
WANG

COBOL Reference Manual

~'

- ·f

vs
COBOL Reference Manual

6th Edition - February 1984
Copyright c Wang Laboratories, Inc., 1984
800-1201-06

WANG
WANG LABORATORIES, INC., ONE INDUSTRIAL AVENUE. LOWELL. MA 01851 •TEL. (617) 459·5000, TWX 710-343-6769, Telex 94-7 421

Disclaimer of Warranties
and Limitation of Liabilities

The staff of Wang Laboratories, Inc., has taken due care in preparing
this manual; however, nothing contained herein modifies or alters in any
way the standard terms and conditions of the Wang purchase, lease, or
license agreement by which this software package was acquired, nor
increases in any way Wang's liability to the customer. In no event shall
Wang Laboratories, Inc., or its subsidiaries be liable for incidental or con­
sequential damages in connection with or arising from the use of the soft­
ware package, the accompanying manual, or any related materials.

NOTICE:

All Wang Program Products are licensed to customers in accordance
with the terms and conditions of the Wang Laboratories, Inc. Standard
Program Products License; no ownership of Wang Software is trans­
ferred and any use beyond the terms of the aforesaid License, without the
written authorization of Wang Laboratories, Inc., is prohibited.

'~

PREFACE

This reference manual explains and details the use of COBOL (COmmon
Business Oriented Language) for use in performing data processing
functions on the Wang VS. The VS Programmer's Introduction and the VS
Program Development Tools discuss how to log on to the system and enter
COBOL source code from the workstation; this manual asswnes knowledge of
that material.

This manual has two parts: a tutorial section (Part I, Chapters 1
through 7), and a reference section (Part II Chapters 8 through 13 and
the appendices). The tutorial section discusses file processing and is
organized according to the different kinds of I/O devices that the VS
uses. It also includes information about disk files, extended disk file
processing, workstation files, print files, tape files, and the
SORT-MERGE module.

The reference section provides a detailed discussion of all the
linguistic units of COBOL, their functions, and the rules governing their
use. The appendices present the following information:

Appendix A is a list if VS COBOL reserved words.

Appendix B lists and explains the available compiler options.

Appendix C lists and explains Field Attribute Characters for controlling
workstation screen display characteristics.

Appendix D describes the use if the workstation screen order area for
controlling screen and workstation actions.

Appendix E lists and explains File Status return codes.

Appendix F explains the hexadecimal characters used to control the
writing of a record to a printer file.

Appendix G explains the storing of the intermediate results of
arithmetic operations.

Appendix H describes the protocol required for passing parameters from
one COBOL program to another COBOL program.

Appendix I is a comparison of VS, ANSI, and FIPS COBOL standards.

Appendix J explains the use of extension rights.

Appendix K explains the rules for Segmentation.

iii

The user will find the following helpful for use in conjunction with
this manual. ~

Title

VS COBOL Quick Reference
VS COBOL Conversion Guide
VS COBOL Coding Form
VS DMS/TX Reference
VS Programmer's Introduction
VS Program Development Tools
VS Utilities Reference
VS Procedure Langauge Reference
VS Procedure Language Pocket Guide

iv

Nwnber

800-6200
800-1204
800-5206
800-1128
800-1101
800-1307
800-1303
800-1205
800-6201

TYPE

Technical
Changes

SUMMARY OF CHANGES

FOR THE 6TH EDITION OF THE VS COBOL REFERENCE MANUAL

AFFECTED COBOL FEATURES

Explanation of the ANSI
modules supported in
VS COBOL

Removal of ADMS references

Advanced Sharing changed
to DMS Sharing

BLOCK entry of FD

COPY Statement

CORRESPONDING phrase

DMS/TX

Extension-Rights

Lower Case Option

OCCURS

v

AFFECTED PAGES

1-1

Chapters 1, 3, 8, 11,
Appendices A, I

1-5, 2-27 to 2-34
12-52

11-13, 11-14

12-33

11-7 to 11-8, 12-10
12-23, 12-24, 12-67,
12-68, 12-72, 12~90,

12-95, 12-99, 12-101,
12-102, 12-141, 12-142

v, vi, 1-5 to 1-6,
Chapter 3, 11-13,
11-20, 11-22 to
11-24, 12-50, 12-112,
12-148, 12-150, A-1,
A-3, I-22, I-25, J-1

Appendix J

Appendix B

11-35 to 11-36

TYPE

Editorial
Changes

SUMMARY OF CHANGES (continued)

FOR THE 6TH EDITION OF THE VS COBOL REFERENCE MANUAL

AFFECTED COBOL FEATURES

Qualified data names

Relative File Support

SEARCH ALL Support

Segmentation

SORT-MERGE Support

STRING Support

UNSTRING Support

Miscellaneous editorial
changes

vi

AFFECTED PAGES

10-15,
11-7,
11-20,
11-58,
11-66,
12-101,
12-107,
12-114,
12-133,
12-151,
12-157,

10-18, 11-5 to
11-10, 11-11,
11-25, 11-34,
11-63, 11-64,
12-65, 12-94,

12-104,
12-110,
12-127,
12-135,
12-154,

13-2, I-4

1-1, 1-4, 2-1, 2-4,
2-24 to 2-27, 10-18
to 10-20, 11-19,
12-31, 12-38 to
12-39, 12-79 to
12-81, 12-98 to
12-100, 12-110 to
12-111, 12-135 to
12-136, 12-157 to
12-159, E-7 to E-8,
I-9

12-113, 12-117 to
12-122, I-22

Appendix K

1-1, Chapter 7,
10-21, 11-25, 11-26,
12-64 to 12-66,
12-101 to 12-103,
12-126 to 12-130,
I-11, I-22, K-2, K-4

12-138 to 12-140

12-143 to 12-147

Chapters 1, 2, 3, 4,
7, 8, 9, 10,
Appendices A, B, G, I

CONTENTS

PART I TUTORIAL

CHAPTER 1 INTRODUCTORY CONCEPTS

CHAPTER 2

1.1 Introduction to VS COBOL ..•...•••..•••••.•••.••••.•• 1-1
1.2 Structure of COBOL Programs ••.•.•..•.•••.•••.••••••• 1-2

Identification Division •....••.....••..•••••••••• 1-2
Environment Di vision . • . • • • . • • . • . . . • • . . • • . • . • • 1-2
Data Di vision . 1-3
Procedure Di vision • • • • • . . . • • . • • • • • . • . 1-3

1. 3 Disk File Processing • . . . • . • . . . • • • . . • . • . . . • • . . • • . • . • • 1-4
DMS Sharing Environment • • . • • • . . • • • • . • • • 1-5

1. 4 DMS/TX • 1-6
1.5 Workstation File Processing .•.•...•....•....••••.... 1-7
1.6 Print File Processing ••..•..•.••••••.•••••••••••.••• 1-8
1. 7 Tape File Processing . . • . • • . • • • • • • • • • . . . • • • • • . • • . 1-8

FILE ORGANIZATION AND ACCESS

2 .1 Introduction . . • • • • . • • . • . • . • • • . • . . • • • • • 2-1
Opening and Closing a File •••.•••.•••.•.•••••..•. 2-1
File Organizations • • . • • . • • • . . • • . • . . . • . • • • • • • • . . • . 2-2
Record Types • . . . • • . . . • • . . • . • • • . . • . • . . . • . 2-4

2.2 The COBOL File Processing Environment •.••••.••••..•• 2-6
FILE-CONTROL Clauses Required

for File Processing • . • • • . . • • . . . • • • • 2-7
FD Information Required for File Processing •....• 2-8
Creating the File .•........•....••••.•••••••....• 2-9
Using VALUE OF Clauses to Specify

File Location • • • • . . • . . • . . • • . • . . • • • . . . • . . . • . 2-9
Specifying Initial Space Allocation .••••.•••.•..• 2-11
Suppressing OPEN Messages•....••....•...•• 2-11

2.3 Consecutive File Processing in COBOL••...•••..• 2-12
Sequential Access of a Consecutive

File in COBOL • . • • • • . . • • . • . . • • • • • . • • 2-12
Random Access of a Consecutive

File in COBOL • • • • . . • • . . . • • . • . • • • • • • . • • 2-15
Dynamic Access of a Consecutive

File in COBOL • . • . • . • • • . . . • • . • • . • . • . . • 2-16
2.4 Indexed File Processing in COBOL •......•.•.••.•..... 2-18
2.5 Alternate Indexed File Processing in COBOL .•..•..... 2-20
2.6 Relative File Processing in COBOL ..•...•......•...•. 2-24
2. 7 DMS Sharing Environment . • . • • • • . . . • • • . . . • . . • • . . • 2-2 7

Shared Consecutive File (Log File) Support ••.•.•• 2-27

vii

CHAPTER 3

2.8

2.9

3.1

3.2

3.3
3.4

CONTENTS (continued)

Shared Indexed File Support •••••••.•••••••••••.••
Elemental Sharing •..•••••.•••••••••••••••.•••
OMS Sharing
Holds for Update and for Retrieval •••••••••••
Preclaim Strategy •••••••••••••••.•••.•••••.••
Handling Resource Request Conflicts •.••••....
HOLD Statement
Holding a Generic Key of Records •••••.••••.•.
HOLD LIST Statement •••••..•..•.•.•...••••....
FREE Statement•..........•........

File Performance Options in COBOL .••..•..••••.•.•.••
Large Buffer Strategy for Consecutive Files ••.•••
Buffer Pooling Strategy for Indexed Files ••••.•.•
Setting the Index and Data Packing Densities

Handling File-Related Error Conditions in COBOL ...••

OMS/TX

Introduction
Principle Features •••.•..••••..••.•.•••••••••.•••

OMS/TX File Sharing •••••••••••.•..•••••••.•••
Transaction Rollback Recovery .••••••••••••.•.
Structural Integrity Monitoring ••••••••••••••

Implementing OMS/TX in COBOL .••••.•••••••••••••••.••
The VALUE OF RECOVERY-BLOCKS IS Clause •••••••.•..
The VALUE OF RECOVERY-STATUS IS Clause •.•••••.•.•
The VALUE OF DATABASE-NAME IS Clause ••••••••••..•
Attaching File to a DMS/TX Database ••••••••••.•••
Opening and Closing Files ••••••••••••••••••••.•..
Holding and Releasing Resources •••••.••••.•••...•
Deadlock .. .
Program-Initiated Rollback ••••.•••.•.•••••.••...•
Rollback Following a Program Cancel •••••.•••..•••

Program Example •••.••.•••••..••••••••.••••••••••...•
DMS/TX VS DMS Sharing .••••.•••••.•••.•...•••.••.•.••

CHAPTER 4 WORKSTATION FILE PROCESSING

4.1 Interactive Processing with VS COBOL •.•••••••••••.••
4.2 VS Interactive Extensions •••••.•••.••.•.••.....•••..
4.3 Coding Requirements for DISPLAY AND READ .••••••..•.•

Environment Division Requirements for DISPLAY
AND RE1'D •••••••••••••••••••••••••••• • •••••••••••

Data Division Requirements for
DISPLAY ANI> READ•...••...•.•..•..•...•.....

Procedure Division Requirements for
DISPLAY ANI> READ•..•........•••...••.....•

Coding Requirements for Additional Workstation
Fi le Control

viii

2-29
2-29
2-30
2-30
2-31
2-31
2-31
2-32
2-33
2-34
2-34
2-34
2-35
2-37
2-39

3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-4
3-4
3-5
3-5
3-6
3-6
3-7
3-7

3-10

4-1
4-2
4-3

4-3

4-4

4-19

4-23 ~

CHAPTER 5

CHAPTER 6

CHAPTER 7

CONTENTS (continued)

4.4 Programming the Workstation Through
Full Screen I/O •••.•••••..••••...••.•.•.•..•••..•• 4-30

4.5 Programming the Workstation Through
Row-Oriented I/O •••••••••.••••.•••.••••••••••••••• 4-34

4.6 Coexistence of DISPLAY AND READ and
Full Screen I/O •••••••••.••.•••••••••••••••••••••• 4-37

PRINT FILE PROCESSING

5.1 Defining a COBOL Print File ••••••••..••••.•••.•.••.• 5-1
5.2 Using the BEFORE/AFTER ADV~CING Clause for

Printer Control • . • • . . . • • . • • • • • • • • • . • • • • . • • 5-2
5.3 Using Figurative Constants for Printer Control ..•.•• 5-4

TAPE FILE PROCESSING

6.1 Introduction • . . • . • • . . . • • • . . • • • . • • . . • . • . . • . . . • • 6-1
6.2 Tape Label Processing •...•..•.•••.••••...•.••••.•.•• 6-1
6.3 Use of LABEL RECORDS Clause for

Tape Label Processing .•..•••.•.••..••...•••..••..• 6-2
ANSI and IBM Tape Label Processing •.•...•.••...•• 6-2
Nonlabelled Tape Processing .••••.....•••••.•••.•• 6-3

SORT-MERGE PROCESSING

7 .1 Introduction . 7-1
7 . 2 So rt i ng . 7 -1
7. 3 Merging . 7-2
7. 4 Implementation • • . • • • • • • . • • • • • . • • • • • • . • • • . • • • • • • • • • • . 7-2
7.5 Collating Sequence and SORT-MERGE Limitations ••••.•• 7-3
7. 6 Program Example . 7-3

PART II REFERENCE

CHAPTER 8 GENERAL LINGUISTIC CONSIDERATIONS

8.1 Introduction . 8-1
8. 2 COBOL Characters . • • . . . • . • • • . • . . • • . • . • . 8-1
8.3 Character-strings and Separators•....•.••..... 8-2
8.4 Punctuation • . . • . • . • • • . . . • . • . • . . . • • • • • . • • . 8-3
8.5 Divisional Components .•......•...•...•...••...•.••.• 8-3

Sections . 8-4
Paragraphs . . • • • • . • • • . • . . • . . • • • • • • • . • • . 8-4
Sentences • . • . • • • . . • . • • • . • • . . • • • • . • • • 8-4
Entries . 8-5

ix

CHAPTER 9

CHAPTER 10

8.6

8.7

9.1
9.2

9.3

10.1
10.2

CONTENTS (continued)

Clauses .. .
Statements
Phrases · . · . · · ·

COBOL Words . • • • • • • • . • . • • • • • • • • • • . . • • . • • • • • • • • • • . • • •
User-defined Words •••••••••••••.••••.••.•••••.••
COBOL-defined Words ••••••••••••••.•••.••.•.•••.•
Literals

Format and Notation .••.••••.•••..••.••...•.•••.••..
Definition of a General Format .•••••.••••.••.•••
Definition of Syntax Rules .••.•••••..••..•••..••
Definition of General Rules .•.••••••••••••••.•••
Format Notation •.•••••••••..•.••••••••••••••••.•
COBOL Source-program Reference Format ••..•••••••
Continuation Lines ..••••....•.••••••...••.••••••
Conunent Lines
Blank Lines
Division, Section, and Paragraph Formats .••••..•
Data Di vision Entries •....•...••••••..••...•.•••

IDENTIFICATION DIVISION

General Description ••••.••.....•....••...•••..•.•..
Organization ...•••.••..•••.•..•..•.•.••..••.•••••.•

PROORAM-ID Paragraph ••••......•...•...••...•••••
Conunent-entry Paragraphs .•.....••••.••••••••••••

Example of Identification Division ..•••.••.•.••••••

ENVIRONMENT DIVISION

General Description •••.•••••..•••.•••••...•••••••••
Organization ••.••••.••.•••••••••.•••••••••.••••••••

Configuration Section ••••••••.•••••.•••••.••••••
SOURCE-COMPUTER Paragraph •••••••••••••••••••
OBJECT-COMPUTER Paragraph .••••••••••••••••••
SPECIAL-N.AMES Paragraph .•.•••••.•.••••••••.•
FIGURATIVE-CONSTANTS Paragraph ••..•••••••.••

Input-output Section •••..••••••.••••••••••••••.•
FILE-CONTROL Paragraph .••.•••••••••••••••.•.
FILE-CONTROL Entry -- for Consecutive

8-5
8-5
8-5
8-5
8-6
8-8

8-11
8-12
8-12
8-13
8-13
8-13
8-14
8-15
8-16
8-16
8-16
8-17

9-1
9-1
9-3
9-4
9-5

10-1
10-2
10-3
10-3
10-4
10-5
10-7
10-9
10-9

Files . 10-10
FILE-CONTROL Entry for Indexed Files •••.• 10-14
FILE-CONTROL Entry -- for Relative Files •.•• 10-18
FILE-CONTROL Entry -- for Sort, Merge

Files . 10-21
I/0-CONTROL Paragraph •••..••.•••••.•••...•.. 10-22

x

CHAPTER 11

11.1

11.2

11.3

11.4

CONTENTS (continued)

DATA DIVISION

Computer Independent Data Description •••••••..•.•••
Logical and Physical Records •.••..••..•....•••.•
Concept of Levels .•••.•••.•••.•••...•...••.•.•••
Class es of Data ..•••.•••..••••.•••.•••••.•••••.•
Character Representation and Radix •••....••.•••.
Algebraic Signs •••••••••••.•••••.•••••••••..••••
Standard Alignment Rules •.•••••.•••••.•..•••.•.•

Methods of Data Reference .••..••••••..••..•....•••.
Qualification, The Corresponding Phrase

and Subscripting .•••••.••••••.•••.•••....••.
Indexing .••••.••.....••.•.•.•••••..•.••.•••••.••
Condition Names .•.••..•••.•.••••..•••..••..•••.•
Identifiers ..••••.••.•••.•••••..••.•••...•••••..

Organization . . • • • • • • • • • • • • • • • . • • • . . • • • • . • • • • . . . • • . .
File Section •.........•...•...••...•....•.......

File Description Entry•••..••.......••..
BLOCK CONTAINS Clause ..•••..••..•....•••••.•
CODE-SET Clause •.•••.•.••••.....••••.••.•••.
DATA RECORDS Clause •••..•...•••.•••..••.••.•
~EL RECORDS Clause ..•.•••••..••...•..•••.•
RECORD CONTAINS Clause .••••.••.•.••..•••••.•
VAL'UE OF Clause ..•..••.•••..••..••••••••.•••

The SORT-MERGE File Description Entry •••..••.•.•
Working-Storage Section••.••...••••.•••••.••
Data Description Entry •..•.••.•••.•••....•.•••.•

BLANK WHEN ZERO Clause ••••••••.••••••.•••••.
DATA-NAME or FILLER Clause •..•••.•••.•••••••
JUSTIFIED Clause •.••..•••.•••••••...••.•••••
LEVEL-NUMBER Clause •••••••••••.••..•.•••••••
OCC'URS Clause •••••.•••••••••••.•••••.•••.••.
PICT'URE Clause •••••••.•••.•••••••••••••••••.
REDEE'INES Clause ••••••••••••••••••••••••••••
SIGN Clause •••••.••••••••.•••••••..••••••••.
SYNCHRONIZED Clause ••••••••••••••.••.••••••.
USAGE Clause •••••••••••...•••••••.••...•••••
VAL'UE Clause ••••••••..•••••••••••.•.•••••••.

Workstation Screen Description Entry •.••••••••.•
COLUl-Dl Clause •••••••••••••••••••••••••••••••
ROW Clause ••••••••••••••••••••••••••••••••••
PICT'URE Clause ••••••••••••••••••••••••••••••
RANGE Clause ••••••••.•.•••.•••.••..•••••••••
SOURCE or VAL'UE Clause .•••..•••......•••••.•
OBJEC.T Clause •••••••••••••••••••••••••••••••
OCCtJRS Clause ••..•..•.....•...••..••.......•

Linkage Section •••••••.••........•••...••..•••..
Example of Data Division ••.••..••..••..•.•.•.••••..

xi

11-1
11-1
11-2
11-4
11-4
11-4
11-5
11-5

11-5
11-9

11-10
11-11
11-12
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-20
11-25
11-27
11-28
11-30
11-31
11-32
11-33
11-34
11-36
11-46
11-48
11-50
11-51
11-54
11-57
11-59
11-61
11-62
11-63
11-64
11-65
11-67
11-68
11-70

CHAPTER 12

12.1
12.2

12.3

12.4

12.5

CONTENTS (continued)

PROCEDURE DIVISION

General Description •••••.••••••••••••••••••••••••••
Organization •••••••.••••••••.•.••••.••.•••••••.••••

Procedure Division Header ••••••.•••••.••••••••••
Procedure Division Body •••••••••.•••••••••.•••.•
Statements and Sentences ..••••••••••••••••••••••

Arithmetic Expressions .••••.••.••••..••••.•••••••.•
Arithmetic Operators •••••..•••••••••••••••••.•••
Formation and Evaluation Rules ••••..••..••••••••
Arithmetic Statements •••.••.••••..•••..•••••••.•

ROtJN'DED Phrase
SIZE ERROR Phrase •.•.•••.•••....••.•••.•••..

Conditions .. .
Simple Conditions •..•..•..•...••..••..•.••.•.•.•
Complex Conditions .•••....•••..•••••.••..•••••••
Condition Evaluation Rules ••..•..•.•..•••.••.•••

Procedure Division Statements .•••....•..•..••...•..
ACCEPT Statement ..•••..•••••..••..••..••••••
ADD Statement•••...........•.......•
ALTER Statement
CALL Statement .•..•....•..•..•.•......•.•.•.
CLOSE Statement -- for Consecutive Files ••••
CLOSE Statement -- for Index

12-1
12-1
12-1
12-2
12-3
12-6
12-6
12-7
12-9
12-9
12-9

12-10
12-10
12-16
12-19
12-21
12-21
12-24
12-26
12-27
12-29

and Relative files •••••••••••••••••••.•• 12-31
COMPUTE Statement •••.••••••••••.•••••••••••• 12-32
COPY Statement • . . . • • • • • • • • • • . • • • • • • • • • . • . • • • 12-33
DELETE Statement -- for Indexed Files ••••.•. 12-36
DELETE Statement -- for Relative Files ••.••• 12-38
DISPLAY Statement •••••••••••••••••••••.•••.. 12-40
DISPLAY AND READ Statement ••••••••••.•.•..•• 12-41
DIVIDE Statement •••••••••••.••••.•••••••••.• 12-44
ENTER Statement • • • • • • • • • • • • • . . • • • . • . • • • • • • . • 12-4 7
EXIT Statement • • • • • • • • • • • • . • • • • . • • • . • • • • • • • • 12-48
EXIT PROGRAM Statement •••••.••••..••.••••••• 12-49
FREE Statement . 12-50
GO TO Statement • • • • • • • • • . • • • . • • . • . • . • • • • . • . . 12-51
HOLD Statement • • • • . • • • • • • • • • . • . . • • • • . • • • • . • • 12-52
IF Statement • • • • • • . . . • . • • • • . • . . • • . • • • • • • • • • • 12-54
INSPECT Statement •.••.••.•••.••••••••••••••• 12-57
MERGE Statement • • • • • • • • • . • • • • • • • • • • . • • • . • . • • 12-64
MOVE Statement • • • • . • • • . • • • • • . . . • • . • • • • • • • • • • 12-6 7
MULTIPLY Statement ••••••••.••••.••..•••.•••• 12-73
OPEN Statement for Consecutive Files .••.. 12-74
OPEN Statement -- for Indexed Files .•••.•••• 12-77
OPEN Statement -- for Relative Files •.•••••• 12-79
PERFORM Statement . • • . • . • • • . • . . • . • . • . • • • • . • . • 12-82
READ Statement for Consecutive Files ••••• 12-88
READ Statement for Indexed Files ••••••••• 12-93
READ Statement for Relative Files •••..••• 12-98

xii

CHAPTER 13

APPENDICES

APPENDIX A
APPENDIX B
APPENDIX C

APPENDIX D

13.1
13.2
13.3

CONTENTS (continued)

RELEASE Statement • • • • . . • . • • • • . • • • • • • . . . • • . • 12-101
RETURN Statement •••.••••••••••••..•••.•...• 12-102
REWRITE Statement -- for Consecutive Files • 12-104
REWRITE Statement -- for Indexed Files ••••• 12-107
REWRITE Statement -- for Relative Files •••• 12-110
ROLLBACK Statement •••••••••..••...•••••..•• 12-112
SEARC!I Statement • • • • . • . • • • • • . . • • . . . • . • • • • • • 12-113
SET Statement • • • • • • • • • • • • • . . • • • • . • . . • . • • . • • 12-123
SORT Statement • • • • • • • • • • . • • . . • • • . . • . . . • . • • • 12-126
START Statement -- for Consecutive Files •.. 12-131
START Statement -- for Indexed Files ..••..• 12-132
START Statement -- for Relative Files .••••. 12-135
STOP Statement ••••••.•••.•...••••..•••....• 12-137
STRING Statement • • . . • • • . . • • • • . . • . • • • . . • . • . . 12-138
SUBTRACT Statement • . . • • . • • • . • . . • • 12-141
UNSTRING Statement ••.••.•..•.•...•.....•••. 12-143
USE Statement . • . . • • • . • . . . • . . . • • • . . • . • • • 12-148
WRITE Statement -- for Consecutive Files ... 12-151
WRITE Statement -- for Indexed Files ..••••. 12-154
WRITE Statement -- for Relative Files .••.•• 12-157

DEBUG FEATURES

VS Debug Facility .••.•....•..•..•....•...••......•
Displaying Subscripted and Qualified Data names ...
ANSI Debug Module •..•.•.•....•••....••...•.•..•••.

DEBUG-ITEM • . • • • • • • • • • •
Compile Time Switch--WITH DEBUGGING MODE •.•....
Object Time Switch ••.•••..•.•....••.....•...•••
USE FOR DEBUGGING Statement ...•...•...•..••..••
Debugging Lines ••.•..••.•••.••••..••..••.......
READY TRACE and RESET TRACE Statements••.••

Reserved Words ••..•••...••.•••.•.••••••...•....•..
COBOL Compiler Options ••••..•••••...•••...•.•..•..
Field Attribute Characters •.•.•.....••....•.......

FACs and FAC Values ••••..•••..••...•........••.
Display Characteristics for

Workstation Screen Fields .•.....••....••..••.
List of Field Attribute Characters •.........•..

Workstation Screen Order Area•....•.......•...
Use of the Order Area•••.•...........

Interpretation of the Write Control
Character•.....•...................

Interpretation of the Order Area

13-1
13-2
13-2
13-3
13-3
13-4
13-4
13-7
13-8

A-1
B-1
C-1
C-1

C-2
C-4
D-1
D-1

D-2

on a READ • D-4

xiii

APPENDIX E

APPENDIX F
APPENDIX G
APPENDIX H
APPENDIX I
APPENDIX J

APPENDIX K

CONTENTS (continued)

Interpretation of the Order Area
on a REWRITE •••••••••••••••••••••••••••••

Mapping Area Control .••••••••.••••.•••••••••••.
Displayable Characters •••••••••••••••••••••.••.

File Status Key Values ••••••••••••.••••••••••••••...
I/O Status •••.•••.•••••..•.•..••••...•.••.••••.•.
Consecutive Files ••..•••••••••.•••••••.••••....••

Status Key 1 •••••.•••.••••••..••.••••••••....
Status Key 2 ..•.....................•........

Indexed Files•......................••...
Status Key 1
Status Key 2•...•..........•......

Relative Files
Status Key 1
Status Key 2•......•.......•.........

INVALID KEY Condition ••••.••••••..••••...••....••
AID Characters .•••••.•..........•......••..•••..•

Printer Control Characters .•..••.......••.•..••...••
Intermediate Results •...•.•..••••••...•.••..••.•..••
Passing Parameters to COBOL Subroutines ••.•••..••...
A Comparison of VS, ANSI, and FIPS COBOL Standards ••
Extension-Rights ••....•.......••••..•••••••••..••...

Introduction ••••••.•.••..•.•.•..•...•••••••••....
FREE EXTENSION-RIGHTS Statement •••••••.•••••••...
HOLD EXTENSION-RIGHTS Format ..•...•••••.••••.••••
FREE EXTENSION-RIGHTS Format .••••••••••••••••...•

Segmentation ..•••••••..•...••.•••••.•••••••.••••...•
Introduction••........•.•.•....

Fixed Portion •••••••..••••••.•••••.•••.••••..
Independent Portion .••••••••.•••••••••••••.•.
Segmentation Classification ••••.••••••••••.••
Segmentation Control .•••••..•••••••••..•••...

Segm.ent-N'UIDbers ••••••••••••••••••••••••••••••••••
Segmentation Restrictions .•.•.•.•••••••••••.•••..

ALTER Statement .••..•••.•.•••..••••••.•••...•
PERFORM Statement •••...••••..••••••••••.•••••
SORT and MERGE Statemets ..•.••••••..••...•...

D-4
D-5
D-5
E-1
E-1
E-1
E-1
E-2
E-4
E-4
E-5
E-7
E-7
E-8
E-8

E-10
F-1
G-1
H-1
I-1
J-1
J-1
J-4
J-5
J-6
K-1
K-1
K-1
K-1
K-2
K-2
K-3
K-3
K-3
K-3
K-4

DOCUMENT HISTORY

Sununary of Changes for the Fifth Edition ..•••.••.•.• DH-1
Sununary of Changes for the Fourth Edition •.••.••..•. DH-2
Sununary of Changes for the Third Edition ..•••••••••. DH-5

INDE:X: • INDIDC-1

xiv

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8

2-9
2-10
2-11
2-12

3-1
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9

Figure 4-10

Figure 4-11

Figure
Figure

5-1
5-2

Figure 7-1
Figure 11-1
Figure 12-1

Figure 12-2
Figure 12-3
Figure H-1
Figure H-2
Figure J-1

FIGURES

File Creation •••.•••••••••••..••••••••••.•••••••••••
Sequential Access of a Consecutive File •.•••••••••••
Random Access of a Consecutive File •••••.•••...•••.•
Dynamic Access of a Consecutive File ••••.•••••••••••
Indexed File Processing ••••••••.•••.•••••••••••••••.
Alternate Indexed File Processing •••••••••.•••.•••••
Relative File Processing ••••.•.••••.•••••.•••.•••.••
Processing a Log File With the

Write-Through Option •••••..••.•.••••••••.•..•••.••
Holding Multiple Resources in COBOL .•••••.•.•..••••.
Buffer Pooling for Two Indexed Files .••••••••....••.
Multiple Buffer Pools ••••••••...•..••••.••.•..•••.••
File Error Handling ••••••.....••.•••..•••...•...••..
Use of DMS/TX in VS COBOL •.•..••..•..•.••....•......
Screen for Displaying ~·our Fields Across a Row •••.••
Displaying Elements Across a Row •••.•..••••.••••..••
Screen for Displaying Four Fields Down a Row .••••.•.
Displaying Elements Down a Row ..•.•.•••...••.••.•.••
Screen For Displaying Table Across and Down ••.•••..•
Displaying Table Elements Across and Down ••••.•.•••.
Sample Order Entry Screen ••.•...•.•...•...••..••••••
Producing Sample Order Entry Screen •.•••••••••••••••
Control of Order Area Using

the ORDER-AREA OF Phrase •••.•.•••..•••.•.•••••••••
Displaying Elements Across

2-7
2-13
2-15
2-17
2-19
2-21
2-25

2-28
2-32
2-36
2-38
2-43

3-8
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17

4-26

a Row Using Full Screen I/O ••.•..••..•••..•..••••••• 4-30
Setting the Cursor, Checking the PF Key,

and Sounding the Alarm •••..•...•••..••.•••..••...•
Use of BEFORE/AFTER ADVANCING ...••••••.••.•.•••••.•.
Use of Figurative Constants to Control

4-35
5-3

the Printer . 5-6
SORT Processing . • • . . • . • • • • • • • . • • • • . • • . • • • . • • • • . . • • . . 7-3
PICTURE Character Precedence Chart ••.•...•••..•••.• 11-45
Flowchart for the VARYING Phrase of the PERFORM

Statement • . • . . . • • • • . . • • • . • • . • • . • . . • . • . . . • . . . • . .. • • 12-85
Flowchart for the SEARCH Statement •..••..•••..••.• 12-117
SEARCH ALL Example • • . • • . • • • . • • . . • • • . . • • • • . . 12-119
Calling Program Passing Table Entry Parameter ..•••.. H-3
Called Program Receiving Table Entry Parameter ••.••. H-4
Holding Extension Rights in COBOL •••..•.•.....•..••. J-3

xv

Table 4-1

Table 12-1

Table 12-2

Table 12-3
Table 12-4
Table 12-5
Table 12-6
Table 12-7
Table C-1
Table D-1
Table D-2
Table E-1
Table F-1
Table F-2

Table I-1
Table I-2

TABLES

Effects of VALUE, SOURCE, and OBJECT Clauses on
USAGE IS DISPLAY-WS Screen Elements •.•.•..•..••••

Combination of Symbols in
Arithmetic Expressions .••..••.•••••...•.••••..••

Combinations of Conditions, Logical Operators, and
Parentheses

Permissible Moves Between Data Categories ..•..••..
Permissible Statements -- Consecutive Files ..•••..
Permissible Statements -- Indexed Files ...••...•.•
Permissible Statements -- Relative Files .••..•••••
Valid Operands for the SET Statement •.••.....•••••
Field Attribute Character Values .••..•............
Write Control Character ••••...•.•.••••••..........
Displayable Characters •.••••...••.........•.••••..
Attention ID (AID) Configurations ..•.......••..•••
Printer Control Characters •••..•••...•.•..•..•••..
Figurative-constant Settings for

Printer Control .•••••••....•.•..•....•..•..•••..
Federal Information Processing Standard ...•.....••
Swnmary of Differences in Language Concepts ...••.•

xvi

4-6

12-8

12-18
12-71
12-75
12-78
12-80

12-125
C-2
D-2
D-6

E-10
F-1

F-2
I-2
I-3

ACKNOWLEDGMENT

COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL Programming Language Committee as to the accuracy and functioning of
the programming system and language. Moreover, no responsibility is assumed
by any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used
herein,

FLOW-MATIC (trademark of Sperry Rand Corporation) , Programming for the
UNIVAC(R) I and II, Data Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, OSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell,

have specifically authorized the use of this material in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

xvii

~
\. I

~
~ J

~
\ ''!

PART I

TUTORIAL

~
\) ·· ... _

CHAPTER 1
COBOL CONCEPTS

1.1 INTRODUCTION TO VS COBOL

COBOL is an acronym for COnunon ~usiness-Qriented ~anguage. This
programming language is used in business applications that require
repetitious updating of files, applications whose goal is to maintain
up-to-date information that can be used as input by other processing
tools, such as report generation. Some benefits of COBOL as a
programming language are:

• COBOL is subject to industry-wide standards administered by the
American National Standards Institute (ANSI) . Therefore, COBOL
is highly compatible among manufacturers.

• COBOL programs are relatively easy to read, as compared to
programs in other languages.

• COBOL provides record formatting, data manipulation, and file
handling capabilities that are important in data processing
applications.

• Because COBOL is a major programming language, there is a large
pool of trained programmers and analysts.

Level 1 of the following ANSI standard modules is available on the
Wang VS: The Nucleus, Table Handling, Sequential I-0, Indexed I-0,
Segmentation, Library, Debug, and Inter-program Communication. Full
Level 2 support is provided for the Relative I/O module. VS COBOL os
further enhanced with many other higher level features, including
SORT/MERGE and Qualified Names. Refer to Appendix J for a comparison of
VS, ANSI, and FIPS COBOL standards.

VS COBOL is enhanced with a number of extensions that support the
interactive capabilities of the VS and advanced data management
operations. These extensions, together with other VS features provide
additional benefits to the COBOL programmer, such as:

• Easy-to-follow menus facilitating interactive communication with
the VS.

1-1

• The user can enter, validate, and correct data and can enter
edit, compile, debug, and run programs directly from the VS
workstation. Results appear on the workstation screen
immediately. This reduces programming time.

• The user can invoke a complete set of system utilities directly
from the workstation to perform common functions such as sorting,
copying, and program linking.

• An intetacti ve symbolic debugger allows run-time debugging from
the workstation. The user can inspect and modify data by
referencing data names rather than addresses in memory.

• VS COBOL enhances standard COBOL with a transaction recovery
system providing multiple user sharing and rollback recovery of
indexed data files.

• The COBOL programmer can use the VS Procedure
communicate with the system. This capability
syntactical complexity typical of command or
languages.

1.2 STRUCTURE OF COBOL PROGRAMS

language to
reduces the
job control

COBOL has rules for organization and syntax. Every COBOL source
program has four divisions, each of which has specific mandatory and
optional elements. These elements include sections, paragraphs, entries,
statements, clauses, phrases, and sentences. Section 8.5 describes these
elements.

The programmer must write the divisions in proper sequence, and each
must begin with the proper division header. In sequence, the division
headers are

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

1.2.1 Identification Division

The Identification Division defines a unique name that identifies the
program. It can also include comments about the program, such as the
author's name, the installation, and the date it was written and/or
compiled.

For a detailed discussion of the Identification Division, refer to
Chapter 9.

1-2

1.2.2 Environment Division

The Environment Division contains two sections: the Configuration
Section and the Input-Output Section.

The Configuration Section describes the characteristics of the
particular computer(s) to be used to the compiler. It can also contain a
SPECIAL-NAMES paragraph and, in VS COBOL, a paragraph that defines
figurative constants.

The Input-Output Section provides information the system needs to
control transmission and handling of data between I/O devices and the
object program. In this section, the programmer identifies and assigns
files for the program to use and assigns them to particular devices.
During subsequent program operations, these files are used with the
device types specified in this section.

For a detailed discussion of the Environment Division, refer to
Chapter 10.

1.2.3 Data Division

The Data Division contains the names and format descriptions of all
data to be used in the program. The Data Divison, like the Environment
Division, is composed of sections.

The File Section describes the format of each file and each record
within each file the program uses. Level numbers delineate the
hierarachy of elements within a file.

The Working-Storage Section describes all data items that do not
exist as part of a file, but are used by the object program for specific
program processing. Working-Storage records can also be described in
terms of a hierarchy of levels.

The Linkage Section is required in a program invoked by another
program. A CALL ••. USING statement in the Procedure Division of the
calling program accomplishes the call. This section describes the data
that the called program receives from the calling program.

For a detailed discussion of the Data Division, refer to Chapter 11.

1.2.4 Procedure Division

The Procedure Division of a COBOL program controls the processing of
data. The Procedure Division consists of two main sections: an optional
Declaratives Section and a required section containing nondeclarative
procedures. Each of these sections can contain other sections and
paragraphs the programmer names. The Procedure Division statements that
control data processing include input/output, arithmetic,
decision-making, and program control statements. For a detailed
discussion of the Procedure Division, refer to Chapter 12.

1-3

1.3 DISK FILE PROCESSING

VS COBOL supports three types of disk file organization: consecutive,
relative and indexed. A consecutive organization allows a programmer
access to that file's records in the same order that they are written.
Thus, a request for record nwnber 3 retrieves the third record written to
the file. Records in an indexed file are accessed through the value of a
field of the record called the "record key". Records in an indexed file
can have both primary and alternate record keys. Thus, a request for the
record whose primary key is 3 causes the retrieval of the record with
that value in its primary key data field, no matter when the record was
written to the file or in what order. In addition, programmers can
access an alternate indexed file by referencing the file's primary or
alternate keys.

Relative files consist of records uniquely identified by an integer
value greater than zero which specifies the record's logical ordinal
position in the file. This value is the relative record number and
controls access to the record. Records can be accessed by sequential,
random, or dynamic mode. The sequential mode allows the programmer to
access records in the ascending order of the relative record numbers of
all the records currently existing in the file. The random mode allows
the programmer to access a record by placing its relative record number
in a relative key data item, and dynamic access allows the programmer to
change mode from sequential to random and back again.

The ORGANIZATION IS (SEQUENTIAL or INDEXED) clause of the
FILE-CONTROL entry in the Envirorunent Division specifies the file type
within a COBOL program. For indexed files, the RECORD KEY IS clause must
also be included; for alternate indexed files, the ALTERNATE RECORD KEY
clause must be included as well.

Each of these file types can be accessed by the programmer in one of
three ways: sequentially, randomly, or dynamically. Sequential access
of a consecutive file means the programmer accesses the records in the
order in which they were written. Random access of a consecutive file
allows him to access records in any order by reference to a "relative
record number" that represents the order in which a record was written to
the file.

Sequential access of indexed files retrieves the records in the
ascending order of their record key (primary or alternate) values. Using
random access for indexed files, a programmer retrieves the desired
record by placing the value of its primary or alternate record key in the
data item defined in the RECORD KEY IS or ALTERNATE RECORD KEY clause.

For consecutive or indexed files, the dynamic access mode allows the
programmer to employ both sequential and random access of the same file
within one program.

1-4

VS COBOL allows three record formats for files: fixed-length,
variable-length, and compressed. If a program specifies variable-length
records, the number of characters in the records of the file may vary; if
the program specifies fixed-length records, the number of characters must
be the same. Compressed records can save space because characters that
repeat three or more consecutive times are stored in two bytes, one for
the character and one for the number of times it repeats. The RECORD
CONTAINS clause of the File Description (FD) paragraph determines the
record format for a file.

The following four Procedure Division verbs designate the
Input/Output operations that can be performed by a program on disk
files: READ, WRITE, REWRITE, and DELETE. A file's organization
determines the kinds of operations that a program can perform on that
file. Before these operations can take place, an OPEN statement must
prepare the file for processing. The OPEN statement specifies the mode
in which the file is opened. The operations a program can perform on a
file are determined by the file's organization and the mode the program
uses to open the file. These modes are: OUTPUT, for creating a file;
INPUT, for reading from an existing file; I-0, for any Input/Output
operation on an existing file; EXTEND, for writing new records to the end
of an existing file; and SHARED, a VS COBOL extension that allows several
users to update the same file concurrently.

VS COBOL offers a number of options for enhancing file processing
efficiency. For consecutive files, the BUFFER SIZE clause of the
FILE-CONTROL entry can increase the size of the buffers set aside for
file processing. For indexed files, the RESERVE n AREAS clause of the
FILE-CONTROL entry and the SAME AREA FOR statement of the I-0-CONTROL
paragraph specify that more than one file is to share a buffer of a
certain size; this is called buffer pooling. The VALUE OF DATA AREA and
VALUE OF INDEX AREA clauses of the FD paragraph can reduce the number of
operations required when records are added to an indexed file.

Additionally, VS COBOL allows a programmer to exclusively hold
resources for update or retrieval. Holding resources is applicable to
indexed and alternate indexed files only. Resources can be identified by
the file name and by generic key. Generic key is the value of the first
N characters of a record's primary key. Resource holding is a feature of
both the OMS Sharing environment (discussed in Subsection 1.3.1) and the
OMS/TX environment (discussed in Section 1.4).

For a detailed discussion of disk file handling, refer to Chapter 2.

1.3.1 OMS Sharing Environment

The Wang VS offers the DMS Sharing environment in which an
application program can hold more than one record at one time. OMS
Sharing was ref erred to as Advanced Sharing in prior versions of this
manual. Many of the features of OMS Sharing are incorporated into the
OMS/TX environment discussed in Section 1.4 and presented more fully in
Chapter 3. A chart comparing the OMS Sharing and OMS/TX functions is
also presented in Chapter 3.

1-5

Under DMS Sharing, holding requests are made in units called
resources. Resources can be either a record, a generic range of keys for
an indexed or alternate indexed file, or an entire file. Program
initiated requests can be processed by the system either by using a
pre-claim strategy, in which all resources are claimed at once, or a
claim-as-needed strategy, in which resources are claimed as required by
the application.

VS COBOL
envirorunent.
Section 2.6.

1.4 DMS/TX

continues to support all aspects of
Discussions on specific functionality

the
is

DMS Sharing
presented in

DMS/TX is a transaction recovery system. An extension of OMS
Sharing, DMS/TX provides multiple user sharing and rollback recovery of
indexed data files processed in Record Access Method (RAM). Files used
with DMS/TX are organized into a named set of indexed data files called a
database. DMS/TX file updates performed by a VS COBOL program are
grouped into units called transactions. A transaction is a related set
of record updates that are posted as a group to preserve database
consistency.

File sharing under DMS/TX is fully compatible with DMS Sharing.
OMS/TX file sharing features include:

• Multiple users are allowed simultaneous access to the same files.

• Programs holding resources for update do so on a claim-as-needed
basis.

• Any resource held for update by one task can be read without hold
by another task. Any resource held for update cannot be held by
any other task.

• More than one task can hold a resource for retrieval.

• Each task can exclusively hold multiple resources for the
duration of a transaction.

• The system automatically releases all resources held by a task at
the conclusion of a transaction.

• Any deadlock situation is automatically resolved by the system.

DMS/TX safeguards against damage caused by a program or system
failure occuring during file updated through Transaction Rollback
Recovery. Rollback recovery features include the following:

• Transactions are fully applied or not applied at all, i.e. ,
rolled back.

1-6

• If a transaction is rolled back, all updates made to the data
files are removed, returning each file to its previous consistent
state.

• Consistency is maintained both within a file and between files
whose updates must be coordinated.

• Rollback is automatically performed by the system when necessary
and can be initiated as a program-invoked function.

For a detailed discussion on using OMS/TX in VS COBOL, refer to
Chapter 3.

1.5 WORKSTATION FILE PROCESSING

Because the VS is an interactive system, the user can conununicate
directly with the system through the workstation, responding to prompts
from the system or querying it and receiving an inunediate reply. Wang
has implemented extensions to COBOL that facilitate, and take advantage
of, these interactive capabilities. These extensions allow the user to
format the contents of the workstation screen, to move data to and from
the system and to the screen, and to determine display characteristics
(uppercase or lowercase, alphanumeric or numeric, bright or dim,
modifiable or protected, underlined or not underlined, blinking or not
blinking, blank or not blank).

The VS COBOL extensions provide two approaches to interactive data
handling. The user can combine these approaches within the same
program. Both approaches treat the screen syntactically as if it were a
file. Thus, a progranuner assigns a file name for the screen in a SELECT
clause. The programmer also assigns a device type of "DISPLAY" and
includes a File Description entry for it in the Data Division.

The Procedure Division statement for the first method of interactive
data handling is DISPLAY AND READ. In addition to moving information
from internal storage to the workstation screen and vice versa, DISPLAY
AND READ automatically performs operations such as setting default
display characteristics, initializing fields, and validating data. In
order for the programmer to use DISPLAY AND READ, he must describe the
screen format with a Working-Storage entry, including a USAGE IS
DISPLAY-WS clause.

The second method of interactive data handling is more complex. It
uses REWRITE statements to move information to the screen, and READ
statements to transfer information from the screen to storage. This
method requires that the programmer write code to perform those
operations automatically performed by the DISPLAY AND READ statement.

1-7

Both methods can use a number of VS COBOL extensions to control
screen formatting and display characteristics. Each field displayed on
the screen has a byte preceding it that contains its Field Attribute
Character CFAC). A FAC is a hexadecimal numeral that represents a set of
display characteristics (uppercase, numeric, blinking, and so on). In
order to manipulate and test FACs within a program, data names can be
assigned to them by the programmer in the FIGURATIVE-CONSTANTS paragraph
of the Environment Division.

A 4-byte area in storage, called the "order area", exists for each
workstation screen display. The order area controls such workstation
features as keyboard locking C the cursor disappears and data cannot be
entered by a user from the workstation), alarm sounding (if, for example,
a user enters invalid data) and cursor positioning. As with FACs, data
names associated with hexadecimal characters in the FIGURATIVE-CONST.ANTS
paragraph can reference the contents of the order area for modification
and testing.

Another VS COBOL extension, the MOVE WITH CONVERSION statement,
facilitates the processing of data entered by an interactive user through
the workstation. It converts character representation of numbers or
muneric edited data into numbers that can be used by the program for
computation.

For a detailed discussion of workstation files, refer to Chapter 4.

1.6 PRINT FILE PROCESSING

Print files and several extensions of the WRITE statement control the
content and format of printed output in VS COBOL. Designating the device
type as "PRINTER" in the FILE-CONTROL entry creates print files. The
length specified in the record description for this file is the length of
the line to be printed.

The programmer specifies the number of lines the printer skips before
or after writing a print file record by coding the BEFORE or AFTER
ADVANCING clause of the WRITE statement with an integer, a data name
having an integer value, or a data name for a hexadecimal character
(defined in the FIGURATIVE-CONSTANTS paragraph). The BEFORE or AFTER
ADVANCING clause also controls when the printer is to end one page and go
to the next. User-defined figurative constants in the WRITE statement
can control printer alarm sounding and the use of expanded print
characters, functions that some printers support.

For a detailed discussion of print control, refer to Chapter 5.

1.7 TAPE FILE PROCESSING

The VS also supports magnetic tape files. Naming the device type
"TAPE" in the SELECT statement identifies a file as a magnetic tape
file. Consecutive file organization is the only kind available for tape
files.

1-8

To make a tape file available to a COBOL program, the progranuner must
specify its physical location on the tape. To do this, the progranuner
can either reference labels that mark the beginning of the file on the
tape or indicate the relative position of the file on the tape with a
file number. The LABEL RECORDS ARE (STANDARD or OMITTED) clause of the
FD paragraph indicates whether the file has labels.

The VALUE OF FILENAME, LIBRARY, AND VOLUME clauses of the FD
paragraph reference tape labels. If relative position is used to locate
the file, the VALUE OF POSITION clause must be coded.

For a detailed discussion of tape files, refer to Chapter 6.

1-9

~ ,. ·9
'· .

I~

CHAPTER 2
FILE ORGANIZATION AND ACCESS

2.1 INTRODUCTION

This chapter discusses the process of creating and maintaining files
in VS COBOL. The discussion will focus on file organization (the
physical structure of the file) and file access (the program-determined
method of obtaining and storing records) for disk files. The following
VS COBOL statements maintain records on files.

READ

WRITE

REWRITE

DELETE

START

Retrieves a record from the file.

Stores a record into the file.

Replaces a record that has been previously READ, storing
the modified record into the file.

Removes a record from the file.

Positions the file so that subsequent READs can retrieve
the desired group of records.

Each of these basic operations has many variations, depending on the
file organization and the precise action desired.

2.1.1 Qpening and Closing a File

Before operations can be performed on records in the file, the file
must be prepared for processing. The OPEN statement, coded in the
Procedure Division, will accomplish this. In addition to recording the
fact that a file is open, the VS operating system also must know how
records will be processed. This is accomplished by coding a modifier to
the OPEN statement. This modifier is called the "open mode". Valid open
modes are as follows:

2-1

OPEN Statement

OPEN OUTPUT file-name

OPEN INPUT file-name

OPEN I-0 file-name

OPEN EXTEND file-name

OPEN SHARED file-name

Meaning

The file does not exist. It will be
created; that is, space will be made
available for it.

Records will be read from the file by
one or more users, but no modifications
will occur.

Records will be modified on the file.
The file is reserved for exclusive use
by the program.

The file already exists and will be
prepared for writing records at the end
of the file.

Records will be modified on the file,
as in OPEN I-0. However, many users
can modify different records
concurrently. Records are held for
modification by the program as
requested.

To signal that the program will do no further I-0 operations on the
file, the program should close the file. Closing the file releases it from
program control. To close a file, code CLOSE file-name in the Procedure
Division.

Another use of closing a file is to allow the file to be reopened in
another mode. For example a file being created must be opened in output
mode. However, WRITE is the only operation allowed in output mode. To allow
other operations, the file should be closed and reopened in I-0 or shared
mode. To create a file called FILEl and then allow all operations on it, code
the following statements.

OPEN OUTPUT FILE!.
CLOSE FILEl.
OPEN I-0 FILEl.

2.1.2 File Organizations

VS COBOL supports three file organizations: consecutive, indexed and
relative files.

Consecutive Files

Consecutive files consist of records that are stored on the file in the
order they are written; a consecutive file is specified by coding ORGANIZATION
IS SEQUENTIAL in the FILE-CONTROL entry for the file. A WRITE of a record to
a consecutive file adds a record to the end of the file. Consecutive files
are discussed in Section 2.3.

2-2

Consecutive files can be processed in one of three ways, depending on
the ACCESS MODE IS clause in the FILE-CONTROL entry for the file:
sequentially (ACCESS MODE IS SEQUENTIAL), randomly (ACCESS MODE IS
RANDOM), or a combination of sequentially or randomly (ACCESS MODE IS
DYNAMIC). Sequential access of a consecutive file is accessing records
in the order they were written. The first record is read and processed,
then the next record, and so on. Sequential access of a consecutive file
is described in Section 2.3.1.

In random access of a consecutive file, a record is accessed by its
"relative record number", which is an indicator of the ordinal position
of the record within the file. To access the 15th record in the file,
request relative record number 15 by moving 15 to the data name
referenced in the RELATIVE KEY IS phrase. Random access of a consecutive
file is described in Section 2.3.2.

In dynamic access of a consecutive file, records are accessed either
in order (sequentially) or by relative record number (randomly). Dynamic
access of a consecutive file is described in Section 2.3.3.

Indexed Files

Indexed files consist of records that are stored on the file
according to a field in the record. For each record, a field is
designated as containing a unique value that identifies the record; for
example, an employee number field in an employee record. This field is
called the "primary key". Records in an indexed file can be accessed
either in primary key order (sequentially) or by a particular primary key
value C randomly). Random access of an indexed file means that a record
may be read without reading all the records preceding it. This is an
efficient method of obtaining a record directly, since it is directly
accessible by the primary key value. Storing records in indexed files
thus provides added flexibility over sequential files (in which records
must be read in order) for record access.

Indexed files can also be processed in one of three ways, depending
on the ACCESS MODE IS clause in the FILE-CONTROL entry for the file:
sequentially (ACCESS MODE IS SEQUENTIAL), randomly (ACCESS MODE IS
RANDOM), or a combination of sequentially or randomly (ACCESS MODE IS
DYNAMIC). Sequential access of an indexed file accesses the records in
ascending primary key order. The record with the lowest primary key in
the ASCII collating sequence is read and processed, then the next record,
and so on. Before reading the record with EMPLOYEE-NUMBER = 12345, all
records with EMPLOYEE-NUMBER less than 12345 must be read.

In random access of an indexed file, however, a record is accessed by
its primary key value. This value is found in the data name referenced
in the RECORD KEY IS clause. The RECORD KEY IS data name is a field in
the FD entry for the file; its location in the record indicates the
primary key for the record. To obtain the record having this primary key
value, move the value to the RECORD KEY IS data name and issue the READ.
Therefore, to read the record with EMPLOYEE-NUMBER = 12345, the record
can be accessed without reading any other records in the file.

2-3

In dynamic access of an indexed file, records are accessed either in
primary key order (sequentially) or by a primary key value (randomly).
Indexed files are discussed in Section 2.4.

Alternate indexed files are extensions of indexed files to allow for
access of a record along up to 16 alternate paths, or alternate keys. In
addition to accessing the record along the primary key path (the standard
indexed file capability) the record can be accessed along the other
paths. The COBOL program issues a START along the desired path;
subsequent READ instructions obtain records along that particular
alternate path. The effect of alternate indexed file processing is that
the file is presorted based upon as many as 17 fields. Alternate indexed
files are discussed in Section 2. 5. The use of re la ti ve files requires
Release 6. 20 or greater of the VS Operating System and any VS machine
other than a vsso or vsao.

Relative Files

Relative files consist of records uniquely identified by an integer
value greater than zero which specifies the record's logical ordinal
position in the file. A relative file is composed of a serial string of
areas. Each area has a relative record nwnber and is capable of holding
a logical record. Records are stored and retrieved according to the
relative record nwnber. For example, the tenth record is the one
addressed by relative record number 10 and is in the tenth record area,
whether or not records are written in the first nine record areas.

Relative files can be accessed in one of three modes, sequential,
random, or dynamic. In the sequential mode, records are accessed in the
ascending order of the currently existing relative record nwnbers. The
random access mode allows the programmer to control access to the file's
records. A desired record is accessed by the programmer placing that
record's relative record nwnber in a relative key data item. Dynamic
access allows the progranuner to change mode from sequential to random and
back again at will. Relative files are discussed in Section 2.6.

2.1.3 Record Types

VS COBOL supports three record types: fixed-length records,
variable-length records, and compressed records. Most record types are
allowed in all file organizations. Compressed records are not allowed
for relative files. The specification of record type for a file is
accomplished by variations on the RECORD CONTAINS clause in the FD entry
for the file and is established when the file is created. The record
type specification cannot be changed after the file is created.

2-4

~I

Fixed-Length Records

~' Fixed-length records, the default, means that all of the records have
the same length. Coding of the RECORD CONTAINS clause is unnecessary if
fixed-length records are desired. However if you code the RECORD
CONTAINS clause, the COBOL compiler will check the record length
specified in the RECORD CONTAINS clause ag~inst the computed record size
in the record description entry: if they disagree, the compiler will
produce a warning diagnostic for information purposes only. This
checking facility is particularly useful if the record structure is
complex and verification of the record size is required.

To specify fixed-length records with record-length checking, for the
file FILE!, code in the FILE SECTION as shown.

FILE SECTION.
FD FILEl

RECORD CONTAINS 100 CHARACTERS.
01 RECORD! PICTURE X(100) .

The Procedure Division statement WRITE RECORDl will write a 100-byte
fixed-length record to the file FILE!.

Variable-Length Records

Variable-length records mean that the record length will vary. The
size of the record area being written or rewritten determines the record
size. Variable-length records are specified by the RECORD CONTAINS N TO
M CHARACTERS clause in the FD entry for the file. M specifies the
maximum record size, while N specifies the minimum record size. When a
file is created, it contains a maximum record size; any record size equal
to or less than the maximum record size can be written. Therefore in the
variable-length records specification M cannot be greater than the record
size specified when the file was created.

To specify variable-length records for the file FILE!, code in the
FILE SECTION as shown.

FILE SECTION.
FD FILEl

RECORD CONTAINS 50 TO 100 CHARACTERS.
01 FIFTY-BYTE-RECORD PICTURE XCSO).
01 ONEHUNDRED-BYTE-RECORD PICTURE X(100).

To write a 50-byte record to FILEl, code in the Procedure Division as
shown.

WRITE FIFTY-BYTE-RECORD.

To write a 100-byte record to FILEl, code in the Procedure Di vision
as shown.

WRITE ONEHUNDRED-BYTE-RECORD.

2-5

To write a record of any other length Cup to 100 characters) add a
record description entry for a record of the desired length, and issue
the WRITE for that record description entry.

Compressed Records

Compressed records are stored on disk in a manner that, for most
files, will economize space. Compressed records are stored so that:

• If a character repeats for 3 or more times (for up to 128 times),
the character is stored in 1 byte and another byte is used to
store the number of times the character repeats.

• Every nonrepeating sequence of up to 128 characters requires an
extra byte to store the number of nonrepeating characters.

Compression is useful when many characters repeat in the record. For
example, COBOL source files contain many repeating spaces. For such a
file, compression can save much disk space -- SO per cent and more in
many cases.

To specify a compressed file, code in the FILE SECTION as shown.

RECORD CONTAINS 100 COMPRESSED CHARACTERS.

The COBOL reserved word COMPRESSED defines a file with compressed
records. When the file is opened in output mode COPEN OUTPUT file-name),
it will be created as a compressed file. Even though the RECORD CONTAINS
clause in the previous example does not indicate variable-length records,
the file is also created as a variable-length record file because all
files with compressed records are variable-length record files. If the
file is opened in any other mode, the COMPRESSED option may be omitted,
since the file is already defined to have compressed records and this
fact is recorded in the file label.

2.2 THE COBOL FILE PROCESSING ENVIRONMENT

Figure 2-1 is a complete COBOL program that creates an indexed file
(with no records) on disk.

2-6

~\

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. CREBFILE.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT FILEl
000007 ASSIGN TO "EXTFILE", "DISK",
000008 ORGANIZATION IS INDEXED
000009 ACCESS MODE IS DYNAMIC
000010 RECORD KEY IS THE-PRIMARY-KEY.
000011 DATA DIVISION.
000012 FILE SECTION.
000013 FD FILEl
000014 LABEL RECORDS ARE STANDARD.
000015 01 FILEl-RECORD.
000016 03 THE-PRIMARY-KEY
000017 03 FILLER
000018 PROCEDURE DIVISION.
000019 START-PROGRAM.
000020 OPEN OUTPUT FILEl.
000021 CLOSE FILEl.
000022 STOP RUN.

PIC X(l0).
PIC X(70).

Figure 2-1. File Creation

Files are defined in COBOL by the FILE-CONTROL entries in the
Environment Division and the FD entries in the File Section of the Data
Division. Each clause in the FILE-CONTROL entry has a default; if a file
is to use the default, coding is not necessary. Only those clauses in
the FILE-CONTROL and FD necessary for the file need to be coded.

2.2.1 FILE-CONTROL Clauses Reguired for File Processing

In Figure 2-1, the FILE-CONTROL entry is coded on Lines 6 - 10.
Referring to this FILE-CONTROL entry, the clauses for defining a VS COBOL
file provide the following information.

• The logical file-name (the file name as known to the COBOL
program), coded on Line 6. The logical file name is FILEl.
Subsequent statements referring to the file in the program use
the logical file name.

• The parameter reference name CPRNAME> of the file, coded on Line
7. This is the external name of the file. The PRNAME is
EXTFILE. The parameter reference name is used by the VS as an
external tag when the file is opened. The COBOL program may not
have specified all the information necessary to open the file; in
that case, the VS will display a message at open time requesting
additional information. The VS uses the parameter reference name
to display a screen (the OPEN GETPARM) requesting the additional
information.

2-7

• The device on which this file resides, coded on Line 7. The
device is DISK. VS COBOL supports files on disk (DISK), tape
(TAPE), printer (PRINTER), and the workstation CDISPLA¥).
Specification of device type is optional, with DISK as the
default.

• The file organization, coded on Line 8. The organization is
INDEXED. VS COBOL supports consecutive (ORGANIZATION IS
SEQUENTIAL), relative, and indexed files. For consecutive files,
records are written at the end of the file. For relative files,
records are written according to a relative record number. For
indexed files, records are written in the order determined by the
value in the primary key field. FILEl is an indexed file.

• The mode by which records can be accessed, coded on Line 9. The
access mode is DYNAMIC. VS COBOL supports access of records in
the order that they were written (ACCESS MODE IS SEQUENTIAL),
random access by a value in a key field (ACCESS MODE IS RANDOM),
or a combination of sequential and random access (ACCESS MODE IS
DYNAMIC).

• For indexed files, the primary key field, coded on Line 10. The
primary key is THE-PRIMARY-KEY. When a record of an indexed file
is written, the value in the primary key field determines the
placement of the record in the file. THE-PRIMARY-KEY is a field
in the record; it is defined in the record description entry as
part of the FD.

2.2.2 FD Information Required for File Processing

Referring to Figure 2-1, the FD (File Description) information
required for COBOL file processing includes:

1. The logical file name CFILEl), coded on Line 13. This is the
same name as the logical file name specified in Line 6 of the
FILE-CONTROL entry. For every file defined in a FILE-CONTROL
entry, there must exist a corresponding FD entry; for every FD
entry, there must be a corresponding FILE-CONTROL entry. This
allows the COBOL compiler to relate information specified in the
FD entries to information specified for the FILE-CONTROL entry.

2. The labels attached to the corresponding physical file (LABEL
RECORDS ARE STANDARD) , coded on Line 14. The LABEL RECORDS
clause is primarily used for tape files to indicate whether ANSI,
IBM, or nonlabelled tapes are being used. The LABEL RECORDS
clause is optional for disk files; LABEL RECORDS ARE STANDARD is
the default.

2-8

I~

3. The record description entry, coded on Lines 15 - 17. The record
description entry describes the record and fields associated with
the record. The record description entry starts with the record
name FILEl-RECORD), coded on Line 15. Fields subordinate to the
record description entry are identified with level numbers
greater than 01. The record de~cription entry can be implicitly
redefined in a subsequent record description entry.

For indexed files, one of the fields in the record must be specified
as a record key. The RECORD KEY clause, on Line 10 of the FILE-CONTROL
entry, identifies a field to be used as the primary key in the record.
The field THE-PRIMARY-KEY has been defined in the FILE-CONTROL entry as
the primary key for the file. The field THE-PRIMARY-KEY, specified on
Line 16, is located at the first 10 bytes of the record. If a file is
indexed, it must have a RECORD KEY clause, and the data name specified as
the record key must be defined in the record description entry.

FILEl is a file containing fixed-length records. The record size for
FILEl is computed by the COBOL compiler by adding the sizes of each of
the fields in the record description entry. In this case, the record
size is 80 bytes (10 bytes for THE-PRIMARY-KEY added to 70 bytes for
FILLER).

2.2.3 Creating the File

In the Procedure Division, FILEl is created by opening the file in
output mode, thereby creating a file label. This is done by successful
execution of the OPEN statement on Line 20. Output mode, specified by
the OUTPUT modifier of the OPEN statement, implies that the file does not
exist. OPEN OUTPUT FILEl issues an OPEN GETPARM, with a parameter
reference name of EXTFILE, requesting the file name, library name, and
volume name, as well as the number of records the file is to have. This
information is used by the VS operating system to allocate space on the
disk. After you have entered the number of records, the file label will
be created. The CLOSE statement on Line 21 closes the file, updating the
file label. The STOP RUN statement on Line 22 terminates the program.

The OPEN GETPARM screen can be suppressed by either running the
program from a VS Procedure (refer to the VS Procedure Language Reference
manual for information on writing VS Procedures) or by supplying the file
information within the program itself. The program supplies the
necessary information to open the file, by coding the NODISPI.AY option in
the FILE-CONTROL entry for the file, or by coding VALUE OF clauses in the
FD for the file.

2.2.4 Using VALUE OF Clauses to Specify File Location

A VS disk file must be uniquely defined at program execution time to
the VS operating system. A unique specification of the location of a VS
disk file is obtained by specifying three location attributes: file,
library, and volume. A disk volume may contain many libraries, which in
turn may contain many files. A VS disk file is uniquely defined by
specifying a file name, a library name, and a volume name.

2-9

If the VS COBOL program does not specify the file location when the
file is opened, OPEN will display a message (the OPEN GETPARM) requesting
this information. However, VS COBOL provides the facility -- through
VALUE OF clauses in the FD for the file and the NODISPLAY option of the
FILE-CONTROL entry for the program to fill in file location
information so that the OPEN GETPARM does not appear. The VALUE OF
FILENAME, VALUE OF LIBRARY, and VALUE OF VOLUME clauses allow
specification of a data name or a literal for the name of the file,
library, and volume respectively. For example, to define the location
attributes of the file PAYROLL in the library EMPLIB on the volwne SYSTEM
for a file with an FD name of PAYFILE, code the FD clauses as shown.

FD PAYFILE
VALUE OF FILENAME IS "PAYROLL"

LIBRARY IS "EMPLIB"
VOLUME IS "SYSTEM"

LABEL RECORDS ARE STANDARD.

When the file is opened, the VS operating system will attempt to
locate the file PAYROLL in the library EMPLIB on the volwne SYSTEM. If
the file has the NODISPLAY option in its FILE-CONTROL entry, only in the
case of an error (for example, the disk volwne is not mounted) will the
OPEN GETPARM (requesting respecification of file parameters) appear.

The VALUE OF clauses will also accept a data name. Specifying a data
name in the VALUE OF clauses may be necessary if the actual file,
library, and volume names will be determined in the Procedure Division by
moving appropriate values in the data-name specified in the VALUE OF
clauses. To specify a file PAYROLL in EMPLIB on SYSTEM by this method,
code the FD clauses as shown.

FD EMPFILE
VALUE OF FILENAME IS FILE-NAME

LIBRARY IS LIBRARY-NAME
VOLUME IS VOLUME-NAME

LABEL RECORDS ARE STANDARD.

In Working-Storage, code the entries as shown.

WORKING-STORAGE SECTION.
77 FILE-NAME PICTURE IS X(8)
77 LIBRARY-NAME PICTURE.IS X(8)
77 VOLUME-NAME PICTURE ·rs X(6)

VALUE IS "PAYROLL".
VALUE IS "EMPLIB".
VALUE IS "SYSTEM".

If any file-related information is changed when the file is opened,
the correct information is stored .in.the VALUE OF data names.

2-10

'~

2.2.5 Specifying Initial Space Allocation

~, When a file is created, the VS operating system require$
specification of the number of records to be written to the file. This
number is used to allocate initial disk space, or "primary extent" for
the file. If the file fills up the primary extent with records, the VS
operating system will automatically allocate another disk area, or
"secondary extent", for the file. If additional disk areas are needed,
up to 12 additional secondary extents are automatically allocated as
required. Therefore, the number of records actually on the file can
exceed the space for the number of records requested at file creation
time.

The VALUE OF SPACE clause is used to specify the number of records
for initial space allocation. VALUE OF SPACE requires a data name.
Therefore, to request space for 100 records for a file, code in the FD as
shown.

VALUE OF SPACE IS SPACE-PARAMETER

In Working-Storage, code as shown.

77 SPACE-PARAMETER PICTURE IS 9(3) VALUE IS 100.

If the file already exists, SPACE-PARAMETER is set to the actual
number of records in the file. This information is useful for processing
in which the count of records in the file is important. SPACE-PARAMETER
should be initialized to a value, even though its value is replaced by
the acutal record count. If the VALUE OF SPACE data item is not
initialized, results are unpredictable.

2.2.6 Suppressing OPEN Messages

When a file is opened, the default action is for the OPEN statement
to produce a message (the OPEN GETPARM) requesting verification of the
accuracy of file parameters. In production envirorunents this is
frequently undesirable because it interferes with smooth job execution
and permits undesired operator modifications. If the program is to be
run as a background job, the OPEN GETPARM must be suppressed because a
background job cancels if it encounters an OPEN GETPARM that cannot be
satisfied. To suppress OPEN messages (except for error conditions), do
one of the following.

1. Write a Procedure to run the program, coding an ENTER statement
for each PRNAME. Under normal conditions, this suppresses the
OPEN GETPARM. Refer to the VS Procedure Language Reference
manual for information on the ENTER statement.

2-11

2. Code the NODISPLAY option for the file in the FILE-CONTROL entry,
and the relevant VALUE OF clauses in the FD. The VALUE OF
FILENAME, VALUE OF LIBRARY, VALUE OF VOLUME, and VALUE OF SPACE
clauses, in conjunction with the NODISPLAY option of the
FILE-CONTROL entry, will fill in the required information for
OPEN. If the information is correct and OPEN can successfully
open the file, no message will be displayed.

2.3 CONSECUTIVE FILE PROCESSING IN COBOL

2.3.1 Sequential Access of a Consecutive File in COBOL

Figure 2-2 is a complete COBOL program that creates a consecutive
file and processes it sequentially.

The FILE-CONTROL entry for the consecutive file CONSEC is specified
on Lines 6 - 9. If all of the information required to open the file
successfully is specified, the OPEN GETPARM will not display when the
file is opened because the NODISPLAY option is specified on Line 7.
Consecutive file organization is defined by specifying ORGANIZATION IS
SEQUENTIAL on Line 8. Sequential access -- reading records in the order
in which they were written -- is defined by specifying ACCESS MODE IS
SEQUENTIAL on Line 9.

The FD entry for CONSEC is specified on Lines 12 - 20. The contents
of the data names referenced in the VALUE OF clauses is used to specify
information required to open the file successfully. The VALUE OF
FILENAME clause on Line 14 specifies that the contents of the data name
FILE-NAME is the name of the file on the disk or other external medium.
FILE-NAME, defined on Line 22, has a value of "CONSEC". Therefore, the
external file name for CONSEC is "CONSEC".

The VALUE OF LIBRARY clause on Line 15 specifies that the contents of
the data name DATA-LIBRARY contains the external library name for the
file. DATA-LIBRARY, defined on Line 23, has a value of "DATA".
Therefore, the external library name for CONSEC is "DATA".

The VALUE OF VOLUME clause on Line 16 specifies that the contents of
the data name DATA-VOLUME contains the external volume name for the
file. DATA-VOLUME, defined on Line 24, has a value of "SYSTEM".
Therefore, the external volume name for CONSEC is "SYSTEM".

The VALUE OF SPACE clause on Line 17 specifies that the contents of
the data name SPACE-PARAMETER contains the number of records for initial
space allocation for the file. SPACE-PARAMETER, defined on Line 25, has
a value of 3. Therefore, CONSEC will be created with an initial space
allocation of 3 records.

The RECORD CONTAINS 1 TO 100 COMPRESSED CHARACTERS clause on Line 18
specifies that when CONSEC is subsequently opened in output mode, it will
be created as a file with variable-length, compressed records. The
phrase "1 TO 100" specifies variable-length records, with maximum record
size of 100 bytes; the word "COMPRESSED" specifies compressed records.

2-12

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. CONSEC.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT CONSEC
000007 ASSIGN TO "CONSEC", "DISK",
000008 ORGANIZATION IS SEQUENTIAL
000009 ACCESS MODE IS SEQUENTIAL.
000010 DATA DIVISION.
000011 FILE SECTION.
000012 FD CONSEC
000013 LABEL RECORDS ARE STANDARD
000014 VALUE OF FILENAME IS FILE-NAME
000015 VALUE OF LIBRARY IS DATA-LIBRARY
000016 VALUE OF VOLUME IS DATA-VOLUME
000017 VALUE OF SPACE IS SPACE-PARAMETER

NODISPLAY,

000018 RECORD CONTAINS 1 TO 100 COMPRESSED CHARACTERS.
000019 01 ONEHUNDRED-BYTE-RECORD PIC X(100).
000020 01 FIFTY-BYTE-RECORD PIC X(50).
000021 WORKING-STORAGE SECTION.
000022 77 FILE-NAME
000023 77 DATA-LIBRARY
000024 77 DATA-VOLUME
000025 77 SPACE-PARAMETER
000026 PROCEDURE DIVISION.

COMP

000027 CREATE-CONSECUTIVE-FILE.
000028 OPEN OUTPUT CONSEC.

PIC X(8) VALUE "CONSEC".
PIC X(8) VALUE "DATA".
PIC X(6) VALUE "SYSTEM".
PIC S9(3) VALUE 3.

000029 MOVE "THIS IS A 100 BYTE RECORD" TO ONEHUNDRED-BYTE-RECORD.
000030 WRITE ONEHUNDRED-BYTE-RECORD.
000031 MOVE "THIS IS A 50 BYTE RECORD" TO FIFTY-BYTE-RECORD.
000032 WRITE FIFTY-BYTE-RECORD.
000033 CLOSE CONSEC.
000034 ADD-TO-CONSECUTIVE-FILE.
000035 OPEN EXTEND CONSEC.
000036 MOVE "THIS IS A 100 BYTE RECORD ADDED IN EXTEND MODE" TO
000037 ONEHUNDRED-BYTE-RECORD.
000038 WRITE ONEHUNDRED-BYTE-RECORD.
000039 CLOSE CONSEC.
000040 OPEN INPUT CONSEC.
000041 CONSECUTIVE-FILE-READS.
000042 READ CONSEC NEXT AT END CLOSE CONSEC STOP RUN.
000043 DISPLAY ONEHUNDRED-BYTE-RECORD.
000044 GO TO CONSECUTIVE-FILE-READS.

Figure 2-2. Sequential Access of a Consecutive File

2-13

Two record description entries are specified: an entry for a
100-byte record called ONEHUNDRED-BYTE-RECORD C coded on Line 19), and
another entry for a 50-byte record called FIFTY-BYTE-RECORD C coded on
Line 20). When a record is written to CONSEC using the WRITE statement,
one of these record description entries will be specified. If the WRITE
is specified for ONEHUNDRED-BYTE-RECORD, a 100-byte record is written; if
the ·WRITE is specified for FIFTY-BYTE-RECORD, a 50-byte record is written.

In the Procedure Division, the program creates a file with two
records (one record 100 bytes long, the other 50 bytes long). Then the
file is opened in extend mode and a record is added to the end of the
file. Finally, the file is opened in input mode and the three records
written to the file are read. A file processed by ACCESS IS SEQUENTIAL
can be opened in the following modes.

• Output mode, implying that the file does not exist and is to be
created. In the paragraph CREATE-CONSECUTIVE-FILE (Lines 27 -
33), the file CONSEC is opened in output mode, two records are
written to the file, and the file is closed. The only valid
operation on a file opened in output mode is WRITE. On Line 30,
a 100-byte record with the value THIS IS A 100 BYTE RECORD is
written; on Line 32, a 50-byte· record with the value "THIS IS A
50 BYTE RECORD" is written. The file is closed on Line 33.

• Extend mode, implying that the file does exist and records are to
be appended to it. A file cannot be opened in extend mode unless
it already exists. In the paragraph ADD-TO-CONSECUTIVE-FILE
(Lines 34 - 40) the file CONSEC is opened in extend mode, one
record is written to the file, the file is closed and reopened in
input mode. The only valid operation on a file opened in extend
mode is WRITE. CONSEC is opened in extend mode on Line 35, a
100-byte record with a value of "THIS IS A 100 BYTE RECORD ADDED
IN EXTEND MODE" is added to the file on Line 38, the file is
closed on Line 39, and the file is reopened in input mode on Line
40.

• Input mode, implying that records are to be read from the file,
and that no updates are to be done to it. The paragraph
CONSECUTIVE-FILE-READS C Lines 41 - 44) reads the three records
written to the file in the order in which they were written. The
largest record description entry is displayed if a record was
read successfully. This guarantees that the largest record will
be displayed. When the end-of-file condition is encountered, the
AT END exit of the READ statement (coded on Line 42) is executed;
here, CONSEC will be closed and the program will terminate
normally.

2-14

2.3.2 Random Access of a Consecutive File in COBOL

Figure 2-3 is a complete COBOL program illustrating the facilities of
random access of a consecutive file.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. RANDOM.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT RNDFILE
000007 ASSIGN TO "RNDFILE", "DISK", NODISPLAY,
000008 ORGANIZATION IS SEQUENTIAL
000009 ACCESS MODE IS RANDOM
000010 RELATIVE KEY IS THE-RELATIVE-KEY.
000011 DATA DIVISION.
000012 FILE SECTION.
000013 FD RNDFILE
000014 LABEL RECORDS ARE STANDARD.
000015 01 RANDOM-FILE-RECORD-AREA PIC S9(5) COMPUTATIONAL.
000016 WORKING-STORAGE SECTION.
000017 01 THE-RELATIVE-KEY PIC 9(5).
000018 PROCEDURE DIVISION.
000019 GET-THE-FIFTH-RECORD.
000020 OPEN INPUT RNDFILE.
000021 MOVE 5 TO THE-RELATIVE-KEY.
000022 READ RNDFILE INVALID KEY DISPLAY "RECORD NOT FOUND".
000023 CLOSE RNDFILE.
000024 UPDATE-RECORD-NUMBER-3.
000025 OPEN I-0 RNDFILE.
000026 MOVE 3 TO THE-RELATIVE-KEY.
000027 READ RNDFILE WITH HOLD INVALID KEY
000028 DISPLAY "RECORD NOT FOUND".
000029 MOVE 55 TO RANDOM-FILE-RECORD-AREA.
000030 REWRITE RANDOM-FILE-RECORD-AREA.
000031 CLOSE RNDFILE.
000032 STOP RUN.

Figure 2-3. Random Access of a Consecutive File

The FILE-CONTROL entry for the file RNDFILE is coded on Lines 6 - 10.
RNDFILE is specified as a consecutive file by the ORGANIZATION IS SEQUENTIAL
clause coded on Line 8 and is specified as being accessed randomly by the
ACCESS MODE IS RANDOM clause coded on Line 9. The relative record number
the number corresponding to the order of the record on the file -- is to be
found in the data name THE-RELATIVE-KEY, as specified by the RELATIVE KEY IS
THE-RELATIVE-KEY phrase on Line 10. THE-RELATIVE-KEY is defined on Line 17 of
the program as a numeric field in Working-Storage.

2-15

The FD for RNDFILE, coded on Lines 13 - 14, specifies a record area
containing one packed decimal field of three bytes.

In the Procedure Division, the program attempts to get the fifth
record on RNDFILE. The program then attempts to update the third record
to contain a value of 55. A file processed by ACCESS IS RANDOM can be
opened in the following modes.

• Input mode. Records are read from the file by relative record
nwnber. In the paragraph GET-THE-FIFTH-RECORD (Lines 19 - 23) ,
an attempt is made to read the fifth record on the file by moving
the value 5 to THE-RELATIVE-KEY (the data name specified in the
RELATIVE KEY IS phrase of the FILE-CONTROL entry) on Line 21, and
then issuing the READ on Line 22. If the file does not have a
fifth record because there are less than five records on the
file, the INVALID KEY exit is taken and the message RECORD NOT
FOUND is displayed.

• I-0 mode. Records are read by relative record number, updated,
and rewritten in place. In the paragraph UPDATE-RECORD-NUMBER-3
(Lines 24 - 32), an attempt is made to read the third record on
the file by moving the value 3 to THE-RELATIVE-KEY on Line 26 and
the READ is issued on Lines 27 - 28. The WITH HOLD option of the
READ indicates that the record is held for updating. The value
55 is moved to the record area, RANDOM-FILE-RECORD-AREA, on Line
29. The record is rewritten using the REWRITE on Line 30.
Finally the file is closed and the program terminates.

Consecutive files processed using ACCESS MODE IS RANDOM must have
fixed-length records. Files with variable-length or compressed records
cannot be processed randomly.

2.3.3 Dynamic Access of a Consecutive File in COBOL

Dynamic access of a consecutive file combines sequential and random
access in one program. Dynamic access is indicated by ACCESS MODE IS
DYNAMIC in the file's FILE-CONTROL entry.

A modifier has been added to the READ statement for dynamic access to
indicate whether sequential or random reads of the records is desired. A
READ statement without the NEXT modifier implies a random read, while a
READ statement with the NEXT modifier implies a sequential read. The
program in Figure 2-4 illustrates the diff ences in the coding of the READ
statement for random and sequential reads.

Dynamic access is specified on Line 9 by coding ACCESS MODE IS
DYNAMIC in the FILE-CONTROL entry. Dynamic access supports all of the
features of consecutive and random access, with the addition that records
can be read either randomly or sequentially.

2-16

'~

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. DYNAMIC.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT DYNFILE
000007 ASSIGN TO "DYNFILE", "DISK", NODISPLAY,
000008 ORGANIZATION IS SEQUENTIAL
000009 ACCESS MODE IS DYNAMIC
000010 RELATIVE KEY IS THE-RELATIVE-KEY.
000011 DATA DIVISION.
000012 FILE SECTION.
000013 FD DYNFILE
000014 LABEL RECORDS ARE STANDARD.
000015 01 RANDOM-FILE-RECORD-AREA PIC S9(5) COMPUTATIONAL.
000016 WORKING-STORAGE SECTION.
000017 01 THE-RELATIVE-KEY PIC 9(5).
000018 PROCEDURE DIVISION.
000019 GET-FIFTH-RECORD.
000020 OPEN INPUT DYNFILE.
000021 MOVE 5 TO THE-RELATIVE-KEY.
000022 READ DYNFILE INVALID KEY DISPLAY "RECORD NOT FOUND.".
000023 READ-THE-SIXTH-RECORD.
000024 READ DYNFILE NEXT AT END DISPLAY "END OF FILE REACHED.".
000025 DISPLAY RANDOM-FILE-RECORD-AREA.
000026 CLOSE DYNFILE.

I""'\, 00002 7 STOP RUN.

~,

Figure 2-4. Dynamic Access of a Consecutive File

In the paragraph GET-FIFTH-RECORD (Lines 19 - 22), an attempt is made
to read the fifth record of the file by moving the value 5 to the
RELATIVE KEY IS data name (THE-RELATIVE-KEY) on Line 21 and issuing the
READ on Line 22. This sequence of operations is equivalent to a READ
using ACCESS MODE IS RANDOM. Refer to the program illustrated in Figure
2-3, which contains a similar attempt to read the fifth record of a
consecutive file.

In the paragraph READ-THE-SIXTH-RECORD (Lines 23 - 27), an attempt is
made to read the sixth record of the file. This attempt is made by
executing the READ NEXT statement on Line 24. If the attempt to get the
fifth record in the paragraph GET-FIFTH-RECORD is successful, an
indicator recording that fact is established. This indicator is known as
the "current record pointer". A READ NEXT issued after establishment of
the current record pointer will attempt to read the next record in the
file -- in this case, the sixth record. If either: (a) the attempt to
get the fifth record had failed, thereby failing to es~ablish a current
record pointer; or (b) exactly 5 records exist on the file, the execution
of the READ NEXT statement on Line 24 would invoke the AT END exit.

2-17

2.4 INDEXED FILE PROCESSING IN COBOL

Indexed files contain records that can be accessed by referring to
the contents of a field in the file. This field is known as the "primary
key". Since the contents of the primary key field uniquely identify a
particular record, the primary key value must not duplicate a primary key
value for any other record; an attempt to write a record having a
duplicate primary key value will produce an error.

To specify an indexed file in COBOL, code the ORGANIZATION IS INDEXED
clause in the FILE-CONTROL entry. The primary key field is identified by
the RECORD KEY IS data name in the FILE-CONTROL entry. The RECORD KEY is
data name must be a field in the record as defined in the File Section.
All COBOL access modes (SEQUENTIAL, RANDOM, and DYNAMIC) are permitted
for indexed files. COBOL supports all indexed file I-0 operations (READ,
WRITE, REWRITE, DELETE, and START) on all record formats.

Figure 2-5 is a complete COBOL program that illustrates processing of
an indexed file. The program creates an indexed file containing address
records for the following two hypothetical employees.

NUMBER NAME

1 William Shakespeare
2 Christopher Marlowe

ADDRESS

555 Madison Ave.
555 Madison Ave.

CITY

New York
New York

STATE

NY
NY

The FILE-CONTROL entry for EMPLOYEE-ADDRESS-FILE, the file containing
these two records, is coded on Lines 6 - 10. EMPLOYEE-ADDRESS-FILE is an
indexed file because its FILE-CONTROL entry contains the ORGANIZATION IS
INDEXED clause, coded on Line 8. The primary key, EMPLOYEE-NUMBER, is
specified in the RECORD KEY is clause on Line 10.

EMPLOYEE-NUMBER is defined in the record description entry for
EMPLOYEE-ADDRESS-FILE on Line 16 as the first field in the record. The
Procedure Division paragraph CREATE-RECORDS-FOR-2-EMPLOYEES, coded on Lines 22

36, creates EMPLOYEE-ADDRESS-FILE and writes an address record for
EMPLOYEE-NUMBER 1 (William Shakespeare) , and for EMPLOYEE-NUMBER 2
(Christopher Marlowe).

In the paragraph UPDATE-EMPLOYEE-2, coded on Lines 37 - 42, assume that
EMPLOYEE-NUMBER 2 (Christopher Marlowe), has moved from 555 Madison Avenue to
508 West 85th Street and that his address record is to be updated to reflect
the new address. NAME-AND-ADDRESS-FILE is opened in I-0 (or update) mode on
Line 38. To access the record for EMPLOYEE-NUMBER 2, the contents of the
RECORD KEY IS data name (EMPLOYEE-NUMBER) must be the correct employee number,
which is 2. This initialization of EMPLOYEE-NUMBER to Christopher Marlowe's
employee number is accomplished by successful execution of the MOVE statement
on Line 39. The record of EMPLOYEE-NUMBER 2, with the old address
information, is read by successful execution of the READ statement on Line
40. Since the access mode is dynamic, this READ statement is a random read by
the record key. The WITH HOLD option signifies that the record will be either
modified or deleted. The record is modified by moving the new address (585
West 85th Street) to the EMPLOYEE-ADDRESS field on Line 41, and the record is
updated using the REWRITE statement on Line 42.

2-18

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. INDEXED.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT EMPLOYEE-ADDRESS-FILE
000007 ASSIGN TO "NAMEADDR", "DISK", NODISPLAY,
000008 ORGANIZATION IS INDEXED
000009 ACCESS MODE IS DYNAMIC
000010 RECORD KEY IS EMPLOYEE-NUMBER.
000011 DATA DIVISION.
000012 FILE SECTION.
000013 FD EMPLOYEE-ADDRESS-FILE
000014 LABEL RECORDS ARE STANDARD.
000015 01 EMPLOYEE-ADDRESS-RECORD.
000016 03 EMPLOYEE-NUMBER
000017 03 EMPLOYEE-NAME
000018 03 EMPLOYEE-ADDRESS
000019 03 EMPLOYEE-CITY
000020 03 EMPLOYEE-STATE
000021 PROCEDURE DIVISION.
000022 CREATE-RECORDS-FOR-2-EMPLOYEES.

PIC S9(5)
PIC X(20).
PIC X(20).
PIC X(20).
PIC X(2).

000023 OPEN OUTPUT EMPLOYEE-ADDRESS-FILE.

COMPUTATIONAL.

000024 MOVE 1 TO EMPLOYEE-NUMBER.
000025 MOVE "WILLIAM SHAKESPEARE" TO EMPLOYEE-NAME.
000026 MOVE "555 MADISON AVENUE" TO EMPLOYEE-ADDRESS.
000027 MOVE "NEW YORK" TO EMPLOYEE-CITY.
000028 MOVE "NY" TO EMPLOYEE-STATE.
000029 WRITE EMPLOYEE-ADDRESS-RECORD.
000030 ADD 1 TO EMPLOYEE-NUMBER.
000031 MOVE "CHRISTOPHER MARLOWE" TO EMPLOYEE-NAME.
000032 MOVE "555 MADISON AVENUE" TO EMPLOYEE-ADDRESS.
000033 MOVE "NEW YORK" TO EMPLOYEE-CITY.
000034 MOVE "NY" TO EMPLOYEE-STATE.
000035 WRITE EMPLOYEE-ADDRESS-RECORD.
000036 CLOSE EMPLOYEE-ADDRESS-FILE.
000037 UPDATE-EMPLOYEE-2.
000038 OPEN I-0 EMPLOYEE-ADDRESS-FILE.
000039 MOVE 2 TO EMPLOYEE-NUMBER.
000040 READ EMPLOYEE-ADDRESS-FILE WITH HOLD.
000041 MOVE "508 WEST 85 STREET" TO EMPLOYEE-ADDRESS.
000042 REWRITE EMPLOYEE-ADDRESS-RECORD.
000043 GET-THE-FIRST-RECORD.
000044 MOVE 0 TO EMPLOYEE-NUMBER.
000045 START EMPLOYEE-ADDRESS-FILE KEY > EMPLOYEE-NUMBER
000046 INVALID KEY DISPLAY "NO RECORDS IN FILE".
000047 READ EMPLOYEE-ADDRESS-FILE NEXT.
000048 DELETE-EMPLOYEE-1.
000049 MOVE 1 TO EMPLOYEE-NUMBER.
000050 READ EMPLOYEE-ADDRESS-FILE WITH HOLD.
000051 DELETE EMPLOYEE-ADDRESS-FILE.
000052 STOP RUN.

Figure 2-5. Indexed File Processing

2-19

The START statement enables logical positioning of a file by a
particular primary key. After the successful execution of a START
statement, a group of records can be read sequentially either by issuing
READ NEXTs for files having ACCESS MODE IS DYNAMIC or READs for files
having ACCESS MODE IS SEQUENTIAL. The START statement is useful in
reading a group of records related by their primary key values; for
example, if the city of residence is the first field of a primary key, a
START, using the name of a particular city, positions the file so that
subsequent sequential READs obtain employees residing in that particular
city.

In Figure 2-5, the paragraph GET-THE-FIRST-RECORD, coded on Lines 43
- 47, gets the first record of EMPLOYEE-ADDRESS-FILE. On Line 43, zeroes
are moved to EMPLOYEE-NUMBER, the RECORD KEY IS data name. Assuming no
employees can have negative employee numbers, the START statement on
Lines 45 - 46 will position the file to the first record, except for the
case in which no records have been written to the file. If no records
have been written to the file, the INVALID KEY exit would be taken, and
the program would display the fact that no records had been written to
the file. The START statement really means "position the file to the
first record having EMPLOYEE-NUMBER greater than 0". The READ NEXT, on
Line 47, will read the first record with EMPLOYEE-NUMBER greater than 0,
which is the record of EMPLOYEE-NUMBER l, or William Shakespeare's
address record.

Assume that William Shakespeare has left the company and that his
address record is to be deleted. The paragraph DELETE-EMPLOYEE-!, coded
on Lines 48 - 52, deletes his record and ends the program. The record
with EMPLOYEE-NUMBER 1 (that of William Shakespeare) is read randomly by
moving 1 to the primary key data name EMPLOYEE-NUMBER on Line 49 and
issuing the READ on Line 50. The WITH HOLD option of the READ indicates
that the record will subsequently be either modified or deleted. In this
case, the record is deleted after successful execution of the DELETE
statement on Line 51. Finally, the program ends after successful
execution of the STOP RUN statement on Line 52.

2.5 ALTERNATE INDEXED FILE PROCESSING IN COBOL

As an extension of indexed file support, VS COBOL supports processing
of files by up to 16 alternate access paths, or alternate indices. This
powerful facility is the equivalent of having a file presorted on up to
16 different fields.

Alternate indexed file processing is used in situations where access
of a record by one of several key fields is desired. For example, a
company maintains a file of employees. Each employee has a unique
employee number. However, for reporting or updating purposes, it might
be necessary to read the employee file by city of residence. If the CITY
field is specified as an alternate index (or alternate access path), the
file (by use of the START statement) can be positioned on the alternate
path CITY. After a successful START, sequential reads will obtain
records as if they had been sorted by city.

2-20

Further, if processing all employees who lived in the city of Lowell,
the file could be positioned (using START), with the value LOWELL in the
CITY field. Sequential reads would obtain employees living in Lowell, in
employee-number order. The primary key values must be unique for every
record (every employee must have a unique employee identification
number). However, alternate key values may or may not be unique (more
than one employee may live in Lowell): the WITH DUPLICATES phrase on the
alternate key specification in the FILE-CONTROL entry for the file
specifies the option. Thus, alternate indexed file processing can
provide a quick method of referencing a particular record or group of
records.

Figure 2-6 is a complete COBOL program illustrating the features of
alternate indexed file support in COBOL.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. SHOWALTX.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT EMPLOYEE-ADDRESS-FILE
000007 ASSIGN TO "NAMEADDR", "DISK", NODISPLAY,
000008 ORGANIZATION IS INDEXED
000009 ACCESS MODE IS DYNAMIC
000010 RECORD KEY IS EMPLOYEE-NUMBER
000011 ALTERNATE RECORD KEY
000012 01 IS EMPLOYEE-NAME
000013 01 IS EMPLOYEE-NAME-1
000014 02 IS EMPLOYEE-CITY WITH DUPLICATES

f""'\, 000015 02 IS EMPLOYEE-CITY-1 WITH DUPLICATES
000016 03 IS EMPLOYEE-STATE WITH DUPLICATES.
000017 DATA DIVISION.
000018 FILE SECTION.
000019 FD EMPLOYEE-ADDRESS-FILE
000020 LABEL RECORDS ARE STANDARD.
000021 01 EMPLOYEE-ADDRESS-RECORD.
000022 03 EMPLOYEE-NUMBER PIC S9(5) COMPUTATIONAL.
000023 03 EMPLOYEE-NAME PIC X(20).
000024 03 EMPLOYEE-ADDRESS PIC X(20).
000025 03 EMPLOYEE-CITY PIC X(20).
000026 03 EMPLOYEE-STATE PIC X(2).
000027 01 ALTERNATE-ADDRESS-RECORD.
000028 03 EMPLOYEE-NUMBER-1 PIC S9(5) COMPUTATIONAL.
000029 03 EMPLOYEE-NAME-1 PIC X(20).
000030 03 EMPLOYEE-ADDRESS-1 PIC X(20).
000031 03 EMPLOYEE-CITY-1 PIC X(20).
000032 03 EMPLOYEE-STATE-1 PIC X(2).

Figure 2-6. Alternate Indexed File Processing

2-21

000033 PROCEDURE DIVISION.
000034 CREATE-RECORDS-FOR-2-EMPLOYEES.
000035 OPEN OUTPUT EMPLOYEE-ADDRESS-FILE.
000036 MOVE 1 TO EMPLOYEE-NUMBER.
000037 MOVE "WILLIAM SHAKESPEARE" TO EMPLOYEE-NAME.
000038 MOVE "1 ADMAN LANE" TO EMPLOYEE-ADDRESS.
000039 MOVE "PALM SPRINGS" TO EMPLOYEE-CITY.
000040 MOVE "CA" TO EMPLOYEE-STATE.
000041 WRITE EMPLOYEE-ADDRESS-RECORD.
000042 ADD 1 TO EMPLOYEE-NUMBER-1.
000043 MOVE "CHRISTOPHER MARLOWE" TO EMPLOYEE-N~-1.
000044 MOVE "555 MADISON AVENUE" TO EMPLOYEE-ADDRESS-1.
000045 MOVE "NEW YORK" TO EMPLOYEE-CITY-1.
000046 MOVE "NY" TO F.MPLOYEE-STATE-1.
000047 WRITE ALTERNATE-ADDRESS-RECORD.
000048 CLOSE EMPLOYEE-ADDRESS-FILE.
000049 PUT-MARLOWE-ON-STATE-PATH.
000050 OPEN I-0 EMPLOYEE-ADDRESS-FILE.
000051 MOVE 2 TO EMPLOYEE-NUMBER.
000052 READ EMPLOYEE-ADDRESS-FILE WITH HOLD.
000053 REWRITE EMPLOYEE-ADDRESS-RECORD.
000054 READ-LOWEST-CITY-RECORD.
000055 MOVE LOW-VALUES TO EMPLOYEE-CITY.
000056 START EMPLOYEE-ADDRESS-FILE KEY EMPLOYEE-CITY > EMPLOYEE-CITY
000057 INVALID KEY DISPLAY "NO RECORDS ON CITY PATH".
000058 READ EMPLOYEE-ADDRESS-FILE NEXT.
000059 DELETE-SHAKESPEARE.
000060 MOVE 1 TO EMPLOYEE-NUMBER.
000061 READ EMPLOYEE-ADDRESS-FILE WITH HOLD.
000062 DELETE EMPLOYEE-ADDRESS-FILE.
000063 STOP RUN.

Figure 2-6. Alternate Indexed File Procesing (continued)

The FILE-CONTROL entry for EMPLOYEE-ADDRESS-FILE, coded on Lines 6 -
16, specifies an alternate indexed file, because the ORGANIZATION IS
INDEXED clause is coded on Line 8. The primary key, specified in the
RECORD KEY IS clause on Line 10, is EMPLOYEE-NUMBER. As is the case for
indexed files, the primary key value must be unique for each record. The
clauses on Lines 11 - 16 specify the alternate paths. Each data name
used as an alternate path is identified in the ALTERNATE RECORD KEY IS
clause, which specifies:

• The ordinal number (from 1 to 16) of the path. This number
identifies the order of the path.

• The data name associated with the path. The data name must be
defined in the record description entry for the file.

2-22

• Whether duplicates are allowed. Optionally, duplicate values for
alternate keys are allowed. If the WITH DUPLICATES phrase is
coded, duplicate alternate key values are allowed; if the WITH
DUPLICATES phrase is not coded, duplicate alternate key values
are prohibited.

For example, on Line 12, ordinal path 1 (EMPLOYEE-NAME) does not
allow duplicate values because the WITH DUPLICATES phrase is omitted; on
Line 14, ordinal path 2 (EMPLOYEE-CITY) does allow duplicate values
because the WITH DUPLICATES phrase is coded.

The record description entry for EMPLOYEE-ADDRESS-FILE is coded on
Lines 19 - 32. Two records, EMPLOYEE-ADDRESS-RECORD (coded on Lines 22 -
26) and ALTERNATE-ADDRESS-RECORD (coded on Lines 27 32), are
specified. Three alternate paths (EMPLOYEE-NAME, EMPLOYEE-CITY, and
EMPLOYEE-STATE) are associated with the EMPLOYEE-ADDRESS-RECORD record.
These paths were identified in the FILE-CONTROL entry as paths 1, 2, and
3. Two alternate paths (EMPLOYEE-NAME-1 and EMPLOYEE-CITY-!) are
associated with the ALTERNATE-ADDRESS-RECORD record. When a record is
written to the file, the record is also written along all the path(s)
associated with that record.

The Procedure Di vision paragraph CREATE-RECORDS-FOR-2-EMPLOYEES,
coded on Lines 34 - 48, creates EMPLOYEE-ADDRESS-FILE with the records
for William Shakespeare and Christopher Marlowe. The Shakespeare record
is written on Line 41 using EMPLOYEE-ADDRESS-RECORD a record
containing the three alternate paths EMPLOYEE-NAME, EMPLOYEE-CITY, and
EMPLOYEE-STATE. The Marlowe record is written on Line 47 using
ALTERNATE-ADDRESS-RECORD -- a record containing the two alternate paths
EMPLOYEE-NAME-1 and EMPLOYEE-CITY-1. The Marlowe record is not written
along the state path.

The Marlowe record is written along the state path through successful
execution of the paragraph PUT-MARLOWE-ON-STATE-PATH, coded on Lines 49 -
53. The record of EMPLOYEE-NUMBER 2 (the Marlowe record) is randomly
READ with the HOLD option on Line 52. The record is rewritten using
EMPLOYEE-ADDRESS-RECORD; i.e. , the record containing all three paths.
The Marlowe record was originally written using ALTERNATE-ADDRESS-RECORD,
which contained only two paths; however, by rewriting the record using a
record area containing all three paths, the record is accessible along
the third path (EMPLOYEE-STATE) as well.

The use of the START statement to position the file along a
particular path of an alternate indexed file is illustrated in the
paragraph READ-LOWEST-CITY-RECORD, coded on Lines 54 - 58. The START
statement functions like the START statement for indexed files (refer to
Figure 2-5) except that here, a particular alternate path is identified.
The sequence of statements on Lines 55 - 57 first initializes the
EMPLOYEE-CITY path to LOW-VALUES on Line 55, and then issues the START
statement using the key of EMPLOYEE-CITY. Since EMPLOYEE-CITY contains
LOW-VALUES, the START statement will position the file at the first
record containing a key higher than LOW-VALUES; which is to say, the
record on the file containing the lowest value for EMPLOYEE-CITY. The
READ NEXT statement on Line 58 will actually read this record.

2-23

The paragraph DELETE-SHAKESPEARE, coded on Lines 59 - 63, deletes the
employee address record for William Shakespeare and terminates the
program. The method is identical to the deletion of a record from an
indexed file (refer to Figure 2-5, paragraph DELETE-EMPLOYEE-1). The
record of EMPLOYEE-NUMBER 1 is READ with the HOLD option on Line 61, and
the record is deleted on Line 62. Records of an alternate indexed file
are deleted only by primary key; to remove a record from a path, the
record must be READ with HOLD and then rewritten using a record
description that does not specify the path.

When an alternate indexed file is opened in output mode, the
alternate index paths for the records that are written are not created
until the file is closed. When an alternate indexed file is opened in
I-0 mode, the alternate index paths for the records that are written are
created immediately. This dynamic creation of the index paths may
produce a noticeable delay in response time; the benefit for the cost
incurred is that the record is inunediately accessible along many access
paths.

2.6 RELATIVE FILE PROCESSING IN COBOL

Relative files consist of records uniquely identified by an integer
value greater than zero which specifies the record's logical ordinal
position in the file. A relative file is composed of a serial string of
areas. Each area has a relative record number and is capable of holding
a logical record. Records are stored and retrieved according to the
relative record number. For example, the tenth record is the one
addressed by relative record number 10 and is in the tenth record area,
whether or not records are written in the first nine record areas.

Figure 2-7 is a complete COBOL program illustrating relative file
processing. The program sequentially reads the input file, TRANS-FILE,
(line 5900), moves the record key information into the relative file key
field (line 6100), and then retrieves the record in question from the
relative file (line 7300) and writes it to the output print file (line
8300).

This program example illustrates random access of a relative file.
The FILE-CONTROL entry for the relative file, lines 1600 through 2000,
details the organization, access mode, and relative key. In this
example, the records will be accessed and printed according to the order
of records in the input file, TRANS-FILE.

