Artificial Intelligence
Systems

Xerox LOOPS, A Friendly Primer

Document Number 3102242

- Loops:
XEROX A Friendly Prinmier

March, 1987

Copyright (c) 1986 Xerox Corporation
All rights reserved.

This publication may not be reproduced or transmitted in any
form by any means, electronic, microfilm, xerography, or
otherwise, or incorporated into any information retrieval system,
without the written permission of Xerox Corporation.

PREFACE
I

You are a tourist in a strange city. You would like to see the
sights but you don't know where they are. You don't even know
what they are. Whatdo you do? You could look at a street map
but it would have too much detail. You could pick a direction
ard go, hoping to run into something interesting. You could ask
peopie on the street. What you probably would do though is
buy a guide book. In it you would find just the kind of
information you need to start learning about an unfamiliar city:
simplified maps, descriptions of sections of the city, lists of tourist
attractions, and so on.

Learning a new programming language is not unlike being lost
in a strange city. Language manuals, including the LOOPS
Reference Manual, are not meant to be used by beginners; they
are intended for programmers already familiar with the
language. Therefore, the information in reference manuals is
not organized in a way that makes a programming language
easy tolearn.

This primer is the equivalent of a tourist's guide book. It shows
you the “sights” but it leaves out a lot of detail. Once you are
comfortable with the basic LOOPS programming concepts and
procedures described here, you can use the LOOPS Reference
Manual as it was intended and fully expioit the capabilities of
LOOPS.

This primer was written with the beginner's viewpoint in mind.
it addresses strategic considerations, introduces basic procedures
and methods, and provides numerous examples and pictures.
The material in each chapter is presented with step-by-step
instructions.

While this primer does not assume you have any previous
programming experience in LOOPS, it does assume you have a
Xerox 1108/9 or a Xerox 1186 Al Workstation which is running
the Cantilever version of LOOPS, and that you have experience
with interlisp-D and its programming environment. If you are
not familiar with Interlisp-D, its recommended that you start by
working your way through Interlisp-D: A Friendly Primer. In
particular, you should know how to use DEdit and how to
interact with menus. If you have specific questions about
Interlisp-D, look in the Interlisp-D Reference Manual.

Before you sit down at the computer with this primer, glance
over the Table of Contents, read the first two chapters, and read
the introductory statements at the top of the first page in each
cf the other chapters. Doing this familiarizes you with the task
thatlies ahead. Then, as you read this primer, actually enter the
examples in each chapter. The chapters in the primer are meant
to be worked through in order.

PREFACE

PREFACE

Chapters 1 and 2 provide an introduction to LOOPS. Chapter 1
introduces the concept of object-oriented programming in
LOOPS. Chapter 2 is a glossary which provides an initial overview
of LOOPS concepts. The glossary is also a useful reference. '

Chapters 3,4 and S introduce the basic information necessary for
programming in LOOPS. Chapter 3 shows how to create the
objects that form the basis of LOOPS programs. Chapter 4 shows
how to make those objects interact with each other. Chapter 5
shows how to save LOOPS programs on files.

In Chapter 6, a LOOPS program is developed step-by-step using
the concepts covered in previous chapters. After working
through this example, you will be able to develop simple LOOPS
programs.

Chapter 7 introduces some fundamental design strategies for
organizing LOOPS programs.

The remaining chapters present more advanced topics. The
material in these chapters enables you exploit the real power of
the LOOPS language. Chapter 8 shows how to use specialization
to add functionality to objects. Chapters 9 and 10 introduce
other useful LOOPS tools -- active values and gauges. Chapter 11
covers more sophisticated uses of specialization to create LOOPS
objects.

Chapter 12 demonstrates how to customize browsers. Browsers
are graphical editing tools provided by LOOPS, and available for
customization in your own programs. The example in this
chapter also demonstrates further programming technigues.

Chapter 13 shows how to use Masterscope with LOOPS
programs. Masterscope is an Interlisp-D utility for analyzing
programs.

Acknowledgments

The early inspiration and model for this primer came from the
Intelligent Tutoring Systems Group of the Learning Research and
Development Center (LRDC) at the University of Pittsburgh.

Lyn Ann Mears and Ted Rees of Computer Possibilities were the
primary authors of this primer.

Many people from the Xerox Corporation deserve mention. The
Knowledge Systems Area at the Xerox Palo Alto Research Center
has been the driving force behind the development and
productization of Loops since its inception. Special thanks goes
to that group in general, and Danny Bobrow, Mark Stefik, Sanjay
Mittal, and Stan Lanning in particular. At the Xerox Artificial
Inteiligence Systems, John Vittal was responsible for the primer
projsct. Pablo Ghenis, Jairus Hihn and Joshua Stern were the
pcrimary reviewers. Rick Martin provided the technical interface
to the authors.

41

PREsaCE

TABLE OF CONTENTS
.

1. Introduction - What is LOOPS? 1.1
2. A Glossary of Terms 2.1
3. Classes and Instances 31
3.1, Creatingallass 3.1

3.2. Editing a Class 32

3.2.1. Using the Browser Editing Menu 33

3.2.2. Documenting the Class 3.4

3.2.3. Inserting Class Variables, Values, and Properties 34

3.2.4. Inserting Instance Variables, Values, and Properties 34

3.2.5. Using the Browser Information Menu 35
3.3. Creating Subclasses 36
3.4. Creating Instances . 38
3.4.1. inspecting aninstance 39

3.4.2. Changinginstance Variable Values With the Instance
Inspector 39
3.5. Altering the Structure or the Class Lattice 3.10
3.5.1. Movinga Class 3.10
3.5.2. Deleting and Restoring a Class from a Browser 3.1
3.5.3. Destroying a Class 3.12
3.6. Destroying and Shrinking Browsers 3.12
3.7. AWord about Notation 3.13
4. Variables, Methods, and Messages 41
4.1. Variables 4.1
4.1.1. Reading Instance Variables 41
4.1.2. Setting Instance Variables 4.1
4.1.3. Reading Class Variables 42
4.1.4. Setting Class Variables 4.2
4.1.5. A Note of Caution 43
4.2. Methods 43
4.2.1. Creating a Method 43
4.2.2. Moving a Method 44

TABLE OF CONTENTS TOC 1

TABLE OF CONTENTS

4.3. Messages 4.5

4.3.1. Syntax of a Message 4.6

4.3.2. Sending a Message 4.6

5. Saving LOOPS Programs 5.1
5.1. Using FILES? and MAKEFILE 5.1

5.2. Using the FileBrowser 5.2

6. The Bank Account Example 6.1
6.1. Designing the Program 6.1

6.2. Creatingthe Classes 6.2

6.3. Editing GenericAccount 6.3

6.3.1. Adding Variables, Values, and Documentation 6.3

6.3.2. Defining Credit and Debit Methods 6.4

6.3.3. A Simple Test of GenericAccount 6.5

6.4. Editing Savings 6.6

6.4.1. Adding Variables, Values, and Documentation 6.6

6.4.2. Defining a Computelnterest Method 6.7

6.4.3. Simple Test of Savings 6.8

6.5. Defining Checking 6.8

6.5.1. Add Variables, Values, and Documentation 6.8

6.5.2. Defining a WriteCheck Method 6.9

6.5.3. Simple test of Checking 6.9

6.6. Testing NOWAccount - 6.10

7. Strategies For Organizing Objects 7.1
7.1. Elision Through Inheritance 7.1

7.2. Incremental Customization 7.2

7.3. Factoring Functionality 7.3

8. Specializing Methods 8.1
8.1. «Super and «Superfringe 8.1

8.2. Specializing a Method in the Bank Account 83

9. Active Values and Access-Oriented Programming 9.1
9.1. Defining Active Values 9.1

9.2. Using Active Values to Monitor State 9.2

9.3. Using Active Values to Guard Variables 9.4

9.4. Using Active Values to Propagate Values 9.6

9.5. Nesting Active Values 99

TOC?2 TABIEOF CONTENTS

TABLE OF CONTENTS

9.6. A Final Note On Active Values 9.10

10. Gauges: Active Vaiues and Object Hierarchies in Action 10.1
10.1. Object Hierarchies 10.2

10.2. Examples of Gauges 107.2

10.3. Create Gauge Instances 10.4

10.4. Attaching Gauges 10.5

10.4.1. VerticalScale 10.6

10.4.2. Dial 10.6

10.4.3. DigiScale and DigiMeter 10.7

10.4.4. BarChart and HBarChart 10.8

10.5. Detaching Gauges 10.9

11. Mixins - Inheritance with Multiple Supers 1.1
11.1. Multiple Inheritance 1.1

11.2. An Existing Gauge Mixin 1.3

11.3. A New Gauge Mixin 1.6

11.4. A Mixin for the Bank Account Example 1.7

12. Customizing LOOPS Tools 12.1
12.1. Existing Browsers 12.1

12.2. Creating a Browser Subclass 12.2

12.3. Creating a Savings Subclass 12.3

12.4. Creating an AccountUse Class 12.4

12.5. Setting Up the Budget Tree i2.4

12.6. Creating a Browser Instance 12.5

12.7. Using Your Lattice 12.5

13. Using Masterscope With LOOPS 13.1
13.1. Masterscope Verbs for use with LOOPS 13.1

13.2. An Example of using Masterscope 13.1

14. Some Closing Words 14.1

TABLE OF CONTENTS

Procedure-oriented Programming

Object-oriented Programming

Access-oriented Programming

1. INTRODUCTION - WHAT IS
LOOPS?

Artificial intelligence (Al) programs must accomplish a widely
varying set of tasks. For this reason, LOOPS integrates several
programming styles, or paradigms, so that each part of a
program can be written in a way that is best suited to the
particular task itis supposed to accomplish.

The problem that an Al program is supposed to solve is often
poorly understood at the start of a project. The very act of
attempting to write the program leads to greater understanding
and, most likely, to a redesign of the program. LOOPS facilitates
this kind of exploratory programming by making it easy to
construct and modify program elements and alter the way they
interact. '

The basic programming styles that LOOPS provides are described
below:

This is the style that most widely known languages provide (eg.,
FORTRAN, Pascal). A procedure-oriented program consists of a
set of procedures (functions, subroutines, main blocks, etc.).
These procedures act upon a set of data which is (at least
conceptually) separate from them. Interlisp-D is a procedural
ianguage and LOOPS is fully integrated into Interlisp-D. Any part
of a program that can most profitably be written in a procedural
style can be written in pure Lisp. No special steps need to be
taken to access or to interface with Interlisp-D.

in this form of programming, there is an integration between
functions and data. Each program element, each object, is a
package containing some some functions, which are cailed
methods, and some data, which are the values of its variables. In
effect, each object is a specialized processor with its own private
memory. The action in an object-oriented program is initiated
by message passing. Objects send messages to other objects.
Each message causes the receiving object to invoke the
appropriate method to perform some operation, which often
includes sending messages to other objects. Any programming
problem whose solution can be viewed as a collection of similar
objects that function by passing commands and results to each
other is a good candidate for object-oriented programming.

In this paradigm, arbitrary actions are performed whenever a
value is accessed. Access-oriented programming is very useful
when certain values must be monitored or protected in some
way. In asimulation, for example, the variation of the values of
rartain variabies over time i$ the ouiput of the program. These
simulation variables tend to be accessed from many different
piaces in a program making it difficult to ensure that changes are

INTRODICTION - WHAT 'S LOOPS?

INTRODUCTION - WHAT IS LOOPS?

inheritance

noticed, or even appropriate. In access-oriented programming
the value cannot be accessed without triggering an action
because the trigger, which is called an active value, eﬁ‘ectwe ly
surrounds the value.

Inheritance is an integral part of object-oriented programming.
Inheritance simplifies the construction and modification of
LOOPS programs. It is not necessary to construct each LOOPS
object from scratch. A new object can be constructed by using an
existing object as an example. Only those par s of the new object
that are different from the existing object need to be specified.
Whatever is the same can be inherited.

An example of inheritance is shown in Figure 1.1. The overall
network of inheritance is called the class lattice. Classes are
objects that describe collections of things. The solid boxes in the
figure are classes. Particular members of a class are called
instances, and they are created by using a class as a template.
The dashed-line boxes in the figure are instances.

Object
Mineral Animal Vegetable
,:ia -
AardvarkI
Person
o -
Man Woman
Ve \\
o= e
, Billy , , Jeff !
N R TR 4

Figure 1.1. Figure llustrating LOOPS inheritance

The classes from which a class inherits are referred to as its supers
(short for super classes). OBJECT is the most generic object and
does not have any supers. Continuing with Figure 1.1, 0BJECT is
a super of MINERAL, ANIMAL and VEGETABLE; ANIMAL is a
super of PERSON; and PERSON is a super of MAN and WOMAN.
Every class automatically contains (inherits) all of the variables
and methods of its supers, uniess the new class is created with
variables or methods with the same name as its supers. In that
case, the local variables and methods override the ones that
would have been inherited.

The notion of inheritance makes it very natural to think of an
object’s supers as being above it and this is the way Figure 1.1 is

INTRODUCTION - WHAT IS LOOPS?

drawn. However, as you will see, the LOOPS interface draws the
class lattice horizontally with inheritance from left to right.

The classes below a class in the lattice are called its subc/asses or
specializations. In Figure 1.1, MINERAL, ANIMAL, and
VEGETABLE are specializations of OBJECT; PERSON is a
specialization of ANIMAL; and MAN and WOMAN are
specializations of PERSON.

An instance of a class represents one specific thing. Instances are
the objects that actually perform the work in a LOOPS program.
All instances of a class have the same methods and variables as
defined by their class. In Figure 1.1, AARDVARK is an instance of
the class ANIMAL and BILLY and JEFF are instances of the class
MAN.

Using an object-oriented language often feels unfamiliar at first.
With a little experience, however, it becomes natural to think
about problems in terms of communicating objects with shared
behavior. Once you have mastered LOOPS, you will have at your
disposal a versatile collection of modern programming tools, and
you will be ready to attack complex and difficult problems.

'NTRODUCTION - WHAT IS LOOPS?

access-oriented programming

active value

background menu

browser

browser editing menu

2. A GLOSSARY OF TERMS
= S

This Glossary covers basic programming elements and concepts
that you will encounter in LOOPS. Examples for the terms are
givenin Figure 1.1, Page 1.2, and Figure 2.5.

Just skim this glossary when you first read through the primer.
As you encounter new terminology in the chapters to faliow, you
wiii find this a handy reference section.

Because LOOPS concepts are interrelated, sometimes a concept is
used before it has been well explained and iilustrated. This
glossary should help you get over the rough spots.

A programming paradigm in which fetching or storing data
activates computations.

The mechanism that implements access-oriented programming
for variables in LOOPS. Active values can be thought of as probes
placed on the variables of a LOOPS program. These probes can
activate additional computations when data are fetched or
stored.

The menu that is dispiayed when you click the right button and
hold it while the mouse cursor is in the gray background area of
the screen. A standard background menu is shown below.

[cdle b2
Sawer M
Srhap
Hardocopy ¥
p :3 .l_l'l.l‘
TEdit #
TEXEC

Figure 2.1. Example background menu

A display that allows the user to examine, manipulate, and shift
attention in a data structure. LOOPS provides browsers for the
class lattice and for instances. An example of cne of the
browsers for the class lattice, a ClassBrowser, is shown in Figure
2.5

A menu accessed by pressing the middle mouse button on a class
in a LOOPS class browser. The items in this menu aliow you to
create and edit classes and methods. {See Figure 2.NIL.)

A U ARA ARG AR TEAAA~

A GLOSSARY OF TERMS

browser information menu

browser manipulation menu

class

class inheritance

class lattice

Eoxkode
PMethods (Edithiethod)
Ao (addbdethacd

Celete (Deleterlethodd)
Plowe (Movebdathod To 3
Copy oZopyhethod To
Fenarme (Renameblethod
Edit iEditClaz=) B

Figure 2.2. Browser Editing Menu

g g g

A menu accessed by pressing the left mouse button on a ciassin a
LOOPS class browser. The items in this menu give information
about the class lattice. (See Figure 2.NIL.)

FrintZummary
Coc (ClazsDon) ¥
Wherelas (Wherslzhethod)®
CeleteFromBrowser
= ubBrows 2
Typelntlame

Figure 2.3. Browser Information Menu

A menu accessed by pressing the left or middle mouse button in
the title bar of a LOOPS class browser. The items in this menu
allow you to make changes to the class lattice shown in the
browser. (See Figure 2.NIL.)

FRecom pute ¥
S2ddRoot ¥
Add Category Menu

Figure 2.4. Browser Manipulation Menu

A description of one or more similar objects. Classes provide a
template for the objects they specify. Classes specify variables,
values, and methods. In Figure 1.1, Page 1.2, OBJECT, MINERAL,
ANIMAL, VEGETABLE, PERSON, MAN and WOMAN are all classes.

The means by which a class inherits variables, values, and
methods from its super class. Class inheritance allows you to
define a class as a specialization of another class. The newly
defined class is called a “subclass" or a "specialization”. The
previously defined class is called a "super”. A specialized class
inherits much of its structure from a super. Class inheritance
supports program modularity and facilitates the design process.

The network of inheritance relations among classes. Usually class
lattices in LOOPS are displayed left to right; that is, supers are to
the left of their subclasses. Figure 2.5 shows the contents of
Figure 1.1 as it would appear in a browser.

Glass browser

OBJECT

-

- VEGETABLE
- MaAN
ANIMAL ——— PERSON ==
- WOMAN

T MINERAL

Figure 2.5. Standard LOOPS class lattice

A GLOSSAIY AT “E3pag

A GLOSSARY CF TERMS

class variable

inspector

instance

instance variable

Interlisp-D executive window

join

lattice

The variables that store information shared by all instarices of a
class. For instance, in Figure 2.5, PERSON might have th= class
variables LEGS, with the value 2, and EYES, also with the value 2.

An interactive display program for examining and changing the
parts of a data structure.

An actual data object with its structure defined by a particular
class. For example in Figure 1.1 BILLY is an instance of MAN.
Note that instances do not give rise to further specializations
within the lattice structure. Instances within a class share the
same methods, class variables, and class variable values. All
instances of a ciass have the same instance variabies, out the
values of these instance values may differ. These differing values
will cause each instance to respond differently than its siblings,

even though the instances are from the same ciass.

InFigure 1.1, BILLY and JEFF are instances of the ciass MAN, and
AARDVARK is an instance of the class ANIMAL. BILLY inherits all
variables and methods from MAN, as well as all variables and
methods from PERSON, ANIMAL and OBJECT. However, BILLY
and JEFF may have different values for their instance variables.

