CEDAR LANGUAGE OVERVIEW

OverviewDoc.tioga

Last Edited by Horning on June 1, 1983 6:48 pm

Last Edited by Donahue on May 1, 1984 3:28:36 pm PDT
Last Edited by: Subhana, May 29, 1984 12:02:07 pm PDT
Last Edited by: John Larson, June 20, 1986 3:05:28 pm PDT

CEDAR LANGUAGE OVERVIEW

Cedar Language Overview
Version 5.2

Release as [Indigo]<Cedar5.2>Documentation>OverviewDoc.tioga, .press
Came from [Indigo] <CedarDocs>Manual >OQverview tioga, .press

¢ Copyright 1984 Xerox Corporation All rights reserved

Abstract: This Overview is intended to introduce you to the basic vocabulary and
concepts that you need before plunging into sources of more detailed information about the
Cedar Language. It assumes that you have already read the Briefing Blurb and the
Introduction to Cedar. If you haven't, read them first and return. It starts with a brief
review of the common concepts that Cedar shares with other members of the Pascal family,
then gives a somewhat less hasty tour of the more novel features of Mesa, followed by a
discussion of the additional changes that produced Cedar. Finally, there is a guide to
sources of further information.

Version 5.2 of the Cedar language documentation corresponds to Release 5.2 of the Cedar
system. It is intended to supersede all descriptions prior to June 1984. Previous documents
may be read for historical interest, but are believed only at the reader's peril.

[If you are reading this document on-line, | suggest that you use the Tioga Levels

and Lines menus to initially browse the top few levels of its structure before
reading it straight through.]

X E R OX Xerox Corporation

Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, California 94304

For Internal Xerox Use Only

CEDAR LANGUAGE OVERVIEW

Cedar Language Overview: Contents

Introduction

Review of the Pascal - like features
Data and types
Statements

From Pascal to Mesa
Modules
Exceptions
Processes, monitors, and condition variables
Control constructs
Miscellaneous

From Mesa to Cedar

“ Garbage collection, collectible storage, and Refs

Safety
Delayed binding
Miscellaneous

Converting Mesa Programs to Cedar
Simple Programs
New language features
Restrictions of the safe language

For More Information . ..

CEDARS 2 8 FORINTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW

Introduction

The programming language of the Cedar Programming Environment (hereafter, Cedar
Language, or just Cedar) has resulted from an evolutionary process in PARC and SDD that
spanned more than adecade. Understandingwhat the languageis, and why itis thatway, may be
somewhat easier with a little historical background:

Mesais asystem implementationlanguageinthe "Pascal family," with extensive facilities
formodularizationand separate compilation, processesand monitors, exceptional — condition
handling, and control of low - level hardware functions. It was initially designed and
implemented in the PARC Computer Science Laboratory, primarily by Butler Lampson,
Chuck Geschke, Jim Mitchell, Ed Satterthwaite, and Dick Sweet. Subsequently, the OSD
System Development Department assumed responsibility for development and
maintenance. It has gone through a series of releases.

When CSL launched the Cedar Project in 1979, it chose to use the Mesa language and
system asastartingpoint. (Mesa 6, 7, and 8 areitsclosestrelatives.) However, Mesadid not
have a few of the features that seemed to be important for an experimental programming
environment, so some extensions and changes were designed. The major changes resulted
from adding automatic storage deallocation (garbage collection) and facilities for delaying

the binding of type information, without sacrificing complete type - checking in either case.

This Overview isintended to introduce acompetent programmer to the basicvocabulary and
concepts that are needed before plunging into sources of more detailed information about the
Cedar Language. It assumes that you know some other language in the Pascal family. It also
assumesthatyou have already read the Briefing Blurband the IntroductiontoCedar. If youhaven't,
read them first and return.

This Overview starts with a brief review of the common conceptsthat Cedar shareswith other
members of the Pascal family, then gives a somewhatless hasty tour of the more novel features of
Mesa, followed by a discussion of the additional changes that produced Cedar. It ends with a
survey of sources for further information.

This Overview does not provide the detail you need to actually write Cedar programs. (In
particular, thereference grammarisincluded but notdiscussed.) But whenyou finish readingiit,
you should have a fairacquaintance with Cedar terminology and concepts, and you should have a
goodideaofwhatyouneedtolearn. Differentthingsare discussedinvarying depth; generally the
long discussions cover things that you should plan to study carefully.

Cedar documentationis still evolving. Comments and suggestions on how it can be made
more useful are welcome at any time. Although we plan a systematic attempt to assess the
effectiveness of the variouskinds and pieces of documentation, you should not wait until asked to
let us know what you think about it.

Various proposals and descriptions of interim implementations from September 1979 onward
have been givenlabelssuch as5C1,5C2,6C2,6C5,7T11, and Version 3. Version 5.2 of the Cedar
language documentation correspondsto Release 5.2 of the Cedar system. Itisintended tosupersede
all descriptions priorto June 1984. Previous documents may be read for historical interest, but are
believed only at the reader’s peril. This Overview has been compiled by Jim Horning and Jim
Donahue; errors and sources of confusion should be reported to Jim Donahue. Most of the
contents have been abstracted from previous documents, with a small amount of editing and
validity checking.

CEDARS 2 8 FOR INTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW

Review of the Pascal - like features

The following summarizes aspects of Cedar (and Mesa) that are basically similarto those of
other members of the "Pascal family" oflanguages (e.g., Euclid, Modula, Ada). If there areany
concepts in this section that are not already familiar to you, you should probably find a Pascal
textbook andstudy it before proceedingto further material on Cedar. (Youwill find thatthe names
for these concepts vary somewhat from language to language.)

An algorithm or computer program consists of two essential parts, adescription of actions that
are tobe performed, and a description of the data that are manipulated by these actions. Actions
are described by statements, and data are described by type definitions.

Data and types

Dataare represented by values. Values are immutable; they are not changed by computation.
A constant always denotes the same value within a scope. Avariableisavalue that may contain
anothervalue; assignment changes the value contained by avariable, but notthe value thatis the
variable.

Avalueusedinaprogram may be represented by a literal constant, the name of aconstant or
variable, or by an expression, which will itself contain other values. Every name occurringin the
program must be introduced by a declaration. A declaration associates with aname bothadata
type and a constant value (which may itself be avariable, and containdifferentvalues atdifferent
times).

Adatatypedefinesboth asetofvaluesandthe actionsthatmay be performed on elements of
thatset. ltmay eitherbe directlydescribedinadeclarationthatusesit, oritmaybereferencedbya
type name, introduced in atype declaration. The type of every constant, variable, and expression
can be deduced from static analysis. This analysisis performed by the compiler to ensure that all
programs are type - correct; thus the language is said to be strongly typed.

An enumerated type definition indicates an ordered set of values, i.e., introduces names
standing for each value in the set. The simple types arethe enumerated types, the subrange types,
and the built - in types, including BOOL, INT, REAL, and CHAR. There are standard denotations for
literal constantsofthe built — intypes: TRUE and FaLSE forBooL, numbersforinTand itssubranges
and for Real, quotations for cHar. Numbers and quotations are syntactically distinct from
nameshas are the "reserved words" of the language. The set of values of type cHAR is an 8 - bit
variant of the ASCIl character codes.

Atype may be defined as a subrange of asimple type by indicating the smallest and largest
value of the subrange.

Structured types are defined by describing the types of their components, and indicating a
structuring method: ARRAY or RECORD. These differ in the mechanism for selectinga component
of avalue.