2-24

000100 IDENTIFICATION DIVISION.
~ 000200 PROGRAM-ID. RELOOl.

000300 ENVIRONMENT DIVISION.
000400 CONFIGURATION SECTION.
000500 SOURCE-COMPUTER. WANG-VS.
000600 INPUT-OUTPUT SECTION.
000700 FILE-CONTROL.
000800 SELECT PRINT-FILE
000900 ASSIGN TO "PRINTl" "PRINTER".
001000
001100 SELECT TRANS-FILE
001200 ASSIGN TO "T-FILE" "DISK"
001300 ORGANIZATION IS SEQUENTIAL
001400 ACCESS MODE IS SEQUENTIAL.
001500
001600 SELECT REL-FILE
001700 ASSIGN TO "R-FILE" "DISK"
001800 ORGANIZATION IS RELATIVE
001900 ACCESS MODE IS RANDOM
002000 RELATIVE KEY IS WS-RELATIVE-KEY.
002100
002200 DATA DIVISION.
002300 FILE SECTION.
002400
002500 FD PRINT-FILE
002600 LABEL RECORDS ARE STANDARD.
002700 01 PRINT-REC PIC X(l32).
002800
002900 FD TRANS-FILE
003000 LABEL RECORDS ARE STANDARD
003100 RECORD CONTAINS 80 CHARACTERS.
003200 01 TRANS-RECORD.
003300 05 TRANS-KEY-FIELD PIC X(lO).
003400 05 TRANS-DATA PIC X(70).
003500
003600 FD REL-FILE
003700 LABEL RECORDS ARE STANDARD
003800 RECORD CONTAINS 80 CHARACTERS.
003900 01 REL-RECORD.
004000 05 REL-KEY-FIELD PIC X(lO).
004100 05 REL-DATA PIC X(70).
004200
004300 WORKING-STORAGE SECTION.
004400
004500 01 WS-RELATIVE-KEY PIC X(lO).
004600 01 WS-PRINT-LINE.
004700 OS WS-PRINT-KEY-FIELD PIC X(lO).
004800 OS WS-PRINT-DATA PIC X(70).
004900
005000

Figure 2-7. Relative File Processing

2-25

005100 PROCEDURE DIVISION.
005200
005300 INITIAL-RTN.
005400 OPEN INPUT TRANS-FILE.
005500 OPEN I-0 REL-FILE.
005600 OPEN OUTPUT PRINT-FILE.
005700
005800 PROCESS-RTN.
005900 READ TRANS-FILE NEXT
006000 AT END GO TO END-OF-JOB.
006100 MOVE TRANS-KEY-FIELD TO WS-RELATIVE-KEY.
006200 PERFORM PROCESS-A-RELATIVE THRU PROCESS-EXIT.
006300 GO TO PROCESS-RTN.
006400
006500 END-OF-JOB.
006600 CLOSE TRANS-FILE
006700 REL-FILE
006800 PRINT-FILE.
006900 STOP RUN.
007000
007100
007200 PROCESS-A-RELATIVE.
007300 READ REL-FILE
007400 INVALID KEY DISPLAY "RECORD NOT FOUND"
007500 GO TO PROCESS-EXIT.
007600 MOVE REL-KEY-FIELD TO WS-PRINT-KEY-FIELD.
007700 MOVE REL-DATA TO WS-PRINT-DATA.
007800 PERFORM PRINT-ONE THRU PRINT-EXIT.
007900 PROCESS-EXIT.
008000 EXIT.
008100
008200 PRINT-ONE.
008300 WRITE PRINT-REC FROM WS-PRINT-LINE AFTER ADVANCING 1 LINE.
008400 PRINT-EXIT.
008500 EXIT.
008600

Figure 2-7. Relative File Processing (continued)

Relative files can also be accessed by the sequential and dynamic
access modes. When accessing a relative file sequentially, programmers
can use both the READ and START statements. The READ statement makes
available the next logical record of the file, while the START statement
provides a basis for logical positioning within the file for subsequent,
sequential retrieval. After. the successful execution of a START
statement, records can be read sequentially by issuing READ statements.

2-26

'~

Dynamic access mode al lows a programmer to employ both random and
sequential access in a single program. For instance, random access is
accomplished by issuing a READ statement, while sequential acccess can be
accomplished by issuing a READ NEXT statement following the successful
execution of a START statement.

2.7 DMS SHARING ENVIRONMENT

The DMS Sharing environment allows multiple programs to access and
update the same file concurrently. Consecutive, indexed, and alternate
indexed files can be opened in shared mode. The functions provided for
shared consecutive files ("log files") differ from the functions provided
for shared indexed or alternate indexed files. These differing functions
will be discussed in this section, along with program examples.

DMS Sharing is implemented in COBOL by means of the OPEN SHARED,
HOLD, HOLD LIST, and FREE ALL statements. The programmer can code the
WITH KEYS and INITIAL phrases with HOLD and HOLD LIST to request a
generic range of records. Resource conflicts can be handled by coding
the TIMEOUT and HOLDER-ID phrases with the HOLD, READ, and WRITE
statements.

2.7.1 Shared Consecutive File (Log File) Support

A shared consecutive file, or log file, provides the facility of
logging information regarding file-related updates required for an
application program. A log file can be used to provide a user-defined
audit trail of additions, updates, and deletions to a file or files. For
example, many users can update a data file concurrently by opening the
file in shared mode. By writing a record to the log file recording the
change to the data file at the time of the change, a history of changes
to the file is preserved. This may be useful for reporting purposes, or
for restoring a file to a previous state.

A log file is a consecutive file created in shared mode. If a log
file is not opened in shared mode, it is processed as a consecutive
file. Therefore, by opening a consecutive file in shared mode, a program
can process it as a log file; subsequently, another program, by opening
the same consecutive file with an open mode other than shared, can
process it as a consecutive file.

In some applications, it is necessary to write a record immediately
to the log file; in other applications, it is not necessary to do so. If
the application includes procedures that require the log file to reflect
every change to the data files at the moment they have been made, the log
file record must be written to disk immediately. If no such requirement
exists, records to be written to the log file are temporarily stored in a
buffer and written to the file only when the buffer is full (refer to
Section 2.8 for a discussion of buffering). The facility for writing a
record immediately to the log file is called the "write-through" option.

2-27

The VS distinguishes between a log file with the write-through option
and a log file without the write-through option by examining the first
character of the file name. If the first character of the file name is
an at-sign (@) and it is opened as a shared consecutive file, records
will be written immediately to the disk -- in other words, it will have
the write-through option. Otherwise, if the first character of the file
name is not an at-sign (@), and it is opened as a shared consecutive
file, records will be buffered and the block written to the disk only
when the block is full -- in other words, records will be buffered,
without the write-through option.

The only valid operation on log files is WRITE. Since the purpose of
a log file is to record information based on updates to other files
(indexed or alternated indexed shared files), it is assumed that while
the updates are being done the file will be opened in shared mode, to
allow many users to log their activity to the file. However, if a report
of such activity is to be produced, or if the data file is to be restored
based on information recorded in the log file, the file should be opened
using an open mode other than shared and processed as a consecutive file.

The log file need not exist before being opened in shared mode. The
operating system will create a log file with a default record count of
1000.

Figure 2-8 is a complete COBOL program that writes a record to a log
file using the write-through option.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. LOGFILE.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT LOGFILE
000007 ASSIGN TO "LOGFILE", "DISK", NODISPLAY,
000008 ORGANIZATION IS SEQUENTIAL
000009 ACCESS MODE IS DYNAMIC.
000010 DATA DIVISION.
000011 FILE SECTION.
000012 FD LOGFILE
000013 VALUE OF FILENAME IS "@LOGFILE"
000014 LABEL RECORDS ARE STAND.ARD.
000015 01 LOG-FILE-RECORD-NUMBER PIC S9(5) COMPUTATIONAL.
000016 PROCEDURE DIVISION.
000017 OPEN-THE-LOGFILE.
000018 OPEN SHARED LOGFILE.
000019 WRITE-RECORD-IMMEDIATELY.
000020 MOVE 1 TO LOG-FILE-RECORD-NUMBER.
000021 WRITE LOG-FILE-RECORD-NUMBER.
000022 STOP RUN.

Figure 2-8. Processing a Log File with the Write-Through Option

2-28

r-"1

The FILE-CONTROL entry for LOGFILE, coded on Lines 6 - 9, specifies a
consecutive file, because the ORGANIZATION IS SEQUENTIAL clause is coded
on Line 8, to be processed in dynamic access mode, because ACCESS MODE IS
DYNAMIC is coded on Line 9. At this point, the log file cannot be
distinguished from any other consecutive file to be processed in dynamic
access mode.

The record description entry for LOGFILE is coded on Lines 12 - 15.
As specified, this could be a record description entry for a consecutive
file.

Only when the file is opened in shared mode, by the OPEN statement on
Line 18, does the file become a log file. If LOGFILE had been opened in
any mode other than shared (for example, in I-0) mode, it would not have
become a log file.

The only valid operation on a log file is WRITE. A record containing
the value 1 is written to LOGFILE on Line 21. In addition, since the
first character of the file name is an "@" (the VALUE OF FILENAME clause
on Line 13 specified the name "@LOGFILE") the record is written
inunediately to the disk. If the first character of the file name had not
been an "@", the record would have been written only if the buff er was
full.

2.7.2 Shared Indexed File Support

The DMS Sharing environment offers two levels of functionality for
indexed (or alternate indexed) files opened in shared mode. The first
level, Elemental DMS Sharing, allows a program to hold one record at a
time. The second level, DMS Sharing, allows a program to hold more than
one record at a time. Holding a record reserves that record for
subsequent modification. Opening a file in shared mode provides the
progranuner with the same functions as opening a file in I-0 mode. These
functions are READ, WRITE, REWRITE, DELETE, and START. To open a file in
shared mode, the programmer codes the OPEN statement as follows:

OPEN SHARED file-name.

To reserve a record for subsequent modification, the programmer codes
the READ statement with the HOLD phrase as follows:

READ WITH HOLD

Elemental Sharing

Elemental DMS sharing allows a program to hold only one record at a
time. No program can hold a record currently being held by another
program. Therefore, another program issuing a READ with the WITH HOLD
phrase must wait until the program holding the record releases it.
Releasing the record is done implicitly by successful execution of the
following statements:

2-29

• A REWRITE of the record

• A DELETE of the record

• A READ WITH HOLD of another record (even if the record is in
another file)

• A CLOSE on the file.

Because other programs must wait for a held record to be released, it
is recommended that a record be held only where necessary. A READ with
HOLD must be issued previous to issuing a REWRITE or a DELETE, regardless
of whether the file is opened in I-0 or shared mode. A REWRITE or a
DELETE issued without a previous READ with the WITH HOLD phrase wi 11
produce an error.

DMS Sharing

OMS Sharing allows a program to hold more than one record and/or file
at a time. The data being held is referred to as resources. Resources
are held as a group. This allows a program to perform related updates or
retrieval, with options for handling conflicting resource requests.
Requests for resources may be made on either a preclaim or
claim-as-needed basis.

Resources can be a record, a range of records in an indexed file
(identified by a generic primary key), or a file. Resources are
identified by the primary key as follows:

• A record resource is identified by the value of the record's
primary key.

• A generic key resource is identified by the value of the first N
characters of the records' primary key. For example, if the
primary key is five characters long, the user can specify a
generic key with the first three characters of the primary key
equal to "100". In this case, all records which have the first
three characters of the primary key equal to "100" are included
in the resource.

• A file resource is identified by the name of the indexed or
alternate indexed file.

Holds for Update and for Retrieval

A resource can be held either for update or for retrieval depending
upon the level of concurrent access that is desired.

When a resource is held for update, records within the resource can
be modified (by WRITE, REWRITE, or DELETE) only by the program issuing
the hold. Other programs can read the data in the resource; however, no
other programs can either hold or update the resource. This restriction
guarantees the integrity of the data in the resource.

2-30

When a resource is held for retrieval, no program, including the one
holding the resource, can modify the resource, but any program can read
the resource. This ensures that no records within the resource are
modified until the resource is released. If this precaution is not
taken, it is possible that a program will read a record which does not
reflect the most recent modifications to it. More than one program can
hold the same resource for retrieval.

A program holding a resource in one hold class, retrieval or update,
must release the resource before it can hold that resource or any items
within it in the other hold class.

Preclaim Strategy

Programs claiming resources using the preclaim strategy hold all
resources at once. The object program issues a HOLD statement, which
requests that all resources specified in the HOLD statement and in any
HOLD LIST statements issued after a previous HOLD statement (or after the
start of the program, if no HOLD statements have yet been issued) be held
as a group. The system must be able to hold all the resources at once;
if any resource cannot be held, the entire HOLD request is denied. When
a HOLD request is denied, the list of desired resources must be built
again before issuing another HOLD statement. In the preclaim strategy,
in order to request additional resources, previously held resources must
first be released by means of the FREE ALL statement.

Handling Resource Request Conflicts

A request to hold resources for update will not be honored while
another program is holding the resources for update. The requesting
program must wait for the holding program to release the rights or
resources. The programmer can specify, through the TIMEOUT phrase, how
many seconds (0 to 255) to wait for a hold request to be granted. If the
request cannot be granted within the specified period, the program can
examine the HOLDER-ID data name to determine the ID of the user holding
the requested items. Without the TIMEOUT phrase, the length of the wait
is unbounded.

HOLD Statement

The HOLD statement is the COBOL method for requesting holding of
specified resources (records, a generic key, and/or files). The resource
can be held either for retrieval purposes (using the FOR RETRIEVAL
phrase) or for update purposes (using the FOR UPDATE phrase). The number
of seconds (0 to 255) which the program will wait can be specified in the
TIMEOUT phrase. If the HOLD request cannot be satisfied within the
specified number of seconds, the data name associated with the HOLDER-ID
phrase contains the ID of the user who is running the program preventing
the HOLD request from being granted.

2-31

Figure 2-9 is a complete COBOL program illustrating the VS COBOL
statements that support the holding of multiple resources. Lines 51 to
56 illustrate the HOLD statement with the TIMEOUT phrase. In this
example, the program requests that records of PERSONNEL-FILE be held for
retrieval. If this request cannot be honored (for example, another
program is holding all or part of PERSONNEL-FILE for update), the program
waits 5 seconds (specified in the TIMEOUT phrase). If the request is not
honored within 5 seconds, the 3-character field name WHO-HAS-IT contains
the ID of the user whose program is preventing the request from being
honored, and a message indicating that WHO-HAS-IT is holding
PERSONNEL-FILE is displayed.

Holding a Generic Key of Records

A COBOL program can hold a generic range of records
indexed file. The WITH KEYS option of the HOLD statement
range as those records having a particular primary key.
INITIAL phrase defines the range as those records having
value in the first N characters of the primary key.

of a shared
defines the
Coding the

a specified

Lines 48 to 51 of Figure 2-9 illustrate how to hold a range of
records of an indexed file. EMPLOYEE-FILE is an indexed file with a
primary key, EMPLOYEE-NUMBER, of 5 characters. Data name DEPARTMENT
references the first three characters of EMPLOYEE-NUMBER. To hold the
records of employees in department 100, move "100" to DEPARTMENT on line
48 and specify WITH KEYS INITIAL 3 CHARACTERS OF EMPLOYEE-RANGE-NUMBER on
line 50. When the HOLD is issued (line 51), all records of EMPLOYEE-FILE
whose primary key start with 100 are held.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. HOLDEXMP.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT EMPLOYEE-FILE
000007 ASSIGN TO "EMPLOYEE", "DISK", NODISPLAY,
000008 ORGANIZATION IS INDEXED
000009 ACCESS MODE
000010 IS DYNAMIC
000011 RECORD KEY IS EMPLOYEE-NUMBER.
000012 SELECT PERSONNEL-FILE
000013 ASSIGN TO "PERSONS", "DISK", NODISPLAY,
000014 ORGANIZATION IS INDEXED
000015 ACCESS MODE IS DYNAMIC
000016 RECORD KEY IS PERSONNEL-RECORD-NUMBER.
000017 DATA DIVISION.
000018 FILE SECTION.
000019 FD EMPLOYEE-FILE
000020 LABEL RECORDS ARE STAND.ARD.

Figure 2-9. Holding Multiple Resources in COBOL

2-32

~.

000021 01 EMPLOYEE-RECORD.
000022 03 EMPLOYEE-NUMBER.
000023 05 DEPARTMENT PIC XXX.
000024 05 FILLER PIC XX.
000025 03 EMPLOYEE-NAME PIC X(20).
000026 FD PERSONNEL-FILE
000027 LABEL RECORDS ARE STANDARD.
000028 01 PERSONNEL-RECORD.
000029 03 PERSONNEL-RECORD-NUMBER PIC 9(5).
000030 03 PERSONNEL-DATA PIC X(20).
000031 WORKING-STORAGE SECTION.
000032 77 WHO-HAS-IT PIC X(3).
000033 PROCEDURE DIVISION.
000034 START-PROGRAM.
000035 PERFORM HOLD-RESOURCES THRU END-HOLD.
000036 STOP RUN.
000037 HOLD-RESOURCES.
000038 OPEN SHARED EMPLOYEE-FILE.
000039 OPEN SHARED PERSONNEL-FILE.
000048 MOVE "100" TO DEPARTMENT.
000049 HOLD LIST RECORDS OF EMPLOYEE-FILE
000050 WITH KEYS INITIAL 3 CHARACTERS OF EMPLOYEE-NUMBER.
000051 HOLD RECORDS OF PERSONNEL-FILE FOR RETRIEVAL
000052 TIMEOUT OF 5 SECONDS
000053 HOLDER-ID IN WHO-HAS-IT
000054 DISPLAY WHO-HAS-IT
000055 " is holding PERSONNEL-FILE and records with first 3 charac
000056- "ters of '100' in EMPLOYEE-FILE."
000057 GO TO CLOSE-FILES.
000058 DISPLAY "PERSONNEL-FILE and records with first 3 characters
000059- "of '100' in EMPLOYEE-FILE are held by this program.".
000061 FREE ALL.
000062 CLOSE-FILES.
000063 CLOSE EMPLOYEE-FILE, PERSONNEL-FILE.
000064 END-HOLD.
000065 EXIT.

Figure 2-9. Holding Multiple Resources in COBOL (continued)

HOLD LIST Statement

A program in the OMS Sharing environment can build a list of
resources using the HOLD LIST statement. Execution of the HOLD LIST
statement does not hold any resources; the resource request is merely
added to a list. When a HOLD statement (without the LIST option) is
encountered, the program attempts to hold all the resources on the list.
If it is impossible for any resource on the list to be held, none of the
resources are held, and the list must be rebuilt before being requested
again.

2-33

The ability to construct a list of resources to hold can be useful in
many applications. For example, when customer orders are being
processed, it is usually desirable to update both the order file and the
inventory file at the same time. The following code can hold two such
files for simultaneous updating.

HOLD LIST RECORDS OF INVENTORY-FILE FOR UPDATE.
HOLD RECORDS OF ORDER-FILE FOR UPDATE.

When the HOLD for records in ORDER-FILE is executed, an attempt is made
to hold both INVENTORY-FILE (the resource requested in HOLD LIST) and
ORDER-FILE (the resource requested by the HOLD).

The HOLD LIST statement is illustrated on lines 49 and 50 of Figure
2-9.

FREE Statement

A program should release resources when the need for them has been
satisfied. This is done by coding the FREE statement. If the program
does not code the FREE statement, other programs are prevented from
obtaining needed resources. The program will release all resources at
once if FREE ALL is coded.

2.8 FILE PERFORMANCE OPTIONS IN COBOL

Relative to processing logical records in memory, transferring
physical blocks from the disk to memory is a time consuming process: the
more disk I/O operations, the slower the file performance. The VS
provides strategies for tuning file performance. These strategies are the
large buffer strategy for consecutive files, the buffer pooling strategy
for indexed files, and the specification of index and data packing
density. These strategies are not guaranteed to increase file
performance. For example, if the size of the buffers is enlarged (an
action that should theoretically enhance performance), other unintended
consequences that reduce performance can result (such as an increase in
the paging rate). The file performance options provided by COBOL are
tools that should be used with care.

2.8.1 Large Buffer Strategy for Consecutive Files

A buffer is a memory area that temporarily holds blocks transferred
from the disk. The larger the buffer, the more data that can be
transferred per disk I/O operation. The minimum buff er size for a disk
file is 2K, or one physical disk block. For processing consecutive
files, VS COBOL provides the option of increasing the buffer size to a
maximum of lBK. To increase the buffer size, code the BUFFER SIZE IS
clause in the FILE-CONTROL entry for the file.

2-34

~I

2.8.2 Buffer Pooling Strategy for Indexed Files

Multiple Files in a Buffer Pool

For indexed files opened in I-0 mode, file performance may be
enhanced by use of the "buff er pooling" strategy. Buff er pooling is
automatically used for indexed files opened in shared mode. In buffer
pooling, one buffer area is used by many indexed files. When a disk
block is read, the VS operating system will determine what block in the
buff er pool has been least recently used, and overlay that block. This
means that buff er areas that have been recently referenced will remain in
memory, thus saving disk I/O operations. A buffer pool of up to 120K (60
areas of 2K each) can be allocated; any number of indexed files in the
same program can participate in the pool.

To specify buffer pooling, perform the following operations.

1. Specify the size of the buff er pool. This is accomplished
through the RESERVE NN AREAS clause of the FILE-CONTROL entry for
one (and only one) of the indexed files participating in the
buffer pool.

2. Specify the files sharing the buffer pool. This is accomplished
through the SAME AREA FOR filel, file2, clause in the
I-0-CONTROL section of the Environment Division.

The buff er pool is allocated when one of the files specified in the
SAME AREA clause is opened in I-0 mode. The buffer pool is deallocated
when all the files in the buff er pool have been closed. After a file in
the buffer pool has been opened in I-0 mode, buffer pooling statistics
can be· shown by pressing HELP, PF3 and PF2. The buffer pooling
statistics will show buffer hit counts and buffer miss counts, which are
counts of whether a requested record to be read was found in the buff er
(hit count), or whether it was not found in the buffer (miss count). The
buffer pooling statistics are a tool for monitoring file access
performance. Recompiling the program after enlarging the buff er pool
(coding a larger number in the RESERVE NN AREAS clause) or altering the
number of files in the buffer poolmay enhance file processing performance.

Figure 2-10 is a complete COBOL program showing buff er pooling
implementation for two indexed files. The indexed files EMPLOYEE-FILE
and PERSONNEL-FILE participate in a buffer pool. This participation is
specified by the SAME AREA clause coded on Line 18. The size of the
buff er pool is 20 areas (10 areas of 2K bytes each). This size is
specified by the RESERVE 10 AREAS clause of the FILE-CONTROL entry for
EMPLOYEE-FILE, as coded on Line 11.

The buff er pool is actually allocated when one of the files is opened
in I-0 mode. After EMPLOYEE-FILE is successfully opened in I-0 mode by
execution of the OPEN statement on Line 33, the buffer pool is in use.
The buff er pool is deallocated after successful execution of the CLOSE
statement on Line 37.

2-35

One File In A Buffer Pool

Buffer pooling can be specified for one file. A buffer pool for one
file should improve file performance because the program takes advantage
of the buff er replacement optimization provided by the VS operating
system. To specify buffer pooling for one file, repeat the file name in
the SAME AREA clause. To specify a buffer pool containing only the file
FILEl code in I-0-CONTROL as shown.

SAME AREA FOR FILEl FILEl.

Multiple Buffer Pools

Multiple buffer pools can be specified by the following procedure:

1. Repeat the SAME AREA clause for each buffer pool to be defined.
Specify the files to share the buffer pool after each SAME AREA
specification. For example, if FILEl and FILE2 share one buffer
pool, and FILE3 and FILE4 share another buff er pool, code in
I-0-CONTROL as follows:

I-0-CONTROL.
SAME AREA FOR FILE! FILE2
SAME AREA FOR FILE3 FILE4.

2. Specify the size of each buffer pool. One (and only one) file
referenced in each SAME AREA clause must have a RESERVE NN AREAS
clause coded, which declares the size of each buffer pool.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. BUFPOOL.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT EMPLOYEE-FILE
000007 ASSIGN TO "EMPLOYEE", "DISK", NODISPLAY,
000008 ORGANIZATION IS INDEXED
000009 ACCESS MODE IS DYNAMIC
000010 RECORD KEY IS EMPLOYEE-NUMBER
000011 RESERVE 10 AREAS.
000012 SELECT PERSONNEL-FILE
000013 ASSIGN TO "PERSONS", "DISK", NODISPLAY,
000014 ORGANIZATION IS INDEXED
000015 ACCESS MODE IS DYNAMIC
000016 RECORD KEY IS PERSONNEL-RECORD-NUMBER.
000017 I-0-CONTROL.
000018 SAME AREA FOR EMPLOYEE-FILE PERSONNEL-FILE.
000019 DATA DIVISION.

Figure 2-10. Buffer Pooling For Two Indexed Files

2-36

I~

000020 FILE SECTION.
000021 FD EMPLOYEE-FILE
000022 LABEL RECORDS ARE STANDARD.
000023 01 EMPLOYEE-RECORD.
000024 03 EMPLOYEE-NUMBER
000025 03 EMPLOYEE-NAME
000026 FD PERSONNEL-FILE
000027 LABEL RECORDS ARE STANDARD.
000028 01 PERSONNEL-RECORD.
000029 03 PERSONNEL-RECORD-NUMBER
000030 03 DEPARTMENT
000031 PROCEDURE DIVISION.
000032 START-PROGRAM.
000033 OPEN I-0 PERSONNEL-FILE.
000034 OPEN I-0 EMPLOYEE-FILE.
000035 DISPLAY "BOTH FILES SHARE A
000036 CLOSE PERSONNEL-FILE.
000037 CLOSE EMPLOYEE-FILE.
000038 NO-BUFFER-POOL.
000039 STOP RUN.

PIC 9(5).
PIC X(20).

PIC 9(5).
PIC X(20).

20K BUFFER POOL.".

Figure 2-10. Buffer Pooling For Two Indexed Files (continued)

Figure 2-11 is a complete COBOL program specifying two buffer pools,
each with one file. The first buffer pool, specified in the SAME AREA
clause on Line 19, reserves a buffer pool for EMPLOYEE-FILE; the second
buffer pool, specified in the SAME AREA clause on Line 20, reserves a
buff er pool for PERSONNEL-FILE. As in the program in Figure 2-11, the
buffer pool is allocated when a file in it is opened, so that the first
buffer pool is allocated by the OPEN statement on Line 35 and the second
buffer pool is allocated by the OPEN statement on Line 36. The buff er
pool is deallocated when all files in it have been closed; therefore, the
first buffer pool is deallocated by the CLOSE statement on Line 38, while
the second buffer pool is deallocated by the CLOSE statement on Line 39.

To show statistics for the two buffer pools, press HELP, PF 3, and PF
2 when the DISPLAY statement on Line 37 appears.

2.8.3 Setting the Index and Data Packing Densities

All VS disk files are stored in 2K units, called blocks. Records of
indexed files are stored in a data block in primary key order. If more
records than can fit in a block are added, a new block is designated as a
data block and the record is added there. All data blocks contain a
pointer to the next data block. An index block contains pointers to the
data block containing the record; for a read by primary key, the index
block is scanned to obtain the block number for the data block containing
the record, and the data block, in turn, is scanned for the actual record.

2-37

If a record or an index does not fit in a block, because it has to be
added in the middle of a block, it is necessary to move the part of the
block that does not fit to another block, and to add the record in the
original block. This process is called "block splitting".

To reduce the need for block splitting and increase record access
performance on indexed files, VS COBOL provides a method for allocating
space for future record additions. The added records can fit in the
preallocated space and a new block need not be created. A percentage of
the index bloek and/or the data block can be filled with records; the
remainder of the block is not filled with records but available for
future additions. In the File Section, coding the following statements
for the file -- assuming EIGHTY and FIFTY are defined in Working-Storage
as numeric items with values of 80 and 50 -- when the file is opened in
output mode and records are written to it, only 80 per cent of the index
block and 50 per cent of the data block is filled with records; the rest
is available for future record additions.

VALUE OF INDEX AREA IS EIGHTY
VALUE OF DATA AREA IS FIFTY

Setting the index or data packing density in itself does not
guarantee improved file performance. The optimum index and data packing
density depends upon the amount and degree of randomness of record
updates and/or additions and, as such, is application-dependent.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. BUFPOOL2.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT EMPLOYEE-FILE
000007 ASSIGN TO "EMPLOYEE", "DISK", NODISPLAY,
000008 ORGANIZATION IS INDEXED
000009 ACCESS MODE IS DYNAMIC
000010 RECORD KEY IS EMPLOYEE-NUMBER
000011 RESERVE 10 AREAS.
000012 SELECT PERSONNEL-FILE
000013 ASSIGN TO "PERSONS", "DISK", NODISPLAY,
000014 ORGANIZATION IS INDEXED
000015 ACCESS MODE IS DYNAMIC
000016 RECORD KEY IS PERSONNEL-RECORD-NUMBER
000017 RESERVE 20 AREAS.
000018 I-0-CONTROL.
000019 SAME AREA FOR EMPLOYEE-FILE EMPLOYEE-FILE
000020 SAME AREA FOR PERSONNEL-FILE PERSONNEL-FILE.
000021 DATA DIVISION.

Figure 2-11. Multiple Buffer Pools

2-38

000022 FILE SECTION.
000023 FD EMPLOYEE-FILE
000024 LABEL RECORDS ARE STANDARD.
000025 01 EMPLOYEE-RECORD.
000026 03 EMPLOYEE-NUMBER
000027 03 EMPLOYEE-NAME
000028 FD PERSONNEL-FILE
000029 LABEL RECORDS ARE STANDARD.
000030 01 PERSONNEL-RECORD.
000031 03 PERSONNEL-RECORD-NUMBER
000032 03 DEPARTMENT
000033 PROCEDURE DIVISION.
000034 START-PROGRAM.
000035 OPEN I-0 PERSONNEL-FILE.
000036 OPEN I-0 EMPLOYEE-FILE.
000037 DISPLAY "TWO BUFFER POOLS ARE
000038 CLOSE PERSONNEL-FILE.
000039 CLOSE EMPLOYEE-FILE.
000040 NO-BUFFER-POOL.
000041 STOP RUN.

PIC 9(5).

PIC X(20).

PIC 9(5).
PIC X("20).

IN USE. 0
•

Figure 2-11. Multiple Buffer Pools (continued)

2.9 ~LING FILE-RELATED ERROR CONDITIONS IN COBOL

Occasionally, an operation on a file (OPEN, CLOSE, READ, WRITE,
REWRITE, DELETE, or START) may not be successful. This can be caused by:

• An error in the COBOL program. A READ operation for a file
opened in output mode, or a REWRITE of a record that has not been
read with the hold option, are examples of typical COBOL
file-related progranuning errors.

• An error in access of the data file. A sequential READ operation
on a file in which the end-of-file condition has been reached, or
a WRITE operation of a record of an indexed file that has a
duplicate primary key value, are examples of typical file-related
data access errors.

• A system-related error. A WRITE operation to a file in which
there is no further room for expansion or a permanent I/O error
on the file resulting from a hardware malfunction are examples of
typical system-related errors.

2-39

These errors can be treated as cancel conditions in which the only
option is to cancel the program after the system issues a message.
Options in VS COBOL, however, allow the program to intercept the error
conditions, allowing the program to continue with the possibility that
the operation can be reissued successfully. For example, in a data entry
application, the COBOL program displays a screen requesting information
regarding an employee. After the information has been validated, the
program issues a WRITE to the indexed file EMPLOYEE-FILE, which has a
primary key of EMPLOYEE-NAME. If a record having the value in
EMPLOYEE-NAME already exists, this is a file-related error that will
produce a system message. At that point, the only option is to cancel
the program.

If, on the other hand, the program could recognize the error and, if
the error occurs, redisplay the screen with an error message and request
a different value for EMPLOYEE-NAME, a subsequent WRITE of the record of
EMPLOYEE-FILE may be successful and the program can proceed.

VS COBOL provides the following facilities for intercepting
file-related errors:

• The AT END exit for a sequential READ. For a sequential READ (a
READ for a file with ACCESS MODE IS SEQUENTIAL, or a READ NEXT
for a file with ACCESS MODE IS DYNAMIC), if the end-of-file
condition is encountered (there are no more records in the file),
the program will perform the imperative statement coded with the
AT END exit. For example, to display the nwnber of records in
the file when the end-of-file condition is encountered for the
file FILEl, code the following statement:

READ FILEl AT END DISPLAY "NUMBER OF RECORDS = " RECORD-NUMBER.

• The INVALID KEY exit for a random READ, a DELETE, a REWRITE, a
START, or a WRITE. If any operation other than a sequential read
is attempted and is unsuccessful because of a data file access
error, the program will perform the imperative statement coded
with the INVALID KEY exit. For example, to display a message
when a duplicate key value for a record is encountered for the
record EMPLOYEE-RECORD, code the following statement:

WRITE EMPLOYEE-RECORD INVALID KEY DISPLAY "Invalid key
encountered."

The INVALID KEY exit can be coded with READ, DELETE, REWRITE, START,
or WRITE to detect such data file access errors.

2-40

• A USE procedure in the DECLARATIVES for a system-related error on
the file. If a system-related error, such as a permanent I/O
error or a WRITE operation is attempted on a file which has no
room for expansion, or if an INVALID KEY or AT END exit is not
coded, a USE procedure in the DECLARATIVES (at the beginning of
the Procedure Division) can be coded to handle this condition.
The system message will still be produced. After the message is
produced, the program branches to the DECLARATIVES logic. For
example, to code statements handing I/O errors if they are
detected on EMPLOYEE-FILE, code the following:

PROCEDURE DIVISION.
DECLARATIVES.
I-0-ERROR SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON EMPLOYEE-FILE.
INVALID-FUNCTION-PARAGRAPH.

* Code I/O error logic here.
END DECLARATIVES.

The USE AFTER STANDARD ERROR PROCEDURE is executed only if a
system-related error is detected on EMPLOYEE-FILE as the result of an
operation (OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or START). The
system error message is first displayed, then a branch is taken to
INVALID-FUNCTION-PARAGRAPH, where the program-directed error handling is
executed. END DECLARATIVES signifies the end of the error logic and
causes a branch to the statement after the statement that caused the
branch to the DECLARATIVES.

Figure 2-12 is a complete COBOL program that demonstrates the use of
the INVALID KEY exit, the AT END exit, and the DECLARATIVES logic to
process file-related errors without causing the program to cancel.

The FILE-CONTROL entry and record description entry define an indexed
file FILEl. In all the COBOL programs analyzed up to this point, the
program starts executing the first statement in the Procedure Division.
The only exception is DECLARATIVES. DECLARATIVES are only executed in
case of system-related errors that are to be processed by the program.
In Figure 2-12, the DECLARATIVES start on Line 22 and end with the END
DECLARATIVES statement on Line 28. If DECLARATIVES appear in a program,
the first statement executed is the statement after END DECLARATIVES
here, the paragraph GENERATE-INVALID-KEY, starting on Line 30.

The paragraph GENERATE-INVALID-KEY, coded on Lines 30 - 35, opens
FILEl in output mode, and then issues two WRITE statements. The first
WRITE statement, coded on Line 32, successfully writes a record to
FILEl. The second WRITE statement, coded on Line 33, generates an
INVALID KEY condition because the entire record, and thus the primary
key, is a duplicate of the record that was written to the file. Since
the INVALID KEY exit was coded for the WRITE statement, the imperative
statement associated with the INVALID KEY exit -- the DISPLAY statement
on Line 34 -- is executed, and the message "INVALID KEY condition
encountered." displays. After the message displays, if ENTER is pressed,
the next statement is executed and FILEl is closed. FILEl now contains
one record: the record written by the WRITE statement of Line 32.

2-41

The paragraph GENERATE-AT-END-CONDITION, coded on Lines 36 - 40,
demonstrates the use of the AT END exit. FILEl is opened in input mode
on Line 37. The READ NEXT statement, coded on Line 38, reads the first
(and only) record of FILEl successfully. The second READ NEXT statement,
coded on Lines 39 - 40, generates the end-of-file condition, since FILE!
contains only one record. The AT END exit is coded for this READ NEXT;
if the end-of-file condition is encountered, the imperative statement
associated with the AT END exit is executed; here, the DISPLAY statement
on Line 40 displays the message "AT END condition encountered.".

The paragraph GENERATE-DECLARATIVE-BRANCH, coded on Lines 41 - 44,
demonstrates a condition for forcing a branch to the DECLARATIVES. FILE!
was opened in input mode on Line 3 7 and remains open in input mode. A
WRITE statement is invalid for files opened in input mode. The WRITE
statement on Line 42 therefore cannot be executed for FILEl. This
file-related error causes a branch to the DECLARATIVES. In the
DECLARATIVES, the USE AFTER STANDARD ERROR statement specifies that, if
an error should occur on FILEl, the DECLARATIVES branch should be taken.
After the unsuccessful WRITE, the paragraph INVALID-FUNCTION-PARAGRAPH in
the DECLARATIVES is executed and the message "Invalid function file
status should = 95. It = 95" is displayed. If ENTER is pressed, the END
DECLARATIVES is encountered, the CLOSE statement on Line 43 is executed,
and the program terminates after successful execution of the STOP RUN on
Line 44.

Every file-related operation sets a 2-byte field called the File
Status. The FILE STATUS clause in the FILE-CONTROL entry for a file
specifies a 2-byte field to contain the value of the File Status after
every file-related operation. On Line 10 of the FILE-CONTROL entry for
FILEl, the data name FILE-STATUS (defined in Working-Storage on Line 20)
is to receive this value.

Appendix E describes the File Status in detail. A branch to the
DECLARATIVES occurs if the File Status has a value equal to or greater
than 30. The File Status for "invalid function" is 95; therefore, a
branch to the DECLARATIVES is taken. If a File Status equal to or
greater than 30 occurs in a COBOL program that does not have
DECLARATIVES, a system error message will appear and the program must be
cancelled.

2-42

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. FILEERRS.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT FILEl
000007 ASSIGN TO "FILEl", "DISK", NODISPLAY,
000008 ORGANIZATION IS INDEXED
000009 ACCESS MODE IS DYNAMIC
000010 FILE STATUS IS FILE-STATUS
000011 RECORD KEY IS RECORD-KEY.
000012 DATA DIVISION.
000013 FILE SECTION.
000014 FD FILEl
000015 LABEL RECORDS ARE STANDARD.
000016 01 FILEl-RECORD.
000017 03 RECORD-KEY PIC 9(010).
000018 03 FILLER PIC X(070).
000019 WORKING-STORAGE SECTION.
000020 77 FILE-STATUS PIC XX.
000021 PROCEDURE DIVISION.
000022 DECLARATIVES.
000023 I-0-ERROR SECTION.
000024 USE AFTER STANDARD ERROR PROCEDURE ON FILEl.
000025 INVALID-FUNCTION-PARAGRAPH.
000026 DISPLAY "Invalid function file status should = 95. It = "
000027 FILE-STATUS.
000028 END DECLARATIVES.

~ 000029 NON-DECLARATIVES SECTION.
000030 GENERATE-INVALID-KEY.
000031 OPEN OUTPUT FILEl.
000032 WRITE FILEl-RECORD.
000033 WRITE FILEl-RECORD INVALID KEY
000034 DISPLAY "INVALID KEY condition encountered.".
000035 CLOSE FILEl.
000036 GENERATE-AT-END-CONDITION.
000037 OPEN INPUT FILEl.
000038 READ FILEl NEXT.
000039 READ FILEl NEXT AT END
000040 DISPLAY "AT END condition encountered.".
000041 GENERATE-DECLARATIVE-BRANCH.
000042 WRITE FILEl-RECORD.
000043 CLOSE FILEl.
000044 STOP RUN.

Figure 2-12. File Error Handling

2-43

The FILE STATUS data name can also be tested directly after every
operation. In the program illustrated by Figure 2-12, FILE-STATUS is
updated after every file-related operation. Therefore, if testing of the
FILE STATUS data i tern for a particular operation is required, the test
must be performed before another file-related operation is issued.
FILE-STATUS contains the following values after each file-related
operation.

FILE-RELATED OPERATION

OPEN OUTPUT FILEl.

WRITE FILEl-RECORD.

WRITE FILEl-RECORD with INVALID
KEY exit.

CLOSE FILEl.

OPEN INPUT FILEl.

READ FILE! NEXT.

READ FILEl NEXT with AT END
exit.

WRITE FILEl-RECORD.

CLOSE FILEl.

Value of FILE-STATUS

00 (This operation
successful.)

00 (This operation
successful.)

21 (Duplicate key value on
indexed file creation.)

00 (This operation
successful.)

00 (This operation
successful.)

00 (This operation
successful.)

10 (End of file on sequential
read.)

was

was

was

was

was

95 (Invalid function. A WRITE
is not permitted for a file
opened in input mode.)

00 (This operation was
successful.)

2-44

CHAPTER 3
OMS/TX

3.1 INTRODUCTION

DMS/TX is a transaction recovery system. An extension of OMS
Sharing, DMS/TX provides multiple user sharing and rollback recovery of
indexed data files processed in Record Access Method (RAM). Files used
with OMS/TX are organized into a named set of indexed data files called a
database. A DMS/TX database can exist on more than one volwne. OMS/TX
file updates performed by a VS COBOL program are grouped into units
called transactions. A transaction is a related set of record updates
that are posted as a group to preserve database consistency.

OMS/TX is available for all Wang VS computers that run a Release 6.0
or subsequent Operating System. This chapter is an overview of DMS/TX,
highlighting its use with VS COBOL. The user is advised to read the
DMS/TX Reference Manual before proceeding with this chapter.

3.1.l Principal Features

Three main features of OMS/TX are DMS/TX File Sharing, Transaction
Rollback Recovery, and Structural Integrity Monitoring.

OMS/TX File Sharing

OMS/TX provides a high level of file sharing, allowing multiple users
simultaneous access to the same files. DMS/TX Sharing is more
sophisticated than, yet fully compatible with, OMS Sharing.

OMS/TX allows each task on the system to hold a number of resources
(records, groups of records, and/or files). Object programs hold these
resources for update on a claim-as-needed basis. The claim-as-needed
function allows:

• Any object program to claim records while already holding other
records

• More than one program to do this simultaneously.

Each program can hold multiple resources for the duration of a
transaction. All resources held by a program are released by the system
at the conclusion of a transaction, as identified by the execution of a
FREE ALL statement from within the program.

3-1

Transaction Rollback Recovery

Transaction rollback recovery ensures that transactions are fully
applied to the data file(s) or not applied at all (rolled-back). If a
transaction is rolled-back, all updates made to the data file(s) are
removed, returning the file(s) to its previous consistent state.
Consistency is maintained both within a file and between files whose
updates must be coordinated. Rollback is automatically performed by the
system when necessary and can be initiated as a program-invoked function.

Structural Integrity Monitoring

Structural integrity monitoring automatically monitors each update
made to a file to detect impaired structural integrity. A file has
structual integrity if, when a data record in an indexed file is updated,
needed updates to that record's primary and alternate key index blocks
are also performed.

DMS/TX performs this function by maintaining an indicator as part of
each OMS/TX file. The indicator is updated each time a record is
updated. If a system failure occurs, OMS/TX automatically checks each
file's record update indicator. The user must then reorganize any files
with impaired structural integrity before performing rollback recovery.

3.2 IMPLEMENTING OMS/TX IN COBOL

VS COBOL programs do not directly invoke OMS/TX. A program issues an
OPEN statement on a file attached to a OMS/TX database and the system
automatically initiates OMS/TX processing. The only requirement of the
program is that it define its transactions by means of FREE ALL
statements. The remaining OMS/TX related syntax is optional.

The same program can process files attached to a database, ordinary
OMS files, and files attached to different databases. VS COBOL
syntactical support for OMS/TX is as follows:

• Three VALUE OF clauses in the FILE SECTION of the DATA DIVISION.
The three clauses are:

VALUE OF RECOVERY-BLOCKS IS
VALUE OF RECOVERY-STATUS IS
VALUE OF DATABASE-NAME IS

The VALUE OF RECOVERY-BLOCKS IS clause allocates the Recovery
Blocks in output mode. All of the clauses retrieve the DMS/TX
file information for existing files. They are optional.

• The ROLLBACK statement returns DMS/TX files to their previous
consistent state if a transaction failed to complete. The
ROLLBACK statement is optional.

• The FREE ALL statement ends a transaction, releasing all held
resources. The FREE ALL statement is required.

3-2

~I

• The Deadlock Declarative allows a task to override the system
default deadlock handling when a deadlock occurs, returning
control to the object program. The Deadlock Declarative is
optional.

3.2.1 The VALUE OF RECOVERY-BLOCKS IS Clause

The VALUE OF RECOVERY-BLOCKS IS clause serves two purposes. For
existing files, it returns the file's status with respect to OMS/TX. For
new files created in output mode, it specifies whether the file can be
attached to a OMS/TX database.

RECOVERY-BLOCKS can have three different values. They are:

N -- No Recovery Blocks
The file is a OMS file and cannot be attached to a DMS/TX
database.

A -- Recovery Blocks Allocated
The file is a OMS file and can be attached to a OMS/TX
database.

U -- Recovery Blocks Used
The file is part of a OMS/TX database.

For new files, the only acceptable values are N and A. Existing files
can have Recovery Blocks added through the OMS/TX uti 1 i ty. The correct

.~ syntax is:

data-name
VALUE OF RECOVERY-BLOCKS IS literal

3.2.2. The VALUE OF RECOVERY-STATUS Clause

The VALUE OF RECOVERY-STATUS IS clause indicates whether the file is
opened with transaction recovery. This value is only returned if the
program opens the file in I-0 or Shared mode. Possible values and their
meanings for this field are as follows:

N -- No recovery
S -- Softcrash recovery
F -- Full recovery

The correct syntax is:

VALUE OF RECOVERY-STATUS IS data-name

The value of data-name must be alphanumeric with a declared length of one
character.

3-3

3.2.3 The VALUE OF DATABASE-NAME IS Clause

The VALUE OF DATABASE-NAME
database the file is attached to.

IS clause contains the name of the
The correct syntax is:

VALUE OF DATABASE-NAME IS data-name

The value of data-name must be alpha or numeric with a declared length of
six characters.

3.2.4 Attaching Files to a DMS/TX Database

Files can be attached to a DMS/TX database through the DMSTX utility
or through a program. To be attached, a file must first have Recovery
Blocks allocated. Though not directly supported in VS COBOL,
program-invoked attachment can be accomplished in two ways. Both methods
require a call to a subroutine.

In the first method, attachment is accomplished at run-time by using
an Assembler subroutine to call the SETRECOV SVC. The file to be
attached must be closed at the time of the SETRECOV execution. VS COBOL
programs access an Assembler subroutine containing SETRECOV with the CALL
statement. Refer to the DMS/TX Reference manual for information on
developing this subroutine.

Programs that create, attach, and use DMS/TX files should be written
to observe the following sequence at run time:

1. Create the file with Record Blocks by opening it in Output mode

2. Close the file

3. CALL the Assembler subroutine to use SETRECOV to attach the file
to a database with the SOFT recovery option

4. Re-open the file in I-0 or Shared mode

5. Write records to the file

The second method of creating a DMS/TX file at run-time is for the
program to issue a CALL to a subroutine that uses the DMSTX utility to
attach a file to a database. With this method, a program first calls the
subroutine to create and attach the file. After control is returned to
the original program, it opens the file in I-0 or Shared mode. The
program can then write to the file. Refer to the DMS/TX Reference manual
for details on the DMSTX utility.

3-4

I~

3.2.5 Opening and Closing Files

The programming procedures for opening and closing files is the same
for DMS/TX files as it is for DMS files. Programs still open a file in
I-0 or Shared mode to update records, and use the CLOSE statement to
close it. In addition to terminating DMS/TX transactions, the CLOSE
statement invokes an implicit FREE ALL statement, ending the current
transaction.

3.2.6 Holding and Releasing Resources

DMS/TX allows each task to exclusively hold multiple resources.
DMS/TX uses the same function requests as DMS. Programs with files
opened in Shared mode can hold records or generic key groups of records
as needed.

Holding Resources

The READ WITH HOLD and HOLD FOR UPDATE statements hold resources
exclusively. The HOLD FOR RETRIEVAL statement provides a nonexclusive,
shared hold. A program can hold a number of records in shared files. A
READ statement without the HOLD option allows a program to read resources
without locking those resources. In addition, a READ statement without
the HOLD option allows a program to read resources currently locked by
another task. Because of this, care should be used when coding the READ
statement without the HOLD option.

DMS/TX support for resource holding provides additional support for
programs updating records in DMS/TX files which have alternate index keys
which do not allow duplicate values. In certain situations, exclusive·
locks are automatically applied by the system to the alternate index
values as well as to the primary key values. If a task deletes a record
from a non-duplicate alternate key path -- either by deleting the record
or by removing the record from access by that key path -- the key value
is locked, i.e., the value itself is prevented from being written by any
other task.

Tasks check for locks on a nonduplicate alternate key value when they
add a record to the path. If the value is locked, the task is queued
until such time as the lock is removed or the time specified in the
TIMEOUT phrase is exceeded. This allows other tasks to read the value.
Tasks can add a record to the path by writing a record that is accessible
by that path to the file, or by rewriting an accessible record with a new
value for the alternate key, or with the record's bit mask reset to
enable accessibility by that key path.

Releasing Resources

A FREE ALL statement ends the current transaction and begins the next
transaction. It causes the system to commit all updates performed during
the current transaction and releases all resources held during the
transaction.

3-5

Resources are also released when a CLOSE statement for DMS/TX files
opened in I-0 or Shared mode is executed. When this occurs, the system
executes an implicit FREE ALL.

3.2.7 DEADLOCK

A deadlock occurs when two programs each request a resource held the
other program. The deadlock prevents both programs from proceeding. If
one of the tasks does not free the held resources in the allotted time
(as specified in the GENEDIT procedure), DMS/TX rolls back the current
transaction of the waiting task and frees its locks.

Following successful deadlock processing OMS/TX returns control to
the program if the progranuner has included a deadlock exit routine in the
DECLARATIVES section of the PROCEDURE DIVISION. The Deadlock Declarative
is optional. If a deadlock situation is detected and the declarative is
not present in a program, the system issues an error message and
terminates the program run. Programs coded with the Deadlock Declarative
avoid the extra step of having to restart the program run.

The syntax for coding a deadlock exit in VS COBOL is as follows:

USE AFTER DEADLOCK.

This statement is followed by a user-designed routine to restart the
transaction or perform some other function.

3.2.8 Program-Initiated Rollback

DMS/TX offers the programmer the option of coding rollback recovery
in the program logic. Upon execution of a program-initiated ROLLBACK
statement, OMS/TX reverses updates, leaving files open and resources
held. At the conclusion of the rollback operation, control is returned
by the system to the program at the next instruction following the
ROLLBACK statement.

The capability to rollback a transaction from a program is
particularly useful for interactive data-entry applications. For
example, if a data entry transaction involves keying a number of updates
to a single screen, an error posted in one field could invalidate all of
that screen's updates.

The syntax for coding a rollback is as follows:

ROLLBACK [ON ERROR imperative-statement].

The ON ERROR clause provides an executable routine in case of an
unsuccessful execution of the ROLLBACK statement. Without the clause,
the system cancels a program upon unsuccessful execution of the ROLLBACK
statement.

Return codes for the ROLLBACK statement are contained in the special
register RETURN-CODE. Ref er to the ROLLBACK entry of Chapter 11 for a
list of the return code values.

3-6

I~

Programs containing rollback routines should be coded with the
following considerations:

• All resources held by a transaction remain held following a
program-initiated rollback.

• Open and Close statements, and VTOC operations are not rolled
back. The programmer must be careful not to have these functions
performed twice if, for instance, a screen has to be reprocessed.

• The contents of the user record area are unaffected by the
rollback operation.

• Positional currency in database files opened for update is
unpredictable. If the transaction performs consecutive
processing, the program should be coded to re-establish currency
by using a START statement.

3.2.9 Rollback Following a Program Cancel

If a program aborts or is cancelled by the user, the system
automatically rolls back the current transaction as part of the cancel
processing. During the rollback operation, the "File Cleanup in
Progress" message is displayed on the workstation screen. Upon
successful completion of the rollback, the system invokes a FREE ALL
statement, releasing al 1 resources. The cancel processing then closes
the files based on the link level at which they were opened, invoking the
OMS/TX close processing as appropriate.

3.3 PROGRAM EXAMPLE

Figure 3-1 is a sample COBOL program demonstrating the OMS/TX
functionality. The program accesses two files attached to a database for
interactive update. The data name DBl, described in the Working-Storage
Section, is used by the program to reference the database the files are
attached to.

The program accepts and posts updates to the employee and payroll
files. The files are opened in the Shared mode, the new data is accepted
from the Workstation, and the resource (file) is held. The record is
then rewritten. The program then holds the payroll file, testing for an
invalid key. If an invalid key is returned, the update to the employee
file is rolled back, and the logic returns to the beginning of the
transaction after prompting the user to try again. If the read and hold
of the payroll file is successful, the payroll file is updated and the
transaction is complete.

3-7

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. SAMPLE.
000300 ENVIRONMENT DIVISION.
000400 INPUT-OUTPUT SECTION.
000500 FILE-CONTROL.
000600 SELECT EMPLOYEE-FILE
000700 ASSIGN TO "EMPl" "DISK"
000800 ORGANIZATION IS INDEXED
000900 ACCESS MODE IS DYNAMIC
001000 RECORD KEY IS E-KEY-1.
001100
001200
001300
001400
001500
001600
001700

SELECT PAYROLL-FILE
ASSIGN TO "PAY!" "DISK"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS P-KEY-1.

001800 DATA DIVISION.
001900 FILE SECTION.
002000 FD EMPLOYEE-FILE
002100 LABEL RECORD IS STANDARD
002200 RECORD CONTAINS 55 CHARACTERS
002300 VALUE OF FILENAME IS "EMPl II
002400 LIBRARY IS "DWBS"
002500 VOLUME IS "ZENITH"
002600 RECOVERY-BLOCKS IS "A"
002700 RECOVERY-STATUS IS Sl
002800 DATABASE-NAME IS DBl.
002900 01 EMP-REC.
003000 05 E-KEY-1 PIC 9(5).
003100 05 EMP-NAME PIC X(25).
003200 05 EMP-TITLE PIC X(25).
003300

PAYROLL-FILE 003400 FD
003500
003600
003700
003800
003900
004000
004100
004200
004300 01
004400 05
004500 05
004600 05
004700

LABEL RECORD IS STANDARD
RECORD CONTAINS 55 CHARACTERS
VALUE OF FILENAME IS "PAYl"
LIBRARY IS "DWBS"
VOLUME IS "ZENITH"
RECOVERY-BLOCKS IS "A"
RECOVERY-STATUS IS S2
DATABASE-NAME IS DBl.
PAY-REC.
P-KEY-1 PIC 9(5).
PAY-NAME PIC X(25).
PAY-TITLE PIC X(25).

Figure 3-1. Use of OMS/TX in VS COBOL

3-8

004800 WORKING-STORAGE SECTION.
004900
005000 77 Sl
005100 77 S2
005110 77 DBl
005120
005200 01 FLAG
005300

PIC X(l).
PIC X(l).
PIC X(6).

PIC X(3) VALUE "

005310 01
005311 05
005312 05
005313 05
005320

WS-RECORD.
EMPID
EMPNAME
EMPTITLE

PIC 9 (5).
PIC X(25).

005400 PROCEDURE DIVISION.
005500 DECLARATIVES.
005600 DEADLOCK-SEC SECTION.
005700 USE AFTER DEADLOCK.
005800 DLOCK-PAR.

PIC X(25).

II

005900 DISPLAY "DEADLOCK HAS OCCURRED. PLEASE REENTER."
006000 GO TO TRANS-START.
006100 END DECLARATIVES.
006200
006300 MAIN-PROCESSING SECTION.
006310 BEGIN.
006400 OPEN SHARED EMPLOYEE-FILE
006500 PAYROLL-FILE.
006600 PERFORM TRANS-START THRU TRANS-EXIT UNTIL FLAG= "END".
006700 GO TO TRANS-END.
006800
006900 TRANS-START.
007000 ACCEPT WS-RECORD.
007100 IF EMPID = "99999"
007200 MOVE "END" TO FLAG
007300 GO TO TRANS-EXIT.
007400
007500 READ EMPLOYEE-FILE WITH HOLD
007600* UPDATE EMP-REC
007700 REWRITE EMP-REC FROM WS-RECORD
007800 READ PAYROLL-FILE WITH HOLD
007900 INVALID KEY
008000 ROLLBACK
008100 DISPLAY "ERROR - TRY AGAIN"
008200 GO TO TRANS-START.
008300* UPDATE PAY-REC
008400 REWRITE PAY-REC FROM WS-RECORD
008500 FREE ALL
008600 GO TO TRANS-START.
008700
008800 TRANS-EXIT.
008900 EXIT.

Figure 3-1. Use of DMS/TX in VS COBOL (continued)

3-9

009000
009100 TRANS-END.
009200 CLOSE EMPLOYEE-FILE
009300 PAYROLL-FILE.
009400 STOP RUN.

Figure 3-1. Use of DMS/TX in VS COBOL (continued)

3.4 DMS/TX vs DMS SHARING

The following chart summarizes the functions of both DMS/TX and DMS
Sharing.

Syntax

VALUE OF
RECOVERY BLOCKS
RECOVERY-STATUS
DATABASE-NAME

HOLD

TIMEOUT

FOR RETRIEVAL

FOR UPDATE

ROLLBACK

DMS/TX

Function

Allocates Recovery blocks
Retrieves DMS/TX File Information

Requests resources (records and a
range of records and/or files) to be
held at once.

Used with HOLD, READ WITH HOLD, and
WRITE to specify how many seconds a
program will wait to acquire
resources.

Used with HOLD to acquire resources
for the purpose of reading only.
Other programs can also read the
resource simultaneously.

Used with HOLD to acquire resources
for a write, rewrite and/or delete
operation. Other programs can access
the resource for read without hold
operations, but are denied any
attempt to hold or update it.

Reverses a transaction

3-10

Syntax

FREE ALL

DEADLOCK DECLARATIVE

Syntax

HOLD

HOLD LIST

HOLD EXTENSION-RIGHTS

FREE ALL

FREE EXTENSION-RIGHTS

TIMEOUT

HOLDER-ID

DMS/TX (continued)

Function

Ends the transaction
Releases the held records

A user supplied deadlock exit address
which takes precedence over the
system's default deadlock handling,
returning control to the program.

DMS SHARING

Function

Requests resources (records, a range
of records and/or files) to be held
at once.

Adds a resource request to a list of
existing requests.

Requests exclusive right to
resources, on a claim-as-needed basis.

Frees all resources inunediately.

Frees EXTENSION-RIGHTS only.

Used with HOLD, HOLD
EXTENSION-RIGHTS, READ WITH HOLD, and
WRITE to specify how many seconds a
program will wait to acquire
resources.

Used with HOLD and HOLD
EXTENSION-RIGHTS to identify the user
holding resources.

3-11

Syntax

FOR RETRIEVAL

FOR UPDATE

OMS/TX (continued)

Function

Used with HOLD to acquire resources
for the purpose of reading only.
Other programs can also read the
resource simultaneously.

Used with HOLD to acquire resources
for a write, rewrite and/or delete
operation. Other programs can access
the resource for read without hold
operations, but are denied any
attempt to hold or update it.

3-12

CHAPTER 4
WORKSTATION FILE PROCESSING

4.1 INTERACTIVE PROCESSING WITH VS COBOL

The Wang VS is an interactive system, which means that each
workstation user can communicate directly with the system. For the VS
COBOL programmer, such interactive communication greatly facilitates the
processes of program creation, compilation and testing. The interactive
capability is also useful when designing a system that requires on-line
processing. The operator can query or input information to the system
and get immediate response. Systems can be implemented that are operator
response-driven. On the VS, these systems can be written in BASIC,
RPGII, Assembler or COBOL.

This chapter describes the necessary steps for the COBOL programmer
to follow in order to define, use and control the workstation. Two
approaches to workstation processing are explained. The first approach
uses DISPLAY AND READ, a Wang extension to COBOL, to control
automatically the order and activity of information transfer. The
programmer may accept all the default conditions provided by DISPLAY AND
READ or override default values only for those cases where alternative
processing is desired. Display characteristics, cursor position, and
Field Attribute Characters are some of the workstation characteristics
that are under programmer control using DISPLAY AND READ.

The second approach is more complex, since it assumes no default
actions. The workstation area is treated as a record; REWRITES are
issued for screen displays from the record area, and READSs are issued
for the program to transfer screen information into the record area.
Whereas DISPLAY AND READ only requires fields used on the screen to be
defined, the READ/REWRITE method of controlling the workstation requires
either that definition of the entire screen (full screen I/0) or
definition of one screen row (row-oriented I/0). Error conditions
detected by DISPLAY AND READ induce automatic cursor positioning to the
first field in error, as well as automatic blinking of the field; under
the READ/REWRITE method the program must manually set the appropriate
bytes with the required hexadecimal figurative constants. In addition,
under the direct control method, the program is responsible for
initializing the screen area, whereas DISPLAY AND READ automatically
performs this housekeeping task.

4-1

4.2 VS INTERACTIVE EXTENSIONS

Wang has implemented extensions to the COBOL language that
accommodate the responsive programming environment of the VS. These
extensions are tailored to facilitate the full-screen programming
capabilities of the VS workstation. The entire screen can be programmed
at once, thereby allowing large blocks of information (an entire employee
record, for example) to be displayed or modified at one time on the
workstation.

The Procedure Division statement DISPLAY AND READ, with its
affiliated phrases, facilitates programming in the VS interactive
environment, providing such capabilities as controlling PF keys,
positioning the cursor, sounding the workstation alarm, and transferring
data between the program and the screen. DISPLAY AND READ uses the USAGE
IS DISPLAY-WS screen format description, defined in Working-Storage, to
format the screen.

Workstation coding requirements are grouped in this chapter according
to program division.

• The Environment Division may require a Figurative-Constants
paragraph if displaying nondefault attributes, controlling the
cursor, or sounding the workstation alarm are desired. Each
workstation file must have a FILE-CONTROL entry with a designated
device-type of DISPLAY. The Environment Division requirements
for DISPLAY AND READ are discussed in Subsection 4.3.1.

• The Data Division must include a File Description (FD) for the
workstation file in the File Section, and USAGE IS DISPLAY-WS
screen format descriptions in the Working-Storage Section.
Modifying clauses are needed with these descriptions depending on
the field validation requirements (for example, for range or
table validation of fields). The Data Division requirements for
DISPLAY AND READ are discussed in Subsection 4.3.2.

• The Procedure Division statement for controlling the workstation
file is DISPLAY AND READ. The actions performed by it are
dependent on those clauses coded with the USAGE IS DISPLAY-WS
screen format descriptions in the Data Division. The Procedure
Division requirements for DISPLAY AND READ are discussed in
Subsection 4.3.3.

• An understanding of DISPLAY AND READ is all that is needed to
write an interactive VS COBOL program; however, the programmer
may want or need to control more workstation operations, such as
setting Field Attribute Characters (via the FAC OF phrase),
setting the order area (via the ORDER-AREA OF phrase), or testing
a Program Function Key after a DISPLAY AND READ (via the PFKEY
clause or the FILE STATUS clause) • These additional Procedure
Division statements are discussed in Subsection 4.3.4.

4-2

An alternative to using DISPLAY AND READ is to issue READ and REWRITE
statements using the workstation file. Either full screen I/O or
row-oriented I/O can be used. Full screen I/O is explained in Section
4.4; row-oriented I/O is explained in Section 4.5.

It is possible to code both DISPLAY AND READ and READ/REWRITE
statements in the same program. A program may require DISPLAY AND READ
for the majority of screen interactions; however, there may be an
occasional use for direct control of the workstation. The rules for
coexistence are described in Section 4.6.

4.3 CODING REQUIREMENTS FOR DISPLAY AND READ

An FD for the workstation file must be defined in the program. To
define an FD for the workstation, code a FILE-CONTROL entry for the
workstation, specifying device type as DISPLAY. In the File Section,
code an FD entry corresponding to the FILE-CONTROL entry. The
workstation file is coded as a consecutive file with one record of 1924
bytes: the first 4 bytes are the order area (used to control screen
attributes), while the remaining 1920 bytes are the mapping area (used to
display the screen).

The FD entry for the workstation is used by DISPLAY AND READ to open
the workstation. Screen formatting is performed by the special USAGE IS
DISPLAY-WS screen format description, specified in Working-Storage, which
pass information to DISPLAY AND READ.

When a DISPLAY AND READ is issued from the COBOL program, access is
automatically made to a subroutine that controls workstation processing.
If the workstation is not open at the time the DISPLAY AND READ is
issued, DISPLAY AND READ will automatically open the workstation. The
DISPLAY AND READ subroutine is automatically included at compile time in
the object program if a DISPLAY AND READ statement is encountered by the
COBOL compiler. The USAGE IS DISPLAY-WS screen format description, along
with DISPLAY AND READ and its associated phrases, define the screen
format and the actions to be taken when the DISPLAY AND READ statement is
executed.

4.3.1 Environment Division Requirements for DISPLAY AND READ

FILE-CONTROL Paragraph

If the workstation is used, either by DISPLAY AND READ or by
READ/REWRITE, an FD for it must be defined within the program. Every
FILE-CONTROL entry for a workstation file must include ACCESS MODE IS
RANDOM and device type of DISPLAY. Since ORGANIZATION IS SEQUENTIAL is
the default, the ORGANIZATION IS clause need not be coded.

4-3

The minimum Input-Output Section for a workstation is as follows.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT THE-WORKSTATION
ASSIGN TO "SCREEN", "DISPLAY",
ACCESS MODE IS RANDOM.

Other clauses can be added to the FILE-CONTROL entry for controlling
the workstation, enabling the program to control such features as cursor
positioning, examining the PF key, and. testing the file status after
workstation I/O.

4.3.2 Data Division Requirements for DISPLAY AND READ

File Section

The workstation file must have a File Description (FD) entry. If
DISPLAY AND READ is used, the screen is formatted using the USAGE IS
DISPLAY-WS screen format description defined in Working-Storage. The
record description entry for the workstation, although required, is not
used by DISPLAY .AND READ.

The USAGE IS DISPLAY-WS Screen Format Description

The screen format used by DISPLAY AND READ is specified by the USAGE
IS DISPLAY-WS screen format description. Each time a DISPLAY AND READ is
issued, a USAGE IS DISPLAY-WS screen format description is specified.
This screen format definition is used by DISPLAY AND READ to control
screen formatting and data transfer between the screen and the program
data area. Each element in the USAGE IS DISPLAY-WS screen format
description maps data to a particular row and column on the screen,
specifying type, contents, and entry characteristics. The USAGE IS
DISPLAY-WS screen format description contains modifying clauses that
offer control capabilities for Procedure Division actions.

The USAGE IS DISPLAY-WS screen format description is used in the
ORDER-AREA OF phrase in the Procedure Division to refer to the order area
of that screen format definition. The ORDER-AREA OF phrase moves the
specified figurative constant settings to the order area of the USAGE IS
DISPLAY-WS screen format description to control setting of the order area
before a DISPLAY AND READ. The USAGE IS DISPLAY-WS screen format
description can only be referenced in the Procedure Division by the MOVE
TO ORDER-AREA OF statement or by the DISPLAY AND READ statement.

Use of Data Name in a USAGE IS DISPLAY-WS Screen Format Description

A data name can be used to specify the name of a display element in
the USAGE IS DISPLAY-WS screen format description. If modification of
the FAC associated with the screen location is desired, specification of
a data name is necessary. A figurative constant representing the desired
Field Attribute Character can be moved using the FAC OF phrase in the
Procedure Division. FILLER can be used if reference to the data name is
not required.

4-4

The COLUMN Clause

The COLUMN clause specifies that the USAGE IS DISPLAY-WS screen
element starts at the designated column on the screen. Valid values in
the COLUMN clause are the integers are 1 - 80. The Field Attribute
Character is mapped to the column immediately preceding the specified
column; for example, the FAC of a screen element specified as starting in
Colwnn 8 is in Colwnn 7. If a field starts in Colwnn l, the FAC does not
actually occupy a screen location but is treated as if it were in the
preceding column. Correct specification of the COLUMN clause, using two
screen elements, and taking into account the colwnn reserved for the FAC,
is as follows:

05 FILLER
05 FILLER

COLUMN 1
COLUMN 9

ROW 10
ROW 10

PIC X(7)
PIC X(7)

VALUE IS "CORRECT".
VALUE IS "EXAMPLE" •

The word "CORRECT" appears starting at Row 10 Column 1 of the screen.
The word "CORRECT" has 7 letters; Row 10 Column 8 is reserved for the FAC of
the next screen element. The word "EXAMPLE" then appears starting at Row 10
Colwnn 9 of the screen. The following example shows the result of not taking
the position for the Field Attribute Character into consideration.

05 FILLER
05 FILLER

COLUMN 1
COLUMN 10

ROW 10
ROW 10

PIC X(9)
PIC X(7)

VALUE IS "INCORRECT".
VALUE IS "EXAMPLE".

The word "INCORRECT" appears starting at Row 10 Column 1 of the screen.
The word "INCORRECT" has 9 letters; the screen element for "EXAMPLE" does not
take into account the FAC for the field. Therefore, the FAC for the screen
element for "EXAMPLE" overlays the final "T" in "INCORRECT", producing the
value "INCORREC EXAMPLE" displaying starting at Row 10 Column 1.

The ROW/LINE Clause

The ROW/LINE clause specifies that the USAGE IS DISPLAY-WS screen
element starts at the designated row on the screen. Valid values for row or
line number are the integers 1 - 24. Every screen element with a ROW/LINE
clause must have a COLUMN clause as well; however, if a field has a COLUMN
clause but no ROW/LINE clause, the element is assumed to start at the row
specified in the previous screen element. For the first USAGE IS DISPLAY-WS
screen element, if the ROW/LINE clause is not coded, Row 1 is assumed. If
more than one USAGE IS DISPLAY-WS screen element uses the same screen
position, the specification for the last element overlays all previous
specifications. The following entries

05 FILLER COLUMN 1 ROW 24 PIC X(13) VALUE IS
"NOT DISPLAYED".

05 FILLER COLUMN 1 PIC X(7) VALUE IS "EXAMPLE".

result in the value "EXAMPLE" overlaying the value "NOT DIS" in the first
screen element, producing the text "EXAMPLEPLAYED" starting at Row 24 Column 1.

4-5

The PICTURE Clause

The PICTURE clause for the USAGE IS DISPLAY-WS screen element has the
same capabilities as the PICTURE clause used for an elementary data
item. The PICTURE clause determines the format and length of the data as
it appears on the screen.

The VALUE, SOURCE, and OBJECT Clauses

The.VALUE clause and the SOURCE clause must be used independently of
one another. Both specify the value to be displayed at a particular
screen location. While the VALUE clause specifies a literal, the SOURCE
clause specifies the contents of a particular data name to be displayed.

The OBJECT clause specifies the data name into which data is moved by
DISPLAY AND READ. If an OBJECT clause is not coded, then the contents of
the displayed screen field are not modifiable. SOURCE and OBJECT data
names may be the same. (Moving a modifiable Field Attribute Character to
the screen by using the FAC OF phrase makes the displayed screen field
modifiable; however, if no OBJECT clause is coded, the modifiable data is
not moved from the screen area into the program data area and it is
therefore lost.)

The VALUE, SOURCE, and OBJECT clauses can only be used in certain
combinations. The combination of SOURCE, OBJECT, and VALUE clauses
produce different effects, such as display characteristics, default FACs,
and data movement when DISPLAY AND READ reads the screen data into the
program. Table 4-1 describes the effects of combinations of SOURCE,
OBJECT, and VALUE clauses on screen display.

Table 4-1. Effects of VALUE, SOURCE, and OBJECT Clauses
on USAGE IS DISPLAY-WS Screen Elements

SOURCE OBJECT VALUE EFFECT

Yes Yes Yes Not permitted.

Yes Yes No Element displays at coded
COLUMN with data moved

ROW
from

SOURCE field to the element.
modifiable FAC is placed in

and
the

A
the

column before the element. DISPLAY
AND READ moves the element to the
OBJECT field.

Yes No Yes Not permitted.

Yes No No Element displays at coded ROW and
COLUMN with data moved from the
SOURCE field to the item. A
dim-protected FAC is placed in the
column before the element.

4-6

I~

Table 4-1. Effects of VALUE, SOURCE, and OBJECT Clauses
on USAGE IS DISPLAY-WS Screen Elements (continued)

SOURCE OBJECT VALUE EFFECT

No Yes Yes Element displays at coded ROW and
COLUMN with VALUE literal and
modifiable FAC. DISPLAY 1\ND READ
moves the element to the OBJECT
field.

No Yes No Element displays at coded ROW and
COLUMN with pseudoblanks for the
length of the element. DISPLAY
AND READ moves the element to the
OBJECT field.

No No Yes Element displays at coded ROW and
COLUMN with VALUE literal and
dim-protected FAC.

No No No Element cannot be displayed or
modified. However a figurative
constant can be moved to the FAC of
the element by the FAC OF phrase.

Range Validation: The RANGE Clause

The RANGE clause provides, w~thout programming effort, validation of
data entered at the workstation during program processing. If an error
occurs, the field in error blinks and the cursor is positioned to it. If
more than one error occurs, all fields in error blink, and the cursor is
positioned to the first field in error. Specification of a RANGE clause
implies that the field is modifiable; therefore, an OBJECT clause is
required when specifying a RANGE clause. Specification of a RANGE clause
for a field without an OBJECT clause results in a warning message from
the COBOL compiler.

The Rl\NGE clause options for automatic data validation are as follows:

• Checking for negative values. For a numeric field, if RANGE IS
NEGATIVE is specified, only values less than zero are accepted.

• Checking for positive values. For a numeric field, if RANGE IS
POSITIVE is specified, only values greater than zero are accepted.

• Checking for a range of values. Range checking from one
particular value to another value can be specified. The value
can either be a literal or the contents of a data name. Checking
is performed according to the COBOL comparison rules.

4-7

• Checking for a list of values. If RANGE IS table-name is
specified, the table is searched and the field is validated if
the value on the screen corresponds with a table element.

Only one validation criterion is permitted for a screen element. For
example, multiple ranges, multiple table checking, or a combination of
range and table lookups for a field are not allowed.

The FROM phrase is used to specify a range of values; that range
being defined either by the specific literals or by data names
representing the Ii terals. Validation proceeds according to the rules
for COBOL comparison operations. For example, following code validates
data entered to guarantee that it is in the range "ABC" to "ABE".

01 SCREENREC USAGE IS DISPLAY-WS.
03 DISPRNGE ROW 3 COLUMN 10 PICTURE IS X(3)
SOURCE IS FIELDA OBJECT IS FIELDA
RANGE IS FROM "ABC" TO "ABE".

When the DISPLAY AND READ is issued for SCREENREC, the value in FIELDA
appears starting at Row 3 Column 10. Since DISPRNGE has a RANGE clause FROM
"ABC" TO "ABE", the only acceptable values are "ABC", "ABO", and "ABE". If
any other value is entered, SCREENREC is redisplayed with the FAC of DISPRNGE
Cat Row 3 Column 9) set by DISPLAY AND READ to blinking, high intensity, and
modifiable. If a valid value is entered, the value is moved to FIELDA (the
OBJECT IS data name) by DISPLAY AND READ.

Table Validation: The RANGE IS TABLE-NAME Clause

The RANGE IS TABLE-NAME clause allows the programmer to specify a
predefined table of values. If the value entered is not a table entry, the
value is rejected and the screen is redisplayed by DISPLAY AND READ with the
field in error blinking with high intensity.

To specify automatic validation of a 10-byte screen field that contains
one of five legitimate states (IDAHO, DELAWARE, NEW YORK, WYOMING, or OREGON),
code the following table in Working-Storage:

01 STATE-TABLE.
03 ENTRIES.

05 FILLER VALUE "IDAHO"
05 FILLER VALUE "DELAWARE"
05 FILLER VALUE "NEW YORK"
05 FILLER VALUE "WYOMING"
05 FILLER VALUE "OREGON"

03 FILLER REDEFINES ENTRIES.
05 TABLE-ENTRIES OCCURS 5 TIMES

PICTURE IS XClO).
PICTURE IS X(lO).
PICTURE IS X(lO).
PICTURE IS X(lO).
PICTURE IS X(lO).

PICTURE IS X(lO).

The OBJECT field, containing the validated state name after DISPLAY AND
READ successfully finds the name in the table, is coded as follows:

01 VALIDATED-STATE PICTURE IS X(lO).

4-8

~I

~
I I

Finally,
STATE-VERIFY.
defined.

the RANGE clause may be used with the
The RANGE is the table TABLE-ENTRIES,

01 SCREENREC USAGE IS DISPLAY-WS.
03 FILLER ROW 3 COLUMN 8

VALUE IS "STATE VALIDATION BY
03 STATE-VERIFY ROW 5 COLUMN 8

OBJECT IS VALIDATED-STATE
RANGE IS TABLE-ENTRIES.

PIC X(26)
TABLE.".

PIC X(lO)

screen element
as previously

The DISPLAY AND READ for SCREENREC displays 10 bytes of pseudoblanks
starting in Row 5 Column 8 and waits for operator response. After the
operator responds, the value (after pseudoblanks have been changed to
spaces) in the field starting at Row 5 Coltunn 8, for a length of 10
bytes, is compared with the entries in STATE-TABLE. If the value is on
the table, the validated field is moved to VALIDATED-STATE (the OBJECT
field); if the value is not on the table, a blinking-modifiable FAC will
be moved automatically to Row 5, Column 7 and the DISPLAY AND READ
redisplays SCREENREC.

Repetition of Fields: The OCCURS Clause for Screen Format Elements

The function of the OCCURS clause for screen format elements is to
display and validate repeating occurrences of fields across and down the
screen. Some examples of the use of the OCCURS clause for screen
formatting are as follows:

• Display and validate table elements across a screen row. Figure
4-1 is the screen to be produced; Figure 4-2 is the COBOL program
that produces the screen.

• Display and validate table elements down a screen row. Figure
4-3 is the screen to be produced; Figure 4-4 is the COBOL program
that produces the screen.

• Display and validate table elements both across and down a screen
row. Figure 4-5 is the screen to be produced; Figure 4-6 is the
COBOL program that produces the screen.

• Use combinations of screen format elements containing the OCCURS
clause to produce a well-formatted screen. Figure 4-7 is an
example of an order entry screen; Figure 4-8 is the COBOL program
that produces the screen.

Using the OCCURS Clause to Repeat Fields Across

The program illustrated in Figure 4-2 produces the screen illustrated
in Figure 4-1. The screen consists of the title "FOUR FIELDS OCCURRING
ACROSS" starting on Row 5, Column 26, and of four fields, each field 8
bytes in length, occurring across Row 7, starting at Column 23.

4-9

In the program illustrated in Figure 4-2, the FILE-CONTROL entry for
the workstation is coded on Lines 6 - 8, while the File Description entry
for the workstation is coded on Lines 11 - 13. These entries are needed
by DISPLAY 1\ND READ to open the workstation.

**
00 1 2 3 4 5 6 7 8 OU

**** 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ****
**
* * * *
* 1*
* 2*
* 3*
* 4*
* 5*
* 6*
* 7*
* 8*
* 9*
10
* 1*
• 2*
* 3*
* 4*
* 5*
* 6*
* 7*
lie 8*
* 9*
•2011e
* 1*
* 2*
1C 3*
* 4*
Ill *

FOUR FIELDS OCCURRING ACROSS

ELEMENTl ELEMENT2 ELEMENT3 ELEMENT4

* 1111
lie 2*
* 3*
* 4*
* S*
* 6*
1C 7*
* 8*
* 9*
10
* l *
* 2*
llr 3*
111 4*
* 5*
* 611r
* 711r
* 8*
* 9*
20
* l*
* 2lll
* 3*
* 4*
* * WWWW'llrtrWlllllllllllelllWW'llrllllil'llrlll'llrWllrlil'llrllrWW'llrWllCllrlllWWlllllCWllllllWlll*lllW'llrlllWlllllllil*lllW'llrWWWWlllllllllWWWWWWWllllll'llrWlll*llllll*lllllllllWllCWlllllllll*lllW'llr

OU 1 2 3 4 5 6 7 8 OU

**** 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ****
llr******************•***************"******"*****•************************llr****************

Figure 4-1. Screen For Displaying Four Fields Across a Row

4-10

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ACROSS.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT THE-WORKSTATION
000007 ASSIGN TO "WSFILE",
000008 ACCESS MODE IS RANDOM.
000009 DATA DIVISION.
000010 FILE SECTION.
000011 FD THE-WORKSTATION
000012 LABEL RECORDS ARE OMITTED.

"DISPLAY"

000013 01 CRTREC PICTURE IS X(1924).
000014 WORKING-STORAGE SECTION.
000015 01 FOUR-FIELDS USAGE IS DISPLAY-WS.
000016 03 FILLER PICTURE XC28)
000017 ROW 5 COLUMN 26
000018 VALUE IS "FOUR FIELDS OCCURRING ACROSS".
000019 03 FILLER ROW 7.
000020 05 FILLER OCCURS 4 TIMES PICTURE X(8)
000021 ROW 7 COLUMN 23
000022 SOURCE IS ELEMENT-TABLE OBJECT IS ELEMENT-TABLE.
000023
000024 01
000025
000026
000027
000028
000029
000030
000031

FILLER.
03 ELEMENTS.

05 FILLER VALUE "ELEMENTl" PICTURE X(8).
05 FILLER VALUE "ELEMENT2" PICTURE X(8).
05 FILLER VALUE "ELEMENT3" PICTURE X(8).
05 FILLER VALUE "ELEMENT4" PICTURE X(8).

03 ELEMENT-TABLE REDEFINES ELEMENTS
OCCURS 4 TIMES PICTURE X(8).

000032 PROCEDURE DIVISION.
000033 DISPLAYIT.
000034 DISPLAY AND READ FOUR-FIELDS ON THE-WORKSTATION.
000035 STOP RUN.

Figure 4-2. Displaying Elements Across a Row

The USAGE IS DISPLAY-WS screen format description, FOUR-FIELDS, is
coded on Lines 15 - 22 and consists of two screen format elements. The
first element, coded on Lines 16 - 18, defines the literal "FOUR FIELDS
OCCURRING ACROSS" to display starting at Row 5, Colwnn 26, for a length
of 28 bytes. The second element, coded on Lines 19 - 22, defines four
fields, each having a length of 8 bytes, to display starting at Row 7,
Colwnn 23. The source of the data to be displayed is contained in the
table ELEMENT-TABLE. ELEMENT-TABLE, defined on Lines 30 - 31, is a table
that occurs four times, with each element 8 bytes long. The table is
initialized by redefinition to the values "ELEMENT!", "ELEMENT2",
"ELEMENT3", and "ELEMENT4". The initialization is accomplished by the
entries on Lines 26 - 29.

4-11

The DISPLAY AND READ statement on Line 34 formats the screen
according to the description of FOUR-FIELDS. The first DISPLAY AND READ
statement in a program opens the workstation file THE-WORKSTATION -- an
OPEN statement for THE-WORKSTATION is not needed. The four fields
occurring across Row 7 each have a length of 8 bytes; however, an extra
byte is reserved for the Field Attribute Character for each field.
Therefore, each 8-byte table element maps onto a 9-byte screen area (the
extra byte being reserved for the FAC).

Since the OBJECT field is ELEMENT-TABLE, each of the 8-byte
modifiable screen fields are moved to ELEMENT-TABLE after· the operator
selects the ENTER key.

Using the OCCURS Clause to Repeat Fields Down

The program illustrated in Figure 4-4 produces the screen illustrated
in Figure 4-3. The screen consists of the title "FOUR FIELDS OCCURRING
DOWN" starting on Row 5, Column 27, and of four fields, each 10 bytes in
length, occurring on 4 rows (Rows 7, 8, 9, and 10), with each occurrence
starting at Column 35 .

••
uu 1 2 3 4 5 6 7 8****
•••• 12345678901234567890123456789012345678901234567890123456789012345678901234567890 111 •••

···*··
• • • 1111

• 1•
Ill 2*
• 3*
Ill 4•
Ill 51111

• 6*
Ill 7*
Ill 8*
• 9*
*10 111

• 1 *
Ill 2*
Ill 3*
• 4•
• 5•
Ill 6*
• 7•
Ill 8*
• 9•
20
Ill 1*
• zw
* 3w
• 4•
• •

FOUR FIELDS OCCURRING DOWN

ELEMENT1-*
ELEMENT2**
ELEHENT3°
ELEMENT4••

* 1 *
• 2*
w 3w
JI[4*
w 5*
JI[6111[

Ill 7*
Ill 8*
w 9w

•10•
JI[1 JI[
* 2w
It 3*
• 4*
• 5•
• 6*
Ill 7"
* 8*
* 9"
"'20*
Ill 1*
JI! 2*
• 3"'
* 4*
1111 JI!

JllllllJllllll 1 2 3 4 5 6 7 8 JllllllJllllll

**** 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ••••
ltltllllWW•llll1t•'lcKlll•'lclll'lc'lcWJllllllW•W1t11t•1tlllltlllllllll•W1t•1tllllWW•lllWllr••1t1tllrW•1tlll1'1ltlllllll•lllllllltllllllllllltllllllltlllllr•W1tWllr•lllJllllllllllllll••••1t1tllllllllt

Figure 4-3. Screen For Displaying Four Fields Down a Row

4-12

The program illustrated in Figure 4-4 is coded almost exactly like
the program illustrated in Figure 4-2 which produced the fields occurring
across the row, with the exception that the SOURCE field is the element
of the table, rather than the table its elf, and that each element is
initialized in the Procedure Division. The specification of the table
element FIELDl as the SOURCE field produces repetition down the screen
when the DISPLAY .AND READ is issued. In the Procedure Division, the
paragraph INIT-TABLE, performed four times, initializes the table
elements to "ELEMENTl", "ELEMENT2", "ELEMENT3", and "ELEMENT4". Then the
DISPLAY AND READ is issued for the screen format OCCURS-DOWN and the
fields repeat down the screen as shown in Figure 4-3.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. DOWN.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT THE-WORKSTATION
000007 ASSIGN TO "WSFILE", "DISPLAY"
000008 ACCESS MODE IS RANDOM.
000009 DATA DIVISION.
000010 FILE SECTION.
000011 FD THE-WORKSTATION
000012 LABEL RECORDS ARE OMITTED.
000013 01 CRTREC PICTURE IS X(l924).
000014 WORKING-STORAGE SECTION.
000015 01 OCCURS-DOWN USAGE IS DISPLAY-WS.

~, 000016 03 FILLER PICTURE X(26)
000017 ROW 5 COLUMN 27
000018 VALUE IS "FOUR FIELDS OCCURRING DOWN".
000019 03 FILLER OCCURS 4 TIMES ROW 7.
000020 05 FILLER PICTURE X(10)
000021 ROW 7 COLUMN 35
000022 SOURCE IS FIELD! OBJECT IS FIELDl.
000023
000024 01 FILLER.
000025 03 FILLER OCCURS 4 TIMES.
000026 05 FIELD!.
000027 07 LITERAL! PICTURE IS X(7).
000028 07 COUNTER PICTURE IS 9.
000029 77 SUB PICTURE IS 9 VALUE IS 0.
000030
000031 PROCEDURE DIVISION.
000032 DISPLAYIT.
000033 PERFORM !NIT-TABLE VARYING SUB FROM 1 BY 1 UNTIL SUB > 4.
000034 DISPLAY .AND READ OCCURS-DOWN ON THE-WORKSTATION.
000035 STOP RUN.
000036
000037 !NIT-TABLE.
000038 MOVE "ELEMENT" TO FIELD! (SUB).
000039 MOVE SUB TO COUNTER (SUB).

Figure 4-4. Displaying Elements Down a Row

4-13

Using the OCCURS Clause to Repeat Fields Across and Down

The program illustrated in Figure 4-6 produces the screen illustrated
in Figure 4-5. The screen consists of the title "DISPLAYING A TABLE
OCCURRING ACROSS AND DOWN" starting on Row 5, Column 17, and a
2-dimensional table (3 rows by 6 columns) starting on Row 7, Column 8.
Each entry is 10 bytes in length and contains the value "ENTRY(n,m)"
where n is the first occurrence number and m is the second occurrence
number of the entry.

In the program illustrated in Figure 4-6, the SOURCE field is
LEVEL-2, an entry of a table (TWO-LEVEL-TABLE) with two levels of
OCCURS. The first level (LEVEL-1) occurs three times and indicates the
number of repetitions of fields down the screen. The second level
(LEVEL-2) occurs six times and indicates the number of repetitions of
fields across the screen.

In the Procedure Division, the paragraph INIT-TABLE, coded on Lines
41 - 46, is performed 18 times, initializing each entry to the value
"ENTRY(n,m)" using two nestings of the PERFORM VARYING statement. The
DISPLAY AND READ of the USAGE IS DISPLAY-WS screen format
TWO-OCCURS-LEVELS, coded on Line 37, maps the table onto the screen 6
entries across and 3 entries down, producing the screen shown in Figure
4-5.

Since TWO-LEVEL-TABLE is also an OBJECT field, after the screen is
modified and the operator selects the ENTER key, each element on the
screen is moved to the corresponding element on the table by the READ
component of DISPLAY AND READ.

ltltltltltltlt'lt'lt*ltltlt'ltltltltltlt'ltlllltltltltltltltltltltltltltlt'ltltltltltltltltltltltltltlt'ltlttcltltltW'ltltltltWltlt'ltltltW'ltWWWlt'lt'ltltlttcltltlt'ltltltltWltltltltlt

uu 1 2 3 4 5 6 1 8 ****
ltltltlt 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ltltltlt
ltltlt'ltltltltltltlt'ltlllltlllltltltltltltltlt'lt'ltltltltltlt'ltlllltlllltltltlllltltltlt

'It 1111
'It 2•
'It 3*
'It 4*
* 5*
'It 6*
'It 7*
'It 8*
Ill 9111
•10•
Ill 1 •
'It 2*
it 3*
lt 4*
it 5it

Ill 6*
* 7111
Ill 8111
'It g111
111 20"
Ill 1111
Ill 2111
'It 3111
'It 4*
'It Ill

DISPLAYING A TABLE OCCURRING ACROSS AND DOWN

ENTRY(l.1) ENTRY(l.2) ENTRY(l,3) ENTRY(l,4) ENTRY(l 1 5) ENTRY{l,6)
ENTRY(2,1) ENTRY(2,2) ENTRY(2,3) ENTRY(2 1 4) ENTRY(2 15) ENTRY(2,6)
ENTRY(3 1 l) ENTRY(3,2) ENTRY(3,3) ENTRY(3 1 4) ENTRY(3 1 5) ENTRY(3,6)

'It 1 *
'It 2111
Ill 3*
Ill 4*
* s•
'It 6*
Ill 7111
Ill 8*
Ill 9*
111 10•
'It 1 *
'It 2*
it 3*
Ill 4*
it S*
'It 5111
'It 7111
• 8•
Ill 9*
•20•
Ill 1•
'It 2•
Ill 3*
'It 4*
'It 'It

ltlllltltltltlt1Cltltlllltlllllllllltltllllllltltlllltltllllllltlllltlllltltltltlllltltltltltltltlllltltlllltltltltlllltllllllltllllllltltlllltltltltllllllltltlllltltlllltltltltltltltltlllltltltltllllllltltlll

Ultlll 1 2 3 4 5 6 7 8 lt'ltltlll

ltltltlll 12345678901234567890123456789012345678901234567890123456789012345678901234567890 'ltltltlt
ltlllltltltltltltltltltltltltlllltltltltltltltltltltltltltltltltlt'ltltltlt'ltltltltltltltltltltlll'ltltltlt'ltltlllltltltltlllllltc'ltltWltltltllllt'ltltltltltltltltlllltlllltltW'ltlllltltltltlt

Figure 4-5. Screen For Displaying Table Across and Down

4-14

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ACRSDOWN.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT THE-WORKSTATION
000007 ASSIGN TO "WSFILE", "DISPLAY"
000008 ACCESS MODE IS RANDOM.
000009 DATA DIVISION.
000010 FILE SECTION.
000011 FD THE-WORKSTATION
000012 LABEL RECORDS ARE OMITTED.
000013 01 CRTREC PICTURE IS X(1924).
000014 WORKING-STORAGE SECTION.
000015 01 TWO-OCCURS-LEVELS USAGE IS DISPLAY-WS.
000016 03 FILLER PICTURE X(45)
000017 ROW 5 COLUMN 17
000018 VALUE IS "DISPLAYING A TABLE OCCURRING ACROSS AND DOWN".
000019 03 FILLER OCCURS 3 TIMES ROW 7.
000020 05 FILLER OCCURS 6 TIMES ROW 7 COLUMN 8 PIC X(l0)
000021 SOURCE IS LEVEL-2 OBJECT IS LEVEL-2.
000022
000023 01
000024
000025
000026
000027
000028
000029
000030
000031

TWO-LEVEL-TABLE.
03 LEVEL-1 OCCURS 3 TIMES.

000032 77 SUBl
000033 77 SUB2

05 LEVEL-2 OCCURS 6 TIMES.
07 TABLE-ENTRY.

09 FILLER PICTURE IS X(6).
09 FIRST-INDEX PICTURE IS 9.
09 COMMA-LITERAL PICTURE IS X.
09 SECOND-INDEX PICTURE IS 9.
09 RIGHT-PAREN PICTURE IS X.

PICTURE IS 9
PICTURE IS 9

000034 PROCEDURE DIVISION.
000035 DISPLAYIT.

VALUE IS O.
VALUE IS 0.

000036 PERFORM INITl VARYING SUBl FROM 1 BY 1 UNTIL SUBl > 3.
000037 DISPLAY AND READ TWO-OCCURS-LEVELS ON THE-WORKSTATION.
000038 STOP RUN.
000039 INITl.
000040 PERFORM !NIT-TABLE VARYING SUB2 FROM 1 BY 1 UNTIL SUB2 > 6.
000041 !NIT-TABLE.
000042 MOVE "ENTRY("
000043 MOVE SUBl
000044 MOVE ","
000045 MOVE SUB2
000046 MOVE ")"

TO TABLE-ENTRY (SUBl, SUB2).
TO FIRST-INDEX (SUBl, SUB2).
TO COMMA-LITERAL CSUBl, SUB2).
TO SECOND-INDEX CSUBl, SUB2).
TO RIGHT-PAREN (SUBl, SUB2).

Figure 4-6. Displaying Table Elements Across and Down

4-15

Using the OCCURS Clause for Complex Screen Formatting

The program illustrated in Figure 4-8 produces the screen illustrated
in Figure 4-7. The screen is a typical order entry screen that might be
required by a company's shipping department. No new concepts are
introduced here; the program uses screen formatting features already
discussed and illustrated. The purpose of the program is to illustrate
the flexibility of VS screen formatting in COBOL. Using one Procedure
Division statement, all the information required to process an order
(which may consist of multiple items, terms, and shipping dates) can be
formatted on the screen and automatically transferred to the program •

••
uu 1 2 3 4 5 6 7 8 •u•
•••• 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ••••
••
• •
* 1•
• 2•
* 3•
* 4•
• s•
* 6*
* 7*
* 8*
* g•
•10•
• 1•
• 2•
* 3•
• 4*
• 5•
• 6*
• 7*
* a•
* 9*
20
* pr
• 2•
• 3•
• 4•
• •

ITEM:

ORDER ENTRY SCREEN FOR ACME WIDGET COMPANY

SHIP TO:

•••••••••••••••••••••••• TERMS: ••• ••• • •• SHIP DATE:

••• ••• • ••
••• ••• • ••
•111• ••• • ••

DATE OF ORDER: HM-DD-VY

* *
* 1•
• 2•
• 3•
• 4•
* 5*
* 6*
• 7*
Jt 8*
1lr 9*
•10•
• pt

•••••••• • 2•
•••••••• 'Ill 3•
******** * 4•
W'lllllr'll'lll'lll'll'lll 'Ill 5*
• ••••••• 'Ill 611r

• 7•
• 8*
* 9w
w2ow
* J llr
lit 2Jt
* 3w
* 4w
1'I 1'I

uu 1 2 3 4 5 6 7 8 nu
•••• 12345678901234567890123456789012345678901234567890123456789012345678901234567890 ••••
'll'll'llWWJt'll'll'll'lll'lllllllr'll'll'lllllllllW'lllllllllW'lll'lll'll'lll'll'lllll'lll'll'lllll'lllll'lll'll'll'll'll'll'll'lll'lll'lll'll'lllW'lll'lll'll'lll'lll'lll'lll'llllll'lll'lll'lll'lll'll'll'lllJft'll'll'll'lll'llJtlll'll'll'll'll'll'lll'lll'll'lll'll'lllJft'lll'll'll'llJft

Figure 4-7. Sample Order Entry Screen

4-16

~
I

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. WSOCCUR.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT THE-WORKSTA~ION
000007 ASSIGN TO "CRT", "DISPLAY",
000008 ACCESS MODE IS RANDOM.
000009 DATA DIVISION.
000010 FILE SECTION.
000011 FD THE-WORKSTATION
000012 LABEL RECORDS ARE OMITTED.
000013 01 CRTREC PIC X(l924).
000014 WORKING-STORAGE SECTION.
000015*
000016 77
000017 77
000018 77
000019 77
000020*
000021 01
000022
000023
000024
000025
000026*
000027 01
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000042
000043
000044*
000045
000046
000047
000048
000049

SHIP-NAME
SHIP-CITY
SHIP-STATE
ORDER-DATE

THE-TABLE.

PICTURE IS X(46)
PICTURE IS XC46)
PICTURE IS XC46)
PICTURE IS X(08)

05 ITEM-NAME PICTURE IS X(24)
05 FILLER OCCURS 5 TIMES.

07 TERMS PICTURE IS 9(3)
05 SHIP-DATE PICTURE IS X(8)

DISPLAY-REC USAGE IS DISPLAY-WS.

VALUE SPACES.
VALUE SPACES.
VALUE SPACES.
VALUE SPACES.

OCCURS 5 TIMES.

OCCURS 3 TIMES.
OCCURS 5 TIMES.

05 FILLER PICTURE IS X(42) ROW 03 COLUMN 25
VALUE IS "ORDER ENTRY SCREEN FOR ACME WIDGET COMPANY".

05 FILLER PICTURE IS X(08) ROW 07 COLUMN 11
VALUE IS "SHIP TO:".

05 ROW07-COL22 PICTURE IS XC46) ROW 07 COLUMN 22
SOURCE IS SHIP-NAME OBJECT IS SHIP-NAME

05 ROW08-COL22 PICTURE IS X(46) ROW 08 COLUMN 22
SOURCE IS SHIP-CITY OBJECT IS SHIP-CITY

05 ROW09-COL22 PICTURE IS X(46) ROW 09 COLUMN 22
SOURCE IS SHIP-STATE OBJECT IS SHIP-STATE

05 FILLER PICTURE IS X(05) ROW 12 COLUMN 04
VALUE IS "ITEM:".

05 FILLER PICTURE IS X(06) ROW 12 COLUMN 35
VALUE IS "TERMS:".

05 FILLER PICTURE IS X(lO) ROW 12 COLUMN 60
VALUE IS "SHIP DATE:".

05 FILLER OCCURS 5 TIMES ROW 12.
07 FILLER PICTURE IS X(24) ROW 12 COLUMN 10
SOURCE IS ITEM-NAME OBJECT IS ITEM-NAME.
07 FILLER PICTURE IS 9(03) ROW 12 COLUMN 43

OCCURS 3 TIMES

Figure 4-8. Producing Sample Order Entry Screen

4-17

000050
000051
000052
000053*
000054
000055
000056
000057

05

05

SOURCE IS TERMS OBJECT IS TERMS.
07 FILLER PICTURE IS X(08) ROW 12 COLUMN 72
SOURCE IS SHIP-DATE OBJECT IS SHIP-DATE.

FILLER PICTURE IS X(l4) ROW 24 COLUMN 12
VALUE IS "DATE OF ORDER:".
FILLER PICTURE IS X(08) ROW 24 COLUMN 28

OBJECT IS ORDER-DATE
000058 VALUE IS "MM-DD-YY".
000059 PROCEDURE DIVISION.
000060 START-PROGRAM.
000061 MOVE SPACES TO THE-TABLE.
000062 DISPLAY AND READ DISPLAY-REC ON THE-WORKSTATION.
000063 STOP RUN.

Figure 4-8. Producing Sample Order Entry Screen (continued)

Up to three levels of OCCURS are allowed in USAGE IS DISPLAY-WS
screen definitions. These screen tables may have as SOURCE or OBJECT
fields a table defined in Working-Storage. Each element of a source
table is moved to the screen table so that the index of the table element
corresponds to the index of the screen element. Thus, the dimensions of
the source and object tables must match with the dimensions of the USAGE
IS DISPLAY-WS screen table, as shown in the previous illustrations.

Field Attribute Characters

When coding the screen definition entry, the progranuner should be
familiar with the rules related to the Field Attribute Characters. Refer
to Appendix C for a detailed explanation of the rules for Field Attribute
Characters.

If DISPLAY AND READ is used, a FAC is automatically provided for each
screen format element depending upon what clauses are associated with
it. If a screen format element has no OBJECT clause, then it is not
modifiable, and the default FAC used is a hexadecimal "SC" (dim and
protected). If a screen format element has an OBJECT clause, then it is
modifiable. The default FAC allows for bright intensity with entry
characteristics corresponding to the picture of the screen format
element. If the screen format element has a numeric picture, the default
FAC used is a hexadecimal "82" (bright, modifiable, and numeric-only
input allowed); if the screen format element has an alphanumeric picture,
the default FAC used is a hexadecimal "81" (bright, modifiable, and
uppercase only input allowed).

4-18

I~

Since the default FAC for an alphantuneric screen format element
allows only uppercase input, to allow both uppercase and lowercase input,
the programmer must construct a figurative constant allowing both
uppercase and lowercase input and move the figurative constant to the FAC
of the screen format item using the FAC OF phrase. A FAC of hexadecimal
"80" allows both uppercase and lowercase input.

If an error is detected on a screen format item by DISPLAY AND READ
(for example, a RANGE validation is violated), the field in error
blinks. DISPLAY AND READ automatically sets the blink bit in the FAC of
the field in error and redisplays the screen format.

4.3.3 Procedure Division Requirements for DISPLAY AND READ

The events occurring during a DISPLAY AND READ are categorized into
the following five steps:

1. Format the screen.
2. Rewrite the screen.
3. Read the operator response.
4. Validate the data.
5. Transfer the data into the object field(s).

The following operations occur automatically with one invocation of
DISPLAY AND READ:

Step 1 -- Format the Screen

r-1'\, When the workstation screen is formatted, the literal values
specified in the VALUE clause and the values assigned to the data names
identified in the SOURCE clause for the USAGE IS DISPLAY-WS screen format
elements are moved to the workstation screen.

The screen formatting process moves one of the following to the
screen:

• If the screen format element has a VALUE clause, the VALUE IS
literal is moved.

• If the screen format element has a SOURCE clause, the contents of
the source field is moved.

• If the screen format element has an OBJECT clause but no SOURCE
clause, pseudoblanks are moved.

• Default FACs are set for the screen format element.

Step 2 Rewrite the Screen

After the screen record is formatted DISPLAY AND READ issues a
REWRITE to display the screen.

4-19

Step 3 -- Read the Operator Response

DISPLAY AND READ issues a READ, which waits for operator response.
The operator responds by entering data in any modifiable field(s) and
selecting any of the enabled PF keys or the ENTER key (if ENTER is
enabled). If the PFKEYS option of DISPLAY AND READ is not specified,
only the ENTER key is valid; selecting any other PF key results in
rewriting the DISPLAY AND READ screen and sounding the workstation
alarm. IF the PFKEYS option of DISPLAY AND READ is specified, those PF
keys specified in the PFKEYS option are valid; selecting any other PF key
results in rewriting the DISPLAY AND READ screen and sounding the
workstation alarm. DISPLAY AND READ will not proceed unless an enabled
PF key or the ENTER key Cif ENTER is enabled) is selected.