A variable used to store information specific to an instance and,
therefore, a "local variable" for that instance. Instance variables
are defined in classes. When you specify an instance variable in a
class, you assign to it a default value. This value is inherited as
the default value down through the class lattice structure. For
example, in Figure 2.5, the class, PERSON, might have the
instance variabie, HATSIZE, with default value 7. The class MAN
would inherit this instance variable with the default value 7 and
pass it on to BILLY. Each instance has its own copy of the
instance variables, and the instance variable values can be
changed independent of the values for other instances of the
same class. So, for example, theinstance BILLY can have 7.25 as
the vaiue of {HATSIZE} whiie the instance of JEFF has a
HATSIZE of 7.75.

The window in which Interlisp-D functions are entered.

Interlisp-D Executive Window

MIL

o7+

Figure 2.6. Top Level Interlisp-D executive window

Left buttoning inside the Top Level Interlisp-D Executive Window
causes the type-in cursor to appear in the window.

A dass with multiple specialization branches. See “left to right,
up to joins."

A directed graph without cycles. In LOGPS, the inheritance
network is arranged in a lattice. While a tree ailows e2ach node
to have only one parent, a lattice allows multiple parents (in

A GLOSSARY OF TERMS

left buttoning
“left to right, up to joins”

Masterscope

menu

message

method

middle buttoning

mixin

mouse

maouse cursor

object

object-oriented programming

procedure-oriented programming

LOOPS, multiple supers). A lattice does not allow a class to have
itself as a super class or ancestor class.

Pressing the left mouse button and then releasing it.

The rule for inheritance in a lattice of objects. Each branch up
the class lattice is searched, starting with the leftmost branch and
working right. A class with several specialization branches is not
searched until all the specialization branches have been
searched. A class with multiple specialization branches is
referred to as a join.

A program analysis tool. When told to analyze a program,
Masterscope creates a data base of information about the
program. In particular, Masterscope knows which functions call
other functions and which functions use which variables.
Masterscope can then answer questions about the program and
display the information with a browser.

A way of graphically presenting a set of options. There are two
kinds of menus: pop up menus are created when needed and
disappear after an item has been selected; permanent menus
remain on the screen after use.

A command to an object to do something. A message activates a
method defined in an object's class. For example, if BILLY has a
method, BRAG, you can send a BRAG message to BILLY and have
BILLY execute the code associated with the BRAG method.

The code stored in objects. Each method performs the actions
needed to implement a particular message. A subclass inherits
its super's methods.

Pressing the middle mouse button and then releasing it. If your
mouse does not have a middle button then press both the left
and right mouse buttons together.

A class used to add some particular functionality to many other
kinds of classes. Usually a mixin is a second super for a class.
Mixins rarely have their own instances.

The little rectangular box connected to the computer. There are
two or three buttons located on the top of the mouse. The
buttons are referred to as the left, middle and right mouse
buttons. Pressing the left and right button at the same time will
simulate the middle button if your mouse does not have one.

The small arrow on the screen that points to the northwest.

X

Figure 2.7. The mouse cursor
The mouse cursor moves as you move the mouse.
The main structures in object-oriented programming. They

combine aspects of procedures -- for computation, -- and data, --
todescribe their state. Classes and instances are both cbjects.

A programming paradigm in which structures are dasigned that
contain both data and the methods for manipulating that data.

A programming paradigm in which programs are composed of
functions and procedures. Data structures are separate objects

24

A GLOSSA2Y N Toanag

A GLOSSARY OF TERMS

prompt window

right buttoning

self

specialization

super

TEdit menu

window manipulation menu

that get passed to functions and procedures. This is the best
known programming paradigm and is supported in stardard
praogramming languages like FORTRAN and Pascal.

The skinny black window at the top of the screen.

Figure 2.8. Prompt window

Pressing the right mouse button and then releasing it

A method argument that represents the receiver of the message.
All methods contain the argument self. Self is automatically
bound to the object which received the message that invoked
the method. Methods use self in order to access the variables
and other methods of the object defining the method.

The process of creating a subclass from a class; or, the result of
that process. In Figure 1.1, MINERAL, ANIMAL, and VEGETABLE
are specializations of OBJECT; PERSON is a specialization of
ANIMAL; and MAN and WOMAN are specializations of PERSON.

A class from which a given class inherits. In Figure 2.5, O0BJECT is
the super of MINERAL, ANIMAL, and VEGETABLE; ANIMAL is the
super of PERSON and AARDVARK; PERSON is the super of MAN
and WOMAN.)

Refers to the menu that is displayed when you middle hoid
button while pointing the mouse cursor at the title bar of a TEdit

‘window.

Put
Get
Include
Find
Looks
Substitute .
Quit

Expanded Menu#
Library !

Find Definition
Cornpile
Consult

g

Figure 2.9. Example TEdit menu

A menu accessed by pressing the right mouse button in the title
bar of a LOOPS browser. The items in this menu manipulate the
window containing the browser. Figure 2.NiL shows the
standard Window Manipulation Menu.

A GLOSSARY OF TERMS

Cloze

= 4D stroy

= ab T
Fairt
Clear

Eviry
Repaint
Hardcopmy

:hﬁnk

Figure 2.10. Window Manipulation Menu

R

o0
B

\

4.<

3. CLASSES AND INSTANCES
s

This chapter introduces the steps for building a simple class
lattice. You define classes by inserting documentation, class
variables, default class variable values, instance variables and
default instance variable values. You define subclasses and
create instances of a class.

After you have become famiiiar with how ciasses inherit
information from their supers, you learn how to manipulate this
inheritance structure.

The easiest way to develop LOOPS programs is by using a
browser. The browser displays the class lattice and provides
menus of commands for building and manipulating this
structure.

3.1 Creating a Class

Begin by getting LOOPS running on your Xerox Al workstation.
LOOPS is generally installed in the form of a sysout because
loading the individual files is very time-consuming. Xerox
provides a sysout in the LOOPS software kit. If your machine is
on a network, you should consult your local system administrator
to find out where LOOPS is stored. If you have a stand-alone
machine, you should have LOOPS on a series of floppy disks. A
LOOPS sysout is installed using the same process used to install an
Interlisp-D sysout. If you do not know how to do this, please
refer to Interlisp-D: A Friendly Primer or the User's Guide that
came with your machine.

Once you have a LOOPS sysout running, you should see the
LOOPS icon, Figure 3.2. If you do not see this icon, you must
bring it up by using the background menu. To bring up the
background menu, hold the right mouse button while the cursor
is in the grey background area of your screen. Select the phrase
Loops Icon off the menu that pops up and release the mouse
button. If you like, you can move the icon to a different location
by selecting the Move option from the icon's right-button menu.

Before beginning to use the browser, you need to create a root
for the class lattice structure. For our examglz, the root is the
class Animal. Create this root by typing:

(DefineClass ‘Animal)

FUACEre Aaie el

CREATING A CLASS

Top level -~ Gonnected to {DSK}<LISPFILE

18«iDefinellaz:s "Animall
#£.0F Animal)
11«

Figure 3.1. Creating the Root Class

As in Interlisp-D, LOOPS distinguishes upper and lower case
letters. Thus, you should be sure to type things exactly as you see
them. Also, you should notice that Animal is quoted so that it is
not evaluated. DefineClass returnsa pointer to the class it has
just created. Such pointers are printed by the system as #. (%
ClassName), as you can see in Figure 3.1.

In order to begin working in a class browser, position the mouse
cursor on the LOOPS icon, press the left mouse button, and select
Browse Class asshownin Figure 3.2.

Figure 3.2. Accessing LOOPS Browser

When you see the prompt in the prompt window, type in the
root object you wish to browse. In this case you should type
Animal. A ghostimage of a browser window appears near the
cursor on the screen. You may position the window by moving
the mouse cursor and pressing the left mouse button when the
window is in the correct place. The result should be a browser
window as shown in Figure 3.3.

Glass browser
Anirnal

Figure 3.3. Browser for the class Animal

3.2 Editing aClass
After creating a class, you need to add the foilowing to it:
documentation
class variables
instance variables
methods
3 CLASSES AND INSTANCES

EDITING A CLASS

In this chapter, you learn how to add the first three. You learn
about methods in Section 4.2.

3.2.1 Using the Browser Editing Menu

Each item in a class browser has two menus associated with it.
One, presented later, contains informational commands. The
other one, presented now, allows you to make alterations to
classes and the class hierarchy. To access this menu, move the
cursor over Animal and click the middie mouse button. The
menu appears and remains visible when you release the button
(see Figure 3.4). The first word of each item in the menu
indicates the types of operations that are contained in its
submenu. The part in parentheses indicates the command that
results from selecting the main menu item. The submenu is
accessed by pressing the ieft mouse button and sliding the cursor
to the right over the grey arrow while continuing to hold the
button down. Items are selected from the submenu by moving
the mouse cursor until the desired item is hi-lighted and
releasing the mouse button.

EoxkMode
Methods (Edithethod)
Add {addMethod)
Delete (CrelstaMethod)
Flowe (Boevehethod Ta)
Copy (Copyhlethod Ton

Fename (Fenarmehlethod

ap o ap

T

Edit (EditClaza) kS
Figure 3.4. Browser Editing Menu v

Class definitions are edited with DEdit the same way that
functions and other entities are edited in Interlisp-D. To call
DEdit, select Edit(EditClass). A DEdit window opens with
the skeleton class definition as shown below in Figure 3.5.

DEdit of CLASSES #.($ Animal) -

({Metallass Class Edited:
(¥ aditad: .
UEA-0et-38 133000
{Zupers Object)
(ClaszVariablesz)
fInstanceYariables)
(MethodFrs))

Figure 3.5. Editing of theclass Animal

Our figures do not show the DEdit command menu. If this menu
does not appear to the right of the DEdit window, move the
cursor into the window and click the left button.

To preview the complete Animal ciass definition, iook at Figure
3.7

1 ACSES ANMD IMCTANCES

EDITING A CLASS

3.2.2 Documenting the Class

Effective documentation is just as important in LOOPS as in any
other programming language. Both the <lass itself and the items
within it can be documented. Each item of documentation
consists of the symbol doc followed by a standard Interlisp-D
comment.

(Note: dac is a property name, and your documentation is the
value of the doc property.)

Todocument Animal, add the following:
doc (* definition of root object, Animal)

in between Class and Edited. You can save yourself a couple
of keystrokes by enclosing dac and the comment in a list,
inserting the list and then removing the parentheses. If you are
unsure of how to do this operation, ycu should refer to
Interlisp-D: A Friendly Primer and practice using DEdit before
you continue. You will be making extensive use of DEdit
throughout this primer. The edit session should now look like
Figure 3.6.

DEdit of CLASSES #.($ Animal)

({Metallass Class doc (# definition of raot
abject, &nimal’
Edirted: i+ adited:

CEdeDet- 38 1330

{2upers Okbject)

fClaszvariables)

CInstanceVariables)

(MethodFnz))

Figure 3.6. Adding documentationto Animal

3.2.3 Inserting Class Variables, Values, and Properties

Now you can put in the class variables. They are inserted in the
ClassVariables list. Each class variable is specified by giving
its name, its default value, and its property names and their
values. Dac should be the last property name:

(VariableName Value Property! Valuel Property?2 Value2 ...
doc (* comment))

In our example, we use the class variables HasEyes and
IsLiving. Both of these variables should have the default
value Tin the class, Animal. You should add the tollowing after
ClassVariables:

(HasEyes T doc (* all animals have eyes))
(IsLiving T doc (* all animals are living))

3.2.4 Inserting Instance Variables, Values, and Properties

Now put in the instance variables. Instance variables have the
same format as class variables and are inserted in the

L ASSEN AND ASTANCES

EDITING A CLASS

InstanceVariables list. For our example, we use the instance
variables DateQfBirih and HeartRate Because the vaiues of
these variables are known oniy if we know which individual
animal, that is, which instance, is referred to, we use the defauit
value of 0 for both. Add the foliowing after
InstanceVariables:

(DateOfBirth 0 doc (* animals do not all have
the same birthday))

(HeartRate 0 doc (* different animals have
different heartrates))

When you are finished, your edit session should look like Figure

fiMetallass Class doc o* definition of root
abject, animaly
Edited: . (* adited:

tEd-Zot3E 1T

{Zupers Object)

(Clazzvariables (HazEves T doc
(¥ all animals havs
ey}

(Izliving T doc C 3l animals are

Idinga))
{InztanceVariables (Date0fBirth @ doc
CF snimals 3o not all
Nave the zams
_ birthdays)
{HeartRate 28 doc ck differant animalz
Mave Jifferant
heartratasi)

{MethodFnz))

Figure 3.7. Editing in variablesfor Animal

Exit DEdit as you normally would by selecting Exit from the
edit command menu. If there is an error in syntax, such as
omitting a doc before a comment, DEdit gives you some
information in the prompt window. DEdit allows you to exit
only after you have corrected all syntax errors.

3.2.5 Using the Browser Information Menu

In Section 3.2.1 the middle mouse menu is used to change a class
definition. The left mouse menu contains informational
commands. Bring up this menu by moving the cursor to Animal
and clicking the left mouse button. As before, the menu appears
and remains after you release the button. (See Figure 3.8.)

PrintSurarnary
Ooc (ClazzDoc)
Wherels GYherelzMethod
CeleteFromBrowvssar
SubBrowser
Typelntarme

P T

g

Figure 3.8. Information Menu

Ci ASSFS AND INSTAAMICES

RELN

EDITING A CLASS

Selecting PrintSummary causes a summary of Animal to be
printed in another window, as shown in Figure 3.9.

Top level -- Gonnected to- {DSK }<LISPFI

#.(% Animal)
Supers
Ohject
Vs
DateOfBirth HeartRate

CV¥s
HasEyes IsLiving

Methods

Figure 3.9. Summary of the class Animal

PrintSummary gives a high level summary of a class definition.
The easiest way to see the structure in detail -- including values,
property names and property values -- is by calling the editor.
Now try bringing up the information menu again and selecting
Doc(ClassDac). Any documentation you added is printed out.

3.3

Creating Subclasses

To continue developing our example, we speciaiize Animal to
create a subclass, Person. We then add two subclasses, Man and
Woman to Person.

To create the first subclass, bring up the editing menu and select
SpecializeClass from the submenu of Add(AddMethod).
Then, type Person when you are prompted for the new subclass
of Animal in the prompt window. The browser is automatically
updated and looks like Figure 3.10.

Glass browser
Anirnal

Person

Figure 3.10. Browser automatically updated to ‘nclude Person

In order to define Persan, repeat the same steps you followed
for Animal. If you are unsure of the procedure, refer back to
Section 3.2. When entering DEd i t, notice that Person’ s super
was automatically setto Animal.

Add the following class variables and values:
Legs 2

Mammal T

36

CLASSES &MD (NSTANCES

CREATING SUBCLASSES

and the following instance variables and values:

Hatsize 7

HairColor Brown

Note that 2, T, 7, and Brown are mereiy defauit vaiues. Ciass
variables can be changed by the actions of any instance.
Similarly, instance variables can be set to appropriate values in
each instance. Remember to add documentation to the class and

its variables. When you are finished, your edit session shouid
look like Figure 3.11 below.

{{Metallass Class Edited:

(Zupers Animal)
(ClazsWariablez (Legs £ doc
Ok people Rave o lagDi)

T & mammaiy))
ize 7 doc
(¥ thiz can be
Jifferent for 2ach
persang
FHairColor Brown doc
(# this can G2
different for each
parzan))
(MethodFns))

Figure 3.11. £ditinginvaniables for Person

Now bring up the browser information menu for Person and
select PrintSummary. You should notice a difference from the
last time you printed a summary as in Figure 3.12.

Top level -~ Gonnected to {DSK}<LISPFILE
#.($ Person)

Supers
animal
Vs
HairColor Hatsize
DateQfBirth HeartRate
CV¥s
Legs Marnrnal
HazEwez IzLiving
Methods

Figure 3.12. Allvariables and values for Persaon

items which are defined in Persan are printed in boldface while
the items which are inherited from Animal are printed in a
regular font.

Now create two specializations of Person:. Man and Woman.
When done, your class browser should look like rigure 3.13.

CREATING SUBCLASSES

Class browser ST

_—— Man

Anirnal —— Person ==~

- Wornan

Figure 3.13. Browser with the classes Man and Woman adced

Since all men are referred to by the pronoun, "he", give Man the
class variable Pranoun with the value He.

Because individual men may or may not have beards and big
muscles, the instance variables are Muscles and Beard, with
the default valuesBigand T respectively.

3.4

Creating Instances

To create an instance of man, which we call Bi1 1y, type (at the
top level):

(< ($ Man) New 'Billy)

Top level -~ Gonnected to {DSK }<LISPFILH

17«0« (8 Man) Mew "Bi17y)
[DEFINST Man (Billy (
JQWO.OX:].P"!.,]?.GGB . 13))

135

Figure 3.14, Creating an instance

Note that a pointer to the instance is returned just as when a
class is created. What you see on your screen is somewhat
different from Figure 3.14 because LOOPS creates a unique
identifier for each instance. This identifier is the "JQWO..."
gibberish after Billy. Unique identifiers ensure that different
instances are not inadvertently confused with one another.

The ($ name) notation is the way to reference classes and
instances. Essentially, the $ informs the system to use the LOOPS
object with the specified name. The « means send a message.
New is a message which tells the class Man to create an instance
named Billy. (Sending messages is discussed in Section 4.2)
Create a second instance of Man, with the name Jeff, by typing:

(« ($ Man) New 'Jeff)

Instances do not appear in the class browser window as part of
the class lattice. However, the LOOPS inspector deoes allow the
display of instances. The LOOPS inspector is 2 specialized version
of the Interlisp-D Inspector. (See the interlisp-D Reference
Manual or Interlisp-D: A Friendly Primer for more information on
the standard inspector.) '

38

CREATING INSTANCES

3.4.1

Inspecting an Instance

Type:
(INSPECT ($ Billy))

to get an inspector window for the instance Billy. This
inspector window is shown in Figure 3.15.

All Values of Man ($ Billy),

DatelfBirth @

HeartRate 3
Hatzize 7
HairColor Brown
mMyzcles Big
Beard T

Figure 3.15. InspectingBi 11y, annstance of Man

The inspector shows the structure of an instance. It also provides
an easy way to alter the vaiues of instance variables. Notice that
the title bar says A/l Values and that the inherited instance values
from Animal, Person and Man are present.

Create an inspector window for the instance Jeff in the same
way. Theresultis an inspector window as shown in Figure 3.16.

All Yalues of Man ($ Jef),

DateldfBirth B
HeartRate 5]
Hatzize 7
HairColar Brown
Muzcles Big
Beard T

Figure 3.16. Inspecting Jeff, aninstance of Man

3.4.2 Changing Instance Variable Values With the Instance Inspector .

You can use the inspector to change instance variable values.
Begin by pressing the middie mouse button in the title bar of the
inspector window for Bi11y and holding it down. The inspector
menu is displayed as shown in Figure 3.17. ‘

Figure 3.17. Inspector menu

Choose LocalValues by moving the mouse curser over it and
releasing the mouse button. The dispiayed values are changed
as shown below in Figure 3.18.

