$3.00

Builetin #605

n

DATA 620/1

@varian data machines
a varian subsidiary

1590 Monrovia Ave., Newport Beach, Calif.
(714) 646-9371 TWX (910) 596-1358

o

i.
Printed in U.S.A. Oct.67 h

e v
r

IDPnuDu: Japnduuos swweaisAs 17029 YAYad

|
DATA 620/1
systems
compufer
manuical

@varian data machines

a varian subsidiary

DATA 620/
SYSTEMS COMPUTER

MANUAL

Copyright 1967 by
Varian Data Machines
a Varian Subsidiary

CONTENTS

Page
SYSTEMS COMPUTER
FEATURES OF THE DATA 620/ SERIES COMPUTERS 1
INTRODUCTION L.ttt it et e et et e e e e 2
The DATA 620/i . . oot it e e i 2
The DATA 620/i Interface .. oo oo e i i i iie e o 2
The DATA 620/i User Interface . v\ ve v unev o on.. 3
SYSTEM INTERFACE L. . i it e it i e e et i 4
ORGANIZATION o i e s it e it st e ee e e eennnn 6
Registers . . . oot i e e 7
Micro-EXEC . ..o e 8
WORD FORMATS . . e i i 9
Instruction Word Formato .. . L L., 9
Optional Instructions oo e 13
INSTRUCTION LIST & ottt i i e e e e e e i 14
MEMORY . o it e e e 18
RELIABILITY AND MAINTAINABILITY. e 19
Failure Protection . . . oo it i i e 19
Physical .. .o e 20
Environmental L 20
PROGRAMMED INPUT/QUTPUT ... vt ie e e 21
Direct Memory Access and Interrupt Logic 21
Interrupt System L L 22
Buffer Interlace Controller 22
Real-Time Clock i 23
Sense Line ... i 23
External Control Lines v iinn .. 23
Parallel I/O Channels 23

CONTENTS (continued) CONTENTS (continued)

Page Page
SYSTEMS COMPUTER (continued) SYSTEM REFERENCE (continued)
PERIPHERALEQUIPMENTo e 25 I DATA 620/i SYSTEM DESCRIPTION
DATA 620/i Series Periphera! Equipment 25 2.1 Computer Organization 2-1
2.2 Computer Word Formatso 2-5
SYSTEM SOFTWARE i e 27
1l DATA 620/i CENTRAL PROCESSOR INSTRUCTIONS
Symbolic Assembler 27
FORTRAN . 27 3.1 General . .o e e e 3-1
AID 27 3.2 Single-Word Insfructionso ... 3-1
Diagnostic Program Package 27 3.3 Double-Word Instructions . .. v v vt v i it i e .. 3-30
Subroutine Library L 28
v DATA 620/i INPUT/OUTPUT SYSTEM
USERSERVICES . .. o e 29
4.1 Introduction . v v v o vt i e e e e 4-]
Documentation 29 4.2 Organization A U IS 4-1
Programming Training 29 4.3 Program Control Functions it in ..., 4-6
Maintenance Training o 29 4.4 Automatic Control Functions 4-12
User Organization 29
Application Programming 30 \ CONTROL CONSOLE OPERATION
DATA 620/1 SPECIFICATIONS ..o\ v oo 31 5.1 Controls and Indicators RPN 5-1
5.2 Manual Operations i e 5-4
Fully Compatible System Components 33
Micro~-VersalLOGIC Integrated Circuit Logic Modules ., 34
VersaSTORE Core Memories0 vvovvn e 34 PROGRAMMING REFERENCE
VersaSTORE Mainframe Memorieso oo oo oo, 34
| GENERAL DESCRIPTION
i.1 Introduction e e . 1-1
SYSTEM REFERENCE 1.2 Purpose of the Manual 1-2
1.3 Computer Operafion i ine.. 1-2
| INTRODUCTION
Il DATA 620/i ASSEMBLY SYSTEM
1.1 The DATA 620/i oo, 1-1
1.2 UseoftheManual 1-2 2.1 Introduction L e 2-1
1.3 Specifications L 1~4 2.2 DAS Source Language, 2-1
2.3 DATA 620/i Instructions . v . v v v v i e e ie e e e 2-7

iv
ni

CONTENTS (continued)

Page
PROGRAMMING REFERENCE (continued)
2.4 DAS Pseudo Instructions vv it i, 2-15
2.5 Source Statement Formats o oL, 2-28
2.6 DASOuiputList ..ottt i e e 2-29
2.7 Operating the DAS Assembly System 2-32
2.8 FORTRAN Pseudo Instructions vvu... 2-32
i AID-UTILITY AND DEBUGGING PACKAGE
3.1 Introduction. L e e e 3-1
3.2 Bootstrap Loader . . .o v v i i e 3-1
3.3 Binary Load/Dumpo i et e 3-3
3.4 AID Il Package for the DATA620/i 3-4
v SOURCE TAPE CORRECTION PROGRAM
4.1 Introduction L e 4-1
4.2 Operating Procedures for COR 4-1
FORTRAN REFERENCE
| BASIC FORTRAN CONCEPTS
1.1 Introduction e e e e 1-1
1.2 Character Set . . .o v vt ittt e 1-1
1.3 Line Format oo i i e 1-2
n DATA
2.1 General i e 2-1
2.2 Data TyPes .« v vt it e e 2-1
2.3 Data Names it i .. 2-1
2.4 Varigbleso e 2-2
2.5 Constants . .ottt e 2-2
2.6 AraYs L e e 2-3

CONTENTS (continued)

Page
FORTRAN REFERENCE (continued)
{8 SPECIFICATION STATEMENTS
3.1 General . v v vt e e e e e e e e e e e e 3-1
3.2 DIMENSION Statementt it i neeen.. 3-1
3.3 COMMON Statement i ittt it ie e e ennnn 3-2
3.4 EQUIVALENCE Statement v ii et inennnenn. 3-3
v EXPRESSIONS AND STATEMENTS
4.1 Arithmetic Expressionsot ittt i 4-1
4.2 Arithmetic Assignments and Replacements 4-3
v CONTROL STATEMENTS
5.1 General .o e e e e e e 5-1
5.2 GO TO Statementso vt v e e 5-1
5.3 Arithmetic IF Statement 5-2
5.4 CALLStatement o ittt it ittt e e i e 5-3
5.5 RETURN Statement it ittt o inveen e 5-3
5.6 CONTINUE Statement . . . v v i vt it et it e e e e enen 5-4
5.7 PAUSE Statement . . v v v e vt vttt e see i eenennn 5-4
5.8 STOP Statement v i it i ittt it ee et e e 5-4
5.9 DO Statement . . .o vt i e e e e e 5-5
\] INPUT/OUTPUT STATEMENTS
6.1 General e e e e 6-1
6.2 Input/Output Listsot it i ireinaennn 6-1
6.3 Simple Lists oo vttt i e e e 6~1
6.4 DO -ImpliedListsciiiiiireinennnnnn.. 6-2
6.5 READ Statementst i it ii e st ntennreneennnn 6-2
6.6 WRITE Statementsottt it i it en e e 6-3
6.7 REWIND Statements ittt ittt iinneenennnn 6-4
6.8 BACKSPACE Statementso v vt ve v nvvenanennnn 6-4
6.9 ENDFILE Statementst ve e e e v ininnn e 6-4
6.10 FORMAT Statementst ennnennnnnns 6-4
6.11 Field Specifications 0., 6-5

vi

CONTENTS (continued)

Page
FORTRAN REFERENCE (confinued)
6.12 FConversioncveevntunennnneonenennesnns 6-5
6.13 EConversioncout it e 6-6
6.14 [Conversion c.vitt it 6-7
6.15 HConversioniiiiuiiinineanenannenan 6-8
6.16 XSpecification i i i e e 6-9
6.17 /Specificationttt e 6-10
6.18 REPEAT Specificationo, 6-10
6.19 Format Control and List Interactiono v 6-11
Vil PROGRAMS AND SUBPROGRAMS
7.1 General e 7-1
7.2 Main Programs . . o v v v v vt e e et 7-1
7.3 Subprogramso i i e e e 7-1
7.4 Statempent Functions oL e e 7-2
7.5 Intrinsic Functions . . .o i it i i e 7-2.
7.6~ FunctionSubprograms e 7-4
7.7 Basic External Programs oL 7-5
7.8 Subroutine Subprograms ool o 7-5
7.9 Dummy Arguments . . oo v v vttt it i 7-7
VI{l FORTRAN OPERATING INSTRUCTIONS
8.1 General e e 8-1
8.2 Compiler Operafing Instructions, 8-1
8.3 Preliminary Operationsy 8-1
8.4 Normal Operations nna. 8-1
8.5 Input Records e e e e 8-2
8.6 OutputRecordsciviiiinernensinnnneenn 8-2
8.7 NotificationErrors i i e 8-3
8.8 Terminating Errors . o ..o oL Lo oL, e 8-3
8.9 Optional Listingsttt 8-4
B.10 ProgramMap . .. i ittt i e e 8-4
8.11 FORTRAN loader Operating Instructions 8-4
8.12 Preliminary Operations v 8-4
8.13 Llooding Subprograms e 8-5
8.14 ErrorDiagnostics .. . v v v ittt i i e 8-5
8.15 Execution of FORTRAN Programs 8-6

vii

CONTENTS (continued)

Page
FORTRAN REFERENCE (continued)
8. Programmed Halts v i 8-6
8.17 Error Bit Designatorsot i i e 8-6
8.18 ErrorHalts . . i e e 8-7
8.19 Binary Input/Output oo e 8-7
8.20 BCD Input/OUtput . oottt i e 8-7
1X GLOSSARY
SUBROUTINE DESCRIPTIONS
1 GENERAL DESCRIPTION
1.1 Introduction . .. i 1-1
1.2 Programming Standards o 1-1
1l PROGRAM DESCRIPTION
2.1 Introduction v v v i vt i e e e e 2-1
2.2 Identification it i e e e 2-1
1] PROGRAMMED ARITHMETIC
v ELEMENTARY FUNCTIONS
v UTILITY AND DEBUGGING ROUTINES
Vi EXECUTIVE ROUTINE
INTERFACE REFERENCE
| GENERAL DESCRIPTION
1.1 Introduction L e e -1
1.2 Purposeof the Manual L L, 1-2
1.3 Computer Organization0uiurevuan.. 1-3

CONTENTS (continued)

INTERFACE REFERENCE (continued)

DATA 620/i STANDARD INPUT/OUTPUT SYSTEM

2.1 Organization ittt et e e
2.2 Program Control Functions
2.3 Automatic Controlled Functions
2.4 Miscellaneous Signals i i

APPENDICES

A DATA 620/i NUMBER SYSTEM

B STANDARD DATA 620/i SUBROUTINES

C TABLE OF POWERS OF TWO

D OCTAL-DECIMAL INTEGER CONVERSION TABLE

E OCTAL-DECIMAL FRACTION CONVERSION TABLE

F DATA 620/i INSTRUCTIONS (ALPHABETICAL ORDER)

G DATA 620/i INSTRUCTIONS (BY TYPE)

H DATA 620/i RESERVED INSTRUCTION CODES

| STANDARD CHARACTER CODES

J TELETYPE 1/O INSTRUCTIONS

K FORTRAN STATEMENT TYPES

L FORTRAN 1/O UNIT ASSIGNMENTS

M FORTRAN MEMORY MAPS

FORTRAN OBJECT RECORD FORMAT

Page

SYSTEMS COMPUTER

FEATURES OF THE DATA 620/i SERIES COMPUTERS

Field Proven Software

silicon Monolithic Integrated Circuits (DTL and TTL)
9 Hardware Registers

Over 100 Basic Commands

6 Addressing Modes

Direct Addressing to 2,048 or 32,768 Words

16- or 18-Bit Words

Expansion fo 32,768 Words

Hardware Index Registers

Party Line I/O Facility

Micro-EXEC Option

10-1/2 Inches of Rack Space

Less than 70 Pounds (Mainframe and power supply)
340 Watts

NPN or PNP (Optional) 1/O Levels

Interface Ease

Compatible with DATA 620 Computer

Plug-In Expandable

Low Cost

Systems Computer

INTRODUCTION

DATA 620/ is a system-oriented digital computer, designed as a powerful system
computer fo fill the gap between special purpose digital hardware and general purpose
computers. DATA 620/i meets all the requirements of a true system computer — power~
ful computing ability, easy interfacing, modular design and construction for expand-
ability, integrated circuit reliability, low cost, and compact size.

In addition, DATA 620/i offers a number of features simply not available on other
computers — like party line communication, quick and easy memory expandability from
4,096 to 32,768 words of 16 or 18 bits, and a unique micro-EXEC microstep sequencing
technique. DATA 620/i comes with a complete set of field~proven software, developed
and perfected on the DATA 620.

DATA 620/i has a bigger instruction set, 1/2 the components, and costs less than any’
computer in ifs class. This is why it so efficiently and economically solves system
problems previously considered too difficult or expensive for computer solution.

DATA 620/i offers o wide variety of peripherals and options, allowing the user to
select only those features specifically required for his application, and providing the
optimum amount of computer power per dollar.

THE DATA 620/i

As a physical system component, DATA 620/i processors are compact in size, occupy-
ing only 10.5 inches of rack space. They are accessible from the front like other sys-
tem components, and they are reliable and maintaingble. The contents of five
operational registers can be displayed on the front panel.

Eighty~five percent of the processor operation can be verified from the front panel
without the use of an oscilloscope. As the controlling element in a system, a DATA
620/i has the "raw" data manipulating power of a much more costly computer. The
instruction set includes over 100 basic machine commands. The register change com-
mand is micro-programmable with over 100 useful combinations. The processing
characteristic can be adapted to specific requirements through an optional Micro-
EXEC facility that permits software programs to be hardware implemented.

THE DATA 620/i INTERFACE

The DATA 620/i series was designed to not only provide the complete spectrum of
interface capabilities required in a system computer, but to also allow the user to
tailor the computer for his specific application. To attain this goal, all of the Input/
Output features are offered as options. Among these facilities are: direct memory
access, real~time clock, power failure protect, and the buffer interlace controller.

Systems Computer 2

These features, combined with priority interrupts, external sense lines, external
control lines and the proprietary Micro-EXEC technique give the DATA 620/i family
virtually every 1/O capability available.

THE DATA 620/i USER INTERFACE

As must be the case in any machine that is required to do —and do well — g large
number of data manipulation tasks which are unspecifiable in advance, flexibility was
the motif in designing the DATA 620/ software package. The goal was to achieve
flexibility without creating big problems on the one hand, or falling into the easy
habit of accepting hardware/software tradeoffs on the other hand. In the DATA 620/i,
hardware and software features reinforce each other. For example, there are.five
modes of single-word addressing, one of which permits direct addressing of four times
as many words in store as is normally possible with conventional designs. Multiply/
divide instructions are available as options to meet more demanding computation speed
requirements.

3 Systems Computer

SYSTEM INTERFACE

The ability of the computer to adapt to the system is an excellent criterion for
determining a true systems computer.

The design philosophy behind the 620/i input/output structure is not only to provide
all of the capabilities needed in a system computer, but to allow the user to choose
the particular capability needed for his particular application. The reasoning is: if
the feature is needed, it can be provided as a low cost option; if the need is uncertain,
it can be easily added in the field if and when it is needed.

The DATA 620/i family offers the widest range of interface facilities. These include

party line communication bus, multilevel priority interrupts, external sense lines,
external control lines, direct memory access, and interlace control.

Systems Computer 4

il

1 OPTIONAL |
MEMORY

N

1 OPTIONAL |
MEMORY

P | L__I___: L-I-——'

1 OPTIONAL |
MEMORY
W-BUS

L-8US

r-I“'\ r"—l-'\ r--

| ormionNAL |
MEMORY

L__I__J -t

HIGH SPEED
MULTIPLY-DIVIDE

REAL TIME CLOCK

HARDWIRE
WEXEC

PROGRAM

.MEMORY

INTERRUPT CABLE

HIGH
SPEED
PRINTER

PRIORITY
INTERRUPTS

N

1

SENSEA | o2

N

2
CONTROL
LINES

BUFFERED
INPUT, OUTPUT
CHANNELS

PLOTTER

1/O CABLE

v —
2—>
N—

CENTRAL
PROCESSOR

DATA 620/i Organization

BUFFER
INTERLACE
‘CONTROLLER

DATA SET
INTERFACE,

MASS
STORAGE

A/D
CONVERTER

TAPE
CONTROLLER

Ty

B-CABLE

TRANSPORT
2

TRANSPORT
f

ORGANIZATION

The DATA 620/i is organized with a unique bus structure, selection logic, and nine
registers. The organization provides universal internal information routing, buffered
processing, micro-register.change programming facility, information indexing without
time penalty, ond the optional direct memory access (cycle stealing) facility..

The organization optimizes the DATA 620/i for maximum I/O throughout, minimum
elapsed time between successive input or output transfers, and minimum programming.

This unique organization mokes possible the optional Micro-EXEC facility by which
complex algorithms or additional instructions can be implemented with external hard-
ware. The Micro-EXEC technique produces an increase in processing speed in excess
of 500 percent over conventional! stored program techniques. The bus structure of this
computer family permits the system designer to overcome traditional barriers of pro-
cessing speed, high-rate volume throughput, and fixed mainframe characteristics.
The four available busses are:

L bus provides a 12-bit parallel communications path from the L register to the
address decoders in the memory modules.

W bus provides a pdrallel data communications path (16/18 bit) from the W
register to the memory module(s) (up to 8).

C bus provides the paralle! path and selection logic for routing data between
the arithmetic unit, the 1/O unit, and the operational registers. This bus
permits data to be uniquely or commonly transferred to the operational registers.
It performs the distribution function for micro-programming, and provides a
bi-directional parallel word path to the “party line".

C bus is the central communication avenue and connects with all internal units

of the processor. It is the key facility that permits Micro~EXEC to be
implemented.

S bus provides the parallel path and selection logic for routing data between
the operational registers and the arithmetic unit. [t implements the select,
gather, and route function for micro-programming and Micro~EXEC.

Party fine 1/O bus provides a 16/18-bit parallel bi-directional 1/O communi-
cation path. This bus includes the control lines for transfer ready, sense,
control, interrupt address and acknowledge, and information entry. The
“party line” is packaged as one cable, and each peripheral device has a party
line connector and a party line extender connector. The device and the party

line form @ "daisy chain” whereby additional 1/O controllers can be added on
site and on a plug-in basis.

Systems Computer 6

REGISTERS

Nine registers are provided with a basicf processor . Four of the n.ine regisrerslf[ar:
incorporated fo provide buffering to satisfy re.al—hme system requuremenff. A -t e
arithmetic and control unit registers‘are mulhpurpose and can serve a unique micro-
programming and Micro-EXEC function.

A register is a full-word register and is the high-order half of the. accumulator.
A is a source and destination for programmed input/output and micro~
programming. Micro-EXEC can select, set, shift, and perform arithmetic

and logical operations on A,

B register is a full-word register and is the low-order-half o.f th.e accumulator.
8 is a source and destination for programmed input/output, is micro-
programmable, and can serve as the second hardware index feglsfer. I\{\u:ro—
EXEC can select, set, shift, and perform arithmetic and togical operations

on the A.

X register is a full-word register which permits indexing of memory cdd.ressing
without adding time to accessing an indexed location. The X register is
addressable by the micro-programming instruction set where it serves logical,
storage and counting functions. Micro-EXEC con use the X register for
arithmetic and multiple other functions.

P register is a full-word register and is the program counter. P can serve
multiple purposes under Micro-EXEC.

U register is a full-word buffer which holds the instruction being executed.
The U register buffers the control unit from memory to permit |nterh::ce 1/0
operation to occur on a memory-cycle by memory-cycle-basis. It is also a
multipurpose register available to Micro-EXEC.

S register is a 5-bit register which, in combination with the U register controls
the length of shift instructions. This register also buffers memory from the
control unit. S register is available to Micro-EXEC,

L register is the 12-bit memory location register. Micro-EXEC can select and
set the L register.

W register is the memory word register and is full length (16 or 18 bits). W is
selectable and can be set by Micro-EXEC.

R register is a full~word buffer which holds the multiplicand and divisor, in
arithmetic operations. R register buffers the arithmetic unit from memory to
permit interlace I/O operations to occur on a memory-cycle-steal basis. 1t
is also @ multipurpose register available to Micro-EXEC.

7 Systems Computer

Micro-EXEC

Micro-EXEC (optional) is a technique by which the system designer has the option of
externally combining and sequencing the processor's micro-steps to perform a complex
macro~function. Over 30 micro-step control lines are made available to the system
user. These control functions are the micro-steps normally controlled by machine
instructions.

They control memory, arithmetic unit, control unit, all registers, 1/O and communica~
tion networks. The external control can operate the micro-steps as fast as five every
900 nanoseconds by utilizing the processor clock to synchronize the micro-step opera-
tions. Micro-EXEC can be used to implement many types of algorithms. Typical
functions are: convolutions, coordinate transformations, double precision arithmetic,
table ook ups, square root, limit checking, etc. Micro-control can produce up to
10-to-1 speed advantage over stored programs and does not require core memory for
the program. Opening new dimensions to the data system designer, Micro-EXEC
makes practical an extremely fast processor with small or large memories. It permits
the mode of processing to be controlled externally, and processing to be optimized

for the system.

The processor organization and hardware provides the system engineer with the most
flexibility available in off-the-shelf equipment. The standard options of Micro-EXEC
machine instructions, memory, and /O facilities provide functional adaptability and
system optimization without engineering risk or unpredictable costs.

’

Systems Computer 8

WORD FORMAT

i ies: i ion. Each category
d formats separate into two categories: data and instruction ,
;h: t‘::’ern optimized for the system environment. DATA 620/ processors are c.v0||.0b|e
o 16- or 18-bit word length. The 16-bit is the DATA 620/i; the 18-bit version is the
;;ATA 620/i. The data format is extendable for 18-bit words with the sign bit in the

high-order positions.
DATA WORD FORMAT

1716 15 14 13 12 11 10 98 7 6 543 210

7R

l Sign {negative numbers in 2's complement form).
Logical data is represented in true form.

18-bit word length.
INDIRECT ADDRESS FORMAT

1514 1312 11 10987 65 43210

7

15-Bit Address Field

The higher order bit specifies further indirect addressing.

INSTRUCTION WORD FORMAT

The four instruction word formats — single word, double word, generic and macro-
command — are illustrated in the following paragraphs.

1. Single word. Twelve basic commands and two optional cc.>mmat1ds have
single word memory reference formats. The single word instruction .is di\{lded info
three fields as shown below. There are six addressing modes including direct a'ddr‘ess-
ing to 2,048 words, relative to P with a delta range of 512, index by X or B, indirect
from the contents of the memory location addressed, immediate.

9 Systems Computer

SINGLE WORD INSTRUCTION FORMAT

17 16 15 14 13 12 11 10 98 7 6543210
%

Op. Code Mode Address

OXX; Direct addressing to 2048
100; Relative - add a field to P
101; Index (X) - add a field to X
110; Index (B) - add a field to B
111; Indirect - from Add.,
multi-indirect

-— Not used by the 18-bit instruction word

Single Word Instructions include: LDA LDB LDX INR ADD SUB MUL* STA STB STX
ERA ORA ANA DIV*,

All basic single word instructions are executed in two cycles, including relative and
index addressing modes. One cycle is added for each level of indirect addressing.

The single word instruction format is designed to enable the system user to write his
programs in the minimum number of memory locations and have his program executed
in minimum time. The format is uncomplicated and the fields divide into convenient

octal groupings so that programs can be written and checked rapidly.

2. Generic. Twenty-six instructions are single word generics and divide
into the three fields of class code, operation code and definition.

GENERIC INSTRUCTION FORMAT

151413121 109876543210

C O d

Class Code Op. Code Definition

These instructions perform arithmetic unit, control unit and input/output functions.
The operations are: HLT, NOP, shifts (12), overflow (2), sense, external functions,
input and ouiput, A or B (11).

*Optional instruction

Systems Computer 10

i i i i he sense and external function

+£t instructions can shift up to 32 places. T " .

Thi :::Iﬁo::s can address up to 64 peripheral devices and define up to 8 functions. The
zns‘:t and output commands can select A or B, A and B; clear and input to A or B,
::F::nd B. The input/output instructions can address up to 64 devices. (The in-memory

d out-memory instructions and the interrupt priority control are two word instructions.)
an

The generics are octal grouped for user convenience. They provide flexibility to
optimize ‘input/output processing.

3 Two word. Two classes and six types of instructions are two word
- . . - . .
instructions. The types include: jump, jump and mark, execute, immediate, in/out

memory, sense.

JUMP, JUMP and MARK, EXECUTE

1514131211 109876543210

L C (o] Condition 1st Word

2nd Word

L+ ADDRESS

L Indirect address flag

The first word contains three fields: The C field contains the class code, the O field
contains the operation code, and the condition field specifies any combination of nine
conditions. The nine conditions are: $S1, 852, $83, XO, B O, AO, Aneg.,

A pos., and overflow. The second word contains the jump address, jump mo_rk address,
or the address of the instruction to be executed. Indirect addressing is permlf.te.d. If
the specified conditions are oll met, the instruction is executed. [f the conditions

are not met, the second word is skipped and the P register incremented.

The in/out memory has a similar two word instruction format. The condition field of
the INM/OTM instruction addresses the device selected; the second word contains the
memory address for the data. Indirect addressing is permitted.

Immediate is a special type instruction. The type includes twelve {plus two optional)
two word instructions. The instructions include: LDAI LDBI LDXI ADDI SUBI INRI
MULI* STAI STBI STXI ERAI ORAI AWAI DIVI*.

*Optional

" Systems Computer

IMMEDIATE INSTRUCTION FORMAT

1514131211 109876543210

L 00 6 Op .Code Ist Word
L+1 OPERAND 2nd Word
4. Macro-commands. A number of micro-steps are programmable into

a macro-instruction with the single word "macro-command." This command has over
128 useful combinations including those tisted in the instruction set. The macro~-
command format is:

Bits 3 through 6 define one of the instructions above. The immediate type
instructions provide literal addressing. Literal addressing, being the operand
‘address field, contains the operand. This type automatically increments the
P counter; after the execution, the next instruction is obtained from P + 2.

There are a total of 45 standard instructions and over 16 optional two word instructions.
The efficiency and power of the two werd instructions becomes more and more apparent
with use. They provide direct and random addressing and accessing to 32,768 words,

In most cases, they permit a two memory location sequence of instruction fo replace the
usual three memory location sequence. The amount of memory conserved and time saved
by these instructions depends on the application, and ranges from 5 to 25 percent,

1514 131211 109876543210

00 5 stepl XBA | XBA
1 t
Source

00; Transfer
01; Increment
10; Compiement

11;-Decrement

Destination

0; Execute unconditionally
T 1; Execute if overflow set

The X, B, and A register contents can be logical "ORed, " cleared, transferred, set
to a common value, complemented, "NORed, * incremented, decremented, and, if
desired, conditionally on an overflow. Sequences of micro~commands can be used
to perform additional logical functions customary ina system environment.

Systems Computer 12

OPTIONAL INSTRUCTIONS

The hardware mu|ﬁp|y/divide and extended addressing option provides a'n c.dd'i'rior.-a|
16 instructions fo the basic instruction set. The extended address mode is similar in
format to the immediate address instructions., except that the ?econd word of the
double-word instruction contains the effective address. All single word commands can

use extended addressing.

The instruction set is the most comprehensive availqb.le with “compccf" comeutefs or
processors. The optional instruction sets have specific }/clu.e to cerfuu:\ appllc.ahons
and are available to refine the processors to those‘ appli.co‘tlon‘s. The In?truchot\ seI‘,
variety, simplicity, and power equates to economic optimization. The instruction list
is presented in the following table.

13 Systems Computer

INSTRUCTION LIST

TIME
TYPE MNEMONIC DESCRIPTION CYCLES
Load LDA Load A Register 2
LDB Load B Register 2
LDX Load X Register 2
Store STA Store A Register 2
STB Store B Register 2
STX Store X Register 2
Arithmetic ADD Add to A Register 2
SUB Subtract from A Register 2
INR Increment and Replace 3
MUL* Multiply B Register, Double Length | 10
Div* Divide AB Register, Double Length | 10-14
Logical ERA Exclusive OR to A Register 2
ORA Inclusive OR to A Register 2
ANA And to A Register 2
Jump JMP Jump Unconditionally 2
JOF Jump if Overflow Set 2
JAN Jump if Register Negative 2
JAZ Jump if A Register Zero 2
JAP Jump if Register Positive 2
JSS1 Jump if Sense Switch 1 is Set 2
J5S2 Jump if Sense Switch 2 is Set 2
Jss3 Jump if Sense Switch 3 is Set 2
Xz Jump X Register Zero 2
J8Z Jump B Register Zero 2
Jump and Mark JMPM Jump Unconditionally and Mark 2
JOFM Jump Overflow Set and Mark 2-3
JANM Jump A Register Negative andMark | 2-3
JAZM Jump A Register Zero and Mark 2-3
JAPM Jump A Register Positive and Mark 2-3
JASIM Jump Sense Switch 1 Set and Mark 2-3

Systems Computer

INSTRUCTION LIST (continued)

TIME
TYPE MNEMONIC DESCRIPTION CYCLES
rk JS2M Jump Sense Switch 2 Set and Mark 2-3
f:g::i:::d';m JS3M Jump Sense Switch 3 Set and Mark 2-3
JXZM Jump X Register Zero and Mark 2-3
JBZM Jump B Register Zero and Mark 2-3
XEC Unconditional Execute 2
Execute XOF Execute Overflow Set 2
XAN Execute A Register Negative 2
XAZ Execute A Register Zero 2
XAP Execute A Register Positive 2
Xs1 Execute Sense Switch 1 Set 2
XS2 Execute Sense Switch 2 Set 2
XS3 Execute Sense Switch 3 Set 2
XXZ Execute X Register Zero 2
XBZ Execute B Register Zero 2
Immediate LDALI Load A Register Immediate 2
LDBI Load B Register Immediate 2
LDXI Load X Register Immediate 2
STAI Store A Register Immediate 2
STBI Store B Register Immediate 2
STXI Store X Register Immediate 2
ADDI Add to A Register Immediate 2
SUBI Subtract from A Register Immediate 2
MULI*. Multiply B Register Immediate
Double Length 10
DIVi* Divide AB Register Immediate
Double Length 10-14
INRI Increment and Replace Immediate 3
ERAI Exclusive OR to A Register
Immediate 2
ORAI inclusive OR to A Register
Immediate 2
ANA| And to A Register Immediate 2
Input/Qutput EXC External Control Function 1
CiA Clear and Input to A Register 2

15 Systems Computer

INSTRUCTION LIST (continued)

TIME
TYPE MNEMONIC DESCRIPTION CYCLES
Input/Output CIB Clear and Input to B Register 2
(continued) CIAB Clear and Input to AandB Registers | 2
INA Input to A Register 2
INB Input to B Register 2
INAB Input to A and B Registers 2
IME Input to Memory 3
OAR Output A Register 2
OBR Output B Register 2
OAB Output OR or A and B Registers 2
OME Output from Memory 3
SEN Sense Input/Output Lines 2.25
Register Change 1AR Increment A Register 1
DAR Decrement A Register 1
1BR Increment B Register 1
DBR Decrement B Register i
IXR Increment X Register 1
DXR Decrement X Register 1
CPA Complement A Register i
CPB Complement B Register 1
CPX Complement X Register 1
TAB Transfer AR to B Register 1
TBA Transfer BR fo A Register 1
TAX Transfer AR to X Register 1
T8X Transfer BR to X Register 1
TXA Transfer XR to A Register 1
™>B Transfer XR to B Register 1
TZA Transfer Zero to A Register 1
TZB Transfer Zero to B Register 1
TZX Transfer Zero to X Register 1
AOFA Add OF to A Register 1
AOFB Add OF to B Register 1
AOFX Add OF to X Register 1
SOFA Subtract OF from A Register i
SOFB Subtract OF from B Register }
SOFX Subtract OF from X Register 1
SOF Set Overflow 1
ROF Reset Overflow 1

INSTRUCTION LIST (continued)

TYPE

LogiCGI Shift

Arithmetic Shift

CONTROL

TIME
MNEMONIC DESCRIPTION CYCLES

LSRA Logical Shift Right A k places 1 +0.25k
LRLA Logical Rofate Left A k places 1+0.25k
LSRB Logical Shift Right B k places 1+ 0.25k
LRLB Logical Rotate Left B k places 1+ 0.25k
LLSR Long Logical Shift Right k places

LLRL Long logical Rotate Left k places 1+ 0.25k
ASRA Arithmetic Shift Right A k places 1+ 0.25k
ASRB Arithmetic Shift Right B k places 1+ 0.25k
ASLA Arithmetic Shift Left A k places 1 +0.25k
ASLB Arithmetic Shift Left B k places 1+0.25k
LASR Long Arithmetic Shift Rightk places | 1+ 0.25k
LASL Long Arithmetic Shift Left k places 1 +0.25k
HLT Halt 1

NOP No Operation 1

Systems Computer

*Denotes optional instruction. Times given are for 16-bit computer.
Add 1 cycle for each level of indirect addressing.

17 Systems Computer

MEMORY

The DATA 620/i uses general purpose random access ferrite magnetic core memories.
They contain a proprietary thermal compensation technique which preserves the
operating margins over the temperature range (0° to 45°C) without adjustment.

The memory communicates with the processor through a memory data bus and an
address bus. Additional external (to mainframe) memory modules can be added simply
by adding an optiona! memory adapter to the processor that permits the additional
module to be "plugged in." The external memory module includes an adapter for the
next memory module. The memory can be expanded to 32,768 words by the addition
of 4K memory modules.

Memory cycle time is 1.8 microseconds; access time is 700 nanoseconds.

Systems Computer 18

RELIABILITY AND MAINTAINABILITY

DTL and TTL integrated circuits are used throughout the DATA 620/i. These integrated
circuits are general purpose digifal logic, and are noted for low power consumption,
high packing density, high noise rejection, and reliability throughout the operating
temperature range of 0° to 45°C. The low power equates to low heat generation and
high reliability. .

DATA 620/i computers are produced under a qualify contro! program designed and
procticed fo meet MIL-Q-9858A, ‘and to the intent of NPC 200-3. The mean-time-
between-failures (MTBF) has been calculated for the basic processors to be over 7,500
hours. The mean-time-to-repair is estimated to be a few minutes.

DATA 620/i computers are packaged to simplify maintenance. The integrated circuit
board layout is unique using a "bit slice" alyout. Bit slice isa technique whereby all
register and gating circuits associated with six bits are packaged on one card.

The structure is designed for easy access. All units of the processor are mounted to be
easily removed to make all components and wiring easily accessible. The “big board"
concept is used to permit easy trouble shooting.

FAILURE DETECTION

The source of faults in solid-state electronic equipment with conservative circuit and
timing designs is from external causes. The external causes are power failures, power
frequency failures, excessive heat and the failure of electro-mechanical peripheral
devices. The DATA 620/i has been designed to prevent each of these fault sources
from destroying the integrity of the system computer function.

1. Power failure. An optional power failure protect system monitors
power line voltage. If voltage is outside safe limits, a power fail interrupt is
generated. The interrupt subroutine assures an orderly, safe shutdown. Upon
restoration of power, the computer is automatically restarted at a designated memory
location, and oppropriate software provides an orderly restart.

2. Temperature. A thermal sensor is embedded in the core memory to
continually monitor internal temperature. If the temperature rises above the specified
limit (45°C), the sensor produces a thermal alarm signal that is used to light the con-
sole alarm indicator and/or generate an interrupt line.

3. Operator errors. The control panel is electrically disconnected during
run mode.

19 Systems Computer

4. Memory protect. This option permits a top-priority executive, control,
alarm, processing, or monitor system to remain resident in memory while other pro-
grams are being processed.

These facilities provide the system engineer with the level of assurance needed to
tackle the most demanding process control or real~time application where one failure
can be extremely costly,

PHYSICAL

1. Packaging. The DATA 620/i family is packaged to offer the user
maximum convenience, positioning, flexibility and space-saving economies. The
memory , arithmetic and control unit, and the power supply and control console are
three separate packages that, when connected, produce a compact unit that is
10~1/2 inches high 22 inches deep and 19 inches wide. The compactness and fight
weight of the DATA 620/i series enables it to be used in facilities such as submarines,
aircraft, etc.

2. Control panel. The user-oriented design philosophy of the DATA
620/i console utilizes sound human engineering practices. The console has been
developed fo produce a pleasing image and still be functionally easy to use. Proximity
of related functions, minimum reflectivity, and other more subtle features such as
length and distance of switches were used in the development of the console. The
basic function of the console — to modify and monitor all operational registers — was
achieved without a cluttering of switches that tend to confuse. A simple straight-
forward instrument is the result.