The READ step next determines which PF key (or the ENTER KEY) was
selected. The ONLY phrase of DISPLAY AND READ is used to specify valid
PF key responses. If ONLY PFKEYS l, 2, 3, 16 is coded, then only PF Keys
l, 2, 3, and 16 are acceptable responses. However, if PFKEYS l, 2, 3, 16
is coded (the ONLY phrase without the keyword ONLY), then PF Keys 1, 2,
3, 16 and the ENTER key are acceptable responses.

If an ON phrase has been specified for any PF key, the READ step
causes transfer of control to the imperative statement associated with
the ON phrase after DISPLAY AND READ has determined that the PF key
associated with the ON phrase has been selected.

Step 4 -- Validate the Data

The response is validated to check agreement of the data type entered
by the operator with the usage defined in the PICTURE clause for the
modified field. If a RANGE clause is coded, the entered data is also
tested for the legal range limit; if a RANGE IS table-name clause is
coded, the data is tested for a value in the table. If invalid data is
entered, DISPLAY AND READ automatically returns control to the rewrite
step (Step 2) and the cycle repeats until valid data is entered. When
the screen containing invalid data is rewritten, the workstation alarm
sounds and the FACs of those invalid fields are changed to blink so the
field(s) in error can be identified. In addition, the cursor is
automatically positioned at the first field in error.

Step 5 -- Transfer the Data Into the Object Fields.

If the data is successfully validated, all modifiable fields are
moved from the screen area to OBJECT field. The transfer of data is in
accordance with the rules of the MOVE statement. The ALTERED option of
DISPLAY AND READ moves only those fields that have been changed and is
recommended if reducing the amount of data transfer from the screen area
to the program data area is a consideration.

4-20

DISPLAY AND READ Options

DISPLAY AND READ provides several options for enabling/disabling PF
key(s) and the ENTER key, and for program-controlled actions based on the
selected PF key. These options are:

1. DISPLAY AND READ DISPLAY-REC ON SCREEN.

A DISPLAY AND READ with no options displays the USAGE IS DISPLAY-WS
screen format description DISPLAY-REC on the workstation. The ENTER
key is enabled; if any PF key is selected, the workstation alarm
sounds and DISPLAY-REC is redisplayed.

2. DISPLAY AND READ DISPLAY-REC ON SCREEN
PFKEY 16.

3.

4.

This statement displays DISPLAY-REC on the workstation. The PFKEY
phrase enables PF 16 as well as the ENTER key; if any other key is
selected, the workstation alarm sounds and DISPLAY-REC is
redisplayed.

DISPLAY AND READ DISPLAY-REC ON SCREEN
ONLY PFKEY 16.

This statement displays DISPLAY-REC on the workstation. The
specification of the ONLY PFKEY phrase specifies that the ENTER key
is disabled and that only PF16 is enabled. Selecting any PF key
other than PF16 causes the workstation alarm to sound and
DISPLAY-REC to be redisplayed.

DISPLAY AND READ DISPLAY-REC ON SCREEN
PFKEY 16
ON PFKEY 16 DISPLAY "PF16 has been selected.".

This statement displays DISPLAY-REC on the workstation. The PFKEY
16 phrase, coded as in case 2, enables the ENTER key and PF16. The
specification of the ON PFKEY 16 phrase causes automatic transfer of
control to the imperative statement associated with the ON phrase.
Therefore, if PF16 is selected, the message "PF16 has been
selected." displays. Selecting the ENTER key causes DISPLAY AND
READ to continue with data validation and transfer; selecting any
other PF key causes the workstation alarm to sound and DISPLAY-REC
to be redisplayed.

The ON phrase specifies an immediate action to be taken if the PF
key is selected. This action overrides data transfer of screen
fields to any specified object fields in the USAGE IS DISPLAY-WS
screen format.

4-21

5. DISPLAY AND READ ALTERED DISPLAY-REC ON SCREEN
PFKEY 16
NO-MOD DISPLAY "No screen fields have been modified.".

This statement displays DISPLAY-REC on the workstation and
enables the ENTER key and PF16 (as in Case 2 and Case 4). The
ALTERED option of DISPLAY AND READ indicates that only those
screen fields modified by the operator are transferred from the
screen to the OBJECT field. The ALTERED option of DISPLAY AND
READ significantly reduces the amount of screen data to be
transferred to the program, since only screen i terns with OBJECT
fields that have been altered (changed) will be affected.

The NO-MOD phrase is a program-defined action to be taken if no
screen fields have been modified. In the previous example, if no
fields have been modified, the message "No screen fields have
been modified." displays.

Under DISPLAY AND READ ALTERED, VS COBOL provides a method of testing
whether a particular display item has been changed. This method uses the
following statement:

IF FAC OF display-item ALTERED imperative-statement

Thus, the particular field(s) that have been changed can be tested
and program-defined actions based on the alteration of the field can be
implemented.

DISPLAY AND READ phrases have the following precedence rules:

1. If no DISPLAY AND READ options are coded, then execution falls
through to the next statement after an enabled PF key is selected.

2. If the ON phrase is coded, execution passes to the statement
indicated by the ON imperative statement and no transfer of data
occurs, even if a field has been modified. For example, if the
following statement is coded.

DISPLAY AND READ DISPLAY-REC ON SCREEN
ONLY PFKEY 2, 5
ON PFKEY 2 GO TO 100-EXIT.

selection of PF2 passes control to paragraph 100-EXIT, selection
of PFS (the only other valid PF key) allows DISPLAY AND READ to
validate the screen data and transfer it to the program, and
selection of any other PF key causes the workstation alarm to
sound.

3. If the NO-MOD phrase is coded for a DISPLAY AND READ ALTERED,
then execution is passed to the NO-MOD imperative statement only
when no modification of displayed data has occurred. Although
ALTERED must be coded if the NO-MOD phrase is coded, ALTERED can
be coded without using the NO-MOD phrase.

4-22

4. If both the NO-MOD phrase and the ON phrase are coded, and no
modifications are made but a PF key associated with the ON phrase
is selected, the ON phrase has precedence and is executed. For
example, if the following statement

5.

4.3.4

DISPLAY AND READ ALTERED DISPLAY-REC ON SCREEN
ONLY PFKEY 2, 4
ON PFKEY 2 GO TO 100-EXIT
NO-MOD GO TO 200-NEXT-LEVEL.

is executed, with no modifications made to modifiable screen
fields, and PF 2 is selected, then control passes to 100-EXIT
(the imperative statement associated with the ON phrase) rather
than to 200-NEXT-LEVEL (the imperative statement associated with
the NO-MOD phrase).

RANGE validation is performed before PF key validation, except
that PF key validation associated with the ON phrase is performed
inunediately. Therefore, if a enabled PF key with no associated
ON phrase is selected, and at least one screen field has violated
a RANGE check, the field(s) in error blink and the screen is
redisplayed.

Therefore, any PF key that is enabled but has no ON PFKEY exit is
not honored unless all of the screen fields pass the RANGE
checks. If the PF key is enabled and has an associated ON
phrase, the imperative statement of the ON phrase will be taken.
If nothing has been modified, even if one of the fields violates
a RANGE check, the NO-MOD imperative statement is executed.

Coding Requirements for Additional Workstation File Control

All of the capabilities discussed thus far occur automatically and
give the progranuner enough control over the workstation to handle most
application situations. If, however, the progranuner wishes to exercise
more control in conjunction with the DISPLAY AND READ facilities, the
option does exist. These additional progranuning capabilities allow the
progranuner to:

• Specify and test the Field Attribute Characters of any field that
is displayed on the workstation screen, implemented by the FAC OF
phrase.

• Specify and test order area bits for controlling keyboard
locking, alarm sounding, and cursor positioning, implemented by
the ORDER-AREA OF phrase.

• Determine location of cursor, implemented by examining the CURSOR
POSITION IS data name as specified in the workstation
FILE-CONTROL entry.

• Test user's PF key response, implemented by examining either the
PFKEY IS data name or the FILE STATUS IS data name as specified
in the workstation FILE-CONTROL entry.

4-23

Control of Field Attribute Characters Using the FAC OF Phrase

Field Attribute Characters, as described in Subsection 4.3.2, define
the attributes for each displayed field. The progranuner can control the
characteristics of fields displayed on the workstation screen by
manipulating FAC values and thereby not accept the defaults provided by
DISPLAY AND READ. Each FAC is a 1-byte character that can be altered by
moving a new value to it. The values must be provided in hexadecimal and
must be identified in the Environment Division as a figurative constant.
For an extensive discussion of Field Attribute Characters, refer to
Appendix C.

For example, to define a Field Attribute Character for a protected
field, displaying with bright intensity, a possible value is "86". The
FIGURATIVE-CONSTANTS paragraph would read:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FIGURATIVE-CONSTANTS.

PRO-BRITE IS 11 86 11
•

Assume the following USAGE IS DISPLAY-WS definition:

01 DISPLAY-REC USAGE IS DISPLAY-WS.
05 DISP-FIELD PIC 9(5) ROW 10 COLUMN 7.

PRO-BRITE characteristics could be given to DISP-FIELD by moving
PRO-BRITE to the figurative constant associated with DISP-FIELD. This is
accomplished by coding the following statement in the Procedure Division:

MOVE PRO-BRITE TO FAC OF DISP-FIELD.

A FAC of a displayed data item can also be tested in an IF
statement. For example, to test whether DISP-FIELD has the PRO-BRITE
FAC, code the following:

IF FAC OF DISP-FIELD = PRO-BRITE
DISPLAY "This field is bright and protected.".

A FAC can also be tested to see if the field it describes had been
altered by a user responding to DISPLAY AND READ with the ALTERED
option. For example, to test whether the screen area associated with
DISP-FIELD had been altered by the previous DISPLAY AND READ, code the
following:

IF FAC OF DISP-FIELD ALTERED
THEN DISPLAY "This field has been changed.".

4-24

~,

Control of the Order Area Using The ORDER-AREA OF Phrase

The order area is a 4-byte control area for the workstation and can,
if necessary, be manipulated under program control. The first byte of the
order area contains the row number at which screen processing is to
begin. The second byte is the Write Control Character CWCC> that
controls keyboard locking, alarm sounding, and cursor positioning. The
last two bytes contain the cursor column number and cursor row number,
respectively, after a READ; in addition, if the "position cursor" bit is
on in the wee, these bytes indicate at what column and row the cursor is
to be positioned. Refer to Appendix D for a detailed discussion of the
order area.

The order area values may be provided or tested under program
control. To manipulate these hexadecimal values, the programmer can move
the appropriate figurative constants to the order area bytes.

The USAGE IS DISPLAY-WS screen format description is used in the
ORDER-AREA OF phrase as the order area of the screen. Each USAGE IS
DISPLAY-WS screen format description has, in effect, its own order area,
which is mapped onto the workstation order area when the DISPLAY AND READ
is issued. To illustrate, assume the following screen format description:

01 DISPLAY-REC USAGE IS DISPLAY-WS.

A 4-byte group item ORDERAREA, composed of four 1-byte elementary
items, defines the actual order area. This is coded:

01 ORDERAREA.
03 ROW-NUMBER PICTURE IS X.
03 WRITE-CONTROL-CHARACTER PICTURE IS X.
03 CURSOR-COLUMN-ADDRESS PICTURE IS X.
03 CURSOR-ROW-ADDRESS PICTURE IS X.

After the appropriate figurative constants have been moved to the
elementary i terns composing ORDERAREA, the order area of the USAGE IS
DISPLAY-WS screen format description is set to the desired values by
coding the following:

MOVE ORDERAREA TO ORDER-AREA OF DISPLAY-REC.

Figure 4-9 is a complete COBOL program illustrating controlling the
cursor and sounding the workstation alarm using the ORDER-AREA OF phrase.
The figurative constants POSITION-ctJRSOR, SOUND-THE-ALARM, ONE,
TWENTY-FOUR, and EIGHTY, coded on Lines 4 - 9, define the hexadecimal
values that are to be moved into the order area for the appropriate USAGE
IS DISPLAY-WS screen format. The order area to be initialized
(ORDERAREA) is a 4-byte group item consisting of four 1-byte elementary
items, which will be initialized in the Procedure Division by moving in
figurative constants.

4-25

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ORDRAREA.
000003 ENVIRONMENT DIVISION.
000004 FIGURATIVE-CONSTANTS.
000005 POSITION-cuRSOR
000006 SOUND-THE-ALARM
000007 ONE
000008 TWENTY-FOUR
000009 EIGHTY
000010 INPUT-OUTPUT SECTION.
000011 FILE-CONTROL.

IS "AO",
IS "CO",
IS "01",
IS "18",
IS "50".

000012 SELECT SCREEN ASSIGN TO "SCREEN", "DISPLAY",
000013 ACCESS MODE IS RANDOM.
000014 DATA DIVISION.
000015 FILE SECTION.
000016 FD SCREEN
000017 LABEL RECORDS ARE STANDARD.
000018 01 CRTREC PICTURE XC1924).
000019 WORKING-STORAGE SECTION.
000020 01 CURSOR-CONTROL USAGE IS DISPLAY-WS.
000021 05 FILLER PICTURE IS XC35) ROW 04 COLUMN 08
000022 VALUE IS "The cursor is at row 24, coltunn 80.".
000023 01 ALARM-SCREEN USAGE IS DISPLAY-WS.
000024 05 FILLER PICTURE IS X(34) ROW 04 COLUMN 08
000025 VALUE IS "The workstation alarm has sounded.".
000026 01 ORDERAREA.
000027 03 ROW-NUMBER PICTURE IS X.
000028 03 WRITE-CONTROL-cHARACTER PICTURE IS X.
000029 03 CURSOR-COLUMN-ADDRESS PICTURE IS X.
000030 03 CURSOR-ROW-ADDRESS PICTURE IS X.
000031 PROCEDURE DIVISION.
000032 CONTROL-THE-cURSOR.
000033 MOVE ONE TO ROW-NUMBER.
000034 MOVE POSITION-CURSOR TO WRITE-CONTROL-CHARACTER.
000035 MOVE EIGHTY TO CURSOR-COLUMN-ADDRESS.
000036 MOVE TWENTY-FOUR TO CURSOR-ROW-ADDRESS.
000037 MOVE ORDERAREA TO ORDER-AREA OF CURSOR-CONTROL.
000038 DISPLAY AND READ CURSOR-CONTROL ON SCREEN.
000039 SOUND-ALARM.
000040 MOVE SOUND-THE-ALARM TO WRITE-CONTROL-cHARACTER.
000041 MOVE ORDERAREA TO ORDER-AREA OF ALARM-SCREEN.
000042 DISPLAY AND READ ALARM-SCREEN ON SCREEN.
000043 CLOSE SCREEN.
000044 STOP RUN.

Figure 4-9. Control of Order Area Using the ORDER-AREA OF Phrase

4-26

In the paragraph CONTROL-THE-CURSOR, coded on Lines 32 38,
ORDERAREA is set as follows:

1. ROW-NUMBER is· set· to a hexadecimal figurative constant ONE ("01")
by the statement MOVE ONE TO ROW-NUMBER, coded on Line 33. This
setting of 'the row number instructs DISPLAY AND READ to display
the entire screen, starting at Row 1 (the default action of
DISPLAY AND READ).

2. WRITE-CONTROL-CHARACTER is set to the hexadecimal figurative
constant POSITION-CURSOR ("AO") by the statement MOVE
POSITION-CURSOR TO WRITE-CONTROL-CHARACTER, coded on Line 34.
This setting of the Write Control Character instructs DISPLAY AND
READ to position the cursor to the column and row address
specified in the next 2 bytes of the order area.

3. CURSOR-COLUMN-ADDRESS is set to the hexadecimal
figurative-constant EIGHTY ("50") by the statement MOVE EIGHTY TO
CURSOR-COLUMN-ADDRESS, coded on Line 35. The value "50" in
hexadecimal is "80" in decimal; therefore the setting of
hexadecimal 50 in CURSOR-COLUMN-ADDRESS will define a column
number of 80.

4. CURSOR-ROW-ADDRESS is set to the hexadecimal figurative-constant
TWENTY-FOUR ("18") by the statement MOVE TWENTY-FOUR TO
CURSOR-ROW-ADDRESS, coded on Line 36. The value "18" in
hexadecimal is "24" in decimal; therefore, the setting of
hexadecimal 18 in CURSOR-ROW-ADDRESS defines a row number of 24.

Finally, the initialized order area (ORDERAREA) is moved to the order
area of the USAGE IS DISPLAY-WS format definition CURSOR-CONTROL by the
MOVE statement using the ORDER-AREA OF phrase, coded on Line 37. The
DISPLAY AND READ of CURSOR-CONTROL, coded on Line 38, sets the cursor at
Row 24, Column 80.

The workstation alarm is sounded in the paragraph SOUND-THE-ALARM as
follows:

1. WRITE-CONTROL-CHARACTER is set to the hexadecimal figurative
constant SOUND-THE-ALARM ("CO") by the statement MOVE
SOUND-THE-ALARM TO WRITE-CONTROL-cHARACTER, coded on Line 40.

2. ORDERAREA is moved to the USAGE IS DISPLAY-WS screen format
definition ALARM-SCREEN by the statement MOVE ORDERAREA TO
ORDER-AREA OF ALARM-SCREEN, coded on Line 41.

3. The DISPLAY AND READ of ALARM-SCREEN, coded on Line 42, causes
the alarm the alarm to sound. DISPLAY AND READ controls the
screen based on the Write Control Character; in this case, the
bit associated with sounding the alarm is set.

4-27

Determining Cursor Position Using the CURSOR POSITION IS Clause

As illustrated in Figure 4-9, setting the cursor on the screen can be
controlled through the ORDER-AREA OF phrase. However, determining the
position of the cursor after a DISPLAY AND READ can be accomplished by a
special clause in the FILE-CONTROL entry for the workstation. This
clause is the CURSOR POSITION IS clause.

The CURSOR POSITION IS clause in the FILE-CONTROL entry for the
workstation can be used to define a data name having the value of the
cursor column and the cursor row after the READ option of DISPLAY AND
READ. To define a data name called CURSOR-PCS to receive the cursor
position value after a READ, code the following in the FILE-CONTROL entry
for the workstation:

CURSOR POSITION IS CURSOR-POS

CURSOR-POS is a group item composed of two elementary items, defined in
the Data Division as follows:

01 CURSOR-PCS.
03 COLUMN-SETTING
03 ROW-SETTING

BINARY.
BINARY.

COLUMN-SETTING contains the cursor column number after a READ;
ROW-SETTING contains the cursor row number after a READ.

The CURSOR POSITION IS data name is assigned a value by the operating
system when a DISPLAY AND READ is issued. The value is in the form of
two 2-byte binary data items; the first value corresponds to a cursor
colwnn location and the second corresponds to a cursor row location.
Valid colwnn values are 1 - 80 (inclusive) and valid row values are 1 -
24 (inclusive). This clause only permits reading the current cursor
position. Setting the cursor to another position can only be
accomplished through the ORDER-AREA OF phrase, as illustrated in Figure
4-9.

Testing PF Key Response Using the PFKEY or the FILE STATUS Clauses

Two special clauses in the FILE-CONTROL entry for the workstation are
used to direct action based upon user PF key response. They are the
PFKEY and FILE STATUS clauses.

The PF key can be tested by the PFKEY IS clause in the FILE-CONTROL
entry for the workstation file. To code a PFKEY clause, code the
following in the FILE-CONTROL entry for the workstation file:

PFKEY IS PF-KEY

In Working-Storage code the following:

01 PF-KEY PIC 99.

4-28

The PFKEY IS data name (PF-KEY) is a 2-character numeric field that
receives the numeric value of the selected PFKEY following execution of a
DISPLAY AND READ statement or of a workstation READ statement.

PF-KEY can be tested in the Procedure Division to initiate action
based on selection of a particular PF key. After the READ function of
DISPLAY AND READ, the value of the PF key selected is stored in the PFKEY
IS data name. A number between 0 and 32 is stored, with 0 representing
the ENTER key and 1 through 32 representing the corresponding PF key.
For example, to perform a routine called CALCULATION based on selection
of the ENTER key, code the following:

IF PF-KEY = 0 PERFORM CALCULATION.

The PF key can also be tested after a workstation READ by examining
the workstation's file status. To define a FILE STATUS clause, code in
the FILE-CONTROL entry for the workstation as follows:

FILE STATUS IS FILE-STATUS

In Working-Storage code:

01 FILE-STATUS.
03 STATUS-BYTE-1
03 PFK-BYTE

PICTURE IS X.
PICTURE IS X.

The second byte of the data item associated with the FILE STATUS
clause holds the value corresponding to the PF key of the operator's
response after a workstation READ. The rightmost character, PFK-BYTE,
will contain "@" if the ENTER key is selected, an uppercase letter in the
range A through P if one of the PF keys between 1 and 16 is selected, or
a lowercase letter in the range a through p if one of the PF keys between
17 and 32 is selected.

FILE-STATUS can be tested in the Procedure Division to initiate
action based on selection of a particular PF key. For example, to
perform a routine called CALCULATION based on selection of the ENTER key
being, code the following:

IF PFK-BYTE = "@" PERFORM CALCULATION.

The PFKEY IS clause and the FILE STATUS clause thus perform
equivalent functions (testing the PF key after a DISPLAY AND READ or a
workstation READ statement) . However, use of the PFKEY IS clause is
reconunended because the value returned in the data item directly
corresponds to the number of the PF key selected (with 0 representing the
ENTER key); whereas the value returned in the FILE STATUS data name is a
letter returned in the second byte, and the letter must be translated
into the PF key number. The letter, called the AID character, is
discussed in detail in Appendix E. Using the FILE STATUS method makes
the code more difficult to read because the progranuner must be conscious
of which letter in the FILE STATUS data name corresponds to which PF key
number.

4-29

In summary, the three methods of testing for a PF key value are:

1. Use of the ON PFKEY phrase of DISPLAY AND READ.

2. Testing the PFKEY IS data name after a workstation READ.

3. Testing the second byte of the FILE STATUS data name (after
translating the letter into a PF key number) after a workstation
READ.

4.4 PROGRAMMING THE WORKSTATION THROUGH FULL SCREEN I/O

The workstation can be treated as a file, affording the programmer
direct control of the screen area. The workstation is viewed as a
consecutive file in random access mode, each row being one record of the
file.

Figure 4-10 is a complete COBOL program illustrating the technique of
direct file processing of the workstation, using full screen I/O. The
program produces the screen (four fields occurring across) as shown in
Figure 4-1. The same screen is produced by the COBOL program illustrated
in Figure 4-2, but whereas that program used DISPLAY AND READ to produce
the screen, this program uses full screen I/O. A comparison of the
programs illustrated in Figure 4-2 and Figure 4-10 demonstrates the
coding differences between DISPLAY AND READ and full screen I/O.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ACROSS.
000003 ENVIRONMENT DIVISION.
000004 CONFIGURATION SECTION.
000005 FIGURATIVE-CONSTANTS.
000006 POSITION-CURSOR IS "AO",
000007 MODCHR IS "81",
000008 DIM IS "SC".
000009 INPUT-OUTPUT SECTION.
000010 FILE-CONTROL.
000011 SELECT THE-WORKSTATION
000012 ASSIGN TO "WSFILE", "DISPLAY"
000013 RELATIVE KEY IS ROW-NUMBER
000014 ACCESS MODE IS RANDOM.
000015 DATA DIVISION.
000016 FILE SECTION.
000017 FD THE-WORKSTATION
000018 LABEL RECORDS ARE OMITTED.
000019 01 CRTREC.
000020 03 SCREEN-ORDER-AREA.
000021 05 ROWNUMBER
000022 os wee
000023 05 CURSOR-COLUMN
000024 05 CURSOR-ROW

PICTURE X.
PICTURE X.
PICTURE X.
PICTURE X.

Figure 4-10. Displaying Elements Across a Row Using Full Screen I/O

4-30

000025 03 SCREEN-MAPPING-AREA PICTURE X(1920).
000026 WORKING-STORAGE SECTION.
000027 77 ROW-NUMBER PICTURE 9(2) VALUE 1.

~ 000028 01 FOUR-FIELDS.
000029 03 ROWS-1-THRU-4 PICTURE X(320) VALUE SPACES.
000030 03 ROW-5.
000031 05 FILLER PICTURE X(25) VALUE SPACES.
000032 05 FILLER PICTURE X(28)
000033 VALUE IS "FOUR FIELDS OCCURRING ACROSS".
000034 05 REST-OF-ROW-5 PICTURE X(27) VALUE SPACES.
000035 03 ROW-6 PICTURE X(80) VALUE SPACES.
000036 03 ROW-7.
000037 05 FILLER PICTURE X(21) VALUE SPACES.
000038 05 FILLER PICTURE X VALUE MODCHR.
000039 05 FIELD! VALUE "ELEMENT!" PICTURE X(8).
000040 05 FILLER PICTURE X VALUE MODCHR.
000041 05 FIELD2 VALUE "ELEMENT2" PICTURE X(8).
000042 05 FILLER PICTURE X VALUE MODCHR.
000043 05 FIELD3 VALUE "ELEMENT3" PICTURE X(8).
000044 05 FILLER PICTURE X VALUE MODCHR.
000045 05 FIELD4 VALUE "ELEMENT4" PICTURE X(8).
000046 05 FILLER PICTURE X VALUE DIM.
000046 PROCEDURE DIVISION.
000047 OPEN-THE-WORKSTATION.
000048 OPEN I-0 THE-WORKSTATION.
000049 INITIALIZE-THE-ORDER-AREA.
000050 MOVE POSITION--cuRSOR TO wee.
000051 MOVE LOW-VALUES TO CURSOR-COLUMN CURSOR-ROW.
000052 DISPLAY-THE-SCREEN.

~ 000053 MOVE FOUR-FIELDS TO SCREEN-MAPPING-AREA.
000054 REWRITE CRTREC.
000055 READ-THE-SCREEN.
000056 READ THE-WORKSTATION MODIFIABLE.
000057 MOVE-TO-WORKING-STORAGE.
000058 MOVE SCREEN-MAPPING-AREA TO FOUR-FIELDS.
000059 CLOSE THE-WORKSTATION.
000060 STOP RUN.

Figure 4-10. Displaying Elements Across a Row
Using Full Screen I/O (continued)

Comparing the program illustrated in Figure 4-10 with the program
illustrated in Figure 4-2, the differences between full screen I/O and
DISPLAY AND READ are:

1. The order area and the mapping area of the workstation must be
initialized. The record description entry for the workstation
(CRTREC), coded on Lines 18 - 24, defines the 4-byte order area
as well as the 1920-byte mapping area for the screen. The order
area (SCREEN-ORDER-AREA) is initialized by moving appropriate
figurative constants to the individual order area bytes. The
mapping area (SCREEN-MAPPING-AREA) is initialized by moving the
screen description.

4-31

2. The entire screen must be initialized. Whereas using DISPLAY AND
READ only those screen areas that are to be used need to be
defined, using full screen I/O the screen is treated as a record;
unused areas must be defined as FILLER and initialized to
SPACES. In Working-Storage, the group item FOUR-FIELDS, coded on
Lines 27 - 45, defines the screen format. The following coding
requirements should be noted.

a. Even though the first field (the literal "FOUR FIELDS
OCCURRING ACROSS") appears on Row 5 Column 26, the previous
345 bytes are initialized to spaces by definition of the data
names ROWS-1-THRU-4 and FILLER on Lines 28 and 30.

b. All Field Attribute Characters (except for the dim-protected
FAC which is the default for the· beginning of every screen
row) must be defined and initialized. The four elements
occurring across as well as their associated FACs, which in
the program illustrated in Figure 4-2 were defined by one
screen format item definition, are defined here using 9
coding lines (Lines 37 - 45). The Field Attribute Character
MODCHR, defined as a figurative constant on Line 6 as a
bright, modifiable field allowing uppercase input, must be
moved to the byte inunediately before each element. In
addition, at the end of the last element, a "trailing FAC"
must be defined as dim-protected (DIM), to prevent the last
screen field from being modifiable to the end of the screen
row.

3. The workstation must be opened explicitly in the Procedure
Division. This is accomplished by the OPEN statement coded on
Line 48. The program in Figure 4-2 was no~ required to open the
workstation explicitly, since DISPLAY AND READ automatically
opens the workstation.

4. The order area must be initialized in the Procedure Division.
This is accomplished in the paragraph INITIALIZE-THE-ORDER-AREA,
coded on Lines 49 - 51. The figurative constants used position
the cursor to the first modifiable field by setting the "position
cursor" bit in the Write Control Character byte and setting
cursor column and cursor row addresses to zero. The row number
(the first byte of the order area) is set to 1 using the RELATIVE
KEY IS data name, ROW-NUMBER, defined on Line 26 with a value of
1. For full-screen I/0, the row number must be set to 1.

5. The mapping area must be initialized before the screen is
displayed using REWRITE. This is accomplished by the paragraph
DISPLAY-THE-SCREEN, coded on Lines 52 - 54.

6. A READ must be issued if operator response is required. (If the
screen is only to be displayed, the READ is omitted.) This is
accomplished by the READ statement on Line 56. The MODIFIABLE
option means that only modi£ iable portions of the screen are
transferred to the record description area.

4-32

~:

7. The record description area is moved to Working-Storage, thus
providing the equivalent of the transfer to the OBJECT fields
provided by DISPLAY AND READ. This is accomplished by the MOVE
statement on Line 58.

The one DISPLAY AND READ statement in the program illustrated by
Figure 4-2 performs the equivalent functions of steps 1 - 7. Using
DISPLAY AND READ is therefore the reconunended method of programming the
workstation. Only in exceptional cases should full screen I/O be used.
The most conunon exceptional case is when only a display of the screen
(with no operator action required) is required. DISPLAY AND READ always
performs the READ, requesting operator response -- it does not have a
"display only" mode. Therefore, to display an entire screen without
requiring a read, a REWRITE of the screen, using full screen I/O as
described, is required.

Setting the Order Area Using Extensions to REWRITE

The REWRITE statement for th~ workstation contains options to set the
order area. These options allow setting the order area without the
tedious and error-prone procedure of defining the order area, specifying
figurative constants, and initializing the order area to the figurative
constants. Combinations of REWRITE options are allowed, permitting
virtually all combinations of order area settings at REWRITE time. The
REWRITE options are as follows:

• ALARM. Sound the workstation alarm.

• SETTING CURSOR COLUMN/ROW. Set the cursor to a designated colwnn
Cl - 80) and row Cl - 24).

• ROLL DOWN. Copy each row to the next lower row. ROLL DOWN is
valid only for row-oriented I/O, to be discussed in Section 4.5.

• ROLL UP. Copy each row to the next higher row. ROLL UP is valid
only for row-oriented I/O, to be discussed in Section 4.5.

• ERASE PROTECT. Erase and protect the screen at and after the
cursor row address specified in the order area. The order area
must be initialized to the desired row address for ERASE PROTECT.

• ERASE MODIFY. Set all modi£ iable locations after the specified
row address to blanks. The order area must be initialized to the
desired row address for ERASE MODIFY.

An example of using the REWRITE extension for setting the cursor is the
following:

REWRITE CRTREC SETTING CURSOR COLUMN 1 ROW 8.

This statement both rewrites the workstation screen and sets the cursor
at Row 8 Column 1.

4-33

4.5 PROGRAMMING THE WORKSTATION THROUGH ROW-ORIENTED I/O

The workstation can be programmed to rewrite one or more rows at a
time. To do this, the 4-byte order area must be defined and initialized
correctly; the mapping area, however, is 80 bytes instead of 1920 bytes
long.

To specify the row for the workstation rewrite, specify a RELATIVE
KEY IS data name in the FILE-CONTROL entry, and move the desired row
number to the data name before issuing the REWRITE. For example, if one
80-byte row is to be rewritten on Row 11, move 11 to the RELATIVE KEY IS
data name before issuing the REWRITE of the 01-level record area (84
bytes). For rollup or rolldown, the RELATIVE KEY IS data name specifies
at what row the function is to begin. Therefore to roll down all screen
rows starting with Row 11, move 11 to the RELATIVE KEY IS data name
before issuing the REWRITE with the ROLL DOWN option.

Figure 4-11 is a complete COBOL program that produces the same
results as the program using DISPLAY AND READ in Figure 4-9
positioning the cursor and sounding the workstation alarm. The program
additionally demonstrates the following features previously discussed:

• Use of row-oriented I/O.

• REWRITE options that allow setting the cursor position and
sounding the workstation alarm without having to set the order
area.

• Use of the PFKEY IS clause to determine which PF key was selected
after a workstation READ.

4-34

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ORDRAREA.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT SCREEN ASSIGN TO "SCREEN", "DISPLAY",
000007 CURSOR POSITION IS CURSOR-POSITION
000008 RELATIVE KEY IS ROW-NUMBER
000009 PFKEY IS PF-KEY
000010 ACCESS MODE IS RANDOM.
000011 DATA DIVISION.
000012 FILE SECTION.
000013 FD SCREEN
000014 LABEL RECORDS ARE OMITTED.
000015 01 WORKSTATION-REC.
000016 03 FILLER
000017 03 WS-MAPPING-AREA
000018 WORKING-STORAGE SECTION.
000019 77 ROW-NUMBER VALUE IS 1
000020 01 CURSOR-POSITION.
000021 03 COLUMN-SETTING
000022 03 ROW-SETTING
000023 01 CURSOR-LINE.

PICTURE IS X(4).
PICTURE IS X(80).

PICTURE IS 99.

BINARY.
BINARY.

000024 05 FILLER
000025 05 FILLER

PICTURE IS X(8)
PICTURE IS X(35)

VALUE SPACES.

000026 VALUE IS "The cursor is at row 24, column 80.".
000027 01 ALARM-LINE.
000028 05 FILLER
000029 05 FILLER

PICTURE IS X(8)
PICTURE IS X(34)

VALUE SPACES.

000030 VALUE IS "The workstation alarm has sounded.".
000031 01 PFKEY-LINE.
000032 05 FILLER
000033 05 FILLER
000034 05 PF-KEY
000035 05 FILLER
000036 PROCEDURE DIVISION.
000037 CONTROL-THE-cuRSOR.
000038 OPEN I-0 SCREEN.

PICTURE IS X(8)
PICTURE IS X(7)
PICTURE IS 99
PICTURE IS X(9)

000039 MOVE 4 TO ROW-NUMBER.

VALUE SPACES.
VALUE "PF key".
VALUE 0.
VALUE " was hit.".

000040 MOVE CURSOR-LINE TO WS-MAPPING-AREA.
000041 REWRITE WORKSTATION-REC SETTING CURSOR COLUMN 80 ROW 24.
000042 READ SCREEN.
000043 CHECK-PF-KEY.
000044 MOVE PFKEY-LINE TO WS-MAPPING-AREA.
000045 REWRITE WORKSTATION-REC.
000046 READ SCREEN.
000047 SOUND-ALARM.
000048 MOVE ALARM-LINE TO WS-MAPPING-AREA.
000049 REWRITE WORKSTATION-REC ALARM.
000050 READ SCREEN.
000051 CLOSE SCREEN.
000052 STOP RUN.

Figure 4-11. Setting the Cursor, Checking the PF Key,
and Sounding the Alarm

4-35

In the program illustrated in Figure 4-11, the FILE-CONTROL entry for
the workstation, coded on Lines 6 - 10, contains the CURSOR POSITION
clause (coded on Line 7), the RELATIVE KEY phrase (coded on Line 8), and
the PFKEY clause (coded on Line 9).

The CURSOR POSITION IS data name, CURSOR-POSITION, coded in
Working-Storage on Lines 20 - 22, is a group item containing two
elementary binary items, COLUMN-SETTING and ROW-SETTING. COLUMN-SETTING
contains the value of the cursor colwnn after a READ; ROW-SETTING
contains the value of the cursor row after a READ.

The RELATIVE KEY IS data name, ROW-NUMBER, coded in Working-Storage
on Line 19, contains the row number (from 1 to 24) to be rewritten.
ROW-NUMBER should therefore be initialized to the value of the row to be
rewritten before the REWRITE is issued for the workstation.

The PFKEY IS data name, PF-KEY, coded on Line 34, contains the number
of the PF key after a READ. PF-KEY is embedded in a message indicating
the PF key number. The message is rewritten after the READ.

In row-oriented I/0, only one row of the screen need be defined. The
record description area for the workstation, WORKSTATION-REC, is defined
as an 84-byte area on Lines 15 - 17 -- four bytes of FILLER for the order
area and 80 bytes for the row to be rewritten.

In the Procedure Division the paragraph CONTROL-THE-CURSOR, coded on
Lines 37 - 42, after opening the workstation, sets the cursor at Row 24
Column 80 and displays the message "The cursor is set at Row 24, Column
80." on workstation Row 4. The RELATIVE KEY IS data name, ROW-NUMBER, is
set to 4, indicating that Row 4 is to be rewritten, on Line 39. The
message is moved to the mapping area on Line 40. Finally, the REWRITE is
issued with the SE~TING CURSOR option on Line 41. The SETTING CURSOR
option sets the cursor to Row 24, Column 80 before the REWRITE is issued.

The paragraph CHECK-PF-KEY, coded on Lines 43 - 46, checks the PF key
that was pressed. PF-KEY, the PFKEY IS data name, contains the PF key
number. The message containing the value "PF key nn was s·elected." is
moved to the mapping area on Line 44, and the REWRITE is issued. Since
the RELATIVE KEY IS data name, ROW-NUMBER, is still set to 4, the message
displays on Row 4.

The paragraph SOUND-ALARM, on Lines 47 - 52, sounds the workstation
alarm after the message "The workstation alarm has sounded." is moved to
the screen mapping area. The ALARM option of the REWRITE statement,
coded on Line 49, accomplishes sounding the alarm.

4-36

4.6 COEXISTENCE OF DISPLAY AND READ AND FULL SCREEN I/O

~ It is possible to issue both DISPLAY AND READ, full screen I/0, and
row-oriented I/O operations (READ and REWRITE) in the same COBOL
program. DISPLAY AND READ and full screen I/O require the same
FILE-CONTROL and File Section entries to define the workstation file.
DISPLAY AND READs and conventional READs and REWRITEs can be coded in any
order in the Procedure Division; in effect, the two methods of
workstation programming operate independently of each other. There are
some differences in the runtime operation of the two methods, however.
These are:

1. It is not necessary to open the workstation file using DISPLAY
AND READ. The first DISPLAY AND READ operation will
automatically open the workstation file. However, if the
workstation file is not opened before the first REWRITE (either
explicitly via the OPEN statement or implicitly via DISPLAY AND
READ), the REWRITE fails and the program cancels.

2. If workstation interaction is to be performed from more than one
module (either using DISPLAY AND READ or using full screen I/0),
the workstation must be explicitly closed before the CALL is
issued. Each module requires its own FILE-CONTROL entry for the
workstation. The FILE-CONTROL entry cannot be passed from one
module to another. Before workstation interaction can be
performed, the workstation must be opened by that module. If the
workstation is open when a module is called, and that module
attempts workstation I/0, the workstation will not be properly
opened for the called module.

3. DISPLAY AND READ both displays a screen and waits for a
workstation response, thereby requiring response using a PF key.
DISPLAY AND READ performs both the workstation read and the
rewrite. To display a message without requiring operator
intervention, REWRITE the workstation record after moving the
message to the screen record area.

4-37

CHAPTER 5
PRINT FILE PROCESSING

5.1 DEFINING A COBOL PRINT FILE

This chapter discusses print file processing in VS COBOL, and the
techniques for skipping lines before printing, skipping lines after
printing, and advancing to the next page. Producing well-formatted
reports is a requirement for many data processing applications; VS COBOL
provides, through extensions of the WRITE statement, powerful facilities
to accomplish this task.

VS COBOL treats a print file as a consecutive file with
variable-length records and device type of PRINTER. (For a discussion of
consecutive file processing in COBOL, refer to Section 2.3.) To specify
a COBOL print file, PRTFILE, code the following FILE-CONTROL entry:

SELECT PRTFILE ASSIGN TO "PRINT" "PRINTER".

Since the default file organization is a consecutive file, and the
other clauses are optional, this FILE-CONTROL entry is sufficient for
defining a print file.

The FD entry for a print file is also simple to specify. To specify
an FD entry for PRTFILE, code the following statement:

FD PRTFILE
RECORD CONTAINS 55 CHARACTERS
LABEL RECORDS ARE OMITTED.

01 PRTLINE PIC X(55).

The record description entry for PRTFILE actually defines a print
file containing records of 57 characters in length. The COBOL program
describes only the actual data portion of the print file. The WRITE
statement for a print file appends a 2-byte printer control area to the
data portion of the record. The statement WRITE PRTLINE in the Procedure
Division causes a 57 character print record to be written to the print
file PRTFILE: the 2-byte printer control area concatenated with the
55-byte print record defined in the record description entry for PRTFILE.

A print file is typically opened in output mode. The default library
used is the pound sign (#), concatenated with the user-ID, concatenated
with the characters "PRT"; the default volume is the spool volume (or the
system volume if SPOOLVOL is equal to spaces) . The default number of
records is 1000. All of these defaults can be overridden using
appropriate VALUE OF clauses in the FD entry for the print file.

5-1

Options of the WRITE statement for print files allow setting of the
printer control area. To produce well-formatted reports, it is necessary
to control line spacing Chow many lines to skip before or after printing
the line) and page advancing (whether to skip to the next page). VS
COBOL provides two methods of doing this. One method, discussed in
Section 5.2, is to use integers or data names with integer values in the
BEFORE/AFTER ADVANCING phrase of the WRITE statement. The other method,
discussed in Section 5.3, is to use hexadecimal figurative constants in
the BEFORE/AFTER ADVANCING phrase to specify print control information
and to activate printer hardware-dependent features (such as expanded
print).

The length of the print line depends on the printer used. The print
line cannot have a length greater than the nwnber of characters-per-line
allowed by the printer. Since at compile-time the printer on which the
file will print is unknown, the COBOL compiler will not produce any
messages if a record length greater than the length supported on the
system printer(s) is specified. However, attempting to print a file with
a record length greater than that allowed by the printer will produce an
error condition that depends on the particular type of printer and
whether the file is being printed on-line or spooled.

5.2 USING THE BEFORE/AFTER ADVANCING CLAUSE FOR PRINTER CONTROL

The BEFORE/AFTER ADVANCING phrase of the WRITE statement enables
printer control by automatically setting the printer control area. The
following functions are available:

Function

Write a print line,
then advance printer.

Advance printer,
then write a print line.

Skip to next page

Clause

WRITE print-record BEFORE
ADVANCING integer LINES.

WRITE print-record AFTER
ADVANCING integer LINES.

WRITE print-record AFTER
ADVANCING PAGE.

In the BEFORE/AFTER ADVANCING phrase, "integer" can also be a data
name having an integer value, or a figurative constant. The use of
integers in the BEFORE/AFTER ADVANCING phrase is discussed in this
section; the use of figurative constants is discussed in Section 5.3.

A WRITE without the BEFORE/ADVANCING phrase will advance the printer
one line and print. Therefore, the following two statements are
equivalent:

WRITE PRTFILE AFTER ADVANCING 1 LINES.
WRITE PRTFILE.

5-2

'~

Figure 5-1 is a complete COBOL program that illustrates the
BEFORE/AFTER ADVANCING options for printer control.

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. PRNTFILE.
000003 ENVIRONMENT DIVISION.
000004 INPUT-OUTPUT SECTION.
000005 FILE-CONTROL.
000006 SELECT PRTFILE ASSIGN TO "PRINT" "PRINTER".
000007 DATA DIVISION.
000008 FILE SECTION.
000009 FD PRTFILE
000010 RECORD CONTAINS 132 CHARACTERS
000011 LABEL RECORDS ARE OMITTED.
000012 01 PRTLINE PICTURE X(l32).
000013 WORKING-STORAGE SECTION.
000014 01 LINEl PICTURE X(l32) VALUE
000015 "THIS LINE PRINTS. THEN THE PRINTER ADVANCES 10 LINES.".
000016 01 LINE2 PICTURE X(l32) VALUE
000017 "THE PRINTER WILL ADVANCE 25 LINES. THEN THIS LINE PRINTS.".
000018 01 LINE3 PICTURE X(132) VALUE
000019 II THIS IS THE FIRST PART".
000020 01 LINE4 PICTURE X(132) VALUE
000021 "THE PRINTER WILL ADVANCE 1 LINE. THEN THIS LINE PRINTS.".
000022 PROCEDURE DIVISION.
000023 OPEN-PRINT-FILE.

~ 000024 OPEN OUTPUT PRTFILE.
000025 WRITE-PRINT-LINES.
000026 WRITE PRTLINE FROM LINEl BEFORE ADVANCING 10 LINES.
000027 WRITE PRTLINE FROM LINE2 AFTER ADVANCING 25 LINES.
000028 WRITE PRTLINE FROM LINE3 AFTER ADVANCING PAGE.
000029 MOVE " THIS IS THE SECOND PART "
000030 TO LINE3.
000031 WRITE PRTLINE FROM LINE3 AFTER ADVANCING O.
000032 WRITE PRTLINE FROM LINE4.
000033 CLOSE-PRINT-FILE.
000034 CLOSE PRTFILE.
000035 STOP RUN.

Figure 5-1. Use of BEFORE/AFTER ADVANCING

The FILE-CONTROL entry for PRTFILE, coded on Line 6, specifies a
consecutive file with device type of "PRINTER". The device type of
PRINTER identifies PRTFILE as a print file.

The record description entry for PRTFILE, coded on Lines 9 - 12,
specifies a print record with 132 print positions. The actual record
length is 134 bytes because two bytes are added for the printer control
area. Space for the printer control area is not defined in the record
description entry; rather, it is appended to the print record when the
WRITE is executed.

5-3

PRTFILE is opened in output mode by the successful execution of the
OPEN statement on Line 24. Since the BEFORE ADVANCING option of the
WRITE statement means "write the record, then advance the printer", the
WRITE statement on Line 26 prints LINEl and then advances the printer 10
lines. Since the AFTER ADVANCING option of the WRITE statement means
"advance the printer, then write the record," the WRITE statement on Line
27 advances the printer 25 lines, and then prints LINE2. Since the PAGE
option of the WRITE statement means "skip to the next page", the WRITE
statement on Line 28 advances the printer to the next page and prints
LINE3, which has the value "THIS IS THE FIRST PART".

Using the number 0 in the AFTER ADVANCING option of the WRITE
statement does not cause the printer to advance any lines; the next line
will overprint if 0 is used. The MOVE and WRITE statements coded on
Lines 29 - 31 print the second part of the heading, with the value "THIS
IS THE SECOND PART", to the same line. The message "THIS IS THE FIRST
PART THIS IS THE SECOND PART" appears on that line. This message is the
result of two WRITE statements -- the WRITE on Line 28 writes the first
part of the message, and the WRITE on Line 31 writes the second part of
the message.

The WRITE statement on Line 32 writes LINE4 after advancing to the
next line and is the equivalent of WRITE LINE4 AFTER ADVANCING 1 LINES.

5.3 USING FIGURATIVE CONSTANTS FOR PRINTER CONTROL

Another method of printer control is to define figurative constants
for use in the BEFORE/AFTER ADVANCING phrase. Use qf figurative
constants enables program control of the printer control area. The
figurative constants define a value for the printer control area, which
will be moved to the first two bytes of the printer record when a WRITE
statement is issued. In addition to printer spacing and page ejecting,
hardware-specific features, such as expanded print and sounding the
printer alarm, can be activated.

Not all VS printers support expanded print or the hardware alarm; if
a particular printer supports these attributes, using the figurative
constant method will activate these features. Refer to Appendix F for
the appropriate bits to set when defining the figurative constant.

In the Environment Division, construct a 2-byte figurative constant
to enable the functions desired. The printer must support the feature
(such as expanded print, actuating the hardware alarm, or channel
skipping) desired. For example, to sound the hardware alarm on a VS
printer that supports this feature, code the following:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
FIGURATIVE-CONSTANTS.

SOUND-THE-ALARM IS 11 1000 11
•

5-4

As shown in Appendix F, Bit 3 of the first byte must be on to sound
the hardware alarm. The figurative constant SOUND-THE-ALARM has Bit 3 of
the first byte set. In the Procedure Division, to sound the alarm after
writing the line PRTLINE on the file PRTFILE, code the following:

WRITE PRTLINE AFTER ADVANCING SOUND-THE-ALARM.

The figurative constant used in the WRITE statement determines all
the printer control, including control of printer advancing and advancing
to the next page. Therefore, the "BEFORE ADVANCING" and "AFTER
ADVANCING" phrases are ignored by the WRITE when figurative constants are
used. The setting of the "space before printing" or the "space after
printing" bit in the figurative constant determines whether printing
precedes spacing or spacing precedes printing, regardless of whether the
"BEFORE ADVANCING" or "AFTER ADVANCING" phrase is used. In addition, the
words "PAGE" and "LINES" as WRITE statement options are ignored; page
skipping and line advancing are governed solely by the settings of the
figurative constant.

The program in Figure 5-2 is identical to the program in Figure 5-1,
with the exception of the figurative constants defined on Lines 4 - 8 and
their use in the WRITE statement options. The figurative constants
BEFORE-TEN, AFTER-2 5, TOP-OF-FORM, and ZERO-LINES, are constructed so
that when used in the WRITE statement, the record is written and the
printer advances 10 lines, the printer advances 25 lines and the record
is written, the printer skips to the top· of ·the next page, and the
printer does not advance before or after the record is written. The
figurative constant values define 2 bytes to be moved to the printer
control area by the WRITE. Refer to Appendix F for further discussion of
definition of these values.

The paragraph WRITE-PRINT-LINES in the program of Figure 5-2
generates the identical output as the paragraph WRITE-PRINT-LINES in the
program of Figure 5-1 except that in Figure 5-2, the settings of the
figurative constants determine printer action. For example, the WRITE
statement on Line 31 prints LINEl and advances the printer 10 lines
because the figurative constant BEFORE-TEN used in the WRITE statement is
set to the values that cause this action.

5-5

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. PRNTFILE.
000003 ENVIRONMENT DIVISION.
000004 CONFIGURATION SECTION.
000005 FIGURATIVE-CONSTANTS.
000006 BEFORE-TEN IS "400A"
000007 AFTER-25 IS 11 0019 11

000008 TOP-OF-FORM IS 11 8001 11

000009 ZERO-LINES IS "0000".
000010 INPUT-OUTPUT SECTION.
000011 FILE-CONTROL.
000012 SELECT PRTFILE ASSIGN TO "PRINT" "PRINTER".
000013 DATA DIVISION.
000014 FILE SECTION.
000015 FD PRTFILE
000016 RECORD CONTAINS 132 CHARACTERS
000017 LABEL RECORDS ARE STANDARD.
000018 01 PRTLINE PIC X(132).
000019 WORKING-STORAGE SECTION.
000020 01 LINE! PICTURE X(l32) VALUE
000021 "THIS LINE PRINTS. THEN THE PRINTER ADVANCES 10 LINES.".
000022 01 LINE2 PICTURE X(l32) VALUE
000023 "THE PRINTER WILL ADVANCE 25 LINES. THEN THIS LINE PRINTS."
000024 01 LINE3 PICTURE XC132) VALUE
000025 " THIS IS THE FIRST PART".
000026 01 LINE4 PICTURE X(132) VALUE
000027 "THE PRINTER WILL ADVANCE 1 LINE. THEN THIS LINE PRINTS."
000028 PROCEDURE DIVISION.
000029 OPEN-PRINT-FILE.
000030 OPEN OUTPUT PRTFILE.
000031 WRITE-PRINT-LINES.
000032 WRITE PRTLINE FROM LINEl
000033 WRITE PRTLINE FROM LINE2
000034 WRITE PRTLINE FROM LINE3
000035 MOVE II

000036 TO LINE3.
000037 WRITE PRTLINE FROM LINE3
000038 WRITE PRTLINE FROM LINE4.
000039 CLOSE-PRINT-FILE.
000040 CLOSE PRTFILE.
000041 STOP RUN.

BEFORE ADVANCING BEFORE-TEN.
AFTER ADVANCING AFTER-25.
AFTER ADVANCING TOP-OF-FORM.

THIS IS THE SECOND PART

AFTER ADVANCING ZERO-LINES.

Figure 5-2. Use of Figurative Constants to Control the Printer

5-6

,~.

CHAPTER 6
TAPE FILE PRCX!ESSING

6.1 INTRODUCTION

This chapter discusses the process of creating and maintaining tape
files using VS COBOL. Tape files are identified in the FILE-CONTROL
entry for the file by the device type "TAPE" . Thus, to define a tape
file TAPEFILE, code the FILE-CONTROL entry as follows:

SELECT TAPEFILE
ASSIGN TO "TAPEIN", "TAPE".

Consecutive files are the only file organization supported on tape.
"Any function supported for consecutive files is allowed for tape. For a
detailed discussion of consecutive file processing in COBOL, refer to
Section 2.3.

6.2 TAPE LABEL PRCX!ESSING

Tape labels identify a tape file. Multiple files are allowed on a VS
tape volume; a tape label will identify which file is to be processed.
(The VS also supports nonlabelled tape files, in which case the file to
be processed is identified by the order in which the file is located on
the tape.)

To facilitate the transport of information from computers using
industry-standard tape file formats, the VS supports three methods of
tape label processing. These are:

1. ANSI Tape Labels. An ANSI labelled tape (.AL) identifies a tape
label format in accordance with the standards of the American
National Standards Institute (ANSI) . The ANSI standard tape
label format is intended to be a common industry standard,
facilitating file transfer across computers adhering to the
industry standard conventions.

2. IBM Tape Labels. An IBM labelled tape (IL) identifies a tape
label format in accordance with IBM 370 standards. The IBM tape
label standard differs from the ANSI tape label standard.
Therefore, to facilitate file transfer from IBM 370 systems to
the VS, IBM tape label formats are supported.

6-1

3. No Tape Labels. A nonlabelled tape (NL) identifies a tape volume
with no tape labels. The file to be processed is identified by
its order on the tape. Nonlabelled tapes are the conunon mode of
tape processing for some computer vendors. In instances where
file transfer between a computer supporting neither AL nor IL
tapes and the VS is required, the best alternative may be
creating an NL tape on the system and transporting it to the VS.

The VS utility TAPEINIT enables initialization of a tape volume and
specification of the type of tape label processing allowed. Through the
TAPEINIT utility, the tape volume can be initialized as either an
ANSI-labelled tape (AL), an IBM-labelled tape (IL), or a nonlabelled tape
(NL). In VS COBOL, LABEL RECORDS ARE STMJDARD implies either an AL or an
IL tape, while LABEL RECORDS ARE OMITTED implies an NL tape. Refer to VS
Utilities Reference Manual for further information on the TAPEINIT
utility.

6.3 USE OF LABEL RECORDS CLAUSE FOR TAPE LABEL PROCESSING

6.3.1 ANSI and IBM Tape Label Processing

In the FD for the tape file, the LABEL RECORDS clause identifies
whether or not the tape has labels. If tape labels are present, code in
the FD for TAPEFILE as:

FD TAPEFILE
LABEL RECORDS ARE STANDARD.

In tape label processing, the program or procedure must supply the
file name. An additional specification of a library name will provide
qualification of the file name on the tape label. To specify the file
name, use the VALUE OF FILENAME clause; to specify the library name, use
the VALUE OF LIBRARY clause in the FD of the file. Refer to Section
2.2.4 for a detailed discussion on methods of supplying the file and
library names for the tape file.

If an existing tape file is opened, the tape volume is scanned for a
tape file name containing a match between the program-supplied tape file
name and the file name on the label. If there is no match, an error
message is displayed, giving the opportunity for respecifying the file,
library, and volume. If a file is being created (opened in output mode),
either an ANSI label or an IBM label is created.

The VS file naming convention permits up to three levels of name
qualification -- file name, library name, and volume name. Other file
naming conventions (for example, the convention for naming tape data sets
on the IBM 370) may support more than three levels of name
qualification. When the file label is read on the VS, the first three
levels of qualification are converted to file, library, and volume names;
any further qualification of names is ignored. For example, an IBM 370
tape data set with the name 111.222.333.444.555 is converted to a VS name
of VOLUME=lll, LIBRARY=222 and FILE=333. The fourth and fifth levels of
qualification (444 and 555) are ignored.

6-2

If a tape contains files using a collating sequence different from
the VS collating sequence, code translation is the responsibility of the
progranuner. This is primarily a consideration in conversion of IL tape
files. IBM 370 tape data sets frequently contain files using the EBCDIC
collating sequence. Such a file cannot be processed using the VS
collating sequence, which is the ASCII collating sequence. To translate
the file into the VS collating sequence, run the VS code translation
utility (TRANSL) before processing the tape file using the COBOL
program. Refer to vs-utilities Reference manual for detailed information
on the TRANSL utility.

6.3.2 Nonlabelled Tape Processing

If tape labels are not present, or if the tape label is to be
processed by the program as a file, code the following FD for TAPEFILE:

FD TAPEFILE
LABEL RECORDS ARE OMITTED.

Through the TAPEINIT utility, the tape volume has been initialized as
a nonlabelled tape (NL). In VS COBOL, LABEL RECORDS ARE OMITTED implies
an NL tape.

Since no identification for the file exists, it can be found only by
specifying a file number representing the position of the file on the
tape volume. Records are written to the tape file; when the file is
closed, an end-of-file marker is written to the tape volume signifying
the end of the tape file. By counting end-of-file markers, a particular
file can be located.

To specify the file number, VS COBOL provides a clause -- the VALUE
OF POSITION clause. The data name in the VALUE OF POSITION clause is an
integer representing the ordinal number of the file to be processed. For
example, to specify that TAPEFILE is the fifth file on the tape volume,
code the following:

FD TAPEFILE
LABEL RECORDS ARE OMITTED
VALUE OF POSITION IS POSITION-COUNTER.

In Working-Storage, code the following:

WORKING-STORAGE SECTION.
77 POSITION-COUNTER PIC S9 COMPUTATIONAL VALUE +5.

If a tape contains labels that do not adhere to ANSI or IBM label
processing, the tape label itself can be processed as a file and the
information contained in the label can be used by the program to process
the file. The tape can be processed as an NL tape and the program can
then access the label. This method should be used in conversion of
tapes, from systems that adhere neither to ANSI nor to IBM tape labelling
conventions, to the VS.

6-3

CHAPTER 7
SORT-MERGE PROCESSING

7.1 INTRODUCTION

Applications often find it necessary to have a COBOL program sort or
merge data files while executing. Sorts and merges are performed in
COBOL by the SORT-MERGE module. Programmers can include a sort or merge
operation in a program by coding the procedures and syntax described in
this chapter. Formats, syntax and general rules are presented in Part II.

7.2 SORTING

COBOL programs perform sort operations by collecting the records from
the file or files to be sorted into a temporary file called a sort file.
Once created, the sort file is processed according to the instructions
defined in a SORT statement and released back to the program.

Sort processing can be accomplished by the SORT statement with the
USING and GIVING phrases, or by defining an input and output procedure.
The input procedure makes records available for sorting from the file or
files to be sorted by means of the RELEASE statement. The SORT statement
then arranges the entire set of records in the sort file. The reordering
is performed according to the keys specified by the programmer in the
SORT statement. When the reordering is complete, the output procedure
makes the sorted records available to the program by means of the RETURN
statement.

Sorting files within a VS COBOL program has an advantage over
external sorts in that the COBOL sort allows the programmer to manipulate
the individual records during the sort process. The manipulation may
consist of addition, deletion, creation, or editing of the individual
records. It may be necessary to apply the manipulation before or after
the records are reordered, or even in both places. This special
processing is applied to the records during execution of the input and
output procedures. Specific rules governing what the programmer can and
cannot do during these procedures are included in the RELEASE and RETURN
statement sections in Chapter 12.

7-1

A COBOL program may contain more than one sort, each of which can
have its own input and output procedures. The sort feature automatically
causes execution of these procedures at the point specified by the
programmer in such a way that extra passes over the sort file are not /~
required. Sort files are named by a file control entry and are described
by a sort or merge file description (SD) entry (refer to Chapter 11).
Sort files can never be accessed directly. They can only be accessed
from the input and output procedures. The SORT statement must name the
file or procedure from which the input procedure acquires the records to
be sorted and must name the file into which the sorted records are-·to be
placed.

7.3 MERGING

Merge processing in a COBOL program is similar to sort processing.
The major difference is that the MERGE function does not employ an input
procedure. Files to be merged are accessed by the MERGE statement.
Records from these files are placed into a temporary file (the merge
file). The merge is accomplished according to the key specified by the
programmer in th MERGE statement. With the reordering complete, the
merge file is made available to the program. This can be accomplished by
either a coding a GIVING phrase with the MERGE statement of by the RETURN
statement in an output procedure.

As is true for sort files, merge files are accessed and referred to
only by the MERGE statement.

7.4 IMPLEMENTATION

Implementation of a SORT or MERGE operation in a VS COBOL program
requires entries in the Environment, Data, and Procedure Divisions of
that program. The file to be sorted or merged is named and its
file-related characteristics defined in the FILE-CONTROL Section of the
Environment Division.

The SORT FILE DESCRIPTION (SD), is the Data Division entry. An SD
file description contains information about the size and the names of the
data records of the file(s) to be sorted or merged.

The Procedure Division statements are SORT, MERGE, RELEASE, and
RETURN. The SORT statement defines the sort function in the following
three steps:

1. Creates a sort file either by executing an input procedure or by
transferring records from some other file.

2. Sorts the records in the sort file on a set of user-specified
keys.

3. Makes available each record from the sort file in the sorted
order to either an output procedure or an output file.

7-2

The MERGE statement combines two or more identically sequenced files
on a set of user-specified keys. During this process the statement makes
the merged records available, in merge order, to either an output
procedure or an output file.

The RELEASE statement transfers records to the initial phase of a
SORT operation. The RETURN statement obtains either sorted records from
the final phase of a SORT operation or merged records during a MERGE
operation.

7.5 COLLATING SEQUENCE AND SORT-MERGE LIMITS

The COBOL SORT-MERGE module links to the VS SORT utility. As a
result, the collating sequence for a COBOL sort is the same as that of
the SORT utility {refer to the VS System Utilities Reference).

A SORT-MERGE file may have a maximum of 8 keys. The maximum key
length depends on the type of data. Binary data {USAGE BINARY) can have
2 positions. Character data {USAGE DISPLAY) can have from 1 to 256
character positions. Decimal data {USAGE DISPLAY) can have from 1 to 16,
as can Packed {USAGE COMP), Zoned Decimal {USAGE DISPLAY), and Zoned
Decimal sign leading {USAGE DISPLAY). Numeric data with USAGE DISPLAY or
USAGE COMP can have key lengths from 1 to 16.

7.6 PROGRAM EXAMPLE

Figure 7-1 is a program example that implements a number of SORT
operations.

000100 IDENTIFICATION DIVISION.
000200 PROGRAM-ID. STlOO.
000300 ENVIRONMENT DIVISION.
000400 INPUT-OUTPUT SECTION.
000500 FILE-CONTROL.
000600 SELECT FILEl
000700 ASSIGN TO "FILEl" "DISK"
000800 ORGANIZATION IS SEQUENTIAL
000900 ACCESS MODE IS SEQUENTIAL.
001000
001100
001200
001300
001400
001500
001600
001700
001800
001900

SELECT FILE2
ASSIGN TO "FILE2" "DISK"
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

SELECT FILE3
ASSIGN TO "FILE3" "DISK"
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

Figure 7-1. SORT Processing

7-3

002000
002100
002200
002300
002400
002500
002600
002700
002800
002900
003000
003100
003200
003300
003400
003500

SELECT FILE4
ASSIGN TO "FILE4" "DISK"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS FILE4-KEY.

SELECT SORTl
ASSIGN TO "FILEl" "DISK".

SELECT SORT2
ASSIGN TO "FILE2" "DISK".

SELECT SORT3
ASSIGN TO "FILE3" "DISK".

003600 DATA DIVISION.
003700 FILE SECTION.
003800 FD FILE!
003900 LABEL RECORDS ARE STANDARD
004000 DATA RECORD IS FILEl-RECORD.
004100 01 FILEl-RECORD PIC X(50).
004200
004300 FD
004400
004500
004600 01
004700
004800
004900
005000
005100 FD
005200
005300
005400 01
005500
005600
005700
005800
005900 FD
006000
006100
006200 01
006300
006400
006500
006600
006700
006800

FILE2
LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE2-RECORD.
FILE2-RECORD.
05 FILE2-FIELD1
05 FILE2-FIELD2
05 FILLER

FILE3
LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE3-RECORD.
FILE3-RECORD.
05 FILE3-FIELD1
05 FILE3-FIELD2
05 FILLER

FILE4
LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE4-RECORD.
FILE4-RECORD.
05 FILE4-KEY.

10 FILE4-FIELD1
10 FILE4-FIELD2
10 FILE4-FIELD3

05 FILLER

PIC X(5).
PIC X(S).
PIC X(40).

PIC X(S).
PIC X(5).
PIC X(40).

PIC X(5).
PIC X(5).
PIC X(5).
PIC X(35).

Figure 7-1. SORT Processing (continued)

7-4

SORTl 006900 SD
007000
007100
007200 01
007300
007400
007500
007600
007700 SD
007800
007900
008000 01
008100
008200
008300
008400
008500 SD
008600
008700
008800 01
008900
009000
009100
009200
009300
009400
009500

RECORD CONTAINS 50 CHARACTERS
DATA RECORD IS SORTl-RECORD.
SORTl-RECORD.
05 Sl-SORTKEYl
05 Sl-SORTKEY2
05 FILLER

SORT2

PIC X(5).
PIC X(5).
PIC X(40).

RECORD CONTAINS 50 CHARACTERS
DATA RECORD IS SORT2-RECORD.
SORT2-RECORD.
05 S2-SORTKEY1
05 S2-SORTKEY2
05 FILLER

SORT3

PIC X(5).
PIC X(S).
PIC XC40).

RECORD CONTAINS 50 CHARACTERS
DATA RECORD IS SORT3-RECORD.
SORT3-RECORD.
05 S3-SORTI<EY1
05 S3-SORTKEY2
05 S3-SORTKEY3
05 S3-SORTKEY4
05 S3-SORTKEY5
OS FILLER

009600 WORKING-STORAGE SECTION.
009700
009800 01
009900
010000
010100
010200

WS-FILEl-RECORD.
05 WS-FILEl-FIELDl
05 WS-FILE1-FIELD2
05 FILLER

010300 PROCEDURE DIVISION.
010400
010410 OPEN-RTN.
010420 OPEN OUTPUT FILE3 FILE4.
010430
010440 OPEN-RTN-EXIT.
010450 EXIT.
010455
010500 FIRST-SORT.
010600 SORT SORTl

PIC X(5).
PIC X(S).
PIC X(5).
PIC X(S).
PIC X(5).
PIC X(25).

PIC XCS).
PIC X(5).
PIC X(40).

010700 ON ASCENDING KEY Sl-SORTKEYl
010800 USING FILEl
010900 GIVING FILE2.
011000 FIRST-SORT-EXIT.
011100 EXIT.
011200

Figure 7-1. SORT Processing (continued)

7-5

011300 SECOND-SORT.
011400 SORT SORT2
011500 ON ASCENDING KEY S2-SORTKEY1
011600 ON ASCENDING KEY S2-SORTKEY2
011700 WITH DUPLICATES IN ORDER
011800 INPUT PROCEDURE IS BUILD-INDEX-FILE! THRU BUILDl-EXIT
011900 GIVING FILE3.
012000 SECOND-SORT-EXIT.
012100 EXIT.
012200
012300
012400 THIRD-SORT.
012450 OPEN INPUT FILE2.
012500 SORT SORT3
012600 ON ASCENDING KEY S3-SORTKEY4
012700 ON ASCENDING KEY S3-SORTKEYS
012800 INPUT PROCEDURE IS BUILD-INDEX-FILE2 THRU BUILD-2-EXIT
012900 OUTPUT PROCEDURE IS BUILD-INDEX-FILE3 THRU BUILD3-EXIT.
013000 THIRD-SORT-EXIT.
013100 EXIT.
013200
013300 EXIT-RTN.
013400 CLOSE FILE2 FILE3 FILE4.
013500 STOP RUN.
013600
013700 BUILD-INDEX-FILE!.
013800 READ FILE2 NEXT AT END
013900 GO TO BUILDl-EXIT.
014000 MOVE FILE2-FIELD1 TO S2-SORTKEY1.
014100 MOVE FILE2-FIELD2 TO S2-SORTKEY2.
014200 RELEASE SORT2-RECORD.
014300 GO TO BUILD-INDEX-FILE!.
014400 BUILDl-EXIT.
014500 EXIT.
014600
014700 BUILD-INDEX-FILE2.
014800 READ FILE3 NEXT AT END
014900 GO TO BUILD2-EXIT.
015000
015100 MOVE FILE3-FIELD1 TO S3-SORTKEY1.
015200 MOVE FILE3-FIELD2 TO S3-SORTKEY2.
015300 RELEASE SORT3-RECORD.
015400 GO TO BUILD-INDEX-FILE2.
015500 BUILD2-EXIT.
015600 EXIT.

Figure 7-1. SORT Processing (continued)

7-6

~\

015700 BUILD-INDEX-FILE3.
015800 RETURN SORT3 AT END
015900 GO TO BUILD3-EXIT.
016000
016100
016200
016300

MOVE S3-SORTKEY1 TO FILE4-FIELD1.
MOVE S3-SORTKEY2 TO FILE4-FIELD2.

016400 WRITE FILE4-RECORD.
016500 GO TO BUILD-INDEX-FILE3.
016600 BUILD3-EXIT.
016700 EXIT.
016800

Figure 7-1. SORT Processing (continued)

The sample program in Figure 7-1 performs three different SORT
operations. All input and output files are assumed to exist prior to
running the object program.

Lines 010500 through 011100 display a SORT operation employing the
USING and GIVING statements. These statements open both the input file
CFILEl) and output file (FILE2). No other OPEN statements are necessary.

Lines 011300 through 012100 display a SORT operation employing an
input procedure and more than one sort key. Lines 012400 through 013100
display a SORT operation employing both an input and output procedure.

7-7

~
·\ }

~ -

PART II

REFERENCE

~
~ } . _;,

n . (

~. -~

CHAPTER 8
GENERAL LINGUISTIC CONSIDERATIONS

8.1 INTRODUCTION

PART II explains the form and function of the various linguistic
units of COBOL: characters, words, clauses, statements, sentences,
entries, paragraphs, sections, and divisions. This chapter deals with
the elements of COBOL, the combination of elements into more complex
forms, general formatting considerations, and the notation that is used
in subsequent chapters. The remainder of PART II will discuss the
components of each of the divisions of a COBOL program.

8.2 COBOL CHARACTERS

The most basic unit of the language is the character. The set of
characters used to form COBOL character-strings and separators includes
the letters of the English alphabet, Arabic digits, and special
characters. The complete VS COBOL character set consists of the
following characters:

VS COBOL Character Set

Character

0,1, ..• ,9
A,B, •.. ,z

+

.,,
I
=
$

. ,

"

>
(

8-1

Meaning

digit
letter
space (blank)
plus sign
minus sign
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

The following characters are used for punctuation: space [], conuna
[,], semicolon [;], period [.], quotation mark["], left parenthesis [(],
and right parenthesis [)].

8.3 CHARACTER-STRINGS AND SEPARATORS

A COBOL character-string is a character or a sequence of continuous
characters that forms a COBOL word, literal, PICTURE character-string, or
conunent-ent.ty. Separators are strings of one or more punctuation
characters that delimit a character-string. A character-string can only
be concatenated with a separator. A separator can be concatenated with
another separator or with a character-string. Concatenated separators
and character-strings form the text of a COBOL source program.

The rules for the formation of separators are:

1. The punctuation character space (blank) is a separator. Anywhere
a space is used as a separator, more than one space can be used.

2. The punctuation characters conuna, semicolon, and period are
separators only when immediately followed by a space. However,
these particular separators are permissible only where designated
by the general formats (refer to Section 8. 7 .1, Definition of a
General Format), by format punctuation rules (refer to Section
8.7.4, Format Notation), by statement and sentence structure
definitions, or by reference format rules for source programs
(refer to Section 8.7.5, COBOL Source-Program Reference Format).

3. The punctuation characters left and right parentheses are
separators. Parentheses must appear in balanced pairs of left
and right parentheses delimiting subscripts, indices, arithmetic
expressions, or conditions.

4. The punctuation character quotation mark is a separator. An
opening quotation mark must be inunediately preceded by a space or
left parenthesis. A closing quotation mark must immediately
precede a space, comma, semicolon, period, or right parenthesis.
Quotation marks can appear only in balanced pairs of opening and
closing quotes delimiting nonnumeric Ii terals. The only
exception to this rule is line continuation (refer to Section
8.7.6, Continuation Lines). To represent a single quotation mark
within a nonnumeric literal, two contiguous quotation marks must
be used.

5. The separator space (blank) can precede all other separators
except the closing quotation mark. A space preceding a closing
quotation mark is considered a part of the nonnwneric literal and
not a separator.

6. The separator space may inunediately follow any separator except
the opening quotation mark. A space following an opening
quotation mark is considered a part of the nonnwneric literal and
not a separator.

8-2

1. PICTURE character-strings are delimited only by the separators
space, comma, semicolon, or period. (PICTURE character-strings
consist of combinations of COBOL characters used in the PICTURE
clause as symbols defining data categories and editing features.)

The above rules do not apply to punctuation characters that appear as
parts of numeric or nonnumeric literals, PICTURE character-strings,
comment entries, or comment lines. Such punctuation characters are not
considered separators.

8.4 PUNCTUATION

The following rules control punctuation in all four divisions of a
COBOL program to increase readability, provide special forms of data, and
delimit sentences.

1. The punctuation characters comma and semicolon are optional.
They can be used interchangeably. Neither one can immediately
precede the first clause of an entry or paragraph.

2. It is permissible to use a semicolon or comma between statements
in the Procedure Division.

3. Paragraphs within the Identification and Procedure Divisions and
entries within the Environment and Data Divisions must be
terminated by the separator period.

4. The parentheses provide for indexing and subscripting.

5. The quotation marks serve to delimit nonnumeric literals.

6. At least one space must appear between two successive words
and/or parenthetical expressions and/or literals. Two or more
successive spaces are treated as a single space, except within
nonnumeric literals.

7. A space must always precede and follow an arithmetic operator or
an equal sign.

8.5 DIVISIONAL COMPONENTS

A COBOL program is made up of four divisions. Each division must
begin with one of the division headers listed in Section 1.3, Structure
of COBOL Programs. The composition of a division is· as follows:

SECTIONS are composed of PARAGRAPHS, which are composed of

SENTENCES or ENTRIES, which are composed of

CLAUSES or STATEMENTS, which are composed of

8-3

PHRASES, which are composed of

USER-DEFINED and COBOL-DEFINED WORDS, which are composed of

COBOL CHARACTERS and PUNCTUATION.

8.5.1 Sections

The Environment, Data, and Procedure Divisions are organized into
sections. A section consists of a section header, which terminates with
a period, followed by zero, one, or more successive paragraphs. A
section ends immediately before the next section or division, or at the
end of the program, or, in the Declaratives Section of the Procedure
Divison, at the key words END DECLARATIVES. Therefore, each section
consists of the section header and the related section body.

In the Environment and Data Divisions, a section header is composed
of reserved words, followed by a period and a space. The permissible
section headers are:

In the Environment Division,

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division,

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division, a header is composed of a section name,
followed by the reserved word SECTION, a period, and a space.

8.5.2 Paragraphs

A paragraph consist of a paragraph header followed by zero, one, or
more entries, or of a paragraph name followed by a period and a space and
by zero, one, or more sentences. Comment entries. may be included within
a paragraph. Each paragraph ends immediately before the next paragraph,
section, or division, or at the end of the program, or, in the
Declaratives Section of the Procedure Divison, at the key words END
DECLARATIVES.

8.5.3 Sentences

A COBOL sentence consists of one or more statements and is terminated
by a period followed by a space. Punctuation within sentences is
permitted in certain places to improve readability. Sentences occur only
in the Procedure Division.

8-4

8.5.4 Entries

An entry is any descriptive clause or set of consecutive descriptive
clauses terminated by a period and written in the Identification
Division, Environment Division, or Data Division.

8.5.5 Clauses

A clause is a group of words that specifies an attribute of an entry.

8.5.6 Statements

A statement is a syntactically valid combination of words and symbols
written in the Procedure Division beginning with a verb.

8.5.7 Phrases

A phrase is an ordered set of one or more consecutive COBOL
character-strings that forms a portion of a COBOL statement or clause.

8.6 COBOL WORDS

A COBOL word consists of a combination of one or more characaters
selected from the COBOL character set for words (0 through 9, A through
z, and the hyphen). Each word contains no more than 30 characters and
neither begins nor ends with a hyphen.

The character space (blank) cannot appear in any word, although it
can be used as a separator between words. Two or more spaces can occur
anywhere a space serves as a separator.

A word is terminated by one of the following punctuation characters:

Character Meaning

space (blank)
period
comma
semicolon

In each case (except for space) the punctuation character must be
followed by a space.

There are two kinds of COBOL words: user-defined and COBOL-defined.

8-5

8.6.1 User-defined Words

A user-defined word is a COBOL word that must be supplied by the user
to satisfy the format of a clause or statement. Thus, it has a meaning
specific to the program in which it is used.

There are 14 types of user-defined words. Except for level numbers,
each user-defined word can belong to one and only one of these types
within a given source program. All user-defined words, with the
exception of paragraph names, section names, and level numbers, must
contain at least one alphabetic character. Furthermore, all user-defined
words of each type must be unique.

The 14 types of user-defined words are:

Alphabet name Names a special character set and/or collating
sequence in the OBJECT-COMPUTER and SPECIAL-NAMES
paragraphs or the CODE-SET clause. Wang VS uses
the ASCII code.

Condition name Names a specific value, set of values, or range of
values, within a complete set of values that a data
item may assume. The data item itself is called a
conditional variable.

Data name

Level number

Condition-names are defined in the Data Division as
88 level items. For example,

01 END-OF-FILE-IND PIC X VALUE "0".
88 EOF VALUE "l".
88 NOT-EOF VALUE "0".

EOF and NOT-EOF are condition-names.

Names a data i tern described in a data description
entry in the Data Di vision. When used in the
general formats "data-name" represents a word that
can neither be subscripted, indexed, nor qualified
unless specifically permitted by the rules for that
format.

Names a file described in a file description entry
within the File Section of the Data Division.

Names an index associated with a specific defined
table.

Denotes the position of a data item in the
hierarchy of a data description or indicates
special properties of a data description entry.
Level numbers need not be unique; a given
specification of a level number may be identical to
any other level number and may even be identical to
a paragraph name or section name.

8-6

~I

Library name

Mnemonic name

Paragraph name

Program name

Record name

Routine ~

Section name

User-figurative
constant

A level number is a 1- or 2-digit number chosen
from the numbers 1 through 49, 77, and 88. The
range of numbers 1 through 49 indicates the
position of a data item in the hierarchical
structure of a logical record. Level numbers 77
(refer to "Noncontiguous Working-Storage" in
Section 11. 3. 2 and "Noncontiguous Linkage Storage"
in Section 11.3.5) and 88 (refer to "Format 2" in
Section 11.3.3) identify special properties of the
associated data description .

Level numbers in the range 1 through 9 can occur as
single digits or be preceded by zero. In this
manual, the form 01, 02, , 09 is used to
represent level numbers 1 through 9.

Names a
included
compiler.

COBOL library containing text to be
in a given source program by the
It is used with the COPY statement.

Is associated with a specified implementor-name (a
COBOL-defined word) in the SPECIAL-NAMES paragraph
of the Envirorunent Division.

Begins a paragraph of the Procedure Division.

Identifies a source program and all listings
pertaining to a particular program. It is assigned
to a source program in the PROGRAM-ID paragraph of
the Identification Divison.

Names a record described in a record description
entry in the Data Division.

Identifies a procedure written in a language other
than COBOL. A routine name is used with the ENTER
statement.

Begins a section of the Procedure Division.

Names a hexadecimal character. The user-figurative
constant is assigned in the FIGURATIVE-CONSTANTS
paragraph of the Envirorunent Division. The
hexadecimal character can then be referenced in the
Procedure Division by means of the figurative
constant name. For example,

8-7

8.6.2 COBOL-defined Words

ENVIRONMENT DIVISION.
SOURCE-COMPUTER. WANG-VS.
OBJECT-COMPUTER. WANG-VS.
CONFIGURATION SECTION.
FIGURATIVE-CONSTANTS. ONE IS "01",

NOTAB IS "80", DIM IS "SC",
TAB IS "AO".

PROCEDURE DIVISION.
MOVE DIM TO FAC OF DATA-NAME-1.
MOVE ONE TO CONSTANT-ONE.

COBOL-defined words and names have the same meanings in all COBOL
programs and include words such as ADD, IS, or READ. COBOL-defined words
can be classified as either reserved words or system names. Within a
given source program, a COBOL word can belong to one, and only one, of
these classes.

A system name is a COBOL word that communicates with the physical
operating environment (hardware). There are two types of system names:
computer names and implementor names. A computer name is used in the
SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs of the Environment
Division to identify the computer on which a program is to be compiled or
run. The computer name recognized by the VS compiler is WANG-VS.
Implementor names refer to particular features of an implementor's
computing system.

A reserved word is one of a specified 1 ist of words (refer to
Appendix A, Reserved Words) that must not appear in programs as
user-defined words or system names but can only be used as specified in
the general formats. However, reserved words can appear as nonnumeric
literals, that is, a reserved word can be enclosed in quotation marks.
Used in this manner, they do not take on the preassigned meaning of
reserved words.

There are six types of reserved words: key words, optional words,
connectives, special registers, figurative constants, and
special-character words. The six types are:

Are required when the formats using them appear in
a source program. In the general formats in this
manual, key words appear in uppercase characters
that are underlined. For example,

MOVE literal TO identifier

In this case, MOVE and TO are key words.

8-8

Optional words Improve the readability of the source code in which
they appear, but do not affect the meaning of that
code. For example, IS clarifies the statement:

Connectives

Special
registers

Figurative
constants
(system­
defined)

FILENAME IS "TAXFILE".

Optional words appear in this manual in uppercase
characters, but are distinguished from key words by
the absence of an underline.

Occur in three types:

1. Logical connectives, used in the formation of
conditions: AND, OR (such as IF COUNT = 0 AND
MAX GREATER THAN 10)

2. Series connectives, used to link two or more
consecutive operands: ',' (separator comma)
or ';' (separator semicolon) (such as, ADD 1
TO COUNT; GO TO KSl).

3. Qualifier connectives that are
associate a file name with its
library name: OF, IN.

used to
qualifier

Name certain compiler generated storage areas whose
primary use is to store information in conjunction
with the use of specific COBOL features. These
special registers include: DEBUG-ITEM (refer to
Section 13.2.l, DEBUG-ITEM) and RETURN-CODE.
RETURN-CODE is a special register with an implied
PICTURE of 999. Any COBOL program can move a value
to this special register, which can then be tested
through a procedure. An example of special
register usage is:

MOVE 99 TO RETURN-CODE.

Reserved words that are used to name and reference
specific constant values. These words must not be
bounded by quotation marks when used as figurative
constants. The singular and plural forms are
equivalent and may be used interchangeably. These
figurative constant values are generated by the
compiler and referenced through the use of the
following reserved words:

8-9

Cobol Word ----
ZERO
ZEROS
ZEROES

SPACE
SPACES

HIGH-VALUE
HIGH-VALUES

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

Meaning

Represents the numeric value zero or one
or more of the alphabetic character zero
('0') depending on the context.

Represents one or more of the character
space.

Represents one or more of the hexadecimal
character "FF", the character that has the
highest ordinal position in the program
collating sequence (ASCII).

Represents one or more of the hexadecimal
charact~r "00", the character that has the
lowest ordinal position in the program
collating sequence (ASCII).

Represents one or more quotation marks
("). The word QUOTE or QUOTES can be
used wherever a system-defined figurative
constant can be used, e.g., in a VALUE IS
clause of a data description entry. But
neither word can be used in place of a
quotation mark in a source program to
bound a nonnumeric literal. Thus, QUOTE
PTL QUOTE is incorrect as a way of
stating the nonnumeric literal "PTL".

When a system-defined figurative constant
represents a string of one or more characters, the
length of the string is determined by the compiler
from context according to the following rules:

1. When a figurative constant is moved to or
compared with another data i tern, the string of
characters specified by the figurative constant
is repeated, character by character, on the
right, until the size of the resultant string
is equal to the size of the associated data
item. This is done prior to and independent of
the application of any JUSTIFIED clause that
may be associated with the data item.

8-10

~I

Special­
character
words

8.6.3 Literals

2. When a figurative constant is not associated
with another data item, as when the figurative
constant appears in a DISPLAY or STOP
statement, the length of the string is one
character.

A figurative constant can be used wherever a
literal appears in a format. Whenever the literal
is restricted to having only numeric characters,
however, the only figurative constant permitted is
ZERO (ZEROS, ZEROES).

When the figurative constants HIGH-VALUE(S) or
LOW-VALUE(S) are used in the source program, the
actual character associated with each figurative
constant depends upon the ASCII collating sequence.

Reserved words that are arithmetic operators or
relational characters. These characters include
'+','-', '>', '(', ,_, - , ' * ' , and ' I ' .

A literal is a character-string with a constant value, a value not
determined by COBOL or user definition, but by the ordered set of
characters of which the literal is composed. Every literal belongs to
one of two types: nonnumeric or numeric.

Nonnwneric Literals

A nonnumeric literal is a character-string delimited on both ends by
quotation marks and consisting of any allowable character. The length of
the nonnwneric literal can be from 1 to 120 characters. To represent a
single quotation mark character within a nonnumeric literal, two
contiguous quotation marks must be used. The value of a nonnumeric
literal in the object program is the string of characters itself, except:

1. The delimiting quotation marks are excluded.

2. Each embedded pair of contiguous quotation marks represents a
single quotation mark character.

All other punctuation characters are part of the value of the
nonnumeric literal rather than separators; all nonnumeric literals belong
to the alphanumeric category of data items (refer to "PICTURE Clause" in
Section 11.3.3).

8-11

Numeric Literals

A numeric literal is a character-string whose characters are selected
from the digits 'O' through '9', the plus sign, the minus sign, and/or
the decimal point. Numeric literals of 1 through 18 digits in length are
allowed. The rules for the formation of numeric literals are:

1. A literal must contain at least one digit.

2. A literal must not contain more than one sign character. If a
sign is used, it must appear as the leftmost character of the
literal. If the literal is unsigned, it is considered positive.

3. A literal must not contain more than one decimal point. The
decimal point can appear anywhere within the literal except as
the rightmost character. If the literal contains no decimal
point, it is considered to be an integer.

4. The value of a numeric literal is the algebraic quantity
represented by the characters in the numeric literal. Every
numeric literal belongs to the numeric category of data items.
The size of a numeric literal in standard data format characters
is equal to the nwnber of digits specified by the user.

If a literal conforms to the rules for the formation of numeric
literals, but is enclosed in quotation marks, it is a nonnumeric literal
and it is treated as such by the compiler.

8.7 FORMAT AND NOTATION

This manual uses certain principles of notation to represent the
COBOL language. The general formats use this notation in describing the
elements and requirements of each COBOL clause and statement. The syntax
rules and general rules then describe the meanings and relationships of
individual elements. The conventions governing these methods of
explanation are discussed in this section.

8.7.1 Definition of a General Format

A General Format represents the proper arrangement of elements in a
specific COBOL clause or statement. Throughout this manual, a general
format accompanies each description of a clause or statement. When more
than one specific arrangement is permitted, separate, numbered formats
are shown.

Within a general format, the elements of the clause or statement (key
words, connectives, and special characters) are shown in their proper
sequence. This sequence must be used unless otherwise stated. Optional
clauses are also shown and identified as such.

8-12

8.7.2 Definition of Syntax Rules

Syntax rules define and/or clarify the order in which words or
elements are arranged to form larger units such as phrases, clauses, or
statements. Syntax rules also impose restrictions on individual words or
elements.

8.7.3 Definition of General Rules

General rules define and/or clarify the meaning or relationship of
the meanings of an element or set of elements. They explain in detail
the semantics of a statement and the effect of the statement on
compilation and/or execution.

8.7.4 Format Notation

The general formats in this manual have a uniform system of
notation. Although this notation is not part of COBOL, it is useful in
describing COBOL. The following paragraphs explain this system of
notation.

1. Reserved words, which have preassigned meanings in COBOL, are
printed entirely in uppercase letters. If any reserved word is
spelled incorrectly, it cannot be recognized as a reserved word
and may cause an error in the program.

2. All underlined reserved words are key words; key words are
required unless the portion of the format containing them is
itself optional or unless they occur as one of the options
enclosed by braces (refer to Paragraph 8). The absence or
incorrect spelling of any key word is considered an error in the
program. Reserved words that are not underlined can be included
or omitted at the discretion of the progranuner. These are
optional words used only to improve readability, but when used,
they must be spelled correctly.

3. Even though the characters '+', '-' '<', '>', and '=' are not
underlined in formats, they, or reserved words equivalent to
them, are required when those formats are used.

4. Words printed in lowercase letters represent information to be
supplied by the programmer. The text accompanying the format
defines all such words.

5. To facilitate references to them in text, some lowercase words
are followed by a hyphen and a digit or letter. This
modification does not change the syntactical definition of the
word.

6. Certain entries in the formats consist of a capitalized word(s)
followed by the word "clause" or "statement". The reference is
to clauses or statements that are described in other formats.

8-13

7. Square brackets ([]) indicate that the enclosed item can be used
or omitted, depending on the requirements of the particular
program. When brackets contain a vertical list of two or more
items, one or none of the items can be used.

8. The use of braces ({}) indicates that one of the options
contained within the braces must be selected. When braces
enclose a portion of a format and only one possibility is shown,
the braces delimit that portion of the format to which a
following ellipsis applies. (Refer to Paragraph 9.)

When braces enclose options containing key words and an option
containing only reserved words that are not key words (are not
underlined), the latter is the default option which is implicitly
selected if none of the others is selected.

9. The ellipsis (...) can show the omission of a portion of a source
program. This meaning becomes apparent in context.

In the general formats, an ellipsis indicates that the
immediately preceding unit can occur one or more times in
succession, at the progranuner' s option. A unit is either a
single lowercase word, or a group of lowercase words and reserved
words enclosed in brackets or braces. If a unit enclosed in
brackets or braces is to be repeated, the entire unit must be
repeated.

10. Since braces, brackets, and ellipses are not part of COBOL, their
occurrence in a format does not indicate their occurrence in the
COBOL code that employs that format. The occurrence of all other
punctuation and special characters in a format does indicate
their occurrence in the corresponding COBOL code. Additional
punctuation can be used in COBOL code according to the rules
specified in this manual.

11. Comments, restrictions, and clarifications on the use and meaning
of every format appear in the associated text.

8.7.5 COBOL Source-program Reference Format

The COBOL reference format, which provides a standard method for
describing COBOL source programs, is defined in terms of the character
positions on a line on an input-output medium. The workstation screen is
the mediwn for initial input to the VS COBOL compiler. Each BO-character
line displayed corresponds conceptually to an 80-column punched card.
The reference format for a line is:

8-14

Margin Margin Margin Margin
L C A B

I I 2 I 3 I 4 I 5 1 6 I 7 i s I 9 I 10 , , , j , 2 I 13 I
Margin

R
I

----------~,---------~"--" ~ y-- y "'--------....,,--------'
Sequence Number Area Indicator Area Area A Area B

The rules for spacing given in the discussion of the reference format
take precedence over all other rules for spacing.

Margin L is immediately to the left of the leftmost character
position of a line.

Margin C is between the 6th and 7th character positions of a line.

Area A occupies Character Positions 8 through 11. This area is
reserved for the beginning of division headers, section names, paragraph
names, level indicators, and certain level numbers.

Area B occupies Character Positions 12 through 72. It contains all
remaining source code.

Margin R is immediately to the right of Column 72.

A sequence number, consisting of six digits in the sequence area,
occupies Character Positions 1 through 6. This number labels each source
program line (each 80-column record). The EDITOR assigns these numbers
automatically when the COBOL source text is entered.

The program identification area, Columns 73 - 80 inclusively, may
contain the 8-character program-ID (refer to Subsection 8.2.1, PROGRAM-ID
Paragraph). The EDITOR offers this option at the time of source program
creation.

The indicator area, Column 7, is used to indicate continuation lines
and comment lines.

8.7.6 Continuation Lines

A contiunation line is indicated by a hyphen (-) in Column 7. The
hyphen is used whenever a nonnumeric literal is extended onto the next
line. The literal continues in Area B of the next line. The first
nonblank character in Area B of the continuation line must be a quotation
mark, and the continuation starts with the character immediately after
that quotation mark. However, the line to be continued must not end in a
quotation mark. The closing quotation mark appears only at the end of
the entire nonnumeric literal that is being continued. For example,

8-15

MOVE "THIS LITERAL IS CONT
"INUED ON THE NEXT LINE" .

Area A of the continuation line must be left blank.

8.7.7 Comment Lines

Any line that contains a '*' or 'I' in Column 7 is a comment line.
All characters following the '*' or '/' on the same line are reproduced
on the source listing but serve as docwnentation only and do not affect
compilation. The use of 'I' causes that comment line to appear at the
top of a new page.

A comment line can appear as any line in a source program after the
Identification Division header. Any combination of characters from the
ASCII character set may appear in Areas A and B of that line. Successive
comment lines are allowed.

Whenever a percent sign, '%' , is not part of a nonnwneric 1i teral,
any characters on a line after the percent sign are treated as comments.
Thus comments can appear on the same line as source code.

8.7.8 Blank Lines

A blank line is one that is blank from Colwnn 7 through Column 72,
inclusively. Blank lines can appear ·anywhere in the source program
except immediately following a continued line. They will appear as blank
lines in a listing of the source code but have no effect on compilation.

8.7.9 Division, Section, and Paragraph Formats

The division header must be the first line in a division. The
division header starts at the A margin with the division name, followed
by a space, followed by the word DIVISION, followed by a period. Except
in the case of the USING phrase (refer to Section 12.2.1, Procedure
Division Header), no other text may appear on the same line as the
division header.

A section name starts at the A margin of any line following the
division header. The section name is followed by a space, the word
SECTION, and a period. Except in the case of USE and COPY statements
(refer to Section 12.5, Procedure Division Statements), no other text may
appear on the same line as the section header.

Paragraph headers and paragraph names begin at the A margin of any
line following the first line of a division or section and are terminated
by a period followed by a space. The first sentence or entry in a
paragraph begins either on the same line as the paragraph header or name,
or at the B margin of the next nonblank line that is not a comment line.
Successive sentences or entries either begin in the same line as the
preceding sentence or entry, or at the B margin of the next nonblank line
that is not a comment line.

8-16

'~

8.7.10 Data Division Entries

Each Data Division entry begins either with the level indicator FD or
with a level number, followed by a space, followed by the associated
user-defined name, followed by a sequence of descriptive clauses. Each
clause, except the last clause of an entry, can be terminated by either a
comma or a semicolon. The last clause is always terminated by a period
followed by a space.

In those Data Division entries that begin with the level indicator,
the level indicator begins at the A margin, followed at the B margin by
its associated user-defined name and appropriate descriptive clauses.

Those Data Division entries that begin with level numbers are called
data description entries. At least one space must separate a level
number from the word following the level number. In those data
description entries tha.t begin with a level number 01 or 77, the level
number begins at the A margin, followed at the B margin by its associated
user-defined name and appropriate descriptive clauses.

Successive data description entries may have the same format as the
first or can be indented according to level number. Indentation does not
affect the magnitude of the level number. When level numbers are to be
indented, each new level number may begin any number of spaces to the
right of Margin A.

8-17

n.
~- ')

~
~) . .

n·.
' .

.... __ .. ·

~'

CHAPTER 9
IDENTIFICATION DIVISION

9.1 GENERAL DESCRIPTION

The Identification Division must be the first division in every COBOL
source program. This division identifies the source program and the
resultant output listing. In addition, the user can include the date the
program is written and such other comment information as is allowed in
the paragraphs of the general format shown in Section 9.2.

9.2 ORGANIZATION

Paragraph headers identify the type of information contained in the
paragraph. The name of the program must be given in the first paragraph,
which is the PROGRAM-ID paragraph. The other paragraphs can be included
in this di vision at the user's choice, in any order. (Section 9. 2 .1
describes the PROGRAM-ID paragraph. Section 9.2.2 describes the conunent
entry paragraphs.)

General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.
[AUTHOR. [comment-entry] ••• 1
[INSTALLATION. [comment-entry] ..•]
[DATE-WRITTEN. [comment-entry] ...]
[DATE-COMPILED. [comment-entry] •••]
[SECURITY. [comment-entry] •••]

Syntax Rules

1. The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION, followed by a period and a space.

9-1

2. The comment entry can be any combination of the characters from
the computer's character set. The continuation of the
comment-entry by the use of the hyphen in the indicator area is
not permitted; however, the comment-entry can be contained on one
or more lines.

3. The reserved words that may be used as headers for the
comment-entry paragraphs are AUTHOR, INSTALLATION, DATE-WRITTEN,
DATE-COMPILED, and SECURITY.

9-2

9.2.1 PROGRAM-ID Paragraph

Function

The PROGRAM-ID paragraph gives the name by which a program is
identified.

General Format

PROGRAM-ID. program-name.

Syntax Rules

1. The program name must conform to the rules for the formation of a
user-defined word. Each character of a user-defined word is
selected from the set of characters 'A', 'B', 'C', ... •z•, 1 0',
'l', ... '9', and the hyphen, except that the hyphen cannot be the
first or last character. The hyphen used in any other position
in the program name results in a compiler warning only. The
compiler warns that the incorrect program name has been
corrected. If a hyphen is used in the program name, the
corrected object program name contains a '$' in place of the
hyphen.

General Rules

1. The PROGRAM-ID paragraph must contain the name of the program and
must be present in every program.

2. The program name identifies the source program and all listings
pertaining to a particular program.

3. The first eight characters of the program name are used to
identify the object program. The characters must be alphabetic
or numeric.

4. The program name cannot be a reserved word.

5. If two or more programs are to be linked, the first seven
characters of their program names must not be the same.

9-3

9.2.2 Comment-entry Paragraphs

Comment-entry paragraphs, designated in the general
description, serve as useful documentation, but are optional.

DATE-COMPILED Paragraph

Function

format

The DATE-COMPILED paragraph provides the compilation date in the
Identification Division source program listing.

General Format

[DATE-COMPILED. [comment-entry] •••]

Syntax Rules

1. The comment entry can be any combination of the characters from
the computer's character set. The continuation of the comment
entry by the use of the hyphen in the continuation column (Column
7) is not permitted; however, the comment entry can be contained
on one or more lines.

General Rules

1. The paragraph name DATE-COMPILED causes the current date to be
inserted during compilation. If a DATE-COMPILED paragraph is
present, it is replaced during compilation with a paragraph of
the form:

DATE-COMPILED. current date

Current date is of the format:

DAYXXXXX MMM DD, 'YYYY as in

FRIDAY JAN 05, 1984.

9-4

9.3 Example of IDENTIFICATION DIVISION

IDENTIFICATION DIVISION.

PROORAM-ID. S~LEl.

AUTHOR. P. T. LORD.

INSTALLATION. WANG LABORATORIES, INC.
LOWELL, MASS.

DATE-WRITTEN. JAN. 5, 1984.

DATE-COMPILED.

SECURITY. THIS PROORAM MAY ONLY BE
EXECUTED BY PAYROLL DEPARTMENT
PERSONNEL.

9-5

~

' -1

~
\ y

CHAPTER 10
ENVIRONMENT DIVISION

10.1 GENERAL DESCRIPTION

The Environment Division specifies a standard method of expressing
those aspects of a data processing problem that are dependent upon the
physical characteristics of a specific computer. This division allows
identification of the compiling computer and the executing computer. In
addition, information relating to input/output control, special hardware
characteristics and control techniques can be given.

The Envirorunent Division must be included in every COBOL source
program.

Two sections make up the Environment Division: the Configuration
Section and the Input-OUtput Section.

The Configuration Section deals with the characteristics of the
source computer and the object computer. This section is divided into
four paragraphs: the SOURCE-COMPUTER paragraph, which describes the
computer configuration on which the source program is compiled; the
OBJECT-COMPUTER paragraph, which describes the computer configuration on
which the object program produced by the compiler is to be run; the
SPECIAL-NAMES paragraph, which relates the implementor names to
user-defined names; and the FIGURATIVE-CONSTANTS paragraph, which
associates data names with hexadecimal values.

The Input-OUtput Section deals with the information needed to control
the transmission and handling of data between external media and the
object program. This section is divided into two paragraphs: the
FILE-CONTROL paragraph, which names each file used in the program and
allows specification of other file-related information; and the
I-O-CONTROL paragraph, which defines special control techniques to be
employed in the object program.

10-1

10.2 ORGANIZATION

The following is the general format of the sections and paragraphs in
the Environment Division, and defines the order of presentation in the
source program.

General Format

ENVIRONMENT DIVISION.
[CONFIGURATION SECTION.
[SOURCE-COMPUTER. source-computer-entry 1
[OBJECT -COMPUTER. object-computer-entry]

[SPECIAL-NAMES. special-names-entry]
[FIGURATIVE-CONSTANTS. user-figurative-constant-entry\]]
[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry) .•.
U-O~CONTROL. input-output-control-entry]]

Syntax Rules

1. The Environment Division begins with the reserved words
ENVIRONMENT DIVISION followed by a period and a space.

10-2

10.2.1 Configuration Section

SOURCE-COMPUTER Paragraph

Function

The SOURCE-COMPUTER paragraph identifies the computer on which the
program is to be compiled.

General Format

SOURCE-COMPUTER. WANG-VS [WITH DEBUGGING MODE].

Syntax Rule

1. If USE FOR DEBUGGING is present in the Declaratives Section of
the Procedure Divison, the WITH DEBUGGING MODE clause must be
included in the SOURCE-COMPUTER paragraph (refer to Section
13.2.2, Compile Time Switch--WITH DEBUGGING MODE).

10-3

OBJECT-COMPUTER Paragraph

Function

The OBJECT-COMPUTER paragraph identifies the computer on which the
program is to be executed. The program collating sequence defaults to
ASCII. This paragraph is optional and is treated as a comment.

General Format

OBJECT-COMPUTER. WANG-VS [MEMORY SIZE integer{~~~~TERs}]
MODULES

[PROGRAM COLLATING SEQUENCE IS alphabet-name].

Example of SOURCE-COMPUTER and OBJECT-COMPUTER Paragraphs

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. WANG-VS.

OBJECT-COMPUTER. WANG-VS.

10-4

SPECIAL-NAMES Paragraph

Function

The SPECIAL-NAMES paragraph provides a means of changing the
representation of the currency sign and the use of decimal points and
commas in PICTURES and numeric literals. Thus, the SPECIAL-NAMES
paragraph facili tes the representation of foreign currency. It also
specifies switches by relating implementor names used by the compiler to
condition names used in the source program.

General Format

SPECIAL-NAMES.

[

SWITCH [IS mnemonic-name] l
{

ON STATUS IS condition-name-1 [OFF STATUS IS condition-name-2]}
OFF STATUS IS condition-name-3 [ON STATUS IS condition-name-4]

[alphabet-name IS {~~~~~ARD- 1 }] .••

[CURRENCY SIGN IS literal-11
[DECIMAL-POINT IS COMMA].

~ General Rules

1. No more than seven switches can be declared in a run unit.

2. If any switches are declared in a program, a screen listing the
switch numbers appears on the workstation each time the program
is executed. The screen prompts the user to indicate which
switches are ON by placing a nonblank character beside those
numbers. When a run unit is composed of a single program, this
screen appears before the execution of any of the statements in
the program. When a run unit is composed of main and subprograms
and at least one switch is declared in the main program, this
screen appears before the execution of any of the statements in
the main program. In the case of a run unit in which switches
are declared only in subprograms, the screen does not appear
until the first time one of the subprograms that declares a
switch is called.

3. A mnemonic name specified in a switch declaration serves a
documentary purpose only and cannot be used elsewhere in the
program.