In an array structure, all components are of the same type. A component is selected by a
computableselector, orindex. Theindex type, which mustbesimple,isindicatedinthe array type
definition. Itis usually a programmer - defined enumerated type, or a subrange of INT. Given a
value of the index type, an array selector yields a value of the component type. Every array
structure value can therefore be regarded as a mapping of the index type into the component type.

Inarecord structure, the components (called fields) are not necessarily of the same type. In
order that the type of aselected component be evident from the program text (without executing

CEDARS.2 # FORINTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW

the program), arecord selector is not a computable value, but mustinstead be aname uniquely
denoting the component to be selected.

Arecord type may be specified as consisting of several variants. This allows different record
valuesofthe sametype to havestructuresthat differinthe number of components, their types, or
theirnames. The variant describing a particular valueisindicated by aspecial field, calledits tag.
Variants of a type may also share fields in addition to the tag.

Anexplicitvariable declaration associates a name and astatic variable; thenameisused to
denote thevariablein expressions. Dynamic variables are generated by a special procedure (NEw)
thatyields a pointer or reference value that subsequently servesin place of anametorefertothe
variable. Finite graphs in their full generality may be represented using pointers or references.

Statements

Thesimplest statementisthe assignmentstatement. It specifies that a newly computed value
be assigned to a variable (or a component of avariable). The value is obtained by evaluating an
expression. Expressions consist of variables, constants, operators, and procedure values operating
onarguments to produce new values. Constants are literal or declared; variables and procedures
arebuilt - inordeclared; the set of operatorsis defined within thelanguage, and includes operators
for arithmetic, comparison, and logical operations.

The procedure statement causes the application (invocation, call) of a designated procedure
value to the values of its arguments (actual parameters).

Basic statements are the components of structured statements, which specify sequential,
selective, or repeated execution of their components. Sequential execution of a sequence of
statementsisspecified by separating them by semicolons; conditional or selective execution by the
if statement and the select statement; and repeated execution by loop statements.

A block can be used to associate declarations with statements. The names so declared have
significance only withinthe block. Hence, the block is the scope of these names, and they are said
to be local to the block. Since a block may appear as a statement, scopes may be nested.

Ablock canbethebody of aprocedurevalue. Aprocedure has a fixed number of parameters,
each of which is denoted within the procedure by a name called the formal parameter. Actual
argument values are supplied for parameters at each application.

Procedures may also have results; applications of such procedures may appear within
expressions.

From Pascal to Mesa

Mesa extended Pascal in a number of directionsintended to make it more effective for the
development of large systems. Students of programming languages will discerninfluences from
Algol 68,BCPL, and several other systemimplementation languages. Itisalargerlanguage, andis
rather more difficult to master in its entirety, than Pascal. It is intended for professional
programmers, not for beginning students.

Mesa modules are separately compiled program units, with type — checking preserved across
module boundaries. Mesa provides mechanisms for systematic handling of exceptions, processes
and monitors, proceduresas first — class valuesthat canbe assignedtovariables, and afairnumber of

CEDARS 2 8 FORINTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW

syntactic and semantic amenities intended to make programming more convenient.

The following sectionsintroduce each of the major conceptual extensions, butdonotexplain
them in great depth. See [Geschke, et al.] for amore extensive rationale, and CSL - 79 — 3 for full
details.

Modules

Mesa modules are a "programmingin the large" mechanism for partitioning a system into
manageable units. They canbe used to encapsulate abstractions, to provide a degree of protection,
and to enforce "information hiding." They are also the units of separate compilation.

There are two kinds of modules: pefFiNITIONS modules, which define interfaces, and
PROGRAM modules, which contain the executable code to implement these interfaces.

Definitions (or defs) modules define interfaces to abstractions. They typically declare some
shared types, useful constants, and the domains and ranges of a set of procedure names. They
compile into symbol tables, which are shared by both clients and implementations. Checks are
performed when modulesare bound into aconfiguration to ensure that separately compiled pieces
have used consistent versions of the shared definitions. Interfaces produce no executable code;
they manifest themselves at runtime primarily as symbol tables that are accessible for debugging
and similar purposes.

Program modules provide implementations of abstractions. They typically declare collections
ofvariablesthat define their state and provide bodies for the proceduresoftheirinterfaces. Viewed
as source text, they are similar to Pascal procedures and Simula class definitions. They can be
loaded and interconnected to form complete systems.

Atruntime, one or more instances of an implementation may be created. A separate global
frame (activation record) is allocated for each, containing storage for its global variables (those
which are declared outside its procedures), which persist between applications of its procedures.
The lifetimes of implementation instances (unlike those of procedure applications) are not
restricted to follow any particular discipline. Communication paths among implementations are
established dynamically and are not constrained by any (static or dynamic) nesting relationships;
lifetimes and accesspathsare completely decoupled. The modulebodyitselfgenerally containsthe
codetoinitialize the global variables and establish any necessary invariants. It will be executed
when the moduleis started, or upon application of one of the module's procuedures, whichever
comes first.

Amodule that accesses(relies ondeclarations from) other modulesmustinclude DIRECTORY
statements, so the necessary symbol tables can be acquired. If it uses only a subset of the
declarations, it is good practice to indicate which ones with a uSING list. Declarations in an
interface are publicunlessdeclared to be PrivaTE. Normally theimporting module accesses only
the publicnames; private declarations may be accessed by implementing modules that indicate
they SHARE theinterface. Adirectory statement may list the name of a file containing the symbol
tabletobeused, butifthe filenameisthe sameasthe module name (exceptforthe extension.bcd)
itisomitted.

A module that uses non - constant declarations (e.g., exported types and procedures) from
anothermodule mustexplicitlyimportit. Ifamoduleimplements any partof aninterface (e.g., by
supplying the value of a procedure or type that it declares), it must explicitly export it. The
compiler will check that its PUBLIC declarations are type - consistent with the corresponding
declarations in the exported interface(s).

CEDARS 2 8 FORINTERNAL XEROX USE ONLY

CeEDAR LANGUAGE OVERVIEW

Eachmoduleiseffectively parameterized by aset of interfacerecords, one foreachinterfaceit
imports, and supplies aset of exportrecords, one for each interface it exports. Note thatinterfaces
and implementations need not be in one - to - one correspondence. Binding a group of modules
together into a configuration involves assigning values from the export records to the
corresponding fieldsin the interface records. Thereisaspecial sublanguage, UMesa, to control
this process.

Accessing other modulesintroduces compilation order dependencies. Each module must be
compiled after the modulesit accesses (and recompiled if they change), since the compiler needs
their symbol tables. Butinformation does not flow in the other direction. Modules that are not
accessed by others (virtually all implementations) may be freely recompiled withoutinvalidating
previous compilation and checking of any other modules.

Types, aswell as procedures, can be declared opaquely ininterfaces and subsequently bound
to concrete values supplied by implementations. This makes the internal structure of the type
invisible to clients of the interface, and ensures that there can be no compilation dependencies
between the definition of the concrete type and the interface module. The definition of the type
canbe changed at any time without requiring recompilation of the interface or any clients of the
interface.

Effective use of Mesarequires a thorough understanding of modulesand their use. They have
significantly influenced our program design and construction techniques.

Programs are almost never self — contained modules; the importation and re — use of existing
code has all the advantages of theft over honest toiltwithout the moral stigma. Considerable
emphasisislaid on the careful design of interfaces, and on their documentation. Sinceitis only
interface changes that force recompilation (or perhaps even rewriting) of client programs, itis
important that interfaces remain stable for substantial periods, even while theirimplementations
are undergoing change.

