XEROX Interlisp-D Reference Manual
Volume lll: Input/Output

3101274
October, 1985

Copyright (c) 1985 Xerox Corporation
All rights reserved.

Portions from "Interlisp Reference Manual" Copyright (c) 1983
Xerox Corporation, and "Interlisp Reference Manual" Copyright
(c) 1974, 1975, 1978 Bolt, Beranek & Newman and Xerox
Corporation.

This publication may not be reproduced or transmitted in any
form by any means, electronic, microfilm, xerography, or
otherwise, or incorporated into any information retrieval system,
without the written permission of Xerox Corporation.

TABLE OF CONTENTS

26.1.8. INSPECTWs 26.6

26.2. PROMPTFORWORD 26.9
26.3. ASKUSER 26.12
26.3.1. Format of KEYLST 26.13

26.3.2. Options 26.15

26.3.3. Operation 26.17

26.3.4. Completing a Key 26.18

26.3.5. Special Keys 26.19

26.3.6. Startup Protocol and Typeahead 26.20

26.4. TTYIN Display Typein Editor 26.22
26.4.1. Entering Input With TTYIN 26.22

26.4.2. Mouse Commands [Interlisp-D Only] 26.24

26.4.3. Display Editing Commands 26.25

26.4.4. Using TTYIN for Lisp Input 26.28

26.4.5. Useful Macros 26.29

26.4.6. Programming With TTYIN 26.29

26.4.7. Using TTYIN as a General Editor 26.32

26.4.8. ?= Handler 26.33

26.4.9. Read Macros 26.34

26.4.10. Assorted Flags 26.36

26.4.11. Special Responses 26.38

26.4.12. Display Types 26.38

26.5. Prettyprint 26.39
26.5.1. Comment Feature 26.42

26.5.2. Comment Pointers 26.44

26.5.3. Converting Comments to Lower Case 26.46

26.5.4. Special Prettyprint Controls 26.47

27. Graphics Output Operations 27.1
27.1. Primitive Graphics Concepts 27.1
27.1.1. Positions 271

27.1.2., Regions 27.1

27.1.3. Bitmaps 273

27.1.4. Textures 27.6

27.2. Openingimage Streams 27.8

TABLE OFCONTENTS

TOC.3

TABLE OF CONTENTS

27.3. Accessing Image Stream Fields 27.10
27.4. Current Position of an Image Stream 2713
27.5. Moving Bits Between Bitmaps With BITBLT 27.14
27.6. Drawing Lines 27.17
27.7. Drawing Curves 27.18
27.8. Miscellaneous Drawing and Printing Operations 27.20
27.9. Drawing and Shading Grids 27.22
27.10. Display Streams 27.23
27.12. Fonts 27.25
27.13. Font Files and Font Directories 27.31
27.15. FontProfiles 27.32
27.16. Image Objects 27.35
27.16.1. IMAGEFNS Methods 27.36

27.16.2. Registering Image Objects 27.39

27.16.3. Reading and Writing Image Objectson Files 27.40

27.16.4. Copying Image Objects Between Windows 27.41

27.17. Implementation of Image Streams 27.42
28. Windows and Menus 28.1
28.1. Using The Window System 28.2
28.2. Changing Window Command Menus 28.7
28.3. Interactive Display Functions 289
28.4. Windows 28.12
28.4.1. Window Properties 28.13

28.4.2. Creating Windows 28.13

28.4.3. Opening and Closing Windows 28.15

28.4.4. Redisplaying Windows 28.16

28.4.5. Reshaping Windows 28.16

28.4.6. Moving Windows 28.19

28.4.7. Exposing and Burying Windows 28.20

28.4.8. Shrinking Windows Into Icons 28.21

28.4.9. Coordinate Systems, Extents, And Scrolling 28.23

28.4.10. Mouse Activity in Windows 28.27

28.4.11. Terminal 1/0 and Page Holding 28.29

28.4.12. The TTY Process and the Caret 28.30

TOC.4

TABLE OF CONTENTS

. TABLE OF CONTENTS

28.4.13. Miscellaneous Window Functions 28.31

28.4.14. Miscellaneous Window Properties 28.33

28.4.15. Example: A Scrollable Window 28.34

28.5. Menus 28.37
28.5.1. Menu Fields 28.38

28.5.2. Miscellaneous Menu Functions 28.42

28.5.3. Examples of Menu Use : 28.43

28.6. Attached Windows 28.45
28.6.1. Attaching Menus To Windows 28.48

28.6.2. Attached PromptWindows 28.50

28.6.3. Window Operations And Attached Windows 28.50

28.6.4. Window Properties Of Attached Windows 2853

29. Hardcopy Facilities . 29.1
29.1. Lowe-level Hardcopy Variables , 29.5
30. Terminal Input/QOutput 30.1
30.1. Interrupt Characters 30.1
30.2. Terminal Tables 30.4
30.2.1. Terminal Syntax Classes 30.5

30.2.2. Terminal Control Functions 30.6

30.2.3. Line-Buffering , 30.9

30.3. Dribble Files 30.12
30.4. Cursor and Mouse 30.13
30.4.1. Changing the Cursor Image 30.13

30.4.2. Flashing Bars on the Cursor 30.16

30.4.3. Cursor Position 30.17

30.4.4. Mouse Button Testing 30.17

30.4.5. Low Level Mouse Functions 30.18

30.5. Keyboard Interpretation 30.19
30.6. Display Screen 30.22
30.7. Miscellaneous Terminal I/0 30.24
31. Ethernet 311
31.1. Ethernet Protocols 31.1
31.1.1. Protocol Layering 311

31.1.2. Level Zero Protocols 31.2

TABLE OFCONTENTS TOC.S

TABLE OF CONTENTS

31.1.3. Level One Protocols 31.3

31.1.4. Higher Level Protocols 31.4

31.1.5. Connecting Networks: Routers and Gateways 31.4

31.1.6. Addressing Conflicts with Level Zero Mediums 31.5

31.1.7. References 31.5
31.2. Higher-level PUP Protocol Functions 31.6
31.3. Higher-level NS-Protocol Functions 31.7
31.3.1. Name and Address Conventions 31.7
31.3.2. Clearinghouse Functions 319
31.3.3. NS Printing 3112
31.3.4. SPP Stream Interface 31.12
31.3.5. Courier Remote Procedure Call Protocol 31.15
31.3.5.1. Defining Courier Programs 31.15
31.3.5.2. Courier Type Definitions 3117
31.3.5.2.1. Pre-defined Types 3117
31.3.5.2.2. Constructed Types 31.18
31.3.5.2.3. User Extensions to the Type Language 31.19
31.3.5.3. Performing Courier Transactions 31.20
31.3.5.3.1. Expedited Procedure Call 31.22
31.3.5.3.2. Expanding Ring Broadcast 31.23
31.3.5.3.3. Using Bulk Data Transfer 31.24
31.3.5.3.4. Courier Subfunctions for Data Transfer 31.25
31.4. Level One Ether Packet Format 31.26
31.5. PUP Level One Functions 31.28
31.5.1. Creating and Managing Pups 31.28
31.5.2. Sockets 31.28
31.5.3. Sending and Receiving Pups 31.29
31.5.4. Pup Routing Information 31.30
31.5.5. Miscellaneous PUP Utilities 31.31
31.5.6. PUP Debugging Aids 31.32
31.6. NS Level One Functions 31.36
31.6.1. Creating and Managing XIPs 31.36
31.6.2. NS Sockets 31.37
31.6.3. Sending and Receiving XIPs 31.37

TOC.6 TABLE OF CONTENTS

TABLE OF CONTENTS

31.6.4. NS Debugging Aids 31.38
31.7. Support for Other Level One Protocols 31.38
31.8. The SYSQUEUE mechanism 31.41

TABLE OF CONTENTS TOC.7

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.8 TABLE OF CONTENTS

TABLE OF CONTENTS
]

24. Streams and Files 24.1
24.1. Opening and Closing File Streams 24.2
24.2. File Names 24.5
24.3. Incomplete File Names 24.9
24.4. Version Recognition 24.11
24.5. Using File Names Instead of Streams 24.13

24.5.1. File Name Efficiency Considerations 2414
24.5.2, Obsolete File Opening Functions 24.14
24.5.3. Converting Old Programs 24.15
24.6. Using Files with Processes 24.16
24.7. File Attributes 24.17
24.8. Closing and Reopening Files 24.20
24.9. Local Hard Disk Device 24.21
24.10. Floppy Disk Device 24.24
24.11. 1/0 Operations to and from Strings 24.28
24.12. Temporary Files and the CORE Device 24.29
24.13. NULL Device 2430
24.15. Deleting, Copying, and Renaming Files 24.31
24.16. Searching File Directories 24 31
24.17. Listing File Directories 24.33
24.18. File Servers 24.36
24.18.1. Pup File Server Protocols 2436
24.18.2. Xerox NS File Server Protocols 2437
24.18.3. Operating System Designations 24.38
24.18.4. Loggingin 24.39
24.18.5. Abnormal Conditions 24.41

TABLE OF CONTENTS TOC.1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

TABLE OF CONTENTS

26.1.8. INSPECTWs 26.6

26.2. PROMPTFORWORD 26.9
26.3. ASKUSER 26.12
26.3.1. Format of KEYLST 26.13

26.3.2. Options 26.15

26.3.3. Operation 26.17

26.3.4. Completing a Key 26.18

26.3.5. Special Keys 26.19

26.3.6. Startup Protocol and Typeahead 26.20

26.4. TTYIN Display Typein Editor 26.22
26.4.1. Entering Input With TTYIN 26.22

26.4.2. Mouse Commands [Interlisp-D Only] 26.24

26.4.3. Display Editing Commands 26.25

26.4.4. Using TTYIN for Lisp Input 26.28

26.4.5. Useful Macros 26.29

26.4.6. Programming With TTYIN 26.29

26.4.7. Using TTYIN as a General Editor 26.32

26.4.8. ?= Handler 26.33

26.4.9. Read Macros 26.34

26.4.10. Assorted Flags 26.36

26.4.11. Special Responses 26.38

26.4.12. Display Types 26.38

26.5. Prettyprint 26.39
26.5.1. Comment Feature 26.42

26.5.2. Comment Pointers 26.44

26.5.3. Converting Comments to Lower Case 26.46

26.5.4. Special Prettyprint Controls 26.47

27. Graphics Output Operations 27.1
27.1. Primitive Graphics Concepts 27.1
27.1.1. Positions 271

27.1.2., Regions 27.1

27.1.3. Bitmaps 273

27.1.4. Textures 27.6

27.2. Openingimage Streams 27.8

TABLE OFCONTENTS

TOC.3

TABLE OF CONTENTS

27.3. Accessing Image Stream Fields 27.10
27.4. Current Position of an Image Stream 2713
27.5. Moving Bits Between Bitmaps With BITBLT 27.14
27.6. Drawing Lines 27.17
27.7. Drawing Curves 27.18
27.8. Miscellaneous Drawing and Printing Operations 27.20
27.9. Drawing and Shading Grids 27.22
27.10. Display Streams 27.23
27.12. Fonts 27.25
27.13. Font Files and Font Directories 27.31
27.15. FontProfiles 27.32
27.16. Image Objects 27.35
27.16.1. IMAGEFNS Methods 27.36

27.16.2. Registering Image Objects 27.39

27.16.3. Reading and Writing Image Objectson Files 27.40

27.16.4. Copying Image Objects Between Windows 27.41

27.17. Implementation of Image Streams 27.42
28. Windows and Menus 28.1
28.1. Using The Window System 28.2
28.2. Changing Window Command Menus 28.7
28.3. Interactive Display Functions 289
28.4. Windows 28.12
28.4.1. Window Properties 28.13

28.4.2. Creating Windows 28.13

28.4.3. Opening and Closing Windows 28.15

28.4.4. Redisplaying Windows 28.16

28.4.5. Reshaping Windows 28.16

28.4.6. Moving Windows 28.19

28.4.7. Exposing and Burying Windows 28.20

28.4.8. Shrinking Windows Into Icons 28.21

28.4.9. Coordinate Systems, Extents, And Scrolling 28.23

28.4.10. Mouse Activity in Windows 28.27

28.4.11. Terminal 1/0 and Page Holding 28.29

28.4.12. The TTY Process and the Caret 28.30

TOC.4

TABLE OF CONTENTS

. TABLE OF CONTENTS

28.4.13. Miscellaneous Window Functions 28.31

28.4.14. Miscellaneous Window Properties 28.33

28.4.15. Example: A Scrollable Window 28.34

28.5. Menus 28.37
28.5.1. Menu Fields 28.38

28.5.2. Miscellaneous Menu Functions 28.42

28.5.3. Examples of Menu Use : 28.43

28.6. Attached Windows 28.45
28.6.1. Attaching Menus To Windows 28.48

28.6.2. Attached PromptWindows 28.50

28.6.3. Window Operations And Attached Windows 28.50

28.6.4. Window Properties Of Attached Windows 2853

29. Hardcopy Facilities . 29.1
29.1. Lowe-level Hardcopy Variables , 29.5
30. Terminal Input/QOutput 30.1
30.1. Interrupt Characters 30.1
30.2. Terminal Tables 30.4
30.2.1. Terminal Syntax Classes 30.5

30.2.2. Terminal Control Functions 30.6

30.2.3. Line-Buffering , 30.9

30.3. Dribble Files 30.12
30.4. Cursor and Mouse 30.13
30.4.1. Changing the Cursor Image 30.13

30.4.2. Flashing Bars on the Cursor 30.16

30.4.3. Cursor Position 30.17

30.4.4. Mouse Button Testing 30.17

30.4.5. Low Level Mouse Functions 30.18

30.5. Keyboard Interpretation 30.19
30.6. Display Screen 30.22
30.7. Miscellaneous Terminal I/0 30.24
31. Ethernet 311
31.1. Ethernet Protocols 31.1
31.1.1. Protocol Layering 311

31.1.2. Level Zero Protocols 31.2

TABLE OFCONTENTS TOC.S

TABLE OF CONTENTS

31.1.3. Level One Protocols 31.3

31.1.4. Higher Level Protocols 31.4

31.1.5. Connecting Networks: Routers and Gateways 31.4

31.1.6. Addressing Conflicts with Level Zero Mediums 31.5

31.1.7. References 31.5
31.2. Higher-level PUP Protocol Functions 31.6
31.3. Higher-level NS-Protocol Functions 31.7
31.3.1. Name and Address Conventions 31.7
31.3.2. Clearinghouse Functions 319
31.3.3. NS Printing 3112
31.3.4. SPP Stream Interface 31.12
31.3.5. Courier Remote Procedure Call Protocol 31.15
31.3.5.1. Defining Courier Programs 31.15
31.3.5.2. Courier Type Definitions 3117
31.3.5.2.1. Pre-defined Types 3117
31.3.5.2.2. Constructed Types 31.18
31.3.5.2.3. User Extensions to the Type Language 31.19
31.3.5.3. Performing Courier Transactions 31.20
31.3.5.3.1. Expedited Procedure Call 31.22
31.3.5.3.2. Expanding Ring Broadcast 31.23
31.3.5.3.3. Using Bulk Data Transfer 31.24
31.3.5.3.4. Courier Subfunctions for Data Transfer 31.25
31.4. Level One Ether Packet Format 31.26
31.5. PUP Level One Functions 31.28
31.5.1. Creating and Managing Pups 31.28
31.5.2. Sockets 31.28
31.5.3. Sending and Receiving Pups 31.29
31.5.4. Pup Routing Information 31.30
31.5.5. Miscellaneous PUP Utilities 31.31
31.5.6. PUP Debugging Aids 31.32
31.6. NS Level One Functions 31.36
31.6.1. Creating and Managing XIPs 31.36
31.6.2. NS Sockets 31.37
31.6.3. Sending and Receiving XIPs 31.37

TOC.6 TABLE OF CONTENTS

TABLE OF CONTENTS

31.6.4. NS Debugging Aids 31.38
31.7. Support for Other Level One Protocols 31.38
31.8. The SYSQUEUE mechanism 31.41

TABLE OF CONTENTS TOC.7

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.8 TABLE OF CONTENTS

24. STREAMS AND FILES
L ___|

Interlisp-D can perform input/output operations on a large
variety of physical devices, including local disk drives, floppy disk_
drives, the keyboard and display screen, and remote file server
computers accessed over a network. While the low-level details
of how all these devices perform input/output vary considerably,
the Interlisp-D language provides the programmer a small,
common set of abstract operations whose use is largely
independent of the physical input/output medium
involved—operations such as read, print, change font, or go to a
new line. By merely changing the targeted /O device, a single
program can be used to produce output on the display, a file, or
a printer. ‘

The underlying data abstraction that permits this flexibility is the
stream. A stream is a data object (an instance of the data type
STREAM) that encapsulates all of the information about an
input/output connection to a particular /O device. Each of
Interlisp-D's general-purpose /O functions takes a stream as one
of its arguments. The general-purpose function then performs
action specific to the stream's device to carry out the requested
operation. Not every device is capable of implementing every I/0
operation, while some devices offer additional functionality by
way of special functions for that device alone. Such restrictions
and extensions are noted in the documentation of each device.

The vast majority of the streams commonly used in Interlisp-D fall
into two interesting categories: the file stream and the image
stream.

A file is an ordered collection of data, usually a sequence of
characters or bytes, stored on a file device in a manner that

- allows the data to be retrieved at a later time. Floppy disks, hard

disks, and remote file servers are among the devices used to store
files. Files are identified by a “file name", which specifies the
device on which the file resides and a name unique to a specific
file on that device. Input or output to a file is performed by
obtaining a stream to the file, using OPENSTREAM (page 24.2).
In addition, there are functions that manipulate the files
themselves, rather than their data content.

An image stream is an output stream to a display device, such as
the display screen or a printer. In addition to the standard
output operations, such as print, an image stream implements a
variety of graphics operations, such as drawing lines and
displaying characters in multiple fonts. Unlike a file, the

STREAMS AND FILES

241

STREAMS AND FILES

"content” of an image stream cannot be retrieved. Image
streams are described on page 27.8.

The creation of other kinds of streams, such as network
byte-stream connections, is described in the chapters peculiar to
those kinds of streams. The operations common to streams in
general are described on page 25.1. This chapter describes
operations specific to file devices: how to name files, how to
open streams to files, and how to manipulate files on their
devices.

24.1 Opening and Closing File Streams

In order to perform input from or output to a file, it is necessary
to create a stream to the file, using OPENSTREAM:

(OPENSTREAM FILE ACCESS RECOG PARAMETERS —) [Function]

INPUT

OuUTPUT

BOTH

APPEND

Opens and returns a stream for the file specified by FILE, a file
name. FILE can be either a string or a litatom. The syntax and
manipulation of file names is described at length on page 24.5.
Incomplete file names are interpreted with respect to the
connected directory (page 24.10).

RECOQG specifies the recognition mode of FILE, as described on
page 24.12. If RECOG = NIL, it defaults according to the value of
ACCESS.

ACCESS specifies the "access rights" to be used when opening
the file, one of the following:

Only input operations are permitted on the file. The file must
already exist. Starts reading at the beginning of the file. RECOG
defaults to OLD.

Only output operations are permitted on the file. Starts writing
at the beginning of the file, which is initially empty. While the
file is open, other users or processes are unable to open the file
for either input or output. RECOG defaults to NEW.

Both input and output operations are permitted on the file.
Starts reading or writing at the beginning of the file. RECOG
defaults to OLD/NEW. ACCESS=BOTH implies random
accessibility (page 25.18), and thus may not be possible for files
on some devices.

Only sequential output operations are permitted on the file.
Starts writing at the end of the file. RECOG defaults to
OLD/NEW. ACCESS=APPEND may not be allowed for files on
some devices. '

24.2

STREAMS AND FILES

OPENING AND CLOSING FILE STREAMS

DON'T.CHANGE.DATE

SEQUENTIAL

Note: ACCESS = OUTPUT implies that one intends to write a new
or different file, even if a version number was specified and the
corresponding file already exists. Thus any previous contents of
the file are discarded, and the file is empty immediately after the
OPENSTREAM. If itis desired to write on an already existing file
while preserving the old contents, the file must be opened for
access BOTH or APPEND.

PARAMETERS is a list of pairs (ATTRIB VALUE), where ATTRIB is
any file attribute that the file system is willing to allow the user
to set (see SETFILEINFO, page 24.17). A non-list ATTRIB in
PARAMETERS is treated as the pair (ATTRIB T). Generally
speaking, attributes that belong to the permanent file (e.g.,
TYPE) can only be set when creating a new file, while attributes
that belong only to a particular opening of a file (e.g.,
ENDOFSTREAMOP) can be set on any call to OPENSTREAM. Not
all devices honor all attributes; those not recognized by a
particular device are simply ignored.

In addition to the attributes permitted by SETFILEINFO, the
following tokens are accepted by OPENSTREAM as values of
ATTRIB inits PARAMETERS argument:

If VALUE is non-NIL, the file's creation date (page 24.17) is not
changed when the file is opened. This option is meaningful only
for old files being opened for access BOTH. This should be used
only for specialized applications in which the caller does not
want the file system to believe the file's content has been
changed.

If VALUE is non-NIL, this opening of the file need support only
sequential access; i.e., the caller intends never to use SETFILEPTR.
For some devices, sequential access to files is much more efficient
than random access. Note that the device may choose to ignore
this attribute and still open the file in a manner that permits
random access. Also note that this attribute does not make sense
with ACCESS = BOTH.

If FILE is not recognized by the file system, OPENSTREAM causes
the error FILE NOT FOUND. Ordinarily, this error is intercepted
via an entry on ERRORTYPELST (page 14.22), which causes
SPELLFILE (page 24.32) to be called. SPELLFILE searches alternate
directories and possibly attempts spelling correction on the file
name. Only if SPELLFILE is unsuccessful will the FILE NOT FOUND
error actually occur.

If FILE exists but cannot be opened, OPENSTREAM causes one of
several other errors: FILE WON'T OPEN if the file is already
opened for conflicting access by someone else; PROTECTION
VIOLATION if the file is protected against the operation; FILE
SYSTEM RESOURCES EXCEEDED if there is no more room in the
file system.

STREAMS AND FILES

24.3

OPENING AND CLOSING FILE STREAMS

(CLOSEF FILE)

[Function]

(CLOSEF? FILE)

Closes FILE, and returns its full file name. Generates an error,.
FILE NOT OPEN, if FILE does not designate an openstream. After
closing a stream, no further input/output operations are
permitted onit.

If FILE is NIL, it is defaulted to the primary input stream if that is
not the terminal stream, or else the primary output stream if that
is not the terminal stream. If both primary input and output
streams are the terminal input/output streams, CLOSEF returns
NIL. If CLOSEF closes either the primary input stream or the
primary output stream (either explicitly orin the FILE = NIL case),
it resets the primary stream for that direction to be the
corresponding terminal stream. See page 25.3 for information
on the primary input/output streams.

WHENCLOSE (page 24.20) allows the user to “advise" CLOSEF to
perform various operations when a file is closed.

Because of buffering, the contents of a file open for output are
not guaranteed to be written to the actual physical file device
until CLOSEF is called. Buffered data can be forced out to a file
without closing the file by using the function FORCEQUTPUT
(page 25.10).

Some network file devices perform their transactions in the
background. As a result, it is possible for a file to be closed by
CLOSEF and yet not be "fully" closed for some small period of
time afterward, during which time the file appears to still be
busy, and cannot be opened for conflicting access by other users.

[Function]

(OPENP FILE ACCESS)

Closes FILE if it is open, returning the value of CLOSEF; otherwise
does nothing and returns NiL.

In the present implementation of Interlisp-D, all streams to files
are kept, while open, in a registry of “open files". This registry
does not include nameless streams, such as string streams (page
24.28), display streams (page 28.29), and the terminal input and
output streams; nor streams explicitly hidden from the user, such
as dribble streams (page 30.12). This registry may not persist in
future implementations of Interlisp-D, but at the present time it
is accessible by the following two functions:

[Function]

ACCE§S is an access mode for a stream opening (one of INPUT,
OUTPUT, BOTH, or APPEND), or NIL, meaning any access.

If FILE is a stream, returns its full name if it is open for the
specified access, else NIL.

24.4

STREAMS AND FILES

OPENING AND CLOSING FILE STREAMS

(CLOSEALL ALLFLG)

If FILE is a file name (a litatom), FILE is processed according to the
rules of file recognition (page 24.12). If a stream open to a file by
that name is registered and open for the specified access, then
the file's full name is returned. If the file name is not recognized,
or no stream is open to the file with the specified access, NIL is
returned. '

If FILE is NIL, returns a list of the full names of all registered
streams that are open for the specified access.

[Function]

Closes all streams in the value of (OPENP). Returns a list of the
files closed.

WHENCLOSE (page 24.20) allows certain files to be "protected"
from CLOSEALL. If ALLFLG is T, all files, including those
protected by WHENCLOSE, are closed.

24.2 File Names

HOST

DEVICE

A file name in Interlisp-D is a string or litatom whose characters
specify a "path" to the actual file: on what host or device the file
resides, in which directory, and so forth. Because Interlisp-D
supports a variety of non-local file devices, parts of the path
could be very device-dependent. However, it is desirable for
programs to be able to manipulate file names in a
device-independent manner. To this end, Interlisp-D specifies a
uniform file name syntax over all devices; the functions that
perform the actual file manipulation for a particular device are
responsible for any transiation to that device's naming
conventions. .

A file name is composed of a collection of fields, some of which
have specific semantic interpretations. The functions described
below refer to each field by a field name, a literal atom from
among the following: HOST, DEVICE, DIRECTORY, NAME,
EXTENSION, and VERSION. The standard syntax for a file name
that contains all of those fields is
{HOST)}DEVICE: < DIRECTORY >NAME.EXTENSION; VERSION.
Some host's file systems do not use all of those fields in their file
names.

Specifies the host whose file system contains the file. In the case
of local file devices, the "host" is the name of the device, e.qg.,
DSK or FLOPPY.

Specifies, for those hosts that divide their file system's name
space among mutiple physical devices, the device or logical
structure on which the file resides. This should not be confused

STREAMS AND FILES

24.5

FILE NAMES

DIRECTORY

NAME

EXTENSION

VERSION

with Interlisp-D's abstract "file device”, which denotes either a
host or a local physical device and is specified by the HOST field.

Specifies the "directory” containing the file. A directory usually
is a grouping of a possibly large set of loosely related files, e.g.,
the personal files of a particular user, or the files belonging to
some project. The DIRECTORY field usually consists of a principal
directory and zero or more subdirectories that together describe
a path through a file system'’s hierarchy. Each subdirectory name
is set off from the previous directory or subdirectory by the
character ">"; e.g., "LISP>LIBRARY >NEW".

This field carries no specific meaning, but generally names a set
of files thought of as being different renditions of the "same"”
abstract file.

This field also carries no specific meaning, but generally
distinguishes the form of files having the same name. Most files
systems have some “conventional" extensions that denote
something about the content of the file. E.g., in Interlisp-D, the
extension DCOM standardly denotes a file containing compiled
function definitions.

A number used to distinguish the versions or "generations" of
the files having a common name and extension. The version
number is incremented each time a new file by the same name is
created.

Most functions that take as input "a directory" accept either a
directory name (the contents of the DIRECTORY field of a file
name) or a "full" directory specification—a file name fragment
consisting of only the fields HOST, DEVICE, and DIRECTORY. In
particular, the “connected directory" (page 24.10) consists, in
general, of all three fields.

For convenience in dealing with certain operating systems,
Interlisp-D also recognizes [] and () as host delimiters
(synonymous with {}), and / as a directory delimiter (synonymous
with < at the beginning of a directory specification and > to
terminate directory or subdirectory specification). For example,
a file on a Unix file server UNX with the name
/ust/foo/bar/stuff.tedit, whose DIRECTORY field is thus
usr/foo/bar, could be specified as {UNX}/usr/foo/bar/stuff.tedit,
or (UNX)<usr/foo/bar>stuff.tedit, or several other variations.
Note that when using [] or () as host delimiters, they usually must
be escaped with the reader's % escape character if the file name
is expressed as a litatom rather than a string.

Different hosts have different requirements regarding which
characters are valid in file names. From Interlisp-D's point of
view, any characters are valid. However, in order to be able to
parse a file name into its component fields, it is necessary that
those characters that are conventionally used as file name
delimiters be quoted when they appear inside of fields where

24.6

STREAMS AND FILES

FILE NAMES

there could be ambiguity. The file name quoting character is
(single quote). Thus, the following characters must be quoted
when not used as delimeters: :, >, ;,/, and 'itself. The character
. (period) need only be quoted if it is to be considered a part of
the EXTENSION field. The characters },], and) need only be
quoted in a file name when the host field of the name is
introduced by {, [, and (, respectively. The characters {, [, (, and
< need only be quoted if they appear as the first character of a
file name fragment, where they would otherwise be assumed to
introduce the HOST or DIRECTORY fields.

The following functions are the standard way to manipulate file
names in Interlisp. Their operation is purely syntactic—they
perform no file system operations themselves.

(UNPACKFILENAME.STRING FILENAME — — —) [Function]

(UNPACKFILENAME FILE —)

Parses FILENAME, returning a list in property list format of
alternating field names and field contents. The field contents
are returned as strings. If FILENAME is a stream, its full name is
used.

Only those fields actually present in FILENAME are returned. A
field is considered present if its delimiting punctuation (in the
case of EXTENSION and VERSION, the preceding period or
semicolon, respectively) is present, even if the field itself is
empty. Empty fields are denoted by "" (the empty string).

Examples:

(UNPACKFILENAME.STRING "FOO.BAR") = >
(NAME "FOO" EXTENSION "BAR")

(UNPACKFILENAME.STRING "FOO.;2") = >
(NAME “"FOO" EXTENSION "" VERSION "2")

(UNPACKFILENAME.STRING "FOO;") = >
(NAME "FOO" VERSION "")

(UNPACKFILENAME.STRING
"{ERIS} <LISP>CURRENT>IMTRAN.DCOM;21")
a > (HOST "ERIS"” DIRECTORY "LISP>CURRENT"
NAME "IMTRAN" EXTENSION "DCOM"
VERSION "21")

[Function]
Old version of UNPACKFILENAME.STRING that returns the field
values as atoms, rather than as strings.

UNPACKFILENAME.STRING is now considered the "correct” way
of unpacking file names, because it does not lose information
when the contents of a field are numeric. For example,

(UNPACKFILENAME 'STUFF.TXT) = >
{(NAME STUFF EXTENSION TXT)

STREAMS AND FILES

24.7

FILE NAMES

but

(UNPACKFILENAME 'STUFF.029) = >
(NAME STUFF EXTENSION 29)

Explicitly omitted fields are denoted by the atom NIL, rather than
the empty string.

Note: Both UNPACKFILENAME and UNPACKFILENAME.STRING
leave the trailing colon on the device field, so that the Tenex
device NIL: can be distinguished from the absence of a device.
Although UNPACKFILENAME.STRING is capable of making the
distinction, it retains this behavior for backward compatibility.
Thus,

(UNPACKFILENAME.STRING '{TOAST}DSK:FOOQ) = >
(HOST "TOAST" DEVICE "DSK:" NAME “FOOQ")

-

(FILENAMEFIELD FILENAME FIELDNAME) [Function]

Returns, as an atom, the contents of the FIELDNAME field of
FILENAME. If FILENAME is a stream, its full name is used.

(PACKFILENAME.STRING FIELD7 CONTENTS ¢ ... FIELDp CONTENTS)) [NoSpread Function]

Takes a sequence of alternating field names and field contents
(atoms or strings), and returns the corresponding file name, as a
string. ‘ ‘

If PACKFILENAME.STRING is given a single argument, it is
interpreted as a list of alternating field names and field contents.
Thus PACKFILENAME.STRING and UNPACKFILENAME.STRING
operate as inverses.

If the same field name is given twice, the first occurrence is used.

The contents of the field name DIRECTORY may be either a
directory name or a full directory specification as described
above.

PACKFILENAME.STRING also accepts the "field name" BODY to
mean that its contents should itself be unpacked and spliced into
the argument list at that point. This feature, in conjunction with
the rule that fields early in the argument list override later
duplicates, is useful for altering existing file names. For example,
to provide a default field, place BODY first in the argument list,
then the default fields. To override a field, place the new fields
first and BODY last.

If the value of the BODY field is a stream, its full name is used.

Examples:

(PACKFILENAME.STRING 'DIRECTORY “LISP"
‘NAME "NET")
a> "<LISP>NET"

248

STREAMS AND FILES

FILE NAMES

(PACKFILENAME.STRING 'NAME "NET"
'DIRECTORY “{DSK} <LISPFILES>")
= > "{DSK} <LISPFILES>NET"

(PACKFILENAME.STRING 'DIRECTORY "{DSK}"
'BODY "{TOAST} <FOO>BAR")
= > "{DSK}BAR"

(PACKFILENAME.STRING 'DIRECTORY "FRED"
'BODY "{TOAST} <FOO>BAR")
= > "{TOAST}<FRED>BAR"

(PACKFILENAME.STRING 'BODY "{TOAST}<FOO>BAR"
'DIRECTORY "FRED")
= > "{TOAST}<FOO>BAR"

(PACKFILENAME.STRING 'VERSION NIL
'BODY "{TOAST} <FOO>BAR.DCOM;2")
= > "{TOAST} <FOO>BAR.DCOM"

(PACKFILENAME.STRING 'BODY "{TOAST} <FOO >BAR.DCOM"
"VERSION 1)
= > "{TOAST} <FOO>BAR.DCOM;1"

(PACKFILENAME.STRING 'BODY "{TOAST}<FOO>BAR.DCOM;"
'VERSION 1)
= > "{TOAST}<FOO>BAR.DCOM;"

(PACKFILENAME.STRING 'BODY "BAR.;1"
'EXTENSION "DCOM")
= > "BAR.;1"

(PACKFILENAME.STRING 'BODY "BAR;1"
'EXTENSION "DCOM")
= > "BAR.DCOM;1"

In the last two examples, note that in one case the extension is
explicitly present in the body (as indicated by the preceding
period), while in the other there is no indication of an extension,
so the default is used.

(PACKFILENAME FIELD CONTENTS ... FIELDp CONTENTSp) [NoSpread Function]

The same as PACKFILENAME.STRING, except that it returns the
file name as a litatom, instead of a string.

24.3 Incomplete File Names

In general, it is not necessary to pass a complete file name (one
containing all the fields listed above) to functions that take a file
name as argument. Interlisp supplies suitable defaults for

STREAMS AND FILES

249

INCOMPLETE FILE NAMES

(CNDIR HOST/DIR)

certain fields, as described below. Functions that return names
of actual files, however, always return the fully specified name.

If the version field is omitted from a file name, Interlisp performs
version recognition, as described on page 24.11.

If the host, device and/or directory field are omitted from a file
name, Interlisp defaults them with respect to the. currently
connected directory. The connected directory is changed by
calling the function CNDIR or using the programmer's assistant
command CONN.

Defaults are added to the partially specified name "left to right”
until a host, device or directory field is encountered. Thus, if the
connected directory is {TWENTY}PS: <FRED >, then

BAR.DCOM means
{TWENTY}PS: <FRED >BAR.DCOM

< GRANOLA>BAR.DCOM means
{TWENTY}PS: < GRANOLA >BAR.DCOM

MTAQ: <GRANOLA >BAR.DCOM means
{TWENTY}MTAO: <GRANOLA >BAR.DCOM

{THIRTY} <GRANOLA >BAR.DCOM means
{THIRTY}<GRANOLA >BAR.DCOM

In addition, if the partially specified name contains a
subdirectory, but no principal directory, then the subdirectory is
appended to the connected directory. For example,

ISO>BAR.DCOM means
{TWENTY}PS: <FRED>ISO >BAR.DCOM

Or, if the connected directory is the Unix directory
{UNX}/usr/fred/, then iso/bar.dcom means
{UNX}/usrffred/iso/bar.dcom, but /other/bar.dcom means
{UNX}/other/bar.dcom.

[Function]

Connects to the directory HOST/DIR, which can either be a
directory name or a full directory specification including host
and/or device. If the specification includes just a host, and the
host supports directories, the directory is defaulted to the value
of (USERNAME); if the host is omitted, connection is made to
another directory on the same host as before. If HOST/DIR is NIL,

- connects to the value of LOGINHOST/DIR.

CNDIR returns the full name of the now-connected directory.
Causes an error, Non-existent directory, if HOST/DIR is not
recognized as a valid directory.

Note that CNDIR does not necessarily require or provide any
directory access privileges. Access privileges are checked when a
file is opened. :

24.10

STREAMS AND FILES

INCOMPLETE FiLE NAMES

CONN HOST/DIR,

[Prog. Asst. Command]

LOGINHOST/DIR

Convenient command form of CNDIR for use at the executive.

‘Connects to HOST/DIR, or to the value of LOGINHOST/DIR if

HOST/DIR is omitted. This command is undoable—undoing it
causes the system to connect to the previously connected
directory.

[Variable]

CONN with no argument connects to the value of the variable
LOGINHOST/DIR, initially {DSK}, but usually reset in the user's
greeting file (page 12.1).

(DIRECTORYNAME DIRNAME STRPTR —) [Function]

If DIRNAME is T, returns the full specification of the currently
connected directory. If DIRNAME is NIL, returns the "login"
directory specification (the value of LOGINHOST/DIR). For any
other value of DIRNAME, returns a full directory specification if
DIRNAME designates an existing directory (satisfies
DIRECTORYNAMEP), otherwise NIL.

If STRPTR is T, the value is returned as an atom, otherwise it is
returned as a string.

(DIRECTORYNAMEP DIRNAME HOSTNAME) [Function]

(HOSTNAMEP NAME)

Returns T if DIRNAME is recognized as a valid directory on host
HOSTNAME, or on the host of the currently connected directory
if HOSTNAME is NIL. DIRNAME may be either a directory name
or a full directory specification containing host and/or device as
well.

If DIRNAME includes subdirectories, this function may or may not
pass judgment on their validity. Some hosts support “true"
subdirectories, distinct entities manipulable by the file system,
while others only provide them as a syntactic convenience.

[Function]

Returns T if NAME is recognized as a valid host or file device
name at the moment HOSTNAMEP is called.

24.4 Version Recognition

Most of the file devices in Interiisp support file version numbers.
That is, it is possible to have several files of the exact same name,
differing only in their VERSION field, which is incremented for
each new "version" of the file that is created. When a file name
lacking a version number is presented to the file system, it is

STREAMS AND FILES

24.11

VERSION RECOGNITION

(FULLNAME X RECOG)

necessary to determine which version number is intended. This
process is known as version recognition.

When OPENSTREAM opens a file for input and no version
number is given, the highest existing version number is used.
Similarly, when a file is opened for output and no version
number is given, a new file is created with a version number one
higher than the highest one currently in use with that file name.
The version number defaulting for OPENSTREAM can be
changed by specifying a different vaiue for its RECOG argument,
as described under FULLNAME, below.

Other functions that accept file names as arguments generally
perform the default version recognition, which is newest version
for existing files, or a new version if using the file name to create
a new file. The one exception is DELFILE, which defaults to the
oldest existing version of the file.

The functions below can be used to perform version recognition
without actually calling OPENSTREAM to open the file. Note
that these functions only tell the truth about the moment at
which they are called, and thus cannot in general be used to
anticipate the name of the file opened by a comparable
OPENSTREAM. They are sometimes, however, helpful hints.

[Function]:

oLd

OLDEST

NEW

OLD/NEW

If X is an open stream, simply returns the full file name of the
stream. Otherwise, if X is a file name given as a string or litatom,
performs version recognition, as follows:

If X is recognized in the recognition mode specified by RECOG as
an abbreviation for some file, returns the file's full name,
otherwise NIL. RECOG is one of the following:

Choose the newest existing version of the file. Return NIL if no
file named X exists.

Choose the oldest existing version of the file. Return NIL if no file
named X exists.

Choose a new (not yet existing) version of the file. That is, if
versions of X already exist, then choose a version number one
higher than highest existing version; else choose version 1. For
some file systems, FULLNAME returns NIL if the user does not
have the access rights necessary for creating a new file named X.

Try OLD, then NEW. That is, choose the newest existing version
of the file, if any; else choose version 1. This usually only makes
sense if you are intending to open X for access BOTH.

RECOG = NIL defaults to OLD. For all other values of RECOG,
generates an error ILLEGAL ARG.

If X already contains a version number, the RECOG argument will
never change it. In particular, RECOG = NEW does not require

24.12

STREAMS AND FILES

VERSION RECOGNITION

that the file actually be new. For example, (FULLNAME 'FOO.;2
‘NEW) may return {ERIS}<LISP>F00.;2 if that file already
exists, even though (FULLNAME 'FOO ‘NEW) would default the
version to a new number, perhaps returning
{ERIS}<LISP>F0O.;5.

(INFILEP FILE) _ [Function]
Equivalent to (FULLNAME FILE 'OLD). That is, returns the full file
name of the newest version of FILE if FILE is recognized- as
specifying the name of an existing file that could potentially be
opened for input, NIL otherwise.

(OUTFILEP FILE) [Function]
Equivalent to (FULLNAME FILE '"NEW).

Note that INFILEP, QOUTFILEP and FULLNAME do not open any
files; they are pure predicates. In general they are also only
hints, as they do not necessarily imply that the caller has access
rights to the file. For example, INFILEP might return non-NIL, but
OPENSTREAM might fail for the same file because the file is
read-protected against the user, or the file happens to be open
for output by another user at the time. Similarly, OUTFILEP could
return non-NIL, but OPENSTREAM could fail with a FILE SYSTEM
RESOURCES EXCEEDED error.

Note also that in a shared file system, such as a remote file server,
intervening file operations by another user could contradict the
information returned by recognition. For example, a file that
was INFILEP might be deleted, or between an OUTFILEP and the
subsequent OPENSTREAM, another user might create a new
version or delete the highest version, causing OPENSTREAM to
open a different version of the file than the one returned by
OUTFILEP. In addition, some file servers do not well support
recognition of files in output context. Thus, in general, the
“truth” about a file can only be obtained by actually opening the
file; creators of files should rely on the name of the stream
opened by OPENSTREAM, not the value returned from these
recognition functions. In particular, for the reasons described
earlier, programmers are discouraged from using OUTFILEP or
(FULLNAME NAME 'NEW).

24.5 Using File Names Instead of Streams

In earlier implementations of Interlisp, from the days of
Interlisp-10 onward, the "handle" used to refer to an open file
was not a stream, but rather the file's full name, represented as a

STREAMS AND FILES) 24.13

USING FILE NAMES INSTEAD OF STREAMS

litatom. When the file name was passed to any /O function, it
was mapped to a stream by looking it up in a list of open files.
This scheme was sometimes convenient for typing in file
commands at the executive, but was very poor for serious
programming in two major ways. First, the mapping from file
name to stream on every input/output operation is inefficient.
Second, and more importantly, using the file name as the handle
on an open stream means that it is not possible to have more
than one stream open on a given file at once.

As of this writing, Interlisp-D is in a transition period, where it
still supports the use of litatom file names as synonymous with
open streams, but this use is not recommended. The remainder
of this section discusses this usage of file names for the benefit of
those reading older programs and wishing to convert them as
necessary to work properly when this compatibility feature is
removed.

24.5.1 File Name Efficiency Considerations

It is possible for a program to be seriously inefficient using a file
name as a stream if the program is not using the file's full name,
the name returned by OPENFILE (below). Any time that an
input/output function is called with a file name other than the
full file name, Interlisp must perform recognition on the partial
file name in order to determine which open file is intended.
Thus if repeated operations are to be performed, it is
considerably more efficient to use the full file name returned
from OPENFILE than to repeatedly use the possibly incomplete
name that was used to open the file.

There is a more subtle problem with partial file names, in that
recognition is performed on the user's entire directory, not just
the open files. It is possible for a file name that was previously
recognized to denote one file to suddenly denote a different
file. For example, suppose a program performs (INFILE 'FOO),
opening FOO.;1, and reads several expressions from FOO. Then
the user interrupts the program, creates a FOO.;2 and resumes
the program (or a user at another workstation creates a IEOO.;Z).
Now a call to READ giving it FOO as its FILE argument will
generate a FILE NOT OPEN error, because FOO will be recognized
as FOO.;2.

24.5.2 Obsolete File Opening Functions

The following functions are now considered obsolete, but are
provided for backwards compatibility:

24.14

STREAMS AND FILES

USING FILE NAMES INSTEAD OF STREAMS

(OPENFILE FILE ACCESS RECOG PARAMETERS —) [Function]

(INFILE FILE)

Opens FILE with access rights as specified by ACCESS, and
recognition mode RECOG, and returns the full name of the
resuiting stream. Equivalent to (FULLNAME (OPENSTREAM FILE
ACCESS RECOG PARAMETERS)).

[Function]

(OUTFILE FILE)

Opens FILE for input, and sets it as the primary input stream.
Equivalent to (INPUT (OPENSTREAM FILE 'INPUT 'OLD))

[Function]

(IOFILE FILE)

Opens FILE for output, and sets it as the primary output stream.
Equivalent to (OUTPUT (OPENSTREAM FILE 'OUTPUT 'NEW)).

[Function]

24.5.3 Converting Old Programs

Equivalent to (OPENFILE FILE 'BOTH 'OLD); opens FILE for both
input and output. Does not affect the primary input or output
stream.

At some point in the future, the Interlisp-D file system will
change so that each call to OPENSTREAM returns a distinct
stream, evenif a stream is already open to the specified file. This
change is required in order to deal rationally with files in a
multiprocessing environment.

This change will of necessity produce the following
incompatibilities:

1) The functions OPENFILE, INPUT, and OUTPUT will return a
STREAM, not a full file name. To make this less confusing in
interactive situations, STREAMs will have a print format that
reveals the underlying file's actual name,

2) A greater penalty will ensue for passing as the FILE argument
to i/o operations anything other than the object returned from
OPENFILE. Passing the file's name will be significantly slower
than passing the stream (even when passing the "full" file
name), and in the case where there is more than one stream
open on the file it might even act on the wrong one.

3) OPENP will return NIL when passed the name of a file rather
than a stream (the value of OPENFILE or OPENSTREAM).

Users should consider the following advice when writing new
programs and editing existing programs, in order that they will
continue to operate well when this change is made:

Because of the efficiency and ambiguity considerations described
earlier, users have long been encouraged to use only full file

STREAMS AND FILES

24.15

USING FILE NAMES INSTEAD OF STREAMS

names as FILE arguments to i/o operations. The “proper” wayto
have done this was to bind a variable to the value returned from
OPENFILE and pass that variable to all i/o operations; such code
will continue to work. A less proper way to obtain the full file
name, but one which has to date not incurred any obvious
penalty, is that which binds a variable to the result of an INFILEP
and passes that to OPENFILE and all i/o operations. This has
worked because INFILEP and OPENFILE both return a full file
name, an invalid assumption in this future world. Such code
should be changed to pass around the value of the OPENFILE,
not the INFILEP.

Code that calls OPENP to test whether a possibly incomplete file
name is already open should be recoded to pass to OPENP only
the value returned from OPENFILE or OPENSTREAM.

Code that uses ordinary string functions to manipulate file
names, and in particular the value returned from OPENFILE,
should be <changed to wuse the the functions
UNPACKFILENAME.STRING and PACKFILENAME.STRING. Those
functions work both on file names (strings) and streams
(coercing the stream to the name of its file).

Code that tests the value of OUTPUT for equality to some known
file name or T should be examined carefully and, if possible,
recoded.

To see more directly the effects of passing around STREAMs
instead of file names, replace your calls to OPENFILE with calls to
OPENSTREAM. OPENSTREAM is called in exactly the same way,
but returns a STREAM. Streams can be passed to READ, PRINT,
CLOSEF, etc just as the file's full name can be currently, but using
them is more efficient. The function FULLNAME, when applied
to a stream, returns its full file name.

24.6 Using Files with Processes

Because Interlisp-D does not yet support multiple streams per
file, problems can arise if different processes attempt to access
the same file. The user has to be careful not to have two
processes manipulating the same file at the same time, since the
two processes will be sharing a single input stream and file
pointer. For example, it will not work to have one process
TCOMPL a file while another process is running LISTFILES on it.

24.16

STREAMS AND FILES

FILE ATTRIBUTES

24.7 File Attributes

(GETFILEINFO FILE ATTRIB)

Any file has a number of “file attributes", such as the read date,
protection, and bytesize. The exact attributes that a file can have
is dependent on the file device. The functions GETFILEINFO and
SETFILEINFO allow the user to conveniently access file attributes:

[Function]

Returns the current setting of the ATTRIB attribute of FILE.

(SETFILEINFO FILE ATTRIB VALUE) [Function]

BYTESIZE

LENGTH

SIZE
CREATIONDATE

Sets the attribute ATTRIB of FILE to be VALUE. SETFILEINFO
returns T if it is able to change the attribute ATTRIB, and NIL if
unsuccessful, either because the file device does not recognize
ATTRIB or because the file device does not permit the attribute
to be modified.

The FILE argument to GETFILEINFO and SETFILEINFO can be an
open stream (or an argument designating an open stream, see
page 25.2), or the name of a closed file. SETFILEINFO in general
requires write access to the file.

The attributes recognized by GETFILEINFO and SETFILEINFO fall
into two categories: permanent attributes, which are properties
of the file, and temporary attributes, which are properties only
of an open stream to the file. The temporary attributes are only
recognized when FILE designates an open stream; the
permanent attributes are usually equally accessible for open and
closed files. However, some devices are willing to change the

. value of certain attributes of an open stream only when specified

in the PARAMETERS argument to OPENSTREAM (page 24.2), not
on a later call to SETFILEINFO.

