
ZEUS

Utilities Manual

03-3196-01

April 1982

Copyright 1981 by Zilog, Inc. All rights reserved. No part
of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the
p~ior written permission of Zilog.

The information in this publication is subject to change
without notice.

Zilog assumes no responsibility for the use of any circuitry
other than circuitry embodied in a Zilog product. No other
circuit patent licenses are implied.

Portions of the material have been reproduced with the per­
mission of Western Electric Company, Incorpo~ated.

-----_._--- .. --- ---------------'--
----~------------------~~-.

03-0171-01 Note to user

SADIE Diagnostic Tape
14-0009-03

SADIE 3.0

The following items apply to Version 3.0 of SADIE
release on cartriage tape with part number 14-0009-03.
Please report any additional problems to Zilog immedi­
ately by recording them on your machine with the STR
command. The listing resulting from the STRPRINT com­
mand can then be sent directly to Zilog.

DATA PRODUCTS INTERFACE TEST ERROR : DR.PRT, the Data
Products Interface test does not work correctly. The
routine times out while waiting for the printer to come
on line. This problem will be fixed in the next
release of SADIE.

MEMORY TESTS DO NOT CHECK PARITY : NEWMEM1, NEWMEM2,
and NEWMEM3 tests do not detect parity errors. They
aetect only data-line and address-line errors. This
problem will be corrected in the next release of SADIE.

IfTU Zilog :_ , .. '

ZEUS Software Release, 1.1
IOTE TO USER

PIN 03-0200-01

BTU

The following modes need to be corrected to accurately run
ZEUS:

1. Izeus.; permission modes set as 751 needs to be changed
to 644.

2. lusr/1ib/tmac/tmac.an; permission mode set at 640 needs
to be changed to 644.

These changes can be accomplished easily by issuing the fol­
lowing commands as super user:

1

cd I
chmod 061.14 zeus·
upkeep -d (if there appears to be a difference at

this point, you may need to re-initialize
your contents file by "upkeep _in. If
you do not receive a difference then you
may proceed to the next command.)

cd lusr/1ib/tmac
chmod 0644 tmac.an
upkeep -d (same as above)

Z110g . 1

· .

! ~. ' •. '-

~ '.

El-0152-0l, Errata, ZEUS Operating System, Version 1.7

The following items apply to Version 1.7 of ZEUS
releases on cartridge tape with part number 14-0006-0l.
Please report any additional problems to Zilog
immediately by recording them on your machine with'
the STR command. The listing resulting from the
STRPRINT command can then be sent directly to
Zilog.

1. The cartridge tape unit in your System 8000 is a very
high recording density unit .(6400 bits per inch).
Zilog subjects cartridge tapes to additional screening
before making them acceptable for shipment. Zilog
recommends that users buy cartridge tapes for their
systems directly from lilog or contact the major
cartridge tape vendors directly for tapes screened
for 6400 bits per inch. Customers may find that
they have tape reliability problems if they purchase
standard tapes from distributors as these tapes are
intended .for 1600 bits per inch use. It is expected
that within one year standard tapes certified for 6400
bits per inch will be available directly from the
distributor.

2. The following programs normally found in Version 7
releases are not currently in ZEUS:

cu iostat refer

l. The uucp program erroneously sets the tty device
(/dev/ttyl by default) to mode 0600. This should
be reset to mode 0666 for use by remote.

4. When using sysgen to generate new operating systems
the /swap file system's size must remain 3200.

-.. -j",

. ::'.il.. \:)
-.

. ... ~~

5. The following problems may occur in the ZEUS 1.7 Tape-,n ..
Release:

C. C Compiler

If two external names are identical in the first
seven characters the two variables are mapped
into one memory location. For example,

int gl23456xI
int
main ()

gl23456YI

{
gl234567x • 11

}

,,."'

the two global variables are mapped into one
location named _g123456. ~he C compiler trun­
cates names after the first eight characters.
The only way around this problem now is not to
have external names that are identical in the
first seven characters.

D. Secondary Bootstrapper Anomaly

Occassionally the secondary bootstrapper prompts
with a message ·no more file slots·. This seems
to occur after a large number of programs have been
executed. This has not occured when following the
steps given in the System Administrator Manual.
If this should occur, you should reboot the system
from t~pe.

(

NOTICE TO OWNER

FEDERAL COMMUNICATIONS COMMISSION
RADIO FREQUENCY INTERFERENCE

STATEMENT

Warning: This equipment generates, uses, and can radiate radio frequency energy and if not
installed and used in accordance with the instructions manual, may cause interference to
radio communications. As temporarily permitted by regulation it has not been tested for com­
pliance with the limits for Class A computing devices pursuant to Subpart J of Part 15 of FCC
Rules, which are designed to provide reasonable protection against such interference. Opera­
tion of this equipment in a residential area is likely to cause interference in which case the
user at his own expense will be required to take whatever measures may be required to cor­
rect the interference.

ZEUS UTILITIES

03-3196-01

PRELIMINARY VERSION

The information contained in
this draft may undergo
changes, both in content and
organization, before arriving
at its final form.

ZEUS Utilities Zilog ZEUS Utlities

PREFACE

The ZEusm Utilities Manual documents, in handbook and
tutorial form, important ZEUS features and complex programs
that run under ZEUS. System 8000m hardware and ZEUS
software are used in the Zilog System 8000. This manual and
the related manuals below provide the complete technical
documentation of the System 8000 and ZEUS.

Title

System 8000
Hardware Reference Manual

System 8000
User Manual

ZEUS System Administrator Manual
ZEUS Reference Manual

Zilog Number

03-3198

03-3199
03-3197
03-3195

ZEUSm and System 8000m are registered trademarks of Zilog,
Inc.

ii Zilog ii

f

ZEUS Utilities Zilog

iii

TABLE OF CONTENTS

Introduction to Zeus Utilities ••••••••
A Tutorial Introduction to ADB ••••••••
ZEUS PLZ/ASM Assembler User Guide •••••
Awk: A Pattern Scanning

and Processing Language •••••••••
The C Programming Language ••••••••••••
ZEUS Communication Package ••••••••••••
An Introduction to the C Shell ••••••••
The ZEUS Line-Oriented

Text Editor, ed •••••••••••••••••••
File System Integrity •••••••••••••••••
Lea r n •••••••••••••••••••••••••••••••••
Lex: A Lexical Analyzer Generator ••••
Lint: A C Program Checker ••••••••••••
Make ••••••••••••••••••••••••••••••••••
Typing Documents on the ZEUS System •••
Nroff/Troff Reference Manual ••••••••••
Zeus Programming ••••••••••••••••••••••
S8000 PLZ/SYS User Guide ••••••••••••••
SED: A Noninteractive Text Editor ••••
The ZEUS Shell ••••••••••••••••••••••••
A Troff Tutorial ••••••••••••••••••••••
UUCP Installation •••••••••••••••••••••
Introduction to

Display Editing with vi •••••••••••
YACC: Yet Another Compiler-Compiler ••
ZEUS for Beginners ••••••••••••••••••••

Zilog

ZEUS Utlities

INTRODUCTION
ADB

AS

AWK
C

COMM
CSH

ED
FSCK

LEARN
LEX

LINT
MAKE

MS
NROFF/TROFF

PGMG
PLZ/SYS

SED
SHELL
TROFF

UUCP

VI
YACC
ZEUS

iii

ZEUS Utilities Zilcg ZEUS Otlities
/
;

File System Integrity

File System Integrity FSCK

iv Zilog iv

INTRODUCTION Zilog INTRODUCTION

INTRODUCTION ~ ZEUS UTILITIES

This volume contains manuals and tutorial describing the
basic utility programs of ZEUS.

ZEUS ~ Beginners describes the basics of logging in, run­
ning programs, creating and modifying files, etc.

Learn is an teaching-machine program for practice in using
ZEUS.

The ZEUS mechanism for running programs is itself a user
program called a shell. Commonly used under ZEUS 1S ~,
described in An Introduction ~ ~ ~ Shell. An alternative
is ~ (known simply as nThe Shell,n); it is described in ~
.z..E.ll.S Shell.

There are two utilities for the maintaining of text files.
They are the command-line oriented editor ~, and the screen
oriented editor ~ and are described in ~ ZEUS ~­
oriented .T..e.x.t Editor, ~, and IntrOduction ~ Display Edit-
.ins ld.th ~.

Troff is a macro-oriented typesetting program; nroff approx­
imates troff on typewriter-like devices. The Nroff/Troff
Reference Manual describes these programs. They are used
with a package of commands (macros); Typing Documents Qn ~
ZEUS System Using the -ms Macros with Troff and Nroff is a
first-time document that describes a simple macro package.
A Troff Tutorial describes problems of typesetting docu­
ments.

~: A Noninteractive ~ Editor describes a program which
edits input of indefinite length; commands are similar to
those of ed.

~: A Pattern Scanning ~ Processing Language describes a
stream editor with a powerful command language.

The primary programming language on ZEUS is~. Special con­
siderations of programming in C on ZEUS are listed in ~ ~
Programming Language. Lint: A ~ Program Checker detects
implementation-dependent code and other bad features.

~SIS is another high-level ZEUS language; ELZIASM is the
ZEUS resident assembler. They can be used together to
design low-level programs.

Z£DS Programming explains how programs running under ZEUS
interact with ZEUS; it describes how ZEUS programs handle

1 Zilog 1

INTRODUCTION Zilog

command arguments, input/output, etc.

A Tutorial Introduction tQ ~ describes a
used to examine core files resulting from
patch object files, and run programs with
points.

INTRODUCTION

program which is
aborted programs,

embedded break-

LeA: A Lexical Analyzer Generator and lACe: ~ Another
Compiler-Compilet describe tools useful in developing pro­
grams which apply translation rules to input.

HAka describes a program used to maintain a large group of
interrelated files, such as the source code files and their
associated object files that are behind a large C program.

ZBllS CQrnmunication Package describes a communications path
between ZEUS and remote systems.

DUCE InstallatiQn describes a program that links to other
ZEUS systems (or any other system that can run UUCP) via tty
port-to-port connections or transient telephone connections.

~ System Integtity Ptogtam (.f.S.C.K) Refetence Manual
describes how file systems can be protected against corrup­
tion upon reboot.

2 Zilog 2

ADB

*

1

Zilog ADB

A Tutorial Introduction to ADB*

This information is based on-an article originally
written by J.F. Maranzano and S.R. Bourne, Bell Labora­
tories.

Zilog 1

ADB

(

2

Zilog ADB

PREFACE

This document contains information on ADB (A neUugger), a
new debugging program. With ADB, it is possible to examine
core files resulting from aborted programs, print variable
contents in a variety of formats, patch files, and run pro­
grams with embedded breakpoints.

This document is written as a tutorial. It is assumed that
the reader is familiar with the C language.

The examples referenced in the text are located in
A. For ease of reference, it is recommended that
pIes be brought up on the terminal while the text
from the hard copy.

Zilog

Appendix
the exam­
is read

2

ADB

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

SECTION 6

APPENDIX A

APPENDIX B

3

Zilog ADB

TABLE OF CONTENTS

A QUICK SURVEY •••••••••••••••••••••••••••••••• 4

1.1
1.2
1.3
1.4
1.5

Basic Command Format ••••••••••••••••••••• 4
File Locations ••••••••••••••••••••••••••• 4
Current Address •••••••••••••••••••••••••• 4
Formats •••••••••••••••••••••••••••••••••• 5
General Requests ••••••••••••••••••••••••• 6

DEBUGGING C PROGRAMS . 7

2.1
2.2
2.3
2.4
2.5

Debugging a Core Image ••••••••••••••••••• 7
Calling Multiple Functions ••••••••••••••• 8
Setting Basic Breakpoints •••••••••••••••• 9
Setting Advanced Breakpoints ••••••••••••• 11
Using Other Breakpoint Facilities •••••••• 14

MAPS ..
ADVANCED USAGE ••••••••••••••••••••••••••••• e· ••

4.1
4.2
4.3
4.4
4.5

Gene r al ...•..••...•••.•...••..••.•..•.••.
Formatted Dump •••••••••••••••••••••••••••
Directory Dump •••••••••••••••••••••••••••
Ilist Dump
Value Conversion .

PATCHING .
CAUTIONS .

PROGRAH EXAMPLES

ADB SUMMARY .

Zilog

15

17

17
17
19
19
19

21

23

24

41

3

ADB

(

4

Zilog ADB

SECTION 1

A QUICK SURVEY

1.1 Basic Command Format

The ADB command copies core to an output file. The command
format is:

adb objfile corefile

where objfile is an executable ZEUS file (default is ~.QYt)
and corefile (default is~) is a core image file. When
the defaults are used, the command appears as:

adb

The file name minus (-) means ignore an argument, as in:

adb - core

1.2 File Locations

ADB has requests for exam~n~ng locations in the contents of
objfile, (the ? request) or the corefile (the I request).
The general form of these requests is:

address ? format

or

address I format

where format describes the printout (Section 2.4) •

1.3 Current Address

ADB maintains a current address, called dot, similar in
function to the current pointer in the ZEUS editor. The
request:

.,10/d

prints ten decimal numbers starting at dot. Dot then refers
to the address of the last item printed.

When an addre~s is entered, the current address is set to
that location, so that:

Zilog 4

5

Zilog ADB

0126?i

sets dot to octal 126 and prints the instruction at that
address.

When used with the ? or / requests, the current address can
be advanced by typing a new line, and it can be decremented
by typing A.

Addresses are represented by expressions of decimal, octal,
and hexadecimal integers, and symbols from the program under
test. These can be combined with the operators +, -, *, %
(integer division), & {bit and}, I (bit inclusive or), #
(round up to the next multiple), and - (not). All arith­
metic within ADB is 32 bits. When typing a symbolic address
for a C program, type ~ or name: ADB recognizes both
forms.

1.4 Formats

To print data, specify a collection of letters and charac­
ters that describe the format of the printout. Typing a
request without a format causes the new printout to appear
in the previous format. The following are the most commonly
used format letter~:

b
c
o
d
f
i
s
a
u
n
r
A

one byte in octal
one byte as a character
one word in octal
one word in decimal
two words in floating point
Z8000 instruction
a null terminated character string
the value of dot
one word as unsigned integer
print a new line
print a blank space
backup dot

Format letters are also available for long values (for exam­
ple, D for long decimal and F for double floating pOint).

Zilog 5

~B

6

1.5 General Requests

Requests of the form .

Zilog

address,count command modifier

set dot to address and execute the command count times.

The following table gives general ADB command meanings:

Command

?
/
=
· · $
· ,
!

Meaning

Print contents from ~.~ file
Print contents from ~ file
Print value of ndotn
Breakpoint control
Miscellaneous requests
Request separator
Escape to shell

Use the request $q or $0 (or control-D) to exit from ADB.

Zilog

ADB

6

i .. { '1

ADB

7

Zilog ADB

SECTION 2

DEBUGGING C PROGRAMS

2.1 Debugging a Core Image

Example 1 (Appendix A) changes the string pointed to by
charp, then writes the character string to the file indi­
cated by argument 1. The common error shown is that a null
character ends a character string. In the loop to print the
characters, the ending condition is based on the value of
the pointer charp, not the character that charp points to.
Executing the program produces a core file because of an
out-of-bounds memory reference.

The following explanation refers to Example 2.

ADB is invoked by the command:

adb a.out core

The first debugging request:

$c

is used to give a C backtrace through the subroutines
called.

The next request

$C

is used to give a C backtrace plus an interpretation of all
the local variables in each function and their values in
octal.

The next request

$r

prints the registers, including the program counter and an
interpretation of the instruction at that location.

The request

$e

prints out the values of all external variables.

Zilog 7

ADB

8

The request

$m

Zilog ADB

produces a report of the contents of the maps. A map exists
for each file handled by ADB. The map for the ~.QYt file is
referenced by?, and the map for the ~ file is referenced
by I. Use? for instructions and I for data when looking at
programs.

To see the contents of the string pointed to by charp, enter

*charp/s

This uses charp as a pointer in the
information as a character string.
the pOinter to the character buffer
outside of the program's memory.

The request

.=0

~ file and prints the
This printout shows that
points to an address

prints the current address, not its contents, in octal.
This has been set to the address of the first argument. The
current address, dot, is used by ADB to 'keep the current
location. It allows reference to locations relative to the
current addressl for example,

.-IO/d

2.2 Calling Multiple Functions

The C program shown in Example 3 calls functions i, g, and h
until the stack is exhausted and a core image is produced.
The following explanation refers to Example 4.

Enter the debugger with the command

adb

which assumes the names ~.~ and ~
file and core image file respectively.

$c

for the executable
The request

fills a page of backtrace references to i, g, and h. Enter­
ing ~ terminates the output and returns to ADB request
level.

Zilog 8

ADB

9

Zilog ADB

The request

,5$C

prints the five most recently called procedures.

Each function (~,g,h) has a counter of the number of times
it was called. The request

fcnt/d

prints the decimal value of the counter for the function L.

To print the the decimal value of X in the last call of the
function b, type

h.x/d

It is not currently possible to print the value of local
variables.

2.3 Setting Basic Breakpoints

The C program in Example 5 changes tabs into blanks (adapted
from Software Tools by Kernighan and Plauger, pp. 18-27).

Run this program under the control of ADB (Example 6) by

adb a.out -

Set breakpoints in the program as:

address:b [request]

The requests

settab:b
open:b
read:b
tabpos:b

set breakpoints at the start of these functions.

To print the location of breakpoints, enter

$b

The display indicates a count field. A breakpoint is
bypassed count -l times before causing a stop. The command
field indicates the ADB requests to be executed each time

Zilog 9

~B

10

Zilog ADB

the breakpoint is encountered. In the example, no command
fields are present.

Displaying the original instructions at the function settab
sets the breakpoint to the entry point of the settab rou­
tine. Display the instructions using the ADB request

settab,5?ia

This request displays five instructions starting at settab
with the addresses of each location displayed. Another
variation is

settab,51i

which displays the instructions with only the starting
address.

The addresses are accessed from the A.~ file with the ?
command. When asking for a printout of multiple items, ADB
advances the current address the number of bytes necessary
to satisfy the request. In Example 6, five instructions are
displayed and the current address is advanced 18 (decimal)
bytes.

To run the program, enter

:r

To delete a breakpoint, for instance the entry to the func­
tion settab, enter:

settab:d

To continue execution of the program from the breakpoint,
enter

:c

Once the program has stopped (in this case at the breakpoint
for ~), ADB requests can be used to display the contents
of memory. For example, use

$C

to display a stack trace, or

tabs/8x

to print three lines of 80 locations each from the array
called ~. At location ~ in the C program, settab has
been called to set a one in every eighth location of ~.

Zilog 10

ADB

11

Zilog ADB

Printing the ~ array allows ·verification of settab.

2.4 Setting Advanced Breakpoints

Continue execution of the program (Example 6) with

:c

~ is called three times and the contents of the array
~ is displayed each time. The single character on the
left edge is the output from the C program.

Contine the program with the command

:c

The program hits the first breakpoint at tabpos because
there is a tab following the "This" word of the data.

Several breakpoints of tabpos occur until the program
changes the tab into equivalent blanks. Remove the break­
point at that location by enteringg

tabpos:d

If the program is continued with

:c

it resumes normal execution after ADB prints the message

a.out:running

The ZEUS quit and interrupt signals act on ADB itself rather
than on the program being debugged. If such a signal
occurs, the program being debugged is stopped and control is
returned to ADB. To save the signal and pass it to the test
program, enter

:c

This can be useful when testing interrupt handling routines.
Enter

:c 0

if the signal is not to be passed to the test program.

Now reset the breakpoint at settab and display the instruc­
tions located there when the breakpoint is reached. This is
accomplished by:

Zilog 11

ADS

12

Zilog ADS

settab:b settab,5?ia *
* Owing to a bug in early versions
version distributed in Generic
must be written as:

of ADS (including the
3 ZEUS), these statements

settab:b
read,3:b
settab:b

settab,5?ia10
main.c?C10
settab,5?ia10

The 10 sets dot to zero and stop at the breakpoint. To
request each occurrence of the breakpoint and stop after the
third occurrence, type:

read,3:b tabs/ax

This request prints the local variable & in the function
main at each occurrence of the breakpoint. The semicolon
separates multiple ADS requests on a single line.

NOTE

Setting a breakpoint causes the value of dot to be
changed. Executing the program under ADS does not
change dot. For example, the commands

settab:b .,5?ia
open:b

print the last value dot was set to (example ~)
n2t the current location (example settab) at
which the program is executing.

A breakpoint can be overwritten without first deleting the
old breakpoint. Enter

settab:b settab,5?ia1 *
The display of breakpoints

$b

shows the above request for the settab breakpoint. When the
breakpoint at settab is encountered, the ADS requests are
executed. The location at settab has been changed to plant
the breakpoint. All the other locations match their origi­
nal value.

The execution of each function tf, 9., and.h in Example 3)
can be monitored by planting nonstop breakpoints. Call ADS

Zilog 12

ADB

13

Zilog

with the executable program of Example 3 as follows:

adb ex3 -

Enter the following breakpoints:

-h:b
g:b
f:b
:r

hcnt/d;
gcnt/d;
fcnt/d;

h.hi/;
g.gi/;
f.fi/;

h.hr/
g.gr/
f.fr/

ADB

Each request line indicates that the variables are printed
in decimal (by the specification d). The format is not
changed and the d can be left off all but the first request.

The output in Example 7 illustrates two points. First, the
ADB requests in the breakpoint line are not examined until
the program under test is run. This means any errors in
those ADB requests are not detected until run time. At the
location of the error, ADB stops the program.

Example 7 also illustrates the way ADB handles register
variables. ADB uses the symbol table to address variables.
Register variables, like f.iL in the previous example, have
pointers to uninitialized places on the stack and print the
message "symbol not found."

Another way of getting at the data in this example is to
print the variables used in the call as with

f:b fcnt/d;
g:b gcnt/d;
:c

f.a/;
g.p/;

f.b/;
g.qj~

f.fi/
g.gi/

The operator / was used instead of? to read values from
the ~ file. The output for each function, as shown in
Example 7, has the same format. For the function !, for
example, it shows the name and value of the external vari­
able !£at. It also shows the address on the stack and value
of the variables ~, h, and fi.

The addresses on the stack continue to decrease until no
address space is left for program execution. At this time
the program under test aborts. A display with names is pro­
duced by requests

f:b fcnt/d; f.a/"a="d; f.b/"b="d; f.fi/"fi="d

In this format, the quoted string is printed literally and
the d produces a decimal display of the variables. The
results are shown in Example 7.

Zilog 13

ADS

14

Zilog ADB

2.5 Using Other Breakpoint Facilities

Arguments and change of standard input and output are passed
to a program as

:r argl arg2 ••• <infile >outfile

This request aborts any existing program under test and res­
tarts .a • .Q.Y.t..

The program being debugged can be single-stepped by

:s

If necessary, this request starts the program being debugged
and stops after executing the first instruction.

ADS allows a program to be entered at a specific address by
entering

address:r

The count field is used to skip the first n breakpoints as

,n:r

The request

,n:c

is also used for skipping the first n breakpoints when con­
tinuing a program.

A program is continued at an address different from the
breakpoint by

address:c

The program being debugged runs as a separate process and is
aborted by

:k

Zilog 14

"

".

ADB

15

Zilog ADB

SECTION 3

MAPS

ZEUS supports several executable file formats that tell the
loader how to load the program file. File type E707 is the
most common and is generated by a C compiler invocation such
as cc pgm.c. An E7ll file is produced by a C compiler com­
mand of the form cc -i pgm.c. ADB interprets these dif­
ferent file formats and provides access to the different
segments through a set of maps (see Example 8).

To print the maps, enter

$m

In E707 files, both instructions and data (I & D) are inter­
mixed. This makes it impossible for ADB to differentiate
data from instructions, and some of the printed symbolic
addresses look incorrect -(for example, printing data
addresses as offsets from routines).

In E7ll files with separated I & D space, the instructions
and data· are also separated. However, in this case, since
data is mapped through a separate set of segmentation regis­
ters, the base of the data segment is also relative to
address zero. In this case, since the addresses overlap, it
is necessary to use the 1* operator to acces~ the data space
of the a.~ file.

Example 9 shows the display of two maps for the same program
linked as an E707 file and an E7ll file respectively. The
b, e, and f fields are used by ADB to map addresses into
file addresses. The fl field is the length of the header at
the beginning 'of the file (020 bytes for an a . .QJ.lt. file and
02000 bytes for a ~ file). The f2 field is the displace­
ment from the beginning of the file to the data. For an
E707 file with mixed text and data, this is the same as the
length of the header; for an E7ll files, this is the length
of the header plus the size of the text portion.

The band e fields are the starting and ending locations for
a segment. Given an address, A, the location in the file
(either a.~ or ~) is calculated as:

bl~A~el =) file address = (A-bl)+fl
b2~A~e2 =) file address = (A-b2)+f2

Locations can be accessed
abIes. The $v request

by using the
prints the

Zilog

ADB defined vari­
following variables

15

ADB

16

-.

Zilog

initialized by ADB:

b base address of data segment
d length of the data segment
s length of the stack
t length of the text
m execution type (E707 and E7ll)

In Example 9 those variables not present are zero.
variables can be used by expressions such as

<b

ADB

These

in the address field. Similarly, the value of the variable
can be changed by an assignment request such a

02000>b

which sets b to octal 2000. These variables are useful to
know if the file under examination is an executable or core
image file.

ADS reads the header of the core image file to find the
values for these variables. If the second file specified is
not a core file, or if it is missing, the header of the exe­
cutable file is used.

Zilog 16

~B

17

Zilog ADB

SECTION 4

~VANCED USAGE

4.1 General

It is possible with ADB to combine formatting requests to
provide elaborate displays. Several examples follow.

4.2 Formatted Dump

To print four octal words followed by their ASCII interpre­
tation from the data space of the core image file, enter

The various request pieces mean:

<b .

<b,-l

40

8C

n

The request:

The base address of the data segment.

Print from the base address to the end
of file. A negative count is used here
and elsewhere to loop indefinitely or
until some error condition, such as end
of file, is detected.

Print four octal locations.

Back up the current address four loca­
tions (to the original start of the
field).

Print eight consecutive characters using
an escape convention. Each character in
the range 0 to 037 is printed as @ fol­
lowed , by the corresponding character in
the range 0140 to 0177. An @ is printed
as @@.

Print a new line.

allows the printing to stop at the end of the data segment.
The <d provides the data segment size in bytes.

Zi10g 17

ADB .

18

Zilog ADB

The formatting requests can be combined with the ADB ability
to read in a script to produce a core image dump script.
Invoke ADB as:

adb a.out core < dump

to read in a script file, ~, of requests. An example of
such a script is:

l20$w
4095$s
$v
=3n
$m
=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n"Registers"
$r
O$s
=3n"Data Segment"
<b,-1/8ona

The request l20$w sets the width of the output to 120 char­
acters (normally, the width is 80 characters). ADB prints
addresses as symbol + offset.

The request 4095$s increases the maximum permissible offset
to the nearest symbolic address from 255 (default) to 4095.

The request = can be used to print literal strings. Head­
ings are provided in this ~ program with requests of the
form

=3n"C Stack Backtrace"

which spaces three lines and prints the literal string.

The request $v prints all nonzero ADB variables (Example 8).
The request O$s sets the maximum offset for symbol matches
to zero, thus suppressing the printing of symbolic labels in
favor of octal values. This is only done for the printing
of the data segment. The request

<b,-1/8ona

prints a dump from the base of the data segment to the end
of file with an octal address field and eight octal numbers
per line.

Zilog 18

ADB

19

Zilog ADB

Example 11 shows the results of some formatting requests on
the C program of Example 10.

4.3 Directory Dump

Example 12 dumps the contents of a directory made up of an
integer inumber followed by a 14-character name

adb dir -
=nStnlnum"StnNarne n
O,-l? uSt14cn

In this example, the u prints the inumber as an unsigned
decimal integer, the St means that ADB spaces to the next
multiple of S on the output line, and the l4c prints the
l4-character file name.

4.4 Ilist Dump

The contents of the ilist of a file system, such as
/dev/src, is dumped with the following set of requests:

adb /dev/src -
02000>b
?m <b
<b,-1?lflags nSton nlinks,uid,gid"St3dn n,

sizenStDnnaddrlSt20unntimes"St2YnY2na

In this example, the value of the base for the map was
changed to 02000 (by saying ?m<b) because that is the start
of an ilist within a file system. The last access time,
last modify time, and creation time are printed with the
2YnY operator. Example 12 shows portions of these requests
as applied to a directory and file system.

4.5 Value Conversion

ADB can convert values from one representation to another.
For example:

072 = odx

prints

072 5S %3a

which are the octal, decimal, and hexadecimal representa­
tions of 072 (octal). ADB keeps track of format so that as
subsequent numbers are entered they are printed in the

Zilog 19

ADB

20

Zilog ADB

previous formats. Character values are similarly converted.
For example:

'a' = crb

prints

%0061

It can also evaluate expressions, but all binary operators
have the same precedence, which is lower than for unary
operators.

Zilog 20

ADB

21

Zilog ADB

SECTION 5

PATCHING

Patching files
request, not
mand. This is
or L) request.

with ADB is done with the write (w or W)
to be confused with the ~ editor write com­
often used in conjunction with the locate, (1

The request syntax for 1 and w is:

address range file designator command argument

where the address range gives the characters to be searched,
the file designator is ? or I, the command is either a write
or. locate variation, and the argument is an expression and
can support decimal and octal numbers or character strings.
The address range can appear as zero, one, or two charac­
ters, including dot (current address). The request 1 is
matched on two bytes, and L is used for four bytes. The
request w writes two bytes, and W writes four bytes. For
example,

0, 1000?1 searches the original file from 0 to 1000
1000?1 searches the original file from 1000 to end

?l searches the entire file

To modify a file, call ADB as

adb -w filel file2

When called with this option, filel and file2 are created
and opened for both reading and writing.

For example, to change the word "This" to "The" in the exe­
cutable file in Example 10, use the following requests:

adb -w ex7 -
.?l 'Th'
.?W 'The'

The request ?l starts at dot and stops at the first match of
"Th" having set dot to the address of the location found.
The use of ? writes to the A.~ file. The form ?* is used
for an E7ll file.

Zilog 21

ADB

22

. Zilog

More frequently, the request is typed as:

?l 'Th'; ?s

This locates the first occurrence of "Th" and prints the
entire string. Execution of this ADB request sets dot to
the address of the nTh" characters.

Followng is an example of the utility of the patching facil­
ity that has a C program with an internal logic flag. The
flag can be set through ADB and the program can be run.

adb a.out -
:s argl arg2
flag/w 1
:c

The :s request is normally used to single step through a
process or start a process in single-step mode. In this
case, it starts A.~ as a subprocess with arguments argl
and arg2. If there is.a subprocess running, ADB writes to
it rather than to the file. The w request causes flAg to be
changed in the memory of the subprocess.

Zilog 22

ADB

23

Zilog ADB

SECTION 6

CAUTIONS

ADB has the following idiosyncrasies:

1. The value 'of local variables cannot currently be
printed.

2. Function calls and arguments are put on the stack
by the C save routine. Putting breakpoints at the
entry point to routines means that the function
appears not to have been called when the breakpoint
occurs.

3. When printing addresses, ADB uses either text or
data symbols from the ~.~ file. This sometimes
causes unexpected symbol names to be printed with
data (for example, sayrS+n22). This does not hap­
pen if ? is used for text or instructions and / is
used for data.

Zilog 23

ADB Zilog ADB

APPENDIX A

PROGRAM EXAMPLES

1
2 char *charp = "this is a sentence";
3
4 maine argc, argv
5 int argc;
6 char **argv;
7 {
8 int fd;
9 char cc;
10 if (argc < 2
11 {
12 printf("Input file missing\n");
13 exit(8);
14 }
15
16 if ((fd = open(argv[l],O)}== -I}
17 {
18 printf("%s : nor found\n", argv[l]);
19 exit (8);
20 }
21 charp = "hello";
22 printf("debug 1 %s\n", charp };
23 while(charp++)
24 write (fd, *charp, 1);
25 {
***1* **

Example 1

24 Zilog 24

ADB Zilog ADB

1 adb a.out core
2
3 ADB: S8000 1.1
4 ? $c
5 Stack backtracing not implemented
6 ? $C
7 Stack backtracing not implemented
8 ? $r
9 rO %0000
10 rl %0000
11 r2 %0000
12 r3 %0000
13 r4 %0000
14 r5 %0000
15 r6 %0000
16 r7 %0000
17 r8 %0000
18 r9 %0000
19 rIO %0000
20 rll %0000
21 r12 %0000
22 r13 %0000
23 r14 %0000
24 sp %0000
25 fcw %0000
26 pc %0000
27 _main: jr _main+%7c
28 ? $e
29 _charp: %1400
30 _iob: %1172
31 _sobuf: %0000
32 _lastbu: %Of5e
33 _sibuf: %0000
34 _environ: %ffa6
35 _end: %0000
36 nd: %1374
37 _errno: %0009
38 ? $m
39 ? map 'a. out'
40 bl = %0 el = %f72 fl = %38
41 b2 = %0 e2 = %f72 f2 = %38
42 / map 'core'
43 bl = %0 el = %1400 fl = %400
44 b2 = %faOO e2 = %10000 f2 = %1800
45 ? *charp/s

25 Zilog 25

ADB

!.i. (

26

Zilog

46 _end+%8c:
47 data address not found
48 ? charp/s
49 _charp:
50 ? main.argc/d
51 Sorry, local variable names not implemented
52 ? $q
***1* **

Example 2

Zilog

ADB

26

ADB Zilog ADB.

1 int fent, gent, hent:
2 h (x, y)
3 {
4 int hi; register int hr;
5 hi = x+l;
6 hr = x-y+l;
7 hent++;
8 f(hr,hi);
9 }
10
11 g(p,q)
12 {
13 int gi; register int gr;
14 gi = q-p;
15 gr = q-p+l;
16 gent++;
17 h(gr,gi);
18 }
19
20 f(a,b)
21 {
22 int fi; register int fr;
23 fi = a+2*b;
24 fr = a+b;
25 fept++;
26 g(fr,fi) ;
27 }
28
29 main ()
30 {
31 f(l,l) ;
32 }
***1* **

Example 3

27 Zilog 27

ADB

28

Zilog

1 adb
2
3 ADB: S8000 1.1
4 ? $c
5 Stack backtracing not implemented
6 ?, 5 $C
7 Stack backtracing not implemented
8 ? fcnt/d
9 _fcnt: 2156
10 ? gcnt/d
11 _gent: 2156
12 ? bcnt/d
13 _bcnt: 2157
14 ? b. x/d
15 Sorry, local variable names not implemented
16 ? $q
***1* **

Example 4

Zilog

ADB

28

ADS

29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Zi10g

#define MAXLINE 80
#define YES 1
#define NO 0
#define TASSP 8

char input[] = "data";
int tabs[MAXLINE];

main ()
{

}

int fd;
int col, *ptab;
char c;

ptab = tabs;
settab(ptab);
col = 1;
if «fd = open(input, 0 » == -1)
{

}

printf("%s : not found\n", input);
exit(8);

whi1e(read(fd, &c, 1) > 0)
{

}

switch(c)
{

}

case I\t l :

whi1e(tabpos(co1) 1= YES)
{

putchar (II);
co1++;

}
break;

case I \n I :
putchar (I\n I) ;
col = 1
break;

default:
putchar (c) ;
break;

tabpos(co1)
int col;
{

if (col > MAXLINE
return(YES);

Zi10g

ADS

29

ADB

~ ..

30

53
54
55
56
57
58
59
60
61
62
63
64

Zilog

else
return(NO)i

}

settab(tabp)
int *tabpi
{

int ii

for (i=Oi i <=MAXLINEi i++)
(i % TABSP) ? (tabs[i] = NO

}
***1* **

Example 5

Zi10g

ADB

(tabs[i] = YES) i

30

ADB

31

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

adb a.out -

ADB: 58000 1.1
? settab:b
? open:b
? read:b
? tabpos:b
? $b
breakpoints
count bkpt
1 _tabpos
1 _read
1 _open
1 _settab
? settab, 5ia
_settab: jr
_settab+%2: c1r
_settab+%6: cp
_settab+%c: jr
_settab+%e: 1d
_settab+%12:
? settab,5?i
_settab: jr

? : r
figS: running

c1r
cp
jr
1d

Zi10g

command

_settab%48
%0002(sp)
%0002(sp),#%0050
gt,_settab+%44
r3,%0002(sp)

_settab+%48
%0002(sp)
%0002{sp),#%0050
gt,_settab+%44
r3,%0002(sp)

breakpoint _settab: jr _settab+%48
? settab:d
? :c
figS: running
breakpoint _open: 1d rO, r7
? $C
Stack backtracing not implemented
? tabs/8x
_tabs: %0001 %0000 %0000 %0000 %0000

%0001 %0000 %0000 %0000 %0000
%0001 %0000 %0000 %0000 %0000

? :c
figS: running
breakpoint _read: 1d rO, r7
? :c
figS: running
breakpoint _read: 1d rO, r7
? tabpos:d
? settab:b settab,5?ia
? settab,5:b settab,5?ia; 0
? read,3:b tabs/8x
? $b
breakpoints

Zi10g

AOB

%0000 %0000 %0000
%0000 %0000 %0000
%0000 %0000 %0000

31

ADB

32

Zilog

53 count bkpt command
54 3 _read tabs/8x
55 1 _settab settab,5?ia; 0
56 1 _open
57 ? figS: running
58 T_tabs: %0001 %0000 %0000
59 h_tabs: %0001 %0000 %0000
60 i_tabs: %0001 %0000 %0000
61 sbreakpoint _read:
62 ? $q
***1* **

Example 6

Zi10g

%0000 %0000
%0000 %0000
%0000 %0000

1d rO,r7

%0000
%0000
%0000

ADB

%0000
%0000
%0000

32

%0000
%0000
%0000

ADB

33

Zilog ADB

1 adb ex3 -
2
3 ADB: S8000 1.1
4 ? h:b hcnt/d; h.hi/; h.hr/
5 ? g:b gcnt/d; g.gi/; f.fr/
7 ?: r
8 ex3: running
9 _fcnt: 0
10 Sorry, local variable names not implemented
11 ? f:b fcnt/d; f.a/"a = lid; f.h/"b = lid; f.fi/"fi = lid
12 ? g:b gnt/d; g.p/"p = lid; g.q/"q = lid; g.gi/"gi = lid
13 ? h:b hcnt/d; h.x/"x = lid; h.y/"y = lid; h.hi/"hi = lid
14 ?: r
15 ex3: running 0
17 Sorry, local variable names not implemented
18 ? $q
***1* **

Example 7

Zilog 33

"' .. '

ADB Zilog ADB

E707 files

a.out hdr text+data
I I
0 0

core hdr text+data stack
I • • • • • I
0 0 S

E7ll files (separated I and 0 space)

a.out hdr text data
I I
0 T 0

core hdr data stack
I •••• I I
0 D S E

The following adb variables are set.

E707 RM E7ll
b base of data 0 b 0
d length of data D D-B D
s length of stack S S S
t length of text 0 T T

Example 8

34 Zilog 34

ADB Zi10g ADB

1 adb mapE707 coreE707
2
3 ADB: 58000 1.1
4 ? $m
5 ? map 'mapE707'
6 b1 = %0 e1 = %dc f1 = %38
7 b2 = $0 e2 = %dc f2 = %38
8 / map 'coreE707'
9 b1 = %0 e1 = %100 f1 = %400
10 b2 = %200 e2 = %1000 f2 = %500
11 ? $v
12 variables
13 address
14 e = %a4
15 other
16 d = %100
17 m = %e707
18 s = %feOO
19 ? $q
20
21
22 adb mapE711 coreE711
23
24 ABD: 58000 1.1
25 ? $m
26 ? map 'mapE711,
27 b1 = %0 e1 = %100 fl = %38
28 b2 = %0 e2 = %0 f2 = %138
29 / map 'coreE711"
30 b1 = %0 e1 = %100 f1 = %400
31 b2 = %200 e2 = %10000 f2 = %500
32 ? variables
33 address
34 e = %a4
35 other
36 d = %100
37 m = %e711
38 s = %feOO
39 t = %100
40 ? $q
***1* ***

Example 9

35 Zi10g 35

ADB Zilog ADB

1 char strl [] = "This is character string";
2 int one = I;
3 int number = 456;
4 long Inurn = l234L;
5 char str2[] = "This is the second character string";
6 main ()
7 {
8 one = 2;
9 }
***1* **

Example 10

.4'

36 Zilog 36

ADB

1 adb rnapE711 coreE711
2
3 ADB: S8000 1.1
4 ? <b,-1/8oa

Zilog ADB

5 _strl 052150 064563 020151 071440 060440 061550 060562 060543
6
7 _strl+%10: 072145 071040 071564 071151 067147 000000 000001 000710
8
9 _Inurn: 000000 002322 037640 000000 052150 064563 020151 071440
10
11 _str2+%8: 072150 062440 071545 061557 067144 020143 064141 071141
12
13 _str2+%18: 061564 062562 020163 072162 064556 063400 000000 177662
14
15 _environ+%2: 000000 oooono 000000 000000 000000 000000 000000 000000
16
17 _environ+%12: 000000 000000 000000 000000 000000 000000 000000 000000
18
19 _environ+%22: 000000 000000 000000 000000 000000 000000 000000 000000
20
21 _environ+%32: 000000 000000 000000 000000 000000 000000 000000 000000
22
23 _environ+%42: 000000 000000 000000 000000 000000 000000 000000 oor~oo
24
25 _environ+%52: 000000 000000 000000 000000 000000 000000 000000 000000
26
27 _environ+%62: 000000 000000 000000 000000 000000 000000 000000 000000
28
29 _environ+%72: 000000 000000 000000 000000 000000 000000 000000 000000
30
31 _environ+%82: 000000 000000 000000 000000 000000 000000 000000 000000
32
33 _environ+%92: 000000 000000 000000 000000 000000 000000 000000 000000
34
35 _environ+%a2: 000000 000000 000000 000000 000000 000000 000000 000000
36 ? <b,20/4on A 8Cn
37 _strl: 052150 064563 020151 071440 This is
38 060440 061550 060562 060543 a charac
39 072145 071040 071564 071151 ter stri
40 067147 000000 000001 000710 ng@'@'@'@a@aH
41 000000 002322 037640 000000 @'@'@dR? @'@'
42 052150 064563 020151 071440 This is
43 072150 062440 071545 061557 the seco
44 067144 020143 064141 071141 nd chara
45 061564 062562 020163 072162 cter str
46 064556 063400 000000 177662 ing@'@'@'@2
47 000000 000000 000000 000000 @'@'@'@'@'@'@'@'
48 000000 000000 000000 000000 @'@'@'@'@'@'@'@'
49 000000 000000 000000 000000 @'@'@'@'@'@'@'@'
50 000000 000000 000000 000000 @'@'@'@'@'@'@'@'
51 000000 000000 000000 000000 @'@'@'@'@'@'@'@'
52 000000 000000 000000 000000 @'@'@'@'@'@'@'@'

37 Zilog 37

ADB Zilog ADB

53 000000 000000 000000 000000 @'@'@'@'@'@'@'@'
54 000000 000000 000000 000000 @'@'@'@'@'@'@'@'
55 000000 000000 000000 000000 @'@'@'@'@'@'@'@'
56 000000 000000 000000 000000 @'@'@'@'@'@'@'@'
57 ? <b,20/404'''8t8cna
58 _strl: 052150 064563 020151 071440 This is
59 _strl+%8: 060440 061550 060562 060543 a charac
60 _strl+%10: 072145 071040 071564 071151 ter stri
61 _strl+%18: 067174 000000 000001 000710 ngH
62 _Inurn: 000000 002322 037640 000000 R?
63 _str2: 052150 064563 020151 071440 This is
64 _str2+%8: 072150 062440 071545 061557 the seco
65 _str2+%10: 067144 020143 064141 071141 nd chara
66 _str2+%18: 061564 062562 020163 072162 cter str
67 _str2+%20: 064556 063400 000000 177662 ing2
68 _environ+%2: 000000 000000 000000 000000
69 _environ+%a: 000000 000000 000000 000000
70 _environ+%12: 000000 000000 000000 000000
71 _environ+%la: 000000 000000 000000 000000
72 _environ+%22: 000000 000000 000000 000000
73 _environ+%2a: 000000 000000 000000 000000
74 _environ+%32: 000000 000000 000000 000000
75 _environ+%3a: 000000 000000 000000· 000000
76 _environ+%42: 000000 000000 000000 000000
77 _environ+%4a: 000000 000000 000000 000000
78 _environ+%52:
79 ? <b,10/2b8t"'2cn
80 _strl: %0054 %0068 Th
81 %0069 %0073 is
82 %0020 %0069 i
83 %0073 %0020 s
84 %0061 %0020 a
85 %0063 %0068 ch
86 %0061 %0072 ar
87 %0061 %0063 ac
88 %0074 %0065 te
89 %0072 %0020 r
90 ? $q
*** 3168***

Example 11

38 Zilog 38

ADB

39

1 adb dir -
2
3 ADB: 58000 1.1
4 ? =ntnlnodentnName n
5 ? 0,-1?ut14cn
6
7
8
9
10
11
12
13
14
15
16

%0000:

17 ? $q
18
19
20
21 adb /dev/src -
22
23 ADB: 58000 1.1

Inode
2
2

102
101

164
148
197
957
261

24 ??m 0 %1000000 1024

Zilog

Name

bin
usr
157 lib
dev
etc
pb.image
tmp
zeus3_1.2·

25 ? 0,-1?nf1ags"8tonn1inks,uid,gidn8t3dnnsizen8tDnn \
addr"8t20unBtimes"8t2Y2na

26 %0000: flags 100000
27 links, uid, gid 0 0 0
28 size 0

ADB

29 addr 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0
31 0 0 0 0 0
32 times 1981 Feb 12 13:50:17 1981 Feb 12 13:50:17
33
34 1981 Feb 12 13:50:17
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

%0040:

%0080:

flags 040755
1inks,uid,gid
size 704
addr 3 9984

0 0 0
0 0 0

times 1981 Ju1 17

1981 Ju1 15 10:10:41

flags 100664
1inks,uid,gid
size 34
addr 52 12288

0 0 0
0 0 0

Zi10g

44 0 0

810 0 0 0 0
0 0 0 0
0 0

16:58:42 1981 Ju1 15 10:10:41

1 25 0

0 0 0 0 .. f\

0 0 0 0
0 0

39

ADS

40

52
53
54

Zi10g

times 1981 Ju1 16 17:06:34

1981 Ju1 16 17:94:23

Example 12

Zi10g

ADS

1981 Ju1 16 17:04:23

40

ADB

41

Zilog

APPENDIX B

ADB SUMMMARY

Command Summary.

$ Formatted Printing

? f~H:mat print from .a • .Q.U.t file according to
mat

/ format print from ~ file according to

= format print the value of .QQt

?w expr write expression into .a • .Q.U.t file

/w expr write expression into ~

?l expr locate expression in .a • .QY.t

$ Breakpoint and Program Control

:b set breakpoint at .QQt
:c continue running program
:d delete breakpoint
:k kill the program being debugged
:r run .a • .Q.U.t file under ADB control
:s single step

$ Miscellaneous Printing

$b print current breakpoints
$c C stack trace
$e external variables
$f floating registers
$m print ADB segment maps
$q exit from ADB
$r general registers
$s set offset for symbol match
$v print ADB variables
$w set output line width

$ Calling the Shell

call shell to read rest of line

Zilog

file

file

ADB

~

format

41

ADB

42

Zilog

e Assignment to Variables

>nam.e assign dot to variable or register name

Format Summary

a
b
c
d
f
i
0
n
r
s
nt
u
x
y
,..

" ... "

the value of dot
one byte in octal
one byte as a character
one word in decimal
two words in floating point
Z8000 instruction
one word in octal
print a newline
print a blank space
a null terminated character string
move to next n space tab
one word as unsigned integer
hexadecimal
date
backup dot
print string

Expression Summary

e Expression Components

decimal integer
octal integer
hexadecimal
symbols
variables
registers
(expression)

$ Dyadic Operators

+ add
subtract
multiply

for example 256
for example 0277
for example %ff
for example flag _main main.argc
for example <b
for example <pc <rO
for example expression grouping

*
%
&
I

integer division
bitwise and
bitwise or
round up to the next multiple

$ Monadic Operators

not
* contents of location

integer negate

Zilog

ADB

42

AS

\'

1

Zilog

ZEUS PLZ/ASM ASSEMBLER

USER GUIDE

Zilog

AS

1

AS

(

2

Zilog AS

PREFACE

This manual describes how to use the zaooo PLZ/ASM language
translator (as) for the ZEUS Operating System. The zaooo
PLZ/ASM language is described in the zaooo PLZ/ASM Assembly
Language Programming Manual (03-3055). Implementation­
dependent features are de~cribed in this document.

The saooo version of PLZ/ASM depends on certain features of
ZEUS. It uses the stream Input/Output (I/O) package to han­
dle files, but otherwise is self-contained and system­
independent. It is the resident assembler for ZEUS. A
description of its exact invocation is contained in Section
I of the ~ Reference Manual.

Refer to a.out(S) of the ~ Reference Manual, and to Sec­
tion 7 of this manual, for a description of the object code
format.

Zilog 2

r
(

AS

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

SECTION 6

SECTION 7

SECTION 8

3

Zi10g AS

TABLE OF CONTENTS

INTRODUCTION . 4

1.1 General Description •••••••••••••••••••• 4
1.2 Re1ocatabi1ity ••••••••••••••••••••••••• 4
1.3 Assembler Abort Conditions ••••••••••••• 4

INPUT/OUTPUT •••••••••••••••••••••••••••••••• 5

2.1 User Input ••••••••••••••••••••••••••••• 5
2.2 Assembler Output ••••••••••••••••••••••• 5

ASSEMBLER COMMAND LINE •••••••••••••••••••••• 6

3.1
3.2

Command Line
Options •••

. 6
• •• 6

LISTING FORMAT •••••••••••••••••••••••••••••• 8

4.1 Format Description ••••••••••••••••••••• 8
4.2 Sample Listing ••••••••••• ".............. 9

MINIMAL PROGRAM REQUIREMENTS •••••••••••••••• 10

IMPLEMENTATION FEATURES AND LIMITATIONS ••••• 12

OBJECT CODE ••••••••••••••••••••••••••••••••• 13

PLZ/ASM ERROR MESSAGES •••••••••••••••••••••• 17

Zilog 3

AS

4

Zilog AS

SECTION 1

INTRODUCTION

1.1 General Description

The zaooo PLZ/ASM assembler (invoked by the command ~) is
the relocating assembler for ZEUS. It accepts a source file
(a symbolic representation of a program in zaooo assembly
language) and translates it into an object module. It can
also produce a listing file containing the source and assem­
bled code.

1.2 Relocatability

Relocation refers to the ability to bind a program module
and its data to a particular memory area after the assembly
process. The output of the assembler is an object module
that contains enough information to allow a loader or linker
to assign a memory area to that module. Refer to the
description of the ZEUS linker/loader in ld(l) of the Z£US
Reference Manual.

1.3 Assembler Abort Conditions

There are two assembler abort conditions.

1. If I/O errors are returned during a system call, an
error is printed out and the assembly is aborted.

2. If error conditions cause the assembler to
completely lost, the assembly is aborted
Assembler Abort error (error 255) is printed
the standard error and the listing file.

Zilog

become
and an
out to

4

I,",
'~

AS

5

2.1 User Input

Zilog

SECTION 2

INPUT/OUTPUT

AS

An editor is used to create a zaooo PLZ/ASM source program.
The source file should end with the file name extension .s
(upper or lowercase). Instructions for invoking the assem­
bler are defined in Section 3.

2.2 Assembler Output

The assembler creates two files: a listing file, with the
default name of the source file and the extension .1 in
place of .s, and an object file, with a.out or t.out as the
default name (Section 7). In, creating the object file, the
assembler uses a temporary, intermediate file that is
deleted when the assembly is complete. The listing file
contains the source statements and corresponding line
numbers; any error message numbers are listed following the
line on which the error occurred. Refer to Section a for
explanations of error messages.

Zilog 5

/
(

AS

6

Zilog AS

SECTION 3

ASSEMBLER COMMAND LINE

3.1 Command Line

The assembler is invoked by the following command line:

as filename [options]

The extension .s, which specifies that filename contains the
source for a single Z8000 PLZ/ASM module, must be appended
to filename.

3.2 Options

The following options are valid and can appear in any order,
separated by delimiters such as a blank or tab.

-d string

-f

-i

-1

-0 filename

-p

-r

in combination with the -1 option, specifies
a date (up to 19 characters) to be put in the
listing header.

allows assembly of floating point Extended
Processor Unit (EPU) instructions.

requests that the intermediate file the
assembler uses be saved. The file name for
the intermediate file is the input file name
with the .i extension.

requests a listing file. The file name for
the listing file is the input file name with
the .1 extension. No listing is produced if
this option is not used.

allows the user to name the output file. If
this option is not used, the default file
name is a.out or t.out (Section 7) •

prints the listing file to the user console
as it is being produced. Only source lines
containing errors are printed to the console
if this option is not specified.

requests that the relocation information file
be saved. The relocation file name is the
input file name with the .r extension.

Zilog 6

AS

-u

-v

-z

7

Zilog AS

all undefined symbols are treated as exter­
nal.

turns on the console message (name and ver­
sion number, passl message, and assembly com­
plete) •

causes the assembler
format rather than
default file name to
a.out (Section 7).

to produce type z object
a.out. Also causes the
be t.out rather than

turns on the passl trace facility.

Zilog 7

AS

(

8

Zilog AS

SECTION 4

LISTING FORMAT

4.1 Format Description

The assembler produces a listing of the source program,
along with generated object code. The various fields in the
listing format are described in this section. Refer also to
the sample listing in Section 4.2.

HEADING

LOC

OBJ CODE

STMT

SOURCE

The first page heading contains the assembler
version number and column headings as
explained below. In addition, the heading
can contain a user-specified string that is
usually the date of the assembly (see Date
option, Section 3.2) •

The location column contains the value of the
reference counter for statements. The
counter starts at zero for each different
section.

The object code column contains the value of
generated object code. It is blank if a
statement does not generate object code.

Each byte or word of object code is followed
by either a single quote ('), an asterisk
(*), or a blank line. A single quote indi­
cates that the value is relocatable. An
asterisk indicates that the value is depen­
dent on an external symbol. A blank indi­
cates that the value will not change. A
value that is either relocatable or dependent
on an external is likely to be modified by
either the linker or loader. The value in
the listing can be different from the value
during program execution. Three dots (•••)
indicate that the preceding byte, word, or
long word is repeated (only in data initiali­
zation) •

The statement number column contains the
sequence number of each source line.

The remainder of the line contains the source
text.

Zilog 8

AS Zilog

4.2 Sample Listing

Z8000ASM 3.0
LOC OBJ CODE STMT SOURCE STATEMENT

1 bubble_sort MODULE
'2
3
4
5
6

CONSTANT
FALSE
TRUE

7 EXTERNAL

:= 0
:= 1

8 list ARRAY [10 WORD}
9

10 INTERNAL
0000 11 switch BYTE

0000
12
13
14

0000 4C05
0004 0000
0006 8D18

.. 15
0000' '16

0008 OBOI
OOOA E70l
OOOC E8l1
OOOE A112
0010 A921
0012 6114 0000*
0016 6126 0000*
OOIA 8B64
ooic E307

17
18
19
20

21
22
23
24
25
26

sort PROCEDURE
ENTRY

DO
LDB switch,iFALSE

CLR Rl
DO

CP Rl,RO
IF UGE THEN EXIT

LD R2,Rl
INC R2,t2
LD R4 , li st (Rl)
LD :a6, list (R2) <

CP R4,R6
IF UGT THEN

FI

, OOIE 4C05 0000'
0022 0101

27 LDB swi tch, 'TRUE

0024 6F16 0000*
0028 6F24 0000*

002C A911
002E E8EC
0030 4COI
0034 0000
0036 EEOI
0038 9E08
003A E8E2
003C

003C

0000'

003C 2100 0012

28
III

~".'list (Rl) ,R6
29 LD list (R2) ,R4
30 FI
31 INC Rl,'2
32 OD
33 CPB switch,iFALSE

34 IF EO THEN RET FI

35 OD
36 END sort

GLOBAL
main PROCEDURE
ENTRY

LD RO ,i9*2

AS

Module declaration !

Constant declarations

Loop control switch !

Procedure declaration
Begin executable part
Loop til EXIT !
Initialize switch !

Clear array pointer i

Done ?1

Initialize pointer j !
j = i+l (dble for words) 1

Itlist[i] > list[j} ••• 1
. $ exchange to bubbl e. •• I
.~.largest to top!

Advance word pointer
End nested DO loop !
Test switch !

End outer DO loop 1
End of procedure !

New procedure declaration
Program entry procedure

Initialize loop control !

37
38
39
40
41
42

0640--D~-----43--"CALR lilo-rt-----
! Double for word array !

--------cciiT'sort procedure -1 ---- ---
0042 9E08 44 RET
0044 45 END main

46
47 END bubble_sort

o errors
Assembly complete

Zilog

! End of main procedure !

9

AS

10

Zilog AS

SECTION 5

MINIMAL PROGRAM REQUIREMENTS

The examples in this section illustrate the minimal amount
of PLZ/ASM structuring required to make a working program.
The first example shows the absolute minimal structuring
required: a module definition, a declaration class, and a
procedure definition. The second example shows the same
program, but includes examples of how to use symbolic con­
stants and data declarations.

EXAMPLE #1:

anyname MODULE

GLOBAL ! or INTERNAL depending on whether !
! intermodule linking is desired. !

somename PROCEDURE
ENTRY

! The program goes here
RET

END somename

END anyname

Zilog 10

AS

11

Zilog

EXAMPLE #2:

anyname MODULE

CONSTANT ! Symbolic constants are declared here. !

one := 1
hexten := %10

GLOBAL or INTERNAL depending on whether !
! intermodule linkage is desired. !

a BYTE Data declarations can go here. !
b WORD
buffer ARRAY [100 BYTE}

GLOBAL !Restate the declaration class [optional].

somename PROCEDURE
ENTRY

! The program goes here!
RET

END somename

END anyname

Zilog

AS

11

AS

12

Zilog AS

SECTION 6

IMPLEMENTATION FEATURES AND LIMITATIONS

The Z8000 PLZ/ASM assembler limitations and implementation
features follow.

1. The Z8000 PLZ/ASM assembler uses the standard ASCII
character set. Upper or lowercase characters are
recognized and treated as different characters; key­
words are recognized only if they are either all upper
or all lowercase (GLOBAL or global, but not Global).
Hexadecimal numbers and special string characters can
be either upper or lowercase (%Ab, lIst line%R2nd
line%rl) •

2. Source lines longer than 132 characters are accepted,
but only 132 characters are printed for error messages.
Comments and quoted strings can extend over an arbi­
trary number of lines. Caution should be exercised to
avoid unmatched comment delimiters (1) or string delim­
iters (I).

3. Strings cannot be zero length (I').

4. Constants are represented internally as 32-bit unsigned
quantities. Each operand in a constant expression is
evaluated as though it were declared to be of type
LONG. For example, 4/2 equals 2, but 4/-2 equals zero
since -2 is represented as a very large unsigned
number. There is no overflow checking during evalua­
tion of a constant expression. Because constants are
represented as 32-bit values, only the first four char­
acters in a character sequence used as a constant are
meaningful (IABCO I = IABCOEI). An exception is a
string used for array initialization, which can have a
length of up to 127 characters.

5. Identifiers can be of any length up to a maximum of 127
characters.

6. After an error occurs within CONSTANT, TYPE, or vari­
able declarations, the assembler skips ahead until it
finds the next keyword that starts a new statement (an
opcode, IF, DO, EXIT, REPEAT, or END). This skipping
ahead may necessitate several assemblies before all
errors are detected and removed.

Zilog 12

,. ,

..

AS

13

Zilog

SECTION 7

OBJECT CODE

AS

Depending on command line options, the assembler produces
object files in one of two formats: object code compatible
with that produced by the MCZ zaooo PLZ/ASM assembler
(t.out) and ZEUS object code (a.out). Refer to Section 3
for the appropriate command-line options.

When producing ZEUS object code, a.out is the default file
name. This object code format is fully described in
A.~(~} of the ZEUS Reference Manual.

When producing MCZ object code, t.out is the default file
name. Below is a list of the object tags, their functions,
and the corresponding fields that make up this object code
format. The tags are classified into three groups: control
tags that are used to transfer control information, entry
tags that define the code, and modifier tags that act as
modifiers for the entry tags.

The following is a list of symbols used in the object code
syntax:

*

+

The vertical bar separates two mutually exclusive
items. The user enters one or the other, but not
both. Multiple vertical bars separate three or
more mutually exclusive items. Parameters
separated by a vertical bar can be delimited by
brackets (see below).

An asterisk placed after an item indicates that
the item appears zero or more times in the syntax.

A plus sign placed after an item indicates that
the item appears at least once in the syntax.

[] Brackets enclose an optional parameter--a parame­
ter that can appear zero or more times.

() Parentheses enclose parameter pairs, or group
items so that a repetition symbol (+ or *) can be
applied to the group.

I I Single quotes enclose character strings that must
be entered with a particular parameter. However,
the single quotes only delimit the required char­
acter string and must not appear in the command
line.