CREATING INSTANCES

Local Yalues of Man ($ Billy),

DatedrBirth #. Notlertvalue

HeartRate # HotietWalue
Hatzize . NatiethWalue
HairColor # MNatletWalue
Muzcles # MatZetWalue
Beard . HotIetWalue

Figure 3.18. Locai values of the instance Billy

The #.NotSetValue indicates that you have not set any local
values in the instance; all of these values are cefaults inherited
from the super classes.

To \llustrate the inspector changing values, we will alter
Billy's HairColor to Blond. Begin by celecting the item to be
changed by clicking the left mouse button over HairColor. Next
bring up a command menu by holding down the middle mouse
button (with the cursor inside the inspector window) and select
PutValue from that menu. Type 'Blond in the prompt
window. This new value will be displayed. It is necessary to
quote Blond because values which are entered with the
Inspector are evaluated.

Now choose Al11Values from the Inspector menu and notice
that the default values are redisplayed. However, HairColor is
now the local value, Bland, as shown in Figure 3.19.

DatedfBirth &
HeartRate 5]
Hatzize 7
HairColor Blond
Muzcles Big
Beard T

Figure 3.19. Inspector window of the instance B 11y showing all values

3.5 Altering the Structure or the Class Lattice

3.5.1 Moving aClass

Itis possible to alter an existing class lattice by using the editing
menu of the class browser. Classes can be moved in the hierarchy
or removed completely. In order to make the browser look
simpler, a class can also be removed from a browser without
actually removing it from the lattice.

To move a class in the class lattice you must change its super. As
an example, you will move Man so that it is directly below

E)

CLASSES AN NSTANCES

ALTERING THE STRUCTURE OR THE LLASS LATTICE

Animal in the lattice. The first step is to select the new super by
"boxing” it. To do this, select BoxNode from the editing menu
(middle button) on Animal. Then bring up the editing menu on
the object to be moved, in this case Man. Seiect MoveSuperTo
from the submenu of Move{MaveMethodTa) A pop up menu
appears which shows the current super, in this case, Persan. To
confirm the move, select this item by clicking the ieft button.
After doing this, your browser should look Figure 3.20.

Class browser

- _— Person —— Wornan
Anirnal|==__

T--Man

Figure 3.20. New iatticewith Man * s super changed to An imal

Since we don't really want the lattice to look like Figure 3.20,
change Man ' s super back to Person.

3.5.2 Deleting and Restoring a Class from a Browser

You may want to remove a class you are not working with from
the browser window. To remove Man from the browser window,
bring up the information menu by clicking the left button on
Man. Selecting DeleteFromBrowser causes Man to be deleted
from the browser. The iattice in the browser window iooks like
Figure 3.21.

Class browser

Anirnal — Person —— Wornan

Figure 3.21. Browser with Man deleted

The class, Man, stull exists; it simply does not appear in the
browser. Note that deleting a super class from the browser will
delete the class along with ail of its subclasses.

Classes that have previously been deleted from a browser can be
brought back. To do so, move the cursor into the browser's title
bar and hoid down either the left or middle mouse button.

Fecompute
LoddRoort &
Add Category Mery

Figure 3.22. Browser Manipulation Menu

Select RemoveFromBadList from the submenru of AddRoot, as
shown in Figure 3.23.

Fecaompute ¥ seldB oot
AddHoot ? RemoveFromBadList

Aod Catecyory Menu

Figure 3.23. AddRoot sub-menu

A pop up menu containing the items that have been deleted
from the browser then appears as shown balcw ir Figure 3.24.

ALTERING THE STRUCTURE OR THE CLASS LATTICE

3.5.3 Destroying a Class

.0 Mar)
Figure 3.24. Pop up menu for RemaveFromBadList

Select Man and it reappears in the browser.

A class may also be destroyed. That is, the ciass can be
completely deleted from your LOOPS environment.

Create a subclass Insect which is a specialization cf Animal (as
explained in Section 3.3). Insect will be used to demonstrate
how to destroy a class.

To destroy Insect, bring up the editing menu (middle button)
on the class Insect. Select DeleteClass from the
Delete(DeleteMethad) submenu. You must confirm before
any class is actually destroyed. Confirmation is accomplished by
using the pop up menu shown in Figure 3.25.

Cestroy Inzect

Figure 3.25. Pop up menu to confirm destruction of Insect

Select Destroy Insect toconfirm that you wish to destroy the
class. If you decide not to destroy the class, click any mouse
button with the cursor outside of the pop-up menu. The lattice
in the browser window now looks like Figure 3.21 again.

Itis an error to attempt to destroy a class which has subclasses,
since a subclass can not exist if its super does not exist. Such an
attempt puts you in an Interlisp-D break window. If you type 0K
inside the break window, the class and all of its subclasses are
destroyed. If you type t in the break window the operation is
aborted.

3.6 Destroying and Shrinking Browsers

If you are finished using a particular browser and want to get rid
of it, you can destroy it. To do so, hold the right mouse button
while in the browser window's title bar (see Figure 3.26).

CLASSES AND NSTANMCES

DESTROYING AND SHRINKING BROWSERS

=195 dDeztroy
AR
Paint
Zlear
Eury
Repaint
Hardcopy#
Pl e
Shape
Zhirink

Figure 3.26. Window Manipulation Menu

The items in this menu are similar to those in the Interlisp-D
window manipuiation menu except for the {lose item.
Selecting Destray from the submenu of Clcse closes the
window and destroys the browser. If you select Close, the
window closes, but the browser still exists and take up memory
space. Since a browser whose window is closed is not easily
accessible, itis usuaily better to destroy it.

Browser windows can also be shrunk using the window
manipulation menu. Lattice browsers shrink to icons with the
name of the root class as their title. Bring up the window
manipulation menu on the example browser and select Shrink.
The result is an icon as shown in Figure 3.27. As with all window
icons, it can be expanded by positioning the mouse over it and
clicking the middle button. It can be moved by positioning the
mouse over it, holding down the left button, moving the icon to
the desired spot and releasing the button.

Figure 3.27. Icon for Browser window of Animal

3.7 A Word about Notation

Animal

($ Animal)

#.($ Animal)

LOQPS uses several different notations to refer to ciasses and
instances.

When we refer to a class or an instance in the text we refer to it
by its name, thatis, the name it was given when it was created. If
there is some possibility of confusion, we also state explicitly that
we are referring to a class or an instance.

This is the way classes or instances are referred to in LOOPS code.
The $ causes the system to find and return a pointer to the
internal data structure which embodies the class or instance.

This is the way the system prints out a class. For example, this is
what you see if you type ($ Animal) at the top level
read-eval-print loop.

CUASSFS AND INSTANCES

10. GAUGES: ACTIVE VALUES AND

OBJECT HIERARCHIES IN ACTION
_

<NOTE TO XEROX: AS INSTRUCTED, WE HAVE NOT
UPDATED THIS CHAPTER BECAUSE OF CONTINUING WORK
ON GAUGES.>

In normai life we use gauges to track specific values. Typically,
we use gauges where it is important to continually monitor a
value. LOOPS provides a set of tools, called Gauges, which
emulate those real life gauges we are familiar with. They are
defined as LOOPS classes with active values providing the
continuous monitoring. The class inheritance lattice for gauges,
shown in Figure 10.1, shows how all of the sub-classes of Gauge
are related. This structure is a combination of elision through
inheritance and incremental specialization. (See Chapter 6).
Notice that classes like DigiMeter and DigiScale have
multiple supers.

There are two types of gauges: analog and digital. Analog
gauges register changes in the value in a pictorial form, without
registering the exact value. The HorizontalScale, Meter,
Dial, VerticalScale, HBarChart, and BarChart as shown
in Figura 10.2, are all examples of analog gauges. Digital gauges
do provide the precise value, as shown by LCD, DigiMeter, and
DigiScalein Figure 10.2.

Gauges are defined so that when they are attached to a value
within your program, that value becomes an active value which
has no effect on the program using that value. A change in the
value causes the reading on the gauge to change. When they
are detached from a value the value returns to its original state.
LOOPS provides a simple way to incorporate instances of gauges
into existing programs.

Gauges are very useful tools in their existing form, but they can
also be customized. Existing classes in the gauge class lattice can
be specialized and new classes added to the lattice.

In the following pages, we discuss basic use of LOOPS gauges.
Chapter 9 shows some examples of customizing gauges.

if you are working in a new programming environment, load the
tile containing the Bank Account Example from Chapter 5 so that
you may zontinue to work with the example in this chapter.

GALGES ACTIVE VAL ES AND Y

RICOT wERn@Cw TS 0 T

OBJECT HIERARCHIES

10.1 Object Hierarchies

e’

Glass Inheritance Lattice
Gaug
LéD Instrument
i T
o T |I T
[- ..
P - | .
! Il - | .
1 1 - I T
S |I - | -.
! | VerticalScale RoundScale HorizontalScale
In lll I| .'|'.~..'} S ____7.
| 1 ______-’.l.— ‘."'
‘,' b ____L———_"'__— . 3 ., |l)
ey |
.-'! ‘—_——-——!l|—— II ' ‘l
DigiScale S BarChart Meter Dial HBarChart
! -
! ‘_ o ’
1 o
‘i - "
ll| — - | '
b |
DigiMeter SSBarChart SSHBarChart
SSOigiMeter
Figure 10.1. Classinheritance lattice for gauges
To view the class inheritance lattice for gauges, type:
(Browse 3$Gauge)

10.2 Examples of Gauges

Figure 10.2 shows some of the gauges available for you to use. If

you would itke to see a gauge, create an instance by typing:
(< gaugeClass New ’'MyGauge)

Then, display the gauge by typing:
(¢« "MyGauge Update)

CAUGES: ACTIVE VALUES AND OBJECT HIERARCHIES IN ACTION

EXAMPLES OF GAUGES

HorizontalScale

- 44
B 1RZE3AdBEREA TASAI0LAD -
VI BN BTN I N RO N BN R B | ~
-y
HBarChart I -
-
—100 DigiMeter . -
-
T 8
-58 (817 18
'_""‘“3 an 328
-2B
- 78 38
BarChart
archart 68 48
a0

Figure 10.2. Scme examples of gauges

GAUGES: ACTIVE VALUES AND ORJECT - 7 - = T AT A M3

CREATE GAUGE INSTANCES

10.3 Create Gauge Instances

You must create instances of the gauge classes to use in your
programs. To see how the gauge class, Vert1cal$caTe

hehaves ¢create an instance of the class VY2 rtica ~ o

cecftheclass Vert 1Scale, named
MyVS by typing:
(¢« $VerticalScale New 'MyVS)
To see the gauge send it the Update message by typing:
(¢« $MyVS Update)

A gauge will appear like the one shown in Figure 10.3.

T Llda

Figure 10.3. VerticalScalegauge
Create aninstance of the classDial, MyDial, by typing:

(< $Dial New 'MyDial)

Send it the Update message to display it by typing:
(« $MyDial Update)

it wiil ook like Figure 10.4.

Figure 10.4. Dial gauge
Send both gauges the Set message with the argument, 50, by
typing:
(< $MyVvS Set 50)
(< SMyDial Set 50)
Notice that they are set as shown in Figure 10.5.

CREATE GAUGE INSTANCES

R
R

Figure 10.5. Setting gauges to value of 50

Try to set both of the gauges to 200. They will appear as in
Figure 10.6. Notice the question marks in the upper left corners
show that the value is off of the scale. We will show you how to
change the scale below.

7 g — L34
;.E:LI
_—5121 ': - 4@ B8 3@ ll:“_fi':
-1@
:-EE!
-_.@

Figure 10.6. Gaugesset above theirscales

Create instances of some of the other types of gauges and
experiment to become familiar with them.

10.4 Attaching Gauges

In this section, we discuss how to attach different gauges to the
insiafnce varabie, Baiance, from our bank account exampie

GAVIGES: ACTIVE VALIIES AMND ORGECT —iERATC=IT 0 A s

ATTACHING GAUGES

10.4.1 VerticalScale

gaugeinstance
Attach
object

varName

10.4.2 Dial

First, create an instance of Savings, MySavings by typing:

-

(¢ $Savings New 'MySavings)

Now, vou <an attach MyVS to the Balance instance variable of
MySavings. The syntaxis:

(¢ gaugelnstance Attach object varName)
The name of the instance of a class of gauges you wish to use.
Message sent to gaugelnstance.
Object you wish the gauge to be attached to.
Variable 1n cbject that you want the gauge to display.
So type:
. (+ $MyVS Attach $MySavings

The VerticalScale will then appear as a ghost image
prompting you to position it. Move the mouse cursor to a clear
space on your screen and click the left mouse button to place the
gauge there. Notice that it now has a title, Balance, which is the
instance variable it is attached to.

‘Balance)

When a gauge is attached to a value, that value becomes an
active value. Inspect the instance, MySavings, by typing:

(INSPECT $MySavings)

You will see that the value of the instance variable, Balance, has
changed to an active value, as shown in Figure 10.7.

All Values of Savings $MySavings.

CreditHiztory MIL

OebitHiztaory NIL

Balance (58 NIL ZendavMeszage)

Uzer LM

fatelpener "15-Jyun-56 B3: 659 38"
Timelpened A5:59:35

InterestRate 45
Figure 10.7. Instance vanable, Balance, as an active value after a gauge s

attached tot

Attach MyDial to the Balance of MySavings following the
same procedure as above.

Since you hope to have more than $100.00 in your account,
change the scaie on each of the gauges. The SetScale message
sets the range on most gauges. Here we use it to set a scale from
0 to 10000 for MyVS and MyDial. Todo this, type:

(« SMyVS SetScale 0 10000)
{« $MyDial SetScale 0 10000)

(Note: The complete set of messages available for use with
gauges are listed in the LOOPS Reference Manual.)

106

SALIGES. ACTIVE VALUES AND OBJECT HIERARCHIES IN ACTIOM

ATTACHING GAUGES

10.4.3 DigiScale and DigiMeter

The gauges will appear as shown in Figure 10.8. Notice the
multiplication factor in the lower left corner of each gauge.

106

Balance

=108

Figure 10.8. Result of changing scales on gauges

Send the Credit and Debit messagesto MySavings soyoucan
see how the VerticalScale and the Dial behave. Do this by

typing:
(« $MySavings Credit 500)
(« $MySavings Credit 6000)
(< $MySavings Debit 2500)
(+ $MySavings Debit 300)

(Once you are finished, leave the gauges where they are, and
continue on with this chapter. However, if you prefer to have a
clean screen, you may preview section 8.5, at the end of this
chapter, on detaching gauges.)

DigiScale and DigiMeter combine both digital and analog
gauges. The power of multipie inheritance is shown in these two
gauge classes. They have two supers, one an analog gauge and
the other a digital gauge, whose functions and data are
combined.

Create an instance of the class, DigiScale, with the name,
MyDS, and an instance of the class, DigiMeter, with the name,
MyDM by typing:

(v $DigiScale New 'MyDS)
(« $DigiMeter New 'MyDM)

Attach both gauges to the instance variable, Balance, of the
instance, MySavings, and set their scales to the range C to
10000, as you did with MyVS and MyDial in sections 8.4.1 and
8.4.2. The resuit will be similar to that shown in Figure 10.9.

TAUGES: ACTIVE JALUES AND QORIECT <1ZRARCHIES Y AT AN N

ATTACHING GAUGES

10.4.4 BarChart and HBarChart

Balance .

08_ | 10
88 28
70 i 38
xmﬁéa’ 56 0

Figure 10.9. instancesof D1giScaleand DigiMeter attached to Balance
of MySavings

Send Credit and Debit messages to MySavings to see how
MyDS and MyDM behave.

BarChart and HBarChart display a number of values together
on one chart.” They are useful when you need to compare vaiues;
for instance, a bar chart will show the balances of two accounts
so they may be compared.

Create two more instances of the class, Savings. Name them
JeffsSavings and BillysSavings. Now create an instance
of the class, BarChart, named AccountBarChart. You can
use this bar chart to compare the balance of Jeff's savings
account with the balance of Billy's savings account.

Attachit by typing:

(¢ S$AccountBarChart Attach $JeffsSavings
'Balance)

(¢ S$AccountBarChart Attach $BillysSavings
"Balance)

You will be prompted for a label for each. When prompted for
the label for the one attached to JeffsSavings, type: Jeff,
and when prompted for the label for the one attached to
BillysSavings, type: Billy. The result will be a chart as shown
in Figure 10.10

08

GAIIGES ACT!VE VALIES AND OBJECT HIERARCHIFS N ACTION

ATTACHING GAUGES

Billy Jeff

Figure 10.10. instance of the class BarChart attached to balance of
JeffsSavingsand balanceof BillysSavings

Set the scaie on AccountBarChart to the range 0 to 10000.
Now Credit and Debit both accounts to see how the class
BarChart behaves. The result will be similar to Figure 10.11.

- 1006
-5
bal=1%
—-44

' -8
—E-]

Billy Jaff

e Rl

Figure 10.11. AccountBarChart with balances of JeffsSavings
andBillysSavings

10.5 Detaching Gauges

The option. Clase, in the window manipulation menu (right
button) for gauge windows contains two sub-items: Clase and
Destroy, asshown in Figure 10.12.

CANGES: ACTIVE VALUES AND MRIEMT MIE203CHISS A ACT AN, "9

DETACHING GAUGES

Zrhap
Faint
Clear
Bury
Fepaint

Pl

Shape
Shirimk

Hardc ooy

Figure 10.12. “window Manipulation menu for gauge window

If the Ciose sub-item is selected, the gauge will be detached
from the instance and instance variable it is attached to. The
gauge will still exist but it will not be attached to anything; you
canseeit by sending it the Update message.

If the Destroy sub-item is selected, the gauge will be detached
from the instance and instance variable it is attached to and the

gauge instance will be destroyed.

Destroy should only be

selected if the gauge will not be used again.

Now that you are familiar with gauges, experiment with some of
the other classes in the gauge inheritance lattice.

GANGRES

ACTIVEVALTFS AND ORIFCT HIERARCS ES IN ACTION

11. MIXINS - INHERITANCE WITH

MULTIPLE SUPERS
N A

The inheritance order in a class lattice with multiple supers has
not yet been discussed. This chapter addresses the full
complexity of inheritance.

One very useful technique based on multiple inheritance is the
use of "mixins.” Mixins are classes that are specifically designed
to be inherited along with a given class's main super. A mixin
provides a package of methods and variables that can be added
to many other classes to give them added functionality. The
examples in this chapter demonstrate multiple inheritance with
mixins.

11.1 Multiple Inheritance

As an example of multiple inheritance, consider the abstract class
lattice shown in Figure 11.1. The names of the classes are
indicated in bold face type and the names of the methods are
represented in normal type. For classes with multiple su pers, the
left-most super in the figure is also the left-most super in the
Supers list.