The following are currently recognized as permanent attributes
of a file:

The byte size of the file. Interlisp-D currently only supports byte
size 8.

- The number of bytes in the file. Alternatively, the byte position

of the end-of-file. Like (GETEOFPTR FILE), but FILE does not have
to be open.

The size of FILE in pages.

The date and time, as a string, that the content of FILE was
"created". The creation date changes whenever the content of
the file is modified, but remains unchanged when a file is
transported, unmodified, across file systems. Specifically,
COPYFILE and RENAMEFILE (page 24.31) preserve the file's
creation date. Note that this is different from the concept of
“creation date” used by some operating systems (e.g., Tops20).

STREAMS AND FILES

2417

FILE ATTRIBUTES,

WRITEDATE

READDATE

ICREATIONDATE
IWRITEDATE
IREADDATE

AUTHOR
TYPE

The date and time, as a string, that the content of FILE was last
written to this particular file system. When a file is copied, its
creation date does not change, but its write date becomes the
time at which the copy is made.

The date and time, as a string, that FILE was last read, or NIL if it
has never been read.

The CREATIONDATE, WRITEDATE and READDATE, respectively,
ininteger form, as IDATE (page 12.14) would return. This form is
useful for comparing dates.

The name of the user who last wrote the file.

The "type" of the file, some indication of the nature of the file's
content. The "types" of files allowed depends on the file device.
Most devices recognize the litatom TEXT to mean that the file
contains just characters, or BINARY to mean that the file contains
arbitrary data.

Some devices support a wider range of file types that distinguish
among the various sorts of files one might create whose content
is "binary”. All devices interpret any value of TYPE that they do
not support to be BINARY. Thus, GETFILEINFO may return the
more general value BINARY instead of the original type that was
passed to SETFILEINFO or OPENSTREAM. Similarly, COPYFILE,
while attempting to preserve the TYPE of the file it is copying,
may turn, say, an INTERPRESS file into a mere BINARY file.

The way in which some file devices (e.g., Xerox file servers)
support a wide range of file types is by representing the type as
an integer, whose interpretation is known by the client. The
variable FILING.TYPES is used to associate symbolic types with
numbers for these devices. This listinitially contains some of the
well-known assignments of type name to number; the user can
add additional elements to handle any private file types. For
example, suppose there existed an NS file type MAZEFILE with
numeric value 5678. You could add the element (MAZEFILE
5678) to FILING.TYPES and then use MAZEFILE as a value for the
TYPE attribute to SETFILEINFO or OPENSTREAM. Other devices
are, of course, free to store TYPE attributes in whatever manner
they wish, be it numeric or symbolic. FILING.TYPES is merely
considered the official registry for Xerox file types.

For most file devices, the TYPE of a newly created file, if not
specified in the PARAMETERS argument to OPENSTREAM,
defaults to the value of DEFAULTFILETYPE, initially TEXT.

The following are currently recognized as temporary attributes
of an open stream:

24.18

STREAMS AND FILES

FILE ATTRIBUTES

ACCESS

ENDOFSTREAMOP

EOL

BUFFERS

The current access rights of the stream (see page 24.2). Can be
one of INPUT, OUTPUT, BOTH, APPEND; or NIL if the stream is
not open.

The action to be taken when a stream is at "end of file" and an
attempt is made to take input from it. The value of this attribute
is a function of one argument, the stream. The function can
examine the stream and its calling context and take any action it
wishes. If the function returns normally, its should return either
T, meaning to try the input operation again, or the byte that BIN
would have returned had there been more bytes to read.
Ordinarily, one should not let the ENDOFSTREAMOP function
return unless one is only performing binary input from the file,
since there is no way in general of knowing in what state the
reader was at the time the end of file occurred, and hence how it
will interpret a single byte returned to it.

The default ENDOFSTREAMORP is a system function that causes

the error END OF FILE. The behavior of that error can be further

modified for a particular stream by using the EOF option of
WHENCLOSE (page 24.20).

The end-of-line convention for the stream. This can be CR, LF, or
CRLF, indicating with what byte or sequence of bytes the "End
Of Line" character is represented on the stream. On input, that
sequence of bytes on the stream is read as (CHARCODE EOL) by
READCCODE or the string reader. On output, (TERPRI) and
(PRINTCCODE (CHARCODE EOL)) cause that sequence of bytes to
be placed on the stream.

The end of line convention is usually not apparent to the user.
The file system is usually aware of the convention used by a
particular remote operating system, and sets this attribute
accordingly. If you believe a file actually is stored with a
different convention than the default, it is possible to modify the
default behavior by including the EOL attribute in the
PARAMETERS argument to OPENSTREAM.

Value is the number of 512-byte buffers that the stream
maintains at one time. This attribute is only used by certain
random-access devices (currently, the local disk, floppy, and Leaf
servers); all othersignore it.

Streams open to files generally maintain some portion of the file
buffered in memory, so that each call to an I/0 function does not
require accessing the actual file on disk or a file server. For files
being read or written sequentially, not much buffer space is
needed, since once a byte is read or written, it will never need to
be seen again. In the case of random access streams, buffering is
more complicated, since a program may jump around in the file,
using SETFILEPTR (page 25.19). In this case, the more buffer
space the stream has, the more likely it is that after a SETFILEPTR
to a place in the file that has already been accessed, the stream

STREAMS AND FILES

24.19

FILE ATTRIBUTES

still has that part of the file buffered and need not go out to the
device again. This benefit must, of course, be traded off against:
the amount of memory consumed by the buffers.

24.8 Closing and Reopening Files

The function WHENCLOSE permits the user to associate certain
operations with open streams that govern how and when the
stream will be cdlosed. The user can specify that certain functions
will be executed before CLOSEF closes the stream and/or after
CLOSEF closes the stream. The user can make a particular stream
be invisible to CLOSEALL, so that it will remain open across user
invocations of CLOSEALL.

(WHENCLOSE FILE PROP; VAL{ ... PROPp VALY) [NoSpread Function]

BEFORE

AFTER

CLOSEALL

EOF

FILE must designate an open stream other than T (NIL defaults to
the primary input stream, if other than T, or primary output
stream if other than T). The remaining arguments specify
properties to be associated with the full name of FILE.
WHENCLOSE returns the full name of FILE as its value.

WHENCLOSE recognizes the following property names:

VAL is a function that CLOSEF will apply to the stream just before
itis closed. This might be used, for example, to copy information
about the file from an in-core data structure to the file just
before it is closed.

VAL is a function that CLOSEF will apply to the stream just after it
is closed. This capability permits in-core data structures that
know about the stream to be cleaned up when the stream is
closed.

VAL is either YES or NO and determines whether FILE will be
closed by CLOSEALL (YES) or whether CLOSEALL will ignore it
(NO). CLOSEALL uses CLOSEF, so that any AFTER functions will
be executed if the stream is in fact closed. Files are initialized
with CLOSEALL set to YES.

VAL is a function that will be applied to the stream when an
end-of-file error occurs, and the ERRORTYPELST entry for that
error, if any, returns NIL. The function can examine the context
of the error, and can decide whether to close the stream,
RETFROM some function, or perform some other computation. If
the function supplied returns normally (i.e., does not RETFROM
some function), the normal error machinery will be invoked.

The default EOF behavior, unless overridden by this WHENCLOSE
option, is to call the value of DEFAULTEOFCLOSE (below).

24.20

STREAMS AND FILES

CLOSING AND REOPENING FILES

DEFAULTEOFCLOSE

For some applications, the ENDOFSTREAMOP attribute (page
24.19) is a more useful way to intercept the end-of-file error. The
ENDOFSTREAMOP attribute comes into effect before the error
machinery is ever activated.

Multiple AFTER and BEFORE functions may be associated with a
file; they are executed in sequence with the most recently
associated function executed first. The CLOSEALL and EOF
values, however, will override earlier values, so only the last
value specified will have an effect.

[Variable]

Value is the name of a function that is called by default when an
end of file error occurs and no EOF option has been specified for
the stream by WHENCLOSE. The initial value of
DEFAULTEOFCLOSE is NILL, meaning take no special action (go
ahead and cause the error). Setting it to CLOSEF would cause the
stream to be closed before the rest of the error machinery is
invoked.

24.9 Local Hard Disk Device

Warning: This section describes the Interlisp-D functions that
control the local hard disk drive available on some computers.
All of these functions may not work on all computers running
Interlisp-D. For more information on using the local hard disk
facilities, see the users guide for your computer.

This section describes the local file system currently supported on
the Xerox 1108 and 1186 computers. The Xerox 1132 supports a
simpler local file system. The functions below are no-ops on the
Xerox 1132, except for DISKPARTITION (which returns a disk
partition number), and DISKFREEPAGES. On the Xerox 1132,
different numbered partitions are referenced by using devices
such as {DSK1}, {DSK2}, etc. {DSK} always refers to the disk
partition that Interlisp is running on. The 1132 local file system
does not support the use of directories.

The hard disk used with the Xerox 1108 or 1186 may be
partitioned into a number of named "logical volumes." Logical
volumes may be used to hold the Interlisp virtual memory file
(see page 12.6), or Interlisp files. For information on intializing
and partitioning the hard disk, see the users guide for your
computer. Inorder to store Interlisp files on a logical volume, itis
necessary to create a lisp file directory on that volume (see
CREATEDSKDIRECTORY, below).

So long as there exists a logical volume with a Lisp directory on it,
files on this volume can be accessed by using the file device called
{DSK}. Interlisp-D can be used to read, write, and otherwise

STREAMS AND FILES

24.21

LOCALHARD DISK DEVICE

interact with files on local disk disks through standard Interlisp
input/output functions. All /O functions such as LOAD,
OPENSTREAM, READ, PRINT, GETFILEINFO, COPYFILE, etc., work
with files on the local disk.

If you do not have a logical volume with a Lisp directory on it,
Interlisp emulates the {DSK} device by a core device, a file device
whose backing store is entirely within the Lisp virtual memory.
However, this is not recommended because the core device only
provides limited scratch space, and since the core device is
contained in virtual memory, it (and the files stored on it) will be
erased when the virtual memory file is reloaded.

Each logical volume with a Lisp directory on it serves as a
directory of the device {DSK}. Files are referred to by forms such
as

{DSK} < VOLUMENAME >FILENAME

Thus, the file INIT.LISP on the volume LISPFILES would be called
{DSK} < LISPFILES >INIT.LISP.

Subdirectories within a logical volume are supported, using the
> character in file names to delimit subdirectory names. For
example, the file name {DSK}<LISPFILES>DOC>DESIGN.TEDIT
designates the file names DESIGN.TEDIT on the subdirectory DOC
on the logical volume LISPFILES.

If a logical volume name is not specified, it defaults in an unusual
but simple way: the logical volume defaults to the next logical
volume that has a lisp file directory on it including or after the
volume containing the currently running virtual memory. For
example, if the local disk has the logical volumes LISP, TEMP, and
LISPFILES, the LISP volume contains the running virtual memory,
and only the LISP volume has a Lisp file directory on it, then
{DSK}INIT.LISP refers to the file {DSK} < LispFiles >INIT.LISP. All
the functions below defaulit logical volume names in a similar
way, except for those such as CREATEDSKDIRECTORY. To
determine the current default lisp file directory, evaluate
(DIRECTORYNAME ‘{DSK}).

(CREATEDSKDIRECTORY VOLUMENAME —) [Function]

Creates a lisp file directory on the logical volume VOLUMENAME,
and returns the name of the directory created. It is only
necessary to create a lisp file directory the first time the logical
volume is used. After that, the system automatically recognizes
and opens access to the logical volumes that have lisp file
directories on them.

(PURGEDSKDIRECTORY VOLUMENAME —) [Function]

Erases all lisp files on the volume VOLUMENAME, and deletes the
lisp file directory. ‘

24.22

STREAMS AND FILES

LOCALHARD DISK DEVICE

(LISPDIRECTORYP VOLUMENAME) [Function]
Returns T if the logical volume VOLUMENAME has a lisp file
directory onit.

(VOLUMES) [Function]
Returns a list of the names of all of the logical volumes on the
local hard disk (whether they have lisp file directories or not).

(VOLUMESIZE VOLUMENAME —) [Function]
Returns the total size of the logical volume VOLUMENAME in
disk pages.

(DISKFREEPAGES VOLUMENAME —) [Function]

Returns the total number of free disk pages left on the logical
volume VOLUMENAME.

(DISKPARTITION) [Function]
Returns the name of the logical volume containing the virtual
memory file that Interlisp is currently running in (see page 12.6).

(DSKDISPLAY NEWSTATE) [Function]
Controls a display window that displays information about the
logical volumes on the local hard disk (logical volume names,
sizes, free pages, etc.). DSKDISPLAY opens or closes this display
window depending on the value of NEWSTATE (one of ON, OFF,
or CLOSED), and returns the previous state of the display
window.

If NEWSTATE is ON, the display window is opened, and it is
automatically updated whenever the file system state changes
(this can slow file operations significantly). If NEWSTATE is OFF,
the display window is opened, but it is not automatically
updated. If NEWSTATE is CLOSED, the display window is closed.
The display mode is initially set to CLOSED.

Once the display window is open, the user can update it or
change its state with the mouse. Left-buttoning the display
window updates it, and middle-buttoning the window brings up
amenu that allows you to change the display state.

Note: DSKDISPLAY wuses the value of the variable
DSKDISPLAY.POSITION for the position of the lower-left corner
of the disk display window when it is opened. This variable is
changed if the disk display window is moved.

(SCAVENGEDSKDIRECTORY VOLUMENAME SILENT) [Function]
Rebuilds the lisp file directory for the logical volume
VOLUMENAME. This may repair damage in the unlikely event of

STREAMS AND FILES 24.23

LOCAL HARD DISK DEVICE

file system failure, signified by symptoms such as infinite fooping
or other strange behavior while the system is doing a directory
search. Calling SCAVENGEDSKDIRECTORY will not harm an
intact volume.

Normally, SCAVENGEDSKDIRECTORY prints out messages as it
scavenges the directory. If SILENT is non-NIL, these messages are
not printed. '

Note: Some low-level disk failures may cause "HARD DISK
ERROR" errors to occur. To fixsuch a failure, it may be necessary
to log out of Interlisp, scavenge the logical volume in question
using Pilot tools, and then call SCAVENGEDSKDIRECTORY from
within Interlisp. See the users guide for your computer for more
information.

24.10

Floppy Disk Device

(FLOPPY.MODE MODE)

Warning: This section describes the Interlisp-D functions that
caontrol the floppy disk drive available on some computers. All of
these functions may not work on all computers running
Interlisp-D. For more information on using the floppy disk
facilities, see the users guide for your computer.

The floppy disk drive is accessed through the device {FLOPPY}.
Interlisp-D can be used to read, write, and otherwise interact
with files on floppy disks through standard Interlisp input/output
functions. All /0O functions such as LOAD, OPENSTREAM, READ,
PRINT, GETFILEINFO, COPYFILE, etc., work with files on floppies.

Note that floppy disks are a removable storage medium.
Therefore, it is only meaningful to perform i/o operations to the
floppy disk drive, rather than to a given floppy disk. In this
section, the phrase "the floppy" is used to mean "the floppy that
is currently in the floppy disk drive."

For example, the following sequence could be used to open a file
XXX.TXT on the floppy, print "Hello" on it, and close it:

(SETQ XXX (OPENSTREAM '{FLOPPY}XXX.TXT '"OUTPUT 'NEW)
(PRINT "Hello" XXX)
(CLOSEF XXX)

[Function]

Interlisp-D can currently read and write files on floppies stored in
a number of different formats. At any point, the floppy is
considered to be in one of four "modes," which determines how
it reads and writes files on the floppy. FLOPPY.MODE sets the
floppy mode to the value of MODE, one of PILOT, HUGEPILOT,
SYSOUT, or CPM, and returns the previous floppy mode. The
floppy modes are interpreted as follows:

24.24

STREAMS AND FILES

FLOPPY DISK DEVICE

PILOT

HUGEPILOT

SYSOUT

This is the normal floppy mode, using floppies in the Xerox Pilot
floppy disk format. This file format allows all of the normal
Interlisp-D I/0 operations. This format also supports file names
with arbitrary levels of subdirectories. For example, it is possible
to create a file named {FLOPPY} <Lisp >Project>F0OO.TXT.

This floppy mode is used to access files that are larger than a
single floppy, stored on muitiple floppies. There are some
restrictions with using "huge" files. Some I/O operations are not
meaningful for "huge” files. When a stream is created for
output in this mode, the LENGTH file attribute (page 24.17) must
be specified when the file is opened, so that it is known how
many floppies will be needed. When an output file is created,
the floppy (or floppies) are automatically erased and
reformatted (after confirmation from the user).

HUGEPILOT mode is primarily useful for saving big files to and
from floppies. For example, the following could be used to copy
the file {ERIS}<Lisp>Bigfile.txt onto the huge Pilot file
{FLOPPY]}BigFile.save:

(FLOPPY.MODE "HUGEPILOT)
(COPYFILE '{ERIS} < Lisp > Bigfile.txt '{FLOPPY}BigFile.save)

and the following would restore the file:

(FLOPPY.MODE 'HUGEPILOT)
(COPYFILE '{FLOPPY}BigFile.save '{ERIS} <Lisp > Bigfile.txt)

During each copying operation, the user will be prompted to
insert “"the next floppy" if {ERIS}<Lisp>Bigfile.txt takes
multiple floppies.

Similar to HUGEPILOT mode, SYSOUT mode is used for storing
sysout files (page 12.8) on muitiple floppy disks. The user is
prompted to insert new floppies as they are needed.

This mode is set automatically when SYSOUT or MAKESYS is
done to the floppy device: (SYSOUT '(FLOPPY}) or (MAKESYS
'(FLOPPY}). Notice that the file name does not need to be

specifed in SYSOUT mode; unlike HUGEPILOT mode, the file

name Lisp.sysout is always used.

Note: The procedure for loading sysout files from floppies
depends on the particular computer being used. For information
on loading sysout files from floppies, see the users guide for your
computer.

Explicitly setting the mode to SYSOUT is useful when copying a
sysout file to or from floppies. For example, the following can be
used to copy the sysout file {ERIS}<Lisp>Lisp.sysout onto
floppies (it is important to set the floppy mode back when
done):

(FLOPPY.MODE 'SYSOUT)
(COPYFILE '{ERIS} <Lisp>Lisp.sysout '{FLOPPY})

STREAMS AND FILES

24.25

FLOPPY DISK DEVICE

cPM

(FLOPPY.MODE 'PILOT)

interlisp-D supports the single-density single-sided (SDSS) CPM
floppy format (a standard used by many computers).
CPM-formatted floppies are totally different than Pilot floppies,
so the user should call FLOPPY.MODE to switch to CPM mode
when planning to use CPM floppies. After switching to CPM
mode, FLOPPY.FORMAT can be used to create CPM-formatted
floppies, and the usual input/output operations work with CPM
floppy files.

Note: There are a few limitations on CPM floppy format files:
(1) CPM file names are limited to eight or fewer characters, with
extensions of three or fewer characters; (2) CPM floppies do not
have directories or version numbers; and (3) CPM files are
padded out with blanks to make the file lengths multiples of
128.

(FLOPPY.FORMAT NAME AUTOCONFIRMFLG SLOWFLG) [Function]

FLOPPY.FORMAT erases and initializes the track informationon a
floppy disk. This must be done when new floppy disks are to be
used for the first time. This can also be used to erase the
information on used floppy disks.

NAME should be a string that is used as the name of the floppy
(106 characters max). This name can be read and set using
FLOPPY.NAME (below).

If AUTOCONFIRMFLG is NIL, the user will be prompted to confirm
erasing the floppy, if it appears to contain valid information. If
AUTOCONFIRMFLG is T, the user is not prompted to confirm.

If SLOWFLG is NIL, only the Pilot records needed to give your
floppy an empty directory are written. If SLOWFLG is T,
FLOPPY.FORMAT will completely erase the floppy, writing track
information and critical Pilot records on it. SLOWFLG should be
set to T when formatting a brand-new floppy.

Note: Formatting a floppy is a very compute-intensive operation
for the /O hardware. Therefore, the cursor may stop tracking
the mouse and keystrokes may be lost while formatting a floppy.
This behavior goes away when the formatting is finished.

Warning: The floppy mode set by FLOPPY.MODE (above) affects
how FLOPPY.FORMAT formats the floppy. If the floppy is going
to be used in Pilot mode, it should be formatted under
(FLOPPY.MODE 'PILOT). If it is to be used as a CMP floppy, it
should be formatted under (FLOPPY.MODE 'CPM). The two
types of formatting are incompatible.

24.26

STREAMS AND FILES

FLOPPY DISK DEVICE

(FLOPPY.NAME NAME)

[Function]

(FLOPPY.FREE.PAGES)

If NAME is NIL, returns the name stored on the floppy disk. If
NAME is non-NIL, then the name of the floppy disk is set to
NAME.

[Function]

(FLOPPY.CAN.READP)

Returns the number of unallocated free pages on the floppy disk
in the floppy disk drive.

Note: Pilot floppy files are represented by contiguous pages on
a floppy disk. If the user is creating and deleting a lot of files on
a floppy, it is advisable to keep such a floppy less than 75 percent
full.

[Function]

Returns non-NIL if there is a floppy in the floppy drive.

Note: FLOPPY.CAN.READP does not provide any debouncing
(protection against not fully closing the floppy drive door). it
may be more useful to use FLOPPY.WAIT.FOR.FLOPPY (below).

(FLOPPY.CAN.WRITEP) [Function]
Returns non-NIL if there is a floppy in the floppy drive and the
floppy drive can write on this floppy.

It is not possible to write on a floppy disk if the "write-protect
notch” on the floppy disk is punched out.

(FLOPPY.WAIT.FOR.FLOPPY NEWFLG) [Function]

(FLOPPY.SCAVENGE)

If NEWFLG is NIL, waits until a floppy is in the floppy drive before
returning.

If NEWFLG is T, waits until the existing floppy in the floppy drive,
if any, is removed, then waits for a floppy to be inserted into the
drive before returning.

[Function]

(FLOPPY.TO.FILE TOFILE)

Attempts to repair a floppy whose critical records have become
confused (causing errors when file operations are attempted).
May also retrieve accidently-deleted files, provided they haven't
been overwritten by new files.

[Function]

Copies the entire contents of the floppy to the "floppy image"”
file TOFILE, which can be on a file server, local disk, etc. This can
be used to create a centralized copy of a floppy, that different
users can copy to their own floppy disks (using
FLOPPY.FROM.FILE).

STREAMS AND FILES

24.27

FLOPPY DISK DEVICE

Note: A floppy image file for an 8-inch floppy is about 2500
pages long, regardless of the number of pages in use on the

floppy.

(FLOPPY.FROM.FILE FROMFILE) [Function]
Copies the "floppy image" file FROMFILE to the floppy.
FROMFILE must be a file produced by FLOPPY.TO.FILE.

(FLOPPY.ARCHIVE FILES NAME) [Function]
FLOPPY.ARCHIVE formats a floppy inserted into the floppy drive,
giving the floppy the name NAME#1. FLOPPY.ARCHIVE then
copies each file in FILES to the freshly formatted floppy. If the
first floppy fills up, FLOPPY.ARCHIVE uses multiple floppies
(named NAME#2, NAME#3, etc.), each time prompting the user
toinsert a new floppy.

The function DIRECTORY (page 24.33) is convenient for
generating a list of files to archive. For example,

(FLOPPY.ARCHIVE
(DIRECTORY '{ERIS} <Lisp>Project>*)
'Project)

will archive all files on the directory {ERIS}<Lisp>Project> to
floppies (named Project#1, Project#2, etc.).

(FLOPPY.UNARCHIVE HOST/DIRECTORY) [Function]
FLOPPY.UNARCHIVE copies all files on the current floppy to the
directory HOST/DIRECTORY. For example, (FLOPPY.UNARCHIVE
‘{ERIS} <Lisp>Project>) will copy each file on the current
floppy to the directory {ERIS} <Lisp>Project>. If there is more
than one floppy to restore from archive, FLOPPY.UNARCHIVE
should be called on each floppy disk.

24.11 1/O Operations to and from Strings

Itis possible to treat a string as if it were the contents of a file by
using the following function:

(OPENSTRINGSTREAM STR ACCESS) [Function]
Returns a stream that can be used to access the characters of the
. string STR. ACCESS may be either INPUT, OUTPUT, or BOTH; NIL
defaults to INPUT. The stream returned may be used exactly like
a file opened with the same access, except that output
operations may not extend past the end of the original string.
Also, string streams do not appear in the value of (OPENP).

24.28 STREAMS AND FILES

1/0 OPERATIONS TO AND FROM STRINGS

For example, after performing
(SETQ STRM (OPENSTRINGSTREAM "THIS 2 (IS A LIST)"))
the following succession of reads could occur:

(READ STRM) = > THIS
(RATOMSTRM) = > 2
(READ STRM) = > (IS A LIST)
(EOFPSTRM) =>T

Compatibility Note: In Interlisp-10 it was possible to take input
from a string simply by passing the string as the FILE argument to
an input function. In order to maintain compatibility with this
feature, Interlisp-D provides the same capability. This not
terribly clean feature persists in the present implementation to
give users time to convert old code. This means that strings are
not equivalent to litatoms when specifying a file name as a
stream argument (see page 24.13). In a future release, the old
Interlisp-10 string-reading feature will be decommissioned, and
OPENSTRINGSTREAM will be the only way to perform I/0 on a
string.

24.12 Temporary Files and the CORE Device

Many operating systems have a notion of "scratch file", a file
typically used as temporary storage for data most naturaily
maintained in the form of a file, rather than some other data
structure. A scratch file can be used as a normal file in most
respects, but is automatically deleted from the file system after
its useful life is up, e.g., when the job terminates, or the user logs
out. In normal operation, the user need never explicitly delete
such files, since they are guaranteed to disappear soon.

A similar functionality is provided in Interlisp-D by core-resident
files. Core-resident files are on the device CORE. The directory
structure for this device and all files on it are represented
completely within the user's virtual memory. These files are
treated as ordinary files by all file operations; their only
distinguishing feature is that all trace of them disappears when
the virtual memory is abandoned.

Core files are opened and closed by name the same as any other
file, e.g., (OPENSTREAM '{CORE}<FOO >FIE.DCOM 'OUTPUT).
Directory names are completely optional, so files can also have
names of the form {CORE}NAME.EXT. Core files can be
enumerated by DIRECTORY (page 24.33). While open, they are
registered in (OPENP). They do consume virtual memory space,
which is only reclaimed when the file is deleted. Some caution

STREAMS AND FILES

24.29

TEMPORARY FILES AND THE CORE DEVICE

should thus be used when creating large CORE files. Since the
virtual memory of an Interlisp-D workstation usually persists far
longer than the typical process on a mainframe computer, it is
still important to delete CORE files after they are no longer in
use.

For many applications, the name of the scratch file is irrelevant,
and there is no need for anyone to have access to the file
independent of the program that created it. For such
applications, NODIRCORE files are preferable. Files created on
the device lisp NODIRCORE are core-resident files that have no
name and are registered in no directory. These files "disappear”,
and the resources they consume are reclaimed, when all pointers
to the file are dropped. Hence, such files need never be explicitly
deleted or, for that matter, closed. The “name” of such a file is
simply the stream object returned from (OPENSTREAM
‘{NODIRCORE} 'OUTPUT), and it is this stream object that must
be passed to all input/output operations, including CLOSEF and
any calls to OPENSTREAM to reopen the file.

(COREDEVICE NAME NODIRFLG) [Function]

Creates a new device for core-resident files and assigns NAME as
its device name. Thus, after performing (COREDEVICE 'FOO), one
can execute (OPENSTREAM ‘{FOO}BAR 'OUTPUT) to open a file
on that device. Interlisp-D is initialized with the single
core-resident device named CORE, but COREDEVICE may be used
to create any number of logically distinct core devices.

If NODIRFLG is non-NIL, a core device that acts like {NODIRCORE}
is created.

Compatibility note: In Interlisp-10, it was possible to create
scratch files by using file names with suffixes ;S or ;T. In
Interlisp-D, these suffixes in file names are simply ignored when
output is directed to a particular host or device. However, the
function PACKFILENAME.STRING is defined to default the device
name to CORE if the file has the TEMPORARY attribute and no
explicit host is provided.

24.13 NULL Device

The NULL device provides a source of content-free "files".
(OPENSTREAM '{NULL} 'OUTPUT) creates a stream that discards
all output directed at it. (OPENSTREAM '{NULL} 'INPUT) creates
astream that is perpetually at end-of-file (i.e., has no input).

24.30

STREAMS AND FILES

DELETING, COPYING, AND RENAMING FILES

24.15 Deleting, Copying, and Renaming Files

(DELFILE FILE) [Function]
Deletes FILE if possible. The file must be closed. Returns the full
name of the file if deleted, else NIL. Recognition mode for FILE is
OLDEST, i.e., if FILE does not have a version number specified,
then DELFILE deletes the oldest version of the file.

(COPYFILE FROMFILE TOFILE) [Function]
Copies FROMFILE to a new file named TOFILE. The source and
destination may be on any combination of hosts/devices.
COPYFILE attempts to preserve the TYPE and CREATIONDATE
where possible. If the original file's file type is unknown,
COPYFILE attempts to infer the type (file type is BINARY if any of
its 8-bit bytes have their high hit on).

COPYFILE uses COPYCHARS (page 25.20) if the source and
destination hosts have different EOL conventions. Thus, it is
possible for the source and destination files to be of different
lengths.

(RENAMEFILE OLDFILE NEWFILE) [Function]
Renames OLDFILE to be NEWFILE. Causes an error, FILE NOT
FOUND if FILE does not exist. Returns the full name of the new
file, if successful, else NIL if the rename cannot be performed.

If OLDFILE and NEWFILE are on the same host/device, and the
device implements a renaming primitive, RENAMEFILE can be
very fast. However, if the device does not know how to rename
filesin place, or if OLDFILE and NEWFILE are on different devices,
RENAMEFILE works by copying OLDFILE to NEWFILE and then
deleting OLDFILE.

24.16 Searching File Directories

DIRECTORIES [Variable]
Global variable containing the list of directories searched (in
order) by SPELLFILE and FINDFILE (below) when not given an
explicit DIRLST argument. In this list, the atom NIL stands for the
login directory (the value of LOGINHOST/DIR), and the atom T
stands for the currently connected directory. Other elements
should be full directory specifications, eqg.,
{TWENTY}PS: <LISPUSERS >, not merely LISPUSERS.

STREAMS AND FILES . 24.31

SEARCHING FiLE DIRECTORIES

LISPUSERSDIRECTORIES [Variable]
Global variable containing a list of directories to search for
"library" package files. Used by the FILES file package command
(page 17.39).

(SPELLFILE FILE NOPRINTFLG NSFLG DIRLST) [Function]
Searches for the file name FILE, possibly performing spelling
correction (see page 20.15). Returns the corrected file name, if
any, otherwise NiL.

If FILE has a directory field, SPELLFILE attempts spelling
correction against the files in that particular directory.
Otherwise, SPELLFILE searches for the file on the directory list
DIRLST before attempting any spelling correction.

If NOPRINTFLG is NIL, SPELLFILE asks the user to confirm any
spelling correction done, and prints out any files found, even if
spelling correction is not done. If NOPRINTFLG =T, SPELLFILE
does not do any printing, nor ask for approval.

If NSFLG=T (or NOSPELLFLG =T, see page 20.13), no spelling
correction is attempted, though searching through DIRLST still
occurs.

DIRLST is the list of directories searched if FILE does not have a
directory field. If DIRLST is NIL, the value of the variable
DIRECTORIES is used.

Note: If DIRLST is NIL, and FILE is not found by searching the
directories on DIRECTORIES, but the root name of FILE has a
FILEDATES property (page 17.20) indicating that a file by that
name has been loaded, then the directory indicated in the
FILEDATES property is searched, too. This additional search is not
done if DIRLST is non-NIL.

ERRORTYPELST (page 14.22) initially contains the entry ((23
(SPELLFILE (CADR ERRORMESS) NIL NOFILESPELLFLG))), which
causes SPELLFILE to be called in case of a FILE NOT FOUND error.
If the variable NOFILESPELLFLG is T (its initial value), then
spelling correction is not done on the file name, but
DIRECTORIES is still searched. If SPELLFILE is successful, the
operation will be reexecuted with the new (corrected) file name.

(FINDFILE FILE NSFLG DIRLST) [Function]
Uses SPELLFILE to search for a file named FILE. If it finds one,
returns its full name, with no user interaction. Specifically, it calls
(SPELLFILE FILE T NSFLG DIRLST), after first performing two
simple checks: If FILE has an explicit directory, it checks to see if a
file so named exists, and if so returns that file. If DIRLST is NIL, it
looks for FILE on the connected directory before calling
SPELLFILE.

24.32 STREAMS AND FILES

LISTING FILE DIRECTORIES

24.17 Listing File Directories

The function DIRECTORY allows the user to conveniently specify
and/or program a variety of directory operations:

(DIRECTORY FILES COMMANDS DEFAULTEXT DEFAULTVERS) [Function]

PP

astring

Returns, lists, or performs arbitrary operations on all files
specified by the "file group” FILES. A file group has the form of a
regular file name, except that the character * can be used to
match any number of characters, including zero, in the file name.
For example, the file group A*B matches all file names beginning
with the character A and ending with the character B. The file
group *.DCOM matches all files with an extension of DCOM.

If FILES does not contain an explicit extension, it is defaulted to
DEFAULTEXT; if FILES does not contain an explicit version, it is
defaulted to DEFAULTVERS. DEFAULTEXT and DEFAULTVERS
themselves default to *. If the period or semicolon preceding the
omitted extension or version, respectively, is present, the field is
explicitly empty and no default is used. All other unspecified
fields default to *. Null version is interpreted as "highest". Thus
FILES = * or *.* or *.*;* enumerates all files on the connected
directory; FILES = *. or *.;* enumerates all versions of files with
null extension; FILES = *.; enumerates the highest version of
files with null extension; and FILES = *.*; enumerates the
highest version of all files. If FILES is NIL, it defaults to *.*;*.

Note: Some hosts/devices are not capable of supporting "highest
version" in enumeration. Such hosts instead enumerate all
versions.

For each file that matches the file group FILES, the “file
commands" in COMMANDS are executed in order. Some of the
file commands allow aborting the command processing for a
given file, effectively filtering the list of files. The interpretation
of the different file . commands is described below. |If
COMMANDS is NIL, it defaults to (COLLECT), which collects the
matching file names in a list and returns it as the value of
DIRECTORY.

The "file commands" in COMMANDS are interpreted as follows:

Prints the file's name. For readability, DIRECTORY strips the
directory from the name, printing it once as a header in front of
each set of consecutive files on the same directory.

Prints the file's name without a version number.

Prints the string.

STREAMS AND FILES

2433

LISTING FILE DIRECTORIES

READDATE, WRITEDATE
CREATIONDATE, SIZE
LENGTH, BYTESIZE
PROTECTION, AUTHOR
TYPE

COLLECT

COUNTSIZE

DELETE
DELVER
PAUSE

PROMPT MESS

OLDERTHANN

NEWERTHAN N

BY USER

@x

Prints the appropriate information returned by GETFILEINFO
(page 24.17).

Adds the full name of this file to an accumulating list, which will
be returned as the value of DIRECTORY.

Adds the size of this file to an accumulating sum, which will be
returned as the value of DIRECTORY.

Deletes the file.
If this file is not the highest version of files by its name, delete it.

Waits until the user types any char before proceeding with the
rest of the commands (good for display if you want to ponder).

The following commands are predicates to filter the list. If the
predicate is not satisfied, then processing for this file is aborted
and no further commands (such as those above) are executed for
this file.

Note: if the P and PP commands appear in COMMANDS ahead of
any of the filtering commands below except PROMPT, they are
postponed until after the filters. Thus, assuming the caller has
placed the attribute options after the filters as well, no printing
occurs for a file that is filtered out. This is principally so that
functions like DIR (below) can both request printing and pass
arbitrary commands through to DIRECTORY, and have the
printing happen in the appropriate place.

Prompts with the yes/no question MESS; if user responds with
No, abort command processing for this file.

Continue command processing if the file hasn't been referenced
(read or written) in N days. N can also be a string naming an
explicit date and time since which the file must not have been
referenced.

Continue command processing if the file has been written within
the last N days. N can also be a string naming an explicit date
and time. Note that this is not quite the complement of
OLDERTHAN, since it ignores the read date.

Continue command processing if the file was last written by the
given user, i.e., its AUTHOR attribute matches (case insensitively)
USER.

X is either a function of one argument (FILENAME), or an
arbitrary expression which uses the variable FILENAME freely. If
X returns NIL, abort command processing for this file.

24.34

STREAMS AND FILES

LISTING FILE DIRECTORIES

The following two commands apply not to any particular file,
but globally to the manner in which directory information is
printed.

OUTFILE Directs output to FILE.
COLUMNS N Attempts to format output in N columns (rather than just 1).

DIRECTORY uses the variable DIRCOMMANDS as a spelling list to
correct spelling and define abbreviations and synonyms (see
page 20.15). Currently the following abbreviations are

recognized:
AU => AUTHOR
- x> PAUSE
COLLECT? => PROMPT" ?" COLLECT

DA
DATE = > CREATIONDATE

T = > WRITEDATE
DEL = > DELETE

DEL?
DELETE? a > PROMPT " delete? " DELETE

OoLD a > OLDERTHAN 90
PR = > PROTECTION
Sl s > SIZE
VERBOSE => AUTHOR CREATIONDATE SIZE READDATE WRITEDATE

(FILDIR FILEGROUP) [Function]
Obsolete synonym of (DIRECTORY FILEGROUP).

(DIR FILEGROUP COM ... COMp) [NLambda NoSpread Function]
Convenient form of DIRECTORY for use in type-in at the
executive. Performs (DIRECTORY 'FILEGROUP ‘(P coMy ..
COMp)).

(NDIR FILEGROUP COM ... COMYp)) [NLambda NoSpread Function]

Version of DIR that lists the file names in a multi-column format.
Also, by default only lists the most recent version of files (unless
FILEGROUP contains an explicit version).

STREAMS AND FILES 24.35

FILE SERVERS

24.18

File Servers

24.18.1

Pup File Server Protocols

A file server is a shared resource on a local communications
network which provides large amounts of file storage. Different
file servers honor a variety of access protocols. Interlisp-D
supports the following protocols: PUP-FTP, PUP-Leaf, and NS
Filing. In addition, there are library packages available that
support other communications protocols, such as TCP/IP and
RS232.

With the exception of the RS232-based protocols, which exist
only for file transfer, these network protocols are integrated into
the Interlisp-D file system to allow files on a file server to be
treated in much the same way files are accessed on local devices,
such as the disk. Thus, it is possible to call OPENSTREAM on the
file {ERIS}<LISP>F00.DCOM;3 and read from it or write to it
just as if the file had been on the local disk
({DSK}<LISP>F00.DCOM:;3), rather than on a remote server
named ERIS. However, the protocols vary in how much control
they give the workstation over file system operations. Hence,
some restrictions apply, as described in the following sections.

There are two file server protocols in the family of Pup protocols:
Leaf and FTP. Some servers support both, while others support
only one of them. Interlisp-D uses whichever protocol is more
appropriate for the requested operation.

Leaf is a random access protocol, so files opened using these
protocols are RANDACCESSP (page 25.20), and thus most normal
i/o operations can be performed. However, Leaf does not
support directory enumeration. Hence, DIRECTORY cannot be
used on a Leaf file server unless the server also supports FTP. In
addition, Leaf does not supply easy access to a file's attributes.
INFILEP and GETFILEINFO have to open the file for input in order
to obtain their information, and hence the file's read date will
change, even though the semantics of these functions do not
imply it.

FTP is a file transfer protocol that only permits sequential access
to files. However, most implementations of it are considerably
more efficient than Leaf. Interlisp-D uses FTP in preference to
Leaf whenever the call to OPENSTREAM requests sequential
access only. In particular, the functions SYSOUT and COPYFILE
open their files for sequential access. If a file server supports FTP
but for some reason it is undesirable for Lisp to use it, one can set
the internal variable \FTPAVAILABLE to NIL.

The system normally maintains a Leaf connection to a host in the
background. This connection can be broken by calling

24.36

STREAMS AND FILES

FILE SERVERS

(BREAKCONNECTION HOST). Any subsequent reference to files
on that host will reestablish the connection. The principal use
for this function arises when the user interrupts a file operation
in such a way that the file server thinks the file is open but Lisp
thinks it is closed (or not yet open). As a result, the next time Lisp
tries to openthe file, it gets a file busy error.

24.18.2 Xerox NS File Server Protocols

Interlisp supports file access to Xerox 803x file servers, using the
Filing Protocol built on Xerox Network Systems protocols.
Interlisp-D determines that a host is an NS File Server by the
presence of a colon in its name, e.g., {PHYLEX:}. The general
format of NS fileserver device names is
{SERVERNAME:DOMAIN: ORGANIZATION}; the device
specification for an 8000-series product in general includes the
ClearingHouse domain and organization. If domain and
organization are not supplied directly, then they are obtained
from the defaults, which themselves are found by consulting the
nearest ClearingHouse if the user has not defined them in an init
file (page 31.8). However, note that the server name must still
have a colonin it to distinguish it from other types of host names
(e.g., Pup server names).

NS file servers in general permit arbitrary characters in file
names. The user should be cognizant of file name quoting
conventions (page 24.6), and the fact that any file name
presented as a litatom needs to have characters of significance to
the reader, such as space, escaped with a %. Of course, one can
always present the file name as a string, in which case only the
quoting conventions are important.

NS file servers support a true hierarchical file system, where
subdirectories are just another kind of file, which needs to be
explicitly created. In Interlisp, subdirectories are created
automatically as needed: A call to OPENFILE to create a file in a
non-existent subdirectory automatically creates the
subdirectory; CONN to a non-existent subdirectory asks the user
whether to create the directory. For those using Star software, a
directory corresponds to a "File Drawer", while a subdirectory
corresponds to a "File Folder".

Because of their hierarchical structure, NS directories can be
enumerated to arbitrary levels. The default is to enumerate all
the files (the leaves of the tree), omitting the subdirectory nodes
themselves. This default can be changed by the following
variable:

STREAMS AND FILES

24.37

FILE SERVERS

FILING.ENUMERATION.DEPTH [Variable]
This variable is either a number, specifying the number of levels
deep to enumerate, or T, meaning enumerate to all levels. Inthe
former case, when the enumeration reaches the specified depth,
only the subdirectory name rooted at that level is listed, and
none of its descendants is listed. When
FILING.ENUMERATION.DEPTH is T, all files are listed, and no
subdirectory names are listed. FILING.ENUMERATION.DEPTH is
initially T.

independent of FILING.ENUMERATION.DEPTH, a request to
enumerate the top-level of a file server’s hierarchy lists only the
top level, i.e., assumes a depth of 1. For example, (DIRECTORY
‘{PHYLEX:}) lists exactly the top-level directories of the server
PHYLEX:.

NS file servers do not currently support random access.
Therefore, SETFILEPTR of an NS file generally causes an error.
However, GETFILEPTR returns the correct character position for
open files on NS file servers. In addition, SETFILEPTR works in the
special case where the file is open for input, and the file pointer
is being set forward. In this case, the intervening characters are
automatically read.

Even while Interlisp has no file open on an NS Server, the system
maintains a "session” with the server for a while in order to
improve the speed of subsequent requests to the server. While
this session is open, it is possible for some nodes of the server's
file system to appear "busy” or inaccessible to certain clients on
other workstations (such as Star). If this happens, the following
function can be used to terminate any open sessions
immediately:

(BREAK.NSFILING.CONNECTION HOST) [Function]
Closes any open connections to NS file server HOST.

24.18.3 Operating System Designations

Some of the network server protocols are implemented on more
than one kind of foreign host. Such hosts vary in their
conventions for logging in, naming files, representing
end-of-line, etc. In order for Interlisp to communicate gracefully
with all these hosts, it is necessary that the variable
NETWORKOSTYPES be correctly set.

NETWORKOSTYPES [Variable]

An association-list that associates a host name with its operating
system type. Elements in this list are of the form (HOSTNAME .

24.38 STREAMS AND FILES

FILE SERVERS

TYPE), for example, (MAXC2 . TENEX). The operating system
types currently known to Lisp are TENEX, TOPS20, UNIX, and
VMS. The host names in this list should be the "canonical" host
name, represented as an uppercase atom. For Pup and NS hosts,
the function CANONICAL.HOSTNAME (below) can be used to
determine which of several aliases of a server is the canonical
name.

(CANONICAL.HOSTNAME HOSTNAME) [Function]

24.184 LoggingIn

Returns the "canonical” name of the server HOSTNAME, or NIL if
HOSTNAME is not the name of a server.

Most file servers require a user name and password for access.
Interlisp-D maintains an ephemeral database of user names and
passwords for each host accessed recently. The database
vanishes when LOGOUT, SAVEVM, SYSOUT, or MAKESYS is
executed, so that the passwords remain secure from any
subsequent user of the same virtual memory image. Interlisp-D
also maintains a notion of the “"default" user name and
password, which are generally those with which the user initially
logs in (on the 1132, the default user name corresponds to that
displayed in the Alto executive).

When a file server for which the system does not yet have an
entry in its password database requests a name and password,
the system first tries the default user name and password. If the
file server doesn't recognize that name/password, the system
prompts the user for a name and password to use for that host.
It suggests a default name:

{ERIS} Login: Green

which the user can accept by typing a carriage return, or replace
the name by typing a new name or backspacing over it.
Following the name, the user is prompted for a password:

{ERIS} Login: Verdi (password)

which is not echoed, terminated by another carriage return. This
information is stored in the password database so that the user is
prompted only once, until the database is again cleared.

Interlisp-D also prompts for password information when a
protection violation occurs on accessing a directory on certain
kinds of servers that support password-protected directories.
Some such servers allow one to protect a file in a way that it is
inaccessible to even its owner until the file's protection is
changed; in such case, no password would help, and the system
causes the normal PROTECTION VIOLATION error.

STREAMS AND FILES

24.39

FILE SERVERS

The user can abort a password interaction by typing the ERROR
interrupt, initially Control-E. This generally either causes a
PROTECTION VIOLATION error, if the password was requested in
order to gain access to a protected file on an otherwise accessibie
server; or to act as though the server did not exist, in the case
where the password was needed in order to gain any access to
the server.

The following functions are useful for altering the password
database:

(LOGIN HOSTNAME FLG DIRECTORY MSG) [Function]

Forces Interlisp-D to ask for the user name and password to be
used when accessing host HOSTNAME. Any previous login
information for HOSTNAME is overriden. If HOSTNAME is NIL, it
overrides login information for all hosts and resets the default
user name and password to be those typed in by the user. The
special value HOSTNAME = NS:: is used to obtain the default
user name and password for all logins for NS Servers.

If FLG is the atom QUIET, only prompts the user if there is no
cached information for HOSTNAME.

If DIRECTORY is specified, it is the name of a directory on
HOSTNAME. In this case, the information requested is the
"connect” password for that directory. Connect passwords for
any number of different directories on a host can be maintained.

If MSG is non-NIL, it is a message (a string) to be printed before
the name and password information is requested.

LOGIN returns the user name with which the user completed the
login.

(SETPASSWORD HOST USER PASSWORD DIRECTORY) [Function]

(SETUSERNAME NAME)

Sets the values in the internal password database, exactly as if
the strings USER and PASSWORD were typed in via (LOGIN HOST
NIL DIRECTORY).

[Function]

Sets the default user name to NAME.

(USERNAME FLG STRPTR PRESERVECASE) [Function]

If FLG = NIL, returns the default user name. This is the only value
of FLG that is meaningful in Interlisp-D.

USERNAME returns the value as a string, unless STRPTR is T, in
which case USERNAME returns the value as an atom. The nameiis
returned in upper case, unless PRESERVECASE is true.

24.40

STREAMS AND FILES

FILE SERVERS

24.18.5 Abnormal Conditions

If Interlisp-D tries to access a file and does not get a response
from the file server in a reasonable period of time, it prints a
message that the file server is not responding, and keeps trying.
If the file server has actually crashed, this may continue
indefinitely. A control-E or similar interrupt aborts out of this
state.

If the file server crashes but is restarted before the user attempts
to do anything, file operations will usually proceed normalily,
except for a brief pause while Interlisp-D tries to reestablish any
connections it had open before the crash. However, this is not
always possible. For example, when a file is open for sequential
output and the server crashes, there is no way to recover the
output already written, since it vanished with the crash. In such
cases, the system will cause an error such as Connection Lost.

LOGOUT closes any file server connections that are currently
open. On return, it attempts to reestablish connections for any
files that were open before logging out. If a file has disappeared
or been modified, Interlisp-D reports this fact. Files that were
open for sequential access generally cannot be reopened after
LOGOUT.

Interlisp supports simultaneous access to the same server from
different processes and permits overlapping of Lisp computation
with file server operations, allowing for improved performance.
However, as a corollary of this, a file is not closed the instant that
CLOSEF returns; Interlisp closes the file “in the background". It
is therefore very important that the user exits Interlisp via
(LOGOUT), or (LOGOUT T), rather than boot the machine.