ENVIRONMENTAL

The DATA 620/ connects to standard commercial single-phase 115-vac power. Power
regulation is not required under normal commercial power conditions. Subflooring or
conditioned air are not required. The DATA 620/i is equally at home in the shop,
field, instrumentation room, classroom, and laboratory .

Systems Computer 20

PROGRAMMED INPUT /7 OUTPUT

The basic DATA 620/1 processor is equipped with positive vc.alta?e‘ level party Hm?)
1/O bus. The party line is a bidirectional common commlfnlcoh?n channel containing
the data and control lines required for system communicchfm: Time-shared between
the peripherals, it is designed to prevent conflicts or t.rclfftc jams Lfnder heavy com~
munication loads. Each transmission contains the routing mfotmohon as well as the
data. It is transmitted as an entity which is not separable by |.nferrupf. Thus,
numerous devices can time share the party line. The frcnsmissmr.\ }:K:s two phases:

The first phase is the route set-up, the second is the data transmission.

The party line permits plug-in. expansion of all peripheral devi(ies. The pc‘urty line
contains line drivers and line receivers to service up to ten peripheral dev1ces.' Each
peripheral device contains a data buffer and party line adapter. ThU§, no device can
tie-up the party line, and modifications to the computer are not rc?qmred to add
peripherals. Each device has a party line connector and a party line extender con-
nector. The last device on the party line has a termination shoe on the extender
connector. When another device is added, a party line cable is provided betwe?en
the added and the last device. The termination shoe is moved to the added device.

The party line technique solves the troublesome problems usually encountered in time-
shared operation and on-site system expansion.

The following types of I/O commands can be executed with the basic machine:

Sine Word to/from Memory

Single Word to/from A and B Registers
Test External Sense Line

Generated External Control Line

The following interface features can be added to the basic party line.
DIRECT MEMORY ACCESS AND INTERRUPT LOGIC

This option provides direct memory access (cycle steal capability) from the party line
1/O bus. With this feature, the user can design special system devices that cause the
program fo hesitate for 2.7 microseconds, during which time memory is accessed for
data, or data is stored in memory. This trap operation bypasses the A, B, X and P
registers, thus allowing the program to proceed normally. One interrupt level is
provided with the option.

21 Systems. Computer

INTERRUPT SYSTEM

The DATA 620/i has a multilevel priority. interrupt system with single-instruction
execute, group enable/disable, and selective arm/disarm copability. Each interrupt
line is assigned a unique memory destination address that is the first of a pair of

locations. The system is modular and expandable in groups of eight or sixteen levels
up to 64 levels,

The interrupt system is automatically scanned every 1.8 microseconds and the interrupt
is recognized before the fetch cycle of the next instruction to be executed. If signals
exist on one or more interrupt lines, the highest priority is recognized. An interrupt
functional response to an external device can be accomplished in as little as two
memory cycles.

BUFFER INTERLACE CONTROLLER

Many system devices require computer facilities to transmit /O data at high rates and
volumes and at random periods. Such devices are best serviced with automatic chan-
nels which do not require programming or interfere with the processing. The buffer
interlace controller (BIC) unit option services such requirements.

The BIC contains two 15-bit registers, the party line addressing and control logic,
priority logic, and DATA 620/i contro! logic. The two registers contain the stop
address and the current memory address. These registers are set by the program with
the start address and the stop address. These addresses define the sequential locations
in memory from or to which the data is communicated. Connecting the desired con-
troller to the BIC activates the BIC. The 1/O operation is automatic thereafter until
the stop address has been met. Each dats word transferred requires less than two
memory cycles. Information can be transferred at a rate over 200, 000 words per
second. The BIC automatically synchronizes the data transmission rate to the device
requirement.

The BIC connects to the party line and controls the data transmission of the devices
with BIC adapters when operating in the interlace mode. Interlace 1/0 occurs on

a memory cycle basis and shares priority with the control processor. The BIC will
capture the next-memory cycle and stall the computer for 2.7 microseconds for each
word transmitted. The processing resumes automatically at the completion of the

word transferred. Any device connected fo the BIC can be operated under control of
the BIC or under program control. Up to eight devices can be connected to one buffer
interlace controller unit. The current address can be read under program control .

Each group of eight or sixteen interrupts can be enabled/disabled, and contains a

16-bit mask register that controls the indjvidual interrupt lines. The program can
maintain the hardware order of priority or reorder to meet dynamic queving,

Systems Computer 22

REAL-TIME CLOCK

he DATA 620/i real-time clock is an option that provides a flexible time-orientation
; iem that can be used in a variety of real-time functions, including time-of-day

s . .
Z);cumulaﬁon and.as an interval timer.

The real-time clock consists of two interrupts. The first int.errupf isa fime—bOfe e
ignal that when recognized by the computer, executes an increment memory instruc
S!Q: stored in the interrupt address. The second interrupt occurs when the incremented
:\:mory location reaches a count of 40,001g.

ment of an interrupt by the central processor causes the insfr?cﬁon .
ﬁ;:t:::l:l:i;r; destination uddpressyof the interrupt to be e.xecufed.) Thi |n.struchon:s
can be any of the DATA 620/i instruction set. Th.ls techrjlque permits the mterru'p
to be of the single~execute type, whereby single-instruction responses fo ?xfeu:na

ignals can be serviced in one instruction period. |If the exem..rtefi Enstruchon l? a
9 and mark (JMPM), the interrupt system is automatically inhibited to permit the
:::hm;ilt to be terminated under program conirol. The D/}T.A 620/.i i.nterrupt sysf:em
provides the high speed reaction time, expansion capability, priority and queving
versatility required for real-time control.

SENSE LINE

Discrete sense lines are available as options in sets of eight. Each sense Iin.e hc:us a
unique address. Up to 512 sense lines can b_e addres.sed. The.sense IF}SH’UCdf‘(IiOn ls;
two word conditional jump command. If a signal e?xnsfs on the sense lm? addressed,
the program jumps to the effective address; otherwsfe, the program c.onhEue.s ot .
location P + 2. The sense lines can be configurefi in combl.nahon with the mztgn:up
lines to permit more than one device to share an inferrupt line. All DATA 620/i
peripheral equipment include the sense lines required.

EXTERNAL CONTROL LINES

Discrete control lines are available as options in sets of eight. Each control line lhcs
a unique address. Up to 512 control lines can be addressed. The external coann?.
instruction is a one word instruction that places a pulse on the addressed contro n;e.
These are general purpose control lines that can be used to perform exfern?l contr:
functions throughout a system. The control pulse has a 450—rjanosecond‘ width. The
confrol lines required by DATA 620/i options are provided with the option.

PARALLEL I/O CHANNELS

The usual system application requires special devices to be connected to the comp.uter.
These devices can be interfaced with the computer in many ways. The system designer

23 Systems Computer

can implement the interface with his own electronics, purchase and assemble the
appropriate logic modules (Micro-VersalOGIC), or utilize the Varian Data Machine
interface controllers.

The interface controllers provide the timing, gating and selection logic needed to

communicate with the party line 1/O lines under program control. The four available
controllers are:

Gated inputed channel — provides a level input to the DATA 620/i party line

Gated output channel — provides a pulsed output from the DATA 620/
party line

Buffered input channel — provides an 18-bit register to receive pulsed inputs
for subsequent input to the party line

Buffered output channel — provides 18 stored logic levels (flip-flops) for level
output from the party line.

All four controllers are 18-bit parallel (on the 16-bit computer, 2 bits are not used)
and greatly olleviate the interface problem.

Systems Computer 24

PERIPHERAL EQUIPMENT

A full line of compatible peripheral equipment is available for the DATA 620/i series.
Each device has been selected to meet the functional requirements of a real-time

data system.

Each piece of peripheral equipment is provided with a controller that includes o
party line adapter, buffering and control lines. The line printer, disc storage, and
magnetic tapes include word assembly/disassembly registers. The magnetic tape con-
trol units contain double buffers to permit multiple simultaneous high-performance
magnetic tape operation.

The peripherals will operate with the party line under program control, or auto-
matically with an (optional) buffer interlace controller.

A complete line of analog conversion equipment is offered on a custom basis accord-
ing to the requirement,

" DATA 620/i SERIES PERIPHERAL EQUIPMENT

MAGNETIC TAPE SYSTEMS Tape Controllers - Master controller for up to
four tape transports. Will control 7 or 9 track
transport and includes assembly/disassembly
register.

“Tape Transports - Speeds of 45, 75, and 120
ips Densities of 200, 556, and 800 bpi.
Seven and nine track industry compatible
units.

AUXILIARY STORAGE Fixed head rotating memory systems with
capacities from 34K words to 500K words.
Access times of 8.5 and 17 milliseconds.
Transfer rates from 60 to 120 KC.

READERS AND PUNCHES Card Reader - 1000 cpm
’ Paper Tape Reader - 300 cps
Paper Tape Punch - 60 and 120 cps

DIGITAL INPUT/OUTPUT KEYBOARD
ASR 33 Teletypewriter
ASR 35 Teletypewriter
KSR 35 Teletypewriter

25 Systems Computer

GRAPHIC DEVICES

MODEM INTERFACES

Systems Computer

Oscilloscope Displays
High Speed Printers - 300 and 600 LPM

Electrostatic Plotters
Digital Plotters ~ 300 steps per sec

103, 201, and 301 types

26

SYSTEM SOFTWARE

A comprehensive package of operational programs are available with the DATA 620/i.
These include o symbolic assembler, FORTRAN compiler, library of mathematical sub-
routines, debugging package, and a modular maintenance diagnostic package. The
complete software package operates in the basic 8,192 words of core memory. In
addition, Varian Data Machines has developed many real-time programs for a

specific customer application. The more important portions of the Varian Data
Machine software library are described below.

SYMBOLIC ASSEMBLER

The DATA 620/i assembler system (DAS) is a two-pass assembler that assists in program
preparation by aflowing instructions, addresses, etc., to be specified in a straight-
forward and meaningful manner. DAS recognizes over 20 pseudo-operations that aid
the user in coding and debugging problems. Although DAS operates in a minimum
system consisting of 4,096 words of core memory, paper tape reader, paper tape
punch and typewriter, provisions have been made to utilize additional memory and
peripheral equipment available to the system. Extensive syntax checking is per-
formed during both passes of the assembler.

FORTRAN

DATA 620/i FORTRAN conforms with the proposed American standards for basic
FORTRAN as published by the American Standards Association. The DATA 620/i
FORTRAN, a one-pass complier, can operate iria 8,192 word computer equipped with
only a model ASR-33 teletypewriter. Naturally, if higher performance peripherals
are on the system, DATA 620/i FORTRAN utilizes them to produce faster compilation.

AlD

AID is a collection of useful diagnostic and utility routines for the DATA 620/i
computer.. With this package, the programmer can call upon a wide variety of
functions to aid him in debugging and running his programs. AID includes routines to
correct memory, establish breakpoints, search memory, print memory, etc.

Also included in the AID package is a comprehensive binary paper tape handler that
is particularly useful in preserving programs modified on the computer.. This routine
uses o standard address, data, and checksum format that is used by the DAS assembler.

\DIAGNOSTIC PRO GRAM PACKAGE

The DATA 620/i diagnostic program package is designed to check instructions,
memory, and input/output devices, and fo isolate errors. It can be used in either the

27 Systems Computer

preventative or the corrective mode of operation. In the preventative mode, the
complete system is checked for operational readiness.. If a malfunction exists, in
most cases, the preventative will isolate the error. The corrective mode of operation
is used when a malfunction is known to exist and the preventive mode does not
decisively show the trouble. Proper application of these diagnostic routines can cut
the mean~-time-to-repair to minutes. This modular package can be easily expanded to
‘accommodate any special system hardware tests.

SUBROUTINE' LIBRARY

This comprehensive library includes the most commonly used subroutines needed in o
systems environment. The library includes routines for logarithmic exponential and
trigonometric functions, for fixed and floating-point arithmetic, and for operating
standard peripheral equipment. Conventions and instructions are provided so the user
can add application programs to the library and be called by DAS, FORTRAN and
AID.

Systems Computer 28

USER SERVICES

The purchase of @ DATA 620/i includes support services designed to provide the user
with start-up and sustaining service.

DOCUMENTATION

The documentation is comprehensive and clear, and contains the information required
for the user to fully understand, program, operate and maintain fh‘e system. Inte.rface
and installation manuals are provided to the user prior to ins'rall.ahon. for system inte-
gration prepclrution. The program and service manuals.are prov‘lded |n.advance .of the
user training attendance. The software manuals contain a special section covering
software modularity and expansion techniques.
PROGRAMMING TRAINING*

Programming training courses are provided on a scheduled basis at Varian .Dch“x
Machine facilities. The one week.course covers instruction for programming in
machine language, an introduction to the DATA 620/i software, and machine opera-
tion. The course includes time at the console. Supplies required for the course are
provided at no charge to the attendees. On-site courses are available on a contract

basis.
MAINTENANCE TRAINING*

A two-week at-the-factory maintenance course is provided on a scheduled basis.
The instruction covers machine organization, operation, logic, design, timing, pre-
ventive maintenance, trouble—shooting, and repair. Extended training covering
special systems hardware is available on an individual cusiomer basis. The course is
designed for personnel with existing digital logic design knowledge.

USER ORGANIZATION

Varian Data Machine Customer Services (CS) provide continuing coordination, pro-
gram exchange and library maintenance for DATA 620 and DATA 620/i users. - Users
are notified of new additions to the library, application data, program and hardware
modifications and new equipment. CS maintains up-to-date master prints on each
system controlled. An inventory of programming forms, paper tapes and spare parts is
maintained for expedited or emergency service. Statistical data on field operating
experience based on user-submitted reports is maintained and available to users.

. On=call and on-site maintenance services are available on a contract basis.

*Available at nominal cost.

29 Systems Computer

APPLICATION PROGRAMMING

Varian Data Machines' technical staff includes senior application programming

specialists well-qualified to assist the user in the preparation of application programs

This ;?rofessionol group can assume full responsibility on a contract basis for the pre~
paration of a total solution, including hardware and application programs

Systems Computer - 30

DATA 620/ SPECIFICATIONS

TYPE

MEMORY

ARITHMETIC
WORD LENGTH

SPEED
(fetch and execute)

OPERATION REGISTERS

BUFFER REGISTERS

CONTROL

A system computer, general purpose digital, designed for
on-line data system requirements, magnetic core memory,
binary, parallel, single-address, with bus organization
and micro-control.

Magnetic core, 16 bits (18 bits optional), 1.8 micro-
seconds full cycle, 700-nanoseconds access time, 4096
words minimum expandable to 32,768 words.

Parallel, binary, fixed point, 2's complement.

16 bits standard; 18 bits optional .

Add or Subtract 3.6 microseconds.
Multiply (optional) 18.0 microseconds, 16-bit.
19.8 microseconds, 18-bit.
Divide (optional) 18.0 to 25 microseconds,
16-bit.
19.8 to 28.8 microseconds,
18-bit.
Register change class 1.8 microseconds.
Input/Output - from A or B 3.6 microseconds.
from memory 5.4 microseconds.

A register - accumulator, input/output, 16/18 bits.

B register — double length accumulator, input/output,
index register, 16/18 bits.

X register - index register, 16/18 bits.

P register ~ program counter, 16/18 bits.

R register - operand register, 16/18 bits.

U register - instruction register, 16/18 bits.

S register - shift register, 5 bits, operates with the U
register for executing shift instructions.

L register - memory address register.

W register - memory word register, 16/18 bits.

Addressing modes:
Direct addressing to 2,048 words.
Relative to P register 512 words.
Index with X register, hardware, does not add to
execution time.

31 Sys‘fems Computer

INPUT/OUTPUT

Systems Computer

«

Index with B register, hardware, does not add to
execution time.
Multi-level indirect addressing.
Immediate.
Extended addressing (optional).
Instruction fypes:
Single word.
Double word.
Generic.
Micro-command.
Instructions: QOver 100 standard commands, listed below
plus more than 128 macro~instructions:
3 load.
3 store.
5 arithmetic (2 optional).
3 logical.
10 jump.
10 jump and mark.
10 execute
14 immediate (2 optional).
13 input/output.
26 register change.
6 logical shift.
6 arithmetic shift.
2 control.
14 extended addressing (optional).
Over 128 micro-instructions.
Micro-exec (optional):
Facility and hardware to construct o hardware program
external to the DATA 620/i. Eliminates stored program
memory accessing by use of hardware program.
Console:
Display and data entry switches for all operational
registers, 3 sense switches, instruction repeat, single
step; run; power on/off.

.

Processor input/output options:

Programmed data transfer:
Single word to/from memory .
Single word to/from A and B registers.
External control lines.
External sense lines.

Automatic Data Transfer:
Direct memory access facility transfer with
rates over 200,000 words per second.

32

PHYSICAL

MAINFRAME LOGIC
AND SIGNALS

Priority Interrupts.
Group enable/disable, individually arm/
disarm, single instruction interrupt capability.
Real-time clock:
Adjustable time base: May be programmed as
multiple intemnal timers,
Power failure detect/restart:
Interrupts on power failure and automatically
restarts on power recovery .

Dimensions:
Mainframe - 10~1/2 inches high, 19 inches wide,
15 inches deep

Weight:
Mainframe ~ 35 pounds.

Power: .
3 amps 115vac, 60 Hz (340 watts). 115 £10v, 60 +
2 Hz. Power supplies are regulated. Additional
regulation is not required under normal commercial
power sources.
Conversion for 50 Hz and other voltages available
at added cosf.

Expansion:
Main processor contains provisions and space for all
internal options.

Installation:
Mounts in standard 19-inch cabinet, no air condi=-
tioning, sub-flooring or special wiring and site
preparation required.

Environments: .
0°C to 45°C; 0% to 90% relative humidity.

Integrated circuit, 8.8 MHz clock, logic levels Ov
false, +5v true.

FULLY COMPATIBLE SYSTEM COMPONENTS

To increase your total system capability, Varian Data Machines offers a complete line
of high-performance integrated circuit logic modules, small high-speed core memories
and large mainframe memories for 1/O equipment or additional system requirements.
All have been field-proven with the DATA 620/i system, and are fully compatible
with its power supply, voltage levels and signal requirements.

33 Systems Computer

Micro-VersaLOGIC INTEGRATED CIRCUIT LOGIC MODULES

Micro-VersalOGIC 5 MHz general purpose 1C modules with NAND/NOR logic, and

wired OR capacity at the collector, 5v logic levels, and excellent noise rejection

over lv. Over 25 module types, including universal flip-flops, delay multivibrators,

clock drivers, 2-, 3- and 4-input expandable gates, and PNP to NPN interface

modules. Compatible mounting hardware, including cerd files and card drawers, is SYSTEM
also available.

VersaSTORE CORE MEMORIES

New high-speed core memory systems with integrated circuits and all-silicon
components for highest reliability that operate asynchronously at 1.7 microseconds,
with 750-nanosecond access time. VersaSTORE memories are available in increments
up to 4,096 words of 36 bits, require only 5-1/4 inches of rack space, and can

also be provided as 8k word memories of up to 18 bits.

Options include party line, built-in self-test, and a variety of timing and control
flags.

VersaSTORE MAINFRAME MEMORIES

High-reliability VersaSTORE mainframe memories in sizes up to 65k words in 4k incre-
ments, with word lengths to 36 or 72 bits. Features include PNP to NPN interface,
flexible input levels of 3v to 12v, continuous famp display of address and data

registers, servoed current drive, 2 psec operation, integrated circuit design, and
DATAGUARD protection system.

Systems Computer 34

REFERENCE

SECTION |
INTRODUCTION

- THE DATA 620/i

The DATA 620/i is a high-speed, porallel,. binary computer. lts flexible design and
modular packaging make it ideal for operation both as a general-purpose machine and
for application as an on-line system component .

)ts features include:

- Fast operation: 1.8-microsecond memory cycle.

- Large instruction repertoire: 107 standard,' 18 optional; over 128 additional
instruction configurations which can be micro-coded.

- Expandable word length: 16~ or 18-bit configurations.
- Modular memory: 4096 word minimum, 32 768 maximum.

- Multiple addressing modes: direct, indirect, relative, index, immediate,
and extended (optional).

- Flexible 1/O: up to 64 devices on the |/O system, including optional
interlaced data transmission and direct memory access operations.

- Extensive software: complete package includes an assembler, mathematice
and 1/O library, AID diagnostics, and an ASA FORTRAN subset.

- Modular packaging: mounts in a standard 19-inch cabinet. No special
mechanical or environmental facilities are required.

The advance design techniques used throughout the DATA 620/i system provide
solutions to real-time data acquisition, telemetry processing, process control, and
simulation problems. In addition, the DATA 620/i is equally well suited for
scientific computations. Special attention has been given to the interfacing prob-
lems usually encountered in integrating a digital computer into a system. Asa
result, the DATA 620/i can be joined to a system with unparalleled efficiency.

The unique design of the DATA 620/i makes it easy to program, operate and maintain.
The entire mainframe includes the processor, all processor options, and a 4096-word
core memory in a convenient 10-1/2 inch high rack-mountable package. Only

17 circuit boards, of 11 different types are used in the basic 16-bit configuration.

1-1 System Reference

Power supplies for the processor and up to 8192 words of core memory are a separate
10-1/2 inch high rack-mountable package that mounts behind the mainframe. Thus,
the entire computer requires only 10-1/2 inches of a standard 19-inch rack. Instal-

lation is easy, requiring no special mounting, cabling, or air conditioning provisions.

Maintainability of the DATA 620/i is enhanced by easy front access to all wiring,

making it unnecessary to remove panels on the computer rack, obtain access to the
modules, connectors, and wiring.

A complete set of software provided with the DATA 620/i permits rapid preparation of
application programs. The system software includes:

- FORTRAN - Subset of ASA FORTRAN.

- DATA 620/i ASSEMBLY SYSTEM (DAS) - Two-pass symbolic assembler.
= AlD - On-line debugging and utility package.

= MAINTAIN - Complete set of computer and peripheral diagnostics.

- SUBROUTINE LIBRARY - Complete library of transcendental functions,

single- and double-precision and floating-point arithmetic, format con-
version, and peripheral service routines. i

A wide variety of peripheral equipments are available to provide the DATA 620/i user
with a complete system suited to specific needs.

1.2 USE OF THE MANUAL
This manual provides the basic information required for programming and using the
DATA 620/i, and is intended to be used in conjunction with other publications for

the 620-series computers. These publications are listed in table 1-1.

The interface reference manual provides detailed information for installing the
DATA 620/i, and for integrating the DATA 620/i with special system components.

Information required by the programmer for using the system software packages is
contained in the programming reference, FORTRAN, and subroutine manuals.

The maintenance manuals contain the detailed design theory, logic and timing
diagrams, circuit board data, maintenance procedures, and diagnostic programs.

Detaifed design and maintenance information on peripheral device controllers is
contained in individual reference manuals for these units. Operating and maintenance

System Reference 1-2

Table 1-1
DATA 620/i DOCUMENTS

J—
PUBLICATION
NUMBER

TITLE

S
VDM-3000
VDM-3001
VDM-3002
VDM-3003
VDM-3004
VDM-3005
VDM-3006
VDM-3007
VDM-3008
VDM-3009
VDM-3010
VDM-3011
VDM-3012
VDM-3013
VDM-3014
VDM-3015
VDM-3016
VDM-3017
VDM-3018

VDM-3019

System Reference Manual

Interface Reference Manual

Programming Reference Manual

FORTRAN Manual

Subroutine Manual

Maintenance Manuals

ASR-33 Teletype Controller Reference Manual
Buffer Interlace Controller Reference Manual
Magnetic Tape Controller Reference Manual

600 LPM Line Printer Controller Reference Manual
300 LPM Line Printer Controller Reference Manual
Paper Tape System Controller Reference Manual
100 CPM Card Reader Coniroller Reference Manuadl
Priority Interrupt Reference Manual

A/D Converter Reference Manual

Optical Scanner Controller Manuat

ASR-35 Teletype Controller Reference Manual
Digital Plotter Controller Reference

DDC Disc Coniroller Reference Manual

Console Printer Controller Reference Manual

1-3 System Reference

procedures for optional peripheral devices (tape transports, printers, etc) are
contained in the manufacturers' reference manuals furnished with the equipment.

Section Il of this manual contains an overal! description of the DATA 620/ system,
and describes the word formats used in the computer. Section Il describes the com-
plete instruction set for the central processor. The input/output system, including

all input/output, sense, control, and interrupt instructions is described in section 1V.
Section 5 provides information required for using the control console of the computer.

Standard peripherat devices are described in section VI.
1.3 SPECIFICATIONS
Specifications of the DATA 620/i computer are listed in table 1-2.

Table 1-2
DATA 620/i SPECIFICATIONS

SPECIFICATION CHARACTERISTICS

TYPE General-purpose digital computer for on-line data
system applications. Magnetic core memory:
binary, parallel, single-address, with bus
organization.

MEMORY Magnetic core 16 bits (18 bits optional); 1.8
microseconds full-cycle, 700 nanoseconds access
time, 4096 words minimum, expandable in 4096~
word modules to 32,768 words. Power failure
protection optional, non-volatile. Thermal over-
load protection is standard .

ARITHMETIC

Parallel, binary, fixed point, 2's complement.

WORD LENGTH 16 bits standard; 18 bits optional.

SPEED (fetch and
execute)
Add or Subtract 3.6 microseconds.

16 bits - 18.0 microseconds.
18 bits = 19.8 microseconds.

Muttiply (optional)

System Reference 1-4

Table 1-2 (continued)
DATA 620/i SPECIFICATIONS

SPECIFICATION

CHARACTERISTICS

Divide (optional)

Register Change

Input/Output
OPERATIONAL
REGISTERS

A Register

B Register

X Register

P Register
BUFFER REGISTERS

R Register

U Register

L Register

W Register

S Register
CONTROL

Addressing Modes

16 bits = 18.0 to 25.2 microseconds.
18 bits - 19.8 to 28.8 microseconds.

1.8 microseconds.

From memory

register; 16 or 18 bits.

bits.

Instruction counter; 16 or 18 bits.

Operand register, 16 or 18 bits.
Instruction register, 16 or 18 bits.
Memory location register, 12 bits.
Memory word register, 16 or 18 bits.

Shift register, 5 bits.

Six as follows:

Direct: to 2048 words.

From A or B register - 3.6 microseconds.
- 5.4 microseconds.

Accumulator, input/output; 16 or 18 bits.

Low-order accumulator, input/ou'rput, index

Index register, multi-purpose register, 16 or 18

1-5

System Reference

Table 1-2 (continued) Table 1-2 (continued)

DATA 620/i SPECIFICATIONS DATA 620/ SPECIFICATIONS
SPECIFICATION CHARACTERISTICS SPECIFICATION CHARACTERISTICS
Relative to P register: to 512 words. INPUT/OUTPUT
Index with X register hardware: to 32,768 words Data Transfer Three types as follows:

(does not add to execution time).
Single word to/from memory {(program control).
Index with B register, hardware: to 32,768 words
(does not add to execution time). Single word to/from A and B Registers (program
control).

Multi-level indirect: to 32,768 words.
Optional interlaced data channel (up to 202,000

Immediate: operand immediately follows words/second).
instruction.
External Control Up to 512 external control lines.
Extended: operand address immediately follows (Select)
instruction (optional).
Program Sense Up to 512 status lines may be sensed.
Instruction Types Four, as follows:
) Interrupts Power failure, thermal overload, (expandable in
Single word, addressing. groups of eight) priority on/off, arm, disarm.
Each interrupt line is associated with a unique
Single word, non-addressing. memory .
Double word, addressing. PHYSICAL

CHARACTERISTICS

Double word, non-addressing.

Dimensions 10-1/2 inches high x 13 inches deep.

Instructions 107 standard, over 128 micro-instructions, plus
18 optional . Weight 90 pounds including power supplies.

Micro-Exec (Option) Facility and hardware to construct a hardwired Power- 360 watts, single phase, 115 v +10 v, 47-440
program external to the DATA 620/i. Eliminates Hz. Power supplies are regulated. Additional
stored program memory accessing for hardwired regulation is not required with normal commercial
programs. power sources.

Control Panel Selectable display and data entry switches, three Expansion Mainframe package contains a 4096-word memory,
sense switches, instruction repeat, single step, the processor, and space for processor options.
run, power on/off, system reset. Additional memory requires an additional 10-1/2

and inches of rack space for up to 12,288 words of

System Reference 1-6 1-7 System Reference

Table 1-2 (continued)

DATA 620/i SPECIFICATIONS

SPECIFICATION

CHARACTERISTICS

Installation

Environment

LOGIC AND SIGNALS

SOFTWARE

DAS Assembler

FORTRAN

AID

MAINTAIN

additional storage. Peripheral controllers are
mounted external to the mainframe .

Mainframe and power supply packages mount in
10-1/2 inches of standard 19-inch racks. No air-
conditioning, subflooring, special wiring, or site
preparation is required.

10° C to 45° C, 10%to 90% relative humidity.

The logic of the computer utilizes DTL and TTL
integrated circuits employing 5 v levels. The
logic levels on the transmission busses (1/O bus,
interrupt bus, etc.) are reduced to 3 v to reduce
cross talk and current requirements. Internal
logic conventions are 5 v for logical 1 and O v
for fogical 0. Logic conventions on the busses is
3 v for logical 0, and 0 v for logical 1.

Modular two-pass symbolic assembler which
operates within the basic 4096-word memory. 1t
includes 16 basic pseudo-ops. The 8192-word
memory version includes over 30 pseudo-ops for
programming ease.

Modular one-pass compiler; subset of ASA
FORTRAN for 8192-word memory .

Program analysis package which assists programmers
in operating the machine and debugging other
programs. Includes basic operational executive
subroutines.

Modular, two-mode diagnostic package which
provides fast verification of central processor and

Table 1-2 (continued)

DATA 620/i SPECIFICATIONS

CHARACTERISTICS

SPECIFICATION
|-

Subroutines

peripheral operation; and assistance in isolating
and correcting suspected faults.

Complete library of basic mathematical, fixed-
and floating-point, single~ and double-precision,
number conversion and peripheral communication
subroutines plus provisions for adding application-
oriented routines.

System Reference

1-9 System Reference

SECTION I
DATA 620/i SYSTEM DESCRIPTION

21 COMPUTER ORGANIZATION
The DATA 620/i is organized with a unique bus structure, selection logic, and eight
isters. The organization provides universa! information routing, buffered pro-
regssmg micro-programming capability, indexing without time penalty, and buffered
;::Put/olutput data transfer. A unique optional facility, Micro-EXEC, is also avail-

able which permits complex algorithms to be implemented with external control
hardware. This capability provides increases in processing speed in excess of 400
percenf over normal programmed operations.

The organization of the DATA 620/i is shown in figure 2-1. This diagram shows the
major functional elements of the machine, including the registers and busses provided
for information transfer.

The major functiona! elements of the DATA 620/i, indicated in figure 2-1, are:
memory, control section, arithmetic/logic section, operational registers, internal
busses, and input/output (I/O) bus.

2.1.1 Memory

The internal storage of the computer consists of 4096-word modules connected to the
L and W busses. The mainframe can accommodate one 4096-word module. Addi-
tional modules are added in an additional frame that is attached to the mainframe.
The computer memory can be expanded to a maximum of 32,768 words using
4096-word modules.

Instruction words read from memory are transferred to the control section for execution.
Words may be transferred, under program control, from memory to the arithmetic/
logic section, to the operational registers, or to the I/O bus. Words may be trans-
ferred, under program control, to memory from the operational registers or the 1/0
bus.

When one or more optional buffer interlace controler (BIC) is used, the system is
capable of direct transfer between memory and peripheral devices on the 1/O bus,
concurrent with computations.

2.1.2 Control Section

The control section provides the timing and control signals required to perform all

operations in the computer. The major elements in the section are the U register,
the timing and decoding logic, and the shift control .

2-1 System Reference

The U register (instruction register) is 16 bits long. This register receives each
~z instruction from memory through the W bus and holds the instruction during its execu-
1t - tion. The control fields of the instruction word are routed to the decoding and timing

Ly o logic where the codes determine the required timing and control signals. The address
P %;E > [s% > field from U, used for various addressing operations, is also routed to the arithmetic/
%8 az logic section.
— r-=A The decoding logic decodes the fields of the instruction word held in U to determine
bgz ! r 022:3 w the control signal levels required to perform the operations specified by the instruction.
- é% r—a §§§ fe—» je—>] g% le—s| These levels select the timing signals generated by the timing unit.
52 55 P4
t O | 223 o
L-- £ Timing logic generates the basic 2.2-MHz system clock. From this clock, timing
——n logic derives the timing pulses which control the sequence of all operations in the
HET = & compufer.
e 05 e o T - . . N .
[= g 3 ift control contains the shift counter and logic which control operations per-
1 6% S 8 The s 9 P p
b--- E formed by the shift, multiply, and divide instructions.
Z)
r;:ﬂ| "] = E—— 2.1.3 Arithmetic/Logic Section
1 Z&E 2 N w w3
e 52 W—af 2 e OET e 2 lea &2 ——
“ 1 5% | THE g .‘Eg— > 3 This section consists of two elements; the R register and the arithmetic unit.
2 O s g I
® o 2% R R .
g register receives operands from memory and holds them during instruction exe~
g The g P! 4
r~-n — ion. The operand may be either data or address words. This register permits
[- cut P Y 9 p
1 3% Ea between memory and 1/O bus during the execution of extended-cycle
¥ 59 s 2 | £3 > transferf e Y / 9 Y
T ag o as9 3 = instructions.
162 g5 fe 2| |. £5
b--- T2E| (2g3) |2 e N . I . -
OF 50 e arithmeti i a a i ic, ic, iftin
eEb | |34¢ I Il T Th thmetic unit contains gating required for all arithmetic, logic, and shifting
32 -] ez erations performed by the computer. Indexed and relative address modifications
2 op P Y p
£ g § are performed in this section without increased instruction éxecution time.
e O e z
s &
. _JH & The arithmetic unit also controls the gating of words from the operational registers
g3 and the 1/O bus onto the C bus where they are distributed to the operational registers
&g or to memory registers. This facility is used to implement many of the micro-
instructions of the computer.
Qg 2.1.4 Operational Registers
et g
Z§ The basic DATA 620/i computer contains eight registers.

The operational registers consist of the A, B, X, and P registers. The A, B and X
registers are directly accessible to the programmer. The P register is indirectly
accessible through use of the jump class instructions which modify the program
sequence. The operational registers are described in the following paragraphs.

Figure 2-1. DATA 620/i Functional Organization

System Reference 2-2 2-3 System Reference

A register. This full-length, 16/18-bit register is the upper half of the accumulafof_.

This register accumulates the results of logical and addition/subtraction operations,
the most-significant half of the double-length product in multiplication, and the
remainder in division. It may also be used for input/output transfers under program
control .

B register. This full-length, 16/18-bit register is the lower half of the accumulator.
This register accumulates the least=significant half of the double-length product in
multiplication, and the quotient in division. It may also be used for input/output
transfers under program control and as a second hardware index register.

X register. This full-length 16/18-bit register permits indexing of operand addresses
without adding time to execution of indexed instructions.

P register. This full-length, 16/18-bit register holds the address of the current
instruction and is incremented before each new instruction is fetched. A full com-
plement of instructions is available for conditional and unconditional modification
of this register. ’

S register. This five-bit register controls the length of shift instructions in combing-
tion with the U register. This register also buffers memory from the control unit.

2.1.5 Internal Busses

C bus. This bus provides the paralle! path and selection logic for routing data -
between the arithmetic unit, the I/O bus, the operational registers, and the memory
registers. The console display indicators are also driven from the C bus. Distribution
of data simultaneously to multiple operational registers is facilitated by this bus.

Sbus. This bus provides the parallel path and selection logic for routing data from
the operational registers to the arithmetic unit.

W bus. The memory word (W) register is directly connected to all memory modules
through the W bus. The bus is bidirectional and time-shared among memory modules.

L bus. The memory address (L) register is directly connected to all memory modules
through the L bus. The bus is unidirectional.

2.1.6 Input/Ovutput (1/O) Bus

The bidirectional 1/0O bus provides the parallel path between the computer and all
peripheral devices. This bus contains the data and control lines required for trans-
mitting ready, sense, function, and interrupt signals as well as data words between
the computer and peripheral devices.

System Reference 2-4

7917

Direct Memory Access (DMA)

The DMA option allows data transfer into or out of memory modules without disturbing

contents of the operational registers. Only the L and W registers are altered.
the ess to memory using the DMA facility is on a "cycle-steal" basis and requires
2Ac7cmicroseconds of processor time per transfer.

2.1.8 Micro-EXEC*

The Micro-EXEC is o unique hardware technique for micro-step sequencing of i:he

uter. This option provides hardware logic in which all computer control signals
compade available on a pin board so that special hardware routines can be constructed.
E,r:e':‘nal control and special retum instructions are provided for easy program entry

and exit-

2.2 COMPUTER WORD FORMATS

There are three basic word formats used in the DATA 620/i: data, indirect address,
and instruction. The instruction word format is further divided into four f).'pes:
single-word addressing, single-word non-addressing, double-word addressing, and
double-word non-addressing .

