmeDt StatemeDts

An expression that is a simple assignment (=) or a compound
assignment (+= etc.) is a statement:

Blocks

a=b
a = sin(x)/6
x *= y

A block is a compound statement that acts as a statement. A block
begins with a left brace, optionally followed by declarations,
optionally followed by executable statements, followed by a right
brace. A block may be used anywhere a statement is permitted. A
block is not an expression and does not have a value. An example Of
a block is

{
integer i # this variable is unknown

outside the braces

big = 0
do i = l,n

if(big < a(i»
big = ali)

11-27

Test Statements

Test statements permit execution of certain statements conditional
on the truth of a predicate.

If Statement

The simplest of the test statements is the if statement, of form

if (logical-expression) 0 statemen t

The logical expression is evaluated; if it is true, then the statement is
executed.

If-Else

A more general statement is of the form

if (logical-expression) 0 statement-l 0
else 0 statement-2

If the expression is true then statement-l is executed, otherwise,
statement-2 is executed. Either of the consequent statements may
itself be an if-else so a completely nested test sequence is possible:

11-28

if(x<y)
if(a<b)

k=l
else

k=2
else

if(a<b)
m= 1

else
m= 2

An else applies to the nearest preceding un-elsed if. A more
common use is as a sequential test:

Select Statement

if(x==I)
k=1

else if(x==3 x==5)
k=2

else
k=3

A multiway test on the value of a quantity is succinctly stated as a
select statement, which has the general form

select(expression) 0 block

Inside the block two special types of labels are recognized. A prefix
of the form

case [constant I :

marks the statement to which control is passed if the expression in
the select has a value equal to one of the case constants. If the
expression equals none of these constants, but there is a label
default inside the select, a branch is taken to that point; otherwise
the statement following the right brace is executed. Once execution
begins at a case or default label, it continues until the next case or
default is encountered. The else-if example above is better written
as

select(x)
{
case I:

k=l
case 3.5:

k=2
default:

k=3

Note that 'Control does not "fall through" to the next case.
11-29

Loops

The loop forms provide the best way of repeating a statement 01

sequence of operations. The simplest (while) form is theoreticaII~
sufficient, but it is very convenient to have the more general loop,
available, since each expresses a mode of control that arise,
frequently in practice.

While Statement

This construct has the form

while (logical-expression) 0 statement

The expression is evaluated; if it is true, the statement is executed,
and then the test is performed again. If the expression is false,
execution proceeds to the next statement.

For Statement

The for statement is a more elaborate looping construct. It has the
form

for (initial-statement, 0 logical-expression,
o iteration-statement) 0 body-statement

Except for the behavior of 'the next statement (see "Branch
Statement" under" EXECUTABLE STATEMENTS"), this construct
is equivalent to

11-30

initial-statement
while (logical-expression)

{
body-statement
iteration-statement
}

This form is useful for general arithmetic iterations, and for various
pointer-type operations. The sum of the integers from 1 to 100 can be
computed by the fragment

n=O
for(i = I, i <= 100, i += 1)

n += i

Alternatively, the computation could be done by the single statement

for({ n = 0 ; i = 1 } , k=100 , { n += i ; ++i })

Note that the body of the for loop is a null statement in this case.
An example of following a linked list will be given later.

Repeat Statement

The statement

repeat D statement

executes the statement, then does it again, without any termination
test. Obviously, a test inside the statement is needed to stop the loop.

Repeat _ Until Statement

The while loop performs a test before each iteration. The statement

repeat D statement Duntil (logical-expression)

executes the statement, then evaluates the l(!gical; if the logical is
true the loop is complete; otbe""ise, control returns to the statement.

11-31

Thus, the body is always executed at least once. The until refers b
the nearest preceding repeat that has not been paired with an until
In practice, this appears to be the least frequently used loopin!
construct.

Do Loop

The simple arithmetic progression is a very common one in numerica.
applications. EFL has a special loop form for ranging over at
ascending arithmetic sequence

do variable = expressjon~l, expression-2, expression-3
statement

The variable is first given the value expression-l. The statement is
executed, then expression-8 is added to the variable. The loop is
repeated until the variable exceeds expression-2. If expression-8 and
the preceding comma are omitted, the increment is taken to be 1.
The loop above is equivalent to

t2 = expression-2
t3 = expression-3
for(variable=expression-1, variable<=t2, variable+=t3)

statement

(The compiler translates EFL do statements into Fortran DO
statements, which are in turn usually compiled into excellent code.)
The do variable may not be changed inside of the loop, and
expression-l must not exceed expression-2. The sum of the first
hundred positive integers could be computed by

11-32

n=O
do i = 1,100

n +=i

~ranch Statements

fost of the need for branch statements in programs can be averted
'y using the loop and test constructs, but there are programs where
hey are very useful.

'loto Statement

:he most general, and most dangerous, branching statement is the
,imple unconditional

goto label

Hter executing this statement, the next statement performed is the
me following the given label. Inside of a select the case labels of
.hat block may be used as labels, as in the following example:

select(k)

case 1:

case 2:

case 3:

case 4:

default:

error(7)

k=2
goto case 4

k=/)
goto case 4

fixup(k)
goto default

prmsg(" ouch")

11-33

(If two select statements are nested, the case labels of the outer
select are not accessible from the inner one.)

Break Statement

A safer statement is one which transfers control to the statement
following the current select or loop form. A statement of this sort
is almost always needed in a repeat loop:

repeat
{
do a computation
if (finished)

break

More general forms permit controlling a branch out of more than one
construct.

break 3

transfers control to the statement following the third loop and/or
select surrounding the statement. It is possible to specify which
type of construct (for, while, repeat, do, or select) is to be
counted. The statement

break while

breaks out of the first surrounding while statement. Either of the
statements

break 3 for
break for 3

will transfer to the statement after the third enclosing for loop.

11-34

Next Statement

The next statement causes the first surrounding loop statement to
go on to the next iteration: the next operation performed is the test
of a while, the iteration-statement of a for, the body of a repeat,
the test of a repeat ... until, or the increment of a do. Elaborations
similar to those for break are available:

next
next 3
next 3 for
next for 3

A next statement ignores select statements.

Return

The last statement of a procedure is followed by a return of control
to the caller. If it is desired to effect such a return from any other
point in the procedure, a

return

statement may be executed. Inside a function procedure, the function
value ia specified as an argument of the statement:

return (expression)

Input/Output Statements

EFL has two input statements (read and readbin), two output
statements (write and write bin), and three control statements
(endfile, rewind, and backspace). These forms may be used
either as a primary with a integer value or as a statement. If an
exception occurs when one of these forms is used as a statement, the
result is undefined but will probably be treated as a fatal error. If
they are used in a context where they return a value, they return zero
if no exception occurs. For the input forms, a negative value
indicates end-of-file and a positive value an error. The input/output
part of EFL very strongly reflects the facilities of Fortran.

11-35

Input/Output Units

Each 1/0 statement refers to a "unit/' identified by a small positive
integer. Two special units are defined by EFL, the standard input
unit and the standard output unit. These particular units are
assumed if no unit is specified in an 1/0 transmission statement.

The data on the unit are organized into records. These records may
be read or written in a fixed sequence, and each transmission moves
an integral number of records. Transmission proceeds from the first
record until the end of file.

Binary Input/Output

The readbin and write bin statements transmit data in a machine­
dependent but swift manner. The statements are of the form

writebin(unit, binary-output-list)
readbin(unit, binary-input-list)

Each statement moves one unformatted record between storage and
the device. The unit is an integer expression. A binary-output-list is
an iolist (see below) without any format specifiers. A binary-input­
list is an iolist without format specifiers in which each of the
expressions is a variable name, array element, or structure member.

Formatted Input/Output

The read and write statements transmit data in the form of lines of
characters. Each statement moves one or more records (lines).
Numbers are translated into decimal notation. The exact form of the
lines is determined by format specifications, whether provided
explicitly in the statement or implicitly. The syntax of the
statements is

11-36

write(unit, formatted-output-list)
read(unit, formatted-input-list)

rhe lists are of the same form as for binary 110, except that the lists
nay include format specifications. If the unit is omitted, the
,tandard input or output unit is used.

ro/ists

I!.n iolist specifies a set of values to be written or a set of variables
nto which values are to be read. An iolist is a list of one or more
'oexpressions of the form

expression
{ iolist}
do-specification { iolist }

l"or formatted 110, an ioexpression may also have the forms

ioexpression : format-specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar
effect: the values in the braces are transmitted repeatedly until the
do execution is complete.

Formats

The following are permissible format-specifiers. The quantities w, d,
and k must be integer constant expressions.

i(w)
f(w,d)

l(w)

integer with w digits
floating point number of w characters,
d of them to the right of the decimal point.
floating point number of w characters,
d of them to the right of the decimal point,
with the exponent field marked .
with the letter e
logical field of width w characters,
the first of which is t or f
(the rest are blank on output, ignored on input)
standing for true and false respectively

11-37

c character string of width equal to
the length of the datum

c(w) character string of width w
s(k) skip k lines
x(k) skip k spaces

use the characters inside the
string as a Fortran format

If no format is specified for an item in a formatted input/output
statement, a default form is chosen.

If an item in a list is an array name, then the entire array is
transmitted as a sequence of elements, each with its own format.
The elements are transmitted in column-major order, the same order
used for array initializations.

Manipulation Statements

The three input/output statements

backspace(unit)
rewind(unit)
endfile(nnit)

look like ordinary procedure calls, but may be used either as
statements or as integer expressions wbich yield non-zero if an error
is detected. backspace causes the specified unit to back up, so that
the next read will re-read the previous record, and the next write will
over-write it. rewind moves the device to its beginning, so that the
next input statement will read the first record. endfile causes the
file to be marked so that the record most recently written will be the
last record on the file, and any attempt to read past is an error.

PROCEDURES
Procedures are the basic unit of an EFL program, and provide the
means of segmenting a program into separately compilable and
named parts.

11-38

Procedures Statement

Each procedure begins with a statement of one of the forms

procedure
attributes procedure procedurename
attributes procedure procedurename ()
attributes procedure procedurename ([name J)

The first case specifies the main procedure, where execution begins.
In the two other cases, the attributes may specify precision and type,
or they may be omitted entirely. The precision and type of the
procedure may be declared in an ordinary declaration statement. If
no type is declared, then the procedure is called a subroutine and no
value may be returned for it. Otherwise, the procedure is a function
and a value of the declared type is returned for each call. Each name
inside the parentheses in the last form above is called a formal
argument of the procedure.

End Statement

Each procedure terminates with a statement

end

Argument Association

When a procedure is invoked, the actual arguments are evaluated. If
an actual argument is the name of a variable, an array element, or a
structure member, that entity becomes associated with the formal
argument, and the procedure may reference the values in the object,
and assigu to it. Otherwise, the value of the actual is associated with
the formal argument, but the procedure may not attempt to change
the value of that formal argument.

If the value of one of the arguments is changed in the procedure, it is
not permitted that the corresponding actual argument be associated
with another formal argument or with a common element that is
referenced in the procedure.

11-39

Execution and Return Values

After actual and formal arguments have been associated. control
passes to the first executable statement of the procedure. Control
returns to the invoker either when the end statement of the
procedure is. reached or when a return statement is executed. If the
procedure is a function (has a declared type). and a return(value) is
executed. the value is coerced to the correct type and precision and
returned.

Known Functions

A number of functions are known to EFL, and need not be declared.
The compiler knows the types of these functions. Some of them are
·generic; i.e .• they name a family of functions that differ in the types
of their arguments and return values. The compiler chooses which
element of the set to invoke based upon the attributes of the actual
arguments.

Minimum and Maximum Functions

The generic functions are min and max. The min calls return the
value of tJieir smallest argument; the max calls return the value of
their largest argument. These are the only functions that may take
different numbers of arguments in different calls. If any of the
arguments are long real then the result is long real. Otherwise. if
any of the arguments are real then ihe result is real; otherwise all
the arguments and the result must be integer. Examples are

Absolute Value

min(5, x, -3.20)
max(i, z)

The abe function is a generic function that returns the magnitude of
its argument. For integer and real arguments the type of the r.esult
is identical to the type of the argument; for complex arguments the
type of the result is the real of the same precision.

11-40

Elementary Functions

The following generic functions take arguments of real, long real,
or complex type and return a result of the same type:

sin
cos
exp
log
log10
sqrt

sine lunction
eosine lunction
exponential function (eX).
natural (base e) logarithm
common (base 10) logarithm
square root function (Vx).

In addition, the following functions accept only real or long real
arguments:

atan

atan2

Otber Generic Functions

atan (x)=tan-'x

atan 2(x ,y)=tan-' .!.
y

The sign functions takes two arguments of identical type;
sign(x ,y) = sgn (y) I x I. The mod function yields the remainder of
its first argument when divided by its second. These functions accept
integer and real arguments.

ATAVISMS
Certain facilities are included in the EFL language to ease the
conversion of old Fortran or Ratfor programs to EFL.

Escape Lines

In order to make use of nonstandard features of the local Fortran
compiler, it is occasionally necessary to pass a particular line through
to the EFL compiler output. A line that begins with a percent sign
("%") is copied through to the output, with the percent sign removed
but no other change. Inside of a procedure, each escape line is
treated as an executable statement. If a sequence of lines constitute
a continued Fortran statement, they should be enclosed in braces.

11-41

Call Statement

A subroutine call may be preceded by the keyword call.

call joe
call work(17)

Obsolete Keywords

The following keywords are recognized as synonyms of EFL keywords:

Fortran

double precision
function
subroutine

EFL

long real
procedure
procedure (untyped)

Numeric Labels

Standard statement labels are identifiers. A numeric (positive
integer constant) label is also permitted; the colon is optional
following a numeric label.

Implicit Declarations

If a name is used but does not appear in a declaration, the EFL
compiler gives a warning and assumes a declaration for it. If it is
used in the context of a procedure invocation, it is assumed to be a
procedure name; otherwise it is assumed to be a local variable defined
at nesting level 1 in the current procedure. The assumed type is
determined by the first letter of the name. The association of letters
and types may be given in an implicit statement, with syntax

implicit (letter-list) type

where a letter-list is a list of individual letters or ranges (pair of
letters separated by a minus sign). If no implicit statement appears,
the following rules are assumed:

11-42

implicit (a-h, o-z) real
implicit (i-n) integer

Computed Goto

Fortran contains an indexed multi-way branch; this facility may be
used in EFL by the computed GOTO:

goto ([label B), expression

The expression must be of type integer and be positive but be no
larger than the number of labels in the list. Control is passed to the
statement marked by the label whose position in the list is equal to
the expression.

Goto Statement

In unconditional and computed goto statements, it is permissible to
separate the go and to words, as in

go to xyz

Dot Names

Fortran uses a restricted character set, and represents certain
operators by multi-character sequences. There is an option
(dots=on; see" COMPILER OPTIONS") which forces the compiler to
recognize the forms in the second column below:

< .It.
<= .Ie.
> .gt.
>= .ge.

.eq •

. ne .
& . and.

.or .
&& • andand.
II .oror .

. not .
true . true.
false .false.

11-43

In this mode, no structure element may be named It, Ie, etc. The
readable forms in the left column are always recognized.

Complex Constants

A complex constant may be written as a parenthesized list of real
quantities, such as

(1.5,3.0)

The preferred notation is by a type coercion,

complex(1.5,3.0)

Function Values

The preferred way to return a value from a function in EFL is the
return(value) construct. However, the name of the function acts as
a variable to which values may be assigned; an ordinary return
statemellt returns the last value assigned to that name as the
function value.

Equivalence

A statement of the form

declares that each of the Vi starts at the same memory location.
Each of the Vi may be a variable name, array element name, or
structure member.

11-44

Minimum and Maximum Functions

There are a number of non-generic functions in this category, which
differ in the required types of the arguments and the type of the
return value. They may also have variable numbers of arguments,
but all the arguments must have the same type.

Function Argument Type Result Type
aminO integer real
aminl real real
minO integer integer
minI real integer
dminl long real long real

amaxO integer real
amaxl real real
maxO integer integer
maxI real integer
dmaxl long real long real

COMPILER OPTIONS
A number of options can be used to control the output and to tailor it
for various compilers and systems. The defaults chosen are
conservative, but it is sometimes necessary to change the output to
match peculiarities of the target environment.

Options are set with statements of the form

option (opt D

where each opt is of one of the forms

optionname
optionname = optionva/ue

11-45

The option value is either a constant (numeric or string) or a name
associated with that option. The two names yes and no apply to a
number of options.

Default Options

Each option has a default setting. It is possible to change the whole
set of defaults to those appropriate for a particular environment by
using the system option. At present, the only valid values are
system~unix and system~gcos.

Input Language Options

The dots option determines whether the compiler recognizes .It. and
similar forms. The default setting is no.

Input/Output Error Handling

The ioerror option can be given three values: none means that none
of the I/O statements may be used in expressions, since there is no
way to detect errors. The implementation of the ibm form uses
ERR~ and END~ clauses. The implementation of the fortran77
form uses IOSTAT~ clauses.

Continuation Conventions

By default, continued Fortran statements are indicated by a
character in column 6 (Standard Fortran). The option
continue~columnl puts an ampersand (&) in the first column of
the continued lines instead.

11-46

Default Formats

If no format is specified for a datum in an iolist for a read or write
statement, a default is provided. The default formats can be changed
by setting certain options

Option
iformat
rformat
dformat
zformat
zdformat
lformat

Type
integer
real
long real
complex
long complex
logical

The associated value must be a Fortran format, such as

option rformat=f22.6

Alignments and Sizes

In order to implement character variables, structures, and the
sizeof and lengthof operators, it is necessary to know how much
space various Fortran data types require, and what boundary
alignment properties they demand. The relevant options are

Fortran Type
integer
real
long real
complex
logical

Size Option
isize
rsize
dsize
zsize
lsize

Alignment Option
ialign
ralign
dalign
zalign
lalign

The sizes are given in terms of an arbitrary unit; the alignment is
given in the same units. The option charperint gives the number of
characters per integer variable.

11-47

Default Input/Output Units

The options ftnin and ftnout are the numbers of the standard input
and output units. The default values are ftnin=5 and ftnout=6.

Miscellaneous Output Control Options

Each Fortran procedure generated by the compiler will be preceded
by the value of the procheader option.

No Hollerith strings will be passed as subroutine arguments if
hollincall=no is specified.

The Fortran statement numbers normally start at 1 and increase by
1. It is possible to change the increment value by using the
deItastno option.

EXAMPLES
In order to show the flavor or programming in EFL, we present a few
examples. They are short, but show some of the convenience of the
language.

File Copying

The following short program copies the standard input to the
standard output, provided that the input is a formatted file
containing lines no longer than ~ hundred characters.

procedure # main program
character(1 00) line

while(read(• line) == 0)
write(• line)

end

Since read returns zero until the end of file (or a read error). this
program keeps relOding and writing until the input is exhausted.

11-48

Matrix Multiplication

The following procedure multiplies the m Xn matrix a by the n xp
matrix b to give the m xp matrix c. The calculation obeys the
formula eij = !,aikbkj.

procedure matmul(a,b,c, m,n,p)
integer i, j, k, m, n, p
long real a(m,n), b(n,p), c(m,p)

do i = l,m
do j = l,p

end

{
c(iJ) = 0
do k = 1,0

c(iJ) += a(i,k) • b(kJ)

Searching a Linked List

Assume we have a list of pairs of numbers (x,y). The list is stored
as a linked list sorted in ascending order of x values. The following
procedure searches this list for a particular value of x and returns
the corresponding y value.

11-49

define LAST 0
define NOTFOUND -1

integer procedure val(list, first, x)

list is an array of structures.
Each structure contains a thread index value,
an x, and a y value.

struct
{
integer nextindex
integer x, y
} list(.)

integer first, p, arg

for(p = first, p-=LAST && list(p).x<=x,
p = list(p).nextindex)

if(list(p).x == x)
return(list(p).y)

return(NOTFOUND)
end

The search is a single for loop that begins with the head of the list
and examines items until either the list is exhausted (p==LAST) or
until it is known that the specified value is not on the list (list(p).x >
x). The two tests in the conjunction must be performed in the
specified order to avoid using an invalid subscript in the list(p)
reference. Therefore, the && operator is used. The next element in
the chain is found by the iteration statement p=list(p).nextindex.

Walking a Tree

As an example of a more complicated problem, let us imagine we
have an expression tree stored in a common area, and that we want
to print out an infix form of the tree. Each node is either a leaf
(containing a numeric vl'lue) or it is a binary operator, pointing to a

11-50

left and a right descendant. In a recursive language, such a tree walk
would be implement by the following simple pseudocode:

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a nonrecursive language like EFL, it is necessary to maintain an
explicit stack to keep track of the current state of the computation.
The following procedure calls a procedure outch to print a single
character and a procedure outval to print a value.

procedure walk(first) # print an expression tree

integer first # index of root node
integer currentnode
integer stackdepth
common(nodes) struct

struct

{
character(1) op
integer leftp, rightp
real val
} tree(100) # array of structures

integer nextstate
integer nodep
} stackframe(100)

define NODEtree(currentnode)
define STACK stackframe(stackdepth)

nextstate values
define DOWN 1
define LEFT 2
define RIGHT 3

11-51

initialize stack with root node
stackdepth = 1
STACK.nextstate = DOWN
STACK.nodep = first

while(stackdepth > 0)

end

11-52

{
currentnode = STACK.nodep
select(STACK.nextstate)

{
case DOWN:

if(NODE.op ==" ") # a leaf
{
outval(NODE.val)
stackdepth -= 1
}

else { # a binary operator node
oulch(" (")
STACK.nextstate = LEFT
stackdepth += 1
STACK.nextstate = DOWN
STACK.nodep = NODE.Ieftp
.~

case LEFT:
outch(NODE.op)
STACK.nextstate = RIGHT
stackdepth += 1
STACK.nextstate = DOWN
STACK.nodep = NODE.rightp

case RIGHT:
outch(")")
stackdepth -= 1

PORTABILITY
Dne of the major goals of the EFL language is to make it easy to
write portable programs. The output of the EFL compiler is intended
to be acceptable to any Standard Fortran compiler (unless the
fortran77 option is specified).