On rare occasions, the Ethernet may appear completely
unresponsive, due to Interlisp having gotten into a bad state.
Typing (RESTART.ETHER) will reinitialize Lisp's Ethernet driver(s),
just as when the Lisp system is started up following a LOGOUT,
SYSOUT, etc (see page 31.38) '

STREAMS AND FILES

24.41

FILE SERVERS

[This page intentionally left blank]

24.42 STREAMS AND FILES

TABLE OF CONTENTS
L

25. Input/Output Functions 25.1
25.1. Specifying Streams for Input/Output Functions 25.1
25.2. Input Functions 25.2
25.3. Output Functions 25.7

25.3.1. PRINTLEVEL 25.11
25.3.2. Printing numbers 25.13
25.3.3. User Defined Printing 25.16
25.3.4. Printing Unusual Data Structures 25.17
25.4, Random Access File Operations 25.18
25.5. Input/Qutput Operations with Characters and Bytes 25.22
25.6. PRINTOUT 25.23
25.6.1. Horizontal Spacing Commands 25.25
25.6.2. Vertical Spacing Commands 25.26
25.6.3. Special Formatting Controls 25.27
25.6.4. Printing Specifications 25.27
25.6.4.1. Paragraph Format 25.28
25.6.4.2. Right-Flushing 25.29
25.6.4.3. Centering 25.29
25.6.4.4. Numbering - 2529
25.6.5. Escaping to Lisp 25.30
25.6.6. User-Defined Commands 25.31
25.6.7. Special Printing Functions 25.32
25.7. READFILE and WRITEFILE 2533
25.8. Read Tables 25.33
25.8.1. Read Table Functions 2534
25.8.2. Syntax Classes 25.35
25.8.3. Read Macros 25.39

TABLEOFCONTENTS TOC.1

TABLE OF CONTENTS

{This page intentionally left blank]

TOC.2 TABLE OF CONTENTS

25. INPUT/OUTPUT FUNCTIONS
L e

This chapter describes the standard 1O functions used for
reading and printing characters and Interlisp expressions on files
and other streams. First, the primitive input functions are
presented, then the output functions, then functions for
random-access operations (such as searching a file for a given
stream, or changing the "next-character” pointer to a position in
a file). Next, the PRINTOUT statement is documented (page
25.23), which provides an easy way to write complex output
operations. Finally, read tables, used to parse characters as
Interlisp expressions, are documented.

25.1 Specifying Streams for Input/Output Functions

a stream

NIL

Most of the input/output functions in Interlisp-D have an
argument named STREAM or FILE, specifying on which open
stream the function's action should occur (the name FILE is used
in older functions that predate the concept of stream; the two
should, however, be treated synonymously). The value of this
argument should be one of the following:

An object of type STREAM, as returned by OPENSTREAM (page
24.2) or other stream-producing functions, is always the most
precise and efficient way to designate a stream argument.

The litatom T designates the terminal input or output stream of
the currently running process, controlling input from the
keyboard and output to the display screen. For functions where
the direction (input or output) is ambiguous, T is taken to
designate the terminal output stream. The T streams are always
open; they cannot be closed.

The terminal output stream can be set to a given window or
display stream by using TTYDISPLAYSTREAM (page 28.29). The
terminal input stream cannot be changed. For more information
onterminal /0, see page 30.1.

The litatom NIL designates the “primary" input or output
stream. These streams are initially the same as the terminal

INPUT/QUTPUT FUNCTIONS

25.1

SPECIFYING STREAMS FOR INPUT/OUTPUT FUNCTIONS

input/output streams, but they can be changed by using the
functions INPUT (page 25.3) and OUTPUT (page 25.8).

For functions where the direction (input or output) is
ambiguous, e.g., GETFILEPTR, the argument NIL is taken to mean
the primary input stream, if that stream is not identical to the
terminal input stream, else the primary output stream.

awindow Uses the display stream of the window (page 28.34). Valid for
output only.

afilename As of this writing, the name of an open file (as a litatom) can be
used as a stream argument. However, there are inefficiencies
and possible future incompatibilities associated with doing so.
See page page 24.13 for details.

(GETSTREAM FILE ACCESS) [Function]
Coerces the argument FILE to a stream by the above rules. |If
ACCESS is INPUT, OUTPUT, or BOTH, produces the stream
designated by FILE that is open for ACCESS. If ACCESS =NIL,
returns a stream for FILE open for any kind of input/output (see
the list above for the ambiguous cases). If FILE does not
designate a stream open in the specified mode, causes an error,
FILE NOT OPEN.

(STREAMP X) " [Function]
Returns X if X is a STREAM, otherwise NIL.

25.2 Input Functions

While the functions described below can take input from any
stream, some special actions occur when the input is from the
terminal (the T input stream, see page 25.1). When reading
from the terminal, the input is buffered a line at a time, unless
buffering has been inhibited by CONTROL (page 30.10) or the
input is being read by READC or PEEKC (page 25.5). Using
specified editing characters, the user can erase a character at a
time, a word at a time, or the whole line. The keys that perform
these editing functions are assignable via SETSYNTAX (page
25.37), with the initial settings chosen to be those most natural
for the given operating system. In Interlisp-D, the initial settings
are as follows: characters are deleted one at a time by
Backspace; words are erased by control-W; the whole line is
erased by control-Q.

On the Interlisp-D display, deleting a character or a line causes
the characters to be physically erased from the screen. In

25.2 INPUT/QUTPUT FUNCTIONS

INPUT FUNCTIONS

Interlisp-10, the deleting action can be modified for various
types of display terminals by using DELETECONTROL (page 30.8).

Unless otherwise indicated, when the end of file is encountered
while reading from a file, all input functions generate an error,
END OF FILE. Note that this does not close the input file. The
ENDOFSTREAMOP stream attribute (page 24.19) is useful for
changing the behavior at end of file.

Most input functions have a RDTBL argument, which specifies
the read table to be used for input (see page 25.33). Unless
otherwise specified, if RDTBL is NIL, the primary read table is
used.

If the FILE or STREAM argument to an input function is NIL, the
primary input stream is used (see page 25.1).

(INPUT FILE) [Function]
Sets FILE as the primary input stream; returns the old primary
input stream. FILE must be open for input.
(INPUT) returns the current primary input stream, which is not
changed.
Note: If the primary input stream is set to a file, the file's full
name, rather than the stream itself, is returned. See discussion
onpage 24.13.

(READ FILE RDTBL FLG) [Function]

Reads one expression from FILE. Atoms are delimited by the
break and separator characters as defined in RDTBL. Toinclude a
break or separator character in an atom, the character must be
preceded by the character %, e.g., AB%(C is the atom AB(C, % %
is the atom %, %control-K is the atom control-K. For input from
the terminal, an atom containing an interrupt character can be
input by typing instead the corresponding alphabetic character
preceded by control-V, e.g., 1 VD for control-D.

Strings are delimited by double quotes. To input a string
containing .a double quote or a %, precede it by %, e.g.,
"AB%"C" is the string AB"C. Note that % can always be typed
even if next character is not “special”, e.g., %A%B%C is read as
ABC.

If an atom is interpretable as a number, READ creates a num ber,
e.g., 1E3 reads as a floating point number, 1D3 as a literal atom,
1.0 as a number, 1,0 as a literal atom, etc. An integer can be
input in a non-decimal radix by using syntax such as 123Q,
|[b10101, [Sr1234 (see page 7.4). The function RADIX (page
25.13), sets the radix used to print integers.

When reading from the terminal, all input is line-buffered to
enable the action of the backspacing control characters, unless
inhibited by CONTROL (page 30.10). Thus no characters are

INPUT/QUTPUT FUNCTIONS

25.3

INPUT FUNCTIONS

(RATOM FILE RDTBL)

actually seen by the program until a carriage-return (actually the
character with terminal syntax class EOL, see page 30.6), is typed.:
However, for reading by READ, when a matching right
parenthesis is encountered, the effect is the same as though a
carriage-return were typed, i.e., the characters are transmitted.
To indicate this, Interlisp also prints a carriage-return line-feed
on the terminal. The line buffer is also transmitted to READ
whenever an IMMEDIATE read macro character is typed (page
25.41).

FLG =T suppresses the carriage-return normally typed by READ
following a matching right parenthesis. (However, the
characters are still given to READ; i.e., the user does not have to
type the carriage-return.)

[Function]

(RSTRING FILE RDTBL)

Reads in one atom from FILE. Separation of atoms is defined by
RDTBL. % is also defined for RATOM, and the remarks
concerning line-buffering and editing control characters also
apply.

If the characters comprising the atom would normally be
interpreted as a number by READ, that number is returned by
RATOM. Note however that RATOM takes no special action for "
whether or not it is a break character, i.e., RATOM never makes a
string.

[Function]

(RATOMS A FILE RDTBL)

Reads characters from FILE up to, but not including, the next
break or separator character, and returns them as a string.
Backspace, control-W, control-Q, control-V, and % have the
same effect as with READ.

Note that the break or separator character that terminates a call
to RATOM or RSTRING is not read by that call, but remains in the
buffer to become the first character seen by the next reading
function that is called. If that function is RSTRING, it will return
the null string. This is a common source of program bugs.

[Function]

(RATEST FLG)

Calls RATOM repeatedly until the atom A is read. Returns a list of
the atoms read, not including A.

[Function]

If FLG = T, RATEST returns T if a separator was encountered
immediately prior to the atom returned by the last RATOM or
READ, NIL otherwise.

INPUT/OUTPUT FUNCTIONS

INPUT FUNCTIONS

(READC FILE RDTBL)

If FLG = NIL, RATEST returns T if last atom read by RATOM or
READ was a break character, NIL otherwise.

if FLG = 1, RATEST returns T if last atom read (by READ or
RATOM) contained a % used to quote the next character (as in
%[or %A%B%C), NIL otherwise.

[Function]

(PEEKC FILE —)

Reads and returns the next character, including %, ", etc, i.e., is
not affected by break or separator characters. The action of
READC is subject to line-buffering, i.e., READC does not return a
value until the line has been terminated even if a character has
been typed. Thus, the editing control characters have their usual
effect. RDTBL does not directly affect the value returned, but is
used as usual in line-buffering, e.g., determining when input has
been terminated. If (CONTROL T) has been executed (page
30.10), defeating line-buffering, the RDTBL argument is
irrelevant, and READC returns a value as soon as a character is
typed (even if the character typed is one of the editing
characters, which ordinarily would never be seen in the input
buffer).

[Function]

(LASTC FILE)

Returns the next character, but does not actually read it and
remove it from the buffer. If reading from the terminal, the
character is echoed as soon as PEEKC reads it, even though it is
then "put back" into the system buffer, where backspace,
control-W, etc. could change it. Thus it is possible for the value
returned by PEEKC to "disagree" in the first character with a
subsequent READ.

[Function]

(READCCODE FILE RDTBL)

Returns the last character read from FILE.

[Function] .

(PEEKCCODE FILE —)

Returns the next character code from STREAM: thus, this
operation is equivalent to, but more efficient than, (CHCON1
(READC FILE RDTBL)).

[Function]

(BIN STREAM)

Returns, without consuming, the next character code from
STREAM,; thus, this operation is equivalent to, but more efficient
than, (CHCON1 (PEEKC FILE)).

[Function]

Returns the next byte from STREAM. This operation is useful for
reading streams of binary, rather than character, data.

INPUT/QUTPUT FUNCTIONS

255

INPUT FUNCTIONS

(READP FILE FLG)

Note: BIN issimilar to READCCODE, except that BIN always reads

a single byte, whereas READCCODE reads a “character” that can:
consist of more than one byte, depending on the character and

its encoding (see page 25.22).

READ, RATOM, RATOMS, PEEKC, READC all wait for input if
there is none. The only way to test whether or not there is input
is to use READP:

[Function]

(EOFP FILE)

Returns T if there is anything in the input buffer of FILE, NIL
otherwise. This operation is only interesting for streams whose
source of data is dynamic, e.g., the terminal or a byte stream over
a network; for other streams, such as to files, (READP FILE) is
equivalent to(NOT (EOFP FILE)).

Note that because of line-buffering, READP may return T,
indicating there is input in the buffer, but READ may still have to
wait.

Frequently, the terminal's input buffer contains a single EOL
character left over from a previous input. For most applications,
this situation wants to be treated as though the buffer were
empty, and so READP returns NIL in this case. However, if
FLG=T, READP returns T if there is any character in the input
buffer, including a single EOL. FLG is ignored for streams other
than the terminal.

[Function]

(WAITFORINPUT FILE)

Returns true if FILE is at "end of file", i.e., the next call to an
input function would cause an END OF FILE error; NIL otherwise.
For randomly accessible files (page 25.18), this can also be
thought of as the file pointer pointing beyond the last byte of
the file. FILE must be open for (at least) input, or an error is
generated, FILE NOT OPEN.

Note that EOFP can return NIL and yet the next call to READ
might still cause an END OF FILE error, because the only
characters remaining in the input were separators or otherwise
constituted an incomplete expression. The function SKIPSEPRS
(page 25.7) is sometimes more useful as a way of detecting end
of file when it is known that all the expressions in the file are
well formed.

[Function]

Waits until input is available from FILE or from the terminal, i.e.
from T. WAITFORINPUT is functionally equivalent to {until (OR
(READP T) (READP FILE)) do NIL), except that it does not use up
machine cycles while waiting. Returns the device for which input
is now available,i.e. FILEorT.

25.6

INPUT/QUTPUT FUNCTIONS

INPUT FUNCTIONS

FILE can also be an integer, in which case WAITFORINPUT waits
until there is input available from the terminal, or until FILE
milliseconds have elapsed. Value is T if input is now available, NIL
in the case that WAITFORINPUT timed out.

(SKREAD FILE REREADSTRING RDTBL) [Function]

(SKIPSEPRS FILE RDTBL)

"Skip Read". SKREAD consumes characters from FILE as if one
call to READ had been performed, without paying the storage
and compute cost to really read in the structure. REREADSTRING
is for the case where the caller has already performed some
READC's and RATOM's before deciding to skip this expression. In
this case, REREADSTRING should be the material already read (as
a string), and SKREAD operates as though it had seen that
material first, thus setting up its parenthesis count, double-quote
count, etc.

The read table RDTBL is used for reading from FILE. If RDTBL is
NIL, it defaults to the value of FILERDTBL. SKREAD may have
difficulties if unusual read macros (page 25.39) are defined in
RDTBL. SKREAD does not recognize read macro characters in
REREADSTRING, nor SPLICE or INFIX read macros. This is only a
problem if the read macros are defined to parse subsequent
input in the stream that does not follow the normal parenthesis
and string-quote conventions.

SKREAD returns %) if the read terminated on an unbalanced
closing parenthesis; %] if the read terminated on an unbalanced
%], i.e., one which also would have closed any extant open left
parentheses; otherwise NIL.

[Function]

Consumes characters from FILE until it encounters a
non-separator character (as defined by RDTBL). SKIPSEPRS
returns, but does not consume, the terminating character, so
that the next call to READC would return the same character. If
no non-separator character is found before the end of file is
reached, SKIPSEPRS returns NIL and leaves the stream at end of
file. This function is useful for skipping over "white space” when
scanning a stream character by character, or for detecting end of
file when reading expressions from a stream with no
pre-arranged terminating expression.

25.3 Output Functions

Unless otherwise specified by DEFPRINT (page 25.16), pointers
other than lists, strings, atoms, or numbers, are printed in the
form {DATATYPE} followed by the octal representation of the

INPUT/OUTPUT FUNCTIONS

25.7

OQUTPUT FUNCTIONS

address of the pointer (regardless of radix). For example, an
array pointer might print as {ARRAYP}#43,2760. This printed
representation is for compactness of display on the user's
terminal, and will not read back in correctly; if the form above is
read, it will produce the litatom {ARRAYP}#43,2760.

Note: the term "end-of-line" appearing in the description of an
output function means the character or characters used to
terminate a line in the file system being used by the given
implementation of Interlisp. For example, in Interlisp-D
end-of-line is indicated by the character carriage-return.

Some of the functions described below have a RDTBL argument,
which specifies the read table to be used for output (see page
25.33). If RDTBL is NiL, the primary read table is used.

Most of the functions described below have an argument FILE,
which specifies the stream on which the operation is to take
place. If FILE is NIL, the primary output stream is used (see page
25.1).

(OUTPUT FILE) [Function]
Sets FILE as the primary output stream; returns the old primary
output stream. FILE must be open for output.

(OUTPUT) returns the current primary output stream, which is ’
not changed.

Note: If the primary output stream is set to a file, the file's full
name, rather than the stream itself, is returned. See discussion
onpage 24.13.

(PRIN1 X FILE) [Function]
Prints X on FILE.

(PRIN2 X FILE RDTBL) {Function]

Prints X on FILE with %'s and “'s inserted where required for it to
read back in properly by READ, using RDTBL.

Both PRIN1 and PRIN2 print any kind of Lisp expression, including
lists, atoms, numbers, and strings. PRIN1 is generally used for
printing expressions where human readability, rather than
machine readability, is important, e.g., when printing text rather
than program fragments. PRIN1 does not print double quotes
around strings, or % in front of special characters. PRIN2 is used
for printing Interlisp expressions which can then be read back
into Interlisp with READ; i.e., break and separator characters in
atoms will be preceded by %'s. For example, the atom "()" is
printed as %(%) by PRIN2. If the integer output radix (as set by
RADIX, page 25.13) is not 10, PRIN2 prints the integer using the

25.8

INPUT/QUTPUT FUNCTIONS

QUTPUTFUNCTIONS

(PRIN3 X FILE)

input syntax for non-decimal integers (see page 7.4) but PRIN1
does not (but both print the integer in the output radix).

[Function]

(PRINA X FILE RDTBL)

[Function]

(PRINT X FILE RDTBL)

PRIN3 and PRIN4 are the same as PRIN1 and PRIN2 respectively,
except that they do not increment the horizontal position
counter nor perform ‘any linelength checks. They are useful
primarily for printing control characters.

[Function]

Prints the expression X using PRIN2 followed by an end-of-line.
Returns X.

(PRINTCCODE CHARCODE FILE) [Function]

Outputs a single character whose code is CHARCODE to FILE.
This is similar to (PRIN1 (CHARACTER CHARCODE)), except that
numeric characters are guaranteed to print "correctly”; e.qg.,
(PRINTCCODE (CHARCODE 9)) always prints 9", independent of
the setting of RADIX.

Note that PRINTCCODE may actually print more than one byte on
FILE, due to character encoding and end of line conventions;
thus, no assumptions should be made about the relative motion
of the file pointer (see GETFILEPTR, page 25.19) during this
operation.

(BOUT STREAM BYTE) [Function]
Outputs a single 8-bit byte to STREAM. This is similar to
PRINTCCODE, but for binary streams the character position in
STREAM is not updated (as with PRIN3), and end of line
conventions are ignored.
Note: BOUT is similar to PRINTCCODE, except that BOUT always
writes a single byte, whereas PRINTCCODE writes a “character”
that can consist of more than one byte, depending on the
character and its encoding (see page 25.22).

(SPACES NFILE) [Function]
Prints N spaces. Returns NIL.

(TERPRI FILE) [Function]

Prints an end-of-line character. Returns NIL.

INPUT/QUTPUT FUNCTIONS

259

OUTPUT FUNCTIONS

{FRESHLINE STREAM) [Function]
Equivalent to TERPRI, except it does nothing if it is already at the’
beginning of the line. Returns T if it prints an end-of-line, NIL
otherwise.

{TAB POS MINSPACES FILE) [Function]
Prints the appropriate number of spaces to move to position
POS. MINSPACES indicates how many spaces must be printed (if
NIL, 1 is used). If the current position plus MINSPACES is greater
than POS, TAB does a TERPR! and then (SPACES POS). |If
MINSPACES is T, and the current position is greater than POS,
then TAB does nothing.

Note: A sequence of PRINT, PRIN2, SPACES, and TERPRI
expressions can often be more conveniently coded with a single
PRINTOUT statement (page 25.23).

(SHOWPRIN2 X FILE RDTBL) [Function]
Like PRIN2 except if SYSPRETTYFLG =T, prettyprints X instead.
Returns X.

(SHOWPRINT X FILE RDTBL) [Function]

Like PRINT except if SYSPRETTYFLG=T, prettyprints X instead,
followed by an end-of-line. Returns X.

SHOWPRINT and SHOWPRIN2 are used by the programmer’s
assistant (page 13.1) for printing the values of expressions and
for printing the history list, by various commands of the break
package (page 14.1), e.g. ?a and BT commands, and various
other system packages. The idea is that by simply settting or
binding SYSPRETTYFLG to T (initially NIL), the user instructs the
system when interacting with the user to PRETTYPRINT
expressions (page 26.40) instead of printing them.

(PRINTBELLS -—)] [Function]
Used by DWIM (page 20.1) to print a sequence of belis to alert
the user to stop typing. Can be advised or redefined for special
applications, e.g., to flash the screen on a display terminal.

(FORCEQUTPUT STREAM WAITFORFINISH) [Function]
Forces any buffered output data in STREAM to be transmitted.

If WAITFORFINISH is non-NIL, this doesn't return until the data
has been forced out.

25.10 INPUT/QUTPUT FUNCTIONS

QUTPUTFUNCTIONS

(POSITION FILE N)

[Function]

~ (LINELENGTH N FILE)

Returns the column number at which the next character will be
read or printed. After a end of line, the column numberis0. If N
is non-NIL, resets the column number to be N.

Note that resetting POSITION only changes Lisp's belief about
the current column number; it does not cause any horizontal
motion. Also note that (POSITION FILE) is not the same as
(GETFILEPTR FILE) which gives the position in the file, not on the
line.

[Function]

(SETLINELENGTH N)

Sets the length of the print line for the output file FILE to N;
returns the former setting of the line length. FILE defaults to the
primary output stream. (LINELENGTH NIL FILE) returns the
current setting for FILE. When a file is first opened, its line length
is set to the value of the variable FILELINELENGTH.

Whenever printing an atom or string would increase a file's
position beyond the line length of the file, an end of line is
automatically inserted first. This action can be defeated by using
PRIN3 and PRING (page 25.9).

[Function]

25.3.1 PRINTLEVEL

Sets the line length for the terminal by doing (LINELENGTH N T).
If Nis NIL, it determines N by consulting the operating system's
belief about the terminal's characteristics. In Interlisp-D, this is a
no-op.

When using Interlisp one often has to handle large, complicated
lists, which are difficult to understand when printed out.
PRINTLEVEL allows the user to specify in how much detail lists
should be printed. The print functions PRINT, PRIN1, and PRIN2
are all affected by level parameters set by:

(PRINTLEVEL CARVAL CDRVAL) [Function]

Sets the CAR print level to CARVAL, and the CDR print level to
CDRVAL. Returns a list cell whose CAR and CDR are the old
settings. PRINTLEVEL is initialized with the value (1000 . -1).

in order that PRINTLEVEL can be used with RESETFORM or
RESETSAVE, if CARVAL is a list cell it is equivalent to (PRINTLEVEL
(CAR CARVAL) (CDR CARVAL)).

(PRINTLEVEL N NIL) changes the CAR printlevel without affecting
the CDR printlevel. (PRINTLEVEL NIL N) changes the CDR

INPUT/OUTPUT FUNCTIONS

25.11

OUTPUT FUNCTIONS

After:

(PRINTLEVEL 3 -1)
(PRINTLEVEL 2-1)
(PRINTLEVEL 1 -1)
(PRINTLEVEL 0 -1)
(PRINTLEVEL 1000 2)
(PRINTLEVEL 1000 3)
(PRINTLEVEL 1 3)

PLVLFILEFLG

printlevel with affecting the CAR printievel. (PRINTLEVEL) gives
the current setting without changing either. '

Note: control-P (page 30.2) can be used to change the
PRINTLEVEL setting dynamically, even while Interlisp is printing.

The CAR printlevel specifies how “deep" to print a list.
Specifically, it is the number of unpaired ieft parentheses which
will be printed. Below that level, all lists will be printed as &. If
the CAR printievel is negative, the action is similar except that an
end-of-line is inserted after each right parentheses that would
be immediately followed by a left parenthesis.

The CDR printlevel specifies how "long" to print a list. It is the
number of top level list elements that will be printed before the
printing is terminated with --. For example, if CDRVAL=2,(ABC
D E) will print as (A B --). For sublists, the number of list elements
printed is also affected by the depth of printing in the CAR
direction: Whenever the sum of the depth of the sublist (i.e. the
number of unmatched left parentheses) and the number of
elements is greater than the CDR printlevel, -- is printed. This
gives a "triangular” effect in that less is printed the farther one
goes in either CAR or CDR direction. If the CDR printlevel is
negative, thenitis the same as if the CDR printlevel were infinite.

Examples:

(A (B C(D(EF)G)H)KL)prints as:
(A(BC(D&G)H)KL)
(A(BC&H)KL)

(A&KL)

&

(A(B-)--)

(A(BC--)K--)

(A&K--)

[Variable]

Normally, PRINTLEVEL only affects terminal output. Output to
all other files acts as though the print level is infinite. However,
if PLVLFILEFLG is T (initially NIL), then PRINTLEVEL affects output
to files as well.

The following three functions are useful for printing isolated
expressions at a specified print level without going to the
overhead of resetting the global print level.

25.12

INPUT/QUTPUT FUNCTIONS

QUTPUT FUNCTIONS

(LVLPRINT X FILE CARLVL CDRLVL TAIL) [Function]

Performs PRINT of X to FILE, using as CAR and CDR print levels
the values CARLVL and CDRLVL, respectively. Uses the T read
table. If TAIL is specified, and X is a tail of it, then begins its
printing with "...", rather than on open parenthesis.

(LVLPRIN2 X FILE CARLVL CDRLVL TAIL) [Function]

Similar to LVLPRIN2, but performs a PRIN2.

(LVLPRIN1 X FILE CARLVL CDRLVL TAIL) [Function]

25.3.2 Printing numbers

Similar to LVLPRIN1, but performs a PRIN1.

(RADIX N)

How the ordinary printing functions (PRIN1, PRIN2, etc.) print
numbers can be affected in several ways. RADIX influences the
printing of integers, and FLTFMT influences the printing of
floating point numbers. The setting of the variable PRXFLG
determines how the symbol-manipulation functions handle
numbers. The PRINTNUM package permits greater controls on
the printed appearance of numbers, allowing such things as
left-justification, suppression of trailing decimals, etc.

[Function]

(FLTFMT FORMAT)

Resets the output radix for integers to the absolute value of N.
The value of RADIX is its previous setting. (RADIX) gives the
current setting without changing it. The initial setting is 10.

Note that RADIX affects output only. There is no input radix; on
input, numbers are interpreted as decimal unless they are
entered in a non-decimal radix with syntax such as 123Q,
[b10101, |5r1234 (see page 7.4). RADIX does not affect the
behavior of UNPACK, etc., unless the value of PRXFLG (below) is
T. For example, if PRXFLG is NIL and the radix is set to 8 with
(RADIX 8), the value of (UNPACK 9) is (9), not (1 1).

Using PRINTNUM (page 25.15) or the PRINTOUT command .I
(page 25.30) is often a more convenient and appropriate way to
print a single number in a specified radix than to globally change
RADIX.

[Function]

Resets the output format for floating point numbers to the
FLOAT format FORMAT (see PRINTNUM below for a description
of FLOAT formats). FORMAT=T specifies the default "free"
formatting: some number of significant digits (a function of the
implementation) are printed, with trailing zeros suppressed;

INPUT/QUTPUT FUNCTIONS

25.13

OUTPUT FUNCTIONS

PRXFLG

numbers with sufficiently large or small exponents are instead
printed in exponent notation. :

FLTFMT returns its current setting. (FLTFMT) returns the current
setting without changing it. The initial settingisT.

Note: In Interlisp-D, FLTFMT ignores the WIDTH and PAD fields
of the format (they are implemented only by PRINTNUM).

Whether print name manipulation functions (UNPACK, NCHARS,
etc.) use the values of RADIX and FLTFMT is determined by the
variable PRXFLG:

[Variable]

If PRXFLG = NIL (the initial setting), then the "PRIN1" name used
by PACK, UNPACK, MKSTRING, etc., is computed using base 10
for integers and the system default floating format for floating
point numbers, independent of the current setting of RADIX or
FLTFMT. If PRXFLG =T, then RADIX and FLTFMT do dictate the
"PRIN1" name of numbers. Note that in this case, PACK and
UNPACK are notinverses.

Examples with (RADIX 8), (FLTFMT '(FLOAT 4 2)):
With PRXFLG = NIL,

(UNPACK 13) = > (13)

(PACK'(A9)) => A9

(UNPACK 1.2345) => (1%.2345)
WithPRXFLG =T,

(UNPACK 13) => (15)

(PACK'(A9)) => A11

(UNPACK 1.2345) => (1%.23)

Note that PRXFLG does not effect the radix of "PRIN2" names, so
with (RADIX 8), (NCHARS 9 T), which uses PRIN2 names, would
return 3, (since 9 would print as 11Q) for either setting of
PRXFLG.

Warning: Some system functions will not work correctly if
PRXFLG is not NIL. Therefore, resetting the global value of
PRXFLG is not recommended. Itis much better to rebind PRXFLG
as a SPECVAR for that part of a program where it needs to be
non-NiL.

The basic function for printing numbers under format control is
PRINTNUM. Its utility is considerably enhanced when used in
conjunction with the PRINTOUT package (page 25.23), which
implements a compact language for specifying complicated

25.14

INPUT/QUTPUT FUNCTIONS

OUTPUTFUNCTIONS

sequences of elementary printing operations, and makes fancy
output formats easy to design and simple to program.

(PRINTNUM FORMAT NUMBER FILE) [Function]

FORMAT:

(FIX 2)
(FIX2NILT)
(FIX128T)
(FIXSNILNILT)

FORMAT:
(FLOAT 7 2)

Prints NUMBER on FILE according to the format FORMAT.
FORMAT is a list structure with one of the forms described below.

If FORMAT is a list of the form (FIX WIDTH RADIX PADO
LEFTFLUSH), this specifies-a FIX format. NUMBER is rounded to
the nearest integer, and then printed in a field WIDTH characters
long with radix set to RADIX (or 10 if RADIX = NIL; note that the
setting from the function RADIX is not used as the default). If
PADO and LEFTFLUSH are both NIL, the number is right-justified
in the field, and the padding characters to the left of the leading
digit are spaces. If PADO is T, the character "0" is used for
padding. If LEFTFLUSH is T, then the number is left-justified in
the field, with trailing spaces to fill out WIDTH characters.

The following examples illustrate the effects of the FIX format
options on the number 9 (the vertical bars indicate the field
width):

(PRINTNUM FORMAT 9) prints:
| 9]

09|

|000000000011|

9 |

If FORMAT is a list of the form (FLOAT WIDTH DECPART EXPPART
PADO ROUND), this specifies a FLOAT format. NUMBER is printed
as a decimal number in a field WIDTH characters wide, with
DECPART digits to the right of the decimal point. If EXPPART is
not 0 (or NIL), the number is printed in exponent notation, with
the exponent occupying EXPPART characters in the field.
EXPPART should allow for the character E and an optional sign to
be printed before the exponent digits. As with FIX format,
padding on the left is with spaces, unless PADO is T. If ROUND is
given, it indicates the digit position at which rounding is to take -
place, counting from the leading digit of the number.

Interlisp-D interprets WIDTH = NIL to mean no padding, i.e., to
use however much space the number needs, and interprets
DECPART = NIL to mean as many decimal places as needed.

The following examples illustrate the effects of the FLOAT
format options on the number 27.689 (the vertical bars indicate
the field width):

(PRINTNUM FORMAT 27.689) prints:
| 27.69|

INPUT/QUTPUT FUNCTIONS

25.15

OUTPUT FUNCTIONS

(FLOAT72NILT)
(FLOAT722)
(FLOAT 11 24)
(FLOAT 72 NILNIL 1)
(FLOAT 7 2 NIL NIL 2)

NILNUMPRINTFLG

|0027.69]

| 2.77€1|

| 2.77€+ 01|
| 30.00]

| 28.00|

[Variable]

25.3.3 User Defined Printing

If PRINTNUM's NUMBER argument is not a number and not NIL, a
NON-NUMERIC ARG error is generated. If NUMBER is NIL, the
effect depends on the setting of the variable NILNUMPRINTFLG.
If NILNUMPRINTFLG is NIL, then the error occurs as usual. If itis
non-NiL, then no error occurs, and the value of
NILNUMPRINTFLG is printed right-justified in the field described
by FORMAT. This option facilitates the printing of numbers in
aggregates with missing values coded as NIL.

(DEFPRINT TYPE FN)

Initially, Interlisp only knows how to print in an interesting way
objects of type litatom, number, string, list and stackp. All other
types of objects are printed in the form {datatype} followed by
the octal representation of the address of the pointer, a format
that cannot be read back in to produce an equivalent object.
When defining user data types (using the DATATYPE record
type, page 8.9), it is often desirable to specify as well how objects
of that type should be printed, so as to make their contents
readable, or at least more informative to the viewer. The
function DEFPRINT is used to specify the printing format of a
data type.

[Function]

TYPE is a type name. Whenever a printing function (PRINT,
PRIN1, PRIN2, etc.) or a function requiring a print name (CHCON,
NCHARS, etc.) encounters an object of the indicated type, FN is
called with two arguments: the item to be printed and the name
of the stream, if any, to which the object is to be printed. The
second argument is NIL on calls that request the print name of an
object without actually printing it.

If FN returns a list of the form (ITEM1 . ITEM2), ITEM1 is printed
using PRIN1 (unless it is NIL), and then ITEM2 is printed using
PRIN2 (unless it is NIL). No spaces are printed between the two
items. Typically, ITEM1 is a read macro character.

If FN returns NIL, the datum is printed in the system default
manner.

25.16

INPUT/QUTPUT FUNCTIONS

OUTPUT FUNCTIONS

If FN returns T, nothing further is printed; FN is assumed to have
printed the object to the stream itself. Note that this case if
permitted only when the second argument passed to FN is
non-NIL; otherwise, there is no destination for FN to do its
printing, so it must return as in one of the other two cases.

25.3.4 Printing Unusual Data Structures

HPRINT (for "Horrible Print") and HREAD provide a mechanism
for printing and reading back in general data structures that
cannot normally be dumped and loaded easily, such as (possibly
re-entrant or circular) structures containing user datatypes,
arrays, hash tables, as well as list structures. HPRINT will correctly
print and read back in any structure containing any or all of the
above, chasing all pointers down to the level of literal atoms,
numbers or strings. HPRINT currently cannot handle compiled
code arrays, stack positions, or arbitrary unboxed numbers.

HPRINT operates by simulating the Interlisp PRINT routine for
normal list structures. When it encounters a user datatype (see
page 8.20), or an array or hash array, it prints the data contained
therein, surrounded by special characters defined as read macro
characters (see page 25.39). While chasing the pointers of a
structure, it also keeps a hash table of those items it encounters,
and if any item is encountered a second time, another read
macro character is inserted before the first occurrence (by
resetting the file pointer with SETFILEPTR) and all subsequent
occurrences are printed as a back reference using an appropriate
macro character. Thus the inverse function, HREAD merely calls
the Interlisp READ routine with the appropriate read table.

(HPRINT EXPR FILE UNCIRCULAR DATATYPESEEN) [Function]

Prints EXPR on FILE. If UNCIRCULAR is non-NIL, HPRINT does no
checking for any circularities in EXPR (but is still useful for
dumping arbitrary structures of arrays, hash arrays, lists, user
data types, etc., that do not contain circularities). Specifying
UNCIRCULAR as non-NIL results in a large. speed and
internal-storage advantage.

Normally, when HPRINT encounters a user data type for the first
time, it outputs a summary of the data type's declaration. When
this is read in, the data type is redeclared. If DATATYPESEEN is
non-NiL, HPRINT assumes that the same data type declarations
will be in force at read time as were at HPRINT time, and not
output declarations.

HPRINT is intended primarily for output to random access files,
since the algorithm depends on being able to reset the file
pointer. If FILE is not a random access file (and UNCIRCULAR =
NIL), a temporary file, HPRINT.SCRATCH, is opened, EXPR is

INPUT/OUTPUT FUNCTIONS

25.17

QUTPUT FUNCTIONS

(HREAD FILE)

HPRINTed on it, and then that file is copied to the final output
file and the temporary file is deleted.

[Function]

(HCOPYALL X)

Reads and returns an HPRINT-ed expression from FILE.

[Function]

Copies data structure X. X may contain circular pointers as well
as arbitrary structures.

Note: HORRIBLEVARS and UGLYVARS (page 17.36) are two file
package commands for dumping and reloading circular and
re-entrant data structures. They provide a convenient interface
to HPRINT and HREAD.

When HPRINT is dumping a data structure that contains an
instance of an Interlisp datatype, the datatype declaration is also
printed onto the file. Reading such a data structure with HREAD
can cause problems if it redefines a system datatype. Redefining
a system datatype will almost definitely cause serious errors. The
Interlisp system datatypes do not change very often, but there is
always a possibility when loading in old files created under an
old Interlisp release.

To prevent accidental system crashes, HREAD will not redefine
datatypes. Instead, it will cause an error "attempt to read
DATATYPE with different field specification than currently
defined". Continuing from this error will redefine the datatype.

25.4 Random Access File Operations

For most applications, files are read starting at their beginning
and proceeding sequentially, i.e., the next character read is the
one immediately following the last character read. Similarly,
files are written sequentially. However, for files on some devices,
itis also possible to readAwrite characters at arbitrary positions in
a file, essentially treating the file as a large block of auxiliary
storage. For example, one application might involve writing an
expression at the beginning of the file, and then reading an
expression from a specified point in its middle. This particular
example requires the file be open for both input and output.
However, random file input or output can also be performed on
files that have been opened for only input or only output.

Associated with each file is a "file pointer" that points to the
location where the next character is to be read from or written
to. The file position of a byte is the number of bytes that precede

25.18

INPUT/OUTPUT FUNCTIONS

RANDOM ACCESS FILE OPERATIONS

(GETFILEPTR FILE)

it in the file, i.e., 0 is the position of the beginning of the file.
The file pointer to a file is automatically advanced after each
input or output operation. This section describes functions
which can be used to reposition the file pointer on those files
that can be randomly accessed. A file used in this fashionis much
like an array in that it has a certain number of addressable
locations that characters can be put into or taken from.
However, unlike arrays, files can be enlarged. For example, if the
file pointer is positioned at the end of a file and anything is
written, the file "grows." It is also possible to position the file
pointer beyond the end of file and then to write. (If the program
attempts to read beyond the end of file, an END OF FILE error
occurs.) In this case, the file is enlarged, and a "hole" is created,
which can later be written into. Note that this enlargement only
takes place at the end of a file; it is not possible to make more
room in the middle of a file. In other words, if expression A
begins at position 1000, and expression B at 1100, and the
program attempts to overwrite A with expression C, whose
printed representation is 200 bytes long, part of B will be altered.

Warning: File positions are always in terms of bytes, not
characters. The user should thus be very careful about
computing the space needed for an expression. In particular, NS
characters may take multiple bytes (see page 25.22). Also, the
end-of-line character (see page 24.19) may be represented by a
different number of characters in different implementations.
Qutput functions may also introduce end-of-line's as a result of
LINELENGTH considerations. Therefore NCHARS (page 2.9) does
not specify how many bytes an expression takes to print, even
ignoring line length considerations.

[Function]

(SETFILEPTR FILE ADR)

Returns the current position of the file pointer for FILE, i.e., the
byte address at which the next input/output operation will
commence.

[Function]

Sets the file pointer for FILE to the position ADR; returns ADR.
The special value ADR=-1 is interpreted to mean the address of
the end of file.

Note: If afile is opened for output only, the end of file is initially
zero, even if an old file by the same name had existed (see
OPENSTREAM, page 24.2). If a file is opened for both input and
output, the initial file pointer is the beginning of the file, but
(SETFILEPTR FILE -1) sets it to the end of the file. If the file had
been opened in append mode by (OPENSTREAM FILE 'APPEND),
the file pointer right after opening would be set to the end of
the existing file, in which case a SETFILEPTR to position the file at
the end would be unnecessary.

INPUT/OUTPUT FUNCTIONS

25.19

RANDOM ACCESS FILE OPERATIONS

(GETEOFPTR FILE)

[Function]

(RANDACCESSP FILE)

Returns the byte address of the end of file, i.e., the number of
bytes in the file. Equivalent to performing (SETFILEPTR FILE -1)
and returning (GETFILEPTR FILE) except that it does not change
the current file pointer.

[Function]

Returns FILE if FILE is randomly accessible, NIL otherwise. The file
T is not randomly accessible, nor are certain network file
connections in Interlisp-D. FILE must be open or an error is
generated, FILE NOT OPEN.

(COPYBYTES SRCFIL DSTFIL START END) [Function]

Copies bytes from SRCFIL to DSTFIL, starting from position START
and up to but not including position END. Both SRCFIL and
DSTFIL must be open. Returns T.

If END = NIL, START is interpreted as the number of bytes to copy
(starting at the current position). If START is also NIL, bytes are
copied until the end of the file is reached.

Warning: COPYBYTES does not take any account of multi-byte
NS characters (page 2.12). COPYCHARS (below) should be used
whenever copying information that might include NS characters.

(COPYCHARS SRCFIL DSTFIL START END) [Function]

Like COPYBYTES except that it copies NS characters (page 2.12),
and performs the proper conversion if the end-of-line
conventions of SRCFIL and DSTFIL are not the same (see page
24.19). START and END are interpreted the same as with
COPYBYTES, i.e., as byte (not character) specifications in SRCFIL.
The number of bytes actually output to DSTFIL might be more or
less than the number of bytes specified by START and END,
depending on what the end-of-line conventions are. In the case
where the end-of-line conventions happen to be the same,
COPYCHARS simply calls COPYBYTES.

(FILEPOS PATTERN FILE START END SKIP TAIL CASEARRAY) [Function]

Analogous to STRPOS (page 4.5), but searches a file rather than a
string. FILEPOS searches FILE for the string PATTERN. Search
begins at START (or the current position of the file pointer, if
START = NIL), and goes to END (or the end of FILE, if END = NIL).
Returns the address of the start of the match, or NiL if not found.

SKIP can be used to specify a character which matches any
character in the file. If TAIL is T, and the search is successful, the
value is the address of the first character after the sequence of
characters corresponding to PATTERN, instead of the starting
address of the sequence. In either case, the file is left so that the

25.20

INPUT/QUTPUT FUNCTIONS

RANDOM ACCESS FILE OPERATIONS

next i/o operation begins at the address returned as the value of
FILEPOS.

CASEARRAY should be a "case array” that specifies that certain
characters should be transformed to other characters before
matching. Case arrays are returned by CASEARRAY or SEPRCASE
below. CASEARRAY=NIL means no transformation will be
performed.

A case array is an implementation-dependent object that is
logically an array of character codes with one entry for each
possible character. FILEPOS maps each character in the file
“through” CASEARRAY in the sense that each character code is
transformed into the corresponding character code from
CASEARRAY before matching. Thus if two characters map into
the same value, they are treated as equivalent by FILEPOS.
CASEARRAY and SETCASEARRAY provide an
implementation-independent interface to case arrays.

For example, to search without regard to upper and lower case
differences, CASEARRAY would be a case array where all
characters map to themselves, except for lower case characters,
whose corresponding elements would be the upper case
characters. To search for a delimited atom, one could use "
ATOM " as the pattern, and specify a case array in which all of
the break and separator characters mapped into the same code
as space.

For applications calling for extensive file searches, the function
FFILEPOS is often faster than FILEPOS.

(FFILEPOS PATTERN FILE START END SKIP TAIL CASEARRAY) [Function]

(CASEARRAY OLDARRAY)

Like FILEPOS, except much faster in most applications. FFILEPOS
is an implementation of the Boyer-Moore fast string searching
algorithm. This algorithm preprocesses the string being
searched for and then scans through the file in steps usually
equal to the length of the string. Thus, FFILEPOS speeds up
roughly in proportion to the length of the string, e.g., a string of
length 10 will be found twice as fast as a string of length 5 in the
same position.

Because of certain fixed overheads, it is generally better to use
FILEPOS for short searches or short strings.

[Function]

Creates and returns a new case array, with all elements set to
themselves, to indicate the identity mapping. If OLDARRAY is
given, itis reused.

INPUT/QUTPUT FUNCTIONS

25.21

RANDOM ACCESS FILE OPERATIONS

(SETCASEARRAY CASEARRAY FROMCODE TOCODE) [Function]
Modifies the case array CASEARRAY so that character code
FROMCODE is mapped to character code TOCODE.

(GETCASEARRAY CASEARRAY FROMCODE) [Function]
Returns the character code that FROMCODE is mapped to in
CASEARRAY.

(SEPRCASE CLFLG) [Function]

Returns a new case array suitable for use by FILEPOS or FFILEPOS
in which all of the break/separators of FILERDTBL are mapped
into character code zero. If CLFLG is non-NIL, then all CLISP
characters are mapped into this character as well. This is useful
for finding a delimited atom in a file. For example, if PATTERN is
" FOO ", and (SEPRCASE T) is used for CASEARRAY, then FILEPOS
will find "(FOO«".

UPPERCASEARRAY [Variable]
Value is a case array in which every lowercase character is
mapped into the corresponding uppercase character. Useful for
searching text files.

25.5 Input/Output Operations with Characters and Bytes

Interlisp-D supports the 16-bit NS character set (see page 2.12).
All of the standard string and print name functions accept
litatoms and strings containing NS characters. In aimost all cases,
a program does not have to distinguish between NS characters or
8-bit characters. The exception to this rule is the handling of
input/output operations.

Interlisp-D uses two ways of writing 16-bit NS characters on files.
One way is to write the full 16-bits (two bytes) every time a
character is output. The other way is to use "run-encoding."
Each 16 NS character can be decoded into a character set (an
integer from 0 to 254 inclusive) and a character number (also an
integer from 0 to 254 inclusive). In run-encoding, the byte 255
(illegal as either a character set number or a character number) is
used to signal a change to a given character set, and the
following bytes are all assumed to come from the same character
set (until the next change-character set sequence).
Run-encoding can reduce the number of bytes required to
encode a string of NS characters, as long as there are long
sequences of characters from the same character set (usually the
case).

25.22 INPUT/QUTPUT FUNCTIONS

INPUT/QUTPUT OPERATIONS WITH CHARACTERS AND BYTES

Note that characters are not the same as bytes. A single
character can take anywhere from one to four bytes bytes,
depending on whether it is in the same character set as the
preceeding character, and whether run-encoding is enabled.
Programs which assume that characters are equal to bytes must
be changed to work with NS characters.

The functions BIN (page 25.5) and BOUT (page 25.9) should only
be used to read and write single eight-bit bytes. The functions
READCCODE (page 25.5)and PRINTCCODE (page 25.9) should be
used to read and write single character codes, interpreting
run-encoded NS characters. COPYBYTES (page 25.20) should
only be used to copy blocks of 8-bit data; COPYCHARS should be
used to copy characters. Most I/0 functions (READC, PRIN1, etc.)
read or write 16-bit NS characters.

The use of NS characters has serious consequences for any
program that uses file pointers to access a file in a random access
manner. At any point when a file is being read or written, it has
a "current character set." |If the file pointer is changed with
SETFILEPTR (page 25.19) to a part of the file with a different
character set, any characters read or written may have the wrong
character set. The current character set can be accessed with the
following function:

(CHARSET STREAM CHARACTERSET) [Function]

Returns the current character set of the stream STREAM. |f
CHARACTERSET is non-NIL, the current character set for STREAM
is set. Note that for output streams this may cause bytes to be
written to the stream.

if CHARACTERSET is T, run encoding for STREAM is disabled:
both the character set and the character number (two bytes
total) will be written to the stream for each character printed.

25.6 PRINTOUT

Interlisp provides many facilities for controlling the format of
printed output. By executing various sequences of PRIN1, PRIN2,
TAB, TERPRI, SPACES, PRINTNUM, and PRINTDEF, almost any
effect can be achieved. PRINTOUT implements a compact
language for specifying complicated sequences of these
elementary printing functions. It makes fancy output formats
easy todesign and simple to program.

PRINTOUT is a CLISP word (like FOR and IF) for interpreting a
special printing language in which the user can describe the
kinds of printing desired. The description is translated by
DWIMIFY to the appropriate sequence of PRIN1, TAB, etc.,

INPUT/OUTPUT FUNCTIONS

25.23

PRINTOUT

before it is evaluated or compiled. PRINTOUT printing
descriptions have the following general form: '

(PRINTOUT STREAM PRINTCOM ¢ ... PRINTCOM)

STREAM is evaluated to obtain the stream to which the output
from this specification is directed. The PRINTOUT commands are
strung together, one after the other without punctuation, after
STREAM. Some commands occupy a single position in this list,
but many commands expect to find arguments following the
command name in the list. The commands fall into several
logical groups: one set deals with horizontal and vertical
spacing, another group provides controls for certain formatting
capabilities (font changes and subscripting), while a third set is
concerned with various ways of actually printing items. Finally,
there is a command that permits escaping to a simple Lisp
evaluation in the middle of a PRINTOUT form. The various
commands are described below. The following examples give a
general flavor of how PRINTOUT is used:

Example 1: Suppose the user wanted to print out on the
terminal the values of three variables, X, Y, and Z, separated by
spaces and followed by a carriage return. This could be done by:

(PRIN1 X T)
(SPACES1T)
(PRIN1YT) :
(SPACES1T)
(PRIN1ZT)
(TERPRIT)

or by the more concise PRINTOUT form:
(PRINTOUTTX,Y,ZT)

Here the first T specifies output to the terminal, the commas
cause single spaces to be printed, and the final T specifies a
TERPRI. The variable names are not recognized as special
PRINTOUT commands, so they are printed using PRIN1 by
default.