A N

/\

(%]
Ry

/\
AN

=)
-4
o

D

L

/

-
@

Figure 11.1. Diagram to show inheritance

MIXINS - INHERITANCE WITH MUI TIRLE S/BERS

MULTIPLE INHERITANCE

In this discussion, methods are referred to by their full names.
For example, the method X defined in the class D is referred to as
D.X.

The rule for inheritance in LOOPS is "left to right, up to join;".
Each branch up the iattice is searched, starting with the ieftmost
branch and working right. A class with several speciaiization
branches is not searched until all of the specialization branches
have been searched. A class with multiple specialization
branches is referred to as a join. A few exampies will make this
clear.

In Figure 11.1, F has two immediate supers: B and D. These are
the classes that appear on the supers list of F. G aisc has two
immediate supers, D and E. D and E have the same immediate
super, C. B and C's immediate super is A. The order of
inheritance for FisF,B,D, C, A.

Suppose message X is sent to F. Since F does nct have 4 local
method with the selector X, LOOPS searches for a method with
that name in F's supers. Its immediate supers are B and D. B is
the left-most super, so it is checked first, then D is checked. In
this case, the message X will be fieilded by the method D. X.

Now, suppose that the method D. X contains a call to «Super. D
has one immediate super, C, which does possess the method X.

- Therefore, C. X will be invoked as well.

Now assume the message Y issent to F. As before, LOOPS checks
B and D, but does not find the appropriate method. LOOPS next
checks D and again does not find the appropriate method. The
next class checked is C as the super of D. Note that A, which
contains a method for Y, is not checked until all of its
specializations have been checked. In this example, A is checked
only after B and C are checked.

in Figure 11.1, G has two supers: D and E. The order of
inheritance for Gis D, E, C, A.

If the message X issentto G, itis fielded by G.X. If G.X contains a
call to «Super, that message is fielded by D. X.

Now, suppose G . X contains a call to «SuperfFringe. if Xis<ent
to G, the message is fielded by G.X. The call to «SuperFringe
then sends the message to the classes on the supers list of G: D
and E. The message sent to D is fielded by D. X and the message
sent to E is fielded by C.X. In summary, the methods G.X, D.X,
and C.X are all invoked.

For convenience, the above example focused on method
inheritance. The example also applies for inheritance of
variables.

MY INCS INHERQITANCE WITH AL TP SHPERS

AN EXISTING GAUGE VILUN

11.2 An Existing Gauge Mixin

<NOTE TO XEROX: AS INSTRUCTED, THIS SECTION HAS
NOT BEEN UPDATED DUE TO CONTINUING WORK ©N
GAUGES.>

The class, SelfScaleMixin, is a pre-defined mixin that
automatically sets the scale on gauges. If you have a browser
containing the gauge classes, Sel1fScaleMixin can be added
to the lattice by selecting AddRoot from the browser
manipulation menu and typing SelfScaleMixin when
prompted for the item to be added.

The gauge classes, SSBarChart, SSDigiMeter, and
SSHBarChart, have SelfScaleMixin as a super; other than

_this, they are the same as the classes, BarChart, DigiMeter,

and HBarChart.

By itself, Se1fScaleMixin is a useless class. The definition of
SelfScaleMixinisshown below in Figure 11.2.

DEdit of CLASSES #,($C SelfScaleMixin)

CiMetallazs Claszs Edited:
CF g 10-JUN-E3 0&EE)
CIupers Object)
(ClaszWariables)
PInztanceYariakles (lowicaleFactor

5 doc

Cr I maxCurrantRaading
FNFNES 20 that it witl fit mare

than lowIcaleFactar tmMes in
inputRangs_ the gaugs
FeIcalesy)))

Figure 11.2. The mixin, Se1fScaleMixin
The method, Set, for Se1fScaleMixinisshownin Figure 11.3.

MIXINS - NHER' TANCE 'WITH MULTIPLE SLIPERS

AN EXISTING GAUGE MIXIN

DEdit of function SelfScaleMixin, Set

fMPfhﬁd
Pl2elfZocaleMixin
20 1f a-F-Tr R aTs ULF

Zet
rérgl otherdrgl)

r#‘ ARBESMartin

11..'_'.nr-. 21441

l” Check if rea-]mq 15 tog

if Jauge neads T rPazcaley
(FROG (max0iff (max (@ readingl))
(COND
[IGREATERP
CIETO maxOiff
(IOIFFERENCE max
(I inputlower)i
(@ dnputRange)
C#fF Mass 13 greater than
i'l'":"-‘l"?u‘.-’- mass then changs
range to Make Ccurtant mas
be 445 of full soate’

i+ 321f Zeticale (@ inputLower
I

i@ inputLower’

(IQUATIENT

(ITIMEZ & maxDiff)

ditan

(IPLUZ

{ { AND
i IGREATERF
(@ inputRange)
CITIMES maxDiff
|ﬁ 1nw__3]PF3|rur|||
{ IGRESTERP (@ inputRange)
1871

c# If max iz less than nwicalaFactor times
rAngs, and fawkdax would not be (223 than
10, then change rangs to Maks current masx
b 445 of full =cal =27

[«
ze1f Zerscale (@ inputlLower)
CIPLUS

(@ inputlLower)

LIN&E 18

CINQUOTIEMT

(ITIMES & max<0irf)

R S A A R
di1rii)

~? uper
ze1f Set reading otherdrgl otherdrgll

Figure 11.3. The method, Set, forSel1fScaleMixin

To see how self scale gauges work, create instances of the classes,
DigiMeter and SSDigiMeter, with the names MyDigiMeta:
and MySSDigiMeter by typing:

(< $DigiMeter New 'MyDigiMeter)
(< $SSDigiMeter New 'MySSDigiMeter)

MIXINS - INHERITANCE WiTh A 1 70w pees

nigh or tao 10w, and if 50 s2a

AN EXISTING GAUGE MIX'N

Attach both gauges to the instance variable, Balance, of the
instance, MySav ings, by typing:

(¢ SMyDigiMeter Attach $MySavings 'Balance) .
(« SMySSDigiMeter Attach $MySavings 'Balance)
This is shown in Figure 11.4.

Top level -- Gonnected to {DSK}<LISPFILE

Jel+ FOigiMeter Mew “HMyDigiMeter)
L8« FIE0igiMeter Mew “MyI30igiMetsar

116+ EMuDigiMeter &Sttach

MyZavings TBalance)

12«0« $My3301g1MEter ALTach

MyZavings "Balance)

135+

Figure 11.4. Creating instances of DigiMeter and SSDigiMeter and
attaching them to Balance
Credit and Debit the instance, MySavings, until you
understand the behavior of the two gauges. Both gauges,
MyDigiMeter and MySSDigiMeter, are shown in Figure 11.5
with a reading of 350.

! SSDigiMeter I

94 4 16 49 9 5
80 20 35 18
74 | 34 38 15

90756 18 ||yg 2570

Figure 11.5. Instancesof DigiMeterand SSDigiMeter with readiags of
350

Notice that the analog meter on MyDigiMeter, does not give a
correct reading but the analog meter on MySSDigiMeter dces.
The dial on DigiMeter went around 3 1/2 times. You would
need to infer that from seeing that the gauge only gces 35 high
as 100. On. the other hand, SSDigiMeter, as a product of
SelfScaleMixin, hasincluded a x10 factor.

MIXINS - NSERITANCE WITH M TIDLE G 0ERS

A NEW GAUGE MIXIN

11.3 A New Gauge Mixin

(NOTE TO XEROX: AS INSTRUCTED, THIS SECTION HIE
NOT BEEN UPDATED DUE TO CONTINUING WORX ON
GAUGES.>

Now we create a new mixin BlinkMixin to use with the
gauges. BlinkMixin causes a gauge to blink three times when
it is set. The method B1ink which gauges inherited from the
class Window, can be used to do this. To see the class inheritance
fattice for Window, type: (Browse $Window). Create the
mixin, B1inkMixin by typing:

(DefineClass 'BlinkMixin)

Add it to the gauge browser window by selecting AddRoot from
the browser manipulation menu and typing Bl1inkMixin wnen
prompted for the name of the item to be added.

You need to have the Set method for B1inkMixindo the same
thing as the Set you have been using for gauges along with
causing the gauge to blink 3 times. The new version of Set for
BlinkMixin calls B1ink to make the gauge blink 3 times and
then uses «Super to invoke the normal Set operation which
sets the gauge.

To do this, first select Add{AddMethod) from the editing menu
on the class BlinkMixin to create a template for the method
Set. Add reading to the argument list for the method after
self. Replace (MethodNeedsToBeSpecialized) in the
tempiate with:

(< self Blink 3)

(«Super self Set reading)
self

The method looks like Figure 11.6 when you finish.

DEdit of function BlinkMixin.Set -

iMethod C(BTinkMixcin et
zelf reading)
H" edit2d;
"1T-Jun-38 1250
(4 method that causes gauygs
to blink three times
wenevar it is ‘:'-EI:]
f~ _zelf Blink 3
«Iuper
:e]f Zet reading)
ze2lf)

Figure 11.6. The method Set forB1inkMixin
Now, create a new class, BlinkDigiScale, which has as supers
bothBlinkMixinand DigiScale. Type:

(DefineClass "BlinkDigiScale *(BlinkMixin
DigiScale))

Next, create an instance of the class Bl1inkDigiScaie and
name it MyB11inkDS. Display MyB1inkDS and send it the Set
message tosee Bl1inkMixinin action.

116

MIXINS - INHERITANCE WITH ML T P = S PERS

A NEW GAUGE MiXinN

Top level -- Gonnected to {DSK}<LISPFILE

2«00 "BlinkDigiZcals (BTinkMi=dn -
Oigidcalel’
#ERVinkDdgidcale

3ie(« FBYVinkDigiZcale Mew “MyB1inkDs)
e+ EMyB1inkD2 Update)

)

38«0+« IMYB1inkD: Zet B4

o

b

Figure 11.7. Creatingclass, B1inkDigiScale, and testng t

11.4 A Mixin for the Bank Account Example

This section explores class inheritance of methods from multiple
supers in the context of the Bank Account example. If the Bank
Account example is not already loaded, load it now. Also, if a
browser for the Bank Account example does not currently exist,
create one by browsing GenericAccount.

Some bank accounts allow you to withdraw more money than
the account contains. The overdraft is treated as if the account
holder took out a loan. A mixin can be created which, when
combined with any of the classes of the Bank Account example,
yields an account that allows overdrafts. When there is an
overdraft, the account balance is set to 0 and the amount of the
overdraftisrecorded separately.

To implement this, create the OverDraf tMixin class by typing:
(DefineClass 'OverDraftMixin)

Add the class OverDraftMixin to the class inheritance lattice
for bank accounts. Select AddRoot from the browser
manipulation menu and type OverDraftMixin when
prompted for the name of the item to be added. The class
inheritance lattice should look somewhat like Figure 11.8. The
figures in this chapter do not show some classes that were
created in previous chapters.

Class browser

) " Savings -.__
GenericAccount =-____] e
- Checking —— MOW

OverDraftMixin
{

Figure 11.8. Class inheritance lattice for bank accounts after adding the ciass,
OverDraftMixin

AMIXINS - INHERITANCE WITH AN TIDIE §1PESS

A MIXIN FOR THE BANK ACCOUNT EXAMPLE

Edit OverDraftMixinso thatitlookslike Figure 11.9.

DEdit of GLASSES #.($ OverDraftMix

fiMetatlass Class daoc CF this mixing aliows ®
awerdrafts 1o e made
from the accounty
Edited: C# edited;

236 1 E0E

i) -..-

L Zupers Obhject)

(ClaszVariables)

{InztanceVariables (OverDraft @ doc
(R this is the amaurt
of aveprdraftsy)

iMethodFrns)

Figure 11.9. Mixin OverDraf tMixin which ailows overdrafts on bank
accounts

OverDraftMixinneedsthe methodsCreditandBebit. They
will be specializations of GenericAccount.Credit and
GenericAccount.Debit. However, OverDraftMixin does
not inherit these methods: they must be added from scratch.

OverDraftMixin.Credit needs to check to see if there is an
overdraft. If there is, the amount of the credit should be applied
to OverDraft and any money remaining after the overdraft is
zeroed out should be added to Balance. If there is no
overdraft, the credit amountis simply added to Balance.

The method Credit should look like Figure 11.10 when you
finish.

DEdit of function OverDraftMixin.Gredit

{Method
{(OverlraftMixin Credit)
zelf fmount) (o adited;

t1E-Jan-37 1753

(* Method to credit an
acoount that allows
ovepdraftsy
(f (GREATERP aAmount (@ Overlrart))
then (+Zuper
zelf Credit
(OIFFERENCE &mount
i@ OverOraftil}
[+
OverOraft @)
else (+@
OverOraft
IDIFFERENCE (@ QwerDrart)
Amount)
(2 Balance))

Figure 11.10. The method Credit for OverDraftMixin

OverDraftMixin.Debit needs to check to see if the amcurit
of the debit is greater than the baiance. If itis, Balanca shculd
be set to zero and the difference added to Overdraft |If the

118

MIXINS - INHERITAMCE "ViT= A1 e 7207 - 22ec

A MIXIN FOR THE BANK ACCOUNT EXAMPLE

Class browser

GenericAccount =-1__ o

OverDraftMixin = OverDraftChecking]

debit does not exceed the balance, the amount is simply
subtracted from the balance.

Debit shouldlook like Figure 11.11 when you finish.

DEdit of function OverDraftMixin.Debit - .

(Mathod
({0verOraftii<in Dehit)
zelf Amount) c# adited:

U3 tan-ET 1TSS
F hfethod to debit an
account that allawss
v pPdraftsy
(if (LEQ Amount (@ Balance))
then ([+«Zuper
zelf Debit Smount)
else
[-3
CverQrars
(PLUZ (@ OwerDraft)
{ODIFFERENCE &mount

(@ Balance)))

Figure 11.11. The method Debit for OverDraftMixin

Notice the call to «Super in both of these methods. If you look
back at Figure 11.9, you will see that the only super that
OverDraftMixin has is Object. If OverDraftMixin were
designed to be used alone, this would be an error since Object
has no methods named Credit and Debit. However, because
it is a mixin, OverDraftMixin's calls to «Super are not a
problem (as long as it is mixed in with a class which does hava
these methods).

Now create a class named OverDraftChecking with multiple
supers, OverDraftMixin and Checking. First specialize
Checking. Then add the super OverDraftMixin to

OverDraftChecking. Be sure the mixin is first in
OverDraftChecking's supers list, because
OverDraftChecking needs to have Credit messages fielded
by OverDraftMixin.Credit, not by

GenericAccount.Credit.

The class inheritance lattice for bank accounts should update
automatically to look like Figure 11.12.

_— Savings —__

= NOWAccount

-~

~~- Checking

Figure 11.12. Class inheritance lattice for bank accounts with the ciass
OverDraftChecking added

MIXINS - INEER TANCE WITH MULTIPLE Q1 PERS

A MIXIN FOR THE BANK ACCOUNT EXAMPLE

Now test that the methods of OverDraftChecking work
properly. Create aninstance of OverDraftChecking and send
it various credit and debit messages. Use the inspector to see if
Balance and OverDraft are updated correctly. -

In this chapter, Credit and Debit were desianed to return the
resulting account batance. This is in keeping with the way that
the other versions of these methods work. The returned valus is
not particularly informative when there is an overdraft because 0
is always returned. It might be interesting to think about ways te
make the result more useful.

1110 MIX'NS - INHERITANCE NITR AN TiREE 5,1PE3S

12. CUSTOMIZING LOOPS TOOLS
e .

This chapter explores an advanced example that incorporates
most of the techniques learned in previous chapters. Here, a
specialization of one of the LOOPS browsers is created. This new
browser is then used to display information about a budget. This
exercise illustrates how to specialize the LOOPS system tools and
provides more experience with building LOOPS programs.

If the Bank Account example from Chapter 6 is not loaded, you
should load it now.

In this project, various budget categories, also called accounts,
are represented by instances of the AccountUse class. Unlike
instances from earlier examples, these instances form a tree. For
example, the personal expense account might have
entertainment and clothing subaccounts. Similarly, the
entertainment subaccount might have restaurant and movie
subaccounts.

As you know, the ClassBrowser does not show instances and the
inspector shows only one instance at a time. In order to view an
entire budget, a new kind of browser must be created.

12.1 Existing Browsers

Class browser

Browsers are LOOPS objects. Each browser is an instance of one
of the browser classes. The parent of all browsers is the
LatticeBrowser class. The class inheritance lattice for the
browsers is shown below in Figure 12.1.

LatticeBrowser =~

_ FileBrowser

-

------ ClassBrowser < SupersBrowser

" MetaBrowser

“ InstanceBrowser

Figure 12.1. Classinheritance lattice for LatticeBrowser

Up to this point, examples have emphasized using the
ClassBrowser. The FileBrowser was introduced in Section
5.2. The browser customized in this chapter is the
InstanceBrowser. Unlike the ClassBrowser, which
automatically depicts the inheritance relationships among
classes, the InstanceBrowser requires explicit specification of

CUST2NIZING LOOPS TOOLS

EXISTING BROWSERS

object links before it can display the lattice structure of the
related objects.

12.2 Creating a Browser Subclass

Bring up a Lattice Browser on the class LatticeBrowser.
Specialize InstanceBrowser to «(reate the subclass,
AccountBrowser.

InstanceBrowser contains an instance variable, subIV. The
name stands for sublink instance variable. subIV contains the
name of an instance variable in the class or classes of instances to
be displayed. The instance variable named in subIV should be
the variable whose value is used to iink an instance to its
subsidiary instance(s). When the browser is displaying instances,
it looks in each one for an instance variable of this name. |If
found, the browser uses the value of the variable to find the
chiidren of each instance and displays them also.

The default value of subIVin InstanceBrowserissimply NIL.
In order to use InstanceBrowser directly, it is necessary to fill
in this value with the name of the instance variable. In the
example, the instance variable Chi1d is used to create a tree of
instances. If, for example, instances Y and Z appearinthe Child
list of X, then X should appear higher than Y and Z in the browser
tree display. The first part of the exampie makes Child the
default value for the sub IV instance variable.

in order for the child default value for subIV to appear in
AccountBrowser, subIV must be local to AccountBrowser.
It would be simple to use DEdit to add this instance variable.
However, it is useful to know how to copy variables from one
class to another. This operation is similar to the copying
operations you already know. First, box AccountBraowser.
Then, using InstanceBrowser's edit menu, select CopyIVTo
from the submenu of Copy(CaopyMethadTo). Finally, select
subIV from the menu that pops up. Select title from the pop
up menu, as well.

Now change the value of subIV to Child and the value of
title to "Account Browser”. AccountBrowser, should
look like Figure 12.2.