Arecommendedapproachis to define, comment, and circulateforreview, all of theinterfaces
ina(sub)system beforewriting any of the implementations. Interfaces play muchthe sameroleas
"program design languages” in other environments, with the additional advantages of being
precisely defined and mechanically enforced.

The Mesa language definition omits many of the features commonly expected in
programming languages, such as input/output and string - manipulation operations. Of course,
these facilities are available to Mesa programmers, but they are provided by packages writtenin
the language itself. The descriptions of standard packages in the Mesa Programmer's Manual,
Version 8.0, run to more than 300 pages.

When managing large collections of modules (and in systems like the Mesa Development
Environmentand Cedartheyruninto the thousands), module namesbecome veryimportant. The
use of cryptic or acronymic names is discouraged. By convention, source file names have the
extension .mesa, and object file names have the extension .bcd (for Binary Configuration
Description). The definitions module for an interface X is customarily named X; if it is
implemented by a single program module, that is customarily named Ximpl.

Exceptions

Mesa providesaway toindicate when exceptional conditionsarise inthe course of execution
and an orderly means for dealing with them thatisinexpensive if they do not arise. Exceptions
cause atransfer of control from the statement that raises them to adynamically — selected part ofthe
program intended to handle the situation. They may be raised in response to the detection of

CEDARS5.2 8 FORINTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW

"impossible” situations, invalidinputs, theinability of anabstractiontosupplyitsspecifiedservice,
or simply unusual events.

Mesa exceptionsare conceptually similarto procedures, exceptthatthe bindingtothehandler
isdetermined by searchingthe catch phrasesinthe call stack of the processin which the exception
is raised; the dynamically innermost handler that accepts the condition is applied. Like normal
procedures, handlers can take parameters and return values. They are written in a distinctive
syntax that clearly identifies them as code for the exceptional case.

Catch phrases are syntactically and semantically similartoseLeECT statements, with testitems
indicating the exceptions forwhich the associated handler should be applied. There are special test
items to catch arbitrary exceptions and to catch an attempt to unwind the application stack in
response to an exception. Aseries of catch phrases maybe associated with a procedure application,
or enabled throughout a block.

Ahandlerislike a procedure body, butwhenitcompletes, there are anumber of additional
control options: GOTO, EXIT, LOOP, RETRY, CONTINUE, REJECT, and RESUME. Resumption is
analogous to returning from a procedure, possibly with a result. Exceptions are divided into
SIGNALS, which may be resumed, and ERRORS, which may not; in common parlance they are
generally all called signals.

Since handlersmay take parameters and returnresults, each exception name must bedeclared
in a scope thatincludes all the points where itis raised as well as all the catch phrases that accept it.

The costofraising an exceptionissignificantly higher than the cost of procedure application,
butitshouldn'thappenvery often. The system guarantees thatall exceptions are handled at some
level; those that the program failsto catch are accepted by thedebugger, keepingintactthe state of
the program that raised it.

Exceptionscanbeusedinveryintricate waystoachieve subtle effects(e.g., by raising another
exceptionwithinahandler). Experience hasshownthatthisisalmostalwaysamistake. Somecallit
elegance, others call itincomprehensible:

"For the programmer, the mainimport of nested signalsis that one needs to consider, when
writing aroutine, not only what signals can be generated, directly orindirectly, by the called
procedures, butalso those which canbe generated by catch phrasesinthat procedure or even
the catch phrases of any calling procedures, also both directly and indirectly." [Mesa
Language Manual]

Although hislanguage proposals have not beenimplemented, The discussion in the working
paper [Indigo] < Cedar5.2 >Documentation > SignallingGuidelines.pressis the best source of guidance
ontasteful and appropriate uses of exceptions. The mostimportant pointis that the exceptions a
procedure may raise must be considered part of its interface, and documented as such.
Unfortunately, the compiler currently doesn't enforce this, and many otherwise excellentinterfaces
do not comply.

Processes, monitors, and condition variables

Mesa provides efficient mechanisms for concurrent execution of multiple processes withina
single system. This makes it natural to structure programs to reflect their inherent concurrency.
Mesa also provides facilities for mutually exclusive access toresourcesand process synchronization
by means of entry to monitors and waiting on condition variables.

FORK makes it possible to start the execution of another procedure concurrently with the
program that applies it. It returns a process, which may either be detached to proceed

CEDARS 2 8 FORINTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW

independently, or saved for a future join. There is norule against multiple coexisting instances of
aprocedure, either forked or applied, although care must be takento ensure mutual exclusionon
accesses to shared global data.

Jointakesasingle processargument. Whenthe forked procedure hasexecuted areTuRN and
the JoIN has been executed (in either order), the returning process is deleted, and the joining
process receives its results and continues execution. A process type is declared similarly to a
procedure type, except that only the type of the resultis specified.

All processes execute inthe same address space. Thismeansthat they are not protected from
each other, which is presumably acceptable in asingle - user system. It also means that process
creation and switching between processes is cheap (not much more time - consuming than a
procedure call).

Generally, two ormore cooperating processes need tointeractinmore complicated ways than
simply forking and joining. The interprocess synchronization mechanism provided in Mesa is a
variant of "monitors" adapted from the work of Hoare, Brinch Hansen, and Dijkstra. The
underlying view isthatinteraction among processes isalways based on accessto shared resources
(e.g., data) and that a proper vehicle for thisinteraction must unify the synchronization, the shared
data, and the procedures that perform the accesses.

A monitor is typically a module instance, with shared data inits global frame, and its own
procedures for accessing them. Some of the procedures are public, allowing applications of
monitor procedures from outside. Obviously, conflicts could arise if two processes were executing
inthesamemonitoratthesametime. To preventthis, amonitorlockisused for mutual exclusion.
Application of one of a monitor's ENTRY procedures automatically acquires its lock (waiting if
necessary), and areturn releases it. An integrity constraint that the programmer imposes on the
monitor's data is called a monitor invariant. The lock makes it possible for the programmer to
ensurethat thisinvariantwill be true whenever anentry procedure begins executionlregardless of
what is happening in various processesbsimply by making sure that it is true initially and that
every entry procedure restores it before returning.

Of course, aprocess may enter the monitor and find that the monitor dataisin a goodstate
butindicatesthat the process may not proceed until some other process enters the monitor and
changesthesituation. The waiT operation allows a process to release the monitor lock temporarily
(and suspend execution)withoutreturning. Thewaitis performed onaconditionvariable, whichis
associated by agreement with the actual condition needed. After making a change that may have
changed the condition, some other process must perform aBrROADCASTOr NOTIFY onthe condition
variable; this allows a waiting process to reacquire the lock, retest the condition, and resume
execution ifitis true. Note that since a wait releases the lock, the monitor invariants must be
restored before waiting.

The proceduresof amonitor are classified asentry, internal, and external. Internal procedures
may only be applied by entry orinternal procedures of the same monitor, sincethey areintended
to be executed within the monitor's mutual exclusion, but do not acquire the monitor lock.
External proceduresarelogically outside the monitor, butare declared withinthe same module for
reasons of logical packaging. Being outside, they must notreference any monitor data nor apply
anyinternal procedures; they are often used to provide a convenientinterface that "hides" one or
more applications of entry procedures.

The attributes ENTRY and INTERNAL are associated with a procedure's body, notwithitstype;
thusthey do not appearininterfaces. From the clientside of aninterface, amonitor appearslike
any other module.