Primitives

Certain EFL operations cannot be implemented in portable Fortran,
so a few machine-dependent procedures must be provided in each
environment.

Cbaracter String Copying

The subroutine eflase is called to copy one character string to
another. If the target string is shorter than the source, the final
characters are not copied. If the target string is longer, its end is
padded with blanks. The calling sequence is

subroutine eflase(a,la, b,lb)
integer a(o), Is, b('), Ib

and it must copy the first Ib characters from b to the first la
characters of a.

Cbaracter String Comparisons

The function efleme is invoked to determine the order of two
character strings. The declaration is

integer function eflcmc(a, la, b, Ib)
integer a(o), Is, b(o), Ib

The function returns a negative value if the string a of length la
precedes the string b of length lb. It returns zero if the strings are
equal, and a positive value otherwise. If the strings are of differing
length, the comparison is carried out as if the end of the shorter
string were padded with blanks.

11-53

DIFFERENCES BETWEEN RATFOR AND EFL

There are a number of differences between Ratior and EFL, since EFL
is a defined language while Ratfor is the union of the special control
structures and the language accepted by the underlying Fortran
compiler. Ratfor running over Standard Fortran is almost a subset
of EFL. Most of the features described in the "ATAVISMS" are
present to ease the conversion of Ratfor programs to EFL.

There are a few incompatibilities: The syntax of the for statement is
slightly different in the two languages: the three clauses are
separated by semicolons in Ratfor, but by commas in EFL. (The
initial and iteration statements may be compound statements in EFL
because of this change). The input/output syntax is quite different in
the two languages, and there is no FORMAT statement in EFL.
There are no ASSIGN or assigned GOTO statements in EFL.

The major linguistic additions are character data, factored
declaration syntax, block structure, assignment and sequential test
operators, generic functions, and data structures. EFL permits more
general forms for expressions, and provides a more uniform syntax.
(One need not worry about the Fortran/Ratfor restrictions on
subscript or DO expression forms, for example.)

COMPILER

Current Version

The current version of the EFL compiler is a two-pass translator
written in portable C. It implements all of the features of the
language described above except for long complex numbers.

Diagnostics

The EFL compiler diagnoses all syntax errors. It gives the line and
file name (if known) on which the error was detected. Warnings are
given for variables that are used but not explicitly declared.

11-54

tuality of Fortran Produced

'he Fortran produced by EFL is quite clean and readable. To the
xtent possible, the variable names that appear in the EFL program
re used in the Fortran code. The bodies of loops and test constructs
.re indented. Statement numbers are consecutive. Few unneeded
;OTO and CONTINUE statements are used. It is considered a
ompiler bug if incorrect Fortran is produced (except for escaped
ines). The following is the Fortran procedure produced by the EFL
ompiler for the matrix multiplication example (See" EXAMPLES" .)

subroutine matmul(a, b, c, m, n, p)
integer m, n, p
double precision a(m, n), b(n, p), c(m, p)
integer i, j, k
do 3 i = I, m

do 2 j = I, P
c(i, j) = 0
do 1 k = I, n

c(i, j) = c(i, j)+a(i, k)·b(k, j)
1 continue
2 continue
3 continue

end

11-55

The following is the procedure for the tree walk:
subroutine walk(first)
integer I"11"8t
common Inodesl tree
integer tree(4" 100)
real tree 1 (4" 100)
integer staame(2, 100), stapth, curode
integer constl(l)
equivalence (tree(l,l), treel(l,l»
data const1(l)i4,b I

c print out an expression tree
c index of root node
c array of structures
c nextstate values
c initialize stack with root node

stapth = 1
staame(l, stapth) = 1
staame(2, stapth) = first

1 if (stapth .le. 0) goto 9
curode = staame(2, stapth)
goto 7

2 if (tree(l, curode) .ne. const1(l» gota 3

c a leaf
call outval(treel(4" curode»

stapth = stapth-l
goto 4,

3 call outch(lh()
c a binary operator node

staame(l, stapth) 2
stapth = stapth+1
staame(l, stapth) 1
staame(2, staptb) = tree(2, curode)

4, goto 8
5 call outch(tree(l, curode»

staame(l, stapth) = 3
stapth = stapth+1
staame(l, stapth) 1
staame(2, stapth) tree(3, curode)
goto 8

6 call outch(Ih»
stapth = stapth-l
goto 8

11-56

7 if (staame(I, stapth) .eq. 3) goto 6
if (staame(I, stapth) .eq. 2) goto 5
if (staame(I, stapth) .eq. 1) goto 2

8 continue
goto 1

9 continue
end

CONSTRAINTS ON EFL
Although Fortran can be used to simulate any finite computation,
there are realistic limits on the generality of a language that can be
translated into Fortran. The design of EFL was constrained by the
implementation strategy. Certain of the restrictions are petty (six
character external names), but others are sweeping (Jack of pointer
variables). The following paragraphs describe the major limitations
imposed by Fortran.

External Names

External names (procedure and COMMON block names) must be no
longer than six characters in Fortran. Further, an external name is
global to the entire program. Therefore, EFL can support block
structure within a procedure, but it can have only one level of
external name if the EFL procedures are to be compilable separately,
as are Fortran procedures.

Procedure Interface

The Fortran standards, in effect, permit arguments to be passed
between Fortran procedures either by reference or by copy-in/copy­
out. This indeterminacy of specification shows through into EFL. A
program that depends on the method of argument transmission is
illegal in either language.

There are no procedure-valued variables in Fortran:. a procedure
name may only be passed as an argument or be invoked; it cannot be
stored. Fortran (and EFL) would be noticeably simpler if a procedure
variable mechanism were available.

11-57

Pointers

The most grievous problem with Fortran is its lack of a pointer-like
data type. The implementation of the compiler would have been far
easier if certain hard cases could have been handled by pointers.
Further, the language could have been simplified considerably if
pointers were accessible in Fortran. (There are several ways of
simulating pointers by using subscripts, but they founder on the
problems of external variables and initialization.)

Recursion

Fortran procedures are not recursive, so it was not practical to
permit EFL procedures to be recursive. (Recursive procedures with
arguments can be simulated only with great pain.)

Storage Allocation

The definition of Fortran does not specify the lifetime of variables.
It would be possible but cumbersome to implement stack or heap
storage disciplines by using COMMON blocks.

11-58

Chapter 12

The Curses and Terminfo Package

INTRODUCTION.
Output
Input
Highlighting.
Multiple Windows
Multiple Terminals
Low Level Terminfo Usage
A Larger Example

LIST OF ROUTINES...................
Structure
Initialization
Option Setting..
Terminal Mode Setting
Window Manipulation..........
Causing Output to the Terminal
Writing on Window Structures.
Input from a Window
Input from the Terminal
Video Attributes
Bells and Flashing Lights
Portability Functions
Delays
Lower Level Functions

OPERATION DETAILS
Insert and Delete Line and Character
Additional Terminals..
Multiple Terminals.
Video Attributes
Special Keys.................................
Scrolling Region................................ .. .
Mini-Curses.
TTY Mode Functions.
Typeahead Check......
getstr. "
longname
Nodelay Mode.
Portability

12-1
12-1
12-3
12-5
12-7
12-8

12-10
12-13
12-15
12-15
12-16
12-17
12-20
12-21
12-22
12-23
12-27
12-27
12-28
12-29
12-29
12-30
12-31
12-35
12-35
12-36
12-36
12-37
12-38
12-39
12-40
12-41
12-41
12-42
12-42
12-42
12-43

Chapter 12

THE CURSES AND TERM INFO PACKAGE

INTRODUCTION

This chapter is an introduction to curses(3X) and terminfo(4). It is
intended for the programmer who must write a screen-oriented
program using the curses package. Several example programs are
discussed. The example programs can be found in Chapter 13. This
chapter also documents each curses function. It is intended as a
reference.

For curses to be able to produce terminal dependent output, it has
to know what kind of terminal ·you have. The UNIX system
convention for this is to put the name of the terminal in the variable
TERM in the environment. Thus, a user on a DEC VT100 would set
TERM=vt 1 00 when logging in. Curses uses this convention.

Output

A program using curses always starts by calling initscr!). (See
Figure 12-1.) Other modes can then be set as needed by the program.
Possible modes include cbreak (), and idlok (stdscr, TRUE).
These modes will be explained later. During the execution of the
program, output to the screen is done with routines such as
addch (ch) and pr intw (fmt, args). (These routines behave just
like putchar and pr intf except that they go through curses.)
The cursor can be moved with the call move(row, col). These
routines only output to a data structure called a window, not to the
actual screen. A window is a representation of a CRT screen,
containing such things as an array of characters to be displayed on
the screen, a cursor, a current set of video attributes, and various
modes and options. You don't need to worry about windows unless
you use more than one of them, except to realize that a window is
buffering your requests to output to the screen.

12-1

To send all accumulated output, it is necessary to call refresh () .

(This can be thought of as a flush.) Finally, before the program
exits, it sbould call endwin(), which restores all terminal settings
and positions the cursor at the bottom of the screen.

Hinclude <curses.h>

initscr(); 1* Initialization */

cbreak();/* Various optional mode settings .1
nonI(),
noecho();

while (Idone) {I. Main body of program .1

1* Sample calls to draw on screen *1
move(row, col);
addch(ch),
printw("Formatted print with value %d\P", value)

I. Flush output .1
refresh() ,

endwin(),I. Clean up .1
exit(O),

Figure 12-1 - Framework of a Curses Program

See the program scatter in Chapter 13 for an example program.
This program reads a file, and displays the file in a random order on
the screen. Some programs assume all screens are 24 lines by 80
columns. It is important to understand that many are not. The
variables LINES and COLS are defined by initscr with the
current screen size. Programs should use them instead of assuming a
24x80 screen.

12-2

No output to the terminal actually happens until refresh is called.
Instead, routines such as moVe and addch draw on a window data
structure called stdscr (standard screen). Curses always keeps
track of what is on the physical screen, as well as what is in
stdscr.

When ref resh is called, curses compares the two screen images
and sends a stream of characters to the terminal that will turn the
current screen into what is desired. Curses considers many different
ways to do this, taking into account the various capabilities of the
terminal, and similarities between what is on the screen and what is
desired. It usually outputs as few characters as is possible. This
function is called cursor optimization and is the source of the name
of the curses package.

NOTE: Due to the hardware scrolling of terminals, writing to the
lower righthand character position is impossible.

Input

Curses can do more than just draw on the screen. Functions are also
provided for input from the keyboard. The primary function is
getch () which waits for the user to type a character on the
keyboard, and then returns that character. This function is like
getchar except that it goes through curses. Its use is
recommended for programs using the cbreak () or noecho ()
options, since several terminal or system dependent options become
available that are not possible with get char .

Options available with getch include keypad which allows extra
keys such as arrow keys, function keys, and other special keys that
transmit escape sequences, to be treated as just another key. (The
values returned for these keys are listed below.) KEY LEFT in
curses.h. The values for these keys are over octal 400, so they
should be stored in a variable larger than a char.) nodelay mode
causes the value -1 to be returned if there is no input waiting.
Normally, getch will wait until a character is typed. Finally, the
routine getstr (str) can be called, allowing input of an entire line,
up to a newline. This routine handles echoing and the erase and kill
characters of the user. Examples of the use of these options are in
later example programs.

12-3

The following function keys might be returned by getch if keypac
has been enabled. Note that not all of these are currently supporte(
due to lack of definitions in term info or the terminal no
transmitting a unique code when the key is pressed.

Name
KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME
KEY_BACKSPACE
KEY]O

KEY](n)
KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL

Value
0401
0402
0403
0404
0405
0406
0407
0410

Key name
Break key (unreliable)
The four arrow keys ...

Home key (upward+left arrow)
Backspace (unreliable)
Function keys. Space for
64 keys is reserved.

(KEY]O+(n)) Formula for fn.
0510 Delete line
0511 Insert line
0512 Delete character
0513 Insert char or enter insert mode
0514 Exit insert char mode
0515 'clear screen
0516 Clear to end of screen
0517 Clear to end of line
0520 Scroll 1 line forward
0521 Scroll 1 line backwards (reverse 1
0522 Next page
0523 Previous page
0524 Set tab
0525 Clear tab
0526 Clear all tabs
0527 Enter or send (unreliable)
0530 Soft (partial) reset (unreliable)
0531 Reset or hard reset (unreliable)
0532 Print or copy
0533 Home down or bottom

(lower left)

See the program show in Chapter 13 for an example use of getch.
Show pages through a file, showing one screen full each time the
user presses the space bar. By creating an input file for show made

'2_4

up of 24 line pages, each segment varying slightly from the previous
page, nearly any exercise for curses can be created. Such input files
lre called show scripts.

[n the show program, cbreak is called so that the user can press
;he space bar without having to hit return. The no echo function is
:alled to prevent the space from echoing in the middle of a
,efresh, messing up the screen. The nonl function is called to
mabie more screen optimization. The i d 1 ok function is called to
dlow insert and delete line, since many show scripts are constructed
;0 duplicate bugs caused by that feature. The clrtoeol and
:lrtobot functions clear from the cursor to the end of the line and
!creen, respectively.

lIighlighting

rhe function addch always draws two things on a window. In
.ddition to the character itself, a set of attributes is associated with
the character. These attributes cover various forms of highlighting
)f the character. For example, the character can be put in reverse
.ideo, bold, or be underlined. You can think of the attributes as the
:olor of the ink used to draw the character.

/\ window always has a set of current attributes associated with it.
rhe current attributes are associated with each character as it is
written to the window. The current attributes can be changed with a
:all to attrsetCattrs). (Think of this as dipping the window's
pen in a particular color ink.) The names of the attributes are
\ STANDOUT, A REVERSE, A BOLD, A DIM, A INVIS, and
\ -UNDERLINE. F-or example, to- put a wo;:-d in bold, the code in
Ei'igure 12-2 might be used. The word "boldface" will be shown in
bold.

12-5

printw("A word in H);
attrset(A_BOLDI,
printw("boldface");
attrset(OI,
printw(" really stands Qut.\p");

refresh(l,

Figure 12-2 - Use of attributes.

Not all terminals are capable of displaying all attributes. If a
particular terminal cannot display a requested attribute, curses will
attempt to find a substitute attribute. If none is possible, tbe
attribute is ignored.

One particular attribute is called standout. This attribute is used to
make text attract the attention of the user. The particular hardware
attribute· used for standout varies from terminal to terminal, and is
chosen to be the most visually pleasing attribute the terminal has.
Standout is typically implemented as reverse video or bold. Many
programs don't really need a specific attribute, such as bold or
inverse video, but instead just need to highlight some text. For such
applications, the A STANDOUT attribute is recommended. Two
convenient functions,- standout() and standend() turn on and
off this attribute.

Attributes can be turned on in combination. Thus, to turn on
blinking bold text, use attrset(A BLINK IA BOLDI. Individual
attributes can be turned on and off-with att~on and attroff
without affecting other attributes.

For an example program using attributes, see highlight. The
program takes a text file as input and allows embedded escape
sequences to control attributes. In this example program, \U turns
on underlining, Vl turns on bold, and ~ restores normal text. Note
the initial call to scrollok. This allows the terminal to scroll if
the file is longer than one screen. When an attempt is made to draw

12-6

past the bottom of the screen, curses will automatically scroll the
terminal up a line and call refresh.

Highlight comes about as close to being a filter as is possible with
curses. It is not a true filter, because curses must "take over" the
CRT screen. In order to determine how to update the screen, it must
know what is on the screen at all times. This requires curses to
clear the screen in the first call to refresh, and to know the cursor
position and screen contents at all times.

Multiple Windows

A window is a data structure representing all or part of the CRT
screen. It has room for a two dimensional array of characters,
attributes for each characte.r (a total of 16 bits per character: 7 for
text and 9 for attributes) a cursor, a set of current attributes, and a
number of flags. Curses provides a full screen window, called
stdscr, and a set of functions that use stdscr. Another window
is provided called cur s c r, representing the physical screen.

It is important to understand that a window is only a data structure.
Use of more than one window does not imply use of more than one
terminal, nor does it involve more than one process. A window is
m<!rely an object which can be .copied to all or part of the terminal
screen. The current implementation of curses does not allow
windows which are bigger than the screen.

The programmer can create additional windows with the function
newwin(lines, eols, begin row, begin col) will return a
pointer to a newly created window. The window will be lines by
cols, and the upper left corner of the window will be at screen
position (begin row, begin coIl. All operations that affect
stdscr have corresponding functions that affect an arbitrary named
window. Generally, these functions have names formed by putting a
"w" on the front of the st,!-scr function, and the window name is
added as the first parameter. Thus, waddch(mywin, c) would
write the character c to window my win. The wrefresh(win)
function is used to flush the contents of a window to the screen.

Windows are useful for maintaining several different screen images,
and alternating the user among them. Also, it is possible to

12-7

subdivide the screen into several windows, refreshing each of them as
desired. When windows overlap, the contents of the screen will be
the more recently refreshed window.

In all cases, the non-w version of the function calls the w version of
the function, using stdscr as the additional argument. Thus, a call
to addch (c) results in a call to waddch (stdscr, c).

The program window is an example of the use of multiple windows.
The main display is kept in stdscr. When the user temporarily
wants to put something else on the screen, a new window is created
covering part of the screen. A call to wrefresh on that window
causes the window to be written over stdscr on the screen. Calling
refresh on stdscr results in the original window being redrawn
on the screen. Note the calls to touchwin before writing out an
overlapping window. These are necessary to defeat an optimization
in curses. If you have trouble refreshing a new window which
overlaps an old window, it may be necessary to call touchwin on
the new window to get it completely written out.

For convenience, a set of "move" functions are also provided for most
of the common functions. These result in a call to move before the
other function. For example, mvaddch (row, col, c) is the same
as move (row, col) : addch (c) . Combinations, e.g.
mvwaddch (row, col, win, c) also exist.

Multiple Terminals

Curses can produce output on more than one terminal at once. This
is useful for single process programs that access a common databas'l,
such as multi-player games. Output to multiple terminals is a
difficult business, and curses does not solve all the problems for the
programmer. It is the responsibility of the program to determine the
file name of each terminal line, and what kind of terminal is on each
of those lines. The standard method, checking $TERM in the
environment, does not work, since each process can only examine its
own environment. Another problem that must be solved is tbat of
multiple programs reading from one line. This situation produces a
race condition· and should be avoided. Nonetheless, a program
wishing to take over another terminal cannot just shut off whatever
program is currently running on that line. (Usually, security reasons

12-8

,ould also make this inappropriate. However, for some applications,
uch as an inter-terminal communication program, or a program that
akes over unused tty lines, it would be appropriate.) A typical
.olution requires the user logged in on each line to run a program
,hat notifies the master program that the user is interested in
oining the master program, telling it the notification program's
lrocess id, the name of the tty line and the type of terminal being
Ised. Then the program goes to sleep until the master program
'inishes. When done, the master program wakes up the notification
lrogram, and all programs exit.

~urses handles multiple terminals by always having a current
terminal. All function calls always affect the current terminal. The
master program should set up each terminal, saving a reference to
the terminals in its own variables. When it wishes to affect a
terminal, it should set the current terminal as desired, and then call
~rdinary curses routines.

References to terminals have type struct screen *. A new
terminal is initialized by calling newterm(type. fd I. newterm
returns a screen reference to the terminal being set up. type is a
character string, naming the kind of terminal being used. f d is a
stdio file descriptor to be used for input and output to the terminal.
(If only output is needed. the file can be open for output only.) This
call replaces the normal call to ini tscr. which calls
newtermCgetenv(I 'TERM' '}, stdout).

To change the current terminal, call "set term(spl .. where sp is
the screen reference to be made current~ set term returns a
reference to the previous terminal.

It is important to realize that each terminal has its own set of
windows and options. Each terminal must be initialized separately
with newterm. Options such as cbreak and noecho must be set
separately for each terminal. The functions endwin and refresh
must be called separately for each terminal. See Figure 12-3 for a
typical scenario to output a message to each terminal.

12-9

for (i=O, i <nterm; i++) {
set _term(terms [i [),

mvaddstr(O, 0, "Important messaqe");
refresh() ,

Figure 12-3 - Sending a message to several terminals

See the sample program two for a full example. This program pages
through a file, showing one page to the first terminal and the next
page to the second terminal. It then waits for a space to be typed on
either terminal, and shows the next page to the terminal typing the
space. Each terminal has to be separately put into nodelay mode.
Since no standard multiplexor is available in current versions of the
UNIX system, it is' necessary to either busy wait, or call
sleep (1) , , between each check for keyboard input. This program
sleeps for a second between checks.