10-5

4. The condition names assigned in the ON and OFF STATUS clauses of
the switch declaration may be referenced by the IF and
PERFORM •.. UNTIL statements of the Procedure Division. However,
references in the PERFORM ••• UNTIL statement serve no purpose
since the switch is always set either one way or the other. When
a statement referring to a switch condition is executed, the
setting of the switch is tested. If the switch condition refers
to an ON status and the corresponding switch has been set on in
the switch-option screen, the result of the test is true; if the
swit:ch condition refers to an OFF status and the corresponding
switch has not been set on, the result is true; otherwise, the
result of the test is false.

5. The alphabet-name clause is treated as a comment since the
NATIVE character code of the Wang VS is STANDARD-1 ASCII
(American National Standard Code for Information Interchange
X3.4-1968).

6. The literal that appears in the CURRENCY SIGN IS literal clause
is used in the PICTURE clause to represent the currency symbol.
The literal is limited to a single character and must not be one
of the following characters.

a. Digits 0 through 9

b. Alphabetic characters 'A', 'B', 'C', 'D', 'L', 'P', 'R', 'S',
'V', 'X', 'Z', or the space

c. Special characters '*', '+',
'"', '/', '='

,_, , I I , , I I . , ';', '(', ')',

If this clause is not present, only the currency sign ($) is used
in the PICTURE clause.

7. The DECIMAL-POINT IS COMMA clause means that the function of
comma and period are exchanged in the character-string of the
PICTURE clause and in numeric literals.

Example of SPECIAL-NAMES Paragraph

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES.

SWITCH-1 ON STATUS IS Sl-ON

CURRENCY SIGN IS "Y"

DECIMAL-POINT IS COMMA.

10-6

FIGURATIVE-CONSTANTS Paragraph

f"*'., Function

The FIGURATIVE-CONSTANTS paragraph allows the user to define
additional figurative constants by associating data names with
hexadecimal values. User-figurative constants can be employed to control
the order area and Field Attribute Characters (FACs) of the display
screen. They can also be employed to control printer functions such as
sounding the alarm and advancing lines.

General Format

FIGURATIVE-CONSTANTS. [data-name-1 IS "hexadecimal-value"]

General Rules

1. Data-name-1 can be used anywhere a figurative constant can be
used.

2. A hexadecimal value can be either two or four hexadecimal
characters. The hexadecimal value must be enclosed in quotation
marks. A hexadecimal character is any of the characters:

0 1 2 3 4 5 6 7 8 9 A B C D E F.

3. The value of data-name-1 will be the specified hexadecimal
value. Note that it takes two hexadecimal characters to
represent one character location's value.

4. If a 2-character hexadecimal value is used in a VALUE IS clause
or as the object of a MOVE verb, as many copies of the value as
are needed to fill the target of the VALUE IS clause or the MOVE
are placed into the data item referenced by data-name-1.

5. If a hexadecimal value is four characters long, data-name-1 acts
as a 2-character literal. If the target of a MOVE or a VALUE
clause is longer than the two characters, the remaining right
positions are filled with SPACES.

6. Refer to Appendix C for the use of figurative-constants to
control Field Attribute Characters of the workstation screen.
Ref er to Appendix D for the use of figurative-constants to
control the workstation screen order area. Ref er to Appendix F
for the use of figurative-constants to control printer functions.

10-7

Example of FIGURATIVE-CONSTANTS Paragraph

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

FIGURATIVE-CONSTANTS.

STARS IS "2A",
DASHES IS "2D",
EXCLM-PT IS "21".

10-8

10.2.2 Input-Output Section

~, FILE-CONTROL Paragraph

Function

The FILE-CONTROL paragraph names the files to be used in the program,
associates them with external media, and can supply other information
pertinent to the use of the files.

General Format

FILE-CONTROL. {file-control-entry} •••

10-9

FILE-CONTROL Entry -- for Consecutive Files

Function

The FILE-CONTROL entry names a file and may specify other
file-related information.

General Format

SELECT file-name

" ,, "DISPLAY"
[

"DISK" l
ASSIGN TO parameter-reference-name "PRINTER" [NODISPLAY]

"TAPE"

[0[RGANIZATION IS S{E~~~~~~ilAL}]

ACCESS MODE IS RANDOM [RELATIVE KEY IS data-name-1]
DYNAMIC

[FILE STATUS IS data-name-2]

[CURSOR POSITION IS data-name-3]

[BUFFER SIZE IS integer-1 BLOCKS]

[PFKEY IS data-name-4].

Syntax Rules

1. The SELECT clause must be specified first in the FILE-CONTROL
entry. The clauses that follow the SELECT clause can appear in
any order.

2. Neither the SELECT clause nor the ASSIGN clause can appear in
Margin A. Both must be indented to Margin B.

3. Each file described in the Data Division must be named once and
only once by a file name in the FILE-CONTROL paragraph. Each
file specified in the FILE-CONTROL entry must have a file
description entry in the Data Division.

4. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

5. If the ORGANIZATION clause is not specified, the ORGANIZATION
IS SEQUENTIAL clause is implied.

10-10

6. Data-name-1, data-name-2, and data-name-4 may be qualified.

7. Data-name-2 must be defined in the Data Division as a 2-character
data item of the alphanumeric category and must not be defined in
the File Section.

8. The device type ~y be "DISK", "TAPE", "PRINTER", or "DISPLAY".
If no type is specified, DISK is assumed.

9. The RELATIVE KEY clause is not permitted with device type "TAPE".

10. The CURSOR POSITION clause applies only when "DISPLAY" has been
specified as the device type, indicating a workstation file.

11. Data-name-3 must be defined in the Data Division as an 01 level
structure with two USAGE IS BINARY data items subordinate to it.

12. The PFKEY clause can be specified only for files with the device
type "DISPLAY".

13. Data-name-4 must be defined in the Data Division as a nwneric
display data item of length two.

14. If the device type is "TAPE", the only ACCESS MODE that can be
specified is SEQUENTIAL.

15. Parameter-reference-name is the external name for the file and is
used to identify the request for file information when opened.
The first character must be alphabetic and the entire name cannot
exceed eight alphanumeric characters.

General Rules

1. The ASSIGN clause specifies the association of the file
referenced by file-name to a storage medium.

2. The ORGANIZATION clause specifies the logical structure of a
file. The file organization is established at the time a file is
created and cannot subsequently be changed.

3. When the FILE STATUS clause is specified, a value is moved into
the data item specified by data-name-2 after every attempt to
execute an Input/Output statement that references that file.
This value indicates the condition obtaining at the completion of
the attempt to execute the Input/Output statement, as explained
in Section 2.8 and in more detail in Appendix E.

10-11

For workstation files, the rightmost character of the FILE STATUS
data i tern indicates which key was selected by the operator to
signal completion of input from the workstation. When prompted
for input, the workstation operator can enter the required
response and then signal completion of the input by pressing the
ENTER key or the appropriate Program Function key. The rightmost
character of the FILE STATUS data item contains an "at" sign (@)

if the ENTER key was pressed, or an uppercase or lowercase letter
from A to P depending on which Program Function key was pressed.
Refer to "AID Characters" in Appendix E. The PFKEY clause,
described in Paragraph 14, provides another means of indicating
which Program Function key was pressed.

4. The PRNAME is the external name of the file, the name used to
identify the request for file information at OPEN time.

5. When ACCESS MODE is SEQUENTIAL, records in the file are accessed
in the sequence dictated by the file organization. This sequence
is specified by predecessor-successor record relationships
established by the execution of the WRITE statements when the
file is created or extended.

6. If the ACCESS MODE is RANDOM, the value of the RELATIVE KEY data
item indicates the record to be accessed.

7. When the ACCESS MODE is DYNAMIC, records in the file can be
accessed in SEQUENTIAL and/or RANDOM order.

8. All records stored in a consecutive file are uniquely identified
by relative record numbers. The relative record number of a
given record specifies the record's logical ordinal position in
the file. The first logical record has a relative record number
of l, and subsequent logical records have relative record numbers
of 2, 3, 4,... •

9. When the Workstation I/O method is used to control the
workstation screen, the RELATIVE KEY data item identifies the CRT
row at which a READ or REWRITE of a workstation file record
begins. The legal values for this data i tern are 1 through 24.
An attempt to write a record that extends beyond the maximum size
of the workstation file will cause a runtime error.

10. The BUFFER SIZE clause specifies the size of the buffer to be
used, in 2K blocks. If not specified, the default buffer size of
one block is assumed. If specified, integer-1 must be between 1
and 9, inclusive.

11. The data item specified by data-name-1 is used to communicate a
relative record number between the user and operating system.
This data item must be defined as an unsigned integer.

10-12

12. When the CURSOR POSITION clause is specified, the operating
system moves a value into the data item specified by data-name-3
after the execution of every statement that references the
display screen. The value produced represents the current column
(first byte) and row (second byte) position of the cursor.

13. If NODISPLAY is specified, no prompting occurs when all necessary
file location information has been specified through the program
or the Procedure language. PRINTER and DISPLAY files default to
NODISPLAY.

14. The PFKEY clause identifies a data name that is to receive the
numeric value of the selected PF (Program Function) key following
execution of a DISPLAY AND READ statement. The range of values
is 00 - 32, where 00 identifies the ENTER key.

Example of Input-output Section for Consecutive Files

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CRT

ASSIGN TO "CRT" "DISPLAY"
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS RANDOM
CURSOR POSITION IS CURSOR-POS
FILE STATUS IS FILE-STAT.

10-13

FILE-CONTROL Entry -- for Indexed Files

Function

The FILE-CONTROL entry names a file and can specify other
file-related information.

General Format

SELECT file-name

ASSIGN TO "parameter-reference-name" ["DISK"] [NODISPLAY]

ORGANIZATION IS INDEXED

[{
SEQUENTIAL}]

ACCESS MODE IS RANDOM RECORD KEY IS data-name-1
DYNAMIC

[ALTERNATE RECORD KEY integer-1 IS data-name-2 [WITH DUPLICATES]

[[integer-2 IS] data-name-3 [WITH DUPLICATES]] •••]
[FILE STATUS IS data-name-4]

[RESERVE integer-3 [:=~:S] J .

Syntax Rules

1. The SELECT clause must be specified first in the FILE-CONTROL
entry. The clauses that follow the SELECT clause can appear in
any order.

2. Neither the SELECT nor the ASSIGN clause can appear in Margin A.
Both clauses must be indented to Margin B.

3. Each file described in the Data Division must be named once and
only once by a file name in the FILE-CONTROL paragraph. Each
file specified in the FILE-CONTROL entry must have a file
description entry in the Data Division.

4. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

5. The ORGANIZATION clause must be specified for indexed files.

6. The RECORD KEY data i tern can be defined as an elementary or group
DISPLAY i tern within a record description entry associated with
the specified file name. Records are logically ordered for
retrieval according to the byte-by-byte internal collating
sequence.

10-14

7. Data-name-1 through data-name-4 may be qualified.

8. Data-name-4 must be defined in the Data Division as a 2-character
data item of the category alphanumeric and must not be defined in
the File Section.

9. The device type must be "DISK".

10. The data items referenced by data-name-1, data-name-2, and
data-name-3 must each be defined within a record description
entry associated with the specified file.

11. Data-name-2, data-name-3,... cannot reference an item whose
leftmost character position corresponds to the leftmost character
position of an i tern reference by data-name-1 or by any other
data-name-2, data-name-3, .•. associated with this file.

12. Integer-1 and integer-2 can be any number from 1 through 16.

13. Integer-3 can be any number from 3 through 60.

14. Parameter-reference-name is the external name for the file and is
used to identify the request for file information when opened.
The first character must be alphabetic and the entire name cannot
exceed eight alpham.unaric characters.

General Rules

1. The ASSIGN clause specifies the association of the file
referenced by file-name to a storage medium.

2. The ORGANIZATION clause specifies the logical structure of a
file. The file organization is established at the time a file is
created and cannot subsequently be changed.

3. When the ACCESS MODE is SEQUENTIAL, records in the file are
accessed in the sequence dictated by the file order. For indexed
files, this sequence is the order of ascending prime record key
values.

4. If the ACCESS MODE is RANDOM, the value of the record key data
item indicates the record to be accessed.

S. When the ACCESS MODE is DYN»!IC, records in the file can be
accessed in SEQUENTIAL or RANDOM order.

6. When the FILE STATUS clause is specified, a value is moved into
the data item specified by data-name-4 after the execution of
every input/output statement that references that file. This
value indicates the execution status of the statement. General
use of this value is explained in Section 2.8. Refer to Appendix
E for a detailed explanation.

10-15

7. The PRNAME is the external name of the file, the name used to
identify the request for file information at OPEN time.

8. The RESERVE clause allows the user to improve performance when
processing indexed files randomly or dynamically by specifying
buff er pooling. Integer-3 specifies the number of blocks to be
reserved for the buff er pool and to be used by the indexed files
ref erred to in the SAME AREA clause of the I-0-CONTROL paragraph
(refer to "SAME AREA clause" in "I-0-CONTROL paragraph", later in
this subsection).

9. The RECORD KEY clause specifies the record key that is the
primary key for the file. The values of the primary key must be
unique among records of the file. The prime record key provides
an access path to records in an indexed file.

10. The ALTERNATE RECORD KEY clause specifies the record keys within
each record type that provide alternate access paths into the
indexed file. Each key listed need appear in no more than one
record type. However, a key that is present in more than one
record type must be assigned the same ordinal number and must
occupy the same relative position in each record where it occurs.

11. The data descriptions of data-name-2 and data-name-3,... their
relative positions within a re~ord, and the ordinal numbers
assigned to key fields data-name-2 and data-name-3,... must be
the same as those used when the file was created. The alternate
keys listed for the file must be equivalent to, or a subset of,
those keys used when the file was created.

12. The DUPLICATES clause ~pacifies that the value of the associated
alternate record key can be duplicated within any of the records
in the file. If the DUPLICATES clause is not specified, the
value of the associated alternate record key must not be
duplicated among any of the records accessible through this
alternate record key field.

13. The ALTERNATE RECORD KEYs identified by data-name-2 and
data-name-3 can be of any data usage, but are in any case ordered
within the file according to the byte-by-byte internal collating
sequence.

14. The length of the primary RECORD KEY plus the longest ALTERNATE
RECORD KEY cannot exceed 256 characters.

15. If NODISPLAY is specified, no prompting occurs when all necessary
file location information has been specified through the program
or the operating system's commands.

10-16

Example of Input-output Section for Indexed Files

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT CLIENT-FILE

ASSIGN TO "CLIFILE" "DISK"
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS SS-NUMBER
ALTERNATE RECORD KEY 01 IS STATE-NAME WITH DUPLICATES
FILE STATUS IS FILESTAT
RESERVE 16 AREAS.

10-17

FILE-CONTROL Entry -- for Relative Files

Function

The FILE-CONTROL entry names a file and can specify other
file-related information.

General Format

SELECT file-name

ASSIGN TO "parameter-reference-name" ["DISK"] [NODISPLAY]

[
. [AREA l] RESERVE mteger-1 AREAS

ORGANIZATION IS RELATIVE

[{

SEQUENTIAL

ACCESS MODE IS { RANDOM }
DYNAMIC

[FILE STATUS IS data-name-2]

[BUFFER SIZE IS integer-2 BLOCKS] .

Syntax Rules

[RELATIVE KEY IS data-name-1]} I
RELATIVE KEY IS data-name-1

1. The SELECT clause must be specified first in the file c;::ontrol
entry. The clauses which follow the SELECT clause can appear in
any order.

2. Parameter-reference-name is the external name for the file and is
used to identify the request for file information when opened.
The first character must be alphabetic and the entire name cannot
exceed eight alphanumeric characters.

3. "DISK" is the device type "parameter-reference-name" is assigned
to and is the only device type allowed for relative files.

4. Each file described in the Data Division must be named once and
only once by a file name in the FILE-CONTROL paragraph. Each
file specified in the FILE-CONTROL entry must have a file
description entry in the Data Division.

5. If the ACCESS MODE clause is not specified, the ACCESS MODE IS
SEQUENTIAL clause is implied.

6. Data-name-1 and data-name-2 may be qualified.

10-18

7. If a relative file is to be referenced by a START statement, the
RELATIVE KEY phrase must be used.

8. Data-name-1 must not be defined in a record description entry
associated with the file-name.

9. The data item referenced by data-name-1 must be defined as an
integer.

10. Data-name-2 must be defined in the Data Division as a
two-character, alphanumeric data item and must not be defined in
the File Section.

11. The BUFFER SIZE clause specifies the size of the buffer to be
used, in 2K blocks. If this clause is not used, the default
buff er size of one block is assumed. If specified, integer-2
must be between 1 and 9, inclusive.

General Rules

1. The ASSIGN clause specifies the association of the file to a
storage medium.

2. If NODISPLAY is used, no prompting occurs when all necessary and
correct file location information has been specified through the
program or procedure when the file is opened. If the information
is incomplete or incorrect, prompting for a correction occurs
regardless of whether NODISPLAY is specified.

3. The RESERVE clause is treated as a comment.

4. The ORGANIZATION clause specifies the logical structure of a
file. File organization is established at the time it is created
and cannot be subsequently changed.

5. When the ACCESS MODE IS sequential, records in the file are
accessed in the order of ascending relative record numbers of the
existing records in the file.

6. If the access mode is random, the value of the RELATIVE KEY data
item indicates the record to be accessed.

7. If the access mode is dynamic, records in the file may be
accessed sequentially and/or randomly.

8. When the FILE STATUS clause is specified, a value is moved by the
operating system into the data item specified by data-name-2
after the execution of every I/O statement that references that
file, either explicitly or implicitly. This value indicates the
status of execution of the statement. Refer to Appendix E, File
Status Key Values.

10-19

9. All records stored in a relative file are uniquely identified by
relative record numbers. The relative record number of a given
record specifies the record's logical ordinal position in the
file. The first logical record has a relative record number of
one (1). Subsequent logical records have relative record numbers
of 2, 3, 4, etc.

10. The data item specified by data-name-1 is used to communicate a
relative record number between the user and the operating system.

Example of Input-Output Section for Relative Files

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT REL-FIL
ASSIGN TO "R-FILl" "DISK"
ORG~IZATION IS RELATIVE
ACCESS MODE IS DYNAMIC
RELATIVE KEY IS REL-KEY
FILE STATUS R-STAT.

10-20

FILE-CONTROL Entry -- for Sort, Merge files

Function

The FILE-CONTROL entry names each file and allows specification of
other file-related information.

General Format

SELECT file-name

ASSIGN TO "parameter-reference-name" [::~!~~::][NODISPLAY]

[BUFFER SIZE IS integer BLOCKS] .

Syntax Rules

1. Each Sort or Merge file described in the Data Division must be
named only once in the FILE-CONTROL paragraph. Each sort or
merge file specified must have a sort or merge file description
entry in the Data Division.

General Rules

1. The ASSIGN clause specifies the association of the sort or merge
file referenced by file-name to a storage medium. The default is
"DISK".

2. If the file specified by file-name is specified in the USING
phrase of the SORT statement, it must be described either
implicitly or explicitly as having sequential or indexed
organization.

3. If the file specified by file-name is specified in the GIVING
phrase of a SORT statement, it must be described either
implicitly or explicitly as having sequential organization.

4. The BUFFER SIZE clause specifies the size of the buffer to be
used, in 2K blocks. If this clause is not used, the default
buffer size of one block is assumed. If specified, integer must
be between 1 and 9, inclusive.

10-21

I-0-CONTROL Paragraph

Function

The I-0-CONTROL paragraph specifies the memory area that is to be
shared by different files.

General Format

1-0-CONTROL

[RERUN [ON file-name-1] EVERY integer-1 RECORDS OF file-name-2]

[SAME [~6~~RD] AREA FOR file-name-3 {tile-name-4} ...] ...
SORT-MERGE

Syntax Rules

1. The I-0-CONTROL paragraph is optional.

2. The RERUN clause is treated as a comment by the compiler.

3. The files referenced in the SAME RECORD AREA clause need not all
have the same organization or access.

4. A file-name must not appear in more than one SAME RECORD AREA
clause.

5. The SAME AREA clause is treated as a comment for consecutive and
relative files.

General Rules

1. The SAME RECORD AREA clause specifies that two or more files are
to use the same memory area for processing of the current logical
record. All of the files can be open at the same time. A
logical record in the SAME RECORD AREA is considered as a logical
record of each opened output file whose file name appears in this
SAME RECORD AREA clause. It is also considered a logical record
of the most recently read input file whose file name appears in
this SAME RECORD AREA clause. Thus, use of the SAME RECORD AREA
clause is equivalent to an implicit redefinition of the area,
i.e .• , records are aligned on the leftmost character position.

2. The use of RECORD in the SAME RECORD AREA clause causes a single
buffer area to be used for logical records of two or more files.
This is not buffer pooling. Buffer pooling requires that RECORD
be omitted. (Refer to General Rule 3.)

10-22

~I

3. The SAME AREA clause (with RECORD omitted) indicates that the
specified files are to share a buffer pool. All specified files
should be INDEXED files, other files are ignored. One of these
files should have a RESERVE clause in its SELECT statement. If
more than one of these files has a RESERVE clause in its SELECT
statement, the one with the largest number is used. If none of
these files. has a RESERVE clause in its SELECT statement, three
buffers are reserved.

Example of I~ONTROL Paragraph

INPUT-OUTPUT SECTION.

I~ONTROL.

SAME RECORD AREA FOR CLIENT-FILE, LIST-B-FILE.

10-23

~
\ 'J

~
\ J

CHAPTER 11
DATA DIVISION

11.1 COMPUTER INDEPENDENT DATA DESCRIPTION

To make data as computer independent as possible, the characteristics
or properties of the data are described in terms of a standard data
format oriented to the appearance of the data on a printed page, rather
than to the electronic storage of data. This standard data format is
designed for general data processing applications and uses the decimal
system to represent numbers (regardless of the radix used by the
computer) and the remaining characters in the COBOL character set to
describe nonnumeric data items.
(Refer to "PICTURE Clause" in Section 11.3.3.)

11.1.1 Logical and Physical Records

A logical record. is a group of related data that is uniquely
identifiable as a unit. In COBOL, a record description entry defines the

~ logical record. I/O processing in COBOL using the WRITE, REWRITE, and
DELETE statements, manipulates the individual records. A READ or START
issued against a file retrieves/locates one logical record at a time.

A single logical record can be contained within a single physical
unit; or several logical records can be contained within a single
physical unit.

A physical record is a physical unit of information whose size and
recording mode are determined by the requirements of a particular
hardware configuration (the computer and the input or output device
employed). A physical record on the VS is called a block. For disk
files, each block contains 2K bytes.

Buffering Concepts

Blocks are grouped into buffers. A buffer is a storage area that is
used temporarily when performing I/O operations. When a file is opened,
block(s) of data are loaded from the storage device into the buffer
area. Each READ retrieves a record from the buffer area and each WRITE
writes a record to the buffer.

11-1

VS COBOL allows the progranuner to choose between three buffering
strategies.

1. Accept the default strategy that allocates one 2K block per
buffer for consecutive files and two 2K blocks per buffer for
indexed files.

2. Specify buffer pooling for indexed files not opened in the shared
mode through the RESERVE clause in the file-control entry and the
SAME AREA clause in the I-0-CONTROL paragraph.

3. Select a large buffer strategy for consecutive files through the
BUFFER SIZE clause of the file control entry. The large buffer
strategy allows the programmer to override the default strategy
of one block per buff er. Up to 18 2K blocks per buff er can be
allocated for disk files.

Record Concepts

The record description consists of a set of data description entries
that describe the characteristics of a particular record. Each data
description entry consists of a level-number followed by a data name, if
required, followed by a series of independent clauses, as required. A
record description has a hierarchical structure, therefore, the clauses
used with an entry can vary considerably, depending upon whether or not
they are followed by subordinate entries.

For indexed files, the data names of alternate keys specified in a
particular record description determine the alternate access paths (index
structures) through which a record will become accessible when that
particular description is specified in a WRITE or REWRITE statement.

11.1.2 Concept of Levels

A level concept is inherent in the structure of a logical record.
This concept arises from the need to specify subdivisions of a record for
the purpose of data reference. Once a subdivision has been specified, it
can be further subdivided to permit more detailed data referral.

The most basic subdivisions of a record--those not further
subdi vided--are called elementary i terns; consequently, a record is said
to consist of a sequence of elementary items, or the record itself can be
an elementary item.

In order to refer to a set of elementary items, the elementary items
are combined into groups. Each group consists of a named sequence of one
or more elementary items. Groups, in turn, can be combined into groups
of two or more groups. Thus, an elementary item can belong to more than
one group.

11-2

Level Numbers

A system of level numbers shows the organization of elementary items
and group items. Since records are the most inclusive data items, record
level numbers start at 01. Less inclusive data items are assigned higher
(not necessarily successive) level numbers not greater in value than 49.
The special level numbers 77 and 88 (discussed later in this subsection)
are exceptions to this rule. Separate entries are written in the source
program for each level number used.

A group includes all group and elementary i terns following it until a
level number less than or equal to the level number of that group is
encountered. All items immediately subordinate to a given group item
must be described using identical level numbers greater than the level
number used to describe that group item.

The level number of an item that immediately follows the last
elementary item of a group must be equal to the number of one of the
groups to which the elementary item belongs. If the level number of the
following item is not equal to one of the group level numbers preceding
it, it is interpreted as equal to the first preceding group level number
that is larger than it. For example, in

01 EMPLOYEE-DATA.
03 EMPLOYEE-NAME.

05 EMPLOYEE-ADDRESS.
07 STREET PIC X(20).
07 CITY-STATE PIC X(20).

04 EMPLOYEE-NUMBER PIC X(9).

04 is treated by the compiler as if it had been written as OS.

There is no true concept of level for entries that specify
noncontiguous working-storage and linkage data items that are not
subdivisions of other items and are not themselves subdivided. These
entries have been assigned the special level number 77.

01 level entries are fullword aligned. 77 level entries may not be
fullword aligned.

Entries that specify conditions names, to be associated with
particular values of a conditional variable, have been assigned the
special level number 88. A level 88 entry can specify either a single
value or a range of values.

11-3

11.1.3 Classes of Data

The five categories of data items (refer to "PICTURE Clause" in
Section 11.3.3) are grouped into three classes: alphabetic, numeric, and
alphanumeric. The classes and categories are synonymous for alphabetic
and numeric. The alphanumeric class includes the categories of
alphanumeric edited, numeric edited, and alphanumeric (not edited).
Every elementary item except an index data item belongs to one of the
classes and, further, to one of the categories. The class of a group
item is treated at object time as alphanumeric, regardless of the class
of elementary items subordinate to that group item. The following table
depicts the relationship of the class and categories of data items:

Classes and Categories of Data

LEVEL OF ITEM CLASS CATEGORY

Elementary Alphabetic Alphabetic

Numeric Numeric

Alphanumeric Numeric Edited
Alphanumeric Edited
Alphanumeric

Nonelementary Alphanumeric Alphabetic
(Group) Numeric

Numeric Edited
Alphanumeric Edited
Alphanumeric

11.1.4 Character Representation and Radix

The VS COBOL compiler represents the value of numeric items whose usage
is DISPLAY as ASCII characters; numeric items whose usage is COMPUTATIONAL are
represented in packed decimal format. Items whose usage is INDEX, and items
whose usage is BINARY, are represented in half-word aligned 16-bi t signed
binary numbers.

The size of an elementary data item or a group item is the number of
characters in standard data format of the item. Synchronization and usage can
cause a difference between this size and the actual number of characters
required for the internal representation.

11.1.5 Algebraic Signs

Algebraic signs fall into two categories: (1) operational signs, which
are associated with signed numeric data items and signed numeric literals to
indicate their algebraic properties; and (2) editing signs, which appear on
edited reports to identify the sign of the item.

11-4

The SIGN clause permits the programmer to explicitly state the
location of the operational sign. This clause is optional; if it is not
used, usage of DISPLAY is assumed and operational signs are represented
as if SIGN IS TRAILING SEPARATE CHARACTER was specified.

Edi ting signs are inserted into a data i tern through the use of the
sign control symbols of the PICTURE clause.

11.1.6 Standard Alignment Rules

The standard rules for positioning data within an elementary item
depend on the category of the receiving item. These rules are:

1. If the receiving data item is described as numeric:

a. The data is aligned by decimal point and is moved to the
receiving character positions with zero fill or truncation on
either end as required.

b. When an assumed decimal point is not explicitly specified,
the data item is treated as if it had an assumed decimal
point inunediately following its rightmost character and is
aligned as described in Paragraph la.

2. If the receiving data item is numeric edited, the data moved to
the edited data item is aligned by decimal point with zero fill
or truncation at either end as required. The only exception
occurs when editing requirements cause replacement of the leading
zeros.

3. If the receiving data item is alphanumeric (other than a numeric
edited data i tern), alphanumeric edited or alphabetic, data is
moved to the receiving character positions and aligned at the
leftmost character position in the receiving data item. Space
fill or truncation to the right is supplied as required.

If the JUSTIFIED clause is specified for the receiving item, these
standard rules are modified as described in "JUSTIFIED Clause" in Section
11.3.3.

11.2 METHODS OF DATA REFERENCE

11.2.1 Qualification, The CORRESPONDING Phrase, and Subscripting

Qualification

All user-specified names that define data elements must be unique.
Uniqueness is achieved if each name has either unique spelling,
hyphenation, or qualification. A data-name is qualified when it is part
of a hierarchy of names such that references to the name can be unique by
mentioning one or more of the higher levels of the hierarchy. Within the
Data Division, all data-names used for qualification must be associated
with a level indicator or level-number.

11-5

In a hierarchy, names associated with a level indicatior are the most
significant. The next most significant are names associated with
level-nwnber 01, followed by level-number 02, and so on. A section-name
is the highest (and only) qualifier for a paragraph name. Thus, the most
significant name in a hierarchy must be unique and cannot be qualified.

Subscripted or indexed data-names, conditional variables,
procedure-names, and data-names can be made unique by qualification. The
name of a conditional variable can be used as a qualffier for any of its
condition-names. Regardless of the available qualification, no name can
be both a data-name and a procedure-name.

Referencing qualified names is accomplished by coding a data-name,
condition-name, paragraph-name, or text-name followed by one or more
phrases composed" of a qualifier preceded by IN or OF. IN and OF are
logically equivalent.

General Format

Format 1

{
data-.n.ame-1 } [{ OF} data-name-2] ...
condition-name IN

Format 2

paragraph-name [{ ~} section-name]

Format 3

text-name [{ ~} library-name [{~}volume-name]]
General Rules

1. Each qualifier must be a successively higher level and be within
the same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy.

3. If a data-name or condition-name is assigned to more than one
data item in a source program, the data-name or condition-name
must be qualified each time it is referenced in the Procedure,
Environment, and Data Divisions.

4. Qualification cannot be used in a REDEFINES clause.

11-6

5. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION
cannot appear. A paragraph-name need not be qualified when it is
ref erred to from within the same section.

6. A data-name cannot be subscripted when it is being used as a
qualifier.

7. A name can be qualified even if it is not necessary.

8. If more than one set of qualifiers exists that ensure uniqueness,
any such set can be used for ref errence. The complete set of
gualif iers for a data-name must not be the same as any partial
set for another data-name. Qualified data-names may have any
number of qualifiers.

9. If more than one COBOL library is available to the compiler
during compilation, text-names must be qualified each time they
are referenced. If the volume and/or library is invalid, a
GETPARM screen is generated by the system to allow the user to
respecify the required information.

Corresponding

The CORRESPONDING phrase allows the COBOL programmer to add,
substract, or move data items from one group item to some other group
item. The CORRESPONDING phrase eliminates the necessity of coding a
separate ADD, SUBTRACT, or MOVE Statement for each corrrsponding date
item. To use this feature, the programmer codes the statements to add,
subtract, or move group items. Upon execution, only those items that are
corresponding are actually added, subtracted, or moved.

A pair of data items are corresponding if:

1. Each is subordinate to a separate group item.

2. They have the same data-name and qualifiers up to, but not
including, the group item names.

3. Either of the group items they are subordinate to can have
REDEFINES or OCCURS clauses. In addition, each of the group
items can themselves be subordinate to data items with REDEFINES
or OCCURS clauses.

4. At least one of the data items must be an elementary i tern when
used in a MOVE statement with the CORRESPONDING phrase.

5. Both data items must be elementary items when used in the ADD or
SUBTRACT statements with the CORRESPONDING phrase.

11-7

A pair of data items are not corresponding if:

1. The common data name is FILLER.

2. Either data name contains a REDEFINES, OCCURS, or USAGE IS
INDEXED clause.

3. Either data item is subordinate to a data item containing the
REDEFINES, OCCURS, or USAGE IS INDEXED clauses.

4. The description of either group item contains a level-number of
77, 88, or the USAGE IS INDEXED clause.

Subscripting

Subscripts can be used only when referring to an individual element
within a list or table of like elements that have not been assigned
individual data names (refer to "OCCURS Clause" in Section 11.3.3).

The subscript can be represented either by a numeric literal that is
an integer, or by a data name. The data name must be a numeric
elementary item that represents an integer.

The subscript can be s.ignad; i:f signed, it must be positive. The
lowest possible subscript value is 1. This value points to the first
element of the tabla. the next sequential elements of the table are
pointed to by subscripts whose values are 2,3,4... The highest
permissible subscript value in any particular case is the maximum number
of occurrences of the item as specified in the OCCURS clause.

The SUBCHK compiler op.tion generates special code that checks the
ranges of subscripts during program execution and causes a program
interrupt if a subscript exceeds its defined length.

The subscript, or set of subscripts, that identifies the table
element is delimited by the balanced pair of separators, the left and
right parenthesis, following the table-element data name. The
table-element data name appended with a subscript is called a subscripted
data name or an identifier. When more than one subscript is required,
they are written in the order of successively less inclusive dimensions
of the data organization.

The format for subscripting is:

{ ~~~ad~~~:name} (subscript-1 [subscript-2[subscript-3)])

11-8

11.2.2 Indexing

References can be made to individual elements within a table of~ like
elements by specifying an index for that reference. An index is assigned
to that level of the table by using the INDEXED BY phrase in the
definition of a table.

For example, a variable having one index could be established by the
following:

01 ACCOUNTS-TABLE.
03 ACCOUNT PIC 9(5) OCCURS 20 TIMES

INDEXED BY ACCOUNT-INDEX.

A name given in the INDEXED BY phrase is known as an index name and
is used to refer to the assigned index. The value of an index
corresponds to that element's occurrence number. An index name must be
initialized before it is used as a table reference. An index name can be
given an initial value by either a SET or a Format 4 PERFORM statement.

Direct indexing is specified by using an index name in the form of a
subscript. For example,

MOVE ACCOUNT (ACCOUNT-INDEX) TO ACCOUNT-OUT.

This will cause the entry in ACCOUNTS-TABLE (specified by the current
value of ACCOUNT-INDEX) to be moved to ACCOUNT-OUT.

Relative indexing is specified when the index name is followed by a
'+' or '-', an unsigned numeric literal, and then delimited by the pair
of separators (left and right parentheses) following the table-element
data name. The resulting occurrence number is determined by increasing
(when the '+' is used) or decreasing (when the ' - ' is used) the
occurrence number represented by the value of the index by the value of
the literal. When more than one index name is required, they are written
in the order of successively less inclusive dimensions of the data
organization.

In the following example, the sum of the current value of
ACCOUNT-INDEX plus 3 is used to select one element of ACCOUNTS-TABLE.

MOVE ACCOUNT (ACCOUNT-INDEX + 3) TO ACCOUNT-OUT

When executing a statement that refers to an indexed table element,
the value contained in the referenced index must correspond to a numeric
value between o~e and the highest permissible element occurrence number.
This restriction also applies to the value resultant from relative
indexing.

11-9

Restrictions on subscripting and indexing are:

1. A data name must not itself be subscripted nor indexed when it is
being used as an index or subscript.

2. Indexing is not permitted where subscripting is not permitted.

3. An index can be modified only by the SET, SEARCH, or PERFORM
statements. Data i terns described by the USAGE IS INDEX clause
permit storage of the values associated with index names. Such
data i terns are called INDEX data i terns. The internal storage
representation of an INDEX data item is binary.

4. Li teral-1, li teral-3, and li teral-5 in the general format for
indexing (which follows immediately) must be positive numeric
integers. Literal-2, literal-4, and literal-6 must be unsigned
integers.

The general format for indexing is:

({index-name-1 [{±} literal-2)}

literal-1
Jindex-name-2 [{±} literal-4)}
"l.literal-3

{
data-name }
condition-name

{
index-name-3 [{±} literal-61l]ll J

literal-5 f J

11.2.3 Condition-Names

A condition-name specifies a specific value, set of values, or range
of values, within a complete set of values that a data item may assume.
The data i tern its elf is called a conditional variable. Each
condition-name must be unique, or made unique through qualification
and/or subscripting. The exception to this rule is when programs are
directly or indirectly contained within other programs. In this
situation, identical user-defined words can exist in both programs.

If qualification is used to make a condition-name unique, the
associated conditional variable may be used as the first qualifier. The
hierarchy of names associated with the conditional variable itself must
also be used to make the condition-name unique.

If references to a conditional variable require indexing or
subscripting, then references to any of its condition names also require
the same combination of indexing or subscripting.

11-10

The format of and restrictions on the combined use of qualification
and subscripting of condition-names is exactly that of "identifier"
except that "data-name-1" is replaced by "condition-name-1".

11.2.4 Identifiers

An identifier is a term used to reflect a data-name that, if not
unique in a program, must be followed by a syntactically correct
combination of.- qualifiers, subscripts, or reference modifiers necessary
to make it unique.

The general formats for identifiers are:

Format 1

data-name-1 [{ ::} data-name-2] ...
Format 2

data-name-1 [{~}data-name-2]

[(subscript-1 [subscript-2 [subscript-3]])]

[({
i~dex-name-1 [{=!:} literal-2]}
literal-1

[{
i~dex-name-2 [{±} literal-4]}
hteral-3

[{ :~~~:i=~ame-3 [{ ~} literal-6) }]])]

11-11

11.3 ORGANIZATION

The Data Division describes the data that the object program is to
accept as input, to manipulate, to create, or to produce as output. A
required division, it is subdivided into three sections: File,
Working-Storage, and Linkage.

The File Section defines the structure of data files. Each file is
defined by a file description entry and one or more record descriptions.
Record descrip~ions are written immediately following the file
description entry. The Working-Storage Section describes records and
noncontiguous data items that are not part of external data files, but
are developed and processed internally. It also describes data items
whose values are assigned in the source program and do not change during
the execution of the object program. The Linkage Section appears in the
called program and describes data items that are to be referred to by the
calling program and the called program. Its structure is the same as the
Working-Storage Section describing the parameters passed by the calling
program.

The following are the general formats of the sections in the Data
Division. Level 77 items need not be restricted to the first entries in
any of the sections.

DATA DIVISION.
(FILE SECTION.

[file-description-entry
(record-description-entry} ••.] •••]

(WORKING-STORAGE SECTION.

(77-level-description-entry1
[record-description-entry 1 ••.]

[LINKAGE SECTION.

(77-level-description-entry1
[record-description-entry 1 •••]

11.3.1 File Section

In a COBOL program, the file description (FD) entry represents the
highest level of organization in the File Section. The File Section
header is followed by a FD entry consisting of a level indicator, a file
name, and a series of independent clauses. The FD clauses specify the
size of the logical and physical records, and the names of the data
records that make up the file. The entry itself is terminated by a
period.

11-12

File Description Entry

Function

The file description furnishes information concerning the physical
structure, identification, and record names pertaining to a given file.

General Format

FD file-name

[BLOCK CONTAINS [integer-1 TO] integer- 2 { ~~~~~~ERS}]
[RECORD CONTAINS [integer-2 TO] integer-3 [COMPRESSED] CHARACTERS]

[
LABEL {RECORD IS } {STANDARD }]

RECORDS ARE OMITTED

VALUE OF

[FILENAME IS

[LIBRARY IS

[VOLUME IS

[SPACE IS
[POSITION IS
[INDEX AREA IS
[DATA AREA IS

[RECOVERY-BLQQKSIS

[RECOVERY-STATUS IS
[DATABASE-NAME IS

data-name-1]
literal-1
data-name-2]
literal-2
data-name-3]
literal-3
data-name-4
data-name-5]
data-name-6]
data-name-7}

{
data-name-8]
literal-4
data-name-9]
data-name-1 O]. ..]

[{
RECORD IS }] DATA RECORDS ARE data-name-11 [data-name-12] ...

[CODE-SET IS alphabet-name] .

Syntax Rules

1. The level indicator FD identifies the beginning of a file
description and must precede the file name.

2. The clauses that follow the name of the file are optional in many
cases, and their order of appearance is immaterial.

3. One or more record description entries must follow the file
description entry.

11-13

BLOCK CONTAINS Clause

Function

The BLOCK CONTAINS clause specifies the size of a physical record.

General Format

BLOCK CONTAINS [integer-1 TO] integer-2 { ~~~~~~ERS}

General Rules

1. The BLOCK CONTAINS clause is optional. If it is specified, and
the BUFFER SIZE clause is also specified in the corresponding
File Control entry (Section 9.2.2), the BLOCK CONTAINS clause is
used to determine the number of records or characters to be
allocated for the buffer. If the BUFFER SIZE clause is not also
specified, the BLOCK CONTAINS clause is treated as a comment,
except in the case of tape files.

2. When the word CHARACTERS is specified, the physical record size
is specified in terms of the number of byte positions required to
store the physical record, regardless of the types of characters
used to represent the items within the physical record.

3. The BLOCK CONTAINS clause is ignored for disk files, which are
automatically blocked in 2K blocks. For tape files, the default
condition allocates a blocksize equal to the record size.

4. Integer-! is ignored by the compiler. However, if it is used, it
must be less than Integer-2. Specifying integer-! does not imply
the existence of a variable length -record; this is accomplished
by the RECORD CONTAINS clause.

11-14

CODE-SET Clause

Function

The CODE-SET clause specifies the character code set used to
represent data on the external media. The Wang VS uses the ASCII code
set, and the CODE-SET clause is treated as a comment.

General Format

[CODE-SET IS alphabet-name]

11-15

DATA RECORDS Clause

Function

The DATA RECORDS clause serves only as documentation associating the
names of data records with their file.

General Format

{
RECORD IS }

DATA RECORDS ARE data-name-1 [data-name-2] •••

Syntax Rules

1. Data-name-1 and data-name-2 are the names of data records and
must have 01 level-m.unber record descriptions, with the same
names, associated with them.

General Rules

1. The presence of more than one data name indicates that the file
contains more than one type of data record. These records can be
of differing sizes, different formats, etc. The order in which
they are listed is not significant.

2. Conceptually, all data records within a file share the same area,
the presence of more than one type of data record within the file
notwithstanding.

11-16

LABEL RECORDS Clause

Function

The LABEL RECORDS clause specifies whether or not labels are present.

General Format

{
RECORD IS }fSTANDARD}

LABEL RECORDS ARE \9MITTED

Syntax Rules

1. If this clause is not coded, standard labels are provided.

General Rules

1. OMITTED specifies that no labels exist for the file.

2. STANDARD specifies that labels exist for the file. If
device-type is TAPE, the labels provided conform to ANSI (ANSI
X3.27-1969) specifications; both IBM and Wang labels are
allowed. If device type is nontape, labels are provided as
specified in VS Operating System Services.

3. The OMITTED clause is ignored for disk files.

11-17

RECORD CONTAINS Clause

Function

The RECORD CONTAINS clause specifies the size of fixed- or
variable-length data records.

General Format

[RECORD CONTAINS [integer-1 TO] integer-2 [COMPRESSED] CHARACTERS]

Syntax Rules

1. The maximum record lengths (maximum values for integer-2) are:

DISK FILES

consecutive fixed
consecutive variable
indexed fixed
indexed variable
relative, fixed or
variable

TAPE FILES
PRINTER FILES
WORKSTATION DISPLAY

General Rules

NUMBER OF CHARACTERS

2048
2024
2040
2024

2040

32767 (with a minimum of 12)
240
1924

1. The RECORD CONTAINS clause with the integer-1 TO and COMPRESSED
phrases omitted specifies that the file contains fixed-length
records. Integer-2 is the record length of the file. Thus,
integer-2 should equal the greatest length specified in the
record description entries for the file.

2. The RECORD CONTAINS clause with the integer-1 TO phrase specifies
that the file contains variable-length records. The length of
the smallest data record, integer-1, and the length of the
largest data record, integer-2, must be defined. Integer-1 must
be smaller than integer-2.

3. The size is specified in terms of the number of character
positions required to store the logical record, regardless of the
types of characters used to represent the items within the
logical record. The size of the record is determined by the sum
of the number of characters in all elementary items.

4. If the RECORD CONTAINS clause is absent, the file contains
fixed-length records. The record length is that of the longest
record defined in a record description entry for the file.

11-18

5. The COMPRESSED option specifies compressed files. It is required
when a file is being opened for output (created) and the user wants
the file to be compressed. It is optional when reopening an old
file, so the user need not Jmow whether a file is compressed in
order to use it. Compression is transparent to the user, i.e., the
user's data area always contains noncompressed records, and the size
always refers to noncompressed size. The following notes apply to
the COMPRESSED option.

a. If COMPRESSED is specified, the actual record as it is stored on
the device medium is a variable-length record and is treated as
such in I/O operations. This is not readily apparent to the
user. It is the user's responsibility to ensure that the
definition of a data file in a program is consistent with the
attributes of the existing file. The results of not doing so
are undefined.

b. When COMPRESSED is specified, all character strings of three or
more (up to 128) duplicate and consecutive characters are
compressed into two bytes that contain the number of occurrences
and the character itself. The byte containing the number of
occurrences is referred to as a compression control byte.

c. If COMPRESSED is specified and there is no repetition of
characters within a string, compression control bytes are
generated for each string of 128 nonrepetitive characters.
These compression control bytes indicate that an uncompressed
character string follows and contains the number of following
nonrepetitive characters.

d. Each set of bytes that indicate repetition is immediately
followed by another set of bytes that indicate the compression
characteristics of the succeeding characters.

e. When the record is accessed, it is expanded to the size
specified in the record description entry for the file.

f. COMPRESSED is not allowed for relative files.

11-19

VALUE OF Clause

Function

The VALUE OF clause can provide file information required at
runtime. When an OPEN is issued for a file, FILENAME, LIBRARY, and
VOLUME names must be Jmown by the system. If the file is on an unlabeled
tape, only VOLUME and POSITION are required. This information can be
made available by an operator response to a system prompt, through a
procedure, or through the VALUE OF clause. Additionally, the VALUE OF
clause can optionally be used to specif iy the packing density of data and
index blocks. This packing option, meaningful for indexed files only, is
available in output mode only and is implemented through the DATA AREA
and INDEX AREA clauses.

When using DMS/TX files, VALUE OF clauses retrieve DMS/TX file
information for existing files and allocate Recovery Blocks for program
created files while the files are in the OPEN OUTPUT mode. The DMS/TX
clauses are RECOVERY-BLCXl<S, RECOVERY-STATUS, and DATABASE-NAME.

General Format

VALUE OF

Syntax Rules

[FILENAME IS

[LIBRARY IS

[VOLUME IS

[SPACE IS
[POSITION IS
[INDEX AREA IS
[DATA AREA IS

[RECOVERY-BLOCKS IS

[RECOVERY-STATUS IS
[DATABASE-NAME IS

data-name-1]
literal-1
data-name-2]
literal-2
data-name-3]
literal-3
data-name-4
data-name-5]
data-name-6]
data-name-7}

{
data-name-8]
literal-4
data-name-9
data-name-10]

1. Data-name-1 through data-name-10 may be qualified.

2. Data-name-1 through data-name-10 cannot be subscripted or
indexed, nor can they be items described with the USAGE IS INDEX
clause.

3. Data-name-1 through data-name-10 must be defined in the
Working-Storage Section.

11-20

4. The data items referenced by data-name-1, data-name-2, and
data-name-3 must be alphanumeric. The data items referenced by

data-name-4, data-name-5, data-name-6, and data-name-7 must be
numeric. Data-name-8 and data-name-9 must be either alpha or
alphanumeric with the declared length equal to one character.
Data-name-10 must be either alpha or numeric with a declared
length of not more than six characters long.

5. Literal-1, literal-2, and literal-3 must be nonnumeric literals.
Literal-4 must be a single character literal.

General Rules

1. For any open mode, after the OPEN is issued, the file name,
library name, and volume name are available in the data items
referenced by data-name-1, data-name-2, and data-name-3,
respectively. In the input mode, the the number of records in
the file is available at OPEN time in the SPACE item, referenced
by data-name-4.

2. For an output file (output or extend mode), VALUE OF parameters
supply default information used to complete the file label.

3. For an input file (input, I-0, or shared mode), the file name is
used to select the runtime file. Data-name-4 is set to the
number of records in the file and can be used in allocating space
for a new file. Data-name-2 is used to specify the name of the
library in which the file is found. Data-name-3 is used to
specify the name of the volume on which the library is found.

4. The INDEX AREA and DATA AREA phrases are meaningful for i~dexed

files only. The values associated with data-name-6 and
data-name-7 must be numeric and between the values 1-100. The
value specifies the percentage packing density for data and index
blocks that will occur for files being created in output mode.

If these options are not coded, a default packing density of 100
percent is assumed.

5. The POSITION phrase is valid for tapes only. Data-name-5
specifies the ordinal postion number of a file on tape.

6. Literal-1, literal-2, literal-3, and the data items referenced by
data-name-1, data-name-2, and data-name-3 can exceed eight
characters. However, for literal-1, literal-2, data-name-1 and
data-name-2, only the first eight characters are used; for
literal-3 and data-name-3, only the first six characters are
used. The value of data-name-5 must be between 1 and 65,545.
The value of data-name-4 must be between 1 and 16,777,215.

11-21

7. If any one or a combination of RECOVERY-BLOCKS, RECOVERY-STATUS,
or DATABASE-NAME appears in the VALUE OF clause, a larger UFB
(with the DMS/TX extension block) is allocated for the associated
file. With the larger UFB area, the Recovery Blocks are
allocatable for the related file and the special DMS/TX
information is retrievable.

8. When creating a new file COPEN OUTPUT mode), the Recovery Blocks
are allocated by specifying the literal-4 as "A" or storing "A"
as the content of data-name-8 before the OPEN statement.

9. Any value other than "A" for literal-4 or any other value stored
in data-name-8 will be ignored when the OPEN statement is
executed. The value "A" is also ignored if the OPEN statement is
not in the OUTPUT mode.

10. After the OPEN statement is executed, the requested information
(RECOVERY-BLOCKS, RECOVERY-STATUS, DATABASE-NAME) is stored in
data-name-8, data-name-9, and data-name-10 respectively. You can
retrieve this information once the file is opened.

11. The possible values of the RECOVERY-BLOCKS and their meanings are
as follows:

N No Recovery Blocks
A Recovery Blocks allocated (but file is unattached)
U Recovery Blocks allocated and file is part of a DMS/TX

database.

12. The possible values of the RECOVERY-STATUS and their meanings are
as follows:

N No Recovery
S Sof tcrash Recovery
F Full Recovery

13. The DATABASE-NAME clause returns the database name which the
DMS/TX file is attached to as the value of data-name-10.

11-22

Example of VALUE OF Clause

DATA DIVISION.

FILE SECTION.

FD ACCOUNTS-DATA

BLOCK CONTAINS 25 RECORDS
RECORD CONTAINS 80 COMPRESSED CHARACTERS
LABEL RECORDS ARE STANDARD
VALUE OF FILENAME IS "ACCTOUT"

LIBRARY IS "ACCTDATA"
VOLUME IS "VOLOOl"
SPACE IS RECNUM
RECOVERY-BLOCKS IS "A"
RECOVERY-STATUS IS RVS-1
DATABASE-NAME IS DBN-1

DATA RECORD IS TRANSACTION-FILE.

01 TRANSACTION-FILE PIC X(80).

WORKING-STORAGE SECTION.

77 RECNUM PIC 9(7) VALUE 100.
01 A PIC S9999 COMP VALUE 0.
01 RVS-1 PIC X(l).
01 DBN-1 PIC X(6).

Example of Program-Provided File Parameters

ENVIRONMENT DIVISION.

FILE-CONTROL.

SELECT CLIENT
ASSIGN "CLIENTFI", "DISK", NODISPLAY.

DATA DIVISION.
FILE SECTION.
FD CLIENT

VALUE OF FILENAME IS "CLIFILE"
LIBRARY IS "CLIDATA"
VOLUME IS "VOL444"

LABEL RECORDS ARE STANDARD.

11-23

PROCEDURE DIVISION.
OPEN INPUT CLIENT

In this example, CLIFILE is the name of a data file needed by the
program to obtain data. Normally, an OPEN statement would result in an
operator prompt for the names of the data file, library, and vollUne.
However, this example provides the necessary information with a VALUE OF
clause. Note that the Envirorunent Division ASSIGN clause utilizes the
NODISPLAY option, thus suppressing the system from prompting the operator
as long as the file information is made available. If the information is
not known by the system at runtime, the NODISPLAY option will not prevent
the system prompt.

NOTE

For a complete discussion of OMS/TX refer to Chapter 3.

11-24

The Sort-Merge File Description Entry

Function

The sort-merge file description furnishes information concerning the
physical structure, identification, and record names for the file to be
sorted or merged.

General Format

SD file-name

[
. { RECORDS }] BLOCK CONTAINS mteger-1 CHARACTERS

[RECORD CONTAINS [integer-2 TO] integer-3 [COMPRESSED] CHARACTERS]

VALUE OF

-[VOLUME IS

[SPACE IS

[DATA {
RECORD IS }
RECORDS ARE

Syntax Rules

{
data-name-1 }]
literal-1

data-name-2]

data-name-4 [data-name-5) .. .].

1. The level indicator SD identifies the beginning of a sort-merge
file description and must precede the file-name.

2. The clauses that follow the name of the file are optional and
their order of appearance is immaterial.

3. One or more record description entries must follow the sort-merge
file description entry. However, no input-output statements may
be executed for this file.

4. Data-name-1, -2, -3, and -4, may be qualified.

General Rules

1. If the SORT or MERGE statement has USING and GIVING clauses, the
file described by the sort-merge description entry is used to
provide key information for the SORT utility.

11-25

2. If the SORT or MERGE statement has an INPUT or OUTPUT procedure
the file described by the SORT-MERGE Description Entry is created
and used as an intermediate file. It must be large enough to
contain all sorted or merged records.

3. Refer to the VALUE OF clause description for rules governing
VOLUME IS and SPACE IS.

11-26

~I

!"'\I

11.3.2 Working-Storage Section

~ The Working-Storage Section is composed of the section header,
followed by data description entries for noncontiguous data items and/or
record description entries. Each Working-Storage Section record name and
noncontiguous item name must be unique.

Noncontiguous Working-Storage

Items and constants in working-storage that bear no hierarchical
relationship ··to one another need not be grouped into records, provided
they do not need to be further subdivided. Instead, they are classified
and defined as noncontiguous elementary items. Each of these items is
defined in a separate data description entry that begins with the special
level number 77. There is no restriction placed on the order of 01 and
77 level items.

The following data clauses are required in each data description
entry.

1. Level-number
2. Data-name
3. The PICTURE, USAGE IS INDEX, or USAGE IS BINARY clause.

Other data description clauses are optional and can be used to
complete the description of the item, if necessary.

Working-Storage Records

Data elements and constants in working-storage that bear a definite
hierarchical relationship to one another must be grouped into records
according to the ~ules for formation of record descriptions. All clauses
that are used in record descriptions in the File Section can also be used
in record descriptions in the Working-Storage Section. In addition, the
VALUE clause can be used in the Working-Storage Section.

Initial Values

The initial value of any item in the Working-Storage ·Section, except
an index data item, is specified by using the VALUE clause with the data
item. The initial value of any index data item is unpredictable, and
should therefore be set to a known value.

11-27

11.3.3 Data Description Entry

Function

A data description entry specifies the characteristics of a
particular item of data.

General Format

Format 1

level-number{ data-name-1 } [REDEFINES data-name-2)
FILLER

1BINARY) I COMPUTATIONAL, I
[{ ~:gTURE} IS character-string] [USAGE ISl-<

1
~Y-WS J>

I DISPLAY
,JN DEX ~

[[SlGN IS] { ~~~~~~ }rsEPARATE CHARACTER]]

[{
SYNCHRONIZEO\.[LEFT]]
.SYNQ f RIGHT

[{ ~IFIED } RIGHT]

[BLANK WHEN ZERO]

[VALUE IS {literal }]
user-figurative-constant

[

OCCURS integer-1 TIMES [{ ~~g6~~~~G } KEY IS {data-name-3} ...] [

[INDEXED BY index-name-1 [index-name-2) ...].

Format2

88 condition-name {~~SARE} { literal-1 [{ T~GH} literal-2] }

Syntax Rules

1. For Format 1 the level number can be any number from 01 - 49 or
77. For Format 2, the level number must be 88.

2. The clauses can be written in any order with two exceptions: the
data-name-1 or FILLER clause must immediately follow the level
number; and the REDEFINES clause, when used, must immediately
follow the data-name-1 clause.

3. The PICTURE clause must be specified for every elementary item
except an index data item or binary data item, in which case use
of this clause is prohibited.

11-28

4. The words THRU and THROUGH are equivalent.

~. General Rules

Format 1

,l""l

1. The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN
ZERO, must not be specified except for an elementary data item.

Format 2

2. Format 2 is used for each condition name and requires a separate
entry with level number 88. The format contains the name of the
condition and the value, values, or range of values associated
with the condition name. The condition-name entries for a
particular conditional variable must follow the entry describing
the item with which the condition name is associated. A
condition name can be associated with any data description entry
that contains a level number except

a. Another condition name

b. An index data item.

11-29

BLANK WHEN ZERO Clause

Function

The BLANK WHEN ZERO clause permits the blanking of an item when its
value is zero.

General Format

[BLANK WHEN ZERO]

Syntax Rules

1. The BLANK WHEN ZERO clause can be used only for an elementary
item whose PICTURE is specified as numeric or numeric edited.

General Rules

1. When the BLANK WHEN ZERO clause is used, the item contains
nothing but spaces if the value of the item is zero.

2. When the BLANK WHEN ZERO clause is used for an item whose PICTURE
is numeric, the category of the item is considered to be numeric
edited.

11-30

DATA-NAME or FILLER Clause

Function

A data name specifies the name of the data being described. The word
FILLER specifies an elementary item of the logical record that cannot be
referred to explicitly.

General Format

{
data-name-1}
FILLER

Syntax Rules

1. In the File, Working-Storage and Linkage Sections, a data name
or the key word FILLER must be the first word following the level
nwnber in each data description entry.

General Rules

1. The key word FILLER can be used to name an elementary item in a
record. Under no circumstances can a FILLER item be referred to
explicitly.

11-31

JUSTIFIED Clause

Function

The JUSTIFIED clause specifies nonstandard positioning of data within
a receiving data item.

General Format

{ JUSTIFIED} RIGHT
JUST

Syntax Rules

1. The JUSTIFIED clause can be specified only at the elementary item
level.

2. JUST is an abbreviation for JUSTIFIED.

3. The JUSTIFIED clause cannot be specified for any data item
described as numeric or for which editing is specified.

General Rules

1. mien a receiving data item is described with the JUSTIFIED clause
and is smaller than the sending data item, the leftmost
characters are truncated. When the receiving data item is
described with the JUSTIFIED clause and is larger than the
sending data item, the data is aligned at the rightmost character
position in the data item with spaces filling the leftmost
character positions.

2. When the JUSTIFIED clause is omitted, the standard rules for
aligning data within an elementary item apply. (Refer to Section
11.1.6, Standard Alignment Rules.)

11-32

LEVEL-NUMBER Clause

~ Function

The level number shows the hierarchy of data within a logical
record. The level number is also used to identify entries for
working-storage items, linkage items, and condition names.

General Format

level-number

Syntax Rules

1. A level number is required as the first element in each data
description entry.

2. Data description entries subordinate to an FD entry must have
level numbers with the values 01 - 49, or 88.

3. Data description entries in the Working-Storage Section and
Linkage Section must have level numbers with the values 01 - 49,
77 or 88.

General Rules

1. The level number 01 identifies lt.'9 first entry in each record
description.

2. Special level nwnbers have been assigned to certain entries where
there is no real concept of level.

a. Level number 77 is assigned to identify noncontiguous
working-storage or linkage data items.

b. Level number 88 is assigned to entries that define condition
names associated with a conditional variable and can be used
only as described in Format 2 of the data description entry.

3. Multiple level 01 entries within the same FD paragraph represent
implicit redefinitions of the same area, except that the order in
which they are listed is not significant.

11-33

OCCURS Clause

Function

The OCCURS clause eliminates the need for separate entries for
repeated data items and supplies information required for the application
of subscripts or indices.

General Format

OCCURS integer TIMES

[{ ~~~~~~~~G } KEY IS data-name-1 [data-name-2] ...] ...

[INDEXED BY index-name-1 [index-name-2] ...]

Syntax Rules

1. Data-name-1, data-name-2, ... may be qualified.

2. Data-name-1 must either be the name of the entry containing the
OCCURS clause or the name of an entry subordinate to the entry
containing the OCCURS clause.

3. Data-name-2, ... , must be the name of an entry subordinate to the
group item which is the subject of this entry.

4. An INDEXED BY phrase is required if the subject of this entry, or
an entry subordinate to this entry, is to be ref erred to by
indexing. The index name identified by this clause is not
defined elsewhere since its allocation and format are dependent
on the hardware and, not being data, cannot be associated with
any data hierachy.

5. The OCCURS clause cannot be specified in a data description entry
that has an 01, 77 or an 88 level number.

6. If data-name-1 is not the subject of this entry, the following
rules apply:

a. All of the items identified by the data-names in the KEY IS
phrase must be within the group item which is the subject of this
entry.

b. Items identified by the data-name in the KEY IS phrase must
not contain an OCCURS clause.

11-34

c. There must not be any entry that contains an OCCURS clause
between the items identified by the data-names in the KEY IS
phrase and the subject of this entry.

7. Index-name-1, index-name-2, ..• , must be unique words within the
program.

General Rules

1. The OCCURS clause is used in defining tables and other
homogeneous sets of repeated data items. Whenever the OCCURS
clause is used, the data name that is the subject of this clause
must be either subscripted or indexed whenever it is referred to
in statements other than the SEARCH or USE FOR DEBUGGING
statements. Further, if the subject of this clause is the name
of a group item, then all data names belonging to the group must
be subscripted or indexed whenever they are used as operands,
except as the object of a REDEFINES clause.

2. Except for the OCCURS clause itself, all data description clauses
associated with an item whose description includes an OCCURS
clause apply to each occurrence of the item described.

3. The value of integer represents the exact number of occurences of
the subject entry.

4. The KEY IS phrase is used with the OCCURS clause in conjunction
with Format 2 of the SEARCH statement to perform a binary search
on an ordered table, providing an efficient method of finding an
element in a large table. The values contained in data-name-1,
data-name-2, etc., specify parts of table records that are
arranged in ascending or descending order. The ascending or
descending order is determined according to the rules for
comparison of operands. Refer to Section 12.4.1, Comparison of
Numeric Operands and Comparison of Nonnumeric Operands. The data
names are listed in their descending order of significance.

11-35

PICTURE Clause

Function

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

General Format

{
PICTURE} . PIC IS character-strmg

Syntax Rules

1. A PICTURE clause can be specified only at the elementary item
level.

2. A character-string consists of certain allowable combinations of
characters in the COBOL character set used as symbols. The
allowable combinations determine the category of the elemen.tary
item.

3. At least one of the symbols 'A', 'X', 'Z', '9' or '*', or at
least two of the symbols '+' , '-' or '$' must be present in a
PICTURE character-string.

4. The maximum number of characters allowed in the character-string
is 30.

5. The PICTURE clause must be specified for every elementary i tern
except an index data item or a binary data item, in which case
use of this clause is prohibited.

6. PIC is an abbreviation for PICTURE.

7. The asterisk, when used as the zero suppression symbol, and the
BLANK WHEN ZERO clause cannot appear in the same entry.

General Rules

1. There are five categories of data that can be described with a
PICTURE clause: alphabetic, numeric, alphanumeric, alphanumeric
edited, and numeric edited.

2. To define an item as alphabetic:

a. Its PICTURE character-string can only contain the symbols
'A' , and 'B' .

11-36

b. Its contents, when represented in standard data format (refer
to Section 11.1), must be any combination of the 26 letters
of the English alphabet and the space from the COBOL
character set.

3. To define an item as numeric:

a. Its PICTURE character-string can only contain the symbols
'9', 'P', 'S', and 'V'. The number of digit positions that
can be described by the PICTURE character-string must range
from 1 to 18, inclusive. The PICTURE clause is omitted for
numeric items when USAGE IS BINARY is coded. Refer to "USAGE
Clause" later in this subsection.

b. If unsigned, its contents when represented in standard data
format must be a combination of the Arabic numerals '0', 'l',
'2 I, I 3', I 4 I, I 5 I, I 6 I, I 7 I, '8 I, and I 9 I; if signed, the
item can also contain a '+', '-', or other representation of
an operational sign. (Ref er to "SIGN Clause", later in this
subsection.)

4. To define an item as alphanumeric:

a. Its PICTURE character-string is restricted to
combinations of the symbols 'A', 'X', and '9', and
is treated as if the character-string contained all
PICTURE character-string that contains all 'A's or
does not define an alphanumeric item.

certain
the item
'X's. A
all '9's

b. Its contents when represented in standard data format are
allowable characters in the COBOL character set.

5. To define an item as alphanumeric edited:

a. Its PICTURE character-string is restricted to certain
combinations of the following symbols: 'A' , 'X' , '9' , 'B' ,
'0', and '/'; and must contain one of the following
combinations:

1) At least one 'B' and at least one 'X'

2) At least one '0' (zero) and at least one 'X'

3) At least one '/' (stroke) and at least one 'X'

4) At least one '0' (zero) and at least one 'A'

5) At least one '/' (stroke) and at least one 'A'.

b. The contents when represented in standard data format are
allowable characters in the COBOL character set.

11-37

6. To define an item as numeric edited:

a. Its PICTURE character-string is restricted to certain
combinations of the symbols 'B', 'I', 'P', 'V', 'Z', 'O',
' 9 ' , ' , ' , ' • ' , ' * ' , ' +' , ' - ' , 'CR' , 'DB' , and the currency
symbol. The allowable combinations are determined from the
order of precedence of symbols and the editing rules; the
following rules also apply.

1) The number of digit positions that can be represented in
the PICTURE character-string must range from 1 to 18
inclusive.

2) The character-string must contain at least one '0', 'B',
' I ' , ' Z ' , ' * ' , ' + ' , ' , ' , ' • ' , ' - ' 'CR' , ' DB ' , or the
currency symbol.

b. The contents of the character positions of these symbols that
are allowed to represent a digit in standard data format,
must be one of the numerals.

7. The size of an elementary i tern, where size means the number of
character positions occupied by the elementary item in standard
data format, is determined by the number of allowable symbols
that represent character positions. An integer that is enclosed
in parentheses following the symbols 'A' , ' , ', 'X' , '9' , 'p' ,
'z ' , ' * ' 'B ' , ' I ' , ' 0 ' , '+' , ' - ' , or the currency symbol
indicates the number of consecutive occurrences of the symbol.
Note that the following symbols can appear only once in a given
PICTURE: 'S', 'V', '.', 'CR', and 'DB'.

8. The functions of the symbols used to describe an elementary item
are explained as follows:

a. Each 'A' in the character-string represents a character
position that can contain only a letter of the alphabet or a
space.

b. Each 'B' in the character-string represents a character
position into which the space character is to be inserted.

c. Each 'P' indicates an assumed decimal scaling position and is
used to specify the location of an assumed decimal point when
the point is not within the number that appears in the data
item. The scaling position character 'P' is not counted in
the size of the data item. Scaling position characters are
counted in determining the maximum number of digit positions
(18) in numeric edited or numeric items. The scaling
position character 'P' can appear only to the left or right
as a continuous string of 'P's within a PICTURE description.
Since the scaling position character 'P' implies an assumed
decimal point (to the left of the 'P's if 'P's are the
leftmost PICTURE characters, and to the right if 'P's are the
rightmost PICTURE characters), the assumed decimal point

11-38

symbol 'V' is redundant as either the leftmost or rightmost
character within such a PICTURE description. The character
'P' and the insertion character '.' (period) cannot both
occur in the same PICTURE character-string. If, in any
operation involving conversion of data from one form of
internal representation to another, the data item being
converted is described with the PICTURE character 'P' , each
digit position described by a 'P' is considered to contain
the value zero, and the size of the data item is considered
to include the digit positions so described.

d. The letter 'S' is used in a character-string to indicate the
presence, but neither the representation nor necessarily the
position, of an operational sign. The 'S' must be written as
the leftmost character in the PICTURE. The 'S' is counted in
determining the size of the elementary i tern, in terms of
standard data format characters, unless the entry is subject
to a SIGN clause from which the optional SEPARATE CHARACTER
phrase is omitted. (Refer to "SIGN Clause", later in this
subsection.)

e. The 'V' is used in a character-string to indicate the
location of the assumed decimal point and can only appear
once in a character-string. The 'V' does not represent a
character position and, therefore, is not counted in the size
of the elementary item. When the assumed decimal point is to
the right of the rightmost symbol in the string the, 'V' is
redundant.

f. Each 'X' in the character-string is used to represent a
character position that contains any allowable character from
the COBOL character set.

g. Each 'Z' in a character-string can only be used to represent
the leftmost leading numeric character positions that are
replaced by a space character when the content of that
character position is zero. Each 'Z' is counted in the size
of the item.

h. Each '9' in the character-string represents a character
position that contains a numeral and is counted in the size
of the item.

i. Each ' O' (zero) in the character-string represents a
character position into which the numeral zero is to be
inserted. The '0' is counted in the size of the item.

j. Each '/' (stroke) in the character-string represents a
character position into which the stroke character is to be
inserted. The '/' is counted in the size of the item.

11-39

k. Each ',' (comma) in the character-string represents a
character position into which the character ' , ' is to be
inserted. This character position is counted in the size of
the item. The insertion character ',' must not be the last
character in the PICTURE character-string.

1. When the character '.' (period) appears in the
character-string it is an editing symbol that represents the
decimal point for alignment purposes and in addition,
represents a character position into whicn the character '.'
is to be inserted. The character '.' is counted in the size
of the item. For a given program the functions of the period
and comma are exchanged if the clause DECIMAL-POINT IS COMMA
is stated in the SPECIAL-NAMES paragraph. In this exchange,
the rules for the period apply to the comma, and the rules
for the comma apply to the period, wherever these characters
appear in a PICTURE clause. The insertion character'.' must
not be the last character in the PICTURE character-string.

m. The symbols '+', '-', 'CR', and 'DB' are used as editing sign
control symbols. When used, they represent the character
position into which the editing sign control symbol is to be
placed. The symbols are mutually exclusive in any one
character-string and each character used in the symbol is
counted in determining the size of the data item.

n. Each '*' (asterisk) in the character-string represents a
leading numeric character position into which an asterisk is
placed when the contents of that position is zero. Each '*'
is counted in the size of the item.

o. The curre~cy symbol in the character-string represents a
character position into which a currency symbol is to be
placed. The currency symbol in a character-string is
represented by either the currency sign <$> or the single
character specified in the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. The currency symbol is counted in
the size of the item.

Editing Rules

1. Edi ting in the PICTURE clause is either by insertion or by
suppression and replacement. There are four types of insertion
editing available:

a. Simpla insertion
b. Special insertion
c. Fixed insertion
d. Floating insertion.

There are two types of suppression and replacement editing:

a. Zero suppression and replacement with spaces
b. Zero suppression and replacement with asterisks.

11-40

2. The type of editing that can be performed upon an item is
dependent upon the category to which the item belongs. The
following table specifies the type of editing that can be
performed upon a given category:

Categ:orl: Tme of Editing:

Alphabetic Simple insertion 'B' only
Numeric None
Alphanumeric None
Alphanumeric Edited Simple insertion '0', 'B', and I/'
Ntuneric Edited All, subject to Editing Rule 3

3. Floating insertion editing and editing by zero suppression and
replacement are mutually exclusive in a PICTURE clause. Only one
type of replacement can be used with zero suppression in a
PICTURE clause.

4. Simple Insertion Editing. The ',' (conuna), 'B' (space), '0'
(zero), and 'I' (stroke) are used as the insertion characters.
The insertion characters are counted in the size of the item and
represent the position in the item into which the character is to
be inserted.

5. Special Insertion Editing. The '.' (period) is used as the
insertion character. In addition to being an insertion character
it also represents the decimal point for alignment purposes. The
insertion character used for the actual decimal point is counted
in the size of the item. The use of the assumed 4ecimal point,
represented by the symbol 'V' and the actual decimal point,
represented by the insertion character, in the same PICTURE
character-string is disallowed. The result of special insertion
editing is the appearance pf the insertion character in the item
in the same position as shown in the character-string.

6. Fixed Insertion Edi ting. The currency symbol and the editing
sign control symbols, '+', 1

-
1 'CR', 'DB', are the insertion

characters. Only one currency symbol and one editing sign
control symbol can be used in a given PICTURE character-string.
The symbols 'CR' or 'DB' represent two character positions in
determining the size of the i tern; these symbols must represent
the rightmost character positions in determining the size of the
i tern, and they must represent the rightmost character positions
that are counted in the size of the item. The symbols '+' or
' - ' , when used, must be either the leftmost or the rightmost
character position to be counted in the size of the item. The
currency symbol must be the leftmost character position to be
counted in the size of the item except that it can be preceded by
either a '+' or a 1

-
1 symbol. Fixed insertion editing results in

the insertion character occupying the same character position in
the edited item as it occupied in the PICTURE character-string.

11-41

Editing sign control symbols produce the following results
depending upon the value of the data item:

Editing Symbol in Result Result
Picture Character-string Data Item Data Item

Positive or Zero Negative

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

7. Floating Insertion Editing. The currency symbol and editing sign
control symbols '+' or '-' are the floating insertion characters
and as such are mutually exclusive in a given PICTURE
character-string.

Floating insertion editing is indicated in a PICTURE
character-string by using a string of at least two of the
floating insertion characters. This string of floating insertion
characters can contain any of the fixed insertion symbols or have
fixed insertion characters irmnediately to its right. These
simple insertion characters are part of the floating string.

The leftmost character of the floating insertion string
represents the leftmost limit of the floating symbol in the data
item. The rightmost character of the floating string represents
the rightmost limit of the floating symbols in the data item.

The second floating character from the left represents the
leftmost limit of the numeric data that can be stored in the data
item. Nonzero numeric data can replace all the characters at or
to the right of this limit.

In a PICTURE character-string, there are only two ways of
representing floating insertion editing. One way is to represent
any or all of the leading numeric character positions on the left
of the decimal point by the insertion character. The other way
is to represent all of the numeric character positions in the
PICTURE character-string by the insertion character.

If the insertion characters are only to the left of the decimal
point in the PICTURE character-string, a single floating
insertion character is placed into the character position
immediately preceding either the decimal point or the first
nonzero digit in the data represented by the insertion symbol
string, whichever is farther to the left. The character
positions preceding the insertion character are replaced with
spaces.

11-42

If all numeric character positions in the PICTURE
character-string are represented by the insertion character, the
result depends upon the value of the data. If the value is zero,
the entire data item contains spaces. If the value is not zero,
the result is the same as when the insertion character is only to
the left of the decimal point.

To avoid truncation, the minimum size of the PICTURE
character-string for the receiving data item must be the number
of characters in the sending data i tern, plus the number of
nonfloating insertion characters being edited into the receiving
data item, plus one for the floating insertion character.

8. Zero Suppression Editing. The suppression of leading zeroes in
numeric character positions is indicated by the use of the
alphabetic character 'Z' or the symbol '*' (asterisk). These
symbols are mutually exclusive in a given PICTURE
character-string. Each suppression symbol is counted in
determining the size of the item. If 'Z' is used, the
replacement character is the space; if the asterisk is used, the
replacement character is '*'·

Zero suppression and replacement are indicated in a PICTURE
character-string by using a string of one or more of the
allowable symbols to represent leading numeric character
positions that are to be replaced when the associated character
positions in the data contain zeros. 'Any of the simple insertion
characters embedded in the string of symbols, or to the immediate
right of this string, are part of the string.

In a PICTURE character-string, there are only two ways of
representing zero suppression. One way is to represent any or
all of the leading numeric character positions to the left of the
decimal point by suppression symbols. The other way is to
represent all of the numeric character positions in the PICTURE
character-string by suppression symbols.

If the suppression symbols appear only to the left of the decimal
point, any leading zero in the data that corresponds to a symbol
in the string is replaced by the replacement character.
Suppression terminates at the first nonzero digit in the data
represented by the suppression symbol string or at the decimal
point, whichever is encountered first.

If all numeric character positions in the PICTURE
character-string are represented by suppression symbols and the
value of the data is not zero, the result is the same as if the
suppression characters were only to the left of the decimal
point. If the value is zero and the suppression symbol is 'Z',
the entire data item is spaces. If the value is zero and the
suppression symbol is '*' , the data i tern is all '*' except for
the actual decimal point.

11-43

9. The symbols '+' , ' - ' , '*' , 'Z' , and the currency symbol, when
used as floating replacement characters, are mutually exclusive
within a given character-string.

Precedence Rules

The following chart shows the order of precedence when using
characters as symbols in a character-string. An 'x' at an intersection
indicates that the symbol(s) at the top of the column can precede, in a
given character-string, the symbol(s) at the left of the row. Arguments
appearing in braces indicate that the symbols are mutually exclusive.
The currency symbol is indicated by the symbol 'CS'.

Nonfloating insertion symbols '+' and '-',floating insertion symbols
'Z', '*', '+', '-', and 'CS', and the symbol 'P' appear twice in the
PICTURE Character Precedence Chart. The leftmost column and uppermost
row for each symbol represents its use to the left of the decimal point
position. The second appearance of the symbol in the chart represents
its use to the right of the decimal point position.

11-44

First Nonf loating
Symbol Insertion Symbols

Second B 0 I , . {+} {+} {CR}
Symbol {-} {-} {DB}

*

**

B x x x x x x

0 x x x x x x

I x x x x x x

, x x x x x x

. x x x x x
{+}
{-}
{+} x x x x x
{-}
{CR} x x x x x
{DB}

cs x
{Z} x x x x x
{*}
{Z} x x x x x x
{*}
{+} x x x x
1-1
{+} x x x x x
{-}

cs x x x x x

cs x x x x x x

9 x x x x x x
A x x x
x

s

v x x x x x

p x x x x x

p x

* Nonf loating Insertion Symbols
** Floating Insertion Symbols
*** Other Symbols

Floating
Insertion Symbols

cs {Z} {Z} {+} {+} cs cs
{*} {*} {-} {-}

x x x x x x x

x x x x x x x

x x x x x x x

x x x x x x x

x x x x

x x x x x

x x x x x

x x

x x x

x x

x x x

x

x x

x x x x

x x x x

x x x x

x

Figure 11-1. PICTURE Character Precedence Chart

11-45

Other
Symbols

9 A s v p p

x x x x

x x x x

x x x x

x x x x

x

x x x x

x x x x

x x

x x

x x

x x x x x
x x

x x x

x x x

x x x

REDEFINES Clause

Function

The REDEFINES clause allows the same computer storage area to be
described by different data description entries.

General Format

level-number data-name-1 REDEFINES data-name-2

NOTE

Level-number and data-name-1 are shown in the above format
to improve clarity. Level-number and data-name-1 are not
part of the REDEFINES clause.

Syntax Rules

1. The REDEFINES clause, when specified, must immediately follow
data-name-1.

2. The level numbers of data-name-1 and data-name-2 must be
identical, but must·not be 88.

3. This clause must not be used in level 01 entries in the File
Section. (Refer to General Rule 2 of "DATA RECORDS Clause" in
Section 11. 3 .1.)

4. The data description entry for data-name-2 cannot contain a
REDEFINES clause. However, data-name-2 can be subordinate to an
entry that contains a REDEFINES clause. The data description
entry for data-name-2 cannot contain an OCCURS clause. However,
data-name-2 can be subordinate to an item whose data description
entry contains an OCCURS clause. In this case, the reference to
data-name-2 in the REDEFINES clause cannot be subscripted or
indexed.

5. No entry having a level-number numerically lower than the
level-number of data-name-2 and data-name-1 can occur between the
data description entries of data-name-2 and data-name-1.

General Rules

1. Redefinition starts at data-name-2 and ends when a 77 level or a
level number less than or equal to that of data-name-2 is
encountered.

11-46

2. When the level number of data-name-1 is other than 01, it must
not specify a greater number of character positions than the data
i tern referenced by data-name-2 contains. It is important to
observe that the REDEFINES clause specifies the redefinition of a
storage area, not of the data items occupying the area.

3. Multiple redefinitions of the same character positions are
permitted. The entries giving the new descriptions of the
character positions must follow the entries defining the area
being .redefined, without intervening entries that define new
character positions. Multiple redefinitions of the same
character positions must all use the data name of the entry that
originally defined the area.

4. The entries giving the new description of the character positions
must not contain any VALUE clauses, except in condition-name
entries.

5. Multiple level 01 entries subordinate to any given level
indicator represent implicit redefinitions of the same area.
However, 01 entries subordinate to an FD may appear in any order,
regardless of the sizes of the individual entries.

11-47

SIGN Clause

Function

The SIGN clause specifies the position and mode of representation of
the operational sign when it is necessary to describe these properties
explicitly.

General Format

{
LEADING} [SIGN IS] TRAILING [SEPARATE CHARACTER]

Syntax Rules

1. The SIGN clause can be specified only for a nwneric data
description entry whose PICTURE contains the character 'S', or a
group item containing at least one such numeric data description
entry.

2. The nwneric data description entries to which the SIGN clause
applies must be described as usage DISPLAY.

3. At most, one SIGN clause can apply to any given nwneric data
description entry.

General Rules

1. The optional SIGN clause, if present, specifies the position and
mode of representation of the operational sign for the numeric
data description entry to which it applies, or for each numeric
data description entry subordinate to the group to which it
applies. The SIGN clause applies only to numeric data
description entries whose PICTURE contains the character 'S'; the
'S' indicates the presence of, but neither the representation nor
necessarily the position of, the operational sign.

2. A nwneric data description entry whose PICTURE contains the
character 'S' , but to which no SIGN clause applies, has an
operational sign. Neither the representation nor, necessarily,
the position of the operational sign is specified by the
character 'S'. In this (default) case, the compiler uses a
TRAILING SEPARATE CHARACTER sign. General rules do not apply to
such signed nwneric data items.

11-48

3. If the optional SEPARATE CHARACTER phrase is not present, then:

a. The operational sign is presumed to be associated with the
leading (or, respectively, trailing) digit position of the
elementary numeric data item.

b. The letter 'S' in a PICTURE character-string is not counted
in determining the size of the item in terms of standard data
format characters (refer to Section 11.1, Computer
Independent Data Description).

4. If the optional SEPARATE CHARACTER phrase is present, then:

a. The letter 'S' in a PICTURE character-string is counted in
determining the size of the i tern (in terms of standard data
format characters).

b. The operational sign will be presumed to be the leading (or,
respectively, trailing) character position of the elementary
numeric data item; this character position is not a digit
position.

c. The operational signs for positive and negative are the
standard data format characters '+'and'-', respectively.

5. Every numeric data description entry whose PICTURE contains the
character 'S' is a signed numeric data description entry. If a
SIGN clause applies to such an entry and conversion is necessary
for purposes of computation or comparisons, conversion takes
place automatically.

11-49

SYNCHRONIZED Clause

Function

This clause is treated as a comment by the compiler.

General Format

{
SYNCHRONIZEDl [LEFT]
SYNC f RIGHT

Syntax Rules

1. This clause can only appear with an elementary item.

2. SYNC is an abbreviation for SYNCHRONIZED.

11-50

USAGE Clause

Function

The USAGE clause specifies the format of a data item in the computer
storage.

General Format

[USAGE IS]

Syntax Rules

'BINARY '
COMPUTATIONAL
COMP
DISPLAY-WS
DISPLAY
INDEX

,-

>

1. The PICTURE character-string of a COMPUTATIONAL item can contain
only '9's, the operational sign character 'S', the implied
decimal point character 'V', and one or more 'P's. (Refer to
"PICTURE Clause", earlier in this subsection.)

2. COMP is an abbreviation for COMPUTATIONAL.

3. An INDEX data item can be referenced explicitly only in a SEARCH
or SET statement, a relation condition, the USING phrase of a
Procedure Division header, or the USING phrase of a CALL
statement.

4. The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE, and BLANK WHEN ZERO
clauses cannot be used to describe group or elementary i terns
described with the USAGE IS INDEX clause.

General Rules

1. Except for USAGE IS DISPLAY-WS, the USAGE clause can be written
at any level. If the USAGE clause is written at a group level,
it applies to each elementary item in the group. The USAGE
clause of an elementary i tern cannot contradict the USAGE clause
of a group to which the item belongs.

2. This clause specifies the manner in which a data item is
represented in the storage of a computer. It does not affect the
use of the data item, although the specifications for some
statements in the Procedure Division can restrict the USAGE
clause of the operands referred to. The USAGE clause can affect
the radix or type of character representation of the item.

11-51

3. A COMPUTATIONAL item is capable of representing a value to be
used in computations and must be numeric. If a group item is
described as COMPUTATIONAL, the elementary items in the group are
COMPUTATIONAL. The group item itself is not COMPUTATIONAL
(cannot be used in computations).

4. The USAGE IS DISPLAY clause indicates that the format of the data
is ASCII.

5. If the USAGE clause is not specified for an elementary item, or
for any group to which the item belongs, the usage is implicitly
DISPLAY.

6. An elementary item described with the USAGE IS INDEX clause is
called an index data item and contains a value that must
correspond to an occurrence number of a table element. The
elementary item cannot be a conditional variable. The INDEX item
is stored as if usage were BINARY. If a group item is described
with the USAGE IS INDEX clause the elementary items in the group
are all index data items. The group itself is not an index data
i tern and cannot be used in the SET statement or in a relation
condition.

7. An INDEX data item can be part of a group that is referred to in
a MOVE or input/output statement, in which case no conversion
takes place.

8. The external and internal format of an INDEX data i tern and a
BINARY data item is specified as a half word (2-byte) BINARY item.

9. A BINARY item is capable of representing a value to be used in
computations and is automatically defined by the compiler as two
bytes. The permissible range for a BINARY item is +32, 767 to
-32,768. If a group item is described as BINARY, the elementary
items in the group are BINARY. The group item itself is not
BINARY (cannot be used in computations).

USAGE IS DISPLAY-WS

10. The USAGE IS DISPLAY-WS clause identifies display records for
which automatic screen formatting is to occur. This is further
explained in Section 4.3.2.

11. The USAGE IS DISPLAY-WS clause can only be applied to entries in
the Working-Storage Section.

12. The level number must be an 01 entry.

13. A display picture order area (for screen control) consisting of
four bytes is generated by the compiler. (Refer to "Order Area"
in Section 4. 3. 4 and to Appendix D, Workstation Screen Order
Area.) The order area can be fetched or modified via the
ORDER-AREA OF record-name clause.

11-52

14. The automatic mapping operation does not occur until execution
time when the DISPLAY AND READ command is invoked, therefore,
data i terns in the display record cannot be directly accessed
except via the OBJECT and SOURCE clauses. However, the Field
Attribute Character for any data item can be accessed in a MOVE
statement by referring to FAC OF display-item.

11-53

VALUE Clause

Function

The VALUE clause defines the value of constants, the initial value of
working-storage items and the values associated with a condition name.

General Format

Format 1

VALUE IS {literal }
user-figurative constant

Format2

{ ~~t~MSARE} { literal-1 [{ =UGH} literal-2] } ...

Syntax Rules

1. A signed m.uneric literal must have a signed numeric PICTURE
character-string associated with it.

2. All numeric literals in a VALUE clause must have a value that is
within the range of values indicated by the PICTURE clause, and
must not have a value that would require truncation of nonzero
digits. Normumeric literals must not exceed the size indicated
by the PICTURE clause.

3. The words THROUGH and THRU are equivalent.

4. The VALUE clause cannot be used to describe items whose usage is
INDEX.

General Rules

1. The VALUE clause must not conflict with other clauses in the data
description of the item or in the data description within the
hierarchy of the item. The following rules apply.

a. If the category of the item is numeric, all literals in the
VALUE clause must be numeric. If the literal defines the
value of a working-storage item, the literal is aligned in
the data i tern according to the standard alignment rules.
(Refer to Section 11.1.6, Standard Alignment Rules.)

11-54

b. If the category of the item is alphabetic, alphanumeric,
alphanumeric edited, or numeric edited, all literals in the
VALUE clause must be nonnumeric literals. (There is an
exception to this rule for USAGE IS DISPLAY-WS records; refer
to "SOURCE or VALUE Clause" in Section 11. 3. 4.) The literal
is aligned in the data item as if the data item had been
described as alphanumeric. Editing characters in the PICTURE
clause are included in determining the size of the data item
(refer to "PICTURE Clause", earlier in this subsection) but
have no effect on initialization of the data item.
Therefore, the VALUE for an edited i tern is presented in an
edited form.

c. Initialization takes place independent of any BLANK WHEN ZERO
or JUSTIFIED clause that can be specified.

2. A figurative constant can be substituted for a literal.

3. In a condition-name entry, the VALUE clause is required. The
VALUE clause and the condition name itself are the only two
clauses permitted in the entry. The characteristics of a
condition name are implicitly those of its conditional variable.

4. Format 2 can be used only in conjunction with condition names
(level 88). Whenever the THRU phrase is used, literal-I must be
less than literal-2, literal-3 less than literal-4, and so on.

5. Rules governing the use of the VALUE clause differ with the
respective sections of the Data Division.

a. In the File Section and the Linkage Section, the VALUE clause
can be used only in condition-name entries.

b. In the Working-Storage Section, the VALUE clause can be used
to specify the initial value of any data item; in that case,
the clause causes the item to assume the specified value at
the start of the object program. If the VALUE clause is not
used in an item's description, the initial value is
undefined. The VALUE clause must be used in condition-name
entries.

6. The VALUE clause must not be stated in a data description entry
that contains an OCCURS clause, or in an entry that is
subordinate to an entry containing an OCCURS clause. This rule
does not apply to condition-name entries.

7. The VALUE clause must not be stated in a data description entry
that contains a REDEFINES clause, or in an entry that is
subordinate to an entry containing a REDEFINES clause. This rule
does not apply to condition-name entries.

11-55

8. If the VALUE clause is used in an entry at the group level, the
literal must be a figurative constant or a nonnumeric literal,
and the group area is initialized without consideration for the
individual elementary or group items contained within this
group. The VALUE clause cannot be stated at the subordinate
levels within this group.

9. The VALUE clause must not be written for a group containing items
with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE
(other than USAGE IS DISPLAY).

10. An elementary i tern described with the USAGE IS INDEX clause is
called an index data item and contains a value that must
correspond to an occurrence number of a table item. The VALUE
clause cannot be specified for index data items.

11-56

11.3.4 Workstation Screen Description Entry

Function

This entry specifies the format and contents of a screen to be
displayed by the execution of the DISPLAY AND READ statement. Each
screen is treated as one record of a workstation file defined in the File
Section. This entry also allows the programmer to control data entry to,
and data movement to and from, the workstation file.

General Format

01 record-name [USAGE IS] DISPLAY-WS

{
data-name-1}

level-number FILLER

[COLUMN NUMBER IS integer-1) [{~I~~} NUMBER IS integer-2]

[{WcruRE} IS character-string)

NEGATIVE

FROM {~ata-name-2} TO {~ata-name-3}
hteral-1 - hteral-2

POSITIVE

RANGE IS

table-name

[OBJECT IS data-name-4] [VALUE IS literal-3]
SOURCE IS data-name-5

[OCCURS integer-3 TIMES).

Syntax Rules

1. The record-name USAGE IS DISPLAY-WS clause must be the first
clause in the record description entry.

2. The data-name-1 or FILLER clauses must precede all other clauses
within their data name description entry.

3. Clauses that follow the data-name-1 or FILLER clause within the
data description entry (e.g., COLUMN, ROW, PIC, VALUE) can be in
any order.

4. The ROW clause must be specified for a group item.

11-57

5. The ROW clause and the OCCURS clause are the only clauses that
can be specified for a group item. All clauses are legal for an
elementary item.

6. The VALUE clause cannot be specified in display items in which
the OCCURS clause is specified.

7. Elementary items for which the OCCURS clause is specified must
also specify both ROW and COLUMN clauses.

8. Data names withing DISPLAY-WS cannot be qualified.

General Rules

1. Display items can be group items or elementary items. A group
item refers to a row or a group of rows; its level number can be
any number from 02 to 49. An elementary i tern refers to a field
within a row; its level number can be any number from 02 to 49.

2. If group items are not used, elementary items can refer to fields
of any specified row. (Ref er to "ROW CLAUSE", later in this
subsection.)

3. All elementary items specified within the same group item are
associated with the same row. These elementary items must not
overflow the row.

4. There is no restriction on the number of display record
definition entries included in the Working-Storage Section.

5. Areas of the display screen that are not specified will display
as blanks.

6. Blanks in modifiable fields and uninitialized modifiable fields
display as pseudo-blanks (that is, half-solid characters) . A
modifiable field is any field for which the OBJECT clause is
specified.

11-58

COLUMN Clause

~ Function

The COLUMN clause is used to define beginning column position of the
field that is to be displayed.

A nondisplaying control character (generated by the compiler),
referred to as a Field Attribute Character (FAC), occupies the column
preceding the column specified by the COLUMN clause. The FAC controls
the display attributes of the field. Default FACs are functions of the
OBJECT clause.

General Format

[COLUMN NUMBER IS integer-1]

General Rules

1. Integer-1 can be any number in the range 2 through 80. (If 1 is
specified, no field attribute character is generated.) The
attributes of the field are: low intensity, protected,
alphanumeric.

2. The COLUMN position of the end of the field to be displayed is
one less than the sum of integer-1 and the number of characters
specified for the field in the PICTURE clause.

3. If the ending column exceeds 80:

a. The field continues with Column 1 of the next line.

b. The portion of the line that overlaps to the next line is
controlled by a nominal FAC that occupies Column 0 of each
line (i.e., ahead of each line's first displayable column).
Its display attributes are: low intensity, protected,
alphanumeric.

4. At least one space must separate one field from another. If the
COLUMN clause is not specified, the field's beginning column is
automatically generated such that one space separates the field
from the ending column of the preceding field. If there is no
preceding field and the COLUMN clause is not specified, the field
begins at Column 2 of Line 1.

5. The COLUMN clause must be specified for an elementary display
item that is to OCCUR.

11-59

6. A COLUMN clause specified for a display item that OCCURS across a
row (i.e., the OCCURS clause applies to a field in a row)
indicates the starting colwnn position of the first field in the
series. The starting column of each subsequent field is two more
than the ending. column of the previous field. Thus, each field
is separated from the next field by one blank column.

7. A COLUMN clause specified for a display item that OCCURS from row
to row (i.e., the OCCURS clause applies to a row or group of rows
containing the elementary display item) indicates the starting
column position of the specified field in the first row, and in
each subsequent row to which the OCCURS clause applies.

11-60

ROW Clause

~ Function

The ROW (or LINE) clause is used to specify the row (or line) in
which display of data-name-1 is to begin.

General Format

{r,~~} NUMBER IS integer-,

General Rules

1. Integer-1 can be any number in the range 1 through 24.

2. If the ROW clause is omitted, the previous line is assumed (if no
previous line was specified, Line 1 is assumed).

3. The ROW clause must be specified for all group display items.

4. The ROW clause must be specified for elementary display items
that are to OCCUR.

11-61

PICTURE Clause

Refer to "PICTURE CLAUSE11 in Subsection 11. 3. 3, Data Description
Entry.

11-62

RANGE Clause

Function

The RANGE clause is used to specify the legal limits of user input.
The limits specified with the RANGE clause are used by the DISPLAY 1\ND
READ statement to determine legal inputs to modifiable fields.

General Format

NEGATIVE

RANGE IS FROM

General Rules

POSITIVE
table-name

f data-name-1}
"'\literal-1

TO {
data-name-2.}
literal-2

1. Table-name must reference a numeric or alphanumeric data i tern
whose description in the Data Division contains an OCCURS clause.

2. Data-name-1 and data-name-2 must be elementary data items.

3. NEGATIVE is any value less than zero.

4. POSITIVE is any value greater than zero.

5. Li teral-1 or the contents of data-name-1 must be less than or
equal to 1i teral-2 or the contents of data-name-2. The ASCII
collating sequence is used to determine which alphanumeric
character precedes another.

6. For a DISPLAY-WS i tern whose picture is alphanumeric or numeric
edited, data is validated as follows:

a. If the RANGE items are numeric, the data entered on the
screen is convereted to numeric before being validated.

b. If the RANGE items are alphanumeric, the validation is made
according to the ASCII collating sequence.

7. The picture for table-name must be of the same length and type as
that specified for the display data item.

8. Data-name-1 and data-name-2 may be qualified.

11-63

SOURCE or VALUE Clause

Function

The SOURCE clause specifies the data name from which data is
obtained for initial display. The VALUE clause defines the value of
constants and the initial contents of screen fields.

General Format

{
VALUE IS literal-1 \.
SOURCE IS data-name-1f

General Rules

1. SOURCE and VALUE clauses are not permitted for the same item.

2. The transfer of data from data-name-1 occurs at execution time in
accordance with the rules of the MOVE statement.

3. Data-name-1 cannot be subscripted, but the data description entry
for data-name-1 can contain an OCCURS clause. If the SOURCE
clause and an OCCURS clause apply to the same display item,
data-name-1 must:

a. Have the same dimensions as the corresponding data name in
the OCCURS clause.

b. Have a compatible PICTURE clause.

4. The SOURCE clause cannot be specified for a group display item.

5. Data-name-1 cannot be the name of a DISPLAY-WS record or field.

6. Aside from the exception noted in General Rule 7, the rules
governing the VALUE clause for workstation screen description
entries are the same as those given in Subsection 11.3.3 for the
VALUE clause in data description entries.

7. In a DISPLAY-WS record only, the VALUE clause can assign a
numeric literal to an item with a nonnumeric picture.

8. Data-name-1 may be qualified.

11-64

OBJECT Clause

Function

The OBJECT clause specifies the data item to which data is to be
moved after validation (refer to "DISPLAY AND READ Statement" in Section
12.5). This clause also determines display attributes for fields.

General Format

[OBJECT IS data-name-1]

General Rules

1. The transfer of data to data-name-1 occurs in accordance with the
rules of the MOVE statement.

a. If data-name-1 is numeric, the move is MOVE WITH CONVERSION
with the following exceptions.

1) The value in the object field is not aligned according to
an implied decimal point or scaling in the source field.
If the operator enters an actual decimal point from the
workstation, the data in the object field is aligned
according to it. Otherwise, the decimal point is assumed
to be positioned to the right of the last digit.

2) In moves from numeric edited screen fields, currency
signs, CR, DB, asterisks, slashes, spaces (represented by
the 'B' character symbol), and commas (or periods if
DECIMAL-POINT IS comma) are removed.

b. If data-name-1 is alphanumeric the move is MOVE.

2. Display attributes for fields are determined as follows.

a. If the OBJECT clause is not specified, the FAC is generated
as low intensity, protected, alphanumeric.

b. If the OBJECT clause is specified, the FAC is a function of
the PICTURE clause of the elementary i tern. For numeric
items, FAC is high intensity, modifiable, numeric only. For
alphanumeric items, the FAC is high intensity, modifiable,
alphanumeric,upper case.

3. Data-name-1 cannot be subscripted, but the data description entry
for data-name-1 can contain an OCCURS clause. If the OBJECT
clause and an OCCURS clause apply to the same display i tern,
data-name-1 must:

11-65

a. Have the same dimensions as the corresponding data item in
the OCCURS clause.

b. Have a compatible PICTURE clause.

4. The OBJECT clause cannot be specified for a group display item.

5. Data-name-1 cannot be the name of a DISPLAY-WS record or field.

6. Data-name-1 may be qualified.

11-66

OCCURS Clause

Function

The OCCURS clause defines a table of display items. This clause can
be used to repeat a field, a row, or a group of rows in the display.

General Format

[OCCURS integer-1 TIMES]

General Rules

1. The OCCURS clause is legal for both group and elementary display
i terns. When specified for a group i tern, this clause indicates
that a row of field(s) or a group of rows is to be repeated.
When specified for an elementary item, it indicates that a field
is to be repeated within a row.

2. An elementary item that OCCURS within a row cannot extend beyond
Column 80 on any repetition.

3. ~ group i tern that OCCURS cannot repeat a row or group of rows
enough times to cause the display picture to extend past Row 24.

4. When an elementary item OCCURS, the starting column position of
the first field in the row must be specified by the COLUMN
clause. The starting position of each subsequent field is two
more than the ending position of the previous field. Thus, each
field is separated from the next by one blank column.

5. When a group item OCCURS, placement of fields within the row (or
group of rows) is determined by the COLUMN clauses of the
elementary display items. The fields in the repeated row or
group of rows are started in the same columns as they were in the
preceding row (or relevant row within the preceding group).

6. Up to three levels of OCCURS are permitted. This provides for a
3-dimensional table.

11-67

11.3.5 Linkage Section

The Linkage Section in a program is meaningful if and only if the
object program is to function under the control of a CALL statement
(refer to "CALL Statement" in Section 12.5). The CALL statement in the
calling program must contain a USING phrase.

The Linkage Section is used for describing data that is available
through the calling program but is to be referred to in both the calling
and the called program. No space is allocated in the program for data
items referenced by data names in the Linkage Section of that program.
Procedure Division references to these data items are resolved at object
time by equating the reference in the called program to the location used
in the calling program. In the case of index names, no such
correspondence is established. Index names in the called and calling
program always refer to separate indices.

Identifiers defined in the Linkage Section of the called program can
be referenced within the Procedure Division of the called program only if
they are specified as operands of the USING phrase of the Procedure
Division header or are subordinate to such operands.

The structure of the Linkage Section is the same as that previously
described for the Working-Storage Section (refer to Section 11.3.2).
Thus, the Linkage Section begins with a section header, followed by data
description entries for noncontiguous data items and/or record
description entries.

Each Linkage Section record name and noncontiguous item name must be
unique within the called program.

Noncontiguous Linkage Storage

Items in the Linkage Section that bear no hierarchic relationship to
one another need not be grouped into records and are classified and
defined as noncontiguous elementary items. Each of these data items is
defined in a separate data description entry that begins with the special
level-number 77.

The following data clauses are required in each data description
entry:

1. Level-number

2 • Data-name

3. The PICTURE clause, or, if the PICTURE clause is omitted, the
USAGE IS INDEX or the USAGE IS BINARY clause.

Other data description clauses are optional and can be used to
complete the description of the item if necessary.

11-68

Linkage Records

Data elements in the Linkage Section that bear a definite hierarchic
relationship to one another must be grouped into records according to the
rules for formation of record descriptions. 'Any clause that is used in
an input or output record description can be used in a Linkage Section.

Initial Values

The VALUE clause must not be specified in the Linkage Section except
in condition-name entries (level 88).

11-69

11.4 Example of Data Division

DATA DIVISION.

FILE SECTION.

FD CLIENT-FILE
RECORD CONTAINS 60 CHARACTERS
LABEL RECORDS ARE STANDARD.

01 CLIENT-REC.
05 SS-NUMBERS
05 NAME
05 STATE-NAME
05 DUE-DATE.

10 MM
10 DD
10 yy

05 BALANCE
05 PAYMENT
05 PRINCIPLE
05 INTEREST
05 FILLER

PIC 9(9).
PIC X(20).
PIC X(2).

PIC 99.
PIC 99.
PIC 99.
PIC S9(5)V99 COMP.
PIC S9(5)V99 COMP.
PIC S9(5)V99 COMP.
PIC S9(3)V999 COMP.
PIC X(7).

WORKING-STORAGE SECTION.
77 LINE-CTR PIC 999 VALUE ZERO.
77 DISCOUNT PIC S9(3)V999 VALUE ZERO.

01 NEW-DATE.
05 NMM
05 NDD
05 NYY

01 CONSTANTS.

PIC 99 VALUE ZERO.
PIC 99 VALUE ZERO.
PIC 99 VALUE ZERO.