CEDARS 2 ¥ FOR INTERNAL XEROX USE ONLY

CeEDAR LANGUAGE OVERVIEW

Insimple cases, amonitor'sdata comprisesitsglobal variables, protected by animplicitlock
thatisautomatically allocated inits global frame. However, many applications deal with multiple
objects, represented, say, as records accessed through pointers. It may be necessary to ensure that
operations on these objects are atomic, i.e., once the operation has begun, the object will not be
otherwise referenced until the operationisfinished. Itispossible to associate alock with the object,
rather than with the module's global frame, by declaring the data as a MONITORED RECORD. A
single module instance can thenimplement each operationasanentry procedure, taking the object
as a parameter. Locking is specified in the module heading by a LocCks clause.

Asomewhat subtle source of deadlocks occursif control leavesanentry procedure by means
of anuncaughtexception. Unlessitis certainthatall exceptions(including those raised by invoked
procedures) are handled, each entry procedure should include an unwiND catch phrase, which will
implicitly release the monitor lock.

Control constructs

Mesa's facilities for ordinary sequential “programminginthe small* are extensive, but fairly
conventional. The syntaxisnotexactlylike that of any otherlanguage, but for the most partitcan
be picked up easily with a few minutes study of the grammar. (In fact, since most programtextis
produced either by editing existing programs or by the use of the Tioga editor to expand syntactic
templates, you may be abletojust "fakeit.") Thissection mentionsanumber of areaswhere Mesa
provides "convenience" extensions or conceptually small changes.

SELECT statements generalize Pascal’s "case"” construct by allowing several ways to specify
how one statementisto be chosen for execution from an ordered list. The mostcommon formis
based ontherelation between the value of a given expression and those of expressions associated
with each selectable statement. The relation may be equality (the default), any relational operator
appropriate to the types of the valuesinvolved, or containmentin a subrange. Asingle selection
may be prefixed by several selectors, and an optional ENDCASE statementisselected onlyif none of
the others are. Discriminatingselectionis used to branch onthe type of avariantrecord value (and
in Cedar, on the current type referred to by a REF ANY). SELECT expressions are analogous, but
choose from an ordered list of expressions.

Iteration is provided by loop statements in which several different kinds of control can be
freelyintermixed. Aloop hasa control clause and a body. The control clause may specify alogical
condition for normal termination, possibly combined with arange orasequence of assignmentsfor
a controlled variable. In addition to ordinary statements, the body may contain ExIT or GOTO
statementsto explicitly terminateits execution, and may be followed by arepeAT clause that acts
like a selection on the GOTO used to terminate the loop. (GOTO cannot be used to synthesize
arbitrary control structures. It is much more like a "local” exception.)

In Pascal, procedure execution must proceed somehow to the end of the body before
terminating; in Mesa, it can be terminated anywhere by executing a RETURN statement. If the
procedure's type includes results, the return statement may supply the values to be
returnedlotherwise they are taken from the result variables named in the type. Each procedure
body is followed by an implicit return.

Pascal proceduresare notvaluesthat may be assigned to variables; Mesa procedures are. In
most cases, the programmer still thinks of aconstantassociation between aprocedurenameandits
body, butto truly understand whatisgoingonwheninterfacerecordsarebound, ithelpstorealize
that procedure values from the export records are being assigned to appropriate fields of the
interface records. This same power is available to the Mesa programmer; one popular form of
“object - oriented programming" is based on the creation of an explicit record of procedures for

CEDAR 5.2 8 FORINTERNAL XEROX USE ONLY

10

CtDAR LANGUAGE OVERVIEW

each kind of object, and passing around together a pair of pointers, one to the procedurerecord,
and another to the object instance data.

INLINE procedure constants may be declared ininterfaces or locally. Thisisaninstruction to
the compiler toexpand the procedure body inline foreach application, ratherthan compiling acall
to out — of — line code. Itisintended to improve the speed without changing the semantics of the
procedurelinlines are not macros. INLINE should be considered a form of tight binding best
reserved for late stages of system tuning; among other things, it can cause the compiler torun out
of resources, even when compiling what appear to be small modules.

Inadditionto proceduresand exceptions, Mesahasathird mechanism for transfer of control,
called a PORT. When used in pairs, ports can provide a very general form of coroutine
implementation. In some circumstances, coroutineshave advantagessimilarto processes, atslightly
lower cost, but they are not used much in Mesa or Cedar.

CEDARS 2 8 FORINTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW 12

Miscellaneous

EveryexpressioninaMesaprogram has asyntactictype thatcanbededuced fromitsstructure
by static analysis of the program text, a process called type determination. The language imposes
constraints on the type of each expression according to the contextin whichitisused, evenin
separately compiled modules.

The syntactic type of a name is established by declaration.
The form of aliteral impliesits type.
Each operator produces a result with a type that is a function of the types of the operands.

The type rules in Mesa take two general forms:

Thetyperequired by the contextisknown exactly,and agivenexpressionmusthaveit. The
required typeis called the target type. Examples occur in assignment, initialization,
record construction, array construction, argument list construction, and array
subscripting. Several coercions (e.g., pointer dereferencing, base/subrange
conversion, single - component record to field) will be applied if needed to converta
value whose syntactic type is not its target type to one that is.

The exact type is not implied by context, but a relation that must be satisfied by a set of
types is known. The process of finding types to satisfy that relation is called
balancing. Examplesinclude generic operators (such asrelationals) that require two
operands of the same type, conditional expressions, and select expressions. The
common type selected will be the one requiring the fewest coercions.

AsequenceinMesaisanindexable collectionofitems, all of whichhave thesametype. inthis
respect, asequence resemblesanarray; however, thelength ofthe sequenceis not part of itstype.
The (maximum) length of a sequence is specified when the object containing that sequenceis
created, and it cannotsubsequently be changed. Itisthe responsibility of the programmer to keep
track of the number of items in the sequence at any time.

Mesa allows adefaultinitial value to be associated with atype. If atypeisconstructed from
other types using one of Mesa's structures, such as RECORD, an implicit default value for the
constructed type is derived from the default values of the component types, but it can be
overridden with an explicit default value. Default values for arguments cansimplify procedure
applications; default fields of records make the corresponding constructors more concise and more
convenient; initial values are useful toensure that the correspondingstorageisalwayswell - formed,
even before the variable has been used by the program.

Dynamic variablesin Mesa are allocated in zones. These are not necessarily associated with
fixed areas of storage; rather, they are objects characterized by procedures for allocation and
deallocation. Thereisastandard system zone, but programs that allocate substantial numbers of
similar dynamic variables can often improve performance by segregating each kind into its own
zone. The operator NEW is used to create a dynamic variable in a zone, and FREE to release it.

The MACHINE DEPENDENT attribute allows precise control of the representation of values at
the bit level.

From Mesa to Cedar

The Cedar Languageisvery closelyrelated to Mesa. The mostradical changeisthe provision
of automatic deallocation of dynamic storage, or garbage collection. Several other changes extend

CEDARS5 2 8 FORINTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW

the range of binding times available for such important attributes as the types of variables.

Itisintended that most Cedar programs will be writtenin the safe subset, whichimposes a
number of restrictions not presentin Mesa to ensure the safe operation of the garbage collector,
and introduces some new (safe) features to make these restrictions tolerable. The full (unsafe)
language is generally "upward compatible” with Mesa.

Garbage collection, collectible storage, and REFs

Although Mesa pointers are typed, they provide arichsource of opportunities for creation of
safety problems,including the classical dangling pointer problem, where a pointeris used after the
storage itrefers to has been deallocated, and the opposite storage leak problem, where storage
becomes inaccessible without being deallocated for reuse. Freeing the programmer from
responsibility for deallocating storage atjust the right time was a major goal of Cedar. It adds a
new class of REF types that are just like the corresponding pointer types except that the system is

13

responsible for freeing the dynamic variables they refer to after they have become inaccessible.