Zilog 13

AS

14

Zilog AS

OBJECT CODE SYNTAX·

The object code format is still under development and is
subject to change.

object_module

control_entry

modified_entry

modified_addr

modified_value

=) [tagged_entry1*

=) control_entry I modified_entry

=) NOP
=) SEGMODULE bcount size size name
=) NONSEGMODULE bcount size name
=) ENDMODULE
=) SECTION bcount attr size name
=) GLOB bcount secw loc attr typew name
=) ABSGLOB bcount secw loc att~ typew name
=) EXTERN .bcount typew name
=) ENTRYPT sec loc
=) ABSENTRYPT sec loc
=) DEBUG SYMBOL bcount secw loc [bva11*
=) DEBUG INFO bcount [bval]*
=) MESSAGE bcount [bval]*
=) SETDATA sec
=) SETPROG sec
=) BEGSEC sec
=) LOCNT loc
=) ABSLOCNI loc
=) MODULEDEF secw loc wval size
=) MODULEREF wval

=) [REP bcount]
(modified_addr I modified_value)

=) [SHORT] [SEGMENT I OFFSET]
[HIBYTE I LOBYTE1
[DISP offset1 addr_entry

=) [(REL sec) I RELPROG I RELDATAJ
[SEQUENCE bcountJ value_entry

=) EXREF ext
=) SECREF sec
=) SECADDR sec offset
=) ZREF ext

Zilog 14

AS

:(

IS

name
length
size
attr
sec
secw
loc
typel
type2
bval
wval
IvaI
count
ext
offset

CONTROL

HEX
00
01
02
03
04
OS
06

07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13

=>
=>
=>

=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>
=>

TAGS:

NOP
SEGMODULE
NONSEGMODULE
ENDMODULE
SECTION
GLOB
ABSGLOB

EXTERN
ENTRYPT
ABSENTRYPT
DEBUG SYMBOL
DEBUG INFO
MESSAGE
SETDATA
SETPROG
BEG SEC
LOCNT
ABSLOCNT
MODULEDEF
MODULEREF

Zilog

LDBYTE bval
LDWORD wval
LDLONG IvaI

[byte] *
byte
word
byte
byte
word
word
byte
byte
byte
word
long
word
word
word

OBJECT CODE TAGS

Null operation
Segmented module definition
Nonsegmented module definition
End module
Section definition
Global symbol definition
Global symbol definition with

absolute offset
External symbol definition

AS

Entry pOint with relocatable offset
Entry point with absolute offset
Debug symbol
Debug information
Variable length message
Set current data section
Set current program section
Begin section
Relocatable program counter
Absolute program counter
Module definition for z-code
Module reference used for z-code

machines

Zilog IS

AS

16

ENTRY TAGS:

HEX
20
21
22
23
24
25
26

LDBYTE
LDWORD
LDLONG
EXREF
SECREF
SECADDR
ZREF

MODIFIER TAGS:

HEX
40 REP
41 SEQUENCE
42 REL
43 RELDATA

44 RELPROG

45 DISP
46 *LOBYTE
47 *HIBYTE
48 **SHORT
49 **OFFSET
4A **SEGMENT

* Z8/Z-UPC
** Z8000

Zilog

Load byte value
Load word value
Load long value
External reference
Section reference
Section address
Z-code module reference

Repeat
Sequence
Relocatable

AS

Relocatable with respect to current
data area

Relocatable with respect to current
program area

Displacement
Low order byte of
High order byte of
Short segment address
Offset of
Segment of

Zi10g 16

AS

18

Zilog

SECTION 8

PLZ/ASM ERROR MESSAGES

ERROR EXPLANATION

WARNINGS

1 Missing delimiter between tokens
2 Array of zero elements
3 No fields in record declaration
4 Mismatched procedure names
5 Mismatched module names
8 Absolute address warning for System 8000

TOKEN ERRORS

10 Decimal number too large
11 Invalid operator
12 Invalid special character after %
13 Invalid hexadecimal digit
14 Character_sequence of zero length
15 Invalid character
16 Hexadecimal number too large

. DO LOOP ERRORS

20 Unmatched OD
21 OD expected
22 Invalid repeat statement
23 Invalid exit statement
24 Invalid FROM label

IF STATEMENT ERRORS

30 Unmatched FI
31 FI expected
32 THEN or CASE expected
33 Invalid selector record

40
41
42
43
44

SYMBOLS EXPECTED

) expected
(expected
1 expected
[expected
:= expected

Zilog

AS

18

AS

19

Zilog

ERROR EXPLANATION

INVALID VARIABLES

100 Invalid variable
101 Invalid operand for # or SIZEOF
102 Invalid field name
103 Subscripting of nonarray variable
104 Invalid use of period (.)

EXPRESSION ERRORS

110 Invalid arithmetic expression
III Invalid conditional expression
112 Invalid constant expression
113 Invalid select expression
114 Invalid index expression
115 Invalid expression in assignment

CONSTANT OUT OF BOUNDS

120 Constant too large for 8 bits
121 Constant too large for 16 bits
122 Constant array index out of bounds

TYPE INCOMPATIBILITY

140 Character_sequence initializer used
with array [*] declaration where
component's base type is not 8 bits

141 TYPE incompatibility with initilization

SEGMENTATION ERRORS

170 Invalid operator in nonsegmented mode
171 Mismatched short address operator
172 Mismatched segment deSignator

DIRECTIVE ERRORS

180 Inconsistent area specifier
181 Invalid area specifier
182 Mismatched conditional assembly directives
183 Invalid conditional assembly expression
184 Attempt to mix segmented and nonsegmented code
185 Directive must appear alone on a single line
186 Invalid $CODE or $DATA directive

Zilog

AS

19

AS

1
r

20

Zilog

ERROR EXPLANATION

FILE ERRORS

198 EOF expected
199 Unexpected EOF encountered in source--possible

unmatched 1 or I in source

IMPLEMENTATION RESTRICTIONS

224 Too many symbols--hash table full
226 Short segmented offset out of range
227 Object symbol table overflow
228 Relocation out of range (word overflow)
229 Unimplemented feature
230 Character_sequence of identifier too long
231 Too many symbols--symbol table full
234 Too many initialization values
235 Stack overflow
236 Operand too complicated

NOTE

Errors larger than 240 can occur. If there are no
other errors in the program preceding one of these
errors, this indicates an assembler bug that
should be reported to Zilog along with any per­
tinent information concerning its occurence.

Zilog

AS

20

*

1

Zilog

Awk - A Pattern Scanning and Processing Language *

This information is based on an article originally
written by Alfred V. Aho, Brian W. Kernighan, and Peter
J. Weinberger, Bell Laboratories.

Zilog 1

AWK

SECTION 1

SECTION 2

...
SECTION 3

SECTION 4

SECTION 5

2

Zilog AWK

TABLE OF CONTENTS

INTRODUCT ION •••••••••••••••••••••••••••• 3

1.1 Usage ••••••••••••••••••••••••••••••• 3
1.2 Program Structure ••••••••••••••••••• 4
1.3 Records and Fields •••••••••••••••••• 4

PATTERNS •••••••••••••••••••••••••••••••• 7

2.1 BEGIN and END ••••••••••••••••••••••• 7
2.2 Regular Expressions ••••••••••••••••• 7
2.3 Relational Expressions •••••••••••••• 8
2.4 Combinations of Patterns •••••••••••• 9
2.5 Pattern Ranges •••••••••••••••••••••• 9

ACTIONS ••••••••••••••••••••••••••••••••• 11

3.1 Built-in Functions •••••••••••••••••• 11
3.2 Variables, Expressions,

and Assignments •••••••• 0 ••••••••••••• 12
3.3 Field Variables ••••••••••••••••••••• 12
3.4 String Concatenation •••••••••••••••• 13
3.5 Arrays••..•............ 14
3.6 Flow-of-Control Statements •••••••••• 14

DES IGN •••••••••••••••••••••••••••••••••• 17

IMPLEMENTATION •••••••••••••••••••••••••• 19

Zilog 2

Zilog AWK

SECTION 1

INTRODUCTION

~ is a programming language designed to make many common
information retrieval and text manipulation tasks easy to
state and to perform.

The basic operation of ~ is to scan a set of input lines
in order, searching for lines which match any of a set of
patterns which the user has specified. For each pattern, an
action can be specified; this action will be performed on
each line that matches the pattern.

Readers familiar with the ZEUS program ~ (see ZEUS Refer­
ence Manual, SectiQn 1) will recognize the approac~,
although in ~ the patterns may be more general than 1n
~, and the actions allowed are more involved than merely
printing the matching line. For example, the ~ program

{print $3, $2}

prints the third and second columns of a table in that
order. The program

$2 - /AIBIC/

prints all input lines with an A, B, or C in the second
field. The program

$1 != prev { print; prev = $1 }

prints all lines in which the first field is different from
the previous first field.

1.1. Usage

The command

awk program [files]

executes the ~ commands in the string program
of named files, or on the standard input if
files. The statements can also be placed in a
and executed by the command

awk -f pfile [files]

3 Zilog

on the set
there are no
file pfile,

3

AWK Zilog AWK

1.2. Program Structure

An ~ program is a sequence of statements of the form:

pattern { action }

pattern { action }

...
Each line of input is matched against each of the patterns
in turn. For each pattern that matches, the associated
action is executed. When all the patterns have been tested,
the next line is fetched and the matching starts over.

Either the pattern or the action may be left out, but not
both. If there is no action for a pattern, the matching
line is simply copied to the output. (Thus a line which
matches several patterns can be printed several times.) If
there. is no pattern for an action, then the action is per­
formed for every input line. A line which matches no pat­
tern is ignored.

Since patterns and actions are both optional, actions must
be enclosed in braces to distinguish them from patterns.

1.3. Records and Fields

~ input is divided into "records' I terminated b~ a record
separator. The default record separator is a newllne, so by
default ~ processes its input a line at a time. The
number of the current record is available in a variable
named NR.

Each input record is considered to be divided into
"fields. I ' Fields are normally separated by white space -
blanks or tabs - but the input field separator may be
changed, as described below. Fields are referred to as $1,
$2, and so forth, where $1 is the first field, and $0 is the
whole input record itself. Fields may be assigned to. The
number of fields in the current record is available in a
variable named NF.

The variables FS and RS refer to the input field and record
separators1 they may be changed at any time to any single
character. The optional command-line argument -F& may also
be used to set FS to the character £.

If the record separator is empty, an empty input line is
taken as the record separator, and blanks, tabs and newlines
are treated as field separators.

The variable FILENAME contains the name of the current input

4 Zilog 4

AWK Zilog AWK

file.

1.4. Printing

An action may have no pattern, in which case the action is
executed for all lines. The simplest action is to print
some or all of a record; this is accomplished by the ~
command print. The ~ program

{ print }

prints each record, thus copying the input to the output
intact. More useful is to print a field or fields from each
record. For instance,

print $2, $1

prints the first two fields in reverse order. Items
separated by a comma in the print statement will be
separated by the current output field separator when output.
Items not separated by commas will be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can be used; for example

{ print NR, NF, $0 }

prints each record preceded by the record number and the
number of fields.

Output may be diverted to multiple files; the program

{ print $1 >"fool"; print $2 >"fo02" }

writes the first field, $1, on the file fool, and the second
field on file fo02. The» notation can also be used:

print $1 »"foo"

appends the output to the file foo. (In each case, the out­
put files are created if necessary.) The file name can be a
variable or a field as well as a constant; for example,

print $1 >$2

5 Zilog 5

AWK Zilog AWK

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of output files;
currently it is 10.

Similarly, output can be piped into another process for
instance,

print I "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used to change the current
output field separator and output record separator. The·
output record separator is appended to the output of the
print statement.

AHk also provides the printf statement for output format­
ting:

printf format expr, expr, ...
formats the expressions in the list according to the specif~
ication in format and prints them. For example,

printf "%8.2f %lOld\n", $1, $2

prints $1 as a floating point number 8 digits wide, with two
after the decimal point, and $2 as a 10-digit long decimal
number, followed by a newline. No output separators are
produced automatically; you must add them yourself, as in
this example. The version of printf is identical to that
used with C.

6 Zilog 6

Zilog AWK

SECTION 2

PATTERNS

A pattern in front of an action acts as a selector that
determines whether the action is to be executed. A variety
of expressions may be used as patterns: regular expressions,
arithmetic .relational expressions, string-valued expres­
sions, and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the beginning of the
input, before the first record is read. The pattern END
matches the end of the input, after the last record has been
processed. BEGIN and END thus provide a way t~ gain control
before and after processing, for initialization and wrapup.

As an example, the field separator can be set to a colon by

BEGIN { FS = ":" }

~ Qf program . . .
Or the input lines may be counted by

END {print NR }

If BEGIN is present, it must be the first pattern; END must
be the last if used.

2.2. Regular Expressions

The simplest regular expression is a literal string of char­
acters enclosed in slashes, like

/smith/

This is actually a complete ~ program which will print all
lines which contain any occurrence of the name "smith".
If a line contains "smith" as part of a larger word, it
will also be printed, as in

blacksmithing

~ regular expressions include the regular expression forms
found in the ZEUS text editor ~ (see ZEUS Reference Manual,

7 Zilog 7

AWK Zilog AWK

Section 1) and ~ (without back-referencing). In addi-
tion, . ~ allows parentheses for grouping, I for alterna-'
tives, + for "one or more' " and? for "zero or one", all
as in l&x. Character classes may be abbreviated:
[a-zA-ZO-9] is the set of all letters and digits. As an
example, the ~ program

/[Aa]hol [Ww]einberger/ [Kk]ernighan/

will print all lines which contain any of the names "Aho, I I

"Weinberger" or "Kernighan," whether capitalized or not.

Regular expressions (with the extensions listed above) must
be enclosed in slashes, just as in ~ and~. Within a
regular expression, blanks and the regular expression meta­
characters are significant. To turn of the magic meaning of
one of the regular expression characters, precede it with a
backslash. An example is the pattern

/\/. *v/

which matches any string of characters enclosed in slashes.

One can also specify that any field or variable matches a
regular expression (or does not match it) with the operators
- and !-. The program

$1 - /[jJ]ohn/

prints all lines where the first field matches "john" or
"John." Notice that this will also match "Johnson' I,
"St. Johnsbury", and so on. To restrict it to exactly
[jJ]ohn, use

$1 - /"'[jJ]ohn$/

The caret A refers to the beginning of a line or field; the
dollar sign $ refers to the end.

2.3. Relational Expressions

An ~ pattern can be a relational expression involving the
usual relational operators <, <=, ==, !=, >=, and >. An
example is

$2 > $1 + 100

which selects lines where the second field is at least 100
greater than the first field. Similarly,

8 Zilog 8

Zilog

NF % 2 -- 0

prints lines with an even number of fields.

In relational tests, if neither operand is numeric, a string .
comparison is made1 otherwise it is numeric. Thus,

$1 >= Us"

selects lines that begin with an s,
absence of any other information,
strings, so the program

$1 > $2

will perform a string comparison.

2.4. Combinations of Patterns

t, u, etc. In the
fields are treated as

A pattern can be any boolean combination of patterns, using
the operators I I (or), && (and), and! (not). For example,

$1 >= Us" && $1 < "to && $1 != "smith"

selects lines where the first field begins with "~Sf " but
is not "smith" && and I I guarantee that their operands
will be e~aluated from left to right1 evaluation stops as
soon as the truth or falsehood is determined.

2.5. Pattern Ranges

The "pattern" that selects an action may also consist of
two patterns separated by a comma, as in

patl, pat2 { ... }

In this case, the action is performed for each line between
an occurrence of patl and the next occurrence of pat2
(inclusive). For example,

/start/, /stop/

prints all lines between start and stop, while

NR == 100, NR == 200 { ••• }

9 Zilog 9

AWK Zilog AWK

does the action for lines 100 through 200 of the input.

10 Zilog 10

Zilog AWK

SECTION 3

ACTIONS

An ~ action is a sequence of action statements terminated
by newlines or semicolons. These action statements can be
used to do a variety of bookkeeping and string manipulating
tasks.

3.1. Built-in Functions

~ provides a "length" function to compute the length of
a string of characters. This program prints each record,
preceded by its length:

{print length, SO}

length by itself is a "pseudo-variable" which yields the
length of the current record; length(argument) is a function
which yields the length of its argument, as in the
equivalent

{print length($O), SO}

The argument may be any expression.

AHk also provides the arithmetic functions sqrt, log, exp,
and int, for square root, base ~ logarithm, exponential, and
integer part of their respective arguments.

The name of one of these built-in functions, without argu­
ment or parentheses, stands for the value of the function on
the whole record. The program

length < 10 I I length > 20

prints lines whose length is less than 10 or greater than
20.

The function substr(s, m, n) produces the substring of s
that begins at position m (origin 1) and is at most n char­
acters long. If n is omitted, the substring goes to the end
of s. The function index(sl~ s2} returns the position where
the string s2 occurs in sl, or zero if it does not.

The function sprintf(f, el, e2, •••) produces the value of
the expressions el, e2, etc., in the printf format specified
by f. Thus, for example,

11 Zilog 11

Zilog

x = sprintf("%8.2f %lOld", $1, $2)

sets x to the string produced by formatting the values of $1
and $2.

3.2. Variables, Expressions, and Assignments

~ variables take on numeric
values according to context.

x = 1

(floating pOint)
For example, in

x is clearly a number, while in

x = "smith"

or string

it is clearly a string. Strings are converted to numbers
and vice versa whenever context demands it. For instance,

x = "3" + "4"

assigns 7 to x. Strings which cannot be interpreted as
numbers in a numerical context will generally have numeric
value zero, but it is unwise to count on this behavior.

By default, variables (other than built-ins) are initialized
to the null string, which has numerical value zero: this
eliminates the need for most BEGIN sections. For example,
the sums of the first two fields can be computed by

{ sl += $1; s2 += $2 }

END {print sl, s2 }

Arithmetic is done internally in floating point. The arith­
metic operators are +, -, *, I, and % (mod). The C incre­
ment ++ and decrement -- operators are also available, and
so are the assignment operators +=, -=, *=, 1=, and %=.
These operators may all be used in expressions.

3.3. Field Variables

Fields in 4Hk share essentially all of the properties of
variables - they may be used in arithmetic or string opera­
tions, and may be assigned to. Thus one can replace the
first field with a sequence number like this:

12 Zilog 12

AWK Zilog AWK

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print $0 }

or assign a string to a field:

{ if ($3> 1000)

$3 = "too big"

print

}

which replaces the third field by "too big" when it is,
and in any case prints the record.

Field references may be numerical expressions, as in

{ print $i, $(i+l), $(i+n) }

Whether a field is deemed numeric or string depends on con­
text; in ambiguous cases like

if ($1 == $2) •••

fields are treated as strings.

Each input line is split into fields automatically as neces­
sary. It is also possible to split any variable or string
into fields:

n = split(s, array, sep)

splits the the string s into array[l], ••• , array[n]. The
number of elements found is returned. If the sep argument
is provided, it is used as the field separator; otherwise FS
is used as the separator.

3.4. String Concatenation

Strings may be concatenated. For example

length ($1 $2 $3)

13 Zilog 13

AWK Zilog AWK

returns'the length of the first three fields. Or in a print
statement,

pri,nt $1 n is " $2

prints the two fields separated by" is I '. Variables and
numeric expressions may also appear in concatenations.

3.5. Arrays

Array elements are not declared; they spring into existence
by being mentioned. Subscripts may have ~ non-null value,
including non-numeric strings. As an example of a conven­
tional numeric subscript, the statement

x[NR] = $0

assigns the cur rent' input record to the NR-.tb element of the
array x. In fact, it is possible in principle (though
perhaps slow) to process the entire input in a random order
with the ~ program

{ x[NR] = $0 }

END { ••• program ••• }

The first action merely records each input line in the array
x.

Array elements may be named by non-numeric values, which
gives ~ a capability rather like the associative memory of
Snobol tables. Suppose the input contains fields with
values like apple, orange, etc. Then the program

/apple/ {x ["apple"] ++ }

/orange/ {x["orange"]++}

END { print x["apple"], x["orange"] }

increments counts for the named array elements, and prints
them at the end of the input.

3.6. Flow-of-Control Statements

~ provides the basic flow-of-control statements if-else,
while, for, and statement grouping with braces, as in C. We
showed the if statement in section 3.3 without describing
it. The condition in parentheses is evaluated; if it is
true, the statement following the if is done. The else part

14 Zilog 14

/

\
'.

AWK Zilog AWK

is optional.

The while statement is exactly like that of C. For example,
to print all input fields one per line,

i = 1

while (i <= NF) {

print $i

++i

}

The for statement is also exactly that of C:

for (i = 1; i <= NF; i++)

print $i

does the same job as the while statement above.

There is an alternate form of the for statement which is
suited for accessing the elements of an associative array:

for (i in array)

statement

does statement with
The elements are
Chaos will ensue if
accessed during the

i set in turn to each element of array.
accessed in an apparently random order.
i is altered, or if any new elements are
loop.

The expression in the condition part of an if, while or for
can include relational operators like <, <=, >, >=, == ("is
equal toll), and != ("not equal toll); regular expression
matches with the match operators - and !-; the logical
operators I I, &&, and !; and of course parentheses for
grouping.

The break statement causes an immediate exit from an enclos­
ing while or for; the continue statement causes the next
iteration to begin.

The statement next causes ~ to skip immediately to the
next record and begin scanning the patterns from the top.
The statement exit causes the program to behave as if the
end of the input had occurred.

15 Zilog 15

AWK Zilog AWK

Comments may be placed in .n.k. programs: they begin with the
character i and end with the end of the line, as in

print x, y # this is a comment

16 Zilog 16

AWK Zilog AWK

SECTION 4

DESIGN

The ZEUS system already provides several programs that
operate by passing input through a selection mechanism.
~, the first and simplest, merely prints all lines which
match a single specified pattern. Egrep provides more gen­
eral patterns, i.e., regular expressions in full generality;
fgrep searches for a set of keywords with a particularly
fast algorithm. ~ provides most of the editing facilities
of the editor ~, applied to a stream of input. None of
these programs provides numeric capabilities, logical rela­
tions, or variables.

~ provides general regular expression recognition capabil­
ities, and, by serving as a C program generator, is essen­
tially open-ended in its capabilities. The use of ~, how­
ever, requires a knowledge of C programming, and a ~ pro­
gram must be compiled and loaded before use, which
discourages its use for one-shot applications.

Alik is an attempt to fill in another part of the matrix of
possibilities. It provides general regular expression capa­
bilities and an implicit input/output loop. But it also
provides convenient numeric processing, variables, more gen­
eral selection, and control flow in the actions. It does
not require compilation or a knowledge of C. Finally, ~
provides a convenient way to access fields within lines; it
is unique in this respect.

~ also tries to integrate strings and numbers completely,
by treating all quantities as both string and numeric,
deciding which representation is appropriate as late as pos­
sible. In most cases the user can simply ignore the differ­
ences.

Most of the effort in developing ~ went into deciding what
~ should or should not do (for instance, it doesn't do
string substitution) and what the syntax should be (no
explicit operator for concatenation) rather than on writing
or debugging the code. The syntax is powerful but easy to
use and well adapted to scanning files. For example, the
absence of declarations and implicit initializations, while
probably a bad idea for a general-purpose programming
language, is desirable in a language that is meant to be
used for tiny programs that may even be composed on the com­
mand line.

In practice, ~ usage seems to fall into two broad
categories. One is what might be called "report genera­
tion" - processing an input to extract counts, sums, sub-

17 Zilog 17 .

AWK Zilog AWK

totals, etc. This also includes the writing of trivial data
validation programs, such as verifying that a field contains
only numeric information or that certain delimiters are
properly balanced. The combination of textual and numeric
processing is invaluable here.

A second area of use is as a data transformer, converting
data from the form produced -by one program into that
expected by another. The simplest examples merely select
fields, perhaps with rearrangements.

18 Zilog ·18

AWK Zilog AWK

SECTION 5

IMPLEMENTATION

The actual implementation of ~ uses the language develop­
ment tools available on the ZEUS operating system. The
grammar is specified with ~; the lexical analysis is done
by ~; the regular expression recognizers are deterministic
finite automata constructed directly from the expressions.
An ~ program is translated into a parse tree which is then
directly executed by a simple interpreter.

Alik was designed for ease of use rather than processing
speed; the delayed evaluation of variable types and the
necessity to break input into fields makes high speed diffi­
cult to achieve in any case. Nonetheless, the program has
not proven to be unworkably slow.

As might be expected, ~ is not as fast as the specialized
tools ~, ~, or the programs in the ~ family, but is
faster than the more general tool~. The tasks are about
as easy to express as ~ programs as programs in these
other languages; tasks involving fields are considerably
easier to express as ~ programs.

19 Zilog 19

-.

c Zilog c

THE C PROGRAMMING LANGUAGE

1 Zilog 1

C

2

Zilog C

PREFACE

The S8000 system uses the C programming language almost
exclusively. The operating system, ZEUS, and a majority of
the programs are written in C. This document supplements
the information in ~ ~ Programming Language by B. W. Ker­
nighan and D. M. Ritchie (Prentice-Hall, 1978). The reader
should be familiar with the basic concepts of C before read­
ing this document.

Despite its universality, each installation contains machine
dependencies that affect the C programming language. Also,
as a dynamic language, C reflects changes to handle situa­
tions not previously addressed. This document describes
these machine dependencies and C language changes.

Conversion of programs to the ZEUS system is described in
Section 1. Machine and object format dependencies, the
setret and longret routines, and the problems encountered
when passing parameters in registers are discussed.

Recent changes to the C language not documented in ~ ~
Programming Language are discussed in Section 2.

Zilog 2

C Zi10g C

TABLE OF CONTENTS

SECTION 1 CONVERSION OF PROGRAMS TO ZEUS •••••••••••••••••••• 4

1.1 Introduction 4
1.2 Setret and Longret Routines •••••••••••••••••• 4
1.3 Impact of Passing Parameters in Registers •••• 4
1.4 Object Format Dependencies ••••••••••••••••••• 9
1.5 Byte Order Within Words •••••••••••••••••••••• 9
1.6 Machine Architecture Dependencies •••••••••••• 11
1.7 C Compiler Features •••••••••••••••••••••••••• 11

SECTION 2 RECENT CHANGES TO C ..••.•......•.•.••••..•.••.••.• 13

3

2 .1 Gene r al 13
2.2 Structure Assignment ••••••••••••••••••••••••• 13
2.3 Enumeration Type ••••••••••••••••••••••••••••• 13

Zi10g 3

C

(

4

Zilog C

SECTION 1·

CONVERS ION OF PROGRA~1S TO Z EU 5

1.1 Introduction

Although the standard Version 7 UNIX runs on the 58000 sys­
tem and the 58000 C compiler accepts the C language, users
must be aware of machine dependencies that may be present in
their programs. This section describes the places for users
to look for machine dependencies in their programs when try­
ing to bring them up on the 58000 system.

1.2 Setret and Longret Routines

When using the C language routine on the 58000 system,
there are problems of declaring register variables when
setjmp and longjrnp are used. Replacing setjmp and longjrnp
with setret and longret and removing the register attribute
of variable declarations causes the program to continue to
function as on PDP-II UNIX.

The 58000 C compiler's stackframes are different from the
PDP-II UNIX. The S8000's contain only one register that is
used as both the frame pointer and stack pointer. It is not
possible to move back up the subroutine call chain (as the
PDP-II UNIX does) to restore the register variables.

1.3 Impact of Passing Parameters in Registers

The Z8000 processor has a larger register file than the
PDP-II processor. To use these registers efficiently,
parameters are passed in registers on the 58000 instead of
being passed on stack as on the PDP-II. Programs using
parameters that are passed on the stack and then picked off
from the stack do not work on the 58000 system. Most pro­
grams need only to be recompiled to accomodate this change.
In cases when procedures handle a a variable number of
parameters, however, a special process must be followed, as
described in the paragraphs that follow.

Figures 1-1 and 1-2 illustrate how a machine-dependent pro­
gram with a variable number of parameters can change to
accomodate parameter passing in the registers. Figure 1-1
shows a program running on PDP-II with arguments picked off
from the stack. This program can have up to two pointer
arguments. The same program is shown in Figure 1-2 with
changes to handle parameter passing in the registers.

Zilog 4

c

5

/*
**
**
**
**
**
**
**
**
**

Zilog

This program allocates space for up to two
string arguments and then copies them in
the allocated space. The first argument
(na) is the number of arguments and the
second (ap) and the third (optional) argu­
ments are the pointers to the strings to
be copied. It returns a pointer to the
location where the strings have been copied.
have been copied.

*/
char *
copy (na, ap)
char *ap;
{

}

register char *p, *np;
char *onp:
register int n;

p = ap;
n = 0;
if (*p == 0)

return 0;
do
{

n++;
} while (*p++);
if (na > 1)
{

}

p = (&ap) [1] ;
while (*p++)

n++;

onp = np = alloc(n);
p = ap;
while (*np++ = *p++)

continue;
if (na > 1)
{

p = (&ap) [1]:
np--;
while (*np++ = *p++)

continue;
}
return onp;

Figure 1-1. Example of PDP-II Program

Zilog

c

5

Ii
I~

c

6

char *
copy(na, apI, ap2)
char *apl, *ap2;
{

reg char
char

*p, *np;
*onp;

reg int

p = apl;
n = 0;
if (*p == 0)

return 0;
do
{

n++;
} while (*p++);
if (na > 1)
{

n;.

p = ap2;
while (*p++)

n++;
}
onp = np = alloc(n);
p = apl;
while (*np++ = *p++)

continue;
if (na > 1)
{

p = ap2;
np--;

Zilog

while (*np++ = *p++)
continue;

}
return onp;

}

Figure 1-2. S8000 Version of Figure 1 Program

Zilog

c

6

c

7

Zilog c

Modifying programs with a variable number of arguments of
different types is difficult.' Figure 1-3 shows a routine
with a variable number of arguments of different types.
This is a version of the C library routine printf, modified
to illustrate parameter passing in registers.

tdefine R7
tdefine RS
tdefine R3
tdefine
tdefine
/*

prmax
true 1

5

o /*
o /*
o /*

/*

prcnt == 0 implies r7 already seen */
prcnt == 0 implies rS already seen */
prcnt == 0 implies r3 already seen */
max. number of register parameters */

**
**
**
**

Routine to align parameter pointer consistent with
the Z8000 calling conventions. It skips over
unused registers. This happens in C only for long
parameters passed in registers.

*/
z.align(prcnt,
int *prcnt;
int **ip;

ip, stk)
/* parameter count */
/* pointer to low-order word of long word */
/* address of first parameter in the stack */ int *stk;

{

}
/*
**
**
**
*/

int t;
/* long cannot start in r6 or r4 */

if (*prcnt == R7 II *prcnt -- RS)
{

(*prcnt)++; /* skip over the unused register */
(*ip)++;

}
else if (*prcnt -- R3) /* long cannot start in r2 */
{

prcnt += 2; / skip over r2 */
*ip = &(*stk); /* parameter comes from the stack */
return;

}
/* exchange order of the words in a long word; they were

inverted when they were put into local storage */
t = **ip;
**ip = *(*ip + 1);
*(*ip + 1) = t;

An example routine using a variable number of parameters
each of which can be a different size. This is a sample
of a formatted I/O routine.

Zilog 7

c

8

Zilog c

printz(fmt,r6,rs,r4,r3,r2,stack)
register unsigned char *fmt; /* pointer to format string */
int r6,rs,r4,r3,r2; /* parameters passed in registers */
int stack; /* first parameter in the stack */
{

/* storage for parameter register 6 */ int pr6;
int prs;
int pr4;
int pr3;
int pr2;

/* the order of declaration of storage for */
/* parameter registers has two effects: */
/* first, long words have their words */
/* exchanged; second, the pointer to
/* parameter storage can be incremented */

int prcnt;
/* for parameters in registers and the stack */
/* number of parameters seen */

int i;
union{

int
long

} x;

*ip;
*lp;

/* save register parameters in storage */
pr6 = r6;
prs = rs;
pr4 = r4;
pr3 = r3;
pr2 = r2;
x.ip = &pr6;
prcnt = 0;
while (true)
{ /* once through for each format character */

i = *fmt++;
swi tch (i)
{

case' ': return;

case '%': i = *fmt++;
swi tch (i)
{

/* end of format */

case 'd l : putint(*x.ip++);
break;

case 'D': if (prcnt < prmax)
zalign(&prcnt,&x.ip,&stack);

putlong(*x.lp++);
/*second word done below*/

prcnt++;
break;

case IC': putchar(*x.ip++);
break;

Zilog 8

c

9

}
}

}

Zilog

default: putchar('%');
putchar(i);
break;

}
prcnt++;
if (prcnt == prmax)

/* start using stack parameters */
x.ip = (int *)&stack;

break;

default: putchar(i);
break;

main ()
{
printz("%cO,'z');
printz("double: %DO,lL);
printz(Udecimal: %dO,69);
printz("%c%c%c%c%c%c%cO,'a','b','c','d','e','f','g');
printz("%D %D ~D %DO,100L,123456L,lL,98765432L);
printz("%D %d %c %dO,32L,10,'x',52);
}

Figure 1-3. An S8000 Program with Variable Number
of Arguments of Different Types

1.4 Object Format Dependencies

c

Programs that extract header information from the object
files must be modified. Typical UNIX utilities that look at
the object files (for example ~ and nlist) are already
available on the S8000. The entire object file produced by
the language processors on the S8000 conform to the S8000
object code format. Refer to a.out (5) for a complete
description of the S8000 object code format.

1.5 Byte Order Within Words

Byte order on the S8000 differs from byte order on the PDP-
11. On the S8000, the high-order byte of a word has an even
address and the low-order byte has the next higher odd
address. On the PDP-II, this is reversed. This means that
the PDP-II programs that manipulate bytes within a word or
long quantities with pointers may not work correctly on the

Zilog 9

c

(

10

Zilog c

58000. Also, transporting files between a 58000 and a PDP-
11 requires any word quantities within the file to be byte­
swapped.

For example, suppose that starting at memory location 100,
there is a string of eight bytes (all numbers are in hex) :

.
00, 01, 02, 03, 04, OS, 06, 07

On both the PDP-II and the Z8000, these values occupy the
eight consecutively addressed locations 100-107. However,
consider the word value at location 102. On the Z8000, 02
is the high-order byte, so the value is 0203. On the PDP-
11, 03 is the high-order value, so the value is 0302. Mani­
pulations such as:

char *p;
int i;
i = (*p++*256) + *p++;

produce different results on the two machines.

To illustrate the problemm of transferring
two machines, consider the string to have
PDP-II as a structure containing four byte
by two word values:

100: 00
101: 01
102: 02
103: 03
104: 0504
105: 0706

files between the
originated on the
values followed

When this string is moved to a Z8000, it becomes:

100: 00
101: 01
102: 02
103: 03
104: 0405
105: 0607

So, before the data can be processed, the words at 104 and
106 must have the bytes reserved, while the bytes at 100
through 103 must not be changed.

Zilog 10

C

11

Zilog C

1.6 Machine Architecture Dependencies

Another architecture dependency concerns the use of the
/dev/mem device. On the PDP-II, the system data space
begins at location 0 of /dev/mem. On the 58000, this system
instruction space begins at O. A program such as ps that
needs to examine locations in the system data memory must
use the device /dev/kmem instead of /dev/mem (mem(4».

The -n option, which takes advantage of the PDP-II's 8K page
size, is not supported. The 58000 has a 64K page size. The
-i option (separate I&D) can be used instead. Both options
link a program so that several copies of the same program
can share the first several pages.

1.7 C Compiler Features

The ZEUS C compiler allows register variables of types
short, int, pointer, long, and double. These can be
unsigned where appropriate~ Declarations of register float
or char are ignored. In nonsegmented mode, there are seven
ordinary registers and four floating (double) registers
available for register variables. In segmented mode, the
number of ordinary registers is reducted to six.

The sizes of the various variable types are as follows:

character

~ (in.b.i.ta)

8
unsigned character
short
unsigned short
int .
unsigned int
pointer (nonsegmented)
pointer (segmented)
long
unsigned long
float
double
register double

8
16
16
16
16
16
32
32
32
32
64
80 (IEEE format)

Although 80 bits are used internally for register double
variables, this does not mean that results will be accurate
to 80 bits. For example, in the statement

register double d=l.l;

only 64 bits fo the floating representation of 1.1 are used

Zilog 11

C

12

Zilog C

to initialize d. In converting PDP-II C programs to S8000
C programs, be aware that the PDP-II C compiler (CC) does
not do sign extension when characters are cast as unsigned.

PDP-II C programs that contain expressions like

(unsigned) C

where C is a character, must be changed to

(unsigned character) C

to suppress sign extension on the S8000.

The legal source file names for C programs are restricted to
contain only alphanumeric, period (.), and minus (-) charac­
ters. This restriction exists because the file name is used
in constructing the module name for the assembler.

Zilog 12

C

13

Zilog C

SECTION 2

RECENT CHANGES TO C

2.1 General

A few extensions have been made to the C language described
in ~ ~ Programming Language. This section discusses these
extensions.

2.2 Structure Assignment

Structures can be assigned, passed as
tions, and returned by functions.
taking part must be the same.

arguments to func­
The types of operands

NOTE

There is a limitation to the C language in ZEUS
implementation of functions that return struc­
tures. If an interrupt occurs during the return
sequence and the same function is called again
during the interrupt, the value returned from the
first call can be "corrupted. The problem can
occur only in the presence of true interrupts, as
in an operating system or a user program that
makes significant use of signals. Ordinary recur­
sive calls are safe.

2.3 Enumeration Type

There is a data type similar to the scalar types of PASCAL.
To the type-specifiers in the syntax on page 193 of ~ ~
Programming Language, add

enum-specifier

with syntax

enum-specifier:

enum { enum-list }
enum identifier { enum-list }
enum identifier

Zilog 13

c

14

Zilog c

enum-list:

enumerator
enum-list, enumerator

enumerator:

identifier
identifier = constant-expression

The role of the identifier in the ~-specifier is similar
to the structure tag in a struct-specifier; it names a par­
ticular enumeration. For example,

enum color { chartreuse, burgundy, claret, winedark };

enum color *cp, col;

makes color the enumeration tag of a type describing various
colors, and then declares ~ as a pointer to an object of
that type and ~ as an object of that type.

The identifiers in the ~ ~ are declared as constants,
and can appear wherever constants are required. If no
enumerators appear with the equal sign (=), the values of
the constants begin at zero and increase by one as the
declaration is read from left to right. An enumerator with
the equal sign gives the associated identifier the value
indicated. Subsequent identifiers continue the progression
from the assigned value.

Enumeration tags and constants must be distinct and, unlike
structure tags and members, are drawn from the same set as
ordinary identifiers.

Objects with a given enumeration are "distinct from objects
of all other types. In ZEUS implementation, all enumeration
variables are treated as integers.

Zilog 14

COMM Zilog COMM

ZEUS COMMUNICATIONS PACKAGE

1 Zilog 1

COMJ.1

2

Zilog COMM

PREFACE

This document describes the ZEUS Communications Package, a
communication path between ZEUS and Zilog development tools.

In this document, the term "development system" refers to a
standard ZS(TM} or Z8000(TM} Development Module or to Z-SCAN
8000{TM). The term "remote system" refers to a System
SOOO(TM) executing the ZEUS Operating System. The term
"local system" refers to an MCZ(TM} or a ZDS system execut­
ing the RIO Operating System.

The LOAD/SEND function in ZEUS is analogous to the MCZ/ZDS
LOAD/SEND function. Refer to the ZSOOO Development Module
Hardware Reference Manual (03-3080) for specific informa­
tion.

Zilog 2

COMM Zilog

TABLE OF CONTENTS

SECTION 1 INTRODUCTION ••••••••••••••••••••••••••••••••••• 4

SECTION 2 FUNCTIONAL DESCRIPTION ••••••••••••••••••••••••• 5

2.1 Upload/Download Functional Description •••• 5
2.2 File Transfer Functional Description •••••• 5

SECTION 3 INVOCATION AND OPERATION ••••••••••••••••••••••• 7

3.1 Upload/Download Invocation and Operation •• 7
3.2 File Transfer Invocation and Operation •••• 7

SECTION 4 TERMINATION •••••••••••••••••••••••••••••••••••• 9

3

4.1 Upload/Download Termination ••••••••••••••• 9
4.3 File Transfer Termination ••••••••••••••••• 9

Zi10g

COMM

3

COMM

(
4

Zilog COMM

SECTION 1

INTRODUCTION

The ZEUS Communications Package gives the ZEUS user a com­
munication path between ZEUS and the development tools
offered by Zilog (the Z8 and Z8000 Development Modules and
Z-SCAN 8000).

The upload/download capability includes the LOAD command,
which loads a ZEUS file to development tool memory, and the
SEND command, which transfers the contents of development
tool memory to a ZEUS file. These facilities also interface
with existing PROM programming products, giving the user
PROM programming capability.

The package also provides a general-purpose file transfer
capability for transferring files between a local system and
a remote system. This includes software that executes under
both ZEUS and the RIO Operating System.

NOTE

This software package is not designed for communi­
cation between two ZEUS systems. For this capa~
bility, use the programs ~, YUK, and uulog.

Zilog 4

'.' ~~

COMM

5

Zilog COMM

SECTION 2

FUNCTIONAL DESCRIPTION

2.1 Upload/Download Functional Description

The LOAD command downloads a Z8000 program to a development
system from a ZEUS file. The binary data 1n the file is
converted to Tektronix format and is transmitted to the
development system. An acknowledgment from the development
system causes the next record to be downloaded from ZEUS.
If an acknowledgment is not received, the current record is
retransmitted up to ten times. After continued nonac­
knowledgment, a record with an error message is sent, and
the program aborts.

Possible error messages are:

/ABORT
/UNABLE TO OPEN FILE
/FILENAME ERROR
/INCORRECT FILE TYPE
/ERROR IN READING FILE
/CHECKSUM ERROR

The SEND command transfers the contents of development sys­
tem memory to a ZEUS file. The SEND program opens the file
and sends an acknowledgment to the development system to
start transmission. If the file cannot be opened, an
abort-acknowledgment is sent, and the program aborts. An
acknowledgment is sent after each good record received. If
the ASCII code double slash (//) is received from the
development system, the program aborts.

Possible error messages are:

/ABORT
/OPEN FILE ERROR
/FILE WRITE ERROR
/CHECKSUM ERROR

2.2 File Transfer Functional Description

The file transfer software copies files residing on the
remote system to files residing on the local system, and
vice versa. On invocation of the file transfer command
(Section 3), the remote system transmits a sequence of char-
acters to the local system to initiate the file transfer. A
file is transferred one record at a time, along with a

Zilog 5

COMM

6

Zilog COMM

checksum to guarantee the accuracy of the data. For each
successful transmission, an acknowledgment is sent, and a
period (.) is displayed on the terminal to inform the user
that the transfer is proceeding. If a nonacknowledgment is
sent, the record is retransmitted up to ten times, after
which the program proceeds to the next file. An error mes­
sage is displayed for each retransmission that is necessary,
unless the nonfatal error messages are suppressed in the
command invocation (Section 3). A message is printed after
each successful transmission that includes the file name.
At the conclusion of the program, a message informs the user
of the number of successful and unsuccessful transmissions.
A control-x causes the current file transfer to terminate,
and the program proceeds to the next file on the list. The
termination message counts that file as an unsuccessful
transfer (Section 4.2). Pressing the esca~e key (ESC)
aborts the program.

Possible messages are:

Normal transmission:
<filename>

(one • for every record for positive feedback)

Error messages:
checksum error ••• re~ry
<filename> ••• transmission aborted

ZEUS file names cannot be longer than 14 characters, but RIO
file names can be as long as 32 characters. For file
transfers from the local system to the remote system, only
the first 14 characters of the file name are used. Path
names can be specified; they apply only to the file name on
the remote system. On the local system, all files to be
uploaded must be in the working directory, and all down­
loaded files are created in the working directory (this does
not apply to the Mcz/zDS systems).

NOTE

If a duplicate file name exists on the target
system, the contents of pre-existing files are
automatically overwritten unless the [-q] option
is specified as part of the command (Section 3).
If the [-q] option is specified, the user is
queried for a replacement name.

Possible message is:

replace <filename> (yIn)?

Zilog 6

COMM

7

Zilog COMM

SECTION 3

INVOCATION AND OPERATION

3.1 Upload/Download Invocation and Operation

The LOAD command is given to the development system as fol­
lows:

LOAD <filename>

The development system Monitor program transmits the command
line to ZEUS exactly as it is entered, and the ZEUS program
(LOAD) opens the file specified by <filename>. The Monitor
on a Z8000 Development Module or Z-SCAN requires that
<filename> be ail uppercase on the remote system. If nload
prog" is entered, the remote system searches for the file
PROG. The binary data in the file is transmitted to the
development system. Pressing ESC aborts the LOAD command.

The SEND command is given to the development system as fol­
lows:

SEND <filename> <start address> <end address> [<entry address>] .
This command transfers the contents of development system
memory to a ZEUS file specified by <filename>. The develop­
ment system transmits the command to ZEUS exactly as input,
causing execution of the SEND program. SEND opens the file
<filename> and stores in it the binary data received from
the development system. Pressing ESC aborts the SEND com­
mand.

3.2 File Transfer Invocation and Operation

File transfer is accomplished in three steps. In the first
step, control is transferred from the local system to the
remote system by entering the following command to the local
,system.

remote [<rate>]

This command starts a program on the local system, which
places the user in remote mode. In this mode, all charac­
ters entered from the keyboard are sent to the S8000, and
all characters from the S8000 (except for character
sequences that initiate file transfers and the return to
local mode) are sent to the terminal screen. Therefore, the
terminal is essentially operating as an S8000 terminal, and

Zilog 7

COMM Zilog COMM

8

any ZEUS command can be executed. The default communication
rate is 9600 baud. Standard baud rates that can be speci­
fied for the MCZ/ZDS are 50, 75, 110, 150, 300, 600, 1200,
2400, 4800, 9600, 19,200, and 38,400.

The second step in file transfer involves two commands: ~
file and getfile, which are invoked as follows:

putfile [-q] [-f) [-b] [-B) <filenamel> [[-b) <filename2> •••]
getfile [-q] [-f] [-b] [-B] <filenamel> [[-b] <filename2> •••]

The command putfile transfers files from the remote system
to the local system1 getfile transfers files from the local
system to the remote system.

The [-q] option specifies that transfer of a file to the
target system where a file of the same name already exists
causes a query to the user (Section 2.2). If this option is
not given, the file is automatically overwritten.

'The [-f) option suppresses the nonfatal error message
"checksum error ••• retry."

The [-b] option preceding a file name indicates a binary
file and suppresses translation of ZEUS new line characters
into RIO's carriage returns (and vice versa) for that file
only. The type defaults to ASCII for the next file. This
differs from the [-q] and [-f) options, which apply to the
remainder of the line following the point at which they are
invoked.

The [-B) option specifies that every file that follows is
binary.

A list of files can be specified on the
control-x aborts the transfer of a single
to the next file. Pressing ESC aborts the
at any point.

command line. A
file and proceeds
entire transfer

The third step returns the user to the local system from the
remote system. The command is:

local [-1]

The [-1] option causes a logout to be given to the remote
system. It is necessary to log in after the next remote
command.

Zilog 8

COMM

f
9

Zilog COMM

SECTION 4

TERMINATION

4.1 Upload/Download Termination

After completion of the loading process, the program's entry
point is displayed on the terminal, and the development sys­
tem returns to Monitor mode. The LOAD program terminates
and returns control to the ZEUS Operating System.

After completion of the sending process, the program's entry
point is stored in the ZEUS file, and the development system
returns to Monitor mode. The SEND program terminates and
returns control to the ZEUS Operating System.

If there is a user or program abort during either the load­
ing or sending process, an error message is printed (Section
2), the development system returns to Monitor mode, and the
program returns control to the ZEUS Operating System.

4.2 File Transfer Termination

After completion of the file transfer, the local system
returns to remote mode, enabling the user to continue to
execute ZEUS commands. One of the following messages is
printed on the terminal:

putfile:<nl> successful transfers <n2> unsuccessful transfers
getfile:<nl> successful transfers <n2> unsuccessful transfers

An unsuccessful file transfer does not cause the program to
terminate abnormally. If the program is aborted via the
escape key, it does not transfer any more files, and ter­
minates in a normal fashion.

Zilog 9

CSB

(

1

Zilog CSB

AN INTRODUCTION TO TBE C SBELL*

* This information is based on an article orginally writ­
ten by William Joy, University of California, Berkeley.

Zilog 1

CSH

2

Zilog CSH

PREFACE

A shell is a command language interpreter; C shell, also
known as ~ is the name of an interactive command inter­
preter for ZEUS. Enter the command ~ to call the program
on the system. The primary purpose of csh is to translate
command lines typed at a terminal into system actions, such
as invocation of other programs. It incorporates features
of other shells and a history mechanism similar to the ~
of INTERLISP, all of which make csh easy to use.

This document gives instructions on the use of the csh and
describes its capabilities. The last two sections describe
features of the csh that are useful, but not necessary for
every user. Appendix A lists characters that have special
meaning for csh and ZEUS.

Appendix B is a glossary of terms and commands introduced in
this document.

In addition to this document, refer to ~(~) of the ~
Reference Manual, which gives a full description of all
features of csh.

Names of commands and words that have special meaning in csh
and ZEUS are underlined. Refer to Appendix B to learn the
meaning of any words that are unfamiliar.

Zilog 2

:
\.

CSH

3

SECTION 1

Zilog

TABLE OF CONTENTS

INTERACTIVE USE ••••••••••••••••••••••••• 5

1 .1 Commands. • . . . • 5
1.2 Flag Arguments ••••••••••••••••••••• 6
1.3 Output to Files •••••••••••••••••••• 6
1.4 Metacharacters in Csh •••••••••••••• 7
1.5 Input from Files ••••••••••••••••••• 8

1.6
1.7

i.s.l Pipelines 8

File Names•.................... 9
Terminating Commands 12

SECTION 2 DETAILS OF CSH OPERATION •••••••••••••••• 14

2.1 Csh Startup and Termination •••••••• 14
2.2 Csh Variables •••••••••••••••••••••• 15
2.3 Csh's History List ••••••••••••••••• 16
2.4 Aliases •••••••••••••••••••••••••••• 18
2.5 Detached Commands and Redirection •• 20
2.6 Built-In Commands •••••••••••••••••• 21

SECTION 3 CSH CONTROL STRUCTURES
AND COMMAND SCRIPTS ••••••••••••••••••••• 25

3.1 Introduction ••••••••••••••••••••••• 25
3.2 Invocation and the argv Variable ••• 25
3.3 Variable Substitution •••••••••••••• 25
3.4 Expressions •••••••••••••••••••••••• 27
3.5 Sample Csh Script •••••••••••••••••• 28
3.6 Other Control Structures ••••••••••• 31
3.7 Applying Input to Commands ••••••••• 32
3.8 Catching Interrupts •••••••••••••••• 32
3.9 Other Functions •••••••••••••••••••• 33
3.10 Make ••••••••••••••••••••••••••••••• 33

SECTION 4 MISCELLANEOUS SHELL MECHANISMS •••••••••• 34

4.1 Loops at the Terminal •••••••••••••• 34
4.2 Braces in Argument Expansion ••••••• 35
4.3 Command Substitution ••••••••••••••• 36

Zilog

CSH

3

CSH Zilog CSH

TABLE OF CONTENTS (continued)

APPENDIX A SPECIAL CHARACTERS ••••••••••••••••••••• 37

APPENDIX B GLOSSARy .••••.••••..••..•...•••...••••• 38

(
4 Zilog 4

CSH

5

Zilog CSH

SECTION 1

INTERACTIVE USE OF THE C SHELL

1.1 Commands

A shell in ZEUS is, primarily, a medium through which other
commands are invoked. Csh has a set of built-in· commands
that it performs directly; however, most useful commands are
external to the shell. What distinguishes csh from command
interpreters of other systems is that it is a user program
that acts almost exclusively as a mechanism for invoking
other programs.

Commands in the ZEUS system expect a list of strings or
words as arguments. For example, the command

mail bill

consists of two words. The first word, mail, names the com­
mand to be executed (in this case the mail program that
sends messages to other users). Csh looks in a number of
directories for a file with the name mail, which contains
the mail program.

The rest of the words of the command are given to the com­
mand itself to execute. In this case, the word ~ is
interpreted by the mail program as the name of a user to
whom mail is to be sent. The mgil command is normally used
as follows:

% mail bill
I have a question about the csh documentation.
My document seems to be missing page five.
Does a page five exist?

Chuck
%

A message is sent to ~ and is ended with a control-d,
which sends an end-of-file message to the mail program. The
mail program then transmits the message. The prompt charac­
ter % is printed before and after the mail command to indi­
cate that input to csh to is needed.

After giving the % prompt, csh reads the command input from
the terminal. After the command mail bill is typed, csh
executes the mail program with argument bill and waits for
it to complete. Themail program reads input from the ter­
minal until an end-of-file message notifies csh that mail is

Zilog 5

CSH

6

Zilog CSH

finished. Csh signals the user that it is ready to read
from the terminal again by printing another % prompt.

This is the basic pattern of all interactions with ZEUS
through csh. A complete command is typed at the terminal,
csh executes the command, and, when execution is completed,
prompts for a new command. This pattern is not affected by
the time it takes to execute a command. If the editor is
run for an hour, csh waits for editing to finish before
prompting the user again.

1.2 Flag Arguments

Flag arguments normally begin with a dash character (-) and
invoke an optional capability of the command. For example,
the command

Is

produces a list of the files in the current directory. If
the size option, ~, is added, as follows,

Is -s

.la' also gives the size of the file in blocks of 512 charac­
ters for each file. Refer to the ~ Reference Manual for
the available options for each command.

1.3 Output to Files

Many commands read from or write to files rather than taking
input from and sending output to the terminal. These com­
mands take special words as arguments, indicating where the
output is to go. It is simpler, and usually sufficient, to
connect these commands to the files to be written. This is
done within csh just before the commands are executed.

The command

date

displays the current date on the terminal, which is the
default standard output for the ~ command. To save the
current date in a file called now, it is possible to
redirect the standard output. Csh allows the standard out­
put of a command to be redirected through a notation using
the metacharacter > and the name of the file where output is
to be placed. Thus, the command

date > now

Zilog 6

CSH

7

Zilog CSH

runs the ~ command with the file ~ as its standard out­
put. This command then places the current date and time in
the file ~. It is important to realize that the ~ com­
mand is not affected by its output going to a file rather
than to the terminal. Csh performs this redirection before
the command begins execution.

The file ~ does not have to exist before the ~ command
is executed; csh cr~ates the file if it does not exist. If
the file already exists, the previous contents are overwrit­
ten. The csh option noclobber (Section 2.2) prevents this
from happening accidentally.

1.4 Metacharacters in Csh

Csh has a number of special characters (like » that indi­
cate~ special functions. Appendix A lists these metacharac­
ters in functional groups. In general, most characters that
are neither letters nor digits have special syntactic or
semantic meaning to csh. Metacharacters normally have
effect only when csh is reading input.

Metacharacters cannot be used directly as parts of words.
For example, the command

echo *
does not echo the character *. It either echoes a sorted
list of file names in the current directory, or prints the
message ~ match if there are no files in the current direc­
tory.

The recommended mechanism for using metacharacters as argu­
ments is to enclose them in single quotation marks (I), for
example:

echo 1*1

One special character, the exclamation mark (1), (used by
the history mechanism of csh) cannot be escaped in this way.
The! and the single quote (I) character can be preceded by
a single backslash (\) to prevent special interpretation.

These two mechanisms suffice to place any printable charac­
ter in a word that is an argument to a csh command.

Zilog 7

CSH

8

Zilog CSH

1.5 Input from Files

AYthough it is also possible to route the standard input of
a command from a file, this is not usually necessary because
most commands are read from a file name given as an argu­
ment. The command

sort < data

runs the ~ command with standard input, whereas the .com­
mand normally reads from the file~. It is easier to
enter

sort data

letting the ~ command open the file ~ for input. If

sort

is entered, the ~ program sorts lines from its
input. Since the standard input is not redirected,
lines as typed at the terminal until a control-d is
generate an end-of-file.

1.5.1 Pipelines

standard
it sorts
typed to

Csh can combine the standard output of one command with the
standard input of the next. This procedure runs the com­
mands in a sequence known as a pipeline. Commands separated
by a vertical bar (I) are connected together by csh: the
output of each is run into the input of the next. The left­
most command in a pipeline normally takes its standard input
from the terminal, and the rightmost places its standard
output on the terminal.

For example, the command

Is -s

produces a list of the files in the directory with the size
of each in blocks of 512 characters. Combining the ~ com­
mand with options of the ~ command sorts the directory
files by size rather than by name.

The -n option of ~ specifies a numeric sort rather than
an alphabetic sort. Combining this command with Is -s using
the pipe command (I)

Is -s I sort -n

Zilog 8

CSH

9

· ,

Zilog CSH

specifies that the output of the ~ command, run with the
option ~, is to be piped to the command ~, run with the
numeric sort option. This gives a sorted list of files by
size with the smallest first. Use the reverse sort (-.rJ
option and the ~ command in combination with the previous
command as follows:.

Is -s I sort -n -r I head -5

The list of files is now sorted alphabetically, with the
size of each in blocks. This is run to the standard input
of the ~ command, asking it to sort numerically in
reverse order (largest first). This output is then run into
the command ~, which displays the first few lines of each
file. In this example, ~ is asked to run the first five
lines, so it gives the names and sizes of the five largest
files. ..
1.6 File Names

Every ZEUS file has a file name up to 14 characters long.
Every file is listed by name in a directory. The relation­
ship of files to directories is expressed by path names.

ZEUS path names consist of a number of components separated
by a slash (f). Each component, except the last, names a'
direct.ory in which the next component resides. For example,
the path name

/etcfmotd

specifies a file (mQtg) in the directory ~, which is a
subdirectory of the root directory (f). File names that do
not begin with / are interpreted starting at the current
working directory. This directory is, by default, the home
directory. The horne directory can be changed dynamically
with the change directory (chdir or &d) command.

All printable" characters except f can appear in file names,
but characters that have special meaning should be avoided.
Most file names consist of a number of alphanumeric charac­
ters and periods (.). The period character is not a shell
metacharacter and is often used to separate an extension
from a base name. For example,

prog.c prog.o prog.errs prog.output

are four files that share a root portion of a name. (A root
portion is that part of the name that is left when a trail­
ing period and following characters are stripped off.) The
file ~.~ is the source for a C program, the file ~.Q

Zilog 9

CSH

10

Zilog CSH

is the corresponding object file, the file prog.errs is the
list of errors resulting from a compilation of the program,
and the file prog.output is the output of a run of the pro­
gram.

The metanotation

prog.*

can be used in a command to refer to all four of these
files. This word is expanded by the shell (before the com­
mand to which it is an argument is executed) into a list of
names that begin with~. The asterisk (*) character
matches any sequence (including the empty sequence) of char­
acters in a file name. The names that match are sorted
alphabetically into the list of command arguments. The com­
mand

echo prog.*

echoes the names

prog.c prog.errs prog.o prog.output

The names are in alphabetic order here (a different order
than listed previously). -The ~ command receives four
words as arguments, even though only one word is directly
entered as an argument. The four words are generated by
file name expansion of the metasyntax in the one input word.

Another metanotation for file name expansion is the question
mark (?) character, which matches any single character in a
file name. For example,

echo ? ?? ???

echoes a line of file names; first, those with one-character
names, then those with two-character names, and finally,
those with three-character names are echoed. The names of
each type are independently sorted alphabetically.

Another mechanism consists of a sequence of characters
between brackets ([]). This meta sequence matches any sin­
gle character from the enclosed set. For example,

prog.[co]

matches

prog.c prog.o

Zilog 10

esa

11

Zilog esa

in the example above. Two characters separated by a hyphen ~
(-) denote a range. For example,

chap. (1-51

matches files

chap.l chap.2 chap.3 chap.4 chap.5

if they exist. This is an abbreviated version of

chap. (123451

and is otherwise equivalent.

If a list of arguments to a command contains file name
expansion syntax, and if this syntax fails to match any
existing file names, the shell~onsiders this to be an error
and prints

No match.

The period character (.) at the beginning of a file name is
treated specially. The matching mechanisms *, ?, and (] do
not match it. This prevents accidental matching of file
names that have special meaning to the system (such as • and
••), and files (such as .cshrc) that are not normally visi­
ble.

Another file name expansion mechanism gives access to the
path name of the home directory of other users. This nota­
tion consists of the tilde character (-) followed by another
user's login name. For instance, the word -bill maps to the
path name /z/bill if the home directory for bill is the
directory /z/bill. On large systems, users can have login
directories scattered over many different disk volumes with
different prefix directory names. This notation provides a
reliable way of accessing the files of other users.

A special case of this notation consists of a - alone, for
example -/mbox. This notation is expanded by csh into the
file mbQx in th~ user's home directory. This can be very
useful if the user uses chdir to change to another user's
directory and then decides to copy a file there using ~.
The entry

cp thatfile -

is expanded by csh to

cp thatfile /z/bill

Zilog 11

CSH

12

Zilog CSH

which the copy command interprets as a request to make a
copy of thatfile in the directory /z/bill. Unlike the
matching characters (*, ?, and []), the notation does
not, by itself, force named files to exist. This is useful
when using the ~ command, as in

cp thatfile -/saveit

Braces ({ }) can be used for abbreviating a set of words
that have common parts, but cannot be abbreviated by the
above mechanisms because they are not files, are the names
of files that do not yet exist, or are not conveniently
described by the other mechanisms. This mechanism is
described in Section 4.3.

1.7 Terminating Commands

It is possible to terminate programs that are running while
csh is dormant without terminating csh itself. For
instance, if the command

cat /etc/passwd

is entered, the system displays on the terminal a list of
all users of the system. Pressing the DEL or RUB key sends
an interrupt signal to the ~ command and terminates it.
Actually, pressing the key sends the interrupt signal to all
programs running on the terminal, including csh. Csh nor­
mally ignores such signals, however, so that the only pro­
gram affected by the interrupt is ~, which has no mechan­
ism for ignoring interrupts. Upon termination of the com­
mand, csh leaves the dormant state and prompts the user with
%. If the interrupt is entered again, csh simply repeats
its prompt, since it catches (ignores) interrupt signals.

Many programs terminate when they receive an end-of-file
message from their standard input. The ~program example
in Section 1.1 was terminated when the user typed a
control-d, which generates an end-of-file from the standard
input. Csh also terminates when it receives an end-of-file.
ZEUS then logs the user off the system. Since this means
that typing too many control-d's can accidentally log the
user off. the system, csh has a mechanism for preventing
this. This ignoreeof option is discussed in Section 2.2.

If the command has its standard input redirected from a
file, it normally terminates when it reaches the end of this
file. Thus, if

mail bill < prepared. text

Zilog 12

CSH

13

Zilog CSH

is executed, the mail command terminates when it reads the
end-of-file for the file prepared.~.

Programs that have not been fully debugged can be stopped by
entering a control-\. Csh responds with a message similar
to:

a.out: Quit -- Core dumped

This indicates that a file ~ has been created that con­
tains information about the program a.out's state when it
encountered problems. This file can be examined by the
user, or can be forwarded to the maintainer of the program
describing where the ~ file is.

If background commands are running, they ignore interrupt
and quit signals entered at the terminal. To stop the back­
ground commands, use the kill program. (Se~ Section 2.6 for
an example.)

Zilog 13

CSH

14

Zilog CSH

SECTION 2

DETAILS OF CSH OPERATION

2.1 Csh Startup and Termination

When the user logs in, the system places the csh in the
user's .b..Q.me directory and begins by reading commands from
the file .cshrc in this directory. All user-created shells
are read from this file.