Example 2: Suppose the values of X and Y are to be
pretty-printed lined up at position 10, preceded by identifying
strings. If the output is to go to the primary output stream, the
user could write either:

(PRINT "X =")
(PRINTDEF X 10 T)
(TERPRI)
(PRIN1"Y = ")
(PRINTDEFY 10 T)
(TERPRI)

or the equivalent:
(PRINTOUTNIL"X =" 10 .PPVXT

25.24

INPUT/OUTPUT FUNCTIONS

PRINTOUT

"Y ="10.PPVYT)

Since strings are not recognized as special commands, "X =" is
also printed with PRIN1 by default. The positive integer means
TAB to position 10, where the .PPV command causes the value of
X to be prettyprinted as a variable. By convention, special atoms
used as PRINTOUT commands are prefixed with a period. The T
causes a carriage return, so the Y information is printed on the
nextline.

Example 3. As a final example, suppose that the value of X is an
integer and the value of Y is a floating-point number. X is to be
printed right-flushed in a field of width 5 beginning at position
15, and Y is to be printed in a field of width 10 also starting at
position 15 with 2 places to the right of the decimal point.
Furthermore, suppose that the variable names are to appear in
the font class named BOLDFONT and the values in font class
SMALLFONT. The program in ordinary Interlisp that would
accomplish these effects is too complicated toinclude here. With
PRINTOUT, one could write:

(PRINTOUT NIL
.FONTBOLDFONT "X =" 15
.FONT SMALLFONT.ISX T
.FONTBOLDFONT "Y =" 15
.FONT SMALLFONT.F10.2YT
.FONT BOLDFONT)

The .FONT commands do whatever is necessary to change the
font on a multi-font output device. The .I5 command sets up a
FIX format for a call to the function PRINTNUM (page 25.15) to
print X in the desired format. The .F10.2 specifies a FLOAT
format for PRINTNUM.

25.6.1 Horizontal Spacing Commands

The horizontal spacing commands provide convenient ways of
calling TAB and SPACES. In the following descriptions, N stands
for a literal positive integer (not for a variable or expression
whose value is aninteger).

N (N a number) 4 [PRINTOUT command]
Used for absolute spacing. It results in a TAB to position N
(literally, a (TAB N)). If the line is currently at position N or
beyond, the file will be positioned at position N on the next line.
.TAB POS [PRINTOUT command]

Specifies TAB to position (the value of) POS. This is one of several
commands whose effect could be achieved by simply escaping to
Lisp, and executing the corresponding form. It is provided as a

INPUT/QUTPUT FUNCTIONS

25.25

PRINTOUT

.TABO POS

separate command so that the PRINTOUT form is more concise
and is prettyprinted more compactly. Note that .TAB N and N,’
where Nis an integer, are equivalent.

[PRINTOUT command]

-N(N a number)

Like .TAB except that it can result in zero spaces (i.e. the call to
TAB specifies MINSPACES = 0).

[PRINTOUT command]

Negative integers indicate relative (as opposed to absolute)
spacing. Translates as (SPACES |N).

[PRINTOUT command]

[PRINTOUT command]

[PRINTOUT command]

.SP DISTANCE

(1, 2 or 3 commas) Provides a short-hand way of specifying 1,2 or
3 spaces, i.e., these commands are equivalent to -1, -2, and -3,
respectively.

[PRINTOUT command]

25.6.2 Vertical Spacing Commands

Translates as (SPACES DISTANCE). Note that.SP N and -N, where
Nis aninteger, are equivalent.

Vertical spacing is obtained by calling TERPRI or printing
form-feeds. The relevant commands are:

[PRINTOUT command]

SKIP LINES

Translates as (TERPRI), i.e., move to position 0 (the first column)
of the nextline. Toprint the letter T, use the string "T*.

[PRINTOUT command]

PAGE

Equivalent to a sequence of LINES (TERPRI)'s. The .SKIP
command allows for skipping large constant distances and for
computing the distance to be skipped.

[PRINTOUT command]

Puts a form-feed (control-L) out on the file. Care is taken to
make sure that Interlisp's view of the current line position is
correctly updated.

25.26

INPUT/OUTPUT FUNCTIONS

PRINTOUT

25.6.3 Special Formatting Controls

.FONT FONTSPEC

There are a small number of commands for invoking some of the
formatting capabilities of multi- font output devices. The
available commands are:

[PRINTOUT command]

.Sup

Changes printing to the font FONTSPEC, which can be a font
descriptor, a "font list" such as '(MODERN 10), an image stream
(coerced to its current font), or a windows (coerced to the
current font of its display stream). See fonts (page 27.25) for
more information.

FONTSPEC may also be a positive integer N, which is taken as an
abbreviated reference to the font class named FONTN (e.g. 1
= > FONT1).

[PRINTOUT command]

.SUB

Specifies superscripting. All subsequent characters are printed
above the base of the current line. Note that this is absolute, not
relative: a.SUP following a .SUPis a no-op.

[PRINTOUT command]

.BASE

Specifies subscripting. Subsequent printing is below the base of
the current line. As with superscripting, the effect is absolute.

[PRINTOUT command]

25.6.4 Printing Specifications

Moves printing back to the base of the current line. Un-does a
previous .SUP or .SUB; a no-op, if printing is currently at the
base.

The value of any expression in a PRINTOUT form that is not
recognized as a command itself or as a command argument is
printed using PRIN1 by default. For example, title strings can be
printed by simply including the string as a separate PRINTOUT
command, and the values of variables and forms can be printed
in much the same way. Note that a literal integer, say 51, cannot
be printed by including it as a command, since it would be
interpreted as a TAB; the desired effect can be obtained by using
instead the string specification “51", or the form (QUOTE 51).

For those instances when PRIN1 is not appropriate, e.g., PRIN2 is
required, or a list structures must be prettyprinted, the following
commands are available:

INPUT/OUTPUT FUNCTIONS

25.27

PRINTOUT

P2 THING

[PRINTOUT command]

.PPF THING

Causes THING to be printed using PRIN2; translates as (PRIN2
THING).

[PRINTOUT command]

PPV THING

Causes THING to be prettyprinted at the current line position via
PRINTDEF (page 26.42). The call to PRINTDEF specifies that
THING is to be printed as if it were part of a function definition.
That is, SELECTQ, PROG, etc., receive special treatment.

[PRINTOUT command]

PPFTL THING

Prettyprints THING as a variable; no special interpretation is
given to SELECTQ, PROG, etc.

[PRINTOUT command]

PPVTL THING

Like .PPF, but prettyprints THING as a tail, that is, without the
initial and final parentheses if itis a list. Useful for prettyprinting
sub-lists of a list whose other elements are formatted with other
commands.

[PRINTOUT command]

25.6.4.1 Paragraph Format

Like .PPV, but prettyprints THING as a tail.

.PARA LMARG RMARG LIST

Interlisp's prettyprint routines are designed to display the
structure of expressions, but they are not really suitable for
formatting unstructured text. If a listis to be printed as a textual
paragraph, its internal structure is less important than
controlling its left and right margins, and the indentation of its
first line. The .PARA and .PARA2 commands allow these
parameters to be conveniently specified.

[PRINTOUT command]

Prints LIST in paragraph format, using PRIN1. Translates as
(PRINTPARA LMARG RMARG LIST) (see page 25.32).

Example: (PRINTOUT T 10 .PARA 5 -5 LST) will print the elements
of LST as a paragraph with left margin at 5, right margin at
(LINELENGTH)-5, and the first line indented to 10.

PARA2 LMARG RMARG LIST [PRINTOUT command]

Print as paragraph using PRIN2 instead of PRIN1. Translates as
(PRINTPARA LMARG RMARG LISTT).

25.28

INPUT/OUTPUT FUNCTIONS

PRINTOUT

25.6.4.2 Right-Flushing

.FR POS EXPR

Two commands are provided for printing simple expressions
flushed-right against a specified line position, using the function
FLUSHRIGHT (page 25.32). They take into account the current
position, the number of characters in the print-name of the
expression, and the position the expression is to be flush against,
and then print the appropriate number of spaces to achieve the
desired effect. Note that this might entail going to a new line
before printing. Note also that right-flushing of expressions
longer than a line (e.g. a large list) makes little sense, and the
appearance of the output is not guaranteed.

[PRINTOUT command]

.FR2 POS EXPR

Flush-right using PRIN1. The value of POS determines the
position that the right end of EXPR will line up at. As with the
horizontal spacing commands, a negative position number
means |POS| columns from the current position, a positive
number specifies the position absolutely. POS =0 specifies the
right-margin, i.e. isinterpreted as (LINELENGTH).

[PRINTOUT command]

25.6.43 Centering

Flush-right using PRIN2 instead of PRIN1.

CENTER POS EXPR

Commands for centering simple expressions between the current
line position and another specified position are also available.
As with right flushing, centering of large expressions is not
guaranteed.

[PRINTOUT command]

CENTER2 POS EXPR

Centers EXPR between the current line position and the position
specified by the value of POS. A positive POS is an absolute
position number, a negative POS specifies a position relative to
the current position, and 0 indicates the right-margin. Uses
PRIN1 for printing.

[PRINTOUT command]

25.6.44 Numbering

Centers using PRIN2 instead of PRIN1.

The following commands provide FORTRAN-like formatting
capabilities for integer and floating-point numbers. Each
command specifies a printing format and a number to be

INPUT/QUTPUT FUNCTIONS

25.29

PRINTOUT

JFORMAT NUMBER

printed. The format specification translates into a format-list for
the function PRINTNUM (see page 25.15).

[PRINTOUT command]

.FFORMAT NUMBER

Specifies integer printing. Translates as a call to the function
PRINTNUM with a FIX format-list constructed from FORMAT. The
atomic format is broken apart at internal periods to form the
format-list. For example, .15.8.T yields the format-list (FIX 58 T),
and the command sequence (PRINTOUT T .15.8.T FOO) translates
as (PRINTNUM '(FIX S 8 T) FOO). This expression causes the value
of FOO to be printed in radix 8 right-flushed in a field of width 5,
with 0's used for padding on the left. Internal NiL's in the format
specification may be omitted, e.g., the commands .I5..T and
A5.NIL.T are equivalent.

The format specification .11 is often useful for forcing a number
to be printed in radix 10 (but not otherwise specially formatted),
independent of the current setting of RADIX.

[PRINTOUT command]

.N FORMAT NUMBER

Specifies floating-number printing. Like the .| format command,
except translates with a FLOAT format-list.

[PRINTOUT command]

25.6.5 Escaping to Lisp

The .l and .F commands specify calls to PRINTNUM with quoted
format specifications. The .N command translates as (PRINTNUM
FORMAT NUMBER), i.e., it permits the format to be the value of
some expression. Note that, unlike the .I and .F commands,
FORMAT is a separate element in the command list, not part of
an atom beginning with .N.

FORM

There are many reasons for taking control away from PRINTOUT
in the middle of a long printing expression. Common situations
involve temporary changes to system printing parameters (e.g.
LINELENGTH), conditional printing (e.g. print FOO only if FIE is T),
or lower-level iterative printing within a higher-level print
specification.

[PRINTOUT command]

The escape command. FORM is an arbitrary Lisp expression that
is evaluated within the context established by the PRINTOUT
form, i.e., FORM can assume that the primary output stream has
been set to be the FILE argument to PRINTOUT. Note that
nothing is done with the value of FORM; any printing desired is
accomplished by FORM itself, and the value is discarded.

25.30

INPUT/OUTPUT FUNCTIONS

PRINTOUT

25.6.6 User-Defined Commands

Note: Although PRINTOUT logically encloses its translation in a
RESETFORM (page 14.26) to change the primary output file to
the FILE argument (if non-NIL), in most cases it can actually pass
FILE (or a locally bound variable if FILE is a non-trivial expression)
to each printing function. Thus, the RESETFORM is only
generated when the # command is used, or user-defined
commands (below) are used. If many such occur in repeated
PRINTOUT forms, it may be more efficient to embed them all in a
single RESETFORM which changes the primary output file, and
then specify FILE = NIL in the PRINTOUT expressions themselves.

PRINTOUTMACROS

The collection of commands and options outlined above is aimed
at fulfilling all common printing needs. However, certain
applications might have other, more specialized printing idioms,
so a facility is provided whereby the user can define new
commands. This is done by adding entries to the global list
PRINTOUTMACROS to define how the new commands are to be
transiated.

[Variable]

PRINTOUTMACROS is an association-list whose elements are of
the form (COMM FN). Whenever COMM appears in command
position in the sequence of PRINTOUT commands (as opposed to
an argument position of another command), FN is applied to the
tail of the command-list (including the command).

After inspecting as much of the tail as necessary, the function
must return a list whose CAR is the translation of the
user-defined command and its arguments, and whose CDR is the
list of commands still remaining to be translated in the normal
way.

For example, suppose the user wanted to define a command "?",
which will cause its single argument to be printed with PRIN1
only if it is not NIL. This can be done by entering (? ?TRAN) on
PRINTOUTMACROS, and defining the function ?TRAN as follows:

(DEFINEQ (?TRAN (COMS)
(CONS
(SUBST (CADR COMS) ‘ARG
'(PROG ((TEMP ARG))
(COND (TEMP (PRIN1 TEMP)))))
(CDDR COMS))]

Note that 2TRAN does not do any printing itself; it returns a form
which, when evaluated in the proper context, will perform the

INPUT/QUTPUT FUNCTIONS

25.31

PRINTOUT

25.6.7 Special Printing Functions

desired action. This form should direct all printing to the primary
output file.

The paragraph printing commands are translated into calls on
the function PRINTPARA, which may also be called directly:

(PRINTPARA LMARG RMARG LIST P2FLAG PARENFLAG FILE) {Function]

Prints LIST on FILE in line-filled paragraph format with its first
element beginning at the current line position and ending at or
before RMARG, and with subsequent lines appearing between
LMARG and RMARG. |f P2FLAG is non-NIL, prints elements using
PRIN2, otherwise PRIN1. If PARENFLAG is non-NIL, then
parentheses will be printed around the elements of LIST.

If LMARG is zero or positive, it is interpreted as an absolute
column position. If it is negative, then the left margin will be at
|[LMARG]| + (POSITION). If LMARG = NIL, the left margin will be at
(POSITION), and the paragraph will appear in block format.

If RMARG is positive, it also is an absolute column position (which
may be greater than the current (LINELENGTH)). Otherwise, it is
interpreted as relative to (LINELENGTH), i.e., the right margin
will be at (LINELENGTH) +|RMARG|. Example: (TAB 10)
(PRINTPARA 5 -5 LST T) will PRIN2 the elements of LST in a
paragraph with the first line beginning at column 10,
subsequent lines beginning at column 5, and all lines ending at
or before (LINELENGTH)-5.

The current (LINELENGTH) is unaffected by PRINTPARA, and
upon completion, FILE will be positioned immediately after the
last character of the last item of LIST. PRINTPARA is a no-op if
LiSTis not a list.

The right-flushing and centering commands translate as calls to
the function FLUSHRIGHT:

(FLUSHRIGHT POS X MIN P2FLAG CENTERFLAG FILE) [Function]

If CENTERFLAG = NIL, prints X right-flushed against position POS
on FILE; otherwise, centers X between the current line position
and POS. Makes sure that it spaces over at least MIN spaces
before printing by doing a TERPRI if necessary; MIN=NIL is
equivalent to MIN=1. A positive POS indicates an absolute
position, while a negative POS signifies the position which is
|[POS| to the right of the current line position. POS=0 is
interpreted as (LINELENGTH), the right margin.

25.32

INPUT/OUTPUT FUNCTIONS

READFILE AND WRITEFILE

25.7 READFILE and WRITEFILE

For those applications where the user simply wants to simply
read all of the expressions on a file, and not evaluate them, the
function READFILE is available:

(READFILE FILE RDTBL ENDTOKEN) ' [NoSpread Function]

(WRITEFILE X FILE)

Reads successive expressions from file using READ (with read
table RDTBL) until the single litatom ENDTOKEN is read, or an
end of file encountered. Returns a list of these expressions.

If RDTBL is not specified, it defaults to FILERDTBL. If ENDTOKEN
is not specified, it defaults to the litatom STOP.

[Function]

(ENDFILE FILE)

Writes a date expression onto FILE, followed by successive
expressions from X, using FILERDTBL as a read table. If X is
atomic, its value is used. If FILE is not open, itis opened. If FILE is
a list, (CAR FILE) is used and the file is left opened. Otherwise,
when X is finished, the litatom STOP is printed on FILE and it is
closed. Returns FILE.

[Function]

Prints STOP on FILE and closes it.

25.8 Read Tables

Many Interlisp input functions treat certain characters in special
ways. For example, READ recognizes that the right and left
parenthesis characters are used to specify list structures, and that
the quote character is used to delimit text strings. The Interlisp
input and (to a certain extent) output routines are table driven
by read tables. Read tables are objects that specify the syntactic
properties of characters for input routines. Since the input
routines parse character sequences into objects, the read table in
use determines which sequences are recognized as literal atoms,
strings, list structures, etc.

Most Interlisp input functions take an optional read table
argument, which specifies the read table to use when reading an
expression. If NIL is given as the read table, the "primary read
table" is used. If T is specified, the system terminal read table is
used. Some functions will also accept the atom ORIG (not the
value of ORIG) as indicating the “original" system read table.
Some output functions also take a read table argument. For

INPUT/OUTPUT FUNCTIONS

25.33

READ TABLES

25.8.1 Read Table Functions

example, PRIN2 prints an expression so that it would be read in
correctly using a givenread table.

The Interlisp-D system uses the following read tables: T for
input/output from terminals, the value of FILERDTBL for
input/output from files, the value of EDITRDTBL for input from
terminals while in the tty-based editor, the value of DEDITRDTBL
for input from terminals while in the display-based editor, and
the value of CODERDTBL for input/output from compiled files.
These five read tables are initially copies of the ORIG read table,
with changes made to some of them to provide read macros
(page 25.39) that are specific to terminal input or file input.
Using the functions described below, the user may further
change, reset, or copy these tables. However, in the case of
FILERDTBL and CODERDTBL, the user is cautioned that changing
these tables may prevent the system from being able to read files
made with the original tables, or prevent users possessing only
the standard tables from reading files made using the modified
tables.

The user can also create new read tables, and either explicitly
pass them to input/output functions as arguments, or install
them as the primary read table, via SETREADTABLE, and then not
specify a RDTBL argument, i.e., use NIL.

(READTABLEP RDTBL) [Function]
Returns RDTBL if RDTBL is a real read table (not T or ORIG),
otherwise NIL.

(GETREADTABLE RDTBL) [Function]
If RDTBL=NIL, returns the primary read table. If RDTBL=T,
returns the system terminal read table. If RDTBL is a real read
table, returns RDTBL. Otherwise, generates an ILLEGAL
READTABLE error.

(SETREADTABLE RDTBL FLG) [Function]

Sets the primary read table to RDTBL. If FLG=T, SETREADTABLE
sets the system terminal read table, T. Note that the user can
reset the other system read tables with SETQ, e.g., (SETQ
FILERDTBL (GETREADTABLE)).

Generates an ILLEGAL READTABLE error if RDTBL is not NIL, T, or
a real read table. Returns the previous setting of the primary
read table, so SETREADTABLE is suitable for use with
RESETFORM (page 14.26).

25.34

INPUT/OUTPUT FUNCTIONS

READ TABLES

(COPYREADTABLE RDTBL)

[Function]

Returns a copy of RDTBL. RDTBL can be a real read table, NIL, T,
or ORIG (in which case COPYREADTABLE returns a copy of the
original system read table), otherwise COPYREADTABLE
generates an ILLEGAL READTABLE error.

Note that COPYREADTABLE is the only function that creates a
read table.

(RESETREADTABLE RDTBL FROM) [Function]

25.8.2 Syntax Classes

Copies (smashes) FROM into RDTBL. FROM and RDTBL can be
NIL, T, or a real read table. In addition, FROM can be ORIG,
meaning use the system's original read table.

LEFTPAREN
RIGHTPAREN
LEFTBRACKET

RIGHTBRACKET

STRINGDELIM

ESCAPE

BREAKCHAR

SEPRCHAR

OTHER

A read table is an object that contains information about the
“syntax class” of each character. There are nine basic syntax
classes: LEFTPAREN, RIGHTPAREN, LEFTBRACKET,
RIGHTBRACKET, STRINGDELIM, ESCAPE, BREAKCHAR,
SEPRCHAR, and OTHER, each associated with a primitive
syntactic property. In addition, there is an unlimited assortment
of user-defined syntax classes, known as "read macros". The
basic syntax classes are interpreted as follows:

(normally left parenthesis) Begins list structure.
(normally right parenthesis) Ends list structure.

(normally left bracket) Begins list structure. Also matches
RIGHTBRACKET characters.

(normally left bracket) Ends list structure. Can close an arbitrary
numbers of LEFTPAREN lists, back to the last LEFTBRACKET.

(normally double quote) Begins and ends text strings. Within
the string, all characters except for the one(s) with class ESCAPE
are treated as ordinary, i.e., interpreted as if they were of syntax
class OTHER. To include the string delimiter inside a string, prefix
it with the ESCAPE character.

(normally percent sign) Inhibits any special interpretation of the
next character, i.e., the next character is interpreted to be of class
OTHER, independent of its normal syntax class.

(None initially) Is a break character, i.e., delimits atoms, but is
otherwise an ordinary character.

(space, carriage return, etc.) Delimits atoms, and is otherwise
ignored.

Characters that are not otherwise special belong to the class
OTHER.

INPUT/QUTPUT FUNCTIONS

25.35

READ TABLES

(GETSYNTAX CH TABLE)

Characters of syntax class LEFTPAREN, RIGHTPAREN,
LEFTBRACKET, RIGHTBRACKET, and STRINGDELIM are all break
characters. That is, in addition to their interpretation as
delimiting list or string structures, they also terminate the
reading of an atom. Characters of class BREAKCHAR serve only
to terminate atoms, with no other special meaning. In addition,
if a break character is the first non-separator encountered by
RATOM, it is read as a one-character atom. In order for a break
character to be included in an atom, it must be preceded by the
ESCAPE character.

Characters of class SEPRCHAR also terminate atoms, but are
otherwise completely ignored; they can be thought of as
logically spaces. As with break characters, they must be preceded
by the ESCAPE character in order to appear in an atom.

For example, if $ were a break character and * a separator
character, the input stream ABC**DEF$GH*$$ would be read by
6 calls to RATOM returning respectively ABC, DEF, $, GH, $, $.

Although normally there is only one character in a read table
having each of the list- and string-delimiting syntax classes (such
as LEFTPAREN), it is perfectly acceptable for any character to
have any syntax class, and for more than one to have the same
class.

Note that a "syntax class” is an abstraction: there is no object
referencing a collection of characters called a syntax class.
Instead, a read table provides the association between a
character and its syntax class, and the input/output routines
enforce the abstraction by using read tables to drive the parsing.

The functions below are used to obtain and set the syntax class
of a character in a read table. CH can either be a character code
(a integer), or a character (a single-character atom). Single-digit
integers are interpreted as character codes, rather than as
characters. For example, 1 indicates control-A, and 49 indicates
the character 1. Note that CH can be a full sixteen-bit NS
character (see page 2.12).

Note: Terminal tables, described on page 30.4, also associate
characters with syntax classes, and they can also be manipulated
with the functions below. The set of read table and terminal
table syntax classes are disjoint, so there is never any ambiguity
about which type of table is being referred to.

[Function]

Returns the syntax class of CH, a character or a character code,
with respect to TABLE. TABLE can be NIL, T, ORIG, or a real read
table or terminal table.

CH can also be a syntax class, in which case GETSYNTAX returns a
list of the character codes in TABLE that have that syntax class.

25.36

INPUT/QUTPUT FUNCTIONS

READ TABLES

(SETSYNTAX CHAR CLASS TABLE) [Function]

Sets the syntax class of CHAR, a character or character code, in
TABLE. TABLE can be either NIL, T, or a real read table or
terminal table. SETSYNTAX returns the previous syntax class of
CHAR. CLASS can be any one of the following:

The name of one of the basic syntax classes.

A list, which is interpreted as a read macro (see page 25.39).

- NIL, T, ORIG, or a real read table or terminal table, which means

to give CHAR the syntax class it has in the table indicated by
CLASS. For example, (SETSYNTAX '%('ORIG TABLE) gives the left
parenthesis character in TABLE the same syntax class thatit hasin
the original system read table.

A character code or character, which means to give CHAR the
same syntax class as the character CHAR in TABLE. For example,
(SETSYNTAX '{ '%[TABLE) gives the left brace character the
same syntax class as the left bracket.

(SYNTAXP CODE CLASS TABLE) [Function]

CODE is a character code; TABLE is NIL, T, or a real read table or
terminal table. Returns T if CODE has the syntax class CLASS in
TABLE; NIL otherwise.

CLASS can also be a read macro type (MACRO, SPLICE, INFIX), or a
read macro option (FIRST, IMMEDIATE, etc.), in which case
SYNTAXP returns T if the syntax class is a read macro with the
specified property.

Note: SYNTAXP will not accept a character as an argument, only
a character code.

For convenience in use with SYNTAXP, the atom BREAK may be
used to refer to all break characters, i.e., it is the union of
LEFTPAREN, RIGHTPAREN, LEFTBRACKET, RIGHTBRACKET,
STRINGDELIM, and BREAKCHAR. For purely symmetrical reasons,
the atom SEPR corresponds to all separator characters. However,
since the only separator characters are those that also appear in
SEPRCHAR, SEPR and SEPRCHAR are equivalent.

Note that GETSYNTAX never returns BREAK or SEPR as a value
although SETSYNTAX and SYNTAXP accept them as arguments.
Instead, GETSYNTAX returns one of the disjoint basic syntax
classes that comprise BREAK. BREAK as an argument to
SETSYNTAX is interpreted to mean BREAKCHAR if the character
is not already of one of the BREAK classes. Thus, if %(is of class
LEFTPAREN, then (SETSYNTAX '%('BREAK) doesn't do anything,
since %(is already a break character, but (SETSYNTAX "%(
'BREAKCHAR) means make %(be just a break character, and
therefore disables the LEFTPAREN function of %(. Similarly, if
one of the format characters is disabled completely, e.g., by

INPUT/OUTPUT FUNCTIONS

25.37

READ TABLES

(GETSEPR RDTBL)

(SETSYNTAX "%("OTHER), then (SETSYNTAX '%({ 'BREAK) would
make %(be only a break character; it would not restore %(as
LEFTPAREN.

The following functions provide a way of collectively accessing
and setting the separator and break charactersin a read table:

[Function]

(GETBRK RDTBL)

Returns a list of separator character codes in RDTBL. Equivalent
to (GETSYNTAX "'SEPR RDTBL).

[Function]

(SETSEPR LST FLG RDTBL)

Returns a list of break character codes in RDTBL. Equivalent to
{(GETSYNTAX 'BREAK RDTBL).

[Function]

(SETBRK LSTFLG RDTBL)

Sets or removes the separator characters for RDTBL. LSTis a list
of charactors or character codes. FLG determines the action of
SETSEPR as follows: If FLG = NIL, makes RDTBL have exactly the
elements of LST as separators, discarding from RDTBL any old
separator characters not in LST. If FLG=0, removes from RDTBL
as separator characters all elements of LST. This provides an
“UNSETSEPR". If FLG = 1, makes each of the characters in LST be
a separator in RDTBL.

If LST=T, the separator characters are reset to be those in the
system'’s read table for terminals, regardless of the value of FLG,
i.e., (SETSEPR T) is equivalent to (SETSEPR (GETSEPR T)). If RDTBL
is T, then the characters are reset to those in the original system
table.

Returns NIL.

[Function]

Sets the break characters for RDTBL. Similar to SETSEPR.

’

As with SETSYNTAX to the BREAK class, if any of the list- or
string-delimiting break characters are disabled by an appropriate
SETBRK (or by making it be a separator character), its special
action for READ will not be restored by simply making it be a
break character again with SETBRK. However, making these
characters be break characters when they already are will have
no effect.

The action of the ESCAPE character (normally %) is not affected
by SETSEPR or SETBRK. It can be disabled by setting its syntax to
the class OTHER, and other characters can be used for escape on
input by assigning them the class ESCAPE. As of this writing,
however, there is no way to change the output escape character;
itis "hardwired" as %. That is, on output, characters of special

25.38

INPUT/QUTPUT FUNCTIONS

READ TABLES

(ESCAPE FLG RDTBL)

syntax that need to be preceded by the ESCAPE character will
always be preceded by %, independent of the syntax of % or
which, if any characters, have syntax ESCAPE.

_The following function can be used for defeating the action of

the ESCAPE character or characters:

[Function]

25.8.3 Read Macros

If FLG=NIL, makes characters of class ESCAPE behave like
characters of class OTHER on input. Normal setting is (ESCAPE T).
ESCAPE returns the previous setting.

MACRO

SPLICE

INFIX

Read macros are user-defined syntax classes that can cause
complex operations when certain characters are read. Read
macro characters are defined by specifying as a syntax class an
expression of the form:

(TYPE OPTION .. OPTION), FN)

where TYPE is one of MACRO, SPLICE, or INFIX, and FN is the
name of a function or a lambda expression. Whenever READ
encounters a read macro character, it calls the associated
function, giving it as arguments the input stream and read table
being used for that call to READ. The interpretation of the value
returned depends on the type of read macro:

This is the simplest type of read macro. The result returned from
the macro is treated as the expression to be read, instead of the
read macro character. Often the macro reads more input itself.
For example, in order to cause "EXPR to be read as (NOT EXPR),
one could define ~ as the read macro:

[(MACRO (LAMBDA (FL RDTBL)
(LIST 'NOT (READ FL RDTBL]

The result (which should be a list or NIL) is spliced into the input
using NCONC. For example, if $ is defined by the read macro:

(SPLICE (LAMBDA NIL (APPEND FOO0)))

and the value of FOO is (A B C), then when the user inputs (X $
Y), the result willbe (X ABCY).

The associated function is called with a third argument, which is
a list, in TCONC format (page 3.6), of what has been read at the
current level of list nesting. The function's value is taken as a
new TCONC list which replaces the old one. For example, the
infix operator + could be defined by the read macro:

(INFIX (LAMBDA (FL RDTBL 2)
(RPLACA (CDR 2)
(LIST(QUOTE IPLUS)

INPUT/OUTPUT FUNCTIONS

25.39

READ TABLES

ALWAYS

FIRST

ALONE

ESCQUOTE or ESC

NOESCQUOTE or NOESC

(CADRZ)
(READ FL RDTBL)))
2))

If an INFIX read macro character is encountered not in a list, the
third argument to its associated function is NIL. If the function
returns NIL, the read macro character is essentially ignored and
reading continues. Otherwise, if the function returns a TCONC
list of one element, that element is the value of the READ. Ifit
returns a TCONC list of more than one .element, the list is the
value of the READ.

The specification for a read macro character can be augmented
to specify various options OPTION{ ... OPTIONy, e.g., (MACRO
FIRST IMMEDIATE FN). The following three disjoint options
specify when the read macro character is to be effective:

The default. The read macro character is always effective (except
when preceded by the % character), and is a break character, i.e.,
a member of (GETSYNTAX '‘BREAK RDTBL).

The character is interpreted as a read macro character only when
it is the first character seen after a break or separator character;
in all other situations, the character is treated as having class
OTHER. The read macro character is not a break character. For
example, the quote character is a FIRST read macro character, so
that DON'T is read as the single atom DON'T, rather than as DON °
followed by (QUOTET).

The read macro character is not a break character, and is
interpreted as a read macro character only when the character
would have been read as a separate atom if it were not a read
macro character, i.e., when its immediate neighbors are both
break or separator characters.

Making a FIRST or ALONE read macro character be a break
character (with SETBRK) disables the read macro interpretation,
i.e., converts it to syntax class BREAKCHAR. Making an ALWAYS
read macro character be a break character is a no-op.

The following two disjoint options control whether the read
macro character is to be protected by the ESCAPE character on
output when a litatom containing the character is printed:

The default. When printed with PRIN2, the read macro character
will be preceded by the output escape character (%) as needed
to permit the atom containing it to be read correctly. Note that
for FIRST macros, this means that the character need be quoted
only when it is the first character of the atom.

The read macro character will always be printed without an
escape. For example, the ? read macro in the T read table is a
NOESCQUOTE character. Unless you are very careful what you
are doing, read macro characters in FILERDTBL should never be

25.40

INPUT/QUTPUT FUNCTIONS

READ TABLES

IMMEDIATE or IMMED

NONIMMEDIATE or NONIMMED

NOESCQUOTE, since symbols that happen to contain the read
macro character will not read back in correctly.

The following two disjoint options control when the macro's
function is actually executed:

The read macro character is immediately activated, i.e., the
current line is terminated, as if an EOL had been typed, a
carriage-return line-feed is printed, and the entire line (including
the macro character) is passed to the input function.

IMMEDIATE read macro characters enable the user to specify a
character that will take effect immediately, as soon as it is
encountered in the input, rather than waiting for the line to be"
terminated. Note that this is not necessarily as soon as the
character is typed. Characters that cause action as soon as they
are typed are interrupt characters (see page 30.1).

Note that since an IMMEDIATE macro causes any input before it
to be sent to the reader, characters typed before an IMMEDIATE
read macro character cannot be erased by control-A or control-Q
once the IMMEDIATE character has been typed, since they have
already passed through the line buffer. However, an INFIX read
macro can still alter some of what has been typed earlier, via its
third argument.

The default. The read macro character is a normal character with
respect to the line buffering, and so will not be activated until a
carriage-return or matching right parenthesis or bracket is seen.

Making a read macro character be both ALONE and IMMEDIATE
is a contradiction, since ALONE requires that the next character
be input in order to see if it is a break or separator character.
Thus, ALONE read macros are always NONIMMEDIATE,
regardless of whether or not IMMEDIATE is specified.

Read macro characters can be "nested”. For example, if = is
defined by

(MACRO (LAMBDA (FL RDTBL)
(EVAL (READ FL RDTBL))))

and!is defined by

(SPLICE (LAMBDA (FLRDTBL)
(READ FL RDTBL)))

then if the value of FOO is (A BC), and (X =FOO Y) is input, (X (A
B C) Y) will be returned. If (X! =FOO Y) is input, (X A B C Y) will
be returned.

Note: If a read macro's function calls READ, and the READ
returns NIL, the function cannot distinguish the case where a
RIGHTPAREN or RIGHTBRACKET followed the read macro
character, (e.g. "(A B ')"), from the case where the atom NIL (or
"()") actually appeared. In Interlisp-D, a READ inside of a read
macro when the next input character is a RIGHTPAREN or

INPUT/QUTPUT FUNCTIONS .

25.41

READ TABLES

(INREADMACROP)

RIGHTBRACKET reads the character and returns NIL, just as if the
READ had not occurred inside a read macro.

If a call to READ from within a read macro encounters an
unmatched RIGHTBRACKET within a list, the bracket is simply put
back into the buffer to be read (again) at the higher level. Thus,
inputting an expression such as (A B '(C D] works correctly.

[Function]

(READMACROS FLG RDTBL)

Returns NIL if currently not under a read macro function,
otherwise the number of unmatched left parentheses or
brackets.

[Function]

' (single-quote)

control-Y

* (backquote)

If FLG = NIL, turns off action of read macros in read table RDTBL.
If FLG =T, turns them on. Returns previous setting.

The following read macros are standardly defined in Interlisp in
the T and EDITRDTBL read tabies:

Returns the next expression, wrapped in a cail to QUOTE; e.g.,
'FOO reads as (QUOTE FOO). The macro is defined as a FIRST
read macro, so that the quote character has no effect in the
middle of a symbol. The macro is also ignored if the quote
character is immediately followed by a separator character.

Defined in T and EDITRDTBL. Returns the result of evaluating
the next expression. For example, if the value of FOO is (A B),
then (LIST 1 control-YFQO 2) is read as (LIST 1 (A B) 2). Note that
no structure is copied; the third element of that input expression
is still EQ to the value of FOO. Control-Y can thus be used to read
structures that ordinarily have no read syntax. For example, the
value returned from reading (KEY1 control-Y(ARRAY 10)) has an
array as its second element. Control-Y can be thought of as an
"un-quote” character. The choice of character to perform this
function is changeable with SETTERMCHARS (page 16.75).

Backquote makes it easier to write programs to construct
complex data structures. Backquote is like quote, except that
within the backquoted expression, forms can be evaluated. The
general idea is that the backquoted expression is a "template"”
containing some constant parts (as with a quoted form) and
some parts to be filled in by evaluating something. Unlike with
control-Y, however, the evaluation occurs not at the time the
form is read, but at the time the backquoted expression is
evaluated. That is, the backquote macro returns an expression
which, when evaluated, produces the desired structure.

Within the backquoted expression, the character ",” (comma)
introduces a form to be evaluated. The value of a form preceded
by ".@" is to be spliced in, using APPEND. If it is permissible to

25.42

INPUT/QUTPUT FUNCTIONS

READ TABLES

| (vertical bar)

destroy the list being spliced in (i.e., NCONC may be used in the
translation), then “,." can be used instead of ", @".

For example, if the value of FOO is (1 2 3 4), then the form
‘(A (CARFOO) ,@(CDDR FOO) D E)
evaluates to (A 134 DE); itis logically equivalent to writing

(CONS ‘A
(CONS (CAR FOO)
(APPEND (CDDR FOO) ‘(D E))))

Backquote is particularly useful for writing macros. For example,
the body of a macro that refers to X as the macro's argument list
might be

‘(COND
((FIXP (CAR X))
{CADR X))
(T.,(CDDR X)))

which is equivalent to writing

(LIST'COND
(LIST (LIST "FIXP (CAR X))
(CADR X))
(CONS 'T (CDDR X)))

Note that comma does not have any special meaning outside of a
backquote context.

For users without a backquote character on their keyboards,
backquote can also be written as |' (vertical-bar, quote).

Implements the ?= command for on-line help regarding the
function currently being “called"” in the typein (see page 26.33).

When followed by an end of line, tab or space, | is ignored, i.e.,
treated as a separator character, enabling the editor's
CHANGECHAR feature (page 26.49). Otherwise it is a
“dispatching” read macro whose meaning depends on the
character(s) following it. The following are currently defined:

' (quote) -- A synonym for backquote.

- (period) -- Returns the evaluation of the next expression, i.e.,
this is a synonym for control-Y.

. (comma) -- Returns the evaluation of the next expression at
load time, i.e., the following expression is quoted in such a
manner that the compiler treats it as a literal whose value is not
determined until the compiled expression is loaded.

O or o (the letter O) -- Treats the next number as octal, i.e., reads
itinradix 8. For example, |012 = 10 (decimal).

B or b -- Treats the next number as binary, i.e., reads it in radix 2.
For example, |b101 = 5 (decimal).

INPUT/OUTPUT FUNCTIONS

25.43

READ TABLES

X or x -- Treats the next number as hexadecimal, i.e., reads it in
radix 16. The upper-case letters A though F are used as the digits
after 9. For example, |x1A = 26 (decimal).

R or r -- Reads the next number in the radix specified by the
(decimal) number that appears between the | and the R. When
inputting a number in a radix above ten, the upper-case letters A
through Z can be used as the digits after 9 (but there is no digit
above Z, so it is not possible to type all base-99 digits). For
example, |3r120 reads 120 in radix 3, returning 15.

(. {. T — Used internally by HPRINT and HREAD (page 25.17)to
print and read unusual expressions.

The dispatching characters that are letters can appear in either
upper or lower case.

25.44

INPUT/QUTPUT FUNCTIONS

TABLE OF CONTENTS

26. User Input/Output Packages 26.1
26.1. Inspector 26.1
26.1.1. Calling the Inspector 26.2
26.1.2. Multiple Ways of Inspecting 26.2
26.1.3. Inspect Windows 26.3
26.1.4. Inspect Window Commands 26.4
26.1.5. Interaction With Break Windows 26.5
26.1.6. Controlling the Amount Displayed During Inspection
26.5
26.1.7. Inspect Macros 26.6
26.1.8. INSPECTWs 26.6
26.2. PROMPTFORWORD 269
26.3. ASKUSER 26.12
26.3.1. Format of KEYLST 26.13
26.3.2. Options 26.15
26.3.3. Operation 26.17
26.3.4. Completing a Key 26.18
26.3.5. Special Keys 26.19
26.3.6. Startup Protocol and Typeahead 26.20
26.4. TTYIN Display Typein Editor 26.22
26.4.1. Entering input With TTYIN 26.22
26.4.2. Mouse Commands [Interlisp-D Only] . -26.24
26.4.3. Display Editing Commands 26.25
26.4.4. Using TTY!N for Lisp Input 26.28
26.4.5. Useful Macros 26.29
26.4.6. Programming With TTYIN 26.29
26.4.7. Using TTYIN as a General Editor 26.32
26.4.8. ?= Handler 26.33
26.4.9. Read Macros 26.34

TABLE OF CONTENTS TOC

TABLE OF CONTENTS

26.4.10. Assorted Flags 256.36
26.4.11. Special Responses 2638
26.4.12. Display Types 26.38
26.5. Prettyprint 26.39
26.5.1. Comment Feature 26.42
26.5.2. Comment Pointers 26.44
26.5.3. Converting Comments to Lower Case 26.46
26.5.4. Special Prettyprint Controls 26.47

TOC.2

TABLEOF CONTENTS

26. USER INPUT/OUTPUT PACKAGES
L

This chapter presents a number of packages that have been
developed for displaying and allowing the user to enter
information. These packages are used to implement the user
interface of many system facilities.

The Inspector (below) provides a window-based facility for
displaying and changing the fields of a data object.

PROMPTFORWORD (page 26.9) is a function used for entering a
simple string of characters. Basic editing and prom pting facilities
are provided.

ASKUSER (page 26.12) provides a more complicated prompfing
and answering facility, allowing a series of questions to be
printed. Prompts and argument completion are supported.

TTYIN (page 26.22) is a display typein editor, that provides
complex text editing facilities when entering an input line.

PRETTYPRINT (page 26.40) is used for printing function
definitions and other list structures, using multiple fonts and
indenting lines to show the structure of the list.

26.1 Inspector

The Inspector provides a display-oriented facility for looking at
and changing arbitrary Interlisp-D data structures. The inspector
can be used to inspect all user datatypes and many system
datatypes (although some objects such as numbers have no
inspectable structure). The inspector displays the field names
and values of an arbitrary object in a window that allows setting
of the properties and further inspection of the values. This latter
feature makes it possible to "walk" around all of the data
structures in the system at the touch of a button. In addition, the
inspector is integrated with the break package to allow
inspection of any object on the stack and with the display and
teletype structural editors to allow the editors to be used to
"inspect” list structures and the inspector to "edit" datatypes.

The underlying mechanisms of the data inspector have been
designed to allow their use as specialized editors in user
applications. This functionality is described at the end of this
section.

USER INPUT/OUTPUT PACKAGES

26.1

INSPECTOR

26.1.1 Calling the Inspector

Note: Currently, the inspector does not have UNDOing. Also,
variables whose values are changed will not be marked as such.

There are several ways to open an inspect window onto an
object. In addition to calling INSPECT directly (below), the
inspector can also be called by buttoning an Inspect command
inside an existing inspector window. Finally, if a non-list is edited
with EDITDEF (page 17.27), the inspector is called. This also
causes the inspector to be called by the Dedit command from the
display editor or the EV command from the teletype editor if the
selected piece of structure is a non-list.

(INSPECT OBJECT ASTYPE WHERE) [Function]

Creates an inspect window onto OBJECT. If ASTYPE is given, it
will be taken as the record type of OBJECT. This allows records to
be inspected with their property names. If ASTYPE is NIL, the
data type of OBJECT will be used to determine its property
names in the inspect window.

WHERE specifies the location of the inspect window. f WHERE is
NiL, the user will be prompted for a location. If WHERE is a
window, it will be used as the inspect window. If WHERE is a '
region, the inspect window will be created in that region of the
screen. If WHERE is a position, the inspect window will have its
lower left corner at that position on the screen.

INSPECT returns the inspect window onto OBJECT, or NIL if no
inspection took place.

(INSPECTCODE FN WHERE — — — —) [Function]

26.1.2 Multiple Ways of Inspecting

Opens a window and displays the compiled code of the function
FN using PRINTCODE. The window is scrollable.

WHERE determines where the window should appear. it can be
a position, a region, or a window. If NIL, the user is prompted to
specify the position of the window.

Note: If the Tedit library package is loaded, INSPECTCODE uses it
to create the code inspector window. Also, if INSPECTCODE is
called to inspect the frame name in a break window (page 14.3),
the location in the code that the frame's PC indicates it was
executing at the time is highlighted.

For some datatypes there is more than one aspect that is of
interest or more than one method of inspecting the object. In

26.2

USER INPUT/OUTPUT PACKAGES

INSPECTOR

FNS
VARS
PROPS

Inspect

TtyEdit
DisplayEdit
As aPLIST

As an ALIST

As arecord

 Asa "record type”

26.1.3 Inspect Windows

these cases, the inspector will bring up a menu of the possibilities
and wait for the user to select one.

If the object is a litatom, the commands are the types for which
the litatom has definitions as determined by HASDEF. Some
typical commands are:

Edit the definition of the selected litatom.
Inspect the value.
Inspect the property list.

If the object is a list, there will be choice of how to inspect the
list:

Opens an inspect window in which the properties are numbers
and the values are the elements of the list.

Calls the teletype list structure editor on the list (page 16.1).
Calls the DEdit display editor on the list (page 16.1).

lnspecfs the list as a property list, if the listis in property list form:
((PROP1 VALj) ... (PROPN VALp)).

Inspects the list as an association-list, if the list is in ASSOC list
form: (PROP; VALj ... PROP VALp,).

Brings up a submenu with all of the RECORDs in the system and
inspect the list with the one chosen.

Inspects the list as the record of the type named in its CAR, if the
CAR of the listis the name of a TYPERECORD (page 8.7).

If the object is a bitmap, the choice is between inspecting the
bitmap's contents with the bitmap editor (EDITBM) or inspecting
the bitmap's fields.

Other datatypes may include multiple methods for inspecting
objects of that type.

An inspect window displays two columns of values. The lefthand
column lists the property names of the structure being inspected.
The righthand column contains the values of the properties
named on the left. For variable length data such as lists and
arrays, the "property names" are numbers from 1 to the length
of the inspected item and the values are the corresponding
elements. For arrays, the property names are the array element
numbers and the values are the corresponding elements of the
array.

For large lists or arrays, or datatypes with many fields, the initial
window may be too small to contain all of them. In these cases,
the unseen elements can be scrolled into view (from the bottom)
or the window can be reshaped to increase its size.

USER INPUT/QUTPUT PACKAGES

26.3

INSPECTOR

26.1.4 Inspect Window Commands

in an inspect window, the LEFT button is used to select things,
the MIDDLE button to invoke commands that apply to the:
selected item. Any property or value can be selected by pointing
the cursor directly at the text representing it, and clicking the
LEFT button. There is one selected item per window and it is
marked by having its surrounding box inverted.

The options offered by the MIDDLE button depend on whether
the selection is a property or a value. If the selected item is a
value, the options provide different ways of inspecting the
selected structure. The exact commands that are given depend
on the type of the value. ‘

If the selected item is a property name, the command SET will
appear. |If selected, the user will be asked to type in an
expression, and the selected property will be set to the result of
evaluating the read form. The evaluation of the read form and
the replacement of the selected item property will appear as
their own history events and are individually undoable.
Properties of system datatypes cannot be set. (There are often
consistency requirements which can be inadvertently violated in
ways that crash the system. This may be true of some user
datatypes as well, however the system doesn't know which ones.
Users are advised to exercise caution.)

It is possible to copy-select property names or values out of an
inspect window. Litatoms, numbers and strings are copied as
they are displayed. Unprintable objects (such as bitmaps, etc.)
come out as an appropriate system expression, such that if is
evaluated, the object is re-created.

ReFetch

By pressing the MIDDLE button in the title of the inspect
window, a menu of commands that apply to the inspect window
is brought up:

[Inspect Window Command]

ITedatum

An inspect window is not automatically updated when the
structure it is inspecting is changed. The "ReFetch" command
will refetche and redisplay all of the fields of the object being
inspected in the inspect window.

[Inspect Window Command]

Sets the variable IT to object being inspected in the inspect
window.

26.4

USER INPUT/OUTPUT PACKAGES

INSPECTOR

ITeselection

[Inspect Window Command]

Sets the variable IT to the property name or value currently
selected in the inspect window.

26.1.5 Interaction With Break Windows

The break window facility (page 14.3) knows about the inspector
in the sense that the backtrace frame window is an inspect
window onto the frame selected from the back trace menu
during a break. Thus you can call the inspector on an object that
is bound on the stack by selecting its frame in the back trace
menu, selecting its value with the LEFT button in the back trace
frame window, and selecting the inspect command with the
MIDDLE button in the back trace frame window. The values of
variables in frames can be set by selecting the variable name with
the LEFT button and then the “Set" command with the MIDDLE
button.

Note: The inspector will only allow the setting of named
variables. Even with this restriction it is still possible to crash the
system by setting variables inside system frames. Exercise caution
in setting variables in other than your own code.

26.1.6_Controlling the Amount Displayed During Inspection

MAXINSPECTCDRLEVEL

The amount of information displayed during inspection can be
controlled using the following variables:

(Variable]

MAXINSPECTARRAYLEVEL

The inspector prints only the first MAXINSPECTCDRLEVEL
elements of a long list, and will make the tail containing the
unprinted elements the last item. The last item can be inspected
to see further elements. Initially 50.

[Variable]

INSPECTPRINTLEVEL

The inspector prints only the first MAXINSPECTARRAYLEVEL
elements of an array. The remaining elements can be inspected
by calling the function (INSPECT/ARRAY ARRAY BEGINOFFSET)
which inspects the BEGINOFFSET through the BEGINOFFSET +
MAXINSPECTARRAYLEVEL elements of ARRAY. Initially 300.