The two program is just a simple example of two terminal curses.
It does not handle notification, as described above, instead it requires
the name and type of the second terminal on the command line. As
written, the command sleep 100000 must be typed on the second
terminal to put it to sleep while the program runs, and the first user
must have both read and write permission on the second terminal.

Low Level Terminfo Usage

Some programs need to use lower level primitives than those offered
by curses. For such pl'ograms, the terminfo level interface is
offered. This interface does not manage your CRT screen, but rather
gives you access to strings and capabilities which you can use
yourself to manipulate the terminal.

Programmers are discouraged from using this level. Whenever
possible, the higher level curses routines should be used. This will
make your program more portable to other UNIX systems and to a
wider class of terminals. Curses takes care of all the glitches and

12-10

misfeatures present in physical terminals, but at the terminfo level
you must deal with them yourself. Also, it cannot be guaranteed that
this part of the interface will not change or be upward compatible
with previous releases.

There are two circumstances when it is proper to use terminfo. The
first is when you are writing a special purpose tool that sends a
special purpose string to the terminal, such as programming a
function key, setting tab stops, sending output to a printer port, or
dealing with the status line. The second situation is when writing a
filter. A typical filter does one transformation on the input stream
without clearing the screen or addressing the cursor. If this
transformation is terminal dependent and clearing the screen is
inappropriate, use of terminfo is indicated.

A program writing at the terminfo level uses the framework shown
in Figure 12-4.

'include <curses.h>
#include <term.h>

setuptermCO, 1, 0>;

putpCclear _screen);

reset shell model);
exit(O); -

Figure 12-4 - Terminfo level framework

Initialization is done hy calling setupterm. Passing the values 0, 1,
and 0 invoke reasonable defaults. If setupterm can't figure out
what kind of terminal you are on, it will print an error message and
exit. The program should call reset _shell _mode before it exits.

Global variables with names like
cursor address are defined by the call to

clear screen and
setupterm. They can

12-11

be output using putp, or also using tputs, which allows the
programmer more control. These strings should not be directly
output to the terminal using pr i n t f since they contain padding
information. A program that directly outputs strings will fail on
terminals that require padding, or that use the xon/xoff flow control
protocol.

In the terminfo level, the higher level routines described previously
are not available. It is up to the programmer to output whatever is
needed. For a list of capabilities and a description of what they do,
see terminfo(4).

The example program termhl shows simple use of terminfo. It is a
version of highlight that uses terminfo instead of curses. This
version can be used as a filter. The strings to enter bold and
underline mode, and to turn off all attributes, are used.

This program is more complex than it need be in order to illustrate
some properties of terminfo. The routine vidattr could have been
used instead of directly outputting enter bold mode,
enter underline mode, and exit attribute mO"de. In fact,
the program would be more robust if it did since there are several
ways to change video attribute modes. This program was written to
illustrate typical use of terminfo.

The function tputs(eap, affent, outel applies padding
information. Some capabilities contain strings like $<20>, which
means to pad for 20 milliseconds. tputs generates enough pad
characters to delay for the appropriate time. The first parameter is
the string capability to be output. The second is the number of lines
affected by the capability. (Some capabilities may require padding
that depends on the number of lines affected. For example,
insert line may have to copy all lines below the current line, and
may require time proportional to the number of lines copied. By
convention affcnt is 1 if no lines are affected. The value 1 is used,
rather than 0, for safety, since affcnt is multiplied by the amount
of time per item, and anything multiplied by 0 is 0.) The third
parameter is a routine to be called with each character.

For many simple programs, affcnt is always 1 and autc always
just calls putchar. For these programs, the routine putp(capl is

12-12

a convenient abbreviation. termhl could be simplified by using
putp.

Note also the special check for the underline char capability.
Some terminals, rather than having a code to start underlining and a
code to stop underlining, have a code to underline the current
character. termhl keeps track of the current mode, and if the
current character is supposed to be underlined, will output
underline char if necessary. Low level details such as this are
precisely why the curses level is recommended over the terminfo
level. Curses takes care of terminals with different methods of
underlining and other CRT functions. Programs at the terminfo level
must handle such details themselves.

A Larger Example

For a final example, see the program editor. This program is a very
simple screen editor, patterned after the vi editor. The program
illustrates how to use curses to write a screen editor. This editor
keeps the buffer in stdscr to keep the program simple - obviously
a real screen editor would keep a separate data structure. Many
simplifications have been made here - no provision is made for files
of any length other than the size of the screen, for lines longer than
the width of the screen, or for control characters in the file.

Several points about this program are worth making. The routine to
write out the file illustrates the use of the mv inch function, which
returns the character in a window at a given position. The data
structure used here does not have a provision for keeping track of the
number of characters in a line, or the number of lines in the file, so
-trailing blanks are eliminated when the file is written out.

The program uses built-in curses functions insch, delch,
insert In , and deleteln. These functions behave much as the
similar functions on intelligent terminals behave, inserting and
deleting a character or line:

The command interpreter accepts not only ASCII characters, but also
special keys. This is important - a good program will accept both.
(Some editors are modeless, using nonprinting characters for
commands. This is largely a matter of taste - the point being made

12-13

here is that both arrow keys and ordinary ASCII characters should
be handled.) It is important to handle special keys because this
makes jj; easier for a new user to learn to use your program if he can
use the arrow keys, instead of having to memorize that "h" means
left, "j" means down, uk" means up, and "1" means right. On the
other hand, not all terminals have arrow keys, so your program will
be usable on a larger class of terminals if there is an ASCII
character which is a synonym for each special key. Also, experienced
users dislike having to move their hands from the "home row"
position to use special keys, since they can work faster with
alphabetic keys.

Note the call to mvaddstr in the input routine. addstr is
roughly like the C fputs function, which writes out a string of
characters. Like fputs, addstr does not add a trailing newline.
It is the same as a series of calls to addch using the characters in
the string. mvaddstr is the mv version of addstr, which moves
to the given location in the window before writing.

The control-L command illustrates a feature most programs using
curses should add. Often some program beyond the control of
curses has written something to the screen, or some line noise has
messed up the screen beyond what curses can keep track of. In this
case, the user usually types control-L, causing the screen to be
cleared and redrawn. This is done with the call to
clearok (curscr) , which sets a flag causing the next refresh to
first clear the screen. Then ref':esh is called to force the redraw.

Note also the call to flash(), which flashes the screen if possible,
and otherwise rings the bell. Flashing the screen is intended as a
bell replacement, and is particularly useful if the bell bothers
someone within earshot of the user. The routine beep () can be
called when a real beep is desired. (If for some reason the terminal
is unable to beep, but able to flash, a call to beep will flash the
screen.)

Another important point is that the input command is terminated by
control-D, not escape. It is very tempting to use escape as a
command, since escape is one of the few special keys which is
available on every keyboard. (Return and break are the only others.)
However, using escape as a separate key introduces an ambiguity.

12-14

Most terminals use sequences of characters beginning with escape
("escape sequences") to control the terminal, and have special keys
that send escape sequences to the computer. If the computer sees an
escape coming from the terminal, it cannot tell for sure whether the
user pushed the escape key, or ,,!,hether a special key was pressed.
Curses handles the ambiguity by waiting for up to one second. If
another character is received during this second, and if that
character might be the beginning of a special key, more input is read
(waiting for up to one second for each character) until either a full
special key is read, one second passes, or a character is received that
could not have been generated by a special key. While this strategy
works most of the time, it is not foolproof. It is possible for the user
to press escape, then to type another key quickly, which causes
curses to think a special key has been pressed. Also, there is a one
second pause until the escape can be passed to the user program,
resulting in slower response to the escape key. Many existing
programs use escape as a fundamental command, which cannot be
changed without infuriating a large class of users. Such programs
cannot make use of special keys without dealing with this ambiguity,
and at best must resort to a timeout solution. The moral is clear:
when designing your program, avoid the escape key.

LIST OF ROUTINES
This section describes all the routines available to the programmer in
the curses package. The routines are organized by function. For an
alphabetical list, see curses(3X).

Structure

All programs using curses should include the file <curses.h >.
This file defines several curses functions as macros, and defines
several global variables and the datatype WINDOW. References to
windows are always of type WINDOW * Curses also defines
WINDOW * constants stdscr (the standard screen, used as a default
to rO\ltines expecting a window), and curser (the current screen,
used only fQ!: certain low level operations like clearing and redrawing
a garbaged screen). Integer constants LINES and COLS are defined,
containing the size of the screen. Constants TRUE and FALSE are
defined, with values 1 and 0, respectively. Additional constants
which are values returned from most curses functions are ERR and

12-15

OK. OK is returned if the function could be properly completed, and
ERR is returned if there was some error, such as moving the cursor
outside of a window.

The include file <curses. h > automatically includes <stdio. h >
and an appropriate tty driver interface file, currently either
<sgtty.h* > or <termio.h>. Including <stdio.h> again is
harmless but wasteful, inclu.ding <sgt t y . h > again will usually
result in a fatal error.

A program using curses should include the loader option -lcurses
in the makefile. This is true for both the terminfo level and the
cnrses level. The compilation flag -1lHINICURSES can be included
if you restrict your program to a small subset of curses concerned
primarily with screen output and optimization. The routines possible
with mini·curses are listed in n Mini-Curses" under" OPERATION
DETAILS."

Initialization

These functions are called when initializing a program.

initscr()
The first function called should always be ini tscr. This will
determine the terminal type and initialize curses data structures.
in its c r also arranges that the first call to ref res h will clear the
screen.

endwin()
A program should always call endwin before exiting. This function
will restore tty modes, move the cursor to the lower left corner of the
screen, reset the terminal into the proper non-visual mode, and tear
down all appropriate data structures .

.. The driver interface (sqtty.h> is a tty driver interface used in other versions of
the UNIX system.

12-16

newterm(type, fd)

A program which outputs to more than one terminal should use
newterm instead of ini tscr. newterm should be called once for
each terminaL It returns a variable of type SCREEN * which should
be saved as a reference to that terminaL The arguments are the type
of the terminal (a string) and a stdio file descriptor (FILE *J for
output to the terminaL The file descriptor should be open for both
reading and writing if input from the terminal is desired. The
program should also call endwin for each terminal being used (see
set _term below). If an error occurs, the value NULL is returned.

set term(new)
This-function is used to switch to a different terminaL The screen
reference new becomes the new current terminaL The previous
t€rminal is returned by the function. All other calls affect only the
current terminal.

longname()
This function returns a pointer to a static area containing a verbose
description of the current terminaL It is ,defined only after a call to
ini tscr, newterm, or setupterm.

Option Setting

These fu~ctions set options within curses. In each case, win is the
window affected, and bf is a boolean flag with value TRUE or
FALSE indicating whether to enable or disable the option. All
options are initially FALSE. It is not necessary to turn these
options off before calling endw in.

clearok(win,bf)
If set, the next call to wrefresh with this window will clear the
screen and redraw the entire screen. If win is curser, the next
call to wrefresh with any window will cause the screen to -be
cleared. This is useful when the contents of the screen are uncertain,
or in some cases for a more pleasing visual effect.

idlok(win,bf)

If enabled, curses will consider using the hardware insert/delete line
feature of terminals so equipped. If disabled, curses will never use
this feature. The insert/delete character feature is always

12-17

considered. Enable this option only if your application needs
insert/delete line, for example, for a screen editor. It is disabled by
default because insert/delete line tends to be visually annoying when
used in applications where it isn't really needed. If insert/delete line
cannot be used, curses will redraw the changed portions of all lines
that do not match the desired line.

keypad(win,bf)
This option enables the keypad of the users terminal. If enabled, the
user can press a function key (such as an arrow key) and getch will
return a single value representing the function key. If disabled,
curses will not treat function keys specially. If the keypad in the
terminal can be turned on (made to transmit) and off (made to work
locally), turning on this option will turn on the terminal keypad.

leaveok(win,bf)
Normally, the hardware cursor is left at the location of the window
cursor being refreshed. This option allows the cursor to be left
wherever the update happens to leave it. It is useful for applications
where the cursor is not used, since it reduces the need for cursor
motions. If possible, the cursor is made invisible when this option is
enabled.

metaCwin,bf)
If enabled, characters returned by getch are transmitted with all 8
bits, instead of stripping the highest bit. The value OK is returned if
the request succeeded, the value ERR is returned if the terminal or
system is not capable of 8-bit input.

Meta mode is useful for extending the non-text command set in
applications where the terminal has a meta shift key. Curses takes
whatever measures are necessary to arrange for 8-bit input. On
other versions of UNIX systems, raw mode will be used. On our
systems, the character size will be set to 8, parity checking disabled,
and stripping of the 8th bit turned off.

Note that 8-bit input is a fragile mode. Many programs and
networks only pass 7 bits. If any link in the chain from the terminal
to the application program strips the 8th bit, 8-bit input is
impossible.

12-18

nodalay(win,bf)
This option causes getch to be a non-blocking call. If no input is
ready, ge'tch will return -1. If disabled, getch will hang until a
key is pressed.

intrflush(win,bf)
If this option is enabled when an interrupt key is pressed on the
keyboard (interrupt, quit, suspend), all output in the tty driver queue
will be flushed, giving the effect of faster response to the interrupt
but causing curses to have the wrong idea of what is on the screen.
Disabling the option prevents the flush. The default is for the option
to be enabled. This option depends on support in the underlying
teletype driver.

typeahaad(fdl
Sets the file descriptor for typeahead check. Cd should be an integer
returned from open or f i leno. Setting typeahead to -1 will
disable typeahead check. By default, file descriptor 0 (stdin) is used.
Typeahead is checked independently for each screen, and for multiple
interactive terminals it should probably'be set to the appropriate
input for each screen. A call to typeahead always affects only the
current screen.

scrollok(win,bfl
This option controls what happens when the cursor of a window is
moved off the edge of the window, either from a newline on the
bottom line, or typing the last character of the last line. If disabled,
the cursor is left on the bottom line. If enabled, wrefresh is called
on the window, and then the physical terminal and window are
scrolled up one line. Note that in order to get the physical scrolling
effect on the terminal, it is also necessary to call idlok.

setscrrag(t,bl
wsetscrreq(win,t,b)
These functions allow the user to set a software scrolling region in a
window win or stdscr. t and b are the line numbers of the top
and bottom margin of the scrolling region. (Line 0 is the top line of
the window.) If this option and serollok are enabled, an attempt to
move off the bottom margin line will cause all lines in the scrolling
region to scroll up one line. Note that this has nothing to do with use
of a physical scrolling region capability in the terminal, 'like that in

12-19

the VT100. Only the text of the window is scrolled. If idlok is
enabled and the terminal has either a scrolling region or
insert/delete line capability, they will probably be used by the output
routines.

Terminal Mode Setting

These functions are used to set modes in the tty. driver. The initial
mode usually depends on the setting when the program was called:
the initial modes documented here represent the normal situation.

cbreak()
nocbreak()
These two functions put the terminal into and out of CBREAK
mode. In this mode, characters typed by the user are immediately
available to the program. When out of this mode, the teletype driver
will buffer characters typed until newline is typed. Interrupt and
flow control characters are unaffected by this mode. Initially the
terminal is not in CBREAK mode. Most interactive programs using
curses will set this mode.

echo()
noecho()
These functions control whether characters typed by the user are
echoed as typed. Initially, characters typed are echoed by the
teletype driver. Authors of many interactive programs prefer to do
their own echoing in a controlled area of the screen, or not to echo at
all, so they disable echoing.

nl()

nonl()

These functions control whether newline is translated into carriage
return and linefeed on output, and whether return is translated into
newline on input. Initially, the translations do occur. By disabling
these translations, curses is able to make better use of the linefeed
capability, resulting in faster cursor motion.

raw()
noraw()
The terminal is placed into or out of raw mode. Raw mode is similar
to cbreak mode in that characters typed are immediately passed
12-20

through to the user program. The differences are that in RAW mode,
the interrupt, quit, and suspend characters are passed through
uninterpreted instead of generating a signal. RAW mode also causes
8 bit input and output. The behavior of the BREAK key may be
different on different systems.

resetty()
savetty()
These functions save and restore the state of the tty modes.
savetty saves the current state in a buffer, resetty restores the
state to what it was at the last call to savetty.

Window Manipulation

newwin(num lines, num cols, beg row, beg col)
Create a new -window with the given number of lines and columns.
The upper left corner of the window is at line beg row column
beg col. If either num lines or num cols is zero~ they will be
defaulted to LINEs-beg- row and eOLs-beg coL. A new full­
screen window is created by calling newwin(0,0: 0,0) .

newpad(num lines, num cols)
Creates a ne; pad data structure. A pad is like a window, except
that it is not restricted by the screen size, and is not associated with
a particular part of the screen. Pads can be used when a large
window is needed, and only a part of the window will be on the
screen at one time. Automatic refreshes of pads (e.g. from scrolling
or echoing of input) do not occur. It is not legal to call refresh
with a pad as an argument, the routines prefresh or
pnoutrefresh should be called instead. Note that these routines
require additional parameters to specify the part of the pad to be
displayed and the location on the screen to be used for display.

subwin(orig, num lines, num eols, begy, beqx)
Create a new window- with the given number of lines and columns.
The window is at position (begy, begx) on the screen. (It is relative
to the screen, not or ig.) The window is made in the middle of the
window or ig, so that changes made to one window will affect both
windows. When using this function, often it will be necessary to call
touchwin before calling wrefresh

12-21

delwin(winl
Deletes the named window, freeing up all memory associated with it.
In the case of overlapping windows, subwindows should be deleted
before the main window.

mvwin(win, br, be}
Move the window so that the upper left corner will be at position
(br, be l. If the move would cause the window to be off the screen,
it is an error and the window is not moved.

touchwin(win)
Throwaway all optimization information about which parts of the
window have been touched, by pretending the entire window has been
drawn on. This is sometimes necessary when using overlapping
windows, since a change to one window will affect the other window,
but the records of which lines have been changed in the other window
will not reflect the change.

overlay(win1, win2)
overwrite(win1, win2)
These functions overlay win 1 on top of win2; that is, all text in
win 1 is copied into win2. The difference is that overlay is
nondestructive (blanks are not copied) while overwr i te is
destructive.

Causing Output to the Terminal

refresh(l
wrefresh(win)
These functions must be called to get any output on the terminal, as
other routines merely manipulate data structures. wrefresh
copies the named window to the physical terminal screen, taking into
account what is already there in order to do optimizations.
refresh is the same, using stdser as a default screen. Unless
leaveok has been enabled, the physical cursor of the terminal is left
at the location of the window's cursor.

doupdate(l
WDoutrefresh(win)
These two functions allow multiple updates with more efficiency than
wrefresh. To use them, it is important to understand how curses

12-22

works. In addition to all the window structures, curses keeps two
data structures representing the terminal. screen: a physical screen,
describing what is actually on the screen, and a virtual screen,
describing what the programmer wants to have on the screen.
wrefresh works by first copying the named window to the virtual
screen (wnoutrefresh), and then calling the routine to update the
screen (doupda te). If the programmer wishes to output several
windows at once, a series of calls to wrefresh will result in
alternating calls to wnoutrefresh and doupdate, causing several
bursts of output to the screen. By calling wnoutrefresh for each
window, it is then possible to call doupda te once, resulting in only
one burst of output, with probably fewer total characters
transmitted.

prefreshCpad,pminrow,pmincol,sminrow,
smincol,smaxrow,smaxcol)

pnoutrefreshCpad,pminrow,pmincol,sminrow,
smincol,smaxrow,smaxcol)

These routines are analogous to wrefresh and wnoutrefresh
except that pads, instead of windows, are involved. The additional
parameters are needed to indicate what part of the pad and screen
are involved. pminrow and pmincol specify the upper left corner,
in the pad, of the rectangle to be displayed. sminrow, smincol,
smaxrow, and smaxcol specify the edges, on the screen, of the
rectangle to be displayed in. The lower right corner in the pad of the
rectangle to be displayed is calculated from the screen coordinates,
since the rectangles must be the same size. Both rectangles must be
entirely contained within their respective structures.

Writing on Window Structures

These routines a,·e used to "dr.aw" text on windows. In all cases, a
missing win is taken to be stdscr. y and x are the row and
column, respectively. The upper left corner is always (0,(1), not (1,1).
The mv functions imply a call to move before the call to the other
function.

Moving tbe Cursor

move(y, x)
wmove(win, y, x)
The cursor associated with the window is moved to the given location.
This does not move the physical cursor of the terminal until

12-23

refresh is called. The position specified is relative to the upper left
corner of the window.

Writing One Cbaracter

addch{chl
waddch{win. chI
mvaddch(y. x, ch)
mvwaddch(win, y, x, ch)
The character ch is put in the window at the current cursor position
of the window. If ch is a tab, newline, or backspace, the cursor wHl
he moved appropriately in the window. If ch is a different control
character, it will be drawn in the ·x notation. The position of the
window cursor is advanced. At th", right margin, an automatic
newline is performed. At the bottom of the scrolling region, if
scrollok is enabled, the scrolling region will be scrolled up one line.

The ch parameter is actually an integer, not a character. Video
attributes can be combined with a character by or-ing them into the
parameter. This will result in these attributes also being set. (The
intent here is that text, including attributes, can be copied from one
place to another with inch and addch.)