After it reads commands from .cshrc, a login shell (executed
after the user logs in to the system) reads commands from a
file, .login, also in the user's home directory. This file
contains commands to be executed each time the user logs in
to the ZEUS system. The following is an example of a ty~i­
cal .login file:

setenv TERM adm3a
set history=20
set time=3

This file contains three commands
the user logs in. The first
informs the system that this user
Lear-Siegler ADM-3A terminal.

executed by ZEUS each time
is a seteny command, which
usually dials in on a

The next two ~ commands are interpreted directly by csh
and affect the values of certain variables that modify the
future behavior of csh. Setting the variable ~ tells csh
to print time statistics on commands that take more than a
certain threshold of machine time (in this case three CPU
seconds). Setting the variable history tells csh how much
history of previous command words it should save in case the
user wants to repeat or rerun modified versions of previous
commands. Since there is a certain overhead in this mechan­
ism, csh does not set this variable by default: it allows
users who wish to use the mechanism to set this variable
themselves. The value of 20 is a reasonably large value to
assign to history. A value of 5 or 10 .is more commonly
used. The use of the history mechanism is described Section
2.3.

After executing commands from .login, csh reads commands
from the user's terminal, prompting for each with %. When
it receives an end-of-file from the terminal, csh prints
logout and executes commands from the file .logout in the
user's home directory. After that, csh terminates, and ZEUS
logs the user off the system.

Zilog 14

/
i ",

csa

15

Zilog csa

2.2 Csh Variables

Csh maintains a
array of zero
assigned values
.Q.e.t is

set of variables that have as a value an
or more strings. Shell variables can be

by the ~ command. The most useful form of

set name=value

Csh variables can be used to store values that are to be
reintroduced into commands later through a substitution
mechanism. The csh variables most commonly referenced are
those referred to by csh itself. By changing the values of
these variables, it is possible to directly affect the
behavior of csh.

One of the most important variables is ggth, which contains
a sequence of directory names where the shell searches for
commands. The ~ command shows the value of all variables
currently defined in csh. The default value for ~ is
shown by ~ to be

% set
argv
horne
path
prompt
shell
jtatusO
%

/z/bill
(. /bin /usr/bin)
%
/bin/csh

This notation indicates that the variable ggth points to the
current directory (.), then /bin, and finally /usr/bin.
Commands that the user can write might be in • (usually one
of the user's directories). The most heavily used system
commands reside in /bin and less heavily used system com­
mands reside in /usr/bin.

A useful built-in variable is ~, which shows the user's
horne directory. The variable ignoreeof can be set in the
.login file to tell csh not to exit when it receives an
end-of-file from the terminal. To log out from ZEUS with
ignoreeof set, type

logout

To set this variable, type

set ignoreeof

and, to unset it, type

Zilog 15

CSH

16

Zilog CSH

unset ignoreeof

Both ~ and unset are built-in commands of csh.

Another built-in csh variable is noclobber, which prevents
files from being overwritten. The metasyntax

> filename

(which directs the output of a command) overwrites and des­
troys the previous contents of the named file. A file that
is valuable can be accidentally overwritten. To prevent csh
from overwriting files in this way, enter

set noclobber

in the .login file. Then, entering

date > now

causes a diagnostic if ~ already exists. The special
metasyntax >1 indicates that "clobbering" the file is allow­
able. Entering

date> 1 now

makes it possible to overwrite the contents of ~.

The variable ~ is also built in. To be notified of the
arrival of mail while logged in, place the following command
in the .login file: .

set mail=/z/mail/yourname

Csh checks this file every 10 minutes to see if new mail has
arrived. Since this variable can delay the shell's response
while it checks for mail, use it only if mail arrives fre­
quently.

The use of csh variables to introduce text into commands,
which is most useful in csh command scripts, is introduced
in Section 2.4.

2.3 The C Shell's History List

Csh can maintain a history list that contains the words of
previous commands. It is possible to use a metanotation to
reintroduce commands, or words from commands, to form new
commands, repeat previous commands, or to correct minor typ­
ing mistakes in commands.

Zilog 16

..

CSH

17

Zilog CSH

The following transcript asks the system where michael is
logged in.

% where michael
michael is on ttyO dialup 300 baud
% write !$
write michael
Long time no see michael.
Why donrt you call me at 524-4510.
EOF
%

642-7927

The system specifies that he is on ttyO. Csh is then told
to invoke a write command to 1$. This is a history notation
that means the last word of the last command executed--in
this case, michael. Csh performs this substitution, and then
echoes the command as it is executed. The following inter­
change might take place if there is no response from
michael.

% ps -to
PID TTY TIME COMMAND

4808 0 0:05 -
% 1 1
ps -to

PID TTY TIME COMMAND
5104 0 0:00 - 7

% !where
where michael
michael is "not logged in
%

A ~ on the teletype michael is logged in on is run to see
if he has a shell. Repeating this command via the history
substitution, 11, shows that he has logged out and that only
a getty process is running on his terminal. Repeating the
where command shows that he is indeed gone.

This illustrates several useful features of the history
mechanism. The form 11 repeats the last command execution.
The form !string repeats the last command that began with a
word, of which string is a prefix. Another useful command
form is ilhQi~, which performs a substitute similar to
that in ~ or~. Thus, after

% cat -bill/csh/sh •• c
/mnt/bill/csh/sh •• c: No such file or directory
% i .. i.
cat -bill/csh/sh.c
#include "sh.h"

/*

Zilog 17

· csa

18

* C Shell
*

Zilog

* Bill Joy, UC Berkeley
* October, 1978
*/

char *pathlist[] = {SRCap
%

csa

the substitution is used to correct a typing mistake, then
rub out the command after the file is located. The substi­
tution changes the two periods (••) to a single period (.).

The following command can then be used to put a copy of this
file on the line printer:

% 11 I lpr
cat -bill/csh/sh.c I lpr

Or, immediately after the ~, the following can be used to
print a copy on the printer using ~:

% pr 1$ I lpr
pr -bill/csh/sh.c I lpr
%

More advanced forms of the history mechanism are also possi­
ble. A notion of modification on sUbstitutions makes it
possible to say (after the first successful ~)

% cd 1 $:h
cd -bill/csh
%

The trailing :h on the history sUbstitution causes only the
head portion of the path name reintroduced by the history
mechanism to be substituted. This mechanism and related
mechanisms are used less often than the other forms.

A complete description of history mechanism features is
given in ~(L) in the ZEUS Reference Manual.

2.4 Aliases

The shell has an alias mechanism that makes transformations
on input commands by simplifying the commands typed, supply­
ing default arguments to commands, or performing transforma­
tions on commands and their arguments. The alias facility
is similar to the macro facility of many assemblers.

Zilog 18

,/

:f'
'~

CSH

19

Zilog CSH

Some of the features obtained by "aliasing" can also be
obtained using csh command files, but these 'take place in
another instance of the shell and cannot directly affect the
current shell's environment and commands.

As an example, suppose that there is a new version of the
mail program on the system called Mail, that is to be used
instead of the standard mail program (which is called mail) •
If the csh command

alias mail Mail

is placed in the user's .login file, csh transforms an input
line of the form

mail bill

into a calIon Hail.

To cause the command la to show sizes of files (that is, to
do ~), enter

alias Is Is -s

or even

alias dir Is -s

which creates a new command syntax diL, which does an la ~.
If

dir -bill

is entered, csh translates this to

Is -s /z/bill

Thus, the alias mechanism can be used to provide short names
for commands, to provide default arguments, and to define
new short commands in terms of other commands. It is also
possible to define aliases that contain multiple commands or
pipelines that show where the arguments to the original com­
mand are to be substituted, using the facilities of the hia=
~ mechanism. The definition

alias cd 'cd \1* 7 Is'

does an la command after each change directory (~) command.
The entire alias definition is enclosed in single quote
characters to prevent most substitutions from occuring and
the semicolon (7) character from being recognized as a
parser metacharacter. The exclamation mark (1) here is

Zilog 19

CSH

20

Zilog CSH

escaped with a backslash (\) to prevent it from being inter­
preted when the alias command is typed in. The \1* substi­
tutes the entire argument list to the pre-aliasing ~ com­
mand, without giving an error if there are no arguments.
The 1 that separates commands indicates that one command is
to be executed before the next is executed. Similarly, the
definition

alias whois 'grep \li /etc/passwd'

defines a command that looks up its first argument in the
password file.

2.5 Detached Commands and Redirection

The ampersand (&) metacharacter can be placed after a com­
mand, or after a sequence of commands separated by 1 or I.
This prevents csh from waiting for the commands to terminate
before prompting again. These commands are said to be
detached or background processes. In the following example,

% pr -bill/csh/sh.c I Ipr &
5120
5121
%

Csh prints two process numbers and comes back very quickly
rather than waiting for the ~ and ~ commands to finish.
The numbers 5120 and 5121 are the process numbers assigned
by the system to the ~ and ~ commands.

Running commands in the background tends to slow down the
system and is not a good idea if the system is overloaded.
When overloaded, the system has a slower user response when
a large number of processes are run at once.

Severe complications can be expected if a command run in the
background is read from the user's terminal at the same time
as csh reads a command run from the terminal. To avoid this
problem, the default standard input for a command run in the
background is not the terminal but an empty file called
/dev/null. Commands run in the background are also unaf­
fected by interrupt and quit signals generated at the termi­
nal. (If a background command stops suddenly when INTERRUPT
or QUIT is pressed, a bug probably exists in the background
program.)

If it is necessary to log off the system before the
completes, the command must be run immune to hangup
This is done by placing the word nohup before each
in the command. For example

Zilog

command
signals.

program

20

CSH

21

Zilog CSH

nohup man csh 1 nohup Ipr &

In addition to the standard output, commands also have a
diagnostic output that is normally directed to the terminal
even when the standard output is directed to a file or a
pipe. It is occasionally desirable to redirect the diagnos­
tic output along with the standard output. For instance, if
the output of a long running command is to be redirected
into a file, and it would be helpful to have a record of any
error diagnostic it produces, enter

command >& file

The >& tells csh to route both the diagnostic output and the
standard output into~. Similarly, the following command

command 1& Ipr

can be used to route both standard and diagnostic output
through the pipe to the line printer~. In this example,
a command of the form

command >&! file

is used when noclobber is set and ~ already exists.

Finally, it is possible to use the form

command » file

to place output at the end of an existing file.

If noclobber is set, an error results if ~ does not
existl otherwise, csh creates ~ if it does not exist. To
eliminate the error condition if ~ does not exist when
noclobber is used, enter the following:

command »! file

2.6 Built-In Commands

The alias command described in Section 2.4 assigns new
aliases and displays the existing aliases. With no argu­
ments, it prints the current aliases. It can also be given
an argument, such as

alias Is

to show the current alias for ~, for example.

Zilog 21

eSB

22

Zilog eSB

The ~ and chgir commands, which are equivalent, change the
working directory of csh. It is useful to make a directory
for each project being worked on, and to place all files
related to that project in that directory. For example, the
following commands can be used to enter the directory newpa­
~:

% pwd
/z/bill
% mkdir newpaper
% chdir newpaper
% pwd
/z/bill/newpaper
%

A group of related files can be placed there. The print
working directory (~) command shows the name of the
current directory, which is usually a subdirectory of the
home directory. It is possible to return to the home login
directory by entering

chdir

with no arguments.

The ~ command prints its arguments. It is often used in
csh scripts or as an interactive command to see what file
name expansions yield.

The history command shows the contents of the history list.
The numbers given with the history events can be used to'
reference previous events that are difficult to reference
using contextual mechanisms. If a ! character is placed in
the value of the shell variable prompt, the shell substi­
tutes the index of the current command in the history list.
This number can be used to refer to this command in a his­
tory substitution. Thus, it is possible to use the command

set prompt='\!%'

Note that the ! character has to be escaped, even here,
within single quote characters.

The logout command can be used to terminate a login shell
that has ignoreeof set.

The repeat command can be used to repeat a command several
times. Thus, to make five copies of the file ~ in the
file ~, enter

repeat 5 cat one » five

Zilog 22

CSH

23

Zilog CSH

The seteny command can be used to set variables in the
environment. For example,

setenv TERM adm3a

sets the value of the environment variable TERM to adm3a.
The user program printeny prints out the environment, as
follows:

% printenv
HOME /z/bill
SHELL /bin/csh
TERM adm3a
%

The source command can be used to force the current shell to
read commands from a file. For example,

source .cshrc

can be used after a change is made to the .cshrc file that
is to take effect before the next time the user logs in.

The ~ command causes a command to be timed, no matter how
much CPU time it takes. For example,

% time cp
O.Ou 0.3s
% time wc

1200
1.2u 0.5s
%

five five. save
0:01 26%
five. save

6300 37650 five. save
0:03 55%

indicates that the ~ command used less that a tenth of a
second of user time and only three-tenths of a second of
system time in copying the file ~ to fiye,sayeThe command
word count (~) on the other hand, used 1.2 seconds of user
time and 0.5 seconds of system time in three seconds of
elapsed time in counting the number of words, characters,
and lines in fiye,sayeThe percentage (55%) indicates that
over this period of three seconds, the command ~ used an
average of 55 percent of the available CPU cycles of the
machine. (This is a very high percentage and indicates that
the system is lightly loaded.)

The unalias and unset commands can be used to remove aliases
and variable definitions from the shell.

The ~ command can be used after starting processes with &
to quickly see if they have finished. If the shell responds
immediately with another prompt, the commands have finished
executing. Otherwise, it is necessary to wait for the shell

Zilog 23

eSH

24

Zilog eSH

to prompt, or interrupt the shell by sending a RUB or DELETE
character. If the shell is interrupted, it prints the names
and numbers of the unfinished processes. An example of the
response to a ~ command follows.

% nroff paper I Ipr &
2450
2451
% wait

2451 Ipr
2450 nroff

wait: Interrupted.
%

If it is necessary to stop running a background process,
the kill program must be used. The process number to be
killed must be entered. For example, to stop nroff in the
pipeline example, enter

% kill 2450
% wait
2450: nroff: Terminated.
%

Here the shell displayed a diagnostic indicating that the
user terminated nroff, only after a ~ command was done.

Zilog 24

CSH

25

zilog CSH

SECTION 3

CSH CONTROL STRUCTURES AND COMMAND SCRIPTS

3.1 Introduction

It is possible to place commands in files called shell
scripts and to invoke shells to read and execute commands
from these files. Those features of csh useful to the writ­
ers of such scripts are detailed in this section.

3.2 Invocation and the argv Variable

A csh command script can be interpreted by entering

csh script •••

where script is the name of the file containing. a group of
csh commands and ••• is replaced by a sequence of arguments.
Csh places these arguments in the variable ~ and then
begins to read commands from the script. These parameters
are then available through the same mechanisms used to
reference any other csh variables.

If the file script is made executable by entering

chmod 755 script

and placing a shell comment at the beginning of the shell
script, the command /bin/csh is automatically invoked to
execute script when

script

is entered. If the first character of the first line is not
a i, csh invokes /bin/sh to interpret the command script.

3.3 Variable Substitution

After each input line is broken into words and history sub­
stitutions are done on it, the input line is parsed into
distinct commands. Before each command is executed, a
mechanism known as variable substitution is applied to these
words. Keyed by the dollar sign ($) character, this substi­
tution replaces the names of variables with their values.
For example,

echo $argv

Zilog 25

(I
'l

CSH

26

Zilog CSH

when placed in a command script, causes the current value of
the variable ~ to be echoed to the output of the shell
script. It is an error for ~ to be unset at this point.

A number of notations are provided for accessing components
and attributes of variables. The notation

$?name

expands to 1 if ~ is set, or to 0 if ~ is
is the fundamental mechanism used for checking
ticular variables have been assigned values.
forms of reference to undefined variables cause

The notation

$#name

not set. It
whether par­

All other
errors.

expands to the number of elements in the variable name, as
in the following example:

% set argv=(a b c}
% echo $?argv
1
% echo $#argv
3
% unset argv
% echo $?argv
o
% echo $argv
Undefined variable: argv
%

It is also possible to access the components of a variable
that has several values. For example,

$argv[l]

gives the first component of ~ or, in the preceding exam­
ple, A. Similarly,

$argv[$#argv}

gives s;., and

$argv[I-2]

gives .al2.

Other notations useful in csh scripts are

$n

Zilog 26

csa

27

Zilog csa

where n is an integer as a shorthand for $~[n], the nth
parameter, and

$*

is shorthand for $~. The form

$$

expands to the process number of the current shell. Since
this process number is unique in the system, it can be used
in the generation of unique temporary file names.

One minor difference between in and Sargv[nl is that the
form Sargy£n1 yields an error if n is not in the range
l-$#argv, while in never yields an out-of-range subscript
error.

It is never an error to give a subrange of the form n=; if
there are less than n components of the given variable, no
words are substituted. A range of the form m=n likewise
returns an empty vector without giving an error when m .
exceeds the number of elements of the given variable, pro­
vided the subscript n is in range.

3.4 Expressions

To construct csh scripts,' it is necessary to evaluate
expressions in the shell based on the values of variables.
All the arithmetic operations of the language C are avail­
able in csh with the same precedence that they have in C.
The operations == and 1= compare strings, and the operators
&& and I I implement the boolean and/or operations.

Csh also allows file enquiries of the form

=Z filename

where ? is replaced by any of a number of single characters.
For instance, the expression primitive

~ filename

tells whether the file filename exists. Other primitives
test for read, write, and execute access to the file, and
test whether it is a directory, or whether it has nonzero
length.

Zilog 27

,

CSH

28

Zilog CSH

It is possible to test whether a command terminates normally
by using a primitive of the form { command }, which returns
I if the command exits normally with exit status zero, or 0
if the command terminates abnormally or with exit status
nonzero. If more detailed information about the execution
status of a command is required, it can be executed and the
variable $status examined in the next command. Since
$status is set by every command, it is very transient. How­
ever, it can be saved if it is more convenient to use it
more than once.

For a full list of expression components available, see
~(l) in the ~ Reference Manual.

3.5 Sample Csh Script

A sample shell script that uses the expression mechanism of
csh and some of its control structure follows.

Zilog 28

eSB

29

cat copyc
i

Zilog eSB

eopyc copies those e programs in the specified list
to the directory -/backup if they differ from the files
already in -/backup

set noglob
foreach i ($argv)

end

if ($i:r.c != $i) continue
not a .c file so do nothing

if (1 -r -/backup/$i:t) then
echo $i:t not in backup ••• not cp\'ed
continue

endif

cmp -s $i -/backup/$i:t
to set $status

if ($status 1= 0) then
echo new backup of $i
cp $i -/backup/$i:t

endif

This script uses the foreach command, which causes csh to
execute the commands between the foreach and the matching
~ for each of the values given between (and)1 the named
variable (in this case, i) is set to successive values in
the list). Within this loop, it is possible to use the com­
mand break to stop execution of the loop, and continue to
prematurely terminate one iteration and begin the next.
After the foreach loop, the iteration variable retains the
value at the last iteration.

The variable noglob is set to prevent file name expansion of
the members of~. This is advisable if the arguments to
a shell script are file names that have already been
expanded or if the arguments can contain file name expansion
metacharacters. It is also possible to quote each use of a
$ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the
form

if (expression) then
command . . .

endif

The placement of the keywords here is not flexible due to

Zilog 29

CSH

30

Zilog

the current implementation of csh.

Another form of the if statement

if (expression) command

can be written as follows:

if (expression) \
command

CSH

Here the new line has been escaped for the sake of appear­
ance, and the \ must immediately precede the end-of-line.
The command must not involve I, &, or ; and must not be
another control command.

The more general if statements in the previous examples can
also be used with a sequence of else-if pairs followed by a
single ~ and an endif, as in the following:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Another important mechanism used in csb scripts is colon (:)
modifiers. The modifier :r can be used to extract a root of
a file name. If the variable i has the value foo.bar, the
following example

% echo $i $i:r
foo.bar foo
%

shows how the :r modifier strips off the trailing ~.
Other modifiers take off the last component of a path name,
leaving the head (:h) or all but the last component of a
path name leaving the tail (:t). These modifiers are fully
described in ~(L) of the Z£US Reference Manual. It is
also possible to use the command substitution mechanism
described in Section 5 to perform modifications on strings
and then reenter the csh environment. Since each usage of
this mechanism involves the creation of a new process, it is
more expensive to use than the : modification mechanism.

It is also important to be aware that the current implemen­
tation of csh limits the number of : modifiers on a $

Zilog 30

CSB

31

substitution to 1. Thu~,

% echo $i $i:h:t
/a/b/c /a/b:t
%

Zilog

does not do what one would expect.

3.6 Other Control Structures

CSB

Csh has control structures while and switch, similar to
those of C. These take the forms

and

while (expression
commands

end

switch (word
case strl:

commands
breaksw ...

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details, see ~(lJ. C programmers should
breaksw is used to exit from a switch, while
While or foreach loop. A common mistake to
scripts is to use break rather than breaksw in

be aware that
break exits a
make in csh
switches.

Finally, csh allows a SQtQ statement with labels similar to
those in C. For example:

loop:
commands
goto loop

Zilog 31

CSH

(

32

Zilog CSH

3.7 Supplying Input to Commands

Commands run from csh scripts receive, by default, the stan­
dard input of the shell that is running the script. This
allows csh scripts to make full use of pipelines, but
requires extra notation for commands that are to take inline
data.

Thus, a metanotation for supplying inline data to commands
in csh scripts is needed. Por example, the following script
runs the editor to delete leading blanks from the lines in
each argument file.

% cat deblank
deblank -- remove leading blanks
foreach i ($argv)
ed - $i « IEOP I
l,$s/i[]*//
w
q
IEOP I
end
%

The notation « IEOP' means that the standard input for the
~ command is to come from the text in the csh script file,
up to the next line consisting of IEOP'. The fact that the
EOP is enclosed in single quote (I) characters prevents csh
from performing variable sUbstitution on the intervening
lines. In general, if any part of the word following the «
(which the csh uses to terminate the text to be given to the
command) is quoted, these substitutions are performed. In
this case, since the form 1,$ was used in the editor script,
it is necessary to ensure that this $ is not variable sub­
stituted. It is also possible to ensure this by preceding
the $ with a \. Por example:

l,\$s/T[]*//

However, quoting the EOP terminator is a more reliable way
of achieving the same thing.

3.8 Catching Interrupts

If the csh script creates temporary files, it is helpful to
catch interruptions of the csh script so that these files
can be cleaned up. This can be done with

onintr label

Zilog 32

eSB

33

Zilog eSB

where label is a label in the program. If
received, the shell does a ~ label.
remove the temporary files and then do an
exit from the csh script. To exit with
enter

an interrupt is
It is possible to
~ command to
a nonzero status,

exit(l)

This exits with status 1.

3.9 Other Functions

There are other features of csh useful to writers
procedures. The verbQse and expand variables

. related =x and =x command line options can be used
trace the actions of csh. The =n option causes csh
to be read, but not executed.

of csh
and the
to help
commands

It is important to note that csh only executes scripts that
begin with the character # (that is, shell scripts that
begin with a comment). Similarly, the /bin/sh on the system
defers to csh to interpret shell scripts that begin with #.
This allows scripts for both shells to coexist without com­
plications.

Another "quotation mechanism uses double quot~s (U), allowing
only some of the expansion mechanisms discussed so far to
occur on the quoted string, making the string into a single
word as • does.

3.10 Make

Do not attempt to use shell scripts to perform taks that can
be handled by ~ (see ~ manual). The ~ program
maintains a group of related files or performs sets of
operations on related files. For instance, a large program
consisting of one or more files can have its dependencies
described in a makefile, which contains definitions of the
commands used to create these different files when changes
occur. Definitions of the means for printing listings,
cleaning up the directory in which the files reside, and
installing the resultant programs are easily placed in this
makefile. Using this format is preferable to maintaining a
group of shell procedures to maintain these files.

A makefile can be used for applications other than programs.
For example, a makefile can be created to define how dif­
ferent versions of a document are to be created and which
options of oroff or troff are appropriate.

Zilog 33

CSH

34

Zilog CSH

SECTION 4

MISCELLANEOUS SHELL MECHANISMS

4.1 Loops at the Terminal

The foreach control structure can be used at the terminal
to aid in performing a number of similar commands. For
instance, suppose there were three shells in use on ZEUS,
/bin/sh, /bin/nsh, and /bin/csh. To count the number of
people using each shell, issue the commands

% grep -c nsh$ /etc/passwd
27
% grep -c csh$ /etc/passwd
34
% grep -c -v sh$ /etc/passwd
6
%

A simple method of requesting this information is:

% for each i ('nsh$' 'csh$' '-v sh$')
. ? grep. -c $i /etc/passwd

? end
27
34
6
%

The shell prompts for input with ? when reading the body of
the loop.

Variables that contain lists of file names or other words
are useful with loops. For example,

% set a= ('Is')
% echo $a
esh.n esh.rm
% Is
esh.n
csh.rm
% echo $#a
2
%

Zilog 34

eSB

35

Zilog eSB

The ~ command gives, as the variable ~, a list of all the
file names in the current directory as value. It is then
possible to iterate these names to perform any chosen func­
tion.

The output of a command within single back quote (') charac­
ters is converted by csh to a list of words. The quoted
string can also be placed within double quote (n) characters
to take each nonempty line as a component of the variable,
preventing the lines from being split into words at blanks
and tabs. The mod~fier :x can be used later to expand each
component of the variable into another variable, splitting
it into separate words at embedded blanks and tabs.

4.2 Braces in Argument Expansion

Another form of file name expansion involves braces ({ and
}), which specify that the contained strings, separated by
a comma (,), are to be consecutively substituted into the
containing characters, and the results are to be expanded
left to right. For example,

A{strl,str2, ••• strn}B

expands to

AstrlB Astr2B ••• AstrnB

This expansion occurs before the other file name expansions,
and can be nested. The results of each expanded string are
sorted separately, left to right. The resulting file names
are not required to exist if no other expansion mechanisms
are used. This means that this mechanism can be used to
generate arguments that are not file names, but that have
common parts.

For example,

mkdir -/{hdrs,retrofit,csh}

can be used to make subdirectories~, retrofit, and
in the user's home directory. This mechanism is useful
the common prefix is longer than in the above example,
as in the following example:

~
when
such

chown bin /usr/{bin/{ex,edit},lib/{exl.lstrings,how_ex}}

Zilog 35

CSH

36

Zilog CSH

4.3 Command Substitution

A command enclosed in single back quote characters is
replaced, just before file names are expanded, by the output
from that command. Thus, it is possible to enter

set pwd='pwd'

to save the current directory in the variable ~, or to
enter

ex 'grep -1 TRACE *.c'

to run the editor ~, suppling as arguments those file names
ending in .c that have the string TRACE in them. (Command
expansion also occurs in input redirected with « and within
double quotations. Refer to ~(l) for more details.)

Zilog 36

CSH

37

Zilog CSH

APPENDIX A

SPECIAL CHARACTERS

The following lists the special characters of csh and the
ZEUS system. A number of these characters also have special
meaning shown in expressions. See ~(~) in the ZEUS Refer­
~ Manual for a complete list of characters.

separates commands in a pipeline: the output of one
command in a pipeline is the input to the succeeding
command

: separates commands.to be executed sequentially

& follows commands to be executed without waiting for
completion

brackets expressions and variable values; any of
the preceding commands can be placed inside brackets
to form a command that in turn can be part of a
larger string

&& indicates a pipeline in which the second command is
executed only if the first" command succeeds

I I indicates a pipeline in which the second command is
executed only if the first command fails

< indicates redirected input

> indicates redirected output

« reads shell input up to string matching the follow­
ing argument

» writes output at end of argument file

"

prevents metameaning of a group of characters

similar to " but allows variable and command expan­
sion

\ prevents special meaning of following single char­
acter

\new
line expands to an embedded new line if within a quoted

string; expands to a blank, otherwise

Zilog 37

eSH

38

Zilog eSH

begins a shell comment

/ separates components of a file's path name

? expansion character matching any single character

* expansion character matching any sequence of charac­
ters

[expansion sequence matching any single character
from a set

used at the beginning of a file name to indicate
home directories

{ } used to specify groups of arguments with common
parts

$ indicates variable SUbstitution

i
,

indicates history SUbstitution

precedes substitution modifiers

used in special forms of history SUbstitution

indicates command SUbstitution

prefixes option (flag) arguments to commands

Zilog . 38

CSB

39

Zilog CSB

APPENDIX B

GLOSSARY

The most important terms introduced in this document are
listed in this Appendix. References of the form (2.5) indi­
cate that more information can be found in Section 2.5 of
this document. References of the form ~(~) indicate that
the command ~ is in Section 1 of the Z£US Reference Manual.
To get an on-line copy of the manual page, ent~r

man 1 pr

•

..

alias

argument

The user1s current directory has the name •
as well as the name printed by the command
~. The current directory (.) is usually
the first component of the search path con­
tained in the variable~. Thus, commands
that are in • are found first (2.2). The
period character is also used to separate
components of file names (1.6). The charac­
ter • at the beginning of a component of a
path name is treated specially and is not
matched by the file name expansion metachar­
acters 1, *, and [] pairs (1.6).'

Each directory has a file •• in it, which is
a reference to its parent directory. After
changing directories with chdir, for example,

chdir paper

it is possible to return to the parent direc­
tory by entering

chdir ••

The current directory is printed by ~
(2.6) •

An alias specifies a shorter or different
name for a ZEUS command, or a transformation
on a command to be performed in the shell.
The shell command alias establishes aliases
and can print their current values. The com­
mand unalias is used to remove aliases (2.6).

Commands in ZEUS receive a list of argument
words. Thus, the command

Zilog 39

CSH

argv

background

bin

break

builtin

case

cat

cd

40

Zilog CSH

echo abc

consists of a command name ~ and three
argument words a, b, and c (1.1).

The list of arguments to a command written in
a shell script or shell procedure is stored
in a variable called ~ within the shell.
This name is taken from the conventional name
in the C programming language (3.4).

A background command is a command that runs
while the shell executes other commands.
(2.5) •

A directory containing binaries of programs
and shell scripts to be executed is typically
called a ~ directory. The standard system
~ directories are /bin, which contains the
most heavily used commands, and /usr/bin,
which contains most of the other user pro­
grams. Binaries can be placed in any direc­
tory. The name of the directories should be
a component of the variable ~ if the
binaries are to be executed often.

Break is a built-in command used to exit from
loops within the control structure of the
shell (3.6).

A command executed directly by the shell is
called a builtin command. Most commands in
ZEUS are not built into the shell, but exist
as files in bin directories. These commands
are accessible because the directories in
which they reside are named in the ~ vari­
able.

A ~ command is used as a label in a switch
statement in the shell's control structure,
similar to that of the language C ~(~)
(3.7).

The ~ program catenates a list of specified
files on the standard output. It is usually
used to look at the contents of a single file
on the terminal (1.7, 2.3).

The ~ command changes the working directory.
With no arguments, £d changes the user's
working directory to be the user's ~

Zilog 40

CSH

41

chdir

chsh

cmp

command

Zilog CSH

directory (2.3, 2.6).

The chdir command is a synonym for &d, which
is usually used because it is easier to type.

The ~ command is used to change the shell
that is used on ZEUS. By default, the user
uses csh, which resides in Ibin/csh.

~ is a program that compares files. It is
usually used on binary files, or to see if
two files are identical (3.5). For comparing­
text files, use the program Qiff, described
in sllf.f.(l) •

A function performed by the system, either by
the shell or by a program residing in a file
in the ZEUS system, is called a command
(2.1).

command substitution

component

continue

core dump

The replacement of a command enclosed in sin­
gle back quote (') characters by the text
output by that command is referred to as ~
msnd substitution (3.7, 4.2).

A part of a ~ ~ between slash (I) char­
acters is called a component of that path
name. A variable that has multiple strings
as its value is said to have several ~
ponents; each string is a component of the
variable.

A built-in command that causes execution of
the enclosing foreach or while loop to cycle
prematurely. Similar to the continue command
in the C programming language (3.5).

When a program terminates abnormally, the
system places an image of its current state
in a file named~. The ~ ~ can be
examined with the system debuggers adb(l) and
zdb(l) to determine what went wrong with the
program (1.7). If, for a system program, the
shell produces a message of the form:

commandname: Segmentation violation--Core dumped

(where "Segmentation violation" is only one
of several possible messages), report this
with the ~ command ~(l) •

Zilog 41

'-

CSH

.cshrc

date

debugging

default

DELETE

detached

diagnostic

directory

echo

else

EOP

42

Z ilog CSH

The copy (&R) program copies the contents of
one file into another file (1.6, 2.6).

The file .cshrc in the hQm& directory is read
by each shell as it begins execution. It is
usually used to change the setting of the
variable ~ and to set alias parameters
that are to take effect globally (2.1).

The ~ command prints the current date
time (1.3).

Debugging is the process of correcting
takes in programs and shell scripts.
shell has several options and variables
can be used to aid in shell debugging.

and

mis­
The

that

The label _default: is used within shell
switch statements to label the code to be
executed if none of the ~ labels matches
the value switched (3.6, 3.8).

The DELETE or RUBOUT key on the terminal is
used to generate a ZEUS interrupt signal that
stops the execution of most programs (2.6).

A command that runs while the shell is exe­
cuting other commands is referred to as
detached (2.5).

An error message produced by a program is
often referred to as a diagnostic. Most
error messages are not written to the stan­
dard output, since that is often directed
away from the terminal (1.3, 1.5). Instead,
error messsages are written to the diagnostic
output, which usually appears on the terminal
(2.5) •

A structure that contains files is called a
directory. The directory in which the user
first logs in is the hQm& directory (1.6).

The ~ command prints arguments to the com­
mand in ef f ect (1.6, 3.5, 3.9).

The ~ command is part of the "if-then­
else-endif" control command construct (3.5).

An end-of-file is generated whenever a com­
mand reads to the end of a file that it has
been given as input. It can also be

Zilog 42

CSH

escape

/etc/passwd

exit

exit status

expansion

43

Zilog CSH

generated at the terminal with a control-d.
Commands receiving input from a ~ receive
an EOF when the command sending them input
completes. Most commands terminate when they
receive an EOF. The shell has an option to
ignore EOF from a terminal input, which makes
it possible to avoid logging out accidentally
by typing too many control-d's (1.1, 1.8,
3.7) •

A backward. slash (\) character used to
prevent the special meaning of a metacharac­
ter is said to escape the character from its
special meaning. Thus,

echo *

echoes the character *, while

echo *
echoes the names of the file in
directory. In this example,
(1.5).

the current
\ escapes *

This file contains information about the
accounts currently on the system. It con­
sists of a line for each account with fields
separated by : characters (2.3). This file
can be examined by entering

cat /etc/passwd

The command ~ is often used to search for
information in the file. See passwd{~) and
~(~) for more details.

The ~ command, which is built into the
shell, is used to force termination of a
shell script (3.8).

A command that uncovers a problem can reflect
this problem back to the command that invoked
it by returning a nonzero number as its ~
status (a status of zero being considered
normal termination). The ~ command can be
used to force a shell command script to give
a nonzero ~ status (3.4).

Replacing shell input strings that contain
metacharacters with other strings is referred
to as the process of expansion. For example,

Zilog 43

CSH

44

expressions

extension

file name

Zilog CSH

replacing the word * with a sorted list of
files in the current directory is a file name
expansion. Replacing the characters 11 with
the text of the last command is a history
expansion. Expansions are also referred to
as substitutions (1.6, 3.3, 4.2).

Expressions are used in csh to control the
conditional structures used in writing shell
scripts and in calculating values for these
scripts. The operators available in csh
expressions are those of the C language
(3.4) •

File names often consist of a LQQt name and
an extension, separated by the period charac­
ter (.). By convention, groups of related
files often share the same root name. Exten­
sions are added to differentiate among files
within the group. Thus, if prog.c is a C
program, the obj ect 'file for this program
would be stored in prog.o. Similarly, a
paper written with the -ms nroff macro pack­
age might be stored in paper.ms, while a for­
matted version of this paper might be kept in
paper.out and a list of spelling errors in
paper. er r s (1.6).

Each file in ZEUS has a name consisting of up
to 14 characters, not including the slash
character (I), which is used in path name
building. Most file names do not begin with
the period character. They contain only
letters and digits, with perhaps a period
separating the root portion of the file name
from an extension (1.6).

file name expansion

flag

File name expansion uses the metacharacters
*, ?, and [and] to provide a convenient
mechanism for naming files. Using file name
expansion makes it easy to name all the files
in the current directory, or all files that
have a common root name. Other file name
expansion mechanisms use the metacharacter
and allow files in other users ' directories
to be named easily (1.6, 4.2).

Many ZEUS commands accept arguments that are
not the names of files or other users, but
are used to modify the action of the com­
mands. These are referred to as ~ options

Zilog 44

eSB

foreach

getty

goto

grep

hangup

head

history

45

and, by
letters
(1.2) •
has an
This is

Zilog eSB

convention, consist of one or more
preceded by the hyphen (-) character

For example, the ~ list file command
option ~ to list the sizes of files.
specified

Is -s

The foreach command is used in csh scripts
and at the terminal to specify repetition of
a sequence of commands while the value of a
given csh variable falls within a specified
range (3.5, 4.1).

The getty program determines the speed at
which the terminal is to run when the user
first logs in. It displays the initial sys­
tem banner and login.

The csh command gQtQ is used in csh scripts
to transfer control to a given label (3.6).

The ~ command searches through a list of
argument files for a specified string. For
example,

grep bill /etc/passwd

prints each line in the file /~passwd that
contains the string hill. Actually, ~
scans for regular expressions in the sense of
the editors ~(~) and ~(~). ~ stands for
"globally find regular expression and print."

When a user hangs up a phone line, a hang up
signal is sent to all running processes on
the user's terminal, causing them to ter­
minate execution prematurely. To allow com­
mands to continue running after logging off a
dialup, use the command nohup (2.5).

The ~ command prints the first few lines
of one or more files. Run the ~ program

,with a group of file names as arguments to
get a general idea of the contents of the
files (1.5, 2.3).

The history mechanism of csh allows previous
commands to be repeated. esh has a history
liat where these commands are kept, and a
history variable that controls how large this
list is (1.7, 2.5).

Zilog 45

CSH

46

Zilog CSH

home directory Each user ·has a home directory, that is given
in the password file /~passwd. The user
is placed in the home directory when first
logging in. The ~ or chdir command with no
arguments returns the user to this directory.
The name of this directory is recorded in the
shell variable ~.

if The i! command is a conditional command used
in csh command scripts to determine what
course of action to take next (3.5).

ignoreeof Normally, the user's shell exits, printing
logout if the user types a control-d at a %
prompt. This is the usual way to log off the
system. The user can ~ the ignoreeof vari­
able in the .login file, and then use the
command logout to log out. This is useful to
avoid accidentally logging off by typing too
many control-d characters. (2.2, 2.6).

input Information taken from the terminal or from
files is called input. Commands normally
read input from their standard input which
is, by default, the terminal. The metachar­
acter followed by a file name can be used to
cause input to be read from a file. Many
commands also read from a file specified as
an argument. Commands placed in pipelines
are read from the output of the previous com­
mand in the pipeline. The leftmost command
in a pipeline reads from the terminal if its
input is not redirected and if a file name is
not given to use as standard input. Special
mechanisms exist for supplying input to com­
mands in csh scripts (1.1, 1.5, 3.7).

interrupt An interrupt is a signal that causes most
programs to stop execution. It is generated
by pressing the RUB or DEL key. Certain pro­
grams such as csh and the editors handle an
interrupt in special ways, usually by stop­
ping what they are doing and prompting for
another command. While csh is executing
another command and waiting for it to finish,
csh does not respond to interrupts. (1.7,
2.6,3.8).

kill

.login

The kill program terminates processes that
are run with the & option (2.6).

The file .login in the user's ~ directory

Zilog 46

CSH

47

logout

.logout

Ipr

Is

mail

make

makefile

Zilog CSH

is read by csh each time the user logs in to
ZEUS; the commands there are executed (2.1).

The logout command causes a login shell to
exit. Normally, a login shell exits when
control-d is pressed, generating an EOF. If
ignoreeof has been set in the .login file,
control-d does not work, and it is necessary
to use the command logout to log off the ZEUS
system (2.2).

When a user logs off of ZEUS, the shell
prints logout and executes commands from the
file .logout in the user's hQme directory.

The command ~ is the line printer command.
The standard input of ~ is spooled and
printed on the ZEUS line printer. It is pos­
sible to give ~ a list of file names as
arguments to be printed. It is common to use
~ as the last component of a pipeline
(2.3) •

The list
commonly
ment file
files in
number of
be given
ments, in
the files

file (~) command is one of the most
used ZEUS commands. With no argu­
names, it displays the names of the­
the current directory. It has a

useful flag arguments. It can also
the names of directories as argu­

which case it lists the names of
in these directories (1.2).

The mail program is used to send and receive
messages from other ZEUS users (1.1, 2.2).

The ~ command is used to maintain one or
more related files and to organize functions
to be performed on these files. Its primary
use is maintaining a single program consist­
ing of several source files. In many ways,
~ is easier to use, and more helpful, than
shell 'command scripts (3.10).

The file containing the commands for ~ is
called makef11e (3.18).

metacharacter Many characters that are neither letters nor
digits have special meaning, either to the
shell or to ZEUS. These characters are
called metacharacters. It is necessary to
enclose these characters in quotes if they
are used in arguments to commands and no

Zilog 47

CSH

mkdir

modifier

noclobber

nohup

nroff

onintr

output

48

Zilog CSH

special meaning is required. An example of a
metacharacter is the character >, which is
used to indicate placement of output into a
file. For the purposes of the history
mechanism, most unquoted metacharacters form
separate words (1.4). Appendix A of this
document lists the metacharacters.

The mkdir command is used to create a new
directory (2.6).

A modifier is a part of a command line that
changes the way the original command is
interpreted. Substitutions, with the history
mechanism (keyed by the character I), or of
variables using the metacharacter $, are
often subjected to modifications, which are
indicated by placing the character after
the substitution and following this with the
modifier itself (3.5).

The csh variable noclobber can be set in the
file .login to prevent accidental destruction
of files by the > output redirection metasyn­
tax of the shell (2.2, 2.5).

The shell nohup command is used to run back­
ground commands to completion even if the
user logs off before these commands complete
(2.5) •

The standard text formatter on ZEUS is the
program nroff. Using nroff and one of the
available macro packages for it, it is possi­
ble to have documents automatically formatted
and to prepare them for phototypesetting
using the typesetter program troff (3.10).

The onintr command is built into chs and is
used to control the action of a shell command
script when an interrupt signal is received
(3.8) •

Many commands in ZEUS produce data that is
called output. This output is usually placed
on what is known as the standard output,
which is normally connected to the user's
terminal. The shell has a syntax using the
metacharacter > for redirecting the standard
output of a command to a file (1.3). Using
the ~ mechanism and the metacharacter I,
it is also possible for the standard output

Zilog 48

CSH

path

path name

49

Zilog CSH

•
of one command to become the standard input
of another 'command (1.5). Some commands do
not direct their output to the standard out­
put. The line printer command (~), for
example, diverts its output to the line
printer (2.3). The write command places its
output on another user's terminal (2.3).
Commands also have a diagnostic output where
they write their error messages. Normally,
these go to the terminal even if the standard
output has been sent to a file or another
command. However, it is possible to direct
error diagnostics along with standard output
using a special metanotation (2.5).

The csh variable aath gives the names of the
directories in which it searches for the com­
mands it is given. It always checks first to
see if the named command is built into the
shell. If it is, it does not need to search
for the command, as it can perform it inter­
nally. If the command is not built in, csh
searches for a file with the name given in
each of the directories in the ~ variable,
left to right. Since the normal definition
of the ~ variable is

path (. /bin /usr/bin)

Csh normally looks in the current directory,
and then in the standard system directories,
/bin and /usr/bin, for the named command
(2.2) • If the command cannot be found, csh
prints an error diagnostic. Scripts of C
shell commands are executed using another
shell to interpret them if they have execute
bits set. This is normally true because a
command of the form

chmod 755 script

is executed to turn on these execute bits
(3.2) •

A list of names, separated'by slash (/) char­
acters forms a ~ ~. Each component
between successive / characters names a
directory in which the next component file
resides. Path names that begin with the
character / are interpreted relative to the
~ directory in the file system. Other
path names are interpreted relative to the

Zilog 49

CSH

pipeline

pr

printenv

process

program

prompt

ps

50

Zilog CSH

current directory as reported by~. The
last component of a path name can name a
directory; however, it usually names a file.

A group of commands that are connected
together with the standard output of each
connected to the standard input of the next
is called a pipeline. The ~ mechanism
used to connect these commands is indicated
by the vertical bar (I)metacharacter (1.S,
2.3) •

The ~ command prepares listings of the con­
tents of files with headers that give the
name of the file and the date and time at
which the file was last modified (2.3).

The printeny command is used on ZEUS systems
to print the current setting of variables in
the environment.

An instance of a running program is called a
process (2.6). The numbers used by kill and
printed by ~ are unique numbers generated
for these processes by ZEUS. They are useful
in kill commands, which can be used to stop
background processes (2.6).

A program (usually synonymous with command)
is a binary file or csh command script that
performs a useful function.

Many programs print a prompt on the terminal
when they expect input. For example, the
editor ~(~) prints a colon (:) when it
expects input. The shell prompts for input
with a percent sign (%), and occasionally
with a question mark (?), when reading com­
mands from the terminal (1.1). The csh vari­
able prompt can be set to a different value
to change the shell's main prompt. This is
primarily used when debugging the shell
(2.6) •

The Ra command shows the processes a user is
currently running. Each process is shown
with its unique process number, an indication
of the terminal name it is attached to, and
the amount of CPU time it has used so far.
The command is identified by printing some of
the words used when it was invoked (2.3,
2.6). Login shells {such as the csh obtained

Zilog 50

CSH

pwd

quit

quotation

redirection

repeat

RUB

script

set

setenv

shell

51

Zilog CSH

when logging in) are shown as -.

The ~ command prints the full path name of
the current working directory.

The £Yit signal, generated by a control-\,
terminates programs that are behaving abnor­
mally. It normally produces a ~ image
file (1.7).

The process that prevents metacharacters from
being interpreted with special meaning, usu­
ally by using the single quote (') character
in pairs or by using the backslash (\) char­
acter, is referred to as Quotation (1.4).

The routing of input or output from or to a
file is known as redirection of input or out­
put (1.3).

The repeat command iterates another command a
specified number of times (2.6).

The RUB or DEL key generates an interrupt
signal that is used to stop programs or to
cause them to return and prompt for more
input (2.6).

Sequences of csh commands placed in a file
are called shell command scripts. It is
often possible to perform simple tasks using
these scripts without writing a program by
using the shell to selectively run other pro­
grams (3.2).

The built-in ~ command assigns new values
to shell variables and displays the values of
the current variables. Many csh variables
have special meaning to csh itself (2.1).

On ZEUS systems, variables in the environment
enyiron(~) can be changed by using the setenv
built-in command (2.6). The printeny command
can be used to print the value of the vari-
ables in the environment. .

A shell is a command language interpreter.
It is possible for users to write and run
their own shells, as shells are no different
from any other programs in terms of system
response. This document deals with the
details of one particutar shell, called .c.ah.

Zilog 51

CSH

shell script

sort

source

52

Zilog CSH

See script (3.2).

The ~ program sorts a sequence of lines in
ways that can be controlled by argument flags
(1.5).

The source c~mmand causes csh to read com­
mands from a specified file. It is useful
for reading files such as .cshrc after chang­
ing them (2.6).

Zilog 52

csa

53

Zilog csa

special character

standard

status

substitution

switch

termination

then

time

troff

unalias

See metacharacters and Appendix A of this
document.

The standard input and standard output of
commands are often referred to. See input
and output (1.3, 3.7).

A command normally returns a status when it
finishes. By convention, a status of zero
indicates that the command succeeded. Com­
mands can return nonzero status to indicate
that some abnormal event has occurred. The
csh variable status is set to the status
returned by the last command. It is most
useful in shell commmand scripts (3.4, 3.5).

Csh implements several substitutions where
sequences indicated by metacharacters are
replaced by other sequences. Examples of
this are history substitution keyed by the
metacharacter 1, and variable substitution
indicated by $. Substitutions are also
referred to as expansions (3.3).

The switch command of csh allows the shell to
select one of a number of sequences of com­
mands based on an argument string. It is
similar to the switch statement in the C
language (3.6).

When a command being executed finishes, it is
said to terminate. Commands normally ter­
minate when they read an EOF from their stan­
dard input. It is also possible to terminate
commands by sending them an interrupt or quit
signal (1.7). The kill program terminates
commands specified by their process numbers
(2.6) •

The ~ command is part of csh's if-then­
else-endif control construct used in command
scripts (3.5)

The ~ command measures the amount of CPU
and real time consumed by a specified command
(2.1, 2.6).

The troff program is 'used to typeset docu­
ments. See also nrQff (3.10).

The unalias command removes aliases (2.6).

Zilog 53

CSH

54

unset

Z ilog CSH

The unset command removes the definitions of
csh variables (2.2, 2.6).

variable expansion
See variables and expansion (2.2, 3.3).

variables

verbose

wait

where

while

Variables in csh hold one -or more strings as
value. The most common use of variables is
in controlling the behavior of the shell.
See ~, noclobber, and ignoreeof for exam­
ples. Variables such as ~ are also used
in writing csh command scripts (2.2).

The verbose csh variable causes commands to
be echoed after they are history expanded.
This is often useful in debugging csh
scripts. The verbose variable is set by the
shell1s command line option (3.9).

The built-in command ~ causes csh to
pause, and not prompt, until all commands run
in the background have terminated (2.6).

The where command shows where the users named
as arguments are logged in to the system
(2.3) •

The while built-in control construct is used
in csh command scripts (3.6).

word A group of characters that forms an argument
to a command is called a~. Many charac­
ters that are neither letters, digits, -, .,
or / form words by themselves, even if they
are not surrounded by blanks. Any sequence
of characters can be made into a word by sur­
rounding it with single quote (I) characters,
except for the single quote character itself
and 1, which require special treatment (1.1,
1.5) •

working directory

write

Any directory a user is currently working in
is called a working directory. This direc­
tory name is printed by the ~ command, and
the files listed by ~ are the ones in this
directory. The user can change working
directories using the chdir or ~ command.

The writer command
with other users
(2.3) •

Zilog

is used to communicate
who are logged in to ZEUS

54

i

I.
I

eSH

ZEUS

55

Zilog eSH

~ is the operating system on which csh
runs. ZEUS provides facilities that allow
csh to invoke other programs, such as editors
and text formatters.

Zilog 55

(,

ED

f

1

Zilog ED

THE ZEUS LINE-ORIENTED TEXT EDITOR, ~*

* This information is based on articles originally written
by Brian W. Kernighan, Bell Laboratories.

Zilog 1

ED

2

Zilog ED

PREFACE

Although most text manipulation on the ZEUS Operating System
is done with the screen-oriented editor, 21, some special
circumstances warrent the use of the line editor,~. This
document is a tutorial guide to help beginners get started
with ~ and to introduce experienced users to its more com­
plex options.

Sections 1-12 are oriented mostly for beginners. These sec­
tions cover basic commands or basic uses of more complex
commands. When a subsection of a command is for experienced
users, it is labeled as such. Beginners should be aware
that more information is presented in these subsections than
they need for basic tasks and that concepts are used in
these explanations that have not yet been introduced in the
regular text. Sections 13-23 offer experienced users more
complex commands and describe ways that commands act on each
other. Basic commands are summarized in the Appendix.

The recommended way for both beginners and experienced users
to learn ~ is to read this document, simultaneously using
~ to follow the examples, then to read the description in
Section 1 of the ~ Reference Manual. Experiment with ~.
The only sure way of seeing how a command works is to try
it. The exercises cover material not completely discussed
in the text. A learn(l) script, %learn editor, is also
available for ~.

The end-of-line character varies between
character is the RETURN key on most
referred to in this text as RETURN.

terminals. This
terminals, and is

This document is an introduction and a tutorial. For this
reason, no attempt is made to cover more than a part of the
facilities that ~ offers. Also, there is not enough space
to explain basic ZEUS procedures; read ~ for Beginners to
learn how to log in to ZEUS and what a file is.

Zilog 2

ED

3

Zilog ED

TABLE OF CONTENTS

SECTION 1 GETTING STARTED •••••••••••••••••••••••••••••• 6

SECTION 2 CREATING TEXT •••••••••••••••••••••••••••••••• 7

SECTION 3 WRITING TEXT AS A FILE ••••••••••••••••••••••• 8

SECTION 4 LEAVING THE EDITOR ••••••••••••••••••••••••••• 9

SECTION 5 READING TEXT FROM A FILE WITH "e" ••••••••••• 10

5.1 Basic Uses ••..•.••••.••••.•••....•••...• 10
5.2 Advanced Uses ••••••••••••••••••••••••••• 11

SECTION 6 READING TEXT FROM A FILE WITH "rll •••••••••••• 12

SECTION 7 PRINTING THE CONTENTS OF BUFFER •••••••••••••• 13

7.1
7.2
7.3
7.4

Print Command .•....•.••...•........•.••. 13
Specific Lines ••••••••••••••.••••••••••• 13
Current Line •••••••••••••••••••••••••••• 14
Advanced Commands . 16

SECTION 8 DELETING LINES ••••••••••••••••••••••••••••••• 17

SECTION 9 MODIFYING TEXT ••••••••••••••••••••••••••••••• 19

9.1 Substitute Command •••••••••••••••••••••• 19
9.2 Basic Modification •••••••••••••••••••••• 19
9.3 Advanced Modification ••••••••••••••••••• 21

SECTION 10 CONTEXT SEARCHING •••••••••••••••••••••••••••• 23

SECTION 11 CHANGING AND INSERTING TEXT •••••••••••••••••• 26

SECTION 12 MOVING TEXT •••••••••••••••••••••••••••••••••• 29

Zilog 3

ED

4

Zilog ED

TABLE OF CONTENTS (continued)

SECTION 13 USING SPECIAL CHARACTERS ••••••••••••••••••••• 30

13.1 General ••..•••••.•••••••••••••..•••.•.•• 30
13.2 Period •••••••••••••••••••••••••••••••••• 30
13.3 Backslash .•.•••••••••••••...•••••••••••• 31
13.4 Dollar Sign ••••••••••••••••••••••••••••• 33
13.5 Circumflex ••.•••••..•.......•••.••••.••• 34
13.6 Asterisk •••••••••••••••••••••••••••••••• 34
13.7 Brackets •••••••••••••••••••••••••••••••• 36
13.8 Ampersand ••••••••••••••••••••••••••••••• 37

SECTION 14 USING GLOBAL COMMANDS •••••••••••••••••••••••• 39

14.1
14.2
14.3
14.4

Global S
Global Y..
Advanced
Advanced

... ~ .
Global Commands ••••••••••••••••
Multiline Global Commands ••••••

39
39
39
41

SECTION 15 SUBSTITUTING NEW LINES ••••••••••••••••••••••• 42

SECTION 16 MANIPULATING LINES . 43

16.1 Join Lines •••••••••••••••••••••••••••••• 43
16.2 Rearrange Lines ••••••••••••••••••••••••• 43

SECTION 17 MANIPULATING ADDRESSES . 45

17.1 Line Addressing ••••••••••••••••••••••••• 45
17.2 Address Arithmetic •••••••••••••••••••••• 45

SECTION 18 DOING REPEATED SEARCHES ~ 47

SECTION 19 USING DEFAULT LINE REFERENCES •••••••••••••••• 48

SECTION 20 USING THE SEMICOLON •••••••••••••••••••••••••• 51

SECTION 21 INTERRUPTING THE EDITOR •••••••••••••••••••••• 53

Zi10g 4

ED

f ;

5

Zilog ED

TABLE OF CONTENTS (continued)

SECTION 22 MANIPULATING FILES ••••••••••••••••••••••••••• 54

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9
22.10
22.11
22.12

General 54
Change a File Name ••••••••••••••••••••• 54
Copy a File •••••••••••••••••••••••••••• 54
Remove a File •••••••••••••••••••••••••• 55
Put Two or More Files Together ••••••••• 55
Add Text to the End of a File ••••••••• ~ 55
Insert One File into Another ••••••••••• 56
Write Part of a File ••••••••••••••••••• 56
Move Lines ••••••••••••••••••••••••••••• 57
Mark a Line •••••••••••••••••••••••••••• 58
Copy Lines 58
Temporary Escape ••••••••••••••••••••••• 59

SECTION 23 SUPPORTING TOOLS ••••••••••••••••••••••••••••• 60

23.1 General •••••••••••••••••••••••••••••••• 60
23.2 Grep .••.•....•..••.•........••.••..•••. 60
23.3 Editing Scripts •••••••••••••••••••••••• 61
23.4 Sed 61

APPENDIX A SUMMARY OF COMMANDS AND LINE NUMBERS •••••••• 62

Zilog 5

ED

""." • I

6

Zilog ED

SECTION 1

GETTING STARTED

~ is a line-oriented text editor--an interactive program
for creating and modifying text on a line-by-line basis,
using directions typed at a terminal. The text is often a
document like this one, a program, or data for a program.

In ~ terminology, the text being worked on is said to be
"kept in a buffer." Think of the buffer as a work space, or
as the information to be edited.

Tell ~ what to do to the text by typing instructions called
"commands." Most commands consist of a single letter that
must be typed in lowercase. Type each command on a separate
line. ~ makes no response to most commands, it simply car­
ries them out. Enter a RETURN after every ~ command line.

The prompt character, either a $ or a %, appears after log­
ing into the system. Invoke ~ by typing

ed (followed by a RETURN)

after the prompt. ~ is now waiting for commands.

Zilog 6

ED

7

Zilog ED

SECTION 2

CREATING TEXT

When ~ starts, it is like a blank piece of paper--there is
no text or information present. Text must be supplied by
typing it into ~, or by reading it into ~ from a file.

The first command is append, written as the letter

a

by itself. It means nappend (add) text lines to the buffer,
as they are typed in.n Appending is like writing fresh
material on a piece of paper.

To enter lines of text into the buffer, type an g (followed
by a RETURN), followed by the lines of text, like this:

a
Now is the time
for all good men
to come to the aid of their party.

The only way to stop appending is to type a line that con­
tains only a period. If ~ is not responding, it is prob­
ably because the. was omitted.

After the append command, the buffer contains the three
lines

Now is the time
for all good men
to come to the aid of their party.

The g and • are not there because they are not text.

To add more text, issue another g command and continue typ­
ing.

An error in the commands typed to ~ results in the response

?

This is a cue to look for an error.

Zilog 7

ED

8

Zilog ED

SECTION 3

WRITING TEXT AS A FILE

To save text for later use, write the contents of the buffer
into a file. Use the write command

w

followed by the file name to be written on.
buffer's contents into the specified file
previous information in the file. To save
file named junk, for example, type

w junk

This copies the
and destroys any
the text in a

Leave a space between ~ and the file name. EQ responds by
printing the number of characters it wrote out. In this
case, ~ responds with

68

Blanks and the return character at the end of each line are
included in the character count.

Writing a file makes a copy of the text. The contents of
the buffer are not disturbed, so lines can be added to it.
This is an important point. ~ always works on the buffer
copy of a file, not the file itself. No change in the con­
tents of a file takes place until ~ receives a ~ command.
Writing out the text to a file from time to time as it is
being created is a good idea. If the system crashes, only
the text in the buffer is lost, but any text written in a
file is safe.

Zilog 8

ED

9

Zilog ED

SECTION 4

LEAVING THE EDITOR

To terminate a session with ~, save the text by writing it
into a file, using the ~ command. Then type the command

q

which stands for SY.i..t. The shell responds with the prompt
character $ or %. At this point, the buffer with all its
text is no longer present. To protect the buffer from an
accidental erasure, ~ displays ? if it receives a quit com­
mand that was not preceded by a ~ command. At that point,
either write the file or type another g to get out of ed.

Exercise

Enter ~ and create some text using

a . . . text •••

write it out using ~. Then leave ~ with the g command, and
print the file to see that everything worked. To print a
file, type

pr filename

or

cat filename

in response to the prompt character. Try both.

Zilog 9

ED

10

Zilog

SECTION 5

READING TEXT FROM A FILE WITH "e"

5.1 Basic Uses

The most common way to get text into the buffer is to
it from a file in the file system. This is done to
text saved with the ~ command in a previous session.
~ command ~ fetches the entire contents of a file
the buffer.

If the three lines "Now is the time " have been
with a ~ command, the ~ command

e junk

fetches the entire contents of the file .iYnk into
buffer, and responds

68

ED

read
edit

The
into

saved

the

which is the number of characters in junk. Remember that if
anything was already in the buffer, it is deleted first.

Using the ~ command to read a file into the buffer elim­
inates the need to use a file name after a subsequent w com­
mand; ~ retains the last file name used in an ~ command,
and ~ writes on this file. Thus, a good way to operate is
with the following set of commands:

ed
e file
[editing session]
w
q

Simply enter ~ from time to time; the file name used at the
beginning is updated with ~.

To find out what file name ~ is working on, type the file
command~. In this example, an .

f

prompts ~ to reply

junk

Zilog 10

ED

11

Zilog ED

5.2 Advanced Uses

The command

e newfile

says "edit a new file called newfile without leaving the
editor." The ~ command clears the buffer and reads in
newfile. It is the same as the g command followed by a
reentry of ~ with a new file name, except that if ~
retained a pattern, then a command like II still works.

Entering .esl with the command

ed file

has .esl read ~ into the buffer and hold the name of the
file. Any subsequent~,~, or ~ commands that do not con­
tain a file name refer to this file. Thus, the commands

ed filel
••• (editing) •••

w (writes back in filel)
e file2 (edit new file, without leaving editor)
.•.• (editing on file2) •••

w (writes back on file2)

do a series of edits on various files without leaving .esl; it
is not necessary to type the name of any file more than
once.

To change the name of the hold file, use ~ as follows:

ed precious
f junk

••• (editing)
w

This reads the file precious into the buffer, then changes
the name of the hold file jynK. The ~ command applies the
editing changes to the iYnk file, leaving the precious file
untouched.

Zilog 11

\

ED

12

Zilog ED

SECTION 6

READING TEXT FRoz.l A FILE WITH II r II

To read a file into the buffer without destroying anything
that is already there, use the ~ command~. The command

r junk

reads the file jynk into the buffer by adding it to the end
of whatever is already in the buffer. Doing a read after an
edit,that is, entering

e junk
r junk

puts a duplicate copy of the text after the current copy.
The buffer now contains the following six lines:

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to corne to the aid of their party.

The ~ command displays the number of characters read in
after the reading operation is complete.