[Variable]

When printing the values, the inspector resets PRINTLEVEL (page
25.11) to the value of INSPECTPRINTLEVEL. Initially (2 .5).

USER INPUT/QUTPUT PACKAGES

26.5

INSPECTOR

INSPECTALLFIELDSFLG [Variable]
If INSPECTALLFIELDSFLG is T, the inspector will show computed®
fields (ACCESSFNS, page 8.12) as well as regular fields for
structures that have a record definition. Initially T.

26.1.7 Inspect Macros

The Inspector can be extended to inspect new structures and
datatypes by adding entries to the list INSPECTMACROS. An
entry should be of the form (OBJECTTYPE . INSPECTINFO).
OBJECTTYPE is used to determine the types of objects that are
inspected with this macro. If OBJECTTYPE is a litatom, the
INSPECTINFO will be used to inspect items whose type name is
OBJECTTYPE. If OBJECTTYPE is a list of the form (FUNCTION
DATUM-PREDICATE), DATUM-PREDICATE will be APPLYed to the
item and if it returns non-NIL, the INSPECTINFO will be used to
inspect the item.

INSPECTINFO can be one of two forms. If INSPECTINFO is a
litatom, it should be a function that will be applied to three
arguments (the item being inspected, OBJECTTYPE, and the
value of WHERE passed to INSPECT) that should do the
inspection. If INSPECTINFO is not a litatom, it should be a list of
(PROPERTIES FETCHFN STOREFN PROPCOMMANDFN -
VALUECOMMANODFN TITLECOMMANDFN TITLE SELECTIONFN
WHERE PROPPRINTFN) where the elements of this list are the
arguments for INSPECTW.CREATE, described below. From this
list, the WHERE argument will be evaluated; the others will not.
If WHERE is NIL, the value of WHERE that was passed to INSPECT
will be used.

Examples:

The entry ((FUNCTION MYATOMP) PROPNAMES GETPROP
PUTPROP) on INSPECTMACROS would cause all objects satisfying
the predicate MYATOMP to have their properties inspected with
GETPROP and PUTPROP. In this example, MYATOMP should
make sure the object is a litatom.

The entry (MYDATATYPE . MYINSPECTFN) on INSPECTMACROS
would cause all datatypes of type MYDATATYPE to be passed to
the function MYINSPECTFN.

26.1.8 INSPECTWs

The inspector is built on the abstraction of an INSPECTW. An
INSPECTW is a window with certain window properties that
display an object and respond to selections of the object's parts.
It is characterized by an object and its list of properties. An
INSPECTW displays the object in two columns with the property

26.6 USER INPUT/OUTPUT PACKAGES

INSPECTOR

names on the left and the values of those properties on the right.
An INSPECTW supports the protocol that the LEFT mouse button
can be used to select any property name or property value and
the MIDDLE button calls a user provided function on the selected
value or property. For the Inspector application, this function
puts up a menu of the alternative ways of inspecting values or of
the ways of setting properties. INSPECTWs are created with the
following function:

(INSPECTW.CREATE DATUM PROPERTIES FETCHFN STOREFN PROPCOMMANDFN

VALUECOMMANDFN TITLECOMMANDFN TITLE SELECTIONFN
WHERE PROPPRINTFN) [Function]

Creates an INSPECTW that views the object DATUM. If
PROPERTIES is a list, it is taken as the list of properties of DATUM
to display. If PROPERTIES is a litatom, it is APPLYed to DATUM
and the resultis used as the list of properties to display.

FETCHFN is a function of two arguments (OBJECT PROPERTY)
that should return the value of the PROPERTY property of
OBJECT. The result of this function will be printed (with PRIN2)
inthe INSPECTW as the value.

STOREFN is a function of three arguments (OBJECT PROPERTY
NEWVALUE) that changes the PROPERTY property of OBJECT to
NEWVALUE. 1t is used by the default PROPCOMMANDFN and
VALUECOMMANDEFN to change the value of a property and also
by the function INSPECTW.REPLACE (described below). This can
be NIL if the user provides command functions which do not call
INSPECTW.REPLACE. Each replace action will be a separate event
on the history list. Users are encouraged to provide UNDOable
STOREFN:s.

PROPCOMMANDEFN is a function of three arguments (PROPERTY
OBJECT INSPECTW) which gets called when the user presses the
MIDDLE button and the selected item in the INSPECTW is a
property name. PROPERTY will be the name of the selected
property, OBJECT will be the datum being viewed, and
INSPECTW will be the window. If PROPCOMMANDEFN is a string,
it will get printed in the PROMPTWINDOW when the MIDDLE
button is pressed. This provides a convenient way to notify the
user about disabled commands on the properties.
DEFAULT.INSPECTW.PROPCOMMANDFN, the default
PROPCOMMANDFN, will present a menu with the single
command Set on it. If selected, the Set command will read a
value from the user and set the selected property to the result of
EVALuating this read value.

VALUECOMMANDEFN is a function of four arguments (VALUE
PROPERTY OBJECT INSPECTW) that gets called when the user
presses the MIDDLE button and the selected item in the

USER INPUT/QUTPUT PACKAGES

26.7

INSPECTOR

INSPECTW is a property value. VALUE will be the selected value
(as returned by FETCHFN), PROPERTY will be the name of the’
property VALUE is the value of, OBJECT will be the datum being
viewed, and INSPECTW will be the INSPECTW window.
DEFAULT.INSPECTW.VALUECOMMANDFN, the default
VALUECOMMANDEFN, will present a menu of possible ways of
inspecting the value and create a new Inspect window if one of
the menu items is selected.

TITLECOMMANDEFN is a function of two arguments (INSPECTW
OBJECT) which gets called when the user presses the MIDDLE
button and the cursor is in the title or border of the inspect
window INSPECTW. This command function is provided so that
users can implement commands that apply to the entire object.
The default TITLECOMMANDFN
(DEFAULT.INSPECTW.TITLECOMMANDFN) presents a menu with
the commands ReFetch, ITedatum, and IT«selection (see page
26.4).

TITLE specifies the title of the window. If TITLE is NIL, the title of
the window will be the printed form of DATUM followed by the
string " Inspector”. If TITLE is the litatom DON'T, the inspect
window will not have a title. If TITLE is any other litatom, it will
be applyed to the DATUM and the potential inspect window (if it
is known). If this result is the litatom DON'T, the inspect window
will not have a title; otherwise the result will be used as a title. If
TITLE is not a litatom, it will be used as the title.

SELECTIONFN is a function of three arguments (PROPERTY
VALUEFLG INSPECTW) which gets called when the user releases
the left button and the cursor is on one of the items. The
SELECTIONFN allows a program to take action on the user's
selection of an item in the inspect window. At the time this
function is called, the selected item has been "selected". The
function INSPECTW.SELECTITEM (described below) can be used
to turn off this selection. PROPERTY will be the name of the
property of the selected item. VALUEFLG will be NIL if the
selected item is the property name; T if the selected item is the
property value.

WHERE indicates where the inspect window should go. Its
interpretation is described in INSPECT (page 26.2). '

PROPPRINTFN is a function of two arguments (PROPERTY
DATUM) which gets called to determine what to print in the
property place for the property PROPERTY. I|f PROPPRINTFN
returns NIL, no property name will be printed and the value will
be printed to the left of the other values.

An inspect window uses the following window property names
to hold information: DATUM, FETCHFN, STOREFN,
PROPCOMMANDFN, VALUECOMMANDEFN, SELECTIONFN,

26.8

USER INPUT/QUTPUT PACKAGES

INSPECTOR

PROPPRINTFN, INSPECTWTITLE, PROPERTIES, CURRENTITEM and
SELECTABLEITEMS.

(INSPECTW.REDISPLAY INSPECTW PROPS —) [Function]
Updates the display of the objects being inspected in INSPECTW.
If PROPS is a property name or a list of property names, only
those properties are updated. If PROPS is NIL, all properties are
redisplayed. This function is provided because inspect windows
do not automatically update their display when the object they
are showing changes.

This function is called by the ReFetch command in the title
command menu of an INSPECTW (page 26.4).

(INSPECTW.REPLACE INSPECTW PROPERTY NEWVALUE) [Function]
Calls the STOREFN of the inspect window INSPECTW to change
the property named PROPERTY to the value NEWVALUE and
updates the display of PROPERTY's value in the display. This
provides a functional interface for user PROPCOMMANDFNs.

(INSPECTW.SELECTITEM INSPECTW PROPERTY VALUEFLG) [Function]
Sets the selected item in aninspect window. The item is inverted
on the display and put on the window property CURRENTITEM of
INSPECTW. If INSPECTW has a CURRENTITEM, it is deselected.
PROPERTY is the name of the property of the selected item.
VALUEFLG is NIL if the selected item is the property name; T if
the selected item is the property value. If PROPERTY is NIL, no
item will be selected. This provides a way of deselecting all
items.

26.2 PROMPTFORWORD

PROMPTFORWORD is a function that reads in a sequence of
characters, generally from the keyboard, without involving
READ-like syntax. A user can supply a prompting string, as well
as a "candidate" string, which is printed and used if the user
types only a word terminator character (or doesn't type anything
before a given time limit). As soon as any characters are typed
the "candidate" string is erased and the new input takes its
place.

PROMPTFORWORD accepts user type-in until one of the "word
terminator” characters is typed. Normally, the word terminator
characters are EOL, ESCAPE, LF, SPACE, or TAB. This list can be
changed using the TERMINCHAR.LST argument to

USER INPUT/QUTPUT PACKAGES 269

PROMPTFORWORD

Control-A, Backspace, or DELETE

Control-Q
Control-R
Control-V

Control-W
?

PROMPTFORWORD, for example if it is desirable to allow the
user to input linesincluding spaces.

PROMPTFORWORD also recognizes the following special
characters:

Any of these characters deletes the last character typed and

appropriately erases it from the echo stream if it is a display
stream.

Erases all the type-in so far.
Reprints the accumulated string.

"Quotes" the next character: after typing Control-V, the next
character typed is added to the accumulated string, regardless of
any special meaning it has. Allows the user to include editing
characters and word terminator characters in the accumulated
string.

Erases the last word.

Calls up a "help” facility. The action taken is defined by the
GENERATE?LIST.FN argument to PROMPTFORWORD (see below).
Normally, this prints a list of possible candidates.

(PROMPTFORWORD PROMPT.STR CANDIDATE.STR GENERATE?LIST.FN ECHO.CHANNEL

DONTECHOTYPEIN.FLG URGENCY.OPTION TERMINCHARS.LST
KEYBD.CHANNEL) [Function]

PROMPT.STR

CANDIDATE.STR

GENERATE?LIST.FN

PROMPTFORWORD has a multiplicity of features, which are
specified through a rather large number of input arguments, but
the default settings for them (i.e., when they aren't given, or are
given as NIL) is such to minimize the number needed in the
average case, and an attempt has been made to order the more
frequently non-defaulted arguments at the beginning of the
argument list. The default input and echo are both to the
terminal; the terminal table in effect during input allows most
control characters to be INDICATE'd.

PROMPTFORWORD returns NIL if a null string is typed; this
would occur when no candidate is given and only a terminator is
typed, or when the candidate is erased and a terminator is typed
with no other input still un-erased. In all other cases,
PROMPTFORWORD returns a string.

PROMPTFORWORD is controlied through the following
arguments:

If non-NIL, this is coerced to a string and used for prompting; an
additional space is output after this string.

If non-NIL, this is coerced to a string and offered as initial
contents of the input buffer.

If non-NiIL, this is either a string to be printed out for help, or a
function to be applied to PROMPT.STR and CANDIDATE.STR
(after both have been coerced to strings), and which should

26.10

USER INPUT/QUTPUT PACKAGES

PROMPTFORWORD

ECHO.CHANNEL

DONTECHOTYPEIN.FLG

URGENCY.OPTION

TERMINCHARS.LST

KEYBD.CHANNEL

return a list of potential candidates. The help string or list of
potential candidates will then be printed on a separate line, the
prompt will be restarted, and any type-in will be re-echoed.

Note: If GENERATE?LIST.FN is a function, its value list will be
cached so that it will be run at most once per call to
PROMPTFORWORD.

Coerced to an output stream; NIL defaults to T, the "terminal
output stream"”, normally (TTYDISPLAYSTREAM). To achieve
echoing to the "current output stream", use (GETSTREAM NIL
"OUTPUT). If echo is to a display stream, it will have a flashing
caret showing where the next input is to be echoed.

If T, there is no echoing of the input characters. If the value of
DONTECHOTYPEIN.FLG is a single-character atom or string, that
character is echoed instead of the actual input. For example,
LOGIN prompts for a password with DONTECHOTYPEIN.FLG
being "*".

If NIL, PROMPTFORWORD quietly wait for input, as READ does; if
a number, this is the number of seconds to wait for the user to
respond (if timeout is reached, then CANDIDATE.WORD is
returned, regardless of any other type-in activity); if T, this
means to wait forever, but periodically flash the window to alert
the user; if TTY, then PROMPTFORWORD grabs the TTY
immediately. When URGENCY.OPTION=TTY, the cursor is
temporarily changed to a different shape to indicate the urgent
nature of the request.

This is list of "word terminator" character codes; it defaults to
(CHARCODE (EOL ESCAPE LF SPACE TAB)). This may also be a
single character code.

If non-NIL, this is coerced to a stream, and the input bytes are
taken from that stream. NIL defaults to the keyboard input
stream. Note that this is not the same as the terminal input
stream T (page 25.1), which is a buffered keyboard input stream,
not suitable for use with PROMPTFORWORD.

Examples:

(PROMPTFORWORD
"What is your FOO word?" 'Mumble
(FUNCTION (LAMBDA () '(Grumble Bletch)))
PROMPTWINDOW NIL 30)

This first prompts the user for input by printing the first
argument as a prompt into PROMPTWINDOW; then the
proffered default answer, "Mumble"”, is printed out and the
caret starts flashing just after it to indicate that the upcoming
input will be echoed there. If the user fails to complete a word
within 30 seconds, then the result will be the string "Mumble".

(FRESHLINE T)

USER INPUT/OUTPUT PACKAGES

26.11

PROMPTFORWORD

(LIST
(PROMPTFORWORD
(CONCAT “{" HOST "} Login:")
(USERNAME NIL NIL T))
(PROMPTFORWORD
" (password)” NIL NIL NIL '*))

This first prompts in whatever window is currently
(TTYDISPLAYSTREAM), and then takes in a username; the
second call prompts with " (password)" and takes in another
word (the password) without proffering a candidate, echoing
the typed-in charactersas "*".

26.3 ASKUSER

DWIM, the compiler, the editor, and many other system
packages all use ASKUSER, an extremely general user interaction
package, for their interactions with the user at the terminal.
ASKUSER takes as its principal argument KEYLST which is used to
drive the interaction. KEYLST specifies what the user can type at
any given point, how ASKUSER should respond to the various
inputs, what value should be returned by ASKUSER, and is also
used to present the user at any given point with a list of the
possible responses. ASKUSER also takes other arguments which
permit specifying a wait time, a default value, a message to be
printed on entry, a flag indicating whether or not typeahead is
to be permitted, a flag indicating whether the transaction is to
be stored on the history list (page 13.1), a default set of options,
and an (optional) input file/string.

(ASKUSER WAIT DEFAULT MESS KEYLST TYPEAHEAD LISPXPRNTFLG OPTIONSLST FILE)

[Function]

WAIT is either NIL or a number (of seconds). DEFAULT is a single
character or a sequence (list) of characters to be used as the
default inputs for the case when WAIT is not NIL and more than
WAIT seconds elapse without any input. In this case, the
character(s) from DEFAULT are processed exactly as though they
had been typed, except that ASKUSER first types "...".

MESS is the initial message to be printed by ASKUSER, if any, and
can be a string, or a list. In the latter case, each element of the
list is printed, separated by spaces, and terminated witha " 2 “.
KEYLST and OPTIONSLST are described. TYPEAHEAD is T if the
user is permitted to typeahead a response to ASKUSER. NIL
means any typeahead should be cleared and saved.
LISPXPRNTFLG determines whether or not the interaction is to be
recorded on the history list. FILE can be either NIL (in which case

26.12

USER INPUT/QUTPUT PACKAGES

ASKUSER

it defaults to the terminal input stream, T), a stream, or a string.
If FILE is a string, and all of its characters are read before
ASKUSER finishes, FILE will be reset to T, and the interaction will
continue with ASKUSER reading from the terminal.

All input operations take place from FILE until an unacceptable
input is encountered, i.e., one that does not conform to the
protocol defined by KEYLST. At that point, FILE is set to T,
DEFAULT is set to NIL, the input buffer is cleared, and a bell is
rung. Unacceptable inputs are not echoed.

The value of ASKUSER is the result of packing all the keys that
were matched, unless the RETURN option is specified (page
26.15).

(MAKEKEYLST LST DEFAULTKEY LCASEFLG AUTOCOMPLETEFLG) [Function]

26.3.1 Formatof KEYLST

LST is a list of atoms or strings. MAKEKEYLST returns an
ASKUSER KEYLST which will permit the user to specify one of the
elements on LST by either typing enough characters to make the
choice unambiguous, or else typing a number between 1 and N,
where Nis the length of LST.

For example, if ASKUSER is called with KEYLST = (MAKEKEYLST
'(CONNECT SUPPORT COMPILE)), then the user can type C-O-N, S,
C-0-M, 1, 2, or 3to indicate one of the three choices.

If LCASEFLG =T, then echoing of upper case elements will be in
lower case (but the value returned will still be one of the
elements of LS7). If DEFAULTKEY is non-NIL, it will be the last key
on the KEYLST. Otherwise, a key which permits the user to
indicate "No - none of the above" choices, in which case the
value returned by ASKUSER will be NIL.

AUTOCOMPLETEFLG is wused as the value of the
AUTOCOMPLETEFLG option of the resulting key list.

KEYLST is a list of elements of the form (KEY PROMPTSTRING .
OPTIONS), where KEY is an atom or a string (equivalent),
PROMPTSTRING is an atom or a string, and OPTIONS a list of
optionsin property list format. The options are explained below.
If an option is specified in OPTIONS, the value of the optionis the
next element. Otherwise, if the option is specified in the
OPTIONSLST argument to ASKUSER, its value is the next element
on OPTIONSLST. Thus, OPTIONSLST can be used to provide
default options for an entire KEYLST, rather than having to
include the option at each level. If an option does not appear on
either OPTIONS or OPTIONSLST, its value is NIL.

For convenience, an entry on KEYLST of the form (KEY .
ATOM/STRING), can be used as an abbreviation for (KEY

USER INPUT/OUTPUT PACKAGES

26.13

ASKUSER

ATOMI/STRING CONFIRMFLG T), and an entry of just the form
KEY, i.e.,a non-list, as an abbreviation for (KEY NIL CONFIRMFLG"
T).

As each character is read, it is matched against the currently
active keys. A character matches a key if it is the same character
as that in the corresponding position in the key, or, if the
character is an alphabetic character, if the characters are the
same without regard for upper/lower case differences, i.e. "A"
matches "a” and vice versa (unless the NOCASEFLG option is T,
see page 26.15). In other words, if two characters have already
been input and matched, the third character is matched with
each active key by comparing it with the third character of that
key. If the character matches with one or more of the keys, the
entries on KEYLST corresponding to the remaining keys are
discarded. If the character does not match with any of the keys,
the character is not echoed, and a bell is rung instead.

When a key is complete, PROMPTSTRING is printed (NIL is
equivalent to "", the empty string, i.e., nothing will be printed).
Then, if the value of the CONFIRMFLG optionis T, ASKUSER waits
for confirmation of the key by a carriage return or space.
Otherwise, the key does not require confirmation.

Then, if the value of the KEYLST option is not NIL, its value
becomes the new KEYLST, and the process recurses. Otherwise, -
the key is a "leaf," i.e., it terminates a particular path through
the original, top-level KEYLST, and ASKUSER returns the result of
packing all the keys that have been matched and completed
along the way (unless the RETURN option is used to specify some
other value, as described below).

For example, when ASKUSER is called with KEYLST=NIL, the
following KEYLST is used as the default:

((Y "es<r™) (N "o<™))

This KEYLST specifies that if (as soon as) the user types Y (or y),
ASKUSER echoes with Y, prompts with "es®™™, and returns Y as
its value. Similarly, if the user types N, ASKUSER echoes the N,
prompts with "0, and returns N. If the user types ?, ASKUSER
prints:

Yes
No

to indicate his possible responses. All other inputs are
unacceptable, and ASKUSER will ring the bell and not echo or
print anything.

For a more complicated example, the following is the KEYLST
used for the compiler questions (page 18.1):

((ST "ore and redefine " KEYLST ("" (F. "orget exprs"))
(S . “ame as last time")

26.14

USER INPUT/OUTPUT PACKAGES

ASKUSER

26.3.2 Options

(F. "File only™)
(T."oterminal”)

1
2
(Y."es™)
(N . llou))

When ASKUSER is called with this KEYLST, and the user types an
S, two keys are matched: ST and S. The user can then type a T,
which matches only the ST key, or confirm the § key by typing a

Cf or space. If the user confirms the S key, ASKUSER prompts
with “ame as last time", and returns S as its value. (Note that the
confirming character is not included in the value.) If the user
types a T, ASKUSER prompts with "ore and redefine", and makes
("" (F . "orget exprs")) be the new KEYLST, and waits for more
input. The user can then type an F, or confirm the "" (which
essentially starts out with all of its characters matched). If he
confirms the "", ASKUSER returns ST as its value the result of
packing ST and "". If he types F, ASKUSER prompts with "orget
exprs”, and waits for confirmation again. If the user then
confirms, ASKUSER returns STF, the result of packing ST and F.

At any point the user can type a ? and be prompted with the
possible responses. For example, if the user types S and then ?,
ASKUSER will type:

STore and redefine Forget exprs
STore and redefine
Same as last time

KEYLST

CONFIRMFLG

PROMPTCONFIRMFLG

NOCASEFLG

RETURN

When a key is complete, if the value of the KEYLST option is not
NIL, this value becomes the new KEYLST and the process recurses.
Otherwise, the key terminates a path through the original,
top-level KEYLST, and ASKUSER returns the indicated value.

If T, the key must be confirmed with either a carriage returnor a
space. |If the value of CONFIRMFLG is a list, the confirming
character may be any member of the list.

if T, whenever confirmation is required, the user is prompted
with the string " [confirm] ".

if T, says do not perform case independent matching on
alphabetic characters. If NIL, do perform case independent

matching, i.e. "A" matches with "a" and vice versa.

If non-NIL, EVAL of the value of the RETURN option is returned as
the value of ASKUSER. Note that different RETURN options can
be specified for different keys. The variable ANSWER is bound in
ASKUSER to the list of keys that have been matched. In other

USER INPUT/QUTPUT PACKAGES

26.15

ASKUSER

NOECHOFLG

EXPLAINSTRING

KEYSTRING

PROMPTON

COMPLETEON

words, RETURN (PACK ANSWER) would be equivalent to what
ASKUSER normally does.

if non-NIL, characters that are matched (or automatically
supplied as a result of typing $ (escape) or confirming) are not
echoed, nor is the confirming character, if any. The value of
NOECHOFLG is automatically NIL when ASKUSER is reading from
a file or string. The decision about whether or not to echo a
character that matches several keys is determined by the value of
the NOECHOFLG option for the first key.

If the value of the EXPLAINSTRING option is non-NIL, its value is
printed when the user types a ?, rather than KEY +
PROMPTSTRING. EXPLAINSTRING enables more elaborate
explanations in response to a ? than what the user sees when he
is prompted as a result of simply completing keys.

For example: One of the entries on the KEYLST used by
ADDTOFILES? (page 17.13) is:

(] "Nowhere<'" NOECHOFLG T
EXPLAINSTRING "] - nowhere, item is marked as a dummy®<r")

When the user types], ASKUSER just prints "Nowhere¢ ™", i.e.,
the] is not echoed. If the user types ?, the explanation
corresponding to this entry will be: ‘

]- nowhere, item is marked as a dummy

If non-NIL, characters that are matched are echoed as though the
value of KEYSTRING were used in place of the key. KEYSTRING is
also used for computing the value returned. The main reason for
this feature is to enable echoing in lowercase.

If non-NIL, PROMPTSTRING is printed only when the key is
confirmed with a member of the value of PROMPTON.

When a confirming character is typed, the N characters that are
automatically supplied, as specified in case (4), are echoed only
when the key is confirmed with a member of the value of
PROMPTON.

The PROMPTON and COMPLETEON options enable the user to
construct a KEYLST which will cause ASKUSER to emulate the
action of the TENEX exec. The protocol followed by the TENEX
exec is that the user can type as many characters as he likes in
specifying a command. The command can be completed with a
carriage return or space, in which case no further output is
forthcoming, or with a $ (escape), in which case the rest of the
characters in the command are echoed, followed by some
prompting information. The following KEYLST would handle
the TENEX COPY and CONNECT comands:

((CopPy " (FILE LIST) "
PROMPTON ($)

26.16

USER INPUT/OUTPUT PACKAGES

ASKUSER

AUTOCOMPLETEFLG

MACROCHARS

EXPLAINDELIMITER

26.3.3 Operation

COMPLETEON ($)
CONFIRMFLG ($))
(CONNECT " (TO DIRECTORY) "
PROMPTON ($)
COMPLETEON ($)
CONFIRMFLG ($)))

If the value of the AUTOCOMPLETEFLG option is not NIL,
ASKUSER will automatically supply unambiguous characters
whenever it can, i.e., ASKUSER acts as though $ (escape) were
typed after each character (except that it does not ring the bell if
there are no unambiguous characters).

value is a list of dotted pairs of form (CHARACTER . FORM).
When CHARACTER is typed, and it does not match any of the
current keys, FORM is evaluated and nothing else happens, i.e.
the matching process stays where it is. For example, ? could have
been implemented using this option. Essentially MACROCHARS
provides a read macro facility while inside of ASKUSER (since
ASKUSER does READC's, read macros defined via the readtable
are never invoked).

value is what is printed to delimit explanation in response to ?.
Initially a carriage return, but can be reset, e.g. to a comma, for
more linear output.

All input operations are executed with the terminal table in the
variable ASKUSERTTBL, in which (1) (CONTROL T) has been
executed (see page 30.10), so that ASKUSER can interact with the
user after each character is typed; and (2) (ECHOMODE NIL) has
been executed (see page 30.7), so that ASKUSER can decide after
it reads a character whether or not the character should be
echoed, and with what, e.g. unacceptable inputs are never
echoed.

As each character is typed, it is matched against KEYLST, and
appropriate echoing and/or prompting is performed. If the user
types an unacceptable character, ASKUSER simply rings the bell
and allows him to try again.

At any point, the user can type ? and receive a list of acceptable
responses at that point (generated from KEYLST), or type a
control-A, control-Q, control-X, or delete, which causes ASKUSER
to reinitialize, and start over.

Note that ?, Control-A, Control-Q, and Control-X will not work if
they are acceptable inputs, i.e., they match one of the keys on
KEYLST. Delete will not work if it is an interrupt character, in
which case it is not seen by ASKUSER.

USER INPUT/OUTPUT PACKAGES

26.17

ASKUSER

26.3.4 Completing a Key

When an acceptable sequence is completed, ASKUSER returns
the indicated value.

(1

(2)

(3

(4)

The decision about when a key is complete is more complicated
than simply whether or not all of its characters have been
matched. In the compiler questions example above, all of the
characters in the S key are matched as soon as the S has been
typed, but until the next character is typed, ASKUSER does not
know whether the 'S completes the S key, or is simply the first
character in the ST key. Therefore, a key is considered to be
complete when:

All of its characters have been matched and it is the only key left,
i.e., there are no other keys for which this key is a substring.

All of its characters have been matched and a confirming
character is typed.

All of its characters have been matched, and the value of the
CONFIRMFLG option is NIL, and the value of the KEYLST optionis
not NIL, and the next character matches one of the keys on the
value of the KEYLST option.

There is only one key left and a confirming character is typed.
Note that if the value of CONFIRMFLG is T, the key still has to be
confirmed, regardless of whether or not it is complete. For
example, if the first entry in the above example were instead

(ST "ore and redefine " CONFIRMFLG T KEYLST ("" (F. "orget
exprs"))

and the user wanted to specify the STF path, he would have to
type ST, then confirm before typing F, even though the ST
completed the ST key by the rule in case (1). However, he would
be prompted with “"ore and redefine" as soon as he typed the T,
and completed the ST key.

Case (2) says that confirmation can be used to complete a key in
the case where it is a substring of another key, even where the
value of CONFIRMFLG is NIL. In this case, the confirming
character doubles as both an indicator that the key is complete,
and also to confirm it, if necessary. This situation corresponds to

typing ST in the above example.

Case (3) says that if there were another entry whose key was STX
in the above example, so that after the user typed ST, two keys,
ST and STX, were still active, then typing F would complete the
ST key, because F matches the (F . "orget exprs"”) entry on the
value of the KEYLST option of the ST entry. In this case, "ore and
redefine" would be printed before the F was echoed.

26.18

USER INPUT/QUTPUT PACKAGES

ASKUSER

26.3.5 Special Keys

Finally, case (4) says that the user can use confirmation to specify
completion when only one key is left, even when all of its
characters have not been matched. For example, if the first key
in the above example were STORE, the user could type ST and
then confirm, and ORE would be echoed, followed by whatever
prompting was specified. In this case, the confirming character
also confirms the key if necessary, so that no further action is
required, even when the value of CONFIRMFLG is T.

Case (4) permits the user not to have to type every character in a
key when the key is the only one left. Even when there are
several active keys, the user can type $ (escape) to specify the
next N>0 common characters among the currently active keys.
The effect is exactly the same as though these characters had
been typed. If there are no common characters in the active keys
at that point,i.e. N=0, the $ is treated as anincorrect input, and
the bell is rung. For example, if KEYLST is (CLISPFLG
CLISPIFYPACKFLG CLISPIFTRANFLG), and the user types C
followed by $, ASKUSER will supply the L, I, S, and P. The user
can then type F followed by a carriage return or space to
complete and confirm CLISPFLG, as per case (4), or type |,
followed by $, and ASKUSER will supply the F, etc. Note that the
characters supplied do not have to correspond to a terminal
segment of any of the keys. Note also that the $ does not
confirm the key, although it may complete it in the case that
there is only one key active.

If the user types a confirming character when several keys are
left, the next N>0 common characters are still supplied, the
same as with $. However, ASKUSER assumes the intent was to
complete a key, i.e., case (4) is being invoked. Therefore, after
supplying the next N characters, the bell is rung to indicate that
the operation was not completed. In other words, typing a
confirming character has the same effect as typing an $ in that
the next N common characters are supplied. Then, if there is only
one key left, the key is complete (case 4) and confirmation is not
required. If the key is not the only key left, the bell is rung.

$ (escape)

This can be used as a key to match with any single character,
provided the character does not match with some other key at
that level. For the purposes of echoing and returning a value, the
effect is the same as though the character that were matched
actually appeared as the key.

This can be used as a key to match with the result of a single call
to READ. For example, if the KEYLST were:

((COPY " (FILE LIST) "
PROMPTON ($)

USER INPUT/OUTPUT PACKAGES

26.19

ASKUSER

$$ (escape, escape)

A list

COMPLETEON ($)
CONFIRMFLG ($)
KEYLST (($ NIL RETURN ANSWER))))

then if the user typed COP FOO¢, (COPY FOO) would be
returned as the value of ASKUSER. One advantage of using $,
rather than having the calling program perform the READ, is
that the call to READ from inside ASKUSER is ERRORSET
protected, so that the user can back out of this path and
reinitialize ASKUSER, e.g. to change from a COPY command to a
CONNECT command, simply by typing control-E.

This can be used as a key to match with the result of a single call
to READLINE.

A list can be used as a key, in which case the list/form is evaluated
and its value "matches" the key. This feature is provided
primarily as an escape hatch for including arbitrary input
operations as part of an ASKUSER sequence. For example, the
effect of $3 (escape, escape) could be achieved simply by using
(READLINET) as a key.

The empty string can be used as a key. Since it has no characters,
all of its characters are automatically matched. “" essentially
functions as a place marker. For example, one of the entries on
the KEYLST used by ADDTOFILES? is:

("" "Fileslist: "
EXPLAINSTRING "a file name or name of a function list"
KEYLST (%))

Thus, if the user types a character that does not match any of the
other keys on the KEYLST, then the character completes the ""
key, by virtue of case (4), since the character will match with the $
in the inner KEYLST. ASKUSER then prints "File/list: " before
echoing the character, then calls READ. The character will be
read as part of the READ. The value returned by ASKUSER will be
the value of the READ.

Note: For $ (escape), $$ (escape, escape), or a list, if the last
character read by the input operation is a separator, the
character is treated as a confirming character for the key.
However, if the last character is a break character, it will be
matched against the next key.

26.3.6 Startup Protocol and Typeahead

Interlisp permits and encourages the user to typeahead; in actual
practice, the user frequently does this. This presents a problem
for ASKUSER. When ASKUSER is entered and there has been
typeahead, was the input intended for ASKUSER, or was the
interaction unanticipated, and the user simply typing ahead to

26.20

USER INPUT/OUTPUT PACKAGES

ASKUSER

(1)

(2)

(3)

(4)
(5)

some other program, e.g. the programmer's assistant? Even
where there was no typeahead, i.e., the user starts typing after
the call to ASKUSER, the question remains of whether the user
had time to see the message from ASKUSER and react to it, or
simply began typing ahead at an inauspicious moment. Thus,
what is needed is an interlock mechanism which warns the user
to stop typing, gives him a chance to respond to the warning,
and then allows him to begin typing to ASKUSER.

Therefore, when ASKUSER is first entered, and the interaction is
to take place with a terminal, and typeahead to ASKUSER is not
permitted, the following protocol is observed:

If there is typeahead, ASKUSER clears and saves the input buffers
and rings the bell to warn the user to stop typing. The buffers
will be restored when ASKUSER completes operation and
returns.

If MESS, the message to be printed on entry, is not NIL (the
typical case), ASKUSER then prints MESS if it is a string, otherwise
CAR of MESS, if MESS is a list.

After printing MESS or CAR of MESS, ASKUSER waits until the
output has actually been printed on the terminal to make sure
that the user has actually had a chance to see the output. This
also give the user a chance to react. ASKUSER then checks to see
if anything additional has been typed in the intervening period
since it first warned the user in (1). If something has been typed,
ASKUSER clears it out and again rings the bell. This latter
material, i.e., that typed between the entry to ASKUSER and this
point, is discarded and will not be restored since it is not certain
whether the user simply reacted quickly to the first warning
(bell) and this input is intended for ASKUSER, or whether the
user was in the process of typing ahead when the call to
ASKUSER occurred, and did not stop typing at the first warning,
and therefore this input is a continuation of input intended for
another program.

Anything typed after (3) is considered to be intended for
ASKUSER, i.e., once the user sees MESS or CAR of MESS, he is free
to respond. For example, UNDO (page 13.13) calls ASKUSER
when the number of undosaves are exceeded for an event with
MESS =(LIST NUMBER-UNDOSAVES "undosaves, continue
saving”). Thus, the user can type a response as soon as
NUMBER-UNDOSAVES is typed.

ASKUSER then types the rest of MESS, if any.

Then ASKUSER goes into a wait loop until something is typed. If
WAIT, the wait time, is not NIL, and nothing is typed in WAIT
seconds, ASKUSER wiil type "..." and treat the elements of
DEFAULT, the default value, as a list of characters, and begin
processing them exactly as though they had been typed. If the
user does type anything within WAIT seconds, he can then wait

USER INPUT/OUTPUT PACKAGES

26.21

ASKUSER

(6)

as long as he likes, i.e., once something has been typed,
ASKUSER will not use the default value specified in DEFAULT.

If the user wants to consider his response for more than WAIT
seconds, and does not want ASKUSER to default, he can type a
carriage return ar a space, which are ignored if they are not
specified as acceptable inputs by KEYLST (see below) and they
are the first thing typed.

If the calling program knows that the user is expecting an
interaction with ASKUSER, e.g. another interaction preceded
this one, it can specify in the call to ASKUSER that typeahead is
permitted. In this case, ASKUSER simply notes whether there is
any typeahead, then prints MESS and goes into a wait loop as
described above.

If there is typeahead that contains unacceptable input, ASKUSER
will assume that the typeahead was not intended for ASKUSER,
and will restore the typeahead when it completes operation and
returns.

Finally, if the interaction is not with the terminal, i.e., the
optional input file/string is specified, ASKUSER simply prints
MESS and begins reading from the file/string.

26.4 TTYIN Display Typein Editor

26.4.1 Entering Input With TTYIN

TTYIN is an Interlisp function for reading input from the
terminal. It features altmode completion, spelling correction,

“help facility, and fancy editing, and can also serve as a glorified

free text input function. This document is divided into two
major sections: how to use TTYIN from the user's point of view,
and from the programmer’s.

TTYIN exists in implementations for Interlisp-10 and Interlisp-D.
The two are substantially compatible, but the capabilities of the
two systems differ (Interlisp-D has a more powerful display and
allows greater access to the system primitives needed to control
it effectively; it also has a mouse, greatly reducing the need for
keyboard-oriented editing commands). Descriptions of both are
included in this document for completeness, but Interlisp-D users
may find large sections irrelevant.

There are two major ways of using TTYIN: (1) set LISPXREADFN
to TTYIN, so the LISPX executive uses it to obtain input, and (2)
call TTYIN from within a program to gather text input. Mostly

26.22

USER INPUT/QUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

control-A, Backspace, Delete
control-W

control-Q

control-R

Escape

control-F

control-Y

Openkey on Xerox 1132
Middle-blank key on Xerox 1132
LFinInterlisp-10

the same rules apply to both; places where it makes a difference
are mentioned below.

The following characters may be used to edit your input,
independent of what kind of terminal you are on. The more
TTYIN knows about your terminal, of course, the nicer some of
these will behave. Some functions are performed by one of
several characters; any character that you happen to have
assigned as an interrupt character will, of couse, not be read by
TTYIN. There is a (somewhat inelegant) way of changing which
characters perform which functions, described under
TTYINREADMACROS later on.

Deletes a character. At the start of the second or subsequent
lines of your input, deletes the last character of the previous line.

Deletes a "word". Generally this means back to the last space or
parenthesis.

Deletes the current line, or if the current line is blank, deletes the
previous line.

Refreshes the current line. Two in a row refreshes the whole
buffer (when doing muiti-line input).

Tries to complete the current word from the spelling list
provided to TTYIN, if any. In the case of ambiguity, completes as
far as is uniquely determined, or rings the bell. For LISPX input,
the spelling list may be USERWORDS (see discussion of
TTYINCOMPLETEFLG, page 26.37).

Interlisp-10 only: If no spelling list was provided, but the word
begins with a “ <", tries directory name completion (or filename
completion if there is already a matching ">" in the current
word).

If typed in the middle of a word will supply alternative
completions from the SPLST argument to TTYIN (if any).
?ACTIVATEFLG (page 26.36) must be true to enable this feature.

Tops20 only: Invokes filename completion on the current

“word".

Escapes to a Lisp user exec, from which you may return by the
command OK. However, when in READ mode and the buffer is
non-empty, control-Y is treated as Lisp's unquote macro instead,
S0 you have to use meta-control-Y (below) to invoke the user
exec.

Retrieves characters from the previous non-empty buffer when it
is able to; e.g., when typed at the beginning of the line this
command restores the previous line you typed at TTYIN; when
typed in the middle of a line fills in the remaining text from the

USER INPUT/QUTPUT PACKAGES

26.23

TTYIN DISPLAY TYPEIN EDITOR

control-X

old line; when typed following 1 Q or T W restores what those
commands erased.

If typed as the first character of the line means the line is a
comment; itisignored, and TTYIN loops back for more input.

Note: The exact behaviour of this character is determined by the
value of TTYINCOMMENTCHAR (page 26.37).

Goes to the end of your input (or end of expression if there is an
excess right parenthesis) and returns if parentheses are balanced,
beeps if not. Currently implemented in interlisp-D only.

During most kinds of input, TTYIN is in "autofill" mode: if a
space is typed near the right margin, a carriage return is
simulated to start a new line. In fact, on cursor-addressable
displays, lines are always broken, if possible, so that no word
straddles the end of the line. The "pseudo-carriage return”
ending the line is still read as a space, however; i.e., the program
keeps track of whether a line ends in a carriage return or is
merely broken at some convenient point. You won't get
carriage returns in your strings unless you explicitly type them.

26.4.2 Mouse Commands [Interlisp-D Only]

LEFT

MIDDLE
RIGHT

SHIFT

The mouse buttons are interpreted as follows during TTYIN
input:

Moves the caret to where the cursor is pointing. As you hold
down LEFT, the caret moves around with the cursor; after you let
up, any typein will be inserted at the new position.

Like LEFT, but moves only to word boundaries.

Deletes text from the caret to the cursor, either forward or
backward. While you hold down RIGHT, the text to be deleted is
complemented; when you let up, the text actually goes away. if
you let up outside the scope of the text, nothing is killed (this is
how to "cancel" the command). This is roughly the same as
CTRL-RIGHT with noinitial selection (below).

If you hold down CTRL and/or SHIFT while pressing the mouse
buttons, you instead get secondary selection, move selection or
delete selection. You make a selection by bugging LEFT (to
select a character) or MIDDLE (to select a word), and optionally
extend the selection either left or right using RIGHT. While you
are doing this, the caret does not move, but your selected text is
highlighted in a manner indicating what is about to happen.
When you have made your selection (all mouse buttons up nowy),
lift up on CTRL and/or SHIFT and the action you have selected
will occur, whichiis:

The selected text as typein at the caret. The text is highlighted
with a broken underline during selection.

26.24

USER INPUT/OUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

CTRL

CTRL-SHIFT

26.4.3 Display Editing Commands

Delete the selected text. The text is complemented during
selection.

Combines the above: delete the selected text and insert it at the
caret. This is how you move text about.

You can cancel a selection in progress by pressing LEFT or
MIDDLE as if to select, and moving outside the range of the text.

The most recent text deleted by mouse command can be inserted
at the caret by typing Middle-blank key (on the Xerox 1132) or
the Open key (on the Xerox 1108). This is the same key that
retrieves the previous buffer when issued at the end of a line.

On terminals with a meta key: In Interlisp-10, TTYIN reads from
the terminal in binary mode, allowing many more editing
commands via the meta key, in the style of TVEDIT commands.
Note that due to Tenex's unfortunate way of handling
typeahead, it is not possible to type ahead edit commands
before TTYIN has started (i.e., before its prompt appears),
because the meta bit will be thrown away. Also, since Escape has
numerous other meanings in Lisp and even in TTYIN (for
completion), this is not used as a substitute for the meta key.

In Interlisp-D: Users will probably have little use for most of
these commands, as cursor positioning can often be done more
conveniently, and certainly more obviously, with the mouse.
Nevertheless, some commands, such as the case changing
commands, can be useful. The <bottom-blank> key can be

. used as an meta key if you perform (METASHIFT T) (see page

30.22). Ailternatively, you can use the variable EDITPREFIXCHAR
as described in the next paragraph.

On display terminals without a meta key: If you want to type any

of these commands, you need to prefix them with the “edit
prefix" character. Set the variable EDITPREFIXCHAR to the

character code of the desired prefix char. Type the edit prefix

twice to give an "meta-escape" command. Some users of the

TENEX TVEDIT program like to make escape (33Q) be the edit

prefix, but this makes it somewhat awkward to ever use escape

completion. EDITPREFIXCHAR is initially NIL.

On hardcopy terminals without a meta key: You probably want
to ignore this section, since you won't be able to see what's
going on when you issure edit commands; there is no attempt
made to echo anything reasonable.

In the descriptions below, "current word" means the word the
cursor is under, or if under a space, the previous word. Currently
parentheses are treated as spaces, which is usually what you
want, but can occasionally cause confusion in the word deletion

USER INPUT/QUTPUT PACKAGES

26.25

TTYIN DISPLAY TYPEIN EDITOR

[delete], [bs], [<]
[space], [>]

(1]

(1]

il

0l

[tab]

[control-L]

[{land [}]
[[] (meta-left-bracket)

[1] (meta-right-bracket)

[Sx]

(Bx]

{Zx]

[A] or [R]

(K]

[er]

(0]

commands. The notation [CHAR] means meta-CHAR, if you have
a meta key, or CHAR preceeded by the character number-
EDITPREFIXCHAR if you don't. The notation $ stands for the
Escape key. Most commands can be preceded by numbers or
escape (means infinity), only the first of which requires the meta
key (or the edit prefix). Some commands also accept negative
arguments, but some only look at the magnitude of the arg.
Most of these commands are taken from the display editors
TVEDIT and/or E, and are confined to work within one line of
text unless otherwise noted.

Cursor Movement Commands:

Back up one (or n) characters.

Move forward one (or n) characters.
Moves up one (or n) lines.

Moves down one (or n) lines.

Move back one (or n) words.

Move ahead one (or n) words.

Moves to end of line; with an argument moves to nth end of
line; [$tab] goes to end of buffer.

Moves to start of line (or nth previous, or start of buffer).

Go to start and end of buffer, respectively (like [$control-L] and -
[$tab)).

Moves to beginning of the current list, where cursor is currently
under an element of that list or its closing paren. (See also the
auto-parenthesis-matching feature below under "Flags".)

Moves to end of current list.

Skips ahead to next (or nth) occurrence of character x, or rings
the bell.

Backward search, i.e., short for [-S] or [-nS].
Buffer Modification Commands: ”

Zaps characters from cursor to next (or nth) occurrence of x.
There is no unzap command yet.

Repeat the last S, B or Zcommand, regardless of any intervening
input (note this differs from Tvedit's A command).

Kills the character under the cursor, or n chars starting at the
cursor.

_When the buffer is empty is the same as <If>, i.e. restores

buffer's previous contents. Otherwise is just like a <cr> (except
that it also terminates an insert). Thus, [<cr> <cr>] will repeat
the previous input (as will <If> <cr> without the meta key).

Does "Open line", inserting a crif after the cursor, i.e., it breaks
the line but leaves the cursor where it is.

26.26

USER INPUT/OUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

(7]

[G]

(L]

(u]
(€l

[control-Q]

[control-w]

Ul

[$F]

(P]

[N]

Transposes the characters before and after the cursor. When
typed at the end of a line, transposes the previous two
characters. Refuses to handle funny cases, such as tabs.

Grabs the contents of the previous line from the cursor position
onward. [nG] grabs the nth previous line.

Lowercases current word, or n words on line. [$L] lowercases the
rest of the line, or if given at the end of line lowercases the entire
line.

Uppercases analogously.

Capitalize. If you give it an argument, only the first word is
capitalized; the rest are just lowercased.

Deletes the current line. [$control-Q] deletes from the current
cursor position to the end of the buffer. No other arguments are
handied.

Deletes the current word, or the previous word if sitting on a

“space.

“Justify" this line. This will break it if it is too long, or move
words up from the next line if too short. Will not join to an
empty line, or one starting with a tab (both of which are
interpreted as paragraph breaks). Any new line breaks it
introduces are considered spaces, not carriage returns. [nJ]
justifies n lines.

The linelength is defined as TTYJUSTLENGTH, ignoring any
prompt characters at the margin. If TTYJUSTLENGTH is negative,
itis interpreted as relative to the right margin. TTYJUSTLENGTH
isinitially -8 in Interlisp-D, 72 in Interlisp-10.

“Finishes" the input, regardless of where the cursor is.
Specifically, it goes to the end of the input and enters a <cr>,
control-Z or "]", depending on whether normal, REPEAT or READ
input is happening. Note that a "]" won't necessarily end a
READ, but it seems likely to in most cases where you would be
inclined to use this command, and makes for more predictable
behavior.

Miscellaneous Commands:

Interlisp-D: Prettyprint buffer. Clears the buffer and reprints it
using prettyprint. If there are not enough right parentheses, it
will supply more; if there are too many, any excess remains
unprettyprinted at the end of the buffer. May refuse to do
anything if there is an unclosed string or other error trying to
read the buffer.

Refresh line. Same as control-R. [$N] refreshes the whole buffer;
[nN] refreshes n lines. Cursor movement in TTYIN depends on
TTYIN being the only source of output to the screen; if you do a
control-T, or a system message appears, or line noise occurs, you
may need to refresh the line for best results. In Interlisp-10, if for

USER INPUT/QUTPUT PACKAGES

26.27

TTYIN DISPLAY TYPEIN EDITOR

[control-Y]

[$control-Y]

[«]

26.4.4 Using TTYIN for Lisp Input

some reason your terminal falls out of binary mode (e.g. can
happen when returning to a Lisp running in a lower fork),
Meta-<anything> is unreadable, so you'd have to type
control-R instead.

Gets user exec. Thus, this is like regular control-Y, except when
doing a READ (when control-Y is a read macro and hence does
not invoke this function).

Gets a user exec, but first unreads the contents of the buffer
from the cursor onward. Thus if you typed at TTYIN something
destined for the Lisp executive, you can do [control-L$control-Y]
and give it to Lisp.

Adds the current word to the spelling list USERWORDS. With
zero arg, removes word. See TTYINCOMPLETEFLG (page 26.37).