2.2.1 Data Word Format

The data word format is shown in figure 2-2. This word may be either 16 or 18 bits
depending upon the word length configuration of a particular machine.

In the 16-bit format, the data occupies bit positions 0-14, with the sign in position
15. Negative numbers are represented in 2's-complement form. In the 18-bit format,
the data occupies bits 016, with the sign in position 17.

2.2.2 Indirect Address Word Format

The indirect address word format is shown in figure 2-3. This word occupies a loca-
tion in memory which is accessed by an instruction in the indirect address mode .

Bit 15 contains the 1 Bit. If | =0, bits 0-14 contain the location of an operand or
instruction in memory. If | =1, bits 0-14 contain the location of another indirect
address word . Indirect addressing may be extended to any desired level. Each level
of indirect addressing adds one cycle (1.8us) to the basic execution time of an
instruction.

2.2.3 Single-Word Instruction Formats

Single-word instructions may be either addressing or non-addressing, as defined in
poragraphs 2.2.3.1 and 2.2.3.2.

2-5 System Reference

i T
1 s
—_ i

17161514 131211 109876543210

S

‘ l L_ Data (16) |

Data (18) |

{Sign (negative numbers in 2's complement form).
Logical data represented in true form.

Sign (18-bit word length option).

Fig. 2-2 Data Word Format

1716 1514 13 12 11 10 987 6 54321 0

| T
1 |
| N

Address

option

1
4
m—m_l I {l =0, word confains operand location
1=1,

word contains indirect address word location

|

System Reference

Fig. 2-3 Indirect Address Word Format

2.2.3.1 Addressing instructions. The single-word addressing instruction format
is shown in figure 2-4. This type of word contains three fields, as follows:

o - Operation Code
m - Addressing Mode
a - Address Field

All single-word addressing instructions may be executed in any one of five addressing
modes: direct, relative to P, index with X, index with B, and indirect.

Single-word addressing instruction groups are as follows:

LOAD/STORE
ARITHMETIC
LOGICAL

2.2.3.2 Non-addressing instructions. The single-word non-addressing
instruction format is shown in figure 2-5. This instruction contains the following
three fields:

¢ - Class Code
o - Operation Code
d - Definition

The d (definition field) specifies the action to be performed by the computer such as:

Number of shifts

Kind of register change as well as source and destination registers
Inpuf/ou’rput

Halt code

o0 T Q

Single-word non-addressing instruction groups are as follows:
SHIFT
CONTROL
REGISTER CHANGE
INPUT/OUTPUT
2.2.4 Double-Word Instruction Formats

Double-word instructions may be either addressing or non-addressing .

2-7 System Reference

1716 15 14 1312 1110987 6 543210
I

e e] e]
l-iz;l:;-l |—0p o] LAAji:f:s—-l L e

operand in location 0 - 2047 (bits 10 to 0)

m Field: OXX - Direct
100 - Relative add a to P
101 - Index (X) add a to X
110 - Index (B) adda to B

111 - Indirect stored at a.

Fig. 2-4 Single-Word Addressing Instruction Format

17161514 13121110987 6543210
r“‘l’
RN I

Ll
L18-biﬂ Lclqss Code_”.Op CodeJL Definition

option

Fig. 2-5 Single~Word Non-Addressing Instruction Format

System Reference 2-8

2.2.4.1 Addressing instructions. This instruction contains three fields:

c - Class Code
o - Operation Code
d - Definition

The double-word addressing instruction is shown in figure 2-6.
This format is used for the following instruction types:

JUMP

JUMP AND MARK
EXECUTE

EXTENDED ADDRESS

For the jump, jump and mark, and execute groups, the definition field of the first
word defines a set of nine logical states which condition the execution of the instruc-
tion. The second word contains the iump address, jump-and-mark address, or the
location of the instruction to be executed if the condition is met. Indireclf address~-
ing is permitted.

For the extended address group of instructions, the definition field is further divided
into three subfields. The m field contains bits 0-2, the op code contains bits 3-6
with bits 7 and 8 left blank. Extended address instructions are identical in operaf’ion
to the single-word addressing instructions except that they allow direct addressin

to 32,768 words of memory. 9

For the memory input/output group, the definition field of the first word contains
the number of the peripheral device and its mode, and the second word contains the
memory address of the data to be transferred. Indirect addressing is permitted.

.2.2.4,2' No.n-cddressing instructions. The double-word non-addressing
instruction format is shown in figure 2-7. This format js used for the Immediate group
of instructions. There are 12 standard and two optional instructions in this group.

The op ‘code fiel.d contains the operation to be performed (bits 3-6). All single~word
addressing fy!Je instructions may be performed as an immediate type instruction.
The operand is contained in the second word. Indirect addressing is not applicable.

2-9 System Reference

17 16 1514 1312 11 10987 6 543210

r-r 4]
L [l c o
[N Ry
Class Code—l l-Op Code-” Definition |
L+1 l: T 1 Address
a
L18-bit]
option

g

it

0, word contains an address
1, word contains an indirect address

Fig. 2-6 Double-Word Addressing Instruction Format

17 16 1514 13121110987 6543210

L :—_:- 00 [Op Code 000
-1
L-1 !. T Operand
Ll _
[18-bit]
option

Fig. 2-7 Double-Word fnstruction Format Immediate Type Instructions

System Reference 2-10

SECTION i
DATA 620/i CENTRAL PROCESSOR INSTRUCTIONS

3.1 GENERAL

This section describes DATA 620/} instructions which affect operations in the central
processor - |nput/ou|'puf instructions are described in section IV. Information provided
for each instruction is as follows:

- The mnemonic that is recognized by the DATA 620/i assembler (DAS)
- Mnemonic definition

- Instruction timing

- Instruction description

- Registers altered by execution of the instruction

- Addressing modes permitted

- A flow chart, when required for complete understanding.

Instructions are divided into two classes: single~word and double-word. Each class
contains both addressing and non-addressing groups of instructions. Microprogromming
operations which can be implemented for various instruction types are summarized in
appendix G.

3.2 SINGLE-WORD INSTRUCTIONS
L]

Single-word instructions may be either addressing or non-addressing. The addressing
instruction groups are:

LOAD/STORE
ARITHMETIC (multiply/divide optional)
LOGICAL

The non-addressing instruction groups are:
CONTROL

SHIFT
REGISTER CHANGE

3.2.1 Single-Word Addressing Instructions
The format of the single~word addressing class instructions is shown in figure 2-4, The
operation is specified by the o field (bits 12-15). The address field, a (bits 0-8),

contains the base location of an operand in memory. Operand addressing may be in
any one of five modes specified by the m field (bits 9-11).

3-1 System Reference

Table G1(d), appendix G, summarizes the addressing modes, and tables Gl(a), G1(b),
and G1(c) summarize the operation codes for the single-word addressing instructions.
Figure 3-1 shows the general operand addressing flow for this class of instructions.

For direct addressing, bits 0-10 specify the location of an operand within the first
2048 (0-2047) words of memory .

For relative addressing, the address field is added to the P register, mod 29, to form
the effective address. This mode permits addressing an operand up to 511 words in
advance of the current program locatian. :

For index addressing with the X register, the address field is added to the X register,
mod 215, to form the effective address. Indexing does not increase the basic instruc-
tion execution time.

For index addressing with the B register, the address field is added to the B register,
mod 215, to form the effective address. Indexing does not increase the basic instruc-
tion execution time.

For indirect addressing, the address field specifies the location of an indirect address
word within the first 512 (0-511) words of memory. 1If 1 =0 in the address word, the
word contains the location of an operand. 1f 1 =1, the word specifies the location
of another indirect address word. Each leve! of indirect addressing adds one cycle
(1.8 us) to the basic instruction execution time.

3.2.1.1 Load/Store instruction group. The following paragraphs provide the
nmemonic, description, and timing for each instruction in the load/store group.
Figures 3-2 and 3-3 show the general flow for the load/store instruction group.

LDA Load A Register Timing: 2 cycles

17161514 131211 10987 6543210

i"T_i 01 m] a]

Lod oL

I]8-bif’

option

The contents of the addressed memory location are placed in the A register.

Relative: Yes

Indexing: Yes

Indirect Addressing: Yes
Registers Altered: A

System Reference 3-2

ADDRESS
INDIRECT
ADDRESS
R=1)

YES

£ gz, g |a2
-1 Q57 Z 4 E25
8% 222z CE
g7
-1 P
= == r—=n
& ! z |
€ x 2 2 ! I8
< B 52> fyt—efel) ek |
<< 55 7 553 tgsz! 1 BE |
855] _} Lf.sz_ll

Fom—————
| BRING
U |

| INSTRUCTION
I W=y

Figure 3-1. Single-Word Address Instruction,
General Flow.

3-3

Operand Addressing,

System Reference

BRING

INSTRUCTION
W—s)
BRING
INSTRUCTION
(W—u)

FORM
EFFECTIVE
ADDRESS
FORM
EFFECTIVE

ADDRESS + |

(Fig. 3-1),
(Fig. 3-1)

BRING
OPERAND
)
SELECT A (B, X)
AND TRANSFER
TO MEMORY TOW
> W
SET
ADDRESS NEXT
INSTRUCTION
Pri—>L &P
ADDRESS NEXT
INSTRUCTION
P+i» L &P
LpA LOAD
Log OPERAND
LDX R—>A (8 or X)
BRING NEXT
INSTRUCTION
W)
BRING NEXT
INSTRUCTION
W—sil)

Figure 3-3. ‘Store-Type Instruction, General Flow.

Figure 3-2. Load-Type Instruction, General Flow.
System Reference 3-4 35 System Reference

LDB Load B Register Timing: 2 cycles
1716 1514 1312 11 10987 6543210
F—T-7
t it e | om | a |
18-bit
option

The contents of the effective memory location are placed in the B register.

Relative: Yes
Indexing: Yes

Indirect Addressing: Yes
Registers Altered: B

LDX Load Index Register Timing: 2 cycles
17 16 1514 1312 11 10 987 6 5432 1 0

T w]] : i

[A S |

I 18-bit I
option

The contents of the effective memory location are placed in the Index register.

Relative: Yes

Indexing: Yes

Indirect Addressing: Yes
Registers Altered: X

STA Store A Register
17161514 1312 11 10987 6543210

m l a]

Timing: 2 cycles

—-— I

1V s

| NP A

option

The contents of the A register are placed in the effective memory focation.

Relative: Yes

Indexing: Yes

Indirect Addressing: Yes
Registers-Altered: Memory

System Reference 3-6

ST8

Store B Register
17 16 15 14 13 12 11

Timing: 2 cycles

1098765432]0

r_———
t

1
| S T T

06

l

m

[

-]

—

l 18-bit ,

option

The contents of the B register are placed in the effective memory location

Relative: Yes
Indexing: Yes

Indirect Addressing: Yes
Registers Altered: Memory

STX

Store Index Register

Timing: 2 cycles

1716 15 14 13 12 11 100987654329

r—r—

| S T

07

I

m

[

a

—

l 18-bit,

option

The contfents of the b register are placed in the effective memory location

Registers Altered: Memory

3.2.1.2

mnemonic, description,
Figures 3-4 and 3-5 show the general flow fo

Relative: Yes
Indexing: Yes

Indirect Addressing: Yes

Arithmetic instruction

group.

Increment Memory. and Replace

and timing for each i

The following paragraphs provide the
nstruction in the arithmetic group.
r the arithmetic instruction group.

Timing: 3 cycles

1716 15 14 13 12 1 109876543210

[l e
o o R RN o]
18-bit
option
3-7

System Reference

Figure 3-4. Increment Memory and Replace Instruction, General Flow.

System Reference

BRING
OPERAND
w-su)

FORM
EFFECTIVE
ADDRESS

(Fig. 3-1)

BRING
OPERAND
W—R)

INCREMENT
OPERAND AND
TRANSFER

TO MEMORY

R+ 1225

?

NO

YES

ADDRESS
.NEXT
INSTRUCTION
(P- 1-L,P)

BRING NEXT
INSTRUCTION
Wl

3-8

SET
OVERFLOW
(Ov—+1)

BRING
INSTRUCTION
W-y)

FORM
EFFECTIVE
ADDRESS
(Fig. 3-1)

BRING
OPERAND

(W—=R)

ADDRESS NEXT
INSTRUCTION
{P+1—»L,P)

A

ADD OPERAND
TO A

ALR+A

(ny=21%

SUB = A +R-pA

SET

BRING NEXT
INSTRUCTION
(W—eu)

Figure 3-5. Add Instruction, General Flow.

3-9

OVERFLOW
(OF —»1)

System Reference

The contents of the effective memory location are incremented by one, mod 216

(218).
After execution, if (M) = 215 (217), the overflow indicator (OF) is set.

Indexing: Yes
Indirect Addressing: Yes
Registers Altered: Memory, OF

ADD Add Memory to A Timing: 2 cycles

7161514131211 10987 6543210

T 7 m s]

[NS R &

l 18—bit|

option

The contents of the effective memory location are added to the contents of the A regis-
ter and the sum is placed in the A register.

After execution, if (A) 2215 (2]7) or < -2]5 (-217), the overflow indicator (OF) is set.

Indexing: Yes
Indirect Addressing: Yes
Registers Altered: A, OF

SUB Subtract Memory from A Timing: 2 cycles
17 16 1514 13 12 11 10987 6 543210

(o alad

P 14 I m] a j

I 18-bit|

option

The contents of the effective memory location are subtracted from the A register and
the difference is placed in the Aregister.

After execution, if (A) 52]5 (2]7) or <—2]5 (-2]7), the overflow indicator (OF) is

sef.
Indexing: Yes

Indirect Addressing: Yes
Registers Altered: A, OF

System Reference 3-10

MUL Multiply (optional) Timing: 10 cycles (16 bits)

11 cycles (18 bits)
1716 1514 13 12 1110987 6543210

T T %6 T =] p]

L L

I 18-bit I

option

The contents of the B register are multiplied by the contents of the effective memory
location. The contents of the A register are added to the contents of the B register at
the start of the operation. The product is placed in the A and B registers, with the
most-significant half of the product in the A register and the least-significant half in
the B register. The sign of the product is contained in the sign position of the A
register. The sign position of the B register is set to "0",

The algorithm is in the form A < B(X) + A,
Indexing: Yes

Indirect Addressing: Yes
Registers Altered: A, B

DIV Divide (Optional) Timing: 10-14 cycles (16 bits)

11-16 cycles (18 bits)
17 16 1514 13 12 11 10987 6 543210
r—r-
¢ 17 I m l o]

I 18-bit l

option

The contents of the A and B registers are divided by the contents of the effective
memory location. The quotient is placed in the B register with sign, and the remainder
is placed in the A register with the sign of the dividend.

If (A—A’AB—)sl

(divisor 2 dividend, taken as a binary fraction), overflow will not occur. If overflow
does occur, the overflow indicator (OF) is set.

3-1 - System Reference

3.2.1.3 Logical instruction group. The following paragraphs provide the
mnemonics, description, and timing for each instruction in the logical instruction

group .

DRA Inclusive-OR Memory and A Timing: 2 cycles

17 161514 13121110987 6543210
—r-

{
—_ i

| 18-bit l

option

r=

n m a

An inclusive-OR operation is performed between the effective memory location and
the contents of the A register. The result is placed in the A register. If either the
effective memory location or A contain a "1" in the same bit position, a "1" is
placed in the result. The truth table is shown below:

OPERATION RESULT
Effective
Memory where n =
An Location (n) An bit position
0 0 0
0 1 1
1 0 1
1 1 1

Indexing: Yes
Indirect Addressing: Yes
Registers Altered: A
ERA Exclusive-OR Memory and A Timing: 2 cycles

1716 15141312 1110987 6543210

i1 1 13 m a]

[ENPU S |

| 18-bit I

option

An exclusive-OR operation is performed between the effective memory location and
the contents of the A register. The result is placed in the A register. If the same bit
position of the effective memory location and A contain a "0", or if both bit positions

System Reference - 312

ontain a "1", the result is "0". If the same bit position of the effective memory
c n and A are not equal; i.e., one contains a “0" and the other a "1" the result

|°caﬁo
isa"l”. The truth table is shown below:
OPERATION RESULT
Effective
Memory where n =
An Location (n) An bit position
0 0 0
0 1 1
1 0 1
1 1 0
Indexing: Yes
Indirect Addressing: Yes
Registers Altered: A
ANA AND Memory and A Timing: 2 cycles

17 16 1514 13 12 11 10987 6 543210

o]

AL m |
L.l

|18-bitl

option
The logical-AND is performed between the contents of the A register and the contents
of the effective memory location. The result is placed in the A register. If the same
bit position of both the effective memory location and A contain a "1, the result is
a "1". The truth table is shown below:

OPERATION RESULT
Effective
Memory where n =
An Location {n) An bit position
0 0 0
0 1 0
1 0 0
1 1 1
Indexing:. Yes
Indirect Addressing: Yes
Registers Altered: P
3-13 System Reference

3.2.2 Single-Word Non-Addressing Instructions
The format of the single word non-addressing instruction class is shown in figure 2-5,

A non-addressing single-word instruction includes the control group, the shift group,
and the register change group. The operation is defined by the m field. The address
field (a), as such, is not used by the control group instructions. For the shift group,
the a field defines the type and number of shifts. For the register change group, the
a field defines the type of transfer and the registers affected.

3.2.2.1 Control instruction group. The following paragraphs provide the
mnemonic, description, and timing for each instruction in the control group .
Table G2, appendix G, summarizes the control instructions.

HLT Halt Timing: 1 cycle
171615141312 1110987 6543210

reT-T
ot o]

0 XXX]

When the computer executes the halt instruction, computation is stopped and the com-
puter is placed in the STEP mode. When the RUN button is pressed, computation
starts with the next instruction in sequence.

Indexing: No
Indirect Addressing: No
Registers Altered: None

N@P No Operation - Timing: 1 cycle
1716 1514 13 12 11 10 987 6 543210
r——-

Pl L 0 5] 000 B

18-bit
option

System Reference 3-14

Execution of the N@P instruction does not affect the A, B, X registers or memory .

Indexing: No
Indirect Addressing: No
Registers Altered: None

Set Overflow Indicator

Timing: 1 cycle

17 16 1514 13 12 11 10 987 6 543210

P11 o | 7] 401

Lk

]

l 18-bit I

option

The overflow indicator (OF) is set.

Indexing: No
Indirect Addressing: No
Registers Altered: OF

Reset Overflow Indicator

Timing: 1 cycle

17 16 1514 13 12 11 10987 6 543210

v T o0 [7 | 400

[SR N |

|

I 18-bit I
option

The overflow indicator (OF) is reset.

Indexing: No
Indirect Addressing: No
Registers Altered: OF

3-15

System Reference

3.2,2.2 Shift instruction group. For shift instructions 0-31, the address field
(a) defines the type of shift (bits 4-8) and the number of bit positions to be shifted
(bits 0-4), The instruction format showing the use of each a-field bit is given in
table G3(a), appendix G. Twelve of the possible sixteen shift operations defined by
bits 4-8 are implemented. These are summarized in table G3(b), Figure 3-6 shows the
general flow for the shift instructions.

LSRA Logical Shift A Right Timing: 1+ 0.25 n cycles

(n = number of shifts)
1716 151413 12 N1 10987 6543210

i 7 1 00 4] 340 + n]

b

|w¢J

option

The contents of the A register are shifted n places to the right (n = 0 to 373). "0's" are
shifted into the high-order positions of the A register. Information shifted out of the
the low-order position of the A register is lost.

Indexing: No
Indirect Addressing: No
Registers Altered: A

LSRB Logical Shift B Right Timing: 1+ 0.25 n cycles

(n = number of shifts)
17 16 151413 12 11 10 987 6 543210

P77 o [4] 140+n |

| S TR S

Imw“

option

The contents of the B register are shifted n places to the right (n = 0 to 37g). Informa-
tion shifted out of the low-order position of the B register is lost. "0's" are shifted into
the high-order position of the B register.

System Reference 3-16

- o
EQ H 9] = l—’i
ZE 2z Z ez, =5
vz 22 | [1\&3'30
— m wn
%9 o< o Y
-
x - —_ z
w%A z w_ € %0
ZOa & = zZz =
5o s E 50< 25
v - —
837 g,-Z CEq 555
e oL [&=
= ol o< ZE |
Qg+ ZZo 00 =9
2;9; —u wa 3 %Zé
o
w
Z =
onZz -
Eo2 -0
[*] 0w &
e -4
5~0 w T
OmdS L xns
ZE‘% O
S£25

Figure 3-6. Single-Register Shift Instruction, General Flow.

3-17

System Reference

indexing: No
Indirect Addressing: No
Registers Altered: B

LRLA Logical Rotate A Left

17 16 1514 13 12 11 10987 6 543210

i1 1 00 4] 240 + n]

| 18-bit I

option

Timing: 1 +0.25n cycles
{n = number of shifts)

The contents of the A register are rotated left n places (n = 0 to 37g). Bit position
A5 (A77) is rotated into bit position Ag.

Indexing: No
Indirect Addressing: No
Registers Altered: A

LRLB Logical Rotate B Left

17 16 15 14 13 12 11 10987 6 543210

(T T o0 4]

L1l 1

l 18-bit |

option

Timing: 1+ 0.25 n cycles
{n = number of shifts)

040 + n |

The contentis of the B register are rotated n positions to the left (n =0 to 37g). Bit
position By 5 (By7) is rotated into bit position By.

Indexing: No

Indirect Addressing: No
Registers Altered: B

System Reference 3-18

LLSR Long Logical Shift Right Timing: 1 +0.50 n cycles
(n = number of ‘shifts)

171615141312 1109876543210
l'—'l--l
t 4 00 T 4] 540+n |

I 18-bit l
option

The contents of the A and B registers are shifted right n positions (n = 0 to 37g). Bits
shifted out of the low-order position of B are lost. "0's" are shifted into the high-
order position of the A register.

Indexing: No)
Indirect Addressing: No
Registers Altered: A, B

LLRL Long Logical Rotate Left Timing: 1 +0.50 n cycles
(n = number of shifts)

171615141312 1110987 6543210

[00

Lml L

I 18-bit I

option

o——— l

4 | 40+n |

The contents of the A and B registers are rotated n postions to the left (n =0 to 37g).
Bit position A; 5 (Aq7) is shifted into bit position Bg-

Indexing: No
Indirect Address: No
Registers Altered: A, B

Arithmetic Shift A Right Timing: 1 +0.25n cycles
(n = number of shifts)

17 16 15 14 13 12 11 109876543210
r———

il 4] 00+n]

I 18-bit I :

option

3-19 System Reference

The contents of the A register are shifted n posiﬁohs to the right (n = 0 to 37g). Bits
shifted out of the low-order position of A are lost. The sign bit of A, A5 (A17)is
extended n places to the right.

Indexing: No
Indirect Addressing: No
Regisfers Altered: A
ASLA Arithmetic Shift A Left Timing: 1 +0.25 n cycles
(n = number of shifts)

17161514 13121110987 6543210
=TT]

Lo 00 4 200 + n
Lod

I 18-bit l

option

The contents of the A register are shifted n places to the left (n =0 to 37g). The sign
bit, A15 (A17), is retained and "0's" are shifted into the low-order positions of A.
Bits shifted out of A14 (Ayg) are lost.

Indexing: No
Indirect Addressing: No
Registers Altered: A

ASRB . Arithmetic Shift B Right Timing: 1 +0.25n cycles
(n = number of shifts)

17 16 1514 13 12 11 10 987 6 543210

IR 00 4 100 + n 1.

Ils-bitl

option

The contents of the B register are shifted n places to the right (n = 0 to 37g). Informa-
tion shifted out of the low-order position of B are lost. The sign bit of B, By5 By7)is
extended n places to the right.

Indexing: No

Indirect Addressing: No
Register Altered: B

System Reference 3-20

Timing: 1+ 0.25 n cycles
(n = number of shifts)

ASL8B Arithmetic Shift B Left

1716 1514 13 12 11 10 987 6 543 210

[)

Ll &

| 18-bit |

option

(1] 1

4 000 + n |

The contents of the B register are shifted n places to the left (n =0 to 37g). The sign
bit of B, By5 (B17), is retained and “0's" are shifted into the low-order positions of B.
Bits shifted out of B14 (B44) are lost.

Indexing: No
Indirect Addressing: No
Registers Altered: B

LASR Long Arithmetic Shift Timing: 1 +0.50 n cycles
Right (n = number of shifts)

171615141312 1110987 6 543210
4| 500 + n l

1t b 00

T I
[S R |

18-bit
option

The contents of the A and B registers are shifted n places to the right (n = 0 to 375).
Bit position Ag is shifted intc bit position By (Byg). The sign of the A register, %«]5
(A17), is extended n places to the right. ‘The sign bit, Bis (By7) of the B register
remains unchanged. Bits shifted out of the low-order position of the B register are
lost.

Indexing: No

Indirect Addressing: No
Registers Altered: A, B

3-21 System Reference

LASL Long Arithmetic Shift Timing: 1 + 0,50 n cycles
Left (n = number of shifts)

1716151413 1211 109876543210

- ——— I

1t 1 00

[PSR §

| 18-bit I
option

4 | 400 + n |

The contents of the A and B registers are shifted n places to the left (n =0 to 37g).
Bit position By4 (Byg) is shifted into bit position Ag, with the sign of B, By5 (B17)
remaining unchanged. The sign of the A register, A15 (A7) is not altered. Informa-
tion shifted out of A4 (Aq4) is lost and "0's" are shifted into the low~order positions
of the B register.

Indexing: No
Indirect Addressing: No
Registers Altered: A, B

3.2.2.3 Register change group. The register change instruction group provides
a macro-operation facility, in that these instructions may combine several register
change operations ina single instruction. The instruction format is shown in figure 3-7,

The address field (a) defines the source and destination of a parallel word transfer within

the operational register set-A, B, and X. Any combination of registers may be selected,

The a field also specifies whether the word transferred will be unchanged, incremented,
decremented, or complemented. The transfer may also be conditional on the overflow
indicator.

Table G4(a), in appendix G, defines the transfer control specified by the a field. If
more than one source register is specified, the result will be the inclusive-OR of the
group. Complementing causes transfer of the complement of the inclusive-OR (NOR)
of a combination of source registers. A total.of 512 different register change opera-
tions are possible. The most useful instructions are contained in the mnemonic
repertoire recognized by the DAS assembler, summarized in table G4(b), appendix G.

-IAR Increment A Register Timing: 1 cycle

1716 1514 13 12 11 10987 6 543210

v b 00 | 5 T 11 |

I 18-bit l

option

System Reference 3-22

15

14

1312 11 10 9 87 65 43 210

L

00

5 | [sep|x B alx 8 4]

Destination Register

Source Register

00 Transfer

01 Increment
10 Complement
11 Decrement

0 Execute Unconditional
1 Execute condition on QOverflow Set

Fig. 3-7 Register Change Instruction

3-23

System Reference

Increment B Register

1716 1514 13 12 11 10987 6 543210

T
P s] 122 |
|18-bit|
option
IXR Increment X Register Timing: 1 cycle

171615141312 11 10987 6543210
[Sl
R 00 5 144 B

| 18-bit I

option

The contents of the A (B, X) register are incremented by one, mod 216 218). I the
sign of the A (B, X) register changes from plus to minus, the overflow indicator (OF)
is set.

Indexing: No
Indirect Addressing: No
Registers Altered: A (B, X), OF
DAR Decrement A Register Timing: T cycle

17161514 13121110987 6543210

rTeT
P00 [5 3n
18-bit
option
DBR Decrement B Register Timing: 1 cycle

17 16 1514 13 12 11 10 987 6 543210

[

HE 00 5 | 322

System Reference 3-24

Timing: 1 cycle

Timing: 1 cycle

Decrement X Register

1716 1514 1312 11 10987 6 543210

rr 1 o0 [s 344

Lt _

l 18-bit I

option

The confents of the A (B, X) register are decremented by one, mod 216 (218). If the
sign bit of the A (B, X) register is changed from minus to plus, the overflow indicator

(OF) is set.

Indexing: No
Indirect Addressing: No
Registers Altered: A (B, X), OF

Complement A Register

17161514 13 12 11 10987 6543210

Timing: 1 cycle

r———
L1t 0o | s 211 |
|18-bit|
option
CPB Complement B Register Timing: 1 cycle

1716 1514 13 12 11 10987 6 543210

1 00 B 222
L1 .
I lB-bit|
option
CPX Complement X Register Timing: 1 cycle

17161514 13 12 11 10 987 6 543 210

re=T—7y I

I 18-bit l

option

5 244 |

The contents of the A (B, X) register are complemented (1's-complement).

3-25 System Reference

Indexing: No
Indirect Addressing: No
Register Altered: A (B, X)
TAB Transfer A Register to B Register Timing: 1 cycle

17161514 13 12 11 10987 6543210

——
|

T T o0 T 5 7 0z]

l 18-bit l

option

The contents of the A register are placed in the B register.

Indexing: No
Indirect Addressing: No
Registers Altered: B

TAX Transfer A Register to X Register Timing: 1 cycle
1716 1514 1312 11 10987 6 543210

{1 [5] o4 |

I18-bit|

option

The contents of the A register are placed in the X register.

Indexing: No
Indirect Addressing: No
Registers Altered: X
TBA Transfer B Register to A Register Timing: 1 cycle

1716 1514 13 12 11 10987 6543210

———

[7 T 00 5] 021 |

[I TP

| lS-bitl

option

The contents of the B register are placed in the A register.

System Reference 3-26

Indexing: No
Indirect Addressing: No
Registers Altered: A

Transfer B Register to X Register

171615141312 11 10987 6543210
=TT
i T 1 oo [5 024 |

I 18-bit I

option

Timing: 1 cycle

The contents of the B register are placed in the X register

Indexing: No
Indirect Addressing: No
Registers Altered: X

Transfer X Register to A Register

17 16 1514 13 1211 10987 6 543210
T

P11 o0] s] 041 i

Lt _.a

| 18-bit|

option

Timing: 1 cycle

The contents of the X register are placed in the A register.

Indexing: No
Indirect Addressing: No
Registers Altered: A
TXB Transfer X Register to B Register Timing: 1 cycle

1716 1514 13 12 11 10987 6 543210

IR

re=T-=rT]
Lo}

5 | 042 |

18-bit

option

The contents of the X register are placed in the B register.

3-27 System Reference

Indexing: No
Indirect Addressing: No
Registers Altered: B
TZA Transfer Zero to A Register Timing: 1 cycle

1716151413 12 11 10987 6543210

r=T=rT
Lol 00 5 001
I 18-bir|
option
TZB Transfer Zero to B Register Timing: 1 cycle

17 16 1514 13 12 11 10987 6 543210

t 1 1 o0]
Lol 5 | 002
I 18—bir|
option
TZX Transfer Zero to X Register Timing: 1 cycle

17 16 15 14 13 12 11 10987 6 543210

P T oo 5 1 004]

[N R

| 18-bit |

option

The A (B, X) register is cleared to zero.
Indexing: No

Indirect Addressing: No
Registers Altered: A (B, X)

ADFA Add Overflow to A Register

17 16 1514 13 12 1110987 6 543210

R 5 311]

| 18—bit|

option

Timing: 1 cycle

System Reference 3-28

AQDFB Add Overflow to B Register Timing: 1 cycle
17 16 151413 12 11 10987 6 543210
[afent sl |
L1 00 5 522 B
'ls-birl
option

Timing: 1 cycle

m Add Overflow to X Register
17 16 15 14 13 12 11 10987 6 543210

ST o0 5 544 |

L= 1L

lls-birl

option

The contents of the overflow indicator (OF) are added to the A (B, X) register, mod
216 (2]8). The sum is placed in the A (B, X) register. The overflow flip-flop does

not change .

Indexing: No
Indirect Addressing: No
Registers Altered: A (B, X)

SPFA Subtract Overflow from A Register

1716151413 12 11 10987 6543210

A 00 5 711
L—b 1L

| 18-bit I

option

SOFB Subtract Overflow from B Register

17 16 1514 13 12 11 10987 6 543210
T 00 [5] 722]

Timing: 1 cycle

Timing: 1 cycle

3-29 System Reference

Subtract Overflow from X Register Timing: 1 cycle

17 16 15 14 13 12 11 109876543210
——— l

R 5

L1

‘ 18-bit I

option

744]

The contents of the overflow indicator (OF) are subtracted from the A (B, X) register,
mod 216 (2‘8). The overflow flip-flop does not change.

Indexing: No
Indirect Addressing: No
Registers Altered: A (B, X)

3.3 DOUBLE-WORD INSTRUCTIONS

Double-word instructions may be either addressing or non-addressing. The instructions
of the double-word addressing group are:

JUMP

JUMP-AND-MARK

EXECUTE

EXTENDED ADDRESSING (optional)

The instruction in the double-word non-addressing group is:
IMMEDIATE
3.3.1 Double-Word Addressing Instructions

For double-word addressing instructions, the second word is contained in the memory
location following the instruction word. The second word may contain an operand or
an address. The address may be either indirect or direct. The general flow chart for
double-word instructions is shown in figure 3-8.

Bits O through 8 determine the conditions for execution of the instruction. The condi-
tion is tested if the corresponding bit is equal to "1". For example, if bit 0 equals
"1", the instruction will examine the status of the overflow flip-flop. If overflow is
set, the command will be executed. If overflow is not set, the next instruction in
sequence will be executed.

System Reference 3-30

Figure 3-8.

r ______ 1
NG SINGLE
H INSTRUCTION WORD
! INSTRUCTION
| J
SET
ADDRESSABLE OPERAND
CYCLE
SET BRING
ADDRESS OPERAND
CYCLE W—>R)
BRING
ADDRESS
{(w—*R)
EXECUTE
INSTRUCTION

Double-Word Instruction, General Flow.,

3-3

System Reference

3.3.1.1 Jump instruction group. For the jump instruction group, the address
field (a) contains a set of nine flags which define the logical conditions for execution BRING
of the jump function. The jump address is contained in the second word of the double- WCT'ON
word instruction. Table G-5(a), in appendix G, summarizer the logical condition
associated with each bit in the address field. The jump condition is the logical~AND
of all "1's" in the field. Thus, there are 512 possible combinations, but not all are
useful. The most useful conditional jump instructions are contained in the mnemonic
instruction repertoire recognized by the DAS assembler, summarized in Table G-5(b). ADDRESS
The general flow for jump instruction is shown in figure 3-9. i%MD:Ess
(P+1L&P)
JMP Jump Unconditionally Timing: 2 cycles
17 16 15 14 13 12 11 10 98 7 6 543 210
rT Jomp
n L_i 00 i 000 A(v[‘)B’Rﬁ;S
nti | _Jl__ Jump Address
l__IS—bi'r

option

The next instruction executed is at the jump address. JUme
CONDITION
MET

Indexing: No
Indirect Addressing: Yes
Registers Altered: P

JOF Jump if Overflow Indicator Set Timing: 2 cycles
17 16 15 14 13 12 11 10 98 7 6 543 210
F_T - ADDRESS se ADDRESS
n | 00 1 001 T UCTION u INDIRECT
-4+ P+, P)) e
! Jump Address

option
- i BRING BRING
If the overflow indicator (OF) is set, the next instruction executed is at the jump NEXT NEXT INDIRECT
P INSTRUCTION INSTRUCTION ADDRESS
address. If the overflow indicator is not set, the next instruction in sequence is exe- W—sU) (W—U) (W—>F)

cuted. The overflow indicator is reset upon execution of the J@F instruction.

Indexing: No (*) RESET OF IF OVERFLOW
Indirect Addressing: Yes IS A JUMP CONDITION

Registers Altered: OF (reset), P .
Figure 3-9. Jump Instruction, General Flow.