Exercise

Experiment with the ~ command. Try reading and printing
various files. ~ may respond with ?name, where name is the
name of a file. This means that the file does not exist,
typically because the file name is spelled wrong, or reading
the file is not allowed. Try alternately reading and
appending to see that they work similarly. Verify that

ed filename

is equivalent to

ed
e filename

Zilog 12

I

I ~

ED

13

Zilog ED

SECTION 7

PRINTING THE CONTENTS OF THE BUFFER

7.1 Print Command

Use the print command

p

to display the entire or partial contents of the buffer at
the terminal.

7.2 Specific Lines

Specify the lines where printing is to begin and end,
separated by a comma, and followed by the letter~. Thus,
to print the first two lines of the buffer (that is, lines 1
through 2) ,-enter

1,2p (starting line=l, ending line=2 p)

EQ responds with

Now is the time
for all good men

To print all the lines in the buffer, ~ provides a short­
hand symbol for "line number of the last line in the
buffer"--the dollar sign ($). Use the command:

l,$p

to print all the lines in the buffer, line 1 to last line.
To stop the printing before it is finished, push the DEL
(delete) key. EQ responds with

?

and waits for the next command.

To print the last line of the buffer, it would be possibl'e
to use

$,$p

However, ~ lets this be abbreviated to

$p

Zilog 13

ED

14

Zilog ED

Any single line can be printed by typing the line number
followed by a~. Thus,

lp

produces the response

Now is the time

which is the first line of the buffer.

It is possible to abbreviate even further by entering the
line number without the letter~. So

$

causes ~ to print the last line of the buffer.

The $ can be used in combinations such as

: $-1, $p

which prints the last two lines of the buffer.

Exercise

Create some text using the .a command and experiment with the
~ command. Verify that line 0 or a line beyond the end of
the buffer cannot be printed and that attempts to print a
buffer in reverse order by typing

3,lp

also fail.

7.3 Current Line

Suppose the buffer contains the six lines as above, that the
command

1,3p

was issued, and that ~ has printed the three lines. Typing

p (no line numbers)

causes ~ to print

to come to the aid of their party.

Zilog 14

ED

15

Zilog ED

which is the third line of the buffer. It is also the last
or most recent line that had actions performed on it. This
l2 command can be repeated without line numbers, and ~ con­
tinues to print line 3.

~ maintains a record of the last line that had actions per­
formed on it so that it can be used instead of an explicit
line number. This most recent line is referred to by the
shorthand symbol dot (.).

Dot is a line number in the same way that $ is. It means
"the current line" or "the line that most recently had
action on it," and can be used in several ways. One possi­
bility is to type

., $p

This prints all the lines from and including the current
line through the end line of the buffer. In this example,
these are lines 3 through 6.

Some commands change the value of dot, and others do not.
The l2 command sets dot to the number of the last line
printed; the last command sets dot to six.

Dot is most useful in combinations such as:

.+1 (or .+lp)

This means "print the next line" and i~ a handy way to step
slowly through a buffer.

The command

.-1 (or .-lp)

means "piint the line before the current line." This allows
the line number to go backwards. Another useful command is

.-3,.-lp

which prints the previous three lines.

Remember that all these commands change the value of dot.
To find out what dot is at any time, type

.-
~ responds by printing the value of dot.

To summarize, l2 can be preceded by zero, one, or two line
numbers. If there is no line number given, ~ prints the

Zilog 15

ED

16

Zilog ED

current line; that is, the line that dot refers to. If
there is one line number given with or without the letter ~,
it prints that line and sets dot there. If there are two
line numbers, it prints all the 'lines in that range and sets
dot to the last line printed. If two line numbers are
specified, the first cannot be bigger than the second (Exer­
cise 2).

Typing a single return prints the next line and is
equivalent to • ±is. Typing a - is equivalent to .=IR.

7.4 Advanced Commands

For the experienced user, the liQt command (~) gives
slightly more information than~. In particular, ~ makes
characters visible that are normally invisible, such as tabs
and backspaces. With~, each tab appears as ~ and each
backspace appears as~. This command makes it much easier
to correct typing mistakes that insert extra spaces adjacent
to tabs, or inser~ a backspace followed by a space.

The ~ command also provides for displaying long lines on
short terminals. Any line that exceeds 72 characters is
displayed on multiple lines, and each folded line, except
the last, is terminated by a backslash.

Occasionally, the 1 command prints a string of numbers pre­
ceded by a backslash, such as \07 or \16. These combina­
tions make visible characters that normally do not print,
such as form feed. Each such combination is a single char­
acter value of the nonprinting character in octal. Delete
these characters unless they produce the desired result on
the specific device used for ~ output.

Zilog 16

;'

ED

17

Zilog ED

SECTION 8

DELETING LINES

Suppose the buffer contains two copies of jynk as in Section
6. To get rid of the three extra lines in the buffer, use
the delete command

d

The lines to be deleted are specified for ~ exactly as they
are for ~:

starting ~, ending ~ d

Thus the command

4,$d

deletes line 4 through the end. There·are now three lines
left, which can be checked by entering

l,$p

The $ now is line 3. Dot is set to the next line after the
last line deleted, unless the last line deleted is the last
line in the buffer. In that case, dot is set to $.

Exercise

Experiment with ~, ~, ~, ~, ~, and ~. Be sure to understand
how dot, $, and line numbers are used.

Next, try using line numbers with ~, ~, and ~ as well. Ver­
ify that:

$ ~ appends lines after the line number specified
rather than after dot

$ ~ reads a file in after the line number specified
and not the end of the buffer

$ ~ writes out exactly the lines specified, not the
whole buffer

These variations are sometimes handy. For instance, a file
can be inserted at the beginning of a buffer by entering

Or filename

Zilog 17

ED

18

Zilog. ED

Lines can be inserted at the beginning of the buffer by
entering

Oa
.t.e..x.:t. •••

Zilog 18

ED

19

Zilog ED

SECTION 9

MODIFYING TEXT

9.1 Substitute Command

One of the most important commands is the substitute command

s

which changes individual words or letters within a line or
group of lines. It is used, for example, for correcting
spelling mistakes and typing errors. This command has the
most complexity of any ~ command and can provide the
greatest use.

9.2 Basic Modification

Suppose that line 1 reads

Now is th time

The ~ has been left off.t.h.e. Use.a. to fix this as follows:

ls/th/the/

This says: "in line 1, substitute for the characters.th the
characters .t.h.e." To verify that it works, type

p

and get

Now is the time

Dot must have been set to the line where the sUbstitution
took place,· since the ~ command printed that line. Dot is
always set this way with the .a. command.

The general way to use the substitute command is

starting-~, ending-~ s/change ~tQ thisl

Whatever string of characters is between the first pair of
slashes is replaced by whatever is between the second pair,
in all the lines between starting-line and ending-line.
Only the first occurrence on each line is changed, however.
To change every occurrence, see Exercise 5. The rules for
line numbers are the same as those for ~, except that dot is

Zilog 19

ED

20

Zilog

set to the last line changed. If
place, however, dot is not changed.
as a warning.

Thus, enter

l,$s/speling/spelling/

ED

no substitution took
This causes ? to appear

to correct the first spelling mistake on each line in the
text.

If no line numbers are given, the ~ command assumes "make
the substitution on line dot," so it makes changes only on
the current line. This leads to the very common sequence

s/something/something else/p

which makes some correction on the current line, and then
prints it.

It is also possible to type

s/something//

to change the first string of characters to nothing, that
is, remove them. This is useful for deleting extra words in
a line or for removing extra letters from words. For
instance, in the line

Nowxx is the time

type

s/xx//p

to get

Now is the time

In ~, two adjacent slashes (//) mean no characters, not a
blank.

Exercise

Experiment with the substitute command. Verify that the
substitute command changes only the first occurrence of the
first string. For example, enter:

Zilog 20

ED

21

Zilog ED

a
the other side of the coin .
s/the/on the/p

to get

on the other side of the coin

To change all occurrences, add a g (for "global") to the ~
command, like this:

s/ ••• / ••• /gp

Try other characters instead of slashes to delimit the two
sets of characters in the ~ command. Any character except
blanks or tabs will work.

The following characters have special meanings:
... $ [] * \ &

Read Section 13 for an explanation of their use.

9.3 Advanced Modificaton

Either form of the ~ command can be followed by ~ or ~ to
print or list the contents of the line. The commands

s/this/that/p
s/this/that/l
s/this/that/gp
s/this/that/gl

are all legal, and mean slightly different things. Also, ~
does not recognize ~ as being equivalent to~. .

Any ~ command can be preceded by one or two line numbers to
specify that the sUbstitution is to take place on a group of
lines. Thus, the command

l,$s/mispell/misspell/

changes the first occurrence of mispell to misspell on every
line of the file, but the command

l,$s/mispell/misspell/g

changes every occurrence in every line.

Zilog 21

ED

22

Zilog . ED

Adding a ~ or ~ to the end of any of these sUbstitute com­
mands prints only the last line that was changed.

The undo command (J.l) "undoes" the last substitution: the
last line that was substituted can be restored to its previ­
ous state by typing the command

- u

Zilog 22

ED

23

Zilog ED

SECTION 10

CONTEXT SEARCHING

Suppose the original three lines of text are in the buffer:

Now is the time
for all good men
to come to the aid of their party.

To find the line that contains their, use context searching.
This specifies a line, regardless of what its number is, by
specifying some of its contents.

Say "search for a line that contains this particular string
of characters" by typing

/string Qf charactersl

For example, the ~ command

/their/

is a context search to find the next occurrence of the char~
acters between slashes (their). It also sets dot to that
line and prints the line for verification:

to corne to the aid of their party.

"Next occurrence" means that ~ starts looking for the
string at line .+1, searches to the end of the buffer, then
continues at line 1 and searches to line dot. That is, the
search nwraps around" from $ to 1. It scans all the lines
in the buffer until it either finds the desired line or gets
back to dot again. If the given string of characters cannot
be found in any line, ~ types the error message

?

To search for the desired line and substitute with one com­
mand, enter

/their/s/their/the/p

which yields

to come to the aid of the party.

There are three parts to that command: context search for
the desired line, make the substitution, and print the line.

Zilog 23

ED

24

Zilog ED

Context searches are interchangeable with line numbers and
can be used by themselves to find and print a desired line,
or as line numbers for some other command, like~. They
were used both ways in the previous examples.

With the buffer lines

Now is the time
for all good men
to corne to the aid of their party.

the ~ line numbers

/Now/+l
/good/
/party/-l

are all context search expressions, and all refer to the
same line (line 2). To make a change in line 2, enter

/NOW/+ls/good/bad/

or

/good/s/good/bad/.

or

/party/-Is/good/bad/

The choice is dictated by convenience. To print all three
lines, enter

/Now/,/party/p

or

/Now/,/Now/+2p

or by any number of similar combinations. The first of
these is better if the number of lines involved is unknown.

~ also provides a shorthand for repeating a context search
for the same string. For example, the ~ line number

/string/

finds the next occurrence of string. If this is not the
desired line, the search must be repeated. This can be done
by typing

(/

Zilog 24

ED

25

Zilog ED

This shorthand stands for the most recently used context
search expression. It can also be used as the first string
of the substitute command, as in

/stringl/s//string2/

which finds the next occurrence of stringl and replaces it
with string2.

Exercise

Experiment with context searching. Try a body of text with
several occurrences of the same string of characters, and
scan through it using the same context search.

Use context searches as line numbers for the substitute,
print, and delete commands. Context searches are used less
frequently with ~, ~, and A, but try them.

Try context searching using ?~? instead of
scans lines in the buffer in reverse order
ning). This is useful when a desired string
is passed while going forward.

/~. This
(end to begin­
of characters

Again, the following characters have special meaning:

[] * \ &

Read Section 13 for an explanation of their use.

Zilog 25

ED

(
26

Zilog ED

SECTION 11

CHANGING AND INSERTING TEXT

This section discusses the change command and the insert
command. Both of these commands operate on a group of one
or more lines.

The change command is written as

c

and replaces a number of lines with different lines that are
typed in at the terminal. For example, to change lines .+1
through $ to something else, type

.+l,$c
••• type the lines of text here

The lines typed between the ~ command and the • take the
place of the original lines between start line and end line.
This is useful for replacing a line or several lines that
have errors in them. It is possible to replace a single
line with several lines.

If only one line is specified in the ~ command, just that
line is replaced. The dot ends the input and works like the
dot in the append command; it must appear by itself on a new
line. If no line number is given, line dot is replaced and
the value of dot is set to the last line typed in.

Insert (~) is similar to append. For instance

/string/i
••• type the lines to be inserted here •••

inserts the given text before the next line that contains
the string. The text between ~ and dot is inserted before
the specified line. If no line number is specified, dot is
used and dot is set to the last line inserted.

Zilog 26

ED

27

Zilog ED

Exercise

The change command is rather like the combination delete
followed by insert. Experiment to verify that

Zilog 27

./

ED

28

start, ~ d
i

text •••

is like

start, ~ c
text •••

Zilog ED

These are not precisely the same if line $ gets deleted.
Check this. What is dot?

Experiment with ~ and ~ to see that they are similar, but
not the same. For instance,

~-number a
• •• text •••

appends after the given line, while

~-number i
• •• text •••

inserts before it. If no line number is given, ~ inserts
before line dot, but ~ appends after line dot.

Zilog 28

,/

i
\

ED

29

Zilog ED

SECTION 12

MOVING TEXT

The ~ command (m) moves a group of lines from one place
to another in the buffer. To put the first three lines of
the buffer at the end, enter:

1,3m$

The general format is

star t .lin.e., .wlli ~ m aft e r .t.l1i.a .line.

where after .t.l1i.a .lin.e. specifies where to put the text.

The lines to be moved can also be specified by context
searches. To reverse the two paragraphs

type:

First paragraph

end of first para9raph.
Second paragraph . . .
end of second paragraph.

/Second/,/end of second/m/First/-l

The -1: moves the text before the line specified.
set to the last line moved.

Zilog

Dot is

29

I
I.
I;

ED

30

Zilog ED

SECTION 13

USING SPECIAL CHARACTERS

13.1 General

The following characters have special meaning to ~ when
used in context searches and in the substitute command:

$ [] * \ &

13.2 Period

On the left side of a substitute command or in a search with
j ••• j, the period (.) stands for any single character.
Thus, the search

jx.yj

finds any line where X and ~ occur and are separated by a
single character, as in

x+y
x-y
x y
x.y

This is useful in conjunction with the repetition character
(*). Thus, ~* is a shorthand for any number of ~I~, and .*
matches any number of any characters. The expression

sj.*jstuffj

changes an entire line and

sj.*,jj

deletes all characters in the line up to and including the
last comma (.* finds the longest possible match).

Since the period matches a single character, there is a way
to deal with previously invisible characters printed by ~.

Suppose there is a line that, when printed with the 1 com­
mand, appears as

th\07 is

Zilog 30

I'
I
"

ED

31

Zilog ED

The character string \07 really represents a single charac­
ter (Section 7.4), so typing

s/th.is/this/

matches the character set between the h and the i, whatever
it is. Since the period matches any single character, the
command

s/./,/

converts the first character on a line into a comma.

The period has several meanings, depending on its context.
The command

.s/././

shows all three.

The first period is the number of the line being edited,
also called line dot. The second period is a special char­
acter that matches any single character on that line. The
third period is the only one that is a literal period. On
the right side of a substitution, a period is not special.
Applying this command to the line

Now is the time.

results with

.ow is the time.

13.3 Backslash

The backslash (\) turns
next character might
from a "match anything"
replace the period in

Now is the time.

off any special meaning that the
have. In particular, \. converts.
into a period, so it can be used to

with a question mark like this:

s/\./?/

The pair of characters \. is interpreted by ~ as a single
period.

The backslash can also search for lines that contain a spe- /
cial character. To look for a line that contains

Zilog 31

ED

32

Zilog ED

• PP

the search

I.ppi

is not adequate, because it finds a line

THE APPLICATION OF

since the. matches the letter A. However, the command

I\.PPI

finds only lines that contain .PP.

The backslash can also turn off special meanings for charac­
ters other than period. For example, to find a line that
contains a backslash, precede one backslash with another as
in

I\V

Similarly, search for a forward slash (I) with

1\11

The backslash turns off the meaning of the immediately fol­
lowing I, so that it does not terminate the 1 ... 1 construc­
tion prematurely.

Any character can be used instead of slash to delimit the
elements of an g command, but slashes must be used for con­
text searching. For instance, in a line that contains many
slashes, such as

Ilexec Ilsys.fort.go II etc •••

a colon can be used as the delimiter.
slashes, type

s:I::g

Exercise

To delete all the

Find two substitute commands to convert the line

\x\.\y

into the line

Zilog 32

ED

33

Zilog

\x\y

Here are several solutions to verify.

s/\\\.11
six •• /xl
s/ •• y/yl

13.4 Dollar Sign

ED

Dollar sign ($) stands for the end of the line. To add the
word tim& to the end of the line

Now is the

use the dollar sign

s/$1 timel

to get

Now is the time

A space must appear before ~ in the substitute command,
or the result is

Now is thetime

To convert the line

Now is the time, for all good men,

into

Now is the time, for all good men.

the command needed is

sl ,$1.1

The $ sign here provides context to make specific which
comma is meant. Without it, the ~ command operates on the
first comma, to produce

Now is the time. for all good men,

As another example, to convert

Now is the time.

into

Zilog 33

ED

34

Zilog ED

Now is the time?

use

s/.$/?/

The dollar sign has multiple meanings depending on context.
In the line

$s/$/$/

the first dollar sign refers to the last line of the file,
the second refers to the end of that line, and the third is
a literal dollar sign to be added to that line.

13.5 Circumflex

The circumflex (~) stands for the beginning of the line. To
look for a line that begins with ~, use

/Athe/

to narrow the context and arrive at the desired word more
easily.

The other use of ~ inserts text at the beginning of a line.
The command

s/~/ /

places a space at the beginning of the current line.

Special characters can be combined. To search for a line
that contains only the characters

.PP

use the command

/~\.PP$/

13.6 Asterisk

A character followed by an asterisk (*) stands for a vari­
able number of consecutive occurrences of that character. A
line can look like this:

~ x

Zilog 34

ED

35

Zilog ED

where text stands for a lot of text and there is an undeter~
mined number of spaces between the x and the y.

To replace all the spaces at once, use

six *y/x y/

Thus X ~ means "an x, as many spaces as there are then a
y. "

The asterisk can be used w.ith any character, not just space.
If the original example were

~ x--------y ~

then all - signs can be replaced by a single space with the
command

s/x-*y/x y/

To change a line entered as

text x ••••••• y text

turn off the special meaning of dot (a match of any single
character) with a backslash, as in

s/x\. *y/x y/

The because \.* means "as many periods as possible."

There are times when the pattern
needed. For example, to change * is exactly what

Now is the time for all good men ••••

into

Now is the time.

use .* to remove everything after the ~ with the command

s/ for.*/./

is

Zero is a legitimate number of possible occurrences. For
example, for a line

~ xy ~ x y ~

the command

six *y/x y/

Zilog 35

ED

36

Zilog ED

was entered. The first ~ matches this pattern, since it
consists of an A, zero spaces, and a~. The result is that
the substitute acts on the first ~, and does not touch the
later one, which actually contains some intervening spaces.

The way around this is to specify a pattern like

/x *y/

which describes an X, a space, then as many more spaces as
possible, that is, one or more spaces, then a ~.

The command to convert an X into ~

s/x*/y/g

when applied to the line

abcdef

produces

yaybycydyeyfy

This is because zero is a legal number of matches. There
are no XiS at the beginning of the line, and no-x gets con­
verted to a::l-. There are no XiS between.a and ,b, so the
non-x (zero characters) is converted into~. This process
continues down the string. To solve the problem, write

s/xx*/y/g

where xx* is one or more XiS.

13.7 Brackets

The brackets ([]) match any element of the character class
within them.

To delete any numbers that appear at the beginning of all
lines of a file, use the construction

[0123456789] *

This matches zero or more digits. Thus, the command

l,$s/A[0123456789]*//

deletes all digits from the beginning of all lines.

Zilog 36

ED

37

Any characters can appear
only special characters
initial position and
backslash does not have a

Zilog

within a character
inside the brackets
between characters;

special meaning.

ED

class. The
are in the

even the

To search for special characters, for example, use

/[.\$"'[]/

Within [•••], the [is not special. To get a] into a char­
acter class, make it the first character.

To abbreviate the digits, use [0-9]. Similarly, [a-z]
stands for the lowercase letters, and [A-Z] for uppercase
letters.

Specify a class that means "none of the following charac­
ters" by beginning the class with a circumflex. For exam­
ple,

["'0-9]

stands for any character except a digit. To find the first
line that does not begin with a tab or space, search with
command

/"'{'" (space) (tab)]/

Within a character class, the '" has a special meaning only
if it occurs at the beginning. As an exercise, verify that

/A[A"']/

finds a line that does not begin with a circumflex.

13.8 Ampersand

The ampersand (&) is used to save typing. Suppose the line

Now is the time

must be changed to

Now is the best time

The command

s/the/the best/

can be used, but it is redundant to repeat the~. The
ampersand eliminates that repetition. On the right side of

Zilog 37

ED

\,

38

Zilog ED

a substitute, the ampersand means "whatever was just
matched," so the command

s/the/& best/

& stands for ~. For example, to parenthesize a line,
regardless of its length, use

s/. */ (&) /

The ampersand can occur more than once on the right side:

s/the/& best and & worst/

makes the original line into

Now is the best and the worst time

and

s/.*/&? &!1/

converts the original line into

Now is the time? Now is the time!!

To get a literal ampersand, use the backslash to turn off
the special meaning. The command

s/ampersand/\&/

converts the word into the symbol. Ampersand has its spe­
cial meaning only on the right side of a substitute command,
not on the left side.

Zilog 38

ED

39

Zilog ED

SECTION 14

USING GLOBAL COMMANDS

14.1 Global g

Global commands operate on the entire buffer instead of an
individual line.

The global command (g) executes one or more ~ commands on
all lines in the buffer that match some specified string.
For example

g/peling/p

prints all lines that contain peling. More usefully,

g/peling/s//pelling/gp

makes the substitution everywhere on the line, then prints
each corrected line. Compare this to

l,$s/peling/pelling/gp

which print~ only the last line substituted. Another
difference 1S that the g command does not give a? if it
does not find peling, but the ~ command does.

Use these examples to see the difference between the
command g and the g following a substitute command.
g's occur at different places in the command line and
different meanings.

14.2 Global 2

global
These

have

The 2 command is the same as g, except that the commands are
executed on every line that does not match the string fol­
lowing 2. For example:

v/ /d

deletes every line that does not contain a blank.

14.3 Advanced Global Commands

The global commands g and ~ perform one or more editing com­
mands on all lines that either contain (with g) or do not
contain (with~) a specified pattern.

Zilog 39

ED

40

Zilog ED

The pattern that goes between the slashes can be anything
used in a line search or in a substitute command 1 the same
rules,and limitations apply.

The command

g/"\./p

prints all the formatting commands in a file because these
lines begin with a dot. (Section 13 describes use of
backslash to escape dot.)

The command that follows g or ~ can be anything. So

g/"\./d

deletes all lines that begin with • and

g/"$/d

deletes all empty lines.

Probably the most useful command that can follow a global is
the substitute command to change and print each affected
line for verification. For example, to change the word ~
to ZEUS everywhere and verify that it worked, enter

g/zeus/s!!ZEU5/gp

The // in the substitute command means "the previous pat­
tern," in this case,~. The ~ command is done on every
line that matches the pattern, not just those on which a
substitution took place.

The global command operates by making two passes over the
file. On the first pass, all lines that match the pattern
are marked. On the second pass, each marked line is exam­
ined, dot is set to that line, and the command executed.
This means that it is possible for the command that follows
a g or 2 to use addresses or set dot. The command

g!"\.PP/+

prints the line that follows each .PP command.
that + means "one line past dot." The command

g/topic/?"\.5H?1

Remember

searches for each line that contains topic, scans backwards
until it finds a line that begins .5H (a section heading)
and prints the line that follows that, thus showing the sec­
tion headings under which topic is mentioned.

Zilog 40

ED

(
41

Zilog ED

Finally,

prints all the lines between lines beginning with .EO and
.EN formatting commands.

The g and ~ commands can also be preceded by line numbers to
search only those in the range specified.

14.4 Advanced Multiline Global Commands

It is possible to do more than
of a global command, although
operation is often cumbersome.
task is to change X to ~ and
tain thing. Then the commands

one command under the control
the syntax for expressing the

As an example, suppose the
A to h on all lines that con-

g/thing/s/x/y/\
s/a/b/

are sufficient. The backslash (\) signals the g
that the set of commands continues on the next line
minates on the first line that does not end with \.
stitute command cannot be used to insert a new line
g command.

command
and ter­

A sub­
within a

To match the last pattern that was actually executed, use:

g/x/s/x/y/\
s/a/b/

To execute A, ~, and i commands under a global command, add
a backslash at the end of each line except the last. Thus,
to add a ~ and ~ command before each .EO line, type

g/A\.EO/i\
.nf\
.sp

There is no need for a final line containing a to ter­
minate the i command unless there are further commands under
the global.

Zilog 41

ED

42

Zilog ED

SECTION 15

SUBSTITUTING NEW LINES

Bd provides a facility for splitting a single line into two
or more shorter lines by substituting a new line. As the
simplest example, suppose a line is unmanageably long. If
it looks like

xy

it can be broken between the x and the y like this:

s/xy/x\
y/

This is actually a single command, although it is typed on
two lines. The \ at the end of a line makes the following
new line there no longer special.

Make a single line into several lines with this same mechan­
ism. The word ~ in a long line can be underlined by
splitting ~ onto a separate line and preceding it with
the roff formatting command ~

~ a very big ~

The command

s/ very /\
.ul\
very\
/

converts the line into four shorter lines, preceding the
word ~ by the line ~ and eliminating the spaces around
the ~.

When a new line is substituted, dot points at the last line
created.

Zilog 42

ED

43

Zilog ED

SECTION 16

MANIPULATING LINES

16.1 Join Lines

Lines can be joined together with the i command. If dot is
set to the first of the lines

Now is
the time

The i command joins them. A blank has been added at the
beginning of the second line because the command itself does
not cause blanks to be added.

By itself, a i command joins line dot to line dot+l. Any
contiguous set of lines can also be joined by specifying the
starting and ending line numbers. For example,

l,$jp

joins all the lines into one line and prints it.

16.2 Rearrange Lines

Lines can be rearranged by tagging the pieces of the pattern
by enclosing them between \(and \) and then rearranging the
pieces. On the left side of a substitution, whatever
matched that part is remembered and available for use on the
right side. On the right side, the symbol \1 refers to
whatever matched the first pair, \2 to the second pair, and
so on.

For example, to convert a file of lines that consist of
names in the form

Smith, A. B.
Jones, c.

to a file in the form

A. B. Smith
C. Jones

use the command

l,$s/~\([~,]*\), *\(.*\)/\2 \1/

Zilog 43

ED

44

Zilog

The first \(••• \) matches the last name (any string
the comma) and is referred to on the right side
The second \(••• \) is whatever follows the comma
spaces, and is referred to as \2.

up
with
and

ED

to
~.
any

When this type of editing is performed, use the global com­
mands g or ~ followed by S to print each substitution as it
is made.

Zilog 44

,

~.,~.,

ED

45

Zilog ED

SECTION 17

MANIPULATING ADDRESSES

17.1 Line Addressing

Line addressing is the method used to specify what lines are
to be affected by editing commands. Constructions like

l,$s/x/y/

start on line 1 and specify a change on all lines.

17.2 Address Arithmetic

Line numbers such as • and $ can be combined with + and - in
a process called address arithmetic. For example,

$-1

is a command to print the next-to-1ast line of the current
file (that is, one line before line $). To see how much was
entered in a previous editi~g session, use

$-5,$p

to print the last six lines.

The command

.-3,.+3p

prints from three lines before the current line to three
lines after. The + can be omitted, so the command

.-3,.3p

is identical in meaning.

The - and + can be used as line numbers by themselves. The
by itself is a command to move up one line in the file.

Several minus signs can be strung together to move back that
many lines. For example,

Zi10g 45

ED

46

Zilog ED

moves up three lines, as does -3. Thus

-3,+3p

is also identical to the previous examples.

Since - is shorter than -1, constructions such as

-,. s/!>ad/goodl

are useful. This changes had to ~ on the previous line
and on the current line.

The + and - can be used in combination with searches using
1 ... 1 and ?.?, and with $. The search

Ithing/--

finds the line containing thing, and positions dot two lines
before it.

Zilog 46

ED

47

Zilog ED

SECTION 18

DOING REPEATED SEARCHES

The construction

II

is a shorthand for "the previous thing that was searched
for," whatever it was. This can be repeated as many times
as necessary. The search can also go backwards. The com­
mand

??

searches for the same thing, but in the reverse direction.

The II can also be used as the left side of a substitute
command to mean the most recent pattern. The command

Ihorrible thingl
sllgoodlp

finds the line containing horrible thing, prints the line,
changes horrible thing to ~, and prints the changed line.

TO go backwards and change a line, enter

??sllgoodl

The & can be used on the right side of a substitute to
stand for the character that was matched. The command

Ilsll& &/p

finds the next occurrence of whatever was searched for last,
replaces it with two copies of itself, then prints the line.

Zilog 47

ED

48

Zilog ED

SECTION 19

USING DEFAULT LINE REFERENCES

One of the most effective ways to speed up editing is always
knowing what lines will be affected by a command and the
value of dot when a command finishes.

If a search command

/thing/

is issued, dot points at the next line that contains thing.
No address is required with commands

~ to make a sUbstitution on that line

~ to print it

1 to list it

~ to delete it

~ to append text after it

~ to change it

~ to insert text before it

If no match occurs, the position of dot is unchanged. This
is also true if dot is at the only thing when the command is
issued. The same rules hold for searches that use ?.?;
the only difference is the direction of the search.

The delete command ~ leaves dot pointing at the line that
followed the last deleted line. If line $ gets deleted,
however, dot points at the new last line.

The line-changing commands ~, ~, and ~ all affect the
current line. If no line number is given with them, a
appends text after the current line, ~ changes the current
line, and ~ inserts text before the current line.

Commands ~, ~, and ~ move dot to the last line entered. For
example, the commands

Zilog 48

ED

49

a

.
· .. · . .

text •••
botch •••

s/botch/correct/
a

••• more text •••

Zilog ED

(minor error)

(fix line)

can be given without specifying any line number for the sub­
stitute command or for the second append command. Alterna­
tively, use

a · .. · ..
c

text •••
horrible botch

fixed line •••

(major error)

(replace entire line)

The ~ command reads a file into the text being edited,
either at the end if no address is given, or after the
specified line if there is an address. In either case, dot
points at the last line read. Remember that ~ reads a file
in at the beginning of the text.

The ~ command writes the entire file. If the command is
preceded by one line number, that line is written. If it is
preceded by two line numbers, that range of lines is writ­
ten. The ~ command does not change dot; the current line
remains the same, regardless of what lines are written.
This is true even if there is a command such as

involving a context search.

The ~ command positions dot on the last line that changed.
If there were no changes, then dot is unchanged.

Wi th the text

xl
x2
x3

the command

-,+s/x/y/p

Zilog 49

ED

50

Zilog

prints the third line, which is the last one changed.
the three lines

xl
y2
y3

ED

With

the same command changes and prints only the first line and
positions dot there.

Zilog 50

ED

I

\

51

Zilog ED

SECTION 20

USING THE SEMICOLON

In ~, the semicolon (;) can be used like comma, except that
a semicolon forces· dot to be set where the line numbers are
being evaluated. In effect, the semicolon moves dot.

Searches with / ••• / and ?.? start at the current line and
move forward or backward until they either find the pattern
or return to the current line. Suppose, for example, that
the buffer contains lines like this:

ab

.
bc

Starting at line 1, the command

/a/,/b/p

would be expected to print all the lines from the ~ to the
~. Instead, both searchs start from the same point and
they both find the line that contains~. The result is to
print a single line. Worse, if there had been a line with a
~ in it before the ~ line, the print command would be in
error, since the second line number would be less than the
first; it is illegal to try to print lines in reverse order.

The comma separator for line numbers does not set dot as
each address is processed. Instead, each search starts from
the same place. Thus, in this example, the command

/a/;/b/p

prints the ra~ge of lines from ~ to~. After the ~ is
found, dot ~s set to that line, then Q is searched for,
starting beyond that line.

To find the second occurrence of thing, enter

/thing/;//

Zilog 51

ED

52

Zilog ED

This finds the first occurrence of thing, sets dot to that
line, then finds the second and prints only that.

Closely related is searching for the second
occurrence of something, as in

?something?;??

previous

AS an exercise, try printing the third or fourth occurrence
in either direction.

To find the first occurrence of something in a file, start­
ing at an arbitrary place within the file, use

O;/thing/

This starts the search at line 1.

Zilog 52

ED

53

Zilog ED

SECTION 21

INTERRUPTING THE EDITOR

Pressing the INTERRUPT, DELETE, RUBOUT, or BREAK key while
~ is doing a command restores the state in effect before
the command began. An interrupt during reading or writing a
file, making substitutions, or deleting lines stops the com­
mand in an unpredictable state and does not always change
dot.

Printing does not change dot until the printing is done.
Thus, if the DELETE key is pressed while a file is being
printed, dot is still where it was when the y command was
started.

Zilog 53

ED

r

(
54

Zilog ED

SECTION 22

MANIPULATING FILES

22.1 General

In addition to editor commands, other commands exist to
manipulate files. Manipulating files includes changing the
name of a file, making a copy of a file somewhere else, mov­
ing a few lines from one place to another in a file, insert­
ing one file in the middle of another, splitting a file into
pieces, and splicing two or more files together.

22.2 Change the Name of a File

To change a file name, use ~.

mv oldname newname

This program moves the file from the old name to the new
name. For example, to change a file named ~ into one
called paper, enter

mv memo paper

NOTE

If there is already a file with the new name, its
present contents are overwritten by the informa­
tion from the old file. Also, a file cannot be
moved to itself. So

mv x x

is illegal.

22.3 Copy a File

Copy a file with the ~ command. The format of ~ is

cp original ~

to copy original into~. To save a file called ~
choose a name (here sayegood) then type

cp good savegood

Zilog 54

ED

55

Zilog ED

This copies ~ onto sayegood, so that there are two ident­
ical copies of the file~. If sayegood previously con­
tained something, it is overwritten.

To restore the original state of ~, enter

mv savegood good

which erases sayegood, or

cp savegood good

to retain a safe copy.

22.4 Remove a File

TO remove a file forever, use the LID command. The entry

rm savegood

permanently erases the file called sayegood.

22.5 Put Two or More Files Together

Collecting two or more files into one is performed with ~
(short for concatenate).

To combine the files filel and file2 into a single file
called bigfile, enter

cat filel file2 >bigfile

The > before higfile means to take the output of the ~
command and put it into bigfile. As with ~ and my, any­
thing that was already in bigfile is destroyed.

More than two files can be combined. The command

cat filel file2 file3 . . . >bigfile

collects many files.

22.6 Adding Text to the End of a File

To add one file to the end of another, use the »
tion. This is identical to >, except that
overwriting the old file, it simply adds text at
Thus, enter

Zilog

construc­
instead of
the end.

55

ED

56

Zilog ED

cat goodl »good

to add goodl to the end of gQQd. If gQQd did not previously
exist, this makes a copy of goodl called gQQd.

22.7 Insert One File into Another

Suppose that a file called ~ needs the file called table
to be inserted just after the reference to Table 1. That
is, in ~ somewhere is a line that says

Table 1 shows that •••

and the data contained in table goes there.

Edit ~, find Table ~, and add the file table by entering

ed memo
/Table 1/
Table 1 shows that ••• [response from ed]
.r table

The critical line is the last one; the ~ command reads the
file table and inserts it immediately after the referenced
line.

22.8 Write Part of a File

It is possible to split into a separate file the table from
the previous example. In the file being edited, there are
the lines

.TS
••• [lots of stuff]
.TE

To isolate the table in a separate file called table, first
find the start of the table (the .TS line), then write out
the table

/"\.TS/
.TS led prints the line it found]
.,/"\.TE/w table

All these steps can be consolidated with

The It command can write out a group of lines instead of the
whole file. In fact, a single line can be written by giving

Zilog 56

ED

57

zilog ED

one line number instead of two. For example, if there is a
complicated line that is going to be needed later, save it
to avoid retyping it. Enter

a
••• lots of stuff •••
••• complicated line •••
•
• w temp
a
••• more stuff •••

• r temp
a
••• more stuff •••

22.9 Move Lines

To move a paragraph fr~m its present position in a paper to
the end, use the editor ~ command (m).

The m command takes up to two line numbers in front that
tell what lines are to be affected. It is also followed by
a line number that tells where the lines are to go. Thus

linel, line2 m line3

says to move all the lines between linel and line2 after
line3.

If dot is at the first line of the paragraph beginning with
.PP, type

.,/A\.PP/_m$

The order of two adjacent lines can be reversed by position­
ing the first one after the second. If dot is at the first
line, the command

m+

moves line dot to a position one line after the first line.
If dot is at the second line, the command

m--

interchanges the two lines.

The m command is more succinct and direct than writing,
deleting, and rereading. "The main difficulty with the m

Zilog 57

ED

I

58

Zilog ED

command is that if patterns are used to specify both the
lines being moved and the target, they must be specified
properly. Doing the job a step at a time makes it easier to
verify at each step that the desired result is accomplished.
Issue a ~ command before doing any complicated commands. If
there is an error, it is easy to back up.

22.10 Mark a Line

~ provides a facility for marking a line with a particular
name to later reference it by name, regardless of its line
number. This can be handy for moving lines and for keeping
track of them as they move. The maLk command is k. The com­
mand

kx

assigns the name Z to the current line, where A is any sin­
gle lowercase letter. (To mark a line for which the line
number is known, precede the k with the line number.) Refer
to the marked line with the address

For
the
last
text

'x

example, to move a block of text, find the first line of
block to be moved, and mark it with kg. Then find the
line and mark it with kb. Now position dot where the
is to go and enter

'a,'bm.

Only one line can have a particular mark name associated
with it at any given time.

22.11 Copy Lines

~ provides another command, called ~ (for transfer) for
making a copy of a group of one or more lines. This is
often easier than writing and reading.

The ~ command is identical to the m command, except that
instead of moving lines it duplicates them at the place
named. Thus

l,t

duplicates the entire file that is being edited.

A more common use for ~ is for creating a series of lines
that differ only slightly. For example, type

Zilog 58

ED

59

a
t.
s/x/y/
t.
s/y/z/

and so on.

Zilog

x ••••••••• (long line)

(make a copy)
(change it a bit)
(make third copy)
(change it a bit)

22.12 Temporary Escape

ED

The escape command (1) provides a way to temporarily leave
the editor for a ZEUS command and immediately return to the
editor.

Entering

lany ZEUS command

suspends the current editing state and executes the command
asked for. When the command finishes, ~ prints another
prompt and editing can be resumed. Any ZEUS command,
including another ~, can be entered following the escape.

Zilog 59

j

ED

60

Zilog ED

SECTION 23

SUPPORTING TOOLS

23.1 General

There are several tools and techniques based on the editor.
In this section are some introductory examples of these
tools.

23.2 Grep

To find all occurrences of some word or pattern in a set of
files, use the program ~. The search patterns described
in the document are often called "regular expressions," and
"grep" stands for

g/re/p (get / regular expression / print)

That describes exactly what ~ does--it prints every line
in a set of files that contains a particular pattern. Thus

grep 'thing' filel file2 file3

finds thing wherever it occurs in any of the files listed.
~ also indicates the file in which the line was found for
any further file manipulation.

The pattern represented by thing can be any pattern that can
be used in~. Always enclose the pattern in single quotes
if it contains any nonalphabetic characters. These charac­
ters carry special meaning in the ZEUS command interpreter
(Section 15) •

There is also a way to find lines that do not contain a pat­
tern. The command

grep -v 'thing' filel file2 ...
finds all lines that do not contain thing. The ~ must
occur in the position shown. Given ~ and ~ ~ it is
possible to do things like selecting all lines that contain
some. combination of patterns. For example, to get all lines
that contain X but not ~, use

grep x file ••• grep -v y

The notation I is a pipe command, which causes the output of
the first command to be used as input to the second command.

Zilog 60

ED

61

Zilog ED

23.3 Editing Scripts

To execute a complicated set of editing operations on a set
of files, make up a script, that is, a file that contains
the operations to perform. Then apply this script to each
file.

For example, to change every ~ to Z£UQ and every hAd to
~ in a large number of files, put into the file script
the lines

g/zeus/s//ZEUS/g
g/bad/s//good/g
w
q

Now enter

ed filel <script
ed file2 <script

This causes ~ to take its commands from the prepared
script.

25.4 Sed

~ (stream editor) processes unlimited amounts of input.
~ copies its input to its output, applying one or more
editing commands to each line of input.

As an example, to change ~ to ~ as in' the previous
example without rewriting the files, use the command

sed • s/Zeus/ZEUS/g , filel file2 ...
This applies the command s/Zeus/ZEUS/g to all lines from the
files specified and copies all lines to the output. The
advantage of using ~ is that it handles input too large
for ~. All the output can be collected in one place, and
either saved in a file or piped into another program.

If the editing transformation is so complicated that more
than one editing command is needed, commands can be supplied
from a file with a slightly more complex syntax. To take
commands from a file, for example, use

sed -f cmdfile input-files •••

Zilog 61

" .~. ,.

ED

62

Zilog ED

APPENDIX A

SUMMARY OF COMMANDS AND LINE NUMBERS

The general form of ~ commands is the·command name, perhaps
preceded by one or two line numbers, and, in the case of ~,
~, and ~, followed by a file name. Only one command is
allowed per line, but a ~ command can follow commands other
than ~, ~, ~, and ~.

a: Append (add) lines to the buffer at line dot unless a
different line is specified. Appending continues until dot
is typed on a new line. Dot is set to the last line
appended.

~: Change
The new
lines are
last line

the specified lines to the new text that follows.
lines are terminated by a dot, as with a. If no
specified, line dot is changed. Dot is set to the
changed.

~: Delete the lines specified. If none are specified,
delete line dot. Dot is set to the first undeleted line,
unless $ is deleted, in which case dot is set to $.

~: Edit new file.
deleted.

Previous contents of the buffer are

f: Print current filename. If a name follows 1, the current
name is set to it.

g: The command

g/---/commands

executes the commands on those lines that contain ---, which
can be any context search expression.

i: Insert lines before specified line or dot until a dot is
typed on a new line. Dot is set to the last line inserted.

m: Move lines specified to a position after the line speci­
fied after m. Dot is set to the last line moved.

~: Print specified lines. If none are specified, print line
dot. A single line number is equivalent to line number ~.
A single return prints ~ (the next line).

~: Quit ~. Deletes all text in buffer if it is given twice
in a row without first giving a ~ command.

Zilog 62

ED

63

Zilog ED

~: Read a file into the end of the buffer unless a different
location is specified. Dot is set to last line read.

jl: The command

s/stringl/string2/

substitutes the characters string2 for stringl in the speci­
fied lines. If no lines are specified,. it makes the substi­
tution in line dot. Dot is set to the last line in which a
substitution took place (if no substitution took place, dot
is not changed). jl changes only the first occurrence of
stringl on a line. To change all occurences, type a g
after the final slash.

y: The command

v/---/commands

executes commands on those lines that do not contain
which can be any context search expression.

~: Write out buffer onto a file. Dot is not changed •

,

• =: Print value of dot. The = by itself prints the value of
$ •

..L:.. The line

!command-line

causes command-~ to be executed as a ZEUS command.

/-----/: Context search. Search for next line that contains
this string of characters and print it. Dot is -set to the
line where string was found. Search starts at ~ wraps
around from 1 to l, and continues to dot, if necessary.

?-----?: Context search in reverse direction. Start search
at ~ scan to l, and wrap around to ~

Zilog 63

FSCK Zilog FSCK

FILE SYSTEM CHECK PROGRAM (FSCK) REFERENCE MANUAL

1 Zilog 1

FSCK

2

Zilog FSCK

PREFACE

This document describes how the file system check program
(fsck) maintains file system integrity. More broadly, this
document presents the normal updating of the file system,
discusses the possible causes of file system corruption, and
describes the corrective actions used by fsck. Both internal
functions of the fsck program and the interaction between
the program and the operator appear in this document.

Section 1 gives a brief introduction to fsck, and Section 2
discusses normal updating of the file system. File system
corruption is described in Section 3. Section 4 presents
the set of corrective actions used by fsck. Error condi­
tions and operator actions are explained in the Appendix.

In this document, the sentence structure "fsck can "
often appears1 for example, "Fsck can clear the inodes."
This is a shorthand notation for the process of fsck prompt­
ing the operator, the operator responding to continue fsck,
and fsck actually perf~rming the action, in this case,
clearing the inodes (setting its contents to zero).

Additional information on fsck appears in the A£US Software
Reference Manual (part number 03-3195) under ~(l).

Zilog 2

/

FSCK

SECTION 1

SECTION 2

SECTION 3

SECTION 4

3

Zilog

TABLE OF CONTENTS

INTRODUCTION ••••••••••••••••••••••••••••• 5

UPDATE OF THE FILE SYSTEM •••••••••••••••• 6

2.1 General ••••••••••••••••••••••••••••• 6
2.2 Super-Block ••••••••••••••••••••••••• 6
2.3 Inodes •••••••••••••••••••••••••••••• 6
2.4 Indirect Blocks ••••••••••••••••••••• 6
2.5 Data Blocks ••••••••••••••••••••••••• 7
2.6 Free-List Blocks •••••••••••••••••••• 7

CORRUPTION OF THE FILE SYSTEM •••••••••••• 8

3.1
3.2

3.3

General ••••••••••••••••••••••••••••• 8
Improper System Shutdown and
Startup ••••••••••••••••••••••••••••• 8
Hardware Failure •••••••••••••••••••• 8

DETECTION AND CORRECTION OF CORRUPTION 9

4.1
4.2

4.3

General ••••••••••••••••••••••••••••• 9
Super-Block ••••••••••••••••••••••••• 9

4.2.1

4.2.2
4.2.3
4.2.4

Inodes

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

File-System Size and Inode-
List Size ••••••••••.••..•••.• 9
Free-Block List •••••••••••••• 9
Free-Block Count ••••••••••••• 10
Free-Inode Count ••••••••••••• 10

. 10

Format and Type •••••••••••••• 10
Link Count ••••••••••••••••••• 11
Duplicate Blocks ••••••••••••• 11
Bad Blocks ••••••••••••••••••• 12
Size Checks •••••••••••••••••• 12

4.4 Indirect Blocks ••••••••••••••••••••• 12
4.5 Data Blocks ••••••••••••••••••••••••• 13
4.6 Free-List Blocks •••••••••••••••••••• 13

Zilog

FSCK

3

FSCK

4

Zilog

TABLE OF CONTENTS (continued)

APPENDIX A FSCK ERROR CONDITIONS ••••••••••••••••••• 15

A.l Conventions •••••••••••••••••••••••• 15
A.2 Initialization ••••••••••••••••••••• 15
A.3 Phase 1: Check Blocks and Sizes ••• 18
A.4 Phase IB: Rescan for More

Duplicates ••••••••••••••••••••••••• 21
A.S Phase 2: Check Path Names ••••••••• 22
A.6 Phase 3: Check Connectivity •• ~ •••• 24
A.7 Phase 4: Check Reference Counts ••• 25
A.8 Phase 5: Check Free List •••••••••• 28
A.9 Phase 6: Salvage Free List •••••••• 30
A.IO Cleanup •••.•••••••••••• , ••••••••••• 31

Zilog

FSCK

4

FSCK

5

Zilog FSCK

SECTION 1

INTRODUCTION

When the ZEUS Operating System is brought up, the file sys­
tem check program (fsck) must be run. Fsck is an interac­
tive file system progr.am that uses the redundant structural
information in the ZEUS file system to perform consistency
checks. Fsck detects file inconsistencies and reports them
to an operator who elects to fix or ignore them. This pre­
cautionary measure helps to ensure a reliable environment
for file storage on disk.

Every file activity (creation, modification, or deletion)
updates at least one of the five data blocks that ZEUS uses
to monitor files. Fsck checks for matches in the contents
of redundant fields among these blocks, and for matches
between information in the blocks and the files themselves.
When any error is found, fsck reports it to an operator.
Most errors allow for operator intervention to continue run­
ning fsck or to terminate it. Serious errors, such as ille­
gal options, cause fsck to terminate.

Zilog 5

I.
i

FSCK

6

Zilog FSCK

SECTION 2

UPDATE OF THE FILE SYSTEM

2.1 General

Every time a file is created, modified, or removed, the ZEUS
Operating System performs a series of file system updates on
the super-block, inodes, indirect blocks, data blocks
(directories and files), and free-list blocks. Update
requests are honored in a specific order to yield a con­
sistent file system. Knowing this order makes it easier to
understand what happens when a problem occurs, and to repair
a corrupted file system.

2.2 Super-Block

The super-block contains information about the size of the
file system, the size of the inode list, part of the free­
block list, the count of free blocks, the count of free
inodes, and part of the free-inode list.

The root file system is always mounted, and the
of a mounted file system is written to the file
ever the file system is unmounted or a sync
issued.

2.3 Inodes

super-block
system when­

command is

An inode contains information about the type of inode
(directory, data, or special), the number of directory
entries linked to the inode, the list of blocks claimed by
the inode, and the size of the inode.

An inode is written to the file system on closure of the
file associated with the inode, and when a sync command is
issued.

2.4 Indirect Blocks

There are three types of indirect blocks: single-indirect,
double-indirect, and triple-indirect. A single-indirect
block contains a list of some of the block numbers claimed
by an inode. Each of the 128 entries in an indirect block
is a data-block number. A double-indirect block contains a
list of single-indirect block numbers, and a triple-indirect
block contains a list of double-indirect block numbers.

Zilog 6

FSCK

7

Zilog FSCK

Indirect blocks are written to the file system when the
operating system modifies them and queues them for writing.
Actual I/O is deferred until ZEUS needs the buffer or a sync
command is issued.

2.5 Data Blocks

A data block contains file information or directory entries.
Each directory entry consists of a file name and an inode
number.

Data blocks are written to the file system when the operat­
ing system modifies them and queues them for writing.
Actual I/O is deferred until ZEUS needs the buffer or a sync
command is issued.

2.6 Free-List Blocks

The free-list blocks list all blocks that are not allocated
to the super-block (only the first free-list block), inodes,
indirect blocks, or data blocks. Each free-list block con­
tains a count of the entries in this free-list block, a
pointer to the next free-list block, and a partial list of
free blocks in the file system.

Free-list blocks are written to the file system when the
operating system modifies them and queues them for writing.
Actual I/O is deferred until ZEUS needs the buffer or a sync
command is issued.

Zilog 7

FSCK

8

Zilog FSCK

SECTION 3

CORRUPTION OF THE FILE SYSTEM

3.1 General

The most common reasons for corruption of a file system are
improper shutdown and hardware failure.

3.2 Improper System Shutdown and Startup

Improper shutdown procedures include forgetting to sync the
system prior to halting the CPU, physically write-protecting
a mounted file system, and taking a mounted file system
off-line.

Improper startup procedures include not checking a file sys­
tem for inconsistencies and not repairing inconsistencies.

3.3 Hardware Failure

Any piece of hardware can fail at any time. Failures range
from a bad block of a disk pack to a nonfunctional disk con­
troller.

Zilog 8

\"

FSCK

9

Zilog FSCK

SECTION 4

DETECTION AND CORRECTION OF CORRUPTION

4.1 General

A quiescent file system (one that is unmounted and not being
written on) can be checked for structural integrity by per­
forming consistency checks of the redundant data that is
part of the file system. A quiescent state is important
during the file system check because of the multipass nature
of the fsck program. Fsck discovers each file incon­
sistency, reports it to the operator, and allows for
interactive corrective action.

This section discusses how to discover inconsistencies and
take corrective actions for super-blocks, inodes, indirect
blocks, data blocks containing directory entries, and free­
list blocks.

4.2 Super-Block

The super-block is most prone to corruption because every
change to the file system's block or inodes modifies the
super-block. Corruption most frequently occurs when the
computer is halted and the last command involving the output
of the file system was not a sync command.

Check the super-block for inconsistencies involving file­
system size, inode-list size, free-block list, free-block
count, and the free-inode count.

4.2.1 . File-System Size and Inode-List Size

These sizes are critical because all other checks of the
file system depend on them, and because fsck can only check
for them being within reasonable bounds. The file system
size must be larger than both the number of blocks used by
the super-block and the number of blocks used by the list of
inodes. The number of inodes must be less than 65,535.

4.2.2 Free-Block List

The free-block list starts in the super-block and continues
through the free-list blocks of the file system. Each
free-list block is checked for a list count out of range,
for block numbers out of range, and for blocks already

Zilog 9

FSCK

10

Zilog FSCK

allocated within the file system. A check is made to see
that all the' blocks in the file system were found. If
anything is wrong with the free-block list, fsck can rebuild
it, excluding all blocks in the list Of allocated blocks.

Fsck checks the list count for the first free-block for a
value of less than zero or greater than 50. It also checks
each block number for a value of less than the first data
block in the file system. Then it compares each block
number to a list of already allocated blocks. If the free­
list block pointer is nonzero, the next free-list block is
read in, and the process is repeated.

When all the blocks have been accounted for, a check is
to see if the number of blocks used by the free-block
plus the number of blocks claimed by the inodes equals
total number of blocks in the file system.

4.2.3 Free-Block Count

made
list

the

The super-block contains a count of the total number of free
blocks within the file system. Fsck compares this count to
the number of blocks it found free within the file system
and, if they do not agree, replaces the count in the super­
block with the actual free-block count.

4.2.4 Free-Inode Count

The super-block contains a count of the total number of free
inodes within the file system. Fsck compares this count to
the number of inodes it found free within the file system
and, if they do not agree, replaces the count in the super­
block with the actual free-inode count.

4.3 Inodes

A large quantity of active inodes increases the likelihood
of corruption. Fsck sequentially checks the list of inodes
for inconsistencies involving format and type, link count,
duplicate blocks, bad blocks, and inode size.

4.3.1 Format and Type

Each inode contains a mode word that describes the type and
state of the inode. Valid inode types are regular, direc­
tory, special block, and special character. Valid inode
states are unallocated, allocated, and neither allocated nor
unallocated (incorrectly formatted as a result of bad data

Zilog 10

FSCK

11

Zilog FSCK

being written into the inode list through hardware failure).
Fsck can clear the inode.

4.3.2 Link Count

A count of the total number of directory entries linked to
the inode is contained in each inode. Fsck verifies this
count by traversing down the total directory structure
starting from the root directory and calculating an actual
link count for each inode.

If the stored link count is nonzero and the actual link
count is zero, no directory entry appears for the inode.
Fsck can link the disconnected file to the l2at+found direc­
tory.

If the stored and actual link counts are nonzero and
unequal, a directory entry may have been added or removed
without the inode being updated. Fsck can replace the
stored link count with the actual link count.

4.3.3 Duplicate Blocks

Each inode contains a list, or pOinters to lists, (indirect
blocks) of all the blocks claimed by the inode. Fsck com­
pares each block number claimed by an inode to a list of
already allocated blocks. If there are any inconsistencies,
fsck can clear both inodes.

If a block number is already claimed by another inode, the
block number is added to a list of duplicate blocks. Other­
wise, the list of allocated blocks is updated to include the
block number.

If there are any duplicate blocks, fsck makes a partial pass
of the inode list to find the duplicate block. Fsck needs
to examine the files associated with these inodes to deter­
mine which inode is corrupted and should be cleared (most
frequently, this is the inode with the earlier modify time).
This error condition occurs when using a file system with
blocks claimed by both the free-block list and by other
parts of the file system.

A large number of duplicate blocks in an inode is often due
to an indirect block not being written to the file system.

Zilog 11

FSCK

12

Zilog FSCK

4.3.4 Bad Blocks

Each inode contains a list, or pointer to lists, of all the
blocks claimed by the inode. Fsck checks each block number
claimed by an inode for a value within the range bounded by
the first data block (minimum) and the last block (maximum)
in the file system. A block number outside the range is
called a bad block number.

A large number of bad blocks in an inode can be due to an
indirect block not being written to the file system.

4.3.5 Size Checks

Each inode contains a 32-bit (four-byte) size field that
contains the number of characters in the file associated
with the inode. Fsck checks this field for inconsistencies
such as directory sizes that are not a multiple of 16 char­
acters, and for the number of blocks actually used / not
matching the number indicated by the inode size.

A directory inode in the ZEUS file system has the directory
bit set on in the inode mode word. The directory size must
be a multiple of 16 because a directory entry contains 16
bytes of information, two bytes for the inode number and 14
bytes for the file or directory name. Fsck warns of direc­
tory misalignment, but cannot gather sufficient information
to correct"the problem.

Fsck calculates the number of blocks that there should be in
an inode by dividing the number of characters in an inode by
the number of characters per block (512), rounding up, and
adding one block for each indirect block associated with the
inode. If this computed number does not match the actual
number of blocks, fsck warns of a possible file-size error,
but does not correct it because ZEUS does not insert blocks
into files that are created in random order.

4.4 Indirect Blocks

Since indirect blocks are owned by "an inode" inconsistencies
in the indirect blocks affect the inode. Fsck checks that
blocks are not already claimed by another inode, and that
block numbers are not outside the range of the file system.
The procedures discussed in Sections 4.3.3 and 4.3.4 are
iteratively applied to each level of indirect blocks.

Zilog 12

"'

FSCK

f
13

Zilog FSCK

4.5 Data Blocks

The two types of data blocks are plain data blocks and
directory blocks. Plain data blocks contain the information
stored in a file and are not checked by fsck.

Directory data blocks contain directory entries and are
checked for inconsistencies involving directory inode
numbers pOinting to unallocated inodes, directory inode
numbers greater than the number of inodes in the file sys­
tem, incorrect directory inode numbers for • (current direc­
tory) and (parent directory), and directories that are
disconnected from the file system.

If a directory entry inode number points to an unallocated
inode, fsck can remove that directory entry. This condition
usually occurs when the data block containing the directory
entries are modified and written to the file system, and the
inode is not yet written.

If a dire"ctory entry inode number is pointing beyond the end
of the inode list, fsck can remove that directory entry.
This condition occurs if bad data is written into a direc­
tory data block.

The directory inode number entry for. must be the first
entry in the directory data block. Its value must equal the
inode number for the parent of the directory entry (or the
inode number of the directory data block if the directory is
the root directory). If the directory inode numbers are
incorrect, fsck can replace them with the correct values.

Fsck checks the general connectivity of the file system. If
directories are not linked into the file system, fsck links
the directory back into the file system in the lQat+found
directory. This condition can be caused by inodes being
written to the file system without the corresponding direc­
tory data blocks being written.

4.6 Free-List Blocks

Free-list blocks are owned by the super-block, and incon­
sistencies in free-list blocks directly affect the super­
block.

Fsck can check for a list count outside of range, block
numbers outside of range, and blocks already associated with
the file system.

Zilog 13

FSCK

14

Zilog FSCK

Section 4.2.2 contains a discussion of detection and correc­
tion of the inconsistencies associated with free-list
blocks.

Zilog 14

FSCK

15

Zilog FSCK

APPENDIX A

FSCK ERROR CONDITIONS

A.l Conventions

Fsck is a multipass file system check program with each file
system pass invoking a different phase of the fsck program.
After the initial setup, fsck performs successive phases on
each file system, checks blocks and sizes, path names, con­
nectivity, reference counts, and the free-block list (which
might be rebuilt), and performs some cleanup.

When an inconsistency is detected, fsck reports it to the
operator. If a response is required, fsck prints a prompt
message and waits for a response. This appendix explains
the meaning of each error condition, the possible responses,
and the related error conditions.

The error conditions are organized by the phase of the fsck
program in which they occur. The error conditions that
occur in more than one phase are discussed in the Initiali­
zation Section.

A.2 Initialization

Before a file system check can be performed, certain tables
must be set up and certain files must be opened. This sec­
tion lists error conditions resulting from initializing
tables and opening files; specifically, it lists error con­
ditions resulting from command line options, memory
requests, opening of files, status of files, file system
size checks, and creation of the scratch file.

C OPTION ?

C is not a legal option of fsck; legal options are -y, -n,
-s, -S, and -t. Fsck terminates on this error condition
(!a£t(~» •

BAD -t OPTION

The -t option is not followed by a file name.
minates on this error condition (!a£t(~».

Zilog

Fsck ter-

15

FSCK

16

Zilog FSCK

INVALID -s ARGUMENT, DEFAULTS ASSUMED

The -s option is not suffixed by 3, 4, blocks-per-cylinder,
or blocks-to-skip. Fsck assumes a default value of 400
blocks-per-cylinder and nine blocks-to-skip (~(~».

INCOMPATIBLE OPTIONS: -n and -s

It is not possible to salvage the free-block list without
modifying the file system. Fsck terminates on this error
condition (~(~».

CAN'T GET MEMORY

Fsck's request for memory for its virtual memory tables
failed. This should never happen. Fsck terminates on this
error condition. See an experienced fsck user.

CAN'T OPEN CHECKLIST FILE: F

The default file system checklist file F (usually
/etc/checklist) cannot be opened for reading. Fsck ter­
minates on this error condition. Check access modes of F.

CAN'T STAT ROOT

Fsck's request for statistics about the root directory /
failed. This should never happen. Fsck terminates on this
error condition. See an experienced fsck user.

CAN'T STAT F

Fsck's request for statistics about the file system F
failed. Fsck ignores this file system and continues check­
ing the next file system given. Check access modes of F.

F IS NOT A BLOCK OR CHARACTER DEVICE

Fsck has a wrong regular file name that it ignores, and it
continues checking the next file system given. Check file
type of F.

Zilog 16

FSCK

,:
r

17

Zilog FSCK

CAN'T OPEN F

The file system F
ignores this file
file system given.

cannot be opened for reading. Fsck
system and continues checking the next

Check access modes of F.

SIZE CHECK: fsize X isize Y

More blocks are used for the inode list Y than there are
blocks in the file system X, or there are more than 65,535
inodes in the file system. Fsck ignores this file system
and continues checking the next file system given (Section
4.2.1) •

CAN'T CREATE F

Fsck's request to create a scratch file F failed. Fsck
ignores this file system and continues checking the next
file system given. Check access modes of F.

CANNOT SEEK: BLK B (CONTINUE?)

Fsck's request for moving to a specified block number B in
the file system failed. This should never happen. See an
experienced fsck user.

Possible responses to the CONTINUE? prompt are:

YES Attempt to continue to run the file system
check. Often, however, the problem persists
since this error condition does not allow a
complete check of the file system. A second
run of fsck must be made to recheck this file
system. If the block is part of the virtual'
memory buffer cache, fsck terminates with the
message FATAL I/O ERROR.