Writing a String

addstr{strl
waddstr(win,str)
mvaddstr(y,x,str)
mvwaddstr(win,y,x,str)
These functions write all the characters of the null terminated
character string str on the given window. They are identical to •
series of calls to addch.

Clearing Areas of tbe Screen

erase (I
werase(win)
These functions copy blanks to every position in the window.

12-24

olear()
~clear(win)

These functions are like erase and werase but they also call
clearok, arranging that the screen will be cleared on the next call
to refresh for that window.

clrtobot()
welrtobot(win)
All lines below the cursor in this window are erased. Also, the
current line to the right of the cursor is erased.

clrtoeol()
"elrtoeol(win)
The current line to the right of the cursor is erased.

Inserting and Deleting Text

il.eleh()
Ifdeleh(win)
IRvdelch(y,x)
~vwdelch(win,y,x)

The character under the cursor in the window is deleted. All
characters to the right on the same line are moved to the left one
position. This does not imply use of the hardware delete character
feature.

il.eleteln()
Ifdeleteln(win)
The line under the cursor ill the window is deleted. All lines below
the current line are moved up one line. The bottom line of the
window is cleared. This does not imply use of the hardware delete
line feature.

12-25

insch(c)
winsch(win, c)

mvinsch(y,x,c)
mvwinsch(win,y,x,c)
The character c is inserted before the character under the cursor.
All characters to the right are moved one space to the right, possibly
losing the rightmost character on the line. This does not imply use of
the hardware insert character feature.

insertln()
winsertln(win)
A blank line is inserted above the current iine. The bottom line is
lost. This does not imply use of the hardware insert line feature.

Formatted Output

printw(fmt, args)
wprintw(win, fmt, args)
mvprintwCy, x, fmt, args)
mvwprintw(win, y, X, fmt, args)
These functions correspond to pr intf. The characters which would
be output by pr intf are instead output using waddch on the given
window.

Miscellaneous

box(win, vert, hor)
A box is drawn around the edge of the window. vert and hor are
the characters the box is to be drawn with.

scroll(win)
The window is scrolled up one line. This involves moving the lines in
the window data structure. As an optimization, if the window is
stdscr and the scrolling region is the entire· window, the physical
screen will be scrolled at the same time.

12-26

Input from a Window

getyx(win,y,x)
The cursor position of the window is placed in the two integer
variables y and x. Since this is a macro, no & is necessary.

inch()
winch(win)
IDvinch(y,x)
mvwinch(win,y,x)
The character at the current position in the named window is
returned. If any attributes are set for that position, their values will
be or-ed into the value returned. The predefined constants
A ATTRIBUTES and A CHARTEXT can be used with the & operator
to-extract the character -or attributes alone.

Input from the Terminal

getch()
wgetch(win)
mvgetch(y,x)
mvwgetch(win,y,x)
A character is read from the terminal associated with the window.
In nodelay mode, if there is no input waiting, the value -1 is
returned. In delay mode, the program will hang until the system
passes text through to the program. Depending on the setting of
cbreak, this will be after one character, or after the first newline.

If keypad mode is enabled, and a function key is pressed, the code
for that function key will be returned instead of the raw characters.
Possible function keys are defined with integers beginning with 0401,
whose names begin with KEY • These are listed in "Input" under
"INTRODUCTION." If a character is received that could be the
beginning of a function key (such as escape), curses will set a 1-
second timer. If the remainder of the, sequence does not come in
within 1 second, the character will be passed through, otherwise the
function key value will be returned. For this reason, on many
terminals, there will be a one second delay after a user presses the
escape key. (Use by a programmer of the escape key for a single
character function is discouraged.)

12-27

getstr(str)
wgetstr(win,str)
mvgetstrCy,x,str)
mvwgetstrCwin,y,x,str)
A series of calls to getch is made, until a newline is received. The
resulting value is placed in the area pointed at by the character
pointer str. The users' erase and kill characters are interpreted.

scanwCfmt, args)
wscanw(win, fmt, args)
mvscanwCy, x, fmt, args)
mvwscanw(win, y, x, fmt, args)
This function corresponds to scanf. wgetstr is called on the
window, and the resulting line is used as input for the scan.

Video Attributes

attroff(at)
wattroff(win, attrs)
attron(at)
wattron(win, attrs)
attrset(at)
wattrset(win, attrs)
standout()
standend()
wstandout(win)
wstandend(win)
These functions set the current attributes of the named window.
These attributes can be any combination of A STANDOUT,

A REVERSE, A BOLD, A DIM, A BLINK, and A UNDERLINE.
These constants -are defined in <cu;ses.h > and can-be combined
with the C I (or) operator.

The current attributes of a window are applied to all characters that
are written into the window with waddch. Attributes are a
property of the character, and move with the character through any
scrolling and insert/delete line/character operations. To the extent
possible on the particular terminal, they will be displayed as the
graphic rendition of characters put on the screen.

12-28

attrset (at) sets the current attributes of the given window to at.
attroff (at) turns off the named attributes without affecting any
other attributes. attron (at) turns on the named attributes
without affecting any others. standout is the same as
attron(A_STANDOUT) standend is the same as attrset(O),
that is, it turns off all attributes.

Bells and Flashing Lights

beepl)
flashl)
These functions are used to signal the programmer. beep will
sound the audible alarm on the terminal, if possible, and if not, will
flash the screen (visible bell), if that is possible. flash will flash
the screen, and if that is not possible, will sound the audible signal.
If neither signal is possible nothing will happen. Nearly all terminals
have an audible signal (bell or beep) but only some can flash the
screen.

Portability Functions

These functions do not directly involve terminal dependent character
output but tend to be needed by programs that use curses.
Unfortunately, their implementation varies from one version of UNIxt
to another. They have been included here to enhance the portability
of programs using curses.

baudratel)
baudrate returns the output speed of the terminal. The number
returned is the integer baud rate, for example, 9600, rather than a
table index such as B 9 600 .

erasecharl)
The erase character chosen by the user is returned. This is the
character typed by the user to erase the character just typed.

• Trademark of AT&T Bell Laboratories

12-29

killchar()
The line kill character chosen by the user is returned. This is the
character typed by the user to forget the entire line being typed.

fiushinp()
flushinp throws away any typeahead that has been typed by the
user and has not yet been read by the program.

Delays

These functions are highly unportable, but are often needed by
programs that use curses, especially real time response programs.
Some of these functions require a particular operating system or a
modification to the operating system to work. In all cases, the
routine will compile and return an error status if the requested
action is not possible. It is recommended that programmers avoid
use of these functions if possible.

draino (ms) The program is suspended until the ou~put queue has
drained enough to complete in ms additional milliseconds. Thus,
draino (50) at 1200 baud would pause until there are no more than 6
characters in the output queue, because it would take 50 milliseconds
to output the additional 6 characters. The purpose of this routine is
to keep the program (and thus the keyboard) from getting ahead of
the screen. If the operating system does not support the ioctls
needed to implement draino, the value ERR is returned; otherwise,
OK is returned.

napms (ms) This function suspends the program for ms milliseconds.
It is similar to sleep except with higher resolution. The resolution
actually provided will vary with the facilities available in the
operating system, and often a change to the operating system will be
necessary to produce good results. If resolution of at least .1 second
is not possible, the routine will round to the next higher second, call
sleep, and return ERR. Otherwise, the value OK is returned. Often
the resolution provided is 1I60th second.

12-30

Lower Level Functions

These functions are provided for programs not needing the screen
optimization capabilities of curses. Programs are discouraged from
working at this level, since they must handle various glitches in
certain terminals. However, a program ean be smaller if it only
brings in the low level routines.

Cursor Motion

mvcur(oldrow, aideol, newrow, newcel)
This routine optimally moves the cursor from (oldrow, oldeol) to
(newrow, newcol). The user program is expected to keep track of the
current cursor position. Note that unless a full screen image is kept,
curses will have to make pessimistic assumptions, sometimes
resulting in less than optimal cursor motion. For example, moving
the cursor a few spaces to the right can be done by transmitting the
characters being moved over, but if curses does not have access to
the screen image, it doesn't know what these characters are.

Termin£o Level

These routines are called by low level programs that need access to
specific capabilities of terminfo. A program working at this level
should include both <curses. h > and <term. h > in that order.
After a call to setupterm, the capabilities will be available with
macro names defined in <term.h >. See terminfo(4) for a detailed
description of the capabilities.

Boolean valued capabilities will have the value 1 if the capability is
present, 0 if it is not. Numeric capabilities have the value -1 if the
capability is missing, and have a value at least 0 if it is present.
String capabilities (both those with and without parameters) have
the value NULL if the capability is missing, and otherwise have type
char * and point to a character string containing the capability.
The special character codes involving the \ and' characters (such as
\r for return, or . A for control A) are translated into the appropriate
ASCII characters. Padding information (of the form $<time» and
parameter information (beginning with %) are left uninterpreted at
this stage. The routine tputs interprets padding information, and
tparm interprets parameter information.

12-31

If the program only needs to handle one terminal, the definition
-DSINGLE can be passed to the C compiler, resulting in static
references to capabilities instead of dynamic references. This can
result in smaller code, but prevents use of more than one terminal at
a time. Very few programs use more than one terminal, so almost all
programs can use this flag.

setupterm(term, filenum, errret)
This routine is called to initialize a terminal. term is the character
string representing the name of the terminal being used. f i lenum
is the UNIX file descriptor of the terminal being used for output.
errret is a pointer to an integer, in which a success or failure
indication is returned. The values returned can be 1 (all is well), °
(no such terminal), or -1 (some problem locating the terminfo
database).

The value of term can be given as 0, which will cause the value of
TERM in the environment to be used. The errret pointer can also
be given as 0, meaning no error code is wanted. If errret is
defaulted, and something goes wrong, setupterm will print an
appropriate error message and exit, rather than returning. Thus, a
simple program can call setupterm(0, '. 0) and not worry
about initialization errors.

If the variable TERM INFO is set in the environment to a path name,
setupterm will check for a compiled terminfo description of the
terminal under that path, before checking lete/term. Otherwise, only
/ etc/term is checked.

setupterm will check the tty driver mode bits, using f i lenum, and
change any that might prevent the correct operation of other low
level routines. Currently, the mode that expands tabs into spaces is
disabled, because the tab character is sometimes used for different
functions by different terminals. (Some terminals use it to move
right one space. Others use it to address the cursor to row or column
9.) If the system is expanding tabs, setupterm will remove the
definition of the tab and backtab functions, making the
assumption that since the user is not using hardware tabs, they may
not be properly set in the terminal. Other system dependent changes,
such as disabling a virtual terminal driver, may be made here.

12-32

As a side effect, setupterm initializes the global variable
ttytype, which is an array of characters, to the value of the list of
names for the terminal. This list comes from the beginning of the
terminfo description.

After the call to setupterm, the global variable cur term is set
to point to the current structure of terminal capabilities. By calling
setupterm for each terminal, and saving and restoring cur term,
it is possible for a program to use two or more terminals at once.

The mode that turns new lines into CRLF on output is not disabled.
Programs that use cursor down or scroll forward should
avoid these capabilities if their value is linefeed u-nless they disable
this mode. setupterm calls reset _prog _mode after any
changes it makes.

reset prog mode!)
reset -shell mode!)
def prog mode!)
def -shell mode!)
These routines can be used to change the tty modes between the two
states: shell (the mode they were in before the program was started)
and program (the mode needed by the program). def prog mode
saves the current terminal mode as program mode. -setupterm
and ini tscr call deCshell_mode automatically.
reset prog mode puts the terminal into program mode, and
reset =shel I _mode puts the terminal into normal mode.

A typical calling sequence is for a program to call ini tscr (or
s.,tupterm if a terminfo level program), then to set the desired
program mode by calling routines such as cbreak and noecho,
then to call def prog mode to save the current state. Before a
shell escape or -control-Z suspension, the program should call
reset shell mode, to restore normal mode for the shell. Then,
when the program resumes, it should call reset prog mode. Also,
all programs must call reset shell mode before they exit. (The
higher level routine - endw i-n automatically calls
reset _shell_Mode.)

Normal mode is stored in cur term- >Ottyb, and program mode is
in cu.r _term- }Nttyb. These structures are both of type SGTTYB

12-33

(which varies depending on the system). Currently the possible types
are struct sgttyb (on some other systems) and struct
termio (on this version of the UNIX system). def prog mode
should be called to save the current state in Nttyb. - -

vidputs(newmode, putc)
newmode is any combination of attributes, defined in <curses. h >.
putc is a putchar·like function. The proper string to put the
terminal in the given video mode is output. The previous mode is
remembered hy this routine. The result characters are passed
through pu tc .

vidattr(newmode)
The proper string to put the terminal in the given video mode is
output to stdout.

tparm(instrinq, p1, p2 r p3, p4, pS, p6, p7, pS, p9)
tparm is used to instantiate a parameterized string. The character
string returned has the given parameters applied, and is suitable for
tputs. Up to 9 parameters can be passed, in addition to the
parameterized string.

tputs(cp, affcnt, outc)
A string capability, possibly containing padding information, is
processed. Enough padding characters to delay for the specified time
replace the padding specification, and the resulting string is passed,
one character at a time, to the routine ou tc, which should expect
one character parameter. (This rQutine often just calls put char •)
cp is the capability string. affcnt is the number of units affected
by the capability, which varies with the particular capability. (For
example, the affcnt for insert line is the number of lines
below the inserted line on the screen,' that is, the number of lines
that will have to be moved by the terminal.) affcnt is used by the
padding information of some terminals as a multiplication factor. If
the capability does not have a factor, the value 1 should be passed.

12-34

putpCstr)
This is a convenient function to output a capability with no affcnt.
The string is output to putchar with an affcnt of 1. It can be
used in simple applications that do not need to process the output of
tputs.

delay outputCms)
A delay is inserted into the output stream for the given number of
milliseconds. The current implementation inserts sufficient pad
characters for the delay. This should not be used in place of a high
resolution sleep, but rather for delay effects in the output. Due to
buffering in the system, it is unlikely that this call will result in the
process actually sleeping. Since large numbers of pad characters can
be output, it is recommended that ms not exceed 500.

OPERATION DETAILS
These paragraphs describe many of the details of how the curses
and terminfo package operates.

Insert and Delete Line and Character

The algorithm used by curses takes into account insert and delete
line and character functions, if available, in the terminal. Calling the
routine

idlokCstdscr, TRUE),

will enable insert/delete line. By default, curses will not use
insert/delete line. This was not done for performance reasons, since
there is no speed penalty involved. Rather, experience has shown
that some programs do not need this facility, and that if curses uses
insert/delete line, the result on the screen can be visually annoying.
Since many simple programs using curses do not need this, the
default is to avoid insert/delete line. Insert/delete character is
always considered.

12-35

Additional Terminals

Curses will work even if absolute cursor addressing is not possible, a
long as the cursor can be moved from any location to any othe
location. It considers local motions, parameterized motions, homE
and carriage return.

Curses is aimed at full duplex, alphanumeric, video terminals. N
attempt is made to handle half-duplex, synchronous, hard copy, 0
bitmapped terminals. Bitmapped terminals can be handled b:
programming the bitmapped terminal to emulate an ordinar:
alphanumeric terminal. This does not take advantage of the bitma]
capabilities, but it is the fundamental nature of curses to deal witl
alphanumeric terminals.

The curses handles terminals with the "magic cookie glitch" in thei
video attributes. The term "magic cookie" means that a change il
video attributes is implemented by storing a "magic cookie" in :
location on the screen. This "cookie" takes up a space, preventing al
exact implementation of what the. programmer wanted. Curses take
the extra space into account, and moves part of the line to the right
as necessary. In some cases, this will unavoidably result in 10Sini
text from the right hand edge of the screen. Advantage is taken 0
existing spaces.

Multiple Terminals

Some applications need to display text on more than one terminal
controlled by the same process. Even if the terminals are of differen
types, curses can handle this.

All information about the current terminal is kept in a globa
variable

struct screen .SP;

Although the screen structure is hidden from the user, the C compile:
will accept declarations of variables which are pointers. The use:

12-36

,rogram should declare one screen pointer variable Cor each terminal
t wishes to handle. The routine

struct screen *
newterm(type. fdl

.ill set up a new terminal oC the given terminal type which does
utput on me descriptor Cd. A call to ini tscr is essentially
ewterm(getenv(, 'TERM' , l, stdoutl. A program wishing to
,se more than one terminal should use newterm Cor each terminal
.nd save the value returned as a reference to that terminal.

'0 switch to a diCferent terminal, call

set _term (terml

~he old value of SP will be returned. The programmer should not
Lssign directly to SP because certain other global variables must also
.e changed. '

UI curses routines always afCect the current terminal. To handle
,everal terminals, switch to each one in turn with set term, and
hen access it. Each terminal must be set up witb ne';term, and
:losed down with endwin.

{ideo Attributes

'ideo attributes can be displayed in any combination on terminals
.ith this capability. They are treated as an extension oC the
:tandout capability, which is still present.

~ach character position on the screen has 16 bits oC inCormation
Issociated with it. Seven of these bits are the character to be
lisplayed, leaving separate bits Cor nine video attributes. These hits
Ire used Cor standout, underline, reverse video, blink, dim, bold,
>lank, protect, and alternate character set. Standout is taken to be
vhatever highlighting works best on the terminal, and should be used
>y any program that does not need specific or combined attributes.
lnderlining, reverse video, blink, dim, and bold are the usual video

12-37

attributes. Blank means that the character is displayed as a space,
for security reasons. Protected and alternate character set depend on
the particular terminal. The use of these last three bits is subject to
change and not recommended. Note also that not all terminals
implement all attributes - in particular, no current terminal
implements both dim and bold.

The routines to use these attributes include

attrsetlattrs)
attronlattrs)
attrofflattrs)
standoutl)
standendl)

wattrsetlwin, attrs)
wattron(win, attrs)
wattroff(win, attrs)
wstandoutlwin)
wstandendlwin)

Attributes, if given, can be any combination of A_STANDOUT,
A UNDERLINE, A REVERSE, A BLINK, A DIH, A_BOLD,
A -INVIS, A PROTECT, and A AL-TCHARSET. -These constants,
defined in curses.h, can be combined with the C I (or) operator to get
multiple attributes. attrset sets the current attributes to the
given attrs; attron turns on the given attrs in addition to any
attributes that are already on; attroff turns off the given
attributes, without affecting any others. standout and
standend are equivalent to attronlA STANDOUT) and
attrsetlA NORMAL). -

If the particular· terminal does not have the particular attribute or
combination requested, curses will attempt to use some other
attribute in its place. If the terminal has no highlighting at all, all
attributes will be ignored.

Special Keys

Many terminals have special keys, such as arrow keys, keys to erase
the screen, insert or delete text, and keys intended for user functions.
The particular sequences these terminals send differs from terminal I

to terminal. Curses allows the programmer to handle these keys.

12-38

A program using special keys should turn on the keypad by calling

keypad(stdscr. TRUE)

at initialization. This will cause special characters to be passed
through to the program by the function getch. These keys have
constants which are listed in n Input" under n INTRODUCTION."
They have values starting at 0401, so they should not be stored in a
char variable, as significant bits will be lost.

A program using special keys should avoid using the escape key,
since most sequences start with escape, creating an ambignity.
Curses will set a one second alarm to deal with this ambiguity,
which will cause delayed response to the escape key. It is a guod idea
to avoid escape in any case, since there is eventually pressure for
nearly any screen oriented program to accept arrow key input.

Scrolling Region

There is a programmer accessible scrolling region. Normally, the
scrolling region is set to the entire window, but the calls

setscrreg(top. bot)
wsetscrreg(win, top, bot)

set the scrolling region for stdscr or the given window to any
combination of top and bottom margins. When scrolling past the
bottom margin of the scrolling region, the lines in the region will
move up one line, destroying the top line of the region. If scrolling
has been enabled with scroll ok , scrolling will. take place only
within that window. Note that the scrolling region is a software
feature, and only causes a window data structure to scroll. This may
or may not translate to use of the hardware scrolling region feature
of a terminal, or insert! delete line.

12-39

Mini-Curses

Curses copies from the current window to an internal screen image
for every call to refresh. If the programmer, is only interested in
screen output optimization, and does not want the windowing or
input functions, an interface to the lower level routines is available.
This will make the program somewhat smaller and faster. The
interface is a subset of full curses, so that conversion between the
levels is not necessary to switch from mini-curses to full curses.