CUSTOMIZING - OORS TOOIS

CREATING A BROWSER SUBCLASS

DEdit of CLASSE

((Metallass Claszs

#.(3 AccountBrowser)
Edited:

(% 2dited;

CEE-MOV-3S 1TI0S) M
{Zupers Ins anCPBPGWSer}
iZlazzVariables
{ Ins faﬂFP“aP'ab1ES fsubly Child doc
(k¥ Mame of instance variabls
which Fredey TdET names
andsor pamtur to
Iubobjactsy)

{t1t]8 "Scocaunt Br”w*pp"“
(MethodFRz))

]

Figure 12.2. AccountBrowser after adding instance variable, Sub IV

12.3 Creating a Savings Subclass

The money in a savings account may be earmarked for a variety
of uses, such as school, business, and personal. The money for
personal uses may be further divided into money to be spent and
money to be saved.

Below, an example budget is created and dlsplayed in an
instance of AccountBrowser.

Create a subclass of Savings, called SpecialSavings, with
the instance variable Child. When in use Child holds a list of
instances which represent the budget items for this account.

SpecialSavings should look like Figure 12.3.

DEdit of CLASSES #.($ SpecialSavings)

{{MeraClaszs Class doc (¥ budgeted zavings
. acoount)
Edited: (% edited: ,
TRE-Fe-E5 1711)
(Supers 3avings)
(Class¥ariables)
{InstanceYariables (Bhi]d NIL doc

shildren of object
lﬂ by VEepry)| 1 '

(MethodFrs)

Figure 12.3. SpecialSavings with instance variable, Chi 1d, added

CHSTOMIZ'™NG LOOPS TOOLS 23

CREATING AN ACCOUNTUSE CLASS

12.4 Creating an AccountUse Class

Create a class named AccountUse to be used for creating the
instances that represent the various categories in a budg&t.
AccountUse is not a specialization of any of the bank classes;
use DefineClass and then use AddRoot to add it to the bank
browser.

Give AccountUse the instance variable, Balance, with a
default value of 0. Balance holds the amount of money
budgeted for each item. Next, add the instance variable Child
with a default value of NIL. This holds the list of subitems to be
represented in AccountBrowser.

When you are finished, the AccountUse class should lock like
Figure 12.4.

DEdit of GLASSES #.($ AccountUse)

{(Metaﬂ1ags C1lass doc Ok clags for instances
which @il reprazent
budget items:)

Edirted: (k adited:

t22-Mov-S8 17T

(Zupers Object)
(ClazzVariablesz)
(Inztancedariables (Balance B8 doc
' Ot amount of Mmaney in
budgset item)
(Child MIL doc (% budget subitemsy))
(MethodFhns))

Figure 12.4. The class AccountUse with itsinstance vanables added

12.5 Setting Up the Budget Tree

In this section, a set of instances are created and iinked through
Childvariables.

Fist, create an instance of SpecialSavings named
MySpecialSavings. Now create a set of instances of
AccountUse to represent. budget items. Name them
Business, School, Persanal, save, and spend.

The main budget items of the account will be Business,
Schoal, and Personal. Therefore, the value of Child for
MySpecialSavings should be a list containing pointers to
these three instances. The browser uses these pointers to display
the instances as subinstances of MySpecialSavings. The
easiest way to put them in is to use the inspector. Open an
inspector for MySpecialSavings and select Child with the
left button. Then hold the middle button and select PutValue.
When prompted, type:

(LIST ($ Business) ($ Schoal) ($ Personal))

CUSTOMIZING LOQPS TOOLS

SETTING UP THE BUDGET TREE

the value of Child should change to:
(#.(3 Business) #.($ School) #.($ Personal))

Now use the inspector on Persanal to make save and spend
be subinstances of it. Its Chi1d should look like:

(#.(3 save) #.($ spend))

12.6 Creating a Browser Instance

An AccountBrowser instance can be created by typing:

(¢« (< (3 AccountBrowser) New) Browse (%
MyAccount))

A browser as shown in Figure 12.5 should appear.

Account Browser
-~ Business

="~ School

MyAccount <]

e - Save
~ Personal =-____

- spend

Figure 12.5. AccountBrowser for SpecialSavi ngs

Remember, this lattice shows a series of instances, not classes.
Unlike a ClassBrowser, this browser shows a lattice only if
explicitly setup using subIV.

12.7 Using Your Lattice

The instances and the browser displayed are not very useful.
They simply show the way money in MyAccount is budgeted.
However, they can become useful if the method CheckBal ance
is added to the «classes of the instances displayed.
CheckBalance will check the values of Balance in each of the
objects in MyBrowser and make sure that the values of
Balance in any object’s subobjects add up to the object’s value
of Balance. Forinstance, if Personal has a balance of $100, its
subobjects, save and spend, should have balances that add to
$100.

Because there are instances of two different classes in the budget
tree, the CheckBalance method must belong to both
SpecialSavings and AccountUse. Each oneis simply given a
copy. Think about how both might be made to inherit the same
method.

Begin by creating the method
SpecialSavings.CheckBalance asshown in Figure 12.6.

CUSTOMIZING L OORS TOOLS

125

USING YOUR LATTICE

DEdit of function SpecialSavings.CheckBal:

|'> et hl'u‘i

{{2pecialfavings CheckBalance)
zelf] (¥ zditeq;

CEEMOW-S8 1357
(¥ method ta check if
. . ‘ budget balanoses
Gf (NULL (@ Child))
then (@ Balance)

else
(if (EQUA&L (@ Balance)
[for
in (& Child)
surn (@ = Balance))]
then (@ Balance)

else (FRINT
"ERROR IM &CCOUNT BOLAMCE™
PRGMPTWINDDW)}))

Figure 12.6. The method CheckBalance
Copy this method from SpecialSavings to AccountUse.

Now the CheckBalance method can be tested. Give each
budget item a balance. If an inspector is open for any of them,
use that inspector. If not, click the middle button over the
budget item names in the AccountBrowser and select the item
Edit from the menu. Thisis a new way to alter the local values
of instances. The same menu can be used to open up inspectors.
This menu, and the others that are easily discovered, are
inherited from InstanceBrowser.

Once values have been given to the budget items, send the
message CheckBalance to any and all of them. Try creating
balanced as well as unbalanced budgets to make sure both work
properly.

The information displayed when the budget does not balance is
not very useful. Consider altering CheckBalance to print out
information about exactly what does not balance and where.
Also consider how to set up a system in which the various budget
items would actually be subaccounts. That is, credits and debits
would be sent to a specific part of the budget. The balance
would be updated at that part of the budget as well as in the
overall balance of the account.

CUSTOMIZING LOOBS TOOLS

13.

LOOPS
m

USING MASTERSCOPE WITH

The Masterscope program, used to analyze programs in
Interlisp-D, is also used with LOOPS programs. If you are not
familiar with Masterscope, see the Masterscope chapter in
Interlisp-D: A Friendly Primer and in the Interlisp-D Reference
Manual.

As programs become larger or more complex, it can become
difficult to keep track of which objects send messages, read the
values of variables, or put the values of variables in other objects.
Masterscope is a tool that allows you to examine the structure of
programs. It is able to analyze LOOPS programs to see how
objects interact with each other.

13.1 Masterscope Verbs for use with LOOPS

SEND

SEND SELF
SEND NOTSELF
SPECIALIZE
GET

GET Cv

PUT

PUT CV

USE IV

USE Cv
USEOBJECT

LOOPS adds a series of verbs to Masterscope so that relationships
peculiar to LOOPS can be analyzed. Here is a selection of those
verbs (see The LOOPS Manual for a complete list):

sends the message

sends the message to self

sends the message to other than self
specializes the method

gets the instance variable

gets the class variable

sets the instance variable

sets the class variable

gets or sets the instance variable
gets or sets the class variable

references the named object

13.2 An Example of using Masterscope

Masterscope commands are invoked by ryping a period followed
by a space followed by the command. if the banking example is

USING MASTERSCOPE | T LONBg

AN EXAMPLE OF USING MASTERSCOPE

stored on a file, try Masterscope on it. The first step is to have
Masterscope buiid up a data base of the relationships in the file
by typing:

ANALYZE FUNCTIONS ON BANK

Your screen looks like Figure 13.1 after doing this.

Top level -- Gonnected to {DSK}<LISPFILE

>

NIL

A7« AMALYZIE FUMNCTIOMS QN ZaMK
CLoodane

33«

Figure 13.1. Using Masterscope t0 analyze the Ba:ik Account example

To find out where Credit messages are sent from, type:

. WHO SENDS Credit

To find out where a Balance variable is referenced:

. WHO GETS Balance

. WHO USES IV Balance

Figure 13.2 shows the results of some Masterscope commands.

Top level -- Gonnected to {DSK}<LISPFILE

MIL

de, WHO ZEMOZ Credit
NIL

S, WHO ZEMDZ Oehit
{Checking . WriteCheok)
Ge. WHDO GETZ Balance
rhr-r‘n-r Todcooynt ., Dredit

3

Generichccount . Debit
Zavings, Computelntaresn)
Teo WHO USEZ IV Balance
(Generichccount . Credit
GEHH qofccount, Dekit
Zavings. Computelnterest)

T

Figure 13.2. Using Masterscope on tne 8ank AccGunt example

The Masterscope command DESCRIBE includes information
about sending, getting, and putting. DESCRIBE can be used
with LOOPS methods. For example, to get a description of the
method GenericAccount.Debit, type:

. DESCRIBE GenericAccount.Debit

The results of cailing the Masterscope comand DESCRIBE are
shown in Figure 13.3.

LICIRI/m AAA ST AC/ T ARF (AL T L AAAC

AN EXANMPLE OF USING MASTERSCOPE

Top level -- Connected to': {DSK }<LISPFILE
NIL -
dGe. DEZCRIBE Generichccount,Oebit
{ GenericAccount.Debit !
calls: @, LET,COMZ, OATE, @,
OIFFEREMCE
bindz: ze1f, OebitAmount
puts Ivs of 2elf: OebitHiztory,
Balance
get: I¥s of 221f: OebitHiztory,
Balancs

MIL

e

Figure 13.3. The Masterscope command DESCRIBE

LSING MASTERSCOPE WiTH LOOPRS BN

14. SOME CLOSING WORDS

This primer is designed to tell just enough about LOOPS to get
you started. Early chapters discuss the concepts of object
oriented programming and the LOOPS implementation of those
concepts. Later chapters present standard tools, design
techniques, and methods for modifying the objects provided in
the LOOPS environment.

It is now time to use this material on tasks that are more
interesting and relevant than the Bank Account example. Here
are some useful suggestions for next steps in LOOPS.

LOOPS lends itself to exploratory programming. We urge you to
take the ideas in this primer and begin to develop preliminary
versions of your system in LOOPS. There are development
projects where LOOPS was used to implement 15 to 20 different
versions of a system before it was exactly right. The LOOPS
interface provides both a programming tool and a thinking tool.
As you develop a new system, each preliminary version provides
an object for thought and discussion. The preliminary versions
are a crucial part of the design process.

As you gain some more experience with LOOPS, we suggest you
skim the entire LOOPS Reference Manual. By becoming familiar
with this manual you learn where to look when you need a
feature thatis too obscure or tricky to be covered in this primer.

The truly adventurous LOOPS user shouid also consider looking
at the definitions for objects provided by the system. All the
predefined LOOPS classes exist in the class !attice and can be
inspected and browsed just like user defined classes.

For more information on how the LOOPS language was created
and defined, we recommend the article:

“Object Oriented Programming: Themes and Variations", Mark
Stefik and Daniel G. Bobrow, Artificial Intelligence Magazine,
Winter 1986, Vol. 6, No. 4, pp 40 - 62.

For an interesting discussion of future trends in object oriented
programming, we recommend the article:

"CommonLoops: Merging Common LISP and Object Oriented
Programming”; Daniel G. Bobrow, Ken Kahn, Gregor Kaczales,
Larry Masinter, Mark Stefik, and Frank Zdybel; Xerox Palo Alto
Research Center, Intelligent Systems Laboratory Series, 1SC-85-8;
August 1985.

Good luck!

SOME CLOSING WORDS

141

A WORD ABOUT NOTATION

(Animal (NTVO.0X:.P%]7.%[@>.4)) Thisisthe way the system prints an instance. The unintelligible
string of characters after the name is called a unique identifier or
UID. Since instances are not required to have names, a UID is
generated for each one.

314 CLASSES A% NSTANCES

4. VARIABLES, METHODS, AND

MESSAGES
ey

This chapter describes how to access the variables in LOOPS
objects, how to create and move a method, and how to send
messages.

By the end of this chapter you will know the basic information
necessary to implement complete LOOPS programs.

4.1 - Variables

4.1.1 Reading Instance Variables

In the previous chapter, you learned how to examine and set the
values of variables using the inspector or the editor. In this
section you will learn about four basic forms for reading and
setting instance variables and class variables in a running
program. Beginning with this chapter, we use iv for instance
variable and cv for class variable.

4.1.2 Setting Instance Variables

The syntax for reading an instance variable is:
(& object ivhame)

To see how variable access works, type:
(@ ($ Billy) Haircolor)

It should return Blond. Note that the ivname (HairCaolar)is not
evaluated and thus should not be quoted.

Top level -- Gonnected to {DSK }<LISPFILE

B3«(@ (% Bi11y) HairColor)
Blond
G4«

Figure 4.1. Using the 8 function

Toset aninstance variable, the syntax is:

VARIABIES METHONS AND MFSIATE

<

VARIABLES

(<@ object ivname newvalue)
Try changing the value of Bil1y ' s Hatsize to 8 by typing:
(<@ ($ Billy) Hatsize 8)

If you still have your inspector window for Bi11y open, you may
have noticed that the value of HatSize did not change.
Inspectors do not automatically update themselves when values
are changed. To see the change, select Refetch from the
inspector’s title bar left button menu, and Billy's Hatsize
value changesto 8 as shown in Figure 4.2.

All Values of Man (3 Billy).
DateldfBqirth

]
HeartRate 5]

Hatzize

HairColor Bland
Muzclez Big
Beard T

Figure 4.2. Instance variabies and values for Biily

4.1.3 Reading Class Variables

The syntax for reading class variables is similar to that for
instance variables:

(@ object ::cvname)
Note the double colon (::) prefixing cvname.
Try typing:
(@ ($ Person) ::Legs)
The value 2 should be returned as shown in Figure 4.3.

Top level -= Gonnected to {DSK }<LISPFILE

MIL
Bd=i@ [} Perszon) ::Legs)

Dol

o]

Figure 4.3. Fetching the value of a class vanable

4.1.4 Setting Class Variables

The syntax for setting class variables is also very similar:
(«@ object ::cvname newvalue)

Change the value of Person’s class variable, Legs, to 4, by
typing:
(«@ ($ Person) ::Legs 4)

Now change the value of Person’s Legs back to 2.

Fo
rJ

VARIARLES METHODS AND VIZSCAGES

VARIABLES

4.1.5 A Note of Caution

Much of the modularity of an object-oriented program is derived

from allowing only an object's methods to read or change that

object's internal variables. Typicaily, reading and setting is done

through particular messages that enforce constraints to maintain .
consistency among an objects’s variables. LOOPs does not

enforce this modularity; any object may read or set the variables

of another object. You should use this capability carefully. @ and

«@ should be used mainly inside the methods of an object to

access that object’s variables -- including any variables inherited

from its supers.

4.2 Methods

4.2.1 Creating a Method

Each class has a set of methods which establish what that class
can do. Just as with variables, a class inherits all of the methods
from its supers. Because methods are defined in a class, all
instances of the class have the same methods and behave in
basically the same way. Any differences in behavior are due to
differences in the values of the instance variables in each
instance.

For the example, add the method WhoAmI to the class, Man.
Bring up the editing menu for Man and select Add(AddMethod)
from the editing menu. You are prompted for the name of your
method. Once you have typed in the name you are
automatically put into DEdit with a method template to edit, as
shown in Figure 4.4.

DEdit of function Man.WhoAml
(Method ((Man Whosml)
zelf) r# adited;
1deMoy-38 1915
C# FEws method template’
{ZubclazsRezponsibility)

Figure 4.4. New method template for Man ' s method WhoAmI

A method is a special kind of function defined by LOOPS. Note
that the function type, instead of being LAMBDA or one of the
other Interlisp-D function types, is Method. The first argument to
a Method function is always a list containing the object in which
the method is defined and the name of the method. The second
argument is always self. Selfis bound to the object that receives
the message when the method is run. Methods use se/f to access
the variables and other methods of the object. If a method has
other arguments, they follow self.

VADIAN mC AaarT

SIAMNE AN RACCC AT

METHODS

4.2.2 Moving a Method

First, document the method by replacing (* New method
template) with:

(* method to print a description of an instance
of Man)

In general, comments can be added to methods just as they are
added to any other kind of function.

Replace (SubClassResponsibility) in the body of the
method with:

(PRINL "I am ")

gPRINT self)

PRIN1 "I was born on ")

PRINT (@ DateOfBirth))

PRIN1 "My haircolor is *)

éPRINT (@ HairColor))

PRIN1 "My hatsize is ")

(PRINT (@ Hatsize))

The call to the function, SubClassResponsibility, is more
than a place holder. If you forget to edit a method, it causes a
warning if the method is run or compiled.

When finished, your defined method, WhoAm1, should ook like
Figure 4.5 below.

DEdit of function Man.WhoAml
(Methaod ((Man Whoim)
z21f) (% adited;
CAT-MOY-SB 1713
C* Meathod to print a
description of an instance of
rtany
(PRIML "1 am ")
(FRINT ze1f)
(FRINL "I was born on ")
(FRINT {@ ODatelrBirth 3l
(PRINL "My haircolor iz ")
(PRINT (@ HairColori)
(PRINL "My hatzize iz ")
CPRINT (@ Hatzizelld

Figure 4.5. Man’s method WhoAmI
Did you notice something different about the variable access

expressions? There is no object argument in them. They could
have been written in this form:

(@ self DateOfBirth)

However, because variable accessing is meant to be done mainly
from inside methods, the argument object is automaticaily
assumed to be selfifitis left out.

As a LOOPS program is developed, it is often found that a
method is in the wrong place in the class lattice. In our example,
itis clear that the method WhoAmI applies to Woman as well as to
Man. Therefore it should be moved up to Person where it is

43

VARIABLES METHODS AND \V'ESSAGES

METHODS

inherited by both classes. Bring up the editing menu (middle
button) on the ciass Persan in the browser window and select
BoxNade. This puts a box around Person to show where the
method should go. Next, call the editing menu on Man and select
Mave(MoveMethodTo) A pop up menu appears with Man's
methods as its items. (See Figure 4.6.) To compiete the move,
select WhoAmI from this menu.

d = ala
L3 U = Whodsmi

_—— Man
Anirnal ————Person) =27

- Wornan

Figure 4.6. Pop-up menuwith Man ' s methods

To check that Person has received the method WhoAmI, bring
up the information menu (left button) on Person and select
PrintSummary. The summary of the class Person is printed as
shown in Figure 4.7. Under Methods, the method WhoAmI is
printed in bold type to indicate it belongs to Persaon. If you
PrintSummary for Woman, the WhoAmI method is listed, but not
in bold because Woman inherits this method from Persaon.