Note to Datamedia, Heath users: In addition to simple cursor
movement commands and insert/delete, TTYIN uses the display’s
cursor-addressing capability to optimize cursor movements
longer than a few characters, e.g. [tab] to go to the end of the
line. In order to be able to address the cursor, TTYIN has to know
where it is to begin with. Lisp keeps track of the current print
position within the line, but does not keep track of the line on
the screen (in fact, it knows precious little about displays, much
like Tenex). Thus, TTYIN establishes where it is by forcing the
cursor to appear on the last line of the screen. Ordinarily this is
the case anyway (except possibly on startup), but if the cursor
happens to be only halfway down the screen at the time, there is
a possibly unsettling leap of the cursor when TTYIN starts.

When TTYIN is loaded, or a sysout containing TTYIN is started up,
the function SETREADFN is called. If the terminal is a display, it
sets LISPXREADFN (page 13.36) to be TTYINREAD. If the terminal
is not a display terminal, SETREADFN will set the variable to
READ. (SETREADFN 'READ) will also set it to READ.

There are two principal differences between TTYINREAD and
READ: (1) parenthesis balancing. The input does not activate on
an exactly balancing right paren/bracket unless the input started
with a paren/bracket, e.g., "USE (FOO) FOR (FIE)" will all be on
one line, terminated by <cr>; and (2) read macros.

In interlisp-10, TTYIN does not use a read table (TTYIN behaves as
though using the default initial Lisp terminal input readtable), so
read macros and redefinition of syntax characters are not
supported; however, " ' " (QUOTE) and "control-Y" (EVAL) are
built in, and a simple implementation of ? and ? = is supplied.
Also, the TTYINREADMACROS facility described below can

26.28

USERINPUT/OUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

26.4.5 Useful Macros

supply some of the functionality of immediate read macros in
the editor.

In Interlisp-D, read macros are (mostly) supported. Immediate
read macros take effect only if typed at the end of the input (it's
not clear what their semantics should be elsewhere).

26.4.6 Programming With TTYIN

There are two useful edit macros that allow you to use TTYIN as a
character editor: (1) ED loads the current expression into the
ttyin buffer to be edited (this is good for editing comments and
strings). Input is terminated in the usual way (by typing a
balancing right parenthesis at the end of the input, typing <cr>
at the end of an already balanced expression, or control-X
anywhere inside the balanced expression). Typing control-E or
clearing the buffer aborts ED. (2) EE is like ED but prettyprints
the expression into the buffer, and uses its own window. The
variable TTYINEDITPROMPT controls what prompt, if any, EE
uses. If it is T (initial value), no prompt is printed. EE is not
implemented in Interlisp-10.

The macro BUF loads the current expression into the buffer,
preceded by E, to be used as input however desired: as a trivial
example, to evaluate the current expression, BUF followed by a
<cr> to activate the buffer will perform roughly what the edit
macro EVAL does. Of course, you can edit the E to something
else to make it an edit command.

BUF is also defined at the executive level as a programmer's
assistant command that loads the buffer with the VALUEOF the
indicated event, to be edited as desired.

TV is a programmer's assistant command like EV [EDITV] that
performs an ED on the value of the variable.

And finally, if the event is considered "short" enough, the
programmer's assistant command FIX will load the buffer with
the event's input, rather than calling the editor. If you really
wanted the Interlisp editor for your fix, you could either say FIX
EVENT - TTY:, or type control-U (or whatever on tops20) once
you got TTYIN's version to force you into the editor.

(TTYIN PROMPT SPLST HELP OPTIONS ECHOTOFILE TABS UNREADBUF RDTBL) [Function]

TTYIN prints PROMPT, then waits for input. The value returned
in the normal case is a list of all atoms on the line, with comma
and parens returned as individual atoms; OPTIONS may be used
to get a different kind of value back.

USER INPUT/OUTPUT PACKAGES

26.29

TTYIN DISPLAY TYPEIN EDITOR

NOFIXSPELL

MUSTAPPROVE
CRCOMPLETE

DIRECTORY

USER

PROMPT is an atom or string (anything else is converted to a
string). If NIL, the value of DEFAULTPROMPT, initially "** ", will
be used. If PROMPT is T, no prompt will be given. PROMPT may
also be a dotted pair (PROMPT; . PROMPT)), giving the prompt
for the first and subsequent (or overflow) lines, each prompt
being a string/atom or NIL to denote absence of prompt. The
default prompt for overflow lines is “... ”. Note that rebinding
DEFAULTPROMPT gives a convenient way to affect all the
“ordinary" promptsinsome program module.

SPLST is a spelling list, i.e,, a list of atoms or dotted pairs
(SYNONYM . ROOT). If supplied, it is used to check and correct
user responses, and to provide completion if the user types
escape. If SPLST is one of the Lisp system spelling lists (e.g.,
USERWORDS or SPELLINGS3), words that are escape-completed
get moved to the front, just as if a FIXSPELL had found them.
Autocompletion is also performed when user types a break
character (cr, space, paren, etc), unless one of the "nofixspell”
options below is selected; i.e., if the word just typed would
uniquely complete by escape, TTYIN behaves as though escape
had been typed.

HELP, if non-NIL, determines what happens when the user types
? or HELP. If HELP = T, program prints back SPLST in suitable
form. If HELP is any other litatom, or a string containing no
spaces, it performs (DISPLAYHELP HELP). Anything else is printed
asis. If HELPis NIL, ? and HELP are treated as any other atoms the
user types. [DISPLAYHELP is a user-supplied function, initially a
noop; systems with a suitable HASH package, for example, have
defined it to display a piece of text from a hashfile associated
with the key HELP.]

OPTIONS is an atom or list of atoms chosen from among the
following:

Uses SPLST for HELP and Escape completion, but does not
attempt any FIXSPELLing. Mainly useful if SPLST is incomplete
and the caller wants to handle corrections in a more flexible way
than a straight FIXSPELL.

Does spelling correction, but requires confirmation.

Requires confirmation on spelling correction, but also does
autocompletion on <cr> (i.e. if what user has typed so far
uniquely identifies a member of SPLST, completes it). This allows
you to have the benefits of autocompletion and still allow new
words to be typed.

(only if SPLST=NIL) Interprets Escape to mean directory name
completion [interlisp-10 only].

Like DIRECTORY, but does username completion. This is identical
to DIRECTORY under Tenex [Interlisp-10 only].

26.30

USERINPUT/QUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

FILE

FIX

STRING

NORAISE
NOVALUE

REPEAT

TEXT

COMMAND

READ

LISPXREAD

(only if SPLST=NIL) Interprets Escape to mean filename
completion [Sumex and Tops20 only].

if response is not on, or does not correct to, SPLST, interacts with
user until an acceptable response is entered. A blank line
(returning NIL) is always accepted. Note that if you are willing to
accept responses that are not on SPLST, you probably should
specify one of the options NOXFISPELL, MUSTAPPROVE or
CRCOMPLETE, lest the user's new response get FIXSPELLed away
without their approval.

Line is read as a string, rather than list of atoms. Good for free
text.

Does not convert lower case letters to upper case.

For use principally with the ECHOTOFILE arg (below). Does not
compute a value, but returns Tif user typed anything, NIL if just a
blank line.

For multi-line input. Repeatedly prompts until user types
control-Z (as in Tenex sndmsg). Returns one long list; with
STRING option returns a single string of everything typed, with
carriage returns (EOL) included in the string.

Implies REPEAT, NORAISE, and NOVALUE. Additionally, input
may be terminated with control-V, in which case the global flag
CTRLVFLG will be set true (it is set to NIL on any other
termination). This flag may be utilized in any way the caller
desires.

Only the first word on the line is treated as belonging to SPLST,
the remainder of the line being arbitrary text; i.e., "command
format”. If other options are supplied, COMMAND still applies
to the first word typed. Basically, it always returns (CMD .
REST-OF-INPUT), where REST-OF-INPUT is whatever the other
options dictate for the remainder. E.g. COMMAND NOVALUE
returns (CMD) or (CMD . T), depending on whether there was
further input; COMMAND STRING returns -(CMD
"REST-OF-INPUT"). When used with REPEAT, COMMAND is only
in effect for the first line typed; furthermore, if the first line
consists solely of a command, the REPEAT is ignored, i.e., the
entire input is taken to be just the command.

Parens, brackets, and quotes are treated a la READ, rather than
being returned as individual atoms. Control characters may be
input via the control-Vx notation. Input is terminated roughly
along the lines of READ conventions: a balancing or
over-balancing right paren/bracket will activate the input, or
<c> when no parenthesis remains unbalanced. READ
overrides all other options (except NORAISE).

Like READ, but implies that TTYIN should behave even more like
READ, i.e., do NORAISE, not be errorset-protected, etc.

USER INPUT/OUTPUT PACKAGES

26.31

TTYIN DISPLAY TYPEIN EDITOR

NOPROMPT

Interlisp-D only: The prompt argument is treated as usual,
except that TTYIN assumes that the prompt for the first line has
already been printed by the caller; the prompt for the first line is
thus used only when redisplaying the line.

ECHOTOFILE if specified, user's input is copied to this file, i.e.,
TTYIN can be used as a simple text-to-file routine if NOVALUE is
used. If ECHOTOFILE is a list, copies to all files in the list.
PROMPT is notincluded on the file.

TABS is a special addition for tabular input. Itis a list of tabstops
(numbers). When user types a tab, TTYIN automatically spaces
over to the next tabstop (thus the first tabstop is actually the
second "column" of input). Also treats specially the characters *
and “; they echo normally, and then automatically tab over.

UNREADBUF allows the caller to "preload" the TTYIN buffer
with a line of input. UNREADBUF is a list, the elements of which
are unread into the buffer (i.e., "the outer parentheses are
stripped off") to be edited further as desired; a simple carriage -
return (or control-Z for REPEAT input) will thus cause the buffer's
contents to be returned unchanged. If doing READ input, the
"PRIN2 names" of the input list are used, i.e., quotes and %'s will
appear as needed; otherwise the buffer will look as though
UNREADBUF had been PRIN1'ed. UNREADBUF is treated
somewhat like READBUF, so that if it contains a pseudo-carriage
return (the value of HISTSTRO), the input line terminates there.

Input can aiso be unread from a file, using the HISTSTR1 format:
UNREADBUF = (<value of HISTSTR1> (FILE START . END)),
where START and END are file byte pointers. This makes TTYIN a
miniature text file editor.

RDTBL [Interlisp-D only] is the read table to use for READing the
input when one of the READ options is given. A lot of character
interpretations are hardwired into TTYIN, so currently the only
effect this has is in the actual READ, and in deciding whether a
character typed at the end of the input is an immediate read
macro, for purposes of termination.

If the global variable TYPEAHEADFLG is T, or option LISPXREAD
is given, TTYIN permits type-ahead; otherwise it clears the buffer
before prompting the user.

26.4.7 Using TTYIN as a General Editor

The following may be useful as a way of outsiders to call TTYIN as
an editor. These functions are currently only in Interlisp-D.

(TTYINEDIT EXPRS WINDOW PRINTFN PROMPT) [Function]

This is the body of the edit macro EE. Switches the tty to
WINDOW, clears it, prettyprints EXPRS, a list of expressions, into

26.32

USER INPUT/OUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

TTYINAUTOCLOSEFLG

it, and leaves you in TTYIN to edit it as Lisp input. Returns a new
list of expressions.

If PRINTFN is non-NIL, it is a function of two arguments, EXPRS
and FILE, which is called instead of PRETTYPRINT to print the
expressions to the window (actually to a scratch file). Note that
EXPRS is a list, so normally the outer parentheses should not be
printed. PRINTFN=T is shorthand for "unpretty"; use PRIN2
instead of PRETTYPRINT.

PROMPT determines what prompt is printed, if any. If T, no
prompt is printed. f NIL, it defaults to the value of
TTYINEDITPROMPT.

[Variable]

TTYINEDITWINDOW

If TTYINAUTQCLOSEFLG is true, TTYINEDIT closes the window on
exit.

[Variable]

TTYINPRINTFN

If the WINDOW arg to TTYINEDIT is NIL, it uses the value of
TTYINEDITWINDOW, creating it if it does not yet exist.

[Variable]

The default value for PRINTFN in EE's call to TTYINEDIT.

(SET.TTYINEDIT.WINDOW WINDOW) [Function]

(TTYIN.SCRATCHFILE)

Called under a RESETLST. Switches the tty to WINDOW
(defaulted as in TTYINEDIT) and clears it. The window's position
is left so that TTYIN will be happy with it if you now call TTYIN
yourself. Specifically, this means positioning an integral number
of lines from the bottom of the window, the way the top-level
tty window normally is.

[Function]

26.4.8 ?= Handler

Returns, possibly creating, the scratchfile that TTYIN uses for
prettyprinting its input. The file pointer is set to zero. Since
TTYIN does use this file, beware of multiple simultaneous use of
the file.

In Interlisp, the ?= read macro displays the arguments to the
function currently "in progress" in the typein. Since TTYIN wants
you to be able to continue editing the buffer after a ? =, it
processes this macro specially on its own, printing the arguments
below your typein and then putting the cursor back where it was

USER INPUT/QUTPUT PACKAGES

26.33

TTYIN DISPLAY TYPEIN EDITOR

TTYIN? = FN

when ?= was typed. For users who want special treatment of
? =, the following hook exists:

[Variable]

NIL

alist (ARGS . STUFF)

anything else

(TTYIN.READ? = ARGS)

The value of this variable, if non-NIL, is a user function of one
argument that is called when ? = is typed. The argument is the
function that ? = thinks it is inside of. The user function should
return one of the following:

Normal ? = processing is performed.

Nothing is done. Presumably the user function has done
something privately, perhaps diddled some other window, or
called TTYIN.PRINTARGS (below).

Treats STUFF as the argument list of the function in question, and
performsthe normal ? = processing using it.

The value is printed in lieu of what ? = normally prints.

At the time that ? = is typed, nothing has been "read" yet, so you
don't have the normal context you might expect inside a
conventional readmacro. If the user function wants to examine
the typed-in arguments being passed to the fn, however, it can
call the function TTYIN.READ? = ARGS:

[Function]

When called inside TTYIN? a FN user function, returns everything -
between the function and the typing of ?= as a list (like an
arglist). Returns NIL if ?= was typed immediately after the
function name.

(TTYIN.PRINTARGS FN ARGS ACTUALS ARGTYPE) [Function]

26.4.9 Read Macros

Does the function/argument printing for ?=. ARGS is an
argument list, ACTUALS is a list of actual parameters (from the
typein) to match up with args. ARGTYPE is a value of the
function ARGTYPE; it defaults to (ARGTYPE FN).

When doing READ input in Interlisp-10, no Lisp-style read macros
are available (but the ' and control-Y macros are built in).
Principally because of the usefulness of the editor read macros
(set by SETTERMCHARS), and the desire for a way of changing
the meanings of the display editing commands, the following
exists as a hack:

26.34

USER INPUT/QUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

TTYINREADMACROS

- [variable]

NIL

Aninteger

Anything else

Value is a set of shorthand inputs useable during READ input. It
is an alist of entries (CHARCODE . SYNONYM). if the user types
the indicated character (the meta bit is denoted by the 200Q bit
in the char code), TTYIN behaves as though the synonym
character had been typed.

Special cases: 0 - the character is ignored; 200Q - pure meta bit;
means to read another char and turn on its meta bit; 400Q -
macro quote: read another char and use its original meaning.
For example, if you have macros ((33Q . 200Q) (30Q . 33Q)), then
Escape (33Q) will behave as an edit prefix, and controi-X (30Q)
will behave like Escape. Note: currently, synonyms for meta
commands are not well-supported, working only when the
command is typed with no argument.

Slightly more powerful macros also can be supplied; they are
recognized when a character is typed on an empty line, i.e., as
the first thing after the prompt. In this case, the
TTYINREADMACROS entry is of the form (CHARCODE T .
RESPONSE) or (CHARCODE CONDITION . RESPONSE), where
CONDITION is a list that evaluates true. If RESPONSE is a list, it is
EVALed; otherwise it is left unevaluated. The result of this
evaluation (or RESPONSE itself) is treated as follows:

The macro is ignored and the character reads normally, i.e., as
though TTYINREADMACROS had never existed.

A character code, treated as above. Special case: -1 is treated like
0, but says that the display may have been altered in the
evaluation of the macro, so TTYIN should reset itself
appropriately.

This TTYIN input is terminated (with a crif) and returns the value
of “response” (turned into a list if necessary). Thisis the principal
use of this facility. The macro character thus stands for the
(possibly computed) reponse, terminated if necessary with a crif.
The original character is not echoed.

Interrupt characters, of course, cannot be read macros, as TTYIN
never sees them, but any other characters, even non-control
chars, are allowed. The ability to return NIL allows you to have
conditional macros that only apply in specified situations (e.g.,
the macro might check the prompt (LISPXID) or other contextual
variables). To use this specifically to do immediate editor read
macros, do the following for each edit command and character
you want to invoke it with:

(ADDTOVAR TTYINREADMACROS (CHARCODE 'CHARMACRO?
EDITCOM)))

For example, (ADDTOVAR TTYINREADMACROS (12Q
CHARMACRO? INX)) will make linefeed do the 'NX command.

USER INPUT/QUTPUT PACKAGES

26.35

TTYIN DISPLAY TYPEIN EDITOR

26.4.10 Assorted Flags

Note that this will only activate linefeed at the beginning of a
line, not anywhere in the line. There will probably be a user
function to do this in the next release.

Note that putting (12Q T . INX) on TTYINREADMACROS would
also have the effect of returning "INX" from the READ call so
that the editor would do an INX. However, TTYIN would also
return !NX outside the editor (probably resulting in a u.b.a.
error, or convincing DWIM to enter the editor), and also the
clearing of the output buffer (performed by CHARMACRO?)
would not happen.

TYPEAHEADFLG

These flags control aspects of TTYIN's behavior. Some have
already been mentioned. in Interlisp-D, the flags are all initially
settoT. ' '

[Variable]

FACTIVATEFLG

If true, TTYIN always permits typeahead; otherwise it clears the
buffer for any but LISPXREAD input.

[Variable]

SHOWPARENFLG

If true, enables the feature whereby ? lists alternative
completions from the current spelling list.

{Variable]

TTYINBSFLG

If true, then whenever you are typing Lisp input and type a right
parenthesis/bracket, TTYIN will briefly move the cursor to the
matching parenthesis/bracket, assuming it is still on the screen.
The cursor stays there for about 1 second, or until you type
another character (i.e., if you type fast you'll never notice it).
This feature was inspired by a similar EMACS feature, and turned
out tobe pretty easy to implement.

[Variable]

Causes TTYIN to always physically backspace, even if you're
running on a non-display (not a DM or Heath), rather than print
\deletedtext\ (this assumes your hardcopy terminal or glass tty is
capable of backspacing). If TTYINBSFLG is LF, then in addition to
backspacing, TTYIN x's out the deleted characters as it backs up,
and when you stop deleting, it outputs a linefeed to drop to a
new, clean line before resuming. To save paper, this linefeed
operation is not done when only a single character is deleted, on
the grounds that you can probably figure out what you typed

anyway.

26.36

USER INPUT/OUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

TTYINRESPONSES

[Variable]

TTYINERRORSETFLG

An association list of special responses that will be handled by
routines designated by the programmer. See "Special
Responses”, below.

[Variable]

TTYINCOMMENTCHAR

[Interlisp-D only] If true, non-LISPXREAD inputs are
errorset-protected (control-E traps back to the prompt),
otherwise errors propagate upwards. Initially NIL.

[Variabtle]

TTYINCOMPLETEFLG

This variable affects the treatment of lines beginning with the
comment character (usually “;"). If TTYINCOMMENTCHAR is a
character code, and the first character on a line of typein is equal
to TTYINCOMMENTCHAR, then the line is erased from the screen
and no input function will see it. If TTYINCOMMENTCHAR is NIL,
this feature is disabled. TTYINCOMMENTCHAR is initially NIL.

[Variable]

If true, enables Escape completion from USERWORDS during
READ inputs. Details below.

USERWORDS (page 20.17) contains words you mentioned
recently: functions you have defined or edited, variables you
have set or evaluated at the executive level, etc. This happens to
be a very convenient list for context-free escape completion; if
you have recently edited a function, chances are good you may
want to edit it again (typing "EF xx$") or type a call to it. If there
is no completion for the current word from USERWORDS, the
escape echoes as “$", i.e. nothing special happens; if there is
more than one possible completion, you get beeped. If typed
when not inside a word, Escape completes to the value of
LASTWORD, i.e., the last thing you typed that the p.a. “noticed"
(setting TTYINCOMPLETEFLG to 0 disables this latter feature),
except that Escape at the beginning of the line is left alone (it is a
p-a. command).

If you really wanted to enter an escape, you can, of course, just
quote it with a control-V, like you can other control chars.

You may explicitly add words to USERWORDS yourself that
wouldn't get there otherwise. To make this convenient online
the edit command [¢«] means "add the current atom to
USERWORDS" (you might think of the command as “pointing
out this atom"). For example, you might be entering a function
definition and want to "paint to" one or more of its arguments
or prog variables. Giving an argument of zero to this command
will instead remove the indicated atom from USERWORDS.

USER INPUT/OUTPUT PACKAGES

26.37

TTYIN DISPLAY TYPEIN EDITOR

26.4.11 Special Responses

Note that this feature loses some of its value if the spelling list is
too long, for then the completion takes too long
computationally and, more important, there are too many
alternative completions for you to get by with typing a few
characters followed by escape. Lisp's maintenance of the
spelling list USERWORDS keeps the "temporary"” section (which
is where everything goes initially unless you say otherwise)
limited to #USERWORDS atoms, initially 100. Words fall off the
end if they haven't been used (they are "used" if FIXSPELL
corrects to one, or you use <escape > to complete one).

TTYINRESPONSES

There is a facility for handling "special responses” during any
non-READ TTYIN input. This action is independent of the
particular call to TTYIN, and exists to allow you to effectively
"advise" TTYIN to intercept certain commands. After the
command is processed, control returns to the original TTYIN call.
The facility is implemented via the list TTYINRESPONSES.

[Variable]

26.4.12 Display Types

TTYINRESPONSES is a list of elements, each of the form:
(COMMANDS RESPONSE-FORM OPTION)

COMMANDS is a single atom or list of commands to be
recognized; RESPONSE-FORM is EVALed (if a list), or APPLYed (if
an atom) to the command and the rest of the line. Within this
form one can reference the free variables COMMAND (the
command the user typed) and LINE (the rest of the line). If
OPTION is the atom LINE, this means to pass the rest of line as a
list; if it is STRING, this means to pass it as a string; otherwise, the
command is only valid if there is nothing else on the line. If
RESPONSE-FORM returns the atom IGNORE, it is not treated as a
special response (i.e. the input is returned normally as the result
of TTYIN).

Suggested use: global commands or options can be added to the
toplevel value of TTYINRESPONSES. For more specialized
commands, rebind TTYINRESPONSES to (APPEND NEWENTRIES
TTYINRESPONSES) inside any module where you want to do this
sort of special processing.

Special responses are not checked for during READ-style input.

[This is not relevant in Interlisp-D]

26.38

USER INPUT/QUTPUT PACKAGES

TTYIN DISPLAY TYPEIN EDITOR

TTYIN determines the type of display by calling DISPLAYTERMP,
which is initially defined to test the value of the GTTYP jsys. It
returns either NIL (for printing terminals) or a small number
giving TTYIN's internal code for the terminal type. The types
TTYIN currently knows about:

0 = glass tty (capable of deleting chars by backspacing, but little
else);

1
2 = Heath.

Only the Datamedia has full editing power. DISPLAYTERMP has
built into it the correct terminal types for Sumex and Stanford
campus 20's: Datamedia = 11 ontenex, 5 on tops20; Heath = 18
on Tenex, 25 on tops20. You can override those values by setting
the variable DISPLAYTYPES to be an association list associating
the GTTYP value with one of these internal codes. For example,
Sumex displays correspond to DISPLAYTYPES = ((11.1) (18 . 2))
[although this is actually compiled into DISPLAYTERMP for
speed]. Any display terminal other than Datamedia and Heath
can probably safely be assigned to "0" for glass tty.

Datamedia;

To add new terminal types, you have to choose a number for it,
add new code to TTYIN for it and recompile. The TTYIN code
specifies what the capabilities of the terminal are, and how to do
the primitive operations: up, down, left, right, address cursor,
erase screen, erase to end of line, insert character, etc.

For terminals lacking a meta key (currently only Datamedias have
it), set the variable EDITPREFIXCHAR to the ascii code of an edit
“prefix” (i.e. anything typed preceded by the prefix is considered
to have the meta bit on). If your EDITPREFIXCHAR is 33Q
(Escape), you can type a real Escape by typing 3 of them (2 won't
do, since that means “"Meta-Escape”, a legitimate argument to
another command). You could also define an Escape synonym
with TTYINREADMACROS if you wanted (but currently it doesn't
work in filename completion). Setting EDITPREFIXCHAR for a
terminal that is not equipped to handle the full range of editing
functions (only the Heath and Datamedia are currently so
equipped) is not guaranteed to work, i.e. the display will not
always be up to date; but if you can keep track of what you're
doing, together with an occasional control-R to help out, go
right ahead.

26.5 Prettyprint

The standard way of printing out function definitions (on the
terminal orinto files) is to use PRETTYPRINT.

USER INPUT/QUTPUT PACKAGES

26.39

PRETTYPRINT

(PRETTYPRINT FNS PRETTYDEFLG —) [Function]
FNS is a list of functions. If FNS is atomig, its value is used). The:
definitions of the functions are printed in a pretty format on the
primary output file using the primary readtable. For example, if
FACTORIAL were defined by typing

(DEFINEQ (FACTORIAL [LAMBDA (N) (COND ((ZEROP N} 1)
(T(ITIMES N (FACTORIAL (SUB1 N]

(PRETTYPRINT '(FACTORIAL)) would print out

(FACTORIAL
[LAMBDA (N)
(COND
((ZEROP N)
1)
(T (ITIMES N (FACTORIAL (SUB1 NJ)

PRETTYDEFLG is T when called from PRETTYDEF (and hence
MAKEFILE). Among other actions taken when this argument is
true, PRETTYPRINT indicates its progress in writing the current
output file: whenever it starts a new function, it prints on the
terminal the name of that function if more than 30 seconds (real
time) have elapsed since the last time it printed the name of a
function.

PRETTYPRINT operates correctly on functions that are BROKEN,
BROKEN-IN, ADVISED, or have been compiled with their’
definitions saved on their property lists: it prints the original,
pristine definition, but does not change the current state of the
function. If a function is not defined but is known to be on one
of the files noticed by the file package, PRETTYPRINT loads in the
definition (using LOADFNS) and prints it (except when called
from PRETTYDEF). If PRETTYPRINT is given an atom which is not
the name of a function, but has a value, it prettyprints the value.
Otherwise, PRETTYPRINT attempts spelling correction. If all fails,
PRETTYPRINT returns (FN NOT PRINTABLE). Note that
PRETTYPRINT will return (FN NOT PRINTABLE) if FN does not
have an accessable expr definition, or if it doesn't have any
definition at all.

(PPFNy ... FNp) [NLambda NoSpread Function]
For prettyprinting functions to the terminal. PP calls
PRETTYPRINT with the primary output file set to T and the
primary read table set to T. The primary output file and primary
readtable are restored after printing.

(PP FOO) is equivalent to (PRETTYPRINT '(FOO)); (PP FOO FIE) is
equivalent to (PRETTYPRINT '(FOO FIE)).

As described above, when PRETTYPRINT, and hence PP, is called
with the name of a function that is not defined, but whose

26.40 USER INPUT/OUTPUT PACKAGES

PRETTYPRINT

definition is on a file known to the file package, the definition is
automatically read in and then prettyprinted. However, if the
user does not intend on editing or running the definition, but
simply wants to see the definition, the function PF described
below can be used to simply copy the corresponding characters
from the file to the terminal. This results in a savings in both
space and time, since it is not necessary to allocate storage to
actually read in the definition, and it is not necessary to
re-prettyprint it (since the function is already in prettyprint
format on the file).

(PF FN FROMFILES TOFILE) [NLambda NoSpread Function]
Copies the definition of FN found on each of the files in
FROMFILES to TOFILE. If TOFILE=NIL, defaults to T. If
FROMFILES = NIL, defaults to (WHEREIS FN NIL T) (see page
17.14). The typical usage of PF is simply to type "“PF FN".

PF prints a message if it can't find a file on FROMFILES, or it can't
find the function FN on a file.

When printing to the terminal, PF performs several
transformations on the characters in the file that comprise the
definition for FN: (1) font information is stripped out (except in
Interlisp-D, whose display supports multiple fonts); (2)
occurrences of the CHANGECHAR (page 26.49) are not printed;
(3) since functions typically tend to be printed to a file with a
larger linelength than when printing to a terminal, the number
of leading spaces on each line is cut in half (unless PFDEFAULT is
T, initially NIL); and (4) comments are elided, if
COMMENT™FLG is non-NIL (see page 26.43).

{SEE FROMFILE TOFILE) [NLambda NoSpread Function]
Copies all of the text from FROMFILE to TOFILE (defaults to T),
processing all text as PF does. Used to display the contents of
files on the terminal.

(PP* X) [NLambda NoSpread Function]
(PF* FN FROMFILES TOFILE) [NLambda NoSpread Function]
(SEE* FROMFILE TOFILE) [NLambda NoSpread Function]

These functions operate exactly like PP, PF, and SEE, except that
they bind **COMMENT**FLG to NiL, so comments are printed in
full (see page 26.43).

USER INPUT/OUTPUT PACKAGES 26.41

PRETTYPRINT

While the function PRETTYPRINT prints entire function
definitions, the function PRINTDEF can be used to print parts of
functions, or arbitrary Interlisp structures:

(PRINTDEF EXPR LEFT DEF TAILFLG FNSLST FILE) [Function]

26.5.1 Comment Feature

Prints the expression EXPR in a pretty format on FILE using the
primary readtable. LEFT is the left hand margin (LINELENGTH
determines the right hand margin). PRINTDEF initially performs
(TAB LEFT T), which means to space to position LEFT, unless
already beyond this position, in which case it does nothing.

DEF =T means EXPR is a function definition, or a piece of one. If
DEF=NIL, no special action is taken for LAMBDA's, PROG's,
COND's, comments, CLISP, etc. DEF is NIL when PRETTYDEF calls
PRETTYPRINT to print variables and property lists, and when
PRINTDEF is called from the editor via the command PPV.

TAILFLG =T means EXPR is interpreted as a tail of a list, to be
printed without parentheses.

FNSLST is for use for printing with multiple fonts (page 27.25).
PRINTDEF prints occurrences of any function in the list FNSLST in
a different font, for emphasis. MAKEFILE passes as FNSLST the
list of all functions on the file being made.

A facility for annotating Interlisp functions is provided in
PRETTYPRINT. Any expression beginning with the atom * is
interpreted as a comment and printed in the right margin.
Example:

(FACTORIAL
[LAMBDA (N) (* COMPUTES N!)
(COND)
((ZEROP N) (*0!'=1)
1
(T (* RECURSIVE DEFINITION:

N! = N*N-1!)
(ITIMES N (FACTORIAL (SUB1 N})

These comments actually form a part of the function definition.
Accordingly, * is defined as an nlambda nospread function that
returns its argument, similar to QUOTE. When running an
interpreted function, * is entered the same as any other Interlisp
function. Therefore, comments should only be placed where
they will not harm the computation, i.e., where a quoted
expression could be placed. For example, writing

(ITIMES N (FACTORIAL (SUB1 N)) (* RECURSIVE DEFINITION))

26.42

USER INPUT/OUTPUT PACKAGES

PRETTYPRINT

COMMENTFLG

in the above function would cause an error when ITIMES
attempted to multiply N, N-1!, and RECURSIVE.

For compilation purposes, * is defined as a macro which compiles
into no instructions (unless the comment has been placed where
it has been used for value, in which case the compiler prints an
appropriate error message and compiles * as QUOTE). Thus, the
compiled form of a function with comments does not use the
extra atom and list structure storage required by the comments
in the source (interpreted) code. This is the way the comment
featureis intended to be used.

A comment of the form (* E X) causes X to be evaluated at
prettyprint time, as well as printed as a comment in the usual
way. For example, (* E (RADIX 8)) as a comment in a function
containing octal numbers can be used to change the radix to
produce more readable printout.

The comment character * is stored in the variable COMMENTFLG.
The user can set it to some other value, e.g. ";", and use this to
indicate comments.

[Variable]

COMMENTFLG

If CAR of an expression is EQ to COMMENTFLG, the expression is
treated as a comment by PRETTYPRINT. COMMENTFLG is
initialized to *. Note that whatever atom is chosen for
COMMENTFLG should also have an appropriate function

definition and compiler macro, for example, by copying those of
*

Comments are designed mainly for documenting listings.
Therefore, when prettyprinting to the terminal, comments are
suppressed and printed as the string **COMMENT**. The value
of **COMMENT**FLG determines the action.

[Variable]

(COMMENT1 L —)

If **COMMENT**FLG is NIL, comments are printed. Otherwise,
the value of **COMMENT**FLG is printed. Initially
COMMENT “.

[Function]

Prints the comment L. COMMENT1 is a separate function to
permit the user to write prettyprint macros (page 26.48) that use
the regular comment printer. For example, to cause comments
to be printed at a larger than normal linelength, one could put
an entry for * on PRETTYPRINTMACROS:

(* LAMBDA (X) (RESETFORM (LINELENGTH 100) (COMMENT1 X)))

This macro resets the line length, prints the comment, and then
restores the line length.

USER INPUT/OUTPUT PACKAGES

26.43

PRETTYPRINT

26.5.2 Comment Pointers

COMMENT1 expects to be called from within the environment
established by PRINTDEF, so ordinarily the user should call it only
from within prettyprint macros.

(NORMALCOMMENTS FLG)

For a well-commented collection of programs, the list structure,
atom, and print name storage required to represent the
comments in core can be significant. If the comments already
appear on a file and are not needed for editing, a significant
savings in storage can be achieved by simply leaving the text of
the comment on the file when the file is loaded, and instead
retaining in core only a pointer to the comment. When this
feature is enabled, * is defined as a read macro (page 25.39) in
FILERDTBL which, instead of reading in the entire text of the
comment, constructs an expression containing (1) the name of
the file in which the text of the comment is contained, (2) the
address of the first character of the comment, (3) the number of
characters in the comment, and (4) a flag indicating whether the
comment appeared at the right hand margin or centered on the
page. For output purposes, * is defined on
PRETTYPRINTMACROS (page 26.48) so that it prints the
comments represented by such pointers by simply copying the ,
corresponding characters from one file to another, or to the
terminal. Normal comments are processed the same as. before,
and can be intermixed freely with comment pointers.

The comment pointer feature is controlled by the function
NORMALCOMMENTS.

[Function]

If FLG is NIL, the comment pointer feature is enabled. If FLGis T,
the comment pointer feature is disabled (the default).

NORMALCOMMENTS can be changed as often as desired. Thus,
some files can be loaded normally, and others with their
comments converted to comment pointers.

For convenience of editing selected comments, an edit macro,
GET*, is included, which loads in the text of the corresponding
comment. The editor's PP* command, in contrast, prints the
comment without reading it by simply copying the
corresponding characters to the terminal. GET* is defined in
terms of GETCOMMENT:

(GETCOMMENT X DESTFL —) [Function]

If X is a comment pointer, replaces X with the actual text of the
comment, which it reads from its file. Returns X in all cases. If

26.44

USER INPUT/QUTPUT PACKAGES

PRETTYPRINT

DESTFL is non-NIL, it is the name of an open file, to which
GETCOMMENT copies the comment; in this case, X remains a
comment pointer, but it has been changed to point to the new
file (unless NORMALCOMMENTS has been set to DONTUPDATE).

(PRINTCOMMENT X) [Function]
Defined as the prettyprint macro for *: copies the comment to

. the primary output file by using GETCOMMENT.
(READCOMMENT FL RDTBL LST) [Function]

Defined as the read macro for * in FILERDTBL: if
NORMALCOMMENTSFLG is NIL, it constructs a comment pointer,
unless it believes the expression beginning with * is not actually a
comment, e.g., if the next atom is "." or E.

Note that a certain amount of care is required in using the
comment pointer feature. Since the text of the comment resides
on the file pointed to by the comment pointer, that file must
remain in existence as long as the comment is needed.
GETCOMMENT helps out by changing the comment pointer to
always point at the most recent file that the comment lives on.
However, if the user has been performing repeated MAKEFILE's
(page 17.10) in which differing functions have changed at each
invocation of MAKEFILE, it is possible for the comment pointers
in memory to be pointing at several versions of the same file,
since a comment pointer is only updated when the function it
lives in is prettyprinted, not when the function has been copied
verbatim to the new file. This can be a problem for file systems
that have a built-in limit on the number of versions of a given file
that will be made before old versions are expunged. In such a
case, the user should set the version retention count of any
directories involved to be infinite. GETCOMMENT prints an error
message if the file that the comment pointer points at has
disappeared.

Similarly, one should be cognizant of comment pointers in
sysouts, and be sure to retain any files thus pointed to.

When using comment pointers, the user should also not set
PRETTYFLG (page 26.48) to NiL or call MAKEFILE with option
FAST, since this will prevent functions from being prettyprinted,
and hence not get the text of the comment copied into the new
file.

If the user changes the value of COMMENTFLG but still wishes to
use the comment pointer feature, the new COMMENTFLG should
be given the same read-macro definition in FILERDTBL as * has,
and the same entry be put on PRETTYPRINTMACROS. For
example, if COMMENTFLG is reset tobe ";", then (SETSYNTAX ';

USER INPUT/OUTPUT PACKAGES

26.45

PRETTYPRINT

'* FILERDTBL) should be performed, and (; . PRINTCOMMENT)
added to PRETTYPRINTMACROS.

26.5.3 Converting Comments to Lower Case

This section is for users using terminals without lower case, who
nevertheless woulid like their comments to be converted to lower
case for more readable listings. If the second atom in a comment
is %%, the text of the comment is converted to lower case so
that it looks like English instead of Lisp. Note that comments are
converted only when they are actually written to a file by
PRETTYPRINT.

The algorithm for conversion to lower case is the following: If
the first character in an atom is 1, do not change the atom (but
remove the 1). If the first character is %, convert the atom to
lower case. Note that the user must type % % as % is the escape
character. If the atom (minus any trailing punctuation marks) is
an Interlisp word (i.e., is a bound or free variable for the function
containing the comment, or has a top level value, or is a defined
function, or has a non-NIL property list), do not change it.
Otherwise, convert the atom to lower case. Conversion only
affects the upper case alphabet, i.e., atoms already converted to
lower case are not changed if the comment is converted again.
When converting, the first character in the comment and the
first character following each period are left capitalized. After
conversion, the comment is physically modified to be the lower
case text minus the %% flag, so that conversion is thus only
performed once (unless the user edits the comment inserting
additional upper case text and another % % flag).

LCASELST [Variable]
Words on LCASELST will always be converted to lower case.
LCASELST is initialized to contain words which are Interlisp
functions but also appear frequently in comments as English
words (AND, EVERY, GET, GO, LAST, LENGTH, LIST, etc.).
Therefore, if one wished to type a comment including the lisp
fuction GO, it would be necessary to type 1 GO in order that it
might be leftin upper case. :

UCASELST [Variable]
Words on UCASELST (that do not appear on LCASELST) will be
leftin upper case. UCASELST isinitialized to NIL.

ABBREVLST ’ [Variable]
ABBREVLST is used to distinguish between abbreviations and
words that end in periods. Normally, words that end in periods
and occur more than halfway to the right margin cause

26.46 ' USER INPUT/OUTPUT PACKAGES

PRETTYPRINT

26.5.4 Special Prettyprint Controls

carriage-returns. Furthermore, during conversion to lowercase,
words ending in periods, except for those on ABBREVLST, cause
the first character in the next word to be capitalized. ABBREVLST
is initialized to the upper and lower case forms of ETC., I.E., and
E.G..

PRETTYTABFLG

[Variable]

#RPARS

In order to save space on files, tabs are used instead of spaces for
the inital spaces on each line, assuming that each tab
corresponds to 8 spaces. This results in a reduction of file size by
about 30%. Tabs are not used if PRETTYTABFLG is set to NIL
(initially T).

[Variable]

FIRSTCOL

Controls the number of right parentheses necessary for square
bracketing to occur. If #RPARS =NIL, no brackets are used.
#RPARS is initialized to 4.

[Variable]

PRETTYLCOM

The starting column for comments. Comments run between
FIRSTCOL and the line length set by LINELENGTH (page 25.11). If
a word in a comment ends with a "." and is not on the list
ABBREVLST, and the position is greater than halfway between
FIRSTCOL and LINELENGTH, the next word in the comment
begins on a new line. Also, if a list is encountered in a comment,
and the position is greater than halfway, the list begins on a new
line.

[Variable]

#CAREFULCOLUMNS

If a comment has more than PRETTYLCOM elements (using
COUNT), it is printed starting at column 10, instead of FIRSTCOL.
Comments are also printed starting at column 10 if their second
elementis also a *, i.e., comments of the form (* * --).

[Variable]

In the interests of efficiency, PRETTYPRINT approximates the
number of characters in each atom, rather than calling NCHARS,
when computing how much will fit on a line. This procedure
works satisfactorily in most cases. However, users with unusually
long atoms in their programs, e.g., such as produced by CLISPIFY,
may occasionlly encounter some glitches in the output produced
by PRETTYPRINT. The value of #CAREFULCOLUMNS tells
PRETTYPRINT how many columns (counting from the right hand

USER INPUT/OUTPUT PACKAGES

26.47

PRETTYPRINT

(WIDEPAPER FLG)

margin) in which to actually compute NCHARS instead of
approximating. Setting #CAREFULCOLUMNS to 20 or 30 will
eliminate the glitches, although it will slow down PRETTYPRINT
slightly. #CAREFULCOLUMNS isinitially 0.

[Function]

PRETTYFLG

(WIDEPAPER T) sets FILELINELENGTH (page 25.11), FIRSTCOL, and
PRETTYLCOM to large values appropriate for pretty printing files
to be listed on wide paper. (WIDEPAPER) restores these
parameters to their initial values. WIDEPAPER returns the
previous setting of FLG.

[Variable]

CLISPIFYPRETTYFLG

If PRETTYFLG is NIL, PRINTDEF uses PRIN2 instead of
prettyprinting. This is useful for producing a fast symbolic dump
(see the FAST option of MAKEFILE, page 17.10). Note that the
file loads the same as if it were prettyprinted. PRETTYFLG is
initially set to T. PRETTYFLG should not be set to NIL if comment
pointers (page 26.44) are being used.

[Variable]

PRETTYPRINTMACROS

Used to inform PRETTYPRINT to call CLISPIFY on selected
function definitions before printing them (see page 21.26).

[Variable]

PRETTYPRINTYPEMACROS

An association-list that enables the user to control the
formatting of selected expressions. CAR of each expression
being PRETTYPRINTed is looked up on PRETTYPRINTMACROS,
and if found, CDR of the corresponding entry is applied to the
expression. |f the result of this application is NIL, PRETTYPRINT
ignores the expression; i.e., it prints nothing, assuming that the
prettyprintmacro has done any desired printing. If the result of
applying the prettyprint macro is non-NIL, the result is
prettyprinted in the normal fashion. This gives the user the
option of computing some other expression to be prettyprinted
inits place. ’

Note: "prettyprinted in the normal fashion" includes processing
prettyprint macros, uniess the prettyprint macro returns a
structure EQ to the one it was handed, in which case the
potential recursion is broken.

[Variable]

A list of elements of the form (TYPENAME . FN). For types other
than lists and atoms, the type name of each datum to be
prettyprinted is looked up on PRETTYPRINTYPEMACROS, and if

26.48

USER INPUT/OUTPUT PACKAGES

PRETTYPRINT

PRETTYEQUIVLST

found, the corresponding function is applied to the datum about
to be printed, instead of simply printing it with PRIN2.

[Variable]

CHANGECHAR

An association-list that tells PRETTYPRINT to treat a CAR-of-form
the same as some other CAR-of-form. For example, if
(QLAMBDA . LAMBDA) appears on PRETTYEQUIVLST, then
expressions beginning with QLAMBDA are prettyprinted the
same as LAMBDAs. Currently, PRETTYEQUIVLST only allows (i.e.,
supports in an interesting way) equivalences to forms that
PRETTYPRINT internally handles. Equivalence to forms for which
the user has specified a prettyprint macro should be made by
adding further entries to PRETTYPRINTMACROS

[Variable]

_If non-NIL, and PRETTYPRINT is printing to a file or display

terminal, PRETTYPRINT prints CHANGECHAR in the right hand
margin while printing those expressions marked by the editor as
having been changed (see page 16.30). CHANGECHAR is initially

USER INPUT/OUTPUT PACKAGES

26.49

PRETTYPRINT

[This page intentionally left blank]

26.50 USER INPUT/OUTPUT PACKAGES

TABLE OF CONTENTS

27. Graphics Output Operations 27.1
' 27.1. Primitive Graphics Concepts 271
27.1.1. Positions 27.1

27.1.2. Regions 27.1

27.1.3. Bitmaps 27.3

27.1.4. Textures 27.6

27.2. Opening Image Streams 27.8
27.3. Accessing Image Stream Fields 27.10
27.4. Current Position of an Image Stream 27.13
27.5. Moving Bits Between Bitmaps With BITBLT 27.14
27.6. Drawing Lines 27.17
27.7. Drawing Curves 27.18
27.8. Miscellaneous Drawing and Printing Operations 27.20
27.9. Drawing and Shading Grids 27.22
27.10. Display Streams 27.23
27.12. Fonts 27.25
27.13. FontFiles and Font Directories 27.31
27.15. Font Profiles 27.32
27.16. Image Objects 27.35
27.16.1. IMAGEFNS Methods 27.36

27.16.2. Registering Image Objects 27.39

27.16.3. Reading and Writing Image Objects on Files 27.40

27.16.4. Copying Image Objects Between Windows 27.41

27.17. Implementation of Image Streams 27.42

TABLE OF CONTENTS TOC.1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC.2 TABLEOFCONTENTS

27.GRAPHICS OUTPUT OPERATIONS
ey

Streams are used as the basis for all I/O operations. Files are
implemented as streams that can support character printing and
reading operations, and file pointer manipulation. An image
stream is a type of stream that also provides an interface for
graphical operations. All of the operations that can applied to
streams can be applied to image streams. For example, animage
stream can be passed as the argument to PRINT, to print
something on an image stream. In addition, special functions are
provided to draw lines and curves and perform other graphical
operations. Calling these functions on a stream that is not an
image stream will generate an error.

27.1 Primitive Graphics Concepts

27.1.1 Positions

The Interlisp-D graphics system is based on manipulating bitmaps
(rectangular arrays of pixels), positions, regions, and textures.
These objects are used by all of the graphics functions.

(POSITIONP X)

A position denotes a point in an X,Y coordinate system. A
POSITION is an instance of a record with fields XCOORD and
YCOORD and is manipulated with the standard record package
facilities. For example, (create POSITION XCOORD « 10
YCOORD « 20) creates a position representing the point (10,20).

[Function]

27.1.2 Regions

Returns X if X is a position; NIL otherwise.

A Region denotes a rectangular area in a coordinate system.
Regions are characterized by the coordinates of their bottom left

Lcorner and their width and height. A REGION is a record with

fields LEFT, BOTTOM, WIDTH, and HEIGHT. It can be
manipulated with the standard record package facilities. There

GRAPHICS OUTPUT OPERATIONS

27.1

PRIMITIVE GRAPHICS CONCEPTS

are access functions for the REGION record that return the TOP
and RIGHT of the region.

The following functions are provided for manipulating regions:

(CREATEREGION LEFT BOTTOM WIDTH HEIGHT) [Function]
Returns an instance of the REGION record which has LEFT,
BOTTOM, WIDTH and HEIGHT as respectively its LEFT, BOTTOM,
WIDTH, and HEIGHT fields.

Example: (CREATERECION 10 -20 100 200) will create a region
that denotes a rectangle whose width is 100, whose height is
200, and whose lower left corner is at the position (10,-20).

(REGIONP X) [Function]
Returns X if Xis a region, NIL otherwise.

(INTERSECTREGIONS REGION 1 REGION; ... REGION) [NoSpread Function]

Returns a region which is the intersection of a number of
regions. Returns NIL if the intersection is empty.

(UNIONREGIONS REGION 1 REGION; ... REGIONp) [NoSpread Function]
Returns a region which is the union of a number of regions, i.e.
the smallest region that contains all of them. Returns NIL if there
are noregions given.

(REGIONSINTERSECTP REG/ION1 REGION2) [Function]

Returns T if REGION1 intersects REGIONZ2. Returns NIL if they do
not intersect.

(SUBREGIONP LARGEREGION SMALLREGION) [Function]
Returns T if SMALLREGION is a subregion (is equal to or entirely
contained in) LARGEREGION; otherwise returns NIL.

(EXTENDREGION REGION INCLUDEREGION) [Function]
Changes (destructively modifies) the region REGION so that it
includes the region INCLUDEREGION. It returns REGION.

(MAKEWITHINREGION REGI/ON LIMITREGION) [Function]
Changes (destructively modifies) the left and bottom of the
region REGION so that it is within the region LIMITREGION, if
possible. If the dimension of REGION are larger than
LIMITREGION, REGION is moved to the lower left of
LIMITREGION. If LIMITREGION is NIL, the value of the variable
WHOLEDISPLAY (the screen region) is used.
MAKEWITHINREGION returns the modified REG/ION.

27.2

GRAPHICS OUTPUT OPERATIONS

PRIMITIVE GRAPHICS CONCEPTS

(INSIDEP REGION POSORX Y) [Function]

27.1.3 Bitmaps

If POSORX and Y are numbers, it returns T if the point
(POSORX.Y) is inside of REGION. If POSORX is a POSITION, it
returns T if POSORX is inside of REGION. If REGION is a
WINDOW, the window's interior region in window coordinates is
used. Otherwise, it returns NIL.