Cedar provides three types of storage:

Frame: This is storage that is implicitly allocated by a procedure application or an
implementation instantiation to hold variables declared in the corresponding scope.
It is also implicitly deallocated, upon exit from the scope (e.g., return from the
procedure).

Collectible: Thisis storage that is explicitly allocated by NnEw, and implicitly deallocated
after there are no more accessible Rers to it. FREE applied to a Ref variable will
cause it (and Rer fields in the dynamic variable it refers to) to be “niLed out,” but
the dynamic variable will only be freed when no other RerFs to it remain.

Heap: Thisisstorage thatisexplicitly allocated by new, and deallocated by (unsafe) FREE
statements, asin Mesa. Heap storage is referenced by pointers, which may not be
dereferenced in checked regions, and should not refer to dynamic variables
containing REFs.

The introduction of collectible storage has substantially revised programming style and
interface designin Cedar When the project was being contemplated, some Mesa programmers
indicated thatas much as 40% of their time wentinto designing and checking the code to avoid
dangling pointersand storageleaks, totrackingerrorsin thiscode, and towasting timein tracking
other errors by suspecting storage deallocation problems. With rers and a reliable garbage
collector that all goes away.

Frame (static)variables arestill lessexpensive thandynamicvariables, since entire frames are
allocated and freed on procedure entry and exit (and the mechanism for doing it has beenrather
carefullytuned). However, itisentirely reasonable touse dynamicvariablesfordatawhoselifetime
isnotclosely connected to a particular procedure application ormoduleinstance. Objects of large
orvaryingsize are almost always passed across interfaces by reference. Definitive measurementson
the cost of garbage collection have not yet been made, but preliminary data indicates thatitis
generally less than 20%. Only in very special circumstances is heap storage worth the added
program complexity and potential for errors.

Safety

A desirable property of a high - level language system is implementation independence. This
means that the effects of (even erroneous) programs can be understood in terms of the
languagelratherthan requiring an understanding of the particular implementation. Mesa comes

CEDAKS.2 8 FORINTERNAL XEROX USE ONLY

CtbarR LANGUAGE OVERVIEW 14

rather close to meeting thisgoal (as evidenced by the fact that most Mesa debugging canbe done
"atthe Mesalevel,” without ever worrying about the format of frames or the details of storage
management), but it does contain some unsafe features whose use can lead to messy
implementation dependencies.

It was desirable on general grounds to reduce implementation — dependence in Cedar.
However, the decision toinclude facilities for garbage collection madeitimperative. A collector
can cause storage to bedeallocated (permitting itssubsequent reallocationandre — use) attimes that
are completely unpredictable from examination of the source program. A single programming
error that smashes a Rer used by the collector can destroy data structures in ways that make it
difficult to reconstruct any evidence of the original cause of the crash.

A major goal for the Cedar Language was thatit contain a useful subset for which garbage
collectionwould be safe. Thesafe subset of Cedarisbasically that part of thelanguage where even
incorrect programs cannot interfere with the reliable operation of the collector. The vast majority
of Cedar programsshould be written primarily (or entirely) inthe safe subset. Safe Cedar does not
provide acceptably efficientsubstitutes for every use of Mesa'sunsafe features, soCedar providesa
means for indicating that some regions of a program are trusted. This inhibits compiler
enforcement of the safety restrictions and indicates that the programmer has assumed the
additional responsibility of ensuring that these regions of the program do not violate the integrity
of the system.

Invulnerability, safety, and checking

Itisanobviouslydesirable property of aprogrammingsystemthatnouser programmingerror
can "break" its abstract machine and reduce its world to a rubble of bits. We call this property
invulnerability. In general, it can be ensured only by maintaining the integrity of certain data
structures known to the runtime system. Collectively, the properties that must be maintained to
ensure invulnerability are called the safety invariants; each part of the system is responsible for
ensuring that they are not destroyed, and must assume that the rest of the system does likewise.

Unfortunately, invulnerability is not a local property. If any part of the system fails to
maintain the invariants, the entire system (including programs that are themselves correct) is
potentially vulnerable. We use the term safety for the property that the invariants cannot be
invalidated locally, even by incorrect programs. Cedar operations, both built - inand programmer -
defined, are classified as safe or unsafe. Most of the Cedar Language is safe.

Unsafe constructs include LOOPHOLE, dereferencing POINTERs (but REFs are safe), JOIN, @ (address of),
computed variant records, and non - copying variant discrimination

A region of program text, bracketted to form a block, may be prefixed with CHECKED,
TRUSTED, Or UNCHECKED.

In checked program regions, language - enforced restrictions guarantee safety. If ablock is
checked, then within that block only safe operations may be used, the block itself
implements a safe operation, and procedures declared in the block are treated as
safe.

Evenunchecked regions are supposed to maintain the safety invariants, but the guarantee
must be by the programmer, rather than the system. If a block isunchecked, unsafe
operations may be used internally, the block itself is considered to implementan
unsafe operation, and procedures declared in the block are treated as unsafe.
Generally even unchecked regions can be composed primarily of safe operations;
unsafe operations should be used only for good reasons and with due caution.

A trusted block may also invoke unsafe operations, but it is assumed to implement an

CEDARS 2 1 FORINTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW

operationthatissafe by programmer guarantee. TRUSTED isa programmer assertion
that cannot be checked by the compiler, and therefore represents a special kind of
loophole.

For easy upward compatibility from Mesa, the following defaults have been adopted: If a
module is prefixed with CEDAR, then the outermost block is cHeCKED and all interfaces are
assumed to be safe; otherwise, the outermost block is uncHECKED and all interfaces are assumed
tobe unsafe The checkingattributeisinherited; unless anested block is explicitly prefixed, itis
checked or unchecked like the textually enclosing block.

If a system consists entirely of safe regions (and the invariants hold initially), then by
inductionthe systemisinvulnerable. However, anerrorinanuncheckedregioncanmakeeventhe
checked regions vulnerable. Thus the CHECKED/UNCHECKED boundary limits responsibility, but
not vulnerability. Confidence thaterrorsin checked regions will not cause system crashes isbased
onthethe automaticenforcement of safety restrictions. Confidence thatunchecked regionswili not
cause system crashes is based on trust that they are free from errors that violate the safety
invariants.

Caveat: The conversion of the Cedar system tosafe interfaces is presently underway. The
unsafeinterfacesarebeginningtodisappear. You should program assafely as you can, but do not
be surprised by theinitial density of safety complaints fromthe compiler. Agood ruleisto prefix
each module with CEDAR, and then to put TRUSTED on each block about which the compiler
complains, after convincing yourself that the complaint is not your fault, because it results from a
necessary use of an unsafe system interface. The reason for each TrRusTED should be documented
in an accompanying comment.

Type confusion

Mesais astrongly typed language, which means thatthe typesof namesaredeclared, and that
thelanguageimposesrestrictionsto keep values of one type from being accidentally interpreted as
values of another. Because knowledge of the type structure of valuesinmemory isso essential to
the garbage collector (it must locate and follow Refsin order to determine current storage usage),
itisparticularly vulnerable to any operationsthat cause datain memorytobeinterpreted ashaving
other than their true types. Thus, much of the effort in designing the safe subset went into
identifying all the featuresin Mesa that allow type — checking to be circumvented (accidentally or
deliberately) and designing safe replacements for the important uses of those features.

LOOPHOLE is a "type converter” in Mesa that allows any value to be treated as having any
specified type; itis the most obvious breach of type security. It causes a safety problemonlyifit
allowsmistyped datatobestored intomemory (i.e., ifthetargettype containsanaddress,suchasa
pointer or procedure value); other uses will introduce implementation dependencies, but not
threaten safety. Within checked regions, LOOPHOLE is not allowed to produce a value of a
reference - containing (RC) type.