Top level -- Gonnected to {DSK}<LISPFILE
#.($ Person)

Supers

Animal
Vs

HairColor Hatsize

OatedfBirth HeartRate
Cv¥s

Legs Marnrnal

HazEwes IzLiving
Methods

wWhoArmi

Figure 4.7. Summary of Persan

4.3

Messages

Message passing -- objects sending messages to other objects --is
the main activity of programs written in object oriented
languages. When an object receives a message, it runs the
appropriate method. After running the method, the object
returns some value to the sending object. Generally the method
causes some side effects to happen as well. Often these side
effects include sending messages to other objects. You have, for
example, already sent the message New to cause the method New
to create instances.

VADIAD T

AACTLANC AAMAAACTC A CC

MESSAGES

4.3.1 Syntax of a Message

-

object

selector

argument(n)

4.3.2 Sending a Message

The syntax of a message is:
(+ object selector argument! argument2 ...)
activates, or sends, the message.

is the object to which the message is sent. This object is bound to
self in the body of the method definition. This argument is
evaluated.

is the name of the method that is to be invoked by this message.
This argument is not evaluated and should not be quoted.

are bound to the corresponding arguments in the method
function. These arguments are evaluated.

To send a message with selector WhoAmI to the instance Billy,
type:
(< ($ Billy) WhoAmI)

The result of this message is displayed in Figure 4.8

Top level -- Gonnected to {DSK}<LISPFI

33+ [P Billyw) Whotml)
[am #.0F Bi11yd

[was born on @ ,
My haircolor iz Blond
My hatzize iz 7

-

[hg]

Figure 4.8. Output when message WhoAmI issenttoBilly

When an instance receives a message, it matches the selector of
the message with the names of its own methods. These methods
include those that are inherited from the supers of the instance's
class. If a match is found, the method is run. If no match is
found, an error occurs.

It is quite possible for different classes to have methods with the
same name, but with very different method bodies. This allows
objects to communicate with other objects in a standard way
without the sender worrying about internal differences in those
objects. For instance, there might be many different WhoAm1I
methods using different bodies. As long as they all print out a
description of the object to which they are sent, they are all the
"same" method as far as other objects are concerned.

46

VARIABLES METHODS AMD VIESSAGFS

5. SAVING LOOPS PROGRAMS

5.1 Using FILES? and MAKEFILE

All of the eiements of a LOOPS program can be saved on files in
the same way that work is saved in Interlisp-D. The function
Files? is used to add newly created objects, methods and
instances to files. The function MAKEFILE is used to write a file
to a storage device.

When you type:
(FILES?)

any class definitions, methods, and instances which are not
already associated with files are listed (along with standard
Interlisp-D entities such as functions and variables). You are then
asked if you want to specify their destination files. If you type ¥
(for yes), they are listed one at a time. After each, type the name
of the fileitisto goin. Anexampleisshownin Figure 5.1.

Top level == Gonnected to {DSK }<LISPFILE]

AL«({FILEZT)

tha methods: Parson, Whodnl

o ta ke dumnped.,

the instances: Jeff , Billy...to he dumped,

the clazs definitions: &nimal, Woman,
Man, Perzan. . . to he dumped.

want to say where the azhove go 7 Yes

imethods)

Perzon.Whoaml File name: EXANPLE

finztances)

Jeff Mowhersa

BiTly Mowhere

(ciazs definitionsz)

frnimal File name: ExXAMPLE

Wiaman “AMPLE

Mar SAMPLE

Perzon EYAMPLE

MIL

Az«

Figure 5.1. Using the function FILES?

CAVINC I MNDS DRNCR2ARNS

USING FILES? AND MAKEFILE

Note that we chose not to save the instances Jeff and Billy,
although they could have been saved as well. It is often just as
easy to recreate instances from their classes as it it to save them
on files. In some cases, instances may be the product of a
particular run of a LOOPS program and should not be saved since
the next run will produce different instances.

Note how methods are named. Person. WhoAmI is the WhoAmI
method for the class Person. This naming convention is
followed outside of the actual LOOPS code and LOOPS browsers.

To write out a file, you can use MAKEFILE (or MAKEFILES) as
you would for any Interlisp-D file:

(MAKEFILE *"filename)

The file, EXAMPLE, which was created in Figure S.1, is written to
the hard disk in Figure 5.2.

Top level -~ Gonnected to {DSK }<LISPFILE

37+ (MAKEFILE ~EXAMPLE)
{DSH}{LIEPFILES}EEES%PRIM?EH&MPLE.;1

JE5«

Figure 5.2. Saving an example file

5.2

Using the FileBrowser

After a long session of creating and editing LOOPS code, it can
be rather tedious to have to inform the file package where each
method, class and instance should go. Also, if the system you are
developing is big enough to be stored in more than one file, it
can be difficult to decide which objects go in which files. The
convention is to store an entire sublattice in a file. Methods
should go in the same file as the classes to which they belong,
subclasses should go in the files of their supers and instances
should go in the files of their classes. If things are not stored in
this way, the files have to be loaded in a very particular order. A
method can not be defined for a class that does not exist; a class
can not be defined if its super does not exist, and so on. In the
worst case, it is possible to create files which can not be loaded in
any order.

LOOPS provides a file browser (FileBrowser) to simplify adding
classes and methods to files. This browser should not be
confused with the library package, FILEBROWSER. The LOOPS
file browser is very similar to the class browser you have already
beert using. The FileBrowser can be used instead of the
ClassBrowser wheriever you want to create new items and save
themin a file. Itis also useful when you want to see what classes
and methods are in a given file. The class browser operations

52

SAVING L QNP 2eOGRANS

USING THE FILEBROWSER

you have already used, such as creating and editing classes and |
methods, are performed in exactly the same way using the
FileBrowser as using the ClassBrowser.

In order to illustrate the FileBrowser, you will create a file and
put a class, a subclass and a method in it. Because the only
reason for the existence of the classes and the method is to
observe how the FileBrowser works, they will be “dummies” --
they will not do anything.

To begin, hold the middle button in the loops icon and select
Browse File, asshownin Figure5.3.

Figure 5.3. Accessing the FileBrowser

The File List appears as in Figure 5.4,

trewFilet #
E<AMPLE
HRLLE
IMTECHT
IPMTOOLE
FATR AN

Figure 5.4. The menu from the Browse File selection. ‘

Select *newFile®* and then type a file name in the prompt
window. We are using the name FBEXAMPLE, but it does not
matter what name you use. Do not use the name of an existing
file. A completely empty FileBrowser should appear as in Figure

5.5.

File browser. (selected file FBEXAMPLE)

Figure 5.5. An empty FileBrowser

To browse a file that was already loaded, you could have selected
its name from the File List menu. To load an existing file, you
could have used *1oadFile* from the submenu of *newFile*.

Now you can create a root class for the FileBrowser. Unlike the
ClassBrowser, the FileBrowser allows you to create the root class
from a menu, sc you do not have to use Def ineClass. Click the
middle button in the FileBrowser's title bar to get the menu
shown in Figura 5.6. Note that the first three items are exactly
the same as those in the ClassBrowser title bar menu. Select
AddRool and type in some class name at the prompt. In our
example, the name is not important. We are using the name
AClass. BRecause adding arootto a FileBrowser also adds itto a

CAMVINT 1 MAANE DO/ D ARAC

USING THE FILEBROWSER

file, you are asked to confirm this operation by clicking the left:
mouse button.

Fecompute
AddR oot
FONs T SO ategory Merny
Charnge t-;l’-‘;_la'. rr’n‘u'iP*
Idzes WY
Edit File l-.uma
CLEAMUP file

g g

g '«::_z:~

Kd

Figure 5.6. The FileBrowser title bar menu

Now use the ciass edit menu just as you have before (click the
middle mcuse bution over the class name) to give your root class
at least one subclass, and add at least one method to one of your
classes (We have named ours ASubClass and OneMethod.) For
this example, it is not necessary to actually edit the classes or
methods.

As you create items with a FileBrowser, they are automatically
put into the file coms list. This is a data structure maintained by
Interlisp-D that describes the contents of a file. To see the result
of your work, bring up the title bar menu again and select Edit
File Coms. You should see, as in Figure 5.7, that everything
you have created with the browser is already in the file coms.

DEdit of variable FBEXAMPLECOMS

{ .jr« Fila crested oy)

FCLASZED AClass :)
gMETHDDI aEubicla

CFNS

| |"l'|_|' _. b

{IME T4 HE E3V)

Figure 5.7. DEdit of File COMS variable

Now, type (FILES?). Itis still necessary to do this to make sure
that instances and any auxiliary Interlisp-D functions are properly
included in files. However, for this example, the only message
you should see is that your file needs to be dumped. As always,
the final step is to use MAKEFILE to write out any files that need
to be dumped. For our example, type (MAKEFILE
' FBEXAMPLE).

In the chapters that follow, we use the ClassBrowser in our
figures. However, if you wish to save the examples you create,
you can use the FileBrowser. Remember that while the
FileBrowser has some extra menu items for dealing with files, the
basic menu items for creating, modifying, and displaying LOOPS
objects and the LOOPS lattice are exactly the same in the
ClassBrowser and the FileBrowser.

54

SAVING LOOPS 2RNOCRANMS

6. THE BANK ACCOUNT EXAMPLE

In this chapter you write a program that integrates all that has
been covered so far. This example is used again in Chapter 9. If
you think you might not have time to cover both chapters in one
session, use the FileBrowser {see Section 5.2) instead of the
ClassBrowser to make it easier to save this program on a file.

6.1

Designing the Program

Savings Account

Checking Account

NOW Account

Your goal is to write a program that defines and keeps track of
different types of bank accounts. The types of accounts to
include are:

A savings account must contain a record of the balance as well as
a history of deposits and withdrawals. It must also store the
current interest rate and compute the interest earned.

A checking account must similarly contain a record of the
balance and a history of deposits and withdrawals. It must also
maintain a list of check numbers coupled with the amounts and
dates of the checks written.

A NOW account is a combination of a savings account and a
checking account. Checks can be written and interest is earned.

These accounts ail have some operations and variables in
common. You design your class lattice structure by determining
the operations and variables common among the objects.

First, you define a class, GenericAccount, which consists of
those variables and methods common to all of the accounts.
Figure 6.1 shows a representation of the class lattice you are to
develop. The classes are shown along with their instance
variables.

DESIGNING THE PROGRAM

GenericAccount
CreditHistory
DebitHistory
Balance
Savings Checking
CreditHistory CreditHistory
DebitHistory DebitHistory
Balance Balance
InterestRate CheckingHistory
NOWAccount
CreditHistory
DebitHistory
Balance
InterestRate
CheckingHistory

Figure 6.1. Inheritance lattice for Bank Account example

The class GenericAccount can add in deposits as credits,
subtract out withdrawals as debits, and update the balance. The
rest of the lattice structure comes naturally from the definitions
of the accounts given above. Notice that we have given
NOWAccount two supers: Savings and Checking.

6.2 Creating the Classes

First, create all of the classes you need. Then you can go back
and fill in the class variables, instance variables, and methods.

To create the root node, GenericAccount, type:
(DefineClass 'GenericAccount)

Next open a browser for GenericAccount. Then, create two
specializations of GenericAccount: Savings and Checking.
Your browser window should look like Figure 6.2.

Class browser

——Savings

GenericAccount =2___]
~-- Checking J

62

THE BANK ACCONRNT ZXAMP! €

CREATING THE CLASSES

Figure 6.2. Lattice with S@V1RgSs and Check ing classes added

HOWAccount has 2 supers, so the process of creating it is a little
different. First, create it by specializing Savings. Then bringup
NOWAccount's editing menu and select AddSuper from the
submenu of Add{AddMetheod). Type Checking in the prompt

window. Your browser should look like Figure 6.3.

Class browser

. _——— Savings —___
GenericAccount ==—____ . e
- Checking

== NOWAccount

Figure 6.3. Browser including NOWAccount
Now that the entire lattice is created, you can edit each class.

6.3 Editing GenericAccount

Start your class definitions with GenericAccount. Bring up the
editing menu (middle button) on GenericAccount in the
browser window and select Edit(EditClass). Document
GenericAccount by adding the following between Class and
Edited in the class definition template:

doc (* the generic type of bank account; defines the basic
things needed for all kinds of accounts)

6.3.1 Adding Variables, Values, and Documentation

GenericAccount has only one class variable since only one
variable has a value that is the same for every account. Add the
following after ClassVariablesin the template:

(FOICInsured 100000 doc (* all accounts insured by federal
government to $100,000))

All of your accounts have a credit history, a debit history, and a
balance. Since each account has different values for these
variables, CreditHistory, DebitHistory, and Balance are all
implemented as instance variables.

CreditHistory and DebitHistory will keep lists in the form of
(CreditAmount . date) and (DebitAmount . date). To
insert these instance variables into your GenericAccount class,
add the following variables, values, and documentation to the
list starting with InstanceVariablesinthe template:
(CreditHistory NIL doc (* a list of (CreditAmount . date) to
tell the credit history))

(DebitHistory NIL doc (®* a list of (DebitAmount . date) to

tell the debit history))
(Balance 0 doc (* the current balance of the account))

THE QANK ACCOHINT EXYANMDIC AR

EDITING GENERICACCOUNT

Note that NIL is the default value for CreditHistory and for
DebitHistory. When you are finished editing, GenericAccount
should look like Figure 6.4.

DEdit of CLASSES #.($ GenericAccount)

{iMetallass Class doo Ok the ganeric type of
DENK account, defines
the pasic things need
far all Kindszs of
ACCoUnts)

Edited: CF 2 dited; .
T1S-Mov-38 14115
{Zupers Object)

(ClazzWariables (FOICInsured 198860 doc
i all sseounts
insured by the fedepral
Jovernment to
$100,0000))

{InstanceVariables (CreditHistory MIL

don
% 3 it of i
Creditamount | date’
ta t2il the credit
Histare)
fOehitHiztary MIL doc
(% 3 list of ¢
Debitamount , date) to
tell the debit historys)
(Balance 8 doc (¥ the cureent bajance
A of the accounta))
{MethodFns)) '

Figure 6.4. Instance and class variables in GenericAccount

6.3.2 Defining Credit and Debit Methods

All of the accounts need methods to credit and debit the
account. First, you define the method, Credit, which takes a
deposit, adds it to the balance and updates the credit history.
Begin by using the browser edit menu to add the method
Credit to GenericAccount. When the DEdit window
appears, add the argument, CreditAmount, after self. Add the
appropriate documentation then type the following code in
place of (SubClassResponsibility) in the body of the
method:

(+®@ CreditHistory

(CONs
ﬁcons CreditAmount (DATE))
@ CreditHistory)))
(+@ Balance
(PLUS

(@ Balance)

CreditAmount))
(@ Balance)
The results should be as shown in Figure 6.5. Note that the
method returns the new balance.

64

THE BANK ACCOIINT EXAMP!L

EDITING GENERICACCOUNT

DEdit of function GenericAccount.Gredit
iMethod {{GenericAccount Credit)

zelf Creditdmount
(# aditad;
CYE M- 38 140380

(* k &dds (Craditamount | date) o
Creditdistory and adds Craditamount to
Ealanced

(e

CreditHistaory

(OOME (COMZ Creditimount (O&TE))
(@ CreditHistory))) N

L

i &g

Balance

(PLUS (@ Balance)
Creditimount)

(@ Balance))

Figure 6.5. The method Creditfor GenericAccount

Now define the method Debit. Itis the same as Credit except
that it subtracts an amount from the balance. Overdrafts are
discussed below. Your method should look like Figure 6.6.

DEdit of function GenericAccount.Debit

(Mathod
{{Genericéccount Oebit)
ze1f Oebitdmount) (+ edited;

CAT-d3n-E7 15420

(¥ # adds (Dabitemount | date) to
DebitHiztory and subtracts Debitamaount
from Balanca)

[i

DebitHiztory

{CONZ {CONZ DebitAmount (DATE
(@ DebitHiztory))

1l

i i@

Balance

{DIFFERENCE (@ Balance)
Oehitfmount)

f@ Balance))

Figure 6.6. The method Debit for GenericAccount

6.3.3 A Simple Test of GenericAccount

Now, before defining the rest of the classes, test an instance of
GenericAccount to ensure that the methods Credit and
Debit are working properly.

Create an instance of GenericAccount, with the name
MyGeneric, by sending the message New:

TLIC MARIL, AFCCAITINT CVARDEC

AS

EDITING GENERICACCOUNT

(¢ (3 GenericAccount) New 'MyGeneric)

Now send a Credit message to MyGeneric. Credit the account
with 1000 by typing:

(< ($ MyGeneric) Credit 1000)

The new balance should be returned because we put (@
Balance) at the end of the method. To verify that the method
updated the instance variables correctly, inspect MyGeneric by
calling the function (INSPECT ($ MyGeneric)). It should
appear as shown below in Figure 6.7.

All Values of GenericAccount ($ MyGenerig
CreditHiztory ({1888 . "1S-Now-3F 14:41:5
OebitHiztory NIL

Balance 1839

Figure 6.7. Result of sending the message Credit

Now test Debit in the same way. Try withdrawing 500 from
your generic account by typing (¢« ($ MyGeneric) Debit
500). Remember to use Refetch in the inspector's title bar
menu to update the values shown there. It should now look like
Figure 6.8.

All Values of GenericAccount (3 MyGenerig
CreditHistory ({1888 . "15-Mow-36 14:56:@
OehitHistory ((B8@ . "15-Mow-36 14:55:77
Balance]

=
x]

Figure 6.8. Result of sending the message Deb it

6.4

Editing Savings

6.4.1

When GenericAccount works properly, you can define
Savings. Because Savings inherited all of
GenericAccount's methods and variables, you only need to
add one additional instance variable which contains the interest
rate, and a method to compute the interest.

Adding Variables, Values, and Documentation

Add the variable, InterestRate, with a value of .05, to your
Savings class. When you are done, your class should look like
Figure 6.9.

56

THE BANK ACCOI AT sxaMPr &

EDITING SAVINGS

‘ : DEdit of GLASSES #.(8 Savings)

((Metallass Claszs doc c# gsimulates a
standard zavings
acocounty

Edited: (# adited;

(Zupers GenericAccount)

ClaszsVariables)

{InztancevYariahles (InterestRate (85 doc
O default value of

intarest rage iz S
paercent) l l

fMethodFns))

Figure 8.9, Inserting instance vanable Interest

4D
(./‘)
»
4<
D
N

6.4.2 Defining a Computelnterest Method

Now you must define a method that computes the interest
earned, based on the current balance, and then adds the interest
to the balance. For simplicity, we ignore the length of time
various amounts have been in the account.

Add the method ComputeInterest to Savings and give it the
following body:
(«+®@ Balance
(PLUS
(@ Balance)
(TIMES
(@ InterestRate)

(@ Balance))))
(@ Balance)

Your method should look like Figure 6.10.