05 CONSTANT-A PIC X(8) VALUE "CONSTANT".
05 SEVEN PIC S9 VALUE +7.

01 EOF-SWITCH
88 EOF
88 NOT-EOF

LINKAGE SECTION.

01 LINKINFO.

PIC S9 VALUE +0.
VALUE +1.
VALUE +O.

05 DATE-INFO PIC 9(6).
05 DELINQUENT-NAME PIC X(20).

PROCEDURE DIVISION USING LINKINFO.

11-70

CHAPTER 12
PROCEDURE DIVISION

12.1 GENERAL DESCRIPTION

The Procedure Division must be
This division can contain program.

procedures.

included in
declaratives

every COBOL source
and nondeclarative

Declarative sections must be grouped at the beginning of the
Procedure Division preceded by the key word DECLARATIVES and followed by
the key words END DECLARATIVES. The Declaratives Section provides a
method of including procedures that are not executed as part of the
logical order of execution, but are executed when a condition occurs that
cannot normally be tested by the programmer. The Declaratives Section is
used with the USE statement. (Refer to "USE Statement" in Section 12.5.)

The key words DECLARATIVES and END DECLARATIVES must each begin in
Area A and be followed by a period. No other text can appear on the same
line.

A procedure is composed of a paragraph, a group of successive
paragraphs, a section, or a group of successive sections within the
Procedure Division. If one paragraph is in a section, then all
paragraphs must be in sections. A procedure name is a word used to refer
to a paragraph or section in the source program in which it occurs. A
procedure name consists of a paragraph name or a section name.

The end of the Procedure Division and the physical end of the program
is that physical position in a COBOL source program after which no
further procedures appear. The size of the Procedure Division cannot
exceed 512 K.

Execution begins with the first statement of the Procedure Division,
excluding declaratives. Statements are then executed in the order in
which they are presented for compilation, except where the rules indicate
some other order.

12.2 ORGANIZATION

12.2.1 Procedure Division Header

The Procedure Division is identified by and must begin with the
following header:

I PROCEDURE DIVISION [USING data-name-1 [data-name-2] ••• J.

12-1

The USING phrase is present if, and only if, the object program is to
function under the control of a CALL statement and the CALL statement in
the calling program contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division
header must be defined as a data i tern in the Linkage Section of the
program in which this header occurs, and it must have a 01 or 77 level
number.

Within a called program, Linkage Section data i terns are processed
according to their data descriptions given in the called program.

When the USING phrase is present, the object program operates as if
data-name-1 of the Procedure Division header in the called program and
identif ier-1 in the CALL statement of the calling program ref er to a
single set of data, data that is equally available to both the called and
calling programs. Their descriptions must define an equal number of
character positions; however, they need not be the same name. In like
manner, there is an equivalent relationship between data-name-2, ..• , in
the USING phrase of the called program and identif ier-2,.. • , in the
USING phrase of the CALL statement in the calling program. A data name
must not appear more than once in the USING phrase in the Procedure
Division header of the called program; however, a given identifier can
appear more than once in the same USING phrase of a CALL statement.

12.2.2 Procedure Division Body

The body of the Procedure Division must conform to one of the
following formats:

Format 1:

[DECLARATIVES.

{section-name SECTION [segment-number]. declarative-sentence.
[paragraph-name. [sentence] ••.] ••• } •..

END DECLARATIVES.]

{section-name SECTION [segment-number].

[paragraph-name. [sentence] •••] ..• } .••

Format 2:

{paragraph-name. [sentence] ... } ...

12-2

12.2.3 Statements and Sentences

There are three types of statements: conditional statements,
compiler directing statements (declaratives), and imperative statements.

Correspondingly,
sentences, compiler
sentences.

there are three types of sentences: conditional
directing sentences (declarative), and imperative

Conditional Statements and Sentences

Definition of Conditional Statement A conditional statement
specifies that the truth value of a condition is to be determined and
that the subsequent action of the object program is dependent on this
truth value.

A conditional statement is one of the following:

1. An IF or a SEARCH statement.

2. A READ statement that specifies the AT END, INVALID KEY, or
TIMEOUT phrase.

3. A WRITE statement that specifies the INVALID KEY or TIMEOUT
phrase.

4. A START, REWRITE, or DELETE statement that specifies the INVALID
KEY phrase.

5. An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY, or
SUBTRACT) that specifies the SIZE ERROR phrase.

6. A MOVE WITH CONVERSION, or ROLLBACK statement that specifies the
ON ERROR phrase.

7. A HOLD statement that specifies the TIMEOUT or ON ERROR phrase.

8. A DISPLAY AND READ statement that specifies the PFKEY or NOMOD
phras7.

Definition of Conditional Sentence -- A conditional sentence is a
conditional statement (optionally preceded by an imperative statement or
another conditional statement) terminated by a period followed by a space.

Compiler Directing (Declarative) Statements and Sentences

Definition of Compiler Directing Statement -- A compiler directing
statement consists of a compiler directing verb and its operands. The
compiler directing verbs are COPY, ENTER, and USE. A compiler directing
statement causes the compiler to take a specific action during
compilation. Refer to the USE statement in Section 12-5 for the
declarative-sentence format.

12-3

Definition of Compiler Directing Sentence -- A compiler directing
sentence is a single compiler directing statement terminated by a period
followed by a space.

Imperative Statements and Sentences

Definition of Imperative Statement An imperative statement
indicates a specific unconditional action to be taken by the object
program. An imperative statement is any statement that is neither a
conditional statement, nor a compiler directing statement. An imperative
statement can consist of a sequence of imperative statements, each
possibly separated from the next by a separator. The imperative verbs
are:

ACCEPT
ADD (1)
ALTER
CALL
CLOSE
COMPUTE (1)
DELETE (2)
DISPLAY

EXIT
FREE (4)
GO
HOLD (6)
INSPECT
MOVE
MOVE WITH CONVERSION (4)
MULTIPLY (1)

REAf) (3)

REWRITE (2)
ROLLBACK (4)
SET
START (2)
STOP
SUBTRACT (1)
WRITE (5)

DISPLAY AND ~ (7)
DIVIDE (1)

OPEN
PERFORM

(1) Without the optional SIZE ERROR phrase.
(2) Without the optional INVALID KEY phrase.
(3) Without the optional AT END, INVALID KEY, or TIMEOUT phrase.
(4) Without the optional ON ERROR phrase.
(5) Without the optional INVALID KEY or TIMEOUT phrase.
(6) Without the optional TIMEOUT or ON ERROR phrase.
(7) Without the optional PFKEY or NOMOD phrase.

When "imperative-statement" appears in the General Format of
statements, "imperative-statement" refers to that sequence of consecutive
imperative statements that must be ended by a period or an ELSE phrase
associated with a previous IF statement.

Definition of Imperative Sentence -- An imperative sentence is an
imperative statement terminated by a period followed by a space.

12-4

~\

Categories of Statements

Category

Arithmetic

Compiler­
Directing

Conditional

Data Movement

Ending

Input/Output

.ADD
COMPUTE
DIVIDE
INSPECT (TALLYING)
MULTIPLY
SUBTRACT

{

COPY
ENTER
USE

.ADD (SIZE ERROR)
CALL
COMPUTE (SIZE ERROR)
DELETE (INVALID KEY)
DISPLAY AND READ (PFKEY or NOMOD)
DIVIDE (SIZE ERROR)
HOLD (ON ERROR)
IF
MOVE WITH CONVERSION (ON ERROR)
MULTIPLY (SIZE ERROR)
READ (END or INVALID KEY)
REWRITE (INVALID KEY)

ROLLBACK (ON ERROR)
SEARCH
START (INVALID KEY)
SUBTRACT (SIZE ERROR)
WRITE (INVALID KEY)

{

ACCEPT (DATE, DAY, or TIME)
INSPECT (REPLACING)
MOVE
MOVE WITH CONVERSION

STOP

ACCEPT (identifier)
CLOSE
DELETE
DISPLAY
DISPLAY AND READ
FREE
HOLD
OPEN
RE.AD
REWRITE
ROLLBACK
START
STOP (literal)
WRITE

12-5

Inter-Program CALL
Communicating

{
ALTER
CALL

Procedure Branching EXIT
GO TO
PERFORM

{ SEARCH
Table Handling SET

12.3 ARITHMETIC EXPRESSIONS

An arithmetic expression can be an identifier of a numeric elementary
item, a numeric literal, such identifiers and literals separated by
arithmetic operators, two arithmetic expressions separated by an
arithmetic operator, or an arithmetic expression enclosed in
parentheses. Any arithmetic expression can be preceded by a unary
operator. The permissible combinations of variables, numeric literals,
arithmetic operator and parentheses are given in Table 12-1.

Those identifiers and literals appearing in an arithmetic expression
must represent either numeric elementary items or numeric literals on
which arithmetic can be performed.

12.3.1 Arithmetic Operators

There are five binary arithmetic operators and two unary arithmetic
operators that can be used in arithmetic expressions. Arithmetic
operators are represented by specific characters that must be preceded by
a space and followed by a space.

Binary Arithmetic
Operators

+

*
I

**

Meaning

Addition
Subtraction
Multiplication
Division
Exponentiation

12-6

Unary Arithmetic
Operators

+

Meaning

The effect of multiplication
by numeric literal +1

The effect of multiplication
by numeric literal -1

12.3.2 Formation and Evaluation Rules

1. Parentheses can be used in arithmetic expressions to specify the
order in which elements are to be evaluated. Expressions within
parentheses are evaluated first, and within nested parentheses,
evaluation proceeds from the least inclusive set to the most
inclusive set. When parentheses are not used, or parenthesized
expressions are at the same level of inclusiveness, the following
hierarchical order of execution is implied:

lst--Unary plus and minus
2nd--Exponentiation
3rd--Multiplication and division
4th--Addition and subtraction

2. Parentheses are used either to eliminate ambiguities in logic
where consecutive operations of the same hierarchical level
appear, or to modify the normal hierarchical sequence of
execution in expressions where it is necessary to have some
deviation from the normal precedence. When the sequence of
execution is not specified by parentheses, the order of execution
of consecutive operations of the same hierarchical level is from
left to right.

3. The ways in which operators, variables, and parentheses can be
combined in an arithmetic expression are surrunarized in Table 12-1
where the following indicators are used:

a. The letter 'P' indicates a permissible pair of symbols.
b. The character 'I' indicates an invalid pair.
c. "Variable" indicates an identifier or literal.

12-7

Table 12-1. Combination of Symbols in Arithmetic Expressions

SECOND SYMBOL
FIRST
SYMBOL Variable * I ** - + Unary + or - ()

Variable I p I I p

* I ** + - p I p p I

Unary +or - p I I p I

(p I p p I

) I p I I p

4. An arithmetic expression can only begin with the symbol '(', '+',
'-', or a variable and can only end with a ')' or a variable.
There must be a one-to-one correspondence between left and right
parentheses of an arithmetic expression such that each left
parenthesis is to the left of its corresponding right parenthesis.

5. Arithmetic expressions allow the user to combine arithmetic
operations without the restrictions on composite of operands
and/or receiving data items except for the right operand of an
exponentiation. The composite of operands must not contain more
than 18 digits.

6. The following rules apply to the evaluation of exponentiation in
arithmetic expresions:

a. The exponent must be either an integer numeric literal or a
numeric data item whose picture has no digits to the right of
the decimal point.

b. If the value of an expression to be raised to a power is
zero, the exponent must have a value greater than zero.
Otherwise, a runtime error will occur.

c. If the value of the exponent is negative, a runtime error
will occur.

7. Certain uses of arithmetic expressions utilize an intermediate
result field that may affect the precision of the final result.
Refer to Appendix G, Intermediate Results.

12-8

12.3.3 Arithmetic Statements

The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY and
SUBTRACT statements. They have several conunon features.

1. The data descriptions of the operands need not be the same; any
necessary conversion and decimal point alignment is supplied
throughout the calculation.

2. The maximwn size of each operana is 18 decimal digits. The
composite of operands specified in a statement must not contain
more than 18 decimal digits. The composite of operands is a
hypothetical data item resulting from the superimposition of
operands aligned on their decimal points.

Common Phrases and General Rules for Statement Formats

Phrases appearing frequently in the statement descriptions that
follow are the ROUNDED phrase and the SIZE ERROR phrase.

In the discussion that follows, a resultant-identifier is the
identifier that is associated with a result of an arithmetic operation.

ROUNDED Phrase

If, after decimal point alignment, the nwnber of places in the
fraction of the result of an arithmetic operation is greater than the
number of places provided for the fraction of the resultant-identifier,
truncation is relative to the size provided for the
resultant-identifier. When rounding is requested, the absolute value of
the resultant-identifier is increased by one whenever the most
significant digit of the excess is greater than or equal to five.

When the low-order integer positions in a resultant-identifier are
represented by the character 'P' in the PICTURE for that
resultant-identifier, rounding or truncation occurs relative to the
rightmost integer position for which storage is allocated.

SIZE ERROR Phrase

If, after decimal point alignment, the absolute value of a result
exceeds the largest value that can be contained in the associated
resultant-identifier, a size error condition exists. Division by 0
always causes a size error condition. The size error condition applies
only to the final results of an arithmetic operation and does not apply
to intermediate results, except in the MULTIPLY and DIVIDE statements.
If the ROUNDED phrase is specified, rounding takes place before checking
for size error. When such a size error condition occurs, the subsequent
action is as follows:

12-9

1. If the SIZE ERROR phrase is not specified and a size error
condition occurs, the value of those resultant-identifier(s)
affected is undefined. Values of resultant-identifier(s) for
which no size error condition occurs are unaffected by size
errors that occur for other resultant-identifier(s) during
execution of this operation.

2. If the SIZE ERROR phrase is specified and a size error condition
occurs, then the values of resultant-identifier(s) affected by
the size errors are not altered. After completion of the
execution of this operation, the imperative statement in the SIZE
ERROR phrase is executed.

3. If the SIZE ERROR phrase is specified and a size error occurs for
any of the operations of an ADD CORRESPONDING or SUBTRACT
CORRESPONDING statement, the imperative statement in the SIZE
ERROR phrase is not executed until all of the individual
additions or subtractions are completed.

Overlapping Operands

When a sending and a receiving item in an arithmetic statement or an
INSPECT, MOVE, or SET statement share a part of their storage areas, the
result of execution is undefined.

Incompatible Data

Except for class conditions (refer to Section 12.4.1), when the
contents of a data item are referenced in the Procedure Division and the
contents of that data item are not compatible with the class specified
for that data item by its PICTURE clause, the result of such a reference
is undefined.

12.4 CONDITIONS

Conditional expressions identify conditions that are tested to enable
the object program to select between alternate paths of control depending
upon the truth value of the condition. Conditional expressions are
specified in the IF, PERFORM and SEARCH statements. There are two
categories of conditions associated with conditional expressions: simple
conditions and complex conditions. Each can be enclosed within any
number of paired parentheses, in which case its category is not changed.

12.4.1 Simple Conditions

The simple conditions are the relation, class, condition-name, switch
status, sign, modified data tag, and figurative-constant conditions. A
simple condition has a truth value of condition-name "true" or "false".
The inclusion in parentheses of simple conditions does not change the
simple truth value.

12-10

Relation Conditions

A relation condition causes a comparison of two operands, each of
which can be the data item referenced by an identifier, a literal, or the
value resulting from an arithmetic expression. A relation condition has
a truth value of "true" if the relation exists between the operands.
Comparison of two numeric operands is permitted regardless of the formats
specified in their respective USAGE clauses. However, for all other
comparisons the operands must have the same usage. If either of the
operands is a group item, the nonnumeric comparison rules apply.

The general format of a relation condition is as follows:

{

identifier-1 }
literal-1
arithmetic-expression-1

IS [NOT] GREATER THAN
IS [NOT] LESS THAN
IS [NOT] EcliJAL TO
IS [NOT] >
IS [NOT]<
IS [NOT]=

NOTE

{

identifier-2 }
literal-2
arithmetic-expression-2

The required relational characters '>' , '<' , and '=' are
not underlined to avoid confusion with other symbols such
as '>' (greater than or equal to).

The first operand (identifier-1, literal-1, or
arithmetic-expression-1) is called the subject of the condition; the
second operand (identifier-2, literal-2, or arithmetic-expression-2) is
called the object of the condition. The relation condition must contain
at least one reference to a variable.

The relational operator specifies the type of comparison to be made
in a relation condition. A space must precede and follow each reserved
word comprising the relational operator. When used, NOT and the next key
word or relation character are one relational operator that defines the
comparison to be executed for truth value; e.g., NOT EQUAL is a truth
test for an "unequal" comparison; NOT GREATER is a truth test for an
"equal" or "less" comparison. The meanings of the relational operators
are as follows:

12-11

Meaning Relational Operator

Greater than or not greater than IS [NOT] GREATER THAN
IS [NOT] >

Less than or not less than IS [NOT] LESS THAN
IS [NOT] <

~qual to or not equal to IS [NOT] EQUAL TO
IS [NOT] =

NOTE

The required relational characters '>' , '<' , and '=' are
not underlined to avoid confusion with other symbols such
as '>' (greater than or equal to).

Comparison of Numeric Operands -- For operands whose class is
numeric, a comparison is made with respect to the algebraic value of the
operands. The length of the literal or arithmetic expression operands,
in terms of number of digits represented, is not significant. Zero is
considered a unique value regardless of the sign.

Comparison of these operands is permitted regardless of the manner in
which their usage is described. Unsigned numeric operands are considered
positive for purposes of comparison.

Comparison of Nonnumeric Operands -- For nonnumeric operands, or one
numeric and one nonnumeric operand, a comparison is made with respect to
the ASCII collating sequence of characters. An edited item is considered
nonnumeric for comparisons. Comparison of two literals is not allowed.
If one of the operands is specified as numeric, it must be an integer
data item or an integer literal. Comparisons between numeric and
nonnumeric operands are made as follows:

1. If the nonnumeric operand is an elementary data item or a
nonnumeric literal, the numeric operand is treated as though:
(1) it were moved to an elementary alphanumeric data item of the
same size (in terms of standard data format characters) as the
numeric data item; and (2) the contents of this alphanumeric data
item were then compared to the nonnumeric operand.

2. If the nonnumeric operand is a group item, the numeric operand is
treated as though: (1) it were moved to a group item of the same
size (in terms of standard data format characters) as the numeric
data item; and (2) the contents of this group item were then
compared to the nonnumeric operand.

3. A noninteger numeric operand cannot be compared to a nonnumeric
operand.

12-12

The size of an operand is the total m.unber of standard data format
characters in the operand. There are two cases to consider: operands of
equal size and operands of unequal size.

1. Operands of equal size. If the operands are of equal size,
comparison effectively proceeds by comparing characters in
corresponding character positions starting from the high order
end and continuing until either a pair of unequal characters is
encountered or the low order end of the operand is reached,
whichever comes first. The operands are determined to be equal
if all pairs of characters compare equally through the last pair,
when the low order end is reached.

The first encountered pair of unequal characters is compared to
determine their relative position in the collating sequence. The
operand that contains the character that is positioned higher in
the collating sequence is considered to be the greater qperand.

2. Operands of unequal size. If the operands are of unequal size,
comparison proceeds as though the shorter operand were extended
on the right by sufficient spaces to make the operands of equal
size.

Comparisons Involving Index Names and/or Index Data Items -- Relation
tests can be made between:

1. The values associated with two index names. The result is the
same as if the corresponding occurrence numbers were compared.

2. The value of an index name and a data item (other than an index
data item) or literal. The occurrence number that corresponds to
the value of the index name is compared to the data i tern or
literal.

3. An index data item and another index data item or the value of an
index name. The actual values are compared without conversion.

4. The comparison of an index data item with any data item or
literal not specified in Rule 3 is illegal. In IF statements
involving an index data item, the index data item may not be the
operand of an arithmetic expression. For example,

IF INDX-ITEM = 3 * COMP-ITEM

is a legal statement, but

IF INDX-ITEM * 3 = 3

is not legal.

Comparisons Involving Binary Data Items -- Relation tests can be made
between binary data items and any other integer data item.

12-13

Class Conditions

The class condition determines whether the operand is numeric, that
is, consists entirely of the characters 'O' , '1' , '2' , '3' , • . • , '9' ,
with or without the operational sign, or alphabetic, that is, consists
entirely of the characters 'A', 'B', 'C',... , 'Z', or space. The
general format for the class condition is as follows:

The usage of the operand being tested must be described as DISPLAY.
When used, NOT and the next key word specify one class condition that
defines the class test to be executed for truth value; e.g., NOT NUMERIC
is a truth test for determining that an operand is nonnumeric.

The NUMERIC test cannot be used with an item whose data description
describes the item as alphabetic or as a group item composed of
elementary items whose data description indicates the presence of
operational sign(s). If the data description of the item being tested
does not indicate the presence of an operational sign, the i tern being
tested is determined to be numeric only if the contents are numeric and
an operational sign is not present. If the data description of the item
does indicate the presence of an operational sign, the item being tested
is determined to be numeric only if the contents are numeric and a valid
operational sign is present. Valid operational signs for data i terns
described with the SIGN IS SEPARATE clause are the standard data format
characters, '+' and '-' Refer to "SEPSGN" in Appendix B for a
discussion of what constitutes valid sign(s) for data items not described
with the SIGN IS SEPARATE clause.

The ALPHABETIC test cannot be used with an item whose data
description describes the item as numeric. The item being tested is
determined to be alphabetic only if the contents consist of any
combination of the alphabetic characters 'A' through 'Z' and the space.

Condition-Name Conditions (Conditional Variable)

In a condition-name condition, a conditional variable is tested to
determine whether or not its value is equal to one of the values
associated with a condition-name. The general format for the
condition-name condition is as follows:

condition-name

If the condition name is associated with a range or ranges of values,
then the conditional variable is tested to determine whether or not its
value falls in this range, including the end values.

12-14

~
' I

The rules for comparing a conditional variable with a condition-name
value are the same as those specified for relation conditions (refer to
"Relation Conditions" earlier in this subsection).

The result of the test is true if one of the values corresponding to
the condition name equals the value of its associated conditional
variable.

Switch-Status Conditions

A switch-status condition determines the ON or OFF status of a
switch. The switch and the ON or OFF value associated with the condition
must be named in the SPECIAL-NAMES paragraph of the Environment
Division. The general format for the switch-status condition is:

[condition-name

The result of the test is true if the switch is set to the specified
position corresponding to the condition name.

Sign Conditions

The sign condition determines whether or not the algebraic value of
an arithmetic expression is less than, greater than, or equal to zero.
The general format for a sign condition is as follows:

{
POSITIVE}

arithmetic-expression IS [NOT] NEGATIVE
ZERO

When used, NOT and the next key word specify one sign condition that
defines the algebraic test to be executed for truth value; e.g., NOT ZERO
is a truth test for a nonzero (positive or negative) value. An operand
is positive if its value is greater than zero, negative if its value is
less than zero, and zero if its value is equal to zero. The arithmetic
expression must contain at least one reference to a variable.

Modified Data Tag Conditions

When a field of the workstation screen is modified by the user, Bit 1
of its FAC is set to 1. This bit is referred to as the modified data tag
(MDT). It can be tested to determine if modification has been made to
the associated field. The general format for the MDT condition is as
follows:

FAC OF display-item AL TEAED

12-15

The result of the test is true if Bit 1 of the specified FAC is set
to 1.

Figurative Constant Conditions

A user-figurative-constant may be defined to test a bit or any
combination of bits in any 1-byte item. The general format for
figurative constant conditions is as follows:

figurative-constant {
IN } {identifier }
OF FAC OF display-item IS [NOT) { ~F}

The ON condition is true if the bi ts are set to 1 in the FAC or
identifier are those bits corresponding to the bits set to 1 in the
user-figurative-constant.

12.4.2 Complex Conditions

A complex condition is formed by combining simple conditions,
combined conditions and/or complex conditions with logical connectors
(logical operators AND and OR) or negating these conditions with logical
negation (the logical operator NOT). The truth value of a complex
condition, whether parenthesized or not, is that truth value which
results from the interaction of all the stated logical operators on the
individual truth values of simple conditions, or the intermediate truth
values of conditions logically connected or logically negated.

The logical operators and their meanings are:

Logical Operator

Logical Operator

OR

NOT

Meaning

Logical conjunction; the truth value is true if
both of the conjoined conditions are true; false
if one or both of the conjoined conditions is
false.

Meaning

Logical inclusive OR; the truth value is true if
one or both of the included conditions is true;
false if both included conditions are false.

Logical negation or reversal of truth value; the
truth value is true if the condition is false;
false if the condition is true.

The logical operators must be preceded by a space and followed by a
space.

12-16

Negated Simple Conditions

A simple condition is negated through the use of the logical operator
NOT. The negated simple condition effects the opposite truth value for a
simple condition. Thus, the truth value of a negated simple condition is
true if and only if the truth value of the simple condition is false; the
truth value of a negated simple condition is false if and only if the
truth value of the simple condition is true. The inclusion in
parentheses of a negated simple condition does not change the truth value.

The general format for a negated simple condition is:

NOT simple-condition

Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one of
the logical operators AND or OR. The general format of a combined
condition is:

condition{{~~D} condition} ...

Where "condition" can be:

1. A simple condition

2. A negated simple condition

3. A combined condition

4. A negated combined condition, i.e., the NOT logical operator
followed by a combined condition enclosed within parentheses

5. Combinations of the previous four, specified according to the
rules summarized in Table 12-2.

Although parentheses need never be used when either AND or OR (but
not both) is used exclusively in a combined condition, parentheses can be
used to effect a final truth value when a mixture of AND, OR and NOT is
used. (Ref er to Table 12-2 and Section 12. 4. 3, Condi ti on Evaluation
Rules.)

Table 12-2 indicates the ways in which conditions and logical
operators can be combined and parenthesized. There must be a one-to-one
correspondence between left and right parentheses such that each left
parenthesis is to the left of its corresponding right parenthesis.

12-17

Table 12-2. Combinations of Conditions, Logical Operators, and Parentheses

Location In a left-to-right sequence of elements:
in

Given the following conditional Element, when not Element, when not
element expression first, may be last, may be

immediately immediately
First Last preceded followed

by only: by only:

simple-condition Yes Yes OR, NOT, AND, (OR, AND,)

OR or AND No No simple-condition,) simple-condition,
NOT, (

NOT Yes No OR, AND, (simple-condition,(

(Yes No OR, NOT, AND, (simple-condition,
NOT, (

) No Yes simple-condition,) OR, AND,)

The element pair "OR NOT" is permissible while the pair "NOT OR" is
not permissible; "NOT C" is permissible while "NOT NOT" is not
permissible.

Abbreviated Combined Relation Conditions

When simple or negated simple relation conditions are combined with
logical connectives. in a consecutive sequence such that a succeeding
relation condition contains a subject or subject and relational operator
that is common with the preceding relation condition, and no parentheses
are used within such a consecutive sequence, any relation condition
except the first may be abbreviated by either of the following:

1. The omission of the subject of the relation condition

2. The omission of the subject and relational operator of the
relation condition.

The format for an abbreviated combined relation condition is:

relation-condition {{~~0} [NOT] [relational-operator] object} ...

12-18

~'

Within a sequence of relation conditions, both forms of abbreviation
can be used. The effect of using such abbreviations is as if the last
preceding stated subject were inserted in place of the omitted subject,
and the last preceding stated relational operator were inserted in place
of the omitted relational operator. The result of such implied insertion
must comply with the rules of Table 12-2. This insertion of an omitted
subject and/or relational operator terminates once a complete simple
condition is encountered within a complex condition.

The interpretation applied to the use of the word NOT in an
abbreviated combined relation condition is as follows:

1. If the word inunediately following NOT is GREATER, >, LESS, <,
EQUAL, or =, then the NOT participates as part of the relational
operator.

2. otherwise, the NOT is interpreted as a logical operator, and,
therefore, the implied insertion of subject or relational
operator results in a negated relation condition.

Some examples of abbreviated combined and negated combined relation
conditions and expanded equivalents follow.

Abbreviated Combined
Relation Condition

a > b AND NOT < c OR d

a NOT EQUAL b OR c

NOT a = b OR c

NOT Ca GREATER b OR < c)

NOT (a NOT > b AND c AND
NOT d)

12.4'.3 Condition Evaluation Rules

Expanded Equivalent

((a > b) AND (a NOT < c)) OR (a NOT <
d)

Ca NOT EQUAL b) OR Ca NOT EQUAL c)

(NOT Ca= b)) OR Ca= c)

NOT ((a GREATER b) OR (a < c))

NOT ((a NOT > b) AND (a NOT > c) AND
(NOT (a NOT > d)))

Parentheses can be used to specify the order in which individual
conditions of complex conditions are to be evaluated when it is necessary
to depart from the implied evaluation precedence. Conditions within
parentheses are evaluated first, and, within nested parentheses
evaluation proceeds from the least inclusive condition to the most
inclusive condition. When parentheses are not used, or parenthesized
conditions are at the same level of inclusiveness, the following
hierarchical order of logical evaluation is implied until the final truth
value is determined.

1. Values are established for arithmetic expressions. (Refer to
Section 12.3.2., Formation and Evaluation Rules)

12-19

2. Truth values for simple conditions are established.

3. Truth values for negated simple conditions are established.

4. Truth values for combined conditions are established in the
following order.

1st -- AND logical operators
2nd -- OR logical operators

5. Truth values for negated combined conditions are established.

6. When the sequence of evaluation is not completely specified by
parentheses, the order of evaluation of consecutive operations of
the same hierarchical level is from left to right.

12-20

12.5 PROCEDURE DIVISION STATEMENTS

ACCEPT Statement

Function

The ACCEPT statement causes low volume data to be made available
to the specified data item.

General Format

Format 1
ACCEPT identifier-1 [identifier-2] ••.

Format2

ACCEPT identifier FROM {g~~E}
TIME

General Rules

Format 1

1. The ACCEPT statement causes the transfer of alphanumeric data by
issuing a request that can be fulfilled through a procedure or by
the operator's response to a system prompt. If the data is not
available from a procedure specification, the workstation
operator will be prompted for it. The character-string from the
procedure ENTER statement or from the workstation replaces the
contents of the data item referenced by identifier-1,
identifier-2, ..•. No editing, validation, or conversion of the
input data takes place.

2. Any workstation file defined by the program is not affected by
the identifier data provided by an operator response at the
workstation, unless that identifier is contained in a screen
record entry of that workstation file.

3. If the size of the receiving data item exceeds 68 characters, the
transferred data is stored aligned to the left in the receiving
data item.

4. For USAGE IS BINARY or COMPUTATIONAL i terns, the 1 ength of the
data entry field displayed on the screen will be equivalent to
the internal length of the data item. Data transferred from the
screen to storage wi 11 not be converted to binary or packed
decimal format.

12-21

5. The compiler accepts nonnumeric data for a field whose PICTURE is
nwneric.

6. Up to 16 separate data items can be accepted.

7. In the Procedure Language entry, ACCEPT is used as the parameter
reference name, and the identifier (right truncated to eight
characters) is used as the keyword for the operator prompt.

Format 2

NOTE

If data conversion or validation of numeric input is
desired, the programmer should:

1. Declare a dummy alphanumeric variable to be used in the
Accept statement.

2. Declare a target variable of the required type.

3. Use MOVE WITH CONVERSION, after ACCEPT, to assign the
desired value to the target variable.

For example:

01 DUMMY
01 NUMB

ACCEPT DUMMY

PIC XX.
PIC 99 COMP.

MOVE WITH CONVERSION DUMMY TO NUMB
ON ERROR .••.

8. The ACCEPT statement causes the information requested to be
transferred to the data item specified by the identifier
according to the rules of the MOVE statement. DATE, DAY and TIME
are conceptual data i terns and, therefore, must not be described
in the COBOL program.

9. DATE is composed of the data elements year of century, month of
year, and day of month. The sequence of the data element codes
is from high order to low order (left to right), year of century,
month of year, and day of month. Therefore, July l, 1983 would
be expressed as 830701. DATE, when accessed by a COBOL program,
behaves as if it had been described in the COBOL program as an
unsigned, elementary, numeric integer six digits in length.

12-22

10. DAY is composed of the data elements year of century and day of
year. The sequence of the data element codes is from high order
to low order (left to right) year of century, day of year.
Therefore, July l, 1983 would be expressed as 83182. DAY, when
accessed by a COBOL program, behaves as if it had been described
in a COBOL program as an unsigned, elementary, numeric integer
five digits in length.

11. TIME is composed of the data elements hours, minutes, seconds,
and hundredths of a second. TIME is based on elapsed time after
midnight on a 24-hour clock basis. Thus, 2:41 p.m. would be
expressed as 14410000. TIME, when accessed by a COBOL program
behaves as if it had been described in a COBOL program as an
unsigned, elementary, numeric integer eight digits in length.
The minimum value of TIME is 00000000; the maximum value of TIME
is 23595999.

12-23

ADD Statement

Function

The ADD statement causes two or more numeric operands to be summed
and the result to be stored.

General Format

Format 1
ADD { identifier-1 } [i~entifier-2] ... TO identifier-m [ROUNDED]
-- literal-1 literal-2 -

[ON SIZE ERROR imperative-statement]

Format 2
ADD { identifier-1 } { identifier-2} [identifier-3 ...]
-- literal-1 literal-2 literal-3

GIVING identifier-m [ROUNDED]
[ON SIZE ERROR imperative-statement]

Format 3

ADD {CORRESPONDING } identifier-1 TO identifier-2 [ROUNDED]
- CORR -

[ON SIZE ERROR imperative statement]

Syntax Rules

1. In Formats 1 and 2, each identifier must ref er to an elementary
numeric item, except that in Format 2 the identifier following
the word GIVING must refer to either an elementary numeric item
or an elementary numeric edited item. In Format 3, each
identifier must refer to a group item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits
(refer to Subsection 12.3.3, Arithmetic Statements).

a. In Format 1 the composite of operands is determined by using
all of the operands in a given statement.

b. In Format 2 the composite of operands is determined by using
all of the operands in a given statement, excluding the
identifier that follows the word GIVING.

12-24

c. In Format 3 the composite of operands is determined
separately for each pair of corresponding data items.

4. CORR is an abbreviation for CORRESPONDING.

General Rules

1. Refer to "ROUNDED Phrase", "SIZE ERROR Phrase", and "Overlapping
Operands" in Subsection 12.3.3, Arithmetic Statements, and the
CORRESPONDING Phrase in Subsection 11.2.1.

2. If Format 1 is used, the values of the operands preceding the
word TO are added together, then the sum is added to the current
value of identifier-m, and the result stored immediately into
identif ier-m.

3. If Format 2 is used, the values of the operands preceding the
word GIVING are added together, then the sum is stored as the new
value of identifier-m, the resultant-identifiers.

4. When ADD is used, enough places are carried so that no
significant digits are lost during execution.

5. If Format 3 is used, data items in identifier-1 are added to and
stored in corresponding data items in identifier-2.

Examples of ADD Statement

ADD INVENTORY-TOTAL RECEIVED-TOTAL GIVING NEW-INVENTORY-TOTAL

The values of INVENTORY-TOTAL and RECEIVED-TOTAL are added and the
sum placed in NEW-INVENTORY-TOTAL.

ADD VOLl VOL2 VOL3 GIVING VOL4

The sum of VOLl, VOL2 and VOL3 is placed in VOL4.

ADD LDATA TO RDATA ON SIZE ERROR GO TO ERR-MESSAGE

LDATA is added to RDATA and the sum is placed in RDATA. If the
length of the sum exceeds the described length of RDATA, a SIZE ERROR
condition exists and control is passed to ERR-MESSAGE.

ADD CORR FILEl TO FILE2.

Elementary items from FILEl are added to and stored in corresponding
elementary data items in FILE2.

12-25

ALTER Statement

Function

The ALTER statement modifies a predetermined sequence of operations.

General Format

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2 ...

Syntax Rules

1. Each procedure-name-1 is the name of a paragraph that contains a
single sentence consisting of a GO TO statement without the
DEPENDING phrase.

2. Each procedure-name-2 is the name of a paragraph or section in
the Procedure Division.

General Rules

1. Execution of the ALTER statement modifies the GO TO statement in
the paragraph named procedure-name-1, so that subsequent
executions of the modified GO TO statements cause transfer of
control to procedure-name-2.

12-26

I~

CALL Statement

~ Function

The CALL statement causes control to be transferred from one object
program to another, within the run unit.

General Format

CALL literal-1 [USING identifier-1 [identifier-2] •••]

Syntax Rules

I. Literal-I must be a nonnwneric literal.

2. The USING phrase is included in the CALL statement only if there
is a USING phrase in the Procedure Division header of the called
program. The nwnber of operands in each USING phrase must be
identical.

3. Each of the operands in the USING phrase must have been defined
as a data item in the File Section, Working-Storage Section, or
Linkage Section.

4. Literal-1 can be a maximwn of eight characters. The first
character must be alphabetic and the rest can be alphanwneric.
Literal-I must not be a reserved word.

5. Literal-1 specifies the entry-point name associated with the
called program. This name must agree with the program-ID of the
called program (refer to Section 9.2.1, PROGRAM-ID Paragraph).

General Rules

1. The program whose name is specified by the value of literal-1 is
the called program; the program in which the CALL statement
appears is the calling program.

2. The execution of a CALL statement causes control to pass to the
called program.

3. A called program is in its initial state the first time it is
called within a run unit.

On all other entries into the called program, . the state of the
program remains unchanged from its state when last exited. This
includes all data fields, and the status and positioning of all
files.

12-27

4. Called programs can contain CALL statements. However, a called
program must not contain a CALL statement that directly or
indirectly calls the calling program. .~

5. The identifiers specified by the USING phrase of the CALL
statement indicate those data items available to a calling
program that can be used in the called program. The order of
appearance of the identifiers in the USING phrase of the CALL
statement and the USING phrase in the Procedure Di vision header
is critical. Identifiers appearing in the same relative position
in the respective USING phrases refer to a single set of data
that is available to both the called and the calling program.
The correspondence is positional, not by name. In the case of
index names, no such correspondence is established. Index names
in the called and calling program always refer to separate
indices.

6. Upon the return from a CALLED program, the RETURN-CODE is set.

7. Refer to Appendix H, Passing Parameters to COBOL Subroutines, for
further rules governing the use of the CALL statement.

Example of CALL Statement

IF ERROR-COUNT IS GREATER THAN 10
THEN CALL "ERRORRTN" USING ERROR-COUNT
ELSE GO TO STEP-ONE.

DISPLAY ERROR-COUNT.

The name of the subroutine (subprogram) is ERRORRTN. ERRORRTN is
CALLed only if the value of ERROR-COUNT is greater than 10, in which case
all of the code included in the program ERRORRTN is executed. Control
then returns to the calling program, at the first statement following the
CALL (DISPLAY ERROR-COUNT).

12-28

CLOSE Statement -- for Consecutive Files

~ Function

The CLOSE statement terminates the processing of reels/units and
files with optional rewind and/or lock or removal where applicable.

General Format

CLOSE file-name-1

file-name-2

Syntax Rules

t{
REEL} [WITH NO REWIND]]
UNIT FOR REMOVAL

WITH {NO REWIND}
LOCK

REEL} [WITH NO REWIND]
UNIT FOR REMOVAL

WITH {NO REWIND}
LOCK

1. The REEL or UNIT phrase can only be used for tape files.

2. The files referenced in the CLOSE statement need not all have the
same organization or access.

General Rules

1. A CLOSE statement can only be executed for a file in an open mode.

2. When the LOCK phrase is specified, the file cannot be opened
again during execution of this run unit.

3. The REEL/UNIT phrase, for magnetic tape devices, causes the next
executed READ statement for that file to make available the next
data record on the new reel/unit. If no additional reel units
are available, the end-of-file condition exists. For output
files, the next executed WRITE statement that references that
file directs the next logical data record to the next reel/unit
of the file.

4. The REWIND phrase causes the current reel device to be positioned
at its physical beginning.

5. The terms REEL and UNIT are synonymous and completely
interchangeable in the CLOSE statement.

12-29

6. The terms REEL, UNIT, FOR REMOVAL and WITH NO REWIND are ignored
by the operating system for all devices except magnetic tape.

7. If a CLOSE statement without the REEL or UNIT phrase has been
executed for a file, no other statement can be executed that
references that file, either explicitly or implicitly, unless an
intervening OPEN statement for that file is executed.

8. Following the successful execution of a CLOSE statement without
the REEL or UNIT phrase, the record area associated with
file-name is no longer available. The unsuccessful execution of
such a CLOSE statement leaves the availability of the record area
undefined.

9. The WITH NO REWIND and FOR REMOVAL phrases have no effect at
object time if they do not apply to the storage media on which
the file resides.

10. When a STOP RUN statement is executed the operating system
attempts to close any files in the open mode.

12-30

,t*"'\

CLOSE Statement -- for Indexed and Relative Files

~ Function

The CLOSE statement terminates the processing of files with an option
of locking the files from further processing during the current program
execution.

General Format

CLOSE { file-name-1 [WITH LOCK] } ...

Syntax Rules

1. Files referenced in the CLOSE statement need not have the same
organization or access.

General Rules

1. A CLOSE statement can only be executed for a file in the open
mode.

2. If the WITH LOCK phrase is specified, the file is closed and
cannot be opened again during the current program execution.

3. The operating system attempts to close any open files when a STOP
RUN statement is executed.

4. If a CLOSE statement has been executed for a file, no other
statement can be executed that references that file, either
explicitly or implicitly, unless an intervening OPEN statement
for that file is executed.

5. Following the successful execution of a CLOSE statement, the
record area associated with file-name-1 is no longer available.
The unsuccessful execution of such a CLOSE statement leaves the
availability of the record area Wldefined.

12-31

COMPUTE Statement

Function

The COMPUTE statement assigns to one or more data items the value of
an arithmetic expression.

General Format

COMPUTE identifier-1 [ROUNDED 1 = arithmetic-expression

[ON SIZE ERROR imperative-statement]

Syntax Rules

1. Identifiers that appear only to the left of '=' must refer to
either an elementary numeric item or an elementary numeric edited
item.

General Rules

1. Refer to "ROUNDED Phrase", "SIZE ERROR Phrase", and "Overlapping
Operands" in Subsection 12.3.3, Arithmetic Statements.

2. An arithmetic expression consisting of a single identifier or
literal provides a method of setting the values of identifier-I
equal to the value of the single identifier or literal.

3. The COMPUTE statement allows the user to combine arithmetic
operations without the restrictions on composite of operands
and/or receiving data items imposed by the arithmetic statements
ADD, SUBTRACT, MULTIPLY and DIVIDE. (Refer to each statement in
this section and Subsection 12.3.3, Arithmetic Statements.)

4. For techniques used in handling arithmetic expressions, refer to
Appendix G, Intermediate Results.

Example of COMPUTE Statement

COMPUTE RESULT ROUNDED = (A * (B - C)) + D

C is subtracted from B to give n. A is then multiplied by n and this
product is added to D. The sum rounded is placed in RESULT.

12-32

COPY Statement

Function

The COPY statement incorporates text into any di vision of a COBOL
source program.

COBOL libraries contain library texts that are available to the
compiler for copying at compile time. The effect of the interpretation
of the COPY statement is to insert text into the source program, where it
is treated by the compiler as part of the source program.

COBOL library text is placed on the COBOL library by a text editor or
other program as a function independent of the COBOL program.

General Format

COPY {f~le-name} [{IN }{l~brary-name} [{~} {~olume-name }]]
hteral-1 OF hteral-2 ON llteral-3 .

Syntax Rules

1. The COPY statement must be preceded by a space and terminated by
the separator period.

2. File-name cannot be a reserved word. Library-name and
volwne-name cannot be reserved words, except that library-name
may be LIBRARY.

3. A COPY statement can occur in the source program anywhere a
character-string or a separator may occur except that a COPY
statement must not occur within a COPY statement.

4. COPY statements are not restricted to the Procedure Division.
They are permitted in all parts of the source program.

5. If more than one COBOL library is available during compilation,
file-name must be qualified by either library-name or volume-name.

6. Within one COBOL library, each file name must be unique.

7. Literal-I, -2, and -3 must be nonnumeric literals.

12-33

General Rules

1. The compilation of a source program containing COPY statements is
logically equivalent to processing all COPY statements prior to
the processing of the resulting source program.

2. The effect of processing a COPY statement is that the library
text associated with file-name is copied into the source program,
logically replacing the entire COPY statement, beginning with the
reserved word COPY and inclusive of the punctua·tion character
period.

3. The library text is copied unchanged.

4. Comment lines appearing in the library text are copied into the
source program unchanged.

5. Debugging lines are permitted within library text. If a COPY
statement is specified on a debugging line, then the text that is
the result of the processing of the COPY statement appears as
though it were specified on debugging lines with the following
exception: comment lines in library text appear as comment lines
in the resultant source program.

6. The text produced as a result of the complete processing of a
COPY statement must not contain a COPY statement.

7. The syntactic correctness of the library text cannot be
independently determined. The syntactic correctness of the
entire COBOL source program cannot be determined until all COPY
statements have been completely processed.

8. Library text must conform to the rules for COBOL reference format.

9. If library-name is not specified, the default input library name
is used. If no default input library has been provided, the
default library of LIBRARY is provided. If the file is not in
the specified or default library, the system issues an operator
prompt requesting the correct file name, library name, and volume
name of the file to be copied.

10. The operator is prompted for the volume if this information is
not supplied with the default input library name. There is no
program control over the value of volume, as there is with value
of file-name and library-name.

12-34

Example of COPY Statement

CALC-INTEREST.
COPY INTEREST-ROUTINE OF GS.
IF INTEREST NOT GREATER THAN ZERO

THEN GO TO NEXT-ENTRY
ELSE NEXT SENTENCE.

This program requests that the section of code contained in
INTEREST-ROUTINE of the GS library be inserted into the program at
compile time. If INTEREST-ROUTINE contains the following code,

COMPUTE TOTAL-AMOUNT = PAYMENTS + EARNINGS.
COMPUTE ANNUAL-TOTAL = 12 * TOTAL-AMOUNT.
COMPUTE INTEREST =ANNUAL-TOTAL * .053.

then the code that is actually compiled is:

CALC-INTEREST.
COPY INTEREST-ROUTINE OF GS.
COMPUTE TOTAL-AMOUNT = PAYMENTS + EARNINGS.

COMPUTE ANNUAL-TOTAL = 12 * TOTAL-AMOUNT.
COMPUTE INTEREST = ANNUAL-TOTAL * .053.
IF INTEREST NOT GREATER THAN ZERO

THEN GO TO NEXT-ENTRY
ELSE NEXT SENTENCE.

12-35

DELETE Statement -- for Indexed Files

Function

The DELETE statement logically removes a record from a mass storage
file.

General Format

DELETE file-name RECORD [INVALID KEY imperative-statement]

Syntax Rules

1. The INVALID KEY phrase must not be specified for a DELETE
statement that references a file in SEQUENTIAL or DYNAMIC access
mode.

2. The INVALID KEY phrase must be specified for a DELETE statement
that references a file that is in RANDOM access mode and for
which an applicable USE procedure is not specified.

General Rules

1. The file named by file-name must be an indexed file.

2. The associated file must be open in the I-0 or shared mode at the
time of the execution of this statement.

3. For files in the SEQUENTIAL access mode, the last input/output
statement executed for file-name prior to the execution of the
DELETE statement must have been a successfully executed READ WITH
HOLD statement. The operating system logically removes from the
file the record that was accessed by that READ statement.

4. For a file in RANDOM access mode, the operating system logically
removes from the file the record identified by the contents of
the primary record key associated with file-name. If the file
does not contain the record specified by the key, an INVALID KEY
condition exists.

5. The execution of the DELETE statement causes the value of the
specified FILE STATUS data item (if any) associated with
file-name to be updated.

6. After the successful execution of a DELETE statement, the
identified record has been logically removed from the file and
can no longer be accessed.

7. The execution of a DELETE statement does not affect the contents
of the record area associated with file-name.

12-36

8. The current record pointer is not affected by the execution of a
DELETE statement.

12-37

DELETE Statement -- for Relative Files

Function

The DELETE statement logically removes a record from a mass storage
file.

General Format

DELETE file-name RECORD [INVALID KEY imperative-statement]

Syntax Rules

1. The INVALID KEY phrase must not be specified for a DELETE
statement that references a file in SEQUENTIAL access mode.

2. The INVALID KEY phrase must be specified for a DELETE statement
that references a file that is in RMIDOM or DYNAMIC access mode
and for which an applicable USE procedure is not specified.

General Rules

1. The file named by file-name must be a relative file.

2. The associated file must be open in the I-0 mode at the time of
the execution of this statement.

3. For files in the SEQUENTIAL access mode, the last input/output
statement executed for file-name prior to the execution of the
DELETE statement must have been a successfully executed READ
statement. The operating system logically removes from the file
the record that was accessed by that READ statement.

4. For a file in RANDOM or DYNAMIC access mode, the operating system
logically removes from the file the record identified by the
contents of the RELATIVE KEY data item associated with
file-name. If the file does not contain the record specified by
the key, an INVALID KEY condition exists.

5. The execution of the DELETE statement causes the value of the
specified FILE STATUS data item (if any) associated with
file-name to be updated.

6. After the successful execution of a DELETE statement, the
identified record has been logically removed from the file and
can no longer be accessed.

12-38

7. The execution of a DELETE statement does not affect the contents
of the record area associated with file-name.

8. The current record pointer is not affected by the execution of a
DELETE statement.

12-39

DISPLAY Statement

Function

The DISPLAY statement causes low volume data to be transferred to the
workstation.

General Format

DISPLAY {i~entifier-1}
hteral-1

Syntax Rules

[
identifier-2]
literal-2 · •·

1. Each literal can be any figurative constant.

2. The usage of the identifier should be DISPLAY and must not be
INDEX.

3. If the literal is nwneric, it must be an unsigned integer.

General Rules

1. The DISPLAY statement causes the contents of each operand to be
transferred to the workstation in the order listed. Program
execution is then suspended until the operator acknowledges the
message by pressing the ENTER key. If the workstation is OPEN as
a file, the contents of the screen are saved before the message
is displayed and are restored when the operator presses ENTER.

2. A maximum of 79 characters are displayed on each workstation row
up to a maximum of 18 rows.

3. When a DISPLAY statement contains more than one operand, the size
of the sending item is the stun of the sizes associated with the
operands, and the values of the operands are transferred in the
sequence in which the operands are encountered.

4. If a figurative constant is specified as one of the operands only
a single occurrence of the figurative constant is displayed.

12-40

'~

DISPLAY AND READ Statement

Function

The DISPLAY AND READ statement automatically controls the movement of
data to be displayed on and read from the workstation screen. This
statement, with its associated phrases, moves values from the specified
fields to the display location. The operator can input or modify any
displayed value. DISPLAY AND READ can verify the operator response and
move the displayed value to a specified data field. For further
explanation of this statement, refer to Subsection 4.3.3, Procedure
Division Requirements for DISPLAY AND READ.

General Format

DISPLAY AND READ [ALTERED] record-name ON file-name

r- -- {PFKEY } {identifier-1} [identifier-2]
[ONLY] PFKEYS integer-1 integer-2

[ON {
PFKEY } {identifier-3l [identifier-4]]

- PFKEYS integer-3 f integer-4 imperative-statement-1

.,

[NO-MOD imperative-statement-2] •

Syntax Rules

1. Record-name must reference a screen record with usage of
DISPLAY-WS.

2. File-name must reference a workstation file (refer to Section
4.3, Coding Requirements for DISPLAY AND READ) that is assigned
to device DISPLAY.

3. The valid range of values for any of the integers is 1 through
32, inclusive.

4. All PF keys specified in the ON phrase must also be specified in
the ONLY phrase.

5. The NO-MOD phrase is valid only if ALTERED is specified.

General Rules

1. Up to 32 integer and identifier phrases can be used with the ON
and ONLY phrases.

12-41

2. If ALTERED is specified, only those fields that have been
modified by the user are read.

3. The DISPLAY AND READ statement causes the following sequence of
events to occur:

a. Data is moved from the SOURCE clause data
specified) to the appropriate locations in the
DISPLAY-WS record.

items (if
USAGE IS

b. The record defined in the USAGE IS DISPLAY-WS clause is
displayed on the screen.

c. User responses are read.

d. Data is validated according to the specifications of the
PICTURE and RANGE clauses. Alphanumeric and numeric edited
data will be converted to numeric before comparison with
numeric RANGE items. If user responses violate record
description requirements, they are flagged as errors by their
FACs being set to blink. Already-blinking fields, however,
may have their FACs reset to a nonblinking mode.

e. User responses that meet the record description requirements
are transferred to the appropriate OBJECT fields. When data
is moved from numeric edited screen fields to numeric OBJECT
fields, currency signs, CR, DB, asterisks, and conunas (or
periods if DECIMAL-POINT IS COMMA) are removed.

f. Protected fields are neither validated, since invalid data
could not be corrected, nor deedited. Therefore, if the FAC
of a numeric-edited DISPLAY-WS field is changed to protected
on a DISPLAY AND READ, a subsequent DISPLAY AND READ may move
invalid data to the OBJECT field. To avoid this, the
subsequent DISPLAY AND READ should use the ALTERED phrase,
which allows only modified fields to be read.

4. Scaling characters or implied decimals in the PICTUREs of
workstation record entries are ignored in the screen display and
in the transfer of data from the SOURCE field to the screen or
from the screen to the OBJECT field. These characters do not
display on the screen, nor are they replaced by blank spaces.
For purposes of data movement, a display field with such a
PICTURE is treated as an integer field, unless decimal points are
explicitly entered from the workstation by the user.

5. The ONLY phrase is used to specify which PF keys are valid
operator responses when DISPLAY AND READ is issued. The word
ONLY is optional in the ONLY phrase. If it is coded, the sole
valid operator response is one of the specified PF keys. If it
is not coded, the valid operator response is one of the specified
PF keys or the ENTER key. If the operator response is invalid,
the audio alarm is sounded, no data transfer occurs, and the
screen record is displayed again.

12-42

6. If the ONLY phrase is not coded, the sole valid operator response
is the ENTER key.

7. When a DISPLAY AND READ has been issued, a valid operator
response can have one of two functions: to signal that data has
been entered, and to indicate a special condition request, such
as program termination, without entering data. The ON PFKEYS
phrase identifies the PF keys used for special condition
requests. When a key numbered in ON PFKEY is pressed, the
imperative statement is executed, and no data is entered.

8. If a valid PF key or valid ENTER key is selected, but a data
input error is detected, no transfer of data occurs. The screen
record is displayed again with the field(s) in error blinking,
and the audio alarm is sounded. The operator must enter another
response. This cycle continues until a correct response is
entered or the program execution is terminated.

9. If a valid PF key or valid ENTER key is selected and there are no
input data errors, data transfer occurs.

10. The imperative statement of the NO-MOD phrase is only executed if
there is no modification of any of the displayed fields. The
NO-MOD phrase is ignored if an ON PFKEY option is selected.

12-43

DIVIDE Statement

Function

The DIVIDE statement di vi des one numeric data item into another and
sets the values of data items equal to the quotient and remainder.

General Format

Format 1

DIVIDE {:~:~::~i;r- 1} INTO identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement]
Format2

DIVIDE {i?entifier- 1} INTO {i?entifier-2} GIVING identifier-3 [ROUNDED]
hteral- 1 -- hteral-2

[ON SIZE ERROR imperative-statement]
Format 3

DIVIDE {identifier- 1} BY {identifier-2} GIVING identifier-3 [ROUNDED]
literal-1 · - literal-2

[ON SIZE ERROR imperative-statement]
Format4

DIVIDE fi?entifier- 1} INTO {i?entifier-2} GIVING identifier-3 [ROUNDED]
thteral-1 -- hteral-2

REMAINDER identifier-4 [ON SIZE ERROR imperative-statement]
Format 5

DIVIDE {i?entifier- 1} BY {i?entifier-2} GIVING identifier-3 [ROUNDED]
hteral-1 - hteral-2

REMAINDER identifier-4 [ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to an elementary numeric item, except
that any identifier associated with tbe GIVING or REMAINDER
phrase must refer to either an elementary numeric item or an
elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The composite of operands must not contain more than 18 digits.
The composite of operands is the hypothetical data item resulting
from the superimposition of all receiving data items (except the
REMAINDER data item) of a given statement aligned on their
decimal points.

12-44

General Rules

1. Refer to "ROUNDED Phrase", "SIZE ERROR Phrase", and "Overlapping
Operands" in Subsection 12.3.3, Arithmetic Statements.

2. When Format 1 is used, the value of identifier-1 or literal-1 is
divided into the value of identifier-2. The value of the
dividend (identifier-2) is replaced by this quotient.

3. When Format 2 is used, the value of identifier-1 or literal-1 is
divided into identifier-2 or literal-2 and the result is stored
in identifier-3.

4. When Format 3 is used, the value of identifier-1 or literal-1 is
divided by the value of identifier-2 or literal-2 and the result
is stored in identifier-3.

5. Formats 4 and 5 are used when a remainder from the division
operation is desired, namely identifier-4. Identifier-4 must not
be defined as USAGE IS BINARY. The remainder in COBOL is defined
as the result of subtracting the product of the quotient
(identifier-3) and the divisor from the dividend. If
identifier-3 is ~efined as a numeric edited item, the quotient
used to calculate the remainder is an intermediate field that
contains the unedited quotient. If ROUNDED is used, the quotient
used to calculate the remainder is an intermediate field that
contains the quotient of the DIVIDE statement truncated rather
than rounded. Refer to Appendix G, Intermediate Results.

6. In Formats 4 and 5, the accuracy of the REMAINDER data i tern
Cidentifier-4) is defined by the calculation described in General
Rule 5. Appropriate decimal alignment and truncation (not
rounding) are performed as needed for the content of the data
item referenced by identifier-4.

7. When the ON SIZE ERROR phrase is used in Formats 4 and 5, the
following rules pertain:

a. If the size error occurs on the quotient, no remainder
calculation is meaningful. Thus, the contents of the data
items referenced by both identifier-3 and identifier-4 remain
unchanged.

b. If the size error occurs on the remainder, the contents of
the data item referenced by identifier-4 remain unchanged.
However, as with other instances of multiple results of
arithmetic statements, the user will have to analyze the
situation to determine what has actually occurred.

12-45

Examples of DIVIDE Statement

DIVIDE 3 INTO VALUE-ITEMS.

If VALUE-ITEMS has the value 24, then the result 8 is placed in the
data item VALUE-ITEMS.

DIVIDE 10 INTO VALUE-ITEMS GIVING AVG-VALUE.

If VALUE-ITEMS has the value 24, then the result (2.4) is. placed in
AVG-VALUE. AVG-VALUE has a PICTURE of S99V9.

DIVIDE VALUE-ITEMS BY NUMBER-ITEMS GIVING AVG-VALUE
REMAINDER REM-ITEMS.

If VALUE-ITEMS IS 34 AND NUMBER-ITEMS is 5, then the result (6) is
placed in AVG-VALUE and the remainder 4 is placed in REM-ITEMS.

In this example, AVG-VALUE has a PICTURE of S99.

12-46

ENTER Statement

Function

The ENTER statement is treated as a conunent by this compiler.

General Format

ENTER language-name [routine-name].

12-47

EXIT Statement

Function

The EXIT statement provides a conunon end point for a series of
procedures.

General Format

EXIT.

Syntax Rules

1. The EXIT statement must appear in a sentence by itself.

2. The EXIT sentence must be the only sentence in the paragraph.

General Rules

1. An EXIT statement serves only to enable the user to assign a
procedure-name to a given point in a program. Such an EXIT
statement has no other effect on the compilation or execution of
the program.

12-48

EXIT PROGRAM Statement

Function

The EXIT PROGRAM statement marks the logical end of a called program.

General Format

EXIT PROGRAM.

General Rules

1. Execution of an EXIT PROGRAM statement in a called program causes
control to be returned to the calling program. An EXIT PROGRAM
statement executed in a program that is not called behaves as an
EXIT statement.

12-49

FREE Statement

Function

The FREE statement frees resources that have been previously held.
The FREE ALL statement is used in DMS/TX processing to release all shared
resources. For a complete discussion of DMS/TX protocol, refer to
Chapter 3.

General Format

FREE ALL [ON ERROR imperative statement]

General Rules

1. FREE ALL releases from hold status all resources held by the
program.

2. FREE ALL is the only FREE statement format used with DMS/TX files.

3. If there is an ON ERROR clause, any unsuccessful execution of
these statements (with non-zero return code) causes the ERROR
imperative statement to be executed.

4. If there is no ON ERROR clause, the user's program is cancelled
upon unsuccessful execution of these statements.

5. If the ON ERROR clause exists, the special register RETURN-CODE
contains the return code of the statement being executed.

12-50

/~

GO TO Statement

.~ Function

The GO TO statement causes control to be transferred from one part of
the Procedure Division to another.

General Format

Format 1
GO ro[procedure-name-1]

Format 2
GO TO procedure-name-1 [procedure-name-2) .•• procedure-name-n
- DEPENDING ON identifier

Syntax Rules

1. Identifier is the name of a numeric elementary item described
without any positions to the right of the assumed decimal point.

2. When a paragraph is referenced by an ALTER statement, that
paragraph can consist only of a paragraph header followed by a
Format 1 GO TO statement.

3. If a GO TO statement represented by Format 1 appears in a
consecutive sequence of imperative statements within a sentence,
it must appear as the last statement in that sequence.

General Rules

1. When a GO TO statement, represented by Format 1 is executed,
control is transferred to procedure-name-! or to another
procedure name if the GO TO statement has been modified by an
ALTER statement.

2. When a GO TO statement represented by Format 2 is executed,
control is transferred to procedure-name-1, procedure-name-2, ...
, depending on the value of the identifier being 1, 2,... , n.
If the value of the identifier is anything other than the
positive integers 1, 2,... , n, then no transfer occurs and
control passes to the next statement in the normal sequence for
execution.

12-51

HOLD Statement

Function

The HOLD statement is used in the Procedure Division to hold files
and/or a range of records within a file, or to claim the exclusive right
to claim these resources.

General Format

RECORDS OF file-name-1

{

FOR {RETRIEVAL} }
UPDATE

{ FOR {RETRIEVAL} WITH KEYS{ [INITIAL {~ata-name- 1 } CHARACTERS OF] { ~ata-name-2 }} ... } ···
UPDATE - -- hteral-1 hteral-2

General Rules

I TIMEOUT OF { ~ata-name-3 } [SECOND]
--- integer SECONDS

(HOLDER-ID IN data-name-4)

{
imperative-statement }]
NEXT SENTENCE

1. HOLD LIST builds a list of multiple files, and/or a range of
records of an indexed file, to be held by a program. The LIST
option specifies that the HOLD statement is part of a list of
HOLD statements. Each HOLD statement in the list must have the
LIST option except for the last executed HOLD statement in the
list, which must not.

2. The last HOLD statement (without the LIST option) generates an
attempt to hold the entire list of requested resources.

3. The TIMEOUT phrase cannot be used with the LIST option because
the attempt to hold the resources is not made until the list is
complete.

4. File-name-1 must be an indexed file.

12-52

5. Once specified, the hold class remains in effect until overridden
by an explicit HOLD~LASS phrase or a RECORDS OF phrase. The
RECORDS OF phrase causes the current hold class to become UPDATE.

6. Data-name-1, if specified, must be a numeric data item and must
not contain a value greater than the length of the shorter of
data-name-2 or literal-2, and the primary key of file-name-1.

7. Data-name-2 may be any data item of usage DISPLAY. Literal-2
must be nonnumeric.

8. If the INITIAL phrase is not specified, the length of data-name-2
or 1i teral-2 must not exceed the length of the primary key of
file-name-1.

9. The TIMEOUT phrase is allowed with a HOLD statement that
specifies more than one file name or record group.

10. If the record group is not specified, all records of the file are
held. If the record group is specified, the records held are
those with the following keys.

a. If INITIAL is not specified, the value of data-name-2 or
literal-2

b. If INITIAL is specified, the first n characters of
data-name-2 or literal-2, where n is the value of data-name-1
or literal-1.

11. The HOLD statement sets the FILE STATUS variable.

12. If the TIMEOUT phrase is specified, and the HOLD cannot be
completed in data-name-4 or integer-! seconds, then
imperative-statement-! is executed and control passes to the next
sentence. If the number of seconds specified is zero, the
timeout exit will immediately be taken if the HOLD cannot be
completed. If the HOLDER-ID phrase is specified in the TIMEOUT
phrase the logon initials of the user holding the resources are
moved to data-name-5.

13. Files or groups of records are held for update unless RETRIEVAL
is specified. Multiple groups may be specified for a file and
both hold classes may be used within a file.

12-53

IF Statement

Function

The IF statement causes a condition (refer to Section 12.4,
Conditions) to be evaluated. The subsequent action of the object program
depends on whether the value of the condition is true or false.

General Format

Format 1

{
statement-1 }

IF condition THEN NEXT SENTENCE •

Format 2

{
statement-1 }

IF condition THEN NEXT SENTENCE

{
statement-2 }

ELSE NEXT SENTENCE

Format 3

{
EQUAL TO } ~ FAC OF data-name-1 NOT EQUAL TO data-name-2

NOT=

{
statement-1 }

THEN NEXT'SENTENCE

[ELSE {~t~~~m;~~-{ENCE }]
Format4

{
statement-1 } .!f FAC OF data-name ALTERED THEN NEXT SENTENCE

[ELSE {~t~~~m;~~-{ENCE }]
Format 5

. . {IN l {identifier } {ON } IF f1gurat1ve-constant OFf FAC OF display-item IS [NOT] OFF

jstatement-1 }
THEN ");NEXT SENTENCE

[{
statement-2 }]

ELSE NEXT SENTENCE j

12-54

Syntax Rules

1. Statement-1 and statement-2 can be imperative or conditional
statements, or sequences of such statements.

2. The ELSE NEXT SENTENCE phrase can be omitted if it immediately
precedes the terminal period of the sentence.

3. The FAC OF phrase can apply to a single display item or to a
display item that OCCURS more than once.

4. Data-name-2 must be defined in the Data Division as a 1-byte item.

5. The figurative constant must be defined in the
FIGURATIVE-CONSTANTS paragraph as a 1-byte item.

6. The identifier must reference a 1-byte item.

7. Display-item must be an i tern in a Working-Storage record whose
USAGE IS DISPLAY-WS or in the record of a file for which the
device type "DISPLAY" has been declared in the SELECT clause.

General Rules

1. When an IF statement is executed, the following transfers of
control occur:

a. If the condition is true, statement-1 is executed if
specified. If statement-1 contains a procedure branching
statement or conditional statement, control is explicitly
transferred in accordance with the rules of that statement.
If statement-! does not contain a procedure branching
statement or conditional statement, the ELSE phrase, if
specified, is ignored and control passes to the next
executable sentence.

b. If the condition is true and the NEXT SENTENCE phrase is
specified instead of statement-1, the ELSE phrase, if
specified, is ignored and control passes to the next
executable sentence.

c. If the condition is false, statement-! or its surrogate, NEXT
SENTENCE, is ignored, and statement-2, if specified, is
executed. If statement-2 contains a procedure branching
statement or a conditional statement, control is explicitly
transferred in accordance with the rules of that statement.
If statement-2 does not contain a procedure branching
statement or a conditional statement, control passes to the
next executable sentence. If the ELSE statement-2 phrase is
not specified, statement-1 is ignored and control passes to
the next executable sentence.

d. If the condition is false, and the ELSE NEXT SENTENCE phrase
is specified, statement-1 is ignored, if specified, and
control passes to the next ekecutable sentence.

12-55

2. Statement-1 and/or statement-2 can contain an IF statement. In
this case, the IF statement is said to be nested.

IF statements within IF statements can be considered as paired IF
and ELSE combinations, proceeding from left to right. Thus, any
ELSE encountered is considered to apply to the immediately
preceding IF that has not been already paired with an ELSE.

3. When an IF FAC OF ••• ALTERED statement is executed, the compiler
performs a test to determine if Bit 1 of the FAC is on (set to 1)
or off. Bit 1 of a FAC is called its modified data tag (MDT).
The MDT is set to 1 when and only when the field with which the
FAC is associated is modified by the workstation operator.
Following the MDT test, control is trans£ erred as described in
General Rules 1 and 2.

4. An IF figurative-constant statement allows the user to define a
mask, via a figurative constant, that can be used to test a bit
or combination of bits in a FAC or any other 1-byte item. The
figurative constant is ON if for each bit set to 1 in the
figurative constant, and for only those bits, the corresponding
bit is set to 1 in the FAC or the i tern referenced by the
identifier; otherwise the figurative constant is OFF. Following
the test, control is transferred as described in General Rules 1
and 2.

12-56

INSPECT Statement

Function

The INSPECT statement provides the ability to TALLY (Format 1),
REPLACE (Format 2), or TALLY and REPLACE (Format 3) occurrences of single
characters in a data item.

General Format

Format 1

INSPECT identifier-1 T{A{~~~NG }{identifier-3}}

tifier-2 FOR LEADING literal-1
CHARACTERS }

({BEFORE} INITIAL fidentifier-4\]}
[AFTER "'\literal-2 fj

Format 2

INSPECT identifier-1 REPLACING

CHARACTERS BY {i?entifier-6} [{BEFORE} INITIAL {i?entifier-7}]
----- - hteral-4 AFTER hteral-5]

{.{t~;DINGl {Jl?entifier-5} BY {i?entifier-6\.
FIRST J "'\literal-3 hteral-4 f

[{
BEFORE} INITIAL {identifier-7}]} }
AFTER literal-5]

12-57

Format 3

[{
BEFORE} INITIAL {identifier-4}]
AFTER literal-2•

REPLACING

'CHARACTERS BY {i~entifier-6} [{BEFORE} INITIAL {identifier-7}]
------ hteral-4 AFTER literal-5

-< }Jfilo1NG} {fi~entifier-5} BY {i?entifier-6} l_lFIRST 1hteral-3 - hteral-4

'

[{
BEFORE} INITIAL {identifier-7}]} } AFTER literal-5 ... • .. >

Syntax Rules

All Formats

1. Identifier-! must reference either a group item or any category
of elementary item, described (implicitly or explicitly) as usage
is DISPLAY.

2. Identif ier-3,... identif ier-n must reference either an
elementary alphabetic, alphanwneric or numeric item described
(implicitly or explicitly) as usage is DISPLAY.

3. Each literal must be nonnwneric and can be any figurative
constant.

Formats 1 and 3 Only

4. Identifier-2 must reference an elementary numeric data item.

5. If either literal-1 or literal-2 is a figurative constant, the
figurative constant refers to an implicit !-character data item.

Formats 2 and 3 Only

6. The size of the data referenced by literal-4 or identifier-6 must
be equal to the size of the data referenced by literal-3 or
identifier-5. When a figurative constant is used as literal-4,
the size of the figurative constant is equal to the size of
literal-3 or the size of the data item referenced by identifier-5.

12-58

7. When the CHARACTERS phrase is used, literal-4, literal-5, or the
size of the data item referenced by identifier-6, identifier-7
must be one character in length.

8. When a figurative constant is used as literal-3, the data
referenced by literal-4 or identifier-6 must be one character in
length.

General Rules

1. Inspection (which includes the comparison cycle, the
establishment of boundaries for the BEFORE or AFTER phrase, and
the mechanism for tallying and/or replacing) begins at the
leftmost character position of the data item referenced by
identifier-1, regardless of its class, and proceeds from left to
right to the rightmost character position as described in General
Rules 4 through 6.

2. For use in the INSPECT statement, the contents of the data i tern
referenced by identifier-1, identifier-3, identifier-4,
identifier-5, identifier-6, or identifier-7 are treated as
follows:

a. If any of identifier-1, identifier-3, identifier-4,
identifier-5, identifier-6, or identifier-7 are described as
alphanumeric, the INSPECT statement treats the contents of
each identifier as a character-string.

b. If any of identifier-1, identifier-3, identifier-4,
identifier-5, identifier-6, or identifier-7 are described as
alphanumeric edited, numeric edited or unsigned numeric, the
data item is inspected as though it had been redefined as
alphanumeric (refer to General Rule 2a) and the INSPECT
statement had been written to reference the redefined data
item.

c. If any of the identifier-1, identifier-3, identifier-4,
identifier-5, identifier-6, or identifier-7 are described as
signed numeric, the data item is inspected as though it had
been moved to an unsigned numeric data i tern of the same .
length and then the rules in General Rule 2b had been applied.

3. In General Rules 4 through 11 all references to literal-1,
literal-2, literal-3, literal-4, and literal-5 apply equally to
the contents of the data item referenced by identifier-3,
identifier-4 identifier-5, identifier-6, and identifier-7,
respectively.

4. During inspection of the contents of the data item referenced by
identifier-1, each properly matched occurrence of literal-1 is
tallied (Formats 1 and 3) and/or each properly matched occurrence
of literal-3 is replaced by literal-4 (Formats 2 and 3).

12-59

5. The comparison operation to determine the occurrences of
literal-1 to be tallied and/or occurrences of literal-3 to be
replaced, occurs as follows:

a. The operands of the TALLYING and REPLACING phrases are
considered in the order they are specified in the INSPECT
statement from left to right. The first literal-1 and/or
literal-3 is compared to an equal number of contiguous
characters, starting with the leftmost character position in
the data item referenced by identifier-!. Literal-1,
literal-3 and that portion of the contents of the data item
referenced by identif ier-1 match if, and only if, they are
equal, character for character.

b. If no match occurs in the comparison of the first literal-!,
literal-3, the comparison is repeated with each successive
literal-1, literal-3, if any, until either a match is found
or there is no next successive literal-1, literal-3. When
there is no next successive literal-1, literal-3, the
character position in the data item referenced by
identif ier-1 immediately to the right of the leftmost
character position considered in the last comparison cycle is
considered as the leftmost character position, and the
comparison cycle begins again with the first literal-1,
literal-3.

c. Whenever a match occurs, tallying and/or replacing takes
place as described in General Rules 8 through 10. The
character position in the data item referenced by
identif ier-1 immediately to the right of the rightmost
character position that participated in the match is now
considered to be the leftmost character position of the data
item referenced by identifier-1, and the comparison cycle
starts again with the first literal-!, literal-3.

d. The comparison operation continues
character position of the data
identif ier-1 has participated in a
considered as the leftmost character
occurs, inspection is terminated.

until the rightmost
item referenced by
match or has been
position. When this

e. If the CHARACTERS phrase is specified, an implied 1-character
operand participates in the cycle described in General Rules
Sa through Sd, except that no comparison to the contents of
the data item referenced by identifier-1 takes place. This
implied character is considered always to match the leftmost
character of the contents of the data item referenced by
identifier-1 participating in the current comparison cycle.

12-60

6. The comparison operation defined in General Rule 5 is affected by
the BEFORE and AFTER phrases as follows:

Format I

a. If the BEFORE or AFTER phrase is not specified, literal-1,
li teral-3, or the implied operand of the CHARACTERS phrase
participates in the comparison operation as described in
General Rule 5.

b. If the BEFORE phrase is specified, the associated literal-1,
literal-3, or the implied operand of the CHARACTERS phrase
participates only in those comparison cycles that involve
that portion of the contents of the identifier-1 data item
from its leftmost character position up to, but not
including, the first occurrence of literal-2, literal-5. The
position of this first occurrence is determined before the
first cycle of the comparison operation described in General
Rule 5 is begun. If, on any comparison cycle, li teral-1,
literal-3, or the implied operand of the CHARACTERS phrase is
not eligible to participate, it is considered not to match
the contents of the data item referenced by identifier-1. If
there is no occurrence of literal-2, literal-5 within the
contents of the data item referenced by identifier-I, its
associated literal-1, literal-3, or the implied operand of
the CHARACTERS phrase participates in the comparison
operation as though the BEFORE phrase had not been specified.

c. If the AFTER phrase is specified, the associated literal-1,
literal-3 or the implied operand of the CHARACTERS phrase
can participate only in the comparison cycles that involve
those positions from the position immediately to the right of
the rightmost character position of the first occurrence of
literal-2, literal-5 within the identifier-I data item to the
rightmost character position of the identifier-1 data item.
The position of this first occurrence is determined before
the first cycle of the comparison operation described in
General Rule 5 is begun. If, on any comparison cycle,
literal-1, literal-3 or the implied operand of the CHARACTERS
phrase is not eligible to participate, it is considered not
to match the contents of the data item referenced by
identifier-1. If there is no occurrence of literal-2,
literal-5 within the contents of the data item referenced by
identifier-1, its associated literal-1, literal-3, or the
implied operand of the CHARACTERS phrase is never eligible to
participate in the comparison operation.

7. The contents of the data item referenced by identifier-2 are not
initialized by the execution of the INSPECT statement, but must
be initialized to 0 before each execution.

I2-6I

8. The rules for tallying are as follows:

Format 2

a. If the ALL phrase is specified, the contents of the data item
referenced by identif ier-2 are incremented by one for each
occurrence of literal-1 matched within the contents of the
data item referenced by identifier-1.

b. If the LEADING phrase is specified, the contents of the
identif ier-2 data item are incremented by one for each
contiguous occurrence of literal-1 matched within the
contents of the identifier-! data item, provided that the
leftmost such occurrence is at the point where comparison
began in the first comparison cycle in which literal-1 was
eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of the
data item referenced by identifier-2 are incremented by one
for each character matched, in the sense of General Rule Se,
within the contents of the data item referenced by
identifier-I.

9. The required words ALL, LEADING, and FIRST are adjectives.

10. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each character
matched, in the sense of General Rule Se, in the contents of
the data item referenced by identifier-I is replaced by
literal-4.

b. When the adjective ALL is specified, each occurrence of
literal-3 matched in the contents of the data item referenced
by identifier-1 is replaced by literal-4.

c. When the adjective LEADING is specified, each contiguous
occurrence of literal-3 matched in the contents of the
identifier-I data item is replaced by literal-4, provided
that the leftmost such occurrence is at the point where
comparison began in the first comparison cycle in which
literal-1 was eligible to participate.

d. When the adjective FIRST is specified, the leftmost
occurrence of literal-3 matched within the contents of the
data item referenced by identifier-I is replaced by literal-4.

I2-62

Format 3

11. A Format 3 INSPECT statement is interpreted and executed as
though two successive INSPECT statements specifying the same
identifier-1 had been written: one statement being a Format 1
statement with TALLYING phrases identical to those specified in
the Format 3 statement, the other statement being a Format 2
statement with REPLACING phrases identical to those specified in
the Format 3 statement. The general rules given for matching and
counting apply to the Format 2 statement.

Examples of the INSPECT Statement

The following are six examples of the INSPECT statement:

INSPECT WORD TALLYING COUNTER-1 FOR LEADING "L" BEFORE INITIAL "A"
COUNTER-2 FOR LEADING "A" BEFORE INITIAL "L".

Where WORD = LARGE, COUNTER-1 = 1; COUNTER-2 = 0.
Where WORD = ANALYST, COUNTER-1 = O; COUNTER-2 = 1.

INSPECT WORD TALLYING COUNTER FOR ALL "L", REPLACING LEADING "A" BY
"E" AFTER INITIAL "L".

Where WORD before = CALLAR, COUNTER = 2, WORD after = CALLAR.
Where WORD before = SALAMI, COUNTER = 1, WORD after = SALEMI.
Where WORD before = LATTER, COUNTER = 1, WORD after = LETTER.

INSPECT WORD REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where WORD before = ARXAX, WORD after = GRXAX.
Where WORD before = HANDAX, WORD after = HGNDGX.

INSPECT WORD TALLYING COUNTER FOR CHARACTERS AFTER INITIAL "J"
REPLACING ALL "A" BY "B".

Where WORD before = ADJECTIVE, COUNTER = 6, WORD after =
BDJECTIVE.

Where WORD before = JACK,
Where WORD before = JUJMAB,

COUNTER = 3, WORD after = JBCK.
COUNTER = 5, WORD after = JUJMBB.

INSPECT WORD REPLACING ALL "X" BY "Y", "B" BY "Z", "W" BY "Q"
AFTER INITIAL "R".

Where WORD before = RXXBQWY, WORD after = RyyzQQY.
Where WORD before = YZACDWBR, WORD after = ~CDWZR.
Where WORD before = RAWRXEB, WORD after = RAQRYEZ.

INSPECT WORD REPLACING CHARACTERS BY "B" BEFORE INITIAL "A".

Where WORD before = 12 XZABCD,
WORD after = BBBBBABCD

12-63

MERGE Statement

Function

The MERGE statement combines two or more identically sequenced files
on a set of user-specified keys. During the process, the statement makes
the records available, in merge order, to an output procedure or to an
output file.

General Format

{
ASCENDING } MERGE file-name-1 ON DESCENDING KEY data-name-1 [data-name-2] ...

[ON { ~~g6~~~~G }KEY data-name-3 [data-name-4) ...] ...

[COLLATING SEQUENCE IS alphabet-name]

~ file-name-2 [file-name-3) ...

{

OUTPUT PBOCEDURE IS section-name-1 [{i~~3uGH} section-name-2] }

GIVING file-name-4

Syntax Rules

1. File-name-1 must be described in a sort-merge file description
CSD) entry in the Data Division.

2. Section-name-1 represents the name of an output procedure.

3. File-name-2, file-name-3, and file-name-4 must be described in a
file description entry, not in a sort-merge file description
entry, of the Data Division. The actual size of the logical
record(s) described for these file names must be equal to the
actual size of the logical record(s) described for file-name-1.

If the data descriptions of the elementary i terns that make up
these records are not identical, it is the programmer's
responsibility to describe the corresponding records in such a
manner as to cause an equal number of character positions to be
allocated for the corresponding records.

4. The words THRU and THROUGH are equivalent.

5. Data-name-1, data-name-2, data-name-3 and data-name-4 are KEY
data-names and are subject to the following rules:

a. The data items identified by KEY data-names must be described
in records associated with file-name-1.

12-64

b. KEY data-names may be qualified.

c. If file-name-1 has more than one record description, the data
items identified by KEY data-names need be described on only
one of the record descriptions.

d. None of the data items identified by KEY data-names can be
described by an entry which either contains an OCCURS clause
or is subordinate to an entry which contains an OCCURS clause.

6. File-names must not be repeated within the MERGE statement.

General Rules

1. The MERGE statement will merge all records contained in
file-name-2 and file-name-3. The files referenced in the MERGE
statement must not be opened at the time the MERGE statement is
executed. These files are automatically opened and closed by the
merge operation. All implicit operations, such as the execution
of any associated USE procedures, are automatically performed.
The terminating function for all files is performed as if a CLOSE
statement, without optional phrases, is executed for each file.

2. The data-names following the word KEY are listed from left to
right in the MERGE statement. They are also listed in order of
decreasing signifigance without regard to how they are divided in
the KEY phrases. Data-name-1 is the major key, data-name-2 is
the next most significant key, etc. The following rules also
apply:

a. When the ASCENDING phrase is specified, the merge sequence is
from the lowest value of the contents of the data items
identified by the KEY data-names, to the highest value. the
rules for comparison of operands in a related condition apply.

b. When the DESCENDING phrase is specified, the merge sequence
is from the highest value of the contents of the items
identified by the KEY data-names, to the lowest value. The
rules for comparison of operands in a relation condition
apply.

3. The COLLATING SEQUENCE IS phrase is treated as a comment.

4. The following rules apply to the MERGE output procedures:

a. They must consist of one or more sections.

b. Each procedure should contain at least one RETURN statement.
(This makes the merged records available for processing.)

12-65

c. The procedure may consist of any procedures needed to select,
modify, or copy the records being returned in merged order
from f ile-name-1. The restrictions on any procedural
statements within an output procedure are as follows:

• Control can be transferred to points outside the
procedure, but it is the progranuner' s responsibility to
ensure a return to the procedure.

• COBOL statements that cause an implied transfer of
control to declaratives are allowed.

• The procedures must not contain any SORT or MERGE
statements.

• The remainder of the Procedure Division may transfer
control to points inside the output procedure by ALTER,
GO TO, and PERFORM statements. If a MERGE statement is
not being executed, such trans£ ers must not cause the
execution of a RETURN statement.

5. If an output procedure is specified, control passes to it during
execution of the MERGE statement. The compiler inserts a return
mechanism at the end of the last section of the output
procedure. When control passes the last statement in the
procedure, the return mechanism provides for termination of the
merge. It then passes control to the next executable statement
after the MERGE statement.

6.

Before entering the output procedure, the merge procedure reaches
a point at which it can select the next record in merged order
when requested. The RETURN statments in the output procedure are
the requests for the next record.

If the GIVING phrase is specified, all
file-name-1 are automatically written to
implied output for this statement).

merged records in
f ile-name-4 the

7. If, according to the rules for the comparison of operands in a
relation condition, the contents of all the key data items of one
data record are equal to the corresponding key data items of one
or more other data records, the records are returned in the order
of the associated input files as specified in the MERGE statement.

8. The results of the merge operation are predictable only when the
records in the files referenced by file-name-2, file-name-3, •.• ,
are ordered as described in the ASCENDING or DESCENDING KEY
clause·of the statement.

12-66

MOVE Statement

Function

The MOVE statement trans£ ers data in accordance with the rules of
editing to one or more data areas.

General Format

Format 1

MOVE { i~entifier- 1 } TO identifier-2 [identifier-3]. ..
literal -

Format 2
MOVE WITH CONVERSION identifier-1 TO identifier-2

[ON ERROR imperative-statement]

Format 3
MOVE figurative-constant TO FAC OF data-name

Format 4
MOVE FAC OF data-name-1 TO data-name-2

Format 5
MOVE data-name TO ORDER-AREA OF record-name

Format 6
MOVE ORDER-AREA OF record-name TO data-name

Format 7
MOVE {CORRESPONDING} identifier-1 TO identifier-2

CORR -

Syntax Rules

1. Identifier-1 and the literal represent the sending area;
identifier-2, identifier-3, •.• represent the receiving area.

2. An index data item cannot appear as an operand of a MOVE
statement.

3. If a binary data item appears as an operand of a MOVE statement,
all operands must be integer operands.

4. Format 2, MOVE WITH CONVERSION, cannot be used as an imperative
statement.

5. In Format 2, identifier-2 must reference a numeric item whose
usage is binary, computational, or display.

12-67

6. The FAC OF phrase can apply to a single display i tern or to a
display item that OCCURS more than once. ~

7. The figurative constant must be defined in the
FIGURATIVE-CONSTANTS paragraph as a 1-byte item.

8. Record-name must reference a Working-Storage record whose USAGE
IS DISPLAY-WS or a record of a file for which the device type
"DISPLAY" has been declared in the SELECT clause.

9. Data-name-1 must be defined in the Data Division as a 1-byte item.

10. Data-name-2 must be defined in the Data Division as a 4-byte
group item.

11. CORR is an abbreviation for CORRESPONDING.

12. When the CORRESPONDING phrase is used, both identifiers must be
group items.

General Rules

Format 1

1. The data designated by the literal or identifier-1 is moved
first to identifier-2, then to identif ier-3, The rules
referring to identifier-2 also apply to the other receiving
areas. 'Any subscripting or indexing associated with ~
identif ier-2, . . . is evaluated immediately before the data is
moved to the respective data item.

Any subscripting or indexing associated with identifier-1 is
evaluated only once, immediately before data is moved to the
first of the receiving operands. The result of the statement

MOVE a (b) TO b, c (b)

is equivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp to c (b)

where "temp" is an intermediate item provided by the compiler.

12-68

2. "Any MOVE in which the sending and rece1 v1ng i terns are both
elementary i terns is an elementary move. Every elementary i tern
belongs to one of the following categories: numeric, alphabetic,
alphanumeric, numeric edited, or alphanumeric edited. These
categories are described in the PICTURE clause. Numeric literals
belong to the category numeric, and nonnurneric literals belong to
the category alphanurneric. The figurative constant ZERO belongs
to the category numeric. The figurative constant SPACE belongs
to the category alphabetic. All other figurative constants and
user-figurative constants belong to the category alphanumeric.

The following rules apply to an elementary move between
categories:

a. The figurative constant SPACE, user-figurative constants, a
nurneric edited, alphanurneric edited, or alphabetic data item
must not be moved to a numeric or nurneric edited data item.

b. A nurneric literal, the figurative constant ZERO, a m.uneric
data item, or a numeric edited data item must not be moved to
an alphabetic data item.

c. A noninteger numeric 1i teral or a noninteger nurneric data
i tern must not be moved to an alphanumeric or alphanumeric
edited data item.

d. All other elementary moves are legal and are performed
according to General Rule 3.

3. "Any necessary conversion of data from one form of internal
representation to another, along with any editing specified for
the receiving data item, takes place during legal elementary
moves as follows:

a. When an alphanurneric edited or alphanurneric item is a
receiving item, alignment and any necessary space filling
takes place as defined under Standard Alignment Rules (ref er
to Section 11.1.6). If the size of the sending item is
greater than the size of the receiving item, the excess
characters are truncated on the right after the rece1v1ng
item is filled. If the sending item is described as being
signed numeric, the operational sign is not moved; if the
operational sign occupied a separate character position, that
character is not moved, and the size of the sending item is
considered to be one less than its actual size (in terms of
standard data format characters).

b. When a nurneric or nurneric edited item is the receiving item,
aligrunent by decimal point and any necessary zero-filling
takes place as defined under the Standard Aligrunent Rules
except where zeroes are replaced because of editing
requirements.

12-69

1) When a signed numeric item is the receiving item, the
sign of the sending i tern is placed in the receiving
item. Conversion of the representation of the sign takes
place as necessary. If the sending item is unsigned, a
positive sign is generated for the receiving item.

2) When an unsigned numeric item is the receiving item, the
absolute value of the sending item is moved and no
operational sign is generated for the receiving item.

3) When a data item described as alphanumeric is the sending
item, data is moved as if the sending item were described
as an unsigned numeric integer.

c. When a receiving field is described as alphabetic,
justification and any necessary space-filling takes place as
defined under the Standard Alignment Rules (refer to Section
11.1.6). If the size of the sending item is greater than the
size of the receiving item, the excess characters are
truncated on the right after the receiving item is filled.

4. Any move that is not an elementary move is treated exactly as if
it were an alphanumeric to alphanumeric elementary move, except
that there is no conversion of data from one form of internal
representation to another. In such a move, the receiving area is
filled without consideration for the individual elementary or
group items contained within the sending or receiving area.

5. Data in the following chart summarizes the legality of the
various types of MOVE statements. The general rule reference
indicates the rule that prohibits the move or the behavior of a
legal move.

12-70

Table 12-3. Permissible Moves Between Data Categories

CATEGORY OF RECEIVING DATA ITEM

CATEGORY OF NUMERIC INTEGERO
SENDING ALPHANUMERIC EDITED NUMERIC NONINTEGER
DATA ITEM ALPHABETIC ALPHANUMERIC NUMERIC EDITED

ALPHABETIC Yes/3c Yes/3a No/2a

ALPHANUMERIC Yes/3c Yes/3a Yes/3b

ALPHANUMERIC EDITED Yes/3c Yes/3a No/2a

INTEGER No/2b Yes/3a Yes/3b
NUMERIC

NONINTEGER No/2b No/2c Yes/3b

NUMERIC EDITED No/2b Yes/3a No/2a

Format 2

6. The rules for formation of the data in identifier-1 are:

a. The data can be either alphanumeric or numeric edited. It
must not be over 16 characters in length.

b. There can be any number of leading and trailing blanks.

c. The digits of a number can either be immedia~ely preceded or
followed by a sign. The sign can be either the character '+'
or '-'. If neither is specified, the sign of '+' is assumed.

d. The number cannot have embedded blanks.

e. The number can have one decimal point anywhere in the
number. If none is present, it is assumed to be positioned
to the right of the last digit. The value in identifier-2 is
aligned by this explicit or implicit decimal point in the
source.

f. Other than a single optional decimal point, there cannot be
any embedded characters in the number.

12-71

7. MOVE WITH CONVERSION converts character-strings containing a
character representation of a nwnber into a nwnber that can be
used for computation. The sending field can contain blanks, a
sign and a decimal point. If there is an ON ERROR phrase, an ~
attempt to move items that are not in conformance with the
contents of identifier-I, as specified in General Rule 6, causes
the ERROR imperative-statement to be executed. If the data to be
moved is valid, but there is either right or left truncation of
the digit positions in moving it into the receiving field, the
value is truncated and moved to identif ier-2, and the ON ERROR
imperative-statement is executed.

8. When an unsigned nwneric item is the receiving item, the absolute
value of the sending item is moved and no operational sign is
generated for the receiving item.

Formats 3 to 6

9. For a single display item, the FAC OF phrase can be processed
simply by coding FAC OF display-i tern. For a display i tern which
OCCURS, the FAC OF display-i tern is processed with subscripts
equal to the dimensions of the display-item in the <X!CURS clause.

10. Refer to Appendix C, Field Attribute Characters, and Appendix D,
Workstation Screen Order Area,· for the hexadecimal characters
used for FACS and for order area control, respectively.

Format 7

NOTE

The programmer is reminded that FAC and ORDER AREA values
are hexadecimal characters. Care must be taken that they
are not confused with other data types in MOVE statements.

1. When the CORRESPONDING Phrase is used, selected items within
identifier-I are moved to selected items within identifier-2,
according to the rules given in the CORRESPONDING Phrase. The
results are the same as if the programmer referenced each pair of
corresponding items in separate MOVE statements.

12-72

MULTIPLY Statement

Function

The MULTIPLY statement causes numeric data items to be multiplied and
sets the values of data items equal to the results.

General Format

Format 1

MULTIPLY {:~:~::~ir 1} BY identifier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement]

Format 2

MULTIPLY {i~entifier- 1\. BY {i~entifier- 2} GIVING identifier-3 [ROUNDED]
hteral-1 f - hteral-2

[ON SIZE ERROR imperative-statement]

Syntax Rules

1. Each identifier must refer to a numeric elementary item, except
that in Format 2 the identifier following the word GIVING must
refer to either an elementary numeric item or an elementary
numeric edited item.

2. Each literal must be a numeric literal.

General Rules

1. When Format 1 is used, the value of identifier-1 or literal-1 is
multiplied by the value of identifier-2. The value of the
multiplier Cidentifier-2) is replaced by the product.

2. When Format 2 is used, the value of identifier-1 or literal-1 is
multiplied by identifier-2 or literal-2 and the result is stored
in identifier-3.

3. Refer to "ROUNDED Phrase", "SIZE ERROR Phrase", and "Overlapping
Operands" in Section 11.3.3, Arithmetic Statements.

Example of MULTIPLY Statement

MULTIPLY QTY-IN-ST<X!K BY TOT-INVEST ROUNDED
ON SIZE ERROR GO TO EXIT-RTN.

If TOT-INVEST is defined with a PICTURE of S9(4) and the values
associated with QTY-IN-ST<X!K and TOT-INVEST are 426 and 2.7 respectively,
the result 1150.2 is rounded to 1150 and placed in TOT-INVEST.

12-73

OPEN Statement -- for Consecutive Files

Function

The OPEN statement initiates the processing of files.

General Format

INPUT file-name-1 [file-name-6] ...
OUTPUT file-name-2 [file-name-7] ...

OPEN 1-0 file-name-3 [file-name-8]
SHARED file-name-4 [file-name-9] ...
EXTEND file-name-5 [file-name-10] •••

Syntax Rules

1. The SHARED phrase can be used only for mass storage files. The
I-0 phrase can be used only for mass storage files and
workstation files.

2. The files referenced in the OPEN Statement need not all have the
same organization or access.

3. The EXTEND phrase must not be specified for multiple file reels.

4. A workstation file can only be opened in the I-0 or shared mode.

General Rules

1. The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open
mode.

2. Prior to the successful execution of an OPEN statement for a
given file, no statement can be executed that references that
file, either explicitly or implicitly.

3. An OPEN statement must be successfully executed prior to the
execution of any of the permissible input/output statements. In
Table 12-4, Permissible Statements -- Consecutive Files, 'X' at
an intersection indicates that the specified statement can be
used with the access mode given on the left and the open mode
given at the top of the column.

12-74

.~

Table 12-4. Permissible Statements -- Consecutive Files

File Open Mode
Access
Mode Statement INPUT OUTPUT INPUT-OUTPUT SHARED EXTEND

SEQUENTIAL READ x x
WRITE x x
REWRITE x
START* x

RANDOM READ x x
WRITE
REWRITE x

DYNAMIC READ x x

*

WRITE x x x
REWRITE x

Workstation files only

4. A file can be opened with the INPUT, OUTPUT, EXTEND, I-0 and
SHARED phrases in the same program. Following the initial
execution of an OPEN statement for a file, each subsequent
execution of an OPEN statement for that same file must be
preceded by the execution of a CLOSE statement for that file
without the REEL, UNIT, or LOCK phrase.

5. Execution of the OPEN statement does not obtain or release the
first data record.

6. If label records are present and the INPUT or OUTPUT phrase is
specified, execution of the OPEN statement causes the beginning
labels to be checked or written in accordance with the
conventions for label processing. Ref er to Chapter Six, Tape
File Processing, and to "LABEL RECORDS Clause" in Section 11.3.1.

7. The file description entry for existing files must be equivalent
to that used when the file was created.

8. If the storage medium for the file permits rewinding, and the
EXTEND phrase is not specified, execution of the OPEN statement
causes the file to be positioned at its beginning.

9. For files being opened with the INPUT, or I-0 phrase, the OPEN
statement sets the current record pointer to the first record
currently existing within the file. If no records exist in the
file, the current record pointer is set such that the next
executed READ statement for the file results in an AT END
condition.

12-75

10. The I-0 phrase permits the opening of a mass storage file for
both input and output operations. Since this phrase implies the
existence of the file, it cannot be used until the mass storage
file exists.

11. When the I-0 phrase is specified and label records are present,
the execution of the OPEN statement includes the following steps:

a. The labels are checked in accordance with the conventions for
Input/Output label checking.

b. The new labels are written in accordance with the conventions
for Input/Output label writing.

Ref er to Chapter 6, Tape File Processing, and to "LABEL RECORDS
Clause" in Section 11.3.1.

12. Upon successful execution of an OPEN statement with the OUTPUT
phrase specified, a file is created. At that time the associated
file contains no data records.

13. Extend mode cannot be used unless the file already exists. After
successful execution of an OPEN EXTEND, the current record
pointer is positioned immediately following the last logical
record of that file. Subsequent WRITE statements referencing the
file add records to the file as though the file had been opened
with the OUTPUT phrase.

14. The SHARED phrase permits the file to be written to by several ~
users concurrently. A consecutive file opened in shared mode
must be specified, in the RECORD CONTAINS clause of the File
Description entry, as containing variable-length records.

15. The only valid function request for a consecutive file opened in
shared mode is WRITE, which appends a record to the end of the
file.

16. If the specified file does not exist when opened in shared mode,
it is created, and its label is set to indicate that the file is
a "logging file" (i.e. , open for shared access) . If the first
character of the file name is an ASCII "at" sign < '@'), an
additional flag is set in the file label indicating that each
record is to be written immediately to disk when received (thus
further securing the file against lost updates).

17. A shared mode OPEN on an existing file is allowed only if the
file is a designated "logging file" <i.e., the file was created
in shared mode).

12-76

OPEN Statement -- for Indexed Files

Function

The OPEN statement initiates the processing of files.

General Format

{

INPUT
OPEN OUTPUT
-- 1-0

SHARED

Syntax Rules

file-name-1
file-name-2
file-name-3
file-name-4

[file-name-5] ••• }
[file-name-6] •••
[file-name-7]. • • • • •
[file-name-8] •••

1. The files referenced in the OPEN statement need not all have the
same organization or access.

General Rules

1. The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open
mode.

2. Prior to the successful execution of an OPEN statement for a
given file, no statement can be executed that references that
file, either explicitly or implicitly.

3. An OPEN statement must be successfully executed prior to the
execution of any of the permissible input/output statements. In
Table 12-5, Permissible Statements -- Indexed Files, 'X' at an
intersection indicates that the specified statement, used in the
access mode given for that row, can be used with the indexed file
organization and the open mode given at the top of the column.

4. A file can be opened with the INPUT, OUTPUT, I-0 and SHARED
phrases in the same program. Following the initial execution of
an OPEN statement for a file, each subsequent OPEN statement
execution for the same file must be preceded by the execution of
a CLOSE statement, without the LOCK phrase, for that file.

5. Execution of the OPEN statement does not obtain or release the
first data record.

6. The file description entry for input, I-0, or shared files must
be equivalent to that used when this file was created.

12-77

7.

Table 12-5. Permissible Statements -- Indexed Files

File Open Mode
Access
Mode Statement INPUT OUTPUT INPUT-OUTPUT SHARED

SEQUENTIAL READ x x
WRITE x x
REWRITE x
START x x
DELETE x

RANDOM READ x x
WRITE x x
REWRITE x
START
DELETE x

DYNAMIC READ x x x
WRITE x x x
REWRITE x x
START x x x
DELETE x x

For files being opened with the INPUT, I-0, or SHARED phrases, the
OPEN statement sets the current record pointer to the first record
currently existing within the file. For indexed files, the record
key is used to determine the first record to be accessed. If no
records exist in the file, the current record pointer is set such
that the next executed Format 1 READ statement for the file results
in an AT END condition.

8. The I-0 and SHARED phrases permit the opening of a file for both
input and output operations. Since this phrase implies the
existence of the file, it cannot be used if the file is being
initially created.

9. Upon success£ ul execution of an OPEN statement with the OUTPUT
phrase specified, a file is created. At that time the associated
file contains no data records.

10. The shared mode OPEN permits two or more users to modify the same
file concurrently. There is no limit to the number of users who can
share the same file. A shared mode OPEN is valid only for indexed
files whose access is DYNAMIC.

12-78

OPEN Statement -- for Relative Files

Function

The OPEN statement initiates the processing of files. It also
performs checking and/or writing of labels and other input-output
operations.

General Format

OPEN
{

INPUT {file-name-1} ... }
OUTPUT {file-name-2} .. .
1-0 { file-name-3} .. .
EXTEND {file-name-4L

Syntax Rules

1. The files referenced in the OPEN statement need not all have the
same organization or access.

General Rules

1. The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open
mode.

2. Prior to the successful execution of an OPEN statement for a
given file, no statement can be executed that references that
file, either explicitly or implicitly.

3. An OPEN statement must be successfully executed prior to the
execution of any of the permissible input/output statements. In
Table 12-6, Permissible Statements -- Relative Files, 'X' at an
intersection indicates that the specified statement, used in the
access mode given for that row, can be used with the relative
file organization and the open mode given at the top of the
column.

4. A file can be opened with the EXTEND,. INPUT, OUTPUT, and I-0
phrases in the same program. Following the initial execution of
an OPEN statement for a file, each subsequent OPEN statement
execution for the same file must be preceded by the execution of
a CLOSE statement, without the LOCK phrase, for that file.

5. Execution of the OPEN statement does not obtain or release the
first data record.

12-79

Table 12-6. Permissible Statements -- Relative Files

File Open Mode
Access
Mode Statement INPUT OUTPUT INPUT-OUTPUT EXTEND

SEQUENTIAL READ x x
WRITE x x
REWRITE x
START x x
DELETE x

RANDOM READ x x
WRITE x x
REWRITE x
START
DELETE x

DYNAMIC READ x x
WRITE x x
REWRITE x
START x x
DELETE x

6. Upon execution, The OPEN statement causes the operating system to
check label records, if specified.

7. The file description entry for input or I-0 files must be
equivalent to that used when the file was created.

8. For files being opened with the INPUT or I-0 phrases, the OPEN
statement sets the current record pointer to the first record
currently existing within the file. If no records exist in the
file, the current record pointer is set such that the next
executed Format 1 READ statement for the file results in an AT
END condition.

9. The I-0 phrase permits the opening of a file for both input and
output operations. Since this phrase implies the existence of
the file, it cannot be used if the file is being initially
created.

10. If the I-0 phrase is specified, execution of the OPEN statement
causes the operating system to check the existing labels and then
write new ones.

11. Upon successful execution of an OPEN statement with the OUTPUT
phrase specified, a file is created. At that time the associated
file contains no data records.

12-80

12. OPEN EXTEND is only allowed for relative files with the ACCESS IS
SEQUENTIAL phrase specified. The only operation allowed for such
a file is a WRITE.