System Reference 3-32 3-33 System Reference

JAP Jump if A Register Positive Timing: 2 cycles

17 16 15 14 13 1211 10 98 7 6 543210

T
n | | 00 1 002
F—4-
nt1 | —i_ Jump Address
18-bit
option

If the contents of the A register are positive or zero, the next instruction executed is
at the jump address. If the A register is negative, the next instruction in sequence is

executed.
Indexing: No
Indirect Addressing: Yes
Registers Altered: P
JAN Jump if A Register Negative Timing: 2 cycles

1716 15 4 13 12 11 10 987 6543210

[

n 11 00 1 004
b

ntl I JI_ Jump Address
EB—bit
option

If the A register is negative, the next insiruction executed is at the jump address. If
the A register is positive, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: P

System Reference 3-34

JAZ Jump if A Register Zero Timing: 2 cycles
1716 15141312 11 10 987 6543210
=T
n | 00 1 : 010
F—-
e I Jump Address

o
18-bit
option

If the A register is zero, the next instruction executed is at the jump address. If the
A register is not zero, the next instruction in sequence is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: P

JBZ Jump if B Register Zero Timing: 2 cycles

171615 14 131211 10987 6543210

P
n 00 1 020
F—+
a1 | _l Jump Address
18-bit
option

If the B register is zero, the next instruction executed is at the jump address. If the B
register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: P

3-35 System Reference

IXZ Jump if X Register Zero Timing: 2 cycles

17 16 15 14 13121110987 6543210

T

n b 00 1 040
bt

ntl i__J'_ Jump Address

18-bit |
option

If the index register (X) is zero, the next instruction executed is at the jump address.
If the register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: P

Jss1 Jump if Sense Switch 1 Set

17 16 15 14 131211 10 98 7 6543210

Timing: 2 cycles

n r TI- 00 1 100
b=
n+] o Jump Address
I
18-bit
option

Jss2 Jump if Sense Switch 2 Set

17 16 1514 13121110987 6543210

Timing: 2 cycles

T

n {_ 1 00 1 200
F-d- »

w1 b Jump Address
1.
18-bit
option

System Reference 3-36

JS5S3 Jump if Sense Switch 3 Set Timing: 2 cycles

17 16 1514 13 12 11 10 987 6 543 210
=T

n ! ! 00 1 400
N '

4 1 J Add

n+l 1 ump ress
18-bit
option

If sense switch 1 (2, 3) is set, the next instruction executed.is at the jump address. If
the sense switch being tested is not set, the next instruction in sequence is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: P

3.3.1.2 Jump and mark instruction group. For the jump and mark group of
instructions, the address field a defines the same set of logical conditions specified for
the jump group. These conditions are summarized in table Gé(a) in appendix G. Thus,
there are 512 possible combinations, but not all are useful. The most convenient
instructions are contained in the mnemonic insiruction repertoire recognized by the
DAS assembler. These are summarized in table Gé(b).

JMPM Jump and Mark Unconditionally Timing: 3 cycles
1716 15 14 13 12 11 10 987 65 43 210
e
n 00 2 000
-
w1] _J'_ Jump Address
l-_ls-bir
option

The contents of the instruction counter (P) are stored at the jump address.

The next
instruction executed is at the jump address plus one.

Indexing: No
Indirect Addressing: Yes
Registers Altered: Jump address, P

System Reference

NEXT
INSTRUCTION
(P+1-»L, P}

BRING

NEXT

INSTRUCTION
- (W)

ING
l'hlsﬂUCTlON
)

RETURN
ADDRESS
P +1-»W)

{*} - RESET OF IF OVERFLOW IS A JUMP CONDITION

BRING

MARK + 1
INSTRUCTION
(W—sU)

Figure 3-10. Jump~and~Mark Instruction, General Flow.

System Reference

3-38

IBFM Jump and Mark if Overflow Set Timing: 3 cycles

1716 1514 13 12 11 10987 6543210

T
i 00 2 001
n
ntl :-_-}-
n Jump Address
!__IB-bif
option

If the overflow indicator (OF) is set, the contents of the instruction counter (P) are
stored at the jump address, and the instruction at the fump address plus one is executed.
If the overflow indicator is not set, the next instruction in sequence is executed. The
overflow indicator is reset upon execution of the JBFM instruction.

Indexing: No
Indirect Addressing: Yes
Registers Altered: Jump address, P, OF (reset)

JANM Jump and Mark if A Register Negative Timing: 3 cycles
17 16 15 14 13 12 1 109876543210
Pl
00 2 004

n g

n+l ! i Jump Address
18-bit
option

If the A register is negative, the contents of the instruction counter (P) are placed at
the jump address, and the instruction at the jump address plus one is executed. If the
A register is positive, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: Jump address, P

3-39 System Reference

JAPM Jump and Mark if A Register Positive Timing: 3 cycles

1716 15 14 13 12 11 1098 7 6 543 21 0

T
! 00 2 002
" k-4-
n+1 ! i Jump Address
Es-bit
option

If the A register is positive or zero, the contents of the instruction counter (P) are

placed at the jump address, and the instruction at the jump address plus one is executed.

If the A register is negative, the next instruction in sequence is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: Jump address, P

JAZM Jump and Mark if A Register Zero Timing: 3 cycles
17 16 15 14 13 1211 10 98 7 65 43210
=T
n o 00 2 010
F—f-
ntt | _i_ Jump Address
18-bit
option

If the A register is zero, the instruction counter (P) is placed at the jump address and
the instruction at the jump address plus one is executed. If the A register is not Zero,
the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: Jump address, P

System Reference 3-40

JBZM Jump and Mark if B Register Zero Timing: 3 cycles

1716 15 14 131211 10987 6543210
e

n 00 2 020
-+

1 I_i Jump Address
ES-bif
option

If the B register is zero, the contents of the instruction counter (P) are placed at the
jump address, and the instruction at the jump address plus one is executed. If the B
register is not zero, the next instruction in sequence is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: Jump address, P

IXZM Jump and Mark if X Register Zero Timing: 3 cycles
1716 1514 13 1211 10 987 654321 0
T
n | 00 2 040
4
[
+
ntl 1 Jump Address
18-bit
option

If the X register is zero, the contents of the instruction counter (P) are placed at the
jump address and the instruction at the jump address plus one is executed. If the X
register is not zero, the next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: Jump address, P

3-41 System Reference

JSTM Jump and Mark if Sense Switch 1 Set Timing: 3 cycles

17 16 15 14 13 1211 10 98 7 6 543210

[
n V1 00 2 100
bt
! ! i Jump Address
[
option
JS2M Jump and Mark if Sense Switch 2 Set Timing: 3 cycles
1716 15 14 13 12 11 10 98 7 6 543210
T
n 1o 00 2 200
F-4-
nt1 | i Jump Address
18-bit
option
JS3IM Jump and Mark if Sense Switch 3 Set Timing: 3 cycles
716 15 14 13 12 11 10 987 6543210
~T
n ot 00 2 400
Pt
nt+l '_l_ Jump Address
18-bit
optien

If sense switch 1 (2, 3) is set, the instruction counter (P) is placed at the jump address,
and the instruction at the jump address plus one is executed. If the tested sense switch
is not set, the next instruction in sequence is executed.

Indexing: Neo
Indirect Addressing: Yes
Registers Altered: Jump address, P

3.3.1.3 Execute instruction group. For the execute group of instructions, the
address field a contains a set of nine flags which define the logical conditions for

executing an instruction contained at the effective execution address. The execution
address is contained in the second word of the double-word instruction. Table G7(a),

System Reference - 3-42

appendix G, summarizes the lagical conditions associated with each bit in the address
field. The execute condition is the logical-AND of all "1's" in the a field. The most
useful of the 512 possible execute instructions are contained in the mnemonic instruc—-
tion repertoire recognized by the DAS assembler, summarized in table G7(b).

Figure 3-11 illustrates - the general flow for the execute instructions.

It is important to note that only single-word instructions should be executed. The
single-word instruction groups are:

LOAD/STORE
ARITHMETIC
LOGICAL
CONTROL

SHIFT

REGISTER CHANGE

If the execute is attempted on double-word instructions, erroneous operation will occur.
The double-word instruction groups are:

JUMP .
JUMP AND MARK
EXECUTE

EXTENDED ADDRESSING (optional)
IMMEDIATE

XEC Execute Unconditionally Timing: 2 cycles

17 16 15 14 13 12 11 109876543210
r~T-
[
-+
[

L
I-_18~bif

option

n 00 3 000

n+l Execute Address

The instruction located at the execute address is executed and then the next instruction
in sequence is executed .

Indexing: No

Indirect Addressing: Yes
Registers Altered: None

3-43 System Reference

A

BRING
INSTRUCTION
(W—U)

BRING

EXECUTE

ADDRESS
W—R)

ADDRESS
NEXT
INSTRUCTION
(P+1—sL, P)

ADDRESS
EXECUTE
INSTRUCTION
R—*1)

INDIRECT
ADDRESS
Ris=1)

ADDRESS
INDIRECT
"ADDRESS
R—l)

BRING
NEXT
INSTRUCTION
(W—>U)

Figure 3-11. Execute Instruction, General Flow,

System Reference

BRING
EXECUTE
INSTRUCTION
(W—U)

BRING
INDIRECT
ADDRESS
(W—*R)

{*) RESET OF IF OVERFLOW WAS AN EXECUTE CONDITION

3-44

XOF Execute if Overflow Set Timing: 2 cycles

1716 15 14 13 1211 10987 6 543210

=T

n 1 00 3 001
4

n+l I_i Execute Address
18-bit
option

If the overflow indicator (OF) is set," the instruction at the execute address is executed,
and then the next instruction in sequence is executed.

if the overflow indicator is not set, the next instruction in sequence is executed. Exe-
cution of the X@F instruction resets the overflow indicator.

Indexing: No
Indirect Addressing: Yes
Registers Altered: - OF (reset)
XAP Execute if A Register Positive

Timing: 2 cycles

1716 15 14 13 1211 1098 7 6 543210

T~
n |t 00 3 002
bed-
n+l | j'_ Execute Address
ES-Eit
option

If the A register is positive or zero, the instruction at execut address is executed, and
then the next instruction in sequnece is executed. If the A register is negative, the
next instruction in sequence is executed.

Indexing: No

Indirect Addressing: Yes
Registers Altered: None

3-45 System Reference

XAN Execute if A Register Negative Timing: 2 cycles
1716 15 1413 1211 10987 6543210
T
n I 00 3 004
F—4—

1 1 Execute Address

-
18-bit
option

If the A register is negative, the instruction at the execute address is executed, and
then the next instruction in sequence is executed. If the A register is positive, the
next instruction in sequence is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: None
XAZ Execute if A Register Zero Timing: 2 cycles
1716 15 14 1312 11 10 987 6543210
~T
n 1 00 3 010
F——

n+l lL il Execute Address

I_]B-bit
option

If the A register is zero, the instruction at the execute address is executed, and then
the next instruction in sequence is executed.

If the A register is not zero the next instruction in sequence is executed.
Indexing: No

Indirect Addressing: Yes
Registers Altered: None

System Reference 3-46

XBZ Execute if B Register Zero Timing: 2 cycles

17 16 15 14 13 12 11 10 987 6543210

r-T_ 3 020
n 00

-+

| .IL Execute Address

o0

option

nt+l

If the B register is zero, the instruction at the execute address is executed, and then
the next instruction in sequence is executed.

If the B register is not zero, the next instruction in sequence is executed.
Indexing: No
Indirect Addressing: Yes
Registers Altered: - None
XXZ Execute if X Register Zero

Timing: 2 cycles

1716 1514 13 1211 10 987 65 43 210

T
! 00 3 040
" k-4
nt+l | JI_ | Execute Address
I-_’B'_"L
option

If the index register (x) is zero, the instruction at the execute address is executed, and
then the next instruction in sequence is executed.

If the index register is not zero, the next instruction in sequence is executed.
Indexing: No

Indirect Addressing: Yes
Register Altered: None

3-47 System Reference

XSl Execute if Sense Switch 1 Timing: 2 cycles

1716 1514 131211 109876543210

P
LI 00 3 100
ntl ' _JI__ Execute Address
ES—bit
option
XS2 Execute if Sense Switch 2 Timing: 2 cycles

1716 15 14131211 10 98 76 54321 0

T

n 00 3 200
-

nel | J_ Execute Address
18-bit
option

XS3 Execute if Sense Switch 3 Timing: 2 cycles

17 16 15 14 13 12 11 10 987 6543210
=T

n U1 00 -3 400

F-t-
I

Execute Address

OP CODE ADDRESS MODE

YY equals any single word instruction in the op code.

i X= ADDRESS MODE EFFECTIVE ADDRESS
0-3 Immediate Second word contains operand
4 Relative to P Contents of second word + (P
‘ register + 1)
5 Indexed with X Contents of second word +X
register
6 Indexed with B Contents of second word + B
register
7 Direct or indirect Contents of second word is the

direct address if bit 15 is "0".
Contents of second word is an
indirect address if bit 15 is
l|'||l .

n+l 1
18-bit

option

If sense switch 1, (2, 3) is set, the instruction at the execute address is executed and
then the next instruction in the sequence is executed. If the sense switch tested is not
set, the next instruction is executed.

Indexing: No
Indirect Addressing: Yes
Registers Altered: None

3.3.1.4 Extended addressing instruction group (optional). The extended address
mode instructions are similar in format to the Immediafe Instructions. However, the
second word of the double-word instruction contains the effective address. The address
can be indirect or direct. It is determined by bit 15 of the second word.

System Reference 3-48

Load A Register Extended {optional) Timing: 3 cycles

1716 15 14 13 12 11 10 987 6 54 3 210

r-T-
no | 4I- 00 6 01 X
'._.
ntl | l Operand Address
18-bit
option

The contents of the memory location as addressed by the operand address at location
n + 1 are placed in the A register.

3-49 System Reference

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A

LDBE Load B Register Extended (optional)

1716 15 14 131211 10987 6543210

Timing: 3 cycles

=T
n 1 | 00 6 02 X
-+
nrl | .'L Operand Address
tlS-bif
option

The contents of the memory location as addressed by the operand address at location
n + 1 are placed in the B register.

Indexing: Yes
Indirect Addressing: Yes
Register Altered: B

LDXE Load X Register Extended (optional)

1716 1514 13 12 11 10987 6 543210

Timing: 3 cycles

r-r-
n b1 00 6 03 X
e
n+l ! L Operand Address
bB—bit
option

The contents of the memory location as addressed by the operand address at location
n + 1 are placed in the X register.

Indexing: Yes

Indirect Addressing: Yes
Register Altered: X

System Reference 3-50

Timing: 3 cycles

Store A Register Extended (optional)

1716 1514 13121110987 6543210
r—T
(- 00) 05 X
-4~
n+l'_l_

18-bit

option

n

Operand Address

The contents of the A register are stored in the memory location as addressed by the
operand address at locationn + 1.

Indexing: Yes
Indirect Addressing: Yes
Register Altered: Memory

STBE Store B Register Extended (optional)

1716 1514131211 109876543210

Timing: 3 cycles

Pl
00 6 06 X
-+
| i I OPERAND ADDRESS
option

The contents of the B register are stored in the memory location as addressed by the
operand address to location n + 1.

Indexing: Yes

Indirect Addressing: Yes
Register Altered: Memory

STXE Store Index Register Extended (optional) Timing: 3 cycles

1716 15 14 13 1211 10987 6543 210

T

P 00 6 07 X
-

L OPERAND ADDRESS

l_lS-bit

option

3-51 System Reference

The contents of the index register are stored in the memory location as addressed by
the operand address at locationn + 1.

Indexing: Yes
Indirect Addressing: Yes
Register Altered: Memory

INRE Increment Memory and Replace Extended {optional) Timing: 4 cycles

17 16 15 14 1312 11 10 987 6 543210

r-r-

[00 6 04 X

.

! l I OPERAND ADDRESS

tp%n

option

The contents of the memory location as addressed by the operand address at location
n + 1 are incremented by one, mod 216 (218).

After execution, if (M) »215 (2]7), the overflow indicator (OF) is set.
Indexing: Yes

Indirect Addressing: Yes
Register Altered: Memory, OF

ADDE Add Memory to A Extended (Optional)

17 16 15 14 13 12711 10 98 7 6 543210

Timing: 3 cycles

rT
1 00 6 12 X
F-4-

| _'L] OPERAND ADDRESS

tp%h

option

The contents of the memory location as addressed by the operand address-at location
n+ 1 are added to the contents of the A register and the sum is placed in the A
register.-

After execution, if (A) 22]5.(2]7) or <215 (—2]7), the overflow indicator (OF) is
set.

System Reference 3-52

. Subtract Memory from A Extended {optional)

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A, OF

Timing: 3 cycles

1716 15 14 13 12 1110 987 6543 210

=T
[00 6 14 X
F—-
[| OPERAND ADDRESS
I
18-bit]
option

The contents of the memory location as addressed by the operand address at location
n + 1 are subtracted from the contents of the A register and the difference is placed in

the A register.

15 17

After execution, if (A) 22‘5 (2]7) or <=2 " (-2""), the overflow indicator (OF) is set.

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A, OF

MULE Multiply Extended (optional)

1716 1514131211 109876543210

Timing: 11 cycles (16 bits)
12 eycles (18 bits)

r~T-

11 00 6 16 X
-+

1 J'_ i OPERAND ADDRESS

option

The contents of the B register are multiplied by the contents of the memory location as
addressed by the operand address in location.n + 1. The contents of the A register are
added to the contents of the B register at the start of the operation. The product is
placed in the A and B registers with the most-significant half of the product in the

A register and the least-significant half in the B register. The sign of the product is
contained in the sign position of the A register. The sign position of the B register is
set to "0",

The algorithm is in the form A - B(X) + A,

3-53 System Reference

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A, B

DIVE Divide Extended (optional)

1716 15 14 13 12 11 10987 6 54321 0

Timing: 11-15 cycles (16 bits)
12-17 cycles (18 bits)

-T
r | 00 6 17 X
-4

| J'_ | OPERAND ADDRESS
EB-bit

option

The contents of the A and B registers are divided by the contents of the memory loca-
tion as addressed by the operand address at location n + 1. The ‘quotient is placed in
the B register and the remainder is placed in the A register.
(divisor = dividend, taken as a binary fraction), overflow will not occur. If overflow
does occur, the overflow indicator (OF) is set.

Indexing: Yes

Indirect Addressing: Yes

Register Altered: A, B, OF

DRAE Inclusive-OR Memory and A Extended (optional) Timing: 3 cycles

17161514 131211 10987 6543210

r-r-
P 00 6 n X
e o

! J_ I OPERAND ADDRESS

EB-bit

option

The inclusive-OR operation is performed between the contents of the A register and the
contents of the memory location as addressed by the operand address in location n + 1.

System Reference 3-54

The result is placed in the A register. If either the memory location or A contain a 1"
in the same position, a "1" is placed in the result.

The truth table is shown below:

OPERATION RESULT
Effective
Memory]
An Location {n) An Where n = bit
—;J_ 0 0 position
0 1
1 4] 1
1 1 1

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A

ERAE Exclusive-OR Memory and A Extended {optional) Timing: 3 cycles

17 16 1514 13 1211 10987 6543210

r -}- 00 6 13 X
F-+-
I { OPERAND ADDRESS

-4

18-bit]

option

An exclusive-OR operation is performed between the contents of the A register and the
contents of the memory location as addressed by the operand address in location n + 1.
The result is placed in the A register. If the same bit position of the memory Ioca’r!on
and the A register contain a 0", or if both bit positions contain a "1", the result is
ng" . The turth table is shown below:

OPERATION RESULT

Effective
Memory
Location {n)

An
0 0
1
i
0

Where n = bit
position

—-—-oo|%>

1
0
1

3-55 System Reference

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A

ANAE| AND Memory and A Extended (optional) Timing: 3 cycles

17161514 131211 109876543210
~T

[
bt
[

J T
18-bit

option

00 6 15 X

! OPERAND ADDRESS

The logical-AND operation is performed between the coritents of the A register and the
contents of the memory location as addressed by the operand address in location n + 1.
The result is placed in the A register. If the same bit position of both the memory

focation and the A register contain a "1 the result is a "1". The truth table is shown

below:

OPERATION RESULT

Effective
Memory
Location (n)

An An
0 0 0
0 0
1 0
1 1

1
0
1

Indexing: Yes
Indirect Addressing: Yes
Register Altered: A

3.3.2 Double-Word Non-Addressing Instructions

The double~word non-addressing instructions consist of the Immedicte instruction group.
The operand for the immediate instruction is contained in the second word of the
double-word instruction. Address modification is not permitted for this group of intruc-

tions. The immediate instruction group codes are summarized in table G10,
appendix G.

System Reference 3-56

Where n = bjt
position

LDA! Load A Register Immediate Timing:

1716 1514131211 10987 6543210
T
n bl 00 3 010
(-
ot 1o OPERAND
1
option

The contents of the operand at location n + 1 are placed in the A register.

Indexing: No
Indirect Addressing: No
Registers Alterad: A

LDBI Load B Register Immediate Timing:

1716 15 14 13 12 11 10987 6543210
=T~

n | 00 6 020
-+

n+1 l__]l__ OPERAND
[I_S-bit
option

The contents of the operand at location n + 1 are placed in the B register.

Indexing: No
Indirect Addressing: No
Registers Altered: B

LDXI1 Load X Register Immediate Timing:

17 16 15 14 13 12 11 10987 6543210
T
| 00 6 030

"4
I OPERAND

ni1 1
8-bit
option

2 cycles

2 cycles

2 cycles

3-57 System Reference

The contents of the operand at focation n + 1 are placed in the X register.

Indexing: No
Indirect Addressing: No
Registers Altered: X

STAI Store A Register Immediate Timing: 2 cycles
17 16 15 14 13 1211 10 98 7 65 43 210
e
00 é 050
n b d
TR ! OPERAND
18-bit
option

The contents of the A register are placed in the operand at location n + 1.

Indexing: No
Indirect Addressing: No
Registers Altered: Operand

STBI Store B Register Immediate Timing: 2 cycles
17 16 15 14 13 12 11 10 987 6543210
rT :
! 00 6 060
" ob-4-
w1 b OPERAND
-1_
Foc
option

The contents of the B register are placed in the operand at location n + 1.
Indexing: No

Indirect Addressing: No
Registers Altered: Operand

System Reference 3-58

STX1 Store X Register Immediate Timing: 2 cycles

1716 15 14 13-12 11 10 987 6543210
=T

n b 00 6 070
ot _

w11 OPERAND
18-bit
option

The contents of the Index register are placed in the operand at locationn + 1.
Indexing: No

Indirect Addressing: No
Registers Altered: Operand

ADDI Add immediate

1716 15 14131211 109876543210

Timing: 2 cycles

r~T-

O T 00 6 120
-+

n+l I-i_ OPERAND
r_le-bn
option

The contents of the A register are added to the contents of the operand at location
n+ 1. The sum is placed in the a register. After execution, if (A) =215 (2]7) or
<-215 (-217), the overflow indicator (OF) is set.

Indexing: No

Indirect Addressing: No
Registers Altered: A, OF

SUBI Subtract Immediate

1716 15 14 131211 10987 6543210

Timing: 2 cycles

T
b 00 é 140
Y
| OPERAND
J I
18-bit
option

3-59 System Reference

The contents of the operand at focation n + 1 are subtracted from the contents of the A
re?lster The difference is placed in the A register. After execution, if (A) 2 219
7y or < =215 («217), the overflow indicator (OF) is set.

Indexing: No
Indirect Addressing: No
Registers Altered: A, OF

MULL Multiply Immediate (optional) Timing: 10 cycles (]6Bits)
14 cycles (18 Bits)
17 16 15 14 1312 11 10 987 6543 210

r—T
1 00 3 160
-4
I ! OPERAND

N
[ie-in]

option

The contents of the B register are multiplied by the contents of the operand at location
n+ 1. The contents of the A register are added to the contents of the B register at the
start of the operation. The product is placed in the A and B registers, with the most-

significant half of the product in the A register and the least-significant half in the

B register.. The sign of the product is contained in the sign position of the A register,

The sign position of the B register is set to "0",

The algorithm is in the form A - B(X) + A,

Indexing: No
Indirect Addressing: No
Registers Altered: A, B

DIvi Divide Immediate (optional) Timing: 10-14 cycles(16 bits)
11-16 cycles(18 bits)

17 16 15 14 13 1211 10987 6543210

-
Pl 00 6 170
4o
. OPERAND
1
18-bit
option

System Reference 3-60

The contents of the A and B registers are divided by the contents of the operand at
location n+ 1. The quotient is placed in the B register with sign, and the remainder
is placed in the A register with the sign of the dividend.

It @B,
(divisor = dividend, tdken as a binary fraction), overflow will not occur. If overflow
does occur, the overflow indicator (OF) is set.

Indexing: No
Indirect Addressing: No
Registers Altered: A, B, OF

INRJ Increment and Replace Immediate Timing: 3 cycles
1716 15 14 13 12 11 10987 6543210
T
[00 6) 040
- .
[QPERAND
-1
18-bit
option

The contents of the operand at location n + 1 are incremented by one, mod 216 (218,
After execution, if(n+1)2 » 215 (2]7), the overflow indicator (OF) is set.

Indexing: No
Indirect Addressing: No
Registers Altered: Operand, OF
ERAI Exclusive-OR Immediate Timing: 2 cycles

1716 1514131211 10987 6543210

[00 6 130

I OPERAND

An exclusive-OR is performed between the contents of the operand at location n + 1
and the contents of the A register, and the result is placed in the A register. If the

3-61 System Reference

same bit position of the operand and the A register contain a "0", or if both bit
positions contain a "1", the result is set to "0". The truth table is shown below:

OPERAND RESULT
An OPERAND(n) An
0 0 0
0 1 1
1 0 1
1 ! 0

Indexing: No
Indirect Addressing: No
Registers Altered: A

Inclusive=OR Immediate

where n =
bit position

Timing: 2 cycles

1716 151413 12 11 10 98 7 6 543 2 1 0
-Tr-
a0 00 6 110
bt
nt I-.|L OPERAND
18-bit
option

An inclusive-OR is performed between the contents of the operand and the contents of
the A register. The result is placed in the A register. If either the operand or the

A register contains a "1" in the same bit position, a "1" is placed in the result in the
A register. The truth table is shown on the following page.

System Reference

3-62

OPERAND RESULT
where n =
An OPERAND(n) An bit position
0 0 0
0 1 1
1 0 1
1 1 1

Indexing: No
Indirect Addressing: No
Registers Altered: A

Timing: 2 cycles

ANAI AND Immediate

1716 15 14 13 12 11 10 98 7 6 54 3 21 0
T~

n |t 00 3 150
-
o OPERAND

ntl L
18-bit
option

A logical-AND is performed between the contents of the operand and the contents of
the A register. The result is placed in the A register. If the same bit position of the
operand and the A register contain a "1", the result is set to "1"; otherwise, the

result is set to "0",

The truth table is shown below:

OPERATION RESULT h _
where n =
An OPERAND(n) An : bit position
0 0 0
0 1 0
1 0 0
1 i 1

Indexing: No
Indirect Addressing: No
Registers Altered: A

3-63

System Reference

SECTION |V
DATA 6207/ INPUT/OUTPUT SYSTEM

4.1 INTRODUCTION

This section describes the operation and instruction set of the computer input/output
system which includes the data transfer, external conirol, program sense, and program
interrupt facilities.

The DATA 620/i input/output system is designed to facilitate integration of the com-
uter into an overall system. Refer fo the interface reference manual for detailgd
information required for special interface designs.

A wide selection of optional peripheral devices is also available.
4.2 ORGANIZATION

As shown in the block diagram, figure 2-1, the 1/O section of the computer communi-
cates with the operational registers and the memory through the internal C bus. Data
and control signals are transmitted to and from external peripheral devices through the

1/O bus.
4.2.1 Overall Operation

The overall organization of the DATA 620/i 1/O system, including a typical set of
eripheral devices, is shown in figure 4-1. Standard or special peripheral devices are
in parallel on the 1/O bus.

fwo types of 1/O operations may be performed: program control and automatic control.
program-controlled information transfers between the central processor and the exter-
nal devices to be executed are:

a. External control. An external control code may be transmitted, under
rogram control, from the central processor to an external device.
prog P

b. Program sense. The central processor can sense the status of a selected
external line under program control .

c. Single word transfer to/from A and B Registers. A single word may be
transferred to or from the A and B registers under program control .

d. Single-word transfer to/from memory. A single word may be transferred
to or from any memory location under program control.

4-1 System Reference

The following types of automatically controlled information transfers between the

—~z central processor and the external devices may be executed independently of the
1 — programs:
=S ENEINE
- g’gg e £t a. Program interrupt. An external device may force the program to execute
“5 a8z an instruction at a specified location in memory.
r-=1 _ b. Buffer interlace controller transfer to/from memory. Blocks of words may
[—L—i :z('% ! [— o€y e be transferred to or from sequential memory locations under control of an optional
- Egg e e 4 buffer interlace controller (BIC). Devices conirolled by the BIC may also be operated
l Si 1 223 5 under program control (single-word transfers).
r——n c. Interlace data transfers. Single words may be transferred to or from
P . g memory by a special interface controller which uses the control signals available on
et g% e B gg s - the /O bus.
)] O & g 5]
b e %3‘ 4.2.2 Input/Output (1/0) Bus Structure
=== — _ . — . R . .
T 3 i . 5 e A typical organization of p.enpheral devices on the I/0O bus is shown.m figure 4-1.
M ,9_% e 3 > ggz e g’ s 22 The complete 1/O b.us consists of two cables, the 1/O cable and the interrupt cable.
] | 5%] “& o “Z e 4 The 1/O cable consists of the E bus, plus a set of control lines. The E bus contains
3 be—a = i BN 16 or 18 pairs of bidirectional lines which transmit control codes, addresses, and data
. g between the central processor and the peripheral devices connected in parallel to this
: §-; 1' EE bus.
¥ 0F N F: s 22 e E (e . . .
HEE 823| |« 3 . £ Information transfers are synchronized by peripheral controllers; these controllers'may,
Lo 3¢ 1 2g3 H in turn, control one or more peripheral devices. The central processor communicates
257 14 o Il il directly with all peripheral controllers under program control. It may determine when
=2 % " a device is ready to send or receive information by sensing associated sense lines, or
b t;: e » z g’ it may be notified by means of a program interrupt. Standard priority interrupt and
g 4 sense line controllers are available, or special controllers may be provided. The
_}‘—* 28 interrupt cable is provin:l(-fd only for devices which use the program interrupt facility
|| gg or the program trap facility.
Where block transfers of data, independent of, and concurrent with, internal opera-
— tions are required (such as from tapes, drums, commutators, etc.) the buffer interlace
§§g controller may be provided. This element contains hardware registers which auto-
|| §§§ : matically generate the proper memory addresses for successive data transfers to or
=9 _J from the central processor memory, directly to or from the device through its
controller.
This type of operation uses the program trap facilities of the computer. The trap
sequence temporarily halts the program, without altering the program sequence,
while the trapped 1/O transfer occurs. Special interface designs may also take
Figure 4-1. DATA 620/ System Organization. advantage of the trap facilities to control /O transfers.

System Reference 4-2 4-3 System Reference

4.2.3 Input/Output Operations

During information transfers over the 1/O bus, the E lines may carry control codes,
addresses or data, depending upon which type of operation is being performed.

Table 4-1 defines the 1/O cable control signals used to synchronize all input/output
operations. Table 4-2 summarizes the signals on the interrupt cable. Table 4-3 sum-
marizes the signals present on the E bus during the program controlled I/O operations.
Note that the 1/O command is not transmitted intact over the E-bus. Bits 11-15 are
decoded internally and only one of these lines will be true for each type of command.
Bits 0-8 of the command are transmitted unchanged on the cable.

Table 4-1

1/O CABLE CONTROL LINE SIGNALS

Table 4-2

INTERRUPT CABLE CONTROL LINE SIGNALS

CONTROL LINE

SIGNAL NAME

FUNCTION

CONTROL LINE

SIGNAL NAME

FUNCTION

Function Ready

Data Ready

Sense Response

Interrupt Acknowledge

System Reset

FRYX-1

DRYX-1

SERX-I

TUAX-1

SYRT-1

Indicates that the E-bus
contains control or
address information.

Indicates that the E-bus
contains data.

Indicates logical state of
line queried by sense line
address on E-bus.

Indicates that extemnal
interrupt demand is being
acknowledged. Address
is placed on E-bus and
removed when [UAX-1
goes false.

Reset line for initializing
peripheral controllers.
Enevgized by console

RESET switch.

System Reference

Interrupt Request

Trap Output Request

Trap In Request

Interrupt Clock

Priority Out

Priority In

Priority 2 and 3

Interrupt Jump

ITURX-1

TPOX-I|

TPiX-1

1UXC-]

PRIX-1

PR4X-1

PR2X-1, PR3X-1

1UJP-i

Indicates a demand from the
Interrupt module to force
program to take one instruc~
tion from location specified
by address on E-bus. This
address will be placed on
£-bus when IUAX-I is true.

indicates that a buffer inter-
lace controller or other trap
device is requesting data
transfer from memory .

Indicates that a buffer inter-

"lace controller or other trap

device is requesting data
transfer to memory .

1.1-MHz clock provided on
cable for interrupt module.
May be used in any inter-
face design.

Priority line used with inter~
rupt dnd buffer interlace
controller modules for
priority determination.

Priority line returned to
computer for permitting
console interrupt.

Intermediate priority lines
that are used to assign
priority positions among
trap-and interrupt devices.

Indicates that instruction at
interrupt location is a jump
(2 word) instruction.

4-5

System Reference

4.2.4 1/O Cable Adapter Card

The 1/O cable adapter is a standard Micro-Versa LOGIC module 10 -701 designed to
facilitate interfacing with the DATA 620/i 1/O bus. Typical examples illustrating its

use are given in the interface reference manual. This card simplifies the use of many .
types of 1/0 interfaces.
4.3 PROGRAM CONTROL FUNCTIONS
Interfacing functions fall into two major categories: programmed operations, and 3 2
automatic operations. The programmed operations are: External control (single~bit W Eaf o 2
out), sense operations (testing a single bit), data transfer in (full-word inputs) and 581; sh . =245
. . =] 6.;.39 _'ZEf
data transfers out (full-word outputs). The following paragraphs describe the pro- 28 2EIE 853
grammed operations and examples of their use. The I/O instruction group is sum- EH2 =
marized in table G-11, appendix G.
4.3.1 External Control
The external control instruction is a single word, non-addressing instruction. It places
a function code, contained in bits 0-8, on the E bus to effect a control operation on an S " 5__
external device. 2 a‘f &23 G_
go8b z92 0, .23
539+ wg- ZERY
EXC External Control Timing: 1 cycle <3< “ gzzZ2
17 16 15 14 13 12 11 10 987 6 543210
r—T-7
1 10 [o] XYY |
18-bit
z Zo
option 9 z o5
o_. It a 03
. 023 o£F g 21
The nine bits represented by XYY are placed on the E bus for transmission to the /0 é%i Z581 83z
controllers. The device address is contained in the YY portion of the data, and the ek <= zee
X portion of the data contains the function to be performed by the selected device.
Indexing: No
Indirect Addressing: No

Registers Altered: None
4.3.2 Program Sense

The sense instruction is a double-word, addressing instruction which senses the logical
state of an external line. Figure 4-2 shows the execution of this instruction.

Figure 4-2. Sense Instruction, General Flow,

System Reference 4-6 4-7 System Reference

4.2.4 I/O Cable Adapter Card

The 1/O cable adapter is a standard Micro-Versa LOGIC module 10-701 designed to
facilitate interfocing with the DATA 620/i 1/O bus. Typical examples illustrating its

use are given in the interface reference manual. This card simplifies the use of many i
types of 1/O interfaces.
4.3 PROGRAM CONTROL FUNCTIONS
Interfacing functions fall info two major categories: programmed operations, and g 2
automatic operations. The programmed operations are: External control (single<bit wo 2% . 8
out), sense operations (testing a single bit), data transfer in (Full-word inputs) and gg} 0=, «Q0s
data transfers out (full-word outputs). The following paragraphs describe the pro~ gg R CFH QEE;
grammed operations and examples of their use. The /O instruction group is sum- - “ 2=
marized in table G-11, appendix G.
4.3.1 External Control
The external control instruction is a single word, non-addressing instruction. [t places
a function code, contained in bits 0-8, on the E bus to effect a control operation on an & w 5
external device. % a7 wZw 5
38, a8 9rE3
+ wgr Zxh
EXC External Control Timing: 1 cycle 23 & 592z
g Y
1716 1514 13 12 11 10987 6 54 3 210
r-T-r1
P10 o] XYY]
18-bit - R .
option ,9_- F g;
083 ofiF Q..éi
The nine bits represented by XYY are placed on the E bus for fransmission to the 1/0 é'i.‘; 53; R
controllers. The device address is contained in the YY portion of the data, and the el = <z=e
X portion of the data contains the function to be performed by the selected device.
Indexing: No
Indirect Addressing: No.
Registers Altered: None
4.3.2 Program Sense
The sense instruction is a double-word, addressing instruction which senses the logical
state of an external line. Figure 4-2 shows the execution of this instruction.
F igure 4-2, Sense Instruction, General Flow.
System Reference 4-6 4-7 System Reference

SEN Program Sense Timing: 2.25 cycles Clear and Input to B Register Timing: 2 cycles

171615 14 13121110987 6543210 17 16 1514 1312 11 10987 6 543 210

- r o0 2 | 622
N .;. 10 1 XYY bt
- | .]
18-bit
i
n+1] 1 | JUMP ADDRESS option
['_w—bﬂ -
I=

The B register is cleared and a data word from the selected device, ZZ, is transferred
to the B register.

0, word contains an address
1, word confains an indirect address

option

Indexing: No
Indirect Addressing: No
Registers Altered: B

The nine bits represented by XYY are placed in the party line /0 bus and represent
the condition to be tested. X defines a specific line within device YY. The associated
peripheral controller replies with either a true or false condition.