DEdit of function Savings.Computelnterest
{Method
({Zavings Computelnter e;r,
f’
e

zelf)
’ 1518
Count with

o E
P cradits ac
sed an the interest

interast ba
rate and the curesant
balance)

[

Balance

(FLUZ (@ Balance

CTIMEZ (@ Interestﬁate)
(@ Balance))))
(@ Balance))

Figure 6.10. The method ComputelInterest

THE BANY ACCOUNT EXAMPLE -

EDITING SAVINGS

6.43 Simple Test of Savings

Now you can test Savings in the same way that you tested
GenericAccount. Create an instance of Savings called
MySavings. Creditit with 1000 and debit it by 500. (Remember,
it inherits these methods from GenericAccount.) Now send
MySavings the message ComputeInterest. Finally, inspect
MySavings to insure that everything worked properly (Flgure
6.11).

All Values of Sauings (% MySavings)
CreditHistory ({1008 , "15-Nav-36 15:
OehitHiztory aiﬁﬂ@ . "15-Now-36 152 4 ﬂE
Balance 526.8
IntereztRate @5

Figure 6.11. Results of Credit, Debit, and Computelnterest on
MySavings

6.5 Defining Checking
Next, define the class, Checking. Like your previously defined
class, Savings, Checking ‘has inherited all of
GenericAccount's methods and variables. You only need to
add one new instance variable and a method to write checks.
6.5.1 Add Variables, Values, and Documentation
The instance variable will contain the checking history. It will be
a list of triples. Each triple will contain the check's number, its
amount and its date. When you are finished, your class should
look like Figure 6.12.
DEdit of CLASSES #.($ Ghecking)
({Metatlass Class doc (# zimulates s
fandard checking
aceount)
Edited: (* 2dited;
"15-Mov-38 13E1)
(Zupers GenericAccount)
(ClasszVariables)
fInztanceYariables (CheckingHiztary
HIL doc
(¥ keeps list of
(CheckrMumber
) Amount D&t")tﬂpl"‘"ll
(MethodFrs)
Figure 6.12. The class Check i ng
&3 THE BANK ACCOLINT EXAMDLE

DEFINING CHECKING

6.5.2 Defining a WriteCheck Method

6.5.3 Simple test of Checking

You need a method to store check numbers, amounts, and dates
in CheckingHistory, and to update the Balance.

Add the method WriteCheck to Checking with the following
body:
(«@ CheckingHistory
(CONS
(LIST CheckNumber Amount (DATE))

(@ CheckingHistory)))
(« self Debit Amount)

Your defined method looks like Figure 6.13. Notice the last line
of WriteCheck. You have already created a method to debit an
account so WriteCheck can use this method. Checking
inherits the method, Debit, from Generic Account. The
debit message can be sent to self;, that is, to the instance of
Checking which received the WriteCheck message. This
example shows a way that methods can be built out of simpler
methods by having them send messages to self, just as functions
can be built out of calls to simpler functions. Note: when
sending a message, self cannot be omitted as it can in the @ and
«@ expressions.

DEdit of function Checking.WriteCheck

(Method ((Checking WriteCheck)
3e1f CheckMumber Amount)
[# adited;
H1S-Mow-3S8 1545
(% adds a (CheckMNumber
Lmount Datey triple to
CheckingHistory and dabits
tha account)
e
CheckingHistory
(COMS (LIZT CheckNumber Amount

FOATE D)
(@ CheckingHizstary)))
{« zelf Oebit Amount))

Figure 6.13. The method WriteCheck forChecking

Now test Checking. Create aninstance called MyChecking and
credit it with 100. Write a check by sending the message
WriteCheck with the arguments 100 and 25.00. Then inspect
your instance. The result should look like the Inspector window
shown below in Figure 6.14.

All Values of Checking ($ MyChecking).

CreditHiztory 0188 . "15-Mov-86 15:5@:
OebitHiztary ({26.8 . "15-Now-36 15:50
Balance 5.9

CheckingHistory ({189 25.8 "18-Now-36 15

TUC OANY ACOAIINT CYARDIE

AQ

DEFINING CHECKING

Figure 6.14. Inspection of MyCheck ing

6.6

Testing NOWAccount

Because a NOW account is a combination of checking and
savings, the class NOWAccount inherits everything it needs
except documentation. All you need to do is create an instance.
Name the instance MyNOW and test it by crediting it with 500,
debiting it by 100, writing a check for 55.55 and asking for the
interest. Then inspect it. Your results should look like Figure
6.15.

All Values of NOWAccount ($ MyNow).

CreditHiztary CrERE . "16-Naow-356 15:89;
OebitHiztory (68,65 | "1&8-Nov-36 1F5:§
Balance 351.6728

IntereztRate LA
CheckingHisztory ({181 55,55 “18-Movy-3F LG

Figure 6.15. inspection of MyNOW

This example is expanded in later chapters. If you are not
continuing through the primer at this time, you should save your
LOOPS program so that you can load it in again later. See Section
5.1 forinstructions on how to do this.

THE BANK ACCOLINT FXAND: =

7. STRATEGIES FOR ORGANIZING

OBJECTS
1

Designing the class lattice for a LOOPS program is central to the
effective use of LOOPS. A carefully designed lattice can result in
a simpler and more effective problem solution. This chapter
presents three typical strategies for organ:zing objects: elision
through inheritance, incremental customization, and factoring
functionality.

These strategies are a starting point. Often an application will

" require a combination of two or even all three strategies. With

experience you will discover strategies of your own.

7.1 Elision Through Inheritance

Elision through inheritance is the most basic strategy used to
organize a lattice of objects. The word "elide” means to
eliminate or to leave out. When creating classes, it is not
necessary to specify each class completely. Instead, common
characteristics can be grouped in a super object. To use elision
through inheritance, determine which characteristics are
commaon to all objects that must be organized. The top-most
class in the lattice has variables and methods to implement those
characteristics. Each successive specialization adds only those
characteristics which make it different from its supers. Thus,
parts of the description of a given class can be elided, making the
construction of a set of classes much easier.

Elision through inheritance is useful for defining complex
taxonomically related networks of objects. The Animal lattice
used to introduce classes in Chapter 1 is an example. Such a
network is often called an “is-a" hierarchy, e.g. a woman is-a
person, a person is-a animal, etc.

An example of organizing objects with elision through
inheritance is shown in Figure 7.1.

CTRATEAIES ENAR NRAANIZING DR

ECTS

ELISION THROUGH INHERITANCE

Animal
HairCalor Brown
EyeColor Brown

Dog Person
Legs 4 Legs 2

o

Man Woman

HairLength Short HairLength Long

Figure 7.1. Organization of objects for elision through inheritance

In this example, the lattice is used to describe classes. The
description of each class is simplified by class inheritance. The
class, Man, inherits the instance variables, HairColor and
EyeColor, along with their default values from Animal. Man
also inherits the instance variable Legs along with its default
value from Person. Due to inheritance, Man has four instance
variable/default value pairs. Only one of these pairs is actually
defined in the class Man: the other three can be elided because
of LOOPS inheritance.

When objects are organized using elision through inheritance,
usually only the abjects lower in the inheritance lattice are used
to create instances. Although the objects higher in the lattice do
represent real or existing things, they are primarily used for their
taxonomic or classifying function.

7.2 Incremental Customization

Incremental customization is another way to simplify the
specification of classes by using inheritance. In incremental
customization, certain more general classes are not designed to
have instances; they are meant to be combined with other
classes to create new classes that do nave instances. Anexample
of this strategy is shown in Figure 7.2.

72

STRATEGIES "R ORCANIZ NG ORIECTS

INCREMENTAL CUSTOMIZATION

Luxury MidsizeCar FourWheel

e /

Sedan Wagon HatchBack

\\
\

BulgeTownCar BulgeAll BulgeZX 1
ulgelow TerainWagon ulge . BulgeHatch

Figure 7.2. Lattice showing example of incrementai customization

Figure 7.2 shows a series of automobile classes. MidsizeCar has
three specializations, Sedan, Wagon and HatchBack. Each of
the classes in the bottom row represents a specific model of car.
These bottom classes inherit from one of the specializations of
MidsizeCar. Most also inherit from either Luxury or
FourWheel in the top row.

The classes Luxury, MidsizeCar, and FourWheel are not
designed to be used alone. They are not complete enough to be
instantiated. Rather, they are designed to be used together with
the classes in the middle row. Each provides a package of
features that can be combined to create a description of specific
automobile models. For instance, Luxury can be mixed
together with any one of the three middle classes to produce a
specific model.

The key to using incremental customization is recognizing a
generic set of prototypes in your problem domain. It must be
possible to describe most problem situations in terms of unique
combinations of the generic prototypes.

For example, consider an expert system to diagnose assembly line
faults based on specific error reports from a set of standard tests.
With incremental customization each test is represented as a
high level class. A particular failed product is regresented by an
instance of a class that inherits from each ciass representing each
test the product failed.

7.3 Factoring Functionality

Organizing objects to factor functionality is done by grouping
related variables and methods for an object intc a set of multiple
supers. When objects are defined in this way, only the class
lowest in the inheritance lattice is used to <reate instances.

CTDATCAICC CAD AT ANITING ARICCTS

FACTORING FUNCTIONALITY

Factoring functionality is a strategy usefu! for developing
programs with several distinct major componenis. Super classes
are created to represent those major components. This allows
for a modular partitioning of distinct system components. -An
example of factoring functionality is shown in Figure 7.3.

DisplayManager| {Statistics||Simulation

/

;

SimulationMadel

Figure 7.3. Lattice showing example of factoring functionality

Instances of SimulationModel will simulate some process,
coilect statistics, and produce an animation on the screen. Each
instance includes all three capabilities because all three are
inherited by SimulationModel. To modify the statistics
capabilities it is only necessary to edit the Statistics class.

The three super classes, DisplayManager, Statistics, and
Simulation, each contribute their definitions to
SimulationModel. instances of the super ciasses alone are not

instantiated. If some aspect of the functionality of

SimulationModel needs to be changed, only one of its supers
needs to be edited.

STRATEGES FOR ORGAN T'NG DRIECTS

8. SPECIALIZING METHODS
L

Specializing methods can be more complex then specializing
variables. Class and instance variables are inherited from a class
to its specializations. Methods are also inherited in this manner.

When specializing a class, you can specify variables in the new

enecialization in three wavs:
IMSLIUIILQUUIVIT T T T vy y’-

inherit a variable and its defaults as specified in the super. In
LOOPS, this is the defauit way of specifying variabies in
specializations.

Inherit a variable but change the default from what is specified
by the super.

Specify variables in the specialization that are not inherited from
the super.

With methods, specialization is more complex. You might, for
example, wish a specialized method to set a few instance
variabtes, run the super's method, then reset the instance
variables. Such finer grained control of method inheritance is
discussed in this chapter.

8.1 «Super and «SuperFringe

LOOPS provides two special versions of « (the Send operation)
which facilitate the incremental specialization of methods. They
are «Super, pronounced “"send super’ and «Superfringe,
pronounced "send super fringe". They allow you to make
changes to a method contained in a class that is higher in the
class hierarchy, without changing the original method.

When «Super is placed in one of a specialization's method
definitions, a super's version of the same method is run.
Execution then returns to the method of the object instance
which originally received the message. In other words, «Super
forwards a message up the class hierarchy and causes the next
more general version of the method to be invoked.
«SuperfFringe is similar. If the receiving object has multiple
supers, it will forward the message to all of them, possibly
causing several versions of the method to be invoked. «Super
stops once it finds one version of the appropriate method.

The syntax is the same for both:
(<Super object selector argtarg2...)
(<SuperfFringe object selector arglargZ..)

SPECIAIIZING MFTHODS

«—SUPER AND «SUPERFRINGE

Object should be se1f. Selectoris not evaluated. It is often the
case that a specialized method has exactly the same arguments
as the more general method. In this case, the following
shorthand may be used:)

(<Super)

Before attempting the following examples, be sure the Bank
Account example from Chapter 6 is loaded.

As a first example of specializing methods, new methods with
the selector Status can be created for the Checking and
Savings classes. Then NOWAccount can be given two different
specializations of Status to demonstrate how «Super and
<SuperfFringe behave. All of the Status methods will simply
print out a message telling something about the account.

For Checking, Status will print the checking history of the
account. For Savings, Status will print out the current
interest rate. Create these methods now. The body of
Checking.Status should be:

(PRIN1 "THE CHECKING HISTORY OF YOUR ACCOUNT IS: *
PROMP TWINDOW)
(PRINT (@ CheckingHistory) PROMPTWINDOW)

and the body of Savings.Status should be:

(PRIN1 "THE INTEREST RATE FOR YOUR ACCOUNT IS: ")
(PRINT (@ InterestRate))

The class NOWAccount inherits from both Checking and
Savings. Each one now has a method called Status. Does
NOWAccount inherit both of them? If not, which one does it
inherit? Create an instance of NOWAccount named MyNow (if
MyNow does not still exist). Try sending the message Status to
MyNow and see what happens. The result should be something
like Figure 8.1. :

"15-Nov-86 15:59:; 47"))

Figure 8.1. Sending Status to MyNow

Only one of the two methods was invoked. Looking at the class
definition for NOWAccount, notice that Check ing is first on the
list of supers. When a class has multiple supers, they are tried in
left to right order to find any inherited parts. Thus, classes can
notinherit conflicting characteristics.

Now two different specializations of Status will be created,
one using «Super and then one using «SuperFringe. First,
select SpecializeMethod from the submenu of
Add(AddMethod) in the editing menu on NOWAccount. Then
select Status from the method menu that pops up. When the

SPECTALIZING METHODS

«SUPER AND «SUPERFRINGE

editing template appears, note that «Super is already present as
inFigure 8.2.

DEdit of function NOWAccount.Status

(Method ((MOWACCOUNnt 2tatus)
zeif) C# adited:
1 EMov- 35 1T
(¢ Mathod to print status of
AR acoount
[e2uper
ze1f Statuz))

Figure 8.2. The method Status for NOWAccount

Ordinarily, the next step wouid be to add some code before
and/or after the call to «Super to produce a more specialized
method. For now, simply add some documentation and exit.

Try sending the message Status to MyNow again. The result
should be exactly the same as before (see Figure 8.1). The version
of the method that «Super finds is the same one originally
inherited.

Now edit the method, NOWAccount.Status, replacing «Super
with «SuperFringe asin Figure 8.3.

DEdit of function NOWAccount.Status

iMethod ((NOWACCOUNt Status)
zelf) C ik edited,
13 3 NO" '-"" 17 ._:u ‘j:l
(% Mathod to print status of
an account,)
«IuperfFringe
5 f

1
1f Ztatusz))

L’[u ln

figure 8.3. The method Status for NOWAcCcount

Send the message Status to MyNow again. Notice that the
Status methods for both Checking and Savings are invoked.
This is because both are supers of NOWAccount.

«SuperFringe is rarely used. This is because it is unusual to
find two methods with the same selector that are truly
complementary. Methods with the same selector often
duplicate and/or conflict with each other’s actions. In most cases,
«Super is used to add functionality to the methods of the first
super on a specialization’s supers list.

8.2 Specializing a Method in the Bank Account

Neither of the method specializations you have created so far
have added any functionality to the method being specialized.
This section illustrates how to augment inherited methods.

SPECIALIZING METHODS

SPECIALIZING A METHOD IN THE 3ANK ACCOUNT

First, add a specialization of the Savings class, named
MinimumBalance as shownin Figure 8.4.

Class browser

. ——— Savings —— MinirnurnBalance
GenericAccount =—____ . e
~~- Checking = NOWAccount

Figure 8.4. Class inheritance lattice for Bank Account example

A minimum balance account is a savings account bearing a
higher interest rate than a regular savings account. A minimum
balance account carries a penalty if the balance goes below the
minimum allowed. The penalty is deducted after any debit
leaves the account's balance below the minimum balance.

The MinimumBalance class needs new variables to specify the
minimum balance and the penalty. Since these are the same for
all individual accounts, they should be class variables. Add the
class variables, Minimum and Penalty with values of 1000 and
100, respectively.

The MinimumBalance.Debit method needs to be specialized.
It should first execute the GenericAccount.Debit method to

actually debit the account. Then, if the balance is below
Minimum, Penalty should be deducted from Balance.

To do this, select SpecializeMethad from the submenu of
Add(AddMethod) and then select Debit from the pop-up
menu. '
Add the following Lisp code after the call to «Superin the body:
(if éLESSP (@ Balance) (@ self ::Mininua);

then +Super self Debit (®@self ::Penalty))

TheMinimumBalance.Debit method will look like Figure 8.5.

34 SPECIALIZING ETSODS

SPECIALIZING A METHOD IN THE BANK ACCOUNT

DEdit of function MinimumBalance.Debit

{Method ({MininumBalance Oebit)
ze1f Dehitémount) -
(# 2dited;
T Z-poY-38 13447

]
'

(¢ * Adds (Craditemount | data) to
CraditHistory and subtracts Creditamount
fram Ealance, Then checks If Penalty
should be Jdebited,)

L =3uper
22 1f Oehit DebhitfAmount)
iif (LE23P (@ Balance)

I R TR T B
then (+

Oebit @@ ::Penalty)

Figure 8.5. Method DebitforcassMinimumBalance

Note that this Debit method uses the inherited Debit method
twice whenever the balance is low.

To try out this new Debit method, create an instance of
MinimumBalance named MyMinimum. Credit it with 5000 and
debit it by 4500. The balance returned should be 400 rather than
500.

9. ACTIVE VALUES AND

ACCESS-ORIENTED PROGRAMMING
L

Access-oriented programming is a programming paradigm in
which fetching or storing data activates computations. In
LOOPS, access-orientad programming is implemented using
objects called active vaiues. When an active value is read or set, a
desirabie side effect nappens automatically.

The following sections describe how to define LOOPS active
values and how to use them to monitor program states, to guard
variables values, and to propagate values among objects.

This chapter continues to work with the Bank Account example.
Load that example now if it is not currently loaded.

9.1 Defining Active Values

ACTIVE VALUES AND ACCFS .

SNo

o

(M

o~

N

To make the value of a variable active, the value is replaced by an
active value object. When an attempt is made to access the
value, the active value object does some computation, using its
methods. The actual value may be stored inside the active value
object or it may be computed by that object.

The process for defining and using active values can be divided
into four basic steps:

Choose an Active Value Class. LOOPS provides a set of
classes designed to create various kinds of active values. To see
these classes, browse the class ActiveValue. The portion of the
lattice initially concentrated on is shown in Figure 9.1.

Class browser - -
————LocalStateActiveValue

ActiveValue =20 __
- NotSetValue

Figure 9.1. A oortion of the ActiveValue lattce

ActiveValue is an abstract class. It contains all variables and
methods common to active values but it is not complete enough
to function on its own. ActiveValue is never instantiated
directly. LocalStateActiveValue and NotSetValue are
specializations of ActivavValue.