NO Terminate the program.

CANNOT READ: BLK B (CONTINUE?)

Fsck's request for reading a specified block number B in the
file system· failed. This should never happen. See an
experienced fsck user.

Zilog 17

FSCK

18

Zilog FSCK

Possible responses to the CONTINUE? prompt are:

YES Attempt to continue to run the file system
check. Often, however, the problem persists
since this error condition does not allow a
complete check of the file system. A second
run of fsck must be made to recheck this file
system. If the block is part of the virtual
memory buffer cache, fsck terminates with the
message FATAL I/O ERROR.

NO Terminate the program.

CANNOT WRITE: BLK B (CONTINUE?)

Fsck's request for writing a specified block number B in the
file system failed. The disk is write-protected. See an
experienced fsck user.

Possible responses to the CONTINUE? prompt are:

YES Attempt to continue to run the file system
check. Often, however, the problem persists
since this error condition does not allow a
complete check of the file system. A second
run of fsck must be made to recheck this file
system. If the block is part of the virtual
memory buffer cache, fsck terminates with the
message FATAL I/O ERROR.

NO Terminate the program.

A.3 Phase 1: Check Blocks and Sizes

This phase concerns itself with the inode list. This
tion lists error conditions resulting from checking
types, setting up the zero-l ink-count table, examining
block numbers for bad or duplicate blocks, checking
size, and checking inode format.

UNKNOWN FILE TYPE 1=1 (CLEAR?)

sec­
inode
inode
inode

The mode word of the inode I indicates that the inode is not
a special character inode, regular inode, or directory inode
(Section 4.3.1).

Zilog 18

FSCK

19

Zilog FSCK

Possible responses to the CLEAR? prompt are:

YES Continue with the program. This error condi­
tion does not allow a complete check of the
file system. A second run of fsck must be made
to recheck this file system. If another allo­
cated inode with a zero link count is found,
this error condition is repeated.

NO Terminate the program.

LINK COUNT TABLE OVERFLOW (CONTINUE?)

An internal table for fsck containing allocated inodes with
a link count of zero has no more room. Recompile fsck with
a larger value of MAXLNCNT.

Possible responses to the CONTINUE? prompt are:

YES Continue with the program. This error condi­
tion does not allow a complete check of the
file system. A second run of fsck must be made
to recheck this file system. If another allo­
cated inode with a zero link count is found,
this error condition is repeated.

NO Terminate the program.

B BAD 1=1

Inode I contains block number B with a number lower than the
number of the first data block in the file system, or
greater than the number of the last block in the file sys­
tem. This error condition invokes the EXCESSIVE BAD BLKS
error condition in Phase 1 if inode I has too many block
numbers outside the file system range. This error condition
always invokes the BAD/DUP error condition in Phase 2 and
Phase 4. See Section 4.3.4.

EXCESSIVE BAD BLKS 1=1 (CONTINUE?)

There is more than a tolerable number (usually 10) of blocks
with a number lower than the number of the first data block
in the file system, or greater than the number of last block
in the file system associated with inode I (Section 4.3.4).

Zilog 19

FSCK

20

Zilog FSCK

Possible responses to the CONTINUE? prompt are:

YES Ignore the rest of
continue checking
file system. This
allow a complete
second run of fsck
file system.

the blocks in this inode and
with the next inode in the
error condition does not

check of the file system. A
must be made to recheck this

NO Terminate the program.

B DUP I=I

Inode I contains block number B which is already claimed by
another inode. This error condition invokes the EXCESSIVE
DUP BLKS error condition in Phase 1 if inode I has too many
block numbers claimed by other inodes. This error condition
always invokes Phase IB and the BAD/DUP error condition in
Phase 2 and Phase 4 (Section 4.3.3) •

EXCESSIVE DUP BLKS I=I (CONTINUE?)

There is more than a tolerable number (usually 10) of blocks
claimed by other inodes (Section 4.4.3).

Possible responses to the CONTINUE? prompt are:

YES Ignore the rest of
continue checking
file system. This
allow a complete
second run of fsck
file system.

the blocks in this inode and
with the next inode in this
error condition does not

check of the file system. A
must be made to recheck this

NO Terminate the program.-

DUP TABLE OVERFLOW (CONTINUE?)

An internal table in fsck containing duplicate block numbers
has no more room. Recompile fsck with a larger value of
DUPTBLSIZE.

Zilog 20

FSCK

21

Zilog FSCK

Possible responses to the CONTINUE? prompt are:

YES Continue with the program. This error condi­
tion does not allow a complete check of the
file system. A second run of fsck must be made
to recheck this file system. If another dupli­
cate block is found, this error condition
repeats.

NO Terminate the program.

POSSIBLE FILE SIZE ERROR 1=1

The inode I size does not match the actual number of blocks
used by the inode. This is only a warning (Section 4.3.5).

DIRECTORY MISALIGNED 1=1

The size of a directory inode is not a multiple of the size
of a directory entry (usually 16). This is only a warning
(Sect i on 4.3.5) •

PARTIALLY ALLOCATED INODE 1=1 (CLEAR?)

1node I is neither allocated nor unallocated (Section
4.3.1) •

Possible responses to the CLEAR? prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

A.4 Phase IB: Rescan for More Duplicates

When a duplicate block is found in the file system, the sys­
tem is rescanned to find the inode that previously claimed
that block. This section lists the error condition when the
duplicate block is found.

B DUP 1=1

Inode I contains block number B, which is already claimed by
another inode. This error condition always invokes the
BAD/DUP error condition in Phase 2. Inodes that have over-

Zilog 21

FSCK

22

Zilog FSCK

lapping blocks can be determined by exam1n1ng this error
condition and the DUP error condition in Phase 1 (Section
4.3.3) •

A.5 Phase 2: Check Path Names

This phase removes directory entries pOinting to inodes with
error conditions from Phase 1 and Phase lB. This section
lists error conditions resulting from root inode mode and
status, directory inode pointers in range, and directory
entries pointing to bad inodes.

ROOT INODE UNALLOCATED. TERMINATING.

The root inode (usually inode number 2) has no allocate mode
bits. This should never happen. The program terminates
(Section 4.3.1).

ROOT INODE NOT DIRECTORY '(FIX?)

The root inode (usually inode number 2) is not a directory
inode (Section 4.3.1).

Possible responses to the FIX? prompt are:

YES Make the root inode's type a directory. If the
root inode's data blocks are not directory
blocks, a very large number of error conditions
are produced.

NO Terminate the program.

DUPS/BAD IN ROOT INODE (CONTINUE?)

Phase 1 or Phase IB found duplicate blocks or bad blocks in
the root inode (usually inode number 2) for the file system
(Sections 4.3.3 and 4.3.4).

Possible responses to the CONTINUE? prompt are:

YES Ignore the DUPS/BAD error condition in the root
inode and attempt to continue to run the file
system check. If the root inode is not
correct, this results in a large number of
other error conditions.

NO Terminate the program.

Zilog 22

,
I
I

'-

FSCK

23

Zilog FSCK

lOUT OF RANGE 1=1 NAME=F (REMOVE?)

A directory entry F has an inode number I which is greater
than the end of the inode list (Section 4.5) •

Possible responses to the REMOVE? prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

UNALLOCATED 1=1 OWNER=O MODE=M SIZE=S
(REMOVE?)

MTIME=T NAME=F

A directory entry F has an inode I without allocate mode
bits. The owner 0, mode M, size S, modify time T, and file
name F are printed (Section 4.5).

Possible responses to the REMOVE? prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

DUP/BAD 1=1 OWNER=O MODE=M SIZE=S MTIME=T DIR=F (RE~10VE?)

Phase I or Phase IB found duplicate blocks or bad blocks
associated with directory entry F, directory inode I. The
owner 0, mode M, size S, modify time T, and directory name F
are printed (Sections 4.3.3 and 4.3.4).

Possible responses to the REMOVE? prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

DUP/BAD 1=1 OWNER=O MODE=M SIZE=S MTIME=T FILE=F (REMOVE?)

Phase I or Phase IB have found duplicate
blocks associated with directory entry
owner 0, mode M, size S, modify time T, and
printed (Sections 4.3.3 and 4.3.4).

blocks or
F, inode I.
file name F

Possible responses to the REMOVE? prompt are:

YES The directory entry F is removed.

NO Ignore this error condition.

Zilog

bad
The
are

23

FSCK

24

Zilog FSCK

A.6 Phase 3: Check Connectivity

This phase checks the directory connectivity seen in Phase
2. This section lists error conditions resulting from
unreferenced directories, and missing or full l2at+found
directories.

UNREF DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT?)

The directory inode I was not connected to a directory entry
when the file system was checked. The owner 0, mode M, size
S, and modify time T of directory inode I are printed (Sec­
tions 4.5 and 4.3.2).

Possible responses to the RECONNECT? prompt are:

YES Reconnect directory inode I to the file system
in the directory for lost files (usually
l2at+found). This invokes the ~+found error
condition in Phase 3 if there are problems con­
necting directory inode I to ~+found. This
also invokes thee CONNECTED error condition in
Phase 3 if the link was successful.

NO Ignore this error condition. This always
invokes the UNREF error condition in Phase 4.

SORRY. NO l2at+found DIRECTORY

There is no lQQt+found directory in the root
the file system; fsck ignores the request to
tory in ~+found. This always invokes the
condition in Phase 4. Check access modes
(~(~».

SORRY. NO SPACE IN ~+found DIRECTORY

directory of
link a direc­

UNREF error
of ~+found

There is no space to add another entry to the l2at+found
directory in the root directory of the file system; fsck
ignores the request to link a directory in ~+found. This
always invokes the UNREF error condition in Phase 4. Remove
unnecessary entries in ~+found or make ~+found larger
(~(~».

Zilog 24

FSCK

(
\

- (

25

Zilog FSCK

DIR 1=11 CONNECTED. PARENT WAS 1=12

This is an advisory message indicating that a directory
inode II is successfully connected to the ~+found direc­
tory. The parent inode 12 of the directory inode II is
replaced by the inode number of the ~+found directory
(Sections 4.5 and 4.3.2).

A.7 Phase 4: Check Reference Counts

This phase checks the link count information seen in Phase 2
and Phase 3. This section lists error conditions resulting
from unreferenced files, missing or full l2§t+found direc­
tory, incorrect link counts for files, directories, or spe­
cial files, unreferenced files and directories, bad and
duplicate blocks in files and directories, and incorrect
total free-inode counts.

UNREF FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T (RECONNECT?)

Inode I was not connected to a directory entry when the file
system was checked. The owner 0, mode M, size S, and modify
time T of inode I are printed (Section 4.3.2) •

Possible responses to the RECONNECT? prompt are:

YES Reconnect inode I to the file system in the
directory for lost files (usually lQat+found).
This invokes the lQat+found error condition in
Phase 4 if there are problems connecting inode
I to ~+found.

NO Ignore this error condition. This always
invokes the CLEAR error condition in Phase 4.

SORRY. NO lQat+found DIRECTORY

There is no l2§t+found directory in the root directory of
the file system; fsck ignores the request to link a file in
lQQt+found. This always invokes the CLEAR error condition
in Phase 4. Check access modes of ~+found.

SORRY. NO SPACE IN ~+found DIRECTORY

There is no space to add another
directory in the root directory

Zilog

entry to the ~+found
of the file system; fsck

25

FSCK

26

Zilog FSCK

ignores the request to link a file in ~+found. This
always invokes the clear error condition in Phase 4. Check
size and contents of ~+found.

(CLEAR?)

The inode mentioned in the immediately previous error condi­
tion cannot be reconnected (Section 4.3.2).

Possible responses to the CLEAR? prompt are:

YES Deallocate the inode mentioned in the immedi­
ately previous error condition by setting its
contents to zero.

NO Ignore this error condition.

LINK COUNT FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T COUNT=X
SHOULD BE Y (ADJUST?)

The link count for the file inode I is X but should be Y.
The owner 0, mode M, size S, and modify time T are printed
(Section 4.3.2).

Possible responses to the ADJUST? prompt are:

YES Replace the link count of file inode I with Y.

NO Ignore this error condition.

LINK COUNT DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T COUNT=X
SHOULD BE Y (ADJUST?)

The link count for directory inode I is X but should be Y.
The owner 0, mode M, size S, and modify time T of directory
inode I are printed (Section 4.3.2).

Possible responses to the ADJUST? prompt are:

YES Replace the link count of inode I with Y.

NO Ignore this error condition.

Zilog 26

FSCK

\

27

Zilog FSCK

LINK COUNT F 1=1 OWNER=O MODE=M SIZE=S MTIME=T COUNT=X
SHOULD BE Y (ADJUST?)

The link count for F inode I is X but should be Y. The name
F, owner 0, mode M, size S, and modify time T are printed
(Section 4.3.2).

Possible responses to the ADJUST? prompt are:

YES Replace the link count of inode I with Y.

NO Ignore this error condition.

UNREF FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR?)

File inode I was not connected to a directory entry when the
file system was checked. The owner 0, mode M, size S, and
modify time T of inode I are printed (Sections 4.3.2 and
4.5) •

Possible responses to the CLEAR? prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

UNREF DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR?)

Directory inode I was not connected to a directory entry
when the file system was checked. The owner 0, mode M, size
S, and modify time T of inode I are printed (Section 4.3.2
and 4.5) •

Possible responses to the CLEAR? prompt are:

YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

BAD/DUP FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T (CLEAR?)

Phase 1 or Phase lb
blocks associated
size S, and modify
4.3.3 and 4.3.4).

have found duplicate blocks or bad
with file inode. The owner 0, mode M,

time T of inode I are printed (Sections

Zilog 27

FSCK

28

Zilog FSCK

Possible responses to the CLEAR? prompt are:

YES Deallocate inode I by setting its contents to
zero.

NO Ignore this error condition.

BAD/DUP DIR I=I OWNER=O MODE=M SIZE=S MTIME=T (CLEAR?)

Phase 1 or Phase lB have found duplicate blocks or bad
blocks associated with directory inode~. The owner 0, mode
M, size S, and modify time T of inode I are printed (Sec­
tions 4.3.3 and 4.3.4).

Possible responses to the CLEAR? prompt are:

YES Deallocate inode I by setting its contents to
zero.

NO Ignore this error condition.

FREE INODE COUNT WRONG IN SUPERBLK (FIX?)

The actual count of the free inodes does not match the count
in the super-block of the file system (Section 4.2.4).

Possible responses to the FIX? prompt are:

YES Replace the count in the super-block by the
actual count.

NO Ignore this error condition.

A.8 Phase 5: Check Free List

This section lists error conditions resulting from bad
blocks in the free-block list, bad free-blocks count, dupli­
cate blocks in the free-block list, unused blocks from the
file system not in the free-block list, and an incorrect
total free-block count.

EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE?)

The free-block list contains more than a tolerable number
(usually 10) of blocks with a value of less than the first
data block in the file system or greater than the last block
in the file system (Sections 4.2.2 and 4.3.4).

Zilog 28

\

FSCK

(

29

Zilog FSCK

Possible responses to the CONTINUE? prompt are:

YES Ignore the rest of the free-block list and con­
tinue the execution of fsck. This error condi­
tion always invokes the BAD BLKS IN FREE LIST
error condition in Phase 5.

NO Terminate the program.

EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE?)

The free-block list contains more than a tolerable number
(usually 10) of blocks claimed by inodes or earlier parts of
the free-block list (Section 4.2.2 and 4.3.3).

Possible responses to the CONTINUE? prompt are:

YES Ignore the rest of the free-block list and con­
tinue the execution of fsck. This error condi­
tion always invokes the DUP BLKS IN FREE LIST
error condition in Phase 5.

NO Terminate the program.

BAD FREEBLK COUNT

The count of free blocks in a free-list block is greater
than 50 or less than zero. This error condition always
invokes the BAD FREE LIST condition in Phase 5 (Section
4.2.2).

X BAD BLKS IN FREE LIST

X blocks in the free-block list have a block number lower
than the first data block in the file system or greater than
the last block in the file system. This error condition
always invokes the BAD FREE LIST condition in Phase 5 (Sec-
tions 4.2.2 and 4.3.4). '

X DUP BLKS IN FREE LIST

X blocks claimed by inodes or earlier parts of the free-list
block were found in the free-block list. This error condi­
tion always invokes the BAD FREE LIST condition in Phase 5
(Sections 4.2.2 and 4.3.3).

Zilog 29

FSCK

30

Zilog FSCK

x BLK(S) MISSING

X blocks unused by the file system were not found in the
free-block list. This error condition always invokes the
BAD FREE LIST condition in Phase 5 (Section 4.2.2).

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX?)

The actual count of free blocks does not match the count in
the super-block of the file system (Section 4.2.3).

Possible responses to the FIX? prompt are:

YES Replace the count in the super-block with the
actual count.

NO Ignore this error condition.

BAD FREE LIST (SALVAGE?)

Phase 5 has found bad blocks in the free-block list, dupli­
cate blacks in the free-block list, or blocks missing from
the file system (Sections 4~2.2, 4.3.3, and 4.3.4).

Possible responses to the SALVAGE? prompt are:

YES Replace the actual free-block list with a new
free-block list. The new free-block list will
be ordered to reduce time spent by the disk
waiting for the disk to rotate into position.

NO Ignore this error condition.

A.9 Phase 6: Salvage Free List

This phase checks the free block list reconstruction. This
section lists error conditions resulting from the blocks­
to-skip and blocks-per-cylinder values.

DEFAULT FREE-BLOCK LIST SPACING ASSUMED

This is an advisory message indicating the blocks-to-skip is
greater than the blocks-per-cylinder, the blocks-to-skip is
less than one, the blocks-per-cylinder is less than one, or
the blocks-per-cylinder is greater than 500. The default
values of nine blocks-to-skip and 400 blocks-per-cylinder
are used (~(~».

Zilog 30

FSCK

(

31

Zilog FSCK

A.lO Cleanup

Once a file system has been checked, cleanup functions are
performed. This section lists advisory messages about the
file system and modify status of the file system.

X FILES Y BLOCKS Z FREE

This is an advisory message indicating that the file system
checked contained X files using Y blocks, leaving Z blocks
free in the file system.

*****BOOT ZEUS (NO SYNC!)*****

This is an advisory message indicating that a mounted file
system or the root file system has been modified by fsck.
If ZEUS is not rebooted immediately, the work done by fsck
may be undone by the in-core copies of tables ZEUS keeps.

*****FILE SYSTEM WAS MODIFIED*****

This is an advisory message indicating that the current file
system was modified by fsck. If this file system is mounted
or is the current root file system, fsck must be halted and
ZEUS rebooted. If ZEUS is not rebooted immediately, the
work done by fsck may be undone by the in-core copies of
tables ZEUS keeps.

Zilog 31

FSCK

(

32

Zilog

INDEX OF MESSAGES

(Alphabetically within each section)

INTIALIZATION

BAD -t OPTION •••••••••••••••••••••••••••••••••••• 15
C OPTION? •• 15
CANNOT READ: BLK B (CONTINUE?) ••••••••••••••••••• 17
CANNOT SEEK: BLK B (CONTINUE?) ••••••••••••••••••• 17
CANNOT WRITE: BLK B (CONTINUE?) •••••••••••••••••• 18
CAN'T CREATE F ••••••••••••••••••••••••••••••••••• 17
CAN'T GET MEMORy ••••••••••••••••••••••••••••••••• 16
CAN'T OPEN CHECKLIST FILE: F ••••••••••••••••••••• 16
CAN'T OPEN F ••••••••••••••••••••••••••••••••••••• 1 7
CAN'T STAT F ••••••••••••••••••••••••••••••••••••• 16
CAN'T STAT ROOT •••••••••••••••••••••••••••••••••• 16
F IS NOT A BLOCK OR CHARACTER DEVICE ••••••••••••• 16
INCOMPATIBLE OPTIONS: -n and -s •••••••••••••••••• 16
INVALID -s ARGUMENT, DEFAULTS ASSUMED •••••••••••• 16
SIZE CHECK: FSIZE X ISIZE Y •••••••••••••••••••••• 17

PHASE 1: CHECK BLOCKS AND SIZES
B BAD I= I •••.•••••••••••••••••••••••••••••••••••• 19
B DUP I= I •• 19
DIRECTORY MISALIGNED 1=1 ••••••••••••••••••••••••• 20
DUP TABLE OVERFLOW (CONTINUE?) ••••••••••••••••••• 20
EXCESS IVE BAD BLKS 1= I (CONTINUE?) ••••••••••••••• 19
EXCESSIVE DUP BLKS 1=1 (CONTINUE?) ••••••••••••••• 21
LINK COUNT TABLE OVERFLOW (CONTINUE?) •••••••••••• 21
PARTIALLY ALLOCATED INODE 1=1 (CLEAR?) ••••••••••• 21
POSSIBLE FILE SIZE ERROR 1=1 ••••••••••••••••••••• 20
UNKNOWN FILE TYPE 1=1 (CLEAR?) ••••••••••••••••••• 18

PHASE IB: RESCAN FOR MORE DUPS

B DUP 1= I •• 21

PHASE 2: CHECK PATH-NAMES

DUP/BAD 1=1 OWNER=O MODE=M SIZE=S MT1ME=T DIR=F
(REMOVE?) ... 23
DUP/BAD 1=1 OWNER=O MODE=M SIZE=S MTIME=T FILE=F
(REMOVE?) •• 23
DUPS/BAD IN RROOT INODE (CONTINUE?) •••••••••••••• 22
I OUT OF RANG 1=1 NAME=F (REMOVE?) ••••••••••••••• 23
ROOT INODE NOT DIRECTORY (FIX?) •••••••••••••••••• 22
ROOT INODE UNALLLOCATED TERMINATING •••• ~ ••••••••• 22

Zilog

FSCK

32

FSCK

33

Zi10g

INDEX OF MESSAGES (continued)

UNALLOCATED 1=1 OWNER=O MODE=M SIZE=S MTIME=T
NAME=F (REMOVE?) ••••••••••••••••••••••••••••••••• 23

PHASE 3: CHECK CONNECTIVITY

DIR I-II CONNECTED PARENT WAS 1=12 ••••••••••••••• 25
SORRY. NO SPACE IN ~+found DIRECTORy •••••••••• 24
SORRY. NO lQat+found DIRECTORy ••••••••••••••••••• 24
UNREF DIRE 1=1 OWNER=O MODE=MM SIZE=S MTIME=T
(RECONNECT?) ••••••••••••••••••••••••••••••••••••• 24

PHASE 4: CHECK REFERENCE COUNTS

BAD/DUP DIR 1=1 OWNER=O MODE=M SIZE=S MT1ME=T
(CLEAR?) ••• 28
BAD/DUP FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T
(CLEAR?) ••• 27
(CL EAR?) ••• 26
FREE INODE COUNT WRONG IN SUPERBLK (FIX?) •••••••• 28
LINK COUNT DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T
COUNT=X SHOULD BE Y (ADJUST?) ••••••••.•••••••••••• 26
LINK COUNT FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T
COUNT=X SHOULD BE Y (ADJUST?) •••••••••••••••••••• 26
LINK COUNT F 1=1 OWNER=O MODE=M SIZE=S MTUIE=T
COUNT=X SHOULD BE Y (ADJUST?) •••••••••••••••••••• 27
SORRY. NO SPACE IN ~+found DIRECTORy •••••••••• 25
SORRY. NO lQat+found DIRECTORy ••••••••••••••••••• 25
UNREF DIR 1=1 OWNER=O MODE=M SIZE=S MTIME=T
(CLEAR?) ••• 27
UNREF FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T
(CL EAR ?) ••• 27
UNREF FILE 1=1 OWNER=O MODE=M SIZE=S MTIME=T
(RECONNECT?) ••••••••••••••••••••••••••••••••••••• 25

PHASE 5: CHECK FREE LIST

BAD FREE LIST (SALVAGE?) ••••••••••••••••••••••••• 30
BAD FREEBLK COUNT •••••••••••••••••••••••••••••••• 29
EXCESSIVE BAD BLKS IN FREE LIST (CONTINUE?) •••••• 28
EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE?) •••••• 29
FREE BLK COUNT WRONG IN SUPERBLOCK (FIX?) •••••••• 30

Zi10g

FSCK

33

FSCK

(

(

34

Zi10g

INDEX OF MESSAGES (continued)

X BAD BLKS IN FREE LIST •••••••••••••••••••••••• 29
X BLK(S) MISSING ••••••••••••••••••••••••••••••• 30
X DUP BLKS IN FREE LIST •••••••••••••••••••••••• 29

PHASE 6: SALVAGE FREE LIST

DEFAULT FREE-BLOCK LIST SPACING ASSUMED •••••••• 30

CLEANUP

*****BOOT ZEUS (NO SYNC!)***** ••••••••••••••••• 31
*****FILE SYSTEM WAS MODIFIED***** ••••••••••••• 31
X FILES Y BLOCKS Z FREE •••••••••••••••••••••••• 31

Zi10g

FSCK

34

LEARN

*

1

Zilog LEARN

LEARN

COMPUTER-AIDED INSTRUCTION ON ZEUS

This information is based on an article originally
written by Brian W. Kernighan and Michael E. Lesk, Bell
Laboratories.

Zilog 1

LEARN

(

2

Zilog LEARN

PREFACE

This document describes the LEARN program and its seven
Computer-Aided Instruction (CAl) scripts that provide les­
sons on the ZEUS Operating System. Since LEARN is a self­
explanatory program, this document gives the theoretical
background instead of detailed instructions on how to use
it. The purpose of this document is to guide people prepar­
ing programs similar to LEARN, not to assist them in learn­
ing basic computer skills.

Section 1 contains a general introduction to LEARN and Sec­
tion 2 states educational assumptions and design. The topic
of each script appears in Section 3, and Section 4 describes
how the LEARN program interprets the scripts. Conclusions
about the LEARN experience are in Section 5.

Zilog 2

LEARN

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

3

Zilog LEARN

TABLE OF CONTENTS

INTRODUCTION •••••••••••••••••••••••••••••••••••• 4

EDUCATIONAL ASSUMPTIONS AND DESIGN 5

2.1
2.2
2.3
2.4

Theoretical Assumptions •••••••••••••••••••• 5
Types of Lessons ••••••••••••••••••••••••••• 6
Sample Lesson Display •••••••••••••••••••••• 6
Track Levels ••••••••••••••••••••••••••••••• 7

SCRIPTS . 9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

General Information •••••••••••••••••••••••• 9
First-Time User Script ••••••••••••••••••••• 9
Basic File Handling Script ••••••••••••••••• 9
Context Editor Script •••••••••••••••••••••• 10
Advanced File Handling Script •••••••••••••• 10
Egn Language Script •••••••••••••••••••••••• 10
-ma, Scr ipt 10
C Language Script •••••••••••••••••••••••••• 10

THE SCRIPT INTERPRETER •••••••••••••••••••••••••• 11

4.1
4.2
4.3
4.4
4.5

General Information •••••••••••••••••••••••• 11
File Structure ••••••••••••••••••••••••••••• 11
Requi rements .•.•.....•.•.......•.•.•.•...•• 12
Sequence of Events ••••••••••••••••••••••••• 12
Interpreted Script ••••••••••••••••••••••••• 13

CONCLUSIONS ••••••••••••••••••••••••••••••••••••• 18

Zilog 3

LEARN

4

Zilog LEARN

SECTION 1

INTRODUCTION

The system that teaches computer skills
a driver called LEARN that interprets
scripts themselves. At present, there
Aided Instruction (CAl) scripts:

has two main parts:
the scripts, and the
are seven Computer

1. first-time user introduction

2. basic file handling commands

3. ZEUS text editor (~)

4. advanced file handling commands

5. ~ language for mathematical typing

6. the -~ macro package for document formatting

7. C programming language

The advantages of CAl scripts include the following:

$ students are forced to perform the exercises

$ students receive immediate feedback and confirma­
tion of progress

$ students progress at their own rate

$ no schedule requirements are imposed

$ lessons can be individually improved

$ the computer is accessible to the student at the
student's convenience.

$ usage of high technology motivates students and
maintains management interest

Since there is no one the student can question, CAl is com­
parable to a textbook, lecture series, or taped course
rather than to a seminar. CAl has been used for many years
in a variety of educational areas. Using the computer as a
self-teaching device offers unique advantages; the skills
developed to go through the script are exactly those needed
to operate the computer: therefore, there is no wasted
effort.

Zilog 4

I
j'

LEARN

5

Zilog LEARN

SECTION 2

EDUCATIONAL ASSUMPTIONS AND DESIGN

2.1 Theoretical Assumptions

The best way to teach people how to do something is to have
them do it. Scripts should not contain long explanations,
but instead should frequently ask the student to do a task.
Teaching is always by example; the typical lesson shows a
small example of some technique and then asks the student to
either repeat that example or produce a variation of it.
All lessons are intended to be easy enough so that most stu­
dents get most questions right, reinforcing the desired
behavior.

After each correct response, the computer congratulates the
student and indicates the lesson number that has just been
completed, permitting the student to restart the script
after that lesson. If the answer is wrong, the student is
offered a chance to repeat the lesson.

It is assumed that there is no foolproof way to determine if
the student truly "understands" what he or she is doing; the
LEARN scripts measure performance, not comprehension.

The computer provides an immediate check of the correctness
of what the student does. Unlike many CAl scripts, these
scripts provide few facilities for dealing with wrong
answers. In practice, if most of the answers are not right,
the script is a failure. The solution to the problem of
excessive student error is to provide a new, easier script.
Anticipating possible wrong answers is an endless job; it is
easier and better to provide a simpler script.

LEARN also provides a mechanical check on performance. If a
student is unable to complete one lesson, that should not
prevent access to the rest. The current version of LEARN
allows the student to skip a lesson that he or she cannot
pass. For example, a "no" answer to the "Do you want to try
again?" question in Section 2-3 causes the program to go on
to the next lesson.

There are valid objections to these assumptions, since some
students object to not understanding what they are doing.
Since writing a CAI script is more tedious than writing
ordinary manuals, there are always alternatives to the
scripts as a way of learning.

Zilog 5

LEARN

6

Zilog LEARN

2.2 Types of Lessons

Most lessons are one of three types. The simplest lesson
asks for a yes or no answer to a question. The student is
given a chance to experiment before replying, and the lesson
checks for the correct reply. Problems of this form are used
sparingly.

The second type asks for a word or number as an answer. For
example, a lesson on files might say

How many files are there in the current directory?
Type "answer N," where N is the number of files.

The student is expected to enter (perhaps after experiment­
ing) a response similar to

answer 17

The idea of a substitutable argument (replacing .N by 17) is,
difficult for nonprogrammer students, so the first few such
lessons require special attention.

The third type of lesson is open-ended. A task is set for
the student, appropriate parts of the input or output are
monitored, and the student types:

ready

when the task is done.

2.3 Sample Lesson Display

The following sample is from the script that teaches file
handling. It incorporates the open-ended and the word or
number answer types of lessons. Most LEARN lessons are of
this form. Student responses are shown in italics. The "$"
is the system prompt.

A file can be printed on your terminal
by using the IIcat" command. Just say
IIcat file" where "file" is the file name.
For example, there is a file named
"food" in this directory. List it
by saying "cat food"7 then type "ready".
$~~

this is the file
named food.

$ rep.dy

Zilog 6

\

LEARN . Zilog LEARN

7

Good. Lesson 3.3a (1)

Of course, you can print any file with "cat".
In particular, it is common to first use
"Is" to find the name of a file and then "cat"
to print it. Note the difference between

. "Is", which tells you the name of the file,
and "cat", which tells you the contents.
One file in the current directory is named for
a President. Print the file, then type "ready".
$ ~ President
cat: can't open President
$ ready

Sorry, that's not right. Do you want to try again? ~
Try the problem again.
$il.
.ocopy
Xl
roosevelt
'$ ~ roosevelt

this file is named roosevelt
and contains three lines of
text.

$ ready

Good. Lesson 3.3b (0)

The "cat" command can also print several files
at once. In fact, it is named "cat" as an abbreviation
for "concatenate" ••••

2.4 Track Levels

In the files and editor scripts there are three tracks,
differing in degrees of difficulty. The fastest script
(sequence of lessons), roughly the bulk and speed of a typi­
cal tutorial manual, should be adequate for review and for
well-prepared students. The next track, intended for most
users, is about twice as long. The third and slowest track,
which is often three or four times the length of the fast
track, is intended for the most basic instruction. For
example, the fast track presents an idea and asks for a
variation on the example shown. The normal track first asks
the student to repeat the example that was shown before
attempting a variation. The lesson in Section 2.3 is from
the third track.

The LEARN driver combines lessons in different ways to pro­
duce scripts in each track. For example, the fast track is
produced by skipping lessons from the slower track. The

Zilog 7

LEARN

8

Zilog LEARN

driver can also switch tracks, depending on the number of
correct answers the student has given for the last few les­
sons.

Zilog 8

LEARN

f

9

Zilog LEARN

SECTION 3

SCRIPTS

3.1 General ,Information

The present scripts follow a three-track theory. Care must
be taken in lesson construction to see that every necessary
fact is presented in every possible path throughout the
scripts. In addition, it is desirable that every lesson
have alternate successors to deal with student errors.

There are some preliminary skills that the student must know
before any scripts can be tried. In particular, the student
must know how to connect a ZEUS system, set the terminal
properly, log in, and execute simple commands (for example
LEARN itself). In addition, the character erase and line
kill conventions (control-h and control-x) should be known.
The student will need assistance for a few minutes to gain
familiarity with these skills.

In existing scripts, the first few lessons are devoted to
checking prerequisites. For example, before the student is
allowed to proceed through the editor script, the script
verifies that the student understands files and is able to
type. Anyone proceeding through the scripts should get
correct answers; otherwise, the system will be unsatisfac­
tory both because the wrong habits are being learned and
because the scripts make little effort to deal with wrong
answers. Therefore, unprepared students should not be
encouraged to continue with scripts.

3.2 First-Time User Script

The first-time user script covers a few important features
of the system in very brief lessons. Here, I/O redirection,
pipes, make files, the C compiler, and the ZEUS text editor
(~) are introduced.

3.3 Basic File Handling Script

It is assumed that the user of this script has basic
knowledge of Script 1; it teaches the student about the ~,
~, ~, ~, ~ and diff commands. It also deals with the
abbreviation characters *, ?, and [] in file names. It
does not cover pipes or I/O redirection, nor does it present
the many options of the ~ command.

Zilog 9

j",

I
I

LEARN

10

Zilog LEARN

3.4 Context Editor Script

This script trains students in the use of the ZEUS context
editor, ~, a sophisticated editor using regular expressions
for searching. All editor features except encryption, mark
names, and ; in addressing are covered.

3.5 Advanced File Handling Script

The advanced file handling script, assuming the basic file
handling script as a prerequisite, deals with ~ options,
I/O diversion, pipes, and supporting programs like ~, ~,
tail, spell, and ~.

3.6 Bgn Language Script

This script covers the ~ language for typing mathematics
and must be run on a terminal capable of printing mathemati­
cal symbols (for instance the DASI 300 and similar Diablo­
based terminals). Most advanced lessons provide additional
practice for students who are having trouble in the basic
track.

3.7 -m§ Script

The -~ script for formatting macros is a short, one-track
script. However, the linear style of a single LEARN script
is inappropriate for the macros, since the macro package is
composed of many independent features, and few users need
all of them.

3.8 C Language Script

The script on the language C has been partially converted to
follow the order of presentation in ~ ~ Programming
Language. The C script was never intended to teach C;
rather it is a series of exercises for which the computer
provides checking and a suggested solution.

Zilog 10

LEARN

t

11

Zilog LEARN

SECTION 4

THE SCRIPT INTERPRETER

4.1 General Information

The LEARN program interprets scripts. It provides facili­
ties to capture student responses and their effects, and
simplifies the job of passing control to and recovering con­
trol from the student. This section describes the operation
and use of the driver program, and indicates what is
required to produce a new script. Readers interested only
in the existing scripts should skip this section.

4.2 File Structure

The file structure used by LEARN is shown below. There is
one parent directory named lih containing the script data.
Within this directory are subdirectories, one for each sub­
ject where a course is available, one for logging (named
log), and one where user subdirectories are created (named
play) • The subject directory contains master copies of all
lessons, plua any supporting material for that subject. In
a given subdirectory, each lesson is a single text file.
Lessons are usually named systematically; the file that con­
tains lesson n is called Ln.

lib

play

files

studentl
files for studentl •••

student2
files for student2 •••

LO.la lessons for files course
LO.lb

editor . . .
(other courses)

log

Directory Structure for LEARN

Zilog 11

LEARN Zilog LEARN

12

When LEARN is executed, it makes a private directory for the
user to work in, within the LEARN portion of the file sys­
tem. A fresh copy of all the files used in each lesson is
usually made by the lesson script each time a student starts
a lesson. The student directory is deleted after each ses­
sion; any permanent records must be kept elsewhere.

4.3 Requirements

Each lesson must contain the following basic items:

e the text of the lesson

e the set-up commands to be executed before the user
gets control

e the data, if any, that the user is supposed to
edit, transform, or otherwise process

e the evaluating commands to be executed after the
user has finished the lesson, which decide whether
the answer is right

e a list of possible successor lessons

LEARN minimizes the work of bookkeeping and installation, so
that most of the effort involved in script production is in
planning lessons, writing tutorial paragraphs, and coding
tests of student performance.

4.4 Sequence of Events

LEARN first creates the working directory. Then, for each
lesson, LEARN reads the text for the lesson and processes it
a line at a time. The lines in the text are commands to the
text interpreter to print something, to create a files, or
to test something, text to be printed or put in a file, and
other lines that are sent to the shell to be executed. One
line in each lesson turns control over to the user, who can
run any ZEUS command. The user mode terminates when the
user types ~, ~, nQ, ready, or answer. At this point,
the user's work is tested; if the lesson is passed, a new
lesson is selected; if not, the old one is repeated.

Zilog 12

LEARN

13

Zilog LEARN

4.5 Interpreted Script

To illustrate the flow of LEARN, the sample" script from Sec­
tion 2.3 is interpreted here.

Lines that begin with # are commands to the learn script
interpreter. For example,

#print

causes printing of any text that follows, up to the next
line that begins with a sharp. The command

#print file

prints the contents of ~; it is the same as ~ ~.
Both forms of #print have the added property that if a les­
son is failed, the #print is not executed the second time;
this avoids annoying the student by repeating the preamble
to a lesson. The command -

#create file name

creates a file of the specified name and copies any subse­
quent text up to a # in the file. This creates and initial­
izes working files and reference data for the lessons. The
command

#user

gives control to the student; each line typed is passed to
the shell for execution. The #~ mode is terminated when
the student types one of the special keywords~, Qk, nQ,
ready, or answer. At that time, the driver resumes interpre­
tation of the script.

The ~ and nQ responses return control to the script, where
the answer can be evaluated with #match. Since Qk is an
alias for ~, the script writer can also use #match Qk when
an indication to proceed with the course is the only
response needed.

The ready response returns control to the script but cannot
be evaluated with #match. Instead, the user's previous
respnses are evaluated in some way. The answer response
prepares for evaluation of the answer given. For instance,
if the correct answer is ~, and the user responds with
answer ~ then #match3 is used in the script to process that
response. Anything the student types between the commands

Zilog 13

LEARN

14

:fI:copyin
:fI:uncopyin

Zilog LEARN

is copied onto a file called .~. This allows for interro­
gation of the student's responses upon regaining control.
Between the commands

:fI:copyout
:fI:uncopyout

any material typed by the student for any program is copied
to the file .ocoPY. This allows interrogation of the effect
of what the student typed.

Normally the student's input and the script commands are fed
to the ZEUS command interpreter (the shell) one line at a
time. A sequence of editor commands does not work, since
the input to the editor must be handed to the editor, not to
the shell. Accordingly, the material between the commands
:fI:~ and :fI:unpipe is fed continuously through a pipe so that
such sequences work. If copyout is also desired, the copy­
out brackets must include the pipe brackets.

There are several commands for setting statu's after the stu­
dent has attempted the lesson.

:fI:cmp filel file2

is an in-line implementation of kmP that compares two files
for identity. Following the command

:fI:match stuff

the last line of the student's input is compared to stuff,
and the success or fail status is set according to this com­
parison. Extraneous things like the word answer are
stripped before the comparison is made. There can be
several :fI:match lines7 this provides a convenient mechanism
for handling multiple "right" answers. Any text up to a :fI:
on subsequent lines after a successful :fI:match is printed, as
shown next.

:fI:print
What command will move the current line
to the end of the file? Type
"answer COMMAND", where COMMAND is the command.
:fI:copyin
:fI:user
:fI:uncopyin
:fI:match m$
:fI:match .m$
"m$" is easier.

Zilog 14

LEARN

15

#log
#next
63.ld 10

#bad stuff

Zilog LEARN

This is similar to #match, except that it corresponds to
specific failure answers; this produces hints for particular
wrong answers that have been anticipated by the script
writer. The commands

#succeed
#fail

print a message upon success or failure (as determined by
some other mechanism).

When the student types one of the "commands" ~, ~, nQ,
ready, or answer, the driver terminates the #~ command,
and evaluation of the studentrs work can begin. This can be
done either by the built-in commands, such as #match and
#~, or by status returned by normal ZEUS commands, typi­
cally ~ and~. The last command should return status
true (0) if the task is done successfully and false
(nonzero) otherwise; this status return tells the driver
whether or not the student has successfully passed the les-
son.

Performance can be logged:

#log file

writes the date, lesson, user name and speed rating, and a
success/failure indication on~. The command

#log

by itself writes the logging
directory within the LEARN
form. The commands

cleanup
nocleanup

information in the logging
hierarchy, and is the normal

are for directing the LEARN driver to clean up or ignore the
temporary files created in a lesson. By default, learn
cleans out the temporary files after each lesson. Specifi­
cally, all files that begin with a lowercase letter and are
not ".c" files are deleted before the next lesson. The
#nocleanup directive enables following lessons to depend on
files already created or changed by the user, and #cleanup

Zilog 15

LEARN

16

Zilog

restores the default action at any time. The command

#next

LEARN

is followed by a few lines, each with a successor lesson
name and an optional speed rating on it. A typical set
reads

2S.la 10
2S.2a 5
2S.3a 2

indicating that unit 2S.la is a suitable follow-on lesson
for students with a speed rating of 10 units, 2S.2a for stu­
dent with a speed rating of 5 units, and 2S.3a for students
with a speed rating of 2 units. Speed ratings are main­
tained for each session per student; the rating is increased
by one each time the student gets a lesson right and
decreased by four each time the student gets a lesson wrong.
Thus, the driver maintains a level at which the users get
80% right answers. The maximum rating is limited to 10, and
the minimum is zero. The initial rating is zero unless the
student specifies a different rating when starting a ses­
sion.

If the student passes a lesson, a new lesson is selected,
and the process repeats. If the student fails, a false
status is returned, and the program reverts to the previous
lesson and tries another alternative. If it cannot find
another alternative, it skips forward a lesson.

If the student is unable to answer one of the exercises
correctly, the driver searches for a previous lesson with a
set of alternatives as successors (following the #~
line). The program selects an alternative different from
the one tried in the previous lesson.

Sophisticated scripts can be written to evaluate the
student's speed of response, estimate the subjective merits
of the answer, or to provide detailed analysis of wrong
answers.

The driver program depends heavily on features of ZEUS that
are not available on many other operating systems. Although
some parts of LEARN might be transferable to other systems,
some generality will be lost.

Zilog 16

LEARN

17

Zilog LEARN

SECTION 5

CONCLUSIONS

The following are observations about nonprogrammers using
LEARN."

A novice must have assistance with the mechanics of communi­
cating with the computer to get through the first or second
lesson. Once the first few lessons are passed, people can
proceed on their own. Most students enjoy the system, and
motivation matters a great deal.

The terminology used in the first few lessons is obscure to
those inexperienced with computers. It would help if there
were a low-level reference card to supplement the existing
manual and reference card. The concept of "substitutable
argument" is hard to grasp and requires help.

It takes an hour or two for a novice to get through the
script on file handling. The total time for a novice to
create new files and manipulate old ones is a few days, with
perhaps half of each day spent on the machine.

The normal way of proceeding has been to have students in
the same room with someone who knows ZEUS and the scripts.
Thus, the student is not brought to a halt by difficult
questions. The burden on the counselor is much lower than
that on a teacher of a course. The students should be
encouraged to proceed with instruction immediately prior to
their actual use of the computer. They should exercise the
scripts on the same computer and the same kind of terminal
that they will later use for their real work, and their
first few jobs with the computer should be relatively easy
ones. Also, both training and initial work should take
place on days when the ZEUS hardware and software are work­
ing reliably. Students are frustrated by machine downtime;
when nothing is happening, it takes some sophistication and
experience to distinguish among an infinite loop, a slow but
functioning program, a program waiting for the user, or a
broken machine.

One disadvantage of training with LEARN is that students
come to depend completely on the CAl system and do not try
to read manuals or use other learning aids. This is unfor­
tunate, not only because of the increased demands for com­
pleteness and accuracy of the scripts but because the
scripts do not cover all of the ZEUS system. New users
should have manuals (appropriate for their level) and read
them; the scripts ought to be altered to recommend suitable
documents and to urge students to read them.

Zilog 17

LEARN

18

Zilog LEARN

From the student's viewpoint, the most serious difficulty is
that there are lessons that simply cannot be passed. Some­
times this is due to poor explanations, but just as often it
is some error in the lesson itself, a wrong setup, a missing
file, an invalid test for correctness, or some system facil­
ity that does not work on the local system as on the
development system. It takes knowledge and a certain
healthy arrogance on the part of the users to recognize that
the fault is not theirs. Permitting the student to continue
with the next lesson regardless does alleviate this, and the
logging facilities make it easy to watch for lessons that no
one can pass.

The biggest problem with some scripts, notably~, is that
they are very slow. Another potential problem is that it is
possible to break LEARN by pushing interrupt at the wrong
time, by removing critical files, or any number of similar
slips. The defenses against such problems have steadily
been improved to the point where most students should not
notice difficulties.

One area is more fundamental: LEARN currently does not allow
ZEUS global commands to be executed. The most obvious is
~, which changes to another directory. The prospect of a
student who is learning about directories moving to some
random directory and removing files has prevented lessons on ".

Zilog 18

LEX

*

1

Zilog LEX

LEX

A LEXICAL ANALYZER GENERATOR *

USER GUIDE

This information is based on an article originally
written by M. E. Lesk and E. Schmidt, Bell Labora­
tories.

Zilog 1

LEX

2

Zi10g LEX

PREFACE

This document is a reference manual for Lex, a lexical
analyzer generator that accepts string matching specifica­
tions and produces a program in a general-purpose language.
The reader is assumed to have some experience with Lex
before using this document.

Sections 1-6 give an introduction to Lex and describe its
internal rules. Hints for compiling Lex appear in Section
7. Section 8 describes the interface between Lex and Yacc
(yet another compiler-compiler). Examples of Lex are shown
in Section 9, and Section 10 gives ways to define different
Lex environments. Sections 11-13 summarize the Lex charac­
ter set, source format, and cautions.

Zi10g 2

LEX

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

SECTION 6

SECTION 7

SECTION 8

SECTION 9

3

Zi10g LEX

TABLE OF CONTENTS

INTRODUCTION ••••••••••••••••••••••••••••••• 5

LEX SOURCE ••••••••••••••••••••••••••••••••• 7

LEX REGULAR EXPRESSIONS •••••••••••••••••••• 8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

Introduction ••••••••••••••••••••••••••
Operators•.•.....................
Character Classes •••••••••••••••••••••
Arbitrary Character •••••••••••••• ~ ••••
Optional Expressions ••••••••••••••••••
Repeated Expressions ••••••••••••••••••
Alternation and Grouping ••••••••••••••
Context Recognition •••••••••••••••••••
Repetitions and Definitions •••••••••••
Segmented Separator •••••••••••••••••••

8
8
9
10
10
10
11
11
12
12

LEX ACTIONS •••••••••••••••••••••••••••••••• 13

4.1 Introduction •••••••••••••••••••••••••• 13
4.2 Regular Routines •••••••••••••••••••••• 13
4.3 Input/Output Routines ••••••••••••••••• 16
4.4 Library Routines •••••••••••••••••••••• 16

AMBIGUOUS SOURCE RULES ••••••••••••••••••••• 18

LEX SOURCE DEFINITIONS ••••••••••••••••••••• 21

COMPILING LEX •••••••••••••••••••••••••••••• 23

LEX AND YACC ••••••••••••••••••••••••••••••• 24

EXAMPLES ••••••••••••••••••••••••••••••••••• 25

9.1 Copy with Simple Arithmetic Changes ••• 25
9.2 Statistical Accumlations •••••••••••••• 25

Zi10g 3

LEX Zi10g LEX

TABLE OF CONTENTS (continued)

SECTION 10 LEFT CONTEXT SENSITIVITy ••••••••••••••••••• 27

SECTION 11 CHARACTER SET •••••••••••••••••••••••••••••• 30

SECTION 12 SUMMARY OF SOURCE FORMAT ••••••••••••••••••• 31

SECTION 13 CAUTIONS ••••••••••••••••••••••••••••••••••• 33

4 Zi10g 4

LEX

5

Zilog LEX

SECTION I

INTRODUCTION

Lex is a program generator for lexical processing of charac­
ter input streams. It accepts user-supplied specifications
for character string matching and produces a program in a
general-purpose language (yylex). This program recognizes
regular expressions in an input stream and performs the
specified actions for each expression as it is detected.
This entire process is shown as follows:

Source -> Lex -> yylex

Input -> yylex -> Output

Lex is not a complete language, but rather a generator
representing a new language feature that can be added to
different programming languages, called host languages. Just
as general-purpose languages produce code to run on dif­
ferent computer hardware, Lex writes code in different host
languages. The host language is used for the output code
generated by Lex and also for the program fragments added by
the user. Compatible run-time libraries for the different
host languages are also provided. This makes Lex adaptable
to different environments and different users. Each appli­
cation can be directed to the combination of hardware and
host language appropriate to the task, the user's back­
ground, and the properties of local implementations. At
present, the only supported host language is C.

Code needed for task completion, except expression-matching,
is supplied by the user. This can include code written by
other generators. A high-level language is provided to
write the string expressions to be matched, while the user's
freedom to write actions is unimpaired. This allows the use
of several string manipulation languages.

For example, to delete from the input all blanks or tabs at
the ends of lines, all that is required is:

%%
[\t1+$. ,

This program contains a %% delimiter to mark the beginning
of the rules and one rule that matches one or more instances
of the characters blank or tab (written \t for visibility)
just prior to the end of a line. The brackets indicate the
character class made of blank and tab; the + indicates none

Zilog 5

LEX

6

Zilog LEX

or more ••• "7 the $ indicates "end of line." No action is
specified, so the program generated by Lex (yylex) ignores
these characters. Everything else is copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
[\t]+$
[\t]+

. ,
printf(" ")7

This source scans for both rules at once and executes the
desired rule action. The first rule matches all strings of
blanks or tabs at the end of lines, and the second rule
matches all remaining strings of blanks or tabs.

Lex can be used alone for. simple transformations, or for
analysis and statistics gathering on a lexical level. Addi­
tional programs can be added easily to programs written by
Lex. Lex can also be used with a parser generator such as
Yacc to perform the lexical analysis phase. When used as a
preprocessor for a later parser generator, Lex partitions
the input stream, and the parser generator assigns structure
to the resulting pieces. The flow of control in such a case
(which might be the first half of a compiler, for example)
is shown below

lexical
rules
(Lex)

Input -> yylex

grammar
rules
(Yacc)

-> yyparse -> Parsed input

Yacc users realize that the name yylex is what Yacc expects
its lexical analyzer to be named, so the use of this name by
Lex simplifies interfacing.

The time a Lex program takes to recognize and partition an
input stream is proportional to the length of the input.
The number of Lex rules or the complexity of the rules is
not important in determining speed, unless rules that
include forward context requ1re a significant amount of
rescanning. What does increase with the number and complex­
ity of rules is the size of the program generated by Lex.

Lex is not limited to source that can be interpreted on the
basis of one-character look-ahead. For example, if there
are two rules, one looking for Ab and another for abcdefg,
and the input stream is abcdefb, Lex recognizes ab and
leaves the input pointer just before ~. Such backup is more
costly than the processing of simpler languages.

Zilog 6

LEX

7

Zilog

SECTION 2

LEX SOURCE

The general format of Lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

LEX

The definitions and the user subroutines are often omitted.

The rules represent the user's control decisions. They are
in the form of a table, in which the left column contains
regular expressions (Section 3) and the right column con­
tains actions--program fragments to be executed when the
expressions are recognized. The second %% is optional, but
the first is required to mark the beginning of the rules.

To change a number of words from British spelling to Ameri­
can spelling, start with Lex rules such as:

colour
mechanise
petrol

printf("color");
printf("mechanize");
printf("gas");

These rules are not quite enough, since the word petroleum
would become gaseum; a way of dealing with this will be
described in Sections 4 and 5.

An individual rule such as

integer printf("found keyword INT");

is used to look for the string integer in the input stream;
it prints the message "found keyword INT" whenever it
appears. In this example, the host procedural language is C
and the C library function printf prints the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expres­
sion, it can' be given on the right side of the line; if it
is compound, or takes more than a line, it should be
enclosed in braces.

Zilog 7

LEX

8

Zilog LEX

SECTION 3

LEX REGULAR EXPRESSIONS

3.1 Introduction

A regular expression specifies a set of strings to be
matched. It contains text characters that match the
corresponding characters in the strings being compared and
operator characters that specify repetitions, choices, and
other features.

The letters of the alphabet and the digits are always text
characters; thus, the regular expression

integer

matches the string integer wherever it appears, and the
expression

aS7D

looks for the string ~.

3.2 Operators

The operator characters are

"\[]"-?*+I ()$/{}%<>

When operators are used as text characters, an escape must
be used. The quotation mark operator (") indicates that any
characters contained between a pair of quotes should be
treated as text characters. Thus,

matches the string X2Z++ when it appears.
string can be quoted.

A part of a

Ordinary text characters can be included within quotes. For
example, the expression

"xyz++"

is the same as the one above. The practice of quoting every
nonalphanumeric character being used as a text character
eliminates the need to remember the list of current operator
characters.

Zi10g 8

LEX

9

Zilog LEX

An operator character can also be turned into a text charac­
ter by preceding it with \, as in the command

xyz\+\+

which is another (less readable) equivalent of the above
expressions.

Another use of the quoting mechanism is to insert a
into an expression. Normally, blanks or tabs end a
Any blank character not contained within brackets ([])
be quoted.

blank
rule.
must

Several normal C escapes with \ are recognized: \n is new
line, \t is tab, and \b is backspace. To enter \ itself,
use \ \. Since a new line is illegal in an expressi.on, \n
must be used; it is not required to escape tab and back­
space. Characters other than blank, tab, new line, and the
operator characters are always text characters.

3.3 Character Classes

Classes of characters can be specified using the operator
pair []. The construction [~] matches a single character,
which can be A, h, Qr £. When enclosed in brackets, most
characters lose any special meaning (they are not treated as
operators). The only exceptions are \, -, and A.

The - character indicates ranges. For example,

[a-zO-9<> _]

indicates the character class containing all the lowercase
letters, the digits, the angle brackets, and underline.
Ranges can be given in either order. Using between any
pair of characters that are not both uppercase letters, both
lowercase letters, or both digits causes a warning message.
If a minus sign is included in a character class, it should
be first or last; thus,

[-+0-9]

matches all the digits and the two signs.

The A operator matches the complement of the subsequent
character string. Thus,

[Aabc]

Zilog 9

LEX

10

Zilog LEX

matches all characters except a, b, or c, including all spe­
cial or control characters. The expression

[Aa- zA- Z]

matches any character that is not a letter.

The A operator must immediately follow the left bracket.

The \ character provides the usual escapes within character
class brackets.

3.4 Arbitrary Character

To match almost any character, use the operator character

which is the class of all characters except new line.
Escaping into octal is possible, although nonportable, with
the command

[\40-\176]

which matches all printable characters in the ASCII charac­
ter set, from octal 40 (blank) to octal 176 (tilde).

3.5 Optional Expressions

The operator ? indicates an optional element of an expres­
sion. Thus,

ab?c

matches either ~ or ~.

3.6 Repeated Expressions

Repetitions of classes are indicated by the operators * and
+.

a*

is any number of consecutive ~ characters, including zero;
while

a+

is one or more instances of ~. For example,

Zilog 10

LEX

11

Zilog LEX

[a-z]+

is all strings of lowercase letters. And

[A-Za-z] [A-Za-zO-9]*

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages.

3.7 Alternation and Grouping

The operator / indicates alternation:

(ablcd)

matches either AQ or ~. Parentheses are used for grouping,
although they are not necessary on the outside level. For
example,

ab/cd

is sufficient for the previous command.

Parentheses more commonly occur in more complex expressions,
such as:

(ab/cd+)?(ef)*

which matches such strings as abefef, efefef, ~, or ~,
but not ~, ~, or abcdef.

3.8 Context Recognition

Lex recognizes a small amount of surrounding context. The /
operator indicates trailing context. The expression

ab/cd

matches the string AQ, but only if followed by ~. Thus,

ab$

is the same as

ab/\n

The two simplest operators for this are A and $. If the
first character of an expression is A, the expression is
only matched at the beginning of a line (after a new line

Zilog 11

LEX

12

Zilog LEX

character, or at the beginning of the input stream). This
can never conflict with the other meaning of A (complementa­
tion of character classes) since that only applies within
the [] operators. If the last character is $, the expres­
sion is only matched at the end of a line (when immediately
followed by a new line). If a rule is to be executed only
when the Lex interpreter is in start condition x, the rule
is prefixed by

<x>

using the angle bracket operator characters. If "being at
the beginning of a line" is considered to be start condition
QHE, then the A operator is equivalent to

<ONE>

Start conditions are explained more fully in Section 10.

3.9 Repetitions and Definitions

The operator pair {} specifies either repetitions (if it
encloses numbers) or definition expansion (if it encloses a
name). For example, the command

{digit}

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules.

In contrast,

a{l,S}

looks for one to five occurrrences of a.

3.10 Segment Separator

The initial % is the separator for Lex segments.

Zilog 12

/

LEX

13

Zilog LEX

SECTION 4

LEX ACTIONS

4.1 Introduction

When an expression is matched, Lex executes the correspond­
ing action. This section describes some features of Lex
that aid in writing actions. There is a default action,
which consists of copying the input to the output, that is
performed on all strings not otherwise matched. Thus, to
absorb the entire input without producing any output, rules
must be provided to match everything. When Lex is used with
Yacc, this is the normal situation. Actions are used
instead of copying the input to the output. A character
combination that is omitted from the rules but appears as
input is likely to be printed on the output, calling atten­
tion to the gap in the rules.

4.2 Regular Routines

Specifying a C null statement (;) as an action causes the
.input to be ignored~ A frequently used rule is

[\t\n] . ,
which causes the three spacing characters (blank, tab, and
new line) to be ignored.

Another easy way to avoid writing actions is the action
character I, which indicates that the action for this rule
is the action for the next rule. The previous example could
also have been written

" "
"\t"
n\nn . ,

with the same result. The quotes around \n and \t are not
required.

In more complex actions, it is often necessary to know the
actual text that matches some expression like [A-Z]+. Lex
leaves this text in an external character array named
yytext. To print the name found, use a rule like:

[a-z]+ printf(n%sn, yytext);

Zilog 13

LEX

14

LEX

This prints the string in yytext. The C function printf
accepts a format argument and data to be printed. In this
case, the format is "print string," % indicates data conver­
sion, A indicates string type, and the characters in yytext
are the data. This rule simply places the matched string on
the output.

This action is so common that it can be written as ECHO.
The expression

[a-z]+ ECHO;

is the same as the previous example. Such rules are often
required to avoid matching some other rule that is not
desired. For example, if there is a rule that matches ~,
it normally matches the instances of ~ contained in bread
or readjust. To avoid this, a rule of the form [A-Z] + is
needed. See examples in this section for variations of this
situation.

Sometimes it is more convenient to know the end of what has
been found; therefore, Lex also provides a count (yyleng) of
the number of characters matched. To count both the number
of words and the number of characters in words in the input,
enter

[a-zA-Z]+ {words++; chars += yyleng;}

which accumulates in chars the number of characters in the
words recognized. The last character in the string matched
can be accessed by

yytext[yyleng-l]

Occasionally, a Lex action determines that a rule has not
recognized the correct span of characters. Two routines are
provided to aid with this situation. First, yymore() can be
called to indicate that the next input expression recognized
is to be tacked on to the end of this input. (Normally, the
next input string overwrites the current entry in yytext.)
Second, yyless (n) can be called to indicate that not all
the characters matched by the currently successful expres­
sion are wanted right now. The argument n indicates the
number of characters in ¥ytext to be retained. Further
characters previously matched are returned to the input.
This provides the same sort of look-ahead offered by the /
operator, but in a different form.

For example, consider a language that defines a string as a
set of characters between quotation marks en), and provides
that to include a " in a string, it must be preceded by a \.
The regular expression that matches this requirement is

Zilog 14

LEX

(i :t

15

Zilog

somewhat confusing, so it might be preferable to write

v·[....]* {
if (yytext[yyleng-l] == '\\')

yymore();
else

1
••• normal user processing

LEX

which, a upon finding a string such as "~"~", will
first match the five characters, .. ~. Then the call to
yymore() causes the next part of the string, "~", to be
tacked on the end. The final quote terminating the string
is picked up in the code labeled "normal processing."

The function yyless() reprocesses text in various cir­
cumstances. Consider the C problem of distinguishing the
ambiguity of "=-A"; to treat this as "=- A" but print a mes­
sage, it is possible to use a rule like:

=- [a-zA-Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-l);
••• action for =- •••
1

This prints a message, returns the letter after the operator
to the input stream, and treats the operator as "=-".
Alternatively, to treat this as"= -A", just return the
minus sign as well as the letter to the input •. The follow­
ing command performs the other interpretation:

=- [a-zA-Z] {
printf(ROperator (=-) ambiguous\n");
yyless(yyleng-2);
••• action for = •..
1

The expressions for the two cases are more easily be written
as

=-/ [A-Za-z)

in the first case and

=/- [A-Za-z)

in the second. No backup is then required in the rule
action.

Zilog 15

LEX

16

Zilog LEX

It is not necessary to rec~gnize the whole identifier to
observe the ambiguity. The possibility of =-1, however,
makes

=-/ [... \t\nl

a better rule.