If a true condition is received by the DATA 620/i, a jump is made to the jump address, Input fo A Register Timing: 2 cycles
If a false condition is received the next instruction in sequence is executed. 17161514 13 12 1110987 6 543210 .

Indexing: No ,———
1 v 10 2 1ZZ
Indirect Addressing: Yes IR T 1
Registers Altered: P
° 18-bit

4.3.3 Data Transfer In option
Two types of data transfer in instructions are provided: input to operational registers, A data word from the selected device, ZZ, is inclusively-ORed with the contents of the
and input directly to memory. The first type of input instruction is a single-word, A register -
non-addressing class instruction; the second type of input instruction is a double~word, .
addressing class instruction. - Indexing: No

Indirect Addressing: No

CIA Clear and Input to A Register Timing: 2 cycles Registers Altered: A
1716151413 12 11 10987 6543210 Input to B Register Timing: 2 cycles
r=or-r7
L_i_k o | 2 52Z] 1716151413 121110987 6 543210

[et
Ils—bitl prr o | 2 22z]
option N
18-bit

The A register is cleared and a data word from the selected device, ZZ, is transferred option
info the A register.

Indexing: No
Indirect Addressing: No
Registers Altered: A

System Reference 4-8 4-9 System Reference

A data word from the selected device, ZZ, is inclusively-ORed with the contents of

the B register.
Indexing: No
Indirect Addressing: No
Registers Altered: B
IME Input to Memory Timing: 3 cycles g
= g
17 16 15 14 13 12 11 10987 6 543210 - n 4
= Yo Eew
-+ Bw o g2 5 a
noo 10 2 0zz 2581, £ae
-+ 802
1 || Data Address 4
-1
18-bit
option
A data word from the selected device, ZZ, is placed in the cleared effective memory P 2
address. Figure 4-3 shows the execution of this instruction. % T o
220l BB &
Indexing: No =SE” P& 0,25
Indirect Addressing: No gg § :_ Q&L é & %é
Registers Altered: Memory = RS
4.3.4 Data Transfer Out
Two types of data transfer out instructions are provided: output from operational
registers, and output from memory. The first type of output instruction is a single-
word, non-addressing class instruction; the second type is a double-word, addressing
class instruction. 5 a g -
= Za BN
194 — %) -
DAR Output from A Register Timing: 2 cycles o023 2 é § N g, 5 I
25! 252z S5
1716 1514 13 12 1110987 6543210 == <Zse
re—r-T
T T 10 Ta] 12z]
I lB-bnl
option
The contents of the A register are transferred to the selected device, ZZ.
Indexing: No
Indirect Addressing: No Figure 4-3. Input to Memory, General Flow.
Registers Altered: None .
4-1 System Reference

System Reference 4-10

@BR Qutput from B Register Timing: 2 cycles

1716 1514 13 12 1110 987 6 543210

BRI 3 277 |

| 18-bit I

option

="

B

The contents of the B register are transferred to the selected device, ZZ.

Indexing: No
Indirect Addressing: No
Registers Altered: None

Output from Memory Timing: 3 cycles
1716 15 14 13 12 11 10 98 7 6 543 21 0
S
10 3 0zzZ
-
ntl b Data Address
i
Ea-bir
option

The contents of the effective memory address are transferred to the selected device,

ZZ. '

Indexing: No
Indirect Addressing: No
Registers-Altered: None

4.4 AUTOMATIC CONTROL FUNCTIONS (optional)

Two ‘fypes of computer timing sequences are provided to automatically transfer control
and information signals between the 1/O and the DATA 620/i:

a. An interrupt timing sequence is initiated when the DATA 620/i recognizes
an external interrupt signal. This sequence forces the computer to execute an instruc-
tion at the memory location specified by interrupt logic through the E bus.

b. A trap timing sequence is initiated when an external device signals that it
wishes to transfer a word to or from memory. The external device must supply the
memory address of the word through the E bus. This sequence delays the internal pro-
gram sequence for the time required to execute the 1/O transfer (2.7 psec).

System Reference 4-12

The devices that demand either of these automatic sequences must first establish a
priority fo resolve two or more simultaneous demands for service. The priorities of
devices demanding service are determined every 1.8 usec, and are clocked by the
interrupt clock (refer to table 4-1).

The basic computer has one built-in priority device, the power failure interrupt. The
power failure interrupt is permanently wired for the highest priority. Unless power
failure (scanned every 1.8 psec) is detected, the computer will service interrupt or
trap requests from the interrupt cable on a priority basis.

Priority assignment for devices on the 1/O cable is optional and is a part of the system
definition. Priorities may be fixed for any given configuration by properly connecting
priority lines in the |/O cable. Priorities can be altered if the definition changes.

4.4.1 Program Interrupt (optional)

The DATA 620/ has a multi-level interrupt system with single~execute, on/off and
selective arm/disarm copability. Each interrupt line is assigned a unique memory
destination address which is the first of a pair of locations. The system is modular and
expandable in sets of eight levels.

Each optional interrupt line has an enable/disable flip-flop which is addressable and
set by interrupt control instructions. If signals exist on one or more interrupt lines,
the highest-priority line is recognized and the corresponding memory destination
address is transmitted to the DATA 620/i cofter the current instruction is executed.

The program can maintain the hardware order of priority levels, or a re-order to meet
dynamic queving. For each group the order is determined by an 8-bit mask word
transferred by the program to the arm/disarm flip—flops in the interrupt system. The
action initiated by the interrupt subroutine causes the interrupting device to remove
its requesting signal .

An acknowledgement of an interrupt causes the instruction located at the destination
address to be executed. The instruction can be any of the DATA 620/i repertoire.
This technique permits the interrupts to be of the "single execute" type, whereby
single-instruction responses to external signals can be serviced in one instruction
period. A real-time clock can be implemented with an interrupt line and an external
pulse generator. An automatic data channel can be implemented with as few as two
inferrupt lines. |f the executed instruction is a jump, the interrupt system is auto~
matically inhibited permitting the inhibit to be terminated under program control.
While in the inhibit mode, the interrupt subroutine may selectively enable and disable
levels, and then enable the system permitting the selected levels to interrupt the level
being processed.

4-13 System Reference

4.4.2 Interlace Data Transfers (optional)

Interlace data transfers may be performed concurrently with internal program operation,
This type of operation uses the computer trap timing sequence to delay the program for
2.7 psec while a word is transferred between memory and a peripheral device. The
transfer is controlled by the external device which must transmit the memory address

of the data word, and must synchronize the operation using the signals transmitted over
the 1/O contro! lines (table 4-1). The maximum interlace transfer rate is 202,000
words per second. '

The general trap sequence flow is shown in figure 4-4. The maximum computer delay
in acknowledging a trap request is 5.4 psec. However, the time delay experienced by
a specific controller in receiving acknowledgement fo a trap request may be extended
by the time required for the central processor to service higher-priority requests.

Special peripheral controllers designed for system applications (such.as A/D and D/A
converters, efc.) may utilize the trap facilities of the computer to implement automatic
1/O operations (refer to the interlace reference manual for detailed design information).
A standard buffer interlace controller is also available for use with all standard DATA
620/i peripheral equipment. Special system devices may also be interfaced for inter~
lace operations under control of this unit.

System Reference 4-14

TRAP REQUEST

ACKNOW-
REQUI

B™
4

INPUT
TRAP
ADDRESS

INPUT/
QUTPUT
DATA

TRAP
COMPLETE

Figure 4-4. Trap Sequence, General Floyv.

4-15

1.8 S MIN
5.4 45 MAX

+
HIGHER PRIORITY
SERVICE DELAY

.
|

2.7p8

System Reference

SECTION V
CONTROL CONSOLE OPERATION

5.1 CONTROLS AND INDICATORS

The DATA 620/ console (figure 5-1) provides controls and displays required for
operator communication with the computer. Console facilities are of two kinds:
register display and control switches. The contents of all operational registers includ~
ing the instruction register, can be displayed in binary-octal form. During normal
operation (run mode) the contents of the computer C-bus are displayed continuously.
Data entry into a selected operational register is accomplished in step mode (computer
halted) by mementary contact lever action switches. During run mode, these switches
are deactivated to prevent accidental alteration of the register contents.

Control switches allow the operator to manually alter normal program operation.

These switches described in table 5-1, provide considerable control flexibility, and
are useful for maintenance, troubleshooting, and program debugging. The sense switch
controls are also useful in normal program operation to allow selection by the operator
of particular program sequences to be executed.

Table 5-1
CONTROLS AND INDICATORS
CONTROL
OR
INDICATOR FUNCTION
Register Display In~line display of 16 (or 18) bits in selected operational
register. Register bits are numbered from right to left
with the sign bit appearing on the far left side of the dis-
play. Lights are grouped in an octal arrangement.
Selection of the register to be displayed is accomplished
by the register select switches.
Register Select Five alternate action switches used to select one of five
Switches registers for display. Only one register may be selected
at a time. Selection of two or more at the same time
disables the selection logic and the display becomes
blank.

5-1 System Reference

!

\

Table 5-1 (continued)
CONTROLS AND INDICATORS

\

—

CONTROL
OR
INDICATOR FUNCTION

Four indicators are provided to indicate the status of the
machine. Overflow status indicator lights when the over-
flow flip-flop is on. STEP indicator lights when the com-
puter is in step mode and uexec facility is not being used.
RUN indicator lights when the computer is in run mode.
ALARM is an indicator used to flag a thermal overload
condition. It also lights when power is applied to the
computer through the system circuit breaker but power
ON/OFF switch on the console is.in the OFF position.

Status Display

== —
~PATA.820,}

RESET Switch The RESET switch causes the selected register to be
cleared. This switch is disabled when the computer is in

the run mode.

STEP Switch The STEP switch is a momentary contact switch that causes
the instruction in the instruction register to be executed
if the computer is in the step mode. If the computer is in
the run mode, pressing the STEP switch causes the com-
puter to halt at the completion of the instruction being
executed.

RUN Switch The RUN switch causes the program to run at the location
specified by the program counter after first executing the

instruction in the instruction register.

Control Console.

SYSTEM RESET The SYSTEM RESET switch is a system clear control that
forces the computer to halt mode, and initializes control
flip-flops in the processor. In addition, all peripheral
devices are initialized by SYSTEM RESET. The control is
normally used as an initialize control, but is useful to
halt 1/O operations.

Figure 5-1,

0
LW
-
5
< |
z
< |
k2
§

System Reference System Reference

T;:ble 5-1 (continued)
CONTROLS AND INDICATORS

CONTROL
OR
INDICATOR FUNCTION

REPEAT . Alternate~action switch that permits manual repeat of an
instruction in instruction register. - Pressing STEP switch
executes instruction and advances program counter; how~
ever, contents of the instruction register are left unchanged.
Switch on the control console is activated only when the
STEP light is on (operation halted).

SENSE Switches Alternate-action switches that permit manual program
1,2,3 control whenever the sense switch jump, or jump-and-
mark, or execute instructions (JSS1, JSS2, JSS3, JSIM,
JS2M, XS1, XS2, XS3) are performed. The indicated
jump and execute operations are performed only if the
corresponding sense switch is ON.

POWER Alternate-action switch/indicator turns power supplies on
ON/OFF and off. - Indicator/switch is illuminated when power on;
indicator is off when power is off.

5.2.2 Manual Program Entry and Execution

When the computer is halted (step mode), programs and data may be read from

memory and entered into memory, and a pre-stored program may be manually executed.

To load words into memory (either instructions or data), set up the desired word in the
A, B, or X register. Set up the appropriate store-type instruction (STA, STB, STX)
with the desired operand address in the instruction (U} register and press the STEP
switch to execute the store operation.

To display the contents of any memory cell in the A, B, or X register; set up the
appropriate load-type instruction (LDA, LDB, LDX) with the proper memory address
in the instruction register; then press the STEP switch to load the selected word into
the register.

System Reference 5-4

To manually execute a program stored in memory, set up the starting location of the
program in the program counter. ‘When the STEP switch is pressed, the instruction con—
tained in the instruction register is executed, and the instruction of the selected loca-
tion is transferred to the instruction register. Repeated operation of the STEP switch
will then step through the program one instruction at a time. All operations such as
multi-level indirect addressing will be performed for each instruction each time the
STEP switch is operated. Note that 1/O instructions that involve an asynchronous
device which transfers data in a block such as magnetic tape or the teletype generally
cannot be operated in a single~step mode .

5.2.3 Instruction Repeat

In the step mode, the instruction register contains the next instruction to be executed
when STEP is pressed. The program counter contains the location of the next instruc—
tion to be transferred to the instruction register after the current instruction is
executed .

In some cases, it is desirable to manually execute an instruction several times. When
the REPEAT switch is on, instruction register loading (when STEP is pressed) is inhibited
even though the instruction coynter is advanced each time. This mode is particularly
useful for loading words into sequential memory locations, or for displaying the con-
tents of sequential memory locations, or for displaying the contents of sequential
memory cells.

To load a group of sequential memory cells, set up the appropriate store-type instruc-
tion (STA, STB, STX) in the instruction register with the relative address mode in

the m field and the base address in the a field. Repeated operation of the STEP switch
will store the contents of A, B, or X into sequential memory locations. The word
loaded on each step may be changed by entering the desired value into the operational
register for each step.

To display the contents of a group of sequential memory cells, set up the appropriate
load-type instruction (LDA, LDB, LDX) in the instruction register, in the relative
address mode, with the base address in the instruction register and the a field = 0.
The contents of the sequential locations will be displayed in the selected operational
register with each operation of the STEP switch.

5.2.4 Sense Switches

The SENSE switches allow the operator to dynamically alter a program sequence in
either the run or step mode. The three SENSE switches provide a logical-AND func-
tion with.bits 6-8 of the instruction word, and consequently can be used for various
logical branches set up on the console.

System:Reference

T;'Jble 5-1 (continued)
CONTROLS AND INDICATORS

CONTROL
OR
INDICATOR FUNCTION
REPEAT . Alternate-action switch that permits manual re‘peaf of an

instruction in instruction register. Pressing STEP switch
executes instruction and advances program counter; how-
ever, contents of the instruction register are left unchanged.
Switch on the control console is activated only when the
STEP light is on (operation halted).

SENSE Switches Alternate-action switches that permit manual program
1,2, 3 control whenever the sense switch jump, or jump-and-
mark, or execute instructions (JSS1, JSS2, JSS3, JSIM,
JS2M, XS1, XS2, XS3) are performed. The indicated
jump and execute operations are performed only if the
corresponding sense switch is ON.

POWER Alternate-action switch/indicator turns power supplies on
ON/OFF and off. - Indicator/switch is illuminated when power on;
indicator is off when power is off.

5.2.2 Manual Program Entry and Execution

When the computer is halted (step mode), programs and data may be read from
memory and entered into memory, and a pre-stored program may be manually executed.

To load words into memory (either instructions or data), set up the desired word in the
A, B, or X register.” Set up the appropriate store-type instruction (STA, STB, STX)
with the desired operand address in the instruction (U) register and press the STEP
switch to execute the store operation.

To display the contents of any memory cell in the A, B, or X register; set up the
appropriate load-type instruction (LDA, LDB, LDX) with the proper memory address
in the instruction register; then press the STEP switch to load the selected word into
the register.

System Reference 5-4

To manually execute a program stored in memory, set up the starting location of the
program in the program counter. When the STEP switch is pressed, the instruction con-
tained in the instruction register is executed, and the instruction of the selected loca-
tion is transferred to the instruction register. Repeated operation of the STEP switch
will then step through the program one instruction at a time. All operations such as
multi-level indirect addressing will be performed for each instruction each time the
STEP switch is operated. Note that I/O instructions that involve an asynchronous
device which transfers data in a block such as magnetic tape or the teletype generally
cannot be operated in a single-step mode.

5.2.3 Instruction Repeat

In the step mode, the instruction register contains the next instruction to be executed
when STEP is pressed. The program counter contains the location of the next instruc—
tion to be transferred to the instruction register after the current instruction is
executed.

In some cases, it is desirable to manually execute an instruction several times. When
the REPEAT switch is on, instruction register loading (when STEP is pressed) is inhibited
even though the instruction counter is advanced each time. This mode is particularly
useful for loading words into sequential memory locations, or for displaying the con-
tents of sequential memory locations, or for displaying the contents of sequential
memory cells.

To load a group of sequential memory cells, set up the appropriate store-type instruc-
tion (STA, STB, STX) in the instruction register with the relative address mode in

the m field and the base address in the a field. Repeated operation of the STEP switch
will store the contents of A, B, or X into sequential memory locations. The word
loaded on each step may be changed by entering the desired value into the operational
register for each step.

To display the contents of a group of sequential memory. cells, set up the appropriate
load-type instruction (LDA, LDB, LDX) in the instruction register, in the relative
address mode, with the base address in the instruction register and the a field = 0.
The contents of the sequential locations will be displayed in the selected operational
register with each operation of the STEP switch.

5.2.4 Sense Switches

The SENSE switches allow the operator to dynamically alter a program sequence in
either the run or step mode. The three SENSE switches provide a logical-AND func-
tion with bits 6-8 of the instruction word, and consequently can be used for various
logical branches set up on the console.

5-5

System-Reference

PROGRAMMING REFERENCE

SECTION |
GENERAL DESCRIPTION

1.1 INTRODUCTION

The DATA 620/i computer is a high-speed, parallel binary computer. Its extensive
instruction repertoire, flexible input/output system, and modular packaging make the
DATA 620/i computer ideally suited for operation as a general-purpose computer or
as a system component. The computer, simple in design, is easy to program, operate,
and maintain. As a system component, the computer is easily integrated with other
equipments through the use of standard or special peripheral interface elements.

Features of the DATA 620/i computer are:
- Fast Operation 1.8-microsecond memory cycle.
- Large Instruction Repertoire 107 standard instructions with over 128

micro-instructions and 18 optional
instructions.

- Expandable Word Length 16 or 18-bit word arithmetic.

- Modular Memory 4096 words minimum, 32768 words
maximum.

- Multiple Addressing Modes Five types: direct, indirect, relative,
index, immediate, and extended
(optional).

- Flexible I/O System 64 device addresses on the standard 1/0

bus; optional, fully-buffered input/output
and direct memory access are available.

- Extensive Software Programming and diagnostic aids such as
assembier and procedure-oriented
programs required for efficient computer
use.

- Modular Packaging Mounts in a standard 19-inch cabinet.

No special mechanical or environmental
facilities are required.

1-1 Programming Reference

1.2 PURPOSE OF THE MANUAL

This manual provides the DATA 620/i computer programmer with the information

necessary to use the DATA 620/i assembly system, the utility and program diagnostic -~ " DIRECT MEMORY ACCESS BUS (OPTIONAL)] [' VOCABLE ar
package (AID), the symbolic correction program (COR), and the symbolic tape Py 3

source correction program (EDITOR). Before this manual can be used effectively, the
programmer should be familiar with the contents of the DATA 620/ system reference

manual, which contains a detailed description of the DATA 620/i computer. [c S8]
Table 1-1 lists all manuals pertaining to the DATA 620/i computer and peripheral
controllers.
1.3 COMPUTER ORGANIZATION

P REGISTER X REGISTER A REGISTER B REGISTER
The DATA 620/i is organized with o unique bus structure, selection logic, and eight

b
registers. The organization provides universal information routing, buffered pro-

cessing, micro-programming capability, indexing without time penalty, and buffered
input/output data transfer. A unique optional facility, Micro-EXEC, is also avail-
able which permits complex algorithms to be implemented with external control f C 8US]
hardware. This capability provides increases in processing speed in excess of 400
percent over normal programmed operations.

The organization of the DATA 620/i is shown in figure 1-1. This diagram shows the

major functional elements of the machine, including the registers and busses provided] - —_—— —_
for information transfer. i 1 ! i
' [I
i | aremenc (! TIMING H
The major functional elements of the DATA 620/i, indicated in figure 1-1, are: ?SMREORY [} LREGISTRR | 1 UnmT i DECODING | 4
memory, control section, arithmetic/logic section, operational registers, internal C H i {
busses, and input/output (I/O) bus. ! T H i !
[i !
1.3.1 Memory ' i | i
| P! i
1
1 I
The internal storage of the computer consists of 4096-word modules connected to the L—p] wrREGISTER : R REGISTER i : é’gﬂmm UREGISTER | |
L and W busses. The mainframe can accommodate one 4096-word module. Addi- H ! :
. . are . . k i P
tional modules are added in an additional frame that is attached to the mainframe. ! A ' CONTROL :
The computer memory can be expanded to a maximum of 32,768 words using | ;O?:SN| 1 SECTION 1
4096-word modules. L g3ECTIONy o _ I |
Instruction words read from memory are transferred to the control section for execu- [M BUS]

tion. Words may be transferred, under program control, from memory to the
arithmetic/logic section, to the operational registers, or to the 1/0 bus. Words
may be transferred, under program control, to memory fiom the operational registers

or the 1/0 bus.

Figure 1-1. DATA 620/i Organization.

Programming Reference 1-2 1-3 Programming Reference

Table 1-1
DATA 620/i DOCUMENTS

PUBLICATION
NUMBER TITLE
VDM 3000 System Reference Manual
VDM 3001 Interface Reference Manual
VDM 3002 Programming Reference Manual
VDM 3003 FORTRAN Manual
VDM 3004 Subroutine Manual
VDM 3005 Maintenance Manuals
VDM 3006 ASR-33 Teletype Controller Reference Manual
VDM 3007 Buffer Interlace Controller Reference Manual
VDM 3008 Magnetic Tape Controller Reference Manual
VDM 3009 600 LPM Line Printer Controller Reference Manual
VDM 3010 300 LPM Line Printer Controller Reference Manual
VDM 3011 Paper Tape System Controller Reference Manual
VDM 3012 100 CPM Card Reader Controller Reference Manual
VDM 3013 Priority Interrupt Reference Manual
VDM 3014 A/D Converter Reference Manual
VDM 3015 Optical Scanner Controller Manual
VDM 3016 ASR-35 Teletype Controller Reference Manual
VDM 3017 Digital Plotter Controller Reference
VDM 3018 DDC Disc Controller Reference Manual
VDM 3019 Console Printer Controller Reference Manual

Programming Reference

When one or more optional buffer interlace controlier (BIC) is used, the system is
capable of direct transfer between memory and peripheral devices on the 1/0O bus,
concurrent with computations.

1.3.2 Control Section

The control section provides the timing and control signals required to perform all
operations in the computer. The major elements in the section are the U register,
the timing and decoding logic, and the shift control.

The U register (instruction register) is 16 bits long. This register receives each
instruction from memory through the W bus and holds the instruction during its execu-
tion. The control fields of the instruction word are routed to the decoding and
timing logic where the codes determine the required timing and control signals. The

‘address field from U, used for various addressing operations, is also routed to the

arithmetic/logic section.

The decoding logic decodes the fields of the instruction word held in U to determine
the control signal levels required fo perform the operations specified by the instruc-
tion. These levels select the timing signals generated by the timing unit.

Timing logic generates the basic 2.2-MHz system clock. From this clock, timing
logic derives the timing pulses which control the sequence of all operations in the
computer.

The shift control contains the shift counter and logic which control operations per-
formed by the shift, multiply, and divide instructions.

1.3.3 Arithmetic/Logic Section
This section consists of two elements; the R register and the arithmetic unit.

The R register receives operands from memory and holds them during instruction
execution. The operand may be either data or address words. This register permits
transfers between memory and 1/O bus during the execution of extended-cycle
instructions.

The arithmetic unit contains gating required for all arithmetic, logic, and shifting
operations performed by the computer. Indexed and relative address modifications
are performed in this section without increased instruction execution time.

The arithmetic unit also controls the gating of words from the operational registers
and the 1/O bus onto the C bus where they are distributed to the operational registers
or to memory registers. This facility is used to implement many of the micro-
instructions of the computer.

1-5 Programming Reference

1.3.4 Operational Registers
The basic DATA 620/i computer contains eight registers.

The operational registers consist of the A, B, X, and P registers. The A, B and X
registers are directly accessible to the programmer. The P register is indirectly
accessible through use of the jump class instructions which modify the program
sequence. The operational registers are described in the following paragraphs.

A register. This full-length, 16/18-bit register is the upper half of the accumulator.
This register accumulates the results of logical and addition/subtraction operations,
the most-significant half of the double-length product in multiplication, and the
remainder in division. It may also be used for input/output transfers under program
control .

B register. This full-length, 16/18-bit register is the lower half of the accumulator.
This register accumulates the least-significant half of the double-length product in
multiplication, ‘and the quotient in division. It may also be used for input/output
transfers under program control and as a second hardware index register.

X register. This full-length 16/18=bit register permits indexing of operand addresses
without adding time to execution of indexed instructions.

P register. This full-length, 16/18-bit register holds the address of the current
instruction and is incremented before each new instruction s fetched. A full com=
plement of instructions is available for conditional and unconditional modification
of this register.

S register. This five-bit register controls the length of shift instructions in
combination with the U register. This register also buffers memory from the control
unit.

1.3.5 Internal Busses

C bus. This bus provides the parallel path and selection logic for routing data between
the arithmetic unit, the I/O bus, the operational registers, and the memory registers.
The console display indicators are also driven from the C bus. Distribution of data

simultaneously to multiple operational registers is facilitated by this bus.

Sbus. This bus provides the parallel path and selection logic for routing data from
the operational registers to the arithmetic unit.

Programming Reference 1-6

W bus. The memory word (W) register is directly connected to all memory modules
through the W bus. The bus is bydirectional and time-shared among memory modules.

L bus. The memory address (L) register is directly connected to all memory modules
through the L bus. The bus is unidirectional .

1.3.6 input/Output (I/O) Bus

The bidirectional 1/O bus provides the parailel path between the computer and all
peripheral devices. This bus contains the data and control lines required for frans-
mitting ready, sense, function, and interrupt signals as well as data words between
the computer and peripheral devices.

1.3.7 Direct Memory Access (DMA)
The DMA option allows data transfer into or out of memory modules without disturbing
the contents of the operational registers. Only the L and W registers are altered.

Access to memory using the DMA facility is on a "cycle-steal" basis and requires
2.7 microseconds of processor time per transfer.

1-7 Programming Reference

SECTION 1l
DATA 620/i ASSEMBLY SYSTEM

2.1 INTRODUCTION

The DATA 620/i assembler (DAS) assists in program preparation by allowing instruc-
tions, addresses, address modifiers, and constants to be specified in a straightforward
and meaningful manner. Instruction mnemonics such as STB (store B register) are used
in place of numeric instruction codes. Various memory locations (addresses) may be
referred to by labels, not absolute locations. Constants may be entered into the
DATA 620/i without converting the numbers into binary or octal form. Useful com-
ments may be added either between symbolic statements or on the symbolic statement
itself, to allow easy program check-out and documentation.

DAS reduces much of the tedious bookkeeping associated with machine language
programming, but does not compromise the programmer's ability to fully utilize the

DATA 620/i.

The basic assembly (DAS 1) operates in a DATA 620/ system, which consists, as a
minimum, of 4096 words of memory and an on-line teletype. The standard assembly
(DAS 1-F) requires 8192 words of memory.

Provisions have been made to utilize additional facilities such as magnetic tape, card
reader, card punch, additiona! memory, and line printer if these components are

available.

DAS is a two- or three-pass assembly system, which means that the source program
must be read two or three times for complete assembly. During the first pass, values
are assigned to all labels appearing in the location field (paragraph 2.2.3) and
placed in the lebel table. During the second pass, the appropriate values for the
instruction field and the variable field (paragraphs 2.2.4 and 2.2.5) are assembled
into the object instruction and, together with the remarks field, are listed on the
printer. During pass three, the object instructions are punched onto paper tape. In
certain peripheral 1/O configurations, passes two and three are combined.

2.2 THE DAS SOURCE LANGUAGE

2.2.1 Introduction

DAS franslates symbolically coded instructions (the source program) into binary
computer instructions (the object program), Except for ceriain pseudo instructions
(paragraph 2.4), each symbglic source statement will generate one computer

instruction,

2-1 Programming Reference

Computer instructions generated by DAS fall into two categories, instructions and
data. The instructions are described in paragraph 2.3 and the data is described in
paragraph 2.,2.8.

A source statement consists of several parts, or fields. Each source statement may
contain a combination of these fields depending on the requirements of the instruc-
tion or pseudo instruction being processed. The fields are: location, instruction,
variable, and remarks fields.

2.2.2 DAS Characters

The following characters are recognized by the DAS assembler:

Alphabetic characters

ABCDEFGHI JKLMNOPQRSTUVWXYZ$
Numeric characters

0123456789

Special characters

+ (plus sign)) (right porenthesis) « (left arrow)*

- (minus sign) b (biank) \(back slash)

* (asterisk) @ (at sign) ! (exclamation point)
/ (slash) 1{left bracket) " {quotes)

. {period) [(right bracket) # {pound sign)

= {equal sign) <(less than sign) % {percent sign)

, (comma) >{greater than sign) & (ampersand)

! (prime) ? {question mark) : {colon)

{ (left parenthesis) t(up arrow)

*replaced by blank on magnetic tape.

Programming Reference

; (semi-colon)

Teletype characters
CR (carriage return)
LF (line feed)

The SYMBOLIC LISTING is formated as an 8-1/2 by 11 page with @ one inch margin
at top and bottom.

The OBJECT PROGRAMS are prepared in standard binary format,

2.,2.3 Location Field

Labels in the location field consist of from one to four alphanumeric. characters, the
first of which is alphabetic. Special characters are not allowed in a label. Addi-
tional alphanumeric characters may be added to the first four characters of the label
to form an extended label for the convenience of the programmer. However, the
assembler recognizes only the first four characters. Labels are usually attached to
only those source statements that are referred to elsewhere in the program, but this
is not a requirement. Values are attached to the labels during the first pass of the
assembler,

2.2.4 Instruction Field

The instruction field contains special operation code mnemonics which describe the

computer instructions. The same mnemonic may be used both in the instruction field
and in the location field without conflict. An asterisk (*) following the instruction
mnemonic indicates indirect addressing.

Operation code mnemonics may be redefined by the pseudo instruction OPSY
(paragraph 2.4.3).

2,2.5 Variable Field
The purpose of the variable field varies with the needs of the individual instruction.
The variable field may consist of a label, a constant, or an expression which consists

of a combination of labels and constants. The expressions that may be used in the
DAS assembly system are simifar to arithmetic expressions, except that no parentheses

2-3 Programming Reference

may be used. The following-arithmetic operovfors are available in the variable field

of DAS:

+ {addition)

- (subtraction)

* (multiplication)

/ (division)

1

All arithmetic operations are performed in the integer mode, i.e., modules 2 .
The expression A+B/C*D is equivalent to the algebraic expression AHB/C)*D. The
operations are performed from left to right with the multiply and divide operations
taking precedence over the add and subtract operations.
Access to the current value of the location counter may be gained by the special
element *, when used as the first character of the variable field. An asterisk
immediately preceding an operator is treated as the location counter rather than an

operator, Thus, the expression *+1 is interpreted as meaning the current value of the
instruction counter plus one.

Constant-generation facilities available in the DAS assembly system are described
_in the following paragraphs.

2.2.5.1 Decimal Integers. A decimal integer is an optionally signed string of

from one to six digits, the first of which is not zero.
Example: 1, 7, -3, +327

2.2,5.2 Ocral Integers. An octal integer is an optionally signed string of
from one to seven octal digifs, the first of which is always zero

Example: 07, -044, +014

2.2.5.3 Floating-Point Numbers,

Floating-point numbers can be assembled by DAS in one of the following forms:
) + integer. fraction E % exponent
) 375.64E+7 =
) 9.E-2, .1EH12
) -4.+20

Programming Reference 2-4

A right parenthesis, digit, and decimal point must be present. All other items are
optional,

Location field: blank

Instruction field: DATA

Variable field: One or more floating-point numbers separated by commas.

The format of the assembled data is shown below.
16-BIT FORMAT

1514131211 109876543210

L S Exponent + 0200 High Mantissa

L+1 X Low Mantissa

18-BIT FORMAT

1716 15141312 1110987 6543210

L - IS Exponent + 0200 High Mantissa

L+1 X Low Mantissa

The sign bit of the second word is always set to zero.
Negative data are in 1's complement form in the first word.

2,2.5.4 - Alpha Constant. An alpha constant is a string of characters
enclosed by primes (*). An alpha constant is represented internally as an 8-Bit
ASCIl Code. When one character is generated, the character is right-justified
with leading zeros. . Each memory location may contain two characters. A blank
in the string .is recognized as a character.

2-5 Programming Reference

Some examples of words generated by character constants are given below:

17 15 87 0
Al Lo o|o 000000 0[1 10000 (ﬁ] One word is generated.
0 A

‘a8 (001 1000001[11000010] One word is generated.
A B

'ABC' [2 OII 100000 l|] 10000]TI Two words are generated. Note
A B that the space .character code
: is used to fill the low-order
[ooi1 000001 1]10100000] eight bits of the second word
if an odd number (except 1)
of characters is specified
within the primes.

C Space

If the DATA 620/i has an 18-bit word length, zeros are generated in bits 16 and 17
of each word.

2.2.5.5 Address Constant. An address constant consists of a label, number or
expression enclosed in parentheses, and generates a 15-bit address with bit position
15 set to a logical 0 to indicate a direct address.

Example: (A+2), (3), (A)

A is an address symbol and its value is obfained from the Label table. If the program
is relocated, the value of the address constant is changed to agree with the location
assigned to the instruction labeled A,

2.2,5.6 Indirect Address Constant. An indirect address constant consists of an
address constant followed by an asterisk (*), and generate a 15-bit address with bit
position 15 set to a logical 1 to'indicate an indirect address.

Example: (A)*, (A+3)*, (3)*

2.2,5.7 Literals. Literals allow the programmer to refer to a constant in the
variable field and have DAS generate the data and assign a focation in memory .
Even though a literal may be used many times, only one location will be generated.

A literal reference is indicated by an equal sign (=) followed by any format of a

one-word constant (paragraph 2.2.6).
Examples: =3 -+3 =-3 =044 (A +2)* ='A' ='GO"'

Programming Reference 2-6

For certain instructions, more than one expression is desired. In these cases the
expressions are separated by commas (,).

Note that the expressions deal with the values assigned to labels, and not the con=
tents of memory locations that may be referenced by the labels,

2.2.6 Remarks Field

The remarks field is separated from the variable field by at least one blank character.
The information in the remarks field is ignored by the DAS assembler and the
programmer may put in any comments that help him in documentation and debugging.
2.3 DATA 620/i INSTRUCTIONS

2.3.1 Introduction

The following paragraphs assume the 16-bit configuration of the DATA 620/i. Each

of the four instruction types is described in the following paragraphs. Optional
Instructions are recognized only when installed in the object computer.

2.3.2 Type-1 Instructions

Type-1 instructions occupy one computer word and are addressable. DAS recognizes
the following forms:

LOCATION INSTRUCTION VARIABLE

FIELD FIELD FIELD COMMENTS

Label Inst. Mnemonic Expression The expression value is the
effective address.

Label Inst. Mnemonic Exp 1, Exp 2 The value (modulo 512) of
expression Exp 1 is added to the
contents of the X register or the
B register to form the effective
address.

(label is The expression Exp 2 must have

optional) a value of 1 or 2 to designate
the X or the B register, respec-
tively,

Label Inst. Mnemonic* Expression The expression value is the
indirect address of the operand.

Label Inst. Mnemonic (Expression)*

2-7 Programming Reference

If the first form of the instruction listed above is used, DAS will choose the address-
ing mode of the generated computer instruction according to the following rules:

a. If the specified address lies within core locations 0-2047 inclusively,
the direct address will be used.

b. If the specified address lies outside core locations 0-2047 but not
more than 512 and not less than one word beyond the current
instruction, the mode of addressing is relative to the location counter.

c. If neither condition a nor condition b is true, a 15-bit address will
be generated in memory area 0-511 (called bank 0), and the bank
0 address will be used in the instruction in the indirect mode.