Narrowing and type discrimination

Cedar introduces a number of new type distinctions, frequently leading to a number of
separate, butcloselyrelated types. Itisoftendesirable to coerce avalue of one of these typesintoa
value of a related type. Where the types are such that it can be statically guaranteed that no
informationwill everbelostbythe coercion, itiscalled awidening, andis performed automatically
whenever demanded by context (e g, assigning a bound variant value toavariantrecord variable).
In general, conversionin the other direction requires aruntime check toensurethatinformationis

CEDARS 2 8 FORINTERNAL XEROX USE ONLY

15

CEDAR LANGUAGE OVERVIEW

not being lost. To make the possibility of such failure explicitin the program text, the NARROW
type converter may be applied (and may include a catch phrase to handle the Narrowfault
exception).

Thebuilt - intestiSTyre can be applied toavaluetodeterminewhetheritcanbenarrowedtoa
specified type without error If so, itis said to satisfy the type's predicate.

If the targettype of anarrowingisuniquely determined by context, it need notbe an explicit
argument to NARROW.

Delayed binding

Adesirable property of a high - level programming language isthat isallow a wide range of
binding times: thatis, itshould allow the programmer maximal control over when the attributes of
aparticularvariable are determined, with different choices notrequiringchangesin all expressions
containing the variable. Examples of such attributes are its type, storage allocation method,
implementation (for abstract objects), and actual value; examples of binding times include
program — writing time, compilation, configuration binding, program initialization, block entry, and
statement execution. Generally speaking, deferring the binding of an attribute leads to greater
generality inthe program at the cost of decreased static checkability and (often) lower runtime
efficiency.

Experience with languages like Lisp and Smalltalk, in which most binding is done
dynamically, shows that it is much easier to write certain kinds of programs, if type and/or
implementation binding can be deferred. Programming tools (debuggers, performance monitors)
and knowledge representation systems are typical examples. But few programs take full advantage
of thisflexibility very often. Cedar was designed totake advantage of early binding, as Mesadoes,
but to allow certain bindings to be explicitly deferred.

CEDARS 2 B FORINTERNAL XEROX USE ONLY

16

CeDAR LANGUAGE OVERVIEW

Dynamic typing, ReF ANY, and dynamically typed procedure variables

Mesa providesvery limited variability inthe binding time of an object'stype. Variantrecords
allow a deferred choice between specificenumerated alternatives, and sequences allow deferring
the specification of an object'slength untilitisallocated. Otherwise, all types must be static. This
makesitvirtually impossible to avoid LOOPHOLES and ad hoc type tagging schemes when writing

17

schedulers, sorters, output formatters, etc. that must operate on objects of unpredictable type.

Cedar'ssolution to this problem requires two new mechanisms: aruntime representation for
types, and away to associate atype with an objectatruntime thatisguaranteed consistent with the
type system and static checking. (Note that Cedar adopts the view that an object'stypeisinherent
in the object itself, rather than in the way the object is referred to.)

Typeis atypeinthe Cedar Language. The "structuring methods" (e.g., ARRAY, RECORD, and
REF) are viewed as operators that take type arguments and return type values as results. In the
current language, the arguments to such operators must be static (compile - time) constants.

AnYisnotatypeinCedar, butcanstandinplace ofatypeintheargumentstotwooperators:
REF and PROC.

AREFANY value may refer to a dynamicvariable of any type whatsoever. Thus arRer Tvalue,
for any T, can be widened to a ReF ANY value. But a ReF ANY value cannot be directly
dereferenced, because the type of the resultisnotstatic. The discriminatingselection statementhas
beengeneralizedto allowdiscrimination onthe referenttype of a REF ANY; within each selectable
statement, the typeis (statically) knownto be the type specified inits test item. NARROW can also
be used to safely convert a Rer anvy value back to a Rer T value; 1STYPE can be used to check
whether NARROW will succeed.

A PROC type may also have any in place of the type of its formal parameter record type
and/orresultrecord type ProC valueswith specificdomainsand ranges may be widened to these
dynamic types, and later tested and narrowed analogously to REF ANYs. They must be narrowed
before being applied.

In principle, each value in Cedar carries its syntactic type with it at all times. In practice,
almost all analysis and checking of types is done by the compiler, and both space and time
efficiency are gained by not storing constant types with values. However, the symbol tables
produced by the compiler contain enough information to recover any type on demand, made
available through a standard package. AMTypes provides type — conversion routines in both
directions between typed values (with type SafeStorage. Type) and ordinary Cedar values, and
numerousoperations ontyped valuesto examine the type andstructure of atypedvalue, tochange
its attributes, etc. Thusitispossible towrite a program thatdeals with any given Cedar value or
type withoutanticipatingthe specifictype whenthe programiswritten. Programssuch asBugBane
(the Cedar debugger) absolutely require such flexibility.

The current implementation is too slow to be used effectively by client programs as a
substitute for true polymorphism in the language, butis suitable for examining and changing
variables interactively with the Cedar debugger.

CEDARS 2 1 FORINTERNAL XEROX USE ONLY

CeDAR LANGUAGE OVERVIEW

Miscellaneous

Although Cedar was not intended as a research project in programming languages, its
developerswere notimmune to the temptation to make Mesa betterinways thatwere notstrictly
required to enable the new programming environment. This section discusses a few of these new
features.

Types as clusters of operations

Eachtype hasan associated cluster of operations. The main purpose of thisassociation is to
support astyle of "objectoriented” notation. Usingarecord - like notation, a procedure "field" will
be looked up in the cluster of the object’s type, and then applied to the object and the other
arguments.

Itis preferred style in Cedar to use thisobject notationininvoking operationsofinterfaces
designed to support it. Consult the relevant package documentation if in doubt.

Each built — intype and type constructor in Cedarimplicitly suppliesastandard cluster. The
cluster extension mechanismisthat each opaque or record typedefinedinainterface acquiresall
procedures declared in the same module as parts of its cluster.

ROPES and 10

Mesa STRINGS are rather awkward objects, having been tuned for efficiency in a small -
machine (Alto) world, rather than for flexibility and convenience. They are POINTERS to fixed -
length sequences of characters. Considerable care is required to avoid surprising results, even for
rather straightforward string - processing applications. Cedar rOPEes, on the other hand, are
somewhat heavier — weight, more convenient to use, and less prone tosurprises. Several different
implementations of ropes, efficient for different purposes, provide the same interface.

Ropeisa Cedar package that supports the creation and manipulation ofimmutablereference -
counted sequences of characters. Procedures are provided for concatenation, taking substrings,
scanning, and other operations. A client can provide specialized implementations for rope objects.
The standard implementation attempts to avoid copying when performing Substr, Concat and
Replace operations. The Rope package is the standard support for sequences of characters in
Cedar,.

Most of the common operations on input/output streams, plus string conversions that are
commonly used in dealingwithinput or formatting output, have been collectedintheiointerface.
Implementations are available for stream interfacesto all common devices, and to allow ropes and
streams to be readily interconverted.

LISTs and ATOMS

Cedar includes LisT OF as a new type constructor for singly — linked (by Refs) lists, and a
constructor for list values that mimics that of Lisp, avoiding the need for a lot of NEws or CONSs.
The analog of Lisp's CAR and CDR are provided by the standard fields first and rest. Unlike Lisp,
Cedar lists are statically typed (although the element type may be Ref ANY).