13. Extend mode cannot be used unless the file already exists. After
successful execution of an OPEN EXTEND, the current record
pointer is positioned immediately following the last logical
record of that file. Subsequent WRITE statements referencing the
file add records to the file as though the file had been opened
with the OUTPUT phrase.

12-81

PERFORM Statement

Function

The PERFORM statement is used to transfer control explicitly to one
or more procedures and to return control implicitly whenever execution of
the specified procedure is complete.

General Format

Format 1

PERFORM procedure-name-1 [{~UGH} procedure-name-2]

Format 2

PERFORM procedure-name-1 [H~=gUGH} procedure-name-2]{:~:;~~;~;- 1
} TIMES

Format 3

PERFORM procedure-name-1 [{~UGH} procedure-name-2] UNTIL condition-1

Format4

PERFORM procedure-name-1 [{~~=gUGH} procedure-name-2]

{
.d .f. 2 } {identifier-3 }

VARYING ~ enti ier- FROM index-name-2
---- mdex-name-1

1
.t

1 1 1 era -

BY {i~entifier-4} UNTIL condition-1
- hteral-2 --

Syntax Rules

1. Each identifier represents an elementary numeric item described
in the Data Division. Identifier-I must represent an integer.

2. Each literal represents a numeric literal.

3. The words THRU and THROUGH are equivalent.

4. If an index name is specified in the VARYING phrase, then:

a. The identifier in the associated FROM and BY phrases must be
an integer item.

b. The literal in the associated FROM phrase must be a positive
integer.

c. The literal in the associated BY phrase must be a nonzero
integer.

12-82

5. If an index name is specified in the FROM phrase, then:

a. The identifier in the associated VARYING phrase must be an
integer data item.

b. The identifier in the associated BY phrase must be an integer
data item.

c. The literal in the associated BY phrase must be an integer.

6. The literal in the BY phrase must not be a nonzero integer.

7. Condition-1 can be any conditional expression.

8. Where procedure-name-I and procedure-name-2 are both specified
and either is the name of a procedure in the Declaratives Section
of the program then both must be procedure names in the same
Declaratives Section.

General Rules

1. The data item referenced by identifier-4 must not have a zero
value.

2. If an index name is specified in the VARYING phrase, and an
identifier is specified in the associated FROM phrase, then the
data item referenced by the identifier must have a positive value.

3. When the PERFORM statement is executed, control is transferred to
the first statement of the procedure named procedure-name-I
(except as indicated in General Rules 6b, 6c, and 6d). This
transfer of control occurs only once for each execution of a
PERFORM statement. For those cases where a transfer of control
to the named procedure does take place, an implicit transfer of
control to the next executable statement following the PERFORM
statement is established as follows:

a. If procedure-name-1 is a paragraph-name and procedure-name-2
is not specified, then the return is after the last statement
of procedure-name-I.

b. If procedure-name-I is a section-name and procedure-name-2 is
not specified, then the return is after the last statement of
the last paragraph in procedure-name-1.

c. If procedure-name-2 is specified and it is a paragraph-name
then the return is after the last statement of the paragraph.

d. If procedure-name-2 is specified and it is a section-name,
then the return is after the last statement of the last
paragraph in the section.

12-83

4. There is no necessary relationship between procedure-name-1 and
procedure-name-2 except that a consecutive sequence of operations
is to be executed beginning at the procedure named
procedure-name-1 and ending with the execution of the procedure
named procedure-name-2. In particular, GO TO and PERFORM
statements can occur between procedure-name-1 and the end of
procedure-name-2. If there are two or more logical paths to the
return point, then procedure-name-2 can be the name of a
paragraph consisting of the EXIT statement, to which all of these
paths must lead.

5. If control passes to these procedures by means other than a
PERFORM statement, control will pass through the last statement
of the procedure to the next executable statement as if no
PERFORM statement mentioned these procedures.

6. The PERFORM statements operate as follows with General Rule 5
applying to all formats:

a. Format 1 is the basic PERFORM statement. A procedure
referenced by this type of PERFORM statement is executed
once. Then control passes to the next executable statement
following the PERFORM statement.

b. Format 2 is the PERFORM ... TIMES. The procedures are
performed the number of times specified by integer-I or by
the initial value of the data item referenced by identifier-I
for that execution. If, at the time of execution of a
PERFORM statement, the value of the data i tern referenced by
identifier-I is equal to zero or is negative, control passes
to the next executable statement following the PERFORM
statement. Following the execution of the procedures the
specified number of times, control is transferred to the next
executable statement following the PERFORM statement.

During execution of the PERFORM statement, references to
identif ier-1 cannot alter the number of times the procedures
are to be executed from the number indicated by the initial
value of identifier-I.

c. Format 3 is the PERFORM •.• UNTIL. The specified procedures
are performed until the condition specified by the UNTIL
phrase is true. When the condition is true, control is
transferred to the next executable statement after the
PERFORM statement. If the condition is true when the PERFORM
statement is entered, no trans£ er to procedure-name-I takes
place, and control is passed to the next executable statement
following the PERFORM statement.

12-84

d. Format 4 is the PERFORM .•• VARYING. This variation of the
PERFORM statement is used to augment the values referenced by
one or more identifiers or index-names in an orderly fashion
during the execution of a PERFORM statement. In the
following discussion, every reference to identifier as the
object of the VARYING and FROM (current value) phrases also
refers to index-names. When index-name appears in a VARYING
phrase, it is initialized and subsequently augmented
according to the rules of the SET statement. If index-name
appears in the FROM phrase, the identifier, when it appears
in an associated VARYING phrase, is initialized according to
the rules of the SET statement; subsequent augmentation is as
described in the next paragraph.

In Format 4, when one identifier is varied, identifier-2 is
set to the value of literal-1 or the current value of
identif ier-3 at the point of initial execution of the PERFORM
statement; then, if the condition of the UNTIL phrase is
false, the sequence of procedures, procedure-name-1 through
procedure-name-2, is executed once. The value of
identif ier-2 is augmented by the specified increment or
decrement value (the value of identifier-4 or literal-2) and
condition-1 is evaluated again. The cycle continues until
this condition is true; at which point, control is
transferred to the next executable statement following the
PERFORM statement. If condition-1 is true at the beginning
of execution of the PERFORM statement, control is transferred
to the next executable statement following the PERFORM
statement. Figure 12-1 is a flowchart for the VARYING phrase
of the PERFORM statement.

ENTRANCE

Set identifier-2 equal to
current FROM value

True
Condition-1 .,...__ _______ .._,,~Exit

False

Execute procedure-name-1
THRU procedure-name-2

Augment identifier-2 with
current BY value

Figure 12-1. Flowchart for the VARYING Phrase of a PERFORM Statement

12-85

7. The range of a PERFORM statement consists logically of all those
statements that are executed as a result of executing the PERFORM ~
statement through execution of the implicit transfer of control
the the end of the PERFORM statement. The range includes all
statements that are executed as the result of a transfer of
control by CALL, EXIT, GO TO, and PERFORM statements in the range
of the PERFORM statement, as well as all statements in
declarative procedures that are executed as a result of the
execution of statements in the range of the PERFORM statement.
The statements in the range of a PERFORM statement need not
appear consecutively in the source program.

8. Statements executed as the result of a transfer of control caused
by executing an EXIT PROGRAM statement within the range of a
PERFORM statement are not considered to be part of that range.

9. If the range of a PERFORM statement includes another PERFORM
statement, the sequence of procedures associated with the
included PERFORM must itself either be totally included in, or
totally excluded from, the logical sequence referred to by the
first PERFORM. Thus, an active PERFORM statement, whose
execution point begins within the range of another active PERFORM
statement;, must not allow control to pass to the exit of the
other active PERFORM statement; furthermore, two or more such
active PERFORM statements may not have a common exit. The
following illustrations show the valid sequences:

x PERFORM a THRU m
a----~~~~~--

d PERFORM f THRU j
f ~--~~~~--
j~~~~-~~___.

m-~~-------

x PERFORM a THRU m
a~--------

!==~-----1 I
j------·
d PERFORM f THRU j

12-86

x PERFORM a THRU m
a~------~---
d PERFORM f 'DIRU j
h

m------------J
f ~~~~~-~--
j~~-~-~~--'

Example of PERFORM Statements To Initialize a 3 by 6 Table

*

PROCEDURE DIVISION.
INITIALIZE-THE-TABLE.

PERFORM INITl VARYING INDXl FROM 1 BY 1 UNTIL INDXl > 3.
DISPLAY "THE TABLE IS INITIALIZED.".
STOP RUN.

INITl.
PERFORM INIT-TABLE VARYING INDX2 FROM 1 BY 1 UNTIL INDX2 > 6.

!NIT-TABLE.

* Initialize each table element here.

*

12-87

READ Statement -- for Consecutive Files

Function

For SEQUENTIAL access, the READ statement makes available the next
logical record from a file. For RANDOM access, the READ statement makes
available a specified record from a mass storage file.

General Format

Format 1
READ file-name [NEXT] RECORD [WITH HOLD] [INTO identifier]

[AT END imperative-statement]

Format 2

[

WITH HOLD]
READ file-name [NEXT] RECORD MODIFIABLE

ALTERED
[INTO identifier]

[{~,Y~ KEY} imperative-statement]

Syntax Rules

1. Format 1 must be used for all files in SEQUENTIAL access mode.

2. The NEXT phrase must be specified for files in DYNAMIC access
mode, when records are to be retrieved sequentially.

3. Format 2 is used for files in RANDOM access mode or for files in
DYNAMIC access mode when records are to be retrieved randomly.

4. The INVALID KEY phrase or the AT END phrase must be specified if
no applicable USE procedure is specified for file-name.

5. The AT END phrase can be specified in a Format 2 READ statement
only when ALTERED has been specified.

6. The storage area associated with identifier and the record area
associated with file-name must not be the same.

General Rules

1. The associated files must be open in the input or I-0 mode at the
time this statement is executed.

2. The following rules pertain to files read sequentially (Format 1).

12-88

a. The record pointed to by the current record pointer is made
available provided that the current record pointer was
positioned by the OPEN statement and the record is still
accessible through the path indicated by the current record
pointer.

b. If the current record pointer was positioned by the execution
of a previous READ statement, the current record pointer is
updated to point to the next existing record in the file, and
then that record is made available.

c. If, at the time of execution of a Format 1 READ statement,
the position of current record pointer for that file is
undefined, the execution of that READ statement is
unsuccessful.

d. If, at the time of the execution of a Format 1 READ
statement, no next logical record exists in the file, an AT
END condition occurs, and the execution of the READ statement
is unsuccessful.

e. If the RELATIVE KEY phrase is specified in the file control
entry, the execution of a Format 1 READ statement updates the
contents of the RELATIVE KEY data item such that it contains
the relative record number of the record made available.

3. For files to be read randomly (Format 2) the execution of a READ
statement sets the current record pointer to, and makes
available, the record whose relative record number is contained
in the data item named in the RELATIVE KEY phrase for the file.
If the file does not contain such a record, the INVALID KEY
condition exists and execution of the READ statement is
unsuccessful. The RELATIVE KEY phrase must be included in the
FILE CONTROL entry for sequential files that are to be read
randomly.

4. The execution of the READ statement causes the value of the FILE
STATUS data item, if described in the ASSIGN clause of the file
control entry, to be updated.

5. When the logical records of a file are described with more than
one record description in the File Description (FD) entry, these
records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. The contents
of any data items that lie beyond the range of the current data
record are undefined at the completion of the execution of the
READ statement.

12-89

6. If the INTO phrase is specified, the record being read is moved
from the record area to the area specified by identifier
according to the rules specified for the MOVE statement without
the CORRESPONDING phrase. The implied MOVE does not occur if the
execution of the READ statement was unsuccessful. 'Any
subscripting or indexing associated with identifier is evaluated
after the record has been read and immediately before it is moved
to the data item.

7. When the INTO phrase is used, the record being read is available
in both the input record area and the data area associated with
identifier.

8. When the AT END condition is recognized the following actions are
taken in the specified order:

a. A value is placed into the FILE STATUS data item, if
specified for this file, to indicate an AT END condition.

b. If the AT END phrase is specified in the statement causing
the condition, control is transferred to the AT END
imperative-statement. Any USE procedure specified for this
file is not executed.

c. If the AT END phrase is not specified, then a USE procedure
must be specified, either explicitly or implicitly, for this
file, and that procedure is executed.

When the AT
input/output
unsuccessful.

END condition
statement that

occurs,
caused

execution of
the condition

the
is

9. Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined.

10. When the AT END condition has been recognized, a Format 1 READ
statement for that file must not be executed without first
executing one of the following:

a. A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

b. A successful Format 2 READ statement for that file.

11. For a file for which DYNAMIC access mode is specified, a Format 1
READ statement with the NEXT phrase specified causes the next
logical record to be retrieved from the file as described in
General Rule 2.

12. Except in the case of workstation files, the WITH HOLD phrase
must be specified in a READ statement that precedes a REWRITE for
a file in DYNAMIC or SEQUENTIAL access mode.

12-90

13. The WITH HOLD phrase is only valid for files opened in I-0 mode.

Workstation Screen I/O

14. The execution of the READ statement for a workstation file causes
the relative record number (the data item named in the RELATIVE
KEY Clause) to be moved to the first byte of the order area, and
an attempt is made to read the workstation data to the user's
"mapping area".

A record of the workstation file contains the 4-byte order area
(refer to Section 4.3.4) followed by a variable number (up to
1920) of bytes containing the data transmitted either to or from
the screen. The latter is the mapping area. (Refer to Appendix
D.)

15. After I/O completion, the following information is available:

a. The record is available in the mapping area.

b. The cursor position data item and order area Bytes 2 and 3
receive the current cursor position.

c. The second byte of the FILE STATUS key receives the AID
character (refer to Section E.6, AID Characters).

16. If MODIFIABLE is specified, the file must be a workstation file.
Specifying MODIFIABLE causes the following actions to occur:

a. The contents of modifiable locations of the workstation
screen are moved to the mapping area.

b. Pseudo-blank characters within the range of the READ
operation are changed to blanks before transmission;
therefore, they are also represented as blanks in the mapping
area.

c. Blinking characters within the range of the READ operation
are changed to high-intensity nonblinking characters (by
changing the associated Field Attribute Character both on the
screen and in the mapping area).

d. The cursor position data item and Bytes 2 and 3 in the order
area receive the current cursor position.

e. The second byte of the FILE STATUS key receives the AID
character (refer to Section E.6, AID Characters).

17. If the ALTERED modifier is specified, the file must be a
workstation file. When ALTERED is specified, only those fields
that have been modified by the user are moved. If AT END
imperative-statement is specified with ALTERED and no field has
been changed, the imperative statement is executed.

12-91

NOTE

The reconunended options for the READ I/O Statement are
MODIFIABLE and INVALID KEY.

12-92

READ Statement -- for Indexed Files

Function

For SEQUENTIAL access, the READ statement makes available the next
logical record from a file. For RANDOM access, the READ statement makes
available a specified record from a mass storage file.

General Format

Format 1

READ file-name [NEXT] RECORD [WITH HOLD] [INTO identifier]

[
TIMEOUT OF {?ata-name-1\. [SECOND]

integer f SECONDS
[HOLDER-ID IN data-name-2]

{
imperative-statement}]
NEXT SENTENCE]

[AT END imperative-statement]

Format 2

READ file-name RECORD [WITH HOLD] [INTO identifier]

Syntax Rules

[KEY IS data-name-31

[
TIMEOUT OF {?ata-name-1} [SECOND]

integer SECONDS

[HOLDER-ID IN data-name-2]

{
imperative-statement}]
NEXT SENTENCE

[INVALID KEY imperative-statement]

1. The storage area associated with INTO identifier and the storage
area that is the record area associated with file-name must not
be the same storage area.

2. Format 1 must be used for all files in SEQUENTIAL access mode.

3. The NEXT phrase must be specified for files in DYNAMIC access
mode when records are to be retrieved sequentially.

4. Format 2 is used for files in RANDOM access mode or for files in
DYNAMIC access mode when records are to be retrieved randomly.

12-93

5. The INVALID KEY phrase or the AT END phrase must be specified if
no applicable USE procedure is specified for file-name.

6. Data-name-1 must refer to an integer item no greater than 255.

7. Data-name-2 must be defined in the Working-Storage Section or
Linkage Section and have a PICTURE of X(3).

8. Data-name-3 must be the name of a data item specified as an
alternate record key associated with file-name. Data-name-3 may
be qualified.

9. The TIMEOUT phrase can be specified only if the HOLD phrase is
specified.

General Rules

1. The associated file must be open in the input, I-0, or shared
mode at the time this statement is executed.

2. The record to be made available by the Format 1 READ statement is
determined as follows:

a. The record pointed to by the current record pointer is made
available provided that the current record pointer was
positioned by the START or OPEN statement and the record is
still accessible through the path indicated by the current
record pointer. If the record is no longer accessible, which
may have been caused by the deletion of the record or a
change in an alternate record key, the current record pointer
is updated to point to the next existing record within the
established key of reference, and that record is then made
available.

b. If the current record pointer was positioned by the execution
of a previous READ statement, the current record pointer is
updated to point to the next existing record in the file with
the established key of reference, and then that record is
made available.

3. The execution of the READ statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated.

4. When the logical records of a file are described with more than
one record description in the File Description (FD) entry, these
records automatically share the same storage area; this is
equivalent to an implicit redefinition of the area. The contents
of any data items that lie beyond the range of the current data
record are undefined at the completion of the execution of the
READ statement.

5. For a file open in shared mode or I-0 mode for which the access
mode is DYNAMIC, a READ statement containing the WITH HOLD phrase
must precede any DELETE or REWRITE operation.

12-94

6. For a file open in shared mode, the WITH HOLD phrase is used to
hold a record for update. Following successful execution of a
READ WITH HOLD, the record read can be accessed by other users
sharing the same file, but it cannot be modified by anyone else
until it is released by the READ issuer. If the issuer is
holding the record read or the file containing it, the issuer
continues to hold it. If another record (in the same or any
other file) is being held, that record is released. If the
specified record is being held by another user, the READ issuer
is forced to wait until it is released by that user. If the READ
issuer is holding a file other than the one on which the READ
WITH HOLD is issued, an error message is displayed and the READ
is not performed. A record held for update can be released in
three ways:

a. By executing any DELETE, REWRITE or WRITE statement

b. By executing a succeeding READ WITH HOLD on the same or any
other file

c. By executing a CLOSE for the file containing the held record,
including an implied CLOSE on run termination.

7. If the INTO phrase is specified, the record being read is moved
from the record area to the area specified by identifier
according to the rules specified for the MOVE statement without
the CORRESPONDING phrase. The implied MOVE does not occur if the
execution of the READ statement was unsuccessful. "Any
subscripting or indexing associated with identifier is evaluated
after the record has been read and immediately before it is moved
to the data item.

8. When the INTO phrase is used, the record being read is available
in both the input record area and the data area associated with
identifier.

9. If, at the time of execution of a Format 1 READ statement, the
position of current record pointer for that file is undefined,
the execution of that READ statement is unsuccessful.

10. If, at the time of the execution of a Format 1 READ statement, no
next logical record is accessible through the established key of
reference, the AT END condition occurs, and the execution of the
READ statement is considered unsuccessful.

11. When the AT END condition is recognized the following actions are
taken in the specified order:

a. A value is placed into the FILE STATUS data item, if
specified for this file, to indicate an AT END condition.

12-95

b. If the AT END phrase is specified in the statement causing
the condition, control is transferred to the AT END
imperative statement. Any USE procedure specified for this
file is not executed.

c. If the AT END phrase is not specified, then a USE procedure
must be specified, either explicitly or implicitly, for this
file, and that procedure is executed.

When the AT
input/output
unsuccessful.

END condition
statement that

occurs,
caused

execution of
the condition

the
is

12. Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined.

13. When the AT END condition has been recognized, a Format 1 READ
statement for that file must not be executed without first
executing one of the following:

a. A successful CLOSE statement followed by the execution of a
successful OPEN statement for that file.

b. A successful START statement for that file.

c. A successful Format 2 READ statement for that file.

14. For a file for which DYNAMIC access mode is specified, a Format 1
READ statement with the NEXT phrase specified causes the next
logical record to be retrieved from that file as described in
General Rule 2.

15. For an indexed file being SEQUENTIALLY accessed, records having
the same duplicate value in an alternate record key that is the
key of reference are made available in ascending primary key
order.

16. If the KEY phrase is specified in a Format 2 READ statement,
data-name is established as the key of reference for this
retrieval. If the DYNAMIC access mode is specified, this key of
reference is also used for retrievals by any subsequent
executions of Format 1 READ statements for the file until a
different key of reference is established.

17. If the KEY phrase is not specified in a Format 2 READ statement,
the primary record key is established as the key of reference for
this retrieval. If the DYNAMIC access mode is specified, this
key of reference is also used for retrievals by any subsequent
executions of Format 1 READ statements for the file until a
different key of reference is established.

12-96

18. Execution of a Format 2 READ statement causes the value of the
key to be compared with the value contained in the corresponding
data item of the stored records in the file, until the record
having an equal value is found. The current record pointer is
positioned to this record which is then made available. If no
record can be so identified, the INVALID KEY condition exists and
execution of the READ statement is unsuccessful.

19. If the TIMEOUT phrase is specified
completed in data-name-2 or
imperative-statement-! is executed.
specified is 0, the timeout exit will
READ cannot be completed.

and the READ cannot be
integer seconds, then
If the nwnber of seconds
immediately be taken if the

20. If the HOLDER-ID phrase is specified in the TIMEOUT phrase, the
logon initials of the user currently holding the resources is
moved to data-name-3.

12-97

READ Statement -- for Relative Files

Function

The READ statement makes available the next logical record of a file
when access is sequential. For random access, the READ statement makes
available a specific record from a mass storage unit.

General Format

Format 1

READ file-name [NEXT] RECORD [WITH HOLD] [INTO identifier]
[AT END imperative-statement]

Format 2

READ file-name RECORD [WITH HOLD] [INTO identifier]
[INVALID KEY imperative-statement]

Syntax Rules

1. The storage area associated with identifier and the record area
associated with file-name must not be the same storage area.

2. Format 1 must be used for all files in sequential access mode.

3. The NEXT phrase must be specified for files in dynamic access
mode when records are to be retrieved sequentially.

4. Format 2 is used for files in either random access mode or for
files in dynamic access mode when records are to be retrie~ed
randomly.

5. Either the INVALID KEY phrase or the AT END phrase must be
specified if no applicable USE procedure is specified for
file-name.

6. Relative files do not require the WITH HOLD phrase with a READ
statement prior to a WRITE, REWRITE, or DELETE operation.
Therefore, the WITH HOLD phrase is treated as a collUl\ent by the
compiler.

General Rules

1. The associated files must be opened in either INPUT or I-0 mode
at the time the READ statement is executed.

12-98

r-"'\,

2. Records are made available by the Format 1 READ as follows:

a. The record pointed to by the current record pointer is made
available if the pointer was positioned by the START or OPEN
statement and the record is still accessible through the path
indicated by the pointer. If the record is no longer
accessible (i.e., it was deleted), the current record pointer
is updated to point to the next existing record in the file.
That record is then made available.

b. If the current record pointer was positioned by the execution
of a previous READ statement, the pointer is updated to point
to the next existing record in the file. That record is then
made available.

3. The execution of the READ statement causes the value of the FILE
STATUS data item (if any) associated with file-name, to be
updated.

4. The concept of the READ statement remains unchanged regardless of
the method used to overlap access time with processing time.
This means that a record is available to the object program prior
to the execution of any statement following the READ statement.

5. Logical records share the same storage area if they are described
with more than one record description. This is equivalent to an
implicit redefinition of the area. The contents of any data
items which lie beyond the range of the current data record are
undefined at the completion of the execution of the READ
statement.

6. A record being read is moved from the record area to the area
specified by identif'ier if the INTO phrase is specified. This
move follows the rules for a MOVE statement without the
CORRESPONDING phrase. The implied move does not occur if the
execution of the READ statement is unsuccessful. 'Any
subscripting or indexing associated with identifier is evaluated
after the record is read and immediately before it is moved.

7. A record being read is accessable from both the input record area
and data area associated with identifier when the INTO phrase is
used.

8. The execution of a READ statement is unsuccessful if, at the time
of execution of a Format 1 statement, the position of the current
record pointer for that file is undefined.

9. If no next logical record exists in a file at the time of
execution of a Format 1 READ statement, the AT END condition
occurs and the read is considered unsuccessful.

12-99

10. When the AT END condition occurs, the following actions are taken
in the specified order:

a. The AT END condition is indicated by the placement of a value
in the FILE STATUS data item, if one was specified for the
file.

b. Control is transferred to the AT END imperative-statement if
the AT END phrase is specified in the statement causing the
condition. Any USE procedure specified for the file is not
executed.

c. A USE procedure must be specified if an AT END phrase is
not. The USE procedure can be either implicitly or
explicitly specified.

Execution of an input-output statement that causes an AT END
condition to occur is considered unsuccessful.

11. The contents of an associated record area and the position of the
current record pointer are undefined following the unsuccessful
execution of a READ statement.

12. When an AT END condition has been recognized, a Format 1 READ
statement for that file must not be executed without first
executing one of the following:

a. A success£ ul CLOSE statement fol lowed by the execution of a
successful OPEN statement.

b. A successful START statement.

c. A successful Format 2 READ statement.

13. A Format 1 READ statement with the NEXT phrase causes the next
logical record to be retrieved from a file with dynamic access
mode specified (refer to General Rule 2).

14. If the RELATIVE KEY phrase is specified, the execution of a
Format 1 READ statement updates the contents of the RELATIVE KEY
data item such that it contains the relative record number of the
record made available.

15. The execution of a Format 2 READ statement sets the current
record pointer to, and makes available, the record whose relative
record number is contained in the data item named in the RELATIVE
KEY phrase. If the file does not contain such a record, the
INVALID KEY condition exists and execution of the READ statement
is unsuccessful.

12-100

RELEASE Statement

Function

The RELEASE statement transfers records to the initial phase of a
SORT operation.

General Format

RELEASE record-name [FROM identifier]

Syntax Rules

1. Record-name must be the name of a logical record in a sort-merge
file description entry and it may be qualified.

2. A RELEASE statement may only be used within the range of an input
procedure that is associated with a SORT statement for a file
whose SD file description entry contains record-name.

3. Record-name and identifier must not ref er to the same storage
area.

General Rules

1. The execution of a RELEASE statement causes the record named by
record-name to be released to the initial phase of a sort
operation.

2. When the FROM phrase is used, the contents of the identifier data
area are moved to record-name. The contents of record-name are
then released to the sort file. Moving takes place according to
the rules specified for the MOVE statement without the
CORRESPONDING phrase. After the move, the information in the
record area is no longer available, but the information in the
data area associated with the identifier is still available.

3. When control passes from the input procedure, the file consists
of all those records which were placed in it by the execution of
RELEASE statements.

12-101

RETURN Statement

Function

The RETURN statement obtains either sorted records from the final
phase of a SORT operation, or merged records during a MERGE operation.

General Format

RETURN file-name RECORD [INTO identifier] AT END imperative-statement

Syntax Rules

1. File-name must be described by an SD file description entry in
the Data Division.

2. A RETURN statement may only be used within the range of an output
procedure associated with a SORT or MERGE statement for file-name.

3. The INTO phrase must not be used when the input file contains
logical records of various sizes as indicated by their record
descriptions. The storage areas associated with identifier, and
the record area associated with file-name, must not be the same
storage area.

General Rules

1. When the logical records of a file are described with more than
one record description, these records automatically share the
same storage area. This is equivalent to an implicit
redefinition of the area. The contents of any data items which
lie beyond the range of the current data record are undefined at
the completion of the execution of the RETURN statement.

2. The execution of the RETURN statement causes the next record to
be made available for processing. T~e order of records is that
specified by the keys listed in the SORT or MERGE statement. The
record is made available in the record areas associated with the
SORT or MERGE file.

3. If the INTO phrase is specified, the current record is moved from
the input area to the area specified by identifier according to
the rules for the MOVE statement without the CORRESPONDING
phrase. The implied MOVE does not occur if there is an AT END
condition. 'Any subscripting or indexing associated with
identifier is evaluated after the record has been returned and
immediately before it is moved to the data item.

12-102

4. If the INTO phrase is specified, the data is available in both
the input record area and the data area associated with
identifier.

5. If no next logical record exists for the file at the time of the
execution of a RETURN statement, the AT END condition occurs.
The contents of the record areas associated with the file when
this happens is undefined. After the execution of the
imperative-statement in the AT END phrase, no RETURN statement
may be executed as part of the current output procedure.

12-103

REWRITE Statement -- for Consecutive Files

Function

The REWRITE statement logically replaces a record existing in a mass
storage file.

General Format

Format 1
REWRITE record-name [FROM identifier]