Type 1 mnemonics recognized are:

LDA
LDB
LDX
STA
STB
STX
ADD
SUB

2.3.3

(load A register)
(load B register)
(load X register)
(store A register)
(store B register)
(store X register)
(add to A register)

(subtract from A register)

Type-2 Instructions

INR (increment memory word)
ERA (exclusive-OR to A register)
DRA (inclusive~OR to A register)
ANA (AND to A register)

MUL (optional multiply)

DIV (optional divide)

Type-2 instructions require two computer words. The second word is the direct or
indirect address if the instruction is a jump, jump-and-mark, or execute. The
second word of an Immediate instruction is the operand. The second word of

the byte or extended address instruction is the operand address. DAS recognizes
the following forms:

Programming Reference

2-8

LOCATION INSTRUCTION VARIABLE
FIELD FIELD FIELD COMMENTS
Label Inst, Mnemonic Expression The expression value is the
effective jump, jump-and-
mark, or execute address,
or it is the operand of an
Immediate instruction,
Label Inst. Mnemonic* Expression The expression value is the
indirect jump, jump-and-
mark, or execute address.
Label Inst. Mnemonic (Expression)*
(label is
optional)

The following type~2 mnemonics are recognized as Immediate instructions:

LDAI STAI ADDI ERAI DiVi (optional)
LDBI STBI SUBI ORAL MULI (optional)
LDXI STXI INR! ANAI

The following type-2 mnemonics are recognized as fump, jump-and-mark, and
execute instructions:

JmP IXZ JANM JS2M XAZ
JOF JSSi JAPM JS3M XBZ
JAN Jss2 JAZM XEC XXZ
JAP JSS3 JBXM X OF XSl

JAZ JMPM IXZM XAN XS2
JBZ JOFM JSIM XAP XS3

The following type~2 mnemonics are recognized as byte instructions:
SLA SSA SLAC SSAC SCAE
2.3.4 Type-3 Instructions
Type-3 instructions are two-word computer instructions with a direct or indirect

address in the second word. They differ from the type-2 instructions in that the
variable field of the symbolic instruction contains two subfields instead of one.

2-9 Programming Reference

DAS recognizes the following forms of type-3 instructions:

LOCATION INSTRUCTION VARIABLE
FIELD FIELD FIELD
Label Inst. Mnemonic Exp 1, Exp 2
Label Inst. Mnemonic* Exp 1, Exp 2
Label Inst. Mnemonic Exp 1, (Exp 2)*

(label is

optional)

DAS recognizes the following type-3 mnemonics:

Dummy conditional jumps:

JIF (jump if...)

JMIF (jump-and-mark if...) or JIFM (jump-and-mark if...)
XIiF (execute if...)

The value of the expression Exp 1 specifies which of the conditions will cause a jump,
jump-and-mark, or execute instruction. The conditions of Exp 1 have the following
values:

if OFLO set: 0001 if B=0: 0020

(8 (8)
ifA<O: 0004) X =0: 00404,
ifAzO: 0002, g ifSS1 set: 0100,
ifA=0: 00104, if S52set: 02004,

Compound conditions may be specified by adding together the values of the desired
conditions,
For example:

INSTRUCTION VARIABLE
FIELD FIELD

JIF [0222, ALFA

Programming Reference 2-10

Where 0220 = 0200 + 020 + 02 means: take the next instruction from address ALFA,
if and only if, all three of the following conditions are true:

The A register contains a positive number: 0002
The B register contains zero: 0020
Sense switch 2 is set 0200

The value of the expression Exp 2 is a direct or indirect jump, jump-and-mark, or
execute address.

The following type-3 mnemonics are recognized as extended address instructions
(optional):

LDAE STAE ADDE ERAE DIVE
LDBE STBE SUBE DRAE MULE
LDXE STXE INRE ANAE

Type-3 instructions also include the following 1/O instructions:

SEN (sense for state of an /O device)
IME (input to memory)
DME (output from memory)

The value of the expression Exp 1 in the variable field of the instruction is the
device subcode.

The value of the expression Exp 2 is a direct or indirect jump or memory address,
2.3.5 Type-4 Instructions

Type-4 instructions are one-word instructions which do not refer to a memory
location. DAS recognizes the following formats:

2-N Programming Reference

LOCATION INSTRUCTION VARIABLE
FIELD FIELD FIELD COMMENTS
Label Inst. Mnemonic Variable field is blank,
Label Inst, Mnemonic Expression The value of the expression
specifies either source/
destination registers and
overflow conditions, a shift
count, an I/O device or
function, or a halt number.
(label is
optional)

DAS recognizes the following type-4 mnemonics:

TZA, TZB, T1ZX (clear register)

IAR, IBR, IXR (increment register)
DAR, DBR, DXR (decrement register)
CPA, CPB, CPX {complement register)
TAB, TBA, TAX, TXA, TBX, TXB (register transfer)
SQF, ROF (overflow)
HLT, N@P (control)

The following instruction mnemonics are functionally the same as the preceding
register change instructions except that these mnemonics allow the user to specify
multiple-source and/or destination registers, or specify whether or not function
execution is dependent on the overflow conditions:

INSTRUCTION
MNEUMONIC INSTRUCTION FUNCTION
MERGE Take the inclusive-OR of the contents
of all specified source registers and
deliver the result to each of the
specified destination registers.
COMPL Like MERGE, except the result is ones-
complemented before delivery,
INCR Like MERGE, except + 1 is added to
result before delivery.
DECR Like MERGE, except + 1 is subtracted
from the result before delivery.
ZERD Zero each of the specified destination
registers.,

Programming Reference 2-12

The value of the expression used in the variable field of the instruction is interpreted
by DAS as having the following meaning:

Ifbit0O=1: A is a destination register

Ifbit1=1: B is a destination register

fbit2=1: X is a destination register

If bit3=1: A is a source register

If bitd=1: B is a source register

Ifbit5=1: X is a source register

Ifbitg=1: The function is to be performed if and only if

the overflow flip-flop is set to 1.

The instruction generated by DAS has the following format. Bits 8, 5, 4, 3, 2, |,
and O are extracted directly from the corresponding bits of the expression value.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rooo o 0
0 0 0 O[1 o0 1|VFFf XBAXGBA

0
I—l 8—bh‘-| Conditional ongTFuncHon Source Destination

Option OQverflow Registers Registers

The shift mnemonics recognized by DAS are listed below. The expression value
represents the number of positions to be shiffed. A value outside the range of 0-31
is reduced modulo 31 and an error code is printed.

LSRA (logical shift right, A)
LRLA (logical rotate left, A)
LSRB (logical shift right, B)
LRLB (logical rotate left, B)
ASRA (arithmetic shift right, A)
ASLA (arithmetic shift left, A)
ASRB (arithmetic shift right, B)
(

ASLB arithmetic shift left, B)

- 2-13 Programming Reference

LOCATION INSTRUCTION VARIABLE
FIELD FIELD FIELD COMMENTS
Label Inst. Mnemonic Variable field is blank ,
Label Inst. Mnemonic Expression The value of the expression
specifies either source/
destination registers and
overflow conditions, a shift
count, an }/O device or
function, or a halt number.
(labet is
optional)

DAS recognizes the following type-4 mnemonics:

TZA, TZB, TZX
IAR, IBR, IXR
DAR, DBR, DXR
CPA, CPB, CPX

SQOF, RQF
HLT, N@P

(clear register)
increment register)
decrement register)
complement register)

overflow)
control)

(
(
(
TAB, TBA, TAX, TXA, TBX, TXB (register transfer)
(
(

The following instruction mnemonics are functionally the same as the preceding
register change instructions except that these mnemonics allow the user to specify
multiple-source and/or destination registers, or specify whether or not function
execution is dependent on the overflow conditions:

INSTRUCTION
MNEUMONIC

INSTRUCTION FUNCTION

MERGE

COMPL

INCR

DECR

ZERD

Programming Reference

Take the inclusive-OR of the contents
of all specified source registers and
deliver the result to each of the
specified destination registers.

Like MERGE, except the result is ones-
complemented before delivery.,

Like MERGE, except + 1 is added to
result before delivery.

Like MERGE, except + 1 is subtracted
from the result before delivery.

Zero each of the specified destination
registers,

The value of the expression used in the variable field of the instruction is interpreted
by DAS as having the following meaning:

Hbit0=1: A is a destination register

Ifbit1=1: B is a destination register

Ifbit2=1: X is a destination register

Ifbit3=1: A is o source register

Ifbitd=1: B is a source register

1fbit5=1: X is a source register

Ifbit8=1: The function is to be performed if and only if

the overflow flip-flop is sef to 1.

The instruction generated by DAS has the following format, Bits 8, 5,' 4,3,2,1,
and O are extracted directly from the corresponding bits of the expression value,

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
S 0
1o olo o o0 ol1 o 1|V xsAXGBEA

l.] 8_bit.| Conditional on——TFuncﬁon Source Destination

Option Overflow Registers Registers

The shift mnemonics recognized by DAS are listed below. The expression value
represents the number of positions to be shifted. A value outside the range of 0-31
is reduced modulo 31 and an error code is printed.

LSRA (logical shift right, A)
LRLA (logical rotate left, A)
LSRB (logical shift right, B)
LRLB (logical rotate feft, B)
ASRA (arithmetic shift right, A)
ASLA (arithmetic shift left, A)
ASRB (arithmetic shift right, B)
ASLB (arithmetic shift left, B)

2-13 Programming Reference

LLSR (long logical shift right)

Lk (long logical rofate left) 2.4 DAS PSEUDO INSTRUCTIONS
" SR (long arithmetic shift right)
ASL (long arithmetic shift left) 2.4.% General

The following set of pseudo instructions is provided to allow the DATA 620/i

Th . . _
e following single-word input/output instructions are recognized by DAS. The programmer complete control of the assembly process. The pseudo instructions

expression value specifies the 1/0 function (EXC instruction) and device: are divided into the following groups:
EXC (external control 1/O function and device) - Labe! Definition
- Instruction Definition
INA (input fr.om the selected 1/O device is inclusively- - Location Counter Control
ORed with the contents of A) - Data Definition
INB . - Memory Storage Reservation
(input f!:om the selected I/0O device is inclusively- - Conditional Assembly
ORedwith the contents of B) - Assembler Control
~ Subroutine Control
INAB (input fr.om the selected 1/O device is inclusively- ~ List and Punch Controls
ORed with the contents of A and with the contents
of B) 2.4.2 Label Definition
ClA (A is cleared, then the input data is placed in A) The label table is a list of labels that occur in the source program. To each label,
cIB L there is a corresponding value, usually an address. The programmer may assign
(B is cleared, then the input data is placed in B) arbitrary values to labels by means of the pseudo instructions described in the
following paragraphs.
CIAB gA and B are cleared, then the input data is placed)
in both registers) 2.4.2.1 EQU pseudo insiruction
DAR (output from A) Location Field: a label
o8 Instruction Field: EQU
(output from B) Variable Field: An expression
PAB (the inclusive-OR of the A and B is out The label is placed in the label table and assigned the value of the expression in
put to the P P

the variable field., If the label is already in the label table, an error message
(DD) is printed and the value of the expression replaces the value in the the table.
Any label appearing in the expression must have been defined previously, for correct

selected device)

assembly ,

2.4.2.2 SET pseudo instruction

Location Field: a label
Instruction Field: SET
Variaoble Field: an expression

Programming Reference 2-14
2-15 Programming Reference

If the label in the location field has not yet appeared in the location field in any
instruction, this label is entered into the label table and assigned the value of the
expression in the variable field. If the label is already in the label table the value
of the expression in the variable field replaces the previous value of the label. Any
labels appearing in the variable field must have been defined previously, for correct
assembly,

EQU and SET are essentially the same except that redefinition of a label is permitted
by SET without an error message.

2.4.2.3 MAX pseudo instruction

Location Field: a label
Instruction Field: MAX
Variable Field: two or more expressions separated by commas,

The label in the location field is assigned the greatest of the algebraic values of

the expressions appearing in the variable field. All labels appearing in the variable
field must have been previously defined, for correct assembly, Redefinition of the
label is permitted by the SET pseudo instruction (paragraph 2.4.2.2).

2,4.2.4 MIN pseudo instruction

Location Field: a label
Instruction Field: MIN
Variable Field: two or more expressions separated by commas

The label in the location field is assigned the smallest of the algebriac values of the
expressions appearing in the variable field. All labels appearing in the variable

field must have been previously defined, for correct assembly. Redefinition of the
label is permitted by the SET pseudo instruction (paragraph 2.4.2.2).

2.4.3 Instruction Definition

The DATA 620/i programmer may redefine a standard instruction mnemonic with the
pseudo instruction OPSY.,

2.4.3.1 QPSY pseudo instruction

Location Field: a label
Instruction Field: @PSY
Variable Field: an instruction mnemonic

Programming Reference 2-16

The label in the location field becomes an instruction mnemonic, with the same
definitions as the mnemonic in the variable field. This pseudo instruction is used
to redefine the standard instruction mnemonics.

Examples: CLA DPSY LDA
CLA BETA

2.4.4 Location Counter Control
Five pseudo insfructions are provided for controlling the DAS location counters (LC) .
Multiple location counters are provided in the DAS assembler, along with pseudo

instructions to preset or modify the values of an individual location counter.

The following table lists the five LC labels which are standard in the DAS system.
These LC labels need not be created by the DATA 620/ programmer.

1C LABEL INITIAL VALUE INTENDED USE

SYQE 00001

Controls the assignment of locations to any
system parameters desired by the user,

(8)

IAQR 00100

Controls the assignment of locations to

(8) indirect pointers.
LT@R 01000(8) Controls the assignment of locations to literals,
COMM 02000(8) Controls the assignment of locations within an
interface area which is common to two or more
programs.
Blank 04000(8) The blank location counter is used initially by

DAS for assigning locations. This is the counter
normally in use by DAS unless the programming
tells it to do otherwise with USE pseudo
instruction,

In addition, to the five standard location counters, the DAS programmer may create
up to eight of his own location counters. This allows the programmer to creote
complex relocatable and overlay programs within a single assembly .

2-17 Programming Reference

At the beginning of an assembly, there are no created location counters, DAS
uses, at any time, three location counters for location assignment. The IADR and
LT@R location counters are always in use. A third location counter is used to
assign locations to generated instructions and to generated data (except literals and
indirect pointers). The biank location counter is initially used by DAS to control
this function until another LC symbol is so designated by the pseudo instruction
USE (paragraph 2.4.4,3),

For a straightforward program which uses one LC, complete control over the LC is

maintained by pseudo instructions PRG (paragraph 2.4.4.,1) and L@C (paragraph
2.4.4.2),

2.4.41 @RG pseudo instruction

The location counter that is currently in use is set to the value of the expression
in the variable field. If o label appears in the location field, the label is set to
the value in the variable field, If a label appears in the expression, the label
must have been previously defined for correct assembly .,

Location Field: label or blank
Instruction Field: @RG

Variable Field: an expression

2.4.4.2 L@C pseudo instruction

The LPC pseudo instruction causes instructions and/or data following LOC to be
generated as if the PRG pseudo instruction had been used to change the current
LC value. However, the value of the LC is not changed by the LBC pseudo instru-
tion: and the instructions and/or data generated are located in memory at the LC
address,

The LAC pseudo instruction is used if the instructions and data following the LOC
address are to be moved to the LBC address by the object program before execution.
If a label appears in the variable field, the label should have been previously
defined for correct assembly,

The L@C pseudo instruction may not be used with a relocatable program.
Location Field: labe! or blank

Instruction Field: LGC
Variable Field: an expression

Programming Reference 2-18

2.4.4.3 BEGIN pseudo instruction

The BEGIN pseudo instruction allows the DAS programmer to create a new location
counter or to redefine the value of any location counter before using it. The
location counter is given a value equal to the expression in the variable field.
BEGIN does nothave any effect on the location counter currently being used.

Once a location counter has been used by a DAS program for location assignment,
the value of that location counter may not be redefined by the BEGIN pseudo
instruction. If a label appears in the expression in the variable field, the label
must have been previously defined for correct assembly.

2.4.4.4 USE pseudo instruction

The USE pseudo instruction causes DAS touse the location counter designated in the
variable field o assign locations to the instructions and data (except literal and
indirect pointers) following USE.

Location Field: blank
instruction Field: USE
Variable Field: blank, CBMM, SY@R, or a created LC label

If the variable field is the character string PREV, then the LC used previously is
recalled. Only one previous usage is remembered. Thus, the sequence

USE A or USE C

USE B USE A

USE PREV USE B
USE PREV
USE PREV

are both equivalent to USE A,
2.4.5 Data Definition

2.4.5.1 DATA pseudo instruction

A data item may be a direct or indirect address constant (paragraph 2.2.5.4 and
2.2.5.5.) or it may be an expression.

If a label appears in the location field, the labe! is assigned to the memory location
of the first generated word.

2-19 Programming Reference

Location Field: a label or blank
Instruction Field: DATA
Variable Field: one or more data items separated by commas

2.4.5.2 PZE pseudo instruction

The PZE (plus zero) pseudo instruction is essentially the DATA pseudo instruction
except that the sign bit of the data word is always set to zero (plus).

Location Field: a label or blanks
Instruction Field: PZE

Variable Field: one or more data items separated by commas.

2.4.5.3 MZE pseudo instruction

The MZE (minus zero) pseudo instruction is essentially the DATA pseudo instruction
except that the sign bit of the data word is set to one (minus).

Location Field: a label or blanks
Instruction Field: MZE
Variable Field: one or more data items separated by commas

2.4.6 Memory Storage Reservation

2.4.6.1 BSS pseudo instruction

BSS causes the location counter to be increased by the value of the expression in the
variable field. If a label appears in the location field, it will be assigned the value
of the location counter prior to the increase in the location counter. (The location
counter is always set at the address of the next available word.)

Location Field: a label or blanks
Instruction Field: BSS

Variable Field: an expression

2.4.6.2 BES. pseudo instruction

BES causes the location counter to be increased by the value of the expression in the
variable field. [f a label appears in the location field, the label is assigned to the
address value of the incremented location counter minus one.

Programming Reference 2-20

Location Field: alabel or blanks
Instruction Field: BES
Variable Field: an expression

2.4.6.3 DUP pseudo instruction

Location Field: blank
Instruction Field: DUP
Variable Field: one of three forms, as follows:

Form 1: No address fields. The instruction is ignored.

Form 2: One address field. Example: DUP, n (the next source
statement is duplicated n times).

Form 3: Two address fields. Example: DUP, n, m (the next m
source statements are duplicated n times where m=< 3,

n<32,767.) -If either field contains a zero the field
will be treated as though a one were present.

2.4.7 Conditional Assembly

The following five pseudo instructions are provided to conditionally assemble
various portions of a DATA 620/i program,

2.4.7.1 IFT and IFF pseudo instructions

Location Field: blank
Instruction Field: [FT or IFF
Variable Field: one, two, or three expressions separated by commas.

IFF (if false) is the logical complement of the IFT (if true)
instruction

2-21 Programming Reference

The instruction

INSTRUCTION | VARIABLE
FIELD FIELD

IFT | A c

means: include the next line of code if A< B and B=<C. The f
- A/ ’
A #B. The form A is true ifA # 0, otherwise false. erm B means

The following are examples of frequently used forms:

INSTRUCTION VARIABLE
FIELD FIELD COMMENTS
IFF A,, B for A=B
IFT A, B, B for A<B
IFT 0, A, B for A<B and A>0
IFF A for A=0
2.4.7.2 GBTIB pseudo instruction

GCPTD is used to skip more than one instruction. GOTP, which usually follows an
IFT, or IFF pseudo instruction, may not be used to iump to an earlier point in the
program, All instructions following G@T@, up to but not including the first instruc -
tion containing the designated symbol in its location field, are skipped.

The instructions that have been ski i
pped are listed, unless suppressed by a co
following the symbo! in the variable field i) "
, or the SMR i
barogroch 34007, e Y pseudo instruction

Label Field: blank

Instruction Field: G@TE®

Variable Field: one of forms a) symbol
b) symbol,
c) decimal integer
d) decimal integer

2.4.7.3 CBNTand NULL pseudo instructions

The Cg‘bNT (continue) or NULL pseudo instruction provides a target for a previously
appearing GBTA. No object data is generated with the C@ONT or NULL pseudo

Programming Reference 2-22

instructions. The NULL instruction will not be listed if the SMRY pseudo instruc-
tion is in effect.

Location Field: blank
Instruction Field: C@NT or NULL
Variable Field: decimal integer or label

Example: N EQU 16
IFT N-16 N-16=0 (FALSE)
G@Tg YYY G@ INCLUDE C@DING F@R
18 BIT
* (C@DING FOR 16 BIT)
IFF N-16 N-~16=0 (FALSE)
G@TY 777 BY PASS 18 BIT C@DING
*YYY (CPDING FOR 18 BIT)
Yoy4 CONT COMMON C@DING
2.4.8 Assembler Control
2.4.8.1 END pseudo instruction

DAS requires the END pseudo instruction as the last source statement in the program.
The value of the expression in the variable field is used by the loader as the entry
point into the program, after the program has been loaded into the DATA 620/i.

A blank expression field designates location 00000 as the entry point.

Location Field: blank
Instruction Field: END

Variable Field: an expression

2.4.8.2 M@RE pseudo instruction

MQ@RE is used to inform DAS that additional inputs are to be placed in the source
input device. The DAS assembly system executes a halt to allow the additional
source statements o be placed in the input device. Assembly resumes when the
RUN pushbutton on the computer control console is pressed. This pseudo instruction

is never listed.
Location Field: blank

Instruction Field: M@RE
Varioble Field: blank

2-23 Programming Reference

2.4.9 Subroutine Control

The three pseudo instructions provided for the creation and use of closed subroutines
are described in the following paragraphs.

2.4.9.1 ENTR pseudo instruction

ENTR causes DAS to assemble a closed subroutine. The label in the location field
is the name of the subroutine. The ENTR generates the linage word (zero) in the
object subroutine.

Location Field: label
Instruction Field: ENTR
Variable Field: blank

2.4.9.2 RETU pseudo instruction

RETU is used to return from g closed subroutine. An unconditional branch is
generated to the value of the expression in the variable field.

Location Field: label or blank
Instruction Field: RETU

Variable Field: an expression

2.4.9.3 CALL pseudo instruction

If a label appears in the location field, the label is entered into the label table

and assigned the present value of the {current) location counter. The first subfield
must contain a valid label (the name of g subroutine). The list subfields may contain
any valid DATA items (paragraph 2.4.5.1),

Location Field: a label or blank
Instruction Field: CALL
Variable Field: one or more subfields, as follows:

a. symbol (required)
b. parameter list {optional)
c. error return |ist (optional)

Example: » CALL, FUNC, X, Y + 1, (ERR), (GOGF)*

Programming Reference 2-24

This produces a machine code identical to that which would be obtained by:

, JMPM, FUNC
, DATA, X, Y + 1, (ERR), (GO@F)*

2.4.10 List and Punch Controls
The following eight pseudo instructions provide the DATA 62.0/i programmer
complete control over the listing and punching functions during program assembly .

These controls are operative only during the second pass of DAS.

2.4.10.1 LIST pseudo instruction

LIST informs the DAS assembly system that a program listing is to be produced.
DAS is initially in a LIST condition.

Location Field: blank
Instruction Field: LIST
Variable Field: blank

2.4.10.2 NLIS pseudo instruction

NLIS suppresses further listing of the program.
Location Field: blank
Instruction Field: NLIS
Variable Field: blank

2.4.10.3 PUNC pseudo instruction

The PUNC pseudo instruction produces an object paper tape program from the DAS
assembly system. DAS is initially in @ PUNC condition.

Location Field: blank
Instruction Field: PUNC
Variable Field: blank

2-25 Programming Reference

2.4,10.4 NPUN pseudo instruction

NPUN suppresses further object paper tape output from the DAS assembly system.
Location Field: blank
Instruction Field: NPUN
Variable Field: blank

2.4.10.5 SPAC pseudo instruction

The listing device is spaced by the number of lines in the variable field. The SPAC
pseudo instruction itself is not listed,

Location Field: blank
Instruction Field: SPAC

Variable Field: an expression

2.4.10.6 EJEC pseudo instruction

The EJEC pseudo instruction restores the listing device to the top of the form.
EJEC itself does not appear on the listing.

Location Field: blank
Instruction Field: EJEC
Variable Field: blank

2.4.10.7 SMRY pseudo instruction

SMRY suppresses the listing of source statements which have been skipped by the
condition assembly controls (paragraph 2.4.8), and the listing of the symbol table
on pass 1.

Location Field: blank
Instruction Field: SMRY
Variable Field: blank

2.4.10.8 DETL pseudo instruction

DETL removes the effect of the SMRY pseudo instruction {(paragraph 2.4.10.7).
That is, allsource statements are listed. The normal mode of operation of the
DAS system is the DETL mode.

Programming Reference 2-26

Location Field: blank
Instruction Field: DETL
Variable Field: blank

2.4.10.9 READ pseudo instruction

DAS is initially set to process up to 80 characters per line. This instruction will
permit n number of characters from each source line to be processed by the assembler.
If n is less than 20 or greater than 80, the number of characters read will be reset

to 80 and a SZ message will be listed. A SMRY pseudo instruction will suppress

the listing of READ cards during pass 2, unless there is a size error message.

Paper Tape:
Location Field: blank
Instruction Field: READ
Variable Field: n
Cards:

DAS is initialized to 026 keypunch codes

INSTRUCTION VARIABLE
FIELD FIELD ACTION INITIATED

Reads 80 columns of 029 codes,
in all succeeding cards.

READ 80,29

READ 72,26 Reads 72 columns of 026 codes,
in all succeeding cards.

READ 29 Does not change number of
columns read, does change type
of codes.

READ 80 Reads 80 columns, does not

change codes.

If the code type is not 26 or 29 the assembly will stop with A, B, X, and U registers
equal to 26. At this time the card may be corrected and put back in the card
reader. Pressing the RUN button will continue the assembly.

2-27 Programming Reference

2.5 SOURCE STATEMENT FORMATS

2.5.1 Punched Card Format

When input is presented to the DAS System on punched cards, the following format
rules apply. A symbolic card consists of four fields: location field, instruction
field, variable field, and remarks field.

2.5.1.1 Location Field: This field is used to attach a labe! name or o target
number (refer to the GBT@ pseudo instruction, paragraph 2.4.7.2) to a source
statement. Use of the location field is optional, but if used, the label or number
must begin in column 1 and must not extend beyond column 6 of the punched card.

2.5.1.2 Instruction Field. The instruction field, beginning in column 8
holds a mnemonic representing the computer instruction or a DAS pseudo insfruc’fion
This field must not extend beyond column 14. Indirect oddressing is indicated by c1n'
asterisk(*), following the instruction mnemonic.

2.5.1.3 Variable Field. The variable field begins in column 16 and ends
with the first blank which is not contained within a character constant. The contents
of the variable field vary according to the instruction and will normally consist of
one or more subfields, separated by commas. The variable field is not required for
all instructions.

2'.5. i ..4 Remarks Field. The remainder of the card, following the variable
.Flelld, if present, or starting in column 17, may be used for commentary. This field
is ignored by the DAS, but will appear on the listing.

2,5.1.5 Comments statement. An entire source card may be used for
commentary by placing an asterisk as the first non-blank character in the location
field. The contents of the statement will be ignored by DAS, but will appear on the
output listing.

2.5.2 Paper Tape Format
Aln.alfernch've, column~independent, imput form is provided by punched paper tape,
which may be conveniently prepared on the Teletype. The term "code line” will be

used within this section instead of "symbolic card”, to indicate a source statement
on paper tape.

Programming Reference 2-28

2.5.2.1 Paper tape code line. The maximum length of the code line, in the
DAS system, is 80 characters, plug the line feed characters.

Carriage
Location Instruction Variable Remarks Return/
Field Field Field Field Line Feed

The carriage return (CR) character should be used preceding the line feed (LF) charac-
ter for typeout control.

2.5.2.2 Location Field. The location field may contain a label, an extended
symbol, or a target number. The first four non-blank characters are used as the label.
The location field is void if the first non-blank character of the code line is a comma.

2.5.2.3 Instruction Field. The instruction field may contain a mnemonic, or
a mnemonic followed by an asterisk (*) which indicates indirect addressing .

2.5.2.4 Variable Field. The variable field may contain one or more subfields
separated by commas. The variable field is terminated by either a blank (which is not
part of a character constant), a CR or a LF. Each subfield may contain an expression
or a constant of any type, or may be voided by using adjacent commas.

2.5.2.5 Remarks Field. The remarks field consists of any text between the ter-
* minating blank of the variable field and the next CR or LF character and is ignored by

DAS.

2.5.2.6 Comments Line. If the first non-blank character on a code line is an

asterisk (*), the entire line is ignored by the DAS system, but will appear on the output
listing. ’

2.6 DAS OUTPUT LIST

2.6.1 DAS Source Listing

The DAS assembly system allows the programmer to obtain an on-line listing of his pro-
gram, either in parts, or the entire program, as the program is being assembled. The
symbolic (source) program and the object (absolute) program are listed side-by-side on

the listing device (either teletype or printer).

Error analysis is performed during assembly and, as errors are detected, error codes
(paragraph 2.6.2), are printed on the line following the source/object information.

2-29 Programming Reference

The list controls pseudo instructions: LIST, NLIS, SPAC, EJEC, SMRY, and DETL are
described in paragraph 2.4.10 and subparagraphs.

The format of the data on the output listing is:

OBJECT ADDRESS
LOCATION CODE MODE SOURCE STATEMENT COMMENTS
014000 , DRG , 014000
014000 000000 ABS , ENTR ,
014001 001002 , JAP* , ABS
014002 114000 R
014003 005211 , CPA B
014004 001000 , JMP* ABS
014005 114000 R
000000 , END
Address modes include:

C
E
[

R

2.6.2

- FORTRAN common reference.

- externally defined.

- indirect pointer.

- absolute/relative .

DAS Error Messages

The DAS assembly system parforms extensive syntax checking during both passes of the
assembler. During the first pass, detectable errors are listed. When an error is
defected on the second pass of DAS, the following information is listed:

Error code

- Value of location counter

- Object code when Instruction has been assembled unless o NLIS pseudo
instruction (paragraph 2.4.10.2) is in effect or a list suppress comma is
present on a GOTD pseudo instruction (paragraph 2.4.7.2).

Programmi

ng Reference

Up to fou: error messages may occur on a line of output listing. The error message is
preceded by a list of the source statement.

The following error codes are produced by DAS:

CODE

MEANING

*IL

*¢P

*SY

*EX

*Sp
*AD
*FF
*DC
*DD

*VF

*MA
*XR

*NS
*NR

*TF

*SZ

*UD

The first non-blank character on a line is !llegal, line not procassed.

The instruction code is undefined; a two-word gap is left in memory to allow
patching.

Expression contains an undefined label .

Expression contains the illegal appearance of two consecutive arithmetic
operators.

Itlegal use of a special character for operand in address evaluation.
Address expression in error.

Floating-point format error.

A decimal character appears in an octal constant.

Illegal redefinition of a lable or location counter.

Instruction contains variable subfields efther missing or inconsistent with the
computer instruction type.

Inconsistent use of indexing and indirect addressing.
Address out of range for index specification.
Nested DUP statements.

No room left in label table for this label.

Tag error, undefined or illegal index.

Illegal use of literal =.

Expression value too large for size of subfield.

Undefined label in variable field of a USE instruction.

2-31 Programming Reference

CODE MEANING
*CH Illegal character in source line.

*QQ Illegal use of quotation marks.

2.7 OPERATING THE DAS ASSEMBLY SYSTEM

The assembler tape is loaded into memory using the binary load program (see section 1.

After the assembler loading is complete the normal system input, output, and listing
devices are readied, the sense switch(es) are set depending on pass. Sense switch 1

for pass 1 and sense switch 2 and 3 for pass 2. To begin assembly, RUN at location
000001 .

Termination of pass 1 and 2 is initiated whenever an END pseudo-op is detected. END
causes a HALT 0777 to be executed with the A, B and X registers set to -1 (all ones).
To initiate pass 2, reset the /0 devices, set the sense switches, and RUN. Pass 2
may be repeated as often as desired to produce extra copies of the program .

The computer will execute a HALT 0777 when a M@RE pseudo-op is detected, and
display 0170017 (octal) in the A, B and X registers. Prepare the input units and RUN.
Synchronization errors are detected on pass 2 when the address value of a label does
not agree with the value assigned on pass 1. Synchronization errors are due to mis-
reads of the source tape and cause DAS to halt with the A, B, and X registers set to
0777. To continue the assembly process, press RUN. The assembler will reset the
location counter to the value assigned during the Tst pass, print the error message SE,
and continue,

2.8 FORTRAN PSEUDO INSTRUCTIONS

2.8.1 General

The following special op codes are provided for the DATA 620/i programmer in order
to provide assembly output compatible with the FORTRAN loader.

2.8.1.1 FORT op code. This op code must be the first line of code in an assem—
bly, except for comments. Tt indicates that the output must be compatible with the
FORTRAN relocatable loader.

2.8.1.2 NAME op code. This op code must be the second line of code in an
assembly, except for comments. It contains the name of the entry point in the address
field. The label field is left blank. The name indicated is provided to the assembly
program and output for the loader in order to allow linkage to the routine from other
routines. Multiple entry points are allowed.

Programming Reference 2-32

2.8.1.3 CBMN op code. This op code is used to define common areas. The
area name is placed in the label field and the length in the address field. This op

code may be placed anywhere within the program. Only one name is defined for ?cch
use of the op code, and the names and area lengths are cumulative. H. has approxi=
mately the same effect as a series of BSS instructions, except the area is defined to be
in the common pool.

2.8.1.4 EXT op code. This op code is used to indicate that a symbo! is not)
undefined, but resident in another routine. The symbol to be so identified is placed in

the label field. The address field is unused. One such symbol can bfe defined with
each use of this op code. This code may be placed at any point within the program .

2.8.2 Relocation

In order to allow relocation, the system requires that all one word instructions that
address locations in memory use the relative forward method of addressing. All two
word instructions are legal.

2.8.3 Literals
No literals may be used. The use of immediate instructions is recommended.
2.8.4 Restrictions

All expressions containing symbols defined with COMN, or EXT instruction.s must l:.>e
the second word of two word instructions, or part of a DATA, PZE or MZE instruction.

The FORTRAN compiler uses two words for each value retained in core. For fhi_s
reason it is necessary for the assembly language writer to make aliowance for this when

defining COMM@N.

If FORTRAN had the statement: COMM@N A(4), B(3, 4) DAS should have:

A R COMN , 4*2
B R COMN , 3*4*2
2.8.5 Modes

All symbols and expressions are given a mode. This mode is either external, common,
relative, or absolute. The definition of the mode is assigned by the assembler accord-
ing to certain rules. Both symbols and expressions have a n?od'e. The mode.of an
expression is determined by the mode of the symbols used within the expression.

2-33 Programming Reference

The mode of a symbol is defined as follows:
If the symbol is defined with the EXT op code the mode is E.
If the symbol is defined with the COMN op code the mode is C.
If the symbol is a numeric constant the mode is A.
If the symbol is * used as the current location the mode of the * is R.

If the symbol is defined by an EQU, SYN etc. the mode is that of the expres-
sion on the right side of the op code.

If the symbol is a labe! in a program the mode is R.

The mode of an expression is assigned as follows:
If the expression contains any symbol of mode E the expression is mode E.
If the expression contains any symbol of mode C the expression is mode E.
If the expression contains only mode A symbols the expression is mode A.

If the expression contains A and R symbols the mode is R if an odd number
of mode R symbols appear, otherwise the mode is A.

Certain restrictions appear within the DAS assembler when providing FORTRAN com-
patible output. The restrictions on expressions are:

No expression may contain both mode E and C symbols.
Any type E expression must consist only of the type E symbol .

No type E, C or R expression should include the multiplication or division of a
type E or C symbol .

No expression should contain the sum or difference of a mode C symbol and a
mode R symbol, or a mode E symbol and a mode R symbol .

No expression should contain the sum of two mode E, C or R symbols.

A mode A symbol may be added to or subtracted from a mode C or R symbol .

Programming Reference 2-34

Examples:

2.8.6

000000
000001
000002
000003
000004
000005
000006
000007
000010
000011
000012
000013
000014
000015
000016
000017
000017
000017
000020
000021

EEEE
CCCC
RTN
TBL
ABL
LENG

L N T T T T T T

EXT
COMN
ENTR
BSS
BSS
EQU
CALL
LDA
LDA
LDXI
LDA
DATA
DATA
DATA
DATA

50
|A|+5
*-TBL

44

CCCC+6
CCCC+6

0, 1
EEEE+4

CCCCH

, EEEE, TBL, LENG

CCCCHLENG
, TBL+LENG-5

EEEE defined as type E

CCCC defined as type C

RTN is type R, a label

TBL is type R

ABL is type R

LENG is type A, length of area

Ok, relative forward

Ittegal, one word inst, not R or A
Ok, two word instruction

Get CCCC+6 to A, legal
lllegal, value not zero

Legal

Legal

Legal, mode is R

Example of FORTRAN Compatible Assembly

000000
000017
000000
000000
000000
074025
034021
054025
064025
015000
034020
002000
000000
000026
014016
024016
002000
000000
000026
001000
000000

000000
002000
000000

mmm> X

$SE
$QS
$QE

$PE

L T L T T T

~ N o~ s

FORT
NAME
EXT
EXT
EXT
STX
LDX
STA
ST8
LDA
LDX
JMPM

DATA
LDA
LDB
JMPM

DATA
JMP

ORG
ENTR
CALL

$PE

’

, $PE+7

, SPE+4

, $PE+9

, $PE+10

, 0,1 PAR.|
, $PE+7

, $QS

$PE+7

$PE+9

$PE+10

$QE A**B SUBROUTINE

~ N s

, SPE+7

Programming Reference

000022
000023
000024
000025
000026
000027
000030
000031

Programming Reference

000001
000000
001000
000000
000000
000000
000000
000000
000000

14

’

’

DATA
JMP

DATA

END

, *=20

’

0,0,0,0

SECTION lI

AID-UTILITY AND DEBUGGING PACKAGE

3.1 INTRODUCTION
These programs are a collection of useful diagnostic and utility routines for the DATA
620/i computer. The operator can call upon a wide variety of functions to aid him in
debugging and running his programs. Specifically these programs are:

(1) Bootstrap loader program

(2) Binary load dump

(3) AID
3.2 BOOTSTRAP LOADER

This program is typically used when a "cold start" is required. A cold start usually
occurs when the specific contents of memory is not known to the operator.