4.3 Input/Output Routines

Lex also permits access to the Input/Output routines it
uses. They are:

• input(), which returns the next input character

• output(~), which writes the character ~ on the
output

• unput(~), which pushes the character ~ back onto
the input stream to be read later by input()

By default, these routines are provided as macro defini­
tions, but it is possible to override them and supply origi­
nal versions. These routines define the relationship
between external files and internal characters, and must all
be retained or modified consistently. They can be redefined
to cause input or output to be transmitted to or from
places, i~cluding other programs or internal memory. The
character set that is used must be consistent in all rou­
tines. This means that a value of zero returned by input
must mean end-of-file, and the relationship between unput
and input must be retained, or the Lex look-ahead will not
work.

Lex looks ahead with every rule ending
containing /. Look-ahead is also
expression that is a prefix of another
instances, Lex does not look ahead.

4.4 Library Routines

in +, *, ?, or $, or
necessary to match an
expression. In other

Lex library routine yywrap() is called whenever lex reaches
an end-of-file. The user may wish to redefine this func­
tion. If yywrap returns a 1, Lex continues with the normal
wrapup on end of input. Sometimes, however, it is con­
venient to arrange for more input to arrive from a new
source. In this case, it is necessary to provide a yywrap
that arranges for new input and returns O. This instructs
Lex to continue processing. The default yywtap always
returns 1.

Zilog 16

/

LEX

17

Zilog LEX

This routine is convenient for printing tables and summaries
at the end of programs. It is not possible to write a nor­
mal rule that recognizes end-of-file; the only access to
this condition is through yywrap. Unless an original version
of input() is supplied, a file containing nulls cannot be
handled, because a value of 0 returned by input is taken to
be end-of-file.

Zilog 17

LEX

(

18

Zilog LEX

SECTION 5

AMBIGUOUS SOURCE RULES

Lex can handle ambiguous specifications. When more than one
expression can match the current input, Lex chooses as fol­
lows:

1. The longest match is preferred.

2. Among rules that match the same number of charac­
ters, the rule given first is preferred.

For example, given the following rules

integer
[a-z]+

keyword action ••• ;
identifier action ••• ;

if the input is integers, it is taken as an identifier,
because [g-Z]+ matches eight characters while' integer
matches only seven. If the input is integer, both rules
match seven characters, and the keyword rule is selected
because it is given first. Anything shorter (such as lnt)
does not match the expression integer, so the identifier
action is taken.

The principle of preferring the longest match makes rules
containing expressions like * dangerous. For example,

, *' .
might seem a good way of recognizing a string in single
quotes, but it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of
the form

which, on the above input, stops after 'first'. The conse­
quences of errors like this are mitigated by the fact that
the • operator does not match new line. Thus, expressions

Zilog 18

LEX

19

Zilog LEX

like .* stop on the current line. Do not try to defeat this
with expressions like [.~]+ or equivalents; the Lex gen­
erated program will try to read the entire input file, caus­
ing internal buffer overflow.

Lex normally partitions the input stream rather than search­
ing for all possible matches of each expression. This means
that each character is accounted for once only. For exam­
ple, to count occurrences of both ~ and ~ in an input
text, some Lex rules might be

she s++;
he h++;
\n I . ,

where the last two rules ignore everything besides ~ and
~. This would, however, produce unexpected results; Lex
does not recognize the instances of ~ included in ~,
since once it has passed ~, those characters are not
analyzed aga~n.

To override this choice, use the action REJECT, which means
"do the next alternative." It causes whatever rule was
second choice after the current rule to be executed. The
position of the input pointer is adjusted accordingly. To
count the included instances of ~, change the previous
example to:

she {s++; REJECT;}
he {h++; REJECT;}
\n I . ,

After being counted, each expression is rejected; whenever
appropriate, the other expression is then counted. In this
example, it is possible to omit the REJECT action on~; in
other cases, however, it might not be possible to tell which
input characters fit in both classes.

Consider the two rules

a[bc]+
a[cd]+

{ ••• ; REJECT;}
{ ••• ; REJECT;}

If the input is aQ, only the first rule matches; only the
second matches 4d. The input string ~ matches the first
rule for four characters and the second rule for three char­
acters. In contrast, the input ~ agrees with the second
rule for four characters and with the first rule for three.

Zilog 19

LEX

20

Zilog LEX

In general, REJECT is useful whenever the purpose of Lex is
to detect all examples of some items in the input, and the
instances of these items overlap or include each other. It
is not useful if the purpose is to partition the input
stream. Suppose a digram table of the input is desired.
Normally the digrams overlap; for example, the word ~ is
considered to contain both .t.h and M. Assuming a two­
dimensional array called digram to be incremented, the
appropriate source is

%%
[a-z] [-z] {digram[yytext[O]] [yytext[l]]++; REJECT;}
\n .

I

where the REJECT is necessary to
beginning at every character,
character.

Zilog

pick up a letter pair
rather than at every other

20

LEX

21

Zilog LEX

SECTION 6

LEX SOURCE DEFINITIONS

As Lex turns the source rules into a program, any source not
intercepted by Lex is copied into the generated program.
This happens in the following three cases:

1. Any line beginning with a blank or tab that is not
part of a Lex rule or action is copied into the Lex
generated program. Such source input prior to the
first %% delimiter is external to any function in
the code. If it appears immediately after the
first %%, it appears in an appropriate place for
declarations in the function written by Lex that
contains the actions. This material must look like
program fragments, and must precede the first Lex
rule.

As a side effect, lines beginning with a blank or
tab that contain a comment are passed through to
the generated program. This includes comments in
either the Lex source or the generated code. The
comments should follow the hOpt language conven­
tion.

2. Anything included between lines containing only %{
and %} is copied out as in the previous case. The
delimiters are discarded. This -format permits
entering text like preprocessor statements that
must begin in column 1, or copying lines that do
not look like programs.

3. Anything after the third %% delimiter, regardless
of format, is copied out after the Lex output.

In addition to the rules, options are required to define
variables used by Lex or by a user program.

Definitions intended for Lex are given before the first %%
delimiter. Any line in this section not contained between
%{ and %}, and beginning in column 1, is assumed to define
Lex sUbstitution strings. The format of such lines is

name translation

and it causes the string given as a translation to be asso­
ciated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out

Zilog 21

LEX

22

Zilog LEX

by the {name} syntax in a rule. Using {D} for the digits
and {E} for an exponent field, for example, abbreviates
rules to recognize numbers, as follows:

D
E
%%
{D}+
{D}+"."{D}*({E})?
{D}*"."{D}+({E})?
{D}+{E}

[0-9]
[DEde] [-+]?{D}+

printf("integer");

The first two rules for real numbers require a decimal point
and contain an optional exponent field, but the first rule
requires at least one digit before the decimal point and the
second rule requires at least one digit after ~he decimal
point. To handle the problem posed by a Fortran expression
such as ~.BQ.~, which does not contain a real number, a
context-sensitive rule such as

[0-9]+/"."EQ

can be used in addition to the normal rule for integers.

The definitions section can also contain other commands,
including the selection of a host language, a character set
table, a list of start conditions, or adjustments to the
default size of arrays within Lex itself for larger source
programs.

Zilog 22

LEX

23

Zilog LEX

SECTION 7

COMPILING LEX

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated pro­
gram in the host language. Then this program must be com­
piled and loaded, usually with a library of Lex subroutines.
The generated program is on a file named ~.~.~. The I/O
library is defined in terms of the C standard library.

The library is accessed by the loader flag -~. An example
of a appropriate set of commands is

lex source
cc -u -main lex.yy.c -11

The resulting program is placed on the usual file ~.~ for
later execution. (To use Lex with Yacc, see Section 8.)
Although the default Lex I/O routines use the C standard
library, Lex itself does not; if private versions of input,
output, and unput are given, the library can be avoided.

Zilog 23

LEX

24

Zilog LEX

SECTION 8

LEX AND YACC

Lex is used with Yacc (yet another compiler-compiler) to
write a program named yylex(), required by Yacc for its
analyzer. Normally, the default main program on the Lex
library calls this routine, but if Yacc is loaded and its
main program is used, Yacc calls yylex(). In this case,
each Lex rule must end with

return{token);

where the appropriate token value is returned. An easy way
to get access to Yacc's names for tokens is to compile the
Lex output file as part of the Yacc output file by placing
the line

include "lex.yy.c"

in the last section of Yacc input.

To obtain the grammar named "good" and the lexical rules
named "better," use the commands in the following sequence:

yacc good
lex better
cc -u -main y.tab.c -ly -11

The -u -main must appear before y.tab.c,
library (-ly) must be loaded before the
obtain a main program that invokes the Yacc
generations of Lex and Yacc programs can be
order.

Zilog

and the Yacc
Lex library to
parser. The

done in either

24

LEX

25

Zilog LEX
,

SECTION 9

EXAMPLES

I
9.1 Copy with Simple Arithmetic Changes

The following Lex source program copies an input file while
adding three to every positive number divisible by seven.

%%
int k;

[0-9]+ {
sscanf(yytext, "%d", &k);
if (k%7 == 0)

printf("%d", k+3);
.. else

printf("%d",k);
}

The rule [0-9]+ recognizes strings of digits; sscanf con­
verts the digits to binary and stores the result in k. The
operator % (remainder) checks whether k is divisible by
seven; if it is, it is incremented by three as it is written
out.

This program alters such input items as 49.63 or X7. FUr­
thermore, it increments the absolute value of all negative
numbers divisible by seven. To avoid this, add a few more
rules after the active one, as follows:

%%

-?[0-9]+

-?[0-9.]+
[A-Za-z] [A-Za-zO-9]+

int k;
{
sscanf(yytext, n%d", &k);
printf("%d", k%7 == 0 ? k+3
}
ECHO;
ECHO;

Numerical strings containing a • or preceded by a letter are
picked up by one of the last two rules, and are not changed.
The If-~ has been replaced by a C conditional expression
to save space. The form 4?h:& means "if 4 then h else ~."

9.2 Statistical Accumulations

The following program produces histograms of the lengths of
words, where a word is defined as a string of letters.

Zilog 25

LEX

26

%%
[a-z]+
•
\n
%%
yywrap()
{
int i;

Zilog

int lengs[lOO];

lengs[yyleng]++;
I
;

printf("Length No. words\n");
for(i=O; i<lOO; i++)

if (lengs[i] > 0)
printf("%5d%10d\n",

return(l);
}

LEX

i , lengs [i]) ;

This program accumulates the histogram, while producing no
output. At the end of the input, it prints the table. The
final statement (return(L);) tells Lex to perform wrapup.
If yywrap returns zero (false), further input is available
and t.he program continues reading and processing. Providing
a yywrap that never returns true causes an infinite loop.

Zilog 26

LEX

27

Zilog LEX

SECTION 10

LEFT CONTEXT SENSITIVITY

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For
example, a compiler preprocessor might distinguish prepro­
cessor statements and analyze them differently from ordinary
statements. This requires sensitivity to prior context, and
there are several ways of handling such problems.

This section describes three means of dealing with different
environments:

$ using flags

$ using start conditions for rules

$ switching among distinct lexical analyzers

In each case, there are rules that recognize the need to
change the environment in which the following input text is
analyzed, and set some parameter to reflect the change.

A flag explicitly tested by the user's action code is the
simplest way of dealing with the problem, since Lex is not
necessarily involved. It may be more convenient, however,
to have Lex keep track of the flags as initial conditions on
the rules.

Any rule can be associated with a start condition and is
only recognized when Lex is in that start condition. The
current start condition can be changed at any time.

Finally, if the sets of rules for the different environments
are very dissimilar, write several distinct lexical
analyzers and switch from one to another as desired.

The following examples copy the input to the output, chang­
ing the word magic to first on every line that begins with
the letter A, changing magic to second on every line that
begins with the letter h, and changing magic to third on
every line that begins with the letter~. All other words
and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

Zilog 27

LEX

28

%%
Aa
Ab
AC

\n
magic

Zilog

int flag7

{flag = 'a', ECHO,}
{flag = 'b'; ECHO,}
{flag = 'c', ECHO,}
{flag = 0, ECHO;}
{
switch (flag)
{
case 'a': printf("first"), break,
case 'b': printf("second"), break;
case 'c': printf("third"); break;
default: ECHO; break,
}
}

LEX

To handle the same problem with start conditions, each start
condition must be introduced to Lex in the definitions sec­
tion with a line reading

%Start namel name2 •••

The conditions can be named in any order. The word start
can be abbreviated to ~ or~. The conditions can be refer­
enced at the head of a rule with brackets «». The command

<namel>expression

is a rule that is only recognized when Lex is in the start
condition namel. To enter a start condition, execute the
action statement

BEGIN namel;

which changes the start condition to namel. To resume the
normal state, the command

BEGIN 0,

resets the initial condition of the Lex automaton inter­
preter. A rule can be active in several start conditions.
For example,

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> pre­
fix operator is always active.

Zilog 28

LEX

29

Zilog

The previous example can be written:

% START AA BB CC
%%
"'a
"'b
':'c
\n
<AA)magic
<BB)magic
<CC)magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN 0 d
printf(nfirst D);

printf(nsecondn);
printf(nthird D);

LEX

The logic is the same as before, but Lex, rather than the
user's code, does the work.

Zilog 29

1.1
I~

LEX

30

Zilog

SECTION 11

CHARACTER SET

LEX

The programs generated by Lex handle character I/O only
through the routines input, output, and unput. Thus the
character representation provided 1n these routines is
accepted by Lex and used to return values in yytext. For
internal use, a character is represented as a small integer.
If the standard library is used, this integer has a value
equal to the integer value of the bit pattern representing
the character on the host computer. If the interpretation
of a character is changed by I/O routines that translate the
characters, a translation table must notify Lex. This table
must be in the definitions section and must be bracketed by
lines containing only %T. The table must contain lines of
the form

{integer} {character string}

which indicate the value associated with each character. A
sample character table follows:

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1 . . .
39 9
%T

This table maps the lower and uppercase letters together
into the integers 1 through 26, new line into 27, + and -
into 28 and 29, and the digits into 30 through 39. If a
table is supplied, every character that is to appear either
in the rules or in any valid input must be included in the
table. No character can be assigned the number 0, and no
character can be assigned a bigger number than the size of
the hardware character set. C users probably will not wish
to use the character table feature.

Zilog 30

LEX

31

Zilog

SECTION 12

SUMMARY OF SOURCE FORMAT

The general format of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

LEX

$ Definitions, in the form nname space translation n

• Included code, in the form nspace coden

• Included code, in the form

%{
code
%}

$ Start conditions, given in the form

%S narnel name2 •••

• Character set tables, in the form

%T
number space character-string
• • •
%T

• Changes to internal array sizes, in the form

%.x .nnn

where nnn is a decimal integer representing an
array size and .x selects the parameter as follows:

Letter
p
n
e
a
k
o

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

Zilog 31

LEX

32

Zilog LEX

Lines in the rules section have· the form "expression action"
where the action can be continued on succeeding lines by
using braces to delimit it.

Regular expressions in Lex use the following operators:

X
"x"
\x
[xyl
[x-z]
[.... xl .
.... x
<y>x
x$
.? x.
x*
x+
xly
(x)
x/y
{xx}

x{m,n}

the character x
an x, even if x is an operator
an x, even if x is an operator
the character x or y
the characters x, y, or z
any character but x
any character but new line
an x at the beginning of a line
an x when Lex is in start condition y
an x at the end of a line
an optional x
0,1,2, ••• instances of x
1,2,3, ••• instances of x
an x or a y
an x
an x, but only if followed by y
the translation of xx from the definitions
section
m through n occurrences of x

Zilog 32

LEX

33

Zilog LEX

SECTION 13

CAUTIONS

There are some expressions that produce exponential growth
of the tables; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the
results of the previous scan. This means that if a rule
with trailing context is found, and REJECT is executed,
unput must not have been used to change the characters com­
ing from the input stream. This is the only restriction on
manipulation of the not-yet-processed input.

Zilog 33

*

:(

1

Zilog

Lint - A C Program Checker *

This information is based on an article originally
written by S.C. Johnson, Bell Laboratories.

Zilog 1

LINT Zilog

1. Introduction and Usage

Suppose there are two C source files, filel.c and
which are ordinarily compiled and loaded together.
~ Programming Language.) Then the command

lint filel.c file2.c

LINT

file2 • .c.,
(See ~

produces messages describing inconsistencies and inefficien­
cies in the programs. The program enforces the typing rules
of C more strictly than the C compilers (for both historical
and practical reasons) enforce them. The command

lint -p filel.c file2.c

will produce, in addition to the above messages, additional
messages which relate to the portability of the programs to
other operating systems and machines. Replacing the -R by
-h will produce messages about various error-prone or waste­
ful constructions which, strictly speaking, are not bugs.
Saying -hg gets the whole works.

The next several sections describe the major messages; the
document closes with sections discussing the implementation
and giving suggestions for writing portable C. An appendix
gives a summary of the lint options.

2. A Word About Philosophy

Many of the facts which lint needs may be impossible to dis­
cover. For example, whether a given function in a program
ever gets called may depend on the input data. Deciding
whether ~ is ever called is equivalent to solving the
famous "halting problem," known to be recursively undecid­
able.

Thus, most of the lint algorithms are a compromise. If a
function is never mentioned, it can never be called. If a
function is mentioned, lint assumes it can be called; this
is not necessarily so, but in practice is quite reasonable.

Lint tries to give information with a high degree of
relevance. Messages of the form "XXX might be a bug" are
easy to generate, but are acceptable only in proportion to
the fraction of real bugs they uncover. If this fraction of
real bugs is too small, the messages lose their credibility
and serve merely to clutter up the output, obscuring the
more important messages. '

Keeping these issues in mind, we now consider in more detail
the classes of messages which lint produces.

2 Zilog 2

LINT Zilog LINT

3. Unused Variables and Functions

AS sets of programs evolve and develop, previously used
variables and arguments to functions may become unused; it
is not uncommon for external variables, or even entire func­
tions, to become unnecessary, and yet not be removed from
the source. These "errors of commission" rarely cause
working programs to fail, but they are a source of ineffi­
ciency, and make programs harder to understand and change.
Moreover, information about such unused variables and func­
tions can occasionally serve to discover bugs; if a function
does a necessary job, and is never called, something is
wrong!

Lint complains about variables and functions which are
defined but not otherwise mentioned. An exception is vari­
ables which are declared through explicit extern statements
but are never referenced; thus the statement

extern float sin();

will evoke no comment if ~ is never used. Note that this
agrees with the semantics of the C compiler. In some cases,
these unused external declarations might be of some
interest; they can be discovered by adding the -x flag to
the lint invocation.

Certain styles of programming require many functions to be
written with similar interfaces; frequently, some of the
arguments may be unused in many of the calls. The -~ option
is available to suppress the printing of complaints about
unused arguments. When -~ is in effect, no messages are
produced about unused arguments except for those arguments
which are unused and also declared as register arguments;
this can be considered an active (and preventable) waste of
the register resources of the machine.

There is one case where information about unused, or unde­
fined, variables is more distracting than helpful. This is
when lint is applied to some, but not all, files out of a
collection which are to be loaded together. In this case,
many of the functions and variables defined may not be used,
and, conversely, many functions and variables defined else­
where may be used. The -y flag may be used to suppress the
spurious messages which might otherwise appear.

4. Set/Used Information

Lint attempts to detect cases where a variable is used
before it is set. This is very difficult to do well; many
algorithms take a good deal of time and space, and still
produce messages about perfectly valid programs. Lint
detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the

3 Zilog 3

LINT Zilog LINT

input file than the first assignment to the variable. It
assumes that taking the address of a variable constitutes a
"use," since the actual use may occur at any later time,
in a data dependent fashion.

The restriction to the physical appearance of variables in
the file makes the algorithm very simple and quick to imple­
ment, since the true flow of control need not be discovered.
It does mean that lint can complain about some programs
which are legal, but these programs would probably be con­
sidered bad on stylistic grounds (e.g. might contain at
least two goto·s). Because static and external variables
are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly,
however, with initialized automatic variables, and variables
which are used in the expression which first sets them.

The set/used information also permits recognition of
local variables which are set and never used; these
frequent source of inefficiencies, and may also be
tomatic of bugs.

5. Flow of Control

those
form a

symp-

Lint attempts to detect unreachable portions of the programs
which it processes. It will complain about unlabeled state­
ments immediately following goto, break, continue, or'return
statements. An attempt is made to detect loops which can
never be left at the bottom, detecting the special cases
while(I) and for(;;) as infinite loops. Lint also com­
plains about loops which cannot be entered at the top; some
valid programs may have such loops, but at best they are bad
style, at worst bugs.

Lint has an important area of blindness in the flow of con­
trol algorithm: it has no way of detecting functions which
are called and never return. Thus, a call to ~ may cause
unreachable code which lint does not detect; the most seri­
ous effects of this are in the determination of returned
function values (see the next section).

One form of unreachable statement is not usually complained
about by lint; a break statement that cannot be reached
causes no message. Programs generated by ~, and espe­
cially ~ (see ~ ~ ~ Another Compiler-Compiler and ~
- A Lexical Analyzer), may have liteFally hundreds of
unreachable break statements. The -Q flag in the C compiler
will often eliminate the resulting object code inefficiency.
Thus, these unreached statements are of little importance,
there is typically nothing the user can do about them, and
the resulting messages would clutter up the lint output. If
these messages are desired, lint can be invoked with the -h
option.

4 Zilog 4

LINT Zilog LINT

6. Function Values

Sometimes functions return values which are never used;
sometimes programs incorrectly use function "values" which
have never been returned. ~ addresses this problem in a
number of ways.

Locally, within a function
both

definition, the appearance of

return(.e.xRI.) ;

and

return . ,
statements is cause for alarm; lint will give the message

function .n.suns;, contains returnee) and return

The most serious difficulty with this is detecting when a
function return is implied by flow of control reaching the
end of the function. This can be seen with a simple exam­
ple:

f (a) {
if (a) return (3);
9 ();
}

Notice that, if ~ tests false, ~ will call g and then return
with no defined return value; this will trigger a complaint
from lint. If g, like ~, never returns, the message will
still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been
discovered by this feature; it also accounts for a substan­
tial fraction of the "noise" messages produced by lint.

On a global scale, lint detects cases where a function
returns a value, but this value is sometimes, or always,
unused. When the value is always unused, it may constitute
an ineffiCiency in the function definition. When the value
is sometimes unused, it may represent bad style (e.g., not
testing for error conditions).

The dual problem, using a function value when the function
does not return one, is also detected. This is a serious
problem. Amazingly, this bug has been observed on a couple
of occasions in "working" programs; the desired function
value just happened to have been computed in the function
return register!

5 Zilog 5

LINT zilog LINT

7. Type Checking

Lint enforces the type checking rules of C more strictly
than the compilers do. The additional checking is in four
major areas: across certain binary operators and implied
assignments, at the structure selection operators, between
the definition and uses of functions, and in the use of
enumerations.

There are a number of operators which have an implied
balancing between types of the operands. The assignment,
conditional (?:), and relational operators have this pro­
perty; the argument of a return statement, and expressions
used in initialization also suffer similar conversions. In
these operations, char, short, int, long, unsigned, float,
and double types may be freely intermixed. The types of
pointers must agree exactly, except that arrays of A's can,
of course, be intermixed with pOinters to Zls.

The type checking rules also require that, in structure
references, the left operand of the -) be a pointer to
structure, the left operand of the. be a structure, and
the right operand of these operators be a member of the
structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value
matching. The types float and double may be freely matched,
as may the types char, short, int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside
from this, all actual arguments must agree in type with
their declared counterparts.

With enumerations, checks are made that enumeration vari­
ables or members are not mixed with other types, or other
enumerations, and that the only operations applied are =,
initialization, ==, 1=, and function arguments and return
values.

8. Type Casts

The type cast feature in C was introduced largely as an aid
to producing more portable programs. Consider the assign­
ment

p = I ;

where ~ is a character pointer. Lint will quite rightly
complain. Now, consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a
character pointer. The programmer obviously had a strong

6 Zilog 6

LINT LINT

motivation for dOing this, and has clearly signaled his
intentions. It seems harsh for lint to continue to complain
about this. On the other hand, if this code is moved to
another machine, such code should be looked at carefully.
The -& flag controls the printing of comments about casts.
When -& is in effect, casts are treated as though they were
assignments subject to complaint; otherwise, all legal casts
are passed without comment, no matter how strange the type
mixing seems to be.

9. Nonportable Character Use

On the 58000, characters are signed quantities, with a range
from -128 to 127. On most of the other C implementations,
characters take on only positive values. Thus, lint will
flag certain comparisons and assignments as being illegal or
nonportable. For example, the fragment

char c; . . .
if ((c = getchar (» < 0) ••••

works on the 58000, but will fail on machines where charac­
ters always take on positive values. The real solution is
to declare & an integer, since getchar is actually returning
integer values. In any case, lint will say "nonportable
character comparison".

A similar issue arises with bitfields; when assignments of
constant values are made to bitfields, the field may be too
small to hold the value. This is especially true because on
some machines bitfields are considered as signed quantities.
While it may seem unintuitive to consider that a two bit
field declared of type int cannot hold the value 3, the
problem disappears if the bitfield is declared to have type
unsigned.

10. Assignments of longs to ints

Bugs may arise from the assignment of ~ to an int, which
loses accuracy. This may happen in programs which have been
incompletely converted to use typedefs. When a typedef
variable is changed from int to long, the program can stop
working because some intermediate results may be assigned to
ints, losing accuracy. Since there are a number of legiti­
mate reasons for assigning longs to ints, the detection of
these assignments is enabled by the -a flag.

11. Strange Constructions

Several perfectly legal, but somewhat strange, constructions
are flagged by lint; the messages hopefully encourage better
code quality, clearer style, and may even point out bugs.
The -h flag is used to enable these checks. For example, in

7 Zilog 7

LINT Zilog LINT

the statement

*p++ ;

the * does nothing; this provokes the message "null
effect" from lint. The program fragment

unsigned x ;
if(x < 0)

is clearly somewhat strange; the test will never succeed.
Similarly, the test

if(x > 0 . . .
is equivalent to

if(x 1= 0)

which may not be the
"degenerate unsigned
says

intended action. Lint will say
comparison" in these cases. If one

if(I 1= 0) ••.•

lint will report "constant in conditional context' " since
the comparison of I with 0 gives a constant result.

Another construction detected by lint involves operator pre­
cedence. Bugs. which arise from misunderstandings about the
precedence of operators can be accentuated by spacing and
formatting, making such bugs extremely hard to find. For
example, the statements

if{ x&077 == 0)

or

x«2 + 40

probably do not do what was intended. The best solution is
to parenthesize such expressions, and llnt encourages this
by an appropriate message.

Finally, when the -h flag is in force lint complains about
variables which are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. This is legal,
but is considered by many to be bad style, usually unneces­
sary, and frequently a bug.

12. Ancient History

There are several forms of
officially discouraged.

8

older
These

Zilog

syntax which are being
fall into two classes,

8

LINT Zilog LINT

assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =-, •••
) could cause ambiguous expressions, such as

a =-1 ;

which could be taken as either

a =- 1;

or

a = -1;

The situation is especially perplexing if this kind of ambi­
guity arises as the result of a macro sUbstitution. The
newer, and preferred operators (+=, -=, etc.) have no such
ambiguities. To spur the abandonment of the older forms,
lint complains about these old fashioned operators.

A similar issue arises with initialization.
language allowed

int xl;

The older

to initialize X to 1. This also caused syntactic difficul­
ties: for example,

int x (-1) ;

looks somewhat like the beginning of a function declaration:

int x (y) { . . .
and the compiler must read a fair ways past X in order to
sure what the declaration really is •• Again, the problem is
even more perplexing when the initializer involves a macro.
The current syntax places an equals sign between the vari­
able and the initializer:

int x = -1;

This is free of any possible syntactic ambiguity.

13. Pointer Alignment

Certain pointer assignments may be reasonable on some
machines, and illegal on others, due entirely to alignment
restrictions. For example, on the PDP-II, it is reasonable
to assign integer pointers to double pointers, since double
precision values may begin on any integer boundary. On the /
Honeywell 6000, double precision values must begin on even
word boundaries; thus, not all such assignments make sense.

9 Zilog 9

LINT Zilog LINT

Lint tries to detect cases where pOinters are assigned to
other pointers, and such alignment problems ,might arise.
The message "possible pointer alignment problem" results
from this situation whenever either the -~ or -h flags are
in effect.

14. Multiple Uses and Side Effects

In complicated expressions, the best order in which to
evaluate subexpressions may be highly machine dependent.
For example, on stack machines function arguments will prob­
ably be consistently evaluated either right-to-left or
left-to-right. But on the 58000, with function arguments
being passed in registers, the order of evaluation depends
on the complexity of the arguments: more complex arguments
are evaluated first. Similar issues arise with other opera­
tors which have side effects, such as the assignment opera­
tors and the increment and decrement operators.

In order that the efficiency of C on a particular machine
not be unduly compromised, the C language leaves the order
of evaluation of complicated expressions up to the local
compiler, and, "in fact, the various C compilers have consid­
erable differences in the order in which they will evaluate
complicated expressions. In particular, if any variable is
changed by a side effect, and also used elsewhere in the
same expression, the result is explicitly undefined.

Lint checks for the important special case where a simple
scalar variable is affected. For example, the statement

.a £'1] = h £,1++] ;

will draw the complaint:

warning: i evaluation order undefined

15. Implementation

Lint consists of two programs and a driver. The first pro­
gram is a version of the Portable C Compiler which is the
basis of the 58000 and several other C compilers. This com­
piler does lexical and syntax analysis on the input text,
constructs and maintains symbol tables, and builds trees for
expressions. Instead of writing an intermediate file which
is passed to a code generator, as the other compilers do,
l.in.t. produces an intermediate file which consists of lines
of ascii text. Each line contains an external variable
name, an encoding of the context in which it was seen (use,
definition, declaration, etc.), a type specifier, and a
source file name and line number. The information about
variables local to a function or file is collected by
accessing the symbol table, and examining the expression

10 Zilog 10

LINT Zilog LINT

trees.

Comments about local problems are produced as detected. The
information about external names is collected onto an inter­
mediate file. After all the source files and library
descriptions have been collected, the intermediate file is
sorted to bring all information collected about a given
external name together. The second, rather small, program
then reads the lines from the intermediate file and compares
all of the definitions, declarations, and uses for con­
sistency.

The driver controls this process, and is also responsible
for making the options available to both passes of lint.

16. Portability

C is used in many installations, in part, to write system
code for the host operating system. This means that the
implementation of C tends to follow local conventions rather
than adhere strictly to anyone operating system's conven­
tions. Despite these differences, many C programs have been
successfully moved to various systems with little effort.
This section describes some of the differences among imple­
mentations, . and discusses the lint features which encourage
por tabil i ty •

Uninitialized external variables are treated differently in
different implementations of C. Suppose two files both con­
tain a declaration without initialization, such as

int a ~

outside of any function. The ZEUS loader will resolve these
declarations, and cause only a single word of storage to be
set aside for 4. Under some implementations of C, this is
not feasible, so each such declaration causes a word of
storage to be set aside and called 4. When loading or
library editing takes place, this causes fatal conflicts
which prevent the proper operation of the program. If lint
is invoked with the -p flag, it will detect such multiple
definitions.

A related difficulty comes from the amount of information
retained about external names during the loading process.
On the ZEUS system, externally known names have seven signi­
ficant characters, with the upper/lower case distinction
kept. On some other systems there are from six to eight
significant characters~ the case distinction is often lost.
This leads to situations where programs run on the ZEUS sys­
tem, but encounter loader problems elsewhere. Lint-s
causes all external symbols to be mapped to one case and
truncated to six characters, providing a worst-case
analysis.

11 Zilog 11

LINT Zilog LINT

A number of differences arise in the area of character han­
dling: characters in the ZEUS system are eight bit ascii:.
other systems may use a different number of bits or ebcidic
in place of ascii. Moreover, character strings go from high
to low bit positions ("left to right") on ZEUS, but from
low to high ("right to left' ') on other systems. This
means that code attempting to construct strings out of char­
acter constants, or attempting to use characters as indices
into arrays, must be looked at with great suspicion. Lint
is of little help here, except to flag multi-character char­
acter constants.

Of course, the word sizes are different! This can cause
trouble when moving code to ZEUS from a machine with a word
size greater than 16 bits; moving from ZEUS to a larger word
size should be less difficult. When problems do arise, they
are likely to be in shifting or masking. C now supports a
bit-field facility, which can be used to write much of this
code in a reasonably portable way. Frequently, portability
of such code can be enhanced by slight rearrangements in
coding style. Many of the incompatibilities seem to have
the flavor of writing

x &= 0177700 :

to clear the low order six
58000, but fails badly on
field feature cannot be
obtained by writing

x &= - 077 ;

bits of x. This suffices on the
some implementations. If the bit
used, the same effect can be

which should work on all machines.

The right shift operator is arithmetic shift on the 58000,
and logical shift on many other machines. To obtain a logi­
cal shift on. all machines, the left operand can be typed
unsigned. Characters are considered signed integers on the
58000, and unsigned on many other machines. If there were a
good way to discover the programs which would be affected, C
could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portabil­
ity seem bigger than it in fact is. The issues involved
here are rarely subtle or mysterious, at least to the imple­
mentor of the program, although they can involve some work
to straighten out.

17. Shutting Lint Up

There are occasions when the programmer is smarter than
lint. There may be valid reasons for "illegal" type
casts, functions with a variable number of arguments, etc.
Moreover, as specified above, the flow of control

12 Zilog 12

LINT Zilog LINT

information produced by lint often has blind spots, causing
occasional spurious m~ssages about perfectly reasonable pro­
grams. Thus, some way of communicating with lint, typically
to shut it up, is desirable.

The form which this mechanism should take is
clear. New keywords would require current and
to recognize these keywords, if only to ignore
has both philosophical and practical problems.
cessor syntax suffers from similar problems.

not at all
old compilers

them. This
New prepro-

What was finally done was to cause a number of words to be
recognized by lint when they were embedded in comments.
This required minimal preprocessor changes; the preprocessor
just had to agree to pass comments through to its output,
instead of deleting them as had been previously done. Thus,
lint directives are invisible to the compilers, and the
effect on systems with the older preprocessors is merely
that the lint directives don't work.

The first directive is concerned with flow of control infor­
mation; if a particular place in the program cannot be
reached, but this is not apparent to lint, this can be
asserted by the directive

/* NOTREACHED */

at the appropriate spot in the program. Similarly, if it is
desired to turn off strict type checking for the next
exp~ession, the directive

/* NOSTRICT */

can be used; the situation reverts to the previous default
after the next expression. The -2 flag can be turned on for
one function by the directive

/* ARGSOSED */

Complaints about variable number of arguments in calls to a
function can be turned off by the directive

/* VARARGS */

preceding the function definition. In some cases, it is
desirable to check the first several arguments, and leave
the later arguments unchecked. This can be done by follow­
ing the VARARGS keyword immediately with a digit giving the
number of arguments which should be checked; thus,

/* VARARGS2 */

will cause the first two arguments to be checked, the others
unchecked. Finally, the directive

13 Zilog 13

LINT Zilog LINT

/* LINTLIBRARY */

at the head of a file identifies this file as a library
declaration file; this topic is worth a section by itself.

18. Library Declaration Files

Lint accepts certain library directives, such as

-ly

and tests the source files for compatibility with these
libraries. This is done by accessing library description
files whose names are constructed from the library direc­
tives. These files all begin with the directive

/* LINTLIBRARY */

which is followed by a series of dummy function definitions.
The critical parts of these definitions are the declaration
of the function return type, whether the dummy function
returns a value, and the number and types of arguments to
the function. The VARARGS and ARGSUSED directives can be
used to specify features of the library functions.

Lint library files are processed almost exactly like ordi­
nary source files. The only difference is that functions
which are defined on a library file, but are not used on a
source file, draw no complaints. Lint does not simula~e a
full library search algorithm, and complains if the source
files contain a redefinition of a library routine (this is a
feature!).

By default, lint checks the programs it is given against a
standard library file, which contains descriptions of the
programs which are normally loaded when a C program is run.
When the -R flag is in effect, another file is checked con­
taining descriptions of the standard I/O library routines
which are expected to be portable across various machines.
The -n flag can be used to suppress all library checking.

19. Bugs, etc.

A number of lint features remain to be further developed.
The checking of structures and arrays is rather inadequate;
size incompatibilities go unchecked, and no attempt is made
to match up structure and union declarations across files.
Some stricter checking of the use of the typedef is clearly
desirable, but what checking is appropriate, and how to
carry it out, is still to be determined.

Lint shares the preprocessor with the C compiler. At some
point it may be appropriate for a special version of the

14 Zilog 14

LINT Zilog LINT

preprocessor to be constructed which checks for things such
as unused macro definitions, macro ~rguments which have side
effects which are not expanded at all, or are expanded more
than once, etc.

The central problem with lint is the packaging of the infor­
mation which it collects. There are many options which
serve only to turn off, or slightly modify, certain
features.

In conclusion, it appears that the general notion of having
two programs is a good one. The compiler concentrates on
quickly and accurately turning the program text into bits
which can be run1 lint concentrates on issues of portabil­
ity, style, and efficiency. Lint can afford to be wrong,
since incorrectness and over-conservatism are merely annoy­
ing, not fatal. The compiler can be fast since it knows
that lint will cover its flanks. Finally, the programmer
can concentrate at one stage of the programming process
solely on the algorithms, data structures, and correctness
of the program, and then later retrofit, with the aid of
lint, the desirable properties of universality and portabil­
ity·.

IS Zilog 15

LINT Zilog

Appendix: Current Lint Options

The command currently has the form

lint [-options] files ••• library-descriptors •••

The options are

h Perform heuristic checks

p Perform portability checks

v Don't report unused arguments

u Don't report unused or undefined externals

b Report unreachable break statements.

x Report unused external declarations

a Report assignments of lQng to int or shorter.

c Complain about questionable casts

n No library checking is done

s Same as h (for historical reasons)

16 Zilog

LINT

16

MAKE

*

1

Zilog MAKE

MAKE * ..

This information is based on an article originally
written by S.I. Feldman, Bell Laboratories.

Zilog 1

..

MAKE

2

Zilog MAKE

PREFACE

This document describes ~, a program that simplifies the
process of updating program files. Section 1 describes the
purpose and function of~. Sections 2 and 3 supply
information needed to use the program. The reader should be
familiar with the ZEUS Operating System and with programming
in C or PLZ/SYS.

Zilog 2

..

..

MAKE

SECTION 1

SECTION 2

SECTION 3

3

Zilog MAKE

TABLE OF CONTENTS

INTRODUCTION •••••••••••••••••••••••••••••••••• 4

1.1 Us i n 9 .!.a.k.e. ••••••••••••••••••••••••••••••• 4

BASIC FEATURES . 5

2.1
2.2
2.3
2.4

Program Operation •••••••••••••••••••••••• 5
Programming Example •••••••••••••••••••••• 5
File Generation and Macro Substitution ••• 6
Description Files •••••••••••••••••••••••• 7

COMMAND USAGE 11

3.1
3.2
3.3
3.4
3.5

Arguments ••..••••••••••••••••••••••••••.• 11
Implicit Rules ••••••••••••••••••••••••••• 12
Suffixes and Transformation Rules •••••••• 13
Sample Program ••••••••••••••••••••••••••• 14
Suggestions and Warnings ••••••••••••••••• 16

Zilog 3

MAKE

4

Zilog MAKE

SECTION 1

INTRODUCTION

1.1 Using Make

In a programming project, it is common practice to divide
large programs into smaller, more manageable pieces.Unfor­
tunately, it is very easy for a programmer to forget which
files depend on others, which files have been modified
recently, and the exact sequence of operations needed to
make or execute a new version of the program. After a long
editing session, it is easy to lose track of which files
have been changed and which object modules are still valid,
since a change to a declaration can obsolete a- dozen other
files. Forgetting to compile a routine that has been
changed or that uses changed declarations results in a pro­
gram that does not work and a bug that can be very hard to
.track down. On the other hand, recompiling everything just
-to be safe is very wasteful.

Using the program make is a simple method for maintaining
up-to-date versions of programs that are a product of many
operations on numbers of files. If the information on
interfile dependencies and command sequences is stored in a
description file, the simple command

make

is usually sufficient to update the relevant files, regard­
less of the number that have been edited since the last
make. In most cases, the description file is easy to write
and changes infrequently. It is usually easier to type the
make command than to issue even one of the needed opera­
tions, so the typical cycle of program development opera­
tions becomes

think - edit - make - test . . .
The ~ comman~ ~reates the proper files simply, correctly,
and with a m1n1mum amount of effort. It also includes a
simple macro substitution facility and encloses commands in
a single file for convenient administration.

Make is most useful for medium-sized programming projects;
it does not solve the problems of maintaining multiple
source versions or of describing huge programs.

Zilog 4

..

MAKE

5

Zilog MAKE

SECTION 2

BASIC FEATURES

2.1 Program Operation

The basic operation of ~ is to find the name of a needed
target file and update it by ensuring that all of the files
on which it depends exist and are up to date. It then
creates the target if it has not been modified since the
last modification of its dependents. ~ does a depth­
first search of the graph of dependencies. The operation of
the command depends on the availability of the date and time
that a file was last modified.

2.2 Programming Example

A program named ~ is made by compiling and loading three
C language -files, x.s;., :l.s;., and .,Z,.s;., with the 1& library.
By convention, the output of the C compilations is found in
files named X.Q, :l.Q, and "z'.Q. Assume that the files x.s;. and
:l.& share some declarations in a file named~, but that
.,Z,.& does not. That is, x.s;. and :l.s;. have the line

#include "defs"

The following text describes the relationships and opera­
tions:

prog: x.o y.o z.o
cc x.o y.o z.o -lc -0 prog

x.o y.o: defs

If this information is stored in a file named makefile, the
command

make

performs the operations needed to recreate ~ after any
changes are made to any of the four source files x.s;., :l.s;.,
.,Z,.s;., or ~.

~ uses three sources of information, a user-supplied
description file, file names and last-modified times from
the file system, and built-in rules that bridge some of the
gaps. In this example, the first line indicates that ~
depends on three object (.0) files. Once these object files
are current, the second line describes how to load them to

Zilog 5

MAKE

6

Zilog MAKE

create ~. The third line indicates that X.~ and ~.~
depend on the file ~. From the file system, ~ discov­
ers that there are three C source (.c) files corresponding
to the needed .0 files, and uses built-in information on how
to generate an object from a source file (issue a cc -c com­
mand).

The following description file is equivalent to makefile but
does not take advantage of ~I~ built-in information.

prog: x.o y.o z.o
cc x.o y.o z.o -lc -0 prog

x.o: x.c defs
cc -c x.c

y.o: y.c defs
cc -c y.c

z.o: z.c
cc -c z.c

If none of the source or object files have changed since the
last time ~ was made, all of the files are current.
Issuing the command

make

causes the program to announce this fact and stop. If, how­
ever, the ~ file has been edited, X.~ and ~.& (but not
z.&) are recompiled, and ~ is created from the. new .0
files. If only the file ~.& has changed, that file alone is
recompiled, but it is still necessary to reload ~.

If no target name is given on the ~ command line, the
first target mentioned in the description is created; other­
wise the specified targets are made.

In the makefile example,

make x.o

recompile.s X • .Q. if X • .Q. or ~ have changed.

2.3 File Generation and Macro Substitution

It is useful to include rules with mnemonic names and com­
mands that do not actually produce a file with that name.
These entries use ~I~ ability to generate files and sub­
stitute macros. For example, an entry called ~ can be
included to copy a certain set of files, or an entry called
cleanup can be used to throwaway unneeded intermediate
files. A zero-length file can be maintained to keep track
of the time when certain actions were performed. This

Zilog 6

MAKE

7

Zilog MAKE

technique is useful for maintaining remote archives and
listings.

~ has a simple macro mechanism for making substitutions
in dependency lines and command strings. Macros are defined
by command arguments or description file lines with embedded
equal signs. A macro is invoked by preceding the name with
a dollar sign. Macro names longer than one character must
be enclosed in parentheses or braces. The following are
valid macro invocations:

$ (CFLAGS)
$2
Sexy)
$Z
$ (Z)
${Z}

The last three invocations are identical. All of these mac­
ros are assigned values during input, as shown below. (Four
special macros change values during the execution of the
command: $*, $@, $?, and $<. See Section 2.4.)

OBJECTS = x.o y.o z.o
LIBES = -lc
prog: $ (OBJECTS)

cc $ (OBJECTS) $(LIBES) -0 prog . . .
The command

make

loads the three object files with the ~ library. The com­
mand

make nLIBES= -1m -lc n

loads them with both the math (-1m) and the standard (-lc)
libraries, since macro definitions on the command line over­
ride definitions in the description. (In ZEUS commands, it
is necessary to enclose arguments with embedded blanks in
quotes.)

2.4 Description Files

A description file
macro definitions,
commands.

contains three types of information:
dependency information, and executable

Zilog 7

MAKE

8

Zilog MAKE

A macro definition is a line that contains an equal sign
that is not preceded by a colon or a tab. The name (string
of letters and digits) to the left of the equal sign is
assigned the string of characters following the equal sign
(trailing and leading blanks and tabs are stripped out).
The following are valid macro definitions:

2 = xyz
abc = -1m -Imp -lc
LIBES =

The last definition assigns the null string to LIBES. A
macro that is never explicitly defined has the null string
as its value. Macro definitions can also appear on the ~
command line (Section 3.1) •

Other lines give information about-target files.
eral form of an entry is:

The gen-

targetl [target2 •••] : [: 1 [dependentl ••• 1 [; commands 1 [i •••]
[(.tAb) commands 1 [i ••• 1
•••

Items inside brackets can be omitted. Targets and depen­
dents are strings of letters, digits, periods, and slashes.
(Shell metacharacters * and? are expanded.) A command is
any string of characters not including a i (unless in
quotes) or new line. Commands can appear either after a
semicolon on a dependency line or on lines beginning with a
tab immediately following a dependency line.

If a line begins with a sharp (i), all characters after the
are ignored, as is the # itself. Blank lines also are
totally ignored. If a noncomment line is too long, it can
be continued using a backslash. If the last character of a
line is a backslash, the backslash, new line, and following
blanks and tabs are replaced by a single blank.

A dependency line can have either a single or a double
colon. A target name can appear on more than one dependency
line, but all of those lines must be of the same (single or
double colon) type.

For the single colon case, no more than one dependency line
can have a command sequence associated with it. If the tar­
get is out of date with any of the dependents on any of the
lines and a command sequence is specified (even a null one
following a semicolon or tab), it is executed; otherwise, a
default creation rule can be invoked.

In the double colon case, a command sequence can be associ­
ated with each dependency line; if the target is out of date

Zilog 8

MAKE

9

Zilog MAKE

with any of the files on a
commands are executed.
cuted. This detailed form
ing archive-type files.

particular line, the associated
A built-in rule can also be exe­
is of particular value in updat-

If a target must be created, the sequence of commands is
executed. Normally, each command line is printed and then
passed to a separate invocation of the shell after substi­
tuting for macros. The printing is suppressed in silent
mode or if the command line begins with an @ sign. ~
normally stops if any command signals an error by returning
a nonzero error code. Errors are ignored if the -i flag has
been specified on the ~ command line, if the target name
.IGNORE ~ppears in the description file, or if the command
string 1n the description file begins with a hyphen. Some
ZEUS commands return meaningless status.

Because each command line is passed to a separate invocation
of the shell, care must be taken with certain commands (such
as ~ and shell control commands) that have meaning only
within a single shell process; the results are forgotten
before the next line is executed.

Before issuing any command, certain macros are set. $@ is
set to the name of the file to be made. $? is set to the
string of names that are found to be newer than the target.
If the command was generated by an implicit rule (Section
3.2), $< is the name of the related file that caused the
action, and $* is the prefix shared by the current and the
dependent file names.

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name .DEFAULT are used. If there is no such name, ~
prints a message and stops.

Targets and dependents are usually file names. A special
notation exists for targets or dependents within archives
~(l). The notation

archive(file)

or

archive«entry pOint»

Zilog 9

MAKE . Zilog MAKE

10

refers to the file within the archive. Modification dates
are based on the dates stored within the archive, not the
archive itself. For example,

libc.a (printf.o)

or

libc.a (-printf»

refer to the object module printf.o in the archive libc.a.

Zilog 10

MAKE

·f
11

Zilog MAKE

SECTION 3

COMMAND USAGE

3.1 Arguments

The ~ command takes four kinds of arguments: macro defin­
itions, flags, description file names, and target file
names.

make [flags] [macro definitions] [targets

The following summary of the operation of the command
explains how these arguments are interpreted.

First, all macro definition arguments (arguments with embed­
ded equal signs) are analyzed and the assignments made.
Command-line macros override corresponding definitions found
in the description files.

Next, the flag arguments are examined.
flags are:

The permissible

.-d Debug mode. Print out detailed information on files
and times examined.

-f Description file name. The next argument is assumed to
be the name of a description file. The file name dash
(-) denotes the· standard input. If there are no -fl
arguments, the file named makefile (or Makefile) in the
current directory is read. The contents of the
description files override the built-in rules if they
are present.

-i Ignore error codes returned by invoked commands. This
mode is entered if the target name .IGNORE appears in
the description file.

-n No execute mode. Print commands, but do not execute
them. Even lines beginning with an @ sign are printed.

-p Print out the complete set of macro definitions and
target descriptions.

-q Question. The ~ command returns a zero or nonzero
status code depending on whether the target file is or
is not up to date.

-r Do not use the built-in rules.

Zilog 11

MAKE

12

-s

Zilog MAKE

Silent mode. Do not print command lines before execut­
ing. This mode is also entered if the target name
.SILENT appears in the description file.

-t Touch the target files (causing them to be up to date)
rather than issue the usual commands.

The remaining arguments are assumed to be the names of tar­
gets to be made; they are done in left-to-right order. If
there are no such arguments, the first name in the descrip­
tion files that does not begin with a period is made.

3.2 Implicit Rules

The ~ program uses a table of common suffixes and a set
of transformation rules to supply default dependency infor­
mation and implied commands. The default suffix list is:

.0 Object file

.c C source file

.p PLZ/SYS source file

.s Assembler source file

.y Yacc-C source grammar

The following diagram summarizes the default transformation
paths. If there are two paths connecting a pair of suf­
fixes, the longer one is used only if the intermediate file
exists or is named in the description •

• 0
/ 1\\

.c .p .s .y
/

.y

If the file x.~ is needed and there is an x.~ in the
description or directory, x.~ is compiled. If there is also
an X.~, that grammar is run through Yacc before the result
is compiled. However, if there is no x.~ but there is an
x.~, ~ discards the intermediate C language file and uses
the direct link in the graph above.

If the macro names being used are known, it is possible to
change the names of some of the compilers used in the
default, or the flag arguments with which they are invoked.
The compiler names are the macros AS, CC, PLZ, and YACC.
The command

make CC=newcc

causes the newcc command to be used instead of the usual C

Zilog 12

MAKE

13

Zilog MAKE

compiler. The macros CFLAGS, PFLAGS, and YFLAGS can be set
to cause these commands to be issued with optional flags.
Thus,

make nCFLAGS=-On

causes the optimizing C compiler to be used.

3.3 Suffixes and Transformation Rules

The ~ program itself does not recognize whether or not
file name suffixes are relevant; it cannot transform a file
with one suffix into a file with another suffix. This
information is stored in an internal table that has the form
of a description file. If the -r flag is used, this table
is not used.

The list of suffixes is actually the dependency list for the
name • SUFFIXES; ~ looks for a file with any of the suf­
fixes on the list. If such a file exists, and if there is a
transformation rule for that combination, ~ proceeds nor­
mally. The transformation rule names are the concatenation
of the two suffixes. The name of the rule to transform a
PLZ/SYS source (.p) file to a .0 file is thus .p.o. If the
rule is present· and no explicit command sequence has been
given in the user's description files, the command sequence
for the rule .p.o is used. If a command is generated by
using one of these suffixing rules, the macro $* is given
the value of the stem (everything but the suffix) of the
name of the file to be made, and the macro $< is the name of
the dependent that caused the action.

The order of the suffix list is significant; it is scanned
from left to right, and ~ uses the first name that is
formed that has both a file and a rule associated with it.
If new names are to be appended, just add an entry for .SUF­
FIXES in the description file; the dependents will be added
to the usual list. A .SUFFIXES line without any dependents
deletes the current list. (It is necessary to clear the
current list if the order of names is to be changed.)

The following is an excerpt from the default rules file:

.SUFFIXES : .0 .c .p .y .s
YACC=yacc
YACCR=yacc -r
YACCE=yacc -e
YFLAGS=
CC=cc
AS=as -u
CFLAGS=

Zilog 13

MAKE

14

Zil.og MAKE

PLZ=plz
PFLAGS=
.c.o :

$(CC) $ (CFLAGS) -c $<
.p.o :

$(PLZ) $ (PFLAGS) -c $<
.s.o :

$(AS) -0 $@ $<
.y.o :

$ (YACC) $ (YFLAGS) $<
$(CC) $ (CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

.y.c :
$ (YACC) $ (YFLAGS) $<

mv y.tab.o $@

3.4 Sample Program

AS an example of the use of make, the description file used
to maintain the ~ command itself is given. The code for
~ is spread over a number of C source files and a Yacc
grammar. The description file contains:

Description file for the Make command

P = Ipr
FILES = Makefile version.c defs main.c doname.c misc.c

files.c dosys.c gram.y
OBJECTS = version.o main.o doname.o misc.o files.o

dosys.o gram.o
LIBES= -IS
LINT = lint -p
CFLAGS = -0

make: $ (OBJECTS)
cc $ (CFLAGS) $ (OBJECTS) $(LIBES) -0 make
size make

$(OBJECTS): defs

cleanup:
-rm *.0 gram.c
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

Zilog 14

MAKE

15

Zilog MAKE

print: $(FILES) # print recently changed files

test:

lint:

pr $1 I $P
touch print

make -dp I grep -v TIME >lzap
/usr/bin/make -dp I grep -v TIME >2zap
diff lzap .2zap
rm lzap 2zap

dosys.c doname.c files.c main.c misc.c /
version.c gram.c
$(LINT) dosys.c doname.c files.c main.c /
misc.c version.c gram.c rm gram.c

~ displays each command before issuing it. The following
output results from typing the simple command

make

in a directory containing only the source and description
file:

cc -c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o

gram.o -Is -0 make
13188+3348+3044 = 19580b = 046l74b

Although none of the source files or grammars are mentioned
by name in the description file, ~ finds them using its
suffix rules and issues the needed commands. The string of
digits results from the ~ ~ command; the printing of
the command line itself is suppressed by an @ sign. The @
sign on the ~ command in the description file suppresses
the printing of the command, so only the sizes are written.

The last few entries in the description file are useful
maintenance sequences. The print entry prints only the
files that have been changed since the last ~ print com­
mand. A zero-length file print is maintained to keep track
of the time of the printing; the $1 macro in the command
line then picks up only the names of the files changed since
print was touched. The printed output can be sent to a dif­
ferent printer or to a file by changing the definition of

Zilog 15

MAKE

16

Zilog MAKE

the R macro:

make print "P = opr _spa
or

make print "p= cat >zapn

3.5 Suggestions and Warnings

The most common difficulties arise from maKe's specific
meaning of dependency. If file x.~ has an #include n~n
line, then the object file x.~ depends on~; the source
file x.~·does not. (If ~ is changed, it is not necessary
to do anything to the file x.~, but it is necessary to
recreate x.~.)

To discover what ~ would do, the -n option is very use­
ful. The command

make -n

orders ma.k.e to print out the commands it would issue without
actually executing them.

If a change to a file is absolutely certain to be benign
(for example, adding a new definition to an include file),
the -t (touch) option can save a lot of time. Instead of
issuing a large number of superfluous recompilations, makA
updates the modification times on the affected file. Thus,
the command

make -ts

(touch silently) causes the relevant files to appear
date. Obvious care is necessary, since this mode of
tion subverts the intention of maKe and destroys all
of the previous relationships.

up to
opera­
memory

The debugging flag (-d) causes ~ to print out a very
detailed description of what it is doing, including the file
times. The output is verbose, so this option is recommended
only as a last resort.

Zilog 16

"

MS

1

Zilog

Typing Documents on the ZEUS System

Using the -ms Macros with Troff and Nroff*

l-IS

* This information is based on an article originally
written by M.E. Lesk, Bell Laboratories.

Zilog 1

MS

2

Zilog MS

PREFACE

This document describes a set of macros for preparing docu­
ments using the ZEUS trott and nroff formatting programs.
Documents can be output using either a phototypesetter or a
computer terminal without changing the input.

Section 1 describes procedures for creating document files.
Section 2 tells how to print the documents. Section 3 out­
lines the use of macros for producing tables and special
symbols. The appendix summarizes the -ms commands.

Refer to the sections on nroff and troff for further infor­
mation on producing documents.

Zilog 2

MS

3

SECTION 1

SECTION 2

SECTION 3

Zi10g

TABLE OF CONTENTS

PREPARING THE FILE •••••••••••••••••••••••• 4

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17

Text .
Front Matter· •••••••••••••••••••••••••
Cover Sheets and First Pages •••••••••
Page Headings ••••••••••••••••••••••••
Mu1tico1umn Formats ••••••••••••••••••
Section Headings •••••••••••••••••••••
Indented Paragraphs ••••••••••••••••••
Emphasis •••••••••••••••••••••••••••••
Footnotes ••••••••••••••••••••••••••••
Displays and Tables ••••••••••••••••••
Boxing Words or Lines ••••••••••••••••
Keeping Blocks Together ••••••••••••••
Nroff/Troff Commands •••••••••••••••••
Date •••••••••••••••••••••••••••••••••
Signature Line •••••••••••••••••••••••
Registers
Accents ••••••••••••••••••••••••••••••

4
4
5
5
6
6
7
9
10
10
11
12
12
12
12
13
13

PRINTING THE DOCUMENT ••••••••••••••••••••• 15

USING ADVANCED FORMAT OPTIONS ••••••••••••• 16

3.1 Special Symbols •••••••••••••••••••••• 16
3.2 Tables ••••••••••••••••••••••••••••••• 16

APPENDIX A LIST OF COMMANDS ••••••••••••••••••••••••• 17

Zi10g

MS

3

MS

4

zilog MS

SECTION 1

PREPARING THE FILE

1.1 Text

Type normally, except that instead of indenting for para­
graphs, place the line

.PP

before each paragraph. This produces indenting after an
extra line space.

Alternatively, the
(block) paragraph.
(Section 1.16).

command .LP produces a left-aligned
The paragraph spacing can be changed

1.2 Front Matter

Start front matter as follows:

[optional overall format .RP, Section 1.3]
.TL
Title of document (one or more lines)
.AU
Author(s} (one or more lines)
.AI
Author's institution(s)
.AS
Abstract; to be placed on the cover sheet of a document.
Line length is 5/6 of normal; use .11 here to change •
• AE (abstract end)
text ••• (begins with .PP, Section 1.1)

To omit some of the standard headings (such as abstract or
author's institution), omit the fields and corresponding
command lines. Several interspersed .AU and .AI lines can
be used for multiple authors. The headings are not compul­
sory; beginning with a .PP command starts the document with
an ordinary paragraph.

Zilog 4

MS

5

Zilog

NOTE

Do not begin a document with a line of text. Some
-ms command must precede any text input. When in
doubt, use .LP to get proper initialization. The
commands .PP, .LP, .TL, .SH, and .NH are also
allowed.

1.3 Cover Sheets and First Pages

MS

The first line of a document signals the general format of
the first page. In particular, if the first command is .RP,
a cover sheet with title and abstract is generated. The
default format of no cover sheet is useful for scanning
drafts.

In general, -ms is arranged so that only one form of a docu­
ment need be stored. The first command gives the format,
and unnecessary items for that format are ignored.

NOTE

Do not put extraneous material between the .TL and
.AE commands. Processing of the titling items
is special, and other data placed between them may
not be processed as expected. Some -ms command
must precede any input text.

1.4 Page Headings

The -ms macros, by default, print a page heading containing
a page number. A default page footing is provided only in
nroff, where the date is used. Minor adjustments to the
page headers/footers are made by redefining the strings LH,
CH, and RH (which are the left, center, and right portions
of the page headers), and the strings LF, CF, and RF (the
left, center, and right portions of the page footer). To
get the proper page number in these strings, use a backslash
(\) as in:

.ds CH "\- \\n(PN \-

which defines a center header of the form

- 5 -

For page number, the number register PN should be used in
preference to the register %.

Zilog 5

MS

6

Zilog MS

For more complex formats, redefine the macros PT and BT,
which are invoked {respectively} at the top and bottom of
each page. The margins, taken from registers HM and for the
top margin FM for the bottom margin, are normally one inch.
The page header/footer is in the middle of that space. If
these macros are redefined, be careful with parameters such
as point size or font.

1.5 Multicolumn Formats

The command

.MC [column width [gutter width]]

makes multiple columns with the specified column and gutter
width. The maximum is as many columns as fit across the
page. Whenever the number of columns is changed {except
going from full width to some larger number of columns}, a
new page is started.

This feature is more useful for typeset output than for out­
put to the terminal. Placing the command .2C in your docu­
ment causes it to be printed in double-column format begin­
ning at that point. The command .1C produces one-column
format. Changing column format causes a page break.

1.6 Section Headings

Two commands, .NH and .SH, are used to produce section head­
ings. Entering

.NH
type section heading here
can be several lines

produces a numbered section heading in boldface.
command produces an unnumbered heading.

The .SH

Every section heading must be followed by a paragraph begin­
ning with .PP or .LP to indicate the end of the heading.
Headings can contain more than one line of text.

The .NH
schemes.
be a level
generated.
sections.

command also supports more complex numbering
If a numerical argument is given, it is taken to
number, and an appropriate subsection number is

Larger level numbers indicate deeper sub­
For example,

Zilog 6

~lS

7

.NH
. Erie-Lackawanna

.NH 2

Zilog

Morris and Essex Division
.NH 3
Gladstone Branch
.NH 3
Montclair Branch
.NH 2
Boonton Line

generates:

2. Erie-Lackawanna

2.1. Morris and Essex Division

2.1.1. Gladstone Branch

2.1.2. Montclair Branch

2.2. Boonton Line

1.7 Indented Paragraphs

MS

Paragraphs with han~ing numbers, such as references, are
often handled with 1ndented paragraphs.

Example 1. Simple Indentation

.IP [1]
Text for first paragraph, typed
normally for as long as necessary
on as many lines as needed •
• IP [2]
Text for second paragraph, •••

produces

[1] Text for first paragraph, typed normally for as long as
necessary on as many lines as needed.

[2] Text for second paragraph, •••

A series of indented paragraphs can be followed by an ordi­
na~y paragraph by entering .PP or .LP.