Format 2
REWRITE record-name [FROM identifier] AFTER

Syntax Rules

~~~~l~G CURSOR COLUMN {~dentifier-1\.{ROWLJ!dentifier-2} 
ROLL DOWN mteger-1 f LINE f\integer-2 

ROLL UP 
ERASE PROTECT 
ERASE MODIFY 

1. Record-name and identifier must not refer to the same storage 
area. 

2. Record-name is the name of a logical record in the file section 
of the Data Division and may be qualified. 

General Rules 

Formats 1 and 2 

1. For a mass storage file, the last input/output statement executed 
for the associated I-0 mode file prior to the execution of the 
REWRITE statement must have been a successfully executed READ 
WITH HOLD statement. The record accessed by the READ statement 
is logically replaced by REWRITE. If the file is a workstation 
file, there is no requirement of a previous READ or a HOLD. 

2. The number of character positions in the record referenced by 
record-name must be equal to the number of character positions in 
the record being replaced. 

3. The execution of the REWRITE statement causes the value of the 
FILE STATUS data i tern, if any, associated with the file to be 
updated. 

12-104 



4. The file associated with record-name must be a mass storage file 
open in the I-0 mode, or a workstation file open in I-0 mode, at 
the time of execution of this statement. 

5. The file associated with record-name must not be a compressed 
file. It must not contain variable-length records. Records must 
be defined as fixed-length. 

6. The logical record released by a successful execution of the 
REWRITE statement is no longer available in the record area 
unless the associated file is named in a SAME RECORD AREA 
clause. If the file is so named, the logical record is available 
to the program as a record of other files appearing in the same 
SAME RECORD AREA clause as the associated I-0 file, as well as to 
the file associated with record-name. 

7. The execution of a rewrite statement with the FROM phrase is 
equivalent to the execution of the statement, 

MOVE identifier TO record-name, 

followed by the execution of the same REWRITE statement without 
the FROM phrase. The contents of the record area prior to the 
execution of the implicit MOVE statement have no effect on the 
execution of the REWRITE statement. 

8. The current record pointer is not affected by the execution of a 
REWRITE statement. 

Format 2 Only 

9. Format 2 is used for records of the workstation file. 

10. Integer-1 can be any number from 1 through 80. 

11. The function selected by the AFTER phrase specifies the Write 
Control Character (WCC) to be used on the REWRITE operation. 

Function wee 

ALARM X"CO" 
CURSOR X"AO" 
DOWN X"90" 
UP X"88" 
PROTECT X"82" 
MODIFY X"84" 

12-105 



12. Execution of a Format 2 READ statement causes the relative record 
number (the data item named in the RELATIVE KEY phrase) to be 
moved to the first byte of the order area, and an attempt is made 
to write to the workstation screen in accordance with actions 
directed by the Write Control Character. 

13. The display i tern referenced by record-name may be only one line 
for the following functions: 

ROLL DOWN 
ROLL UP 

14. Integer-2 can be any number from 1 through 24. 

15. If ROW (or LINE) is not specified, the line is identified by the 
relative key for the record being rewritten. 

12-106 



REWRITE Statement -- for Indexed Files 

Function 

The REWRITE statement logically replaces a record existing in a mass 
storage file. 

General Format 

REWRITE record-name [FROM identifier] 

[INVALID KEY imperative-statement] 

Syntax Rules 

1. Record-name and identifier must not refer to the same storage 
area. 

2. Record-name is the name of a logical record in the File Section 
of the Data Division and may be qualified. 

3. The INVALID KEY phrase must be specified in the REWRITE statement 
for files for which an appropriate USE procedure is not specified. 

General Rules 

1. The file associated with record-name must be open in the I-0 or 
shared mode at the time of execution of this statement. 

2. For files in the RANDOM access mode, the last input/output 
statement executed for the associated file prior to REWRITE must 
have been a successfully executed READ statement. The record 
accessed by the READ statement is logically replaced by REWRITE. 

3. For files in the DYNAMIC or SEQUENTIAL access mode, the last 
input/output statement executed for the associated file prior to 
the execution of the REWRITE statement must have been a 
successfully executed READ WITH HOLD statement. The record 
accessed by the READ WITH HOLD statement is logically replaced by 
REWRITE. 

4. For files open in shared mode, the last input/output statement 
executed for the associated file prior to the execution of the 
REWRITE statement must have been a successfully executed READ 
WITH HOLD, with no intervening READ WITH HOLD on any other shared 
file. 

12-107 



5. The logical record released by a successful execution of the 
REWRITE statement is no longer available in the record area 
unless the associated file is named in a SAME RECORD AREA 
clause. If the file is so named, the logical record is available 
to the program as a record of other files appearing in the same 
SAME RECORD AREA clause as the associated I-0 file, as well as to 
the file associated with record-name. 

6. The execution of a REWRITE statement with the FROM phrase is 
equivalent to the execution of the statement, 

MOVE identifier TO record-name, 

followed by the execution of the same REWRITE statement without 
the FROM phrase. The contents of the record area prior to the 
execution of the implicit MOVE statement have no effect on the 
execution of the REWRITE statement. 

7. The current record pointer is not affected by the execution of a 
REWRITE statement. 

8. The execution of the REWRITE statement causes the value of the 
FILE STATUS data item in the file control entry to be updated. 

9. For a file in the SEQUENTIAL access mode, the record to be 
replaced is specified by the value contained in the record key. 
When the REWRITE statement is executed the value contained in the 
record key data item of the record to be replaced must be equal 
to the value of the record key of the last record read from this 
file. 

10. For a file in the RANDOM or DYNAMIC access mode, the record to be 
replaced is specified by the record key data item. 

11. If record-name references a variable-length COMPRESSED record, 
the rewritten record can have a different length. 

12. The INVALID KEY condition exists when one of the following occurs. 

a. The access mode is SEQUENTIAL and the value contained in the 
record key data item of the record to be replaced is not 
equal to the value of the record key of the last record read 
from this file. 

b. The value contained in the record key data item does not 
equal that of any record stored in the file. 

c. The value contained in an alternate record key data item for 
which a DUPLICATES phrase has not been specified is equal to 
that of a record already stored in the file. 

The updating operation does not take place and the data in the 
record area is unaffected. 

12-108 



13. The alternate access paths (indices) through which the rewritten 
record is to be available is determined by the alternate keys 
associated with the specified record-name. When rewritten, ·the 
record is deleted from any current paths not so determined; and 
is added to any new paths so determined. When added to a new 
path, the record is logically placed among any other records with 
the same alternate key value, ordered by primary key value. 

12-109 



REWRITE Statement -- for Relative Files 

Function 

The REWRITE statement logically replaces a record existing in a mass 
storage file. 

General Format 

REWRITE record-name [FROM identifier] 

[INVALID KEY imperative-statement] 

Syntax Rules 

1. Record-name and identifier must not refer to the same storage 
area. 

2. Record-name is the name of a logical record in the File Section 
of the Data Division and may be qualified. 

3. The INVALID KEY phrase must not be specified for a REWRITE 
statement which references a file in sequential access mode. 

4. The INVALID KEY phrase must be specified in the REWRITE statement 
for files in the random or dynamic access mode for which an 
appropriate USE procedure is not specified. 

General Rules 

1. The file associated with record-name must be opened in the I-0 
mode at the time of execution of this statement. 

2. For files in the sequential access mode, the last input-output 
statement executed prior to the execution of a REWRITE statement 
must be a successfully executed READ statement. The operating 
system logically replaces the record that was accessed by the 
READ statement. 

3. For variable length records, the length of the record rewritten 
need not be the same length as the original record. 

4. The execution of a REWRITE statement with the FROM phrase is 
equivalent to the execution of: 

MOVE identifier TO record-name 

followed by the execution of the same REWRITE statement without 
the FROM phrase. The contents of the record area prior to the 
execution of the implicit MOVE statement have no effect on the 
execution of the.REWRITE statement. 

12-110 



5. The current record pointer is not affected by the execution of 
the REWRITE statement. 

6. The execution of the REWRITE statement causes the value of the 
FILE STATUS data item C if any) associated with the file, to be 
updated. 

7. The operating system logically replaces the record specified by 
the contents of the RELATIVE KEY data i tern associated with the 
file if the file is accessed in either random or dynamic mode. 
If the file does not contain the record specified by the key, the 
INVALID KEY condition exists. The updating operation does not 
take place and the data in the record area is unaffected. 

12-111 



ROLLBACK Statement 

Function 

The ROLLBACK statement undoes the entire transaction in the database 
user's Before Image Journal. ROLLBACK is part of the DMS/TX protocol. 
For a complete discussion of DMS/TX refer to Chapter 3. 

General Format 

ROLLBACK [ON ERROR imperative-statement] 

General Rules 

1. The ROLLBACK statement undoes the entire transaction. 

2. If there is an ON ERROR clause, any unsuccessful execution of the 
ROLLBACK statement (with a non-zero return code) causes the ERROR 
imperative statement to be executed. 

3. If there is no ON ERROR clause, the user's program is cancelled 
upon unsuccessful execution of the ROLLBACK statement. 

4. The special register RETURN-CODE contains the return code for the 
ROLLBACK statement. ROLLBACK return code values are as follows: 

0 Unqualified success 
4 Caller not in DMS/TX mode 
8 DMS/TX not supported on this system 

20 I/O error encountered while accessing BIJ 
24 I/O error encountered while accessing Data File 
32 Unable to set File Crash Status. 

12-112 



SEARCH Statement 

Function 

The SEARCH statement is used to search a table for a table element 
that satisfies the specified condition and to adjust the associated index 
to indicate that table element. 

General Format 

Format 1 

SEARCH identifier-1 VARYING [{
!dentifier-2 }] 
mdex-name-1 

[AT END imperative-statement-1] 

WHEN condition-1 { imperative-statement-2} 
NEXT SENTENCE 

[WHEN condition-2 { ~t:;~i~~~~~~~ent-3}] ... 

Format 2 

SEARCH ALL identifier-1 [AT END imperative-statement-1] 

data-name-1 

WHEN 

condition-name-1 

data-name-2 

condition-name-2 

{ 
imperative-statement-2} 
NEXT SENTENCE 

{ 

IS EQUAL TO } { identifier-3 } 
literal-1 

IS = arithmetic-expression-1 

{ 
IS EQUAL TO } { i?entifier-4 } 

llteral-2 
IS = arithmetic-expression-2 

12-113 



Syntax Rules 

1. In both Formats 1 and 2, identifier-! must not be subscripted or 
indexed, but its description in the Data Division must contain an 
OCCURS clause and an INDEXED BY phrase. The description of 
identif ier-1 in Format 2 must also contain the KEY IS phrase in 
its OCCURS clause. 

2. Identifier-2 must be described as USAGE IS INDEX or as a numeric 
elementary item without any positions to the right of the assumed 
decimal point. 

3. In Format l, condi tion-1 may be any condition as described in 
Section 12.4. 

4. In Format 2, all referenced condition-names must be defined as 
having only a single value. The data-name associated with a 
condition-name must appear in the KEY clause of identifier-!. 

Each data-name-1 and data-name-2 must be indexed by the first 
index-name associated with identif ier-1, along with other indices 
or literals as required, and must be referenced in the KEY clause 
of identif ier-1. 

Identifier-3, identifier-4 or any identifiers specified in 
arithmetic-expression-! or -2, must not be referenced in the KEY 
clause of identifier-!. Nor can they be indexed by the first 
index-name associated with identifier-!. 

5. In Format 2, when a data-name in the KEY clause of identifier-! 
is referenced, or when a condition-name associated with a 
data-name in the KEY clause of identif ier-1 is referenced, all 
preceeding data-names in the KEY clause of identif ier-1 or their 
associated condition-names must also be referenced. 

6. Data-name-1 and data-name-2 may be qualified. 

General Rules 

Format 1 

1. If Format 1 of SEARCH is used, a serial type of search operation 
takes place, starting with the current index setting. 

a. If, at the start of execution of the SEARCH statement, the 
index name associated with identifier-! contains a value that 
corresponds to an occurrence number that is greater than the 
highest permissible occurrence number for identifier-!, the 
SEARCH is terminated inunediately. The number of occurrences 
of identif ier-1, the last of which is the highest 
permissible, is discussed under the OCCURS clause (ref er to 
"OCCURS Clause" in Subsection 11. 3. 3.) Then, if the AT END 
phrase is specified, imperative-statement-! is executed; if 
the AT END phrase is not specified, control passes to the 
next executable sentence. 

12-114 



b. If, at the start of execution of the SEARCH statment, the 
index name associated with identifier-1 contains a value 
corresponding to an occurrence number that is not greater 
than the highest permissable occurrence number for that 
identifier, the statement operates by evaluating the 
conditions in the order that they are written. The operation 
makes use of the index settings, wherever specified, to 
determine the occurrence of those i terns to be tested. The 
highest permissible occurrence number is the last occurence 
of the identifier. Refer to the OCCURS clause for a detailed 
discussion. 

If none of the conditions are satisfied, the index-name for 
identif ier-1 is incremented to obtain the reference to the 
next occurrence. The process is then repeated using the new 
index-name settings. If the new value of the index-name 
settings for identif ier-1 corresponds to a table element 
outside the permissible range of occurrence values, the 
search terminates as indicated in General Rule la. 

If one of the conditions is satisfied upon its evaluation, 
the search terminates immediately and the imperative 
statement associated with that condition is executed. The 
index-name remains set at the occurrence that caused the 
condition to be satisfied. 

2. If imperative-statement-1, imperative-statement-2, or 
imperative-statement-3 does not terminate with a GO TO statement, 
control passes to the next executable sentence after execution. 

3. If the VARYING phrase is not used, the index name that is used 
for the search operation is the first (or only) index name that 
appears in the INDEXED BY phrase of identif ier-1. 'Any other 
index names for identif ier-1 remain unchanged. 

4. If the VARYING index-name-1 phrase is specified, and if 
index-name-1 appears in the INDEXED BY phrase of identifier-1, 
that index name is used for this search. If index-name-1 does 
not appear in the INDEXED .BY phrase of identifier-1 or if the 
VARYING identifier-2 phrase is specified, the first (or only) 
index name given in the INDEXED BY phrase of identif ier-1 is used 
for the search. In addition, the following operations will occur: 

a. If the VARYING index-name-1 phrase is specified, and if 
index-name-1 appears in the INDEXED BY phrase of another 
table entry, the occurrence number represented by 
index-name-1 is incremented by the same amount as, and at the 
same time as, the index associated with identifier-1. 

12-115 



b. If the VARYING identif ier-2 phrase is specified, and if 
identifier-2 is an index data item, the data item referenced 
by identifier-2 is incremented by the same amount as, and at 
the same time as, the index associated with identifier-1. If 
identifier-2 is not an index data item, the data item 
referenced by identif ier-2 is incremented by the value one at 
the same time as the index associated with identifier-1. 

5. If identifier-1 is a data item subordinate to a data item that 
contains an OCCURS clause (providing for a 2- or 3-dimensional 
table), an index name must be associated with each dimension of 
the table through the INDEXED BY phrase of the OCCURS clause. 
Only the setting of the index-name associated with identifier-1 
(and the data item identifier-2 or index-name-1, if present) is 
modified by the execution of a SEARCH statement. To search an 
entire 2- or 3-dimensional table it is necessary to execute a 
SEARCH statement several times. Prior to each execution of a 
SEARCH statement, SET statements must be executed whenever index 
names must be adjusted to appropriate settings. 

Figure 12-2 is a flowchart of the Format 1 SEARCH operation 
containing two WHEN phrases. 

12-116 



START 

Index setting: 
highest permissible 
occurrence number 

1i---------AT END*------i imperative­
statement-1 

condition-1 t-----------True -------' imperative­
statement-2 

False 

condition-2 

False 

Increment 
index-name for 
identifier-1 
(index-name-1 
if applicable) 

Increment 
index-name-1 (for 
a different table) 
or identi fier-2 

True imperative­
statement-3 

* These operations are options included only when specified in the SEARCH 
statement. 

** Each of these control transfers is to the next executable sentence unless 
the imperative-statement ends with a GO TO statement. 

Figure 12-2. Flowchart for the SEARCH Statement 

Format 2 

1. The results of the SEARCH ALL operation are predictable only when the 
following conditions are met: 

a. The data in the table is ordered in the same manner as described 
in the ASCENDING/DESCENDING KEY clause associated with the 
description of identifier-I. 

b. The contents of the key(s) referenced in the WHEN clause is 
sufficient to identify a unique table element. 

12-117 



2. Format 2 provides an efficient method of finding an element in a large 
table by performing a binary SEARCH on the ordered table. The initial ~ 
setting of the index-name for identifier-I is ignored and its setting is 
varied during the search operation in a manner which implements the 
binary search. For example, to find an element existing in a table of 
32,000 elements, a maximum if IS elements need be examined. At no time 
is the index-name for identifier-I set to a value that exceeds the value 
corresponding to the last element of the table, or that is less than the 
value corresponding to the first element of the table. The length of 
the table is discussed in the OCCURS clause. 

If any of the conditions specified in the WHEN clause cannot be 
satisfied for any setting of the index within the permitted range, 
control is passed to imperative-statement-I of the AT END phrase, when 
specified, or to the next executable sentence. In either case, the 
final setting of the index is not predictable. If all conditions can be 
satisfied, the index indicates an occurence that allows the conditions 
to be satisfied and control passes to imperative-statement-2. 

3. If imperative-statement-1, imperative-statement-2, or 
imperative-statement-3 does not terminate with a GO TO statement, 
control passes to the next executable sentence after execution. 

4. The index-name that is used for the search operation is the first (or 
only) index-name that appears in the INDEXED BY phrase of identifier-1. 
Any other index-names for identifier-I remain unchanged. 

5. If identifier-I is a data item subordinate to a data item that contains ~ 
an OCCURS clause (providing for a 2- or 3-dimensional table), an index 
name must be associated with each dimension of the table through the 
INDEXED BY phrase of the OCCURS clause. Only the setting of the 
index-name associated with identifier-I (and the data item identifier-2 
or index-name-1, if present) is modified by the execution of a SEARCH 
statement. To search an entire 2- or 3 dimensional table it is 
necessary to execute a SEARCH statement several times. Prior to each 
execution of a SEARCH statement, SET statements must be executed 
whenever index names must be adjusted to appropriate settings. 

12-118 



Example of SEARCH Statement 

Figure 12-3 is a sample program using the SEARCH ALL statement and OCCURS 
clause. 

000100 IDENTIFICATION DIVISION. 
000200 PROG~-ID. SEARCHALL. 
000300 ENVIRONMENT DIVISION. 
000400 DATA DIVISION. 
000500 FILE SECTION. 
000600*TEST SEARCH ALL STATEMENT 
000700 WORKING-STORAGE~ECTION. 
000800 01 TABLE-1. 
000900 05 EMPLOYEES OCCURS 10 TIMES 
001000 ASCENDING KEY IS EMP-ID 
001100 DESCENDING KEY IS EMP-YEARS, 
001200 EMP-SHARES, 
001300 EMP-ELIGIBLE 
001400 INDEXED BY AX, AXl. 
001500 10 EMP-NAME PIC X(20). 
001600 10 EMP-ID PIC 9(4). 
001700 10 EMP-YEARS PIC 99. 
001800 10 EMP-SHARES PIC 9(5). 
001900 10 EMP-STATUS. 
002000 15 EMP-ELIGIBLE PIC X. 

VALUE 
VALUE 

002100 88 TRUE 
002200 88 FALSE 
002300 01 TEST-RESULT. 
002400 05 NAME 
002500 OS YEARS 
002600 01 TEST-2-RESULT. 
002700 05 NAME 
002800 05 SHARES 
002900 01 TEST-3-RESULT. 
003000 OS NAME 
003100 PROCEDURE DIVISION. 
003200 STARTUP. 

PIC X(20). 
PIC 99. 

PIC X(20). 
PIC 9(5). 

PIC X(20). 

003300 MOVE 30 TO RETURN-CODE. 

"T". 
"F". 

003400 PERFORM INIT-EMP-NAME THRU INIT-EMP-ELIGIBLE. 
003500* 
003600* 
003700* 
003800* 

THIS TEST FINDS THE NAME AND NUMBER OF YEARS OF SERVICE OF 
EMPLOYEE WITH ID NUMBER 1076. 

003900 SEARCH-1. 
004000 SEARCH ALL EMPLOYEES 
004100 AT END ADD 1 TO RETURN-CODE 
004200 WHEN EMP-ID (AX) = 1076 
004300 MOVE EMP-NAME (AX) TO NAME OF TEST-1-RESULT 
004400 MOVE EMP-YEARS (AX) TO YEARS OF TEST-1-RESULT 
004500 DISPLAY "NAME AND YEARS OF EMPLOYEE 1076 ARE ", 
004600 TEST-1-RESULT. 

Figure 12-3. SEARCH ALL Example 

12-119 



004700 
004800* 
004900* 
005000* 
005100* 

THIS TEST RETURNS THE NAME AND NUMBER OF SHARES OF THE 
EMPLOYEE WITH ID 1023 AND 4 YEARS EXPERIENCE. 

005200 SEARCH-2. 
005300 SEARCH ALL EMPLOYEES 
005400 AT END ADD 1 TO RETURN-CODE 
005500 WHEN EMP-ID (AX) = 1023 
005600 AND EMP-YEARS (AX) = 4 
005700 MOVE EMP-NAME (AX) TO NAME OF TEST-2-RESULT 
005800 MOVE EMP-SHARES (AX) TO SHARES OF TEST-2-RESULT 
005900 DISPLAY "NAME AND SHARES OF EMPLOYEE 1023 ARE ", 
006000 TEST-2-RESULT. 
006100 
006200* 
006300* 
006400* 
006500* 

THIS TEST RETURNS THE NAME OF THE EMPLOYEE WITH THE 
CHARACTERISTICS INDICATED. 

006600 SEARCH-3. 
006700 SEARCH ALL EMPLOYEES 
006800 AT END ADD 1 TO RETURN-CODE 
006900 WHEN EMP-ID (AX) = 1060 
007000 AND EMP-YEARS (AX) = 2 
007100 AND EMP-SHARES (AX) = 350 
007200 AND FALSE (AX) 
007300 MOVE EMP-NAME (AX) TO NAME OF TEST-3-RESULT 
007400 DISPLAY "NAME OF EMPLOYEE IS ", TEST-3-RESULT. 
007500 
007600 END-PROGRAM. 
007700 STOP RUN. 
007800 
007900* 
008000* 
008100* 
008200* 

THIS PARAGRAPH INITIALIZES THE EMP-NAME FIELD IN EACH 
TABLE ENTRY. NOTE THAT THE NAME FIELD IS NOT ORDERED. 

008300 INIT-EMP-NAME. 
008400 MOVE "MADDEN E R 
008500 MOVE "DUGGEN S 
008600 MOVE "STOESSEL P W 
008700 MOVE "OZKAYNAK L W 
008800 MOVE "TOR N 
008900 MOVE "KILPATRICK R 
009000 MOVE "CARUSO A H 
009100 MOVE "DUNCAN W 
009200 MOVE "MAMIYA B C. 
009300 MOVE "FRIEDMAN M 
009400 

TO EMP-NAME 
TO EMP-NAME 
TO EMP-NAME 
TO EMP-NAME 
TO EMP-NAME 
TO EMP-NAME 
TO EMP-NAME 
TO EMP-NAME 
TO EMP-NAME 
TO EMP-NAME 

(1). 

(2). 

( 3). 
(4). 
(5). 

(6). 

(7). 

( 8). 
( 9). 
(10). 

Figure 12-3. SEARCH ALL Example (continued) 

12-120 

~I 



009500* THIS PARAGRAPH INITIALIZES THE EMP-ID FIELD IN EACH TABLE 
009600* ENTRY WITH VALUES IN ASCENDING ORDER. 
009700* 
009800 INTI-EMP-ID. 
009900 MOVE 0900 TO EMP-ID (1). 
010000 MOVE 0955 TO EMP-ID (2). 
010100 MOVE 1023 TO EMP-ID (3). 
010200 MOVE 1026 TO EMP-ID (4). 
010300 MOVE 1038 TO EMP-ID (5). 
010400 MOVE 1060 TO EMP-ID (6). 
010500 MOVE 1061 TO EMP-ID (7). 
010600 MOVE 1062 TO EMP-ID (8). 
010700 MOVE 1076 TO EMP-ID (9). 
010800 MOVE 1105 TO EMP-ID (10). 
010900 
011000* THIS PARAGRAPH INITIALIZES THE EMP-YEARS IN EACH TABLE 
011100* ENTRY WITH VALUES IN DESCENDING ORDER. 
011200* 
011300 INIT-EMP-YEARS. 
011400 MOVE 6 TO EMP-YEARS (1). 
011500 MOVE 5 TO EMP-YEARS (2). 
011600 MOVE 4 TO EMP-YEARS (3). 
011700 MOVE 4 TO EMP-YEARS (4). 
011800 MOVE 3 TO EMP-YEARS (5). 
011900 MOVE 2 TO EMP-YEARS (6). 
012000 MOVE 2 TO EMP-YEARS (7). 
012100 MOVE 2 TO EMP-YEARS (8). 
012200 MOVE 1 TO EMP-YEARS (9). 
012300 MOVE 1 TO EMP-YEARS (10). 
012400 
012500* 
012600* THIS PARAGRAPH INITIALIZES THE EMP-SHARES FIELD IN 
012700* EACH TABLE ENTRY WITH VALUES IN DESCENDING ORDER. 
012800* 
012900 INIT-EMP-SHARES. 
013000 MOVE 02000 TO EMP-SHARES (1). 
013100 MOVE 01500 TO EMP-SHARES (2). 
013200 MOVE 01200 TO EMP-SHARES (3). 
013300 MOVE 01100 TO EMP-SHARES (4). 
013400 MOVE 01100 TO EMP-SHARES (5). 
013500 MOVE 00350 TO EMP-SHARES (6). 
013600 MOVE 00250 TO EMP-SHARES (7). 
013700 MOVE 00250 TO EMP-SHARES (8). 
013800 MOVE 00000 TO EMP-SHARES (9). 
013900 MOVE 00000 TO EMP-SHARES (10). 
014000 

Figure 12-3. SEARCH ALL Example (continued) 

12-121 



014100* 
014200* 
014300* 
014400* 
014500* 

THIS PARAGRAPH INITIALIZES THE EMP-ELIGIBLE FIELD 
TO TRUE OR FALSE IN DESCENDING ORDER. EMPLOYEES WITH 
1000 OR MORE SHARES HAVE THE ELIGIBLE FIELD SET TO TRUE. 

014600 INIT-EMP-ELIGIBLE. 
014700 MOVE "T" TO EMP-ELIGIBLE 
014800 MOVE "T" TO EMP-ELIGIBLE 
014900 MOVE "T" TO EMP-ELIGIBLE 
015000 MOVE "T" TO EMP-ELIGIBLE 
015100 MOVE "T" TO EMP-ELIGIBLE 
015200 MOVE "F" TO EMP-ELIGIBLE 
015300 MOVE "F" TO EMP-ELIGIBLE 
015400 MOVE "F" TO EMP-ELIGIBLE 
015500 MOVE "F" TO EMP-ELIGIBLE 
015600 MOVE "F" TO EMP-ELIGIBLE 
015700 

(1). 
(2). 

(3). 

(4). 

(5). 

(6). 

(7). 

( 8) • 
(9). 

( 10). 

Figure 12-3. SEARCH ALL Example (continued) 

12-122 



SET Statement 

Function 

The SET statement establishes reference points for table handling 
operations by setting index names associated with table elements. 

General Format 

Format 1 

{
.d .f. 1 ['d ·t· 2 ] } {identifier-3 } SET ~ ent1 ier- ~ ent1 ier- •.. TO index-name-3 

- mdex-name-1 [mdex-name-2] ••• - . t 1 in eger-
Format 2 

SET index-name-4 [index-name-5] ••• {UP BY } {~dentifier-4} 
- DOWN BY mteger-2 

Format 3 

. . {IN FAC OF}{display-item} {ON } SET f1gurat1ve-constant OF identifier-5 OFF 

Syntax Rules 

1. All references to index-name-1, 
apply equally to index-name-2, 
respectively. 

identifier-1, 
identifier-2, 

and index-name-4 
and index~name-5 

2. Identifier-1 and identifier-3 must name either index data items, 
or elementary items described as an integer. 

3. Identifier-4 must be described as an elementary numeric integer. 

4. Integer-1 and integer-2 can be signed. Integer-1 must be 
positive. 

5. The figurative constant must be defined as 1-byte in the 
FIGURATIVE-CONSTANTS paragraph. 

6. Identif ier-5 must reference a 1-byte item. 

7. Display-item must be an item in a Working-Storage record whose 
USAGE IS DISPLAY-WS or in a record of a file for which the device 
type "DISPLAY" has been declared in the SELECT clause. 

General Rules 

1. Index names are considered related to a given table and are 
defined by being specified in the INDEXED BY phrase. 

12-123 



2. If index-name-3 is specified, the value of the index before the 
execution of the SET statement must correspond to an occurrence ~ 
number of an element in the associated table. 

If index-name-4, index-name-5, .•• is specified, the value of the 
index both before and after the execution of the SET statement 
must correspond to an occurrence number of an element in the 
associated table. If index-name-1, index-name-2, is 
specified, the value of the index after the execution of the SET 
statement must correspond to an occurrence number of an element 
in the associated table. The value of the index associated with 
an index name after the execution of a SEARCH or PERFORM 
statement may be undefined. 

3. In Format 1, the following action occurs: 

a. Index-name-1 is set to a value that causes it to refer to the 
table element that corresponds in occurrence number to the 
table element referenced by index-name-3, identif ier-3, or 
integer-1. If identif ier-3 is an index data i tern, or if 
index-name-3 is related to the same table as index-name-1, no 
conversion takes place. 

b. If identifier-I is an index data item, it can be set equal to 
either the contents of index-name-3 or identifier-3 where 
identif ier-3 is also an index data item; no conversion takes 
place in either case. Identif ier-1 can also be. set equal to 
the contents of identif ier-3 where identif ier-3 is an 
integer; in this case, identifier-3 is treated as a USAGE 
BINARY item and moved to identifier-1. 

c. If identifier-1 is an integer data item, it can be set to an 
occurrence number that corresponds to the value of 
index-name-3. It can also be set equal to identifier-3 where 
identifier-3 is an index data i tern; in this case, 
identifier-3 is treated as a USAGE BINARY item and moved to 
identifier-I. 

d. The process is repeated for index-name-2, . • . identif ier-2, 
. . . if specified. Each time the value of index-name-3 or 
identif ier-3 is used as it was at the beginning of the 
execution of the statement. Any subscripting or indexing 
associated with identifier-1, ... is evaluated immediately 
before the value of the respective data item is changed. 

4. In Format 2, the contents of index-name-4 are incremented CUP BY) 
or decremented (DOWN BY) by the number of occurrences represented 
by the value of integer-2 or identifier-4; thereafter, the 
process is repeated for index-name-5, Each time the value 
of identifier-4 is used as it was at the beginning of the 
execution of the statement. 

12-124 



,fl"6"t\ 

5. Data in the following chart represents the validity of various 
operand combinations in Formats 1 and 2 of the SET statement. 
The numbers indicate the applicable general rules. 

Table 12-7. Valid Operands for the SET Statement 

Sending Item Receiving Item 

Integer Data Item Index-name Index Data Item 

Integer Literal No/3c Valid/3a No/3b 

Integer Data Item No/3c Valid/3a Valid/3b * 

Index-Name Valid/3c Valid/3a Valid/3b * 

Index Data Item Valid/3c* Valid/3a* Valid/3b * 

* No conversion takes place. 

6. Format 3 permits the user to set selected bits in any 1-byte 
item. Bits in the specified item corresponding to bits set to 1 
in the figurative constant are set to 1 if the ON option is coded 
or to 0 if the OFF option is coded. 

12-125 



SORT Statement 

Function 

The SORT statement creates a sort file either by executing an input 
procedure or by transferring records from another file. The statement 
then sorts the records on a set of specified keys and makes each record 
available, in the sorted order, to an output file or procedure. 

General Format 

. { ASCENDING } SORT flle-name-1 ON DESCENDING KEY data-name-1 [ data-name-2] ... 

[ ON { ~~~6~~~~G } KEY data-name-3 [ data-name-4] ... ] 

[WITH DUPLICATES IN ORDER] 

[COLLATING SEQUENCE IS alphabet-name] 

{ 

INPUT PROCEDURE IS section-name-1 [ {=UGH } section-name-2 ] } 

USING file-name-2 [file-name-3] ... 

{ 
OUTPUT PROCEDURE IS section-name-3 [{ =UGH} section-name-4} 

GIVING file-name-4 ~ 

Syntax Rules 

1. File-name-1 must be described in a sort-merge (SD) file 
description entry in the Data Division. 

2. Section-name-1 represents the name of an input procedure. 
Section-name-3 represents the name of an output procedure. 

3. File-name-2, -3, and -4 must be described in a file description 
(FD) entry, not an SD entry. The actual size of the logical 
record(s) for these file-names must be equal to the actual size 
described for file-name-1. If the data descriptions of the 
elementary items that make up these records are not identical, it 
is the programmer's responsibility to describe the corresponding 
records to cause equal amounts of character positions to be 
allocated for the corresponding records. 

4. Data-name-1, -2, -3, and -4 are KEY data-names and are subject to 
the following rules: 

a. The data items identified by KEY data-names must be describe 
in records associated with file-name-1. 

12-126 



b. KEY data-names may be qualified. 

c. The data items identified by KEY data-names must not be 
variable length items. 

d. If f ile-name-1 has more than one record description, the data 
items identified by KEY data-names need be described in only 
one of the record descriptions. 

e. None of the data items identified by KEY data-names can be 
described by an entry which either contains an OCCURS clause, 
or is subordinate to an entry which contains one. 

5. The words THROUGH and THRU are equivalent. 

General Rules 

1. The Procedure Division may contain more than one SORT statement. 
Sort statements can not appear in the declaratives portion or in 
the input and output procedures associated with a SORT or MERGE 
statement. 

2. The data-names following the word KEY are listed from left to 
right in the order of decreasing significance without regard to 
how they are divided into KEY phrases. Data-name-1 is the major 
key, data-name-2 is the next most significant key, etc. The sort 
sequence is also governed by the following rules: 

a. When the ASCENDING phrase is specified, the sorted sequence 
is from the lowest value of the contents of the data items 
identified by the KEY data-names to the highest value. This 
rule is in accordance with the rules for comparison of 
operands in a relational condition. 

b. When the DESCENDING phrase is specified, the sorted sequence 
is from the highest value of the contents of the data items 
identified by the KEY data-names to the lowest value. This 
rule is also governed by the rules for comparison of operands 
in a relational condition. 

3. If the DUPLICATES phrase is specified and the contents of all the 
key data items associated with one data record are equal to the 
contents of the corresponding KEY data items associated with one 
or more other data records, the order of return of these records 
is as follows: 

a. the order of the associated input files as specified in the 
SORT statement. Within a given input file, the order is that 
in which the records are accessed from that file. 

b. The order in which these records are released by an input 
procedure, if such a procedure is specified. 

12-127 



4. If the DUPLICATES phrase is not specified and the contents of all 
the key data i terns associated with one data record are equal to 
the contents of the corresponding key data items associated with 
one or more other data records, the order of return of these 
records is undefined. 

5. The COLLATING SEQUENCE IS phrase is currently treated as a 
comment by the compiler. 

6. The input procedure must consist of one or more sections. In 
order to transfer records to the file referenced by file-name-1, 
the input procedure must contain at least one RELEASE statement. 

Transfer of control to points outside an input procedure is 
permitted, but it is the responsibility of the programmer to 
ensure a return to the input procedure. 

The input procedure can include any procedures needed to select, 
create, or modify records. The input procedure must not contain 
SORT or MERGE statements. 

Transfer of control to points inside the input procedure by 
ALTER, GO TO, and PERFORM statements are allowed. During the 
execution of a SORT statement, transfers of control to an input 
procedure is legal if the records have not yet been sorted. If a 
SORT statement is not being executed, such trans£ ers must not 

·-

cause the execution of a RETURN or RELEASE statement, or cause,~, 
control to reach the end of the input procedure. r ~ 

7. If an input procedure is specified, control is passed to that 
procedure before file-name-1 is sequenced by the SORT statement. 
The compiler inserts a return mechanism at the end of the last 
section in the input procedure, and when control passes the last 
statement in the input procedure, the records that have been 
released to f ile-name-1 are sorted. 

8. The output procedure must consist of one or more contiguous 
source program sections that do not form a part of any input 
procedure. In order to make sorted records available for 
processing, the output procedure must include the execution of at 
least one RETURN statement. 

Control must not be passed to the output procedure except when a 
related SORT statement is being executed. The output procedure 
may consist of any procedures needed to select, modify, or copy 
the records being returned from the sort file. Records are 
returned one at a time. The restrictions on the procedural 
statements within the output procedure are as follows: 

a. The output procedure must not contain any SORT or MERGE 
statements. 

12-128 



~' 

b. Transfer of control to points outside an output procedure is 
permitted, but it is the responsibility of the programmer to 
ensure a return to the output procedure. 

c. Transfer of control to points inside the output procedure by 
ALTER, GO TO, and PERFORM statements are allowed. During the 
execution of a SORT statement, trans£ ers of control to an 
output procedure is legal if the records have been sorted. 
If a SORT statement is not being executed, such transfers 
must not cause the execution of a RETURN or RELEASE 
statement, or cause control to reach the end of the output 
procedure. 

9. If an output procedure is specified, control is passed to it 
after file-name-1 has been sequenced by the SORT statement. The 
compiler inserts a return mechanism at the end of the last 
section of the procedure. This mechanism terminates the sort and 
passes control to the next executable statement. Before entering 
the output procedure the sort procedure reaches a point where it 
can select the next record in sorted order when requested. The 
RETURN statements in the output procedure are the requests for 
the next record. 

10. When the USING clause is specified, all records in file-name-2 
and -3 are transferred automatically to file-name-1. At the time 
of execution of the SORT statement, f ile-name-2 and -3 must not 
be open. The SORT statement automatically initiates the 
processing of, makes available the logical records for, and 
terminates the processing of file-name-2 and -3. These implicit 
functions are performed in such a way that any associated USE 
procedures are executed. 

The terminating function for all files is performed as if a CLOSE 
statement, without optional phrases, is executed for each. The 
SORT statement also automatically performs the implicit functions 
of moving records from the file area of f ile-name-2 and -3 to the 
file area for file-name-1, as well as releasing the records to 
the initial phase of the sort operation. 

When the USING clause is specified, the programmer may have also 
coded a VALUE OF clause for the FD. In this case, the SPACE IS 
phrase has no effect for disk resident files, but does for tape 
resident files. 

11. When the GIVING phrase is specified, all sorted records in 
file-name-1 are automatically written to file-name-4 as the 
implied output procedure for this SORT statement. File-name-4 
must not be open at the time of execution of the SORT statement. 
The SORT statement automatically initiates the processing of, 
releases the logical records to, and terminates the processing of 
file-name-4. 

12-129 



The terminating function is performed as if a CLOSE statement, 
without optional phrases, is executed for the file. The SORT 
statement also automatically performs the implicit functions of ~ 
the return of the sorted records from the final phase of the sort 
operation and the moving of records from the file area for 
file-name-1 to the file area for file-name-4. 

12. The success or failure if a sort operation can be checked by 
testing the VS COBOL special register, RETURN-CODE. RETURN-CODE 
has an implied PICTURE of 999 and must not be defined in the 
program. Possible values are as follows: 

RETURN-CODE 

0 

4 

8 

12 

16 

20 

24 

28 

MEANING 

Successful operation. 

No records to be sorted; input 
records did not meet the selection 
criteria, or an empty input file was 
specified. 

Insufficient space in stack or I/O 
buffer. 

Record size is more than 2024 bytes 
long. 

Invalid sort key. 

Unexpected program check. 

Input records are out of order in the 
file to be merged; program cannot 
proceed. 

Input record count problem. 

12-130 



START Statement -- for Consecutive Files 

Function 

The START statement provides a method to determine the current file 
status value of a workstation file. The file status value can be used to 

· determine whether or not a subsequent READ request would wait (for the 
keyboard to be locked) or would be processed immediately. 

General Format 

ST ART file-name 

Syntax Rules 

1. Access mode must be RANDOM and device type must be DISPLAY. 

General Rules 

1. The file must be open in the I-0 mode at the time the START 
statement is executed. 

2. Records of the consecutive file must be variable-length. 

3. The only effect of the execution of the START statement is that 
the FILE STATUS data item, defined in the file control entry, is 
updated. This data item can be used to determine if a following 
READ would wait for operator action. 

If the second byte of the FILE STATUS data i tern (the "Attention 
Identifier" or "AID" character) is blank the keyboard is 
unlocked, which could cause a READ request to wait. If the AID 
character is not blank, the keyboard is locked, and the AID 
character represents a code that indicates which key CENTER or PF 
key) was last used by the workstation operator. (Refer to "AID 
Characters" in Appendix E, File Status Key Values.) 

12-131 



START Statement -- for Indexed Files 

Function 

The START statement provides a basis for logical positioning within 
an indexed file for subsequent sequential retrieval of records. 

General Format 

START file-name KEY [data-name-1] 

[INVALID KEY imperative-statement] 

Syntax Rules 

IS EQUAL TO 
IS= 
IS GREATER THAN data-name-2 
IS> 
IS NOT LESS THAN 
IS NOT< 

1. File-name must be the name of a file for which SEQUENTIAL or 
DYNAMIC access has been specified. 

2. The INVALID KEY phrase must be specified if no applicable USE 
procedure is specified for the file. 

3. Data-name-1, if supplied, must be the name of an alternate record 
key specified for the file in the ALTERNATE RECORD KEY clause of 
the file control entry. 

4. If file-name is the name of an indexed file, and if the KEY 
phrase is specified, data-name-2 can reference one of the 
following: 

a. The primary record key associated with the file 

b. An alternate record key associated with the file 

c. Any data item subordinate to the data item specified as the 
primary record key associated with the file whose leftmost 
character position corresponds to the leftmost character 
position of that record key data item 

d. Any data item subordinate to the data-name-1 item whose 
leftmost character position corresponds to the leftmost 
character position of the data-name-1 item. 

12-132 



5. Data-name-1 and data-name-2 may be qualified. 

General Rules 

1. The file must be open in the input, I-0 or shared mode at the 
time that the START statement is executed. 

2. If the KEY phrase is not specified the relational operator IS 
EQUAL TO is implied. 

3. The type of comparison specified by the relational operator in 
the KEY phrase occurs between a key associated with a record in 
the file referenced by file-name and a data item as specified in 
General Rule 7. If file-name references an indexed file and the 
operands are of unequal size, comparison proceeds as though the 
longer one was truncated on the right such that its length is 
equal to that of the shorter. All other nonnumeric comparison 
rules apply. 

a. The current record pointer is positioned to the first logical 
record currently existing in the file whose key satisfies the 
comparison. 

b. If the comparison is not satisfied by any record in the file, 
an INVALID KEY condition exists, the execution of the START 
statement is unsuccessful, and the position of the current 
record pointer is undefined. 

4. The execution of the START statement causes the value of the 
FILE STATUS data item, if any, associated with file-name to be 
updated. 

s. If the KEY phrase is specified, the comparison described in 
General Rule 3 uses the data item referenced by data-name-2. 

6. If the KEY phrase is not specified, the comparison described in 
General Rule 3 uses the data item referenced in the RECORD KEY 
clause in the file control entry for the file. 

7. Upon completion of the successful execution of the START 
statement, a key of reference is established and used in 
subsequent Format 1 READ statements (Refer to "READ Statement 
for Indexed Files" earlier in this section) as follows: 

a. If the KEY phrase is not specified, the primary record key 
specified for file-name becomes the key of reference. 

b. If the KEY phrase is specified, and data-name-1 
specified, the primary record key becomes the 
reference. 

12-133 

is 
key 

not 
of 



c. If the KEY phrase is specified, and data-name-1 is specified, 
the alternate record key specified by data-name-1, becomes 
the key of reference. 

8. If the execution of the START statement is not successful, the 
key of reference is lllldef ined. 

12-134 



START Statement -- for Relative Files 

Function 

The START statement provides a basis for logical positioning within a 
relative file for the purpose of subsequent, sequential retrieval of 
records. 

General Format 

EQUAL TO 

GREATER THAN 
> 

START file-name KEY IS NOT LESS THAN data-name 
NOT< 
NOT GREATER THAN 
NOT> 
LESS THAN 
< 

[INVALID KEY imperative-statement] 

Syntax Rules 

1. File-name must be the name of a file with sequential or dynamic 
access. 

2. Data-name can be qualified. 

3. The INVALID KEY phrase must be specified if no applicable USE 
procedure is specified for file-name. 

4. If data-name is specified, it must be the data item specified in 
the RELATIVE KEY phrase of the associated file control entry. 

NOTE 

The relational characters >, <, and = are not underlined, 
even though they are required. This is to avoid confusing 
them with other symbols such as~ (greater than or equal to). 

General Rules 

1. File-name must be opened in the INPUT or I-0 mode at the time the 
START statement is executed. 

12-135 



2. If the KEY phrase is not specified, the relational operator, IS 
EQUAL TO, is implied. 

3. The type of comparison specified by the relational operator in 
the KEY phrase occurs between a key associated with a record in 
the file referenced by file-name and the data item referenced by 
the RELATIVE KEY clause associated with file-name. The following 
rules also apply: 

a. The current record pointer is positioned to the first logical 
record currently existing in the file whose key satisfies the 
comparison. 

b. If the comparison is not satisfied by any record in the file, 
an INVALID KEY condition exists. In this case the execution 
of the START statement is unsuccessful and the position of 
the current record pointer is undefined. 

4. The execution of the START statement causes the value of the FILE 
STATUS data item (if any) associated with file-name to be updated. 

12-136 



STOP Statement 

Function 

The STOP statement causes a permanent or temporary suspension of the 
execution of the object program. 

General Format 

STOP {RUN} 
literal 

Syntax Rules 

1. The literal can be nwneric or nonnumeric. 

2. If the literal is numeric, then it must be an unsigned integer. 

3. If a STOP RUN statement appears in a consecutive sequence of 
imperative statements within a sentence, it must appear as the 
last statement in that sequence. 

General Rules 

1. If the RUN phrase is used, then the ending procedure established 
by the compiler is instituted. 

2. If STOP literal is specified, the literal is conununicated to the 
operator. Continuation of the object program begins with the 
execution of the next executable statement in sequence. 

3. If a figurative constant is used instead of the literal, it 
cannot be a user-defined figurative constant. 

4. The value of the special-register RETURN-CODE is passed to the 
operating system conunand language when a STOP RUN is issued. The 
value of RETURN-CODE is initially 0. Valid RETURN-CODE values 
range from 0 to 999. The user can supply an overriding value for 
RETURN-CODE, as in the following statement. 

MOVE "99" TO RETURN-CODE. 

12-137 



STRING Statement 

Function 

The STRING statement allows the movement of two or more data items into a 
single data item. The data being moved does not have to be contiguous, 
nor does it have to be part of the same record description. STRING 
allows the movement of both partial contents, or the complete contents of 
the data items. 

General Format 

STRING {{ i~entifier-1} ... 
hteral-1 

DELIMITED BY literal-2 ... 
{ 

identifier-2 }} 

SIZE 

INTO identifier-3 

[WITH POINTER identifier-4) 

[ON OVERFLOW imperative statement] 

Syntax Rules 

1. Each literal may be any figurative constant without the optional 
word ALL. 

2. All literals must be described as nonnumeric literals, and all 
identifiers, except identifier-4, must be described implicitly or 
explicitly as USAGE IS DISPLAY. 

3. Identifier-3 must not represent an edited data item and must not 
be described with the JUSTIFIED clause. 

4. Identifier-4 must be described as an elementary numeric integer 
data item of sufficient size' to contain a value equal to 1 plus 
the size of the data item referenced by identifier-3. The symbol 
"P" may not be used in the PICTURE character-string of 
identifier-4. 

5. Where identifier-! or identifier-2 is an elementary numeric data 
i tern, it must be described as an integer without the symbol "P" 
in its PICTURE character-string. 

12-138 



General Rules 

1. All references to identifier-1, identifier-2, literal-1 and literal-2 
apply equally to all recursions thereof. 

2. Identifier-1 or literal-1 represents the sending item. Identifier-3 
represents the receiving item. 

3. Literal-2 or identifier-2 indicates the character Cs) delimiting the 
move. If the SIZE phrase is used, the contents of the complete data 
item defined by identifier-1 (or literal-1) is moved. When a 
figurative constant is used as the delimiter, it is a single 
character, nonnumeric literal. 

4. When a figurative constant is specified as literal-1 or literal-2, it 
refers to an implicit, one character data item whose usage is DISPLAY. 

5. When the STRING statement is executed, the trans£ er of data is 
governed by the following rules: 

a. Those characters from the transferring field are transferred to 
the receiving field in accordance with the rules for alphanumeric 
to alphanumeric moves, except that no space filling is provided. 
(Refer to the MOVE Statement.) 

b. When using the DELIMITED phrase without the SIZE phrase; 
The content of the sending field is transferred to the receiving 
field in the sequence specified in the STRING statement. 

The transfer begins with the leftmost character of the sending 
field and proceeds from left to right. 

Transfer continues until one of the following conditions is met: 
The end of the sending field is reached 
The end of the receiving field is reached 
The character(s) specified by literal-2, or by the content of 
identif ier-2 are encountered. Literal-2 and identif ier-2 are 
not transferred. 

c. When using the DELIMITED phrase with the SIZE phrase; 
The entire content of the transferring field is transferred 
in the sequence specified in the STRING statement. 

The transfer continues until all data has been transferred, 
or until the end of the receiving field is reached. 

d. The process is repeated until all occurences of the sending field 
have been processed. 

6. If the WITH POINTER phrase is specified, identifier-4 must be set to 
an initial value greater than zero prior to the execution of the 
STRING statement. 

12-139 



7. If the WITH POINTER phrase is not specified, general rules 8 - 13 
assume identif ier-4 is specified with an initial value of 1. 

8. If the WITH POINTER phrase is specified, the transfer of data is 
governed by the following rules: 

a. Characters behave as if they are moved one at a time as long as 
the value of identif ier-4 does not exceed the length of the data 
item referenced by identifier-3. 

b. The value of identifier-4 behaves as if it is increased by one 
after each character is moved. 

c. The value of identifier-4 is not changed in any other way during 
the execution of the STRING statement. 

9. The execution of the STRING statement causes only that portion of the 
data item that was referenced during the execution of the STRING 
statement to be changed. All other portions of the data item will 
contain data that was present before the execution. 

10. If, during execution, identifier-4 is either less than one or exceeds 
the value of identifier-3, no (further) data is transferred to 
identifier-3. In this situation, the imperative statement in the ON 
OVERFLOW phrase is executed if it is present. 

11. If the ON OVERFLOW phrase is not specified when the conditions 
described in general rule 10 are encountered, control is transferred 
to the next executable statement. 

12. The evaluation of subscripting or indexing for the identifiers is 
done once, as the first operation of the execution of the statement. 

13. If identif ier-1 or identif ier-2 occupies the same storage area as 
identifier-3 or identifier-4, or if identifier-3 and identifier-4 
occupy the same storage area, the result of the execution of the 
statement is undefined. This rule holds true even if the identifiers 
are defined by the same data description entry. (Refer to Section 
12.3.3, Overlapping Operands.) 

12-140 



SUBTRACT Statement 

Function 

The SUBTRACT statement is used to subtract one, or the sum of two or 
more, numeric data items from a numeric data item, and set the value of 
an item equal to the result. 

General Format 

Format 1 
SUBTRACT { i~entifier- 1 } [ i~entifier-2 ] ... FROM identifier-m [ROUNDED] 

hteral-1 hteral-2 
[ON SIZE ERROR imperative-statement] 

Format 2 
SUBTRACT { i~entifier-1} [ i~entifier-2] ... FROM { i~entifier-m} 

hteral-1 hteral-2 hteral-m 
GIVING identifier-n [ROUNDED] 

[ON SIZE ERROR imperative-statement] 

Format 3 
SUBTRACT {CORRESPONDING} identifier-1 FROM identifier-2 [ROUNDED] 

CORR 

[ON SIZE ERROR imperative statement] 

Syntax Rules 

1. Each identifier must refer to a nwneric elementary item except; 

a. In Format 2, the identifier following the word GIVING must 
refer· to either an elementary numeric item or an elementary 
numeric edited item. 

b. In Format 3 each identifier must refer to a group item. 

2. Each literal must be a numeric literal. 

3. The composite of operands must not contain more than 18 digits. 
(Refer to Section 12.3.3, Arithmetic Statements.) 

a. In Format 1 the composite of operands is determined by using 
all of the operands in a given statement. 

b. In Format 2 the composite of operands is determined by using 
all of the operands in a given statement excluding the data 
item that follows the word GIVING. 

12-141 



c. In Format 3 the composite of operands is determined 
separately for each pair of corresponding data items. 

4. CORR is an abbreviation for CORRESPONDING. 

General Rules 

1. Ref er to "ROUNDED Phrase", "SIZE ERROR Phrase", and "Overlapping 
Operands" in Section 12.3.3, Arithmetic Statements, and The 
CORRESPONDING Phrase in Section 11.2.1. 

2. In Format 1, all literals or identifiers preceding the word FROM 
are added together and this total is subtracted from the current 
value of identifier-m storing the result immediately into 
identifier-m. 

3. In Format 2, all literals or identifiers preceding the word FROM 
are added together. The sum is subtracted from li teral-m or 
identifier-m, and the result of the subtraction is stored as the 
new value of identif ier-n. 

4. When subtract is used, enough places are carried so as not to 
lose any significant digits during execution. 

5. If Format 3 is used, data i terns in identif ier-1 are subtracted 
from and stored in corresponding data items in identifier-2. 

Examples of SUBTRACT Statement 

SUBTRACT VOL-1 VOL-2 FROM VOL-3 

The sum of VOL-1 and VOL-2 is subtracted from VOL-3, and the result 
is placed in VOL-3. 

SUBTRACT 10 FROM VOL-1 GIVING VOL-2 

The difference obtained by subtracting 10 from the value of VOL-1 is 
placed in VOL-2. 

SUBTRACT CORR FILEl FROM FILE2. 

Elementary items from FILEl are subtracted from and stored in 
corresponding elementary items in FILE2. 

12-142 



UNSTRING Statement 

Function 

The UNSTRING statement causes contiguous data in a sending field to 
be separated and placed into multiple receiving fields. 

General Format 

UNSTRING identifier-1 

[ DELIMITED BY [ALL] { i~entifier-2} [OR [ALL] { i~entifier-3 }] ... ] 
- hteral-1 - - hteral-2 

INTO { identifier-4 [DELIMITER IN identifier-5] [COUNT IN identifier-6]} ... 

[WITH POINTER identifier-?] 

[TALLYING IN identifier-8] 

[ON OVERFLOW imperative-statement] 

Syntax Rules 

1. Each literal must be a nonnumeric literal. 

2. Identifier-1, identifier-2, identifier-3, and identifier-5 must 
reference data items described, implicitly or explicitly, as 
alphanumeric. 

3. Identifier-4 may be described as either alphabetic, alphanumeric, 
or numeric (except that the symbol "P" may not be used in the 
PICTURE character-string), and must be described implicitly or 
explicitly as USAGE IS DISPLAY. 

4. Identifier-6 and identifier-8 must reference integer data items 
(except that the symbol "P" may not be used in the PICTURE 
character-string). 

5. Identifier-7 must be described as an elementary numeric integer 
data item of sufficient size to contain a value equal to 1 plus 
the size of the data item referenced by identifier-1. The symbol 
"P" may not be used in the PICTURE character-string of 
identifier-7. 

6. The DELIMITER IN phrase and the COUNT IN phrase may be specified 
only if the DELIMITED BY phrase is also specified. 

7. No identifier may name a level 88 entry. 

12-143 



General Rules 

1. All references to identifier-2, literal-1, identifier-4, 
identifier-5, and identifier-6 apply equally to all recursions (1""\, 
thereof. 

2. Identifier-I represents the sending area. 

3. Identifier-4 represents the data receiving area. 
represents the receiving area for delimiters. 

4. Literal-I or identifier-2 specifies a delimiter. 

Identif ier-5 

5. Identifier-6 represents the count of the number of characters 
within identifier-I, isolated by the delimiters for the move to 
identifier-4. This value does not include a count of the 
delimiter character(s). 

6. Identifier-7 contains a value that indicates a relative character 
position within identifier-1. 

7. Identifier-a is a counter which is incremented by I for each 
occurrence of identif ier-4 accessed during the operation. 

8. When a figurative constant is used as the delimiter, it stands 
for a single character, nonnumeric literal. 

When the ALL phrase is specified, one occurence or two or more 
contiguous occurences of literal-1 (figurative constant or not), 
or the content of the data item referenced by identifier-2, are 
treated as if they were only one occurence. Further, one 
occurence of li teral-1 or the data i tern referenced by 
identifier-2 is moved to the receiving data item according to the 
rules specified in General Rule 13d. 

9. When any examination encounters two contiguous delimiters, and 
the current receiving area is described as alphabetic or 
alphanwneric, that area is filled with spaces. If the receiving 
area is described as numeric, the area is filled with zeros. 

10. Literal-I or identifier-2 can contain any character in the 
computer's character set. 

11. Each literal-!, or identifier-2, represents one delimiter. When 
a delimiter contains two or more characters, all of the 
characters must be present in contiguous positions of the sending 
item and in the order given to be recognized as a delimiter. 

12-144 



12. When two or more delimiters are specified in the DELIMITED BY 
phrase, an OR condition exists between them. Each delimiter is 
compared to the sending field. If a match occurs, the 
character(s) in the sending field is considered to be a single 
delimiter. No character(s) in the sending field can be 
considered a part of more than one delimiter. 

Each delimiter is applied to the sending field in the sequence 
specified in the UNSTRING statement. 

13. When the UNSTRING statement is initiated, the current receiving 
area is identifier-4. Data is transferred from identif ier-1 to 
identifier-4 according to the following rules: 

a. If the POINTER phrase is specified, identifier-1 is examined 
beginning with the relative character position indicated by 
identifier-7. If the POINTER phrase is not specified, the 
string of characters is examined beginning with the leftmost 
character position. 

b. If the DELIMITED BY phrase is specified, the examination 
proceeds left to right until either a delimiter specified by 
literal-1 or the value of identifier-2 is encountered (refer 
to General Rule 11). 

If the DELIMITED BY phrase is not specified, the number of 
characters examined is equal to the size of the current 
receiving area. However, if the sign of the receiving item 
is defined as occupying a separate character position, the 
number of characters examined is one less than the size of 
the current receiving area. 

If the end of identif ier-1 is encountered before the 
delimiting condition is met, the examination terminates with 
the last character examined. 

c. The characters thus examined (excluding the delimiting 
character(s), if any) are treated as an elementary 
alphanumeric date item, and are moved into the current 
receiving area according to the rules for the MOVE statement 
(refer to the MOVE statement). 

d. If the DELIMITER IN phrase is specified, the delimiting 
character(s) is treated as an elementary alphanumeric data 
item and is moved into identifier-5 according to the rules 
for the MOVE statement (refer to the MOVE statement). If the 
delimiting condition is the end of identifier-1, identif ier-5 
is filled with spaces. 

e. If the COUNT IN phrase is specified, a value equal to the 
number of characters thus examined (excluding the delimiter 
character(s), if any) is moved into identifier-6 according 
the rules for an elementary move. 

12-145 



f. If the DELIMITED BY phrase is specified, the string of 
characters is further examined beginning with the first 
character to the right of the delimiter. If the DELIMITED BY ~ 
phrase is not specified, the string of characters is further . 
examined beginning with the character to the right of the 
last character transferred. 

g. After data is transferred to identifier-4, the current 
receiving area is the data item referenced by the next 
occurrence of identifier-4. The behavior described in 
paragraphs 13b and 13f is repeated until either all the 
characters in identif ier-1 are exhausted or until there are 
no more receiving areas. 

14. The initialization of the contents of the data items associated 
with the POINTER phrase of the TALLYING phrase is the 
responsibility of the user. 

15. The content of identifier-7 is incremented by one for each 
character examined in identif ier-1. When the execution of an 
UNSTRING statement with a POINTER phrase is completed, 
identifier-7 contains a value equal to the initial value plus the 
number of characters examined in identifier-1. 

16. When the execution of an UNSTRING statement with a TALLYING 
phrase is completed, the content of identif ier-8 contains a value 
equal to its value at the beginning of the execution of the 
statement, plus a value equal to the number of identifier-4 
receving data items accessed during execution of the statement. 

17. Either of the following situations causes an overflow condition: 

a. An UNSTRING is initiated and the value in identifier-7 is 
less than 1 or greater than the size of identifier-1. 

b. If, during execution, all receiving areas have been acted 
upon, and identif ier-1 contains characters that have not been 
examined. 

18. When an overflow condition exists, the UNSTRING operation is 
terminated. If an ON OVERFLOW phrase has been specified, the 
imperative-statement is executed. If the ON OVERFLOW phrase is 
not specified, control is transferred to the next executable 
statement. 

19. The evaluation of subscripting and indexing for the identifiers 
is done only once, as the first operation of the execution of the 
statement. 

12-146 



20. The result of the execution of this statement is undefined if any of 
the following conditions exist: 

a. Identifier-1, identifier-2, or identifier-3 occupies the same 
storage area as identifier-4, identifier-5, identifier-6, 
identifier-7 or identifier-a. 

b. Identifier-4, identifier-5, or identifier-6 occupies the same 
storage area as identifier-7, or identifier-a. 

c. Identifier-7 and identifier-a occupy the same storage area. 

This rule holds true even if the various identifiers are defined 
by the same data description entry (refer to Section 12.3.3, 
Overlapping Operands). 

12-147 



USE Statement 

Function 

The USE statement can specify procedures for input/output error 
handling that supplement the standard procedures provided by the 
input/output control system. It can also identify the user i terns that 
are to be monitored by an associated debugging section. 

In OMS/TX protocol a deadlock can occur between two tasks. OMS/TX 
will choose one of the tasks for deadlock rollback to allow the other 
task to continue. A deadlock exit address may be specified by using a 
deadlock declarative. This alters the default system deadlock handling 
process to allow the original COBOL program to retain control instead of 
being cancelled. For a complete discussion of OMS/TX protocol refer to 
Chapter 3. 

General Format 

Format 1 

{
EXCEPTION } 

USE AFTER STANDARD ERROR 

file-name-1 [file-name-2) ... 
INPUT 
OUTPUT 
1-0 
SHARED 
EXTEND 

PROCEDURE ON 

Format 2 

USE FOR DEBUGGING ON { 
procedure-name-1 [procedure-name-2] ... } 
ALL PROCEDURES 

Format 3 

USE AFTER DEADLOCK. 

Syntax Rules 

1. A USE statement, when present, must immediately follow a section 
header in the Declaratives Section and must be followed by a 
period followed by a space. The remainder of the section must 
consist of zero, one or more procedural paragraphs that define 
the procedures to be used. 

2. The USE statement itself is never executed; it merely defines the 
conditions calling for the execution of the USE procedures. 

12-148 



~' 
3. The same file name can appear in a different specific arrangement 

of the format. Appearance of a file name in a USE statement must 
not cause the simultaneous request for execution of more than one 
USE procedure. 

4. The words ERROR and EXCEPTION are synonymous and can be used 
interchangeably. 

5. The files implicitly or explicitly referenced in a USE statement 
need not all have the same organization or access. 

6. Refer to Section 13.2.4, USE FOR DEBUGGING Statement, for syntax 
rules governing Format 2. 

General Rules 

Format 1 

1. The designated procedures are executed by the input/output system 
after completing the standard input/output error routine, or upon 
recognition of the INVALID KEY or AT END conditions, when the 
INVALID KEY phrase or AT END phrase, respectively, has not been 
specified in the input/output statement. 

2. After execution of a USE procedure, control is returned to the 
invoking routine. 

3. Within a USE procedure, there must not be any reference to any 
nondeclarative procedures. Conversely, in the nondeclarative 
portion there must be no reference to procedure-names that appear 
in the declarative portion, except that PERFORM statements can 
refer to a USE statement or to the procedures associated with 
such a USE statement. 

4. Within a USE procedure, there must not be the execution of any 
statement that would cause the execution of a USE procedure that 
had previously been invoked and had not yet returned control to 
the invoking routine. 

Format 2 

5. Refer to Section 13.2.4, USE FOR DEBUGGING Statement, for general 
rules governing Format 2. 

Format 3 

6. The deadlock declarative specifies a deadlock exit address in the 
OMS/TX environment. If deadlock occurs, the original COBOL 
program may retain control instead of possibly being cancelled. 

7. Procedure-names associated with a USE statement may be referenced 
in a different declarative statement or in a non-declarative 
procedure only with a PERFORM statement. 

12-149 



8. Within the USE procedure, an exit procedure can be specified by a 
GO TO statement. After execution of the USE procedure, control ~ r 1 
is returned to the user specified exit procedure or the entire 
program is cancelled if there is no exit procedure. 

9. Within a USE procedure, do not execute any statement that would 
cause the execution of a USE procedure that had previously been 
invoked and had not yet returned control. 

10. The user's program is cancelled upon unsuccessful setup of the 
deadlock declarative. 

11. When the user's program is executed and deadlock occurs, any 
unsuccessful processing of the system deadlock handler, e.g., 
failure to ROLLBACK, will cause the user's program to be 
cancelled. 

12-150 



WRITE Statement -- for Consecutive Files 

Function 

The WRITE statement releases a logical record for an OUTPUT file. It 
can also be used for vertical positioning of lines within a logical page. 

General Format 

WRITE record-name [FROM identifier-1 ] 

BEFORE ADVANCING integer LINES 
{AFTER } user-figurative-constant 

{{
identifier-2}{LINE } } 

PAGE 
~ . 

Syntax Rules 

1. Record-name and identifier-I must not reference the same storage 
area. 

2. The record-name is the name of a logical record in the File 
Section of the Data Division and can be qualified. 

3. When identifier-2 is used in the ADVANCING phrase, it must be the 
name of an elementary integer data item. 

4. Integer or the value of the data item referenced by identifier-2 
can be O. 

5. The user-figurative constant must be defined as 2 bytes in the 
FIGURATIVE~ONSTANTS paragraph. 

General Rules 

1. The associated file must be open in the output, shared, or extend 
mode at the time of the execution of this statement. 

2. The logical record released by the execution of the WRITE 
statement is no longer available in the record area unless the 
associated file is named in a SAME RECORD AREA clause or the 
execution of the WRITE statement was unsuccessful due to a 
boundary violation. The logical record is also available to the 
program as a record of other files referenced in the same SAME 
RECORD AREA clause as the associated output file, as well as to 
the file associated with record-name. 

12-151 



3. The results of the execution of the WRITE statement with the FROM 
phrase is equivalent to the execution of the statement, 

MOVE identifier-I TO record-name, 

according to the rules specified for the MOVE statement, followed 
by the same WRITE statement without the FROM phrase. 

The contents of the record area prior to the execution of the 
implicit MOVE statement have no effect on the execution of this 
WRITE statement. 

After execution of the WRITE statement is complete, the 
information in the area referenced by identifier-1 is available, 
even though the information in the area referenced by record-name 
may not be. (Refer to General Rule 2.) 

4. The current record pointer is unaffected by the execution of a 
WRITE statement. 

5. The execution of the WRITE statement causes the value of the FILE 
STATUS data item, defined in the file control entry, to be 
updated. 

6. The maximum record size for a file is established at the time the 
file is created and must not subsequently be changed. 

7. The number of character positions on a mass storage device 
required to store a logical record in a file may or may not be 
equal to the number of character positions defined by the logical 
description of that record in the program. 

8. The execution of the WRITE statement releases a logical record to 
the operating system. 

9. The ADVANCING phrase allows control of the vertical positioning 
of each line on a representation of a printed page. If the 
ADVANCING phrase is not used, automatic advancing is provided to 
act as if the user had specified AFTER ADVANCING 1 LINE. If the 
ADVANCING phrase is used, advancing is provided as follows: 

a. If identifier-2 is specified, the representation of the 
printed page is advanced the number of lines equal to the 
current value associated with identifier-2. 

b. If integer is specified, the representation of the printed 
page is advanced the number of lines equal to the value of 
integer. 

c. If the BEFORE phrase is used, the line is presented before 
the representation of the printed page is advanced according 
to General Rules 9a and 9b. 

12-152 



d. If the AFTER phrase is used, the line is presented after the 
representation of the printed page is advanced according to 
General Rules 9a and 9b. 

e. If PAGE is specified, the record is presented on the logical 
page before or after (depending on the phrase used) the 
device is repositioned to the next logical page. 

f. If user-figurative constant is specified, advancing is 
controlled by a 2-byte write control character that is 
defined in the FIGURATIVE-CONSTANTS paragraph. If Bit 0 of 
Byte 1 is 0, then Bits 1-7 of Byte 2 indicate the number of 
lines to be skipped. If Bit 0 of Byte 1 is l, then Byte 2 
indicates top-of-form (HEX "01") or vertical tab (HEX "02"). 

10. WRITE is not valid for a consecutive file with RANDOM access. 

11. When an attempt is made to write beyond the externally defined 
boundaries of a consecutive file, an exception condition exists 
and the contents of the record area are unaffected. The 
following action takes place: 

a. The value of the FILE STATUS data item, if described in the 
file control entry, is set to a value indicating a boundary 
violation. 

b. If a USE AFTER STANDARD EXCEPTION declarative is explicitly 
or implicitly specified for the file, that declaration 
procedure is executed. 

c. If a USE AFTER STANDARD EXCEPTION declaration is not 
explicitly or implicitly specified for the file, the result 
is undefined. 

12. After the recognition of an end-of-reel or an end-of-unit of an 
output file that is contained on more than one physical 
reel/unit, the WRITE statement performs the following operations: 

a. The standard ending reel/unit label procedure 

b. A reel/unit swap 

c. The standard beginning reel/unit label procedure. 

12-153 



WRITE Statement -- for Indexed Files 

Function 

The WRITE statement releases a logical record for an OUTPUT, SHARED 
or INPUT-OUTPUT file. 

General Format 

WRITE record-name [FROM identifier] 

[
TIMEOUT OF {?ata-name-1} [SECOND ] 

integer SECONDS 

[HOLDER-ID IN data-name-2] 

{
imperative-statement}] 
NEXT SENTENCE 

[INVALID KEY imperative-statement] 

Syntax Rules 

1. Record-name and identifier must not reference the same storage 
area. 

2. The record-name is the name of a logical record in the File ~ 
Section of the Data Division and can be qualified. 

3. Data-name-1 must refer to an integer item no greater than 255. 

4. Data-name-2 must be defined in the Working-Storage Section or 
Linkage Section and have a PICTURE of XC3). 

5. The INVALID KEY phrase should be specified if an applicable USE 
procedure is not specified for the associated file. 

General Rules 

1. The associated file must be open in the output, shared or I-0 
mode at the time of the execution of this statement. 

2. The logical record released by the execution of the WRITE 
statement is no longer available in the record area unless the 
associated file is named in a SAME RECORD AREA clause or the 
execution of the WRITE statement is unsuccessful due to an 
INVALID KEY condition. The logical record is also available to 
the program as a record of other files referenced in the same 
SAME RECORD AREA clause as the associated output file, as well as 
to the file associated with record-name. 

12-154 



3. The results of the execution of the WRITE statement with the FROM 
phrase is equivalent to the execution of the statement, 

MOVE identifier TO record-name, 

according to the rules specified for the MOVE statement, followed 
by the same WRITE statement without the FROM phrase. 

The contents of the record area prior to the execution of the 
implicit MOVE statement have no effect on the execution of this 
WRITE statement. 

After execution of the WRITE statement is complete, the 
information in the area referenced by identifier is available, 
even though the information in the area referenced by record-name 
may not be. (Refer to General Rule 2.) 

4. The current record pointer is unaffected by the execution of a 
WRITE statement. 

5. The execution of the WRITE statement causes the value of the FILE 
STATUS data item, if defined in the file control entry to be 
updated. 

6. The maximum record size for a file is established at the time the 
file is created and must not subsequently be changed. 

7. The number of character positions on a mass storage device 
required to store a logical record in a file may or may not be 
equal to the number of character positions defined by the logical 
description of that record in the program. 

8. The execution of the WRITE statement releases a logical record to 
the operating system. 

9. Execution of the WRITE statement causes the contents of the 
record area to be released. 

10. The value of the primary record key must be unique within the 
records in the file. 

11. The data item specified as the primary record key and any 
alternate record keys must be set by the program to the desired 
values prior to the execution of the WRITE statement. (Refer to 
General Rule 3.) 

12. If SEQUENTIAL or DYNAMIC access mode is specified for the file, 
records must be released to the operating system in ascending 
order of primary record key values. 

13. If RANDOM access mode is specified, records may be released to 
the operating system in any program-specified order. 

12-155 



14. The INVALID KEY condition exists under any of the following · 
circumstances: 

a. When SEQUENTIAL access mode is specified for a file opened in 
the output mode, and the value of the record key is not 
greater than the value of the record key of the previous 
record. 

b. When the file is opened in the output, shared or I/O mode, 
and the value of the primary record key is equal to the value 
of the primary record key of a record already existing in the 
file. 

c. When the file is opened in the output or I/O mode, and the 
value of an alternate record key for which duplicates are not 
allowed equals the corresponding data item of a record 
already existing in the file. 

d. When an attempt is made to write beyond the externally 
defined boundaries of the file. 

15. When the INVALID KEY condition is recognized, the execution of 
the WRITE statement is unsuccessful, the contents of the record 
area are unaffected and the FILE STATUS data item, if defined in 
the file-control entry, is set to a value indicating the cause of 
the condition. Execution of the program continues according to 
the rules stated in the INVALID KEY imperative-statement. 

16. The alternate access paths (indexes) through which the record 
WRITTEN is to be available are determined by the record keys 
associated with record name. This list does not necessarily 
include all record keys associated with the file since equivalent 
alternate record keys may appear in some records, but not others. 

17. When the ALTERNATE RECORD KEY clause is specified in the file 
control entry for an indexed file, the value of the alternate 
record key may be nonunique only if the DUPLICATES phrase is 
specified for that data item. In this case the records are 
stored such that when records are accessed sequentially, the 
order of retrieval of those records is by the order of the 
primary key. 

18. If the TIMEOUT phrase is specified and the READ cannot be 
completed in data-narne-1 or integer seconds, then 
imperative-statement-1 is executed. If the number of seconds 
specified is 0, the timeout exit will inunediately be taken if the 
READ cannot be completed. 

19. If J:he HOLDER-ID phrase is specified in the TIMEOUT phrase, the 
logon initials of the user currently holding the resources is 
moved to data-name-2. 

12-156 



WRITE Statement -- for Relative Files 

~' Function 

The WRITE statement releases a logical record for an output or 
input-output file. 

General Format. 

WRITE record-name [FROM identifier] 

[INVALID KEY imperative-statement] 

Syntax Rules 

1. Record-name and identifier must not reference the same storage 
area. 

2. The record-name is the name of a logical record in the File 
Section of the Data Division and can be qualified. 

3. The INVALID KEY phrase must be specified if an applicable USE 
procedure is not specified for the associated file. 

General Rules 

1. The associated file must be open in the OUTPUT or I-0 mode at the 
time of execution of this statement. 

2. The logical record released by the execution of a WRITE statement 
is no longer available in the record area unless the associated 
file is named in a SAME RECORD AREA clause or the execution of 
the WRITE statement is unsuccessful due to an INVALID KEY 
condition. The logical record is also available to the program 
as a record of other files appearing in the same SAME RECORD AREA 
clause. 

3. The results of the execution of the WRITE statement with the FROM 
phrase is equivalent to the execution of 

MOVE identifier TO record-name 

(in accordance with the rules for a MOVE statement> followed by 
The same WRITE statement without the FROM phrase. 

The contents of the record area prior to the execution of the 
implicit MOVE statement have no affect on the execution of this 
WRITE statement. 

12-157 



After execution of the WRITE statement, the information in the 
area referenced by identifier is available, even though the 
information in the area referenced by record-name may not be. 
(Refer to General Rule 2.) 

4. The current record pointer is unaffected by the execution of a 
WRITE statement. 

S. The execution of a WRITE statement causes the value of the FILE 
STATUS data item (if any) associated with the file to be updated. 

6. The maximum record size for a file is established at the time the 
file is created and must not be subsequently changed. 

7. The number of character positions on a mass storage device 
required to store a logical record in a file may or may not be 
equal to the number of character positions defined by the logical 
description of that record in the program. 

8. The execution of the WRITE statement releases a logical record to 
the operating system. 

9. The following rules apply to the placement of records into a file 
opened in output mode: 

a. If the access method is sequential, the WRITE statement 
causes a record to be released to the operating system. The 
first record will have a relative record number of one (1) 
and subsequent records released will have 2, 3, 4, etc. If ~ 
the RELATIVE KEY data item has been specified in the file 
control entry for the file, the relative record number of the 
record just released is placed into the RELATIVE KEY data 
item by the operating system during executiuon of the WRITE 
statement. 

b. If the access mode is random or dynamic, the value of the 
RELATIVE KEY data item must be initialized prior to the 
execution of the WRITE statement. The key is initialized in 
the program with the relative record number to be associated 
with the record. That record is then released to the 
operating system by execution of the WRITE statement. 

10. Records can be inserted into a file opened in I-0 mode if the 
access mode is random or dynamic. The program must initialize 
the value of the RELATIVE KEY data item with the relative record 
number of the record to be inserted. Execution of the WRITE 
statement then causes the contents of the record area to be 
released to the operating system. 

11. The INVALID KEY condition exists under the following 
circumstances: 

a. When the access mode is random or dynamic, and the RELATIVE 
KEY data item specifies a record which already exists. 

12-158 



b. When an attempt is made to write beyond the externally 
defined boundaries of the file. 

12. The execution of a WRITE statement is unsuccessful when an 
INVALID KEY condition is recognized. This condition also causes 
the contents of the record area to be unaffected and the FILE 
STATUS data item (if any) of the associated file to be set to a 
value indicating the cause of the condition. Execution of the 
program proceeds according to the rules stated for the INVALID 
KEY condition. (Refer to Appendix E.) 

12-159 



~ 
\ ') . .' 

A· 
\ y 



CHAPTER 13 
DEBUG FEATURES 

13.1 VS DEBUG FACILITY 

The VS provides a powerful interactive debugging facility which 
permits the programmer to examine and analyze an interrupted program and 
modify data values interactively from a workstation. Whenever a program 
is interrupted, debug processing can be entered by pressing PFlO (ENTER 
DEBUG PROCESSING) from the modified Command Processor menu. (A program 
can be interrupted by the operator at any time by pressing HELP; a 
program can also be interrupted by the system with a program check if a 
terminal execution error occurs.) 

Debug processing permits the programmer to inspect the object program 
and data in memory, modify data values, and set program traps. The 
programmer can also inspect and modify the Program Control Word ( PCW) , 
General-Purpose Registers, and Floating-Point Registers. Execution of 
the interrupted program can be resumed at any point during debug 

~ processing. 

An additional feature of the debug processor is its symbolic debug 
facility. If the program was compiled with symbolic debug information 
(by selecting SYMB=YES as a COBOL compiler option), the symbolic debug 
facility is automatically available when debug processing is entered. 
Symbolic debug permits the programmer to inspect and modify data fields 
of up to 65, 535 bytes by symbolic data name rather than the memory 
address, thus eliminating the need for a program map (PMAP) or data map 
(DMAP). 

The Inspect/Modify function of the Symbolic Debugger allows the 
programmer to inspect and modify memory, program registers, or the PCW. 
Symbolic debug also displays a "window", containing seven lines from the 
source program listing, which permits the programmer to scan backward and 
forward through the source listing. If the program is interrupted by a 
program check, the window displays the source line containing the verb 
that was executing when the error occurred, precisely identifying the 
immediate source of the problem. 

13-1 



NOTE 

The window displaying the source listing is available only 
if the source listing was placed in a print HOLD file and 
SOURCE = YES was specified at the time of compilation. 

13.2 DISPLAYING SUBSCRIPTED AND QUALIFIED DATA NAMES 

48 characters are available on the debugger screen for entering a 
data name when the programmer wishes to examine the contents of a 
particular storage location. Because of this, there is limited support 
for Subscripted and Qualified data names. If an identifier requires 
subscripting or qualifiers to achieve a unique reference, the fully 
qualified name of the identifier must be specified within that 48 
character limit. If the name cannot be specified within the 48 
characters, the programmer must examine the desired storage location by 
referring to the program's PMAP and DMAP. 

For example, assume that a program contains the two records described 
below: 

01 TABLE!. 
05 LEVEL I OCCURS 3 TIMES. 

10 ELEMENT PIC XX. 

01 TABLE2. 
05 LEVEL! OCCURS 3 TIMES. 

10 ELEMENT PIC XX. 

If the progranuner wants to examine the contents of the 3rd occurrence of 
ELEMENT in TABLE2, the following must be specified on the Inspect/Modify 
screen: 

ELEMENT.LEVEL1.TABLE2 

The programmer then presses ENTER, followed by a value of 3 for the 
subscript, followed by another ENTER. If a data name is unique, it must 
not be qualified on the Inspect/Modify screen. The symbolic debug 
facility is explained in the VS Program Development Tools Reference. 

13.3 ANSI DEBUG MODULE 

Because the VS interactive debug facility is significantly more 
powerful and convenient than the COBOL debug features, it is not 
anticipated that these features will be widely used in COBOL programs 
written for the VS. There can, however, be special cases in which some 
COBOL debug features will prove useful; for this reason, the COBOL debug 
features are supported in VS COBOL. 

13-2 



The features of the COBOL language that support the debug module are: 

1. A special register -- DEBUG-ITEM 
2. A compile time switch -- WITH DEBUGGING MODE 
3. An object time switch 
4. A USE FOR DEBUGGING statement 
5. Debugging lines. 

To these features, VS COBOL adds the READY TRACE and RESET TRACE 
statements. 

13.3.1 DEBUG-ITEM 

The reserved word DEBUG-ITEM is the name for a special, automatically 
generated register that supports the debugging facility. Only one 
DEBUG-ITEM is allocated per program. The names of the subordinate data 
items in DEBUG-ITEM are also reserved words. 

13.3.2 Compile Time Switch--WITH DEBUGGING MODE 

The WITH DEBUGGING MODE clause is written as part of the 
SOURCE-COMPUTER paragraph. This clause serves as a compile time switch 
over the debugging statements written in the program. 

Function 

The WITH DEBUGGING MODE clause indicates that all debugging sections 
and all debugging lines are to be compiled. If this clause is not 

~ specified, all debugging lines and sections are compiled as if they were 
comment lines. 

General Format 

SOURCE-COMPUTER. WANG-VS [WITH DEBUGGING MODE). 

General Rules 

1. If the WITH DEBUGGING MODE clause is not specified in the 
SOURCE-COMPUTER paragraph of the Configuration Section of a 
program, any USE FOR DEBUGGING statements, all associated 
debugging sections, and any debugging lines are compiled as if 
they were comment lines. 

2. If the WITH DEBUGGING MODE clause is specified in the 
SOURCE-COMPUTER paragraph of the Configuration Section of a 
program, all USE FOR DEBUGGING statements and all debugging lines 
are compiled. 

13-3 



13.3.3 Object Time Switch 

An object time switch dynamically activates the debugging code 
inserted by the compiler. This switch cannot be addressed in the 
program; it is controlled outside the COBOL environment. If the switch 
is ON, all the effects of the debugging language written in the source 
program are permitted. If the switch is OFF, all the effects described 
in the USE FOR DEBUGGING Statement (refer to Section 13.2.4) are 
inhibited. Recompilation of the source program is not required to 
provide or remove this facility, al though performance can be 
significantly degraded when this debugging code is included in 
operational programs. 

The object time switch has no effect on the execution of the object 
program if the WITH DEBUGGING MODE clause was not specified in the source 
program at compile time. 

13.3.4 USE FOR DEBUGGING Statement 

Function 

The USE FOR DEBUGGING statement is used in the Procedure Division and 
identifies the user i terns that are to be monitored by the associated 
debugging section. 

General Format 

section-name SECTION. 

USE FOR DEBUGGING ON {procedure-name- 1 
- ALL PROCEDURES 

[procedure-name-2] .. } 

Syntax Rules 

1. Debugging section( s), if specified, must appear together 
immediately after the DECLARATIVES header. 

2. Except in the USE FOR DEBUGGING statement itself, there must be 
no reference to any nondeclarative procedure within the debugging 
section. 

3. Statements appearing outside of the set of debugging sections 
must not reference procedure names defined within the set of 
debugging sections. 

4. Except for the USE FOR DEBUGGING statement its elf, statements 
appearing within a given debugging section can reference 
procedure names defined within a different USE procedure only 
with a PERFORM statement. 

13-4 



5. Procedure names defined within debugging sections must not appear 
within USE FOR DEBUGGING statements. 

6. 'Any given procedure name can appear in only one USE FOR DEBUGGING 
statement and can appear only once in that statement. 

7. The ALL PROCEDURES phrase can appear only once in a program. 

8. When the ALL PROCEDURES phrase is specified, no other USE FOR 
DEBUGGING sections can appear in the program. 

General Rules 

I. In the following general rules all references to procedure-name-I 
apply equally to procedure-name-2. 

2. Automatic execution of a debugging section is not caused by a 
statement appearing in a debugging section. 

3. When procedure-name-I is specified in a USE FOR DEBUGGING 
statement, that debugging section is executed: 

a. Immediately before each execution of the named procedure 

b. Immediately after the execution of an ALTER statement that 
references procedure-name-1. 

4. The ALL PROCEDURES phrase causes the effects described in General 
Rule 3 to occur for every procedure name in the program, except 
those appearing within a debugging section. 

5. In the case of a PERFORM statement, which causes iterative 
execution of a referenced procedure, the associated debugging 
section is executed once for each iteration. 

Within an imperative statement, each individual occurrence of an 
imperative verb identifies a separate statement for the purpose 
of debugging. 

6. Associated with each execution of a debugging section is the 
special register DEBUG-ITEM, which provides information about the 
conditions that caused the execution of a debugging section. 
DEBUG-ITEM has the following implicit description: 

01 DEBUG-ITEM. 
02 DEBUG-LINE 
02 FILLER 
02 DEBUG-NAME 
02 FILLER 
02 DEBUG-CONTENTS 

PICTURE IS X( 6) . 
PICTURE IS X VALUE SPACE. 
PICTURE IS X(30). 
PICTURE IS X(19) VALUE SPACE. 
PICTURE IS X(30). 

13-5 



7. Prior to each execution of a debugging section, the contents of 
the data item referenced by DEBUG-ITEM are space-filled. The 
contents of data items subordinate to DEBUG-ITEM are then 
updated, according to the following general rules, immediately 
before control is passed to that debugging section. The contents 
of any data item not specified in the following general rules 
remains spaces. 

Updating is accomplished in accordance with the rules for the 
MOVE statement. The sole exception is the move to DEBUG-CONTENTS 
where the move is treated exactly as if it were an alphanwneric 
to alphanumeric elementary move with no conversion of data from 
one form of internal representation to another. 

8. The contents of DEBUG-LINE is the source statement line number of 
the procedure name or statement. 

9. DEBUG-NAME contains the first 30 characters of the name that 
causes the debugging section to be executed. 

10. If the first execution of the first nondeclarative procedure in 
the program causes the debugging section to be executed, the 
following conditions exist: 

a. DEBUG-LINE identifies the line number of the first statement 
of that procedure. 

b. DEBUG-NAME contains the name of that procedure. 

c. DEBUG-CONTENTS contains START PROGRAM. 

11. If a reference to procedure-name-1 in an ALTER statement causes 
the debugging section to be executed, the following conditions 
exist: 

a. DEBUG-LINE identifies the ALTER statement that references 
procedure-name-1. 

b. DEBUG-NAME contains procedure-name-1. 

c. DEBUG-CONTENTS contains the applicable procedure name 
associated with the TO phrase of the ALTER statement. 

12. If the transfer of control associated with the execution of a 
GO TO statement causes the debugging section to be executed, the 
following conditions exist: 

a. DEBUG-LINE identifies the GO TO statement whose execution 
transfers control to procedure-name-I. 

b. DEBUG-NAME contains procedure-name-1. 

13-6 



13. If the transfer to control from the control mechanism associated 
with a PERFORM statement caused the debugging section associated 
with procedure-name-1 to be executed, the following conditions 
exist: 

a. DEBUG-LINE identfies the· PERFORM statement that references 
procedure-name-1. 

b. DEBUG-NAME contains procedure-name-I. 

c. DEBUG-CONTENTS contains PERFORM LOOP. 

14. If procedure-name-1 is a USE procedure that is to be executed the 
following conditions exist: 

a. DEBUG-LINE identifies the statement that causes execution of 
the USE procedure. 

b. DEBUG-NAME contains procedure-name-1. 

c. DEBUG-CONTENTS contains USE PROCEDURE. 

15. If an implicit trans£ er of control from the previous sequential 
paragraph to procedure-name-1 causes the debugging section to be 
executed, the following conditions exist: 

a. DEBUG-LINE identifies the previous statement. 

b. DEBUG-NAME contains procedure-name-1. 

c. DEBUG-CONTENTS contains FALL THROUGH. 

13.3.5 Debugging Lines 

A debugging line is any line with a 'D' in the indicator area. Any 
debugging line that consists solely of spaces from Margin A to Margin R 
is considered the same as a blank line. 

The contents of a debugging line must be such that a syntactically 
correct program is formed with or without the debugging lines being 
considered as conunent lines. 

A debugging line is considered to have all the characteristics of a 
conunent line if the WITH DEBUGGING MODE clause is not specified in the 
SOURCE-COMPUTER paragraph. 

Successive debugging lines are allowed. Continuation of debugging 
lines is permitted, except that each continuation line must contain a 'D' 
in the indicator area, and character-strings cannot be broken across two 
lines. 

A debugging line is only permitted in the program after the 
OBJECT-COMPUTER paragraph. 

13-7 



13.3.6 READY TRACE and RESET TRACE Statements 

Function ~ 

The trace statements allow selective recording of the flow of 
execution of paragraphs and sections within a program. These statements 
can appear anywhere in the COBOL program. 

General Format 

{
READY} 
RESET 

Syntax Rules 

TRACE 

1. After a READY TRACE statement is executed (each time execution of 
a paragraph or section begins) the paragraph or section name will 
be displayed on a file with the parameter reference name of TRACE. 

2. The execution of a RESET TRACE statement terminates execution 
flow recording. 

13-8 

I~ 



~ 

APPENDIX A 
RESERVED WORDS 

ACCEPT 
ACCESS 
ADD 
ADVANCING 
AFTER 
ALARM 
ALL 
ALPHABETIC 
ALSO 
ALTER 
ALTERED 
ALTERNATE 
AND 
ARE 
AREA 
AREAS 
ASCENDING 
ASSIGN 
AT 
AUTHOR 

BEFORE 
BINARY 
BLANK 
BLOCK 
BLOCKS 
BOTTOM 
BUFFER 
BY 

CALL 
CANCEL 
CD 
CF 
CH 
CHARACTER 
CHARACTERS 
CLOCK-UNITS 
CLOSE 
COBOL 
CODE 

CODE-SET 
COLLATING 
COLUMN 
COMMA 
COMMUNICATION 
COMP 
COMPRESSED 
COMPUTATIONAL 
COMPUTE 
CONFIGURATION 
CONTAINS 
CONTROL 
CONTROLS 
CONVERSION 
COPY 
CORR 
CORRESPONDING 
COUNT 
CURRENCY 
CURSOR 

DATA 
DATABASE-NAME 
DATE 
DATE-COMPILED 
DATE-WRITTEN 
DAY 
DE 
DEADLOCK 
DEBUG-CONTENTS 
DEBUG ITEM 
DEBUG-LINE 
DEBUG-NAME 
DEBUG-SUB-1 
DEBUG-SUB-2 
DEBUG-SUB-3 
DEBUGGING 
DECIMAL-POINT 
DECLARATIVES 
DELETE 
DELETION 

A-1 



DELIMITED GROUP 
DELIMITER 
DEPENDING HEADING 

~ DESCENDING HIGH-VALUE 
DESTINATION HIGH-VALUES 
DETAIL HOLD 
DISABLE HOLDER-ID 
DISPLAY 
DISPLAY-WS IDENTIFICATION 
DIVIDE IF 
DIVISION IN 
DOWN INDEX 
DUPLICATES INDEXED 
DYNAMIC INDICATE 

INITIAL 
EGI INITIATE 
ELSE INPUT 
EMI INPUT-OUTPUT 
ENABLE INSPECT 
END INSTALLATION 
END-OF-PAGE INTO 
ENTER INVALID 
ENVIRONMENT INVOKE 
EOP I-0 
EQUAL I-0 CONTROL 
ERASE IS 
ERROR 
ESI JUST 
EVERY JUSTIFIED .~ 
EXCEPTION 
EXCLUSIVE KEY 
EXIT KEYS 
EXTEND 
EXTENRION-RIGHTS LABEL 

LAST 
FAC LEADING 
FD LEFT 
FIGURATIVE-CONSTANTS LENGTH 
FILE LESS 
FILE-CONTROL LIBRARY 
FILENAME LIMIT 
FILLER LIMITS 
FINAL LINAGE 
FIRST LINAGE-COUNTER 
FOOTING LINE 
FOR LINE-COUNTER 
FREE LINES 
FROM LINKAGE 

LIST 
GENERATE LOCK 
GIVING LOW-VALUE 
GO LOW-VALUES 
GREATER 

A-2 



MEMORY PROCEDURE 
MERGE PROCEDURES 
MESSAGE PROCEED 
MODE PROO RAM 
MODIFIABLE PROORAM-ID 
MODIFY PROTECT 
MODULES 
MOVE QUEUE 
MULTIPLE QUOTE 
MULTIPLY QUOTES 

NATIVE RANDOM 
NEGATIVE RANGE 
NEXT RD 
NO READ 
NODISPLAY READY 
NO-MOD RECEIVE 
NOT RECORD 
NUMBER RECORDS 
NUMERIC RECOVERY-BLOCKS 

RECOVERY-STATUS 
OBJECT REDEFINES 
OBJECT-COMPUTER REEL 
OCCURS REFERENCES 
OF RELATIVE 
OFF RELEASE 
OMITTED REMAINDER 
ON REMOVAL 
ONLY RENAMES 
OPEN REPLACING 
OPTIONAL REPORT 
OR REPORTING 
ORDER REPORTS 
ORDER-AREA RERUN 
ORGANIZATION RESERVE 
OUTPUT RESET 
OVERFLOW RESTART 

RETRIEVAL 
PAGE RETURN 
PAGE-COUNTER RETURN-CODE 
PERFORM REVERSED 
PF REWIND 
PFKEY REWRITE 
PFKEYS RF 
PH RH 
PIC RIGHT 
PICTURE ROLL 
PLUS ROLLBACK 
POINTER ROUNDED 
POSITION ROW 
POSITIVE RUN 
PRINTING 
PRIOR SAME 

A-3 



SD THAN 
SEARCH THEN 
SECOND THROUGH 
SECONDS THRU 
SECTION TIME 
SECURITY TIMEOUT 
SEGMENT TIMES 
SEGMENT-LIMIT TO 
SELECT TOP 
SEND TRACE 
SENTENCE TRAILING 
SEPARATE TYPE 
SEQUENCE 
SEQUENTIAL UNIT 
SET UNSTRING 
SETTING UNTIL 
SHARED UP 
SIGN UPDATE 
SIZE UPON 
SORT USAGE 
SORT-MERGE USE 
SOURCE USING 
SOURCE-COMPUTER 
SPACE VALUE 
SPACES VALUES 
SPECIAL-NAMES VARYING 
STANDARD VOLUME 
STANDARD-1 
START WANG-VS 
STATUS WHEN 
STOP WITH 
STRING WORDS 
SUB-QUEUE-! WORKING-STORAGE 
SUB-QUEUE-2 WRITE 
SUB-QUEUE-3 
SUBTRACT ZERO 
SUM ZEROES 
SUPPRESS ZEROS 
SWITCH-1 
SWITCH-2 + 
SWITCH-3 
SWITCH-4 * 
SWITCH-5 I 
SWITCH-6 ** 
SWITCH-7 = 
SYMBOLIC 
SYNC 
SYNCHRONIZED 

TABLE 
TALLYING 
TAPE 
TERMINAL 
TERMINATE 
TEXT 

A-4 



APPENDIX B 
COBOL COMPILER OPTIONS 

The following options are provided by the VS COBOL compiler. 

BIGPGT ("Compiling very large program'?") 

The BIGPGT (Big Program Global Table) option is used to instruct the 
compiler to follow a special set of procedures when compiling a very 
large program which exceeds a certain critical size. Since the critical 
size is not absolute, but can depend on a number of factors, the only way 
to determine whether this option is necessary is to compile the program 
initially with BIGPGT = NO. If the program is too large for normal 
compilation techniques, the compiler produces a diagnostic message 
instructing you to recompile using the BIGPGT option. To select this 
option, set BIGPGT = YES. Occassionaly your program may still be too 
large. In this instance, set BIGPGT=3RD. 

DMAP ("Generate data division map'?") 

~ If DMAP = YES, a Data Division Map CDMAP) is produced. A DMAP lists 
the names and attributes of all data items defined in the program, along 
with their locations in the static area in memory. The DMAP contains 13 
labeled colwnns. 

NAME Lists all data names defined in the program, in 
alphabetical order. 

LVL Lists the level number associated with each data name. 

USAGE Lists the usage specified for each data i tern. For 
example, DSP-AN means DISPLAY-alpha-numeric, DSP-NM means 
DISPLAY-nwneric, DSP-GR means DISPLAY-group-item.) 

DISPL Lists the displacement, or offset, of the first byte of 
each data item. This value is added to the base address 
of the static area C in Register 14 > to yield the actual 
address of the data item in memory. 

LENGTH - Lists the length (in bytes) of each data item. 

PICTURE Lists the PICTURE defined for each data item. 

B-1 



OCCUR 

R 

0 

v 

J 

Lists the number of occurrences of a data item as defined 
in an OCCURS clause. 

Indicates that the data description entry for the data 
name contains a REDEFINES clause. 

Indicates that the data name is a group name specified in 
an OCCURS clause. 

Indicates that the data description entry for the data 
name contains a VALUE IS clause. 

Invalid for this release of the compiler, since JUSTIFIED 
is treated as a comment. 

B Indicates that the data description entry for the data 
name contains a BLANK WHEN ZERO clause. 

SIGN Indicates that the data description entry for the data 
name contains a SIGN clause. The possible values in the 
sign column and their meanings are: 

s - Sign is separate 
T - Sign is trailing 
L - Sign is leading 

ST - Sign is separate and trailing 
SL - Sign is separate and leading 

The default provided is ST if leading, trailing and/or 
separate are not provided in the program. 

The DMAP also lists all literals used in the program. Literals are 
compiled as part of the program code itself, and are not stored along 
with variable data in the static section. 

FIPS ("FIPS Flagger?") 

"FIPS" is the acronym for Federal Information Processing Standard. 
If FIPS = LOW, messages are generated informing the user which source 
statements contain syntax that is either nonstandard (Wang extensions) or 
above the low level for Federal Standard COBOL. If FIPS = LI, messages 
are generated informing the use which source statements contain syntax 
that is either Wang extensions or above the Low Intermediate level for 
Federal Standard COBOL. FIPS = NO is the default. Refer to Appendix I, 
A Comparison of VS, ANSI, and FIPS COBOL Standards. 

FLAG ("Lowest severity error printed?") 

FLAG specifies the lowest level of error severity that will cause the 
compiler to print a diagnostic message. Any error with a severity code 
greater than or equal to the specified FLAG value will cause the compiler 
to print a diagnostic message. 

B-2 

~ 



LINES ("Number of lines per page?") 

LINES specifies the number of lines to be printed on each page when a 
source listing, PMAP, and DMAP are printed. 

LOAD ("Generate object module?") 

If LOAD = YES, the compiler creates an object program in VS object 
program format, and stores it in an output file. If LOAD = NO, 
no object program is produced. (In this case, the compiler does not 
display an output definition screen to name the output file). The NO 
option may be selected if only a source listing is desired. 

LOWER ("Lowercase D&R input") 

If LOWER = YES, the default FAC generated for alphanumeric fields to 
be entered in response to a DISPLAY AND READ statement will be hex 80 and 
will accept both uppercase and lowercase input. If LOWER = NO, the 
default FAC is hex 81 and causes lowercase input to shift to uppercase. 
This feature allows the replacement of the lowercase characters with a 
non-Latin character set. Such replacement is useful for international 
applications where programs are written in languages such as Greek, 
Japanese, etc. 

PMAP ("Print generated code?") 

If PMAP = YES, the compiler produces a PMAP (program map) for the 
compiled program. The PMAP contains the machine instructions generated 
by each COBOL verb, with the address of each instruction. A PMAP 
consists of five basic columns. 

Column 1 - COBOL verbs and line numbers. 
Column 2 - Address and object code. 
Column 3 - COBOL paragraph names. 
Column 4 - Assembler instructions. 
Column 5 - Comments. 

A map of the static area immediately follows the PMAP, beginning with 
the word STATIC in Column 1. 

In the static area map, four main columns are used. 

Column 1 - Line number in source program on which a data name is 
defined, and description of data type. For data items, 
type is always VALUE. For data files, type is the file 
name to which the data name is assigned in the 
FILE-CONTROL paragraph. The first entry in the static 
area map contains the line number of the last line in the 
program and the descriptive word, STATIC. 

Column 2 - Location of first byte of value in static area, specified 
as offset from base address in Register 14. 

B-3 



Colwnn 3 - Comments generated by compiler. 

Colwnn 4 - Assembler instruction generated by data item def ini ti on 
in source program. 

Colwnn 5 - Data name specified in source program. 

NOTE 

To generate a PMAP for a selected section of code rather 
than for the entire program, the following method can be 
used: 

1. Insert $P in Colwnns 7 and 8 of the source program just 
prior to the first line of code in the Procedure Division 
for which the PMAP is to be generated. 

2. Insert $PX in Columns 7 through 9 of the source program 
immediately following the last line of code in the Procedure 
Division for which the PMAP is to be generated. 

3. Compile the program with compiler option PMAP = NO. 

SEPSGN ("Separate character for sign?") 

The SEPSGN option is used to specify whether or not the sign is to be 
included in the byte count or appear as a separate byte. The default 
condition, SEPSGN = YES, produces the sign in a separate, trailing byte. 
By specifying SEPSGN = NO, the sign is included. Any optional clauses 
coded with the SIGN clause take precedence over the SEPSGN option, which 
provides default sign characteristics when they are not specifically 
coded in the program. 

SEQ ("Sequence check source?") 

If SEQ = YES, the compiler performs a check to ensure that the 
sequence numbers Cline numbers) of the source program lines are in 
order. Otherwise, no sequence check is performed. The default value is 
NO. 

SOURCE ("Create source listing'?") 

If SOURCE = YES, the compiler produces a source listing of the 
compiled program, with accompanying diagnostics. If SOURCE = NO, no 
source listing is produced. (Diagnostics are produced in either case). 

SPACE ("Single or double spaced?") 

SPACE specifies the spacing between lines on the printed listings. 
The options are single space (SPACE= 1) or double space (SPACE= 2). 

B-4 



STOP ("Code generation stop level?") 

STOP specifies the lowest level of error severity that will cause the 
compiler to abort the compilation. Any error with a severity code 
greater than or equal to the specified STOP value will terminate the 
compilation (no object program is produced). 

Note 

The STOP level should not be set above eight. 

SUBCHK ("Check subscripts at run time?") 

If SUBCHK = YES, the compiler generates special code that checks the 
ranges of subscripts during program execution, and causes a program check 
(execution interruption) if a subscript exceeds its defined limit. 
Otherwise, no check is performed on subscripts during execution. 

SYMB ("Include symbolic debug data?") 

If SYMB = YES, the compiler inserts symbolic debug information in the 
object program. If SYMB = NO, this information is not inserted, and the 
symbolic debug facility cannot be used to debug the object program at 
runtime. 

~. TRUNC ("Truncate COMP data to picture?") 

'~ 

TRUNC is used to specify that truncation is to occur in certain 
special cases when a larger numeric data i tern is moved into a smaller 
numeric data item. If the receiving field does not have enough bytes to 
contain all the digits from the sending field, truncation of one or more 
high-order digits is automatic; this situation is not altered by TRUNC. 
In the special case involving packed decimal fields, however, truncation 
can be specified even if the receiving field has enough bytes to 
accommodate the sending field. This case occurs when the receiving field 
has an even number of digits (e.g. PICTURE S9(6) COMP). Each digit 
occupies a half-byte in packed decimal format. Since the low-order 
half-byte is taken by the sign digit, the number of half-bytes available 
for digits is always odd. If the number of digits is even, the 
high-order half-byte in the field is unused, and is set to 0. For 
example, the packed decimal field generated by a data item with a PICTURE 
of S9(6) COMP containing the value 123456 looks like 0123456F, where each 
pair of digits occupies one byte, and the 'F' is the sign digit. Note 
that although the PICTURE specifies six digits, the resulting value 
occupies four bytes in memory. If TRUNC = YES, and a numeric data item 
of seven digits (or more) is moved into this field, the leftmost digit is 
truncated, even though the receiving field contains an available 
half-byte to store it. If TRUNC =NO (the default value), the leftmost 
digit is placed in the high-order half-byte of the receiving field. 

B-5 



Note that if the receiving field contains more than seven digits, any 
digits beyond the seventh are truncated automatically, irrespective of 
the value of TRUNC. 

XREF ("Print cross-reference?") 

If XREF = YES, a cross-reference listing of all data names referenced 
in the program is produced. The cross-reference listing contains all 
referenced data names and literals (listed alphabetically), the source 
program line on which each is initially defined, and all other lines on 
which each data name is referenced. 

B-6 



APPENDIX C 
FIELD ATTRIBUTE CHARACTERS 

C.l FACs AND FAC VALUES 

An important part of the workstation screen is its ability to be 
divided into fields. Fields, although not visible, are important as they 
control the operation of the workstation both from the keyboard and in 
communication with the computer. A field is defined as all of the 
characters from one Field Attribute Character to the next or to the end 
of the row. Field Attribute Characters take a location of the display. 
They always display as a blank no matter what their value. Each row is 
considered to have a Field Attribute Character just before the first 
character in the row and just after the last character in the row. These 
Field Attribute Characters do not take up space on the screen. They have 
a default value of hexadecimal "SC". These default Field Attribute 
Characters allow the use of 80 character lines. Any location of the 
screen can be a Field Attribute Character. The characters from the start 
of each row to the first Field Attribute Character in the row display in 

.~ low intensity, as though there were a low intensity Field Attribute 
Character before the first character in the row. The Field Attribute 
Character controls the mode of display for all following characters until 
another Field Attribute Character or until the end of row is encountered. 

All the characters of a field have the same attributes, which are 
defined by the Field Attribute Character preceding the field. The 
possible attributes are defined in Table C-1. 

NOTE 

In the following table and elsewhere, bits are nwnbered 
consecutively from 0. Thus the first bit is Bit 0; the 
second bit is Bit 1, and so on. 

C-1 



Table C-1. Field Attribute Character Values 

BIT Field Description 

0 Must be 1 (this is the Field Attribute 
Character indicator) 

1 Modified data tag 

= 0 Field has not been modified 
= 1 Field has been modified 

2 Underscore option 

= 0 Field is not underscored 
= 1 Field is underscored 

3, 4 Display control 

= 00 Intensified display 
= 01 Low intensity display 
= 10 Blinking display 
= 11 Nondisplay 

5 Protect bit 

= 0 Modifiable field 
= 1 Protected field 

6, 7 Valid keyable data specification 

= 00 Alphanumeric uppercase and lowercase 
= 01 Alphanumeric uppercase shift 
= 10 Numeric only 
= 11 Reserved 

C.2 DISPLAY CHARACTERISTICS FOR WORKSTATION SCREEN FIELDS 

The possible display characteristics for fields of the workstation 
screen are: 

Intensified display - The characters in this field will be displayed 
in higher intensity than those in a low intensity display field. 

Low intensity display - The characters of this field will be 
displayed on the screen at normal intensity. 

Blinking display - The characters in this field will be displayed 
alternately in intensified display and normal display mode. The 
disp~ay will change modes at a fixed rate of about 3 times a second. 

C-2 



Nondisplay - The characters in the field will not be displayed on the 
screen. The field will look as if it were all blanks. 

Modifiable - Any or all of the positions of this field can be changed 
by the operator. 

Protected - No position of this field can be modified by the operator. 

Alphanumeric - Allows keying in of any character on the keyboard. 

Uppercase shift - Letters will be displayed and stored only as 
uppercase. This is without regard to whether SHIFT or LOCK are 
depressed. All other keys will respond to the SHIFT and LOCK keys as 
they normally would. 

Numeric only - Only the characters 0-9, decimal point ( . ) , or minus 
(-) may be entered into this field or the keystroke is ignored and 
the alarm sounds. 

Reserved - This is not a valid combination at this time. It is 
intended for addition of later options. Its use may result in 
unpredictable results. 

C-3 



c. 3 LIST OF FIELD ATTRIBUTE CHARACTERS 

BRIGHT MODIFY ALL NO LINE so 
BRIGHT MODIFY UPPERCASE NOLI NE Sl 
BRIGHT MODIFY NUMERIC NOLI NE S2 
BRIGHT PROTECT ALL NOLI NE S4 
BRIGHT PROTECT UPPERCASE NOLINE S5 
BRIGHT PROTECT NUMERIC NOLINE S6 

DIM MODIFY ALL NO LINE SS 
DIM MODIFY UPPERCASE NOLINE S9 
DIM MODIFY NUMERIC NOLI NE BA 
DIM PROTECT ALL NOLINE SC 
DIM PROTECT UPPERCASE NOLI NE SD 
DIM PROTECT NUMERIC NOLI NE SE 

BLINK MODIFY ALL NO LINE 90 
BLINK MODIFY UPPERCASE NO LINE 91 
BLINK MODIFY NUMERIC NOLINE 92 
BLINK PROTECT ALL NOLI NE 94 
BLINK PROTECT UPPERCASE NOLI NE 95 
BLINK PROTECT NUMERIC NOLI NE 96 

BLANK MODIFY ALL NOLINE 9S 
BLANK MODIFY UPPERCASE NOLI NE 99 
BLANK MODIFY NUMERIC NOLI NE 9A 
BLANK PROTECT ALL NOLINE 9C 
BLANK PROTECT UPPERCASE NOLINE 9D 
BLANK PROTECT NUMERIC NOLI NE 9E 

BRIGHT MODIFY ALL LINE AO 
BRIGHT MODIFY UPPERCASE LINE Al 
BRIGHT MODIFY NUMERIC LINE A2 
BRIGHT PROTECT ALL LINE A4 
BRIGHT PROTECT UPPERCASE LINE AS 
BRIGHT PROTECT NUMERIC LINE AG 

DIM MODIFY ALL LINE AS 
DIM MODIFY UPPERCASE LINE A9 
DIM MODIFY NUMERIC LINE AA 
DIM PROTECT ALL LINE AC 
DIM PROTECT UPPERCASE LINE AD 
DIM PROTECT NUMERIC LINE AE 

BLINK MODIFY ALL LINE BO 
BLINK MODIFY UPPERCASE LINE Bl 
BLINK MODIFY NUMERIC LINE B2 
BLINK PROTECT ALL LINE B4 
BLINK PROTECT UPPERCASE LINE BS 
BLINK PROTECT NUMERIC LINE B6 

C-4 



~ 
BLANK MODIFY ALL LINE BS 
BLANK MODIFY UPPERCASE LINE B9 
BLANK MODIFY NUMERIC LINE BA 
BLANK PROTECT ALL LINE BC 
BLANK PROTECT UPPERCASE LINE BD 
BLANK PROTECT NUMERIC LINE BE 

ALL 
NUMERIC 
LINE 

- Uppercase, lowercase and alphantuneric characters 

NOLI NE 
UPPERCASE 

- Digits 0 - 9, decimal and minus sign 
- Underlines displayed character 
- Character not underlined 
- Alphantuneric uppercase 

C-5 



~ 
\ J 



APPENDIX D 
WORKSTATION SCREEN ORDER AREA 

D.1 USE OF THE ORDER AREA 

The order area bytes are used to specify screen control actions and 
to indicate row/column address for data transfer to/from the display. 

The content of the order area and the interpretation of the fields in 
the area is different for a READ and a REWRITE. The following chart 
illustrates the differences: 

Byte On READ On REWRITE 

0 Row ntunber Row number 

1 Reserved Write Control Character CWCC) 

2 Cursor Column Address Cursor Column Address (if 
cursor bit set in WCC) 

3 Cursor Row Address Cursor Row Address 

The row number is the starting screen line number for data transfer. 
The byte is always set Cby the system) to the value specified for the 
data name of the RELATIVE KEY phrase. 

D-1 



D.1.1 Interpretation of the Write Control Character 

The Write Control Character CWCC) is interpreted as follows: 

Table D-1. Write Control Character 

Bit Explanation 

0 UNLOCK keyboard CLOCK if zero) 

1 Sound alarm 

2 Position cursor 

3 Roll down 

4 Roll up 

5 ERASE rest of modifiable fields 

6 ERASE and protect rest of screen 

7 Reserved (must be zero) 

wee codes: If the specified bit is l, the 
noted action will take place. 

Programs control activity at the workstation via commands contained 
in the workstation record. Legal commands include: 

1. Unlock keyboard 
2. Lock keyboard 
3. Sound alarm 
4. Position cursor 
5 . Row up/ down 
6. Erase screen 

Unlock the keyboard (Hex "80") 

After the record is written to the screen, and after sounding of the 
alarm, if this command is specified, the AID character will be set to 
blank and the keyboard will then be unlocked. 

D-2 



If the bit is zero, the keyboard will be locked before any data is 
transmitted to the workstation. If the keyboard is already locked, 
setting this bit to zero will not change the status of the keyboard. The 
normal method to get the keyboard locked is to wait for the operator to 
press one of the computer conununication keys. If the bit is zero and 
the keyboard is locked, the AID character will not change. However, if 
the command locks the keyboard, the AID character will be set to an 
apostrophe (Hex "21"). 

Sound alarm (Hex "CO") 

This will cause the alarm to sound before the data is transmitted to 
the screen. 

Position the cursor (Hex "AO") 

After data is transferred to the screen, the cursor will be 
positioned. If the cursor column address position of the order area is 
Hex "00", the cursor will be positioned to the first modifiable location 
located at or following the start of the row just written. (This option 
will act as if a TAB key were pressed with the starting position of the 
cursor one location before the start of the row just written, except that 
if there are no modifiable fields on the rest of the screen, the cursor 
will be positioned to the first location in the specified line.) If the 
cursor column address is not zero, it will be interpreted as the column 
within the row just written where the cursor is to be positioned. (Note 
this has values of 1 - 80.) 

Roll Down (Hex "10") 

This will cause the bottom line of the screen to be lost and each 
line above it to be copied into the next lower line. This will proceed 
until the row specified in the order area has been copied. The specified 
row will then be set to blanks and the WRITE will proceed. An attempt to 
write more than one line in a single command with "roll down" will result 
in an error. 

Roll Up (Hex "08") 

This will cause the row specified in the order area to be lost and 
each line below it to be copied into the next higher line (e.g., Line 1 
will be replaced by the contents of Line 2). This will proceed until the 
last row of the screen has been copied. The last row will then be set to 
blanks and the WRITE will proceed on the last line of the screen. An 
attempt to write more than one line in a single command with "roll up" 
specified will result in an error. 

Erase rest of modifiable fields (Hex "04") 

Before data is transferred to the screen, all modifiable locations 
starting at the row address specified in the order area to the end of the 
screen will be set to blanks. 

D-3 



Erase and protect rest of screen (Hex "02") 

All locations of the screen at and after the row address specified in 
the order area to the end of the screen are set to the hex "BC" before 
the data is transferred to the screen. 

This causes there to be no modifiable locations after the data that 
is written. 

D.1.2 Interpretation of the Order Area on a READ 

The first byte of the order area is inspected before the data 
transfer and is used to specify the starting row number for the read. If 
this row number is not in the range 1 - 24 (binary), the command will be 
terminated. This byte is not changed by the READ. 

The third and fourth bytes of the order area are set by the READ to 
the address of the cursor at the time of the read. The first byte of the 
two will contain the row number ( 1 - 24 binary) and the second will 
contain the column number Cl 80 binary) of the current cursor 
location. These two bytes are not inspected before the read. 

The second byte of the order area is not inspected or modified, but 
is to be supplied as binary zeroes for compatibility with future options. 

D.1.3 Interpretation of the Order Area on a REWRITE 

Neither the order area nor the mapping area is changed on a REWRITE. 
The first byte of the order area on a REWRITE is interpreted as the row 
number at which the REWRITE is to start. If this row number is not in 
the range 1 through 24, the command will be terminated. 

The second byte of the order area is interpreted as the Write Control 
Character CWCC). If the "set cursor address" bit is set in the wee, the 
next two bytes of the order area are interpreted as a cursor column and 
row address. 

If the "set cursor address" bit is set in the wee and the cursor 
address byte is set to a value between 1 and 80 inclusive, after the 
REWRITE completes the cursor will be positioned to that column. If this 
option is taken, the cursor will be positioned in the row specified by 
the fourth byte of the order area. If the "set cursor address" bit is 
set in the wee and the cursor address byte is set to a value of zero (Hex 
"00"), this will act as if the cursor were positioned one location before 
the first location in the specified row and the TAB key were struck. If 
there are no modifiable positions on the screen after the REWRITE 
command, the cursor would then be positioned to the first location in the 
specified row. 

If the "set cursor address" bit is set in the wee and the cursor 
column address byte has a value other than 0 - 80, or the cursor row 
address is a value other than 1 - 24, the command will be terminated. 

D-4 



D.2 MAPPING AREA CONTROL 

The mapping area is defined in the program in the area immediately 
after the order area. The mapping area contains the data transmitted 
either to or from the screen. The first location of the mapping area 
corresponds to the first character of the row specified in the first byte 
of the order area. Byte 81 of the mapping area would correspond to the 
first byte of the next row. If the starting row nwnber and the length of 
the mapping area are such that locations in the mapping area would extend 
past the end of the screen, the command will be terminated. Note that, 
although the mapping area's first position will always correspond to the 
start of a row, the only restriction on the end of the mapping area is 
that it not extend past the end of the screen. It is recommended that 
the mapping area be the full screen (1920 bytes) as smaller quantities 
result in noticeable flicker. 

No mapping area need be supplied for a 4-byte READ or REWRITE (order 
area only). 

D.3 DISPLAYABLE CHARACTERS 

The CRT screen is capable of displaying 24 rows of 80 characters 
each. Every position of the screen is capable of displaying any of the 
possible displayable characters. A special symbol called a cursor, is 
displayed beneath a character position to indicate where the next 
character entered from the keyboard will be stored. The cursor is 
displayed on the screen when data can be keyed by the operator. If it is 
not displayed, the keyboard is locked. This has no effect on the display 
or the computer interface with the workstation, but does directly effect 
the data entry from the keyboard. Each position of the screen is 
referenced by its row and column numbers. The first position of the 
screen (upper left corner) is called Row l, Column 1. The columns are 
numbered from left to right and the rows from top to bottom. Position 
two is the second character from the left on the first line. 

D-5 



The characters of the following table constitute all of the 
displayable characters: 

If 

# 
$ 
% 
& 

* 
+ 

I 

Table D-2. Displayable Characters 

(space) 
(exclamation point) 

0 1 2 3 4 5 6 7 8 9 

< 
= 
> 
1 
@ 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
[ (open bracket) 

(back slash) 
(close bracket) 
(circumflex) 
(under bar) 

a b c d e f g h i j k 1 m n o p q r s t u v w x y z 
(lozenge) 
(solid character) 

D-6 



APPENDIX E 
FILE STATUS KEY VALUES 

E .1 I-0 STATUS 

If the FILE STATUS clause is specified in a file control entry, a 
value is placed into the specified 2-character data item during the 
execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE or START 
statement and before any applicable USE procedure is executed, to 
indicate to the COBOL program the status of that input/output operation. 

E.2 CONSECUTIVE FILES 

E.2.1 Status Key 1 

The leftmost character position of the FILE STATUS data item is known 
as Status Key 1 and is set to indicate one of the following conditions 
upon completion of the input/output operation: 

'0' - Indicates Successful Completion 
I 11 - Indicates AT END 
'2 t - Indicates INVALID KEY 
I 3 I - Indicates Permanent Error 
I 6 I - Indicates an I/O Cancel Condition 
t 7' - Indicates a TIMEOUT Condition 
t 8 I - Indicates a Shared Mode Error 
'9' - Indicates Special Conditions. 

The meanings of the above indications are as follows: 

'0' - Successful Completion. 
successfully executed. 

The input/output statement was 

'1' - AT END. The sequential READ statement was unsuccessful as a 
result of an attempt to read a record when no next loqical 
record exists in the file. 

'2' - INVALID KEY. The input/output statement was unsuccessfully 
executed as a result of an attempt to read a record with a 
relative record key higher than that associated with the last 
record in the file. 

E-1 



'3' -

'6' -

'7' -

'8' -

'9' -

Permanent Error. The input/output statement was 
unsuccessfully executed as the result of a boundary violation 
or as the result of an input/output error, such as data 
check, parity error, or transmission error. 

An input/output cancel condition has occurred, but the cancel 
messages have been suppressed as a result of a user request. 