The display primitives manipulate graphical images in the form
of bitmaps. A bitmap is a rectangular array of "pixels," each of
which is an integer representing the color of one point in the
bitmap image. A bitmap is created with a specific number of bits
allocated for each pixel. Most bitmaps used for the display
screen use one bit per pixel, so that at most two colors can be
represented. If a pixel is 0, the corresponding location on the
image is white. If a pixel is 1, its location is black. This
interpretation can be changed for the display screen with the
function VIDEOCOLOR (page 30.23). Bitmaps with more than
one bit per pixel are used to represent color or grey scale images.
Bitmaps use a positive integer coordinate system with the lower
left corner pixel at coordinate (0,0). Bitmaps are represented as
instances of the datatype BITMAP. Bitmaps can be saved on files
with the VARS file package command (page 17.35).

(BITMAPCREATE WIDTH HEIGHT BITSPERPIXEL) : [Function]

Creates and returns a new bitmap which is WIDTH pixels wide by
HEIGHT pixels high, with BITSPERPIXEL bits per pixel. If
BITSPERPIXEL is NIL, it defaultsto 1.

(BITMAPP X) [Function]
Returns Xif Xiis a bitmap, NIL otherwise.

(BITMAPWIDTH BITMAP) [Function]
Returns the width of BITMAP in pixels.

(BITMAPHEIGHT BITMAP) [Function]
Returns the height of BITMAP in pixels.

(BITSPERPIXEL BITMAP) [Function]
Returns the number of bits per pixel of BITMAP.

(BITMAPBIT BITMAP X Y NEWVALUE) [Function]

If NEWVALUE is between 0 and the maximum value for a pixelin
BITMAP, the pixel (X,Y) is changed to NEWVALUE and the old

GRAPHICS OUTPUT OPERATIONS

27.3

PRIMITIVE GRAPHICS CONCEPTS

value is returned. f NEWVALUE is NIL, BITMAP is not changed
but the value of the pixel is returned. If NEWVALUE is anything
else, an error is generated. If (X,Y) is outside the limits of
BITMAP, 0 is returned and no pixels are changed. BITMAP can
also be a window or display stream. Note: non-window image
streams are “write-only"”; the NEWVALUE argument must be
non-NIL.

(BITMAPCOPY BITMAP) | [Function]
Returns a new bitmap which is a copy of BITMAP (same
dimensions, bits per pixel, and contents).

{EXPANDBITMAP BITMAP WIDTHFACTOR HEIGHTFACTOR) [Function]
Returns a new bitmap that is WIDTHFACTOR times as wide as
BITMAP and HEIGHTFACTOR times as high. Each pixel of BITMAP
is copied into a WIDTHFACTOR times HEIGHTFACTOR block of
pixels. If NIL, WIDTHFACTOR defaults to 4, HEIGHTFACTOR to 1.

(SHRINKBITMAP BITMAP WIDTHFACTOR HEIGHTFACTOR DESTINATIONBITMAP) [Function]
Returns a copy of BITMAP that has been shrunken by
WIDTHFACTOR and HEIGHTFACTOR in the width and height,
respectively. If NIL, WIDTHFACTOR defaults to 4, HEIGHTFACTOR
to 1. If DESTINATIONBITMAP is not provided, a bitmap that is
1/WIDTHFACTOR by 1/HEIGHTFACTOR the size of BITMAP is
created and returned. WIDTHFACTOR and HEIGHTFACTOR must
be positive integers.

(PRINTBITMAP BITMAP FILE) [Function]

Prints the bitmap BITMAP on the file FILE in a format that can be
read back in by READBITMAP.

(READBITMAP FILE) - [Function]

Creates a bitmap by reading an expression (written by
PRINTBITMAP) from the file FILE.

(EDITBM BMSPEC) [Function]
EDITBM provides an easy-to-use interactive editing facility for
various types of bitmaps. If BMSPEC is a bitmap, it is edited. If
BMSPEC is an atom whose value is a bitmap, its value is edited. If
BMSPEC s NIL, EDITBM asks for dimensions and creates a bitmap.
If BMSPEC is a region, that portion of the screen bitmap is used.
If BMSPEC is a window, it is brought to the top and its contents
edited.

EDITBM sets up the bitmap being edited in an editing window.
The editing window has two major areas: a gridded edit area in

27.4 GRAPHICS OUTPUT OPERATIONS

PRIMITIVE GRAPHICS CONCEPTS

Paint

the lower part of the window and a display area in the upper left
part. Inthe edit area, the left button will add points, the middle
button will erase points. The right button provides access to the
normal window commands to reposition and reshape the
window. The actual size bitmap is shown in the display area. For
example, the following is a picture of the bitmap editing
window editing a eight-high by eighteen-wide bitmap:

Bitmap Editor

If the bitmap is too large to fit in the edit area, only a portion will
be editable. This portion can be changed by scrolling both up
and down in the left margin and left and right in the bottom
margin. Pressing the middle button while in the display area will
bring up a menu that allows global placement of the portion of
the bitmap being edited. To allow more of the bitmap to be
editing at once, the window can be reshaped to make it larger or
the GridSize« command described below can be used to reduce
the size of a bit in the edit area.

The bitmap editing window can be reshaped to provide more or
less room for editing. When this happens, the space allocated to
the editing area will be changed to fit in the new region.

Whenever the left or middle button is down and the cursor is not
in the edit area, the section of the display of the bitmap that is
currently in the edit area is.complemented. Pressing the left
button while not in the edit region will put the lower left 16 x 16
section of the bitmap into the cursor for as long as the left
button is held down.

Pressing the middle button while not in either the edit area or
the display area (i.e. while in the grey area in the upper right or
in the title) will bring up a command menu. There are
commands to stop editing, to restore the bitmap to its initial
state and to clear the bitmap. Holding the middle button down
over a command will result in an explanatory message being
printed in the prompt window. The commands are described
below:

Puts the current bitmap into a window and call the window
PAINT command on it. The PAINT command implements
drawing with various brush sizes and shapes but only on an

GRAPHICS OQUTPUT OPERATIONS

27.5

PRIMITIVE GRAPHICS CONCEPTS

ShowAsTile

Grid,On/Off

GridSizee

Reset

Clear

Cursore-

oK

Stop

27.1.4 Textures

actual sized bitmap. The PAINT mode is left by pressing the
RIGHT button and selecting the QUIT command from the menu.
At this point, you will be given a choice of whether or not the
changes you made while in PAINT mode should be made to the
current bitmap.

Tesselates the current bitmap in the upper part of the window.
This is useful for determining how a bitmap will laok if it were
made the display background (using the function
CHANGEBACKGROUND). Note: The tiled display will not
automatically change as the bitmap changes; to update it, use
the ShowAsTile command again.

Turns the editing grid display on or off.

Allows specification of the size of the editing grid. Another
menu will appear giving a choice of several sizes. If one is
selected, the editing portion of the bitmap editor wiil be
redrawn using the selected grid size, allowing more or less of the
bitmap to be edited without scrolling. The original size is chosen
hueristically and is typically about 8. It is particularly useful when
editing large bitmaps to set the edit grid size smaller than the
original.

Sets all or part of the bitmap to the contents it had when EDITBM
was called. Another menu will appear giving a choice between
resetting the entire bitmap or just the portion that is in the edit
area. The second menu also acts as a confirmation, since not
selecting one of the choices on this menu results in no action
being taken.

Sets all or part of the bitmap to 0. As with the Reset command,
another menu gives a choice between clearing the entire bltmap
or just the portion that is in the edit area.

Sets the cursor to the lower left part of the bitmap. This prompts
the user to specify the cursor "hot spot" (see page 30.14) by
clickingin the lower left corner of the grid.

Copies the changed image into the original bitmap, stops the

bitmap editor and closes the edit windows. The changes the

bitmap editor makes during the interaction occur on a copy of

the original bitmap. Unless the bitmap editor is exited via OK, no -
changes are made in the original.

Stops the bitmap editor without making any changes to the
original bitmap.

A Texture denotes a pattern of gray which can be used to
(conceptually) tessellate the plane to form an infinite sheet of
gray. ltiscurrently either a 4 by 4 patternora 16 by N(N < = 16)

27.6

GRAPHICS OQUTPUT OPERATIONS

PRIMITIVE GRAPHICS CONCEPTS

pattern. Textures are created from bitmaps using the following
function:

(CREATETEXTUREFROMBITMAP B/ITMAP) [Function]
Returns a texture object that will produce the texture of BITMAP.
If BITMAP is too large, its lower left portion is used. If BITMAP is
too small, it is repeated to fill out the texture.

(TEXTUREP OBJECT) . [Function]
Returns OBJECT if it is a texture; NIL otherwise.

The functions which accept textures (TEXTUREP, BITBLT,
DSPTEXTURE, etc.) also accept bitmaps up to 16 bits wide by 16
bits high as textures. When a region is being filled with a bitmap
texture, the texture is treated as if it were 16 bits wide (if less, the
rest is filled with white space).

The common textures white and black are available as system
constants WHITESHADE and BLACKSHADE. The global variable
GRAYSHADE is used by many system facilities as a background
gray shade and can be set by the user.

(EDITSHADE SHADE) [Function]
Opens a window that allows the user to edit textures. Textures
can be either small (4 by 4) patterns or large (16 by 16). In the

+edit area, the left button adds bits to the shade and the middle
button erases bits from the shade. The top part of the window is
painted with the current texture whenever all mouse keys are
released. Thus itis possible to directly compare two textures that
differ by more than one pixel by holding a mouse key down until
all changes are made. When the "quit" button is selected, the
texture being edited is returned.

If SHADE is a texture object, EDITSHADE starts with it. If SHADE
is T, it starts with a large (16 by 16) white texture. Otherwise, it
starts with WHITESHADE.

The following is a picture of the texture editor, editing a large
(16 by 16) pattern:

GRAPHICS OUTPUT OPERATIONS 27.7

PRIMITIVE GRAPHICS CONCEPTS

27.2 Opening Image Streams

An image stream is an output stream which "knows" how to
process graphic commands to a graphics output device. Besides
accepting the normal character-output functions (PRINT, etc.), an
image stream can also be passed as an argument to functions to
draw curves, to print characters in multiple fonts, and other
graphics operations.

Each image stream has an "image stream type," a litatom that
specifies the type of graphic output device that the image stream
is processing graphics commands for. Currently, the built-in
image stream types are DISPLAY (for the display screen),
INTERPRESS (for Interpress format printers), and PRESS (for Press
format printers). There are also library packages available that
define image stream types for the IRIS display, 4045 printer,
FX-80 printer, C150 printer, etc.

Image streams to the display (display streams) interpret graphics
commands by immediately executing the appropriate operations
to cause the desired image to appear on the display screen.
Image streams for hardcopy devices such as Interpress printers
interpret the graphic commands by saving information in a file,
which can later be sent to the printer.

27.8

GRAPHICS OUTPUT OPERATIONS

OPENING IMAGE STREAMS

Note: Not all graphics operations can be properly executed for
all .image stream types. For example, BITBLT may not be
supported to all printers. This functionality is still being
developed, but even in the long run some operations may be
beyond the physical or logical capabilities of some devices or
image file formats. In these cases, the stream will approximate
the specified image as best it can.

(OPENIMAGESTREAM FILE IMAGETYPE OPTIONS) [Function]

REGION

Opens and returns an image stream of type IMAGETYPE on a
destination specified by FILE. If FILE is a file name on a normal
file storage device, the image stream will store graphics
commands on the specified file, which can be transmitted to a
printer by explicit calls to LISTFILES and SEND.FILE.TO.PRINTER.
If IMAGETYPE is DISPLAY, then the user is prompted for a
window to open. FILE in this case will be used as the title of the
window.

If FILE is a file name on the LPT device, this indicates that the
graphics commands should be stored in a temporary file, and
automatically sent to the printer when the image stream is
closed by CLOSEF. FILE = NIL is equivalent to FILE = {LPT}. File
names on the LPT device are of the form
{LPT}PRINTERNAME.TYPE, where PRINTERNAME, TYPE, or both
may be omitted. PRINTERNAME is the name of the particular
printer to which the file will be transmitted on dosing; it
defaults to the first printer on DEFAULTPRINTINGHOST that can
print IMAGETYPE files. The TYPE extension supplies the value of
IMAGETYPE when it is defaulted (see below).
OPENIMAGESTREAM will generate an error if the specified
printer does not accept the kind of file specified by IMAGETYPE.

If IMAGETYPE is NIL, the image type is inferred from the
extension field of FILE and the EXTENSIONS properties in the list
PRINTFILETYPES (see page 29.6). Thus, the extensions IP, IPR, and
INTERPRESS indicate Interpress format, and the extension PRESS
indicates Press format. If FILE is a printer file with no extension
(of the form {LPT}PRINTERNAME), then IMAGETYPE will be the
type that the indicated printer can print. If FILE has no extension
but is not on the printer device {LPT}, then IMAGETYPE will
default to the type accepted by the first printer on
DEFAULTPRINTINGHOST.

OPTIONS is a list in property list format, (PROP1 VAL1 PROP2
VAL2 —), used to specify certain attributes of the image stream;
not all attributes are meaningful or interpreted by all types of
image streams. Acceptable properties are:

Value is the region on the page (in stream scale units, 0,0 being
the lower-left corner of the page) that text will fill up. It
establishes the initial values for DSPLEFTMARGIN,

GRAPHICS OUTPUT OPERATIONS

27.9

OPENING IMAGE STREAMS

DSPRIGHTMARGIN, DSPBOTTOMMARGIN (the point at which
carriage returns cause page advancement) and DSPTOPMARGIN
(where the stream is positioned at the beginning of a new page).

If this property is not given, the value of the variable
DEFAULTPAGEREGION, is used.

FONTS Value is a list of fonts that are expected to be used in the image
stream. Some image streams (e.g. Interpress) are more efficient
if the expected fonts are specified in advance, but this is not
necessary. The first font in this list will be the initial font of the
stream, otherwise the default font for that image stream type
will be used.

HEADING Vaiue is the heading to be placed automatically on each page.
NIL means no heading.

Examples: Suppose that Tremaor: is an Interpress printer, Quake
is @ Press printer, and DEFAULTPRINTINGHOST is (Tremor:
Quake):

(OPENIMAGESTREAM) returns an Interpress image stream on
printer Tremor:.

(OPENIMAGESTREAM NIL 'PRESS) returns a Press stream on
Quake.

(OPENIMAGESTREAM '{LPT}.INTERPRESS) returns an Interpress
stream on Tremor:.

(OPENIMAGESTREAM '{CORE}FOO.PRESS) returns a Press stream
on the file {CORE}FOO.PRESS.

(IMAGESTREAMP X IMAGETYPE) [NoSpread Function]

Returns X (possibly coerced to a stream) if it is an output image
stream of type IMAGETYPE (or of any type if IMAGETYPE = NIL),
otherwise NIL.

(IMAGESTREAMTYPE STREAM) [Function]
Returns the image stream type of STREAM.

(IMAGESTREAMTYPEP STREAM TYPE) ‘ [Function]
Returns Tif STREAM is an image stream of type TYPE.

27.3 Accessing Image Stream Fields

The following functions manipulate the fields of an image
stream. These functions return the old value (the one being
replaced). A value of NIL for the new value will return the

27.10 GRAPHICS OUTPUT OPERATIONS

ACCESSING IMAGE STREAM FIELDS

current setting without changing it. These functions do not
change any of the bits drawn on the image stream; they just
affect future operations done on the image stream.

(DSPCLIPPINGREGION REGION STREAM) [Function]
The clipping region is a region that limits the extent of characters
printed and lines drawn (in the image stream's coordinate
system). Initially set so that no clipping occurs.

Warning: For display streams, the window system maintains the
clipping region during window operations. Users should be very
careful about changing this field.

(DSPFONT FONT STREAM) [Function]
The font field specifies the font (see page 27.25) used when
printing characters to the image stream.

Note: DSPFONT determines its new font descriptor from FONT
by the same coercion rules that FONTPROP and FONTCREATE use
(page 27.26), with one additional possibility: If FONT is a list of
the form (PROP; VAL; PROP) VAL, ..) where PROP; is
acceptable as a font-property to FONTCOPY (page 27.28), then
the new font is obtained by (FONTCOPY (DSPFONT NIL STREAM)
PROPy VALy PROP, VAL) ..). For example, (DSPFONT '(SIZE 12)
STREAM) would change the font to the 12 point version of the
current font, leaving all other font properties the same.

(DSPTOPMARGIN YPOSITION STREAM) [Function]
The top margin is an integer that is the Y position after a new
page (in the image stream's coordinate system). This function
has no effect on windows.

(DSPBOTTOMMARGIN YPOSITION STREAM) [Function]
The bottom margin is an integer that is the minimum Y position
that characters will be printed by PRIN1 (in the image stream's
coordinate system). This function has no effect on windows.

(DSPLEFTMARGIN XPOSITION STREAM) [Function]
The left margin is an integer that is the X position after an
end-of-line (in the image stream’s coordinate system). Initially
the left edge of the clipping region.

(DSPRIGHTMARGIN XPOSITION STREAM) [Function]
The right margin is an integer that is the maximum X position
that characters will be printed by PRIN1 (in the image stream's
coordinate system). This isinitially the position of the right edge
of the window or page.

GRAPHICS OUTPUT OPERATIONS 27.11

ACCESSING IMAGE STREAM FIELDS

The line length of a window or image stream (as returned by
LINELENGTH, page 25.11) is computed by dividing the distance
between the left and right margins by the width of an uppercase
“A" inthe current font. The line length is changed whenever the
font, left margin, or right margin are changed or whenever the
window is reshaped.

(DSPOPERATION OPERATION STREAM) [Function]

The operation is the default BITBLT operation (see page 27.15)
used when printing or drawing on the image stream. One of
REPLACE, PAINT, INVERT, or ERASE. Initially REPLACE. This is a
meaningless operation for most printers which support the
model that once dots are deposited on a page they cannot be
removed.

(DSPLINEFEED DELTAY STREAM) [Function]

(DSPSCALE SCALE STREAM)

The linefeed is an integer that specifies the Y increment for each
linefeed, normally negative. Initially minus the height of the
initial font.

[Function]

Returns the scale of the image stream STREAM, a number
indicating how many units in the streams coordinate system
correspond to one printer’s point (1/72 of aninch). For example,
DSPSCALE returns 1 for display streams, and 35.27778 for
Interpress and Press streams (the number of micas per printer's
point). In order to be device-independent, user graphics
programs must either not specify position values absolutely, or
must multiply absolute point quantities by the DSPSCALE of the
destination stream. For example, to set the left margin of the
Interpress stream XX to one inch, do

(DSPLEFTMARGIN (TIMES 72 (DSPSCALE NIL XX)) XX)

The SCALE argument to DSPSCALE is currently ignored. In a
future release it will enable the scale of the stream to be
changed under user control, so that the necessary multiplication
will be done internal to the image stream interface. In this case,
it would be possible to set the left margin of the Interpress
stream XX to one inch by doing

(DSPSCALE 1 XX)
(DSPLEFTMARGIN 72 XX)

(DSPSPACEFACTOR FACTOR STREAM) [Function]

The space factor is the amount by which to multiply the natural
width of all following space characters on STREAM:; this can be
used for the justification of text. The default value is 1. For
example, if the natural width of a space in STREAM's current font

27.12

GRAPHICS OQUTPUT OPERATIONS

ACCESSING IMAGE STREAM FIELDS

is 12 units, and the space factor is set to two, spaces appear 24
units wide. The values returned by STRINGWIDTH and
CHARWIDTH are also affected.

The following two functions only have meaning for image
streams that can display color:

(DSPCOLOR COLOR STREAM) [Function]
Sets the default foreground color of STREAM. Returns the
previous foreground color. If COLORis NIL, it returns the current
foreground color without changing anything. The default color
is white

(DSPBACKCOLOR COLOR STREAM) [Function]
Sets the background color of STREAM. Returns the previous
background color. If COLOR is NIL, it returns the current
background color without changing anything. The default
background color is black.

27.4 Current Position of an Image Stream

Each image stream has a "current position,” which is a position

(in the image stream's coordinate system) where the next

printing operation will start from. The functions which print

characters or draw on an image stream update these values

appropriately. The following functions are used to explicitly
. access the current position of an irmage stream:

(DSPXPOSITION XPOSITION STREAM) [Function]
Returns the X coordinate of the current position of STREAM. If
XPOSITION is non-NIL, the X coordinate is set to it (without
changing the Y coordinate).

(DSPYPOSITION YPOSITION STREAM) [Function]
Returns the Y coordinate of the current position of STREAM. |f
YPOSITION is non-NIL, the Y coordinate is set to it (without
changing the X coordinate).

(MOVETO X Y STREAM) [Function]
Changes the current position of STREAM to the point (X, Y).

GRAPHICS OUTPUT OPERATIONS 27.13

CURRENT POSITION OF AN IMAGE STREAM

(RELMOVETO DX DY STREAM) [Function]
Changes the current position to the point (DX,DY) coordinates
away from current position of STREAM.

(MOVETOUPPERLEFT STREAM REGION) [Function]
Moves the current position to the beginning position of the top
line of text. |f REGION is non-NIL, it must be a REGION and the X
position is changed to the left edge of REGION and the Y
position changed.to the top of REG/ION less the font ascent of
STREAM. If REGION is NIL, the X coordinate is changed to the left
margin of STREAM and the Y coordinate is changed to the top of
the clipping region of STREAM less the font ascent of STREAM.

27.5 Moving Bits Between Bitmaps With BITBLT

BITBLT is the primitive function for moving bits from one bitmap
to another, or from a bitmap to animage stream.

(BITBLT SOURCE SOURCELEFT SOURCEBOTTOM DESTINATION DESTINATIONLEFT
DESTINATIONBOTTOM WIDTH HEIGHT SOURCETYPE
OPERATION TEXTURE CLIPPINGREGION) [Function]
Transfers a rectangular array of bits from SOURCE to
DESTINATION. SOURCE can be a bitmap, or a display stream or
window, in which case its associated bitmap is used.
DESTINATION can be a bitmap or an arbitrary image stream.

WIDTH and HEIGHT define a pair of rectangles, one in each of
the SOURCE and DESTINATION whose left, bottom corners are
at, respectively, (SOURCELEFT, SOURCEBOTTOM) and
(DESTINATIONLEFT, DESTINATIONBOTTOM). If these rectangles
overlap the boundaries of either source or destination they are
both reduced in size (without transiation) so that they fit within
their respective boundaries. If CLIPPINGREGION is non-NIL it
should be a REGION and is interpreted as a clipping region
within DESTINATION:; clipping to this region may further reduce
the defining rectangles. These (possibly reduced) rectangles
define the source and destination rectangles for BITBLT.

The mode of transferring bits is defined by SOURCETYPE and
OPERATION. SOURCETYPE and OPERATION specify whether the
source bits should come from SOURCE or TEXTURE, and how
these bits are combined with those of DESTINATION.
SOURCETYPE and OPERATION are described further below.

TEXTURE is a texture, as described on page 27.6. BITBLT aligns
the texture so that the upper-left pixel of the texture coincides
with the upper-left pixel of the destination bitmap.

27.14 GRAPHICS OUTPUT OPERATIONS

MOVING BITS BETWEEN BITMAPS WITH BITBLT

INPUT
INVERT

TEXTURE

REPLACE
PAINT

INVERT

ERASE

SOURCELEFT, SOURCEBOTTOM, DESTINATIONLEFT, and
DESTINATIONBOTTOM default to 0. WIDTH and HEIGHT default
to the width and height of the SOURCE. TEXTURE defaults to
white. SOURCETYPE defaults to INPUT. OPERATION defaults to
REPLACE. If CLIPPINGREGION is not provided, no additional
clipping is done. BITBLT returns T if any bits were moved: NiL
otherwise.

Note: If SOURCE or DESTINATION is a window or image stream,

the remaining arguments are interpreted as values in the
coordinate system of the window or image stream and the
operation of BITBLT is translated and clipped accordingly. Also,
if a window or image stream is used as the destination to BITBLT,
its clipping region further limits the region involved.

SOURCETYPE specifies whether the source bits should come from
the bitmap SOURCE, or from the texture TEXTURE. SOURCETYPE
is interpreted as follows:

The source bits come from SOURCE. TEXTURE is ignored.

The source bits are the inverse of the bits from SOURCE.
TEXTURE isignored.

The source bits come from TEXTURE. SOURCE, SOURCELEF T, and
SOURCEBOTTOM are ignored.

OPERATION specifies how the source bits (as specified by
SOURCETYPE) are combined with the bits in DESTINATION and
stored back into DESTINATION. DESTINATION is one of the
following:

All source bits (on or off) replace destination bits.

Any source bits that are on replace the corresponding
destination bits. Source bits that are off have no effect. Does a
logical OR between the source bits and the destination bits.

Any source bits that are on invert the corresponding destination
bits. Does a logical XOR between the source bits and the
destination bits.

Any source bits that are on erase the corresponding destination
bits. Does a logical AND operation between the inverse of the
source bits and the destination bits.

Different combinations of SOURCETYPE and OPERATION can be
specified to achieve many different effects. Given the following
bitmaps as the values of SOURCE, TEXTURE, and DESTINATION:

GRAPHICS QUTPUT OPERATIONS

27.15

MOVING BITS BETWEEN BITMAPS WITH BITBLT

Forrrrrrsrarrras
rrrrrsrrrrsaran
rrrrrsrrrrssrry
Frrsrsrrazsaren
frrrrserrasssan
Lerrreresrsrrer
rererrrrrasrrar
Crrsrarrrrsrsnsas
rRXPFIIIIFIIIES
Ferrrarsrassras
srerrorrrararan
srrrrrrrrrsrere
srrrrrrrsnncrrrs
rersrsrrrscrras
FRERLIRIRRAIELE

0]

SOURCE

-
m
4
=
=
m

DESTINATION

BITBLT would produce the results given below for the difference
combinations of SOURCETYPE and OPERATION (assuming
CLIPPINGREGION, SOURCELEFT, etc. are set correctly, of course):

I

Nl

1o}

i

type= INPUT type= INPUT type= INPUT type= INPUT
op= REPLACE op= PAINT op= INVERT op= ERASE
type= IHVERT type= INVERT type= INVERT type= IHVERT

op= REPLACE op= PAINT op= INVERT op= ERASE

Py
rrresre
Prrazrr

L]
N
‘.
L]
b
N
&

rrrrarr
Prrrrrr
srssass

type= TEXTURE type= TEXTURE type= TEXTURE type= TEXTURE
op= REPLACE op= PAINT op= INVERT op= ERASE

(BLTSHADE TEXTURE DESTINATION DESTINATIONLEFT DESTINATIONBOTTOM WIDTH
HEIGHT OPERATION CLIPPINGREGION) [Function]
BLTSHADE is the SOURCETYPE = TEXTURE case of BITBLT. It fills
the specified region of the destination bitmap DESTINATION
with the texture TEXTURE. DESTINATION can be a bitmap or
image stream.

(BITMAPIMAGESIZE BITMAP DIMENSION STREAM) : [Function]
Returns the size that BITMAP will be when BITBLTed to STREAM,
in STREAM's units. DIMENSION can be one of WIDTH, HEIGHT, or

NIL, in which case the dotted pair (WIDTH . HEIGHT) will be
returned.

27.16 GRAPHICS OUTPUT OPERATIONS

DRAWING LINES

27.6 DrawinglLines

Interlisp-D provides several functions for drawing lines and
curves on image streams. The line drawing functions are
intended for interactive applications where efficiency is

- important. They do not allow the use of "brush" patterns, like

the curve drawing functions, but (for display streams) they
support drawing a line in INVERT mode, so redrawing the line
will erase it. DRAWCURVE (page 27.19) can be used todraw lines
using a brush.

(DRAWLINE X Y X Y, WIDTH OPERATION STREAM COLOR DASHING) [Function]

Draws a straight line from the point (X1,Y) to the point (X5,Y>)
on the image stream STREAM. The position of STREAM is set to
(X2.Y2). If X; equals X, and Y equals Y, a point is drawn at
(X,,Y;).

WIDTH is the width of the line, in the units of the device. If
WIDTH is NIL, the default is 1.

OPERATION is the BITBLT operation (see page 27.15) used to
draw the line. If OPERATION is NIL, the value of DSPOPERATION
for the image stream is used.

COLOR is a color specification that determines the color used to
draw the line for image streams that support color. If COLOR is
NIL, the DSPCOLOR of STREAM is used.

DASHING is a list of positive integers that determines the dashing
characteristics of the line. The line is drawn for the number of
points indicated by the first element of the dashing list, is not
drawn for the number of points indicated by the second
element. The third element indicates how long it will be on
again, and so forth. The dashing sequence is repeated from the
beginning when the list is exhausted. If DASHING is NIL, the line
is not dashed.

(DRAWBETWEEN POSITIONy POSITION 2 WIDTH OPERATION STREAM COLOR DASHING)

[Function]

Draws a line from the point POSITION to the point POSITION
onto the destination bitmap of STREAM. The position of
STREAM is set to POSITION .

(DRAWTO X Y WIDTH OPERATION STREAM COLOR DASHING) [Function]

Draws a line from the current position to the point (X,Y) onto the
destination bitmap of STREAM. The position of STREAM is set to
(X.).

GRAPHICS OUTPUT OPERATIONS

27.17

DRAWING LINES

(RELDRAWTO DX DY WIDTH OPERATION STREAM COLOR DASHING) [Function]

Draws a line from the current position to the point (DX,DY)
coordinates away onto the destination bitmap of STREAM. The
position of STREAM is set to the end of the line. If DX and DY are
both 0, nothingis drawn.

27.7 Drawing Curves

A curve is drawn by placing a brush pattern centered at each
point along the curve's trajectory. A brush pattern is defined by
its shape, size, and color. The predefined brush shapes are
ROUND, SQUARE, HORIZONTAL, VERTICAL, and DIAGONAL;
new brush shapes can be created using the INSTALLBRUSH
function, described below. A brush size is an integer specifying
the width of the brush in the units of the device. The color is a
color specification, which is only used if the curve is drawn to an
image stream that supports colors.

A brush is specified to the various drawing functions as a list of
the form (SHAPE WIDTH COLOR), for example (SQUARE 2) or
(VERTICAL 4 RED). A brush can also be specified as a positive
integer, which is interpreted as a ROUND brush of that width. If
a brush is a litatom, it is assumed to be a function which is called
at each point of the curve’s trajectory (with three arguments: the
X-coordinate of the point, the Y-coordinate, and the image
stream), and should do whatever image stream operations are
necessary to draw each point. Finally, if a brush is specified as
NIL, a (ROUND 1) brush is used as default.

The appearance of a curve is also determined by its dashing
characteristics. Dashing is specified by a list of positive integers.
If a curve is dashed, the brush is placed along the trajectory for
the number of units indicated by the first element of the dashing
list. The brush is off, not placed in the bitmap, for a number of
units indicated by the second element. The third element
indicates how long it will be on again, and so forth. The dashing
sequence is repeated from the beginning when the list is
exhausted. The units used to measure dashing are the units of
the brush. For example, specifying the dashing as (1 1) with a
brush of (ROUND 16) would put the brush on the trajectory, skip
16 points, and put down another brush. A curve is not dashed if
the dashing argument to the drawing function is NiL.

The curve functions use the image stream's clipping region and
operation. Most types of image streams only support the PAINT
operation when drawing curves. When drawing to a display
stream, the curve-drawing functions accept the operation
INVERT if the brush argument is 1. For brushes larger than 1,

27.18

GRAPHICS OUTPUT OPERATIONS

DRAWING CURVES

these functions will use the ERASE operation instead of INVERT.
For display streams, the curve-drawing functions treat the
REPLACE operation the same as PAINT.

(DRAWCURVE KNOTS CLOSED BRUSH DASHING STREAM) [Function]
Draws a “parametric cubic spline curve" on the image stream
STREAM. KNOTS is a list of positions to which the curve will be
fitted. If CLOSED is non-NIL, the curve will be closed; otherwise it
ends at the first and last positions in KNOTS. BRUSH and
DASHING are interpreted as described above.

For example,

(DRAWCURVE '((10 . 10)(50 . 50)(100 . 10)(150. 50))
NIL'(ROUND 5) '(1 1 1 2) XX)

would draw a curve like the following on the display stream XX:

(DRAWCIRCLE CENTERX CENTERY RADIUS BRUSH DASHING STREAM) [Function]
Draws a circle of radius RADIUS about the point
(CENTERX,CENTERY) onto the image stream STREAM. STREAM's
position is left at (CENTERX,CENTERY). The other arguments are
interpreted as described above.

(DRAWELLIPSE CENTERX CENTERY SEMIMINORRADIUS SEMIMAJORRADIUS ORIENTATION

BRUSH DASHING STREAM) [Function]
Draws an ellipse with a minor radius of SEMIMINORRADIUS and
a major radius of SEMIMAJORRADIUS about the point
(CENTERX,CENTERY) onto the image stream STREAM.
ORIENTATION is the angle of the major axis in degrees, positive
in the counterclockwise direction. STREAM's position is left at
(CENTERX,CENTERY). The other arguments are interpreted as
described above.

New brush shapes can be defined using the following function:

(INSTALLBRUSH BRUSHNAME BRUSHFN BRUSHARRAY) [Function]
Installs a new brush called BRUSHNAME with creation-function
BRUSHFN and optional array BRUSHARRAY. BRUSHFN should be
a function of one argument (a width), which returns a bitmap of
the brush for that width. BRUSHFN will be called to create new
instances of BRUSHNAME-type brushes; the sixteen smallest
instances will be pre-computed and cached. "Hand-crafted"
brushes can be supplied as the BRUSHARRAY argument.

GRAPHICS OUTPUT OPERATIONS 27.19

DRAWING CURVES

Changing an existing brush can be done by calling
INSTALLBRUSH with new BRUSHFN and/or BRUSHARRAY.

(DRAWPOINT X Y BRUSH STREAM OPERATION) [Function]

Draws BRUSH centered around point (X, Y) on STREAM, using

the operation OPERATION. BRUSH may be a bitmap or a brush.

27.8 Miscellaneous Drawing and Printing Operations

(DSPFILL REGION TEXTURE OPERATION STREAM) [Function]

Fills REGION of the image stream STREAM (within the clipping
region) with the texture TEXTURE. If REGION is NIL, the whole
clipping region of STREAM is used. If TEXTURE or OPERATION is
NIL, the values for STREAM are used. '

(FILLPOLYGON POINTS TEXTURE STREAM) [Function]

Fills in the polygon outlined by POINTS on the image stream
STREAM, using the texture TEXTURE.

POINTS is a list of positions (page 27.1) determining the vertices
of a closed polygon. FILLPOLYGON fills in this polygon with the
texture TEXTURE. POINTS can also be a list whose elements are
lists of positions, in which case each sublist describes a separate
polygon to be filled.

Note: When filling a polygon, there is more than one way of
dealing with the situation where two polygon sides intersect, or
one polygon is fully inside the other. Currently, FILLPOLYGON to
a display stream uses the "odd" fill rule, which means that
intersecting polygon sides define areas that are filled or not
filled somewhat like a checkerboard. For example,
(FILLPOLYGON '((125 . 125)(150 . 200)(175 . 125)(125 . 175)(175 .
175)) GRAYSHADE WINDOW) would produce a display
something like this:

&

T
S
I.I;|~

-_-':t : :?.?':.. o

el Al
P)

:?,;,:'}.‘! -:-;:::\":

This fill convention also takes into account all polygons in
POINTS, if it specifies multiple polygons. This can be used to put
"holes" in filled polygons. For example,

(FILLPOLYGON

'(((110.110)(150 . 200190 . 110))
((135.125)(160. 125)(160 . 150)(135. 150)))

27.20

GRAPHICS OUTPUT OPERATIONS

MISCELLANEOUS DRAWING AND PRINTING OPERATIONS

GRAYSHADE WINDOW)

will put a square hole in a triangular region:

v.':}"‘-.‘:.-.-!' -

Currently, FILLPOLYGON uses the "Replace” BITBLT operation
(see page 27.15) to fill areas with the texture. However, any
areas that are not filled are not changed. If there are "holes"” in
the filled polygon, this can be used to produce a "window"
effect. For example, the following is the display produced by
filling the star polygon (above) over a window full of text:

Text TF' <t Text

Text THet Text
T2 St T T
TH"'T #T"‘ o5 Text
Text e Text
TexgTexl Text
ITe:t Text Text
(FILLCIRCLE CENTERX CENTERY RADIUS TEXTURE STREAM) [Function]

Fills in a circular area of radius RADIUS about the point
(CENTERX,CENTERY) in STREAM with- TEXTURE. STREAM's
position is left at (CENTERX,CENTERY).

(DSPRESET STREAM) [Function]
Sets the X coordinate of STREAM to its left margin, sets its Y
coordinate to the top of the clipping region minus the font
ascent. For a display stream, this also fills its destination bitmap
. with its background texture.

(DSPNEWPAGE STREAM) [Function]
Starts a new page. The X coordinate is set to the left margin, and
the Y coordinate is set to the top margin plus the linefeed.

(CENTERPRINTINREGION EXP REGION STREAM) [Function]
Prints EXP so that is it centered within REGION of the STREAM. If
REGION is NIL, EXP will be centered in the clipping region of
STREAM.

GRAPHICS QUTPUT OPERATIONS 27.21

DRAWING AND SHADING GRIDS

27.9 Drawing and Shading Grids

A grid is a partitioning of an arbitrary coordinate system
(hereafter referred to as the “source system") into rectangles.
This section describes functions that operate on grids. Htincludes
functions to draw the outline of a grid, to translate between
positions in a source system and grid coordinates (the
coordinates of the rectangle which contains a given position),
and to shade grid rectangles. A grid is defined by its "unit grid,"
a region (called a grid specification) which is the origin rectangle
of the grid in terms of the source system. Its LEFT field is
interpreted as the X-coordinate of the left edge of the origin
rectangle, its BOTTOM field is the Y-coordinate of the bottom
edge of the origin rectangle, its WIDTH is the width of the grid
rectangles, and its HEIGHT is the height of the grid rectangles.

(GRID GRIDSPEC WIDTH HEIGHT BORDER STREAM GRIDSHADE) [Function]
Outlines the grid defined by GRIDSPEC which is WIDTH
rectangles wide and HEIGHT rectangles high on STREAM. Each
box in the grid has a border within it that is BORDER points on
each side; so the resulting lines in the grid are 2*BORDER thick.
If BORDER is the atom POINT, instead of a border the lower left
point of each grid rectangle will be turned on. If GRIDSHADE is
non-NiIL, it should be a texture and the border lines will be drawn
using that texture.

(SHADEGRIDBOX X Y SHADE OPERATION GRIDSPEC GRIDBORDER STREAM) [Function]
Shades the grid rectangle (X,Y) of GRIDSPEC with texture SHADE
using OPERATION on STREAM. GRIDBORDER is interpreted the
same as for GRID.

The following two functions map from the X,Y coordinates of
the source system into the grid X,Y coordinates:
(GRIDXCOORD XCOORD GRIDSPEC) ¢ [Function]

Returns the grid X-coordinate (in the grid specified by GRIDSPEC)
that contains the source system X-coordinate XCOORD.

(GRIDYCOORD YCOOQORD GRIDSPEQC) [Function]
Returns the grid Y-coordinate (in the grid specified by GRIDSPEC)
that contains the source system Y-coordinate YCOORD.

The following two functions map from the grid X,Y coordinates
into the X,Y coordinates of the source system:

27.22 GRAPHICS OUTPUT OPERATIONS

DRAWING AND SHADING GRIDS

(LEFTOFGRIDCOORD GRIDX GRIDSPEC) [Function]
Returns the source system X-coordinate of the left edge of a grid
rectangle at grid X-coordinate GRIDX (in the grid specified by
GRIDSPEC).

(BOTTOMOFGRIDCOORD GRIDY GRIDSPEC) [Function]
Returns the source system Y-coordinate of the bottom edge of a
grid rectangle at grid Y-coordinate GRIDY (in the grid specified
by GRIDSPEC).

27.10 Display Streams

Display streams (image streams of type DISPLAY) are used to
control graphic output operations to a bitmap, known as the
“destination” bitmap of the display stream. For each window on
the screen, there is an associated display stream which controls
graphics operations to a specific part of the screen bitmap. Any
of the functions that take a display stream will also take a
window, and use the associated display stream. Display streams
can also have a destination bitmap that is not connected to any
window or display device.

(DSPCREATE DESTINATION) [Function]
Creates and returns a display stream. If DESTINATION is
_specified, it is used as the destination bitmap, otherwise the
screen bitmap is used.

(DSPDESTINATION DESTINATION DISPLAYSTREAM) [Function]
Returns the current destination bitmap for DISPLAYSTREAM,
’ setting it to DESTINATION if non-NIL. DESTINATION can be
either the screen bitmap, or an auxilliary bitmap in order to
construct figures, possibly save them, and then display them in a
single operation.

‘Warning: The window system maintains the destination of a
window's display stream. Users should be very careful about
changing this field.

(DSPXOFFSET XOFFSET DISPLAYSTREAM) [Function]

(DSPYOFFSET YOFFSET DISPLAYSTREAM) [Function]
: Each display stream has its own coordinate system, separate from

the coordinate system of its destination bitmap. Having the

coordinate system local to the display stream allows objects to be

displayed at different places by translating the display stream's

GRAPHICS OUTPUT OPERATIONS 27.23

DISPLAY STREAMS

coordinate system relative to its destination bitmap. This local
coordinate system is defined by the X offset and Y offset.

DSPXOFFSET returns the current X offset for DISPLAYSTREAM,
the X origin of the display stream's coordinate system in the
destination bitmap's coordinate system. It is set to XOFFSET if
non-NiL.

DSPYOFFSET returns the current Y offset for DISPLAYSTREAM,
the Y origin of the display stream's coordinate system in the
destination bitmap's coordinate system. It is set to YOFFSET if
non-NIL.

The X offset and Y offset for a display stream are both initially 0
(no X or Y-coordinate translation).

Warning: The window system maintains the X and Y offset of a
window's display stream. Users should be very careful about
changing these fields.

(DSPTEXTURE TEXTURE DISPLAYSTREAM) [Function]

Returns the current texture used as the background pattern for
DISPLAYSTREAM. It is set to TEXTURE if non-NiL. Initially the
value of WHITESHADE.

(DSPSOURCETYPE SOURCETYPE DISPLAYSTREAM) [Function]

Returns the current BITBLT sourcetype used when printing
characters to the display stream (see page 27.15). It is set to
SOURCETYPE, if non-NIL. Must be either INPUT or INVERT.
Initially INPUT.

(DSPSCROLL SWITCHSETTING DISPLAYSTREAM) [Function]

Returns the current value of the “"scroll flag," a flag that
determines the scrolling behavior of the display stream; either
ON or OFF. If ON, the bits in the display streams’s destination
bitmap are moved after any linefeed that moves the current
position out of the destination bitmap. Any bits moved out of
the current clipping region are lost. Does not adjust the X offset,
Y offset, or clipping region of the display stream. Initially OFF.

Sets the scroll flag to SWITCHSETTING, if non-NIL.

Note: The word “scrolling” also describes the use of "scroll bars"
on the left and bottom of a window to move an object displayed
inawindow. This feature is described on page 28.23.

Each window has an associated display stream. To get the
window of a particular display stream, use WFROMDS:

27.24

GRAPHICS OUTPUT OPERATIONS

DISPLAY STREAMS

(WFROMDS DISPLAYSTREAM DONTCREATE) [Function]

Returns the window associated with DISPLAYSTREAM, creating a
window if one does not exist (and DONTCREATE is NIL). Returns
NIL if the destination of DISPLAYSTREAM is not a screen bitmap
that supports a window system.

If DONTCREATE is non-NIL, WFROMDS will never create a
window, and returns NIL if DISPLAYSTREAM does not have an
associated window.

TTYDISPLAYSTREAM calls WFROMDS with DONTCREATE = T, so
it will not create a window unnecessarily. Also, if WFROMDS
does create a window, it calls CREATEW with NOOPENFLG = T.

(DSPBACKUP WIDTH DISPLAYSTREAM) [Function]

Backs up DISPLAYSTREAM over a character which is WIDTH
screen points wide. DSPBACKUP fills the backed over area with
the display stream's background texture and decreases the X
position by WIDTH. If this would put the X position less than
DISPLAYSTREAM's left margin, its operation is stopped at the left
margin. It returns T if any bits were written, NIL otherwise.

27.12 Fonts

A font is the collection of images that are printed or displayed
when characters are output to a graphic output device. Some
simple displays and printers can only print characters using one
font. Bitmap displays and graphic printers can print characters
using a large number of fonts.

Fonts are identified by a distinctive style or family (such as
Modern or Classic), a size (such as 10 points), and a face (such as
bold or italic). Fonts also have a rotation that indicates the
orientation of characters on the screen or page. A normal
horizontal font (also called a portrait font) has a rotation of 0;
the rotation of a vertical (landscape) font is 90 degrees. While
any combination can be specified, in practice the user will find
that only certain combinations of families, sizes, faces, and
rotations are available for any graphic output device.

To specify a font to the functions described below, a FAMILY is
represented by a literal atom, a SIZE by a positive integer, and a
FACE by a three-element list of the form (WEIGHT SLOPE
EXPANSION). WEIGHT, which indicates the thickness of the
characters, can be BOLD, MEDIUM, or LIGHT; SLOPE can be
ITALIC or REGULAR; and EXPANSION can be REGULAR,
COMPRESSED, or EXPANDED, indicating how spread out the
characters are. For convenience, faces may also be specified by

GRAPHICS QUTPUT OPERATIONS

27.25

FONTS

three-character atoms, where each character is the first letter of
the corresponding field. Thus, MRR is a synonym for (MEDIUM
REGULAR REGULAR). In addition, certain common face
combinations may be indicated by special literal atoms:

STANDARD = (MEDIUM REGULAR REGULAR) = MRR
ITALIC = (MEDIUMITALIC REGULAR) = MIR

BOLD = (BOLD REGULAR REGULAR) = BRR
BOLDITALIC = (BOLD ITALICREGULAR) = BIR

Interlisp represents all the information related to a font in an
object called a font descriptor. Font descriptors contain the
family, size, etc. properties used to represent the font. In
addition, for each character in the font, the font descriptor
contains width information for the character and (for display
fonts) a bitmap containing the picture of the character.

The font functions can take fonts specified in a variety of
different ways. DSPFONT, FONTCREATE, FONTCOPY, etc. can be
applied to font descriptors, "font lists" such as '(MODERN 10),
image streams (coerced to its current font), or windows (coerced
to the current font of its display stream). The printout command
".FONT" (page 25.27) will also accept fonts specified in any of
these forms.

(FONTCREATE FAMILY SIZE FACE ROTATION DEVICE NOERRORFLG CHARSET) [Function]

Returns a font descriptor for the specified font. FAMILY is a
litatom specifying the font family. SIZE is an integer indicating
the size of the font in points. FACE specifies the face
characteristics in one of the formats listed above; if FACE is NIL,
STANDARD is used. ROTATION, which specifies the orientation
of the font, is 0 (or NIL) for a portrait font and 90 for a landscape
font. DEVICE indicates the output device for the font, and can be
any image stream type (page 27.8), such as DISPLAY,
INTERPRESS, etc. DEVICE may also be an image stream, in which
case the type of the stream determines the font device. DEVICE
defaults to DISPLAY.

The FAMILY argument to FONTCREATE may also be a list, in
which case it is interpreted as a font-specification quintuple, a
list of the form (FAMILY SIZE FACE ROTATION DEVICE). Thus,
(FONTCREATE ‘(GACHA 10 BOLD)) is equivalent to (FONTCREATE
‘GACHA 10 '‘BOLD). FAMILY may also be a font descriptor, in
which case that descriptor is simply returned.

If a font descriptor has already been created for the specified
font, FONTCREATE simply returns it. If it has not been created,
FONTCREATE has to read the font information from a font file
that contains the information for that font. The name of an
appropriate font file, and the algorithm for searching depends
on the device that the font is for, and is described in more detail

27.26

GRAPHICS OUTPUT OPERATIONS

FONTS

(FONTP X)

below. If an appropriate font file is found, it is read into a font
descriptor. If no file is found, for DISPLAY fonts FONTCREATE
looks for fonts with less face information and fakes the
remaining faces (such as by doubling the bit pattern of each
character or slanting it). For hardcopy printer fonts, there is no
acceptable faking algorithm.

If no acceptable font is found, the action of FONTCREATE is
determined by NOERRORFLG. If NOERRORFLG is NIL, it
generates a FONT NOT FOUND error with the offending font
specification; otherwise, FONTCREATE returns NIL.

CHARSET is the character set which will be read to create the
font. Defaults to 0. For more information on character sets, see
NS Characters, page 2.12.

[Function]

(FONTPROP FONT PROP)

Returns X if X is a font descriptor; NIL otherwise.

[Function]

FAMILY
SIZE

WEIGHT
SLOPE

EXPANSION

FACE

ROTATION

DEVICE

ASCENT

DESCENT

Returns the value of the PROP property of font FONT. The
following font properties are recognized:

The style of the font, represented as a literal atom, such as
CLASSIC or MODERN.

A positive integer giving the size of the font, in printer's points
(1/72 of aninch).

The thickness of the characters; one of BOLD, MEDIUM, or LIGHT.

The "slope" of the characters in the font; one of ITALIC or
REGULAR.