The following functions of curses and terminfo are available to the
user of minicurses:

addch(ch)
attrset(at)
move(y, x)
refreshO

addstr(stt)
clearO
mvaddch(y,x,ch)
standendO

attroff(at)
eraseO
mvaddstr(y,x,str)
standoutO

attron(at)
initscr
newterm

The following functions of curses and terminfo are not available to
the user of minicurses:

box clrtobot clrtoeol delch
deleteln delwin getch getstr
inch insch insertln longname
makenew mvdelch mvgetch mvgetstr
mvinch mvinsch mvprintw mvscanw
mvwaddch mvwaddstr mvwdelch mvwgetch
mvwgetstr mvwin mvwinch mvwinsch
mvwprintw mvwscanw newwin overlay
overwrite printw putp scanw
scroll setscrreg subwin touchwin
vidattr waddch waddstr wclear
wclrtobot wclrtoeol wdelch wdeleteln
werase wgetch wgetstr winsch
winsertln wmove wprintw wrefresh
wscanw wsetscrreg

The subset mainly requires the programmer to avoid use of more
than the one window stdscr. Thus, all functions beginning with
"w" are generally undefined. Certain high level functions that are
convenient but not essential are also not available, including pr intw
and scanw. Also, the input routine getch cannot be used with

12-40

nInI-curses. Features implemented at a low level, such as use of
lardware insert/delete line and video attributes, are available in both
rersions. Also, mode setting routines such as crmode and noecho
Ire allowed.

ro access mini-curses, add -DXINICURSES to the CFLAGS in the
nakefile. If routines are requested that are not in the subset. the
.oader will print error messages such as

Undefined:
m.getch
m waddch

to tell you that the routines getch and waddch were used but are
not available in the subset. Since the preprocessor is involved in the
implementation of mini-curses, the entire program must be
recompiled when changing from one version to the other.

rTY Mode Functions

[n addition to the save/restore routines savetty() and
reset ty () , standard routines are available for going into and out of
normal tty mode. These routines are resetterm(), which puts the
terminal back in the mode it was in when curses was started;
f i xterm(), which undoes the effects of reset term, that is,
restores the "current curses mode"; and saveterm(), which saves
the current state to be used by f ixterm(). endwin automatically
calls reset term, and the routine to handle control-Z (on other
systems that have process control) also uses resetterm and
f ixterm. Programmers should use these routines before and after
shell escapes, and also if they write their own routine to handle
control-Z. These routines are also available at the terminfo level.

Typeahead Check

If the user types something during an update, the update will stop,
pending a future update. This is useful when the user hits several
keys, each of which causes a good deal of output. For example, in a
screen editor, if the user presses the "forward screen" key, which
draws the next screen full of text, several times rapidly, rather than
drawing several screens of text, the updates will be cut short, and

12-41

'only the last screen full will actually be displayed. This feature is
:automatic and cannot be disabled. The feature only works on
iversions of the UNIX system with the necessary support in the
operating system.

getstr

No matter what the setting of echo is, strings typed in here are
echoed at the current cursor location. The users erase and kill
characters are understood and handled. This makes it unnecessary
for an interactive program to deal with erase, kill, and echoing when
the user is typing a line of text.

longname

The long-name function does not need any arguments. It returns a
pointer to a static area containing the actual long name of the
terminal.

Nodelay Mode

The call

nodelay(stdscr, TRUE)

will put the terminal in "nodelay mode". While in this mode, any call
to !letch will return -1 if there is nothing waiting to be read
immediately. This is useful for writing programs requiring "real
time" behavior where the users watch action on the screen and press
a key when they want something to happen. For example, the cursor
can be moving across the screen, in real time. When it reaches a
certain point, the user can press an arrow key to change direction at
that point.

12-42

Portability

Several useful r!)utines are provided to improve portability. The
implementation of these routines is different from system to system,
and the differences can be isolated from the user program by
including them in curses.

Functions erasechar() and killchar() return the characters
which erase one character, and kill the entire input line, respectively.
The function baudrate() will return the current baud rate, as an
integer. (For example, at 9600 baud, the integer 9600 will be
returned, not the value 89600 from (sgtty.h >.) The routine
flushinp() will cause all typeahead to be thrown away.

12-43

12-44

Chapter 13

Curses Examples

EXAMPLE PROGRAM 'editor'......................... 13-1
EXAMPLE PROGRAM 'highlight'. .. 13-6
EXAMPLE PROGRAM 'scatter'. .. 13-8
EXAMPLE PROGRAM 'show' 13-10
EXAMPLE PROGRAM 'termhl' 13-12
EXAMPLE PROGRAM 'two'.......................... 13-14
EXAMPLE PROGRAM 'window' 13-17

Chapter 13

CURSES EXAMPI,ES
rhe following examples are provided to demonstrate uses of curses.
rhey are for illustration purposes only. A good programmer would
expand the programs presented here before using them.

EXAMPLE PROGRAM 'editor'
/*
* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr itself to simplify
• the program.
*/

#include <curses.h>

#defiile CTRL(c) ('c' & 037)

main(argc, argYl
char **argv;
{

int i, n, 1;
int c;
FILE *fd;

if (argc != 2) {
fprintf(stderr, "Usage: edit fileO);
exit(l); .

fd = fopen(argv[l], " r");
if (fd == NULL) {

perror(argv[l]);
exit(2);

initscrO;
cbreakO;
nonlO;

13-1

noechoO;
idlok(stdscr, TRUE);
keypad(stdscr, TRUE);

/* Read ill the file * /
while «c = getc(fd)) != EOF)

addch(c);
fclose(fd);

move(O,O);
refreshO;
editO;

/* Write out the file */
fd = fopen(argv[11, .. w");
for (1=0; 1<23; 1++) {

}

n = len(l);
for (i=O; kn; i++)

putc(mvinch(l, i), fd);
putc('O, fd);

fclose(fd);

endwinO;
exit(O);

len(lineno)
int lineno;
{

int linelen = COLS-l;

while (linelen >=0 &&mvinch(lineno, linelen) == ")
linelen--;

return linelen + 1;

/* Global value of current cursor position * /
int row, col;

editO
{

int c;

13-2

for (;;) {
move(row, col);
refreshO;
c = getchO;
switch (c) { /* Editor commands */

/* hj kl and arrow keys: move cursor * /
/* in direction indiated * /
case 'h':
case KEY_LEFT:

if (col> 0)
col--;

break;

case 'j':
case KEY_DOWN:

if (row < LINES-I)
row++;

break;

case 'k':
case KEY_UP:

if (row> 0)
row--;

break;

case'l':
case KEY_RIGHT:

if (col < COLS-I)
col++;

break;

/* i: enter input mode * /
case KEY_IC:
case'i':

inputO;
break;

/* x: delete current character * /
case KEY:_DC:
case 'x':

delchO;
break;

13-3

f*

/* 0: open up a new line and enter input mode *f
case KEY _IL:
case '0':

move(++row, col=O);
insertlnO;
inputO;
break;

/* d: delete current line * f
case KEY_DL:
case'd':

deletelnO;
break;

/* "L: redraw screen • f
case KEY_CLEAR:
case CTRL(L):

clearok(curscr);
refreshO;
break;

f* w: write and quit *f
case 'w':

return;

f* q: quit without writing • /
case 'q':

endwinO;
exit(l);

default:
fiashO;
break;

* Insert mode: accept characters and insert them.
* End with "D or EIC
*f

inputO
{

int c;

13-4

standoutO;
mvaddstr(LINES-l, COLS-20, " INPUT MODE");
standendO;
move(row, col);
refreshO;
for (;;) {

}

c = getchO;
if (c == CTRL(D) n c == KEY_EIC)

break;
insch(c);
move(row, ++col);
refreshO;

move(LINES-l, COLS-20);
clrtoeolO;
move(row, col);
refreshO;

13-6

EXAMPLE PROGRAM 'highlight'
/*
o highlight: a program to turn U, B, and
o N sequences into highlighted
o output, allowing words to be
o displayed underlined or in bold.
0/

#include <curses.h>

main(argc, argYl
char **argv;
{

FILE *fd;
int c, c2;

if (argc != 2) (
fprintf(stderr, .. Usage: highlight fileO);
exit(l);

fd = fopen(argv[ll, .. r");
if (fd == NULL) (

perror(argv[lJ);
exit(2);

initscrO;
scrollok(stdscr, TRUE);

for (;;) (
c = getc(fd);
if(c == EOF)

break;
if (c == ,\') (

c2 = getc(fd);
switch (c2) (
case 'B':

attrset(A_BOLD);
continue;

case 'U':
attrset(A_UNDERLINE);
continue;

case 'N':

13-6

attrset(O);
continue;

}
addch(c);
addch(c2);

else
addch(c);

}
fclose(fd);
refreshO;
endwinO;
exit(O);

13-7

/*

*

*
*f

EXAMPLE PROGRAM 'scatter'

SeATTER. This program takes the first
23 lines from the standard
input and displays them on the
VDU screen, in a random manner.

#include <curses.h>

#define MAXLINES 120
#define MAXeOLS 160
char s[MAXLINES)[MAXeOLSj;/* Screen Array *f

main()
{

register int row=O,col=O;
register char c;
int char_count=O;
long t;
char buf[BUFSIZj;

initscrO;
for(row=O;row<MAXLINES;row++)

for(col=O;cokMAXeOLS;col++)
s[rowj(colj=' ';

row = 0;
f* Read screen in * f
while((c=getchar())!= EOF &&row < LINES) {

if(c!= '0) {
f* Place char in screen array * /
s[rowj(col++ j = c;
if(c!=' ')

char_count++;
} else {

col=O;
row++;

time(&t);f* Seed the random number generator *f
srand«int)(t&0177777L));

13-8

while(char_count) {
row=randO % LINES;
col=(randO»2) % COLS;
if(s[row][col] != ' ')
{

}
endwinO;
exit(O);

move(row, col);
addch(s[row][col]);
s[row][col]=EOF;
char _count--;
refreshO;

13-9

EXAMPLE PROGRAM 'show'
#include <curses.h>
#include <signal.h>

main(argc, argv)
int argc;
char *argv[];
{

FILE *fd;
char linebuf[BUFSIZ];
int line;
void doneO, perrorO, exitO;

if(argc != 2)
{

fprintf(stderr," usage: % s fileO, argv[O]);
exit(l);

}
if«fd=fopen(argv[l]," r" » == NULL)
{

perror(argv[l]);
exit(2);

}
signal(SIGINT, done);

initscrO;
noechoO;
cbreakO;
nonlO;
idlok(stdscr, TRUE);

while(l)
{

move(O,O);
for(line=O; line<LINES; line++)
{

if(fgets(linebuf, sizeof linebuf, fd) == NULL)
{

}

clrtObotO;
doneO;

move(line, 0);
printw(" %s", Hnebuf);

13-10

}
refreshO;
if(getchO == 'q')

doneO;

void
doneO
{

move(LINES-l, 0);
clrtoeolO;
refreshO;
endwinO;
exit(O);

13-11

EXAMPLE PROGRAM 'termhl'
j*

* A terminfo level version of highlight.
*j

#include <curses.h>
#include <term.h>

int ulmode = 0; /* Currently underlining * /

main(argc, argYl
char **argv;
{

FILE 'fd;
int c, c2;
int outchO;

if (argc > 2) {
fprintf(stderr, .. Usage: termhl [file)O);
exit(I);

if (argc == 2) {
fd = fopen(argv[I), .. r");
if (fd == NULL) {

perror(argv[I]);
exit(2);

}
} else { .

fd = stdin;

setupterm(O, 1, 0);

for (;;) {
c = getc(fd);
if(c == EOF)

break;
if (c == ,\') {

c2 = getc(fd);
switch (c2) {
case 'B':

tputs(enter_holclJnode, 1, outch);
continue;

13-12

f·

}
else

}

case 'U':
tputs(enter_underline_mode, I, outch);
ulmode = 1;
continue;

case 'N':
tputs(exiLattribute_mode, I, outch);
ulmode = 0;
continue;

}
putch(c);
putch(c2);

putch(c);

fclose(fd);
fflush(stdout);
resettermO;
exit(O);

• This function is like putchar, but it checks for underlining.
·f

putch(c)
int c;
{

outch(c);

f·

if (ulmode &&underline_char) {
outch('
tputs(underline_char, I, outch);

• Outchar is a function version of putchar that can be passed to
• tputs as a routine to call.
*f

outch(c)
int c;
{

putchar(c);

EXAMPLE PROGRAM 'two'

#include <curses.h>
#include <signal.h>

struct screen *me, *you;
struct screen *seCterm();

FILE *fd. *fdyou;
char linebuf[5121;

main(argc. argv)
char **argv;
{

int done();
int c;

if (argc != 4) {
fprintf(stderr. "Usage: two othertty otherttytype inputfileO);
exit(l);

fd = fopen(argv[31. "r");
fdyou = fopen(argv[ll. "w+");
signal(SIGINT. done); /* die gracefully */

me = newterm(getenv(" TERM"). stdout);/* initialize my tty */
you = newterm(argv[21. fdyou);/* Initialize his terminal */

seLterm(me); /* Set modes for my terminal */
noechoO; /* turn off tty echo * /
cbreak(); /* enter cbreak mode * /
nonlO; /* Allow linefeed * /
nodelay(stdscr.TRUE); /* No hang on i';put */

secterm(you); /* Set modes for other terminal * /
noechoO;
cbreakO;
nonlO;
nodelay(stdscr.TRUE);

/* Dump first screen full on my terminal * /
dump-page(me);

13-14

f* Dump second screen full on his terminal * f
dump-page(you);

for (;;) (f* for each screen full * f
set_term(me);
c = getchO;
if (c == 'q') f* wait for user to read it • f

doneO;
if (c ==' ')

dump-page(me);

seCterm(you);
c = getchO;
if (c == 'q') /* wait for user to read it 'f

doneO;
if (c == ")

dump-page(you);
sleep(l);

dump-page(term)
struct screen 'term;
(

f'

int line;

seCterm(term);
move(O,O);
for (line=O; line<LINES-l; line++) {

}

if (fgets(linebuf, sizeof linebuf, fd) == NULL) {
clrtobotO;
doneO;

}
mvprintw(line, 0, n % sn , linebuf);

standoutO;
mvprintw(LINES-l, 0, n --More--");
standendO;
refreshO; /* sync screen • /

• Clean up and exit.

13-15

0/
doneO
(

/0 Clean up first terminal * /
secterm(you);
move(LINES-l,O); /* to lower left corner */
clrtoeolO; /* clear bottom line * /
refreshO; /* flush out everything * /
endwinO; /* curses cleanup * /

/* Clean up second terminal * /
set_term(me);
move(LINES-l,O); /* to lower left corner' /
clrtoeolO; /* clear bottom. line * /
refreshO; /* flush out everything * /
endwinO; /* curses cleanup * /

exit(O);

13-16

EXAMPLE PROGRAM 'window'
HincIude <curses.h>

WINDOW ·cmdwini

mainO
{

int i, c;
char buf[120];

initscrO;
nonlO;
noechoO;
cbreakO;

cmdwin = newwin(3, COLS, 0, 0);/* top 3 lines *f
for (i=O; kLINES; i++)

mvprintw(i, 0, "This is line %d of stdscr" , i);

for (;;) {
refreshO;
c = getchO;
switch (c) {
case 'c': f· Enter command from keyboard *f

werase(cmdwin);
wprintw(cmdwin, " Enter command:");
wmove(cmdwin, 2, 0);
for (i=O; kCOLS; i++)

waddch(cmdwin, '-');
wmove(cmdwin, 1, 0);
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr(cmdwin, buf);
touchwin(stdscr);
f·
• The command is now in buf.
• It should be processed here.

13-17

13·18

*/
break;

case 'q':
endwinO;
exit(O);

Chapter 14

SHELL INTRODUCTION
The chapters behind the Shell tab are intended to provide information
on how to use the sheIL The Using Shell Commands chapter builds on
the UNIX System User Guide or tbe "hands-on" experience some have
acquired. It is intended for those users who have some basic familiarity
with shell but desire more detailed information. The Shell Programming
chapter provides information for programming with shell. Those users
that intend to do shell programming should read the Using Shell
Commands chapter as well as the Shell Programming chapter. The
Examples of Shell Procedures chapter contains examples of shell
programs.

Knowledge of another programming langoage is not required when
reading this document.

It is important to note a few things about shell. The shell functions
as a

• Command language-The shell reads command lines entered at
a terminal and interprets the lines as requests to execute other
programs.

• Programming language-The shell is a programming langoage
just like BASIC, COBOL, Fortran, and other langoages. The
shell is a high-level programming langoage that is easy to learn.
The programs written using the shell programming langoage
are called shell scripts, procedures, or commands. These
programs are stored in files and executed just like commands.
The shell provides variables, conditional constructs, and
iterative constructs.

• Working environment-The shell also provides an environment
that can be tailored to an individual's or group's needs by
manipulating environment variables.

• Trademark of AT&T Bell Laboratories

14-1

Throughout this section, each reference of the form name(lM), name(7),
or name(S) refers to entries in the Superuser Reference Manual book.
Each reference of the form name(l) and name(6) refers to entries in the
User Reference Manual book. All other references to entries of the form
name(N), where possibly followed by a letter, refer to entry name in
section N of the Programmer Reference Manual book.

All command names in this document are in bold font.

Normally when the system is ready for a command from a terminal,
a prompt is displayed on the terminal (? by default). With certain
commands, the system expects more than one line of terminal input.
When this is the case, a secondary prompt is displayed (> by default).
To avoid confusion with what the system displays and what the user
types, this document does not show prompts displayed by the system
unless noted otherwise.

• Trademark of AT&T Teelmologies.

14-2

Chapter 15

Using ·Shell Commands

INTRODUCTION. 15-1
EXECUTING SIMPLE SHELL COMMANDS............ 15-1
INPUT/OUTPUT REDIRECTION...................... 15-1
PIPELINES AND FILTERS........................ ... 15-3
PERMISSION MODES. .. 15-4
FILE NAME GENERATION.......................... 15-5
QUOTING. .. 15-7
EXECUTING COMMANDS IN THE BACKGROUD. 15-8

Determining Completion of Background Commands. 15-8
Terminating Background Commands. 15-9

SHELL VARIABLES 15-10
Positional Parameters 15-10
Keyword Parameters 15-12
User Defined Variables. .. 15-17

SPECIAl. COMMANDS............................... 15-18
cd , 15-19
exec•................ 15-20
hash , 15-20
newgrp ... 15-21
pwd .. 15-21
set ... ~5-22
type. 15-22
ulimit 15-23
umask. .. 15-23
unset ... 15-24

RESTRICTED SHELL................................ 15-24

Chapter 15

USING SHELL COMMANDS

INTRODUCTION
rhis chapter provides information to enhance uses of the shell. Most
information should be useful to both the programmer and
non programmer alike. Some information may be of more use to the
more advanced user. It is assumed that the user has been introduced
to the UNIX system and understands such basics as how to log in, set
the terminal baud rate, etc.

EXECUTING SIMPLE SHELL COMMANDS
A simple shell command consists of the command name possibly
followed by some arguments such as

cmd argl arg2 arg3 ...

where cmd is the command name consisting of a sequence of letters,
digits, or underscores beginning with a letter or underscore. For
example, the shell command

Is

prints a list of files in the current directory.

INPUT/OUTPUT REDIRECTION
Most commands produce output to a terminal. Output can be
redirected to a file in two different ways. First, standard output may
be redirected to a file by the notation" >" , thus

Is -I > tempfile

15-1

causes the shell to redirect the output of the command Is to be put
in tempfile. If there is no file tempfile, one is created by the shell.
Any previous contents of tempfile are destroyed.

Standard output may be appended to the end of a file by the notation
"»" thus

Is -I »tempfile

causes the shell to append the output of the command Is to the end
of the contents of tempfile. If tempfile does not already exist, it is
created.

Although input is normally from a terminal, it can also be redirected
by the" <" notation. Thus

wc < tempfile

would send the contents of tempfile to the we command which would
give a character, word, and line count of tempfile. Another
modification of input is possible with the" «" notation. The form

cmd «word

would send standard input to the specified command until a line the
same as word is input. As an example

sort < <finished

would send all the standard input to sort until finished is input.
Then the input would be sorted and output to the terminal. If the
notation" «-" is used, then all leading tabs would be stripped. As
an example, the following is entered at the terminal (note that the
primary system prompt $ and the secondary system prompt >
provided by the system are shown in this example)

15-2

$sort «end
> no one does anything about it
>everyone talks about the weather but
>end

and the following would be returned

everyone talks about the weather but
no one does anything about it

PIPELINES AND FILTERS
The standard output of one command may be connected to the
standard input of another by using the pipe (I) operator between
commands as in

Is -I Iwc

A sequence of one or more commands connected in this way
constitutes a pipeline, and the overall effect is the same as

Is -I > file; wc < file

except no file is used. Instead the two processes are connected
together by a pipe [see pipe(2)J and are run in parallel. Each
command is run as a separate process.

Pipes allow one to execute several commands sequentially from left
to right with the standard output from each command becoming the
standard input of the next command. This prevents creating
temporary files and is faster than not using pipes. Pipes are
unidirectional. Synchronization is achieved by halting we when
there is nothing to read and halting Is when the pipe is full.

A filter is a command that reads its standard input, transforms it in
some way, and prints the result as output. One such filter, grep(l),
selects from its input those lines that contain some specified string.
For example,

15-3

Is I grep old

prints those lines that contain the string" old". Another filter is the
son(l) command that gives alphabetical listings.

PERMISSION MODES
All UNIX system files have three independent attributes (often called
"permissions"), read, write, and execute (rwx). These three
permissions are assigned to three different levels of users. The first
level is the owner level. Normally, the creator of the file is the
owner. This ownership can be changed with the chown(l) command.
The second level is the group level. The thfrd level is the others level.
The permission for each level must be set to allow reading, writing,
or executing a file.

The Is command will display among other things the permissions for
a file when used as follows

Is -I filename

The general format of the permissions is

-rwxrwxrwx

where the first character will be a dash if it is an ordinary file. The
second, third and fourth characters (the first rwx) indicate the
permission modes for the owner. The fifth, sixth, and seventh
characters (the second rwx) indicate the permission modes of the
group. And the eighth, ninth, and tenth characters (the last rwx)
indicate the permission modes of others. A dash in any permission
mode position indicates that the mode is not allowed.