Zilog 7

MS

8

Zilog 1\1S

Example 2. Block Indentation

More sophisticated uses of .IP are also possible. If the
label is omitted, for example, a plain block indent is pro­
duced. The lines

.IP
This material will
just be turned into a
block indent suitable for quotations •
• LP

produce

This material will just be turned into a block indent
suitable for quotations.

Example l. Nonstandard Indentation

If a nonstandard amount of indenting is required, it is
specified after the label (in character positions) and
remains in effect until the next .PP or .LP. Thus, the gen­
eral form of the .IP command contains two additional fields:
the label and the indenting length. For example,

• IP first: 9
Notice the longer label, requiring larger
indenting for these paragraphs •
• IP second:
And so forth •
. LP

produces the following:

first: Notice the longer label, requiring larger indenting
for these paragraphs.

second: And so forth.

Example i. Multiple Nested Indentations

It is also possible to produce multiple nested indents. The
command .RS indicates that the next .IP starts from the
current indentation level. Each .RE takes one level of
indenting, so .RS and .RE commands must be balanced. The
.RS command can be thought of as "move right" and the .RE
command as "move left." For example,

Zilog 8

11S

9

.IP 1.
Customer Corporation
.RS
.IP 1.1
Hurray Hill
.IP 1.2
Holmdel
.IF 1.3
Hhippany
.RS
.IP 1.3.1
r·~adison
.RE
.IP 1.4
Chester
.RE
.LP

resul ts in

1. Customer Corporation

1.2 Holmdel

1.3 Nhippany

1.3.1 Hac1ison

1.4 Chester

Zilog

Example~. Right Indentation

P~ll of these
untouched.
quotation, a
required.

variations on .LP leave the right margin
Sometimes, for purposes such as setting off a
paragraph indented on both right and left is

A single paragraph like this is obtained
by preceding it \dth .QP. tiore compli­
cated material (several paragraphs) is
bracketed with .QS and .QE.

1.8 Emphasis

To produce italics on the typesetter or underlining on the
terminal, use

• I
as much text as you want

Zilog 9

MS

~ ..

10

can be typed here
.R

Zilog MS

as was done for these three words. The.R command restores
the normal (usually Roman) font. If only one word is to be
italicized or underlined, it can be input on a separate line
with the .1 command,

• I word

In this case, no .R is needed to restore the previous font.

Boldface output on the typesetter is produced by

.B
Text to be set in boldface
goes here
.R

This is also underlined on the terminal or line printer. As
with .1, a single word can be placed in boldface by placing
it on a separate line with the .B command.

Size changes can be specified with the commands .LG (make
larger), .SM (make smaller), and .NL (return to normal
size). The size change is two points; the commands can be
repeated for increased effect.

To specify an underlined word on the typesetter, use the
command

.UL word

There is no way to underline multiple words on the
typesetter.

1.9 Footnotes

Material placed between lines with the commands .FS for
footnote and .FE for footnote end is collected and placed at
the bottom of the current page after an asterisk (*). By
default, footnotes are II/12th the length of normal text,
but this can be changed using the FL register (Section
1.16).

1.10 Displays and Tables

To prepare displays whose lines are not to be rearranged
(such as tables), enclose the text in the commands .DS and
.DE as follows:

Zilog 10

MS

11

Zilog

.DS
table lines, like the
examples here, are placed
between .DS and .DE
.DE

MS

By default, lines between .DS and .DE are- indented and
left-adjusted. It is also possible to center lines, or
retain the left margin. Lines bracketed by .DS C and .DE

.commands are centered and not rearranged. Lines bracketed
by .DS Land .DE are left-adjusted, not indented, and not
rearranged. The command .DS is equivalent to .DS I, which
indents and left-adjusts. For example,

whereas

these lines were preceded
by .DS C and followed by

a .OE command;

These lines were preceded
by .DS L and followed by
a .DE command.

There is also a variant, .DS B, that makes the display into
a left-adjusted block of text, then centers that entire
block.

Normally, a display is kept on one page. To produce a long
display split across page boundaries, use .CD, .LD, or .ID
in place of the commands .DS C, .OS L, or .OS I, respec­
tively. An extra argument to the .DS I or .DS command
specifies the amount to indent. There is no command to
right-adjust lines.

1.11 Boxing Words or Lines

To draw a rectangular box around a word, use the command

.BX word

Longer pieces of text can be boxed by enclosing them with
.Bl and .B2, as with

.Bl
text •••
• B2

Italics are preferred to boxes because boxes are not printed
neatly on a terminal. However, £Ql may be used to improve
such terminal output. See ~ Referen£e Manual, Section 1.

Zilog 11

MS

12

Zilog MS

1.12 Keeping Blocks Together

To keep a table or other block of lines together on a page,
use the keep - release commands. If a block of lines pre­
ceded by .KS and followed by .KE does not fit on the
remainder of the current page, it begins on a new page.
(Lines bracketed by .DS and .DE commands are automatically
kept together this way.) There is also a keep floating (.KF)
command. If a"block preceded by .KF (instead of .KS) does
not fit on the current page, it is moved down through the
text until the top of the next page. Thus, no large blank
space is introduced in the document.

1.13 Nroff/Troff Commands

The following commands from the basic formatting programs
work for both typesetter and computer terminal output:

.bp begin new page

.br "break" stop running text from line to line

.sp n insert n blank lines

.na do not adjust right margins

1.14 Date

By default, documents produced on computer terminals have
the date at the bottom of each page, and documents produced
on the typesetter do not. To force the date, use the .DA
command. To force no date, use the .ND command. To force a
fixed date, enter the date after the .DA command; for exam­
ple,

.DA July 4, 1776

The command ".ND May 8, 1945" in .RP format places the
specified date on the cover sheet and nowhere else. Place
this line before the title.

1.15 Signature Line

To obtain a signature line, use the command .SG. The
author's name is output in place of the .SG line. An argu­
ment to .SG is used as a typing identification line, and
placed after the signatures. The .SG command is ignored in
released paper format.

Zilog 12

MS

13

Zilog MS

1.16 Registers

Certain of the registers used by -ms can be altered to
change default settings using commands beginning with .nr.
For example,

.nr PS 9

makes the default point size 9 point. If the effect is
needed immediately, use the normal troff command in addition
to changing the number register.

Reg. Defines Takes Effect Default

PS point size next paragraph 10
VS line spacing next paragraph 12 pts
LL line length next paragraph 6 inches
LT title length next paragraph 6 inches
PD para. spacing next paragraph 0.3 VS
PI para. indent next paragraph 5 ens
FL footnote length next FS 11/12 LL .
CW column width next 2C 7/15 LL
GW inter column gap next 2C 1/15 LL
PO page offset next page 26/27 inches
HM top margin next page 1 inch
FM bottom margin next page 1 inch

It is also possible to alter the strings LH, CH, and RH
(left, center, and right headers), and LF, CF, and RF
(strings in the page footers). The page number on output is
taken from register PN to permit changing its output style.
For more complicated headers and footers, the macros PT and
BT can be redefined as explained, in Section 1.4.

1.17 Accents

To simplify typing certain foreign words, strings represent­
ing common accent marks are defined for use on photocomposi­
tion systems and terminals on which strikeover characters
have been defined.

Zilog 13

MS

14

Input

*'e
*'e
*:u
*"e
*-a
*Ce
*,c

Zilog

Output
Character with:

accute accent
grave accent
umlaut (diaeresis)
circumflex
tilde
hacek (wedge)
cedilla

Zilog

MS

14

MS

15

Zilog MS

SECTION 2

PRINTING THE DOCUMENT

After the document is prepared and stored on a file, it can
be displayed on a terminal with the command

nroff -ms file

If double-column format (2C) is being used, pipe the nroff
output through ~ by making the first line of the input

.pi /z/bin/col

The document can be printed on the typesetter with the com­
mand

troff -ms file

Many options are possible. In each case, if the document is
stored in several files, list all the file names used. If
equations or tables are used, ~ and/or tQl must be invoked
as preprocessors.

Zilog 15

MS

16

Zilog MS

SECTION 3

USING ADVANCED FORMAT OPTIONS

3.1 Special Symbols

To use Greek or mathematics symbols, see ~ for equation
setting. To aid ~ users, -mQ provides definitions of" .EQ
and .EN, which normally center the equation and set it off
slightly. An argument on .EQ is taken to be an equation
number and placed in the right margin near the equation. In
addition, there are three special arguments to EQ; the
letters C, I, and L indicate centered (default), indented,
and left-adjusted equations. If there is both a format argu­
ment and an equation number, give the format argument first,
as in

.EQ L (1.3a)

for a left-adjusted equation numbered (1.3a).

3.2 Tables

The macros .TS and .TE are defined to separate tables from
text with white space. A very long table with a heading can
be broken across pages by beginning it with .TS H instead of
.TS, and placing the line .TH in the table data to repeat
the heading. If the table has no heading repeated from page
to page, use the ordinary .TS and .TE macros.

Zilog 16

MS Zilog MS

APPENDIX A

LIST OF COMMANDS

lC Return to single-column format
2C Start double-column format
AB Begin abstract
AE End abstract
AI Specify author's institution
AU Specify author
B Begin boldface
DA Provide the date on each page
DE End display
DS Start display (also CD, LD, ID)
EN E~d equation
EQ Begin equation
FE End footnote
FS Begin footnote
I Begin italics
IP Begin indented paragraph
KE Release keep
KF Begin floating keep
KS Start keep
LG Increase type size
LP Left aligned block paragraph
NO Change or cancel date
NH Specify numbered heading
NL Return to normal type size
PP Begin paragraph
R Return to regular font (usually Roman)
RE End one level of relative indenting
RP Use released paper format
RS Relative indent increased one level
SG Insert signature line
SH Specify section heading
SM Change to smaller type size
TL Specify title
UL Underline one word

17 Zilog 17

\
~

).9

i?i?, Li? ,
te~t •••

\ - \

MS Zilog MS

Register Names

The following register names are used by -rns internally.
Independent use of these names in one's own macros may pro-
duce incorrect output. No lowercase letters are used in any
-ms internal name.

Number Registers Used in -rns

. FC 84 IQ MF NS PO TC YY .
iT FL 85 IR MM OI PQ TO ZN
IT FP HT KI MO PD PX TO
AV GW IF Ll NA PE RO TV
CW 81 IK LE NC PF ST VS
DW 82 IM LL ND PI T. WF
EF 83 IP LT NF PN TB YE

String Registers Used in -rns

AI CS EM I LB OK RP TL ,
AU CT EN Il LD PP RO TM

\ ... B D EO I2 LG PT RS TO
BG DA EZ I3 LP PY RT TS
BT DE FA I4 ME OF SO TT

, C DS FE IS MF R Sl UL
lC Cl DW FJ ID MH Rl S2 WB
2C C2 DY FK IE MN R2 SG WH
Al CA El FN 1M MO R3 S8 WT
A2 CB E2 FO IP MR R4 SM XD
A3 CC E3 FO IZ ND Rs SN XF
A4 CD E4 FS KE NH RC SY XK
AS CF Es FV KF NL RE TA
AB CH EE FY KO NP RF TE
AE CM EL 80 KS OD RH TH

18 Zilog 18

NROFF/TROFF Zilog NROFF/TROFF

*

1

NROFF/TROFF USER'S MANUAL*

This information is based on an article originally
written by Joseph F. Ossanna, Bell Laboratories.

Zilog 1

'" .

NROFF/TROFF Zilog NROFF/TROFF

2

PREFACE

This document is a reference manual for the nroff/troff text
processor s. The reader is expecte'd to have some exper ience
with these text processors before using this manual. For an
introductory text, see Troff Tutorial.

Each section of this document covers an nroff/troff command
or set of related commands, and sections appear in order of
use; that is, frequently used commands appear first. At the
end of this documment are several summaries and appendixes.

Numerical parameters are indicated in this manual in two
ways. +N means that the argument can take the forms N, +N,
or -N and that the corresponding effect is to set the
affected parameter to N, to increment it by N, or to decre­
ment it by N. N means that an initial algebraic sign is not
an increment indicator, but merely the sign of N. Gen­
erally, unreasonable numerical input is either ignored or
truncated to a reasonable value. For example, most requests
expect to set parameters to non-negative values; exceptions
are sp, wh, ch, nr, and if. The requests ps, ft, po, vs,
Is, 11, in, and It restore the previous parameter value in
the absence of an argument.

Single character arguments are indicated by single lowercase
letters and one/two character arguments are indicated by a
pair of lowercase letters. Character string arguments are
indicated by multicharacter mnemonics.

NOTE

The version of troff on ZEUS produces output for a
Graphic Systems Inc. C/A/T phototypesetter. This
device is not presently supported by ZEUS. Since
the device is not present, it will always appear
to be busy to troff.

Zilog 2

NROFF/TROFF Zilog NROFF/TROFF

3

TABLE OF CONTENTS

SECTION 1 BASIC INFORMATION ••••••••••••••••••••••••• 6

1.1 Introduction ••••••••••••••••••••••••• 6
1.2 Usage •••••••••••••••••••••••••••••••• 6
1.3 Form of Input •••••••••••••••••••••••• 8
1.4 Formatter and Device Resolution •••••• 9
1.5 Numerical Parameter Input •••••••••••• 9
1.6 Numerical Expressions •••••••••••••••• 10

SECTION 2 FONT AND CHARACTER SIZE CONTROL ••••••••••• 11

2.1
2.2
2.3

Character Set .. 11
Fonts ••••...••••••••.•.•••.••.••.•••. 11

12 Character Size .
SECTION 3 PAGE CONTROL •••••••••••••••••••••••••••••• 15

SECTION 4 TEXT FILLING, ADJUSTING, AND CENTERING •••• 18

4.1 Filling and Adjusting •••••••••••••••• 18
4.2 Inter~upted Text ••••••••••••••••••••• 19

SECTION 5 SPACING •••••••••••••••••••••••••. ' • • • • • • • •• 21

5.1 Base-Line Spacing •••••••••••••••••••• 21
5.2 Extra-Line Spacing ••••••••••••••••••• 21
5.3 Blocks of Vertical Space ••••••••••••• 21
5.4 Line Length and Indenting •••••••••••• 23

SECTION 6 MACROS, STRINGS, DIVERSIONS,
AND POSITION TRAPS •••••••••••••••••••••••• 25

6.1 Macros and Strings ••••••••••••••••••• 25
6.2 Copy Mode and Input Interpretation ••• 25
6.3 Arguments. .. 26
6.4 Diversions ••••••••••••••••••••••••••• 27
6.5 Traps•.........•...........•... 27

SECTION 7 NUMBER REGISTERS •••••••••••••••••••••••••• 31

Zilog 3

NROFF/TROFF Zilog - NROFF /TROFF

4

TABLE OF CONTENTS (continued)

SECTION 8 TABS, LEADERS, AND FIELDS ••••••••••••••••• 33

8.1 Tabs and Leaders ••••••••••••••••••••• 33
8 .2 Fie 1 ds ••.••..•••••...••••..•••.•..•.. 33

SECTION 9 INPUT/OUTPUT CONVENTIONS AND
CHARACTER TRANSLATIONS •••••••••••••••••••• 35

9.i Input Character Translation •••••••••• 35
9.2 Ligatures •••••••••••••••••••••••••••• 35
9.3 Backspacing, Underlining, and

Overstriking ••••••••••••••••••••••••• 36
9.4 Control Characters ••••••••••••••••••• 37
9.5 Output Translation ••••••••••••••••••• 37
9.6 Transparent Throughput ••••••••••••••• 38
9.7 Comments and Concealed New Lines ••••• 38

SECTION 10 LOCAL MOTIONS AND THE WIDTH FUNCTION •••••• 39

10.1 Local Motions •••••••••••••••••••••••• 39
10.2 Width Functions •••••••••••••••••••••. 39
10.3 Mark Horizontal Place •••••••••••••••• 40

SECTION 11 OVERSTRIKE, LINE-DRAWING, AND ZERO-WIDTH
FUNCTIONS ••••••••••••••••••••••••••••••••• 41

11.1 Overstriking ••••••••••••••••••••••••• 41
11.2 Line Drawing ••••••••••••••••••••••••• 41
11.3 Zero-Width Characters •••••••••••••••• 42

SECTION 12 HYPHENATION ••••••••••••••••••••••••••••••• 43

SECTION 13 THREE-PART TITLES ••••••••••••••••••••••••• 45

SECTION 14 OUTPUT LINE NUMBERING ••••••••••••••••••••• 46

SECTION 15 CONDITIONAL ACCEPTANCE OF INPUT ••••••••••• 48

SECTION 16 ENVIRONMENT SWITCHING ••••••••••••••••••••• 50

Zilog 4

"' ... ,

NROFF/TROFF Zilog NROFF/TROFF

5

TABLE OF CONTENTS (continued)

SECTION 17 INSERTIONS FROM THE STANDARD INPUT •••••••• 51

SECTION 18 INPUT/OUTPUT FILE SWITCHING •.••••••••••••• 52

SECTION 19 MISCELLLANEOUS •••••••••••••••••••••••••••• 53

SECTION 20 OUTPUT AND ERROR MESSAGES ••••••••••••••••• 55

SECTION 21 EXAMPLES •••••••••••••••••••••••••••••••••• 56

21.1 Introduction •••••••••••••••••••••••• 56
21.2 Page Margins •••••••••••••••••••••••• 56
21.3 Paragraphs and Headings ••••••••••••• 58
21.4 Multiple Column Output •••••••••••••• 59
21.5 Footnote Processing ••••••••••••••••• 60
21.6 Last Page ••••••••••••••••••••••••••• 62

APPENDIX A SUMMARY AND INDEX ••••• ; •••••••••••••••••• 63

A.I Summary. . • . . • . . • . • • . . • . • • . • • • . .• 63
A.2 Alphabetical Request and Section

Number Cross Reference •••••••••••••• 70
A.3 Escape Sequences for Characters,

Indicators, and Functions ••••••••••• 70
A.4 Predefined General Number

Registers ••••••••••••••••••••••••••• 72
A.5 Predefined Read-only Number

Registers ••••••••••••••••••••••••••• 72

APPENDIX B SUMMARY OF RECENT CHANGES TO NROFF/TROFF •• 74

Zilog 5

NROFF/TROFF Zilog NROFF/TROFF

6

SECTION 1

BASIC INFORMATION

1.1 Introduction

Nroff and troff are text processors under the ZEUS Time­
Sharing System that format text for typewriter-like termi­
nals and for phototypesetters, respectively. They accept
lines of text interspersed with lines of format control
information and format the text into a printable, paginated
document with a user-designed style. Nroff and troff offer
great freedom in document styling, including:

$ Arbitrarily styled headers and footers

$ Arbitrarily styled footnotes

$ Multiple automatic sequence numbering for para­
graphs, sections, etc.

$ Multiple column output

$. Dynamic font and pOint-Size control

$ Arbitrary horizontal and vertical local motions at
any point

$ A family of automatic overstriking, bracket con­
struction, and line drawing functions

Nroff and troff are compatible with each other; it is pOSSi­
ble to prepare input acceptable to both. Conditional input
is provided that enables the user to embed input destined
for either program. Nroff can prepare output directly for a
variety of terminal types and is capable of utilizing the
full resolution of each terminal.

1.2 Usage

The general form of invoking nroff or troff at ZEUS command
level is

nroff options files (or troff options files)

where options represents any of a number of option arguments
and files represents the list of files containing th~ docu­
ment to be formatted. An argument conSisting of a single
minus (-) is taken to be a file riame corresponding to the

Zilog 6

NROFF/TROFF Zilog NROFF/TROFF

7

standard input. If no file names are· given, input is taken
from the standard input. The following options can appear
in any order as long as. they appear before the files:

Option

-o.l.i.a.t

-nN

-sN

-m.ruun.e.

-r..a.N

-i

-q

-T.n.run.e

-e

Effect

Print only pages whose page numbers appear in
a list that consists of comma-separated
numbers and number ranges. A number range
has the form N-M and means pages N through M:
an initial -N means from the beginning to
page N: a final N- means from N to the end.

Number first generated page N.

Stop every N pages. Nroff halts prior to
every N pages (default N=l) to allow paper
loading or changing, and resumes upon receipt
of a new line. Troff stops the photo­
typesetter every N pages, produces a trailer
to allow changing cassettes, and resumes
after the phototypesetter START button is
pressed.

Prepends the macro file /usr/lib/tmac.nsm& to
the input files •.

Register ~ (one-character) is set to N.

Read standard input after the input files are
exhausted.

Invoke the simultaneous input-output mode of
the rd request.

NROFF ONLY

Specifies the name of the output terminal
type. Currently defined names are:
37 for the Model 37 Teletypewriter
TN300 (default) for the GE TermiNet 300 (or
any terminal without half-line capabilities),
300S for the DASI-300S,
300 for the DASI-300,
450 for the DASI-450 (Diablo Hyterm).

Produce equally-spaced words in adjusted
lines, using full terminal resolution.

Zilog 7

NROFF/TROFF Zilog NROFF/TROFF

8

-t

-f

-b

-a

-pN

TROFF ONLY

Direct output to the standard output instead
of the phototypesetter.

Refrain from feeding out paper and stopping
phototypesetter at the end of the run.

Troff reports whether the phototypesetter 1s
busy or available. No text processing is
done. (See NOTE in preface.)

Send a printable (ASCII) approximation of the
results to the standard output.

Print all characters in point size N, while
retaining all prescribed spacings and
motions, to reduce phototypesetter elasped
time.

Each option is invoked as a separate argument; for example,

nroff -o~,a-~ -TlQQS -m~ filel file2

requests formatting of pages 4, 8, 9, and 10 of a document
contained in the files named filel and file2, specifies the
output terminal as a DASI-300S, and invokes the macro pack­
age ~.

1.3 Form of Input

Input consists of text lines that are destined to be
printed, interspersed with control lines that control subse­
quent processing. Control lines begin with a control char­
acter, normally a period (.) or acute accent (') followed by
a one or two-character name that specifies a basic request
or the sUbstitution of a user-defined macro in place of the
control line. The control character I suppresses the break
function (the forced output of a partially filled line)
caused by certain requests. The control character can be
separated from the request/macro name by white space (spaces
and/or tabs). Names must be followed by either a space or a
new line. Control lines with unrecognized names are
ignored.

Various special functions can be introduced anywhere in the
input by means of an escape character, normally a backslash
(\). For example, the function \nR, causes the interpola­
tion of the contents of the number register R in place of
the function; here R is either a single-character name as in
\nx, or a left-parenthesis-introduced, two-character name as

Zilog 8

NROFF/TROFF Zilog NROFF/TROFF

9

in \n(xx.

1.4 Formatter and Device Resolution

For internal processing, troff uses 432 units per inch,
corresponding to the Graphic Systems phototypesetter, which
has a horizontal resolution of 1/432 inch and' a vertical
resolution of 1/144 inch. Nroff uses 240 units per inch,
corresponding to the least common multiple of the horizontal
and - vertical resolutions of various typewriter-like output
devices. Troff' rounds horizontal/vertical numerical parame­
ter input to the actual horizontal/vertical resolution of
the Graphic Systems typesetter. Nroff rounds numerical
input to the actual resolution of the output device indi­
cated by the -T option (default Model 37 Teletype).

1.5 Numerical Parameter Input

Both nroff and troff accept numerical input with the
appended scale indicators shown in the following table,
where S is the current type size in points, V is the current
vertical line spacing in basic units, and C is a nominal
character width in basic units.
Scale Number of Basic Units
Indicator Meaning TROFF NROFF

i Inch 432 240
c Centimeter 432xSO/127 240xSO/127
P Pica = 1/6 inch 72 240/6
m Em = S pOints 6xS C
n En = Em/2 3xS C
p Point = 1/72 inch 6 240/72
u Basic unit 1 1
v Vertical line space V V none
Default, see below

In nroff, both the em and the en are taken to be equal to
the C, which is output-device dependent; common values are
1/10 and 1/12 inch. Actual character widths in nroff need
not be the same, and constructed characters such as -> are
often extra wide. The default scaling is ems for the
horizontally-oriented requests and functions 11, in, ti, ta,
It, po, mc, \h, and \1; the default is VS for the
vertically-oriented requests and functions pI, wh, ch, dt,
sp, sv, ne, rt, \v, \x, and \L; the default is p for the vs
request: the default is u for the requests nr, if, and ie.
All other requests ignore any scale indicators. When a
number register containing an already appropriately scaled
number is interpolated to provide numerical input, the unit
scale indicator y needs to be appended to prevent an

Zilog 9

NROFF/TROFF Zilog NROFF/TROFF

10

additional inappropriate default scaling.
can be specified in decimal-fraction form,
finally stored is rounded to an integer
units.

The number (N)
but the parameter
number of basic

The absolute position indicator (I) can be prepended to a
number N to generate the distance to the vertical or hor­
izontal place N. For vertically-oriented requests and func­
tions, I N becomes the distance in basic units f rom the
current vertical place on the page or in a diversion (Sec­
tion 6.4) to the the vertical place N. For all other
requests and functions, IN becomes the distance from the
current horizontal place on the input line to the horizontal
place N. For example,

• sp 13. 2c

spaces in the required direction to 3.2 centimeters from the
top of the page.

1.6 Numerical Expressions

Wherever numerical input is expected, the following can be
used: an expression involving parentheses, the arithmetic
operators +, -, I, *, % (mod), and the logical operators <,
>, <=, >=, = (or ==), & (and), and : (or). Except where
controlled by parentheses, evaluation of expressions is
left-to-right; there is no operator precedence. In the case
of certain requests, an initial + or is stripped and
interpreted as an increment or decrement indicator. In the
presence of default scaling, the desired scale indicator
must be attached to every number in an expression for which
the desired scaling differs from the default scaling. For
example, if the number register x contains 2 and the current
point size is 10, then

.11 (4.25i+\nxP+3)/2u

sets the line length to 1/2 the sum of 4.25 inches + 2
picas + 30 points.

Zilog 10

NROFF/TROFF Zilog NROFF/TROFF

11

SECTION 2

FONT AND CHARACTER SIZE CONTROL

2.1 Character Set

The troff character set consists of the Graphics Systems
Commercial II character set plus a Special Mathematical Font
character set. Each set has 102 characters. These charac­
ter sets are shown in the Appendix. All ASCII characters
are included, with some on the Special Font. With three
exceptions, the ASCII characters are input as themselves,
and non-ASCII characters are input in the form \(xx where xx
is a two-character name given in the Appendix. The three
ASCII exceptions are mapped as follows:

ASCII Input:

Character

,

Name

acute accent
grave accent
minus

Printed by troff:

Character

,

Name

close quote
open quote
hyphen

The·characters " " and - can be input by \', \',
respectively, or by their names (Section 2).
characters @, #, ", I, " <,), \, {, }, -, A, and
only on the Special Font and are printed as a I-em
that font is not mounted.

and \-,
The ASCII

exist
space if

Nroff recognizes the entire troff character set, but can
print only ASCII characters, additional characters as are
available on the output device, such characters as are able
to be constructed by overstriking or other combination, and
those that can reasonably be mapped into other printable
characters. The exact behavior is determined by a driving
table prepared for each device. The characters I, " and
print as themselves.

2.2 Fonts

The default mounted fonts are Times Roman (R), Times Italic
(I), Times Bold (B), and the Special Mathematical Font (S)
on physical typesetter positions 1, 2, 3, and 4, respec­
tively. The current font can be changed (among the mounted
fonts) by use of the ft request, or by embedding at any
desired point either \fx, \f(xx, or \fN, where x or xx is
the name of a mounted font and N is a numerical font posi­
tion. It is not necessary to change to the special font;
characters on that font are automatically handled. A

Zilog 11

NROFF/TROFF Zilog NROFF/TROFF

12

request for a font that is named but not mounted is ignored.
Troff Can be informed that any particular font is mounted by
use of the fp request. The list of known fonts is
installation-dependent. In the subsequent discussion of
font-related requests, F represents a one or two-character
font name or the numerical font position, 1-4. The current
font is available (as numerical position) in the read-only
number register .f.

Nroff recognizes font control and (normally) underlines
Italic characters.

2.3 Character Size

Character point sizes available on the Graphic Systems
typesetter are 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22,
24, 28, and 36. This is a range of 1/12 inch to 1/2 inch.
The ps request changes or restores the point size. Alterna­
tively, the pOint size is changed between any two cha~acters
by embedding a \sN at the desired point to set the size to
N, or a \S±N to increment/decrement the size by N; \sO
restores the previous size. Requested pOint size values
that are between two valid sizes yield the larger of the
two. The current size is available in the .s register.
Nroff ignores type size control.

Request
Form

.ps ±N

Ini tial If No
Value Argument

10 point previous

Explanation: Point size set to +N. Alternatively, embed \sN
or \s±N. Any positive size value can be requested; if
invalid, the next larger valid size results, with a maximum
of 36. A paired sequence +N, -N works because the previous
requested value is also remembered, but ignored in nroff.
Relevant parameters are a part of the current environment

Request
Form

.ss N

Initial
Value

If No
Argument

12/136 em ignored

Explanation: Space-character size is set to N/36 ems. This
size is the minimum word spacing in adjusted text. Ignored
in nroff. Relevant parameters are a part of the current
environment.

Zilog 12

(

NROFF/TROFF Zilog NROFF/TROFF

13

Request
Form

• cs

Initial
Value

F N M

If No
Argument

off

Explanation: Constant character space (width) mode is set on
for font F (if mounted); the width of every character is
taken to be N/36 ems. If M is absent, the em is that of the
character's pOint size; if M is given, the em is M-points.
All affected characters are centered in this space, includ­
ing those with an actual width larger than this space. Spe­
cial Font· characters occurring while the current font is F
are also so treated. If N is absent, the mode is turned
off. The mode must be still or again in effect when the
characters are physically printed. Ignored in nroff.

Request
Form

.bd

Initial
Value

F N

If No
Argument

off

Explanation: The characters in font F are artificially made
boldface by printing each one twice, separated by NA-l basic
units. A reasonable value for N is 3 when the character
size is in the vicinity of 10 points. If N is missing the
bold mode is turned off. The mode must be still or again in
effect when the characters are physically printed. Ignored
in nroff.

Request
Form

• bd

Initial
Value

S F N

If No
Argument

off

Explanation: The characters in the Special Font are made
boldface whenever the current font is F. The mode must be
still or again in effect when the characters are physically
printed.

Request
Form

.ft F
..

Initial
Value

Roman

If No
Argument

previous

Explanation: Font changed to F.
The font name P is reserved
Relevant parameters are a part of

Request
Form

.fp N F

Initial
Value

R,I,B,S

If No
Argument

ignored

Zilog

Alternatively, imbed \fF.
to mean the previous font.
the current environment.

13

NROFF/TROFF Zilog NROFF/TROFF

14

Explanation: Font position. This is a statement that a font
named F is mounted' on position N (1-4). It is a fatal error
if F is not known. The phototypesetter has four fonts phy­
sically mounted. Each font consists of a film strip that
can be mounted on a numbered quadrant of a wheel. The
default mounting sequence assumed by troff is R, I, B, and S
on positions 1, 2, 3 and 4.

~ilog 14

\" / i

NROFF/TROFF Zilog NROFF/TROFF

15

SECTION 3

PAGE CONTROL

Top and bottom margins are not automatically provided; it is
conventional to define two macros and to set traps for them
at vertical positions 0 (top) and -N (N from the bottom).
(See Sections 6 and 21.) A pseudo-page transition onto the
first page occurs either when the first break occurs or when
the first non-diverted text processing occurs. Arrangements
for a trap to occur at the top of the first page must be
completed before this transition. In the following, refer­
ences to the current diversion (Section 6.4) mean that the
mechanism being described works during both ordinary and
diverted output.

The usable page width on the Graphic Systems phototypesetter
is about 7.54 inches, beginning about 1/27 inch from the
left edge of the 8 inch wide, continuous roll paper. The
physical limitations on nroff output are output-device
dependent.

Request
Form

.pl ±N

Initial
Value

11 in

If No
Argument

11 in

Explanation: Page length set to +N. The internal limitation
is about 75 inches in troff and about 136 inches in nroff.
The current page length is available in the .p register.
The default scale indicator is v (ignored if not specified).

Request
Form

Initial
Value

.bp +N=l

If No
Argument

Explanation: Begin page. The current page is ejected and a
new page is begun. If ±N is given, the new page number is
±N. Also see request ns. The default scale indicator is v
(ignored if not specified). This request normally causes a
break. The use of n I n as control character (instead of .)
suppresses the break function.

Request
Form

.pn ±N

Initial
Value

N=l

If No
Argument

ignored

Explanation: Page number.
has the page number +N.

The next page (when it occurs)
A pn must occur before the initial

Zilog 15

NROFF/TROFF Zilog NROFF/TROFF

16

pseudo-page transition to effect the page number of the
first page. The current page number is in the % register.

Request
Form

.po +N

Initial
Value

If No
Argument

O:26/l27in* previous

Explanation: Page offset. Values separated by : are for
nroff and t~off, respectively. The current left margin is
set to (+-N. The troff initial value provides about one
inch of paper margin including the physical typesetter mar­
gin of 1/27 inch. In troff the maximum (line length)+(page
offset) is about 7.54 inches (Section 5). The current page
offset is available in the .0 register. The default scale
indicator is v (ignored if not specified).

Request
Form

.ne N

Initial
Value

If No
Argument

N=l V

Explanation: Need N vertical space. If the distance, D, to
the next trap position (Section 6.5) is less than N, a for­
ward vertical space of size D occurs, which springs the
trap. If there are no remaining traps on the page, D is the
distance to the bottom of the page. If D < V, another line
could still be output and spring the trap. In a diversion,
D is the distance to the diversion trap, if any, or is very
large. The default scale indicator is v (ignored if not
specified) •

Request
Form

.mk R

Initial
Value

none

If No
Argument

internal

Explanation: Mark the current vertical place in an internal
register (both associated with the current diversion level) ,
or in register R, if given. See rt request.

Request
Form

.rt ±N

Initial
Value

none

If No
Argument

internal

~xplanation: Return upward only to a marked vertical place
ln the current diversion. If ±N (with respect to current
place) is given, the place is ±N from the top of the page or
diversion or, if N is absent, to a place marked by a previ­
ous mk. The sp request (Section 5.3) can be used in all
cases instead of rt by spacing to the absolute place stored

Zilog 16

(

NROFF/TROFF Zi10g NROFF/TROFF

17

in a explicit register; for example using the sequence .mk R
• •• • sp I \nRu.

Zilog 17

NROFF/TROFF Zilog NROFF/TROFF

18

SECTION 4

TEXT FILLING, ADJUSTING, AND CENTERING

4.1 Filling and Adjusting

Normally, words are collected from input text lines and
assembled into an output text line until some word does not
fit. An attempt is then made the hyphenate the word in an
effort to assemble a part of it into the output line. The
spaces between the words on the output line are then
increased to spread out the line to the current line length
minus any current indent. A word is any string of charac­
ters delimited by the space character or the beginning/end
of the input line. Any adjacent pair of words that must be
kept together (neither split across output lines nor spread
apart in the adjustment process) can be tied together by
separating them with the unpaddable space character "\ "
(backslash-space). The adjusted word spacings are uniform
and the minimum interword spacing can be controlled with the
ss request. In nroff, they are normally nonuniform because
of quantization to character-size spaces; however, the com­
mand line option -e causes uniform spacing with full output
device resolution. Filling, adjustment, and hyphenation can
all be prevented or controlled. The text length on the last
line output is available in the .n register, and text base­
line position on the page for this line is in the nl regis­
ter. The text base-line (lowest place) on the current page
is in the .h register.

An input text line ending with ., ?, or ! is taken to be the
end of a sentence, and an additional space character is
automatically provided during filling. Multiple interword
space characters found in the input are retained, except for
trailing spaces; initial spaces also cause a break.

When filling is in effect, a \p can be embedded or attached
to a word to cause a break at the end of the word and have
the resulting output line spread out to fill the current
line length.

A text input line that begins with a control character can
be made to look like a regular text line by prefacing it
with the nonprinting, zero-width filler character \&.
Another way to do this is to specify output translation of
some convenient character into the control character using
tr.

Zilog 18

, ,

NROFF/TROFF Zilog NROFF/TROFF

19

4.2 Interrupted Text

The copying of an input line in nofill (non-fill) mode can
be interrupted by terminating the partial line with a \c.
The next encountered input text line is considered to be a
continuation of the same line of input text. Similarly, a
word within filled text is interrupted by terminating the
word (or line) with \c; the next encountered text is taken
as a continuation of the interrupted ~ord. If the interven­
ing control lines cause a break, any partial line is forced
out along with any partial word.

Request
Form

.br

Initial
Value

If No
Argument

Explanation: Break. The filling of the line currently being
collected is stopped and the line is output without adjust­
ment. Text lines beginning with space characters and empty
text lines (blank lines) also cause a break.

Request
Form

Initial
Value

.fi filIon

If No
Argument

Explanation: Fill subsequent output lines. The register .u
is 1 in fill mode and 0 in nofill mode. This request nor­
mally causes a break. Relevant parameters are a part of the
current environment.

Request
Form

Initial
Value

.nf filIon

If No
Argument

Explanation: No fill. Subsequent output lines are neither
filled nor adjusted. Input text lines are copied directly
to output lines without regard for the current line length.
This request normally causes a break. Relevant parameters
are a part of the current environment.

Request
Form

.ad c

Initial If No
Value Argument

adj,both adjust

Explanation: Line adjustment is begun. If fill mode is not
on, adjustment is deferred until fill mode is back on. If
the type indicator c is present, the adjustment type is

Zilog 19

NROFF/TROFF Zilog NROFF/TROFF

20

changed as shown in the following table:

Indicator

I
r
c
b or n
absent

Request
Form

Initial
Value

.na adjust

Adjust Type

adjust left margin only
adjust right margin only
center
adjust both margins
unchanged

If No
Argument

Explanation: No adjust. Adjustment is turned off; the right
margin is ragged. The adjustment type for ad is not
changed. Output line filling still occurs if fill mode is
on. Relevant parameters are a part of the current environ­
ment.

Request
Form

.ce N

Initial
Value

off

If No
Argument

N=l

Explanation: Center the next N input text lines within the
current (line length minus indent). If N=O, any residual
count is cleared. A break occurs after each of the N input
lines. If the input line is too long, it is left adjusted.
Relevant parameters are a part of the current environment.

Zilog 20

I ,

NROFF/TROFF Zilog NROFF/TROFF

21

SECTION 5

VERTICAL SPACING

5.1 Base-Line Spacing

The vertical spacing (V) between the base-lines of succes­
sive output lines is set using the vs request with a resolu­
tion of 1/144 inch = 1/2 point in troff, and to the output
device resolution in nroff. V must be large enough to
accommodate the character sizes on the affected output
lines. For the common type sizes (9-12 pOints), usual
typesetting practice is to set V to 2 pOints greater than
the point size; troff default is lO-point type on l2-point
spacing. The current V is available in the .v register.
Multiple-V line separation (for example, double spacing) is
requested with Is.

5.2 Extra Line-Space

If a word contains a construct that requires the output line
containing it to have extra vertical space before and/or
after it, the extra-line-space function (\x'N') can be
embedded in or attached to that word. In this and other
functions that have a pair of delimiters around their param­
eter (her~ I), the delimiter choice is arbitrary, except
that it cannot look like the continuation of a number
expression for N. If N is negative, the output line con­
taining the word is preceded by N extra vertical spaces; if
N is positive, the output line containing the word is fol­
lowed by N extra vertical spaces. If successive requests
for extra space apply to the same line, the maximum values
are used. The most recently utilized post-line extra line­
space is available in the .a register.

5.3 Blocks of Vertical Space

A block of vertical space is ordinarily requested using sp,
which honors the no-space mode and which does not space past
a trap. A contiguous block of verticai space can be
reserved using sv.

Request
Form

.vs N

Initial If No
Value Argument

1/6in; previous
12 pts

Zilog 21

, .

NROFF/TROFF Zilog NROFF/TROFF

22

Explanation: Set vertical base-line spacing size V. Tran­
sient extra vertical space available with \x'N ' • Relevant
parameters are a part of the current environment. The
default scale indicator is p (ignored if not specified).

Request
Form

.ls N

Initial
Value

N=l

If No
Argument

previous

Explanation: Line spacing set to ±N. N-l VS (blank lines)
are appended to each output text line. Appended blank lines
are omitted if the text or previous appended blank line
reached a trap position. Relevant parameters are a part of
the current environment.

Request
Form

.sp N

Initial
Value

If No
Argument

N=lV

Explanation: Space vertically in either direction. If N is
negative, the motion is backward (upward) and is limited to
the distance to the top of the page. Forward (downward)
motion is truncated to the distance to the nearest trap. If
the no-space mode is on, no spacing occurs (see ns, and rs
below) • This request normally causes a break. The default
scale indicator is v (ignored if not specified).

Request
Form

.sv N

Initial
Value

If No
Argument

N=lV

Explanation: Save a contiguous vertical block of size N. If
the distance to the next trap is greater than N, N vertical
space is output. No-space mode has no effect. If this dis­
tance is less than N, no vertical space is immediately out-

'put, but N is retained for later output (see os). Subse­
quent sv requests overwrite any retained N. The default
scale indicator is v (ignored if not specified).

Request
Form

.os

Initial
Value

If No
Argument

Explanation: Output saved vertical space.
no effect. Used to output a block
requested by an earlier sv request.

Zilog

No-space mode has
of vertical space

22

NROFF/TROFF Zilog NROFF/TROFF

23

Request
Form

Initial
Value

.ns space

If No
Argument

Explanation: No-space mode turned on. When on, the no-space
mode inhibits sp requests and bp requests without a next
page number. The no-space mode is turned off when a line of
output occurs, or with rs. Relevant parameters are associ­
ated with the current diversion level.

Request
Form

Initial
Value

.rs space

If No
Argument

Explanation: Restore spacing. The no-space mode is turned
off. Relevant parameters are associated with the current
diversion level.

Request Initial
Form -Value

Blank text line.

If No
Argument

Explanation: Causes a break and output of a blank line
exactly like sp 1.

5.4 Line Length and Indenting

The maximum line length for fill mode is set with 11. The
indent is set with in; an indent applicable to only the next
output line is set with tie The line length includes indent
space but not page offset space. The line length minus the
indent is the basis for centering with ce. If a partially
collected line exists, the effect of 11, in, or ti is
delayed until after that line is output. In fill mode, the
length of text on an output line is less than or equal to
the line length minus the indent. The current line length
and indent are available in registers.l and .i respec­
tively. The length of three-part titles produced by tl is
independently set by It.

Request
Form

.11 ±N

Initial
Value

6.5 in

If No
Argument

previous

Explanation: Line length is set to. In troff the maximum
(line length)+(page offset) is about 7.54 inches. Relevant
parameters are a part of the current enviroment. The

Zilog 23

NROFF/TROFF Zilog NROFF/TROFF

24

default scale indicator is m (ignored if not specified).

Request
Form

• in +N

Initial
Value

N=O

If No
Argument

previous

Explanation: Indent is set to ±N. The indent is prepended
to each output line. This request normally causes a break.
Relevant parameters are a part of the current environment.
The default scale indicator is m (ignored if not specified).

Request
Form

.ti ±N

Initial
Value

If No
Argument

ignored

Explanation: Temporary indent. The next output text line
will be indented a distance ±N with respect to the current
indent. The resulting total indent cannot be negative. The
current indent is not changed. This request normally causes
a break. Relevant parameters are a part of· the current
environment. The default scale indicator is m (ignored if
not specified).

Zilog 24

/'

~ ,g ,

NROFF/TROFF Zilog NROFF/TROFF

25

SECTION 6

MACROS, STRINGS, DIVERSION, AND POSITION TRAPS

6.1 Macros and Strings

A macro is a named set of arbitrary lines that can be
invoked by name or with a trap. A string is a named string
of characters, not including a new line character, that can
be interpolated by name at any point. Request, macro, and
string names share the same name list. Macro and string
names can be one or two characters long and can use previ­
ously defined request, macro, or string names. Any of these
entities can be renamed with rn or removed with rm. Macros
are created by de and di, and appended to by am and da; di
and da cause normal output to be stored in a macro. Strings
are created by ds and appended to by as. A macro is invoked
in the same way as a request; a control line beginning .AX
interpolates the contents of macro xx. The remainder of the
line can contain up te nine arguments. The strings x and xx
are interpolated at any desired pOint with *x and *{xx,
respectively. String references and macro invocations can
be nested.

6.2 Copy Mode Input Interpretation

During the definition and extension of strings and macros
(not by diversion), the input is read in copy mode. The
input is copied without interpretation except that:

~

~

~

~

~

$

~

$

The contents of number registers indicated by \n
are interpolated

Strings indicated by * are interpolated

Arguments indicated by \$ are interpolated

Concealed new lines indicated by \{new line} are
eliminated

Comments indicated by \" are eliminated

\t and \a are interpreted as ASCII horizontal tab
and SOH, respectively

\\ is interpreted as \

\. is interpreted as •

Zilog 25

NROFF/TROFF Zilog NROFF/TROFF

26

These interpretations can be suppressed by prepending
For example, since \\ maps into a \, \\n copies as \n,
is interpreted as a number register indicator when the
or string is reread.

6.3 Arguments

a \.
which
macro

When a macro is invoked by name, the remainder of the line
is taken to contain up to nine arguments. The argument
separator is the space character, and arguments can be sur­
rounded by double quotes to permit embedded space chaxac­
terse Pairs of double quotes can be embedded in double
quoted arguments to represent one double quote. If the
desired arguments do not fit on a line, a concealed new line
can be used to continue on the next line.

When a macro is invoked, the input level is pushed down and
any arguments available at the previous level become una­
vailable until the macro is completely read and the previous
level is restored. A macro's own arguments can be interpo­
lated at any pOint within the macro with \$N, which interpo­
lates the Nth argument (1~IN~9). If an invoked argument
does not exist, a null string results. For example, the
macro xx is defined by

.de xx \"begin definition
Today is \\$1 the \\$2.

\"end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that the \$ is concealed in the definition with a
prepended \. The number of currently available arguments is
in the .$ register.

No arguments are available at the top (nonmacro) level in
this implementation. Because string referencing is imple­
mented as an input-level push down, no arguments are avail­
able from within a string. No arguments are available
within a trap-invoked macro.

Arguments are copied in copy mode onto a stack where they
are available for reference. The mechanism does not allow
an argument to contain a direct reference to a long string
that is interpolated at copy time. It is advisable to

Zilog 26

NROFF/TROFF Zilog NROFF/TROFF

27

conceal string references with an extra \ to delay interpo­
lation until argument reference time.

6.4 Diversions

Processed output can be diverted into a macro for purposes
such as footnote processing (Section 21.5) or determining
the horizontal and vertical size of some text for condi­
tional changing of pages or columns. A single diversion
trap can be set at a specified vertical position. The
number registers dn and dl contain the vertical and horizon­
tal size of the most recently ended diversion. Processed
text that is diverted into a macro retains the vertical size
of each of its lines when reread in nofill mode, regardless
of the current V. Constant-spaced (cs) or bold (bd) text
that is diverted can be reread correctly only if these modes
are again or still in effect at reread time. One way to do
this is to embed in the diversion the appropriate cs or bd
requests with the transparent mechanism described in Section
9.6.

Diversions can be nested, and certain parameters and regis­
ters are associated with the current diversion level. The
top nondiversion level can be thought of as the Oth diver­
sion level. These are the diversion trap and associated
macro, no-space mode, the internally-saved marked place (mk
and rt), the current vertical place (.d register), the
current text base-line (.h register), and the c.urrent diver­
sion name (.z register).

6.5 Traps

Three types of trap mechanisms are available: page traps, a
diversion trap,. and an input-line-count trap. Macro­
invocation traps can be planted using wh at any page posi­
tion including the top. This trap position is changed using
ch. Trap positions at or below the bottom of the page have
no effect unless or until moved within the page or rendered
effective by an increase in page length. Two traps can be
planted at the same position only by first planting them at
different positions and then moving one of the traps; the
first planted trap conceals the second unless and until the
first one is moved (Appendix). If the first one is moved
back, it again conceals the second trap. The macro associ­
ated with a page trap is automatically invoked when a line
of text is output whose vertical size reaches or sweeps past
the trap position. Reaching the bottom of a page springs
the top-of-page trap, if any, provided there is a next page.
The distance to the next trap position is available in the
.t register; if there are no traps between the current

Zilog 27

NROFF/TROFF Zilog NROFF/TROFF

28

position and the bottom of the page, the distance returned
is the distance to the page bottom.

A macro-invocation trap effective in the current diversion
can be planted using dt. The.t register works in a diver­
sion; if there is no subsequent trap, a large distance is
returned. The following table describes the input-line­
count traps:

Request
Form

Initial
Value

.de xx yy -

If No
Argument

.yy= ••

Explanation: Define or redefine the macro xx. The contents
of the macro begin on the next input line. Input lines are
copied in copy mode until the definition is terminated by a
line beginning with .yy, whereupon the macro yy is called.
In the absence of yy, the definition is terminated by a line
beginning with two periods (••). A macro can contain de
requests, provided the terminating macros differ or the con­
tained definition terminator is concealed. The •• can be
concealed as \\ •• (which copies as \ ••) and be reread as ••
itself.

Request Initial
Form Value

• am xx yy -

If No
Argument

.yy= ••

Explanation: Append to macro (append version of de).

Request
Form

.ds xx string

Initial
Value

ignored

If No
Argument

Explanation: Define a string xx containing string. Any ini­
tial double quote in string is stripped off to permit ini­
tial blanks.

Request
Form

.as xx string

Initial
Value

ignored

If No
Argument

Explanation: Append string to string xx (append version of
ds) •

Zilog 28

(

NROFF/TROFF Zilog NROFF/TROFF

29

Request
Form

.rm xx

Initial
Value

If No
Argument

ignored

Explanation: Remove request, macro, or string. The name xx
is removed from the name list and any related storage space
is freed. Subsequent references have no effect.

Request
Form

Initial
Value

.rn xx yy -

If No
Argument

ignored

Explanation: Rename request, macro, or string xx to yy. If
yy exists, it is first removed.

Request
Form

.di xx

Initial
Value

If No
Argument

end

Explanation: Divert output to macro xx. Normal text pro­
cessing occurs during diversion except that page offsetting
is not done. The diversion ends when the request di or da
is encountered without an argument; extraneous requests of
this type should not appear when nested diversions are being
used. Mode or relevant parameters are associated with the
current diversion level.

Request
Form

.da xx

Initial
Value

If No
Argument

end

Explanation: Divert, appending· to xx (append version of di).
Mode or relevant parameters are associated with the current
diversion level.

Request
Form

.wh N xx

Initial
Value

If No
Argument

Explanation: Install a trap to invoke xx at page position; a
negative N is interpreted with respect to the page bottom.
Any macro previously planted at N is replaced by xx. A zero
N refers to the top of a page. In the absence of xx, the
first found trap at N, if any, is removed. The default
scale indicator is v (ignored if not specified).

Zilog 29

NROFF/TROFF Zilog NROFF/TROFF

30

Request
Form

.ch xx N

Initial
Value

If No
Argument

Explanation: Change the trap position for macro xx to be N.
In the absence of N, the trap, if any, is removed. The
default scale indicator is v (ignored if not specified).

Request
Form

.dt N xx

Initial
Value

If No
Argument

off

Explanation: Install a diversion trap at position N in the
current diversion to invoke macro xx. Another dt redefines
the diversion trap. If no arguments are given, the diver­
sion trap is removed. Mode or relevant parameters are asso­
ciated with the current diversion level. The default scale
indicator is v (ignored if not specified).

Request
Form

.it N xx

Initial
Value

If No
Argument

off

Explanation: Set an input-line-count trap to invoke the
macro xx after N lines of text input have been read (control
or request lines do not count). The text can be in-line
text or text interpolated by in-line or trap-invoked macros.
Relevant parameters are a part of the current environment.

Request
Form

.em xx

Initial
Value

none

If No
Argument

none

Explanation: The macro xx is invoked when all input has
ended. The effect is the same as if the contents of xx had
been at the end of the last file processed.

Zilog 30

NROFF/TROFF Zilog NROFF/TROFF

31

SECTION 7

NUMBER REGISTERS

A variety of parameters are available to the user as prede­
fined, named number registers (Summary and Index). In addi­
tion, named registers can be user-defined. Register names
are one or two characters long and do not conflict with
request, macro, or string names. Except for certain prede­
fined read-only registers, a number register can be read,
written, automatically incremented or decremented, and
interpolated into the input in a variety of formats. One
common use of user-defined registers is to automatically
number sections, paragraphs, lines, etc. A number register
can be used any time numerical input is expected or desired
and can be used in numerical expressions.

Number registers are created and modified using nr, which
specifies the name, numerical value, and the auto-increment
size. Registers are also modified if accessed with an
auto-incrementing sequence. If the registers x and xx both
contain N and have the auto-increment size M, the following
access sequences have the effect shown:

Sequence

\nx
\n(xx
\n+x
\n-x
\n+(xx
\n-(xx

Effect on
Register

none
none N
x incremented by M
x decremented by M
xx incremented by M
xx decremented by M

Value
Interpolated

N

N+M
N-14
N+M
N-M

When interpolated, a number register is converted to decimal
(default), decimal with leading zeros, lowercase Roman,
uppercase Roman, lowercase sequential alphabetic, or upper­
case sequential alphabetic, according to the format speci­
fied by af.

Request
Form

Initial
Value

.nr R±N M

If No
Argument

Explanation: The number register R is aSSigned the value ±N
with respect to the previous value, if any. The increment
for auto-incrementing is set to M. The default scale indi­
cator is u (ignored if not specified).

Zilog 31

NROFF/TROFF Zilog NROFF/TROFF

32

Request
Form

.af R c

Initial
Value

arabic

If No
Argument

Explanation: Assign format c to register R.
formats are:

The available

Numbering
Format

1
001
i
I
a
A

Sequence

0,1,2,3,4,5, •••
000,001,002,003,004,005, •••
O,i,ii,iii,iv,v, •••
O,I,II,III,IV,V, •••
O,a,b,c, ••• ,z,aa,ab, ••• ,zz,aaa, •••
O,A,B,C, ••• ,Z,AA,AB, ••• ,ZZ,AAA, •••

An arabic format having N digits specifies a field width of
N digits (second example above). The read-only registers
and the width function are always arabic.

Request
Form

.rr R

Initial
Value

If No
Argument

ignored

Explanation: Remove register R. If many registers are being
created dynamically, it is necessary to remove unused regis­
ters to recaptu~e internal storage space for newer regis­
ters.

Zilog 32

..

/'

(

NROFF/TROFF Zilog NROFF/TROFF

33

SECTION 8

TABS, LEADERS, AND FIELDS

8.1 Tabs and Leaders

The ASCII horizontal tab character and the ASCII SOH (leader
character) can both generate either horizontal motion or a
string of repeated characters. The length of the generated
entity is governed by internal tab stops specified with tao
The default difference is that tabs generate motion, and
leaders generate a string of periods; tc and lc offer the
choice of repeated character or motion. There are three
types of internal tab stops: left adjusting, right adjust­
ing, and centering. In the following table, D is the dis­
tance from the current position on the input line (where a
tab or leader was found) to the next tab stop; next-string
consists of the input characters following the tab (or
le;:-ijer) up to the next tab (or leader) or end of line; W is
the width of next-string.

Tab
Type

Left
Right
Centered

Length of Motion or
Repeated Characters

D
D-W
D-W/2

Location of
Next-String

Following 0
Right adjusted with 0
Centered on right end of 0

The length of generated motion is allowed to be negative,
but that of a repeated character string cannot be. Repeated
character strings contain an integer number of characters,
and any residual distance is prepended as motion. Tabs or
leaders found after the last tab stop are ignored, bU,t can
be used as next-string terminators."

Tabs and leaders are not interpreted in copy mode. \t and
\a always generate a noninterpreted tab and leader respec­
tively, and are equivalent to actual tabs and leaders in
copy mode.

8.2 Fields

A field is contained between a pair of field delimiter char­
acters, and consists of substrings separated by padding
indicator characters. The field length is the distance on
the input line from the position where the field begins to
the next tab stop. The difference between the total length
of all the substrings and the field length is incorporated

Zilog 33

NROFF/TROFF Zilog NROFF/TROFF

34

as horizontal padding space that is divided among the indi­
cated padding places. The incorporated padding is allowed
to be negative. For example, if the field delimiter is #
and the padding indicator is A, #AxxxAright# specifies a
right-adjusted string with the string xxx centered in the
remaining space.

Request
Form

Initial
Value

• ta Nt ••• 0.8;
0.5 in

If No
Argument

none

Explanation: Set tab stops and types. t=R, right adjusting;
t=C, centering; t absent, left adjusting. Troff tab stops
are preset every O.Sin.; nroff every O.Bin. The stop values
are separated by spaces, and a value preceded by + is
treated as an increment to the previous stop value.
Relevant parameters are a part of the current environment.
The default scale indicator is m (ignored if not specified).

Request
Form

.tc c

Initial
Value

none

If No
Argument

none

Explanation: The tab repetition character becomes c, or is
removed specifying motion. Relevant parameters are a part
of the current environment.

Request
Form

.lc c

Initial
Value

If No
Argument

none

Explanation: The leader repetition character becomes c, or
is removed specifying motion. Relevant parameters are a
part of the current environment.

Request
Form

.fc a b

Initial
Value

off

If No
Argument

off

Explanation: The field delimiter is set to a; the padding
indicator 1S set to the space character or to b, if given.
In the absence of arguments, the field mechanism is turned
off.

ZiJ,og 34

/'

-<;;-,

NROFF/TROFF Zilog NROFF/TROFF

35

SECTION 9

INPUT/OUTPUT CONVENTIONS AND CHARACTER TRANSLATIONS

9.1 Input Character Translations

The new line delimits input lines.
ENQ, ACK, and BEL are accepted,
iters or translated into a graphic
ignored.

In addition, STX, ETX,
and can be used as delim­
with tr. All others are

The escape character (\) introduces escape sequences and
causes the following character to mean another character, or
to indicate some function. (A complete list of such
sequences is given in the Summary and Index.) The \ is not
the ASCII control character ESC of the same name. The
escape character can be input with the sequence \\. The
escape character can be changed with ec, and all that has
been said about the default \ becomes true for the new
escape character. \e prints whatever the current escape
character is. If necessary or convenient, the escape
mechanism can be turned off with eo, and restored with ec.

Request
Form

.ec c

Initial
Value

\

If No
Argument

\

Explanation: Set escape character to \, or to c, if given.

Request
Form

.eo

Initial
Value

on

If No
Argument

Explanation: Turn escape mechanism off.

9.2 Ligatures

Five ligatures are available in the current troff character
set: fi, fl, ff, ffi, and ffl. They are input by \(fi,
\(fl, \(ff, \(Fi, and \(Fl respectively. The ligature mode
is normally on in troff, and automatically invokes ligatures
during input.

Request
Form

.lg N

Initial
Value

off; on

If No
Argument

on

Zilog 35

NROFF/TROFF Zilog NROFF/TROFF

36

Explanation: Ligature mode is turned on if N is absent or
non-zero, and turned off if N=O. If B=2, only the two­
character ligatures are automatically inv'oked. Ligature
mode is inhibited for request, macro, string, register, or
file names, and in copy mode. No effect in nroff.

9.3 Backspacing, Underlining, and Overstriking
(

Unless in copy mode, the ASCII backspace character is
replaced by a backward horizontal motion the width of the
space character.

Nroff automatically underlines characters in the underline
font, specifiable with uf, normally that on font position 2
lnormally Times Italic, Section 2.2). In addition to ft and
~fF, the underline font is selected by ul and cu. Underlin­
ing is restricted to an output-device-dependent subset of
reasonable characters.

Request
Form

.ul N

Initial
Value

off

If No
Argument

N=l

Explanation: Underline in nroff (italicize in troff) the
next N input text lines. Actually, switch to underline
font, saving the current font for later restoration; other
font changes within the span of a ul take effect, but the
restoration undoes the last change. Output generated by tl
is affected by the font change, but does not decrement N.
If N>l, there is the risk that a trap interpolated macro may
provide text lines within the span; environment switching
prevents this. Relevant parameters are a part of the
current environment.

Request
Form

.cu N

Initial
Value

off

If No
Argument

N=l

Explanation: A variant of ul that causes every character to
be underlined in nroff. Identical to ul in troff. Relevant
parameters are a part of the current environment.

Request
Form

"uf F

Initial
Value

Italic

If No
Argument

Italic

Explanation: Underline font set to F. In nroff, F may not
be on pOSition 1 (initially Times ~oman).

Zilog 36

NROFF/TROFF Zilog NROFF/TROFF

37

9.4 Control Characters

Both the control character • and the no-break control char­
acter I can be changed, if desired. Such a change must be
compatible with the design of any macros used in the span of
the change, and particularly of any trap-invoked macros.

Request
Form

.cc c

Initial
Value

If No
Argument

Explanation: The basic control" character-is set to c, or
reset to.. Relevant parameters are a part of the current
environment.

Request
Form

.c2 c

Initial
Value

If No
Argument

Explanation: The nobreak control character is set to c, or
reset to I • Relevant parameters are a part of the current
environment.

9.5 Output Translation

One character can be made a stand-in for another character
using tr. All text processing takes place with the input
(stand-in) character which appears to have the width of the
final character. The graphic translation occurs at the
moment of output (including diversion).

Request
Form

Initial
Value

.tr abcd •••• none

If No
Argument

Explanation: Translate a into b, c into d, etc. If an odd
number of characters is given, the last one is mapped into
the space character. To be consistent, a particular trans­
lation must stay in effect from input to output time.

9.6 Transparent Throughput

An input line beginning with a
transparently output without
cessor makes no other response
This mechanism is used to

Zilog

\1 is read in copy mode and
the initial \1: the text pro­
based on the line's presence.
pass control information to a

37

NROFF/TROFF Zilog NROFF/TROFF

38

post-processor or to embed control lines in a macro created
by a diversion.

9.7 Comments and Concealed New Lines

A long input line that must stay one line (for example, a
string definition, or nofilled text) can be split into many
physical lines by ending all but the last one with the
escape \. The sequence \(new line) is always ignored-­
except in a comment. Comments can be embedded at the end of
any line by prefacing them with \It. The new line at the end
of a comment cannot be concealed. A line beginning with \"
appears as a blank line and behaves like .sp Ii a comment
can be placed on a line by itself by beginning the line with
\ " • •

Zilog 38

NROFF/TROFF Zilog NROFF/TROFF

39

SECTION 10

LOCAL MOTIONS AND THE WIDTH FUNCTION

10.1 Local Motions

The functions \v'N' and \h'N' are used for local vertical
and horizontal motion respectively. The distance N can be
negative; the positive directions are rightward and down­
ward. A local motion is one contained within a line. To
avoid unexpected vertical dislocations, it is necessary that
the net vertical local motion within a word in filled text
and otherwise within a line balance to zero. The above and
certain other escape sequences providing local motion are
summarized in the following table.