A TIMEOUT condition exists after an attempt to execute an 
input/output statement in shared mode. 

The input/output statement was unsuccessfully executed as a 
result of an error occurring while the file was opened in 
shared mode. 

Special Conditions. The input/output statement was 
unsuccessfully executed as a result of a condition, such as 
an invalid function or function sequence, that is unique to 
the file or device. 

E.2.2 Status Key 2 

The rightmost character position of the FILE STATUS data item is 
known as Status Key 2 and is used to further describe the results of the 
input/output operation. For consecutive files other than workstation 
files, this character will contain a value as follows: 

1. When Status Key 1 contains a value of '0' indicating successful 
completion, Status Key 2 contains a value of '0' indicating that 
no further information concerning the input/output operation is 
available. 

2. When Status Key 1 contains a value of 'l' indicating an AT END 
condition, Status Key 2 can contain a value of '0' or 'l', with 
the following meanings. 

'0' -

'1' -

Indicates that no further information concerning the 
input/output operation is available. 

Indicates that an end of volume has been reached for a 
tape file and that the user-program indicates no 
automatic volume switch is desired. 

3. When Status Key 1 contains a value of '2' indicating an INVALID 
KEY, Status Key 2 contains a value of '3' indicating that the 
supplied record nwnber is equal to or greater than the highest 
record number in the file. 

4. When Status Key 1 contains a value of '3' indicating a permanent 
error condition, Status Key 2 can contain a value of '0' or '4', 
with the following meanings: 

E-2 



•01 -

141 -

Indicates a hardware error occurred when an input/output 
operation was attempted. Refer to SVC CHECK in the VS 
Operating System Services Reference. This value is not 
returned for program related errors. 

Indicates that an attempt has been made to write beyond 
the externally defined boundaries of a file. 

5. When Status Key 1 contains a value of 1 6 1 indicating an 
input/output cancel condition with cancel messages suppressed, 
Status Key 2 contains a value of '0 1 indicating that no further 
information is available. To set the error message flag, process 
the file in nonshared mode. 

6. When Status Key 1 contains a value of 1 7' indicating that a 
TIMEOUT condition exists after attempting an input/output 
operation in shared mode, Status Key 2 contains a value of '0' 
indicating that no further information is available. 

7. When Status Key 1 contains a value 
unsuccessful input/output operation for 
Status Key 2 can contain a value of '2', 
with the following meanings: 

of 1 8 1 indicating an 
a shared mode file, 

I 3 ' , I 4 I , I 5 I , or I 6 t , 

'2' - Indicates an unsuccessful attempt by the system to update 
a file label. 

'3' - Indicates a shared mode malfunction that can be corrected 
only by doing an Initial Program Load (IPL). Refer to 
the VS System Operator's Reference. 

1 4 1 
- Indicates an attempt to REWRITE a variable-length record 

whose record length is greater than the maximum record 
size specified for the file. 

1 5 1 
- Indicates an attempt was made to update a file for which 

the user has READ-only access. 

'6' - Indicates an invalid sequence of function requests, for 
example, attempting to do a START HOLD on a file while 
another file is already held. 

8. When Status Key 1 contains a value of '9' indicating a special 
condition, Status Key 2 can contain a value of '5', or '7' with 
the following meanings: 

'5' -

'7' -

Indicates an invalid function request or an invalid 
sequence of function requests for a given combination of 
device type, open mode, and file orqanization, for 
example, attempting to WRITE a record while the file is 
opened in the input mode. 

Indicates an attempt to execute an input/output operation 
for a record of invalid length. 

E-3 



For the workstation file, when Status Key 1 contains a value of '0' 
indicating successful completion, Status Key 2 contains the terminating 
attention identifier (AID) character. (Refer to Section E.4, AID 
Characters. ) When Status Key 1 contains a value of '3' indicating a 
permanent error, Status Key 2 contains a value of '4' indicating that 
invalid information has been supplied to the workstation order area. For 
example, the cursor position has been specified as Row 25 Colwnn 10. 

E.3 INDEXED FILES 

E.3.1 Status Key 1 

The leftmost character position of the FILE STATUS data item is known 
as Status Key 1 and is set to indicate one of the following conditions 
upon completion of the input/output operation: 

'0' - Indicates Successful Completion 
I 1' - Indicates AT END 
'2 I - Indicates INVALID KEY 
'3' - Indicates Permanent Error 
'6' - Indicates an I/O Cancel Condition 
17 I - Indicates a TIMEOUT Condition 
I 8' - Indicates a Shared Mode Error 
'9' - Indicates Special Conditions. 

The meanings of the above indications are as follows: 

'0' - Successful Completion. 
successfully executed. 

The input/output statement was 

'1' -

'2' -

'3' -

'6' -

'7' -

AT END. The Format 1 READ statement was unsuccessfully 
executed as a result of an attempt to read a record when no 
next logical record exists in the file. 

INVALID KEY. The input/output statement was unsuccessfully 
executed as a result of one of the following. 

Sequence Error 
Duplicate Key 
No Record Found 
Boundary Violation. 

Permanent Error. The input/output statement was unsuccessful 
as the result of boundary violation or as a result of an 
input/output error, such as data check, parity error, or 
transmission error. 

An input/output cancel condition has occurred, but the cancel 
messages have been suppressed as a result of a user request. 

A TIMEOUT condition exists after an attempt to execute an 
input/output statement in shared mode. 

E-4 



'8' -

'9' -

The input/output statement was unsuccessfully executed as a 
result of an error occurring while the file was opened in 
shared mode. 

Special Conditions. The input/output statement was 
unsuccessfully executed as a result of a condition, such as 
an invalid function or function sequence, that is unique to 
the file or device. 

E.3.2 Status Key 2 

The rightmost character position of the FILE STATUS data i tern is 
known as Status Key 2 and is used to further describe the results of the 
input/output operation. This character will contain a value as follows: 

1. When Status Key 1 contains a value of '0' indicating successful 
completion, Status Key 2 may contain a value of '0' or '2', with 
the following meanings: 

'0' -

'2' -

Indicates that no further information is available 
concerning the input/output operation. 

Indicates a duplicate key in an alternate indexed file. 
This value is returned in two cases: when at least one 
more record exists with the same alternate key value as 
the record that has just been READ; or when the record 
just written, by a WRITE or REWRITE, created a duplicate 
key value for at least one alternate record key. 

2. When Status Key 1 contains a value of 'l' indicating an at end 
condition, Status Key 2 contains a value of '0' indicating that 
no further information concerning the input/output operation is 
available. 

3. When Status Key 1 contains a value of '2' indicating an INVALID 
KEY condition, Status Key 2 can contain a value of 'l', '2', '3', 
or '4', with the following meanings: 

'1' -

'2' -

'3' -

Indicates a sequence error for a sequentially accessed 
indexed file. The ascending sequence requirements of 
successive record key values have been violated, or the 
record key value has been changed by the COBOL program 
between the successful execution of a READ statement and 
the execution of the next REWRITE statement for that file. 

Indicates a duplicate record key value. An attempt has 
been made to WRITE or REWRITE a record that would create 
a duplicate record key in an indexed file. 

Indicates no record found. An attempt has been made to 
access a record, identified by a key, and that record 
does not exist in the file. 

E-5 



'4' - Indicates a boundary violation. Either an attempt has 
been made to WRITE beyond the externally defined 
boundaries of an indexed file, or an START has been 
issued for a record key greater than the highest record 
key value in the file. 

4. When Status Key 1 contains a value of '3' indicating a permanent 
error condition, Status Key 2 can contain a value of '0' or '4', 
with the following meanings: 

'0' -

'4' -

Indicates a hardware error occurred when an input/output 
operation was attempted. Ref er to SVC CHECK in the VS 
Operating System Services Reference. This value is not 
returned for program related errors. 

Indicates that an attempt has been made to write beyond 
the externally defined boundaries of a file. 

5. When Status Key 1 contains a value of '6' indicating an 
input/output cancel condition with cancel messages suppressed, 
Status Key 2 contains a value of '0' indicating that no further 
information is available. To set the error message flag, process 
the file in nonshared mode. 

6. When Status Key 1 contains a value of '7' indicating that a 
TIMEOUT condition exists after attempting an input/output 
operation in shared mode, Status Key 2 contains a value of '0' 
indicating that no further information is available. 

7. When Status Key 1 contains a value 
unsuccessful input/output operation for 
Status Key 2 can contain a value of '0', 
'6', with the following meanings: 

of '8' indicating an 
a shared mode file, 

I 2 I , I 3 I , I 4 I , I 5 I , or 

'0' -

'2' -

'3' -

'4' -

'5' -

Indicates an INVALID KEY condition. The the value 
specified for the key in a READ OR START statement is not 
found in the file. 

Indicates an unsuccessful attempt by the system to update 
a file label. 

Indicates a shared mode malfunction that can be corrected 
only by doing an Initial Program Load (IPL). Refer to 
the VS System Operator's Reference. 

Indicates an attempt to REWRITE a variable-length record 
whose record length is greater than the maximum record 
size specified for the file. 

Indicates an attempt was made to update a file for which 
the user has READ-only access. 

E-6 



'6' - Indicates an invalid sequence of function requests, for 
example, attempting to do a START HOLD on a file while 
another file is already held. 

8. When Status Key 1 contains a value of '9' indicating a special 
condition, Status Key 2 can contain a value of '5', '7', or '8', 
with the following meanings: 

'5' -

'7' -

'8' -

Indicates an invalid function request or an invalid 
sequence of function requests for a given combination of 
device type, open mode, and file orqanization, for 
example, attempting to REWRITE a record in the shared 
mode after the HOLD has been released by an intervening 
READ WITH HOLD on another file. 

Indicates an attempt to execute an input/output operation 
for a record of invalid length. 

Indicates the use of a nonexistent alternate record key 
when attempting to REWRITE or WRITE a record of an 
alternate indexed file. 

E.4 RELATIVE FILES 

E.4.1 Status Key 1 

The leftmost character position of the FILE STATUS data item is known 
as Status Key 1 and is set to indicate one of the following conditions 
upon completion of the input/output operation: 

'0' - Indicates Successful Completion 
'1' - Indicates AT END 
'2' - Indicates INVALID KEY 
'3' - Indicates Permanent Error 
I 9 I Indicates Special Conditions. 

The meanings of the above indications are as follows: 

'0' - Successful Completion. 
successfully executed. 

The input/output statement was 

'1' -

'2' -

AT END. The Format 1 READ statement was unsuccessfully 
executed as a result of an attempt to read a record when no 
next logical record exists in the file. 

INVALID KEY. The input/output statement was unsuccessfully 
executed as a result of one of the following. 

Duplicate Key 
No Record Found 
Boundary Violation 

E-7 



'3' - Permanent Error. The input/output statement was unsuccessful 
as the result of boundary violation or as a result of an 
input/output error, such as data check, parity error, or 
transmission error. 

'9' - Special Conditions. The input-output statement was 
unsuccessfully executed as a result of a condition that is 
specified by the operating system. This value is used only 
to indicate a condition not indicated by other defined values 
of status key 1, or by specified combinations of the values 
of status key 1 and status key 2. 

E.4.2 Status Key 2 

The rightmost character position of the FILE STATUS data item is 
known as Status Key 2 and is used to further describe the results of the 
input/output operation. This character will contain a value as follows: 

1. If no further information is available concerning the 
input-output operation, status key 2 contains a value of '0'. 

1. When Status Key 1 contains a value of '2' indicating an INVALID 
KEY, Status Key 2 is used to designate the cause of that 
condition as follows: 

'2' - Indicates a duplicate key value. An attempt has been 
made to write a record that would create a duplicate key 
in a relative file. 

'3' - Indicates no record found. An attempt has been made to 
access a record, identified by a key, and that record 
does not exist in the file. 

'4' - A boundary violation. An attempt has been made to write 
beyond the externally-defined boundaries of a relative 
file. 

2. When Status Key 1 contains a value of '9' indicating a special 
condition, Status Key 2 can contain a value of '7', or '8', with 
the following meanings: 

'7' -

'8' -

Indicates an attempt to execute an input/output operation 
for a record of invalid length. 

Indicates the use of a nonexistent alternate record key 
when attempting to REWRITE or WRITE a record of an 
alternate indexed file. 

E.5 INVALID KEY Condition 

The INVALID KEY condition can occur as a result of the execution of a 
START, READ, WRITE, REWRITE or DELETE statement. 

E-8 



When the INVALID KEY condition is recognized, these actions are taken 
in the following order: 

1. A value is placed into the FILE STATUS data item if specified for 
this file, to indicate an INVALID KEY condition. 

2. If the INVALID KEY phrase is specified in the statement causing 
the condition, control is transferred to the INVALID KEY 
imperative statement. Any USE procedure specified for this file 
is not executed. 

3. If the INVALID KEY phrase is not specified, but a USE procedure 
is specified, either explicitly or implicitly, for this file, 
that procedure is executed. 

When the INVALID KEY condition occurs, 
input/output statement which recognized 
unsuccessful and the file is not affected. 

E-9 

execution of the 
the condition is 



E.6 AID Characters 

The AID (Attention Identifier) character is modified when the 
operator presses the ENTER Key, HELP Key and the Program Function 
Keys. The following table illustrates the AID character values 
corresponding to each of the actions: 

Table E-1. Attention ID (AID) Configurations 

Hex Hex 
Character Graphic Character Graphic 

AID (ASCII) Character AID (ASCII) Character 

Keyboard Locked by 
unlocked 20 I I (blank) write 21 I 

ENTER key 40 @ 

PF key 1 41 A PF key 17 61 a 

PF key 2. 42 B PF key 18 62 b 

PF key 3 43 c PF key 19 63 c 

PF key 4 44 D PF key 20 64 d 

PF key 5 45 E PF key 21 65 e 

PF key 6 46 F PF key 22 66 f 

PF key 7 47 G PF key 23 67 g 

PF key 8 48 H PF key 24 68 h 

PF key 9 49 I PF key 25 G9 i 

PF key 10 4A J PF key 26 GA j 

PF key 11 4B K PF key 27 GB k 

PF key 12 4C L PF key 23 6C 1 

PF key 13 4D M PF key 29 6D m 

PF key 14 4E N PF key 30 GE n 

PF key 15 4F 0 PF key 31 6F 0 

PF key 16 50 p PF key 32 70 p 

E-10 

I~ 



APPENDIX F 
PRINTER CONTROL CHARACTERS 

This appendix describes the characters used in controlling WRITE of a 
record to a printer file. The 2-byte printer control characters are 
defined in the Figurative-constants, in the Environment Division of the 
COBOL program. The format of the WRITE statement for printer files using 
printer control characters is as follows: 

WRITE print-record AFTER ADVANCING user-figurative-constant. 

The user-figurative-constant is formed by setting on the bits 
corresponding to the desired function. Table F-1 describes the bits used 
in the 2-byte printer control area. 

Control 
Byte Bit 

0 0 

1 

2 

3 

4-7 

1 0 

1-7 

Table F-1. Printer Control Characters 

Function 

Line or channel spacing select 
0 = Space number of lines specified 

in the second control byte 
1 = Skip to the channel specified in 

the second control byte 

0 = Space before printing 
1 = Space after printing 

0 = Normal width characters 
1 = Double width (expanded 

print) characters 

1 = Actuate hardware alarm 

RESERVED 

RESERVED 

Binary number of lines to space 
(0-127) or channel for skip (1-12) 

F-1 



For more detailed information on printer record formats and options, 
refer to the VS Principles of Operation. Features such as the printer 
hardware alarm and channel skipping are not available on all VS printers; 
before coding the Figurative-Constant for the feature, be sure it is 
supported on the printer. 

Table F-2 illustrates the Figurative-Constant settings for specified 
actions on a WRITE statement for printer files. 

Table F-2. Figurative-Constant Settings for Printer Control 

Figurative-Constant Function 

0004 Space 4 lines before printing. 

4004 Space 4 lines after printing. 

8001 Skip to Channel 1 on the printer (if the printer 
supports channel skipping). 

2003 If the printer supports expanded print, space 3 
lines before printing and print the line using 
expanded print characters; if the printer does 
not support expanded print, space 3 lines before 
printing (the expanded print bit will be ignored). 

707F (Assume the printer supports all features.) 
1. Print the line using expanded print 

characters. 
2. Actuate the hardware alarm. 
3. Space 127 lines after printing. 

F-2 



APPENDIX G 
INTERMEDIATE RESULTS 

This appendix describes when intermediate results 
arithmetic computations and the algorithms used to 
characteristics of the intermediate result. 

are used 
determine 

in 
the 

Intermediate results are used in a COMPUTE statement that specifies a 
series of arithmetic operations, or in arithmetic expressions contained 
in an IF, PERFORM, or SEARCH statement. When an arithmetic statement 
contains only a single pair of operands, an intermediate result is not 
used. 

A series of arithmetic operations is treated as a succession of 
operations performed according to the Evaluation Rules of Subsection 
12.3.2. The result of each successive operation is defined to be an 
intermediate result. 

The intermediate result has an implied PICTURE and USAGE that are 
defined as follows: 

Let OPl and OP2 be the operands of the function. 

ROPl - Indicates the number of digits to the right of the decimal 
point in OPl. 

LOPl - Indicates the number of digits to the left of the decimal 
point in OPl. 

ROP2 Indicates the number of digits to the right of the decimal 
point in OP2. 

LOP2 - Indicates the number of digits to the left of the decimal 
point in OP2. 

RI Indicates the number of digits to the right of the decimal 
point in the intermediate result. 

LI Indicates the number of digits to the left of the decimal 
point in the intermediate result. 

RF Indicates the number of digits to the right of the decimal 
point in the final result field. 

LF Indicates the number of digits to the left of the decimal 
point in the final result field. 

For addition (OPl + OP2): 
RI = max (ROP1,ROP2) 
LI = max (L0Pl,LOP2) + 1 

G-1 



For subtraction (0Pl - OP2): 
RI = max CROP1,ROP2) 
LI = max CLOP1,LOP2) + 1 

For multiplication (OPl * OP2): 
RI = ROPl + ROP2 
LI = LOPl + LOP2 + 2 

For division (0Pl I OP2): 
The quotient: 

RI= max (ROPl - ROP2, ROPl, ROP2, RF), 
plus one if ROUNDED is specified for the final result 

LI = LOPl + ROP2 
The remainder: 

RI = ROP2 + (RI of the quotient) 
LI = LOP2 - (RI of the quotient) 

For exponentiation (OPl ** OP2): 
RI = ROPl 
LI = max (2 * LOPl + l, LF) 

For comparison (OPl compared with OP2): 
RI = max CROP1,ROP2) 
LI = max (L0Pl,LOP2) 

In any instance if RI + LI exceeds 30, truncation of all but the 30 
least significant digits will occur. 

The usage of the intermediate data item will be either BINARY or 
COMPUTATIONAL. 

The usage is BINARY in the following cases. 

1. OPl and OP2 both have usage BINARY. 
2. One operand has usage BINARY and the other is an index name. 

The usage is COMPUTATIONAL in all other cases. 

When the usage is COMPUTATIONAL, the implied PICTURE is S9 (m)V9 (n), 
where m is the value of LI and n is the value of RI, recognizing that m + 
n may exceed 18, but will not exceed 30. 

It is the programmer's responsibility to make sure that the operands 
of any arithmetic statement are defined with enough decimal places to 
give the desired accuracy in the final result. 

G-2 



APPENDIX H 
PASSING PARAMETERS TO COBOL SUBROUTINES 

This appendix describes the protocol required for passing parameters 
from one COBOL program to another COBOL program. The CALL statement 
names the subroutine that is to be executed; in this discussion, the 
program calling the subroutine is called the "calling program", while the 
subroutine being called is called the "called program". 

The format of the CALL statement is 

CALL literal-1 [USING identifier-1 [identifier-2] .•. ] 

In the calling program, the following rules must be observed: 

1. The subroutine-name in the calling program must be identical to 
the PROGRAM-ID of the called program. 

2. The parameters to be passed in the USING list must be defined in 
either the File Section (except for the FD name), the 
Working-Storage Section or the Linkage Section of the calling 
program. 

3. If the parameters are in the Linkage Section of the calling 
program, the calling program must itself have been called from 
another program. 

4. Recursive calls are not allowed. A program cannot call itself, 
and neither can any chain of CALL statements refer back to a 
calling program. Thus PROGRAM A issuing a CALL to PROGRAM B, 
which issues a CALL to program C, is legal; while PROGRAM A 
issuing a CALL to PROGRAM B, which issues a CALL to PROGRAM A, is 
illegal. Illegal CALL sequences produce unpredictable results at 
runtime. 

5. The FD name of a file cannot be passed to a COBOL subroutine. 
However, as the address of the User File Block, it can be passed 
to an assembler subroutine. 

H-1 



In the called program, the parameters are received by the USING 
phrase of the Procedure Division. The format is 

PROCEDURE DIVISION [USING data-name-1] [data-name-2] ... ]. 

The USING phrase identifies a program as a called subroutine. In the 
called program observe the following rules: 

1. The parameters in the USING list must be defined in the Linkage 
Section. 

2. The parameters in the USING list are 01 or 77 level items. 

3. The length of the parameters in the USING list of the called 
program corresponds with the length of the parameters in the 
calling program. The correspondence is positional; that is, the 
nth parameter of the USING list of the called program corresponds 
with the nth parameter of the USING list of the calling program. 
The structure of the parameters do not have to correspond, but 
their length does. 

The VS LINKER is run to combine the called program and the calling 
program. The VS LINKER combines program files and resolves addresses so 
that the called program and the calling program can communicate. Ref er 
to VS PROGRAM DEVELOPMENT TOOLS for information on the VS LINKER. 

Figure H-1 is a COBOL calling program that passes a table entry with 
3 levels of OCCURS. The table entry is passed in three ways: with 
integer occurrence numbers, with INDEXED BY index names, and with 
subscripted data names. 

H-2 



000100 IDENTIFICATION DIVISION. 
000200 PROGRAM-ID. CALLTABL. 
000300**************************************************************** 
000500* This program illustrates 3 methods of passing a table * 
000600* entry to a COBOL subroutine. The table entry (TABLE-ENTRY) * 
000700* occurs in THREE-LEVEL-TABLE, and can be referenced using * 
000800* either integer occurrence numbers (TABLE-ENTRY (1, 2, 3)); * 
000900* index data items defined in the INDEXED BY clause * 
001000* (TABLE-ENTRY (X, Y, Z)); or subscripted data items defined in* 
001100* Working-Storage (TABLE-ENTRY (SUBl, SUB2, SUB3)). * 
001300**************************************************************** 
001400 ENVIRONMENT DIVISION. 
001500 DATA DIVISION. 
001600 WORKING-STORAGE SECTION. 
001700 01 THREE-LEVEL-TABLE. 
001800 03 LEVEL! OCCURS 5 TIMES INDEXED BY X. 
001900 05 LEVEL2 OCCURS 6 TIMES INDEXED BY Y. 
002000 07 LEVEL3 OCCURS 7 TIMES INDEXED BY Z. 
002100 09 TABLE-ENTRY PICTURE IS XXX. 
002200 77 SUBl COMPUTATIONAL VALUE IS +1 PICTURE IS S99. 
002300 77 SUB2 VALUE IS +2 PICTURE IS S99. 
002400 01 SUB3 BINARY VALUE IS +3. 
002500 PROCEDURE DIVISION. 
002600 CALL-USING-TABLE-ENTRY. 
002700* 
002800* The table entry (TABLE-ENTRY) is referenced by integer 
002900* occurrence numbers in the table THREE-LEVEL-TABLE. 
003000* 
003100 
003200 
003300* 

MOVE "ABC" TO TABLE-ENTRY (1, 2, 3). 
CALL "CALLSUBR" USING TABLE-ENTRY (1, 2, 3). 

003400* The following call will reference the same table entry using 
003500* index data items, after setting the index items to the 
003600* desired occurrence values. 
003700* 
003800 
003900 
004000 
004100 
004200* 

SET X TO 1. 
SET Y TO 2. 
SET Z TO 3. 
CALL "CALLSUBR" USING TABLE-ENTRY (X, Y, Z). 

004300* The following call uses subscripted data items and will 
004400* reference the identical table entry. 
004500* 
004600 
004700 

CALL "CALLSUBR" USING TABLE-ENTRY CSUBl, SUB2, SUB3). 
STOP RUN. 

Figure H-1. Calling Program Passing Table Entry Parameter 

H-3 



Figure H-2 is the program CALLSUBR called by the program of Figure 
H-1 and having the proper 3-byte entry in the Linkage Section to receive 
the table entry. 

000100 IDENTIFICATION DIVISION. 
000200 PROGRAM-ID. CALLSUBR. 
000210**************************************************************** 
000230* The subroutine CALLSUBR receives table entry TABLE-ENTRY. * 
000240* TABLE-ENTRY is the elementary item in the Linkage Section. * 
000250* Since CALLSUBR receives the address of the table entry, it * 
000255* does not have any knowledge that it has been passed the * 
000260* element of a table -- therefore it references the elementary * 
000265* item. * 
000275**************************************************************** 
000300 ENVIRONMENT DIVISION. 
000400 DATA DIVISION. 
000500 LINKAGE SECTION. 
000600 01 TABLE-ENTRY PICTURE IS XXX. 
002100 PROCEDURE DIVISION USING TABLE-ENTRY. 
002200 BEGINIT. 
002300 DISPLAY "We are in CALLSUBR. Table entry = " TABLE-ENTRY. 
002500 GOBACK. 
002600 EXIT PROGRAM. 

Figure H-2. Called Program Receiving Table Entry Parameter 

H-4 



APPENDIX I 
A COMPARISON OF VS, ANSI AND FIPS COBOL STANDARDS 

The 1974 American National Standards Institute (ANSI) specifications 
for COBOL (ANSI X3.23-1974) are divided into 12 modules organized 
according to processing functions. These modules define different 
features of the language. The modules are : the Nucleus, Table Handling, 
Sequential I/0, Relative I/0, Indexed I/O, Sort-Merge, Report Writer, 
Segmentation, Libary, Debug, Inter-Program Communication, and 
Communication. The Nucleus contains features that are necessary for 
internal processing. The Table Handling module contains features 
necessary for defining and referencing tables. The I/O modules contain 
features necessary for the definition and access of external files either 
organized sequentially, identified and accessed by relative record 
numbers, or identified and accessed by the values of a key. The 
Sort-Merge module allows a COBOL program to perform sorts. The 
Report-Writer provides for the production of printed reports. The 
Segmentation module provides for the overlaying of Procedure Di vision 
sections at compile-time. The Library module provides for the inclusion 

~ into a program of external COBOL text. The Debug module allows the user 
to specify the conditions under which items are monitored for debugging 
during execution. The Inter-Program Communication module allows a 
program to communicate with one or more other programs. The 
Communications module provides the ability to communicate with local or 
remote communications devices. 

All the modules except Report-Writer contain a higher and lower 
level. In each case, the features of the lower level are supported in 
the higher level, except that the higher level may remove some 
restrictions that are enforced in the lower level. 

The Federal Information Processing Standard (FIPS) for COBOL CFIPS 
PUB 21-1) is based on the ANSI standard. FIPS divides the features of 
ANSI COBOL into four levels identified as Low, Low-Intermediate, 
High-Intermediate, and High. As Table I-1 shows, each FIPS level is 
composed of the features from the high or low levels of ANSI modules. 
The numbers in the table refer to the levels of the corresponding ANSI 
module. 1 designates the low level; 2 designates the high level. A dash 
in the table denotes that the corresponding module is omitted from a 
particular FIPS level. 

I-1 



Table I-1. Federal Information Processing Standard 

Low Low High High 
Level Intermediate Intermediate Level 

Level Level 

Nucleus 1 1 2 2 
Table Handling 1 1 2 2 
Sequential I-0 1 1 2 2 
Relative I-0 -- 1 2 2 
Indexed I-0 -- -- -- 2 
Sort-Merge -- -- 1 2 
Report Writer -- -- -- --
Segmentation -- 1 1 2 
Library -- 1 1 2 
Debug -- 1 2 2 
Inter-Program Communication -- 1 2 2 
Communication -- -- 2 2 

Table I-2 lists all the features of VS and ANSI COBOL, organized 
according to the source-program divisions. The column entitled "VS" indicates 
whether the feature is supported in VS COBOL. A "Y" in the column indicates 
that the feature is supported. "C" indicates that the feature is accepted by 
the compiler as a comment entry only. "E" indicates that the feature is a VS 
extension to the ANSI standard. "I" indicates that the feature is an 
implementor name. "N" indicates that the feature is not supported. Note, 
however, that all ANSI reserved words are recognized as such by the VS ~ 

compiler and can not be user-defined words. (Refer to Appendix A, VS COBOL 
Reserved Words.) 

The column entitled ANSI indicates whether a feature conforms to the 
ANSI standard. A dash in the column indicates that the feature is absent from 
the standard. A three-character abbreviation indicates the module to which a 
feature belongs. The number preceding the abbreviation indicates the level to 
which the feature belongs. 1 indicates the lower level; 2 indicates the 
higher level. The meanings of the abbreviations are as follows. 

Abbreviation 
NUC 
TBL 
SEQ 
REL 
INX 
IPC 
SEG 
STR 
LIB 
DEB 
RPW 
COM 

Meaning 
Nucleus 
Table Handling 
Sequential I/O 
Relative I/O 
Indexed I/0 
Inter-Program Conununication 
Segmentation 
Sort-Merge 
Library 
Debug 
Report Writer 
Communication 

I-2 



LANGUAGE CONCEPTS 
Character Set 

Table I-2. SUMMARY OF DIFFERENCES 

SUMMARY OF DIFFERENCES IN LANGUAGE CONCEPTS 

Characters used in words 0-9 A-Z - (hyphen) .•••..••.•.•.•••.•••• 
Characters used in punctuation" ( ) space ..........•.•.•••.•••• 

(comma) (semicolon) ...•.•••• 
= ••••••••••• 

Characters used in editing B + , Z * $ 0 CR DB I ........... . 
Characters used in arithmetic operations+ *I** •••.•••• 
Characters used in relation conditions><= •.•••••.•.•...•.•••• 
Characters used in subscripting+ .••••.••.•.•.••....•••.•••.•••• 
Characters used in indexing + .....••........••..•...•••...•••• 
Double character substitution allowed •.•......•.•.....•.••..•••• 

Separators 
" ( > space 

(cornrna) ; (semicolon) ••••••••••••••..•.•..••......••.....•••• 
A space which is part of a separator may be one or more 

space characters .............................................. . 

Character-Strings 
COBOL words 
Maximum of 30 characters 
User-defined words 

Names must be unique if referenced ••.•••.•...••••..••••••••••• 
Names may be qualified for uniqueness •.••••••••••.••••••••.••• 
Alphabet-name 
Cd-name ••••••••.•••••••••••••••••••••••••••••••••.•••••••••••• 
Condition-name 
Data-Name 
Must begin with alphabetic character .•••••..••••.••••••••.••• 
Need not begin with alphabetic character ••••••••••••••••••••• 

File-name 

Index-name 
Level-number •••. 
Library-name 
Mnemonic-name 
Paragraph-name 
Program-name 

I-3 

ANSI vs 

1 NUC y 
1 NUC y 
2 NUC y 
2 LIB N 
1 NUC y 
2 NUC y 
2 NUC y 
1 TBL y 
1 TBL y 
1 NUC y 

1 NUC y 
2 NUC y 

1 NUC y 

1 NUC y 

1 NUC y 
2 NUC y 

1 NUC c 
1 COM N 
2 NUC y 

1 NUC y 

1 NUC N 
2 NUC y 

1 SEQ y 

1 REL y 

1 INX y 

1 SRT y 

1 RPW N 
1 TBL y 
1 NUC y 

1 LIB y 

1 NUC y 

1 NUC y 

1 NUC y 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN LANGUAGE CONCEPTS (continued) 

User-defined words (continued) 
Record-na.me ••••••••••••••••••••••••••••••••••••••••••••••••• 

Report-name •••..••.•..•••..••....••..•.•...•.••••.••.••••••• 
Routine-name .•..•••••••••..••..•.•..•.••..•.•••.•••••••••••• 
Section-name ....•............................•.•••.......... 
Segment-nlllllber ....••••...•••..•...•••.••.••.••.•.••.••••.••• 
Text-name •..•.••••••••...•..••....••••...••.•••••••......... 
User-£ igurati ve-constant •................••.••...••••.•••••• 

System-names 
Computer-name •..••••.•••••••..•••••.••••..•..•••••.••...•.•• 
Implementor-name •.....•...•.....•..•••••..••.•.•.••.•.•.•••• 

Reserved words 
Regui red words . • • • • • • • • • • . • . . . • • • • . • • • • • . • • • • • • • • • • • • • • • • • • • 

Key words ••••...•.••.•.••.••.•.•••.•.••••.••...•••••••••••• 
Special characters words 

Arithmetic operators + - * I ** 
Arithmetic operators used in subscripting+ •••.•••..•.•..• 
Arithmetic operators used in indexing + - ......•••••••••.. 
Relation characters > < = ••.••••••••••.••••••••••••••••••• 

Optional words ..•.•.••...•...•.....•...•..•.••.•..•.••..•••. 
Special purpose words 
Figurative constants: ZERO, SPACE, HIGH-VALUE, LOW-VALUE, 

QUOTE •..•.•••.•..•.•••.••••••.•....••.•.......••.••••••• 
Figurative constants: ZEROS, ZEROES, SPACES, HIGH-VALUES, 

LOW-VALUES , QUOTES • • . • • . • . • • • . • . • . . • • • • . • • • • • • • • • . • • • 
Figurative constants: ALL literal •.•••••••••.••••••••..••. 
Special registers 

LINAGE--COtJN'TER • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
LINE--COtJN'TER • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
PAGE--COtJN'TER •••••••••••••••••••••••••••••••••••••••••••••• 
DEBUG-ITE!t! • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

Literals 
Numeric literals: 1through18 digits ••••.••••.•.••.••••••• 
Nonnumeric literals: 1 through 120 characters ••••••••••••••• 

PICTURE character-strings ••.••.••.••••••••••••••••.•••••••••. 
CoinIDent-entries .••••••••••••••.••••••••••••.••••••.•••••.•••. 

Uniqueness of Reference 
Qual if ica ti on ........•....................•..•................ 
Subscripting (data-name/literal) ••.•••..••••.•.•••.••••••••••• 
Subscripting (index-name) ••••.••.•..•...•.•.•.•..•.•••••.•..•. 

I-4 

ANSI 

1 SEQ 
1 REL 
1 INX 
1 SRT 
1 RPW 
1 NUC 
1 NUC 
1 SEG 
1 LIB 

1 NUC 
1 NUC 

1 NUC 
1 NUC 

2 NUC 
1 TBL 
1 TBL 
2 NUC 
1 NUC 

1 NUC 

2 NUC 
2 NUC 

2 SEQ 
1 RPW 
1 RPW 
1 DEB 

l NUC 
1 NUC 
1 NUC 
1 NUC 

2 NUC 
1 TBL 
1 TBL 

VS 

y 
y 
y 
y 
N 
c 
y 
y 
N 
E 

y 
y 

y 
y 

y 
y 
y 
y 
y 

y 

y 

N 

N 
N 
N 
y 

y 

y 
y 

y 
y 
y 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN LANGUAGE CONCEPTS (continued) 

Reference Format 
Sequence n\l!Dber ................................................ . 
Continuation of lines 
Continuation of nonnwneric literal •••••••......•......••••.•••• 
Continuation of COBOL word, nwneric literal, 

PICTURE character-string •••••••••••.••.••...•.......••.....• 
Intervening comment lines allowed .•••.••..•.•....••...•••••.••• 

Blank 1 ines .................................................... . 
Comment lines 
Asterisk C"') comment 1 ine ...••••.••••..••..••...•.•...•••...... 
Stroke (I) conunent line .••....•...••..••..•.•.••.•....•.••.•... 
Percent sign<%> conunent line •••.•••..........•..•••...•••..••• 

Debugging line with Din indicator area .••...•......•...•••...•• 

Source Program Structure 
Identification Division required 
Environment Di vision required .••...•••.••....••.•••.•.....•.•••. 
Data Division required .......•••••••••.•••••.•....•.•.•.•••••••• 
Procedure Division required .••••..••.••......•....••....•••.•.•. 

I-5 

ANSI vs 

1 NUC y 

I NUC y 

2 NUC N 
1 NUC y 
1 NUC y 

1 NUC y 

1 NUC y 
E 

1 DEB y 

1 NUC y 
1 NUC y 

1 NUC y 

1 NUC y 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN IDENTIFICATION DIVISION 

IDENTIFICATION DIVISION 
PROGRAM-ID paragraph 

Program-name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
AUTHOR paragraph ...........•....•..........•••.••...•..•.•.••. 
INSTALLATION paragraph ••••••••.•••••..••...•••••.••••••••••••• 
DATE-WR.ITTEf.J paragraph •.•.••••••••••••••..••..••.••••••••••••. 
DATE-COMPILED paragraph •••••..••..••.•..•.••.•••.•.•••.••••••. 
SEC!tJRITY paragraph ........................................... . 

I-6 

ANSI 

1 NUC 
1 NUC 
1 NUC 
1 NUC 
2 NUC 
1 NUC 

vs 

y 
y 
y 
y 
y 
y 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN ENVIRONMENT DIVISION 

ELEMENT 

ENVIRONMENT DIVISION 
Configuration Section 
Configuration Section is required •.••••••..••••••••.••....••. 
Configuration Section is optional ••.•..•••••••.••.........••. 

SOURCE-COMPUTER paragraph 
SOURCE-COMPUTER paragraph is required ..•...•..••...••...••••• 
SOURCE-COMPUTER paragraph is optional .•••••••••••.••.....••.• 
Computer-name .•...•••.•..•..•...•.•••.••••••••••.••••....•..• 
WITH DEBUGGING MODE clause for debugging lines ••...••..••••.• 
WITH DEBUGGING MODE clause for debugging sections •••••...•••• 

OBJECT-COMPUTER paragraph ••••.••••••..•..•.....••...••••.••.•• 
Computer-name .•••••••••..••••••••••••••••••••••••..•..•.•.••• 
~ORY SIZE clause ••••••••••••••••••••••••••••••••••••••••••• 
PROGRAM COLLATING SEQUENCE clause •••••••••.•••••••••••••••... 
·SEGlml'T-LIMIT clause ••••••••••••••••••••••.•••.••.••••••••••• 

SPECIAL-NAMES paragraph 
ALPliABET clause .................•...............•............ 

STANDARD-1 option .•.........................•............... 
NATIVE option ..................•••.....••.................•. 
Implementor-name option •••••••••••..•..••..••.••..•••••.•••. 
Literal option ..........................•................... 
C~CY SIGN clause ••..•••••.••••••.•..••.•....•.•.••••.•••• 

~ DECIMAL-POINT clause •••.••••.••••••.••••••..••••••••••••.•••• 
SWITCH-1, ••• , SWITCH-7 ••••••••••••••••••••••••••••••••••••••• 

IS mnemonic-name option ••.••••.•••.••••••.•.••••.••••••••••. 
ON STATUS IS condition-name option •••••••.•••••..•••••••••• 
OFF STATUS IS condition-name option •••••••••••••••••••..••• 

FIGURATIVE-CONSTANTS paragraph ••••••••••••.•.••••••••••••.•••• 

I-7 

ANSI vs 

1 NUC N 
E 

1 NUC N 
E 

1 NUC y 
1 DEB y 

1 DEB y 
1 NUC c 
1 NUC c 
1 NUC c 
1 NUC c 
2 SEG N 

1 NUC c 
1 NUC c 
1 NUC c 
1 NUC N 
2 NUC N 
1 NUC y 

1 NUC y 
I 

1 NUC y 
1 NUC y 

1 NUC y 
E 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN ENVIRONMENT DIVISION (continued) 

ELEMENT ANSI vs 

Input-output Section • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 SEQ Y 

FILE-CONTROL paragraph ••.•••.•••••••••••••••••••••.••••••••••• 

File control entry 

SELECT clause ........................................• , .••... 

OPTIONAL phrase •••••••••••••••••••••••••••••••••••••••••••• 

ACCESS MODE clause 
SEQU'El\JTIAL ••••••••••••••••••••••••••••••••••••••.••••••••••• 

RAN'DOM •••••••••••••••••••••••••••••••••••••••••••••••••••••• 

DYN,AM'IC ••••••••••••••••••••••••••••••••••••••••••••••••••••• 

REATIVE KEY' phrase ••••••••••••••••••••••••••••••••••••••••• 
ALTERNATE RECORD KEY' clause •••••.•.•.•••••••••.••..•••••••.•. 

Integer option •••••••••••••••••••••••••••••••••••••••••••••• 
WITH DUPLICATES phrase •••••••••••••••••••••••••••••••••••••• 

ASSIGN clause •••••••••••••••••••••••••••••••••••••••••••••••• 

"DISK", "DISPLAY", "PRINTER", or "TAPE" option •••••••••••••• 
NODISPlJ\Y phrase •••••••••••••••••••••••••••••••••••••••••••• 

CtJRSOR clause •••••••••••••••••••••••••••••••••••••••••••••••• 
Bm'FER clause •••••••••••••••••••••••••••••••••••••••••••••••• 
PFKEY clause ••••••••••••••••••••••••••••••••••••••••••••••••• 

I-8 

1 REL Y 
1 INX Y 
1 SRT Y 
1 RPW N 

1 SEQ 
1 REL 
1 INXl 
1 SRT 
1 RPW 

1 SEQ 
1 REL 
1 INX 
1 SRT 
1 RPW 
1 SEQ 
1 REL 
1 INX 
1 SRT 
1 RPW 
2 SEQ 
2 REL 
2 INX 

1 SEQ 
1 REL 
1 INX 
1 RPW 
1 REL 
1 INX 
2 REL 
2 INX 
1 REL 
2 INX 

2 INX 
1 SEQ 
1 REL 
1 INX 
1 SRT 
1 RPW 

y 
y 
y 
y 
N 

y 
y 
y 
y 

N 
y 
y 
y 
y 

N 
N 
N 
N 

y 
y 
y 
N 
y 
y 
y 
y 
y 
y 

E 
y 
y 
y 
y 
y 
N 
I 
E 
E 
E 
E 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN ENVIRONMENT DIVISION (continued) 

File control entry (continued) 
FILE STATUS clause ••..•.•...•....••.••..•..••.••.•....•..•.••• 

ORGANIZATION clause 
SEQtJEt.JTIAL ••••••••••••••••••••••••••••••••••••••••••••••••••• 

REI.AT I VE • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

INDm<:ED ••••••••••••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
RECORD KEY clause ••••••••••••••••••••••••••••••••••••••••••••• 
RESERVE AREA clause ••••••••••••••••••••••••••••••••••••••••••• 

I-0-CONTROL paragraph 
MULTIPLE FILE TAPE clause 
RERUN' clause •••••••••••••••••••••••••••••••••••••••••••••••••• 

SAME 1\REA clause •••••••••••••••••.••••••••••••••••••••••••••••• 

SAME RECORD AREA clause ••••••••••••••••••••••••••••••••••••••• 

I-9 

ANSI 

1 SEQ 
1 REL 
1 INX 
1 RPW 

1 SEQ 
1 RPW 
1 REL 
1 INX 
1 INX 
2 SEQ 
2 REL 
2 INX 
1 RPW 

2 SEQ 
1 SEQ 
1 REL 
1 INX 
1 SEQ 
1 REL 
1 INX 
2 SEQ 
2 REL 
2 INX 

vs 

y 
y 
y 
N 

y 
N 
y 
y 
y 
y 
y 
y 
N 

N 
c 
c 
c 
N 
c 
y 
y 
y 
y 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN DATA DIVISION 

DATA DIVISION 
File Section ............................................... . 

File description entry 

FD level indicator .••••.•••..•...•••.•..•...••••••.•....•..• 

BLOCK CONTAINS clause 
Integer RECORDS/CHARACTERS 

Integer-I TO integar-2 RECORDS/CHARACTERS .•.•.•••••..••..• 

CODE-SET c 1 a use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

DATA RECORDS clause .••••.••..•.•..••.••••..•.•.••.••..••••• 

r..ABEL RECORDS clause ...................................... . 

LINAGE clause ••.•....•..••..•...••••.•.•..•.•..•••...••.••• 
FOOTING phrase .•••••.••••.......••••.••.•.•••••.•••.•..... 
TOP phrase ••.....•..••.••.•••••..•••......•.•.•••......••• 
BOTTOM. phrase •.••••••••••••••••••••••••...•••.••••.•••••.• 

I-10 

ANSI vs 

1 SEQ y 

1 REL y 
1 INX y 
1 SRT y 
1 RPW N 

1 SEQ y 
1 REL y 
1 INX y 
1 RPW N 
1 SEQ y 
1 REL y 
1 INX y 

1 SEQ y 
1 REL y 
1 INX y 
1 RPW N 
2 SEQ y 
2 REL y 
2 INX y 
1 RPW N ~ 
1 SEQ c 
1 RPW N 
1 SEQ c 
1 REL c 
1 INX c 
1 SEQ y 
1 REL y 
1 INX y 
1 RPW N 
2 SEQ N 
2 SEQ N 
2 SEQ N 
2 SEQ N 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN DATA DIVISION (continued) 

ELEMENT 

File description entry (continued) 
RECORD clause 
Integer-1 CHARACTER.S ••••••••••••••••.•••.•.•••••••••••••... 

Integer-4 TO integer-5 CHARACTER.S ••.••••••••••..•••••••.••. 

COMPRESSED phrase •••..•..•...•..•••••••....••.••.•.••••••.• 
REPORT clause ............••.........•...•................... 
VALUE OF clause 

Implementor-name IS literal ••••.•..•••.•.••..•..•.•••••.••• 

Implementor-name IS data-name ..•••••.••.....•.•••••••.•••.• 

Series 

RECOVERY - BLOCKS IS • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
RECOVERY-STATUS IS •••••••• ~ •••••••••••••••••••••••••••••••• 
DATABASE-N~ IS • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

Sort-merge file description entry .•••.•..•••.••••.••..••.•••• 
SC level indicator •••••••••••••••••.••••.•.•.•••..••••••.••.• 
DATA RECORDS clause ••••••••••••••••••••••••••••••••••••••••• 
RECORD clause 
Integer-1 CliARACTERS .••••••••••••••.•••...••..••••.•.•••••• 
Integer-4 TO integer-5 CHARACTERS ••.•••..••...••...•••••••. 
COMPRESSED phrase ••.•....••••••••••.......•••.••••.•..••••. 

Record description entry in File Section •.•..••.••••.••.••••• 

I-11 

ANSI VS 

l SEQ Y 
l REL Y 
1 INX Y 
l RPW N 
2 SEQ Y 
2 REL Y 
2 INX Y 
l RPW N 

E 
l RPW N 

l SEQ 
l REL 
l INX 
l RPW 
2 SEQ 
2 REL 
2 INX 
l RPW 
2 SEQ 
2 REL 
2 INX 
2 RPW 

1 SRT 
l SRT 
1 SRT 

1 SRT 
1 SRT 

1 SEQ 
1 REL 
1 INX 
1 SRT 

y 
y 
y 
N 
y 
y 
y 

N 
y 
y 
y 
N 
E 
E 
E 

y 
y 
y 

y 
y 
E 

y 
y 
y 
y 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN DATA DIVISION (continued) 

ELEMENT 

Working-Storage Section •••••••••••••••••••••••••••••••••••••• 
Record description entry ••••••••••••••••••••••••••••••••••••• 
77 level description entry ••••••••••••••••••••••••••••••••••• 

Lin.kaqe Section .............................................• 
Record description entry ••••••••••••••••••••••••••••••••••••• 
77 level description entry ••••••••••••••••••••••••••••••••••• 

Conunllllication Section •••••••••••••••••••••••••••••••••••••••• 
Conununication description entry •••••••••••••••••••••••••••••• 
CD level indicator .................................•......... 

FOR INPlJT clause •••••••...••.•.••••••••••••••••..••.•••••••• 
INITIAL phrase .••.•••••.•••••••.•.••.••••••••.••••.•..••••• 
filJD KE'Y9 clause ............................................ . 
MESSAGE COtJNT clause ••••••••••••••••••••••••••••••••••••••• 
MESSAGE DATE clause •••••••••••••••••••••••••••••••••••••••• 
MESSAGE TIME clause •••••••••••••••••••••••••••••••••••••••• 
SYMBOLIC QUEUE clause •••••••••••••••••••••••••••••••••••••• 
SYMBOLIC SOURCE clause ••••••••••••••••••••••••••••••••••••• 
SYMBOLIC SUB-QUEUE-1 clause •••••••••••••••••••••••••••••••• 
SYMBOLIC SUB-QUEUE-2 clause •••••••••••••••••••••••••••••••• 
SYMBOLIC SUB-QUEUE-3 clause •••••••••••••••••••••••••••••••• 
STATUS KEY clause •••••••••••••••••••••••••••••••••••••••••• 
TIDrr LDGTH clause ••••••••••••••••••••••••••••••••••••••••• 

FOR OUTPUT clause ••••••••••••••••••••••••••••••••••••••••••• 
DESTINATION COUNT clause ••••••••••••••••••••••••••••••••••• 
Must be one ••••••••••••••••••••••••••••••••••••••••••••••• 
Must be one or greater •••••••••••••••••••••••••••••••••••• 

DESTINATION TABLE clause ••••••••••••••••••••••••••••••••••• 
INDEX:ED BY phrase ••••••••••••••••••••••••••••••••••••••••• 

ERROR ~ clause ........................................... . 
SYMBOLIC DESTINATION clause •••••••••••••••••••••••••••••••• 
STATUS ~ clause •••••••••••••••••••••••••••••••••••••••••• 
TIDrr LmGTH clause ••••••••••••••••••••••••••••••••••••••••• 

Record description entry ••••••••••••••••••••••••••••••••••••• 

I-12 

ANSI vs 

1 NUC y 
1 NUC y 
1 NUC y 

1 IPC y 
1 IPC y 
1 IPC y 

1 COM N 
1 COM 
1 COM 
1 COM 
2 COM 
1 COM 
1 COM 
1 COM 
1 COM 
1 COM 
1 COM 
2 COM 
2 COM 
2 COM 
1 COM ~ 
1 COM 
1 COM 
1 COM 
1 COM 
2 COM 
2 COM 
2 COM 
1 COM 
1 COM 
1 COM 
1 COM 
1 COM 



I~ 

Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN DATA DIVISION (continued) 

Report Section 
Report description entry ......••.•••••••....••..•..•....•••..• 
RD level indicator ........................................... . 

CODE clause ................................................. . 
CONTROL clause .............................................. . 
PAGE clause ................•.......•.•....................... 

Report group description entry ..•••.•....•.•..•....•.......••. 

The following clauses appear in record description entry, data 
description entry, 77 level description entry, report 
group description entry, or workstation screen description 
entry: 

BLANK WHEN ZERO clause 

COLt.J'?t!?tl Nl.JMBER clause ........................................ . 
COLt.J'?t!?tl clause (workstation screen) .•..•...•...•••••....•..••. 
Data-name clause ............................................ . 

FILLER clause ............................................... . 
GROUP INDICATE clause .....•••••••.•.••.••.•.••.•.•••..••.•..• 
JlJSTIFIED clause ..•...•••.••..•..•••••......••............••• 

Level-ntunber clause ...•.•..••.••.•.•••..•....•..•...•..•••... 
01 through 10; one digit representation •••••.••••....••••••• 
01 through 49; one or two digit presentation ..•....••..••••. 

6 6 ••..•••••••....•••••••...••••••••••••..•••..•.••..••.••••• 
77 
88 

LINE NUMBER clause .......................................... . 
LINE clause (workstation screen) •••••••.•.••...•••••..•••••.• 
NEXT GRO'UP clause ........................................... . 
OBJECT clause (workstation screen) •.••••.•••.••••.•••..•• : ••• 
OCClJRS clause ............................................... . 

Integer Times .............................................. . 
ASCENDING/DESCENDING Key clause ••••••••.••••.•.•••..•••••••• 
INDmc:ED BY phrase ..........•.••..................•.....•.... 
Integer-I TO interger-2 TIMES DEPENDING ON phrase •.•••.••••• 

I-13 

ANSI vs 

1 RPW N 
1 RPW 
1 RPW 
1 RPW 
1 RPW 
1 RPW 
1 RPW 

1 NUC y 
1 RPW 
1 RPW N 

E 
1 NUC y 
1 RPW 
1 NUC y 
1 RPW N 
1 NUC y 
1 RPW 
1 NUC y 
1 NUC y 
2 NUC y 
1 RPW 
2 NUC N 
1 NUC y 
2 NUC y 

1 RPW N 
E 

1 RPW N 
E 

1 TBL y 
1 TBL y 
2 TBL y 
1 TBL y 
2 TBL N 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN DATA DIVISION (continued) 

ELEMENT 

PIC'rl.JRE clause •••••••••••••••••••••.••.••••.••.•••••••••••••• 

Character-string has a maximtun of 30 characters .••..•••••... 

Data characters: X 9 A ••...•••••.•.••...•.•••.•...•..•••••• 

Operational symbols: S V 

Operational symbols: P ••••••••••••••••••••••••••••••••••••• 

Nonfloating insertion characters B + - . , $ 0 CR DB I ..... . 

B allowed in alphabetic i tern ••••••....••••.•••.•.....••••••• 

Replacement or floating insertion characters$+ - Z * ..... . 

Currency sign substitution 

Decimal point substitution .................................. 
RANGE clause (workstation screen) •••••••..•••.••••.......•••• 
REDEFINES clause •••••••.•••.••••••.•..•••..•.••.••••••.•••..• 

May not be nested ...........••...........•.....•...........• 
May be nested 
Redefining of 

of original 
Redefining of 

of original 
Redefining of 

............................................... 
01 levels may be greater than size 
area .......•••.•.. • • • · · • · · · · · · · • • · · · · · · · · · · · · · 
non-01 levels must be equal to size 
area •••.................................•••... 
non-01 levels must be less than or 

equal to size of original area .••••.••••••.••••.••.••••••• 
ROW clause (workstation screen) •••.••.••.•••••••••.••.•.••••. 
NA!t!ES clause ••••••••••••••••••••••••••••••••••••••••••••••••• 
SIGN' clause •••••••.•••••••.•••••.•••••••••••.•••••••••••••••• 
SOURCE clause ...•............•....•.......•.••.••......•....• 
SOURCE clause (workstation screen) •..••••..••.•••••••.••••••• 
StJM clause ••••••••••••••••••••••••••••••••••••••••••••••••••• 
S'YNClmONIZED clause .••.•.•...•..•........•.....•...••••••••.• 
TYPE clause •••••••••••••••••••••••••••••••••••••••••••••••••• 
USAGE clause ................................................. 

ANSI 

1 NUC 
1 RPW 
1 NUC 
1 RPW 
1 NUC 
1 RPW 
1 NUC 
1 RPW 
1 NUC 
1 RPW 
1 NUC 
1 RPW 
1 NUC 
1 RPW 
1 NUC 
1 RPW 
1 NUC 
1 RPW 
1 NUC 
1 RPW 

1 NUC 
1 NUC 
2 NUC 

1 NUC 

1 NUC 

2 NUC 
1 NUC 
1 RPW 

1 RPW 
1- NUC 
1 RPW 
1 NUC 
1 RPW 

BINARY •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
COMP'UTATIONAL . • • • • • • • • • • • • • • • • • • • • • • . • • • • • • • . • • • • . • • • • • • • • • • 1 NUC 
DISPIAY • • • • • . . • • • • • • • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 NtJC 

1 RPW 
DISPLAY-WS •••••••••••••••••••••••••••••••••••••••••••••••••• 
INDE:le • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 NU'C 

I-14 

~ 

vs 

y 
N 
y 
N 
y 

N 
y 

N 
y 
N 
y 
N 
y 

N 
y 
N 
y 
N 
y 
N 
E 
y 

~ y 
N 

y 

N 

y 
E 
N 
y 

N 
E 
N 
c 
N 
y 
N 
E 
y 
y 

N 
E 
y 



!""\, 

'~ 

Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN DATA DIVISION (continued) 

VALUE clause 

Literal 

Literal series ............................................. . 
Li teral-1 THROUGH Li teral-2 ••••.•.•....•..•.•••...•....•.... 
Literal range series •..••.•.•.•.•.•....•.••..••...•.•••••... 
User-£ igurati ve-constant •.•..••.••••.•••••••..•........•.•.. 

I-15 

1 NUC y 
1 RPW N 
1 NUC y 

1 RPW N 
2 NUC N 
2 NUC N 
2 NUc·· N 

E 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION 

PROCEDURE DIVISION 
Procedure Division header •••.•••••••••••••••••••.•.•••••••••• 

USING phrase ••••••••••••..••••••••.••••.••••••••••.••••••••• 
Declarative. ·procedures •••.•...••.••••••••••••..••••...••••••• 

Arithmetic expressions •••••...••••.••••••.•....•..•••••.••••• 
Binary arithmetic operators+ - *I** .••..••••.•...••.•••.• 
Unary arithmetic operators+- .••••••••.•••••...•••••..•••••• 

Conditional expressions ••.••.•.•..••••.••••••••••••..••••.••• 
Simple condition •.•.••••.•••••••..••.••.••••..•.•••..••.•••• 
Relation condition .••••.•..••..•••.••.•••••.••.••••••..••.• 
Relational operators 

[ NOT ] GREATER TliAN' • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

[NOT] > ••••••••••••••••••••••••••• • • • • • • • • • • • • • • • • • • • • • • • 
[NOT] LESS TflAN' • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
[NOT] < •••••••••••••••••••••••••••••••••••••••••••••••••• 
[NOT] EQUAL TO . • • • • • . . • . . . • . . . . . . . • • • • . • • • • • • . • . • . • • . • • • . 
[NOT] = •...••...••••..•..••••••••• • • · · • • . · • • • • • • · • • · • • • • • 

Comparison of numeric operands ••••••.•..••...•...•••..••..• 
Comparison of nonnumeric operands 

Operands must be of equal size •.••..•...•••.••.•...••••••• 
Operands may be unequal in size ••••••...•••.••.•.•••..•••. 

Comparison of index-names and/or index data items •••..••••. 
Class condition ••..••••••••.•••.•••••...••••.•••..•••..••.•. 

NU?mRIC •••••••••••••••••••••••••••••••••••••••••••••••••••• 
ALPHABETIC (uppercase alphabetic characters) ••.....•••.•••• 

Condi ti on-name condition •.•••.•••..••••..•.•.••.••••.•.••••• 
Swi tch-s tat us condition •••••.••••••••••.•••••••••.••••.••••. 
Sign condi tiort •...••••..•••............••.....•••••...•••••• 
Modified Data Tag condition .••••••••.••..•••.••••••••.•.•••• 
Figurative Constant condition ••••.•••••...••••••••.••••••••• 

I-16 

ANSI vs 

1 NlJC y 
1 IPC y 

1 SEQ y 
1 REL y 
1 INX y 

l RPW N 
1 DEB y 
2 NUC y 

2 NUC y 
2 NlJC y 
1 NlJC y 
1 NUC y 

1 NUC y 

1 NUC y 
2 NUC y 

1 NUC y 

2 NUC y 

1 NUC y 
2 NUC y 

1 NUC y 
~ 

1 NUC N 
2 NUC y 

1 TBL y 
1 NUC y 
1 NUC y 

1 NUC y 
2 NUC y 
1 NUC y 
2 NUC y 

E 
E 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION (continued) 

Conditional expressions (continued) 
Complex condition ••••••••••••.•..••••••• 

Logical operators AND OR NOT •••.••••. 
Negated condition .••.•..•• .......... 
Combined condition •••••••. 
Parenthesized conditions •••••••.•..••.• 

Abbreviated combined relation conditions 
Arithmetic statements ••••.••..••..•••.••. 
Arithmetic operands limited to 18 digits 
Composite of operands limited to 18 digits •.••..•••••• 

ACCEPT statement 
Identifier •••... 
Only one transfer of data 
No restriction on number of transfers of data •••.••.•••••. 
FROM mnemonic-name phrase 
FROM DATE/DATE/TIME phrase 

ACCEPT MESSAGE COUNT statement •.•.••. 
ADD statement •••••• 
Identifier/literal 
Identifier/literal series 
TO identifier .•.••.•••••.•. 
TO identifier series •.••.•• 
GIVING identifier •••••••••• 
GIVING identifier series 
ROUNDED phrase •.•••••••••••.••••.••. 
SIZE ~OR phrase •••••.••••.•••••••• 
CORRESPONDING phrase ••••.••.•••••••• 

ALTER statement ..••••••••.•••••••.••. 
CALL statement •••••••••••.••.•••••••• 
Literal ............................ . 
Identifier 
USING phrase 

Data-name 
Identifier 

ON OVERFLOW phrase 
CANCEL statement 

.......................................... 
Literal 
Identifier ................................................. . 

I-17 

ANSI 

2 NUC 
2 NUC 
2 NUC 
2 NUC 
2 NUC 
2 NUC 
1 NUC 
1 NUC 
1 NUC 
1 NUC 
1 NUC 
1 NUC 
2 NUC 
2 NUC 
2 NUC 
1 COM 
1 NUC 
1 NUC 
1 NUC 
1 NUC 
2 NUC 
1 NUC 
2 NUC 
1 NUC 
1 NUC 
2 NUC 
1 NUC 
1 IPC 
1 IPC 
2 IPC 
1 !PC 
1 !PC 

2 !PC 
2 !PC 
2 IPC 
2 !PC 

vs 

y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 

N 
N 
y 

N 
y 
y 
y 
y 

N 
y 

N 
y 
y 
y 
y 
y 
y 

N 
y 
y 

E 
N 
N 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION (continued) 

CLOSE statement .............................................. 

File-name 

File-name series 

REEL/UNIT phrase 

FOR REMOVAL phrase ......................................... 
WITH NO REWIND phrase ....................................... 
WITH LOCK phrase 

COMPtJTE statement ........................................... . 
Arithmetic expression •••...••..•••••••.. 
Identifier series 
ROUNDED phrase ............................................. . 
SIZE ERR.OR phrase .......................................... . 
END-COmpute phrase 

COPY statement 
OF/IN library-name 
REPLACING phrase 

Pseudo-text 
Identifier 
Literal .................................................... 
Word ••••••••.••••••••••••••••••••••••••••••••••••••••••••• • 

DECLARATIVES option •••••••• 

END DECLARATIVES phrase 

DELETE statement ............................................. 
INV'ALID KE'Y' phrase ......................................... . 

I-18 

ANSI 

1 SEQ 
1 REL 
1 INX 
1 RPW 
1 SEQ 
1 REL 
1 INX 
1 RPW 
2 SEQ 
l REL 
l INX 
1 RPW 
l SEQ 
1 RPW 
2 SEQ 
1 RPW 
2 SEQ 
1 RPW 
2 SEQ 
1 REL 
1 INX 
1 RPW 
2 NUC 
2 NUC 
2 NUC 
2 NUC 
2 NUC 
2 NUC 
1 LIB 
2 LIB 
2 LIB 
2 LIB 
2 LIB 
2 LIB 
2 LIB 
1 SEQ 
1 REL 
1 INX 
1 RPW 
1 DEB 
1 SEQ 
1 REL 
1 INX 
1 RPW 
1 DEB 
l REL 
1 INX 
1 REL 
1 INX 

vs 

y 
y 
y 
N 
y 
y 
y 
N 
y 
N 
y 
N 
y 
N 
y 
N 
y 
N 
y 
y 
y 
N 
y ~' 
y 
N 
y 
y 
N 
y 
y 
N 
N 
N 
N 
N 
y 
y 
y 
N 
y 
y 
y 
y 
N 
y 
y 
y 
y 
y 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION (continued) 

DISABLE statement 
INPUT phrase •.•••••••.•• 
TERMINAL phrase 
OUTPUT phrase 
KEY phrase 

DISPLAY statement 
Only one transfer of data 
No restriction on number of transfers of data 
Identifier/literal ••••..•. 
Identifier/literal series 
UPON mnemonic-name phrase 

DISPLAY AND READ statement 
DIVIDE statement .•••.. 

BY identifier/literal 
INTO identifier .•••••••.. 
INTO identifier series •..•...••••.••••.••.••.•.••••••••.•••• 
GIVING identifier ••••...•• 
GIVING identifier series ...••..•••••••••••••.••••.•....••••• 
ROUNDED phrase 
REMAINDER phrase ..••••..••. 
SIZE ERROR phrase •..•••.•• 

ENABLE statement .•••••••..• 
INPUT phrase 

TERMINAL phrase ...••. 
OUTPUT phrase 
KEY phrase •..•.•••••••. 

ENTER statement 
EXIT statement 
EXIT PROGRAM statement 
FREE statement 
GENERATE statement 

Data-name 
Report-name .................................................. 

GO TO statement 
Procedure-name is optional 
DEPENDING ON phrase 

HOLD statement 
IF statement 

............................................... 
Only imperative statements 
Imperative and/or conditional statements .••••••••.•••••••••. 
Nested IF statements •.•.••.•••••••••••.••••..••••••••.•••••• 
TllEN' optional word ......................................... . 
NEXT SENTENCE phrase ........................................ 
ELSE phrase ................................................. 
FAC OF ••• [NOT] EQUAL •••• phrase 
FAC OF ••• ALTERED phrase ..................................... 
Figurative-constant ••• ON/OFF phrase •••••.••••••••••••••••••• 

INITIATE statement ........................................... 

I-19 

ANSI 

1 COM 
1 COM 
2 COM 
1 COM 
1 COM 
1 NUC 
1 NUC 
2 NUC 
1 NUC 
1 NUC 
2 NUC 

1 NUC 
1 NUC 
1 NUC 
2 NUC 
1 NUC 
2 NUC 
1 NUC 
2 NUC 
1 NUC 
1 COM 
1 COM 
2 COM 
1 COM 
1 COM 
1 NUC 
1 NUC 
1 !PC 

1 RPW 
1 RPW 
1 RPW 
1 NUC 
2 NUC 
1 NUC 

1 NUC 
1 NUC 
2 NUC 
2 NUC 

1 NUC 
1 NUC 

1 RPW 

vs 

N 
N 
N 
N 
N 
y 
y 

N 
y 
y 

N 
E 
y 
y 
y 
N 
y 
N 
y 
y 
y 

N 
N 
N 
N 
N 
c 
y 
y 
E 
N 
N 
N 
y 

N 
y 
E 
y 
N 
y 
y 
E 
y 
y 
E 
E 
E 
N 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION (continued) 

............................................ INSPECT statement 
TALLYING phrase 
TALLYING phrase series 
REPLACING phrase ••••••• 

............................................. 

REPLACING phrase series 
TALYING and REPLACING phrases 
Only single character data item •.•.••. 
Multi-character data item •.. 

MERGE statement .•.••••••..•.. 
ASCENDING/DESCENDING KEY phrase 
COLLATING SEQUENCE phrase ••••.. 
USING phrase •.•.•••.••.•.•.. 
OUTPUT PROCEDURE phrase 
GIVING phrase ••.••..••.•.•.•.•. 
USING/GIVING file must be sequential file 

MOVE statement 
TO identifier 
TO identifier series •..•.•..•••••••.•• 
CORRESPONDING phrase 
WITH CONVERSION phrase 
TO FAC OF phrase •.••••..••.••..••.•. 
FAC OF ••. TO phrase •••••••••..•••..•• 
TO ORDER-AREA OF phrase 
ORDER-AREA OF •.• TO phrase 

MULTIPLY statement ••.•••••••. 
BY identifier .............................................. . 
BY identifier series 
GIVING identifier 
GIVING identifier series 
ROl.JN])ED phrase .......................... . 
SIZE ERROR phrase ........................................... 

OPEN statement ............................................... 

File-name ................................................... 

File-name series ............................................ 

INPUT phrase 

WITH NO REWIND phrase 
'REVERSED phrase ........................................... . 

I-20 

ANSI 

1 NUC 
1 NUC 
2 NUC 
1 NUC 
2 NUC 
1 NUC 
1 NUC 
2 NUC 
2 SRT 
2 SRT 
2 SRT 
2 SRT 
2 SRT 
2 SRT 
2 SRT 
1 NUC 
1 NUC 
1 NUC 
2 NUC 

1 NUC 
1 NUC 
2 NUC 
1 NUC 
2 NUC 
1 NUC 
1 NUC 
1 SEQ 
1 REL 
1 INX 
1 RPW 
1 SEQ 
1 REL 
1 INX 
1 RPW 
2 SEQ 
1 REL 
1 INX 
1 RPW 
1 SEQ 
1 REL 
1 INX 
2 SEQ 
2 SEQ 

~' 
VS 

y 
y 
y 
y 
y 
y 
y 
N 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
N 
E 
E 
E 
E ~ 
E 
y 
y 
N 
y 
N 
y 
y 
y 
y 
y 
N 
y 
y 
y 
N 
y 
y 
y 
N 
y 
y 
y 
N 
N 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION (continued) 

OPEN statement (continued) 
OtJTPtJT phrase • . • . • • • • • • . • • • • • • • • • • • • • • • • • . . . . . • • • . • • • • . • . • • • 

WITH NO REWIND phrase •....•..••..••••....••.••••.•••...••.• 

I-0-phrase .•••.•.•.••••.........•.•.•...••..•••••••.••••...• 

mcTENll phrase ...•.•••.•.........••.••..•••.•.•.....••.•..•.• 

INPtJT, OtJTPUT, I-0, and EXTEND series 

INPUT, OUTPUT, and I-0 series 

SHARED phrase and SHARED series ....•....••.•.•.••.•.•..••... 
PERFORM statement ................•........•.................. 

THROUGH procedure-name phrase .•••.•••.•.••.•.••••.•....•.... 
Tir.mS phrase • • • • . . • • • • • . • • • . • • . • . • • • • . . • • • . • • • • • • . . . . • • • • . . • 
'UNTIL phrase •••••.•.••••.•••.••.••••.•.•..•..••••..•.••••••• 
VARYING phrase •••••••••..•••.••.•. 4! ••••••••••••••••••••••••• 

AFTER phrase •••.•••••••.•.•••.••.••••.•.••.••••••...•••..••• 
REAI> statement .........•.•......................••........... 

NmcT phrase ••.••••••••••.•••.•••••.•••••••••••••.•••••.•.••• 

INTO phrase •••.••••••••••••.••••••••••.••••••••••••••••••••• 

AT ~ phrase •.••••••••••••••••••••••••••••••••••.•.•••••••• 

I-21 

ANSI 

1 SEQ 
1 REL 
1 INX 
1 RPW 
2 SEQ 
1 RPW 
1 SEQ 
1 REL 
1 INX 
2 SEQ 
2 REL 
2 INX 
1 RPT 
2 SEQ 
2 REL 
2 INX 
1 RPT 
1 REL 
1 INX 

1 NUC 
1 NUC 
1 NUC 
2 NUC 
2 NUC 
2 NUC 
1 SEQ 
1 REL 
1 INX 
2 SEQ 
2 REL 
2 INX 
1 SEQ 
1 REL 
1 INX 
1 SEQ 
1 REL 
1 INX 

vs 

y 
y 
y 
N 
N 
N 
y 
y 
y 
y 
y 
y 
N 
y 
y 

N 
y 

E 
y 
y 
y 
y 
y 
N 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION (continued) 

READ statement (continued) 
KEY phrase .................................................. 
INVALID KEY phrase .......................................... 
ALTERED phrase ........................................ 
MODIFIABLE phrase •••••••••. 
TIMEOUT phrase •.•••••••••. 
WITH HOLD phrase .••••••.•••••••••••.•. 

READY/RESET TRACE statements 
RECEIVE statement 

MESSAGE phrase 
SEGMENT phrase 
INTO phrase ••••.••••••••• 
NO DATA phrase •••••••.• 
END-RECEIVE phrase 

RELEASE statement •••••..•.••..•.••••••. 
FROM phrase ............................ . 

RETURN statement .•.•••.••.••..•••••.••.••.••• 
INTO phrase 
AT END phrase •..•..••..•.•••...•......••.••........... 

REWRITE statement 

FROM phrase 

INVALID KEY phrase 

AFTER phrase .•••.•••.••.•..•• 
ROLLBACK statement •.••.•••••.. 
SEARCH statement •••••..•••..•. 

VARYING phrase 
AT END phrase 
WHEN phrase 

............................................. 
WHEN phrase series •••••••..•••••••.•.••. 

SEARCH ALL statement ......................................... 
AT END phrase 
WHEN phrase 

............................................... 

I-22 

ANSI 

2 INX 
1 REL 
1 INX 

1 COM 
1 COM 
2 COM 
1 COM 
1 COM 
1 COM 
1 SRT 
1 SRT 
1 SRT 
1 SRT 
1 SRT 
1 SEQ 
1 REL 
1 INX 
1 SEQ 
1 REL 
1 INX 
1 REL 
1 INX 

2 TBL 
2 TBL 
2 TBL 
2 TBL 
2 TBL 
2 TBL 
2 TBL 
2 TBL 

VS 

y 
y 
y 

E 
E 
E 
E 
E 
N 
N 
N 
N 
N 
N 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
E 
E 
y 
y 
y 
y 
y 
y 
y 
y 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION (continued) 

SEND statement ............................................... 
FROM identifier phrase (portion of a message) •..•••••••••••• 
FROM identifier phrase (complete message) •••..•••.•••••••••• 
WITH identifier phrase ................................. 
WITH ESI phrase •••••••••••. 
WITH EMI phrase 
WITH EGI phrase ...•••. 
BEFORE/AFTER ADVANCING phrase 
Integer-1 LINE/LINES ...••••.•. 
Identifier LINE/LINES 
Mnemonic-name 
PAGE ••••••••• 

SET statement 
Index-name/identifier TO 
Index-name UP BY DOWN BY 
Figurative-constant ..• ON/OFF phrase 

SORT statement ......................................... . 
ASCENDING/DESCENDING KEY phrase ••••••••.... 
COLLATING SEQUENCE phrase 
INPUT PROCEDURE phrase ...•••. 
USING phrase 

File-name series 
OUTPUT PROCEDURE phrase 
GIVING phrase ...••••... 
DUPLICATES phrase 

START statement .•.•.••. 

KEY phrase 

INVALID KEY phrase 

Use with ORGANIZATION IS SEQUENTIAL 
STOP statement 

RtJN' ••••••••••••••••••••••••• 
Literal •••••••..••••••••• 

STRING statement •••••••.•• 
DELIMITED BY series •••.•••• 
WITH POINTER phrase .••.•••• 
ON OVERFLOW phrase 

I-23 

ANSI 

1 COM 
2 COM 
1 COM 
2 COM 
2 COM 
1 COM 
1 COM 
1 COM 
1 COM 
1 COM 
2 COM 
1 COM 
1 TBL 
1 TBL 
1 TBL 

1 SRT 
1 SRT 
2 SRT 
1 SRT 
1 SRT 
2 SRT 
1 SRT 
1 SRT 

2 REL 
2 INX 
2 REL 
2 INX 
2 REL 
2 INX 

1 NUC 
1 NUC 
1 NUC 
2 NUC 
2 NUC 
2 NUC 
2 NUC 

vs 

N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
y 
y 
y 

E 
y 
y 
y 
y 
y 
y 
y 
y 
E 
y 
y 
y 
y 
y 
y 

E 
y 
y 
y 
y 
y 
y 
y 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION (continued) 

SUBTRACT statement 
Identifier/literal ••••••.••. 
Identifier/literal series 
FROM identifier ...••••••.•.. 
FROM identifier series 
GIVING identifier ••••••• 
GIVING identifier series 
ROUNDED phrase 
SIZE ERROR phrase 

SUPRESS statement 
TERMINATE statement 
UNSTRING statement •••••...•. 

DELIMITED BY phrase ••.•••.•••••..••••. 
DELIMITER IN phrase ..••••.•• 
COUNT IN phrase 
WITH POINTER phrase 
TALLYING phrase 
ON OVERFLOW phrase ••••••••. 

USE statement ..•....••..•... 

EXCEPTION/ERROR PROCEDURE phrase 

ON file-name 

ON file-name series 

ON INPUT 

ON OUTPUT 

ON I-0 ...•.......•...........•............•.....•.......••. 

ON EXTEND 

ON SllA.RED • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
BEFORE REPORTING phrase 

I-24 

ANSI 

1 NUC 
1 NUC 
1 NUC 
1 NUC 
2 NUC 
1 NUC 
2 NUC 
1 NUC 
1 NUC 
1 RPW 
1 RPW 
2 NUC 
2 NUC 
2 NUC 
2 NUC 
2 NUC 
2 NUC 
2 NUC 
1 SEQ 
1 REL 
1 INX 
1 RPW 
1 SEQ 
1 REL 
1 INX 
1 SEQ 
1 REL 
1 INX 
2 SEQ 
2 REL 
2 INX 
1 SEQ 
1 REL 
1 INX 
1 SEQ 
1 REL 
1 INX 
1 SEQ 
1 REL 
1 INX 
1 SEQ 
1 REL 
1 INX 

1 RPW 

vs 

y 
y 
y 
y 
N 
y 
N 
y 
y 
N 
N 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
N 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 
y 

E 
N 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION (continued) 

ELEMENT 

USE statement (continuec) 
FOR DEBUGGING phrase ••.••• 
Procedure-name 
ALL PROCEDURES 
Cd-name 
File-name .................. . 
ALL REFERENCE OF identif ier-1 
AFTER DEADLOCK •. 

WRITE statement 

FROM phrase 

BEFORE/AFTER ADVANCING phrase 
Integer LINE/LINES ••••.••. 
Mnemonic-name •••••••..•.••.. 
PAGE •.••••..••••..•..••••..• 
User-figurative-constant 

AT END-OF-PAGE/EOP phrase 
INVALID KEY phrase 

TIMEOUT phrase 

ANSI 

1 DEB 
1 DEB 
1 DEB 
2 DEB 
2 DEB 
2 DEB 

1 SEQ 
1 REL 
1 INX 
1 SEQ 
1 REL 
1 INX 
1 SEQ 
1 SEQ 
2 SEQ 
1 SEQ 

2 SEQ 
1 REL 
1 INX 

I-25 

vs 

y 
y 
y 

N 
N 
N 
E 
y 
y 
y 
y 
y 
y 
y 
y 

N 
y 
E 
N 
y 
y 
E 



Table I-2. SUMMARY OF DIFFERENCES (continued) 

SUMMARY OF DIFFERENCES IN PROCEDURE DIVISION (continued) 

SEGMENTATION 
Segment-nwnber may be 0 through 99 •••••••.••••••••••••••••••• 
Fixed segment-number range is 0 through 49 ••.••••••.••••••••• 
Nonfixed segment-number range is 50 through 99 ••••••••••••••• 
Segment-nwnber 0 cannot be overlaid ••...••..•••••••.•••..•••• 
Same segment-numbers must be together .•••.••••••••••.•••••••• 
Same segment-nwnbers need not be together ••••.••••••••••••••• 

I-26 

ANSI 

1 SEG 
1 SEG 
l SEG 
2 SEG 
1 SEG 
2 SEG 

vs 

c 
N 
N 
N 
N 
N 



APPENDIX J 
EXTENSION-RIGHTS 

J.1 INTRODUCTION 

This appendix describes the use of extension rights. Extension 
rights is a feature of OMS Sharing that allows a program to request the 
exclusive right to request resources incrementally, claiming them as 
needed. Like OMS/TX, the use of extension rights allows multiple users 
simultaneous access to data. OMS/TX, however, offers a more complete 
solution to data consistency and concurrency. 

Under OMS Sharing, programs using the standard HOLD statement request 
all the needed resources at the same time. Before additional resources 
are requested, any resources already held must be released. Extension 
rights allow a program to hold additional resources without releasing 
resources already held. However, a program cannot acquire extension 
rights if it is currently holding resources. In order to request 
extension rights, a program must first release, by means of the FREE ALL 
statement, any resources it may be holding. 

A program requests extension rights by coding HOLD EXTENSION-RIGHTS. 
Only one program may hold extension rights at a time. The progranuner may 
code the TIMEOUT and HOLDER-ID phrases to cause the program to wait for 
the request to be granted and to return the user-ID of the current 
extension rights holder, if the request cannot be granted in the 
specified time. 

Once extension rights are obtained, the program requests the needed 
resources by means of the standard HOLD and HOLD LIST statements. It is 
not necessary to release currently held resources before requesting new 
resources. The resources held by the program remain held until they are 
released together (by coding FREE ALL--refer to Section J.2). 

Extension rights do not guarantee that the requested resources are 
not already held by another program, nor do extension rights held by one 
program prevent other programs from requesting and obtaining resources. 
When a program obtains extension rights, any resource currently held by 
another program remains held. Another program can request resources if 
it is not already holding resources, but it cannot request additional 
resources unless it releases the resources it already has. The 
restriction that only one program at a time can have extension rights is 
imposed to avoid the possibility of deadlock, the condition in which two 
programs cannot proceed because each is holding resources needed by the 
other. 

J-1 



HOLD EXTENSION-RIGHTS should be used with extreme caution. Extension 
rights should be invoked only if the program absolutely requires the 
claim-as-you-go strategy; that is, if it cannot be determined beforehand 
what resources will be needed and if none of the resources should be 
released until all of the held resources have been processed. For 
example, a customer may be ordering several different items. When 
updating the order file, it is not known beforehand which inventory 
records must be updated; yet all the inventory records should be updated 
before the order processing is completed. Extension rights allow the 
program to request selected records of the inventory file as needed. 

After all needed resources have been identified and held, extension 
rights should be released as soon as possible, so that another program 
can obtain extension rights. Extension rights are released by the FREE 
statement--refer to Section J.2. 

To prevent program cancellation in the event of an unsuccessful 
execution, code the ON ERROR clause with the HOLD EXTENSION-RIGHTS 
statement. Thus, the ON ERROR clause causes the accompanying imperative 
statement to be executed and the special register RETURN-CODE to contain 
the return code. 

Figure J-1 is a complete COBOL program illustrating the COBOL 
statements that support the use of extension rights. In this example, it 
is not Jmown beforehand which records of EMPLOYEE-FILE are needed, since 
the value of DEPARTMENT is entered at the workstation. The extension 
rights allow the program to hold PERSONNEL-FILE and then hold whatever 
records of EMPLOYEE-FILE are needed, without first releasing 
PERSONNEL-FILE. 

Lines 40 to 46 illustrate the HOLD EXTENSION-RIGHTS statement, with 
TIMEOUT and HOLDER-ID phrases. If extension rights are held by another 
program, this program waits 5 seconds (specified in the TIMEOUT phrase). 
If the extension rights are not released within 5 seconds, the data item 
WHO-HAS-IT contains the ID of the user running the program that holds the 
extension rights, and a message is displayed. 

J-2 



000001 IDENTIFICATION DIVISION. 
000002 PROORAM-ID. EXRIGHTS. 

('11"\, 000003 ENVIRONMENT DIVISION. 
000004 INPUT-OUTPUT SECTION. 
OOOOOS FILE-CONTROL. 
000006 SELECT EMPLOYEE-FILE 
000007 ASSIGN TO "EMPLOYEE", "DISK", NODISPLAY, 
000008 ORGANIZATION IS INDEXED 
000009 ACCESS MODE 
000010 IS DYNAMIC 
000011 RECORD KEY IS EMPLOYEE-NUMBER. 
000012 SELECT PERSONNEL-FILE 
000013 ASSIGN TO "PERSONS", "DISK", NODISPLAY, 
000014 ORGANIZATION IS INDEXED 
OOOOlS ACCESS MODE IS DYNAMIC 
000016 RECORD KEY IS PERSONNEL-RECORD-NUMBER. 
000017 DATA DIVISION. 
000018 FILE SECTION. 
000019 FD EMPLOYEE-FILE 
000020 LABEL RECORDS ARE STANDARD. 
000021 01 EMPLOYEE-RECORD. 
000022 03 EMPLOYEE-NUMBER. 
000023 OS DEPARTMENT PIC 9(3). 
000024 OS FILLER PIC 99. 
00002S 03 EMPLOYEE-NAME PIC X(20). 
000026 FD PERSONNEL-FILE 
000027 LABEL RECORDS ARE STANDARD. 
000028 01 PERSONNEL-RECORD. 
000029 03 PERSONNEL-RECORD-NUMBER PIC 9(S). 
000030 03 PERSONNEL-DATA PIC X(20). 
000031 WORKING-STORAGE SECTION. 
000032 77 WHO-HAS-IT PIC X(3). 
000033 PROCEDURE DIVISION. 
000034 START-PROGRAM. 
00003S PERFORM HOLD-RIGHTS THRU END-HOLD. 
000036 STOP RUN. 
000037 HOLD-RIGHTS. 
000038 OPEN SHARED EMPLOYEE-FILE. 
000039 OPEN SHARED PERSONNEL-FILE. 
000040 HOLD EXTENSION-RIGHTS 
000041 TIMEOUT OF 5 SECONDS 
000042 HOLDER-ID IN WHO-HAS-IT 
000043 DISPLAY WHO-HAS-IT 
000044 " is holding EXTENSION-RIGHTS." 
000045 GO TO HOLD-RECORDS. 
000046 DISPLAY "EXTENSION-RIGHTS are held by this program.". 

Figure J-1. Holding Extension Rights in COBOL 

J-3 



000047 HOLD-RECORDS. 
000048 HOLD RECORDS OF PERSONNEL-FILE FOR RETRIEVAL 
000049 TIMEOUT OF 5 SECONDS 
000050 HOLDER-ID IN WHO-HAS-IT 
000051 DISPLAY WHO-HAS-IT 
000052 " is holding PERSONNEL-FILE." 
000053 GO TO CLOSE-FILES. 
000054 DISPLAY "PERSONNEL-FILE is held by this program.". 
000055 ACCEPT DEPARTMENT. 
000056 HOLD RECORDS OF EMPLOYEE-FILE FOR UPDATE 
000057 WITH KEYS INITIAL 3 CHARACTERS OF EMPLOYEE-NUMBER 
000058 TIMEOUT OF 5 SECONDS 
000059 HOLDER-ID IN WHO-HAS-IT 
000060 DISPLAY WHO-HAS-IT 
000061 " is holding records with first 3 characters of "DEPARTMENT 
000062- " in EMPLOYEE-FILE." 
000063 GO TO CLOSE-FILES. 
000064 DISPLAY "Records with first 3 characters of "DEPARTMENT " in 
000065- " EMPLOYEE-FILE are held by this program.". 
000066 RELEASE-RIGHTS. 
000067 FREE EXTENSION-RIGHTS. 
000068 DISPLAY "The EXTENSION-RIGHTS are released, but the resources 
000069- " are still held.". 
000070 RELEASE-RESOURCES. 
000071 FREE ALL. 
000072 DISPLAY "PERSONNEL-FILE and EMPLOYEE-FILE are no longer held 
000073- " by this program, but both files are still open.". 
000074 CLOSE-FILES. 
000075 CLOSE EMPLOYEE-FILE, PERSONNEL-FILE. 
000076 END-HOLD. 
000077 EXIT. 

Figure J-1. Holding Extension Rights in COBOL (continued) 

J.2 FREE EXTENSION-RIGHTS STATEMENT 

A program should release resources and/or extension rights when the 
need for them has been satisfied. This is done by coding the FREE 
statement. If the program does not code the FREE statement, other 
programs are prevented from obtaining needed resources. The FREE 
statement can either free all resources including extension rights (FREE 
ALL) or free extension rights only <FREE EXTENSION-RIGHTS). Thus, by 
coding FREE EXTENSION-RIGHTS as soon the needed resources have been held, 
a program can continue to hold the resources for whatever processing 
might be necessary without preventing another program from obtaining the 
extension rights. 

J-4 



Figure J-1 illustrates FREE EXTENSION-RIGHTS on line 66 and FREE ALL 
on line 70. 

J.3 HOLD EXTENSION-RIGHTS FORMAT 

HOLD EXTENSION-RIGHTS - integer SECONDS I 
TIMEOUT OF { ~ata-name-1} [SECOND ] 

General Rules 

[ON ERROR imperative-statement-2) 

[HOLDER-ID IN data-name-21 

{ 
imperative-statement-1 } ] 
NEXT SENTENCE 

1. HOLD EXTENSION-RIGHTS allows a program the exclusive right to 
hold more than one file and/or a range of records of an indexed 
file, without implicitly releasing resources already held. No 
resources are actually held by HOLD EXTENSION-RIGHTS. 

2. Only one program can have extension-rights at a time. It is 
recommended that as soon as the resources have been held, a FREE 
EXTENSION-RIGHTS be issued so that another program can obtain 
extension-rights. 

3. If the TIMEOUT phrase is specified, and the HOLD EXTENSION-RIGHTS 
cannot be completed in data-name-1 or integer-1 seconds, then 
imperative-statement-1 is executed. If the nwnber of seconds 
specified is zero, the timeout exit will immediately be taken if 
the HOLD EXTENSION-RIGHTS cannot be completed. If the HOLDER-ID 
phrase is specified in the TIMEOUT phrase, the logon initials of 
the user currently holding the extension-rights are moved to 
data-name-2. Data-name-2 must be defined in the Working-Storage 
Section or Linkage Section and have a PICTURE of X(3). 

4. If the TIMEOUT phrase is not specified and the HOLD 
EXTENSION-RIGHTS cannot be satisfied, the program waits until the 
user holding the extension-rights frees them. 

5. If there is an ON ERROR clause, any unsuccessful execution of 
this statement (with non-zero return code) will cause the ERROR 
imperative statement to be executed. In this situation the 
special register RETURN-CODE contains the return code of the 
statement being executed. 

6. If there is no ON ERROR clause, the user's program wi 11 be 
cancelled upon sunsuccessful execution of the statement. 

J-5 



J.4 FREE EXTENSION-RIGHTS FORMAT 

FREE ALL [EXTENSION-RIGHTS] 

General Rules 

1. FREE ALL releases from hold status all resources (including 
extension-rights) held by the program. 

2. FREE ALL EXTENSION-RIGHTS removes extension-rights from the user, 
but does not release any resources held. 

J-6 



APPENDIX K 
SEGMENTATION 

K .1 INTRODUCTION 

COBOL segmentation is the ability to store different portions of an 
object program's Procedure Division in the same section of main memory. 
The segmentation function is not supported in VS COBOL. The VS virtual 
storage system eliminates the necessity to do so. However, for purposes 
of compatability with other systems, VS COBOL does supports the 
Segmentation syntax. 

Although it is not required, the Procedure Division of a source 
program is usually written as a consecutive group of sections, each of 
which is composed of a series of related operations that perform a 
particular function. Programs written in this manner thus consist of a 
group of logical subdivisions. Segmentation allows the programmer to 
both physically as well as logically divide the Procedure Division. 

When segmentation is used, the entire Procedure Division must be 
written in sections. Each section must then be classified as belonging 
either to the fixed portion or to the independent portion of the 
program. Classification is accomplished by the assigning of 

~ segment-numbers. Segment-numbers may be any integer from 0 thru 99. 

K.1.1 Fixed Portion 

The fixed portion is that part of the object program logically 
treated as if it were always in memory. It cannot be overlayed by any 
other portion of the program. Fixed portions are assigned 
segment-numbers from 0 thru 49. 

K.1.2 Independent Portion 

The independent portion is that part of the object program which can 
overlay, and be overlaid by, another idependent segment. Independent 
segments are assigned segment-numbers from 50 thru 99. 

A segment is in its initial state if the control mechanisms for all 
PERFORM and ALTER statements within the segment have not been altered. 
An independent segment is in its initial state whenever control is 
transferred (either implicitly or explicitly) to that segment for the 
first time during the execution of a program. On subsequent transfers of 
control to the segment, it is also in its initial state when: 

1. The transfer is the result of the implicit transfer of control 
between consecutive statements from a segment with a different 
segment-number. 

K-1 



2. The trans£ er is the result of the implicit trans£ er of control 
between a SORT or MERGE statement in a segment with a different 
segment-number, and an associated input or output procedure in 
that independent segment. 

3. The transfer is an explicit transfer of control to that segment 
from a segment with a different segment-number (with the 
exception noted in Rule 2, below). 

An independent segment is in its last-used state on subsequent 
transfer of control when: 

1. The trans£ er is an implicit trans£ er to that segment from a 
segment with a different segment-number (except as noted in rules 
1 and 2 above). 

2. The transfer is an explicit transfer to that segment as a result 
of the execution of an EXIT PROGRAM statement. 

K.1.3 Segmentation Classification 

Segment-numbers are assigned according to the segment's logic 
requirements, frequency of use, and relationship to other segments. 
Segment-number assignments should be made as follows: 

1. Sections which must be available for reference at all times, or 
which are referrred to very frequently, should be classified as 
permanent segments. Sections referred to less frequently can be 
assigned as independent segments. 

2. The more frequently a section is referred to, the lower its 
segment-number. 

3. Sections which frequently conununicate with one another should be 
given the same segment-numbers. 

K.1.4 Segmentation Control 

The logical sequence of a program is the same as the physical 
sequence, except for specific transfers of control. If any reordering of 
the object program is required, the compiler provides control trans£ ers 
to maintain the logical flow specified in the source program. The 
compiler also provides all controls necessary for a segment to operate 
whenever the segment is used. It is not mandatory to transfer control to 
any particular paragraph within a section. Control can be transferred to 
any paragraph in the Procedure Division. 

K-2 



K.2 SEGMENT-NUMBERS 

Section classification is accomplished by means of a system of 
segment-numbers. The segment-number is included in the section header. 

General Format 

section-name SECTION [segment-number] . 

Syntax Rules 

1. The segment-number must be an integer ranging from 0 thru 99. 

2. If the segment-numbr is ommitted from the section header, the 
segment-number is assumed to be 0. 

3. Fixed segments are assigned segment-numbers 0 thru 49. 
Independent segments are assigned segment-numbers 50 thru 99. 
Sections in the declaratives are assigned segment-numbers less 
than 50. 

General Rules 

1. All sections having the same segment-number constitute a program 
segment. 

2. Segments with segment-numbers 0 through 49 belong to the fixed 
portion of the object program. 

3. Segments with segment-numbers 50 through 99 are independent 
segments. 

K.3 SEGMENTATION RESTRICTIONS 

When segmentation is used, there are restrictions on the ALTER, 
PERFORM, SORT, and MERGE statements. 

K.3.1 ALTER Statement 

A GO TO statement in a section whose segment-number is greater than 
or equal to 50 must not be ref erred to by an ALTER statement in a section 
with a different segment-number. All other uses of the ALTER statement 
are valid and are performed even if the GO TO to which the ALTER refers 
is in a fixed segment. 

K.3.2 PERFORM Statement 

A PERFORM statement that appears in a section that is in a fixed 
segment can have any declarative sections within its range whose 
execution is caused within that range. Additionally, that PERFORM 
statement can have only one of the following: 

K-3 



1. Sections and/or paragraphs wholly contained in one or more fixed 
segments. 

2. Sections and/or paragraphs wholly contained in a single 
independent segment. 

A PERFORM statement that appears in an independent segment can have 
within its range any decalartive sections whose execution is caused 
within that range. Additionally, that PERFORM statement can have only 
one of the following: 

1. Sections and/or paragraphs wholly contained in one or more 
non-independent segments. 

2. Sections and/or paragraphs wholly contained in the same 
independent segment as that PERFORM statement. 

K.3.3 SORT and MERGE Statement 

If a SORT or MERGE statement appears in a fixed segment, any input or 
output procedure referenced by that statement must appear either totally 
within fixed segments or wholly contained in a single, independent 
segment. 

If a SORT or MERGE statement appears in an independent segment, any 
input or output procedure referenced by that statement must be contained 
either totally within fixed segments or wholly within the same 
independent segment as that SORT or MERGE statement. 1~ 

K-4 



DOCUMENT HISTORY 

SUMMARY OF CHANGES 

FOR THE STH EDITION OF THE VS COBOL REFERENCE MANUAL 

TYPE 

TECHNICAL 
CHANGES 

EDITORIAL 
CHANGES 

AFFECTED COBOL FEATURES 

Advanced Sharing 

PROGRAM-ID paragraph 

01 and 77 levels 

Numeric data 

USAGE clause 

VALUE IS clause 

OBJECT clause 

Procedure Division 

Exponentiation 

DISPLAY AND READ 
statement 

OPEN statement 

PERFORM statement 

READ statement 

STOP compiler option 

Miscellaneous editorial 
changes 

DH-1 

AFFECTED PAGES 

3-1 to 3-9, 11-47 to 10-49 
H-1 to H-3 

8-3 

10-3 

10-30 

10-44 

10-46, 10-47 

10-57 

11-1 

11-7, 11-8 

11-37 

11-67 

11-75 

11-82 

B-4 

1-1, 1-2, 4-26, 4-30, 
10-14, 10-46, 10-56 
11-29, B-5, E-7, Index-1 
to Index-11 



TYPE 

TUTORIAL 
DISCUSSION 

NEW VS COBOL 
FEATURES 

Summary of Changes for the Fourth Edition 

AFFECTED COBOL FEATURES 

Introduction to VS COBOL 
extensions 

Disk file processing 

Disk file processing 
with ADMS 

Workstation file 
processing 

Print file 
processing 

Tape file 
processing 

Advanced data 
management system 

Comment lines 

WITH DEBUGGING 
MODE clause 

SWITCH STATUS 
clause 

NODISPLAY clause 

LABEL RECORDS 
clause 

INSPECT statement 

DH-2 

AFFECTED PAGES 

1-1 to 1-8 

2-1 to 2-35 

3-1 to 3-33 

4-1 to 4-39 

5-1 to 5-6 

6-1 to 6-3 

3-1 to 3-33, 10-61 to 10-62 
11-46, 11-48 to 11-50, 
11-74, 11-75, 11-90, 11-91, 
11-118, H-1 to H-7 

7-15 

9-3, 12-3, 12-4 

9-5, 9-6, 11-13 

9-12, 9-16, 10-20 

10-14 

11-56 to 11-62 



TYPE 

TECHNICAL 
CHANGES 

Summary of Changes for the Fourth Edition (continued) 

AFFECTED COBOL FEATURES 

SEARCH statement 

USE FOR DEBUGGING 
statement 

FIPS flagger 

Parentheses 

RELATIVE KEY clause 

BUFFER SIZE clause 

ALTERNATE RECORD 
KEY clause 

RESERVE nn AREAS clause 

BLOCK CONTAINS clause 

RECORD CONTAINS clause 

COMPRESSED phrase 

VALUE OF clause 

OCCURS clause 

REDEFINES clause 

VALUE IS clause 

SOURCE or VALUE clause 

OBJECT clause 

RANGE clause 

Relation conditions 

ACCEPT statement 

CALL USING statement 

DISPLAY AND READ 
statement 

DH-3 

AFFECTED PAGES 

11-97 to 11-99 

9-3, 11-110, 12-3 to 12-8 

B-5 

7-2 

9-11, 9-12 

10-11 

9-15, 9-16 

9-15, 9-16 

10-11 

10-15, 10-16 

10-15, 10-6 

10-17 to 10-20 

10-28, 10-52, 10-59 

10-38, 10-39 

10-46 to 10-48, 10-56 

10-56 

10-57, 11-38 

10-55, 11-38 

11-9 to 11-12 

11-9 to 11-21 

11-2, 11-25, 11-26, I-1 to 
I-3 

11-37 to 11-39 



TYPE 

EDITORIAL 
CHANGES 

Sununary of Changes for the Fourth Edition (continued) 

AFFECTED COBOL FEATURES 

MOVE statement 

MOVE WITH CONVERSION 
statement 

OPEN statement 
(consecutive files) 

Read statement 
(indexed files) 

READ WITH HOLD 
statements 

REWRITE statement 

STOP figurative-constant 
statement 

WRITE statement 
(indexed files) 

Symbolic debug facility 

DEBUG-ITEM 

PMAP compiler option 

SEPSGN compiler option 

FILE STATUS codes 

Miscellaneous editorial 
changes 

DH-4 

AFFECTED PAGES 

11-63 to 11-66 

11-66, 11-67 

11-69 to 11-71 

11-85 to 11-89 

11-83, 11-86, 11-87 

11-95, 11-96 

11-106 

11-115 to 117 

12-1 

12-6 to 12-8 

B-1 

B-5 

E-1 to E-7 

Throughout 



Summary of Changes for the Third Edition 

TYPE DESCRIPTION AFFECTED PAGES 

NEW . condition-names 48, Sl, S2, 66, 67, 
FEATURES Level 88 70, 91, 92 

. labeled tape support SS, 63 

. additional 281 
compiler additions 

TECHNICAL . VALUE OF clause SS, 63 
CHANGES 

. LABEL RECORDS 60 
clause 

EDITORIAL . Miscellaneous 63, 66, 67, 92, 
CHANGES editorial 279, 280, 281 

changes 

'~ 

DH-S 



0 



Abbreviated combined relation 
conditions, I-17 

ACCEPT Statement, 12-4, 12-5, 
12-21 to 12-23, I-17 

ACCESS MODE clause, 2-3, 2-14, 
2-15, 2-16, 2-18, 2-26, 
10-10, 10-11, 10-12, 
10-14, 10-15, 10-18, 
10-19, 12-75, 12-78, 
12-80, I-8 

ADD Statement, 8-9, 11-7, 12-3, 
12-4, 12-5, 12-9, 12-10, 
12-24 to 12-25, 12-32, I-17 

Advanced Sharing, 1-5 
AFTER ADVANCING phrase, 1-8, 

5-2 to 5-6, 12-151, 
12-152, F-1, I-23, I-25 

AFTER DEADLOCK phrase, I-25 
AFTER phrase, 12-59, 12-61, 

12-104, 12-105, I-22 
AID Character, 4-30, 10-12, 

12-91, 12-131, D-2, D-3, 
E-10 

AL (see ANSI tape labels) 
Alarm sounding, 1-8 
Algebraic Signs, 11-4 
Alignment rules, 11-5 
ALL phrase, 12-60, 12-143, 

12-144, 13-5, I-25 
ALPHABET clause, I-7 
Alphabetic characters, 10-18, 

11-4, 11-5, 11-36 to 
11-38, 11-55, 12-14, 
12-27, 12-69 to 12-71, 
12-143 to 12-147, I-16 

Alphabet-name, 8-6, I-3 
Alphanumeric, 10-18, 10-19, 

11-4, 11-5, 11-21, 11-36 
to 11-38, 11-55, 11-59, 
11-63, 11-65, 12-21, 
12-22, 12-27, 12-42, 
12-59, 12-139, 12-143 to 
12-147, 13-6 

INDEX 

Index-1 

ALTER Statement, 12-4, 12-6, 
12-26, 12-51, 12-66, 
12-128, 12-129, 13-5, 
13-6, I-17, K-1, K-4 

ALTERED phrase, 12-41, 12-43, 
12-88, 12-91, I-19, I-22 

Alternate Indexed Files, 1-4, 
1-5, 2-4, 2-20 to 2-24 

ALTERNATE RECORD KEY clause, 
1-4, 10-16, 12-94, 12-96, 
12-109, 12-132, 12-134, 
12-155, 12-156, I-8 

American National Standards 
Institute (ANSI), 1-1, 
2-8, 11-17 

American National Standard Code 
for Information 
Interchange, (ASCII), 
10-6, 11-4, 11-15, 11-63, 
12-12, 12-76, 

AND, 8-9, 
AND OR NOT, (see Logical 

operators) 
ANSI, (see American National 

Standards Institute 
ANSI Tape Labels, 6-1 
Area A, 8-15 
Area B, 8-15 
Arithmetic Expressions, 7-2, 

12-32, G-1, I-16 
Arithmetic Operators, 7-11, 

12-6, I-4, I-16 
Arithmetic Statements, 12-3, 

12-9, I-17 
ASCENDING/DESCENDING KEY phrase, 

12-64, 12-65, 12-66, 
12-113, 12-117, 12-119, 
12-126, 12-127, I-20, I-23 

ASCII, see American National 
Standard Code for 
Information Interchange 

Assembler language, 4-1 
ASSIGN clause, 10-10, 10-11, 

10-14, 10-15, 10-19, 
10-21, 11-24, 12-89, A-1, 
I-8 



INDEX (continued) 

Asterisk (•), I-4 
At End Condition, 2-40, 12-75, 

12-148, 12-149, I-2, E-5 
AT END phrase, 12-3, 12-4, 

12-88, 12-89, 12-90, 12-93 
to 12-96, 12-98, 12-99, 
12-100, 12-102, 12-103, 
12-113, 12-114, 12-118, 
12-120, I-21, I-22 

AUTHOR paragraph, 9-2, I-6 

B 

BASIC language, 4-1 
BEFORE phrase, 12-59, 12-61 
BEFORE ADVANCING phrase, 1-8, 

5-2 to 5-6, 12-151, 12-152 
Before Image Journal (BIJ), 

12-112 
BIGPGT, B-1 
BINARY data item, 11-52, 12-13, 

12-21 
Binary arithmetic operators, 

11-4, 12-6, I-16 
Blank lines, 7-16, I-5 
BLANK WHEN ZERO clause, 11-29, 

11-30, 11-36, 11-51, 
11-55, I-13 

BLOCK CONTAINS clause, 11-13, 
11-14, I-10 

Blocks, 2-37 to 2-38, 3-2 to 
3-4, 3-8, 3-10, 4-2, 11-1, 
A-1, A-2, A-4 

Body, 8-4 
Braces, 8-14 
Brackets, 8-14 
Buffer Pooling, 1-5, 

2-33 to 2-36, 10-22, 10-23 
11-2, 

BUFFER SIZE clause, 1-5, 2-34, 
10-12, 10-19, 10-21, 11-2, 
11-14, I-8 

Buffers, 11-1, 11-2 
BY phrase, 12-82 to 12-83, 12-87, 
I-19, I-20 

Index-2 

CALL Statement, 3-4, 11-51, 
11-68, 12-2, 12-4, 12-5, 
12-27 to 12-28, 12-86, H-1, 
I-17 

Cancel Conditions, 2-38 
Character Representation, 1-8 
Character Set, 8-1, 8-5, 8-6, 

8-16, 11-1, 11-15, I-3 
CHARACTERS clause, 11-14, 12-59 

to 12-62 
Character-Strings, 8-2, I-3 
Claim-as-needed strategy, 1-6, 

2-30, 3-1 
Class conditions, 12-14, I-16 
Clauses, 8-3, 11-2 
CLOSE Statement, 2-2, 2-35, 2-39, 

3-5, 3-6, 12-4, 12-5, 12-29 
to 12-31, 12-65, 12-75, 
12-77, 12-79, 12-90, 12-95, 
12-96, 12-100, 12-129, 
12-130, E-1, I-18 

COBOL compiler options, B-1 
COBOL words, 8-5, I-3 
COBOL-defined words, 8-4, 8-8 
CODE-SET clause, 7-6, 11-13, 

11-15, I-10 
Collating sequence, 2-3, 6-3, 

7-6, 7-10, 7-11, I-7, 
12-64, 12-65, I-20, I-23 

COLUMN clause, 4-5, 11-58, 11-59 
to 11-60, 11-67, I-13 

Combined condition, I-17 
Conunent lines, 8-3, 8-16, 

I-5 
Conunent-entry paragraphs, 9-4, 

I-4 
COMP, see COMPUTATIONAL data item 
Comparison of nwneric operands, 

I-16 
Compiler directing statements, 

12-3 to 12-6 



INDEX (continued) 

Compile-Time Switch, 12-2 
Complex conditions, I-17 
Compressed record format, 1-5, 

2-6, 2-12 
COMPRESSED phrase, 11-18, 11-19, 

I-11 
COMPUTATIONAL data item, 11-51 

to 11-52, 21-21 
COMPUTE Statement, 12-3, 12-4, 

12-5, 12-9, 12-32, G-1, 
I-18 

Computer name, I-4, I-7 
Condition names, 8-6, 11-10 to 

11-11, 11-29, 11-69, I-16 
Conditional expressions, 11-55, 

12-3 to 12-6, 12-10, I-16 
Conditions, 2-11, 2-38, 4-1, 

11-6, E-1, E-2, E-4, E-5, 
I-1, I-3, I-17 

Condition-name, 11-6, 11-55, 
I-3, I-16 

CONFIGURATION SECTION, 1-2, 
13-3, I-7 

Connectives, 8-9 
Consecutive files, 1-4, 2-2, 

2-3, 2-7, 2-12 to 2-17, 
6-1, 10-10 to 10-13, 11-2, 
11-2, 12-29 to 12-30, 
12-74 to 12-76, 12-88 to 
12-92, 12-104 to 12-106, 
12-131, 12-151 to 12-153, 
A-1, E-1 to E-4 

Continuation of lines, 8-15, I-5 
COPY Statement, 8-7, 12-3, 12-33 

to 12-35, I-18 
CORR, see CORRESPONDING phrase 
CORRESPONDING phrase 

Explanation of, 11-7 to 11-8 
For the ADD Statement, 12-10, 

12-23, 12-24 
For the MOVE Statement, 12-67, 

12-68, 12-72, 12-90, 
12-95, 12-99, 12-101, 
12-102 

For the SUBTRACT Statement, 
12-141, 12-142 

COUNT IN phrase, 12-143, 12-145, 
I-24 

CURRENCY SIGN clause, 10-6, 
11-40, I-7 

Index-3 

Current record pointer, 2-17, 
12-37, 12-39, 12-75, 12-89, 
12-90, 12-94, 12-95, 12-99, 
12-100, 12-105, 12-108, 
12-111, 12-133, 12-136, 
12-152, 12-155, 12-158 

CURSOR clause, I-8 
CURSOR POSITION clause, 4-37, 

10-11, 10-13 

D 

DATA AREA clause, 11-20, 11-21 
Data description entry, 11-28 to 

11-56, 12-9, 12-147, 
Database, 1-6, 3-1, 12-112 
DATABASE-NAME IS phrase, 3-10, 

11-20, 11-22, 11-23, I-11 
DATA DIVISION, 1-2, 1-3, 1-7, 

2-7, 2-31, 3-2, 3-8, 4-2, 
4-4, 4-27, 4-29, 8-4 to 
8-7, 8-17, 10-10, 10-11, 
10-14, 10-15, 10-18, 10-19, 
10-21, 11-lff, 12-55, 
12-64, 12-68, 12-82, 
12-102, 12-104, 12-107, 
12-110, 12-114, 12-126, 
12-151, 12-154, 12-157, 
B-1, I-5, I-10 to I-15, 
J-3 

Data items, classes of, 11-4, 
11-8, 11-10, 12-21, 12-32 

Data map (DMAP), 13-1, 13-2, B-1 
Data name, 11-2, 11-7, 11-8, 

11-9, 11-11, 11-68 
Data packing density, 2-33, 2-37 
DATA RECORDS clause, 11-13, 

11-16, I-10, I-11 
DATA-NAME clause, 11-31, I-13 
Data-name, 11-5, 11-6, I-3 
DATE-COMPILED paragraph, 9-2, 

9-4, I-6 
DATE-WRITTEN paragraph, 9-2, I-6 
Deadlock (Declarative), 3-3, 

3-6, 3-11, 12-148 to 
12-150, J-1 

Debug module, 1-1, 13-lff 
DEBUG-CONTE?.JTS, 13-5 to 13-7, 

A-1, A-4 



INDEX (continued) 

DEBUG-ITEM, 8-9, 13-3, 13-5, 13-6, 
A-1, A-4, I-4 

DEBUG-LINE, 13-5 to 13-7, A-1, 
A-4 

DEBUG-NAME, 13-5 to 13-7, A-1, 
A-4 

Debugging lines, 12-34, 12-148 to 
12-150, 13-2, 13-7, I-5, I-7 

Decimal point, 11-5, 11-65, 12-9, 
12-51, 12-71, 12-114 

DECIMAL-POINT IS COMMA clause, 
10-6, 11-40, 11-65, 12-42, 
I-4 

DECLARATIVES SECTION, 1-3, 2-41, 
3-6, 8-4, 12-1, 12-148, 
13-4, I-18 

DELETE Statement, 1-5, 2-1, 
2-18, 2-21, 2-29, 2-30, 
2-39, 11-1, 12-3, 12-4, 
12-5, 12-36 to 12-39, 
12-94, 12-95, 12-98, E-1, 
E-7, I-18 

DELIMITED BY phrase, 12-138, 
12-139, I-23, 12-143, 
12-145, 12-146, I-24 

DELIMITER IN phrase, 12-143, 
12-145, I-24 

Density, file, 2-34, 11-21 
DEPENDING ON phrase, 12-26, I-19 
DESCENDING, see 

ASCENDING/DESCENDING KEY 
phrase 

Device type, 1-7, 1-8, 2-7, 4-2, 
4-3, 5-1, 5-3, 6-1, 10-11, 
10-15, 10-18, 10-21, 
12-131, E-3, E-7 

Disk file processing, 1-4, 11-2, 
11-14, 11-17, 11-18, 

DISK option, 10-11, 10-15, 10-18, 
10-21, I-8 

DISPLAY option, 10-11, 10-13, 
12-131, I-8 

DISPLAY AND READ Statement, 1-7, 
4-1, 4-2, 4-3, 4-12, 4-24 
to 4-37, 10-13, 11-53, 
11-63, 11-65, 12-3, 12-4, 
12-5, 12-41 to 12-43, I-19 

DISPLAY Statement, 2-37, 2-39, 
2-40, 4-2, 4-3, 8-11, 
10-14, 11-57, 12-4, 12-5, 
12-40, I-19 

Index-4 

Displayable characters, D-5, D-6 
DIVIDE Statement, 12-3, 12-4, 

12-5, 12-9, 12-32, 12-44 
to 12-46, I-19 

Division header, 1-2, 8-16 
OMS Sharing, 1-5, 1-6, 

2-27 to 2-34, 3-10, J-1 
DMS/TX 

Introduction, 1-5, 1-6, J-1 
Holding resources, 1-5, 3-5, 

J-1 
Tutorial, Chapter 3 
File description entries, 3-2, 

3-3, 3-4, 11-20, 11-22 to 
11-24 

Free Statements, 3-5, 12-50 
Rollback Statements, 3-6, 3-7, 

12-112, 12-148, 12-150 
Deadlock Declarative, 3-6, 

12-148, 
DMSTX utility, 3-4 
DOWN BY phrase, 12-123, 12-124 
DUPLICATES phrase, 2-22 to 2-24, 

10-16, 12-108, 12-126, 
12-127, 12-128, I-8, I-23 

DYNAMIC, 1-4, 2-3, 2-4, 2-7, 
2-16 to 2-17, 2-21, 2-26, 
2-27, 2-28, 2-32, 2-36, 
2-38, 2-40, 2-43, 3-8, 
10-12, 10-15, 10-19, 
12-36, 12-38, 12-88, 
12-90, A-1, A-4, I-8, J-3 

DYNAMIC access mode, 1-4, 2-27, 
12-75 to 12-80, 12-93, 
12-96, 12-98, 12-107, 
12-108, 12-110, 12-111, 
12-132, 12-155, 12-158 

Editing signs, 11-4, 
Rules, 11-40 to 11-44 

EDITOR, the, 8-15 
Elemental DMS Sharing, 2-29 



INDEX (continued) 

Elementary data items, 11-2 to 
11-11, 11-18, 11-30, 11-31, 
11-32, 11-36 to 11-45, 
11-50, 11-51, 11-52, 11-58, 
11-61, 11-63, 11-65, 
11-67, 12-12, 12-24 to 
12-25, 12-32, 12-44, 12-51, 
12-58, 12-64, 12-69, 12-82, 
12-114, 12-123, 12-138, 
12-141, 12-142, 12-151, 
13-6 

Ellipsis ( ..• ), 8-14 
ELSE phrase, 12-55 to 12-56, I-19 
END DECLARATIVES phrase, 2-41, 

I-18 
ENTER key, 4-12, 4-14, 4-21 to 

4-23, 4-30, 10-12, 10-13, 
12-40, 12-43, E-8 

ENTER Statement, 2-11, 8-7, 12-3, 
12-21, 12-47, I-19 

ENVIRONMENT DIVISION, 
1-2 to 1-4, 1-7, 2-7, 2-31, 
2-33, 3-8, 4-2, 4-3, 4-25, 
4-27, 5-4, 8-4, 8-5, 8-7, 
8-8, 10-lff, 11-6, 12-15, 
F-1, I-5, I-7 to I-9, J-3 

Error conditions, 2-39 to 2-44, 
12-148, 12-149 

Evaluation rules, G-1 
EXCEPTION/ERROR PROCEDURE phrase, 

12-148, 12-149, I-24 
EXIT PRcx;RAM Statement, 12-49, 

12-86, I-19 
EXIT Statement, 12-4, 12-6, 

12-48, 12-86, I-19 
Extend mode, 2-14, 12-.151 
EXTEND phrase, 1-5, 12-74 to 

12-81, I-21 
EXTENSION-RIGHTS, 3-11, A-1, 

A-4, J-1 to J-6 
External file name, 2-12 

FAC, see Field attribute 
character 

Index-5 

FAC OF phrase, 4-2, 4-4, 4-6, 
4-7, 4-18, 4-20, 4-23, 
4-24, 11-53, 12-15 to 
12-16, 12-42, I-19,I-20 

FD, (see File description entry) 
Federal Information Processing 

Standards (FIPS), 1-1, 
B-2, I-lff 

Field attribute characters, 1-8, 
4-1, 4-2, 4-19, 4-24, 4-25, 
4-32, 10-7, 11-59, 11-65, 
12-54, 12-55, 12-56, 12-67, 
12-68, 12-69, 12-91, C-1, 
C-4 

Figurative constants, 1-3, 1-8, 
4-2, 8-9 to 8-11, 10-1, 
10-7 to 10-8, 11-55, 12-40, 
12-55, 12-56, 12-58, 12-59, 
12-67, 12-68, 12-69, 
12-123, 12-137, 12-138, 
12-139, 12-144, 12-151, 
12-153, F-1 

Figurative constant conditions, 
12-16, I-16 

File control entry, 1-4, 1-5, 
1-8, 2-2, 2-3, 2-7 to 2-11, 
2-15, 2-16, 2-18, 2-22 to 
2-24, 2-27, 2-33, 2-34, 
2-40, 4-2 to 4-4, 4-10, 
4-23, 4-29, 4-30, 4-35, 
4-37, 5-1, 5-3, 6-1, 7-2, 
10-1,10-9 to 10-21, 11-2, 
12-89, 12-131, 12-132, E-1, 
I-8, I-9 

File creation, 2-6, 2-10, 2-42 
File description entry, 2-12, 

2-16, 4-2 to 4-4, 5-1, 
8-17, 11-12 to 11-26, 
11-33, 12-76, 12-89, 12-94, 
12-126, H-1, I-10 

File name, 8-6, 12-99 
File organization, 2-1 
File processing envirorunent, 2-6 
FILE SECTION, 1-3, 2-4 to 2-7, 

2-18, 2-31, 2-36, 3-2, 
3-8, 4-2 to 4-4, 4-27, 
4-38, 8-4, 8-6, 11-12 to 
11-28, 11-31, 11-55, 12-27, 
12-104, 12-107, 12-110, 
12-151, 12-154, 12-157, 
H-1, I-10, I-11, J-3 



INDEX (continued) 

File status, 2-42 to 2-44, 4-2, 
4-23, 4-28 to 4-31, 10-11 

to 10-13, 10-15, 10-17, 
10-19, 12-36, 12-38, 
12-53, 12-89, 12-90, 
12-91, 12-94, 12-95, 
12-99, 12-100, 12-104, 
12-108, 12-111, 12-131, 
12-133, 12-136, 12-152, 
12-153, 12-155, 12-156, 
12-158, 12-159, E-1, E-2, 
E-4, E-5, E-7, I-9 

Files, 1-1 to 1-6, 1-8, 1-9, 2-1 
to 2-9, 2-16, 2-18, 2-21, 
2-23 to 2-26, 2-28, 2-30 
to 2-36, 2-40, 3-1 to 3-7, 
3-10, 3-11, 5-2, 6-1, 6-3, 
10-9 to 10-23, 11-1, 
11-12, 11-13 to 11-26, 
12-74 to 12-81, 12-151 to 
12-159, B-3, E-1, E-2, 
E-4, F-1, F-2, H-2, I-1, 
J-4 

File-Name, I-3, I-18 
FILLER clause, 11-8, 11-28, 

11-31, 11-57, I-13 
FIPS (see Federal Information 

Processing Standards) 
FIRST phrase, 12-62 
Fixed portion, K-1 
Fixed-Length records, 2-4, 2-8, 

2-16, 11-18 
FLAG, B-2 
Floating-Purpose registers, 13-1 
FOR DEBUGGING phrase, I-24 
FOR REMOVAL phrase, 12-29, 

12-30, I-18 
Format Notation, 8-12 to 8-17 
FREE ALL Statement, see FREE 

Statement 
FREE Statement, 2-27, 2-34, 

3-1, 3-2, 3-5, 3-10, 
3-11, 12-4, 12-5, 12-50, 
I-19, J-1, J-4 

FROM phrase, 12-82 to 12-83, 
12-87, 12-101, 12-104, 
12-105, 12-108, 12-110, 
12-141, 12-142, 12-151, 
12-152, 12-154, 12-155, 
12-157, I-17, I-22, I-24, 
I-25 

Index-6 

Full screen I/O, 4-1, 4-3, 
4-31 to 4-34, 4-38 

General Rules, definition of, 
8-13 

General-Purpose registers, 13-1 
GENEDIT, 3-6 
Generic key resource, 2-30 
GETPARM, 2-10 to 2-12, 11-7 
GIVING phrase, 7-1 to 7-7, 

10-21, 11-25, 12-25, 
12-44, 12-66, 12-126, 
12-129, 12-141, 12-142, 
I-17, I-19, I-20,I-23, I-24 

GO TO Statement, 8-9, 12-4, 
12-6, 12-26, 12-51, 12-66, 
12-84, 12-86, 12-115, 
12-118, 12-128, 12-129, 
12-150, 13-6, I-19, K-1 

Groups, of elementary data items 
11-2, 11-7, 11-34, 11-48, 
11-57, 11-58 

H 

Header, 1-2, 7-4, 8-16, 11-27, 
I-16 

HELP key, 2-35, 2-37, 13-1 
HIGH-VALUE/HIGH-VALUES, 8-10, 

8-11 
HOLD-CLASS phrase, 2-29, 12-52, 

12-53 
HOLD LIST Statement, 2-27, 2-33 

to 2-34, 3-11, 12-52, J-1 
HOLD Statement, 2-27, 2-29, 2-30 

to 2-34, 3-10, 3-11, 12-3, 
12-4, 12-5, 12-52 to 
12-53, I-19, J-1 

HOLDER-ID phrase, 2-27, 2-31, 
2-33, 3-11, 12-52, 12-53, 
12-93, 12-97, 12-154, 
12-156, J-1, J-5 

IBM tape labels, 2-8, 6-1, 11-17 
Identification Division, 1-2, 

2-31, 4-27, 9-lff, I-5, 
I-6, J-3 



INDEX (continued) 

Identifiers, 11-11, 12-6, I-17 
IF Statement, 4-25, 10-6, 12-3, 

12-10, 12-54 to 12-56, 
G-1, I-19 

IL (see IBM tape labels) 
Imperative statements, 12-3 to 

12-6 
Implementor name, 7-7, I-2, I-4, 

I-7, I-11 
IN, 11-6 
Indentation, 8-17 
Independent portion, K-1 
Index data items, 11-10, 11-27, 

11-34, 11-35, 11-51, 
11-52, 12-13, I-16 

Index name, 8-6, 12-13, 12-82, 
12-114, 12-115, 12-123 

INDEX AREA clause, 11-20, 11-21· 
INDEXED BY Phrase, 11-9, 11-34, 

12-113 to 12-119, 12-123, 
H-2, I-12, I-13 

Indexed files, 1-4, 1-5, 2-2 to 
2-4, 2-7, 2-8, 2-18 to 
2-24, 2-33 to 2-36, 10-14 
to 17, 10-23, 11-2, 11-20, 
11-21, 12-31, 12-36 to 
12-37, 12-52, 12-77 to 
12-78, 12-93 to 12-97, 
12-107 to 12-109, 12-132 
to 12-134, 12-154 to 
12-156, E-4 to E-7 

Indexed I-0 module, 1-1 
INDEXED organization, 10-21, I-9 
Indexing, 8-3, 11-9 to 11-10, 

12-68, 12-90, 12-95, 
12-99, 12-102, 12-114, 
12-124, 12-146, I-3, I-4 

Index-Name, I-3 
Indicator Area, 8-15, 9-2, I-5 
INITIAL phrase, 2-32, 12-52, 

12-53 
Initial values, 11-27, 11-54, 

12-27, 
Input mode, 2-14, 2-16, 11-21, 

12-88, 12-94, 12-98, 
12-133, 12-135 

INPUT phrase, 12-74 to 12-81, 
I-20 

Index-7 

INPUT PROCEDURE phrase, 7-2, 
7-6, 7-7, 11-26, 12-126, 
12-127, 12-128, I-23, K-2 

INPUT-OUTPUT phrase, 12-74 to 
12-81 

INPUT-OUTPUT SECTION, 1-2, 1-3, 
3-8, 4-4, 4-27, 8-4 

INSPECT Statement, 12-4, 12-5, 
12-10, 12-57 to 12-63, I-20 

INSTALLATION paragraph, 9-2, I-6 
Integer option, 10-19, 10-21, 

11-8, I-8 
Interactive processing, 4-lff 
Intermediate results, G-1 
Interprogram Communication 

module, 1-1 
INTO phrase, 12-88, 12-90, 

12-93, 12-95, 12-98, 
12-99, 12-102, 12-103, 
I-19, I-21, I-22 

Invalid key, 2-16, 2-21, 2-40, 
2-41, 3-7, 3-9, 12-3, 
12-4, 12-36, 12-38, 12-88, 
12-90, 12-93, 12-94, 
12-97, 12-98, 12-107, 
12-108, 12-110, 12-111, 
12-132, 12-133, 12-135, 
12-136, 12-148, 12-149, 
12-154, 12-156, 12-157, 
12-158, 12-159, E-1, E-2, 
E-4 to E-8, I-18, I-22, 
I-23, I-25 

IS mnemonic-name option, 8-8, I-7 
I-Q-Control paragraph, 1-5, 

10-1, 10-16, 10-22 to 
10-23, 11-2 

I-0 mode, 2-16, 2-35, 3-5, 
11-21, 12-36, 12-38, 
12-88, 12-91, 12-94, 
12-98, 12-104, 12-105, 
12-107, 12-110, 12-131, 
12-133, 12-135, 12-156, 
12-157, 12-158, I-21 

JUST, see JUSTIFIED 
JUSTIFIED clause, 8-10, 11-5, 

11-29, 11-32, 11-51, I-13, 
11-55, 11-56, 12-138 



INDEX (continued) 

K 

KEY phrase, 11-34 to 11-35, 
12-64, 12-65, 12-66, 
12-93, 12-96, 12-113, 
12-114, 12-119, 12-126, 
12-127, 12-132, 12-133, 
12-134, 12-135, 12-136, 
I-22, I-23 

Key words, 8-8, I-4 
Keyboard locking, 1-8, 12-131 

L 

LABEL RECORDS clause, 1-9, 2-8, 
6-2, 11-13, 11-17, 12-75, 
I-10 

Labels, 1-8, 1-9, 2-8, 6-1 to 
6-3, 8-15, 11-17, 12-153 

Large buffer strategy, 2-34 
LEADING phrase, 12-62 
Level indicator, 8-17, 11-5, 

I-10 to I-13 
LEVEL-NUMBER clause, 11-32, I-13 
Level numbers, 1-3, 2-8, 8-6, 

8-7, 8-15, 8-17, 11-2, 
11-3, 11-5, 11-27, 11-28, 
11-29, 11-32, 11-34, 
11-51, 11-68, 12-2, 
12-143 

Library module, 1-1 
Library-Name, 2-9, 2-10, 2-12, 

6-2, 8-7, 8-9, I-3, I-18 
LINAGE-COUNTER, I-4 
LINES, B-3 
LINKAGE SECTION, 1-3, 8-4, 

11-12, 11-31, 11-33, 
11-55, 11-68 to 11-69, 
12-2, 12-27, 12-94, 
12-154, H-1, H-2, H-4, 
I-12, J-5 

LINE, see ROW 
LINE-COUNTER, I-4 
Literal option, I-7 
Literals, 4-8, 8-3, 8-8, 8-11, 

8-12, 10-5, 10-6, B-2, 
B-5, I-4 

LOAD, B-3 
LCX::K phrase, 12-29, 12-75, 

12-77, 12-79 

Index-8 

Log file, 2-27 to 2-29 
Logging file, 12-76 
Logical file-name, 2-7 
Logical operators, 12-16 to 

12-18, I-17 
Logical records, 11-1 
LOW-VALUE/LOW-VALUES, 8-10, 8-11 
LOWER, B-3 
Lowercase words, 8-13, 8-14 

Mapping area, 12-91 
Margin A, 10-14, 13-7 
Margin B, 10-14, 13-7 
Margin C, 8-15 
Margin L, 8-15 
Margin R, 8-15 
Maximum record size, 12-152, 

12-155, 12-158 
MDT, see Modified data tag 

condition 
MEMORY SIZE clause, I-7 
MERGE Statement, 7-1 to 7-3, I-20 

11-25 to 11-26, 12-64 to 
12-66, 12-102, 12-127, 
12-128, K-2, K-4 

Mnemonic-Name, 8-7, 10-5, I-3, 
I-7, I-17, I-19, I-23, I-25 

MODIFIABLE phrase, 12-88, 12-91, 
12-92, I-22 

Modified data tag condition, 
12-15, I-16 

MOVE Statement, 2-19, 4-21, 
4-28, 4-34, 5-4, 10-7, 
11-7, 11-52, 11-53, 11-64, 
11-65, 12-4, 12-5, 12-10, 
12-22, 12-67 to 12-72, 
12-90, 12-99, 12-101, 
12-102, 12-105, 12-108, 
12-110, 12-139, 12-152, 
12-155, 12-157, 13-6, I-20 

MOVE WITH CONVERSION Statement, 
1-8, 12-3, 12-4, 12-5, 
12-22, 12-67, 12-72 

MULTIPLE FILE TAPE clause, I-9 
Multiple user sharing (OMS/TX), 

1-6, 3-1 
MULTIPLY Statement, 12-3, 12-4, 

12-5, 12-9, 12-32, I-20 



INDEX (continued) 

N 

NATIVE (character code) option, 
10-6, I-7 

Negated simple conditions, I-17 
NEGATIVE value, 11-63 
NEXT phrase, 2-16, 12-88, 12-90, 

12-93, 12-96, I-21 
NEXT SENTENCE phrase, 12-54 to 

12-56, I-19 
NL, No tape labels, 6-2, 6-3 
NODISPLAY phrase, 2-9 to 2-12, 

10-13, 10-16, 10-19, 
11-24, I-8 

Nonnumeric, 8-3, 8-4, 8-11, 8-14 
to 8-15,8-17, 8-19, 11-1, 
12-12, 12-14, 12-53, 
12-133, 12-137, I-4, I-5, 
I-16 

Nonnumeric literals, 8-3, 8-8, 
8-11, 11-21, 11-54, 12-27, 
12-33, 12-138, 12-139, 
12-143 to 12-147, I-4 

NO-MOD phrase, 4-22, 4-23, 12-3, 
12-4, 12-41 12-43 

Nucleus module, 1-1 
Numeric, 1-7, 1-8, 2-15, 2-36, 

3-4, 4-7, 4-19, 4-30, 8-4, 
8-11, 8-12, 8-13, 9-3, 
10-5, 10-6, 10-11, 10-13, 
11-4, 11-5, 11-21, 11-30, 
11-36 to 11-38, 11-48, 
11-49, 11-63, 11-65, 12-6, 
12-12, 12-14, 12-22, 
12-24, 12-42, 12-44, 
12-51, 12-58, 12-59, 12-69 
to 12-71, 12-114, 12-123, 
12-137, 12-143 to 12-147, 
A-2, A-4, B-1, B-5, C-2 to 
C-5, I-4, I-5, I-16 

Numeric literals, 8-11, 8-12, 
10-5, 10-6, 11-8, 11-9, 
11-54, 11-55, 12-6, 12-24, 
12-40, 12-44, 12-141, I-4 

OBJECT clause, 4-6, 4-7, 4-19, 
4-20, 11-53, 11-58, 11-59, 
11-65 to 11-66, I-13 

Index-9 

Object program, 1-3, 12-137, 
13-1, K-1 

OBJECT-COMPUTER paragraph, 8-8, 
10-1, 10-4, 13-7, I-7 

OCCURS clause, 4-9 to 4-18, 
11-7, 11-8, 11-34 to 11-35, 
11-55, 11-58, 11-60, 11-61, 
11-64, 11-65 to 11-66, 
11-67, 12-55, 12-65, 
12-68, 12-72, 12-113 to 
12-119, 12-127 

OF, 11-6 
library-name, 8-9, I-18 

OFF option, 12-123, 12-125 
OFF STATUS IS condition-name 

option, 10-6, 12-15, I-7 
OMMITTED clause, 11-17 
ON ERROR clause, 3-6, 12-3, 

12-4, 12-50, 12-67, 12-72, 
12-112, J-2 

ON option, 12-123, 12-125 
ON OVERFLOW phrase, 12-138, 

12-140, 12-143, 12-146, 
I-23, I-24 

ON PFKEY phrase, 4-31, 12-41 
ON STATUS IS condition-name 

option, 10-6, 12-15, I-7 
ONLY PFKEY phrase, 4-22, 12-41 

to 12-43 
Open mode, 2-1, 12-29, 12-31, 

12-40 
OPEN Statement, 2-1, 2-2, 2-9 to 

2-12, 2-27, 2-29, 2-39, 
3-2, 7-7, 10-16, 11-20, 
11-21, 11-22, 12-4, 12-6, 
12-30, 12-31, 12-74 to 
12-81, 12-89, 12-90, 
12-94, 12-96, 12-99, 
12-100, E-1, I-20 

Opening and closing a file, 2-1 
Operational signs, 11-4 
OPTIONAL phrase, I-8 
Optional words, 8-9, 8-13, I-4 
OR condition, 8-9, 12-143, 

12-145 
ORDER AREA OF phrase, 1-8, 4-2, 

4-4, 4-25 to 4-28, 11-52, 
D-1, I-20 



INDEX (continued 

Organization, 1-2, 1-4, 1-5, 
1-8, 2-1, 2-2, 2-7, 2-11, 
2-15, 2-18, 2-23, 2-27, 
2-31, 3-8, 4-3, 5-1, 6-1, 
9-1, 10-2, 10-10 to 10-15, 
10-17, 10-19, 10-20, 
10-21, 10-22, 11-12, 
11-12, A-2, A-4, E-3, E-7, 
I-9, I-23, J-3 

ORGANIZATION IS clause, 2-18, 4-3 
Output mode, 2-9, 12-151, 

12-154, 12-156, 12-157 
OUTPUT phrase, 11-26, 12-74 to 

12-81, I-21 
OUTPUT PROCEDURE phrase, 7-2, 

7-3, 7-6, 7-7, 12-64, 
12-66, 12-126, 12-128, 
12-129, I-20,I-23, K-2 

Overlapping operands, 12-25, 
12-32, 12-45, 12-142, 

PAGE, 12-151, 12-153, I-25 
PAGE-COUNTER, I-4 
Paragraphs, 1-2, 1-3, 8-1, 8-3, 

8-4, 8-7, 9-1, 9-2, 9-4, 
10-1, 10-2, 10-4, 12-1, 

Paragraph-Name, 11-6, 11-7, I-3 
Parameter reference name 

(PRNAME), 2-7, 2-11, 10-11, 
10-15, 10-16, 10-18 

Parentheses, 8-2, 8-3, 11-8, 
12-7, 12-19 

Parenthesized condition, I-17 
PCW, see Program control word 
Percent sign (%), I-5 
PERFORM Statement; 10-6, 11-9, 

11-10, 12-4, 12-6, 12-10, 
12-66, 12-82 to 12-87, 
12-124, 12-128, 12-129, 
12-149, 13-4, 13-5, 13-7, 
G-1, I-21, K-4 

PFKEY clause, 10-13, 12-3, I-8 
PFKEY IS clause, 4-29, 4-30, 4-35 
Phrases, 8-4 
Physical records, 11-1, 11-14 
PIC, see PICTURE clause 

Index-10 

PICTURE clause, 4-6, 4-21, 8-3, 
8-11, 10-6, 11-1, 11-27, 
11-28, 11-29, 11-30, 11-36 
to 11-45, 11-48, 11-49, 
11-51, 11-54, 11-55, 
11-59, 11-62, 11-64, 
11-65, 11-66, 11-68, 12-9, 
12-10, 12-22, 12-42, 
12-69, 12-94, 12-138, 
12-143, 12-154, G-1, I-14 

POSITION phrase, 11-21 
POSITIVE value, 11-63 
Precedence rules, 4-23 
Pre-claim strategy, 1-6, 2-30, 

2-31 
Primary extent, 2-11 
Primary record key, 1-4, 2-3, 

2-18, 12-97, 12-109, 
12-132, 12-133, 12-155, 
12-156 

Print file processing, 1-8, 5-1, 
11-18 

Printer control characters, F-1 
PRINTER option, 10-11, 10-13, I-8 
PRNAME, see Parameter reference 

name 
Procedure Division, 1-2, 1-3, 

1-5, 1-7, 2-1, 2-2, 2-4, 
2-5, 2-9, 2-10, 2-14, 
2-16, 2-18, 2-24, 2-31, 
2-39, 2-40, 3-6, 3-9, 4-2, 
4-4, 4-13, 4-14, 4-17, 
4-20, 4-25 to 4-27, 4-30, 
4-33, 4-37, 4-38, 5-1, 
5-5, 8-4, 8-7, 8-8, 10-3, 
10-6, 11-6, 11-51, 11-68, 
12-lff, 13-4, B-4, H-2, 
I-1, I-5, I-16 to I-26, 
J-3, K-1 

Procedure Division header, 
11-51, 11-68, 12-1, I-16 

Procedures, VS, 2-9 
PROGRAM COLLATING SEQUENCE 

clause, I-7 
Program control word (PCW), 13-1 
Program identification area, 8-15 
Program map (PMAP), 13-1, 13-2, 

B-3 
Program traps, 13-1 
PROGRAM-ID paragraph, 8-7, 8-15, 

9-1, 9-3, 12-27, I-6 



INDEX (continued) 

Program-Name, 8-7, I-3 
Punctuation, 8-2 to 8-5, 8-11, 

8-14, I-3 

Qualification, file naming 
conventions, 6-2 

Qualification, of data-names, 
10-15, 10-18, 11-5 to 
11-7, 11-10, 11-11, 11-20, 
11-25, 11-34, 11-58, 
11-63, 11-64, 11-66, 13-2, 
I-4 

For the MERGE Statement, 12-65 
For the READ Statement, 12-94 
For the RELEASE Statement, 

12-101 
For the REWRITE Statement, 

12-104, 12-107, 12-110 
For the SEARCH Statement, 

12-114 
For the SORT Statement, 12-127 
For the START Statement, 

12-133, 12-135 
For the WRITE Statement, 

12-151, 12-154, 12-157 
QUOTE/QUOTES, 8-10 
Quotient, 12-44 

Radix, 11-1, 11-4 
RAM, see Record access method 
RANDOM, 1-4, 2-3, 2-7, 2-15 to 

2-19, 2-39, 4-3, 4-4, 
4-27, 4-31, 10-12, 10-13, 
10-15, 10-17, 12-75 to 
12-80, A-2, A-4, I-8 

RANDOM access mode, 4-31, 10-12, 
10-19, 12-36, 12-38, 12-75 
to 12-80, 12-88, 12-89, 
12-93, 12-98, 12-107, 
12-108, 12-110, 12-111, 
12-131, 12-153, 12-155, 
12-158 

RANGE clause, 4-7 to 4-9, 4-21, 
11-63, 12-42, I-14 

Index-11 

READ Statement, 1-5, 1-7, 2-1, 
2-18, 2-26, 2-27, 2-29, 
2-39, 4-1, 4-3, 8-8, 
10-12, 11-1, 12-3, 12-4 to 
12-6, 12-29, 12-36, 12-38, 
12-75 to 12-80, 12-88 to 
12-100, 12-104, 12-106, 
12-107, 12-110, 12-131, 
12-133, D-1, E-1, I-21 

READ WITH HOLD, 2-25, 2-28, 3-5, 
3-10, 3-11, 12-36, E-7 

READY TRACE Statement, 13-3, 
13-8, I-22 

Record access method (RAM), 1-6 
Record area, 2-5, 2-16, 2-24, 

3-7, 4-1, 4-35, 4-38, 
10-18, 10-19, I-9 

RECORD CONTAINS clause, 1-4, 
2-4, 2-6, 2-12, 11-13, 
11-14, 11-18, 12-76 

Record description entry, 5-3, 
11-2, 11-18, I-12 

RECORD KEY IS clause, 1-4, 2-3, 
2-18, 2-23, 10-14, 10-16, 

Record name, 8-7 
Record resource, 2-30 
Record size, 2-4, 2-5, 2-8, 

2-12, 11-18, E-3, E-6 
Record types, 2-4 
Record-Name, I-3 
Records, 1-3 to 1-5, 1-8, 2-1 to 

2-12, 2-14, 2-16 to 2-18, 
2-21, 2-22, 2-24 to 2-26, 
2-29 to 2-33, 2-36, 2-38, 
3-1, 3-4, 3-5, 3-10, 3-11, 
4-27, 5-1, 5-2, 6-2, 6-3, 
10-12, 10-15, 10-16, 
10-19, 10-22, A-2, A-4, 
I-10, I-11, J-2 to J-5 

RECORDS OF phrase, 12-52, 12-53 
RECOVERY-BLOCKS IS clause, 3-3, 

3-10, 11-20, 11-22, 11-23, 
I-11 

RECOVERY-STATUS IS clause, 3-3, 
3-10, 11-20, 11-22, 11-23, 
I-11 

REDEFINES clause, 11-6, 11-7, 
11-8, 11-28, 11-35, 11-55, 
B-2, I-14 



INDEX (continued) 

REEL/UNIT phrase, 12-29, 12-30, 
12-75, I-18 

Reference format, 8-2, 8-14, 
8-15, I-5 

Relation conditions, I-3, I-17 
Relation characters 12-135, I-4 
Relation condition, 12-11, 

12-15, I-16 
Relational operators, 12-11, I-16 
Relative I-0 module, 1-1 
RELATIVE KEY phrase, 2-15, 4-34, 

4-36, 10-12, 10-19, 12-88, 
12-89, 12-91, 12-98, 
12-100, 12-106, 12-110, 
12-111, 12-135, 12-136, 
12-158, D-1, I-8 

RELATIVE files, 1-4, 2-2, 2-4, 
2-24 to 2-27, 10-18 to 
10-20, 11-19, 12-31, 12-38 
to 12-39, 12-79 to 12-81, 
12-98 to 12-100, 12-110 to 
12-111, 12-135 to 12-136, 
12-157 to 12-159, E-7 to 
E-8, I-9 

Relative record number, 10-20, 
12-91, 12-106, 12-158 

RELEASE Statement, 7-1 to 7-6, 
12-101, 12-128, I-22 

REMAINDER phrase, 12-44, 12-45, 
I-19 

REPLACING phrase, 12-57, 12-63, 
I-18, I-20 

Report-Name, I-3 
Required words, I-4 
RERUN clause, 10-22, I-9 
RESERVE nn AREAS clause, 1-5, 

2-35 to 2-38, 10-16, 
10-19, 10-23, 11-2, I-9 

Reserved words, 8-8, App. A, I-4 
RESET TRACE Statement, 13-3, 

13-8, I-22 
Resources, DMS, 1-6, 2-30, 3-1 
Retrieval, hold for, 2-30, 2-31, 

3-10, 3-12, 12-52, 12-53 
RETURN-CODE, 3-6, 8-9, 12-28, 

12-50, 12-112, 12-130, 
12-137, J-2 

Index-12 

RETURN Statement, 7-1, 7-3 to 
7-7, 12-64, 12-65, 12-66, 
12-102 to 12-103, 12-128, 
12-129, I-22 

REWIND phrase, 12-29 
REWRITE Statement, 1-5, 2-1, 

2-18, 2-29, 2-30, 2-39, 
4-34, 4-1, 4-3, 4-33, 
4-36, 4-37, 10-12, 11-1, 
11-2, 12-3, 12-4, 12-5, 
12-75 to 12-80, 12-90, 
12-94, 12-95, 12-98, 
12-104 to 12-111, D-1, 
E-1, E-5, I-22 

Rollback recovery, 1-6, 3-1, 
12-148, 12-150 

ROLLBACK Statement, 3-2, 3-6, 
3-7, 3-10, 12-3, 12-4, 
12-5, 12-112, 12-148, 
12-150, I-22 

ROUNDED phrase, 12-9, 12-25, 
12-32, 12-44, 12-45, 
12-142, I-17 to I-20, I-24 

Routine name, 8-7, I-3 
ROW clause, 4-5, 11-57, 11-58, 

11-61, 11-67, 12-106, I-14 
RPG II language, 4-1 
RUN phrase, 12-137, I-23 

SAME AREA clause, 2-36, 2-37, 
10-16, 10-22, 11-2, I-9 

SAME RECORD AREA clause, 10-22, 
10-23, 12-104, 12-105, 
12-108, 12-151, 12-154, 
12-157, I-9 

SD, see Sort-Merge file 
description 

SEARCH Statement, 11-10, 11-35, 
11-51, 12-3, 12-10, 12-113 
to 12-122, 12-124, G-1, 
I-22 

SEARCH ALL Statement, 12-113, 
12-117, 12-119, I-22 

Secondary extent, 2-11 
Section header, 8-4, 8-16 
Section name, 8-7, 11-6, 11-7, 

I-3 
SECURITY paragraph, 9-2, I-6 

I~ 



INDEX (continued) 

SEGMENTATION, 1-1, I-26, K-lff 
SEGMENT-LIMIT clause, I-7 
Segment-Nwnber, K-1, K-2, K-3, 

I-3 
SELECT clause, 1-8, 10-10, 

10-14, 10-18, 10-23, 
12-55, 12-123, I-8 

Sentences, 8-3, 12-3 
SEPARATE CHARACTER phrase, 

11-39, 11-48, 11-49 
Separators, 8-2, 11-8, 11-9, I-3 
SEPSGN, B-4 
Series, I-11 
SEQ, B-4 
Sequence nwnber, 8-15, I-4 
SEQUENTIAL, 1-1, 1-4, 2-2, 2-3, 

2-7, 2-11, 2-13 to 2-16, 
2-18, 2-21, 2-22, 2-26, 
2-39, 2-40, 4-3, 10-10, 
10-11, 10-12, 10-14, 
10-15, 10-18, 10-19, 
10-21, 12-36, 12-38, A-2, 
A-4, E-1, I-1, I-2, I-8, 
I-9, I-20, I-23 

SEQUENTIAL access mode, 12-75 to 
12-80, 12-88, 12-90, 
12-93, 12-96, 12-98, 
12-107, 12-108, 12-110, 
12-132, 12-135, 12-155, 
12-156, 12-158 

SETRECOV SVC, 3-4 
SET Statement, 11-10, 11-51, 

12-4, 12-6, 12-10, 12-118, 
12-123 to 12-125, I-23 

Shared consecutive file (Log 
file), 2-27 to 2-29 

Shared mode, 1-5, 2-2, 2-27 to 
2-30, 2-33, 3-1, 3-5, 
11-2, 11-21, 12-36, 12-94, 
12-95, 12-107, 12-133, 
12-151, 12-154, 12-156, 
E-1 to E-7 

SHARED phrase, 2-28, 2-33, 12-74 
to 12-81,- I-21 

SIGN clause, 11-5, 11-37, 11-39, 
11-48 to 11-49, 12-14, 
B-2, B-4, I-7, I-14 

Sign conditions, 11-8, I-16 
Simple conditions, 12-10, I-16 
SIZE phrase, 12-138, 12-139 

Index-13 

SIZE ERROR phrase, 12-3, 12-4, 
12-9 to 12-10, 12-25, 
12-32, 12-44, 12-45, 
12-142, I-17 to I-20, I-24 

Sort file, 7-1 to 7-7, 12-126 
SORT Statement, 7-1 to 7-7, 

11-25 to 11-26, 12-66, 
12-101, 12-102, 12-126 to 
12-130, I-23, K-2, K-4 

Sort-Merge file description 
entry, 7-2, 7-5, 10-21, 
11-25 to 11-26, 12-64, 
12-101, 12-102, 12-126, 
I-11 

SORT/MERGE module, 1-1, 7-lff 
SOURCE, B-4 
SOURCE clause, 4-6, 4-20, 11-53, 

11-64, 12-42, I-12, I-14 
SOURCE-COMPUTER paragraph, 8-8, 

10-1, 10-3, 13-3, 13-7, I-7 
Source-program reference format, 

7-2 
SPACE/SPACES, 8-10, 11-21, 

12-129, B-4 
Special characters words, I-3 
Special purpose words, I-4 
SPECIAL-NAMES paragraph, 1-3, 

8-7, 10-1, 10-5, 11-40, 
12-15, I-7 

Special registers, 8-9, I-4 
ST.ANDARD clause, 11-17 
ST.ANDARD-1 option, I-7 
START Statement, 2-1, 2-18, 

2-20, 2-26, 2-27, 2-29, 
2-39, 3-7, 10-19, 11-1, 
12-3, 12-4, 12-6, 12-75, 
12-78, 12-80, 12-94, 
12-96, 12-99, 12-100, 
12-131 to 12-136, 13-6, 
E-1, E-6, I-23 

Statements, 8-3, 12-3 
STOP, B-5 
STOP Statement, 8-10, 12-4, 

12-6, 12-30, 12-31, 
12-137, I-23 

Stroke (/), I-5 
STRING Statement, 12-138 to 

12-140, I-23 
Structural integrity monitoring, 

3-1, 3-2 
SUBCHK, 11-8, B-5 



INDEX (continued) 

Subscripting, 11-6, 11-7, 11-8, 
11-10, 11-11, 11-34, 
11-35, 12-68, 12-90, 
12-95, 12-99, 12-102, 
12-114, 12-124, 12-146, 
13-2, H-2 

SUBTRACT Statement, 11-7, 12-3, 
12-4, 12-5, 12-9, 12-10, 
12-32, 12-141 to 12-142, 
I-24 

Switch-status condition, I-16 
SYMB, B-5 
Symbolic Debug facility, 13-1 

B-5 
SYNC, see SYNCHRONIZED 
SYNCHRONIZED clause, 11-29, 

11-50, 11-51, 11-56, I-14 
System names, 8-8, I-4 

Table handling module, 1-1, 
11-8, 11-9, 11-67, 12-113 
to 12-125 

TALLYING phrase, 12-57, 12-63, 
12-143, 12-146, I-20, I-24 

TALYING and REPLACING phrases, 
12-57, 12-60, I-20 

Tape file processing, 1-8, 6-1, 
11-14, 11-18, 12-29, 

Tape label processing, 6-1, 6-2, 
11-17 

TAPE option, 10-11, I-8 
Text-name, 11-6, I-3 
THEN optional word, I-19 
THROUGH phrase, 11-29, 11-55, 

12-64, 12-82, 12-126, 
12-127, I-21 

THRU, see THROUGH 
TIMEOUT phrase, 2-27, 2-31, 

2-33, 3-5, 3-10, 3-11, 
12-3, 12-4, 12-52, 12-53, 
12-93, 12-94, 12-97, 
12-154, 12-156, I-22, 
I-25, J-1, J-5 

TIMES phrase, 12-82, 12-84, I-21 
TO FAC OF phrase, I-20 
TO identifier, 12-25, I-17, I-20 
TO phrase, 11-18, 12-105, 

12-108, 12-110, 12-152, 
12-155, 12-157 

Index-14 

TO ORDER AREA OF phrase, I-20 
Transactions (DMS/TX), 1-6, 3-1 
Transaction rollback recovery 

(DMS/TX), 1-6, 3-1, 3-2 
TRUNC, B-5 
Truncation, 11-5, B-5, G-2 

Unary arithmetic operators, 
12-6, I-16 

UNTIL phrase, 12-82, 12-84, I-21 
UNSTRING Statement, 12-143 to 

12-147, I-24 
UP BY phrase, 12-123, 12-124 
Update, hold for, 2-30, 2-31, 

3-10, 3-12 
UPON mnemonic-name phrase, I-19 
USAGE clause, 7-3, 10-11, 11-4, 

11-8, 11-10, 11-20, 11-27, 
11-37, 11-48, 11-51 to 
11-53, 11-54, 11-56, 
11-68, 12-11, 12-21, 
12-44, 12-45, 12-52, 
12-53, 12-114, 12-124, 
12-143, G-1, I-14 

USAGE IS DISPLAY-WS clause, 1-7, 
4-2, 4-3, 4-11, 4-25, 
11-52 to 11-53, 11-55, 
11-57, 12-40 to 12-42, 
12-55, 12-58, 12-67, 
12-68, 12-123, 12-138 

USE FOR DEBUGGING Statement, 
10-3, 11-35, 12-148, 
12-149, 13-3, 13-4, 13-5 

USE Statement, 2-41, 3-6, 12-3, 
12-36, 12-65, 12-90, 
12-148 to 12-150, 12-153, 
I-24, I-25 

User file block, H-1 
User-defined words, 8-6, 8-8, 

I-2 to I-4 
User-figurative constant, 8-7 to 

8-8, 12-16, I-3 
USING phrase, 7-1, 7-5, 10-21, 

11-25, 11-51, 11-68, 12-2, 
12-27, 12-28, H-2, I-17, 
I-20, I-23 



INDEX (continued) 

v 

VALUE clause, 4-6, 11-27, 11-51, 
11-54 to 11-56, 11-58, 
11-64, 11-69 

VALUE IS clause, 8-10, 10-7, B-2 
VALUE OF clause, 2-10, 2-12, 

3-2 to 3-4, 3-10, 5-1, 
11-13, 11-20 to 11-24, 
11-26, 12-129, I-11 

Variable-Length records, 1-4, 
2-4 to 2-6, 2-12, 5-1, 
11-18, 11-19 

VARYING phrase, 12-82 to 12-83, 
12-85, 12-87, 12-113, 
12-115, 12-116, I-21, I-22 

Volume name, 2-9, 2-10, 2-12, 
6-2 

WCC, see Write control character 
WHEN phrase, 12-113, 12-116, 

12-117, 12-118, I-22 
WITH CONVERSION phrase, I-20 
WITH DEBUGGING MODE clause, 9-3, 

13-3, 13-7, I-7 
WITH DUPLICATES phrase, 2-21, I-8 
WITH HOLD phrase, 2-29, 2-30, 

12-88, 12-90, 12-91, 
12-93, 12-94, 12-95, 
12-98, 12-104, 12-107, I-22 

WITH KEYS phrase, 2-32 
WITH LOCK phrase, 12-29, 12-31, 

I-18 
WITH POINTER phrase, 12-138, 

12-139, 12-140, I-23, I-24 
WITH NO REWIND phrase, 12-29, 

12-30, I-18 
Workstation screen description 

entry, 11-57 to 11-67 
Workstation screen I/0, 12-91 
WORKING-STORAGE SECTION, 1-3, 

2-10, 2-31, 3-7, 3-8, 4-2, 
4-27, 6-3, 8-4, 11-12, 
11-20, 11-27, 11-31, 
11-33, 11-55, 11-68, 
12-27, 12-55, 12-94, 
12-123, 12-154, H-1, J-3, 
J-5 

Index-15 

Write control character (WCC), 
12-105, 12-106, D-2 

WRITE Statement, 1-5, 1-8, 2-1, 
2-2, 2-14, 2-18, 2-27, 
2-29, 2-39, 5-1 to 5-2, 
5-4, 11-1, 11-2, 12-3, 
12-4, 12-5, 12-29, 12-75 
to 12-80, 12-95, 12-98, 
12-151 to 12-159, E-1, 
F-1, I-25 

XREF, B-6 

ZERO/ZEROES/ZEROS, 8-10, 11-5 



~ 
\. J 



WANG Customer Comment Form Publication Number __ ___;8=0=0:;....-..;.1 =20.;:;....;..1-..;;0~6 

Title __________ ..;.V.=.S-=C;..;::O;.::B:..:0;.::L;...;:..R=E:..:....F=ER:..:.:E=N.=.;C::..:E::...:M:.:.::...:A:.:..:N=-=U:..:..A==L 
Help Us Help You ... 

We've worked hard to make this document useful, readable, and technically accurate. Did we succeed? Only you can tell us! 
Your comments and suggestions will help us improve our technical communications. Please take a few minutes to let us 
know how you feel. 

How did you receive this publication? How did you use this Publication? 

D Support or D Don't know D Introduction D Aid to advanced 
Sales Rep to the subject knowledge 

D Wang Supplies D Other D Classroom text D Guide to operating 
Division (student) instructions 

D From another D Classroom text D As a reference 
user (teacher) manual 

D Enclosed D Self-study D Other 
with equipment text 

Please rate the quality of this publication in each of the following areas. 

EXCELLENT GOOD FAIR POOR 

Technical Accuracy - Does the system work the way the manual says it does? D D D D 

Readability - Is the manual easy to read and understand? D D D D 

Clarity - Are the instructions easy to follow? D D D D 

Examples - Were they helpful, realistic? Were there enough of them? D D D D 

Organization - Was it logical? Was it easy to find what you needed to know? D D D D 

Illustrations - Were they clear and useful? D D D D 

Physical Attractiveness - What did you think of the printing, binding, etc? D D D D 

VERY 
POOR 

D 

D 

D 

D 

D 

D 

D 

Were there any terms or concepts that were not defined properly? D Y D N If so, what were they? ---------

After reading this document do you feel that you will be able to operate the equipment/software? D Yes D No 
D Yes, with practice 

What errors or faults did you find in the manual? (Please include page numbers)-----------------

Doyouhaveanyothercommentsorsuggestions? ___________________________ _ 

Name _________________ ~ Street __________________________ _ 

Title ___________________ _ City ___________________ _ 

Dept/Mail Stop ____________ _ State/Country _______________ _ 

Company ______________________ ~ Zip Code _____ Telephone---------

Thank you for your help. 

All comments and suggestions become the property of Wang Laboratories, Inc. Printed in U.S.A. 14-3140 7-83-5C 



WANG 

Fold 

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO. 16 LOWELL. MA 

POSTAGE WILL BE PAID BY ADDRESSEE 

WANG LABORATORIES, INC. 
TECHNICAL PUBLICATIONS 

111111 

ONE INDUSTRIAL AVENUE 
LOWELL, MASSACHUSETTS 01851 

Fold 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 



WANG 
The completed order form should be mailed to: 

WANG LABORATORIES, INC. 
Supplies Division 
51 Middlesex St. 
No. Chelmsford MA 01863 

To Order by Phone, Call: 

(800) 225-0234 
From Mass., Hawaii, and Alaska 

(617)256-1400 
TELEX 951-743 

Order Form for Wang Manuals and Documentation 

©Customer Number (If Known) 

@Bill To: Ship To: 

@Customer Contact: ©Date Purchase Order Number 
( ) ( l 
Phone Name 

@Taxable @Tax Exempt Number ©Credit This Order to 
Yes D A Wang Sale_sperson 
No 0 Please Complete Salesperson's Name Employee No. ROB No. 

r@oocument Number Description Quantity @Unit Price Total Price 

~ Sub Total 

Authorized Signature Date Less Any 
Applicable 
Discount 

D Check this box if you would like a free copy of the 
Sub Total 

Corporate Publications Literature Catalog (700-5294) 

Ordering Instructions 
1 . If you have purchased supplies from Wang before. and 

know your Customer Number, please write it here. 
2. Provide appropriate Billing Address and Shipping Address. 
3. Please provide a phone number and name, should it be 

necessary for WANG to contact you about your order. 
4. Your purchase order number and date. 
5. Show whether order is taxable or not. 
6. If tax exempt, please provide your exemption number. 

Local State Tax 

Total Amount 

7. If you wish credit for this order to be given to a WANG 
salesperson. please complete. 

8. Show part numbers, description and quantity for each 
product ordered. 

9. Pricing extensions and totaling can be completed at your 
option: Wang will refigure these prices and add freight on 
your invoice. 

10. Signature of authorized buyer and date. 

Wang Supplies Division Terms and Conditions 
1. TAXES - Prices are exclusive of all sales, use, and like 

taxes. 
2. DELIVERY - Delivery will be F.0.8. Wang's plant. 

Customer will be billed for freight charges; and unless 
customer specifies otherwise, all shipments will go best 
way surface as determined by Wang. Wang shall not 
assume any liability in connection with the shipment nor 
shall the carrier be construed to be an agent of Wang. 
If the customer requests that Wang arrange for insurance 
the customer will be billed for the insurance charges. 

3. PAYMENT - Terms are net 30 days from date of invoice. 
Unless otherwise stated by customer, partial shipments will 
generate partial invoices. 

4. PRICES - The prices shown are subject to change without 
notice. Individual document prices may be found in the 
Corporate Publications Literature Catalog (700-5294) 

5. LIMITATION OF LIABILITY - In no event shall Wang be liable 
for loss of data or for special, incidental or consequential 
damages in connection with or arising out of the use of or 
information contained in any manuals or documentation 
furnished hereunder. 

Printed in U.S.A. 14-3141 7-83-5C 



WANG 

Fold 

BUSINESS REPLY CARD 
FIRST CLASS PERMIT NO. 16 NO. CHELSMFORD, MA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

WANG LABORATORIES, INC. 
Supplies Division 
c/o Order Entry Dept. 
M/S 5511 
51 Middlesex St. 
No. Chelmsford, MA 01863 

fold 

111111 NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

I~ 



~-
..... .· 

~ 
{ ) 

~.: 



--------------- ---------- --------------------·-------- --- - -- . I I . . , . 
I . ; - -

- --- ------ - . -- - - -- - -

WANG 

ONE INDUSTRIAL AVENUE 
LOWELL, MASSACHUSETTS 01851 
TEL. (617) 459-5000 
TWX 710-343-6769, TELEX 94-7421 

Printed in U.S.A. 
800-1 201-06 

1-84 