For example, the input

Is -I wg

15-4

displays the permissions of wg as follows

-rwxr-x--- 1 abc UNIX 66 May 4 09:25 wg

In this case, the owner has read (r), write (w), and execute (x)
permission, the group has read and execute permission, and all others
are denied (-) permission to wg.

The chmod(l) command is used by the owner to change the
permission modes of a file. To change the permissions of wg 80 that
everyone could execute the procedure, enter the following command

ehmod 751 wg

which would result in a permission mode of rWl[r-l[--l[. The 7
assigns the owner read, write, and execute permission [4 (read) + 2
(write) + 1 (execute) = 7). The 5 assigns the group read and execute
permission [4 (read) + 1 (execute) = 5). The 1 assigns others execute
permission.

The chmod command could also be entered as

chmod +x wg

which would add execute permission for owner, group, and all others.

FILE NAME GENERATION
The shell provides a mechanism for generating a list of file names
that match a pattern. For example,

Is -I ·.c

generates as arguments to Is(l) all file names in the current
directory that end in .c. The character is a pattern that will
match any string including the null string. In general, patterns are
specified as follows ---

15-5

•

?

[-I

Matches any string of characters including the
null string.

Matches any single character.

Matches any character enclosed. A pair of
characters separated by a minus will match any
character lexically between the pair.

For example,

Is -I [a-z]*

matches all names in the current directory beginning with letters a
through z. The input

Is -I /usr/fred/test/?

matches all names in the directory /usr/fred/test that consist of a
single character. This mechanism is useful both to save typing and
to select names according to some pattern.

There is one exception to the general rules given for patterns. The
character at the start of a file name must be explicitly matched.
The input

echo·

prints all file names in the current directory not beginning with
The input

echo .*

prints all those file names that begin with This avoids
inadvertently matching the names and that mean "the current
directory" and "the parent directory," respectively. [Notice that Is(l)
suppresses information for the files and]

15-6

QUOTING
Characters that have a special meaning to the shell, such as

<>' 11&$;\""[]

are called metacharacters.

The shell can be inhibited from interpreting and acting upon the
special meaning assigned metacharacters by preceding them with a
backslash (\). Any character preceded by a \ loses its special
meaning. For example

echo •

prints all the file names in the current directory. To echo an asterisk,
enter

echo *

The backslash turns off any special meaning of a metacharacter.

To allow long strings to be continued over more than one line, the
sequence \newline (or RETURN) is ignored. The \ is convenient for
quoting single characters. When more than one character needs
quoting, the above mechanism is clumsy and error prone. A string of
characters may be quoted by enclosing the string between single
quotes. All characters enclosed between a pair of single quote marks
are quoted except for a single quote. For example,

echo xx'****'xx

will print

xx·***xx

The quoted string may not contain a single quote but may contain
new lines that are preserved. This quoting mechanism is the

15-7

simplest and is recommended for casual use.

EXECUTING COMMANDS IN THE
BACKGROUND
To execute a command, the shell normally creates a new process and
waits for it to finish. A command may be run without waiting for it
to finish. Executing commands in the background enables the
terminal to be used for other tasks. Adding an ampersand (&) at the
end of a command line before the RETURN starts the execution of a
command and immediately returns to the shell command level. For
example,

ccpgm.c &

calls the C compiler to compile the file pgm.c. The trailing U&" is an
operator that instructs' the shell not to wait for the command to
finish. To help keep track of such a process, the shell reports its
process number following its creation. This means the system will
respond with a process number followed by the primary shell
prompt.

Determining Completion of Background Commands

When a command is executed 'in the background, a prompt is not
received when the command cOmpletes execution. The only way 16 see
that the command is either in process or complete is to request
process status. The status of all active processes assigned to a user
car be rep< ted as follows

ps -u ulist

where "ulist" is the login name. If the process number and
associated command name are output by the ps command, then the
command is running in the background. If the process number and
associated command name are not output by the ps command, then
the command has finished executing.

15-8

Terminating Background Commands

Once a command starts in the background, it will run until it is
finished or is stopped. The BREAK, RUBOUT, DELETE, or other
keys will not stop a command running in the background. Instead,
the process must be "killed" with the kill(l) command as follows

kill PlO

where "PID" is the process identification number. The shell
variable $I contains the "PIO" of the last process run in the
background and can be obtained as follows

echo $!

All nonessential background processes can be stopped by executing
the following command

kill 0

Some processes can ignore the software termination signal. To stop
these processes, enter the following

kill-9 PlO

A process running in the background is automatically killed when the
user logs out. The nohup(l) command can be used to continue the
process after logging off or hanging up. For example,

nohup nroff text &

would continue the formatting of the file text using the nroff(l)
formatter even if one logged off or the telephone line to the computer
went down. The system responds with the lines

28096
$ Sending output to nohup.out

15-9

The 28096 is the process id number. A file nohup.out is created by
the nohup command, and all output of the process is directed to this
file. To redirect the output to a particular file, use the redirect
command as follows

nohup nroff text & > formatted

to direct the output to the file formatted.

SHELL VARIABLES
A variable is a name representing a string value. (Loosely defined, a
string is a combination of one or more alphanumeric characters or
symbols.) Variables that are normally set on a command line are
called parameters. There are two types of parameters in the shell­
positional and keyword.

Positional Parameters

When a shell procedure is invoked, the shell implicitly creates
positional parameters. The shell assigns the positional parameters
as follows

${O} ${l} ${2} ${3} ... ${9}

Since the general form of a simple command is

cmd argl arg2 arg3 ...

then the values of the positional parameters are

cmd argl arg2 arg3 ... arg9
${O} ${l} ${2} ${3} ... ${9}

For instance, if the following command is entered

15-10

cmd tempi temp2 temp3

then the positional parameter ${ I} would have the value tempi.
Notice that the command procedure name is always assigned to ${O}.

The positional parameters are used often in shell programs. If a
shell program, wg, contained

who I grep $1

then the call to run the program

sh wg fred

is equivalent to

who I grep fred

The variable $. is a special shell parameter used to substitute for all
positional parameters except $0. Certain other similar variables are
used by the shell. The following are set by the shell:

$?

$#

$$

The exit status (return code) of the last command
executed as a decimal string. Most commands return
a zero exit status if they complete successfully;
otherwise, a nonzero exit status is returned. Testing
the value of return codes is dealt with later under if
and while commands.

The number of positional parameters in decimal.

The process number of this shell in decimal. Since
process numbers are different from all other existing
processes, this string is frequently used to generate
temporary file names. For example,

15-11

ps a >/tmp/ps$$

rm /tmp/ps$$

$1 The process number of the last process run in the
background (in decimal).

$- The current shell flags. sucb as -x and -v.

Keyword Parameters

The shell uses certain variables known as keyword parameters for
specific purposes. The following variables are discussed in this
portion of the document:

HOME
PATH
CDPATH
MAIL
MAILCHECK
MAILPATH
PSI
PS2
IFS
SHACCT
SHELL.

HOME

The variable HOME is used by the shell as the default value for the
cd(l) command. Entering

cd

is equivalent to entering

cd$HOME

15-12

where the value of HOME is substituted by the shell. If
$HOME=/d3/abc/def, then each of the above two entries would be
equivalent to

cd /d3/abc/def

Normally, HOME is initialized by login(l) to the login directory.
The value of HOME can be changed to /d3/abc/ghi by entering the
following

HOME=/d3/abc/ghi

No spaces are permitted. The change of the variable will have no
effect unless the value is exported [see export in Chapter 3 under
n Special Commands" and in sh(l)J. All variables (with their
associated values) that are known to a command at the beginning of
execution of that command constitute its environment. To change
the environment to a new variable setting, the following must be
entered

export variable-name

For instance, if HOME has been modified, then the command

export HOME

will cause the environment to be modified accordingly. The variable
HOME need be exported only once. At login the next time, the
original variable settings will be reestablished. A change to the
.profile would modify the environment for each new login.

PATH

The variable PATH is used by the shell to specify the directories to
be searched to find commands. Each directory entry in the PATH
variable is separated by a colon (:). Several directories can be
specified in the PA TH variable but each directory before the
command is found consumes processor time. Obviously, the
directories that contain the most often used commands should be

15-13

specified first to reduce searching time. The following is the default
PATH value

PATH=:/bin:/usr/bin

Since no value precedes the first :, then the current directory is the
first directory searched. Then directory /bin is searched followed by
/usr/bin. To change the PATH variable, simply enter PATH=
followed by the directories to be searched. Each directory should be
separated by a colon. As when changing all variables, no spaces are
allowed before or after the =.

CDPATH

The variable CDPATHspecifies where the shell is to look when it is
searching for the argument of the cd command if that argument is
not null and does not begin with .J, J, or I. For example, if the
CDPATH variable were

CDPATH=:/d3/abc/def:/d3/abc

then the command

cdghi

would cause the current directory, /d3/abc/def directory, and /d3/abc
directory to be searched for the subdirectory ghi. If found in the
/d3/abc/def directory, the full pathname of the subdirectory would be
printed and the current working directory would be changed to
/d3/abc/def/ghi.

MAIL, MAILCHECK, MAILPATH

When the MAILPATH variable is set, the shell informs the user of
modifications to any of the files specified by the MAILPATH
variable. The MAIL variable, if set, is ignored. When the
MAILP A TH variable is not set, the shell looks at the file specified
by the MAIL variable and informs the user if there are any
modifications.

15-14

If MAlLPATH=ld3IaWdeflmailfiJe, then a change to mailfile would
cause the message

You have mail
$

to be displayed when a check is made. Note that the prompt appears
on the line after the message. To display a customized message,
follow the file name with a % and the message. For example

MAILPATH=/d3/abcldef/mailfile%" Mailfile modified"

would cause the following message to be displayed after mailfile is
modified

Mailfile modified
$

Several files can be checked by adding them to MAILP ATH. For
instance

MAILPATH=/usr/mail/def:/d3/abc/def/mailfile%" Mailfile
modified" :/d3/abc/othermail %" Othermail modified"

would check for modifications to the three specified files. The
standard mailfile is specified. Otherwise, the user would not be
notified of the reception of standard mail except at login.

The MAILCHECK variable specifies how often (in seconds) the shell
will check for mail. The default value is 600 seconds (10 minutes). If
set to zero, ·the shell will check before each prompt. To set the
MAILCHECK variable to zero, enter the following

MAILCHECK=O

The presence of mail in the standard mail file (/usrlmailAoginname)
is announced at login regardless of. the setting Of MAIL or
MAILPATH variables. Otherwise, to be notified of the arrival of

15-15

mail, either the MAIL or MAILP ATH variable must be set.

PSl

The variable PSl is used by the shell to specify the primary shell
prompt. This is displayed at a terminal whenever the shell is
awaiting a command input. The default primary prompt is $. To
change the prompt to <>, for example, the following is entered

PS1="<>"

PS2

The variable PS2 is used by the shell to specify the secondary shell
prompt. This is displayed whenever the shell receives a newline in
its input but more is expected. The default value of PS2 is >. To
change the prompt to <more> for example, the following is entered

PS2=" <more>"

IFS

The variable IFS is used by the shell to specify the internal field
separators. Normally, the space, tab, and newline characters are
used. After parameter and command substitution, internal field
separators are used to split the results of substitution into distinct
arguments where sucIi characters are found. Explicit null arguments
(" " and' ') are retained.

SHACCT

The variable SHACCT is used by the shell to specify a file for
storing shell (as opposed to process) accounting records. Whenever a
shell procedure is executed and the variable SHACCT is set, the
shell will write an accounting record to the file specified by
SHACCT. This file must be writable by the user. The accounting
records can be analyzed by accounting routines such as acctcom(l)
and acctcms(lM).

11>-16

User Defined Variables

A user variable can be defined using an assignment statement of the
form name=value. The name must begin with a letter or underscore
and may then consist of any sequence of letters, digits, or
underscores. The name is the variable. Positional parameters cannot
be in the name.

The shell provides string-valued variables. Variable names begin
with a letter and consist of letters, digits, and underscores. Variables
may be given values by entering

user=fred box=mOOO acct=mhOOO

to assign values to the variables user, box, and acct. A variable may
be set to the null string by entering

null=

The value of a variable is substituted by preceding its name with $;
for example,

echo $user

will print fred.

Variables may be used interactively to provide abbreviations for
frequently used strings. For example,

b=/usr/fredibin
mv file $b

moves the file from the current directory to the directory
/usr/fred/bin. A more general notation is available for parameter
(or variable) substitution as in

echo ${ user}

15-17

This is equivalent to

echo $user

and is used when the parameter name is followed by a letter or digit.
For example,

tmp=/tmp/ps
ps a >$tmpa

directs the output of ps(l) to the file /tmp/psa, whereas,

ps a>$tmpa

causes the value of the variable tmpa to be substituted.

SPECIAL COMMANDS

The following special commands are used in writing shell
procedures. Many of the commands are only needed when
programming. Others have nonprogramming uses.

read
readonly

break return
continue set
cd shift
echo test
eval times
exec trap
exit type
export ulimit
hash umask
newgrp unset
pwd wait

The ones that are useful to the casual (nonprogramming) user are
described below.

15-18

cd

The cd command is used to change the current working directory as
follows

cd [arg]

where arg specifies the new directory desired. For instance,

cd /d3/ahc/ghi

moves the user from anywhere in the file system to the directory
/d3/abc/ghi. The full directory pathname must be specified to be
used in this way. Execute permissions must be set in the desired
directory.

If only the desired directory name is specified and the CDPATH
variable is not set, then the current directory is searched for a
subdirectory by that name. For instance, if the current directory
/d3/abc contains a subdirectory subdir, then the command

cd subdir

changes the current working directory to /d3/abc/subdir. If the
argument begins with oJ, the current working directory is changed
relative to its parent directory. If the argument begins with J, the
current directory value precedes additional arguments. For instance,
if the current working directory is /d3/abc, the following command

cd ./ghi

changes the current directory to /d3/abc/ghi.

If the variable CDPATH is set, the shell searches each directory
specified in CDPATH for the directory specified by the cd command.
If the directory is present, the directory becomes the new working
directory. (See" CDPA TH" under" Keyword Parameters" .)

15-19

exec

The command

exec [arg ... J

causes the command specified by arg to be executed in place of the
shell without creating a new process. Input/output arguments may
appear and, if no other arguments are given, cause the shell
input/output to be modified.

hash

When a command is executed, it is entered into a special hash table.
This table keeps track of what commands have been used, where they
were located, and how much directory searching is involved in
locating the command. Since this table is the first place that the
shell looks, the amount of time used to search for a previously used
command is reduced. Note that if a command is created and a
command by the same name has been previously used, the hash table
will contain only the location of the previously used command. The
hash table is reinitialized upon each login session. The hash table
can be cleared by entering

hash -r

To display the contents of the hash table, the following is entered

hash

The following is an example of a hash table:

hits
3
1
1
1
2
1

16-20

cost
5
2
7
2
2
2

command
1d3/abc/progbin/l
Ibinled
I d3/ abel deflbusy
Ibin/date
Ibin/who
Ibin/ls

The hits column displays the number of times a command has been
called. The cost column displays the number of nodes (Le.,
PATH=node:node:node) searched to find the command. The
command column displays the full pathname of the command.

An asterisk (*) displayed beside the hits information indicates that
the command. location may be reevaluated when the working
directory is changed and the command is re-executed.

If a command name is entered with hash, the location of the
command is determined and stored in the hash table without
executing the command.

newgrp

By issuing the command newgrp(l), the user is assigned a new
group identification. The command is of the form

newgrp H [group]

All access permissions are then evaluated with the new group. This
allows access to files with different group ID permissions.

Entering newgrp with no argument changes the group identification
back to the original group. When a - is entered, the environment is
changed to the login environment.

pwd

The pwd command prints the full pathname of the current working
directory. This command is especially useful when working
directories are changed often.

15-21

set

The set command provides the capability of altering several aspects
of the behavior of the shell by setting certain shell flags. Some of
the more useful flags for the nonprogrammer and their meanings are:

-a Mark variables that are modified or created for export.

-f Disable file name generation.

-v Print lines as they are read by the shell. The commands
on each input line are executed after that input line is
printed.

-x Print commands and their arguments as they are executed.
This causes a trace of only those commands that are
actually executed.

To set the x flag for example, enter

set -x

To turn the x flag off for example, enter

set +x

These commands are especially useful for troubleshooting within
shell procedures.

The set command entered with no arguments will display the values
of variables in the environment.

type

The type command indicates how a specified command would be
interpreted if used as a command name. The form of the command is

type [command-name)

15-22

For example, if the interpretation of the cd command is desired,
enter

type cd

which returns

cd is a shell builtin

ulimit

The ulimit command has the form

ulimit I-f] In]

When the option -I is used or if no option is specified, this command
imposes a limit of n blocks on the size of files written by the shell
and its child processes. Any size files may be read. If n is omitted,
the current value of this limit is printed. The default value for n
varies from one installation to another.

umask

The umask command has the form

umask Innn]

The user file creation mask is set to nnn. This mask is used to
determine the permission modes set on a file when it is created. For
instance,

umask 033

causes a newly created file to be assigned the permission set of 744.
(See" PERMISSION MODES" .)

15-23

unset

The unset command has the form

unset [name ...]

For each variable name, the shell removes the corresponding
variable or function. (This is not the same as making a variable null;
removing a variable makes it nonexistent.) The variables PATH, PSl,
PS2, MAILCHECK, and IFS cannot be unset.

RESTRICTED SHELL
A restricted shell is also available with the UNIX system. This
restricted version of shell is used to create an environment that
controls and limits the capabilities. The actions of rsh are identical
to that of sh, except that the following are disallowed:

• Changing directory

• Setting the value of PATH variable

• Specifying path or command names containing /

• Redirecting output (> and »).

The system administrator often sets up a directory of commands that
can be safely invoked by rsh. A restricted editor may also be
provided.

16-24

Chapter 16

Shell Programming

INTRODUCTION. .. 16-1
INVOKING THE SHELL.............................. 16-1
INPUT/OUTPUT. 16-2

Single Line. .. 16-2
Printing Error Messages. .. 16-2
Multiline Input (Here Documents). 16-2

SHELL VARIABLES................................. 16-3
CONDITIONAL SUBSTITUTION...................... 16-8
CONTROL COMMANDS 16-10

Programming Constructs. .. 16-12
Functions ... 16-21

SPECIAL COMMANDS 16-23
: (Colon) .. 16-24
break .. 16-25
continue. .. 16-26
echo ... 16-27
eva! .. 16-28
exit .. 16-29
export. .. 16-29
read .. 16-30
readonly .. 16-30
return. .. 16-30
shift .. 16-31
test .. 16-31
times. .. 16-34
trap .. 16-34
wait .. 16-38

COMMAND GROUPING.............................. 16-38
A COMMAND'S ENVIRONMENT. .. 16-39
DEBUGGING SHELL PROCEDURES. 16-41

Chapter 16

SHELL PROGRAMMING

INTRODUCTION
This chapter describes shell as a programming language and builds
upon the information provided in the Using Shell Commands chapter.
It is expected that the reader has read the Using Shell Commands
chapter and has experience with UNIX system commands.

INVOKING THE SHELL
The shen is an ordinary command and may be invoked in the same
way as other commands:

sh proc [arg ... I

sh -v proc [arg ... I

proc [arg ... I

A new instance of the shen is
explicitly invoked to read proc.

This is equivalent to putting set -vat
the beginning of proc. Similarly for
other set flags including x, e, u, and n
flags.

If proc is marked executable, and is not
a compiled,' executable program, the
effect is similar to that of the sh proc
[args ... I command. An advantage of
this form is that proc may be found by
the search procedure.

Hi·}

INPUT/OUTPUT

Unless redirected by a command inside the program, a shell program
uses the input and output connections of the shell program. A
redirection on a command changes redirection for that command
only.

Single Line

The following could be used to print a line from a program

echo The date is:
date

and would result in

The date is:
Tue May 2116:13:38 EDT 1984

Printing Error Messages

Normally, error messages are associated with file descriptor 2 and
are sent to standard error. Error messages can be redirected to a file
with the following command

sample 2>ERROR

If an error message is produced when running the program sample,
the error output is redirected to the file ERROR.

Multiline Input (Here Documents)

One way to input several lines to programs is with what is referred
to as .. Here Documents". The general Corm is

cmd argl arg2 ... «word

16-2

where everything entered at this command is accepted until word is
entered on a line by itself. For example

sort «finish

sends all the standard input to sort until rmish is inputted. Then
the input would be sorted and output to the terminal. For example

$ sort «finish
> def
> abc
> finish
abc
def

Note that the primary system prompt ($) and the secondary system
prompt (» are shown. The final two lines are returned by the
system.

The command

sort «-word

removes all leading spaces or tabs.

SHELL VARIABLES
The shell has several mechanisms for creating variables. A variable
is a name representing a string value. Certain variables are usually
referred to as parameters. Parameters are the variables normally set
only on a command line. There are also positional parameters and
keyword parameters. Other variables are simply names to which the
user or the shell itself may assign string values.

Positional Parameters: When a shell procedure is invoked, the
shell implicitly creates positional parameters. The argument in
position zero on the command line (the name of the shell procedure
itself) is called $0, the first argument' is called $1, etC. The shift

16-3

command may be used to access arguments in positions numbered
higher than nine.