Cedar also has a built —in type ATOM, which can be used for values that are uniquely
determined by their print names. Any rope can be converted to an atom and conversely; the
advantage of atomsisthat, unlikeropes, itisvery cheap to compare them for equality; atoms may
also have property lists. Atom literals are just names prefixed by .

CEDARS5.2 0 FORINTERNAL XEROX USE ONLY

18

CEDAR LANGUAGE OVERVIEW 19

Converting Mesa Programs to Cedar 1 Jim Morris

This section assumes you already know how to program in Mesa (or that you have a Mesa
program to be converted), and is intended to explain the differences for programming in Cedar.

Simple programs

Let'ssupposeyouwanttorunasimple programin Cedar. if anexistingMesa 5or 6 program
uses fairly vanilla stuff, it's easy to convert:

Thenamesof mostinterfacesand some procedures have changed, but the functionality is
basically the same.

The most obviousdifferences will be withstrings and I/0. You should only need to know
about two interfaces for these: Rope and 10, respectively.

In general, the Cedar community hasdropped the use of "Defs" asa suffix for definition
file names, and introduced the suffix “Impl" for implementation files; e.g.
“InlineDefs" became "Inline".

Here's what you need to do to your Mesa 5 or 6 program:

Change all STRINGs to ROPEs (actually Rope.ROPE). Remove all allocationsand deallocations
of strings. Change all references to StringDefs routines to use Rope or 10 routines.
Rope providesprocedurestoparse and manipulate ropes. |0 provides procedures to
convert ROPEs to numbers and back as noted below. One can now put special
characters in rope literals by using the escape character "\". ". . .\n..." inserts a
carriagereturn(newline), “...\t..." atab,"...\..." abackslash,and ". . .\123 ..
" the character whose octal codeis 123. Note a ROPEisimmutable, unlike astring.

Appending a character creates a new ROPE.

You should use specific subranges for numeric variables whenever possible. If you don't
know the range, use INT (32 - bitinteger), unlessyou knowyoudon't need thatbiga
number and know you need efficiency. In those cases use INTEGER Or NAT =
[0..77777B]. Avoid using CARDINALs OF LONG CARDINALs; their main use is in
dealing with sTRINGs. The compiler recognizes the abbreviation INT for LONG
INTEGER, BOOL for BOOLEAN, CHAR for CHARACTER, and PROC for PROCEDURE

Change all referencesto I/O packages of all kinds (streams, files, TTY) touse equivalentio
routines. l0isthe only interface you should need to know about for I/0 of almost
any type of variable or constant (ROPE, INT, etc.) to almost any type of device
(keyboard, display, files, temporary buffer etc.). 10 contains:

A set of CreateX routines for each kind of stream X#file, display, etc.
A set of GetX routines for each type X (integers, ropes, etc.)

APutFroutinethatcanbeused with anytype(integers, ropes, etc.)viaasetofinline
procedures(int,rope, etc.)whichareused totag the type ofthearguments. It
also provides aformatargument which may beusedto get FORTRAN - style
formatting of output. Forexample, the format " %g" printsalmostanythingin
default free - format:
stream PutF["The sum of % g and %gis %g.\n", int[x], intly], int[x + y]]

APutFRroutinethatisidenticaltoPutFexceptitproducesaropeasoutputinstead
of puttingitsresultonastream, andaRSroutine thatmakesarope look like
a stream so that the GetX procedures can be used. Thus one can convert
various types to and from ropes, e.g. the following code which converts an
integer to arope and back:

CEDARS 2 B FORINTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW 20

r: ROPE_ PutFR[, intf[il];
j1INT_ GetInt[RS[r]];
Make use of LisTs and SEQUENCEs instead of ARRAYs and DESCRIPTORs for ARRAYs. The
interface List contains some useful routines.

New language features

The changes in the Cedar language from Mesa 6 are fairly easy to understand for simple
programs:
(a) Rers provide automatic deallocation and easier allocation:
Node: TYPE = REF Rec;
Rec: TYPE = RECORD|first: INTEGEK, rest: Node];

x: Node __NEw|Rec [5, niLll;
(b) Runtime types via REF ANY give looser binding:
TNode: ReF BIRec;
Node: ReF B2Rec;

X: Node_ o

t: TNode__, .

q: REF ANY;

q__t,q_ x; - - bothof these are legal

t _ nARROWIQ); - - raises NarrowRefFaultif gisnota TNode

--q E isalwaysillegal You cannot update through a Rer ANY

- — type can also be checked explicitly:
WITH ¢ SELECT FROM
m:TNode =>{t m;q mlson},
n:Node =>{x n;q nrest};
ELSE ERROR, T
- —or
IFISTYPEIQ, TNode] THEN {t NAaRROWIQ]; @ t.lson}
ELSE IFISTYPE(Q, Node] THEN{x NARROWIQ]; g x.rest}
ELSE ERROR - o
REF ANY is preferred to the use of variant records.
(c) Lists are built into the language:
Node: TYPE = LIST OF INT;
x: Node CONS|5, NiLj;

y: Node LisTI5, 6]; - — same as CONS|5, CONS|6, NiLI]
inINT__y first; — — iis5
z:Node yrest; — — zisCONS|[6, NIL]

FOR|: Node y, | rest UNTILI = NILDO.
(d) ROPES, ATOMS, SEQUENCES, and INTs are also built - in.

(e) Toprotectyourselfand the garbage collector from obscureerrorsyoushould programin
the safe subset of the language To geta program into the safe subset prefix each
module (PROGRAM, MONITOR, Or DEFINITIONS) with the word CEDAR The compiler
will then tell you when you are straying outside the safe subset. You canwave the
compiler off any block by placing the word TrRuSTED before it. If you call a
procedure declared in an unsafe interface (i.e., one that doesn't start with CEDAR

CEDARS.2 8 FORINTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW 21

DEFINITIONS), the compiler will complain unless the call isin a TRUSTED block. Most
of the high - level interfaces in the Cedar system are now safe.

Restrictions of the safe language

The @ operatoris not permitted. There are three general ways to cope with thisrestriction:
specializing, copying, and indirecting. For example, suppose you have a program that says
W: ARRAY [0..100) OF z;
Pl@W];
FORITIN[0..100) DO . .. QI@WIi]] . .. ENDLOOFP:
Toeliminatethe first @ by specializing we would make a copy of the procedureP thatdealt with
the W directlyinotverysatisfactory. To eliminate the first @ by copyingwe would pass the array
W in by value and back by resultdalso not very satisfactory. It is best to deal with the first @ by
indirecting; just allocate W from collectable storage, writing
W: REF ARRAY [0..100) OF Z = NEW|ARRAY [0..100) OF z};
PIWI;
Eliminating the second @ by specializationis plausibleif Qknowsitisalwaysdealingwith array
elements: pass areference to W along with anindex. Otherwise, deciding between copying and
indirecting depends upon thesizeofa Z. Ifitissmall copyit, writing "WI[i] Q[WIi]]". Ifitisbig
create references to it and pass those, writing -
W: REF ARRAY [0..100) OF REF Z;
PIW];
FORTIN[0..100) DO ... Q[WIi]] ... ENDLOOP;

The form of variantrecord discrimination that does not copy the value to a new location cannot
be used. Suppose you have a variant — record data structure like
T: 1YPE = REFTR;
TR: TYPE = RECORDISELECT 1:* FROM
name, string = > [x: ROPE|;
link = > [i:iNT. r: T];
ENDCASE];
and are accustomed to performing discriminations like
e. T,
WITH x: @ SELECT FROM
name, string = > "Statements using x";
link = > {S1[x.i]; S2[@x]};
ENDCASE;
You should declare a set of ReFs to bound variant types like
Name: TYPE = REFname TR;
String: TYPE = REFstring TR;
Link: TYPe = Reflink TR;
and rewrite the discrimination to be
WITH € SELECT FROM
x: Name = > "Statements using x";
x: String = > "Statements using x";
x: Link = > {S1[x.i]; S2[x]};
ENDCASE;
The type of xis now a REF type, not a TR, so various other types need to be adjusted and the @in
S2 is no longer needed. If "Statements using x" is a large block, you will probably want to
introduce a procedure to avoid copying it.