The procedure for loading the program is shown below. Use only those procedures
which apply to specific system configuration.

(1a) Turn on paper tape reader.
(1b) Turn on model 33A teletype.

(1¢) Place mode! 33/35B teletype in off-line mode and press control and D,
T, and Q to initialize teletype.

1. Position the tape in the reader with the first binary frame at the read
station.

2. Set the reader control lever in the STOP or LOAD position and set the
teletype on-line. For paper tape reader, no action required.

3. Enter the appropriate bootstrap load routine into memory through the
console. See below.

4. SetA=B=0, IC=X7770, X = X7600, press SYSTEM RESET and RUN.

5. To initiate loading, set the reader control lever in the START or RUN
position.

6. A successful load of the foader and punch program is indicated by a halt
at X7600 with B = 0 and the reader halted.

3-1 Programming Reference

7. Common causes for failure are:

a. The proper bootstrap load routine was not in memory.

b. The bootstrap was not positioned correctly.

c. The registers were not set correctly.

d. The teletype was not 'on-line’.

DATA 620/i BOOTSTRAP LOAD ROUTINES
HIGH SPEED | MODELB |MODEL A
LOCATION READER TELETYPE |TELETYPE SYMBOLIC

X7756 102637 102601 102600 READ, CIB, RDR
X7757 004011* 004011* | 004011+ . ASLB, NBIT-7
X7760 004041 004041 004041 , LRLB, 1
X7761 004446 004446 004446 , LLRL, 6
X7762 001020 001020 001020 ., JBZ, SEL
X7763 0X7772 0X7772 0X7772
X7764 055000 055000 055000 , STA, 0,1
X7765 001010 001010 001010 . JAZ, LHLT+1
X7766 0X7600 0X7600 0X7600
X7767 005144 005144 005144 , IXR,
X7770 005101 005101 005101 ENTR, INCR, 1
X7771 100537 102601 100000 SEL , SEL, RD@N
X7772 101537 101201 101100 . SEN, IBFR, READ
X7773 0X7756 0X7756 0X7756
X7774 001000 001000 001000 , JMP, *-2
X7775 0X7772 0X7772 0X7772

*For 18-bit computers insert 4013.
X =0 for a 4K memory, X =1 for an 8K memory, etc.

Programming Reference 3-2

This example would result in the first element of common being the integer
variable 1; the next five elements of common being the real vector array A;
and the next element in common being the real variable B.

3.4 EQUIVALENCE STATEMENT

Form: EQUIVALENCE (k), (kz), . .., (k.), where each (k) is a list of two or more
non-dummy variables and/or array element Rames, separated by commas. Subscript
expressions of array element names must be non-zero, unsigned integer constants. A
two dimensiona! array may be referred to by using a single subscript, giving the ele-
ment number within the array, if desired.

The effect of the EQUIVALENCE statement is to cause the came area of memory to be
shared by two or more entities. Each element of the Ki list is assigned the same (or a

part of the same) storage area.

More than one EQUIVALENCE statement is permitted in a program, but it may only be
preceded by a SUBROUTINE, FUNCTION, DIMENSION, COMMON or prior

EQUIVALENCE statement.

Example:

DIMENSION A(5), 11 (3,3), BI(3)
COMMON 8, BI, B2
EQUIVALENCE (X,A (2),Y), (B, C2, F5), (11 (5), B2)

The effect of an EQUIVALENCE statement upon common assignments, may be the
lengthening of common. This lengthening is permitted only if it increases common in
the same direction as additional common elements would. Thus, in the example, the
equivalence (B, 11 (5)) would have been invalid. 1t is also invalid to equate two ele-

ments of the same array to each other.

3-3 FORTRAN Reference

3.3.2

3.3.3

3.4

Procedure to Punch Program Tapes

Initialize the paper tape punch and/or set the teletype 'on-line'.

Set the A register to the address of the first word to be punched. Set the
B register to the address of the last word to be punched. Set the X

register to the address of the first instruction to be executed (ot load time).

Set the instruction counter = X7404 press SYSTEM RESET and RUN.

The specified memory locations will be punched and the computer will
halt at X7404 with the original parameters in the registers.

To punch noncontiguous memory areas, set the X register to -1 (177777)
for all but the last area to be punched.

Procedure to Punch the Bootstrap Loader

Initialize the paper tape punch and/or set the teletype 'on-line'.
Set the instruction counter = X7400, press SYSTEM RESET and RUN.
The loader bootstrap will be punched and the computer will halt at X7404.

The binary punch routine is punched following the bootstrap by setting
A = X7400, B = X7600, X = 00000, and press RUN.

AID Il PACKAGE FOR THE DATA 620/

To enter set IC = 0X6000, where X = 0 for 4 K memory, X =1 for 8K
memory, etc., and press RUN.

Three pseudo registers A, B, and X are used. These registers are loaded
by teletype control, or trap return. The corresponding machine registers
are loaded with the pseudo register values before any GBT@ or trap
command is executed.

Commands consist of a command letter {mnemonic) followed by a string of
octal parameters, separated by commas and terminated by a period. In
the description that follows, @ indicates a carriage return/line feed type-
out, upper case letters are command mnemonics (A), lower case letters
are octal parameters (a), letters enclosed in parentheses denote the con-
tents of the designated location. Underlined symbols denote AID H type-
outs, all others are operator entries. A parameter preceded by a minus -
indicates a negative parameter.

Programming Reference 3-4

AID Il Commands:

AWM. 2
B(B). 2
X(X). @
AA)a. @
B@®a.
X(X)a.@
Ga

Ta, . @
a (a) (A) (B) (X) @

la,b,c, .

o |©

Sa,b,c, .
L)@
Sa,b,c,d.

L@

Sa,b,0,0.E

fe

(Display valué of pseudo A.)
(Display value of pseudo B.)
(Display value of pseudo X.)
(Change value of pseudo A to a.)
(Change value of pseudo B to a.)
(Change value of pseudo X to a.)

(Preset A to (A), B to (B), X to (X) and go to
location a.)

(Preset registers and go to location b. If and
when location a is reached, save and type loca-
tion a, the contents of a, and the current values
of the registers. (Trap to a from k.))

(Continue trap from last breakpoint location to
new breakpoint location a. (Present and save
registers as before.))

(Initialize locations a through b (set to c).)

(Search locations a through b for words equal
to c. Type out the location (L) and contents
of each word thus found.)

(Search locations a through b for words equal

to c. Parameter d is used as a mask (comparison
is made only for those bit positions in memory
which have ones in the corresponding bits of

the mask).)
(Print the contents locations of a through b.

(Search a through b for zero with a zero mask,
no bits selected.))

3-5 Programming Reference

ala)@

G+](a+])@
e ———————

a+2{a+2)@

[

.

[]
b-1Thb-1N@
b k)@
Cao.@
afa), @

WARNING

Programming Reference

(Change/display memory from location a.)
(Display next location (a+1).)

(Change a + 1 to value b and display next
location.)

(Quit (return to AID).)

3-6

SECTION |V
SOURCE TAPE CORRECTION PROGRAM

4.1 INTRODUCTION

The DATA 620/i symbolic correction program (COR) provides the DATA 620/i pro-
grammer a convenient method of adding or deleting source statements on symbolic
paper tapes, greatly reducing program preparation time. COR eliminates the task of
either completely repunching or correcting the paper tape off-line.

A statement (source statement) representing a complete line of information necessary to
compile or assemble an instruction is called a "code line". The maximum length of the
code line in the DATA 620/i programming system is 52 characters, plus the line feed
character. The code line, the basic quantity inthe COR system, may contain any
character except the line feed character, and be reproduced, deleted, or replaced.

In addition, a new code line (or lines) may be inserted into the program for complete
up-dating capability.

4.2 OPERATING PROCEDURES FOR COR

4.2.1 Loading the COR Correction System

Loading procedures are the same for all object paper tapes punched in AID format
(three bits per frame). Load the paper tape in accordance with procedures outlined in
paragraph 2.7, section Il of this manual.

4.2.2 Running the COR Correction System

After the COR program has been loaded into the DATA 620/i memory, place the source
paper to be corrected in the ASR-33 or ASR-35 teletype paper-tape reader. Set the
DATA 620/i instruction counter display to the COR symbolic location SENT+1. Before
pressing the RUN pushbutton, set sense switches 1 and 2 to the desired condition.

Sense switch settings have the following meaning:

Sense Switch 1: Off - the next code line read by COR will be reproduced.
On - the next code line (source statement) read by COR
will be deleted and not reproduced on the updated source
tape.

Sense Switch 2: Off - the computer halts between code lines, allowing the

DATA 620/7 programmer to insert new code lines into his
program. After all of the new code lines have been added,

4-1 Programming Reference

the RUN pushbutton on the DATA 620/i is pressed and the
next code line for the paper tape being updated is read
into the computer.

On - the computer does not halt between code lines.

It can be seen that it is possible to delete, insert, and replace code lines by using com-
binations of settings of sense switches 1 and 2. Each statement punched onto the upda
updated paper tape is listed on the teletype, providing the programmer with a listing of
his updated program.

Observe the following rules during operation of the COR system:

- Each code line that is inserted into the updated program should begin with
the carriage return and line feed characters.

- The setting of sense switch 1 should only be changed when the DATA 620/i
is in the halt condition.

- The setting of sense switch 2 may be changed at any time during operation
of the COR system.

- Sense switches 1 and 2 should not both be on at the same time.

A halt will occur at the end of the source paper tape being updated, regardless of the
setting of sense switch 2.

Programming Reference 4-2

FORTRAN REFERENCE

SECTION |
BASIC FORTRAN CONCEPTS

1.1 INTRODUCTION

FORTRAN is « universal, problem oriented programming language designed to simplify
the computer solution of mathematical and engineering problems. The syntactical rules
for the use of the language are rigorous and require the programmer to reduce the solu-
tion characteristics of his problem to a series of precise statements. These statements
are evaluated and interpreted by a system program (called the FORTRAN processor) and
are translated into the execution language of the computer system.

The variations between computer systems is responsible for the development of many
versions of the FORTRAN language. This condition affects the number, form and rela-
tionship of the statements acceptable to a given FORTRAN processor. It is essential,
therefore, that the programmer be familiar with the language specifications for the
system of intended use. DATA 620/} series FORTRAN conforms with the proposed
American standards for basic FORTRAN, as published by the American Standards
Association on 10 March 1965.

This manual is intended for use in DATA 620/i series FORTRAN programming fraining
classes or seminars, and as a reference for experienced programmers using the DATA
620/ series FORTRAN system.

1.2 CHARACTER SET

A FORTRAN program unit is written using the following letters, digits, and special
characters:

Letterss ABCDEFGHIJKLMNOPQRSTUVWXYZ
Digitss 0123456789
Special Characters:

(blank or space)
(equals)

{plus)

(minus)

(asterisk)

(stash)

(left parenthesis)
(right parenthesis)
(comma)

(decimal point)

+ 1

N D

-1 FORTRAN Reference

With the exception of the specific uses indicated in the following sections of this
manual, a blank character has no meaning, and may be used freely by the programmer
to improve the readability of the FORTRAN program .

The following special characters are classified as arithmetic operators and are signifi-
cant in the unambiguous statement of arithmetic expressions:

+ (addition or positive value)

- {subtraction or negative value)
* {multiplication)

/ (division)

** (exponentiation)

The special characters equals (=), open parenthesis ({), closed parenthesis ()), comma
(,) and decimal point (.), have specific application in the syntactical expression of
the FORTRAN statement. The following sections of this manual will qualify their use
in particular statements and expressions.

In addition to the FORTRAN character set, the DATA 620/i series FORTRAN system
will accept the following characters in Hollerith fields:

s, Lo %8,
1.3 LINE FORMAT

A FORTRAN program consists of a series of statements divided into physical sections
called lines, that must be coded to a precise gramatical format. FORTRAN statements
fall into two broad classes, executable and non-executable. Executable statements
specify program action, while non-executable statements describe the use of the pro-
gram, the characteristics of the operands, editing information, statement functions, or
data arrangement. The statements of a FORTRAN source program are normally written
on a standard FORTRAN coding form.

Figure 1-1 is a sample FORTRAN coding form. The coding form includes 80 columns
of information. Columns 73 through 80 are reserved for sequencing information, and
have no effect upon the generated execution program. Columns 1 through 72 contain
line information in the following format:

1.3.1 Initial Line

The first line of each statement is called an initial line. A statement may include an
initial line and continuation lines. Statements may have as many continuation lines
as required subject to the following restrictions: DO statements must be wholly con-
tained on an initial line; and the equals character (=) of a replacement statement must
appear on the initial line. An initial line may contain a statement label in columns 1

FORTRAN Reference 1-2

2 4449 4 4 JE (S U [(D JEN N B R I
s 4 4 4 R
é]]
E]] j i
&8 I e e [T R R e s S s B
c3) 171 1]] }]
Ss]]
é _.:]] Bl
W] T B0 [e et s e e A M e B
z 12 A d]]
u_g" Y))
(s} ~|
g ¥y 1133334233434 4344434
o L ~
e 4 j 1 p I
2|z R 9] ' BERE
g|2 e N] T 189 7]
& }i——ﬂ 4444 443444494
3 7]
N o]] 1111 1 71mw 1] 1 1
TN I N]]
= &« N A] ~]]]]
£4849999444999344444-
z 13 4 4 1] 1 3 1 «@ 1
el M 13 1«
3
< N o] W] % 1]
4 3l o o o] 13 N 3]]
Z SR T A R " e e A e e e e e
< x] 3 ~ 9] 4 3 1 ¥ 1 1]
S £ s] N A W ¥ 4]«] 1
a o] 1% o 4 ¢ o 1]
N i LY I I N BN o [
N] 3AN T 1373353837917
A3 N o] o W =] € « 1 &] 1]
N Y o —~ o 1
8: ¥ ¥ o 4 A X 9 K] 1 1
N R R ———;;'3—%‘--————
[y = 1 T
N n vl 4 d] \,?:"'
N o] 3 A o X M Y]
¥ o q o Jyd1n
h o O N
Y9391 144494944444-
>\< LS RS 1 =] % 1Y 1
4| J E o
N ‘EEE 11843 € 1171711
SIS L I RS I I (N s B I
§ qy ¥ I 3 o 4 N 1 7]
3 ¥ W9 3 o 4 NG
w N o+ ~ wpo~] W] N [\
& ol M I S P B (S S QY
443 4 I < R I B B B]
3 | 4 q B 4 N ¥ Y g T 7 7
g o Y o NN o H 3 o W g
« 2 ¥ oo ¥ 9 W M oW Moo B W NOY
T 3 WY § o o] 4 g W W W
10:
HHEB s
gl |8]8s 11] 1] ¥]]
glolwiolts 1 1m]]
go: 0 4 4 4 4 A 11 11 413 1 1 4 4 4
CLEQ @ gi 1 1 1 T 01 1 1 7 i 7
1-3 FORTRAN Reference

Sample FORTRAN Coding Form.

Figure 1-1.

through 5. In this case, column 6 must contain a zero digit, blank or space charac-
ter; and columns 7 through 72 may contain all or part of a statement with the excep-
tion of the restrictions noted. '

EXAMPLE ;
i 51617 10 15 20 25 30 35
N B GRS T AR T N PR I
1.3.2 Continuation Line

Continuation lines are used when additional lines of coding are required to complete a
statement originating on an initial line. There may be any number of continuation
lines per statement with the exceptions previously noted for initial lines. In a contin-
uation line, columns 1 through 5 are ignored and should, but need not be blank;
column 6 must contain any character other than a zero digit, blank or space character;
and the continued segment of the statement is contained in columns 7 through 72.
Continuation lines may only follow an initial line or another continuation line.

EXAMPLE :

1 58617 10 15 20 25 30 35

s /P NN R S BT BN I

PRI LA LT N SRR IS SPEDE BN I

e e

B L NS B
1.3.3 Comments Line

Any line with the character C in column 1 is identified as a comment line. Comments
may appear anywhere in a program, except immediately before a continuation line.
All comments lines are ignored by a FORTRAN processor, except for display purposes.
Comments may be contained in columns 2 through 72.

EXAMPLE :

! 5fel7 10 15 20 25 30 35

C. THIS, IS, A COMMENTS |LINE |

N

FORTRAN Reference 1-4

1.3.4 End Line

Any line not containing the letter C in column 1 and having only the character string
END in columns 7 through 72 is recognized by the processor as an end line. Each
FORTRAN program requires an end line to inform the -processor that it has reached the
physical end of that program.

EXAMPLE :
¥ 51s8)7 10 15 20 25 30 35
A B L D I D
1.3.5 Statement Label

Lobels permit statements to be referenced by other portions of a program. A statement
label is an integer value in the range 1 to 9999 (leading zeros or blanks are not signifi-
cant for label identification). The initial line of each statement may be given a unique
label in columns 1 through 5. The same label may not be given to more than one state-
ment in a program unit.

EXAMPLE:
W SO A= S*C+D e L
69 | W=-S*C+D v 1L
81 1 A=87C*D o ol

1-5 FORTRAN Reference

SECTION I
DATA

2.1 GENERAL

Numerical quantities, constants and variables are distinguished in FORTRAN as a
means of identifying the nature and characteristics of the numerical values encountered
in program execution. A constant is a quantity whose value is explicitly stated. A
variable is a numerical quantity referenced by name, rather than by its explicit
appearance in a program statement. During the execution of a program, a variable
quantity may assume many different values.

2.2 DATA TYPES

The DATA 620/i series FORTRAN processor recognizes two types of data, integer and
real. integer data are precise representations of integral values within the range
-32767 to +32767 (—2‘§+ 110 215 - 1). Real data are approximations of real numbers
with magnitudes in the range 0.588 x 10738 to 0.588 x 1038 (approximately) 2-127

to 2127 x (1-2-22)). Both integer and real data may assume positive, negative, or
zero values. The value zero is considered neither positive nor negative .

2.3 DATA NAMES

FORTRAN Data {constants, variables, arrays and array elements) are identified by
names.

2.3.1 Symbolic Names
Symbolic names are made up of letter or digit strings consisting of 1 to 5 characters.
The first character of the siring must be a letter. Data identified by symbolic names
are specified as being of type integer or real by the unique classification associated
with the first letter of the character string. Names beginning with the letters |, J,
K, L, M, and N are type integer; and the names beginning with any other letters are
type real.
Examples of type integer symbolic names are:

I 12A MZXF NS5

Examples of type real symbolic names are:

A B2 F5M79 AAA

2-1 FORTRAN Reference

2.4 VARIABLES

Variables are data whose values are derived and defined during program execution,
and are identified by symbolic names of the appropriate type, real or integer.

2.5 CONSTANTS
Constant data are identified explicitly by naming their-actual values. Constants do
not change in value during program execution, and are specified to be of type integer
or real.
2.5.1 Integer Constants
An integer constant is identified by a non-empty string of from 1 to 5 decimal digits
written without a decimal point and optionally preceded by a plus (+) or minus (-)
sign character.
Examples:

=217 ~-32767 +00327 512

2.5.2 Real Constants

A real constant may consist of 1 to 7 significant digits and may be identified in any
one of the following forms:

£i. * . f +j.f
+i.Exe +,fEte +i.fEte +iEte

where i, f and e are each a string of decimal digits representing an integer, fraction
and exponent respectively. The plug (+) and minus (-) sign characters are optional,
and the decimal point (.) and E characters are present in that form. If r represents
any of the forms preceding Ete, i.e., rExe, then the real constant is interpreted as
r*10%e.

Examples:
17. -25.620E-1 0.0 -51E1
+.42 -.479 -479E-3 .35E02

If a real constant is specified with more significant digits than the precision real data
allows, truncation occurs, and only the most significant digits within the range will
be represented.

FORTRAN Reference 2-2

2.6 ARRAYS

An array is an ordered set of data in 1 or 2 dimensions identified by a symbolic name.
An array declarator (see DIMENSION Statement) defines the name and size of the
array . An array name serves to identify all of the elements in the array, including
data type, real or integer. An array name cannot be used without a subscript, except
in Input/Output lists.

2.6.1 Array Element

An array element is one member of an array and is identified by a subscript appended
to the array name.

2.6.2 Subscripts

A subscript follows the array name and contains 1 or 2 subscript expressions enclosed in
parentheses. The number of subscript expressions (except in EQUIVALENCE Statements)
corresponds to the specified dimensionality of the array. Two expressions within th.e
parentheses must be separated by a comma. Subscript expressions are type infeger in
one of the following forms:

c*vak
c*v
vtk
v
k N
where ¢ and k are integer constants and v is an integer variable.
Examples:
X(2*J-3) A, J) B(20) C{L-2)
2.6.3 Dimensionality
Arrays are stored column-wise in ascending memory locations. Therefore, a 2 dimen-

sion array, A, with three rows and three columns would be stored internally in the
computer as follows:

2-3 FORTRAN Reference

Location Element
L+0 & L-1 = AT, 1)
L+2 & L+3 A2, 1)
L+4 & L+5 A@G, 1)
L+6 & L+7 A1, 2)
L+8 & L+9 A@R,2)
L+16 & L+17 A3, 3)

The position of an array element, A, i) is derived from the following formula:

A+ (=T + 1 x (j=1) x 2
where A is the location of the first element in the array; i and | are the specified row
and column subscript expressions; and | is the number of row elements defined in the
array declarator for A. In the example preceding, the position of the A(2,2) element
would be solved in the following form:

L+O+@2-1+3*(2-1))x2 =1L+8

The processor collects all constant terms in subscript expressions into the base address
of the referenced array.

*In DATA 620/i FORTRAN, a storage unit for a real or integer entity is two words in
tength.

FORTRAN Reference 2-4

SECTION i
SPECIFICATIONS AND STATEMENTS
3.1 GENERAL

Specification statements organize and classify data that will be referred to by other
statements in the FORTRAN program. Specification statements include:

DIMENSION: Names and declares the size of an array.
COMMON: Assigns varioble and/or named arrays to common storage
areas.

EQUIVALENCE: Assigns variables and names arrays to shared storage areas.

Specification Statements must appear in the FORTRAN program in the order of:
DIMENSION Statements, COMMON Statements and EQUIVALENCE Statements.

Examples:
Valid Invalid

DIMENSION D(3) COMMON A, 8, C

COMMON A, B8, C, DIMENSION D(3)

EQUIVALENCE (B, D(3)) EQUIVALENCE (8, D(3))
3.2 DIMENSION STATEMENT
Form: DIMENSION vilin), v2(i2), . . ., vqlin), where each v(i), (called an array
declarator), is composed of a declarator name v, (the name of the array), and a
declarator subscript (i). Each (i) is an unsigned integer constant or two unsigned

integer constants separated by a comma. Each constant must have a value greater
than zero and less than the limit of available memory .

A DIMENSION statement specified that the declarator names listed are arrays in the
program unit. The number of dimensions and the maximum size of each dimension is
specified by the declarator subscript associated with each declarator name.

More than one DIMENSION statement may appear in a program, but can only be
preceded by @ FUNCTION, SUBROUTINE, or a previous DIMENSION statement .

An array element is referred to by the array name qualified by a subscript to identify

the desired element. If the value of this subscript is out of the range specified by the
array declarator, the derived computational results will be unpredictable.

3-1 FORTRAN Reference

Array elements are stored column-wise in computer memory from low address storage to
high address storage. Therefore, one dimension arrays are stored sequentially in the
order &1, A2, . . ., A, while two dimension arrays are stored with the first (leftmost)

dimension varying most rapidly, i.e., At AZ']' .y, Am'l’ A],2, A2,2, ey,

A,
m’n

Example:
DIMENSION A(5), 11(3,6), C(5,10)
This specification statement indicates that A is a real vector with 5 elements;
11 is an integer matrix of size 3x6=18 elements; and C is a real matrix of size
5x10-50 elements.

3.3 COMMON STATEMENT

Form: COMMON Ay Gy - - A, where each a is a non-dummy variable or

array name.

A COMMON statement specifies that the variables and/or arrays listed are to be
assigned to storage in the memory region called COMMON. The elements named are
assigned storage relative to the common origin in the order of their appearance in the
COMMON statement of each program unit. By making use of this positional relation-
ship, more than one program unit in an executable program may reference the same
data directly.

Each entity type (real or integer) is assigned two storage locations relative to the
beginning of common, and entities of the same type in corresponding position are the
same quantity. Entities referenced by position are the correct type, if the most
recent value assignment to that position was of the same type.

The size of common in each program unit of an executable program may vary without
disturbing the specified positional relationship. The beginning of common is established
during the loading process with the program unit with the largest common region and
all other program units are adjusted to begin at this location.

A program may have more than one COMMON statement, however, it may be pre-
ceded only by o FUNCTION, SUBROUTINE, DIMENSION or a prior COMMON
statement.

Example:

DIMENSION A(5)
COMMON I, A, B

FORTRAN Reference 3-2

3.3 BINARY LOAD/DUMP

These programs are distributed in object form on a single tape labeled binary load
dump. The binary load program is in a special format called bootstrap format and the
dump program is in standard binary format.

Essentially what happens is as follows:

1. Using bootstrap loader {discussed in previous section) the binary loader is
loaded into memory .

2. Upon completion of the load process, control is transferred to the binary
loaded (recently unloaded) and;

3. It then loads the binary dump program into memory.

3.3.1 Procedure to Load Program Tapes

1. Initialize the paper tape reader and/or set the teletype 'on-line'.

2. Place the program tape in the reader and place the reader control lever
in the RUN position.

3. Set the A register-to the load mode: <0 to verify the program tape

= 0 to load the program tape and
halt

> 0 to load the program tape and
execute the program

4. Set the instruction counter = X7600, press SYSTEM RESET and RUN.,

5. A successful load is indicated by a halt at X7600 with the A register set
to the foad mode, the B register set to 0, and the X register set to the
execution address.

6. A checksum or format error causes a halt at X7600 with the 8 register set
to =1 (177777) and the X register set to the load address of the last record

read.

7. To restart, position the program tape at the previous record mark and
press RUN.

3-3 Programming Reference

SECTION IV
EXPRESSIONS AND ASSIGNMENTS
4.1 ARITHMETIC EXPRESSIONS
An arithmetic expression is formed in FORTRAN syntax by a combination of operations
and elements. The expression and its elements identify the expression to be type

integer or real.

The arithmetic operators are shown in the following table:

OPERATOR FUNCTION

+ Addition

- Subtraction
Multiplication
Division
Exponentiation

The arithmetic elements are described by the following statements:

Primary. An arithmetic expression enclosed in parenthesis, a constant, a
variable reference, an array element reference or function reference.

Factor. A factor is a primary of the forms:
primary ** primary
Term. A term is a factor of one of the forms:
term/factor
or
term*term

Signed Term. A term immediately preceded by a + or - sign.

Simple Expression. A term or two simple arithmetic expressions separated by a
+ or - sign.

Arithmetic Expression. A simple expression or a signed term or either of the
preceding, immediately followed by a + or - sign, immediately followed by a
simple expression.

4-1 FORTRAN Reference

A primary of any type may be exponentiated by an integer primary and the resulting
factor is of the same type as that of the element being exponentiated. A real primary
may be exponentiated by a real primary, and the resulting factor is of type real .
These are the only cases for which use of the exponentiation operator is defined.
Figure 4-1 gives the valid combinations for exponentiation. '

By use of the arithmetic operators other than exponentiation any admissible element
may be combined with another admissible element of the same type.

A part of an expression is evaluated only if it is necessary to establish the value of the
expression. The rules for formation of expressions imply the binding strength of the
operators. The range of the subtraction operator is. the term of the operator that
immediately succeeds it. The evaluation may proceed according to any valid forma-
tion sequence. Use of an array element name requires the evaluation of its subscript.
The type of the expression in which a function reference or subscript appears does not
affect, noris it affected by the evaluation of the actual arguments of subscript. An
element whose value is not mathematical ly defined cannot be evaluated.

The following rules represent the derivation of all permissible expressions:
A variable, constant or function standing alone is an expression.
AQ1) JOBNO 217 17.26 SQRT(A+B)

If £ is an expression whose first character is not an operator, then +E and -E
are expressions.

-A(1) +JOBNO ~217 +17.26 -SQRT(A+B)
If E is an expression then (F) is an expression meaning the quantity E taken as
a unit.

(-A) -(+JOBNO) -(X+Y) (A-SQRT(A+B))

If E is an expression whose first character is not an operator, and F is any
expression, then: F+E, F~E, F*E, F/E and F**E are all expressions.

-(B(l, J)*SQRT(A+B(K, L))) 1.7E-2%*(X+5.0)
-(B (I+e, 3* J+K) +A) ;
il Real Integer
Base Real Valid Valid
Integer Invalid Valid

Figure 4-1. Exponent

FORTRAN Reference 4-2

The mode of an expression may be either integer or real, and is determined by the
modes of its elements, which must be the same with the following exceptions:

A real quantity can appear in an integer expression only as an argument of a
function.

[+LFUNC (B)

An integer quantity can appear in a real expression only as an argument of a
function, as a subscript, or as an exponent.

AFUNC (1+2) A, J+1) B**N

The order of evaluation of expressions is established by the use of parentheses in the
statement. |f parentheses are not indicated, the following conventions of mathematics

apply:

The hierarchy of operations, in order of precedence is: exponentiation,
followed by multiplication and division, followed by addition and subtraction.

Within the same hierarchy of operations, evaluation proceeds from left to

right.

Examples:
X+Y¥*Z is interpreted as X+H(Y*Z)
W*X/Y*Z is interpreted as ((W*X)/Y)»*Z
B**2-4 . *A*C is interpreted as (B**2)~((4.*A(*C))
X-Y-Z is interpreted as (X-Y)-Z
X/Y/Z is interpreted as X/Y)/zZ
-X**3 is interpreted as ~(X**3)

4.2 ARITHMETIC ASSIGNMENTS AND REPLACEMENTS

The assignment statement is used to replace the value of a variable with the results of
the evaluation of an expression.

Form: v =e, where v is any variable or array element name, and e is an arithmetic
expression .

If the mode of the expression is different than the mode of thz variable, the value of

the expression will be converted to cause its mode to be compatible with the mode of
the variable. Figure 4-2 defines the rules for assignment of e to v.

FORTRAN Reference 4-3

v e ASSIGNMENT RULE
Real Real Assign
Real Integer Float and Assign
Integer Integer Assign
Integer Real Fix and Assign

FORTRAN Reference

Figure 4-2

SECTION V

CONTROL STATEMENTS
5.1 GENERAL
Each statement in @ FORTRAN program is executed in the order of its appearance in
the source program, unfess this sequence is interrupted or modified by a control
statement. This section of the manual describes the various conirol statements used
in DATA 620 Series FORTRAN.
5.2 GO TO STATEMENTS
GO TO stotements transfer logical contro! from one section of a program to another.
Basic FORTRAN includes two forms of the GO TO statement; unconditional and
computed.

5.2.1 Unconditional GO TO

An Unconditional GO TO is of the form: GO TO k, where k is a statement labe!
reference.

Execution of this statement causes the statement identified by the label k to be
executed next in sequence.

Example:
GO 10O 72

71 V7 = HQ (5) + Y**L

72V7 = HG (4) + X**}
In this example, execution of the GO TO 72 statement causes statement number 71
and any succeeding statements to be by-passed. Execution is resumed with statement
number 72.
5.2.2 Computed GO TO

The computed GO TO statement is of the form: GO TO ky, ko, ..., ky), i, where

the k's are statement label references, and i is an integer variable reference.

5-1 FORTRAN Reference

Execution of this statement causes the statement identified by the statement labe! k; to
be executed next in sequence where is the value of i at execution time. Valid
execution of this statement is dependent upon the value of the integer variable such
that 1 is less than or equal to j, and | is less than or equal to n.

Example:
GO TO (98,405.3), n

Execution of the statement in the example will cause control to be transferred to the
statement labeled 98,405 or 3 if the value of the variable integernis 1, 2or 3
respectively. If n contains an integer other than 1, 2 or 3, the results of the transfer
cannot be predicted.

5.3 ARITHMETIC IF STATEMENT

It is often necessary to alter the logical flow of a program on the basis of the results
of an arithmetic test. The IF statement is a conditional transfer that will execute this
leve! of control, and is of the form:

IF (e) k k

1 Kor kg
The arithmetic IF is a three-way transfer, Execution of this statement causes the
expression (e) to be evaluated, following which, the statement identified by the
label k1, k2, k3 is executed next in sequence, as the value of (e) is less than zero,
equal to zero, or greater than zero, respectively.

Example:

iIF(1)10, 11,12
10 V7 = HQ {5) + Y**L

GO TO 13
11 V7 = HQ (4) + X**)

GO TO 13
12 V7 = HQ (3) + X**L

13 Next Statement
In this example, execution of the IF (1) 10, 11, 12 statement causes one of the folfow-
ing actions: for a negative value of |, statement number 10 is executed in sequence;

for a zero value of 1, statement number 10 and any succeeding statements are by~
passed and statement number 11 is executed; for a positive, non-zero value of 1,

FORTRAN Reference 5-2

statements 10 through 11 and any statement following statement 11 are by-passed, and
statement number 12 is executed.

5.4 CALL STATEMENT

The CALL statement causes a transfer of execution control to a subroutine type sub-
program, and is of one of the forms: CALLs (o), ag, ..., a,) and CALLs, where s
is the name of a subroutine and the a's are actual arguments that will replace the
dummy arguments in the called subroutine. Arguments may be variable names, array
element names, array names, or any other expression. They must, however, be
indicated in order, number and type with the corresponding dummy arguments of the
subroutine.

Execution of the call statement transfers control to the designated subroutine. The
arguments declared in the statement line are associated with the dummy arguments
that are parameters of the executable statements of the subroutine. Control is then
passed to the first executable statement of the called subroutine. Control will be
returned to the first executable statement following the CALL statement upon execu-
tion of the RETURN statement in the subroutine. Examples of calling sequences to
subroutines are shown below.

CALL TEST (A, 1)
CALL EXIT

The first example will transfer execution control to the subroutine labelled TEST, and
the inclusion of the parameters or arguments A and | in the subroutine. The second
example will cause execution control to be transferred to the subroutine labelled
EXIT. Any arguments required for execution of EXIT are self contained in the logic
of the subroutine.

5.5 RETURN STATEMENT

The execution of a RETURN statement results in the exit from a subprogram, and is
expressed in the form: RETURN.

A RETURN statement defines the logical end of a procedure subprogram, and therefore
may appear only in a subprogram. Execution of the statement returns logical control
to the current calling program unit, Each subprogram must contain at least one
RETURN statement.

In the case of a subroutine subprogram, control is returned to the first statement
immediately following the CALL statement that released control to the subroutine.

In the case of a function subprogram, control is returned (with the value of the func-
tion available), to the statement that called the function subprogram.

5-3 FORTRAN Reference

5.6 CONTINUE STATEMENT
Form: CONTINUE.
The CONTINUE statement results in no action in an execution sequence, and therefore
the statement has no effect upon the program. This statement serves as a program unit
reference point.
Example:

IF (i) 10, 11, 12

10 V7 = HQ (5) + Y**L

GO TO 13
11 V7 = HQ (4) + X¥**)

GO 1O 13

12 V7 = HQ (3) + X**L

13 CONTINUE
5.7 PAUSE STATEMENT
Form: PAUSE n or PAUSE, where n is an octal digit string of length from 1 to 4.
A PAUSE statement causes a femporary cessation of program execution, and displays
PAUSE n (see section 8 — for display format). The statement permits operator inter-
vention for setup or control functions, such as changing data tapes. The computer
executes a Halt instruction delaying further execution until the operator selects the

console Run button. Execution will resume at the first executable statement following
the PAUSE statement.

Example:
PAUSE 01
5.8 STOP STATEMENT
Form: STOP n or STOP, where n is an octal digit string of length from 1 to 4.
A STOP statement causes termination of program execution, and displays STOP n

(see section 8 — for display format). The program then terminates with a Halt
instruction.