Specialize the ActiveValue. Some of the active value
classes provided by LOCPS can be used without change. Others
must be speciaiized to yieid the desired effects.

N PROGRAMMING 9

DEFINING ACTIVE VALUES

(4)

Create Instances. As with other classes, the actual work is
done by instances of active vaiue ciasses. Each active vaiue is a
separate instance of the appropriate active value class.

Install the Active Value. Active values all inherit the
abiiity to instail themseives. This is done with the message
AddActiveValue. The syntax of this message is: '
(« self AddActiveValue containingObjvarName)

self is the active value which is installed, containingObj is the
object in which the active value is installed, and varName is the
variable on which the active value isinstalled. There are optional
arguments and we will not use them in these examples.

To illustrate how active values are typically used, we begin by
discussing how NatSetValue works.
LocalStateActiveValue and its specializations are used in
the examples presented iater in this chapter.

When an instance is created, the instance variables are each
bound to an instance of NotSetValue. E£ach instance of
NotSetValueis an object with a method for finding and setting
the default value of the variable to which it has been bound. If
an instance variable is directly bound to a local value, that value
replaces the instance of NotSetValue (which was bound to the
value of the variable instantiation). When an attempt is made to
access the value of an instance variable which has no local value,
NotSetValue finds the default value in one of the supers and
copies it into the instance. Since default values are often
replaced with local values, this approach avoids fetching default
values unnecessarily.

We continue by demonstrating how to apply the four basic steps
to an example.

9.2 Using Active Values to Monitor State

Generally there are certain variables whose values are critical to
the running of a program. Monitoring such variables during
execution can be helpful in understanding and controlling the
program's behavior. Active values provide an easy way to do this
monitoring: to each critical variable, an active value is attached.
Each active value prints its variable’s value or updates a display
each time the value is changed.

LOOPS provides Gauges, a large selection of display classes
which facilitate this technique. Gauges are explained in Chapter
10. In this section you learn how to do monitoring by using
active values directly. The value of the Balance variable in the
GenericAccount ciass is made active so that it prints itself in
the prompt window wheinever itis changed.

Step one chose an active value class. A class is needed to keep
track of the actual vaiue and take some action whenever it is
changed. For this purpose, LOOPS provides the

ACTE/E UATTIES ANN ACFCCC APIEATrN AN D v s 2,

USING ACTIVE VALUES TO MONITOR STATE

LocalStateActiveValue class. This is the most versatile of
the active values classes. LocalStateActiveValue contains
an instance variable called localState. The variable's actual
value residesin LocalState. LocalStateActiveValue also
has methods for reading and setting this value. They are called
GetWrappedValue and PutWrappedValue.

Step two specialize the active value class. As s,
LocalStateActiveValue has no real effect; it simply sets or
returns its localState. In this example,

LocalStateActiveValue is specialized to create an active
value that prints the value whenever it is set.

Create a specialization of LocalStateActiveValue called
PrintValueAV.

Whenever an attempt is made to set a value that is active, the
message PutWrappedValue is automatically sent to that active
value instance. The message is called PutWrappedValue
because the active value can be viewed as being wrapped
around the real value.

Now specialize PutWrappedValue. Bring up
PrintValueAV's editing menu and select
SpecializeMethod from the submenu of Add(AddMethod).
Then select PutWrappedValue from the menu that pops up.

Code to print the value needs to be added before the call to
+Super. Unlike the methods specialized in Chapter 8,
PutWrappedValue is part of the LOOPS system. Nevertheless,
methods provided by the LOOPS system can be specialized just as
those created by the user. As long as you know what a method
does, you can specialize it.

Add a print statement like the one shown in Figure 9.2 before
the «Super and exit the editor.

DEdit of function PrintValueAV.PutWrapps

(Method ((PrintYalussy FutWrappedyalue)
ze1f containinglb] varMame
newalue propMame type)

r# 2dited;
C1EMoy-ZE 1TI19

CE F Print newvalue and Replacse the
walue wrapped in the active value)

PPEINT (CONCAT "Your new "
varMame " iz "
newvalue)

PEOMPTWINDOW)
(«2upar
zelf FutiWrappediyalue
containinglbl] vardame newvalue
proplams typel)

Figure 9.2. The mathod PrintValueAV.PutWrappedValue

ACTVE JALLIES AND ACCESS-ORIENTED PROCIANNING 33

USING ACTIVE VALUES TO MONITOR STATE

Step three create an instance of the active value class. Create an
instance of PrintValueAV. Name it PrintValueAV1l. If you
were going to use PrintValueAV in a real application, you
would probably need a number of different instances in orderto
make different values active at the same time. The 1 on the
name of the instance anticipates this.

Step four install the active value. If the GenericAccount
instance MyGeneric is not currently in your environment, you
should load it now or create it from the class, GenericAccount.
PutPrintValueAV1lirto MyGeneric by typing:

(¢ ($§ =~ PrintValueAvl) AddActiveValue ($
MyGeneric) 'Balance)

This sends PrintVaiueAV1 the message to AddActiveValue
to the Balance instance variable of MyGeneric. That is,
PrintValueAV1 :nstalls itself as a wrapper on the value of
Balance.

To see if everything is working, send MyGeneric some Credit
and Deb it messages. The resulting balance should be printed in
the prompt window.

Before going on, inspect MyGeneric. Instead of simply a
number for the value of Balance, you should see something
like:

#.(SAV PrintValueAV (PrintvalueAv1l &)
(localState 800))

The $AV indicates that this is an active value. PrintValueAV
indicates which active value class i$ being used and
(PrintValueAV1 &) indicates the particular instance. The & is
used by the Interlisp-D inspector to indicate additional
embedded list structure. Here the & represents the
PrintValueAV1 instance. Note that localState is actually
embedded inside the PrintValueAV1 instance. It appears in
the Browser for convenience so you do not have to inspect
PrintValueAV1 to see the value.

9.3 Using Active Values to Guard Variables

Often it is useful to restrict the values of variables. An active
value can be used to restrict the value of a variable by taking
some action whenever an attempt is made to set the variable to
an improper value. The action might be to cause an error break,
refuse to set the variahle, or simply print a warning. For
simplicity, we demonstrate the latter strategy.

The goal here s tc create an active value that prints a warning if
the balance in a NOW account goes below 100.
PrintValueAv1l is an active value class with a specialized
PutWrappedvalue method that prints the balance. This is used
as a starting point to ¢reate a specialization of PrintValueAV
called WarnValueAV. Once again the PutWrappedValue

34

ACTIUC a0 ANN ACCECTS ARIEMTEN DODAMTD ANARA AL,

USING ACTIVE VALUES TO GUARD VARIABLES

method is specialized. This time the specialized version
previously created is further specialized. As before,
PutWrappedValue prints out the balance. In addition, it
monitors the balance and prints a warning when necessary.

Create a speciaiization of PrintValueAV and name it
WarnValueAV. Bring up WarnValueAV's editing menu and
select SpecializeMethod from the submenu of
Add(AddMethod). Then select PutWrappedValue from the
menu that pops up. Add:

(if (LESSP newValue 100) then (CLRPROMPT) (PRINT

(CONCAT "WARNING: " varName " is less then 100")
PROMPTWINDOW))

before the +Super call as shown inin Figure 9.3.

CMethad

fiWarnyaluedy Putirappedyalue’
22 1f containingdbi wvarMame newWalue
propMame type) (@dited;

(¥ ¥ PRt nawyYalue and Replace the
walue wWrapped in the active valus)

(if (ILE22P newVYalue 1083
then (CLRPROMPT)
CPRINT (CONCAT "WSREMING:
varMame
iz less than 188"
|

PROMPTHINDOW))

i +2uper
zelf PutWrappedi¥alue containinglhj

warName newWalue propMlame typel)

Figure 9.3. The method WarnValueAV._PutWrappedValue

Create an instance of WarnValueAV and add it to MyNow by
typing: :

(¢ (< ($ WarnValueAv) New) AddActiveValue ($
MyNow) ‘'Balance)

This is a quick way to create and install a new instance of an
active value. An instance of the WarnValueAV active value is
created and the message AddActiveValue is sent to it in one
expression. Note that the instance was not given a name. Unlike
classes, instances are rot required to have names. When an
instance is immediately put into some other structure the name
can be left cut.

Try sending some Credit and Debit messages to MyNow. You
should see a warning irs the prompt window whenever the
balance is below 100.

ACTIVE VALTES AND A(T778S

N2CNTEN PROGRAMAING g

USING ACTIVE VALUES TO GUARD VARIABLES

Look at Figure 9.3. To recap how the messages are passed
consider what happens when MyNow is sent the message Debit.
First an attempt is made to set Balance. This causes the
message PutWrappedValue to be sent to the instance of
WarnValueAV that is wrapped around the instance variable
Balance. tf the balance is low,
WarnvValueAV.PutWrappedValue prints a warning. Using
«Super, the WarnValueAV.PutWrappedValue method then
forwards the message to PrintValueAVv.
PrintValueAV.PutWrappedValue prints the balance. Finally,
the PutWrappedValue message is again forwarded with a
«Super and LocaiSiateActiveValue.PutWrappedvalue
actually sets TacaliState.

9.4 Using Active Values to Propagate Values

Sometimes the value of a variable depends upon the values of
other variables. Such a variable is referred to in mathematicsas a
dependent variable and those upon which it depends are called
independent variables. The value of a dependent variable
should change whenever any of the independent variables
changes. In LOOPS, this relationship is implemented with an
active value stored in the dependent variable. Any attempt to
get the dependent variable's value results in the active value
checking the independent variable(s) upon which the dependent
variable is based. Of course, any attempt to directly set a
dependent variable should be prohibited.

To illustrate this technique, a class that computes Balance on
demand from CreditHistory and DebitHistary is created.
An active vaiue in Baiance adds up aii the credits and subtracts
all the debits whenever Balance isread. In addition, Balance
is protected from being set directly. Clearly, this is not a
particularly efficient way to keep track of an account balance.
However, this is a viable way to handle a balance that is needed
only infrequently.

Use the NoUpdatePermittedAV class, one of the
specializations of LocalStateActiveValue provided by the
LOOPS system. NoUpdatePermittedAV has a specialization of
the PutWrappedValue method that prevents lacalState
from being changed. The method invoked when an attempt is
made to read the value of 1TocalState is GetWrappedValue.
A specialization of GetWrappedValue is needed to compute
the value of balance instead of simply accessing it.

To begin, specialize GenericAccount and name the
specialization CompBalAccount. This new class inherits
Credit and Debit metheds from GenericAccount. New
versions of these methods must be created. These new versions
will be very similar to tne old ones, but they will not update
balance. To save some work, you can copy both methods from
GenericAccount to CompBalAccount. First, box

ACTIVE YA HICC ARNIN ACCECS_ARIENTEDN PROGRAMNAIN

USING ACTIVE VALUES TO PROPAGATE VALUES

CompBalAccount. Next select Copy(CopyMethodTo) from
GenericAccount's edit menu. When the menu of methods
pops up, select Credit and Debit. Now edit both methods to
remove the parts that update Balance and change the
documentation appropriately. CompBalAccount's Credit and
Deb it method should locok like Figure 9.4 and Figure 9.5.

DEdit of function GompBalAccount.Gredit.
(Method
((CompBaléccount Credit)
z21f Ered1tmmuuntﬁr#aan—a

19 lan-3T 15033

¥k a3z (Sreditimaunt | date) ta
CreditHistory

(' -~|d
CreditHiztary
CCONS (COMZ Cre 1 'ﬂanT |D TEn

‘@
)

Figure 9.4. Versionof Credit thatdoes not update Balance

| DEdit of function GompBalAccount.Debit -

(Method

((CampBalicocount Debit)
z21f DebitAmount) o+ agiteq:

U1 dan-3T 15033

Cr ot addz (Debitamount , date) to

El-l:ntHl'tnr,n
{ <@
OsbitHiztaory
PCONS (CONS Dehir'mgunr (D&TE
cE 0 Fb1TH1-turU}}}J
(@ Balance))

Figure 9.5. Version of D@b 1t that does not update Balance

Both methods still access Balance in order to return the new
account balance but neither one updates it.

Now, create a specialization of the active value class,
NoUpdatePermitted. Call it TotalBalAV. The desired

ACTIVE JALUES AND ACCESS NRENTED PROGRANMING 97

USING ACTIVE VALUES TO PROPAGATE VALUES

behavior is to recompute Balance whenever it is read. To
achieve this, the GetWrappedValue method is specialized.
GetWrappedValue does not actuaily read a value in this case, so
the «Super will be replaced by the body of the method. This is
shown in Figure 9.6, Note that the abject argument to 8 can not
be left out. This is because selfrefers to the instance of the active
value while containingObj refers to the instance which
contains the active value.

DEdit of func:tum otalBalAV.GetWrappedV

(Method ((ToralBaliay Rpfwrappgd$ Tue
z2lf - sininglhy varName
propiams type)

(# adited:

U1E-dan-3ST 15470

(¥ ¥ Compute the balancs fram credit and
debit histares,

{OIFFERENCE
(for Creditltem
in (@ containingdb]
CreditHiztory)
surn (CAR Creditltem))
(for Oebitltem
in (@ containingdh]
OebitHiztory)

AR TR

surn {CAR Oehitltem))))

_ Figure 9.6. The method TotalBalAV.GetWrappedValue

Now create an instance of CompBalAccount named
MyCompBal. Use AddActiveValue toinstall aninstance of the
TotalBalAV active value:

(¢ (¢« ($ TotalBalAv) New) AddActiveValue ($
MyCompBal) 'Balance)

Test this example by sending both Credit and Debit messages
to see that the balance is returned correctly. Also attempt to
directly set the value of Balance by typing something like the
following:

(<@ ($ MyCompBal) Balance 40000000)

NoUpdatePermittedAV.PutWrappedValue responds to this
with an error message. If you wanted something else to happen
-- send a message to the police for instance -- you wouid
specialize the MNoUpdatePermittedAV.PutWrappedValue
method.

AT A S ARMN ACCEQQUMIRIENITEN DRNMER ARNNAIN S

NESTING ACTIVE VALUES

9.5

Nesting Active Values

At times, more than one action needs to be associated with an
active value. Instead of creating a new active value class that
combines the functions of several existing active values, the
active values can be nested. This technigque is only briefly
introduced here. See the chapter ANNOTATED AND ACTIVE
VALUES in The LOOPS Reference Manual for more information.

Active values are nested by installing them one after the other
on the same value. The order in which they are nested is
controlled by a property of active values called wrapping
precedence. When AddActiveValue tries to install a new
active value where an active value is already present, it sends the
message WrappingPrecedence to the active value that is being
installed. In the simplest case, the message is sent to self (the
active value) and either T or NIL is returned. T means wrap the
new active value around the outermost active value(s) and NIL
means put the new active value inside the innermost one.

[t is also possible to exert finer control by using numerical
precedences. The method WrappingPrecedence returns 100
by default. In order to control the order of nesting,
WrappingPrecedence must be specialized to return T,NIL (as
in simple case described in the preceding paragraph) or an
appropriate number.

As an example, the value of Balance is once again guarded.
Thistime Balance is wrapped with a PrintValueAvV and with a
new version of the warning active value. The active value that
prints the warning will be a specialization of
LocalStateActiveValue. Create it now using the name
NestWarnValueAv.

Two methods, PutWrappedValue and WrappingPrecedence,
need to be specialized. PutWrappedValue checks the value
and prints a warning if needed. This is exactly what
WarnValueAV.PutWrappedvalue does, so just copy it. To do
this, first box NestWarnValueAV. Next bring up
WarnValueAV's editor menu and select
Copy(CopyMethodTo). Finally, select PutWrappedValue
from the menu that pops up.

It would be best to have the warning message printed before the
balance is printed. In order for this to happen, the warning
active value should be the outermost one. This order can be
guaranteed by giving it a wrapping precedence of T. Specialize
NestWarnValueAV's WrappingPrecedence method so that it
returns T and does nothing else. In other words, replace the
“Super call with T. If this were not done, NestWarnValueAv
would run the WrappingPrecedence method it inherits from
LocalStateActivevalue.
LocalStateActiveValue.WrappingPrecedence returns
the default precedence of 100.

Now recall that MyGencric already has an instance of
PrintValueAV installed in it An instance of
NestWarnValueAV needs 1o beinstalled:

ACTIVE VALUES AND ACCESS-ORIENTED PROGI AV NG 39

NESTING ACTIVE VALUES

(¢ (¢ (3 NestWarnVaiueAV) New) AddActivevVaiue ($
MyGeneric) ’'Balance)

Test the results as you have before by sending some credit and
debit messages. Push the balance below 100 and note the
order in which the messages are printed out. The outer active
value is triggered first ard prints its warning. It then passes the
new value to the inner active value which prints the value.

To see the effect on ($§ MyGeneric), inspectit. It appears that
NestWarnValueAV is the sole vaiue of Balance. Inspect this
value by highlighting it with the left button. Then hold down
the middle button and seiect Inspect. PrintValueAv, the

€ 2a

inner active vaiue of MyGeneric'sBaiance variabie, appears.

9.6 AFinal Note On Active Values

Active values are quite powerful, but they shouid be used very
judiciously in LOOPS programs.

The use of active values makes programs more difficult to follow
and debug. This is because they tend to point all over the
program and their pointers remain hidden from the outside.
Active values should only be used if there is no other way to
accomplish the same thing or if they greatly simplify the
program.

ACTIVE s FS AND ACCESS-ORIENTED PROGRAVAING

\/ .V

Xerox Artificial Intelligence Systems
250 North Halstead Street

P.O. Box 7018

Pasadena, California 91109-7018

	001
	002
	003
	004
	005
	006
	007
	008
	01.01
	01.02
	01.03
	02.01
	02.02
	02.03
	02.04
	02.05
	02.06
	03.01
	03.02
	03.03
	03.04
	03.05
	03.06
	03.07
	03.08
	03.09
	03.10
	03.11
	03.12
	03.13
	10.01
	10.02
	10.03
	10.04
	10.05
	10.06
	10.07
	10.08
	10.09
	10.10
	11.01
	11.02
	11.03
	11.04
	11.05
	11.06
	11.07
	11.08
	11.09
	11.10
	12.01
	12.02
	12.03
	12.04
	12.05
	12.06
	13.01
	13.02
	13.03
	14.01
	3.14
	4.01
	4.02
	4.03
	4.04
	4.05
	4.06
	5.01
	5.02
	5.03
	5.04
	6.01
	6.02
	6.03
	6.04
	6.05
	6.06
	6.07
	6.08
	6.09
	6.10
	7.01
	7.02
	7.03
	7.04
	8.01
	8.02
	8.03
	8.04
	8.05
	9.01
	9.02
	9.03
	9.04
	9.05
	9.06
	9.07
	9.08
	9.09
	9.10
	xBack