One can explicitly force values into these positional parameters by
using the set command

set abc def ghi

which assigns" abc" to the first positional parameter ($1), .. def" to
the second ($2), and" ghi" to the tbird ($3). For this example, set
also unsets $4, $5, etc. even if they were previously set. Positional
parameter $0 may not be assigned a value so that it always refers to
the name of the shell procedure or to the name of the shell (in the
login shell).

For instance,

set abc def ghi
echo $3 $2 $1

prints

ghi def abc

User-defined Variables: The shell also recognizes alphanumeric
variables to which string values may be assigned. Positional
parameters may not appear on the left-hand side of an assignment
statement. Positional parameters can only be set as described in
"Positional Parameters". A simple assignment is of the form

name=string

Thereafter, $name yields the value" string". A name is a sequence
of letters, digits, and underscores that begins with a letter or an
underscore. Note that no spaces surroood the = in an assignment
statement.

164

More than one assignment may appear in an assignment statement,
but beware since the shell performs the assignments from right to
left. The following command line results in the variable a acquiring
the value" abc"

a=$b b=abc

The following are examples of simple assignments. Double quotes
around the right-hand side allow blanks, tabs, semicolons, and
newlines to be included in .. string", while also allowing variable
substitution (also known as parameter substitution) to occur. In
parameter substitution, references to positional parameters and other
variable names that are prefaced by $ are replaced by the
corresponding values, if any. Single quotes inhibit variable
substitution. Some examples follow

MAIL=/usr/mail/gas
var=" $1 $2 $3 $4"
stars=*****
asterisks='$stars'

The variable var has as its value the string consisting of the values of
the first four positional parameters, separated by blanks. No quotes
are needed around the string of asterisks being assigned to stars
because pattern matching (expansion of ., ?, [... J) does not apply in
this context. Note that the value of $asterisks is the literal string
" $stars", not the string , because the single quotes inhibit
substitution.

In assignments, blanks are not reinterpreted after variable
substitution, so that the following example results in $rlrst and
$second having the same value

first='a string with embedded blanks'
second =$first

In accessing the value of a variable, one may enclose the variable's
name (or the digit designating the positional parameter) in braces {}
to delimit the variable name from any following string. In
particular, if the character immediately following the name is a

16-5

letter, digit, or underscore (digit only for positional parameters), the
the braces are required

a='This is a string'
echo" ${a}ent test"

returns the following message

This is a stringent test

Command Substitution: Any command line can be placed withi
grave accents (•... ') to capture the output of the command. Thi
concept is known as command substitution. The command c
commands enclosed between grave accents are first executed by til
shell and then their output replaces the whole expression, grav
accents and all. This feature is often combined with shell variablE
so that

today='date'

assigns the string representing the current date to the variable tods
(e.g., Tue Nov 27 16:01:09 EST 1984). The command

users='who I we -1'

saves the number of logged-in users in the variable users. A.
command that writes to the standard output can be enclosed in gra,
accents. Grave accents may be nested. The inside sets must 1
escaped with \. For example

logmsg='echo Your login directory is \'pwd\"

Shell variables can also be given values indirectly by using the she
builtin command read. The read command takes a line from tl
standard input (usualiy the terminal) and assigns consecutive worE
on that line to any variables named

16-6

read first init last

m take an input line of the form

A. A. Smith

nd has the same effect as if

first=A. init=A. last=Smith

ad been typed.

'he read command assigns any excess "words" to the last variable.

>redefined Special Variables: Several variables have special
leanings. The following are set only by the shell:

J# records the number of positional arguments passed to
the shell, not counting the name of the shell procedure
itself. The variable $# yields the number of the
highest-numbered positional parameter that is set.
Thus, sh l< abc sets $# to 3. One of its primary uses is
in checking for the presence of the required number of
arguments

if test $# -It 2
then

echo 'two or more arga required'; exit
fi

$1 is the exit ststus (also referred to as return code, exit
code, or value) of the last command executed. Its value
is a decimal string. Most UNIX system commands
return 0 to indicate successful completion. The shell
itself returns the current value of $? as its exit status.

16-7

is the process numher of the current process. Since
process numbers are unique among all existing
processes, this string of up to five digits is often used to
generate unique names for temporary files. The UNIX
system provides no mechanism for the automatic
creation and deletion of temporary files. A file exists
until it is explicitly removed. Temporary files are
generally undesirable. The UNIX system pipe
mechanism is far superior for many applications.
However, the need for uniquely-named temporary files
does occasionally occur. The following example also
illustrates the recommended practice of creating
temporary files in a directory used only for that purpose

temp=$HOME/temp/$$
Is> $temp
commands, some of which use $temp, go here
rm $temp

$I is the process number of the last process run in the
background. Again, this is a string of up to five digits.

$- is a string consisting of names of execution flags
currently turned on in the shell. The $- variable has
the value xv when tracing output.

CONDITIONAL SUBSTITUTION
Normally, the shell replaces occurrences of $ variable by the string
value assigned to variable, if any. However, there exists a special
notation to' allow conditional substitution depending upon whether
the variable is set and/or not null. By definition, a variable is set if
it has ever been assigned a value. The'value of a variable can be the
null string which may be assigned to a variable in anyone of the
following ways

16-8

A=
bcd=""
Ef....g= ..
set"" n

The first three of these examples assign the null string to each of the
corresponding shell variables. The last exam pie sets the first and
second positional parameters to the null string and unsets all other
positional parameters.

The following conditional expressions depend upon whether a
variable is set and not null. (Note that, in these expressions, variable
refers to either a digit or a variable name.

${ variable:-string} If variable is set and is non-null, then
substitute the value $ variable in place of this expression.
Otherwise, replace the expression with string. Note that the
value of variable is not changed by the evaluation of this
expression.

${ variable:=string} If variable is set and is non-null, then
substitute the value $ variable in place of this expression.
Otherwise, set variable to string, and then substitute the value
$ variable in place of this expression •.. Positional parameters
may not be assigned values in this fashion.

${ variable:?string} If variable is set and is non-null, then
substitute the value of variable for the expression. Otherwise,
print a message of the form

variable: string

and exit from the current shell. (If the shell is the login
shell, it is not exited.) If string is omitted in this form, then
the message

variable: parameter null or not set

is printed instead.

16-9

${ variable:+string} If variable is set and is non-null, then
substitute string for this expression; otherwise, substitute the
null string. Note that the value of variable is not altered by
the evaluation of this expression.

These expressions may also be used without the colon (:). In this
case, the shell does not check whether variable is null or not. It only
checks whether variable has ever been set.

The two examples below illustrate the use of this facility:

1. If PATH has ever been set and is not null, then keep its
current value. Otherwise, set it to the string :/bin:/usr/bin.
Note that one needs an explicit assignment to set PATH in this
form

PA TH=${PATH:-':/bin:/usrlbin'}

2. If HOME is set and is not null, then change directory to it;
otherwise, set it to /usr/gas and change directory to it. Note
that HOME is automatically assigned a value in this case

cd ${HOME:='/usr/gas'}

CONTROL COMMANDS
The shell provides several commands that are useful in creating
shell procedures. A few definitions are needed before explaining the
commands.

A simple command is defined as a sequence of nonblank arguments
separated by blanks or tabs. The first argument usually specifies the
name of the command to be executed. Any remaining arguments,
with a few exceptions, are passed to the command. Input/output
redirection arguments can appear in a simple command line and are
passed to the shell, not to the command.

16-10

~ command is a simple command or any of the shell commands
lescribed below. A pipeline is a sequence of one or more commands
II!parated by I. (For historical reasons, - is a synonym for I in this
xmtext.) The standard output of each command but the last in a
~ipeline is connected [by a pipe(2)] to the standard input of the next
:ommand. Each command in a pipeline is run separately. The shell
waits for the last command to finish. If no exit status argument is
specified, the exit status is that of the last command executed (an
end-of-file will also cause the shell to exit.

A command list is a sequence of one or more pipelines separated by;,
,., ,.,., or I, and optionally terminated by ; or &:. A semicolon (;)
causes sequential execution of the previous pipeline (i.e., the shell
waits for the pipeline to finish before reading the next pipeline),
while &: causes asynchronous execution of the preceding pipeline.
Both sequential and asynchronous execution are thus allowed. An
asynchronous pipeline continues execution until it terminates
voluntarily or until its processes are killed.

More typical uses of &: include off-line printing, background
compilation, and generation of jobs to be sent to other computers.
For example, typing

nohup cc prog.C&

allows one to continue working while the C compiler runs in the
background. A command line ending with &: is immune to interrupts
and quits, but it is wise to make it immune to hang-ups as well. The
Dohup command is used for this purpose. Without Dohup, if one
hangs up while cc in the above example is still executing, cc will be
killed and the output will disappear.

The &:&: and 1 operators, which are of equal precedence .(but lower
than &: and I), cause conditional execution of pipelines. In cmdl I
cmd2, cmdl is executed and its exit status examined. Only if cmdl
fails (i.e., has a nonzero exit status) is cmd2 executed. This is thus a
more terse notation for

16-11

if cmd1
test $1!= 0

then
cmd2

fi

The && operator yields the complementary test: in cmdl && cmd2,
the second command is executed only if the first succeeds (has a zero
exit status). In the sequence below, each command is executed in
order until one fails

cmd1 &&cmd2 &&cmd3 && ... &&cmdn

A simple command in a pipeline may be replaced by a command list
enclosed in either parentheses or braces. The output of all the
commands so enclosed is combined into one stream that becomes the
input to the next command in the pipeline. The following line prints
two separate documents

{ nroff -cm text1; nroff -cm text2; } I col

Programming Constructs

Several control flow commands are provided in the shell that are
especially useful in programming. These are referred to as
programming constructs and are described below.

A command often used with programming constructs is the test(l)
command. An example of the use of the test command is

test -f file

This command returns zero exit status (true) if file exists and
nonzero exit status otherwise. In general, test evaluates a predicate
and returns the result as its exit status. Some of the more frequently
used test arguments are given below [see test(l) and" Test" under
" SPECIAL COMMANDS" for more information].

16-12

test s

test -f file

test -r file

test -w file

test -d file

Control Flow-while

true if the argument s is not the null
string

true if file exists

true if file is readable

true if file is writable

true if file is a directory.

The actions of the for loop and the case branch are determined by
data available to the shell. A while or until loop and an if then
else branch are also provided whose actions are determined by the
exit status returned by commands. A while loop has the general
form

while command-list!
do

command-list2
done

The value tested by the while command is the exit status of the last
simple command following while. Each time around the loop
command-listl is executed. If a zero exit status is returned, then
command-list2 is executed; otherwise, the loop stops. For example,

while test $1
do

shift
done

The shift command is a shell command that renames the positional
parameters $2, $3, ••. -as $1, $2, _. and loses $1.

16-13

Another use for the while/until loop is to wait until some external
event occurs and then run some commands. In an until loop, the
termination condition is reversed. For example,

until test -f file
do

sleep 300
done
commands

will loop until file exists. Each time round the loop, it waits for 5
minutes (300 seconds) before trying again. (Presumably, another
process will eventually create the file.)

A file print could be written to use while and test as follows

while test $# != 0
do

echo" $1 being submitted"
Ip -dprtd42 -c -012 -w -tuser! $1
shift

done
Ipstat -oprtd42

Control Flow-if

Also available is a general conditional branch of the form,

if command-list
then

command-list
else

command-list
Ii

that tests tbe value returned by the last simple command following
if. If a zero exit status is returned, the command-list following the
then is executed. If a zero exit status is not returned, the command­
list following the el8e is executed.

16-14

The if command may be used with the test command to test for the
existence of a file as in

if test -f file
then

process file
else

do something else
fi

A multiple test if command of the form

if ...
then

else
if ...
then

else
if ...

fi
fi

fi

may be written using an extension of the if notation as,

if ...
then

elif ...
then

elif ...

fi

16-15

A file could be written to include the use of if and test as follows

if test $# = 0
then

echo" enter a filename after $0"
else

fi

if [! -f $1)
then

echo n $1 does not exist"
echo" Enter a filename that exists" ; exit

else
echo" $1 being submitted"
Ip -dprtd42 -c -012 -w -tuser! $'
Ipstat -oprtd42
fi

The [...) is shorthand for test. The if [I -f $1) means if the file $1
does not exist then do this.

The sequence

ifcommand1
then

command2
fi

may be written

command1 &&command2

Conversely,

command1 I I command2

executes command2 only if commandl fails. In each case, the
value returned is that of the last simple command executed.

16-16

Control Flow-for

A frequent use of shell procedures is to loop through the arguments
($1. $2 •...) executing commands once for each argument. An example
of such a procedure is tel that searches the file /usr/lib/telnos that
contains lines of the form'

fred mhOl23
bert mh0789

The text of tel is

for i
do

grep $i /usr/lib/telnos
done

The command

tel fred

prints those lines in /usr/lib/telnos that contain the string "fred".

The command

tel fred bert

prints those lines containing "fred" followed by those for "bert".

The for loop notation is recognized by the shell and has the general
form

If1..17

for name in words
do

command-list
done

A commalJd-nst is a sequence of one or more simple commands
separated or ended by a newline or a semicolon. A· name is· a shell
variable that is set to ords ... in turn each time the commalJd-list
following do is executed. If "words ... " is omitted, then the loop is
executed once for each positional parameter; that is, in $" is
assumed. Execution ends when there are no more words in the list.

An example of the use of the for loop is the create command whose
text is

for i do >$i; done

Thecommand

create alpha beta

ensures that two empty files alpha and beta exist and are empty.
The notation >file may be used on its own to create or clear the
contents of a file. Notice also that a semicolon (or newline) is
required before done.

The for can also be used in a program. Assume a document is
formatted and stored in chapters (files) that begin with the letters
"ch" (ch1, ch2, ch3, and chtoc). A program can be written to send
the document to the line printer. The program contains

for i in ch*
do

lp -dprtd42 -c -012 -w -tuserl $i
done

lpstat -oprtd42

This will send each chapter as a separate job. Notice that $i is used
instead of $*.

16-18

Control Flow-case

A multiple way (choice) branch is provided for by the case notation.
For example,

case $# in
1) cat »$1 ;;
2) cat »$2 <$1 ;;
*) echo 'usage: append [from I to' ;;

esac

is an append command. (Note the use of semicolons to delimit the
cases.) When called with one argument as in

append file

$# is the string "1", and the standard input is appended (copied) onto
the end of file using the cat(l) command.

append file1 file2

appends the contents of filel onto file2. If the number of arguments
supplied to append is other than 1 or 2, then a message is printed
indicating proper usage.

The general form of the case command is

case word in
pattern ;pattern) command-list;;

esac

The shell attempts to match word with each pattern in the order
that the patterns appear. If-a match is found, the associated
command-list is executed; and execution of the case is complete.
Since • is the pattern that matches any. string, it can be used for the
default case.

16-19

Caution: No check is made to ensure that only oae
pattern matches the case argument.

The first match found defines the set of commands to be executed. In
the example below, the commands following the second will never
be executed since the first executes everything it receives.

case $# in
*) ... ;;
*) ... ;;

esac

A program print can be used to send a document to different line
printers. Assume there are two line printers named "prtd42" and
" prtd43". Send a document to .. prtd42" as follows

print 42 files

Send a document to "prtd43" as follows

print 43 files

The print program contains the following

case $1 in
42) shift;lp -dprtd42 -c -012 -w -tused $*;lpstat -oprtd42;;
43) shift;lp -dprtd43 -c -012 -w -tused $*;lpstat -oprtd43;;
*) echo" line printer does not exist" ;;

esac

Another example of the use of the case construction is to distinguish
between different forms of an argument. The following example is a
fragment of a ee(1) command.

16-20

for i
do

case $i in
-[ocs))
- *) echo 'unknown flag $i' ;;
*.c) /Jib/cO $i ... ;;
*) echo 'unexpected argument $i' ;;

esac
done

To allow the same commands to be associated with more than one
pattern, the case command provides for alternative patterns
separated by a I. For example,

case $i in
-xl-y) ...

esac

is equivalent to

case $i in
-[icy]) ...

esac

The usual quoting conventions apply so that

case $i in
\7) ...

will match the character?

Functions

Functions may be defined and used in the current shell. The general
form of a function is

name 0 {list}

16-21

A space or a newline is required after the beginning brace (0. A
semicolon or newline is required before the terminating brace (}). As
an example, a function could be defined to see how many people are
currently on the system as follows

busy 0 { who I we -I;}

The we -I command returns a count of the lines returned by the
who command. Notice that a space is placed after the beginning
brace ({) and a semicolon is placed before the terminating brace (}).
This function is called by its name as follows

busy

which returns

12

if 12 people are logged into the system.

The same function could be defined using multiple lines as follows

busy ()
{
who I wc-I
}

Positional parameters can be used to pass information to a function.
For instance,

present 0 { who I grep $1 ; }

searches the output of the who command for the value of the
positional parameter $1 and prints all lines containing the value.
For instance, the entry

16-22

present abc

returns

abc ttyOO May 7 09:31

if abc is logged in on tty09.

The current shell contains the function definition. A different shell
would not be able to execute the function until it is defined in that
shell. To display the functions defined in the current shell, enter

set

The value for all variable names will be displayed including the
functions defined.

SPECIAL COMMANDS
There are several special commands that are internaJ to the shell
(some of which have already been mentioned). These commands
should be used in preference to other UNIX system commands
whenever possible because they are faster and more efficient. The
shell does not fork to execute these commands, so no additional
processes are spawned.

Many of these speCial commands were described in the Using SheU
Commands chapter. These commands include:

16-23

cd
exec
hash
newgrp
pwd
set
type
ulimit
umask
unset.

Descriptions of the remaining special commands follow. These
commands include:

break
continue
echo
eval
exit
export
read
readonly
return
shift
test
times
trap
wait.

: (Colon)

The : command is the null command. This command can be used to
return a zero (true) exit status.

16-24

. (Period)

The. command has the form

. file

This command reads and executes commands from file and returns.
The search path specified by PATH is used to find the directory
containing me. If the file commandl contained the following

echo Today is:
date

then the command

. commandl

returns

Today is:
Thu Sep 22 14:40:04 EDT 1984

Any currently defined variable can be used in the shell procedure
called.

break

This command has the form

break In]

This command is used to exit from the enclosing for, until, or while
loop. If n is specified, then exit n levels. An example of break is as
follows

16-25

This procedure is interactive; the 'break'
command is used to allow
the user to control data entry.
while true
do

echo" Please enter data"
read response
case" $response" in

.. done") break

*)

no more data

process the data here

esac
done

continue

This command has the form

continue [n J

This command causes the resumption of an enclosing for, until, or
while loop. If n is specified, then it resumes at the n-th enclosing
loop.

echo

The form of the echo command is

echo [arg ... J

The echo command writes its arguments separated by blanks and
terminated by a newline on the standard output. For instance, the
input

echo Message to be printed.

returns

16-26

Message to be printed.

The following escapes can be used with echo:

\b backspace
\c print line without new-line
\f new-line
\r
\t
\
\n

carriage return
tab
backslash
the 8-bit character whose ASCII code is the 1-,
2-, or a-digit octal number, which must start
with a zero.

\ v vertical tab

For example:

echo" The current date is \<t'
date

would return

The current date is Tue May 16 08:00:30 EDT 1984

eval

Sometimes, one builds command lines inside a shell procedure. In
this case, one might want to have the shell rescan the command line
after all the initial substitutions and expansions are done. The
special command eval is available for this purpose. The form of this
command is

eval [arg ... J

The eval command takes a command line as its argument and simply
rescans the line performing any variable or command substitutions
that are specified. Consider the following situation:

16-27

command=who
output='lwc -I'
eval $command $output

This segment of code results in the pipeline wholwc -I being
executed.

The uses of eval can be nested.

exit

A shell program may be terminated at any place by using the exit
command. The form of the exit command is

exit In]

The exit command can also be used to pass a return code (n) to the
shell. By convention, a 0 return code means true and a 1 to 255
return code means false. The return code can be found by $? For
instance, if the executable procedure test exit contained

exit 5

then

testexit

would execute testexit. The command

echo $1

would return

5

16-28

export

The form of the export command is

export [name ... J

The export command places the named variables in the
environments of both the shell and all its future child processes.
Normally, all variables are local to the shell program. Commands
executed from within the shell program do not have access to the
local variables. If a variable is exported, then the commands within
the shell program will be able to access the variable.

To export variables, the following command is used

export variable! variable2 ...

To obtain a list of variables exported, the following command is
entered

export

read

A variable may also be set using the read command. The read
command reads one line from the standard input of the shell
procedure and puts that line in the variables which are its
arguments. Leading spaces and tabs are stripped off. The general
form of the command is

read variable! variable2 ...

The last variable gets what is left over. For example, if testread
contains the following

echo 'Please type your first and last name:\c'
read firsCname last_name
echo Your name is ${first_name} ${lasCname}

16-29

then when the program is run the first line would be printed

Please type your first and last name:

and would wait for the input. (The input would appear on the same
line.) Assuming the name is Jane Doe, after the input, the following
line would be printed

Your name is Jane Doe

readonly

Variables can be made readonJy. After becoming readonly, a
variable cannot receive a new value. The general form of the
command is

readonly variable-name variable-name ...

To print the names of variables that are readonly, enter

readonly

return

The return command causes a function to exit with a specified return
value. The form of the command is

return In]

where n is the desired return value. When n is omitted, the return
status of the last. command executed is displayed.