The extent to which the characters in the font are spread out;
one of REGULAR, COMPRESSED, or EXPANDED. Most available
fonts have EXPANSION = REGULAR.

A three-element list of the form (WEIGHT SLOPE EXPANSION),
giving all of the typeface patameters.

An integer that gives the orientation of the font characters on
the screen or page, in degrees. A normal horizontal font (also
called a portrait font) has a rotation of 0; the rotation of a
vertical (landscape) font is 90.

The device that the font can be printed on; one of DISPLAY,
INTERPRESS, etc.

An integer giving the maximum height of any character in the
font from its base line (the printing position). The top line will
be at BASELINE + ASCENT-1.

An integer giving the maximum extent of any character below
the base line, such as the lower part of a "p". The bottom line of
a character will be at BASELINE-DESCENT.

GRAPHICS QUTPUT OPERATIONS

27.27

FONTS

HEIGHT
SPEC

DEVICESPEC

SCALE

Equal to ASCENT + DESCENT.

The (FAMILY SIZE FACE ROTATION DEVICE) quintuple by which
the font is known to Lisp.

The (FAMILY SIZE FACE ROTATION DEVICE) quintuple that
identifies what will be used to represent the font on the display
or printer. It will differ from the SPEC property only if animplicit
coercion is done to approximate the specified font with one that
actually exists on the device.

The units per printer’s point (1/72 of an inch) in which the font is
measured. For example, this is 35.27778 (the number of micas
per printer's point) for Interpress fonts, which are measured in
terms of micas.

(FONTCOPY OLDFONT PROP VAL PROP, VAL ...) [NoSpread Function]

Returns a font descriptor that is a copy of the font OLDFONT, but
which differs from OLDFONT in that OLDFONT's properties are
replaced by the specified properties and values. Thus,
(FONTCOPY FONT 'WEIGHT 'BOLD 'DEVICE ‘INTERPRESS) will
return a bold Interpress font with all other properties the same
as those of FONT. FONTCOPY accepts the properties FAMILY,
SIZE, WEIGHT, SLOPE, EXPANSION, FACE, ROTATION, and
DEVICE. If the first property is a list, it is taken to be the PROP
VAL; PROPp VAL, ... sequence. Thus, (FONTCOPY FONT
'(WEIGHT BOLD DEVICE INTERPRESS)) is equivalent to the
example above.

If the property NOERROR is specified with value non-NiIL,
FONTCOPY will return NIL rather than causing an error if the
specified font cannot be created.

(FONTSAVAILABLE FAMILY SIZE FACE ROTATION DEVICE CHECKFILESTOO?) [Function]

Returns a list of available fonts that match the given
specification. FAMILY, SIZE, FACE, ROTATION, and DEVICE are
the same as for FONTCREATE. Additionally, any of them can be
the atom *, in which case all values of that field are matched.

If CHECKFILESTOO? is NIL, only fonts already loaded into virtual
memory will be considered. If CHECKFILESTOO? is non-NIL, the
font directories for the specified device will be searched. When
checking font files, the ROTATION is ignored.

Note: The search is conditional on the status of the server which
holds the font. Thus a file server crash may prevent FONTCREATE
from finding a file that an earlier FONTSAVAILABLE returned.

Each element of the list returned will be of the form (FAMILY
SIZE FACE ROTATION DEVICE).

Examples:
(FONTSAVAILABLE '"MODERN 10 ‘MRR 0 'DISPLAY)

27.28

GRAPHICS QUTPUT OPERATIONS

FONTS

will return ((MODERN 10 (MEDIUM REGULAR REGULAR) 0
DISPLAY)) if the regular Modern 10 font for the display is in
virtual memory; NIL otherwise.

(FONTSAVAILABLE '* 14'* '* 'INTERPRESS T)

will return a list of all the size 14 Interpress fonts, whether they
are in virtual memory or in font files.

Warning: One must be careful when using the function
FONTSAVAILABLE to determine what Press font files are
available. For Press font families/faces, the font widths for
different sizes are consistently scaled versions of the smaliest
font in the family/face. Therefore, instead of storing data about
all of the sizes in the FONTS.WIDTHS file, only the widths for the
font of SIZE = 1 are stored, and the other widths are calculated by
scaling these widths up. This is signified in the FONTS.WIDTHS
file by a font with SIZE=0. Therefore, if FONTSAVAILABLE is
called with CHECKFILESTOO?=T, and it finds such a "relative"
font, it returns a font spec list with size of 0. For exampile,

«(FONTSAVAILABLE "GACHA '*"* 0 'PRESS T)
((GACHA 0 (BOLD ITALIC REGULAR) 0 PRESS)
(GACHA 0 (BOLD REGULAR REGULAR) 0 PRESS)
(GACHA 0 (MEDIUM ITALIC REGULAR) 0 PRESS)
(GACHA 0 (MEDIUM REGULAR REGULAR) 0 PRESS))

This indicates that Press files can be created with GACHA files of
any size with faces BIR, BRR, MIR, and MRR. Of course, this
doesn't guarantee that these fonts are available in all sizes on
your printer.

(SETFONTDESCRIPTOR FAMILY SIZE FACE ROTATION DEVICE FONT) [Function]
Indicates to the system that FONT is the font that should be
associated with the FAMILY SIZE FACE ROTATION DEVICE
characteristics. If FONT is NIL, the font associated with these
characteristics is cleared and will be recreated the next time it is
needed. As with FONTPROP and FONTCOPY, FONT is coercoed to
a font descriptor if it is not one already.

This functions is useful when it is desirable to simulate an
unavailable font or to use a font with characteristics different
from the interpretations provided by the system.

(DEFAULTFONT DEVICE FONT —) [Function]
Returns the font that would be used as the default (if NIL were
specified as a font argument) for image stream type DEVICE. If
FONT is a font descriptor, it is set to be the default font for
DEVICE.

GRAPHICS OUTPUT OPERATIONS 27.29

FONTS

(CHARWIDTH CHARCODE FONT) [Function]

CHARCODE is an integer that represents a valid character (as
returned by CHCON1). Returns the amount by which an image
stream's X-position will be incremented when the character is
printed.

{(CHARWIDTHY CHARCODE FONT) [Function]

Like CHARWIDTH, but returns the Y component of the
character's width, the amount by which an image stream'’s
Y-position will be incremented when the character is printed.
This will be zero for most characters in normal portrait fonts, but
may be non-zero for landscape fonts or for vector-drawing fonts.

(STRINGWIDTH STR FONT FLG RDTBL) [Function]

Returns the amount by which a stream's X-position will be
incremented if the printname for the Interlisp-D object STR is
printed in font FONT. If FONT is an image stream, its font is used.
If FLG is non-NIL, the PRIN2-pname of STR with respect to the
readtable RDTBL is used.

(STRINGREGION STR STREAM PRIN2FLG RDTBL) [Function]

Returns the region occupied by STR if it were printed at the
current location in the image stream STREAM. This is useful, for
example, for determining where text is in a window to allow the
user to select it. The arguments PRIN2FLG and RDTBL are passed
to STRINGWIDTH.

Note: STRINGREGION does not take into account any carriage
returns in the string, or carriage returns that may be
automatically printed if STR is printed to STREAM. Therefore,
the value returned is meaningless for multi-line strings.

The following functions allow the user to access and change the
bitmaps for individual characters in a display font. Note:
Character code 256 can be used to access the “"dummy"
character, used for characters in the font with no bitmap
defined.

(GETCHARBITMAP CHARCODE FONT) [Function]

Returns a bitmap containing a copy of the image of the character
CHARCODE in the font FONT.

(PUTCHARBITMAP CHARCODE FONT NEWCHARBITMAP NEWCHARDESCENT) [Function]

Changes the bitmap image of the character CHARCODE in the
font FONT to the bitmap NEWCHARBITMAP. if
NEWCHARDESCENT is non-NIL, the descent of the character is
changed to the value of NEWCHARDESCENT.

27.30

GRAPHICS OUTPUT OPERATIONS

FONTS

(EDITCHAR CHARCODE FONT) , [Function]
Calls the bitmap editor (EDITBM, page 27.4) on the bitmapimage
of the character CHARCODE in the font FONT. CHARCODE can
be a character code (as returned by CHCON1) or an atom or
string, in which case the first character of CHARCODE is used.

27.13 FontFiles and Font Directories

If FONTCREATE is called to create a font that has not been
loaded into Interlisp, FONTCREATE has to read the font
infarmation from a font file that contains the information for
that font. For printer devices, the font files have to contain
width information for each character in the font. For display
fonts, the font files have to contain, in addition, bitmap images
for each character in the fonts. The font file names, formats, and
searching algorithms are different for each device. There are a
set of variables for each device, that determine the directories
that are searched for font files. All of these variables must be set
before Interlisp can auto-load font files. These variables should
be initialized in the site-specific INIT file.

DISPLAYFONTDIRECTORIES [Variable]
Value is a list of directories searched to find font bitmap files for
display fonts.

DISPLAYFONTEXTENSIONS {Variable]
Value is a list of file extensions used when searching
DISPLAYFONTDIRECTORIES for display fonts. Initially set to
(DISPLAYFONT), but when using older font files it may be
necessary to add STRIKE and AC to this list.

INTERPRESSFONTDIRECTORIES (Variable]
Value is a list of directories searched to find font widths files for
Interpress fonts.

PRESSFONTWIDTHSFILES [Variable]

Value is a list of files (not directories) searched to find font
widths files for Press fonts. Press font widths are packed into
large files (usually named FONTS.WIDTHS).

GRAPHICS OUTPUT OPERATIONS 27.31

FONT PROFILES

27.15 FontProfiles

LAMBOAFONT

CLISPFONT

COMMENTFONT
USERFONT

SYSTEMFONT
CHANGEFONT

PRETTYCOMFONT
DEFAULTFONT

(FONTPROFILE PROFILE)

PRETTYPRINT contains a facility for printing different elements
(user functions, system functions, clisp words, comments, etc.) in
different fonts to emphasize (or deemphasize) their importance,
and in general to provide for a more pleasing appearance. Of
course, in order to be useful, this facility requires that the user is
printing on a device (such as a bitmapped display or a laser
printer) which supports multiple fonts.

PRETTYPRINT signals font changes by inserting into the file a
user-defined escape sequence (the value of the variable
FONTESCAPECHAR) followed by the character code which
specifies, by number, which font to use, i.e. T A for font number
1, etc. Thus, if FONTESCAPECHAR were the character 1F, 1F1C
would be output tochange to font 3, 1 F 1 A to change to font 1,
etc. If FONTESCAPECHAR consists of characters which are
separator charactors in FILERDTBL, then a file with font changes
initcan also be loaded back in.

Currently, PRETTYPRINT uses the following font classes. The user
can specify separate fonts for each of these classes, or use the
same font for several different classes.

The font for printing the name of the function being
prettyprinted, before the actual definition (usually a large font).

If CLISPFLG is on, the font for printing any clisp words, i.e. atoms
with property CLISPWORD.

The font used for comments.

The font for the name of any function in the file, or any member
of the list FONTFNS.

The font for any other (defined) function.

The font for an expression marked by the editor as having been
changed.

The font for the operand of a file package command.
The font for everything else.

Note that not all combinations of fonts will be aesthetically
pleasing (or even readable!) and the user may have to
experiment to find a compatible set.

Although in some implementations LAMBDAFONT et al. may be
defined as variables, one should not set them directly, but should
indicate what font is to be used for each class by calling the
function FONTPROFILE:

[Function]

Sets up the font classes as determined by PROFILE, a list of
elements which defines the correspondence between font

27.32

GRAPHICS OUTPUT OPERATIONS

FONT PROFILES

FONTPROFILE

classes and specific fonts. Each element of PROFILE is a list of the
form:

(FONTCLASS FONT # DISPLAYFONT PRESSFONT
INTERPRESSFONT)

FONTCLASS is the font class name and FONT # is the font number
for that class. For each font class name, the escape sequence will
consist of FONTESCAPECHAR followed by the character code for
the font number,e.g. 1 A for font number 1, etc.

If FONT# is NIL for any font class, the font class named
DEFAULTFONT (which must always be specified) is used.
Alternatively, if FONT# is the name of a previously defined font
class, this font class will be equivalenced to the previously
defined one.

DISPLAYFONT, PRESSFONT, and INTERPRESSFONT are font
specifications (of the form accepted by FONTCREATE) for the
fonts to use when printing to the display and to Press and
Interpress printers respectively.

[Variable]

(FONTNAME NAME)

This is the variable used to store the current font profile, in the
form accepted by the function FONTPROFILE. Note that simply
editing this value will not change the fonts used for the various
font classes; it is necessary to execute (FONTPROFILE
FONTPROFILE) to install the value of this variable.

The process of printing with multiple fonts is affected by a large
number of variables: FONTPROFILE, FILELINELENGTH,
PRETTYLCOM, etc. To facilitate switching back and forth
between various sets of values for the font variables, Interlisp
supports the idea of named "font configurations" encapsulating
the values of all relevant variables.

To create a new font configuration, set all “relevant” variables to
the values you want, and then call FONTNAME to save them (on
the variable FONTDEFS) under a given name. To install a
particular font configuration, call FONTSET giving it your name.
To change the values in a saved font configuration, edit the
value of the variable FONTDEFS.

Note: The list of variables saved by FONTNAME is stored in the
variable FONTDEFSVARS. This can be changed by the user.

[Function]

Collects the names and values of the variables on
FONTDEFSVARS, and saves them on FONTDEFS.

GRAPHICS OUTPUT OPERATIONS

27.33

FONT PROFILES

(FONTSET NAME)

[Function]

FONTDEFSVARS

Installs font configuration for NAME. Also evaluates
(FONTPROFILE FONTPROFILE) to install the font classes as
specified in the new value of the variable FONTPROFILE.
Generates an error if NAME not previously defined.

[Variable]

FONTDEFS

The list of variables to be packaged by a FONTNAME. Initially
FONTCHANGEFLG, FILELINELENGTH, COMMENTLINELENGTH,
FIRSTCOL, PRETTYLCOM, LISTFILESTR, and FONTPROFILE.

[Variable]

FONTESCAPECHAR

An association list of font configurations. FONTDEFS is a list of
elements of form (NAME . PARAMETER-PAIRS). To save a
configuration on a file after performing a FONTNAME to define
it, the user could either save the entire value of FONTDEFS, or use
the ALISTS file package command (page 17.37) to dump out just
the one configuration.

[Variable]

FONTCHANGEFLG

The character or string used to signal the start of a font escape
sequence.

[Variable]

LISTFILESTR

If T, enables fonts when prettyprinting. If NIL, disables fonts.

[Variable]

COMMENTLINELENGTH

In Interlisp-10, passed to the operating system by LISTFILES (page
17.14). Can be used to specify subcommands to the LIST
command, e.g. to establish correspondance between font
number and font name.

[Variable]

Since comments are usually printed in a smaller font,
COMMENTLINELENGTH is provided to offset the fact that
Interlisp does not know about font widths. When
FONTCHANGEFLG =T, CAR of COMMENTLINELENGTH is the
linelength used to print short comments, i.e. those printed in the
right margin, and CDR is the linelength used when printing full
width comments.

(CHANGEFONT FONT STREAM) [Function]

Executes the operations on STREAM to change to the font FONT.
For use in PRETTYPRINTMACROS.

27.34

GRAPHICS OUTPUT OPERATIONS

IMAGE OBJECTS

27.16 Image Objects

An Image Object is an object that inciudes information about an
image, such as how to display it, how to print it, and how to
manipulate it when it is included in a collection of images (such
as a document). More generally, it enables you to include one
kind of image, with its own semantics, layout rules, and editing
paradigms, inside another kind of image. Image Objects provide
a general-purpose interface between image users who want to
manipulate arbitrary images, and image producers, who create
images for use, say, in documents.

Images are encapsulated inside a uniform barrier—the
IMAGEOBI data type. From the outside, you communicate to the
image by calling a standard set of functions. For example, calling
one function tells you how big the image is; calling another
causes the image object to be displayed where you tell it, and so
on. Anyone who wants to create images for general use can
implement his own brand of IMAGEOBJ. IMAGEOBIJs have been
implemented (in library packages) for bitmaps, menus,
annotations, graphs, and sketches.

Image Objects were originally implemented to support inserting
images into TEdit text files, but the facility is available for use by
any tools that manipulate images. The Image Object interface
allows objects to exist in TEdit documents and be edited with
their own editor. It also provides a facility in which objects can
be shift-selected (or “copy-selected”) between TEdit and
non-TEdit windows. For example, the Image Objects interface
allows you to copy-select graphs from a Grapher window into a
TEdit window. The source window (where the object comes
from) does not have to know what sort of window the
destination window (where the object is inserted) is, and the
destination does not have to know where the insertion comes
from. :

A new data type, IMAGEOBIJ, contains the data and the
procedures necessary to manipulate an object that is to be
manipulated in this way. IMAGEOBIJs are created with the
function IMAGEOBJCREATE (below).

Another new data type, IMAGEFNS, is a vector of the procedures
necessary to define the behavior of a type of IMAGEOBJ.
Grouping the operations in a separate data type allows multiple
instances of the same type of image object to share procedure
vectors. The data and procedure fields of an IMAGEOBJ have a
uniform interface through the function IMAGEOBIPROP.
IMAGEFNS are created with the function IMAGEFNSCREATE:

GRAPHICS OUTPUT OPERATIONS

27.35

IMAGE OBJECTS

(IMAGEFNSCREATE DISPLAYFN IMAGEBOXFN PUTFN GETFN COPYFN BUTTONEVENTINFN
COPYBUTTONEVENTINFN WHENMOVEDFN WHENINSERTEDFN
WHENDELETEDFN WHENCOPIEDFN WHENOPERATEDONFN
PREPRINTFN —) [Function]
Returns an IMAGEFNS object that contains the functions
necessary to define the behavior of an IMAGEQBI.

The arguments DISPLAYFN through PREPRINTFN should all be
function names to be stored as the “methods" of the IMAGEFNS.
The purpose of each IMAGEFNS method is described below.

Note: Image objects must be "registered" before they can be
read by TEdit or HREAD (see page 27.39). IMAGEFNSCREATE
implicitly registers its GETFN argument.

(IMAGEOBJCREATE OBJECTDATUM IMAGEFNS) [Function]
Returns an IMAGEOBJ that contains the object datum
OBJECTDATUM and the operations vector IMAGEFNS.
OBJECTDATUM can be arbitrary data.

(IMAGEOBIPROP IMAGEOBJECT PROPERTY NEWVALUE) [NoSpread Function]
Accesses and sets the properties of an IMAGEOBIJ. Returns the
current value of the PROPERTY property of the image object
IMAGEOBJECT. If NEWVALUE is given, the property is set to it.

IMAGEOBJPROP can be used on the system properties
OBJECTDATUM, DISPLAYFN, IMAGEBOXFN, PUTFN, GETFN,
COPYFN, BUTTONEVENTINFN, COPYBUTTONEVENTINFN,
WHENOPERATEDONFN, and PREPRINTFN. Additionally, it can be
used to save arbitrary properties on an IMAGEOB]J.

(IMAGEFNSP X) (Function]
Returns Xif Xis an IMAGEFNS object, NIL otherwise.

(IMAGEOBIJP X) [Function]
Returns X if Xis an IMAGEOBJ object, NIL otherwise.

27.16.1 IMAGEFNS Methods

Note: Many of the IMAGEFNS methods below are passed "host
stream” arguments. The TEdit text editor passes the "text
stream” (an object contain all of the information in the
document being edited) as the "host stream” argument. Other
editing programs that want to use image objects may want to
pass the data structure being edited to the IMAGEFNS methods
as the "host stream"” argument.

27.36 GRAPHICS OUTPUT OPERATIONS

IMAGE OBJECTS

(DISPLAYFN IMAGEOBJ IMAGESTREAM IMAGESTREAMTYPE HOSTSTREAM) [IMAGEFNS

Method]

The DISPLAYFN method is called to display the object IMAGEOBJ
at the current position on IMAGESTREAM. The type of
IMAGESTREAM indicates whether the device is the display or
some other image stream.

Note: When the DISPLAYFN method is called, the offset and
clipping regions for the stream are set so the object's image is at
(0.0), and only that image area can be modified.

(IMAGEBOXFN IMAGEOBJ IMAGESTREAM CURRENTX RIGHTMARGIN) [IMAGEFNS Method]

The IMAGEBOXFN method should return the size of the object as
an IMAGEBOX, which is a data structure that describes the image
laid down when an IMAGEOBI is displayed in terms of width,
height, and descender height. An IMAGEBOX has four fields:
XSIZE, YSIZE, YDESC, and XKERN. XSIZE and YSIZE are the width
and height of the object image. YDESC and XKERN give the
position of the baseline and the left edge of the image relative
to where you want to position it. For characters, the YDESC is
the descent (height of the descender) and the XKERN is the
amount of left kerning (note: TEdit doesn't support left
kerning).

The IMAGEBOXFN looks at the type of the stream to determine
the output device if the object's size changes from device to
device. (For example, a bit-map object may specify a scale factor
that is ignored when the bit map is displayed on the screen.)
CURRENTX and RIGHTMARGIN allow an object to take account
of its environment when deciding how bigitis. If these fields are
not available, they are NIL.

Note: TEdit calls the IMAGEBOXFN only during line formatting,
then caches the IMAGEBOX as the BOUNDBOX property of the
IMAGEOBJ. This avoids the need to call the IMAGEBOXFN when
incomplete position and margin information is available.

(PUTFN IMAGEOBJ FILESTREAM) [IMAGEFNS Method]

(GETFN FILESTREAM)

The PUTFN method is called to save the object on a file. It prints
a description on FILESTREAM that, when read by the
corresponding GETFN method (see below), regenerates the
image object. (TEdit and HPRINT take care of writing out the
name of the GETFN.)

[IMAGEFNS Method]

The GETFN method is called when the object is encountered on
the file during input. It reads the description that was written by
the PUTFN method and returns an IMAGEQBJ.

GRAPHICS OUTPUT OPERATIONS

27.37

IMAGE OBJECTS

(COPYFN IMAGEOBJ SOURCEHOSTSTREAM TARGETHOSTSTREAM) [IMAGEFNS Method]
The COPYFN method is called during a copy-select operation. It
should return a copy of IMAGEOBJ. If it returns the litatom
DON'T, copying is suppressed.

(BUTTONEVENTINFN IMAGEOBJ WINDOWSTREAM SELECTION RELX RELY WINDOW
HOSTSTREAM BUTTON) [IMAGEFNS Method]
The BUTTONEVENTINFN method is called when you press a
mouse button inside the object. The BUTTONEVENTINFN decides
whether or not to handle the button, to track the cursor in
parallel with mouse movement, and to invoke selections or edits
supported by the object (but see the COPYBUTTONEVENTINFN
method below). If the BUTTONEVENTINFN returns NIL, TEdit
treats the button press as a selection at its level. Note that when
this function is first called, a button is down. The
BUTTONEVENTINFN should also support the button-down
protocol to descend inside of any composite objects with in it. In
most cases, the BUTTONEVENTINFN relinquishes control (i.e.,
returns) when the cursor leaves its object's region.

Note: When the BUTTONEVENTINFN is called, the window's
clipping region and offsets have been changed so that the
lower-left corner of the object's image is at (0,0), and only the
object's image can be changed. The selection is available for
changing to fit your needs; the mouse button went down at
(RELX,RELY) within the object's image. You can affect how TEdit
treats the selection by returning one of several values. If you
return NIL, TEdit forgets that you selected an object; if you
return the atom DON'T, TEdit doesn't permit the selection; if you
return the atom CHANGED, TEdit updates the screen. Use
CHANGED tosignal TEdit that the object has changed size or will
have side effects on other parts of the screen image.

(COPYBUTTONEVENTINEN IMAGEOBJ WINDOWSTREAM) [IMAGEFNS Method]
‘ The COPYBUTTONEVENTINFN method is called when you button
inside an object while holding down a copy key. Many of the
comments about BUTTONEVENTINFN apply here too. Also, see
the discussion below about copying image objects between
windows (page 27.41).

(WHENMOVEDFN IMAGEOBJ TARGETWINDOWSTREAM SOURCEHOSTSTREAM
TARGETHOSTSTREAM) [IMAGEFNS Method]
The WHENMOVEDFN method provides hooks by which the
object is notified when TEdit performs an operation (MOVEing)
on the whole object. It allows objects to have side effects.

27.38 GRAPHICS OUTPUT OPERATIONS

IMAGE OBJECTS

(WHENINSERTEDFN IMAGEOBJ TARGETWINDOWSTREAM SOURCEHOSTSTREAM
TARGETHOSTSTREAM) [IMAGEFNS Method]
The WHENINSERTEDFN method provides hooks by which the
object is notified when TEdit performs an operation (INSERTing)
on the whole object. It allows objects to have side effects.

{WHENDELETEDFN IMAGEOBJ TARGETWINDOWSTREAM) [IMAGEFNS Method]
The WHENDELETEDFN method provides hooks by which the
object is notified when TEdit performs an operation (DELETEing)
on the whole object. It allows objects to have side effects.

(WHENCOPIEDFN IMAGEOBJ TARGETWINDOWSTREAM SOURCEHOSTSTREAM
TARGETHOSTSTREAM) [IMAGEFNS Method]
The WHENCOPIEDFN method provides hooks by which the object
is notified when TEdit performs an operation (COPYing) on the
whole object. The WHENCOPIEDFN method is called in addition
to (and after) the COPYFN method above. It aliows objects to
have side effects.

(WHENOPERATEDONFN IMAGEOBJ WINDOWSTREAM HOWQOPERATEDON SELECTION
HOSTSTREAM) [IMAGEFNS Method]
The WHENOPERATEDONFN method provides a hook for edit
operations. HOWOPERATEDON should be one of SELECTED,
DESELECTED, HIGHLIGHTED, and UNHILIGHTED. The
WHENOPERATEDONFN differs from the BUTTONEVENTINFN
because it is called when you extend a selection through the
object. That is, the object is treated in toto as a TEdit character.
HIGHLIGHTED refers to the selection being highlighted on the
screen, and UNHIGHLIGHTED means that the highlighting is
being turned off.

(PREPRINTFN /IMAGEOB)) [IMAGEFNS Method]
The PREPRINTFN method is called to convert the object into
something that can be printed for inclusion in documents. It
returns an object that the receiving window can print (using
either PRIN1 or PRIN2,ts choice) to obtain a character
representation of the object. If the PREPRINTFN method is NIL,
the OBJECTDATUM field of IMAGEOBI itself is used. TEdit uses
this function when you indicate that you want to print the
characters from an object rather than the object itself
(presumably using PRIN1 case).

27.16.2 Registering Image Objects

Each legitimate GETFN needs to be known to the system, to
prevent various Trojan-horse problems and to allow the

GRAPHICS OUTPUT OPERATIONS 27.39

IMAGE OBJECTS

automatic loading of the supporting code for infrequently used
IMAGEOBIJs. To this end, there is a global list, IMAGEOBJGETFNS,
that contains an entry for each GETFN. The existence of the entry
marks the GETFN as legitimate; the entry itself is a property list,
which can hold information about the GETFN.

No action needs to be taken for GETFNs that are currently in use:
the function IMAGEFNSCREATE automatically adds its GETFN
argument to the list. However, packages that support obsolete
versions of objects may need to explicitly add the obsolete
GETFNs. For example, TEdit supports bit-map IMAGEOBIJs.
Recently, a change was made in the format in which objects are
stored; to retain compatibility with the old object format, there
are now two GETFNs. The current GETFN is automatically on the
list, courtesy of IMAGEFNSCREATE. However, the code file that
supports the old bit-map objects contains the clause: (ADDVARS
(IMAGEOBIGETFNS (OLDGETFNNAME))), which adds the old
GETFN to IMAGEOBJGETFNS.

For a given GETFN, the entry on IMAGEOBIJGETFNS may be a
property list of information. Currently the only recognized
propertyis FILE.

FILE is the name of the file that can be loaded if the GETFN isn't
defined. This file should define the GETFN, along with all the
other functions needed to support that kind of IMAGEQOB).

For example, the bit-map IMAGEOBJ implemented by TEdit use
the GETFN BMOBIJL.GETFN2. Its entry on IMAGEOBIGETFNS is
(BMOBJ.GETFN2 FILE IMAGEOBI), indicating that the support
code for bit-map image objects resides on the file IMAGEOSJ,
and that the GETFN for them is BMOBJ.GETFN2.

This makes it possible to have entries for GETFNs whose
supporting code isn't loaded—you might, for instance, have your
init file add entries to IMAGEOBJGETFNS for the kinds of image
objects you commonly use. The system's default reading method
will automatically load the code when necessary.

27.16.3 Reading and Wriiing Image Objects on Files

Image Objects can be written out to files using HPRINT and read
back using HREAD. The following functions can also be used:

(WRITEIMAGEOBJ IMAGEOBJ STREAM) [Function]

Prints (using PRIN2) a call to READIMAGEOBIJ, then calls the
PUTFN for IMAGEOBJ to write it onto STREAM. During input,
then, the call to READIMAGEOBI is read and evaluated: itin turn
reads back the object's description, using the appropriate GETFN.

27.40

GRAPHICS OUTPUT OPERATIONS

IMAGE OBJECTS

(READIMAGEOBJ STREAM GETFN NOERROR) [Function]

Reads an IMAGEOBJ from STREAM, starting at the current file
position. Uses the function GETFN after validating it (and
loading support code, if necessary).

If the GETFN can't be validated or isn't defined, READIMAGEOB)J
returns an "encapsulated image object”, an IMAGEOBIJ that
safely encapsulates all of the information in the image object.
An encapsulated image object displays as a rectangle that says,
"Unknown IMAGEOBJ Type" and lists the GETFN's name.
Selecting an encapsulated image object with the mouse causes
another attempt to read the object from the file; this is so you
can load any necessary support code and then get to the object.

Warning: You cannot save an encapsulated image object on a
file because there isn't enough information to allow copying the
description to the new file from the old one.

If NOERROR is non-NIL, READIMAGEOBJ returns NIL if it can't
successfully read the object.

27.16.4 Copying Image Objects Between Windows

COPYBUTTONEVENTFN

Copying between windows is implemented as follows: If a
button event occurs in a window when a copy key is down, the
window's COPYBUTTONEVENTFN window property is called. If
this window supports copy-selection, it should track the mouse,
indicating the item to be copied. When the button is released,
the COPYBUTTONEVENTFN should create an image object out of
the selected information, and call COPYINSERT to insertitin the
current TTY window. COPYINSERT calls the COPYINSERTFN
window property of the TTY window to insert this image object.
Therefore, both the source and destination windows can
determine how they handle copying image objects.

If the COPYBUTTONEVENTFN of a window is NIL, the
BUTTONEVENTFN is called instead when a button event occurs in
the window when a copy key is down, and copying from that
window is not supported. If the COPYINSERTFN of the TTY
window is NIL, COPYINSERT will turn the image object into a
string (by calling the PREPRINTFN method of the image object,
see page 27.39) and insert it by calling BKSYSBUF (page 30.11).

[Window Property]

The COPYBUTTONEVENTFN of a window is called (if it exists)
when a button event occurs in the window and a copy key is
down. If no COPYBUTTONEVENTFN exists, the BUTTONEVENTFN
is called.

GRAPHICS OUTPUT OPERATIONS

27 41

IMAGE OBJECTS

COPYINSERTFN

[Window Property]

(COPYINSERT /IMAGEOB)J)

The COPYINSERTFN of the "destination” window is called by
COPYINSERT to insert something into the destination window. It
is called with two arguments: the object to be inserted and the
destination window. The object to be inserted can be a
character string, an IMAGEOB8J, or a list of IMAGEOBJs and
character strings. As a convention, the COPYINSERTFN should
call BKSYSBUF (page 30.11) if the object to be inserted insert is a
characterstring.

[Function]

COPYINSERT inserts IMAGEOBJ into the window that currently
has the TTY. If the current TTY window has a COPYINSERTFN, it
is called, passing it IMAGEOB/J and the window as arguments.

If no COPYINSERTFN exists and if IMAGEOB/ is an image object,
BKSYSBUF is called on'the result of calling its PREPRINTFN on it.
If IMAGEOBJ is not an image object, it is simply passed to
BKSYSBUF (page 30.11). In this case, BKSYSBUF will call PRIN2
with a read table taken from the process associated with the TTY
window. A window that wishes to use PRIN1 or a different read
table must provide its own COPYINSERTFN to do this.

27.17 Implementation of Image Streams

IMAGESTREAMTYPES

Interlisp does all image creation through a set of functions and
data structures for device-independent graphics, known
popularly as DIG. DIG is implemented through the use of a
special type of stream, known as animage stream.

An image stream, by convention, is any stream that has its
IMAGEOPS field (described in detail below) set to a vector of
meaningful graphical operations. Using image streams, you can
write programs that draw and print on an output stream
without regard to the underlying device, be it a window, a disk,
or aprinter.

To define a new image stream type, it is necessary to put
information on the variable IMAGESTREAMTYPES:

[Variable]

This variable describes how to create a stream for a given image
stream type. The value of IMAGESTREAMTYPES is an association
list, indexed by the image stream type (e.g., DISPLAY,
INTERPRESS, etc.). The format of a single association listitem is:

(IMAGETYPE
(OPENSTREAM OPENSTREAMFN)

27.42

GRAPHICS OUTPUT OPERATIONS

IMPLEMENTATION OF IMAGE STREAMS

(FONTCREATE FONTCREATEFN)
(FONTSAVAILABLE FONTSAVAILABLEFN))

OPENSTREAMFN, FONTCREATEFN, and FONTSAVAILABLEFN are
“image stream methods,” device-dependent functions used to
implement generic image stream operations. For Interpress
image streams, the association list entry is:

(INTERPRESS
(OPENSTREAM OPENIPSTREAM)
(FONTCREATE \CREATEINTERPRESSFONT)
(FONTSAVAILABLE\SEARCHINTERPRESSFONTS))

(OPENSTREAMFN FILE OPTIONS) [Image Stream Method]

FILE is the file name as it was passed to OPENIMAGESTREAM, and
OPTIONS is the OPTIONS property list passed to
OPENIMAGESTREAM. The result must be a stream of the
appropriate image type.

(FONTCREATEFN FAMILY SIZE FACE ROTATION DEVICE) [lmage Stream Method]

FAMILY is the family name for the font, e.g.,, MODERN. SIZE is
the body size of the font, in printer's points. FACE is a
three-element list describing the weight, slope, and expansion of
the face desired, e.g., (MEDIUM ITALIC EXPANDED). ROTATION
is how much the font is to be rotated from the normal
orientation, in minutes of arc. For example, to print a landscape
page, fonts have the rotation 5400 (90 degrees). The function's
result must be a FONTDESCRIPTOR with the fields filled in
appropriately.

(FONTSAVAILABLEFN FAMILY SIZE FACE ROTATION DEVICE) [Image Stream Method]

This function returns a list of all fonts agreeing with the FAMILY,
SIZE, FACE, and ROTATION arguments; any of them may be
wild-carded (i.e.,, equal to *, which means any value is
acceptable). Each element of the list should be a quintuple of
the form (FAMILY SIZE FACE ROTATION DEVICE).

Where the function looks is an implementation decision: the
FONTSAVAILABLEFN for the display device looks at
DISPLAYFONTDIRECTORIES, the Interpress code looks on
INTERPRESSFONTDIRECTORIES, and implementors of new
devices should feel free to introduce new search path variables.

As indicated above, image streams use a field that no other
stream uses: IMAGEOPS. IMAGEOPS is an instance of the
IMAGEOPS data type and contains a vector of the stream's
graphical methods. The methods contained in the IMAGEOPS
object can make arbitrary use of the stream's IMAGEDATA field,

GRAPHICS OUTPUT OPERATIONS

27.43

IMPLEMENTATION OF IMAGE STREAMS

IMAGETYPE

which is provided for their use, and may contain any data
needed.

The IMAGEOPS data type has the following fields:

[[MAGEOPS Field]

IMFONTCREATE

Value is the name of an image type. Monochrome display
streams have an IMAGETYPE of DISPLAY; color display streams
are identified as (COLOR DISPLAY). The IMAGETYPE field is
informational and can be set to anything you choose.

[IMAGEQPS Field]

(IMCLOSEFN STREAM)

Value is the device name to pass to FONTCREATE when fonts are
created for the stream.

The remaining fields are all image stream methods, whose value
should be a device-dependent function that implements the
generic operation. Most methods are called by a
similarly-named function, e.g. the function DRAWLINE calls the
IMDRAWLINE method. All coordinates that refer to points in a
display device's space are measured in the device's units. (The
IMSCALE method provides access to a device's scale.) For
arguments that have defaults (such as the BRUSH argument of
DRAWCURVE), the defauit is substituted for the NIL argument
before it is passed to the image stream method. Therefore,
image stream methods do not have to handle defaults.

[Image Stream Method]

Called before a stream is closed with CLOSEF. This method
should flush buffers, write header or trailer information, etc.

(IMDRAWLINE STREAM X1 Y1 X, Y WIDTH OPERATION COLOR DASHING) [Image Stream

Method]

Draws a line of width WIDTH from (X4, Y1) to (X, Y3). See
DRAWLINE, page 27.17.

(IMDRAWCURVE STREAM KNOTS CLOSED BRUSH DASHING) [Image Stream Method]

Draws a curve through KNOTS. See DRAWCURVE, page 27.19.

(IMDRAWCIRCLE STREAM CENTERX CENTERY RADIUS BRUSH DASHING) [Image Stream

Method]

Draws a circle of radius RADIUS around (CENTERX, CENTERY).
See DRAWCIRCLE, page 27.19.

27.44

GRAPHICS OUTPUT OPERATIONS

IMPLEMENTATION OF IMAGE STREAMS

(IMDRAWELLIPSE STREAM CENTERX CENTERY SEMIMINORRADIUS SEMIMAJORRADIUS
ORIENTATION BRUSH DASHING) [Image Stream Method]
Draws an ellipse around (CENTERX, CENTERY). See
DRAWELLIPSE, page 27.19.

(IMFILLPOLYGON STREAM POINTS TEXTURE) {Image Stream Method]
Fills in the polygon outlined by POINTS on the image stream
STREAM, using the texture TEXTURE. See FILLPOLYGON, page
27.20.

(IMFILLCIRCLE STREAM CENTERX CENTERY RADIUS TEXTURE) [Image Stream Method]
Draws a circle filled with texture TEXTURE around (CENTERX,
CENTERY). See FILLCIRCLE, page 27.21.

(IMBLTSHADE TEXTURE STREAM DESTINATIONLEFT DESTINATIONBOTTOM WIDTH HEIGHT
OPERATION CLIPPINGREGION) [Image Stream Method]
The texture-source case of BITBLT (page 27.14).
DESTINATIONLEFT, DESTINATIONBOTTOM, WIDTH, HEIGHT, and
CLIPPINGREGION are measured in STREAM's units. This method
isinvoked by the functions BITBLT and BLTSHADE (page 27.16).

(IMBITBLT SOURCEBITMAP SOURCELEFT SOURCEBOTTOM STREAM DESTINATIONLEFT

DESTINATIONBOTTOM WIDTH HEIGHT SOURCETYPE
OPERATION TEXTURE CLIPPINGREGION CLIPPEDSOURCELEFT

CLIPPEDSOURCEBOTTOM SCALE) [lmage Stream Method]
Contains the bit-map-source cases of BITBLT (page 27.14).
SOURCELEFT, SOURCEBOTTOM, CLIPPEDSQURCELEFT,

CLIPPEDSOURCEBOTTOM, WIDTH, and HEIGHT are measured in
pixels; DESTINATIONLEFT, DESTINATIONBOTTOM, and
CLIPPINGREGION are in the units of the destination stream.

(IMSCALEDBITBLT SOURCEBITMAP SOURCELEFT SOURCEBOTTOM STREAM

DESTINATIONLEFT DESTINATIONBOTTOM WIDTH HEIGHT
SOURCETYPE OPERATION TEXTURE CLIPPINGREGION
CLIPPEDSOURCELEFT CLIPPEDSOURCEBOTTOM SCALE) [Image

Stream Method]

A scaled version of IMBITBLT. Each pixel in SOURCEBITMAP is
replicated SCALE times in the X and Y directions; currently,
SCALE must be aninteger.

(IMMOVETO STREAM X Y) {Image Stream Method]
Moves to (X,Y). This method is invoked by the function MOVETO
(page 27.13). If IMMOVETO is not supplied, a default method
composed of calls to the IMXPOSITION and IMYPOSITION
methods is used.

GRAPHICS OUTPUT OPERATIONS 27.45

IMPLEMENTATION OF IMAGE STREAMS

(IMSTRINGWIDTH STREAM STR RDTBL) [Image Stream Method]

Returns the width of string STR in STREAM's units, using
STREAM's current font. This is envoked when STRINGWIDTH
(page 27.30) is passed a stream as its FONT argument. If
IMSTRINGWIDTH is not supplied, it defaults to calling
STRINGWIDTH on the default font of STREAM.

(IMCHARWIDTH STREAM CHARCODE) [Image Stream Method]

Returns the width of character CHARCODE in STREAM's units,
using STREAM's current font. This is invoked when CHARWIDTH
(page 27.30) is passed a stream as its FONT argument. |If
IMCHARWIDTH is not supplied, it defaults to calling CHARWIDTH
on the default font of STREAM.

(IMCHARWIDTHY STREAM CHARCOODE) [Image Stream Method]

Returns the Y componant of the width of character CHARCODE
in STREAM's units, using STREAM's current font. This is envoked
when CHARWIDTHY (page 27.30) is passed a stream as its FONT
argument. If IMCHARWIDTHY is not supplied, it defaults to
calling CHARWIDTHY on the default font of STREAM.

(IMBITMAPSIZE STREAM BITMAP DIMENSION) [Image Stream Method]

(IMNEWPAGE STREAM)

Returns the size that BITMAP will he when BITBLTed to STREAM,
in STREAM's units. DIMENSION can be one of WIDTH, HEIGHT, or
NIL, in which case the dotted pair (WIDTH . HEIGHT)} will be
returned.

This is envoked by BITMAPIMAGESIZE (page 27.16). If
IMBITMAPSIZE is not supplied, it defaults to a method that
multiplies the bitmap height and width by the scale of STREAM.

[Image Stream Method]

(IMTERPRI STREAM)

Causes a new page to be started. The X position is set to the left
margin, and the Y position is set to the top margin plus the
linefeed. If not supplied, defaults to (\OUTCHAR STREAM
(CHARCODE 1 L)). Envoked by DSPNEWPAGE (page 27.21).

[lmage Stream Method)]

(IMRESET STREAM)

Causes a new line to be started. The X position is set to the left
margin, and the Y position is set to the current Y position plus
the linefeed. If not supplied, defaults to \OUTCHAR STREAM
(CHARCODE EOL)). Envoked by TERPRI (page 25.9).

[Image Stream Method]

Resets the X and Y position of STREAM. The X coordinate is set
to its left margin; the Y coordinate is set to the top of the

27.46

GRAPHICS OUTPUT OPERATIONS

IMPLEMENTATION OF IMAGE STREAMS

clipping region minus the font ascent. Envoked by DSPRESET,
page 27.21.

The following methods all have corresponding DSPxx functions
(e.g., IMYPOSITION corresponds to DSPYPOSITION) that invoke
them. They also have the property of returning their previous
value; when called with NIL they return the old value without
changingiit.

(IMCLIPPINGREGION STREAM REGION) [Image Stream Method]
Sets a new clipping region on STREAM.

(IMXPOSITION STREAM XPOSITION) [Image Stream Method]
Sets the X-position on STREAM.

(IMYPOSITION STREAM YPOSITION) [Image Stream Method]
Sets a new Y-position on STREAM.

(IMFONT STREAM FONT) [Image Stream Method]
Sets STREAM's font to be FONT.

(IMLEFTMARGIN STREAM LEFTMARGIN) [Image Stream Method]
Sets STREAM's left margin to be LEFTMARGIN. The left margin is
defined as the X-position set after the new line.

(IMRIGHTMARGIN STREAM RIGHTMARGIN) [Image Stream Method]
Sets STREAM's right margin to be RIGHTMARGIN. The right
margin is defined as the maximum X-position at which characters
are printed; printing beyond it causes a new line.

(IMTOPMARGIN STREAM YPOSITION) [Image Stream Method]
Sets STREAM's top margin (the Y-position of the tops of
characters that is set after a new page) to be YPOSITION.

(IMBOﬂbMMARGIN STREAM YPOSITION) [Image Stream Method]
Sets STREAM's bottom margin (the Y-position beyond which any
printing causes a new page) to be YPOSITION.

(IMLINEFEED STREAM DELTA) [Image Stream Method]

Sets STREAM's line feed distance (distance to move vertically
after a new line) to be DELTA.

GRAPHICS OUTPUT OPERATIONS 27.47

IMPLEMENTATION OF IMAGE STREAMS

{IMSCALE STREAM SCALE) [Image Stream Method]
Returns the number of device points per screen point {a screen
point being "1/72inch). SCALE isignored.

(IMSPACEFACTOR STREAM FACTOR) [Image Stream Method]
Sets the amount by which to multiply the natural width of all
following space characters on STREAM; this can be used for the
justification of text. The default value is 1. For example, if the
natural width of a space in STREAM's current font is 12 units, and
the space factor is set to two, spaces appear 24 units wide. The
values returned by STRINGWIDTH and CHARWIDTH are also
affected.

(IMOPERATION STREAM OPERATION) [Image Stream Method]
Sets the default BITBLT OPERATION argument (see page 27.15).

(IMBACKCOLOR STREAM COLOR) [Image Stream Method]
Sets the background color of STREAM.

(IMCOLOR STREAM COLOR) [Image Stream Method]
Sets the default color of STREAM.

In addition to the IMAGEOPS methods described above, there
are two other important methods, which are contained in the
stream itself. These fields can be installed using a form like
(replace (STREAM OUTCHARFN) of STREAM with (FUNCTION
MYOUTCHARFN)). Note: You need to have loaded the
interlisp-D system declarations to manipulate the fields of
STREAMs. The declarations can be loaded by loading the Lisp
Library package SYSEDIT.

(STRMBOUTFN STREAM CHARCODE) [Stream Method]
The function called by BOUT.

(OUTCHARFN STREAM CHARCODE) [Stream Method]
The function that is called to output a single byte. This is like
STRMBOUTFN, except for being one level higher: it is intended
for text output. Hence, this function should convert (CHARCODE
EOL) into the stream’s actual end-of-line sequence and should
adjust the stream's CHARPOSITION appropriately before
invoking the stream's STRMBOUTFN (by calling BOUT) to actually
put the character. Defaults to \FILEOUTCHARFN, which is
probably incorrect for animage stream.

27.48 GRAPHICS OUTPUT OPERATIONS

TABLE OF CONTENTS

28. Windows and Menus 28.1
28.1. Using The Window System 28.2
28.2. Changing Window Command Menus 28.7
28.3. Interactive Display Functions 289
28.4. Windows 28.12

28.4.1. Window Properties 28.13
28.4.2. Creating Windows 28.13
28.4.3. Opening and Closing Windows 28. 15
28.4.4. Redisplaying Windows 28.16
28.4.5. Reshaping Windows 28.16
28.4.6. Moving Windows 28.19
28.4.7. Exposing and Burying Windows 28.20
28.4.8. Shrinking Windows Into Icons 28.21
28.4.9. Coordinate Systems, Extents, And Scrolling 28.23
28.4.10. Mouse Activity in Windows 28.27
28.4.11. Terminal I/0O and Page Holding 28.29
28.4.12. The TTY Process and the Caret 28.30
28.4.13. Miscellaneous Window Functions 28.31
28.4.14. Miscellaneous Window Properties 28.33
28.4.15. Example: A Scrollable Window 28.34
28.5. Menus 28.37
28.5.1. Menu Fields 28.38
28.5.2. Miscellaneous Menu Functions 28.42
28.5.3. Examples of Menu Use 28.43
28.6. Attached Windows 28.45
28.6.1. Attaching Menus To Windows 28.48
28.6.2. Attached PromptWindows 28.50

28.6.3. Window Operations And Attached Windows 28.50

28.6.4. Window Properties Of Attached Windows 28.53

TABLEOFCONTENTS ') TOC.1

TABLE OF CONTENTS

[This page intentionally left blank]

TOC 2 TABLE OF CONTENTS

(WINDOWWORLD FLAG)

28. WINDOWS AND MENUS

Windows provide a means by which different programs can
share a single display harmoniously. Rather than having every
program directly manipulating the screen bitmap, all display
input/output operations are directed towards windows, which
appear as rectangular regions of the screen, with borders and
titles. The Interlisp-D window system provides both interactive
and programmatic constructs for creating, moving, reshaping,
overlapping, and destroying windows in such a way that a
program can use a window in a relatively transparent fashion
(see page 28.12). This allows existing Interlisp programs to be
used without change, while providing a base for
experimentation with more complex windows in new
applications.

Menus are a special type of window provided by the window
system, used for displaying a set of items to the user, and having
the user select one using the mouse and cursor. The window
system uses menus to provide the interactive interface for
manipulating windows. The menu facility also allows users to
create and use menus in interactive programs (see page 28.37).

Sometimes, a program needs to use a number of windows,
displaying related information. The attached window facility
(page 28.45) makes it easy to manipulate a group of windows as
asingle unit, moving and reshaping them together.

This chapter documents the Interlisp-D window system. First, it
describes the default windows and menus supplied by the
window system. Then, the programmatic facilities for creating
windows. Next, the functions for using menus. Finally, the
attached window facility.

Warning: The window system assumes that all programs follow
certain conventions concerning control of the screen. All user
programs should<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>