FORTRAN Reference 5-4

Example:
STOP 0721
5.9 DO STATEMENT

The DO statament is used to control repetitive execution of a group of statements.
The number of repetitions is dependent upon the value of a contro! variable. The
statement assumes one of the forms: DO n i = my, mp, ms3 and DO ni =m7p, my,
where:

n is the statement label of an executable statement. This statement, called
the terminal statement of the associated DO must physically follow and be in
the same program unit as the DO statement. The terminal statement may not
be a GO TO of any form, arithmetic IF, RETURN, STOP, PAUSE or another
DO statement.

i is an integer variable name, identified as the control variable.

m1, identified as the initial parameter; my, as the terminal parameter; and
m3, as the incrementation parameter; are each either an integer constant or
integer variable reference. [f the second form of the DO statement is used,
a value of 1 is implied for the incrementation parameter, when the DO siate-
ment is executed, the values of my, mg, and m3 must be greater than zero.

Associated with each DO statement is a range that is defined to be those executable
statements from and including the first executable statement following the DO, to and
including the terminal statement defined by the DO. A special situation occurs when
the range of a DO contains another DO statement. In this case, the range of the con-
tained DO must be a subset of the range of the containing DO.

The control variable is assigned the value represented by the initial parameter. This
value must be less than or equal to the value represented by the terminal parameter.

The range of the DO is executed.

If control reaches the terminal statement, and after execution of the terminal
statement, the control variable of the most recently executed DO statement. associated
with the terminal statement is incremented by the value represented by the associated
incrementation parameter.

If the value of the control variable after incrementation is less than or equal fo the
value represented by the associated terminal parameter, the action is repeated with
the understanding that the range in question is that of the DO, the control variable
of which was most recently executed.

5-5 FORTRAN Reference

If the value of the control variable is greater than the value represented by its
associated termina! parameter, the DO is said to be satisfied, and the control variable
becomes undefined.

If there were one or more other DO statements referring to the terminal statements in
question, the control variable of the next most recently executed DO statement is
incremented by the value represented by the associated incrementation parameter until
all DO statements referring to the particular termination statement are satisfied, at
which time the first executable statement following the terminal statement is executed.

Upon exiting from the range of a DO by execution of a GO TO statement or an arith-
metic IF statement, that is other than by satisfying the DO, the control variable of
the DO is defined and is equal to the most recent value attained.

A GO TO statement or an arithmetic IF statement may not cause control fo pass into
the range of a DO from outside its range. When a procedure reference occurs in the
range of a DO, the actions of that procedure are considered to be temporarily within
that range, i.e., during the execution of that reference.

The control variable, initial parameter, terminal parameter and incrementation param-
eters of @ DO may not be redefined during the execution of the range of that DO.

If a statement is the terminal statement of more than one DO statement, the label of
that terminal statement may not be used in any GO TO or arithmetic IF statement that
occurs anywhere but in the range of the most deeply contained DO with that terminal
statement.

Example:
DO 607 K1 = 2, 1D, 3

The foregoing statement would cause K1, the control variable, to be set to the value
of the initial parameter, 2. Execution would proceed at the statement immediately
following, down to and including the statement identified by the label 607, After
each execution of the loop, K1 is incremented by the incrementation parameter, 3,
and evaluated in relation to the current value of the terminal parameter, 1.D. If the
current value of ID is greater than K1, execution control is transferred to the state-
ment following that identified by the label 607, otherwise the DO cycle is repeated.

FORTRAN Reference 5-6

SECTION Vi
INPUT 7/ OUTPUT STATEMENTS

6.1 GENERAL

Input statements provide a program with the means of receiving information from
external sources. Qutput statements allow the transmission of program daota to extend
sources. These external sources may be devices such as magnetic tape and paper tape
handlers, typewriters, and punch card processors.

There are two types of input-output statements.

(1) READ and WRITE statements
(2) Auxiliary statements

The first type cause the transfer of records of sequential files to and from the program.
This data may be formatted information consisting of strings of characters, or unfor~
matted information consisting of binary word values in the form in which they nor-
mally appear in storage. The second statement type consists of the BACKSPACE and
REWIND statements which provide for positioning of magnetic tapes, and the ENDFILE
statement which provides for closing of a file.

Input-Output statements reference input-output units and, formatted information,
format specifications. An input-output unit is identified by o logical unit number, u,
which may be either an infeger constant or a variable name that references an integer
constant. Logical unit number assignments for the DATA 620/i FORTRAN may be
found in appendix L. The format specification is defined by a FORMAT statement
having the statement label f. This statement must appear in the same program as the
input~output statement.

6.2 INPUT-OUTPUT LISTS

The input list specifies the names of variables and array elements to which input values
are assigned. The output list specifies the names of variables and array elements
whose values are transmitted. Input and output lists are of the same form.

6.3 SIMPLE LISTS
Simple lists have the form: mj, mp, m3 ..., m, where the m; are the names of real
or integer variables or array elements. The comma characters separate each individual

name in the list. The period characters signify possible additional list items. List
elements may be enclosed in parentheses.

6-1 FORTRAN Reference

Example:

INPUT LISTS OUTPUT LISTS

A B
C (26, L 1 (10, 10)
R, K, D, (1, J) S, R, K), F (1, 25)

An array variable which is not subscripted in a list is considered equivalent to the
listing of each successive element of the array. If B is an array, the list B is equiva-
lentto B (1, 1), B(2,1), B3, 1), ..., B (1, 2), B(2,2), ..., B(j, k) where j and
k are the subscript limits of B,

6.4 DO-IMPLIED LISTS

A DO-implied list is a simple list followed by a comma character and an expression of
the form: i = my, mp, mzori=my, my.,

The elements i, my, mg, and m3 have the same meaning as defined for the DO state-
ment. The DO implication applies to all simple list items enclosed in parentheses
with the implication. For input lists, i, my, mg, and m3 may appear within this
range only as subscripts.

Examples:
Xm, 1=1, 4 X (1), X (2), X (3), X (4)
@), RQ), I=1, 2 QM), R(1), Q(2), R(2)
(GK), K=1,7,3) G(1), G4, G@
(A, 9,1=3,5),1=1,2 AGB,1,A@E),AB, D,
A@G,2),AH4,2),A(5,2
XK, K=1,2,1, R{J), J=3,5) X (1), X (2), 1, R (3), R(4), R(5)

6.5 READ STATEMENTS

These statements are used to obtain data values from an external source. The data
values are input in either formatted or unformatted mode. The form of a formatted
READ statement is: READ (u, f) k.

The verb READ and the parentheses must appear in this form.

Execution of this statement causes information fo be transmitted from the external
source whose logical unit number is defined by u. This data is scanned and converted
as specified by the format specification, f, and the resulting values are assigned to
the variable names defined in the list, k.

The form of an unformatted READ statement is: READ (u) k.

FORTRAN Reference 6-2

The verb READ and the parentheses must appear in this form. This statement causes
data to be input in binary form from the unit defined by u. The values are assigned
to the variable names defined in the list, k.

Examples:
READ (1, 44) A, B, C
READ (2)R, S
READ N, 12)A, R(I), 1=1, 10)
READ s, aTyd), =1, N)

All information appearing on external sources is divided into records. Each time a
READ statement is executed a new record is processed. The number of records input
by a single READ statement is determined by the list and format specification. If only
part of a record is input the remainder of the record is lost as the next READ processes
the next record. Records are read sequentially until the list is exhausted. Only
enough values are read to fill the list.

The list, k, in an unformatted read statement may be left blank to skip a record.

The record size for formatted data is 80 characters except when the device is the
Teletype keyboard or paper tape in which case the record size is variable with a
maximum of 80 characters processed per record. Unformatted records are 64 binary
words in length.

6.6 WRITE STATEMENTS

WRITE statements are used for the purpose of transferring program data to external
devices. This data may be formatted or unformatted. The form of a formatted WRITE
statement is: WRITE (u, f) k.

The verb WRITE and the parentheses must appear in this form.

Execution of this statement causes records to be written on the device referenced by u.
The contents of the records are the values taken sequentially from the list k converted
according fo the format specification f.

The form of an unformatted WRITE statement is: WRITE (u) k.

The verb WRITE and the parentheses must appear in this form.

Execution of this statement causes binary information from the list k to be written in
records on the unit defined by u.

6-3 FORTRAN Reference

Example:
WRITE (1, 5)A, B, C
WRITE 7R, 5, T
WRITE K, 12X, (Y, =1, M), |
WRITE NYW, Z, F(K), K=1, 5)

Several record may be written with a single WRITE statement. The number of records
is determined by the list and the format specifications. Successive records are written
until the data is exhausted. If the data does not fill a record, the record is filled
with blanks.

6.7 REWIND STATEMENT
This statement is of the form: REWIND u.

Execution of this statement cause the magnetic tape unit defined by u to be rewound.
If u is not a magnetic tape, no action is taken.

6.8 BACKSPACE STATEMENT
This statement has the form: BACKSPACE u.

The BACKSPACE statement causes the magnetic tape unit defined by u to be back-
spaced one record. If u is not a magnetic tape, no action is taken.

6.9 ENDFILE STATEMENT
This statement has the form: ENDFILE u.

When this statement is executed, a file mark is written on the magnetic tape defined
by u. No action is taken if u is not a magnetic tape.

6.10 FORMAT STATEMENTS

FORMAT statements are used with input~output operations to specify conversion and
editing of information between program storage and external representation. FORMAT
statements are non-executable and must have a statement label fo be referenced by
input-output statements. Conversion performed according to a FORMAT statement

during output is in general the reverse of conversion performed during an input
operation,

A FORMAT Statement is expressed as: n FORMAT (f], f%q, f3, ..., f), where n is

the statement labe! and the f; are field specifications. The noun FORMAT and the
parentheses must appear in this form. The comma characters are required only when

FORTRAN Reference 6-4

ambiguities would arise from not separating field specifications. The period
characters signify possible additional field specifications and would not actually be
present.

6.11 FIELD SPECIFICATIONS

Field specifications describe the type of conversion and editing to be performed on
each variable appearing in the input-output list. Field specifications may be any of
the following forms:

rFw.d

rEw.d

rlw

nHs

nX

where:

1. The characters F, E, and | indicate the manner of conversion for
variables in the list.

2. The characters H and X represent character data to be input-output
directly from the format.

3. The character / represents the end of a record.

4. w and u are non-zero integer constants defining the width of the field
(including digits, decimal points, algebraic signs) in the external
character string.

5. d is an integer specifying the number of fractional digits dppearing in
the external string.

6. r is an optional, non-zero integer indicating that the specification is
to be repeated r times.

7. s is a string of acceptable FORTRAN characters.

6.12 F CONVERSION

Form: rFw.d

Only real data may be processed by this form of conversion,

6-5 FORTRAN Reference

Output. The field is right justified with as many leading blanks as necessary to fill w.

Negative values are preceded by a minus sign. Internal values are converted to fixed
point decimal numbers and rounded to d decimal places.

For a field specification of F10.4:

368.4 is converted to 368.4000
12.0 is converted to 12,0000
-17.90767 is converted to ~17.9077
37.5E-2 is converted to 0.3750

If a value requires more positions than allowed by w the most significant digits,
including sign if negative, are output. The error indication is designated by an
asterisk in the least significant character position.

For a field specification of F6.4:

4739.76 is converted to 4740.0%
-12.463 is converted to ~12.5%

Input. . Input strings are decimal numbers of length w with d characters in the frac-
tional portion. Blanks are treated as zeros. If a decimal point is present in a value
the fractional portion of the value is explicitly defined by that decimal point charac-
ter. A comma (,) terminator may be used to override the w specification. Terminated
fields are treated as normal fields with leading zeros. A comma alone defines a zero
value for the field.

For a field specification F8.3:

35 is converted to 0.035
964372 is converted to 964.372
0.53821 is converted to 0.53821
-16.402 is converted to -16.402
-12 is converted to ~0.012
47 .E-4 is converted to 0.0047
36, is converted to 0.036
-0.75, is converted to -0.75
, is converted to 0.0
6.13 E CONVERSION

Form: rEw.d.

Only real dato may be processed by this form of conversion.

FORTRAN Reference 6-6

Ovutput. Internal values are converted to decimal values of the forms: .ddd...dE ee
and .ddd...dE-ee, where ddd...d represent d digits, while ee is a decimal exponent.
The leading decimal point and E characters are present exactly as shown. Internal
values are rounded to d digits and negative values are preceded by a minus sign. The
external field is right justified and preceded by blanks to fill the width, w. This field
width includes the exponent digits, the sign of the exponent (minus or space), the
letter E, the magnitude digits, the decimal point, and the sign of the value (minus or
space). This means that the field width should correspond to the relation: w 2d + 6.

If w is less than (d + 6) the format is in error.

For the field specification E12.5:

76.573 is converted to 0.76573E 02
58796.341 is converted to 0.58795E 05
=-369.7583 is converted to -0.36976E 03
0.006873 is converted to 0.68730E-02

0.2 is converted to 0.20000E 00

~0.0000054 is converted to -0.54000E-05

Each external value is of field width w with d characters in the fractional part of

the value. The value is right justified with all blanks counting as zeros. A minus
sign may be placed preceding the value of the exponent. A decimal poirt placed in
the fractional part takes precedence over the d specification. The character E should
be present to separate the value and the exponent. If not, the exponent is taken as
the two least significant digits. A comma (m) terminator may be used to override the
w specification. Terminated fields are treated as normal fields with leading zeros.

A comma alone defines a zero value for the field.

For a field specification £10.3:

123E3, is converted to 123.0
12874E2 is converted to 1287.4
-563E-02 is converted to -0.00563
-6.7563E05 is converted to -675630.0
398E00 is converted to 0.398
5387601 is converted to 538.76
5455-01 is converted to 0.5455
6.14 | CONVERSION
Form: riw

Only integer data may be processed by this form of conversion.

6-7 FORTRAN Reference

Output. Internal values are converted fo integer constants. Negative values are
preceded by a minus sign. Each field is right justified and filled with leading blanks.

For the field specification 16:

281 is converted to 281
-43567 is converted to ~43567

If the data requires more character positions than allowed by the width w, only the
least significant w positions are output.

For the field specification 12:

281 is converted to 81
-6374 is converted to 74

Input. External input values are right justified with the width w. Blanks are counted
as zeros. Input values must be integer values. A preceding minus sign may be placed
ona value. A comma (,) terminator may be used to override the 10 specification.
Terminated fields are treated as normal fields with leading zeros. A comma alone
defines a zero value for the field.

For the field specification 14:

120 is converted to 120
-144 is converted to -144
12 is converted to 1020
-3, is converted to -3

6.15 H CONVERSION

In DATA 620/i FORTRAN, Hollerith information consists of the legal FORTRAN
character set plus the additional characters §, !, *, # %, &, ', 1, ;. Information
input from the typewriter or paper tape is converted to an internal code used by
FORTRAN. When this information is output the internal codes are converted fo the
appropriate typewriter or paper tape codes.

Form: wHs.
Output. The number of characters, w, in the string, s, should contain exactly the
number of characters specified so that characters from other fields are not taken as

part of the string.

Blanks are counted as characters in the string.

FORTRAN Reference 6-8

Examples:
SPECIFICATION l EXTERNAL OUTPUT
THR R
8H STRING STRING
12HX (1, 3) = 12.0 X (1, 3)=12.0

Input. The w characters in the string s are replaced by the next w characters from
the input record. The resultant is a new string in the field specification.

For Example:

INPUT RESULTANT
SPECIFICATION STRING SPECIFICATION
5H12345 ABCDE 5HABCDE
7H TRUE FALSE 7HFALSE
8H MATRIX 8HMATRIX

This feature can be used to change titles, dates, headings, etc., which are output
with the program data.

6.16 X SPECIFICATION
Form: wX.

This specification causes no conversion to occur. On output, w blanks are inserted in
the external record. On input, w spaces are skipped from the input record.

Example of output:

SPECIFICATION QUTPUT
THA, 4X, 2HBC A BC
4X, 3HABC ABC
1X, 3HABC, 3X ABC

Example of input:

INPUT RESULTANT
SPECIFICATION STRING INPUT
F4.1, 3X, F3.0 , 12.5RRR120 12.5, 120.

The RRR characters are ignored by the 3X specification.

6-9 FORTRAN Reference

6.17 / SPECIFICATION

Form: /.

Each slash (/) specified in the format causes the termination of a record and processing
of the next record. Successive slashes (///...//) cause successive records to be
ignored on input, and successive blank records to be written on output. A slash
separating two field specifications removes the need for a comma separator.

For example:

F5.4,/4F10.3 is equivalent to F5.4/4F10.3

Output Example:

For a specification (1HA/THB/THC/THD) the resultant output records are:

A

B
C
D

Input Example:

Using the four records output from the previous example, an input specification

(1H1/1H2//TH3) produces the resultant specification (1HA/1HB//1HD).

6.18 REPEAT SPECIFICATIONS

The F, E, and | field specifications may be repeated by using the repeat count r in the
forms rFw.d, rEw.d, and riw.

Examples:

4F10.5,F3.6 is equivalent to F10.5,F10.5,F10.5,F10.5,F3.6
2F4.1,2E7.1 is equivalent to F4.1,F4.1,E7.1,E7.1
2F5.2,316,2E8.2 is equivalent to F5.2,F5.2, 16,16,16,E8.2,E8.2

Repetition of a group of field specifications is accomplished by enclosing the group in

parentheses preceded by an integer repeat count. If no repeat count is specified the
count is taken as one.

FORTRAN Reference 6-10

Examples:

2(F10.5, 16) is equivalent to F10.5,16,F10.5,16
2(€9.3,F7.1/14) is equivalent to E9.3,F7.1/14,E9.3,F7.1/14
3(4F5.0,2E8.2) is equivalent to 4F5.0,2E8.2,4F5.0,2E8.2,4F5.0,2E8.2

Example:
50 FORMAT (4X,2(15,6F8.2)/3(E12.7,F6.4),214)
6.19 FORMAT CONTROL AND LIST INTERACTION

Execution of a formatted READ or WRITE statement initiates format control. The
conversion performed on data depends on information jointly provided by the next
element of the input-output list and the next field specification of the FORMAT
statement. If there is a list, at least one field specification of type E, F, or | should
be present in the FORMAT statement.

Execution of a formatted READ statement causes one record to be input. To each E, F,
or | specification there corresponds one element in the list. To each H or X specifica~
tion there is no corresponding element in the list and the format control communicates
information directly with the record. Whenever a slash is encountered, or the entire
input record is processed, the record is terminated. If more input is necessary the
next record is input. Any unprocessed characters of a record are skipped when a

sfash is encountered.

A READ statement is terminated upon expiration of the list if: 1. the next specifica~
tion isan E, F, or |; 2. the format control hos reached the last outer right paren~
thesis of the FORMAT statement. If the list expires and the next specification is an
Hor X, data is processed (with the possibility of additional records being input) until
one of the obove two conditions is met.

If the format control reaches the rightmost parenthesis of the FORMAT statement and
more list remains to be processed the following steps are token: 1. a new record is
input and any remaining data in the previous record is ignored; 2. format controf
reverts to the point immediately following the last left parenthesis encountered. If
group repeat specifications exist in the format, this point is at the rightmoct group
of the format. The repeat count is not taken into consideration. If no groups are
present, the format is started from the beginning.

When a formatted WRITE statement is executed, records are written each time

120 characters or (72 characters in the case of teletype pegboard records) have been
processed, a slash is encountered, or the format control terminates. The format con-
trol terminates by one of the two methods described for READ termination. Incomplete
records are filled with blanks to maintain standard record lengths.

6-11 FORTRAN Reference

SECTION VI
PROGRAMS AND SUBPROGRAMS

7.1 GENERAL

An executable FORTRAN program consists of a main program and any required
subprograms. Subprograms may be defined by the progrommer or may be contained in
the system library, Each program or subprogram must contain at least one executable
statement,

7.2 MAIN PROGRAMS

A main program is a program unit consisting of a set of FORTRAN statements, comment
lines, and an END line. The program may be preceded by specification statements.

If so, these statements must be in the following order: DIMENSION, COMMON,
and EQUIVALENCE.

A main program cannot contain a subprogram definition statement, namely:

a FUNCTION statement
a SUBROUTINE statement

A main program may contain calls to other subprograms or may contain statement
function subprobrams,

7.3 SUBPROGRAMS

Subprograms are program units which may be called by other programs or subprograms.
Subprograms are categorized as one of the following:

Statement functions
Intrinsic functions
FUNCTION subprograms
SUBROUTINE subprograms

The first three are categorized as functions and the last as subroutines.

Functions are programmed procedures which are often used to provide solutions to
mathematical functions, Function references may be used in the same manner as
references to variables in an expression. For example: X = AB*SIN (Y) - C*COS
(Y*Z), where SIN is the name of the sine function, COS is the name of the cosine
function, and (Y) and (Y*Z) are their respective argument lists. The value returned
for a function reference is of the same mode as the function name, corresponding to
the rules for real and integer symbolic names.

7-1 FORTRAN Reference

7.4 STATEMENT FUNCTIONS

A statement function is defined internally to the program unit in which it is referenced,
All statement functions must precede the first executable statement and must follow any
specification statements of the program unit.

A statement function is defined in a single expression of the form: fay,a9,a3,...a,) =
e, where f is the functionname, the a; are the arguments, and e is an expression. The
resultant value of the function is either a real or integer value corresponding to the
function name. The a; are distinct variable names and are called dummy arguments.
These serve to indicate the type, number, and order of the function arguments. The
expression e is an arithmetic expression and may contain references to previously
defined statement functions,

A statement function is referenced by a function call, fa7,a5,a3,...,a,), appearing
in an arithmetic expression. A statement function may only be referenced within the
program unit in which it is defined. The arguments used in the reference must agree
in type, number, and order with the corresponding dummy arguments,

Example:
The statement function:
SF (X) = ARX**2+B*X+C
may be referenced in the program by:
W =5SF (Y)
7.5 INTRINSIC FUNCTIONS

Intrinsic functions are commonly used subprograms and are contained in the FORTRAN
library, The symbolic names and meanings of the intrinsic functions are shown in
figure 7-1,

An intrinsic function is referenced by a function call in an arithmetic expression. The
arguments in the argument {ist must agree in type, number, and order with those shown
in figure 7-1,

Example:

IF (SIGN(W, X)) 1,2,2
1 W=ABS (X) - ABS (Y)
2 S=W*FLOAT (I*J)

K=1FIX (X)+d

!

FORTRAN Reference 7-2

Table of Basis Intrinsic Functions

Figure 7-1.

z
O) 5 [
[< & < g < 8
[*] L
S &k 2 = S=
-
.
o
O
w
a
>—
—
—_
Z = = .
o o] @
w _ o — — O
5| 3% ¢ 3 2
< j= j=
o = —_— oL o —
Y
<€
2 =
) Z
< Z
23 Q8 o] x 09
EZ << fr - 2
vy
(%]
=z
B, w
EOE —_ —_— p— o~
=) o
z O
[=%4
<
7 5
O S o 5 - o=
j w2 ‘s o o o
= ¢} 2T _ 209 PSR,
z 0 .-Z g o < ¥ [e]
= > @ > c b
™ c g 2 c E .= =R}
wi o0 o 0 6 4 o E
a [JRt=g= O £ =,
uZ
O 2 5 o
<51 83 3 2
gY 35 8 X 5
Z S << > w - ()
~—
7-3 FORTRAN Reference

7.6 FUNCTION SUBPROGRAMS

A function subprogram is defined externally to the program unit by which it is
referenced. A function subprogram is defined by having as its first statement, other
than comment lines, a statement of the form:

FUNCTION f(u] 190,85, 0ee, on)

where f is the symbolic name of the function and the a; are dummy arguments. Each
aj is either a variable name or an array name. The q; defme the type, number, and

order of the FUNCTION arguments,

A function subprogram is executed at the first executable statement following the
FUNCTION statement. Specification statements (DIMENSION, COMMON, and
EQUIVALENCE) may immediately follow the FUNCTION statement, If present, these
must precede any other statement, excluding comments, The symbolic names of the
dummy arguments, a,, may not appear in an EQUIVALENCE or COMMON statement.

A function subprogram must contain at least one RETURN statement and the last state—
ment executed in a FUNCTION must be a RETURN statement. The function subpro-
gram is ended by an END line.

The symbolic name, f, of the FUNCTION must appear as a variable name within the
subprogram. The value returned for a FUNCTION is the last value assigned fo this
name prior to execution of a RETURN statement. The mode of the FUNCTION value,
either integer or real, is determined from the function name.

The symbolic name of the function must not appear in any nonexecutable statement
within the subprogrcm. A subprogram may not define or redefine any of its arguments
nor any variable in COMMON,

Example FUNCTION:

FUNCTION XP(A,B,1)
DIMENSION B(10)
XP=0,
DO 1 J=1,10

1 XP=(A*B(J))**14XP
RETURN
END

A FUNCTION is executed with a function reference by a main program or another
subprogram. The actual arguments in the call must correspond in type, number, and

FORTRAN Reference 7-4

order with the FUNCTION dummy arguments. |f a dummy argument of a FUNCTION

is an array name the corresponding actual argument must be an array name,
Example:

A call for the example FUNCTION shown above would be: W+XP(R,S,K)

where S is an array.
7.7 BASIC EXTERNAL FUNCTIONS

Basic external FUNCTIONS are standard subprograms contained in the FORTRAN
library. These are referenced in the same manner as normal FUNCTIONS. The sym-
bolic names and meanings of the basic external FUNCTIONS are shown in figure 7-2,

7.8 SUBROUTINE SUBPROGRAMS

A subroutine subprogram is defined externally to the program unit that references it.
Subroutines, unlike functions, do not have values associated with them and cannot be
referenced in an expression. Subroutines are accessed by CALL statements,

A subroutine subprogram is defined by having as its first statement, other than comment
lines, a statement of the form: SUBROUTINE S(ay,ap,a3...,a,) or SUBROUTINE S,
where S is the symbolic name of the subroutine and the a; are the dummy arguments of
the subroutine. Each a; is either a variable name or an array name. If no arguments
are passed to the subroutine the second form above is used,

The symbolic name of the subroutine must not appear in any statement in the subpro-
gram. The symbolic names of the dummy arguments may not appear in COMMON or
EQUIVALENCE statements,

A subroutine is executed at the first executable statement. Specification statements
may be contained immediately following the SUBROUTINE statement and preceding

any executable statement, A subroutine must have at least one RETURN statement.

The last statement executed by a subroutine must be a RETURN statement,

DATA 620/i series FORTRAN includes a subroutine nomed 'EXIT', When this sub-
routine is referenced by a CALL statement of the form:

CALL EXIT

the statement END OF JOB will be displayed (see section 8 -~ for display format),
and the program terminates with a Halt instruction.

7-5 FORTRAN Reference

Example SUBROUTINE:
2 SUBROUTINE R(A, I,Z)
= T T 3] E T 3 DIMENSION A (10)
O o o v v o’ o o Z=0
5 DO 1 J=1, 10
L 1 Z=Z+A(J)**1
o) RETURN
& END
b
E A subroutine is referenced with @ CALL statement, The argument list in the reference
ig must agree in type, number, and order with the dummy arguments of the subroutine.
g T T T T s T E If a dummy argument is an array name, the corresponding actual argument must be an
o os oL -4 - o oc [-*3 » array name.
o <
<]
5 Example:
5
i; A call for the example SUBROUTINE above would be: CALL R (T,K, D) where
O I3 T is an array,
- w (O} T — z 2
% s (=298 z 8 %2 g < o 7.9 DUMMY ARGUMENTS
N 4 o < o o = A < g
e & Dummy arguments provide a means of passing information between a subprogram and
K the program or subprogram which called it. Both function and subroutine subprograms
A L may have dummy arguments. A subroutine need not have any, while a function must
= Z fq have at least one. Dummies provide definitions of the data type, number, and
g w g _ . sequence of subprogram parameters.
303 - T T s §
z Q '; A dummy may be classified within a subprogram as a variable or an array. The actual
< 5 arguments defined by a calling program or subprogram to which a dummy may corres-
L?_’ pond are: variables, array elements, arrays, expressions.
Z . Within a subprogram a dummy may be used in much the same way as any other variable
g = = N = N L or array. A dummy man not appear in a COMMON or EQUIVALENCE statement,
z < ~ z = < 5
% o, 8‘1’) 2 8 _§ % 13 The actual arguments used in a calling statement must agree in data type with the
=) - “ © = ~ ° corresponding dummy arguments, that is - reals to reals, intergers fo integers, and
arrays to arrays, If an actual argument is an expression, the result of the expression
should correspond in data type to the dummy,
(%2
) %l % ',E £ é E 2 § ;E) A dummy array is defined to be an argument which appears in DIMENSION statement
e — g T©E ¢ .?_:) g o _§ b °) in the subprogram. A dummy array does not occupy any storage but tells the subpro-
L= % g 2 é, S o S .£ 25] kel gram that the argument supplied in the calling statement defines the first element of
& 2 X ZD S Ex = § f;_ :lg' <(S an actual array. The calling argument need not have the same dimensions as the

FORTRAN Reference 7-6 7-7 FORTRAN Reference

dummy array. Useful operations can sometimes be performed by defining different
dimensions for the dummy and calling arguments.,

Example:

DIMSION A(10,10) SUBROUTINE FM(B)
CALL FM(A(6,1)) DIMENSION B(50)

For this case the 1 - dimensional dummy array B corresponds to the last half of the 2 -
dimensional array A, [f the calling statement were: CALL FM(A),

The dummy array B would correspond to the first half of the array A,

FORTRAN Reference 7-8

SECTION VIII
FORTRAN OPERATING INSTRUCTIONS

8.1 GENERAL

The DATA 620/i basis FORTRAN system operates in a minimum configuration of 8192
words of memory and an ASR-33/35 teletype. FORTRAN programs and subprograms

are compiled by the basic FORTRAN compiler. FORTRAN compatible machine lan-
guage subprograms are assembled by the DAS assembler version I, mod F, The
FORTRAN loader loads main programs and all required subprograms into memory for
execution, The FORTRAN run-time library provides input/output, conirol, and mathe-
matical functions required at execution time.

8.2 COMPILER OPERATING INSTRUCTIONS

The DATA 620/i basic FORTRAN compiler translates FORTRAN source programs to
relocatable machine language programs in a single pass. FORTRAN statements may
be input from the teletype keyboard or paper tape reader, the card reader, the high
speed paper tape reader or magnetic tape. Object code is output via the teletype or
high speed paper tape punch or magnetic tape. Error diagnostics, source listings and
object listings are provided on the teletype or line printer. [nput/output and listing
options are selected at the teletype keyboard for each program to be compiled.

8.3 PRELIMINARY OPERATIONS

The DATA 620/i basic FORTRAN compiler is supplied as an absolute binary object
tape. The compiler is loaded into memory by the standard binary loader and occupies
the first 13500 (8) words of memory. (See programming reference manual for pro-
cedure to load absolute object programs.) Entry to the compiler is at location 0. Upon
entry, the compiler will execute a HALT 0777 with the A register set to the upper
limit of compiler used memory (15777 stundard). This limit may be modified by
resetting the A register. (See appendix M for compile time memory map.) To compile
programs press RUN,

8.4 NORMAL OPERATIONS

For each program to be compiled a ?= will be typed on the teletype printer requesting
input/output selection. The operator should respond by typing one of the following
characters to indicate the input device: C (card reader), K (teletype keyboard), P
(paper tape), O through 3 (magnetic tape, units O through 3); followed by one of the
following characters to indicate the output device: C (card punch), P (paper tape),

0 through 3 (magnetic tape, units O through 3); followed by an (optional) listing
selection character: S (source listing), @ (object listing), B (both source and object

8-1 FORTRAN Reference

listings); followed by the character >, followed by the (optional) 1 to 6 character
program name, followed by @ for a carriage return and line feed.

Example:
? =CPS > MATRIX @

C for input cards, P for output paper tape, S for list source with program
name MATRIX, Following input/output selection, source statements are
read and object records are output through the selected devices. Error
diagnostics and selected list options are printed on the teletype or line
printer (if available). Upon detecting and END statement (followed by a
non-bland statement), the compiler will produce a program map listing
all variables, constants (in octal), and required subprograms. Having
listed the program map the compiler will type a ? = to permit compiling
another program.

8.5 INPUT RECORDS

Input to the compiler is a series of FORTRAN statements each of which appear in one
or more input records. Records may be fixed or variable in length depending on the
device, however, only the first 72 characters of each record are used by the compiler.
Any illegal characters are treated as blanks. Blank records are ignored. END state-
ments must be followed by at least one non-blank record (another END statement is
suggested).

Keyboard and paper tape records are variable length and are terminated by a carriage
return and line feed in that order. The character > may be used to TAB to column 7,
and the character «— may be used to clear the input buffer and reset to column 1.

For keyboard input the teletype bell is rung to notify the operator that source input is
required.

Card records are a fixed length of 80 characters. The special characters > and «—
are treated as blanks,

Magnetic tape records are a fixed length of 84 characters, and should be card or paper
tape images with blank padding characters. The special characters > and «— are
permitted as defined for paper tape. Carriage return and line feed characters are
permitted but ignored,

8.6 OUTPUT RECORDS

Object records are a fixed length of 64 words and are output from time to time as they
are created. Paper tape object programs are punched with leader and trailer records.

FORTRAN Reference 8-2

Magnetic tape object programs are terminated by an end of file, All main programs
are terminated by an end-of-tape record, Refer to appendix N for object record
format.

All error diagnostics are of the form: ERR xx @ . . . a, where xx is a number from 1
to 15 (notification error) or T followed by a number from 1 to 9 (terminating error),
anda . . . arepresents the last (up to 16) characters encountered in the statement
being processed. The right most character indicates the point where the error was
discovered (the character @ indicates end of statement), If a terminating error is dis—
covered object output is terminated, but source code is continued to detect any further
errors,

8.7 NOTIFICATION ERRORS

1. Construction

2., Usage

3. Mode

4. |Hegal DO Termination

5. Improper Statement Number

6. Common Base Lowered

7. Ilegal Equivalence Group

8. Reference to Non-Executable Statement
9. No Path to this Statement
10, Multiply Defined Statement Number
11. Invalid Format Construction
12, Spelling Error
13, Format with No Statement Number
14, Function Not Used as Variable
15. Truncated Value

8.8 TERMINATING ERRORS

T1. Construction

T2. Usage

T3. Data Pool Full

T4. Itlegal Statement

T5. Improper Use of Name

Té. Improper Statement Number

17. Mode

T8. Constant Too Large
T9. Improper DO Nesting

8~3 FORTRAN Reference

8.9 OPTIONAL LISTINGS

Source and object records may be listed if desired. Source records are listed as they
are input, Object records are listed from time to time as they are created. Each
object record consists of a varying number of 2 and 4 word data/instruction entries,
The object record listing consists of one line for each eniry. Two word entries are of
the form abbc vvvvvv, and four word entries are of the from abbc nnnnnn vvvvvy,
where a is the control code, bb is the sub code, c is the pointer number, nnnnnn is a
1 to 6 letter subprogram name and vvvvvy is a 6 digit octal value or instruction. See
appendix N for object record format and codes.

8.10 PROGRAM MAP

Upon processing the END statement the compiler will list the program map. The first
three lines of the map define the size of the program, data and common areas and are
of the form a, *SIZE mmmmmm, where a is the area (0 = program, 1 = data, 2 =
common), and mmmmmm is the octal size., For programs with no terminating errors the
following information is also listed,

a) a, 1M1 nnnan Variable

b) a, 11111 ccccec ceccce Constant

c) S, 11111 nnnnn External Subprogram

d) # TIT11 ssss Statement Number

e) X, 11111 ssss Undefined Statement Number

Where a is the area, 11111 is the relative location of the item or the last reference to
the subprogram or statement number, ccceee cecece is a two word octal constant, and
ssss is a statement number,

8.1 FORTRAN LOADER OPERATING INSTRUCTIONS

The FORTRAN loader is designed to operate in a DATA/i 620 computer with at least
8192 words of memory. Its function is to load relocatable object programs produced
by the DATA 620/i FORTRAN compiler and FORTRAN compatible subprograms pro-
duced by the DATA 620/i assembler. Object program input is from either paper or
magnetic tape and is selected from the teletype keyboard, Load maps and error diag-
nostics appear on the teletype printer. See appendix M for load time memory map,

8.12 PRELIMINARY OPERATIONS

The FORTRAN loader is supplied as an absolute binary object tape and is loaded into
memory by the binary loader (see programming reference manual, for loading pro-
cedure). The FORTRAN loader occupies locations 000 through 077 and 014000 through
015740,

FORTRAN Reference 8-4

(Locations 0100 through 0277 are reserved for loader generated pointers.) The fi.rsf
program to be loaded must be a FORTRAN compiled main program. Prepare the input
unit, clear the registers and RUN at location STRT (014140), The message IN will
appear on the teletype, requesting input selection. To select paper tape input type .P.
To select magnetic tape, type the unit number (0, 1, 2, or 3), If rhe selected unit is
attached and ready the loader will foad the main program (a.t locano‘n 0300). The
teletype will then type RQ followed by a list of the subroutines required, followed by
another input selection request.

8.13 LOADING SUBPROGRAMS

To effect the most efficient use