CEDARS 2 ¥ FOR INTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW 22

Variantrecords cannot be overwritten. Similiartechniques can be used for sanitizingaprogram
that overwrites variantrecords. Assuming the declarations of Tand TR from above, suppose you
wanted to write

x: T New[TR _ [name["END"]];

x" [link[5, x]];
The specialization/copying technique is to simply update the thing that points at the record,
writing "x NEw[TR [link[5, x]]]" However,ifyoudon'tknow all the placesthat pointat the

record, you must introduce another level of indirection, writing
T: TYPE = REFREFTR,;
x: T NEWIREFTR NEw(TR [rope["END"]]I;
x" NewITR [link[5, x]1l;

Unsafe procedures cannot be passed as arguments to safe ones The symptom of aviolation of
thisruleisgenerally amessage complainingabout anincorrecttype whenthereisno obvioustype
mismatch. All proceduretypesinaninterface prefixed by Ceparare implicitly prefixed with Sare.

The simplest thing to do is to put saFe in front of PROC N the argument procedure declaration,
and put TRUSTED in front of its body. As with all uses of TRUSTED, you should verify that the
safety invariants are actually maintained, and document the reason for the TRUSTED in a comment.

For More Information . ..
Cedar Language Syntax

Thisisaone — pagereference grammar describing the complete syntax of the Cedar Language,
in a compact variation on BNF developed by Butler Lampson. Keep it handy as you write
programs. It providesa relatively compact source of information on the exact form of constructs
accepted by the compiler. It will also alert you to much of the available variety in the
languageltbut of course, not every syntactically valid program makes semantic sense.

The parsing grammar used by the compileris somewhatlarger and more complexthan the
Reference Grammar. Some of thisis for technical reasons associated with LALR(1) parsing, and
some of it to enable the compiler to make certain semantic distinctions while parsing. The
differences should be invisible when dealing with correct programs, but may affect the error
messages given for incorrect ones.

Annotated Cedar Examples

Thisdocument contains four complete, runnable Cedar programs chosen toillustrate the use
of most of the major features of the language, and to provide an introduction to the style of
programmingthatispreferredin Cedar. You should certainly investtime instudying them before
attempting towrite Cedar programs. If you are one of those who learns best from examples, you
may find them virtually the only tutorial information you need to learn the language.

These examples have been chosensothat theyare also useful prototypesofkinds of programs
you maywanttowriteinCedar Ifyouarelike most Cedar programmers, youwill probably findit
easier to start from such a prototype, and change it to do what you want, than to enterawhole
program “from scratch.”

CEDAKS 2 8 FORINTERNAL XEROX USE ONLY

CEDAR LANGUAGE OVERVIEW

Stylizing Cedar Programs

Because Cedar programmers so frequently read each other's code, it is considered good
citizenship to adhere to certain stylistic conventions. Stylizing Cedar Programs discusses the
generally agreed conventions.

You cansaveyourselfalotof typing, and produce nicely formatted code at the same time, by
using Tioga's abbreviation expansion mechanism to generate all the high — level structure of your
program (at least, all the bits that aren't simply copied). The file Cedar.abbreviations lists the
available macros and their expansions; you can add your own favorites.

Cedar Program Style Sheet

Thisisan annotated prototype that you will probably wanttokeep close to hand, because it
compactly illustrates the most important principles from the previous document.

Cedar Language Reference Manual

Eventually, thisisintended to be a precise definition of the complete syntax and semantics of
the Cedar Language. Itis still incomplete.

The formal definition of the language is givenin terms of a kernel language, into which all
Cedar constructs can be desugared to determine their precise semantics. The Reference Manual
contains both the definition of the kernel, and an explanation of the desugarings. It also contains
several tables that collectimportantinformation about the primitive types and type constructors of
Cedar.

Cedar Language Reference Summary Sheets

Thisisintended to be the essence of the entire Cedar Language carefully condensed into two
pages for ready reference. It covers both syntax and semantics, with examples and notes. It is
definitely not for those with weak eyes, and should probably not even be read until you have
studied the Reference Manual proper. But it should be very helpful in checking details that you
may have forgotten. Keep it handy.

Cedar Catalog

Sincesomuch Cedar programmingisdone "atthe componentlevel," you need to know what
packages and tools are available and what they do. Ingeneral, full documentation (or at least the
best available approximation thereto) for each component is stored on
[Indigo] < Cedar5.2>Documentation>, or is referenced in the component's DF file, stored on
[Indigo]<Cedar5.2>Top>.

The problem is finding out which components you should be interested in. That'swhere the
Cedar Catalog comes in handy. It contains a somewhat structured list of all the componentsin
Cedar considered "interesting"” by their maintainers. A component may be interesting

because of what it provides (your program may become a client),
because of what it does (you personally may become a user), or
because of how it does it (you may study it or copy some part of it in your program).

For each entry, the Catalog indicates why it is considered interesting, and how to acquire
documentation and the componentitself. It also identifies the maintainer, who is the ultimate

CEDARS 2 8 FORINTERNAL XEROX USE ONLY

23

CEDAR LANGUAGE OVERVIEW

source of advice and help.
Mesa 5.0 Manual

The Mesa Language Manual, Version 5.0, PARC Technical Report CSL — 79 - 3, is the most
recent self — contained manual on the Mesa Language. It falls somewhere between a tutorial and a
reference manual, and many users have complained thatitisn't entirely satisfactory for either
purpose. Butifyouneed moreinformationaboutthe Mesa - like parts of Cedar, itmay beyour best
source.

Chapter 4 gives the details of Mesa's basic control constructs.

Chapter 5 tells all about procedures.

Chapter 7 goesinto more detail than you probably want about the fine points of modules,
programs, and configurations. You may be better off extrapolating from the
Annotated Cedar Examples.

Chapter8givessome of the gory details of exceptions and exception handling. Itiseasy to
getin trouble unless you use them in straightforward ways.

Chapter 10 provides a pretty reasonable discussion of how to make effective use of
processes, monitors, condition variables, etc.

Who to see

If you haven't managedto find information that you want after you have looked inwhatyou
consider tobe the obviousplaces(orif youdon'tunderstand whatyou have found), don't hesitate
to ask. Almost anyone in CSLis a fount of wisdom, willing to be asked almost any question on
almost any subject. (Of course, theanswersaren'tequally reliable, butyou can'thave everything.)
If the first person you ask doesn't know the answer, chances are good that you'll get a pointer to
either a person or document that will have the answer. More specifically here are some good
people to ask:

Russ Atkinson BugBane, runtime system, general questions
Bob Hagmann VM, Alpine, general questions

Rick Cattell Cypress, Squirrel, Walnut

Willie - Sue Orr Dorado microcode, Walnut, device heads
Jim Donahue Walnut, Squirrel, Cypress, Alpine

Doug Wyatt Viewers, Tioga, Graphics

Mike Plass Viewers, Tioga, TSetter

Howard Sturgis Cedar on DLions

CEDARS 2 8 FORINTERNAL XEROX USE ONLY

24