16-30

shift

The shift[sh(l)] command reassigns the positional parameters.
Positional parameter $I would receive the value of $2, $2 would
receive the value of $3, etc. Notice that $0 (the procedure name) is
unchanged and that the number of positional parameters ($#) is
decremented.

If the executable program shifter contains the following

echo ${#} positional parameters
echo ${*}
echo Now shift
shift
echo ${#} positional parameters
echo ${*}

then the command

shifter first second third

would result in

test

3 positional parameters
first second third
Now shift
2 positional parameters
second third

The test(l) command evaluates the expression specified by its
arguments and, if the expression is true, returns a zero exit status.
Otherwise, a nonzero (false) exit status is returned. The test
command also returns a nonzero exit status if it has no arguments.
Often it is convenient to use the test command as the first command
in the command list following an if or a while. Shell variables used
in test expressions should be enclosed in double quotes if there is
any chance of their being null or not set.

16-31

The square brackets ([J) may be used as an alias for test; e.g.,
[expression I has the same effect as test expression.

The following is a partial list of the primaries that can be used to
construct a conditional expression:

-r file

-w file

-x file

-8 file

-d file

-f file

-p file

-z sl

-ns1

-t fildes

sl = s2

16-32

true if the named file exists and is readable by
the user.

true if the named file exists and is writable by
the user.

true if the .. amed file exists and is executable
by the user.

true if the named file exists and has a size
greater than zero.

true if the named file exists and is a directory.

true if the named file exists and is an ordinary
file.

true if the named file exists and is a named
pipe (fifo).

true if the length of string" sl" is zero.

true if the length of the string n sl" is nonzero.

true if the open file whose file descriptor
number is fildes is associated with a terminal
device. If fildes is not specified, file descriptor
1 is used by default.

true if strings n sl" and" s2" are identical.

811= s2 true if strings" sl" and" s2" are not identical.

81 true if " sIn is not the null string.

n1 -eq n2 true if the integers n1 and n2 are algebraically
equal. Other algebraic comparisons are
indicated by -ne, -gt, -ge, -It, and -Ie.

These primaries may be combined with the following operators:

-a

-0

unary negation operator.

binary logical and operator.

binary logical or operator. The -0 has lower
precedence than - a.

(expr) parentheses for grouping; they must be escaped
to remove their significance to the shell. When
parentheses are absent, the evaluation proceeds
from left to right.

Note that all primaries, operators, file names, etc. are separate
arguments to test.

For example, the procedure name test

if test -d $1
then echo $1 is a directory

elif test -f $1
then echo $1 is a file

else echo $1 does not exist
fi

then if the file bucket existe<i, then

bucket is a file

would be returned.

times

The times command prints the accumulated user and system times
for processes run from the shell. The times command is entered on
a line by itself. For example, the command

times

returns

Om3s OmlOs

trap

A shell program may handle interrupts by using the trap command.
The trap command interfaces with the underlying UNIX operating
system mechanism for handling interupts.

The UNIX operating system provides signals that tell a program
when some unusual condition has occurred. These signals may be
from the keyboard or from other programs.

By default, if a program receives a signal, the program will
terminate. However, these signals may be caught, the program
suspended, the interrupt routine run, and the program restarted at
the point it was suspended. Or these signals may be ignored.

trap arg signal-list

is the form of the trap command, where arg is a string to be
interpreted as a command list and signal-list consists of one or more
signal numbers [as described in signal(2)].

16-34

The following signals are used in the UNIX system:

01 hangup
02 interrupt
03 quit
04 illegal instruction
05 trace trap
06 lOT instruction
07 EMT instruction
08 floating point exception
09 kill
10 bus error
11 segmentation violation
12 bad argument to sy'stem call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination signal
16 user defined signal 1
17 user defined signal 2
18 death of a child
19 power fail.

The commands in arg are scanned at least once when the sheD first
encounters the trap command. Because of this, it is usually wise to
use single rather than double quotes to surround these commands.
The single quotes inhibit immediate command and variable
substitution. This becomes important, for instance, when one wishes
to remove temporary files and the names of those files have not yet
been determined when the trap command is first read by the shell.
The following procedure will print the name of the current directory
on the file errdirect when it is interrupted. thus giving the user
information as to how much of the job was done

trap 'echo 'pwd' >errdirect' 2 3 15
for i in Ibin lusr/bin lusr/gas/bin
do

cd $i
commands to be executed in directory $i here

done

16-35

while the same procedure with double (rather than single) quotes
(trap n echo 'pwd' >errdirect" 2 3 15) will, instead, print the
name of the directory from which the procedure was executed.

Signal 11 (SEGMENTATION VIOLATION) may never be trapped
because the shell itself needs to catch it to deal with memory
allocation. Zero is not a UNIX system signal. Zero is effectively
interpreted by the trap command as a signal g~nerated by exiting
from a shell (either via an exit command or by "falling through"
the end of a procedure). If arg is not specified, then the action taken
upon receipt of any of the signals in signal-list is reset to the default
system action. If arg is an explicit null string (" or "n), then the
signals in signal-list are ignored by the shell.

The most frequent use of trap is to assure removal of temporary
files upon termination of a procedure. The second example of
"Predefined Special Variables" in subpart "D. Shell Variables" would
be written more typically as follows

temp-$HOME/temp/$$
trap 'rm $temp; trap 0; exit' 0 1 2 3 15
Is> $temp

commands, some of which use $temp, go here

In this example whenever signals 1 (HANGUP), 2 (INTERRUPT), 3
(QUIT), or 15 (SOFTWARE TERMINATION) are received by the
shell procedure or whenever the shell procedure is about to exit, the
commands enclosed between the'single quotes will be executed. The
exit command must be included or else the shell continues reading
commands where it left off when the signal was received. The trap
o turns off the original trap on exits from the shell so that the exit
command does not reactivate the execution of the trap commands.

Sometimes it is useful to take advantage of the fact that the shell
continues reading commands after executing the trap commands.
The following procedure takes each directory in the current directory,
changes to it, prompts with its name, and executes commands typed
at the terminal until an end-of-file (control-d) or an interrupt is
received. An end-of-file causes the read command to return a
nonzero exit status, thus terminating the while loop and restarting
the cycle for the next directory. The entire procedure is terminated

16-36

if interrupted when waiting for input; but during the execution of a
command, an interrupt terminates only that command.

dir='pwd'
for i in *
do

if test -d $dir I$i
then

fi
done

cd $dir/$i
while echo" $i:"

trap exit 2
read x

do
trap: 2 II ignore interrupts
eval $x

done

Several traps may be in effect at the same. time. If multiple signals
are received simultaneously, they are serviced in ascending order. To
check what traps are currently set, type

trap

It is important to understand some things about the way the shell
implements the trap command in order not to be surprised. When a
signal (other than 11) is received by the shell, it is passed on to
whatever child processes are currently executing. When those
(synchronous) processes terminate, normally or abnormally, the shell
then polls any traps that happen to be set and executes the
appropriate trap commands. This process is straightforward except
in the case of traps set at the command (outermost or login) level. 11)
this ease, it is possible that no child process is running, so the shell
waits for the termination of the first process spawned after the
signal is received before it polls the traps.

For internal commands, the shell normally polls traps on completion
of the command. An exception to this rule is made for the read,
hash, and echo commands.

16-37

wait

The wait command has the following form

wait In)

With this command, the shell waits for the child process whose
process number is n to terminate. The exit status of the wait
command is that of the process waited on. If n is omitted or is not a
child of the current shell, then all currently active processes are
waited for and the return code of the wait command is zero. For
example, the executable program format

while test" $1" !=""
nroff $1»junk&
shift
wait$!
done
echo ···nroff complete···

envokes the nroff formatter for each file specified and informs the
user when it is finished. If the files chapterl and chapter2 required
formatting, the entry

format chapterl chapter2

would format the two chapters and when they are finished return

···nroff. complete···

COMMAND GROUPING
Commands may be grouped in two ways

{ command-list; }

and

16-38

(command-list)

The first form, command-list, is simply executed. The second form
executes command-list as a separate process. If a list of commands is
enclosed in" a pair of parentheses, the list is executed as a subshell.
The subshell inherits the environment of the main shell. The
subshell does not change the environment of the main shell. For
example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current
directory of the invoking shell.

The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

A COMMAND'S ENVIRONMENT
All the variables (with their associated values) known to a command
at the beginning of execution of that command constitute its
environment. This environment includes variables that the command
inherits from its parent process and variables specified as keyword
parameters on the command line that invokes the command.

The variables that a shell passes to its child processes are those that
have been named as arguments to the export command. The
export command places the named variables in the environments of
both the shell and its future child processes.

Keyword parameters are variable-value pairs that appear in the form
of assignments, normally before the procedure name on a command

1&39

line. Such variables are placed in the environment of the procedure
being invoked. For example

key_command
echo $a $b

is a simple procedure that echoes the values of two variables. If it is
invoked as

a=keyl b=key2 key_command

then the output is

keyl key2

A procedure's keyword parameters are not included in the argument
count $#.

A procedure may access the value of any variable in its environment.
However, if changes are made to the value of a variable, these
changes are not reflected in the environment. The changes are local
to the procedure in question. In order for these changes to be placed
in the environment that the procedure passes to its child processes,
the variable must be named as an argument to the export command
within that procedure. To obtain a list of variables that have been
made exportable from the current shell, type

export

To get a list of name-value pairs in the current environment, type

env

16-40

DEBUGGING SHELL PROCEDURES
The shell provides two tracing mechanisms to help when debugging
shell procedures. The first is invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they
are read. It is useful to help isolate syntax errors. It may be invoked
without changing the procedure by entering

sh -v proc ...

where proc is the name of the shell procedure. This flag may be
used with the -n flag to prevent execution of later commands. (Note
that typing "set -n" at a terminal will render the terminal useless
until an end-of-file is typed.)

The command

set -x

will produce an execution trace with flag -x. Following parameter
substitution, each command is printed as it is executed. (Try the
above at the terminal to see the effect it has.) Both flags may be
turned off by typing

set -

and the current setting of the shell flags is available as $- .

16-41

16-42

Chapter 17

EXAMPLES OF SHELL PROCEDURES

copypairs . 17-1
copy to .. 17-2
distinct. .. 17-2
draft. 17-4
edfind . 17-4
edlast _ . 17-5
fsplit. .. 17-6
initvars .. 17-7
merge. 17-8
mkfiles . 17-9
mmt .. 17-lO
null. .. 17-11
phone. .. 17-12
writemail 17-12

Chapter 17

EXAMPLES OF SHELL PROCEDURES
Some examples in this subpart are quite difficult for beginners. For
ease of reference, the examples are arranged alphabetically by name,
rather than by degree of difficulty.

copypairs

usage: copypairs file1 file2 ...
copy file1 to file2, filea to file4, ...
while test .. $2" !=
do

cp $1 $2
shift; shift

done
if test" $1" != nil

then
echo" $0: odd number of arguments"

fi

Note: This procedure illustrates the use of a while loop to
process a list of positional parameters that are somehow
related to one another. Here a while loop is much better
than a for loop because you can adjust the positional
parameters via shift to handle related arguments.

17·1

17-2

copy to

II usage: copy to dir file ...
II copy argument files to 'dir',
II making sure that at least
II two arguments exist and that 'dir'
t! is a directory
if test $# -It 2
then

echo" $0: usage: copyto directory file ... "
elif test ! -d $1
then

echo" $0: $1 is not a directory" ;
else

dir=$l; shift
for eachfile
do

done
fi

cp $eachfile $dir

Note: This procedure uses an if command with two tests in
order to screen out improper usage. The Cor loop at the end
of the procedure loops over all of the arguments to copy to
but the first. The original $1 is shifted off.

distinct

usage: distinct
reads standard input and reports
I list of alphanumeric strings
I that differ only in case,
I giving lower-case form of each
tr -cs '[A-Z][a-z][O-9]' '[\012·]' I sort -u I

tr '[A-Z]' '[a-z]' I sort I uniq -d

Note: This procedure is an example of the kind of process
that is created by the left-to-right construction of a long

pipeline. It may not be immediately obvIous how this works.
[See tr(l), sort (I), and uniq(l) if you are completely
unfamiliar with these commands.) The tr translates all
characters except letters and digits into newline characters
and then squeezes out repeated newline characters. This
leaves each string (in this case, any contiguous sequence of
letters and digits) on a separate line. The sort command
sorts the lines and emits only one line from any. sequence of
one or more repeated lines. The next tr converts everything
to lowercase so that identifiers differing only in case become
identical. The output is sorted again to bring such duplicates
together. The uniq -d prints (once) only those lines that
occur more than once yielding the desired Jist.

The process of building such a pipeline uses the fact that pipes and
files can usually be interchanged. The two lines below are equivalent
assuming that sufficient disk space is available:

cmdl I cmd2 I cmd3
cmdl>templ;cmd2<templ>temp2;cmd3<temp2;rm temp[12)

Starting with a file of test data on the standard input and working
from left to right, each command is executed taking its input from
the previous file and putting its output in the next file. The final
output is then examined to make sure that it contains the expected
result. The goal is to create a series of transformations that will
convert the input to the desired output. As an exercise, try to mimic
distinct with such a step-by-step process using a file of test data
containing:

ABC:DEF/DEF
ABCl ABC
Abc abc

Although pipelines can give a concise notation for complex processes,
exercise some restraint lest you succumb to the "one-line syndrome"
sometimes found among users of especially concise languages. This

17-3

syndrome often yields incomprehensible code.

17-4

draft

(I usage: draft file(s)
(I prints the draft (-rC3) of a document on a DASI 450
/I terminal in 12-pitch using memorandum macros (MM).
nroff -rC3 -T450-12 -cm $*

Note: Users often write this kind of procedure for
convenience in dealing with commands that require the use of
many distinct flags. These flags cannot be given default
values that are reasonable for all (or even most) users.

edfind

{I usage: edfind file arg
II find the last occurrence in 'file' of a line whose
II beginning matches 'arg', then print 3 lines (the one
(I before, the line itself, and the one after)
ed - $1 «!
H
?"$2?;-,+p
!

Note: This procedure illustrates the practice of using editor
(ed) inline input scripts. into which the shell can substitute
the values of variables. It is a good idea to turn on the H
option of ed when embedding an ed script in a shell
procedure [see ed(l»).

edlast

usage: edlast file
prints the last line of file, then deletes that line
ed - $1 «-\eof # no variable substitutions in "ed" script

H

eof

$p
$II
w
q

echo Done.

Note: This procedure contains an in-line input document or
script; it also illustrates the effect of inhibiting substitution
by escaping a character in the eofstring (here, eot) of the
input redirection. If this had not been done, $p and $d would
have been treated as shell variables.

17-5

fsplit

usage: fsplit filel file2
read standard input and divide it into three parts:
append any line containing at least one letter
to fileI, any line containing at least one digit
but no letters to file2, and throw the rest away
total=O lost=O
while read next
do

done

total=" 'expr $total + I·'
case" $next" in
[A-Za-z])

echo "$next" > > $1 ;;
[0-9])

echo "$next" > > $2 ;;
*)

lost=" 'expr $Iost + I'"
esac

echo" $total lines read, $Iost thrown away"

Note: In this procedure, each iteration of the while loop
reads a line from the input and analyzes it. The loop
terminates only when read encounters an end-of-file.

Do not use the shell to read a line at a time unless you must - it
can be grotesquely slow.

17-6

initvars

usage: . ini tvars
use carriage return to indicate" no change"
echo" initializations? \c"
read response
if test" $response" = y
then

fi

echo" PSI=\c"; read temp
PSI =${ temp:-$PSI}

echo" PS2=\c" ; read temp
PS2=${temp:-$PS2}

echo" PATH=\c"; read temp
PATH=${temp:-$PATH}

echo" TERM=\c" ; read temp
TERM=${temp:-$TERM}

Note: This procedure would be invoked by a user at the
terminal or as part of a file. The assignments are effective
even when the procedure is finished because the dot
command is used to invoke it. To better understand the dot
command, invoke initvars as indicated above and check the
values of PSI, PS2, PATH, and TERM; then make
initvars executable, type initvars, assign different values to
the three variables, and check again the values of these three
shell variables after initvars terminates. It is assumed that
PSI, PS2, PATH, and TERM have been exported,
presumably by your .profile.

17·7

merge

{I usage: merge srel src2 [dest 1
{I merge two files, every other line:
{I the first argument starts off the merge,
{I excess lines of the longer
{I file are appended to
II the end of the resultant file
exec 4<$1 5<$2
dest=${3-$l.m}{I default destination file is named $l.m
while true
do

#; alternate reading from the files;
{I 'more' represents the file descriptor
{I of the longer file

line <&4 »$dest I { more=5; break ;}
line <&5 »$dest I { more=4; break ;}

done
II delete the last line of destination
/I file, because it is blank.

ed - $dest «\eof

eof

H
$d
w
q

while line <&$more» $dest
do :; done {I read the remainder of the longer

{I file-the body of the 'while' loop
{I does nothing; the work of the loop
{I is done in the command list following
{I 'while'

Note: This procedure illustrates a technique for reading
sequential lines from a file or files without creating any
subshells to do so. When the file descriptor is used to access
a file, the effect is that of opening the file and moving a file
pointer along until the end of the file is read. If the input
redirections used arci and src2 explicitly rather than the
associated file descriptors, this procedure would never
terminate because the first line of each file would be read
over and over again.

17-8

mkfiles

usage: mkfiles preC [quantity I
makes 'quantity' (deCault = 5) files,
named prefl, preC2, ...
quantitY=${2-5}
i=l
while test" $i" -Ie "$quantity"
do

> li
i=" 'expr $i + 1'"

done

Note: This procedure uses input/output redirection to create
zero-length files. The expr command is used Cor counting
iterations oC the while loop. Compare this procedure with
procedure null below.

17·9

mmt

if test" $#" = 0; then cat < <\!
Usage: "mmt [options I files" where" options" are:
-a => output to terminal
-e => preprocess input with eqn
-t => preprocess input with tbl
-Tst => output to STARE phototypesetter by Honeywell
-T4014 => output to 4014 manufactured by Tektronix
-Tvp => output to printer manufactured by Versatec
- => use instead of "files" when mmt used inside a pipeline.
Other options as required by TROFF and the MM macros.
!

exit 1
fi
PATH='/bin:/usr/bin'; O='-g'; o='lgcat -ph';
II Assumes typesetter is accessed via gcat(l)
II If typesetter is on-line, use 0="; 0="
while test -n "$1" -a ! -r "$1"
do

case" $1" in
-a) O='-a'; 0=";;
-Tst) O='-g'; o='lgcat -st';;

II Above line for STARE only
-T4014) 0=' -t'; 0=1tc';;
-Tvp) O='-t'; o='lvpr -t';;
-e) e='eqn';;
-t) f='tbl';;
-) break;;
*) a=" $a $1" ;;

eSBe

shift
done
if test -z "$1"
then

fi

echo 'mmt: no input file'
exit 1

if test" $0" =' -g'
then

fi
d="$*"

17-10

x=" -1$1"

if test" $d." = '-'
then

fi
if test -n "$r'
then

fi
if test -n "$e"
then

shift
x="
d="

f=" tbl $*f'
d="

if test -n "$f"
then e='eqru'
else e=n eqn $*r'
d="

fi
fi
eval " $f $e troff $0 -em $a $d $0 $x" ; exit 0

Note: This is a slightly simplified version of an actual UNIX
system command. It uses many of the features available in
the shell. If you can follow through it without getting lost,
you have a good understanding of shell programming. Pay
particular attention to the process of building a command line
from shell variables and then using eva) to execute it.

null

usage: null file
create each of the named files
as an empty file
for eachfile
do

> $eachfile
done

Note: This procedure uses the fact that output redirection
17·1I

creates the (empty) output file if that file does not already
exist. Compare this procedure with procedure mkfiles
above.

phone

usage: phone initials
prints the phone number(s) of person
with given initials
echo 'inits ext home'
grep "'$1" «\!
abc 1234
def 2234
ghi 3342
xyz 4567
!

999,2345
583-2245
988-1010
555-1234

Note: This procedure is an example of using an inline input
document or script to maintain a small data base.

writemail

usage: wri temail message user
if user is logged in, write message on terminal;
otherwise, mail it to user
echo" $1" I { write" $2" ; mail" $2" ;}

Note: This procedure illustrates command grouping. The
message specified by $1 is piped to the write command and,
if write fails, to the mail command.

17-12

	000
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	05-01_cc
	05-02
	05-03
	05-04
	05-05
	05-06
	06-00_lint
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	07-00_sdb
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	09-00_f77
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	10-00_ratfor
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-00
	11-01_efl
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	11-55
	11-56
	11-57
	11-58
	12-00
	12-01_curses
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	12-36
	12-37
	12-38
	12-39
	12-40
	12-41
	12-42
	12-43
	12-44
	13-00
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	14-01
	14-02
	15-00
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	16-00
	16-01_shell
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	16-09
	16-10
	16-11
	16-12
	16-13
	16-14
	16-15
	16-16
	16-17
	16-18
	16-19
	16-20
	16-21
	16-22
	16-23
	16-24
	16-25
	16-26
	16-27
	16-28
	16-29
	16-30
	16-31
	16-32
	16-33
	16-34
	16-35
	16-36
	16-37
	16-38
	16-39
	16-40
	16-41
	16-42
	17-00
	17-01_shell_examples
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	17-11
	17-12