Vertical Effect in Horizontal Effect in
Local TROFF NROFF Local Motion TROFF NROFF
Motion

\v'N' Move distance N 1 \h'N' Move distance N
1 \(space) Unpaddable space-

\u 1/2 em up 1/2 linel size space
down 1 \0 Digit-size space

1
\r 1 em up 1 line 1 1

up 1 \1 1/6 em lignored
1 space I
1 \A 1/12 em lignored
1 space 1
1 1

10.2 Width Function

The width function \w'string' generates the numerical width
of string (in basic units). Size and font changes can be
safely embedded in string, and do not affect the current
environment. For example, .til-\w'l.1 'u can temporarily
indent leftward a distance equal to the size of the "1. I"
string.

Zilog 39

NROFF/TROFF Zilog NROFF/TROFF

40

The width function also sets three number registers. The
registers st and sb are set (respectively) to the highest
and lowest extent of string relative to the baseline; then,
for example, the total height of the string is
\n(stu-\n(sbu. In troff the number register ct is set to a
value between 0 and 3. 0 means that all of the characters
in string are short, lowercase characters without descenders
(like e)1 1 means that at least one character has a des­
cender (like y)1 2 means that at least one character is tall
{like H)1 and 3 means that both tall characters and charac­
ters with descenders are present.

10.3 Mark Horizontal Place

The escape sequence \kx causes the current horizontal
tion in the input line to be stored in register x.
example, the construction \kxword\h'l\nxu+2u'word
"word" bold by backing up to almost its beginning and
printing it, resulting in word.

Zilog

posi­
As an
makes
over-

40

NROFF/TROFF Zilog NROFF/TROFF

41

SECTION 11

OVERSTRIKE, LINE-DRAWING, AND ZERO-WIDTH FUNCTIONS

11.1 Overstriking

Automatically centered overstriking of up to nine characters
is provided by the overstrike function (\0 "string"). The
characters in string are overprinted with centers aligned~
the total width is that of the widest character. The string
must not contain local vertical motion. For example,
\o'e\" produces ~.

11.2 Line Drawing

The function \1 "Nc" draws a string of repeated CiS for a
distance N. (\1 is \(lowercase L). If c looks like a con­
tinuation of an expression for N, it can be insulated from N
with a \&. If c is not specified, the _ (baseline rule or
underline character) is used. If N is negative, a backward
horizontal· motion of size N is made before drawing the
string. Any space resulting from N/(size of c) having a
remainder is put at the beginning (left end) of the string.
In the case of characters that are designed to be connected,
such as baseline-rule _, under rule _, and root-en, the
remainder space is covered by overlapping. If N is less
than the width of c, a single c is centered on a distance N.
As an example, a macro to underscore a string can be written

.de us
\\$1\1' /O\(ul'

such that

.us "underlined words"

yields

underlined words •

The function \L'Nc' draws a vertical line consisting of the
(optional) character c stacked vertically apart lem (1 line
in nroff), with the first two characters overlapped, if
necessary, to form a continuous line. The default character
is the box rule / (\(br); the other suitable character is
the bold vertical / (\(bv). The line is begun without any
initial motion relative to the current base line. A posi­
tive N specifies a line drawn downward and a negative N

Zilog 41

NROFF/TROFF Zilog NROFF/TROFF

42

specifies a line drawn upward. After the line is drawn, no
compensating motions are made; the instantaneous base line
is at the end of the line.

The horizontal and vertical line-drawing functions 'can be
used in combination to produce large boxes. The zero-width
box-rule and the 1/2-em wide under rule were designed to form
corners when using I-em vertical spacings. For example the
macro

.de eb

.sp -1

.nf

.fi . .
\"compensate for next automatic base-line spacing
\"avoid possibly overflowing word buffer

draws a box around some text whose beginning vertical place
was saved in number register a (that is, using .mk a).

11.3 Zero-Width Characters

The function \zc outputs c without spacing over it, and is
used to produce left-aligned overstruck combinations. As
examples, \z\{ci\{pl produces $, and \(br\z\(rn\(ul\(br pro­
duces the smallest possible constructed box.

Zilog 42

NROFF/TROFF Zilog NROFF/TROFF

43

SECTION 12

HYPHENATION

The automatic hyphenation can be switched off and on. When
switched on with hy, several variants can be set. A hyphe­
nation indicator character can be embedded in a word to
specify desired hyphenation pOints, or can be prepended to
suppress hyphenation. In addition, the user can specify a
small exception word list.

Only words that consist of a central alphabetic string sur­
rounded by (usually null) nonalphabetic strings are con­
sidered candidates for automatic hyphenation. Words that
are input containing hyphens (minus), em-dashes (\(em), or
hyphenation indicator characters, are always subject to
splitting after those characters, whether or not automatic
hyphenation is on or off.

Request
Form

.nh

Initial
Value

If No
Argument

hyphenate -

Explanation: Automatic hyphenation is turned off.
parameters are a part of the current environment.

Request
Form

.hy N

Initial If No
Value Argument

on,N=lon, N=l

Relevant

Explanation: Automatic hyphenation is turned on for N 21, or
off for N=O. If N=2, last lines (ones that cause a trap)
are not hyphenated. For N=4 and 8, the last and first two
characters of a word are not split off. These values are
additive; for example, N=14 invokes all three restrictions.
Relevant parameters are a part of the current environment.

Request
Form

.hc c

Initial
Value

\%

If No
Argument

\%

Explanation: Hyphenation indicator character is set to c or
to the default \%. The indicator does not appear in the
output. Relevant parameters are a part of the current
environment.

Zilog 43

NROFF/TROFF Zilog NROFF/TROFF

44

Request
Form

.hw

Initial If No
Value Argument

wordl ••• ignored

Explan~tion: Specify hyphenation points in words with embed­
ded m~nus signs. Versions of a word with terminal s are
implied; for example, dig-it implies dig-its. This list is
examined initially and after each suffix stripping. The
space available is small--about 128 characters.

Zilog 44

NROFF/TROFF Zilog NROFF/TROFF

45

SECTION 13

THREE-PART TITLES

The titling function tl provides for automatic placement of
three fields at the left, center, and right of a line with a
title-length specified with It. tl can be used anywhere,
and is independent of the normal text collecting process. A
common use is in header and footer macros.

Request
Form

Initial
Value

.tl 'left'center'right' -

Explanation: The strings left, center, and right are respec­
tively left-adjusted, centered, and right-adjusted in the
current title-length. Any of the strings can be empty, and
overlapping is permitted. If the page-number character
(initially %) is found within any of the fields, it is
replaced by the current page number. The format is assigned
to register %. Any character can be used as the string del­
imiter.

Request
Form

.pc c

Initial
Value

%

If No
Argument

off

Explanation: The page number character is set to c, or
removed. The page-number register remains %.

Request
Form

.It ±N

Initial
Value

6.5 in

If No
Argument

previous

Explanation: Length of title set to +N. The line-length and
the title-length are independent. Indents do not apply to
titles; page-offsets do. Relevant parameters are a part of
the current environment. The default scale indicator is m
(ignored if not specified).

Zilog 45

NROFF/TROFF Zilog NROFF/TROFF

5ECTION 14

OUTPUT LINE NUMBERING

Automatic sequence numbering of output lines can be
requested with nm. When in effect, a three-digit, ara-

3 bie number plus a digit-space is prepended to output
text lines. The text lines are thus offset by four
digit-spaces, and otherwise retatn their line length; a

6 reduction in line length can be used to keep the right
margin aligned with an earlier margin. Blank lines,
other vertical spaces, and lines generated by tl are not

9 numbered. Numbering can be temporarily suspended with
nn, or with an In addition, a line number indent I, and
the number-text separation 5 can be specified in digit-

12 spaces. Further, it can be specified that only those
line numbers that are multiples of some number M are to
be printed. The others appear as blank number fields.

15

18

21

24

46

Request -
Form

Initial
Value

If No
Argument

.nrn +N M 5 I M=l, 5=1, I=O off

Explanation: Line number mode. If +N is given, line number­
ing is turned on, and the next output line numbered is num­
bered ±N. Default values are M=l, 5=1, and I=O. Parameters
corresponding to missing arguments are unaffected; a non­
numeric argument is considered missing. In the absence of
all arguments, numbering is turned off; the next line number
is preserved for possible further use in number register In.
Relevant parameters are a part of the current environment.

Request
Form

.nn N

Initial
Value

If No
Argument

N=l

Explanation: The next N text output lines are not numbered.
Relevant parameters are a part of the current environment.

As an example, the paragraph portions of this section
are numbered with M=3: .nm 1 3 was placed at the begin­
ning; .nm was placed at the end of the first paragraph;
and .nm +0 was placed in front of this paragraph; and
.nm finally placed at the end. Line lengths were also
changed (by \w"OOOO"u) to keep the right side aligned.
Another example is .nm +5 5 x 3, which turns on number­
ing with. the line number of the next line to be 5
greater than the last numbered line, with M=5, with
spacing 5 untouched, and with the indent I set to 3.

Zilog 46

NROFF/TROFF Zilog NROFF/TROFF

47

SECTION 15

CONDITIONAL ACCEPTANCE OF INPUT

In the following, c is a one-character, built-in condition
name, I signifies not, N is a numerical expression, stringl
and string2 are strings delimited by any nonblank, non­
numeric character not in the strings, and anything
represents what is conditionally accepted.

Request
Form

.if c anything

Explanation: If condition c true, accept anything as input;
in multi-line case use ~{anything\}.

Request
Form

.if !c I anything

Explanation: If condition c false, accept anything.

Request
Form

.if N anything

Explanation: If expression N > 0, accept anything. The
default scale indicator is u (ignored if not specified).

Request
Form

.if IN anything

Explanation: If expression N ~ 0, accept anything. The
default scale indicator is u (ignored if not specified).

Zilog 47

NROFF/TROFF Zilog NROFF/TROFF

48

Request
Form

.if ' s tringl ' string2'anything

Explanation: If stringl is identical to string2, accept ~
thing.

Request
Form

.if !'stringl'string2 I anything

Explanation: If stringl is not identical to string2, accept
anything.

Request
Form

.ie c anything

Explanation: If portion of if-else; all above forms (like
if) • The default scale indicator is u (ignored if not
specified).

Request
Form

.el anything

Explanation: Else portion of if-else.

The built-in condition names are:

Condition
Name

o
e
t
n

True If

Current page number is odd
Current page number is even
Formatter is troff
Formatter is nroff

If the condition c is true, or if the number N is greater
than zero, or if the strings compare identically (including
motions and character size and font), anything ~s accepted
as input. If a ! precedes the condition, number, or string
comparison, the sense of the acceptance is rev~rsed.

Any spaces between the condition and the beginning of ~
thing are skipped over. The anything is either a single
input line (for example, text or macro) or a number of input
lines. In the multiline case, the first line must begin

Zilog 48

NROFF /TROFF- Zilog NROFF/TROFF

49

with a left delimiter (\{) and the last line must end with a
right delimiter (\}).

The request ie (if-else) is identical to
the, acceptance state is remembered.
matching el (else) request then uses the
that state. iel-Iel pairs can be nested.

Some examples are:

.if e .tl 'Even Page %'"

if, except that
A subsequent and

reverse sense of

which outputs a title if the page number is even; and

.ie \n%>l \{\
'sp O.Si
• tl 'Page % ' I ,

'Sp Il.2i \}
.el .spI2.Si

which treats page 1 differently from other pages.

Zilog 49

NROFF/TROFF Zilog NROFF/TROFF

50

SECTION 16

ENVIRONMENT SWITCHING

A number of the parameters that control the text processing
are gathered together into an environment, that can be
switched by the user. The environment parameters are those
associated with requests noting E in their Notes column; in
addition, partially collected lines and words are in the
environment. Everything else is global; examples are page­
oriented parameters, diversion-oriented parameters, number
registers, and macro and string definitions. All environ~
ments are initialized with default parameter values.

Request
Form

.ev N

Initial
Value

N=O

If No
Argument

previous

Explanation: Environment switched to environment 0 ~ N ~ 2.
Switching 1S done in push-down fashion so that restoring a
previous environment must be done with .ev rather than
specific reference.

Zilog 50

NROFF/TROFF Zilog - NROFF/TROFF

51

SECTION 17

INSERTIONS FROM THE STANDARD INPUT

The input can be temporarily switched to the system standard
input with rd, which switches back when two new lines in a
row are found (the extra blank line is not used). This
mechanism is intended for insertions in form-letter types of
documentation. On ZEUS, the standard input is the user's
keyboard, a pipe, or a file.

Request
Form

.rd prompt

Initial
Value

If No
Argument

prompt=BEL

Explanation: Read insertion from the standard input until
two new lines in a row are found. If the standard input is
the user's keyboard, prompt (or a BEL) is written onto the
user's terminal. rd behaves like a macro, and arguments can
be placed after prompt.

Request
Form

.ex

Initial
Value

If No
Argument

Explanation: Exit from nroff/troff. Text processing is ter­
minated exactly as if all input had ended.

If insertions are taken from the terminal keyboard while
output is being printed on the terminal, the command line
option -q turns off the echoing of keyboard input and
prompts only with BEL. The regular input and insertion
input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter are prepared
by entering the insertions for all the copies in one file
used as the standard input, and causing the file containing
the letter to reinvoke itself using nx; the process is ended
by an ex in the insertion file.

Zilog 51

NROFF/TROFF Zilog NROFF/TROFF

52

Request
Form

.so

SECTION 18

INPUT/OUTPUT FILE SWITCHING

Initial
Value

filename

If No
Argument

Explanation: Switch source file. The top input (file read­
ing) level is switched to filename. A ~ encountered in a
macro does not take effect until the input level returns to
the file level. When the new file ends, input is again
taken from the original file. ~'s can be nested.

Request
Form

.nx filename

Initial
Value

If No
Argument

end-of-file

Explanation: Next file is filename. The current file is
considered ended, and the input is immediately switched to
filename.

Request
Form

.pi program

Initial
Value

If No
Argument

Explanation: Pipe output to program (nroff
request must occur before any printing occurs.
are transmitted to program.

Zilog

only) • This
No arguments

52

NROFF/TROFF Zilog NROFF/TROFF

53

Request
Form

.mc c N

Initial
Value

SECTION 19

MISCELLANEOUS

If No
Argument

off

Explanation: Specifies that a margin character c appear a
distance N to the right of the right margin after each
nonempty text line (except those produced by tl). If the
output line is too long (as can happen in nofill mode) the
character is appended to the line. If N is not given, the
previous N is used. The initial N is 0.2 inches in nroff
and 1 em in troff. Relevant parameters are a part of the
current environment. The default scale indicator is m
(ignored if not specified).

Request
Form

.tm string

Initial
Value

If No
Argument

newline

Explanation: After skipping initial blanks, string (rest of
the line) is read in copy mode and written on the user's
terminal.

Request
Form

.ig yy

Initial
Value

If No
Argument

.yy= ••

Explanation: Ignor~ input lines. Ig behaves like de except
that the input 1S discarded. The input is read in copy
mode, and any auto-incremented registers are affected.

Request
Form

.pm t

Initial
Value

If No
Argument

all

Explanation: Print macros. The names and sizes of all of
the defined macros and strings are printed on the user's
terminal; if t is given, only the total of the sizes is
printed. The size is given in blocks of 128 characters. ;

Request
Form

.fl

Initial
Value

If No
Argument

Zilog 53

NROFF/TROFF

54

Explanation:
debugging to
break.

Zilog NROFF/TROFF

Flush output
force output.

buffer. Used in interactive
This request normally causes a

Zilog 54

NROFF/TROFF Zilog NROFF/TROFF

55

SECTION 20

OUTPUT.AND ERROR MESSAGES

The output from tm, pm, and the prompt from rd, as well as
various error messages are written onto the standard message
output. The standard message output is different from the
standard output, where nroff formatted output goes. By
default, both are written onto the user's terminal, but they
can be independently redirected.

Various error conditions can occur during the operation of
nroff and troff. Certain less serious errors that have only
local impact do not cause processing to terminate. Two
examples are word overflow, caused by a word that is too
large to fit into the word buffer (in fill mode), and line
overflow, caused by an output line that grows too large to
fit in the line buffer; in both cases, a message is printed,
the excess is discarded, and the affected word or line is
marked at the point of truncation with a * in nroff and a <=
in troff. Processing continues, if possible, since output
useful for debugging may be produced. If a serious error
occurs, processing terminates, and an appropriate message is
printed. Examples are the inability to create, read, or
write files, and the exceeding of certain internal limits
that make future output unlikely to be useful.

Zilog 55

NROFF/TROFF Zilog NROFF/TROFF

56

SECTION 21

EXAMPLES

21.1 Introduction

It is almost always necessary to prepare at least a small
set of macro definitions to describe most documents. Such
common formatting needs as page margins and footnotes are
deliberately not built into nroff and troff. Instead, the
macro and string definition, number register, diversion,
environment switching, page-position trap, and conditional
input mechanisms provide the basis for user-defined imple­
mentations. (Most documents can be prepared with either the
-mQ or -man macro sets.)

The following examples are intended to be useful and realis­
tic, but do not cover all relevant contingencies. Explicit
numerical parameters are used in the examples to make them
easier to read and to illustrate typical values. In many
cases, number registers are used to reduce the number of
places where numerical information is kept, and to concen­
trate conditional parameter initialization.

21.2 Page Margins

Header and footer macros are defined to describe the top and
bottom page margin areas. A trap is planted at page posi­
tion 0 for the header, and at -N (N from the page bottom)
for the footer. The simplest such definitions are

.de hd \"define header
'sp Ii .. \"end definition
.de fo \"define footer
'bp

\"end definition
.wh 0 hd
.wh -Ii fo

which provide blank one-inch top and bottom margins. The
header only occurs on the first page if the definition and
trap exist prior to the initial pseudo-page transition. In
fill mode, the output line that springs the footer trap is
forced out because some part or whole word does not fit on
it. If anything in the footer and header that follows
causes a break, that word or part word is forced out. In
this and other examples, requests like bp and sp, which nor­
mally cause breaks, are invoked using the no-break control

Zilog 56

NROFF/TROFF Zilog NROFF/TROFF

57

character to avoid this problem. When the header/footer
design contains material requiring independent text process­
ing, the environment can be switched, avoiding most interac­
tion with the running text.

Another example is

.de hd

.if t .tl I\(rnll\(rn l

.if \\n%>l \{\
ISp 10.5i-l
• tl I 1_ % _ I I

.ps

.ft

.vs \}
ISp /l.Oi
.ns
· .
.de fo
.ps 10
.ft R
.vs l2p
.if \\n%=l \{\
ISp /\\n(.pu-0.5i-l
• tl I I _ % _ I I \ }

'bp
• •
• wh 0 hd
.wh -Ii fo

\"header
\"troff cut mark

\"tl base at 0.5i
\ "centerOed page number
\"restore size
\"restore font
\"restore vs
\"space to 1.Oi
\"turn on no-space mode

\"footer
\"set footer/header size
\"set font
\"set base-line spacing

\"tl base 0.5i up
\"first page number

which sets the size, font, and base-line spacing for the
header/footer material, and ultimately restores them. The
material in this case is a page number at the bottom of the
first page and at the top of the remaining pages. If troff
is used, a cut mark is drawn in the form of root-enls at
each margin. The spls refer to absolute positions to avoid
dependence on the base-line spacing. Another reason for
this in the footer is that the footer is invoked by printing
a line whose vertical spacing sweeps past the trap position
by as much as the base-line spacing. The no-space mode is
turned on at the end of hd to render ineffective and
accidental occurrences of sp at the top of the running text.

This method of restoring size, font, etc. presupposes that
such requests that set previous value are not used in the
running text. A better scheme is to save and restore both
the current and previous values for size as shown in the
following:

.de fo
• nr sl \ \n (• s \"current size
.ps

Zilog 57

NROFF/TROFF Zilog NROFF/TROFF

58

• nr s2 \ \n (• s
•
• •
• de hd
•
.ps \\n(s2
.ps \\n(sl

\"previous size
\"rest of footer

\"header
\"restore previous size
\"restore current size

Page numbers are printed in the bottom margin by a separate
macro triggered during the footer's page ejection:

.de bn
• tl "- % - I ,

.wh -O.Si-lv bn

21.3 Paragraphs and Headings

\"bottom number
\"centered page number

\"tl base O-Si up

The houseke~ping associated with starting a new paragraph is
collected 1n a paragraph macro that, for example, does the
desired preparagraph spacing, forces the correct font, size,
base-line spacing, and indent, checks that enough space
remains for more than one line, and requests a temporary
indent.

.de pg \"paragraph

.br \"break

.ft R \"force font,

.ps 10 \"size,

.vs 12p \"spacing,

.in 0 \"and indent

.sp 0.4 \"prespace

.ne 1+\ \n (. Vu \"want more than 1 line
• ti 0.2i \"temp indent
· .

The first break in pg forces out any previous partial lines,
and must occur before the vs. The forcing of font, etc. is
a defense against prior error and permits things like sec­
tion heading macros to set parameters only once. The
prespacing parameter is suitable for troff; a larger space,
at least as big as the output device vertical resolution, is
more suitable in nroff. The choice of remaining space to
test for in ~ is the smallest amount greater than one line.

A macro to automatically number section headings looks like:

.de sc

.sp 0.4

\"section
\"force font, etc.
\"prespace

Zilog 58

NROFF/TROFF Zilog NROFF/TROFF

59

• ne 2. 4 + \ \n (• Vu
.fi
\ \n+S.
• •
.nr SOl

\"want 2.4+ lines

\"init S

The usage is .sc, followed by the section heading text, fol­
lowed by .pg. The ne test value includes one line of head­
ing, 0.4 line in the following pg, and one line of the para­
graph text. A word consisting of the next section number
and a period is produced to begin the heading line. The
format of the number is set by af. .

Another common form is the labeled, indented paragraph,
where the label protrudes left into the indent space.

.de Ip

.pg

.in 0.5i

.ta 0.2i 0.5i

.ti 0
\t\\$l\t\c
· .

\"labeled paragraph

\"paragraph indent
\"label, paragraph

\"flow into paragraph

The intended usage is ".lp label"; label begins at 0.2 inch,
and cannot exceed a length of 0.3 inch without intruding
into the paragraph. The label is right-adjusted against 0.4
inch by setting the tabs instead with .ta 0.4iR 0.5i. The
last line of Ip ends with \c so that it becomes a part of
the first line of the text that follows.

21.4 Multiple Column Output

The production of multiple column pages requires the footer
macro to determine whether it was invoked by other than the
last column, so that it begins a new column rather than pro­
duce the bottom margin. The header initializes a column
register that the footer increments and test. The following
is arranged for two columns, but is easily modified for
more.

.de hd \~'header

.nr cl o 1 \"init column count

.mk \"mark top of text
• •
.de fo \"footer
.ie \\n+(cl<2 \{\
.po +3.4i \"next column; 3.1+0.3
.rt \"back to mark
.ns \} \"no-space mode

Zilog / 59

/
I .,

(

NROFF/TROFF Zilog NROFF/TROFF

60

• el \ {\
.po \\nMu

'bp \}

.11 3.1i

.nr M \ \n (.0

\"restore left margin

\"column width
\"save left margin

Typically, a portion of the top of the first page contains
full-width text; the request for the narrower line length,
as well as another .mk is made where the two-column output
begins.

21.5 Footnote Processing

The footnote mechanism is used by embedding the footnotes in
the input text at the pOint of reference, demarcated by an
initial .fn and a terminal .ef:

.fn
Footnote text and control lines •••
• ef

In the following, footnotes are processed in a separate
environment and diverted for later printing in the ~p~ce
immediately prior to the bottom margin. _There is provlslon
for the case where the last collected footnote does not com­
pletely fit in the available space.

.de hel
•
.nr x 0 1
.nr y O-\\nb
.ch fo -\\nbu
• if \\n(dn .fz
· .
.de fo
.nr dn 0
• if \\nx \{\
.ev 1
.nf
.FN
• rm FN
• if "\ \n (• z "fy "
.nr x 0
.ev \}

'bp

.de fx
• if \\nx .di fy

.di

\"header

\"init footnote count
\"current footer place
\"reset footer trap
\"leftover footnote

\"footer
\"zero last diversion size

\"expand footnotes in evl
\"retain vertical size
\"footnotes
\"delete it
\"end overflow diversion
\"disable fx
\"pop environment

\"process footnote overflow
\"divert overflow

Zilog 60

NROFF/TROFF Zilog NROFF/TROFF

61

• •
.de
.da
.ev
.if
.fi
• •

fn
FN
1
\\n+x=l .fs

\"start footnote
\"divert (append) footnote
\"in environment 1
\"if first, include separator
\"fill mode

• de ef \"end footnote
.br \"finish output
.nr z \\n(.v\"save spacing
.ev \"pop ev
.di \"end diversion
.nr y -\\n(dn \"new footer position,
.if \\nx=l .nr y -(\\n(.v-\\nz) \

\"uncertainty correction
.ch fo \\nyu \"y is negative
.if (\\n(nl+lv) > (\\n(.p+\\ny) \
.ch fo \\n(nlu+lv \"it didn't fit
• •
.de fs
\1'1 i'
.br
· .
.de fz
.fn
.nf
• fy
.ef
· •.
.nr b 1.Oi
.wh 0 hd
.wh l2i fo
.wh -\\nbu fx
.ch fo -\\nbu

\"separator
\"1 inch rule

\"get leftover footnote

\"retain vertical size
\"where fx put it

\"bottom margin size
\"header trap
\"footer trap, temp position
\"fx at footer position
\"conceal fx with fo

The header hd initializes a footnote count register x, and
sets both the current footer trap position register y and
the footer trap itself to a nominal position specified in
register b. In addition, if the register dn indicates a
leftover footnote, fz is invoked to reprocess it. The foot­
note start macro fn begins a diversion (append) in environ­
ment 1, and increments the count X1 if the count is one, the
footnote separator fs is interpolated. The separator is
kept in a separate macro to permit user" redefinition. The
footnote end macro ef restores the previous environment and
ends the diversion after saving the spacing size in register
z. y is then decremented by the size of the footnote,
available in dn; then on the first footnote, y is further
decremented by the difference in vertical base-line spacings
of the two environments to prevent the late triggering of
the footer trap from causing the last line of the combined
footnotes to overflow. The footer trap is then set to the ~

Zilog 61

\
~

NROFF/TROFF Zilog NROFF/TROFF

62

lower (on the page) of y or the current page position (nl)
plus one line, to allow for printing the reference line. If
indicated by x, the footer fo rereads the footnotes from FN
in nofill mode in environment 1, and deletes FN. If the
footnotes are too large to fit, the macro fx is trap-invoked
to redivert the overflow into fy, and the register dn later
indicates to the header whether fy is empty. Both fo and fx
are planted in the nominal footer trap position in an order
that causes fx to be concealed unless the fo trap is moved.
The.footer then terminates the overflow diversion, if neces­
sary, and zeros x to disable fx, because the uncertainty
correction together with a not-too-late triggering of the
footer can result in the footnote rereading and finishing
before reaching the fx trap.

A good exercise is to combine the multiple-column ana foot­
note mechanisms.

21.6 Last Page

After the last input file has ended, nroff and troff invoke
the end macro, if any, and when it finishes, eject the
remainder of the page. During the eject, any traps encoun­
tered are processed normally. At the end of this last page,
processing terminates unless a partial line, word, or par­
tial word remains. To start another page, use the end-macro

.de en
\c
'bp . .
.em en

\"end-macro

to deposit a null partial word, and effect another last
page.

Zilog 62

NROFF/TROFF Zilog NROFF/TROFF

(APPENDIX A

63

SUM~mRY AND INDEX

A.l Summary

* Values separated by ~ are for nroff and troff, respec­
tively.

Notes are explained at the end of this Summary and
Index.

+ No effect in nroff.

The use of ' as control character (instead of .)
suppressess the break functon.

1. General Explanation

,2. Font and Character Size Control

Request Initial If No
Form Value Argument Notes

.ps ±N 10 point previous E

.ss N 12/36 em ignored E

.cs F N M off P

.bd F N off P

.bd S F N off P

.ft F Roman previous E

.fp N F R,I,B,S ignored

Zilog

Explanation

Point size; also
\s+N.
Space-character
size set to
N/36 em. +
Constant character
space (width) mode
(font F).+
Embolden font F
by N-l units.t
Embolden Special
Font when current
font is F.t
Change to font
F=x, xx, or 1-4.
Also \fx,\f(xx,
\fN.
Font named F
mounted on physical
posi tion ls.N~.4.

63

NROFF/TROFF Zilog

3. Page Control

Request
Form

.pl ±N

.bp ±N

.pn ±N

• po ±N
.ne N

• mk

.rt ±N

Initial
Value

If No
Argument

llin llin
N=l

N=l ignored

O;26/27in previous
N=lV

none internal

none internal

Notes

v
B,v

v
D,v

D

D,v

4. Text Filling, Adjusting, and Centering

64

Request
Form

• br
.fi

.nf

.ad c

.na

.ce N

5. Spacing

Request
Form

.vs N

.ls N

Initial If No
Value Argument

fill

no fill

adj,both adjust

adjust

off N=l

Initial
Value

1/6in;
12pts
N=l

If No
Argument

previous

previous

Zilog

Notes

B
B,E

B,E

E

E

B,E

Notes

E,p

E

NROFF/TROFF

Explanation

Page length.
Eject current
page; next page
number N.
Next page number
N.
Page offset •
Need N ver-
tical space (V=ver­
tical spacing) •
Mark current ver­
tical place in reg­
ister R.
Return (upward only)
to marked vertical
place.

Explanation

Break •
Fill output
lines.
No filling or
adjusting of
output lines.
Adjust output lines
with mode c.
No output line
adjusting.
Center following N
input text lines.

Explanation

Vertical base line
spacing (V).
Output N-l VS after
each text output

64

NROFF/TROFF

.sp N

.sv N

.os

.ns

.rs

.11 ±N
• in +N
• ti ±N

space

6.5in
N=O

Zilog

N=lV

N=lV

previous
previous
ignored

B,v

B,v

D

D

E,m
B,E,m
B,E,m

NROFF/TROFF

line.
Space vertical
distance N in
either direction.
Save vertical
distance N.
Output saved ver­
tical distance.
Turn no-space
mode on.
Restore spacing;
turn no-space mode
off.

Line length.
Indent.
Temporary indent •

6. Macros, Strings, Diversion, and Position Traps

65

Request
Form

.de xx yy

• am xx yy

Initial
Value

.ds xx string -

.as xx string -

.rm xx

.rn xx yy

• di xx

.da xx

.wh N xx

.ch xx N

• dt N xx

.it N xx

• ern xx none

If No
Argument

.yy= •• -

• yy= ••
ignored

ignored

ignored

ignored

end

end

off

off

none

Zilog

Notes

D

D

v

v

D,v

E

Explanation

Define or redefine
macro xx; end at
call of yy.
Append to a macro •
Define a string xx
containing string.
Append string to
string xx.
Remove request,
macro, or string.
Rename request,
macro, or string
xx to yy •
Divert output to
macro xx.
Divert and append
to xx.
Set location trap;
negative is with re­
spect to page bottom.
Change trap loca­
tion •
Set a diversion
trap.
Set an input-line
count trap.
End macro is xx •

65

NROFF/TROFF

7. Number Registers

Request
Form

.nr R

• af R c

• rr R

Initial
Value

+N M

arabic

Zilog

If No
Argument

8. Tabs, Leaders, and Fields

Request Initial
Form Value

.ta Nt ••• O.8iO.Sin

.tc c none

.lc c

.fc a b off

If No
Argument

none

none

none

off

Notes

u

Notes

E,m

E

E

NROFF/TROFF

Explanation

Define and set
number register
Ri auto-increment
by M •
Assign format to
register R (c=l,
i, I, at A).
Remove register R •

Explanation

Tab settings;
left type, unless
t=R(right}, C(cen­
tered) •
Tab repetition
character.
Leader repetition
character.
Set field de­
limiter a and pad
character b.

9. Input and Output Conventions and Character Translations

66

Request
Form

.ec c

.eo

.lg N

.ul N

.cu N

Initial
Value

\

on

-; on

off

off

If No
Argument

\

on

N=l

N=l

Zilog

Notes

E

E

Explanation

Set escape char­
acter.
Turn off escape
character mech­
anism.
Ligature mode on
if N)O.
Underline (ital­
icize in troff) N
input lines.
Continuous under­
line in nroff; like
ul in troff.

66

NROFF/TROFF Zilog

.uf F Italic Italic

.cc c E

.c2 c E

• tr abcd •••• none 0

10. Local Horizontal and Vertical Motions,
and the Width Function

NROFF/TROFF

Underline font set
to F (to be
switched to by ul).
Set control char-
acter to c.
Set nobreak con-
trol character to c.
Translate a to b,
etc. on output.

11. Overstrike, Line-drawing, and Zero-width Functions

67

12. Hyphenation

Request
Form

Initial
Value

If No
Argument

• nh
.hy N

hyphenate -
hyphenate hyphenate

.hc c \%

• hw wordl •••

13. Three Part Titles.

Request
Form

Initial
Value

\% -

ignored

If No
Argument

.tl 'left'center'right'-

.pc c % off

• It ±N 6.5in previous

14. Output Line Numbering.

Request
Form

.nm +N M S I

.nn N

Initial
Value

If No
Argument

off

N=l

Zilog

Notes

E
E

E

Notes

E,m

Notes

E

E

Explanation

No hyphenation •
Hyphenate; N =
mode.
Hyphenation indi­
cator character
c •
Exception words.

Explanation

Three-part title.
Page number char­
acter •
Length of ti tl e.

Explanation

Number mode on or
off, set parameters.
Do not number next
N lines.

67

NROFF/TROFF Zilog

68

15. Conditional Acceptance of Input

Request
Form

Initial
Value

.if c anything

• if !c anything

.if N anything

• if !N anything

If No
Argument

• if 'stringl'string2' anything

Notes

u

u

• if ! 'stringl 'string2 'anything -

• ie c anything u

• el anything

16. Environment Switching

Request
Form

.ev N

Initial
Value

N=O

If No
Argument

previous

Notes

17. Insertions from the Standard Input

Request
Form

• rd prompt
.ex

Initial
Value

If No
Argument Notes

prompt=BEL -

Zilog

NROFF/TROFF

Explanation

If condition c
true, accept any­
thing as input,
for multi-line use
\{anything\} •
If condition c
false, accept any­
thing.
If expression N>O,
accept anything •
If expression N ~O,
accept anything •
If stringl ident­
ical to string2,
accept anything •
If stringl not
identical to
string2, accept
anything •
If portion of ' if­
else; all above
forms (like if) •
Else portion of
if-else.

Explanation

Environment
switched
(pushed down).

Explanation

Read insertion •
Exit from nroff/
troff.

68

NROFF/TROFF Zilog NROFF/TROFF

69

18. Input/Output File Switching

Request Initial If No
Form Value Argument Notes

.so filename

.nx filename EOF

.pi program

19. Miscellaneous

Request Initial If No
Form Value Argument Notes

.mc c N off E,m

• tm str ing newline

.ig yy .yy= ••

.pm t all

• fl B

20. Output and Error Messages

NOTES

B Request normally causes a break.

o Mode or relevant parameters
current diversion level.

Explanation

Switch source
file
(push down).
Next file.
Pipe output to
program (nroff
only) •

Explanation

Set margin char-
acter c and sep-
aration N.
Print string on
terminal (ZEUS
stand ard message
output) •
Ignore till call
of yy.
Print macro names
and sizes; if t
present, print
only total of
sizes •
Flush output buf-
fer.

associated with

E Relevant parameters are a part of the current
environment.

o Must stay in effect until logical output.

Zilog 69

NROFF/TROFF Zilog NROFF/TROFF

70

P Mode must be still or again in effect at the time
of physical output.

v,p,m,u Default scale indicator; if not specified, scale
indicators are ignored.

A.2 Alphabetical Request and Section Number Cross Reference

ad 4 dt 6 ig 19 nn 14 rs 5
af 7 ec 9 in 5 nr 7 rt 3
am 6 ei 15 it 6 ns 5 so 18
as 6 em 6 1c 8 nx 18 sp 5
bd 2 eo 9 19 9 os 5 ss 2
bp 3 ev 16 Ii 9 pc 13 sv 5
br 4 ex 17 11 5 pi 18 ta 8
c2 9 fc 8 Is 5 pI 3 tc 8
cc 9 fi 4 It 13 pm 19 ti 5
ce 4 f1 19 mc 19 pn 3 t1 13
ch 6 fp 2 mk 3 po 3 tm 19
cs 2 ft 2 na 4 ps 2 tr 9
cu 9 hc 12 ne 3 rd 17 uf 9
da 6 hw 12 nf 4 rm 6 u1 9
de 6 hy 12 nh 12 rn 6 vs 5
di 6 ie 15 nm 14 rr 7 wh 6
ds 6 if 15

A.3 Escape Sequences for Characters, Indicators, and
Functions

Section
Reference

9.1

9.1

2.1

2.1

2.1
6

10.1

10.1
10.1

10.1

Escape
Sequence

\\

\e

\'

\'

\-
\.
\(space)

\0
\1

\"

Meaning

\ (to prevent or delay the inter­
pretation of \)
Printable version of the current
escape character.
\' (acute accent); equivalent to
\(aa
, (grave accent); equivalent to
\(ga
- Minus sign in the current font
Period (dot) (see de)
Unpaddab1e space-size space char­
acter
Digit-width space
1/6 em narrow space character (zero­
width in nroff)
1/12 em half-narrow space character
(zero width in nroff)

Zi10g 70

~ ~

''\

"'.,

NROFF/TROFF Zilog NROFF/TROFF

71

4.1
9.6
9.7
6.3

12

2.1
6.1
8.1

11!2
4.2

10.1

2.2

10.1

10.3

11.3

11.3

8
11.1

4.1
10.1

2.3
8.1

10.1

10.1

10.2
5.2

11.4

15
15

9.7

\&
\!
\"
\$N
\%

\(xx
*x,\(xx
\a
\b'abc ••• '
\c
\d

\fx,\f(xx,\fN

\h'N'

\kx

\l'Nc'

\L'Nc'

\nx,\n(xx
\0' abc ••• '
\p
\r

\sN,\s±N
\t
\u

\v'N'

\w'string'
\x'N'

\zc

\{
\}
\(newline)
\X

Nonprinting, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument 1~N~9
Default optional hyphenation charac­
ter
Character named xx
Interpolate string x or xx
Noninterpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2 ern vertical
motion (1/2 line in nroff)
Change to font named x or xx or
position N
Local horizontal motion; move right
N (negative left)
Mark horizontal input place in reg­
ister x
Horizontal line drawing function
(optionally with c)
Vertical line drawing function (op­
tionally with c)
Interpolate number register x or xx
Overstrike characters a, b, c,
Break and spread output line
Reverse 1 ern vertical motion (re­
verse line in nroff)
Point-size change function
Noninterpreted horizontal tab
Reverse (up) 1/2 ern vertical motion
(1/2 line in nroff)
Local vertical motion; move down N
(negative up)
Interpolate width of string
Extra line-space function (negative
before, positive after)
Print c with zero width (without
spacing)
Begin conditional input
End conditional input
Concealed (ignored) new line
X, any character not listed above

The escape sequences \\, \., \", \$, *, \a, \n, \t, and
(new line) are interpreted in copy mode (Section 7.2).

Zilog 71

NROFF/TROFF Zilog NROFF/TROFF

72

A.4 Predef ined General Number Regi.ster s

Section
Reference

3
10.2

6.4

6.4

10.3
14

4.1

10.2

10.2"

Register
Name Description

% Current page number
ct Character type (set by width function)
dl Width (maximum) of last completed diver­

sion
dn Height (vertical size) of last completed

diversion
dw Current day of the week (1-7)
dy Current day of the month (1-31)
hp Current horizontal place on input line
In Output line number
mo Current month (1-12)
nl Vertical position of last printed text

base-line
sb Depth of string below base line (gener­

ated by width function)
st Height of string above base line (gen­

erated by width function)
yr Last two digits of current year

A.5 Predefined Read-Only Number Registers

Section Register
Reference Name

6.3

10.1

10.1

5.2

6.4

2.2
4

5
5
4

$

A

H

T

v

a

c
d

f
h

i
1
n

Description

Number of arguments available at the
current macro level
Set to 1 in troff if -a option used;
always 1 in nroff
Available horizontal resolution in
basic units
Set to 1 in nroff, if -T option used;
always 0 in troff
Available vertical resolution in basic
units
Post-line extra line-space most recently
utilized using ex "N"
Number of lines read from current input file
Current vertical place in current diversion;
equal to nl, if no diversion
Current font as physical quadrant (1-4)
Text base-line mark on current page or
diversion
Current indent
Current line length
Length of text portion on previous output

Zilog 72

NROFF/TROFF

3 0

3 P
2.3 s
6.5 t
4.1 u
5.1 v

10.2 w
x
y

6.4 z

73

Zilog NROFF/TROFF

line
Current page offset
Current page length
Current pOint size
Distance to the next trap
Equal to 1 in fill mode and 0 in nofill mode
Current vertical line spacing
Width of previous character
Reserved version-dependent register
Reserved version-dependent register
Name of current diversion

Zilog 73

NROFF/TROFF Zilog NROFF/TROFF

74

APPENDIX B

SUM~mRY OF RECENT CHANGES TO NROFF/TROFF

Options

-h

-z

(Nroff only) Output tabs used during horizontal
spacing to speeQ output as well as reduce output
byte count. Device tab settings are assumed to be
every eight nominal character widths. The default
settings of input (logical) tabs is also initial­
ized to every eight nominal character widths.

Efficiently suppresses
message output occurs
tics) •

formatted output. Only
(from "tm"s and diagnos-

Old Requests

.ad c The adjustment type indicator Pc" is now also a
number previously obtained from the ".j" register •

• so name The contents of file "name" are interpolated at
the point the "so" is encountered. Previously,
the interpolation was . done upon return to the
file-reading input level.

New Request

.ab text Prints "text" on the message output and terminates
without further processing. If "text" is missing,
"User Abort." is printed. Does not cause a break.
The output buffer is flushed.

.fz F N Forces font "F" to be in size N. N can have the
form N, +N, or -N. For example,

.fz 3 -2

causes an implicit \s-2 every time font 3 is
entered, and a corresponding \s+2 when it is left.
Special font characters occurring during the use
of font F have the same size modification. If
special characters are ~reated differently,

.fz S F N

Zilog 74

NROFF/TROFF Zilog NROFF/TROFF

is used to specify the size treatment of special
characters during font F. For example,

.fz 3 -3

.fz S 3 -0

causes automatic reduction of font 3 by 3 points
while the special characters is not affected. Any
".fp" request specifying a font on some position
must precede ".fz" requests relating to that posi­
tion.

New Predefined Number Registers

.k

.j

.P

.L

.c

75

Read-only. Contains the horizontal size of the
text portion (without indent) of the current par­
tially collected output line, if any, in the
current environment.

Read-only. A number representing the current
adjustment mode and type. Can be saved and later
given to the "ad" request to restore a previous
mode.

Read-only. 1 if the current page is
printed, and zero otherwise.

being

Read-only. Contains the current
parameter ("Is").

line-spacing

General register access to the input line-number
in the current input file. Contains the same
value as the read-only ".c" register.

Zilog 75

./

PGMG

(

1

Zilog PGMG

ZEUS PROGRAMMING*

* This information is based on an article originally
written by Brian W. Kernighan, Bell Laboratories.

Zilog 1

..
PGMG Zilog PGMG

...

2 Zilog 2

PGMG

3

Zilog PGMG

PREFACE

This document introduces programming using ZEUS. The
emphasis is on how to write programs that interface with the
operating system, either directly or through the standard
I/O library. The topics discussed include:

$ Handling command arguments

$ Standard I/O

$ Standard I/O file access

$ Low-level I/O

$ Processes

$ Signals

The material discussed in this document is also covered in
the ~ Reference Manual and in ~ ~ Beginners. All
programming is done in C; refer to ~ ~ Programming
Language by B. W. Kernighan and D. M. Ritchie (Prentice­
Hall, 1978) for more information on C.

Zilog 3

PGMG

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

4

Zilog PGMG

TABLE OF CONTENTS

BASICS .
1.1
1.2

Program Arguments •••••••••••••••••••••••••••••
The Standard Input and Output

THE STANDARD I/O LIBRARY · .
2.1 Introduction · · · . . · .
2.2 File Access · •••• • • • •• · .
2.3 Error Handling .. · · .
2.4 Miscellaneous I/O Functions . . · ·
2.5 General Usage ... · ... · · · · ... ·
2.6 Calls · . . . · · · ·
2.7 Macros · . · · · · ...
LOt'l-LEVEL I/O ••••••••••••••••• • a ••••••••••••••••••••

3.1 General · ·
3.2 File Descriptors · .. · · · .
3.3 Read and Write ·
3.4 Open, Creat, Close, Unlink ·
3.5 Random Access with Iseek . . · . · · .
3.6 Error Processing · · • • • ·
PROCESSES .
4.1
4.2
4.3
4.4

System Function .
Low-Level Process Creation
Control of Processes ••

·
Pipes .

SIGNALS .
5.1
5.2
5.3

General . · . · . Signal Routine
Interrupts •••••••••• .

Zilog

5

5
5

8

8
8
11
12
12
13
18

20

20
20
21
23
25
25

27

27
27
28
30

34

34
34
35

4

..

/' "

PGMG

5

Zilog PGMG

SECTION 1

BASICS

1.1 Program Arguments

When a C program is run as a command, the arguments on the
command line are available to the function main as an argu­
ment count (SLS&) and an array (~) of pointers to charac­
ter strings that contain the arguments. By convention,
~[~] is the command name itself, so ~ is always
greater than O. The following program illustrates the
method used. It simply echoes its arguments back to the
terminal.

main{argc, argv)
int argc;
char *argv[];
{

int i;

/* echo arguments */

for (i = 1; i < argc; i++)
printf("%s%c", argv[i], (i<argc-l) ? ' , : '\n');

}

The array ~ is a pointer to an array whose individual
elements are pointers to arrays of characters. Each array
of characters is terminated by \0, so it can be treated as a
string. The program starts by printing ~[l] and loops
until it has printed all of the arrays.

The argument count and the arguments are parameters to main.
To save them so that other routines can use them, they must
be copied to external variables.

1.2 The Standard Input and Output

The simplest input mechanism is to read the standard input,
which is data from the user's terminal. The function
getchar returns the next input character each time it is
called. Input from a file can be substituted for input from
the terminal by using the < convention as defined in ~
~ Beginners. If ~ uses getchar, then the command line

prog < file

causes ~ to read ~ instead of the terminal; ~
itself is not affected by the origin of its input. This is

Zilog 5

PGMG

6

Zilog PGMG

also true if the input comes from another program using a
~.

otherprog I prog

provides the standard input for ~ from the standard out~
put of otherprog.

The function getchar returns ~ when it encounters the end
of file or an error on what is being read.

The function putchar(~) puts the character ~ on the standard
output. The output can be captured on a file by using >.
If ~ uses putchar,

prog > outfile

writes the standard output on outfile instead of on the ter­
minal. If outfile does not exist, it is created. If it
already exists, its previous contents are overwritten. A
pipe can be used.

prog I otherprog

puts the standard output of ~ into the standard input of
otherprog.

The function printf, which formats output in various ways,
uses the same mechanism as putchar. Therefore, calls to
printf and putchar can be intermixed in any order. The out­
put appears in the order of the calls.

Similarly, the function scanf provides formatted input
converS10n1 it reads the standard input and breaks it into
strings, numbers, and so on, as desired. The function scanf
uses the same mechanism as getchar, so calls to either can
be intermixed.

Many programs read only one input and write only one output.
For such programs, I/O with getchar, putchar, scaDf, and
printf can be adequate, and it is enough to get started.
This is particularly true if the ZEUS pipe facility is used
to connect the output of one program to the input of the
next. For example, the following program strips out all
ASCII control characters from its input (except for new line
and tab).

Zilog 6

PGMG

7

Zilog PGMG

#include <stdio.h>

main ()
{

/* ccstrip: strip nongraphic characters */

}

The line

int C1
while «c = getchar(» 1= EOF)
if «c >= ' , && c < 0177) II c == '\t' II c == '\n')

putchar(c};
exit(O);

#include <stdio.h>

should appear at the beginning of each source file. It
causes the C compiler to read a file (/~include/stdio.h)
of standard routines and symbols that includes the defini­
tion of .EQf..

If it is necessary to treat multiple files, ~ can be used
to collect the files:

cat filel file2 ••• I ccstrip > output

thereby avoiding the necessity of learning. how to access
files from a program. The ~ at the end of the program is
not necessary, but it ensures that any caller of the program
sees a normal termination status (conventionally 0) from the
program when it completes. (Section 6 discusses status
returns in more detail.)

Zilog 7

.,.

PGMG

8

Zilog PGMG

SECTION 2

THE STANDARD I/O LIBRARY

2.1 Introduction

The standard I/O library is a collection of routines provid­
ing efficient and portable I/O services for most C programs.
The standard I/O library is available on System 8000, which
supports C. Programs that confine their system interactions
to the library's facilities can be easily transported from
System 8000 to another system or from another system to Sys­
tem 8000.

The standard I/O library was designed with the following
goals in mind.

1. Maximal time and space efficiency so that it can be
used in all applications no matter how critical.

2. Simple to use and free from unexplained numbers and
calls that interfere with the understandability and
portability of many programs using older packages.

3. The interface provided is applicable on all machines,
whether or not the programs that implement it are
directly portable to other systems.

In Sections 2.2 through 2.4, the basics of the standard I/O
library are discussed. Sections 2.5, 2.6, and 2.7 contain a
more complete description of its capabilities.

2.2 File Access

The programs described so far read the standard input and
write the standard output. Programs can also access a file
not already connected to the program. One example, ~,
counts the number of lines, words, and characters in a set
of files. For instance, the command

wc x.c y.c

prints the number of lines, words, and characters in the
file A.~ and the file y.~ and then prints the combined total
lines, words, and characters for these files.

It is necessary to connect the file system names to the I/O
statements that read the data. Before a file is read or
written, it is opened by the standard library function

Zilog 8

PGMG

9

Zilog

fopen, which takes an external name
interfaces with the operating system, and
nal name that must be used in subsequent
the file.

PGMG

(like X.k or ~.~),
returns an inter­
reads or writes of

This internal name is a pointer (called a ~ pointer) to a
structure that contains information about the file, such as
the location of a buffer, the current character position in
the buffer, and whether the file is being read or written.
Part of the standard I/O definitions obtained by including
stdiQ.h is a structure definition called EIL£. The only
declaration needed for a file pointer is one such as:

FILE *fp, *fopen();

Here, 19 is a pointer to a £lL£, and fQpen returns a pointer
to a ~. (~ is a type name, like integer (1nt), not a
structure tag.)

The actual call to fQpen in a program is:

fp = fopen(name, mode);

The first argument of fQpen is the name of the file, as a
character string. The second argument is the mode, also as
a character string, which indicates how the file is to be
used. The only allowable modes are read ("r"), write ("w"),
and append ("a").

If a file opened for writing does not exist, it is created,
if possible. Opening an existing file for writing destroys
the old contents. Trying to read a file that does not exist
is an error. There can be other causes of error as well,
such as trying to read a file without having read permis­
sion. If there is any error, fQpen returns the null pointer
value NULL (defined as zero in stdiQ.h).

There are several ways to read or write the file once it is
open. The simplest are ~ and ~. The function ~
returns the next character from a file--it needs the file
pointer to tell it what file to read. For example,

c = getc(fp)

places the next character from the file referred to by 19 in
~. ~ is returned when end of file is reached. The inverse
of 9.iU& is ~.

putc ec, fp)

Zilog 9

PGMG

10

Zilog PGMG

puts the character ~ on the file !R and returns ~. ~ is
returned on error.

When a program is started, three files--predefined in the
I/O library as the standard input (stdin), the standard out­
put (stdout), and the standard error output (stderr) files-­
are opened automatically, and file pointers are provided for
them. Normally, these file pOinters are all connected to
the terminal, but they can be redirected to files or pipes
as described in Section 1.2. The files stdin, stdout, and
stderr can be used wherever an object of type ~ can be
used. However, they are constants, not variables, so noth­
ing can be assigned to them.

With some of the preliminaries out of the way, ~ can now be
written. The basic design of ~ is convenient for many pro­
grams. If there are command-line arguments, they are pro­
cessed in order. If there are no arguments, the standard
input is processed. Thus, the program can be used stand­
alone or as part of a larger process.

#include <stdio.h>

main(argc, argv)
int argc;

/* wc: count lines, words, chars */

char *argv[];
{

int c, i, inword;
FILE *fp, *fopen();
long linect, wordct, charct;
long tlinect = 0, twordct = 0, tcharct = 0;

i = 1;
fp = stdin;
do {

if (argc > 1 && (fp=fopen(argv[i], nrn» == NULL) {
fprintf(stderr, "wc: can't open %s\nn, argv[i]);
continue;

}
linect = wordct = charct = inword = 0;
while «c = getc(fp» 1= EOF) {

}

charct++;
if (c == '\n')

linect++;
if (c == ' , I I c == 'I I I c == '\n')

inword = 0;
else if (inword == 0) {

inword = 1;
wordct++;

}

printf{n%71d %7ld %71d n, linect, wordct, charct);

Zilog 10

PGMG

11

}

Zilog

printf(argc > 1 ? "%sO\n" "O\n", argv[i])1

fclose(fp)1
tlinect += linect;
twordct += wordct;
tcharct += charct;

} while (++i < argc);
if (argc > 2)

PGMG

printf("%71d %71d %71d totalO\n", tlinect, twordct, tcharct);
exit(O);

The function fprintf is identical to printf, except that the
first argument in fprintf is a file pointer that specifies
the file to be written.

The function fclose is the inverse of fopen. It breaks the
connection between the file pointer and the external name
that is established by fopen, freeing the file pointer for
another file. Since there is a limit on the number of files
that a program can have open simultaneously, files should be
freed when they are no longer needed~ The function fclose
also flushes the buffer in which ~ is collecting output
(fclose is called automatically for each open file when a
program terminates normally).

2.3 Error Handling

The file stderr is assigned to a program in the same way as
stdin and stdout. Output written on stderr appears on the
terminal, even if the standard output is redirected. The
command ~ writes its diagnostics on stderr instead of
stdout, so that if one of the files cannot be accessed, the
message goes to the terminal instead of disappearing down a
pipeline or into an output file.

The program signals errors by using the function ~ to
terminate program execution. The argument of ~ is avail­
able to the process that called it (see Section 5), so the
success or failure of the program can be tested by another
program that uses it as a subprocess. By convention, a
return value of 0 signals that all is well; nonzero values
signal abnormal situations.

The ~ command calls fclose for each open output file to
flush out any buffered output. It then calls the routine
exit, which causes immediate termination without any buffer

flushing. The exit routine can be called directly if
desired.

Zilog 11

PGMG

i{

12

Zilog PGMG

2.4 Miscellaneous I/O Functions

The standard I/O library provides several other I/O func­
tions besides those illustrated above.

Normally, output with ~, ~, etc., is buffered (except
to stderr). To force it out immediately, use fflush(tR).

The function fscanf is identical to scanf, except that its
first argument is a file pointer that specifies the file
from which the input comes. It returns ~ at end of file.

The functions sscanf and sprintf are identical to fscanf and
fprintf, except that the first argument names a character
string instead of a file pointer. The conversion is done
from the string for sscanf and to the string for sprintf.

The function fgets(bYf, ~, tR) copies the next line from
!R (up to and including a new line) into bYf. At most,
~-~ characters are copied. NULL is returned at end of
file. The function fputs(hYf, ~) writes the string in bYf
onto file fR.

The function ungetc(&, fR) "pushes back" the character &
onto the input stream !D. A subsequent call to ~, fscanf,
etc., encounters &. Only one character of pushback per file
is permitted.

2.5 General Usage

Each program using the library must have the line

#include <stdio.h>

to define certain macros and variables. These routines are
in the normal C library. All names in the include file
intended only for internal use begin with an underscore (_)
to reduce the possibility of confusion by these files having
the same name as user named files. The following names are
to be visible outside the package.

stdin

stdout

stderr

Standard input file

Standard output file

Standard error file

EOF Defined to be -1, the value returned by the read
routines on end-of-file or error

Zilog 12

PGMG

13

NULL

Zilog PGMG

Notation for the null pointer returned by
pointer-valued functions to indicate an error

FILE Expands to struct -iQb; useful shorthand when
declaring pointers to streams

BUFSIZ size number suitable for an I/O buffer (see setbuf
in Section 2.6)

getc, getchar, putc, putchar, feof, ferror, fileno
Macros, whose actions are described below. They
are mentioned here to point out that it is not
possible to redeclare them and that they are not
actually functions. Therefore, they cannot have
breakpoints set on them.

The routines discussed here offer automatic buffer alloca­
tion and output flushing where appropriate. The names
stdin, stdout, and stderr are constants and nothing can be
assigned to them.

2.6 Calls

ElLt *fopen(filename, ~) ~ *filename, *~;

This call opens the file and, if needed, allocates a
buffer for it. The character string filename specifies
the name. The argument ~ is a character string, not
a single character. It can be n~n, n~n, or n~n to
indicate read, write, or append. The value returned is
a file pointer. If it is NULL, the attempt to open
failed.

ElLt *freopen(filename, ~, ioptr) ~ *filename, *~;
ElLt *ioptr;

The stream named by ioptr is closed, if necessary, and
then reopened as if by fopen. If the attempt to open
fails, ~ is returned; otherwise, ioptr is returned
(ioptr now refers to the new file). The reopened
stream is often stdin or stdout.

int ~(iQptr) flL£ *ioptr;

This call returns the next character from the stream
named by ioptr, a pointer to a file (similar to one
returned by fopen), or the name stdin. The integer EQf
is returned on end-of-file or when an error occurs.
The null character \0 is a legal character.

Zilog 13

PGMG

14

Zilog PGMG

int fgetc(ioptr) ~ *ioptr;

This call acts like ~, but it is a genuine function,
not a macro, so it can be pointed to or passed as an
argument.

~(~, ioptr) ~~; ~ *ioptr;

The ~ call writes the character ~ on the output
stream named by ioptr, which is a value returned from
fopen, stdout, or stderr. The character ~ is passed as
value; £Q£ is returned on error.

fputc(~, ioptr) ~~; ~ *ioptr;

This call acts like ~, but it is a function, not a
macro.

fclose(ioptr) ~ *ioptr;

The file corresponding to ioptr is closed after any
buffers are emptied, and a buffer allocated by the I/O
system is freed. The fclose function is automatic on

.normal termination of the program.

fflush(ioptr) ~ *ioptr;

Any buffered information on the output stream named by
ioptr is written out. Output files are normally buf­
fered only if they are not directed to the terminal.
However, stderr always starts unbuffered and remains
so, unless setbuf is used or unless it is reopened.

~(errcode);

This call terminates the process and returns its argu­
ment as status to the parent. This is a special ver­
sion of the routine that calls fflush for each output
file. The call exit terminates without flushing.

~(ioptr) fILE *ioptr;

This call returns nonzero when ~ has occurred on the
specified input stream.

ferror(ioptr) ~ *ioptr;

This call returns nonzero when an error has occurred
while the named stream is being read or written. The
error indication lasts until the file has been closed.

Zilog 14

PGMG

15

Zilog PGMG

getchar();

This call is identical to ~(stdin).

putchar(&) ~ &;

This call is identical to ~(&, stdout).

~ *fgets(~, n, ioptr) ~ *~; int n; ~ *1Qptr;

This call reads into the character pointer ,a, , up to
n-l characters from the stream iQptr. The read ter­
minates with a new line character, which is placed in
the buffer followed by a null character. The function
fgets returns the first argument or XULL if error or
.E.Qf occurred.

fputs(,a" 1Qptr) ~ *,a,; ~ *1optr;

This call writes the null-terminated string (character
array) ,a, on the stream 1Qptr. A new line is not
appended, and no value is returned.

ungetc(&, 1Qptr) ~ &; ~ *1Qptr;

The argument character & is pushed back on the input
stream named by 1Qptr. Only one character at a time can
be pushed back.

pr1ntf(fQrmat, Al, •••) ~ *fQrmat;
'fpr1ntf(1QPtr, fQrmat, Al, •••) ~ *iQptr; ~ *fQrmat;
sprintf(,a" fQrmat, al, .••)~ *,a" *fQrmat;

The function pr1ntf writes on the standard output. The
function fpr1ntf writes on the named output stream, and
spr1ntf puts characters in the character array named by
~. The specifications are as described in printf(l) of
the ZEUS Reference Manual.

scanf(fQrmat, Al, •••) ~ *fQrmat;
fscanf(1QPtr, fQrmat, Al, •••) ~ *1Qptr; ~ *fQrmat;
sscanf(,a" fQrmat, Al, ...) ~ *,a" *fQrmat;

The scanf function reads from the standard input;
fscanf reads from the named input stream; sscanf reads
from the character string supplied as ,a,; and scanf
reads characters, interprets them according to a for­
mat, and stores the results in its arguments. Each
routine expects, as arguments, a control string fQrmat
and a set of arguments, each of which must be a pointer
that indicates where the converted input is to be
stored. The function scanf returns the number of

Zilog 15

PGMG

16

Zilog PGMG

successfully matched and assigned input items as its
value. This can be used to decide how many input items
were found. ~ is returned on end of file. Note that
this is different from 0, which means that the next
input character does not match what was called for in
the control string.

fread(RtL, sizeof(*RtL), nitems, ioptr) ~ *~;
int nitemsi ~ *joptr;

This call reads njtems of data from file joptr, begin­
ning at RtL. Advance notification of binary I/O is not
required. When, for portability reasons, binary I/O
becomes required, an additional character is added to
the mode-string on the fopen call.

fwrjte(RtL, sjzeof(*RtL), njtems, joptr) ~
njtems; llLE *joptri

This call is similar to fread, except that it writes
njtems of data from file joptr, beginning at RtL.

rewjnd(joptr) ~ *joptr;

This call rewinds the stream named by joptr. It is not
very useful except for input, since a rewound output
file is open only for output.

system(string) ~ *strjng;

The string is executed by the shell as if it were typed
at the terminal.

~(joptr) fILE *joptr;

This call returns the next word from the input stream
named by joptr. EQf is returned on end of file or
error, but since this is a good integer, ~ and ~
~ should be used. (System 8000 uses 16-bit words.)

~(li, joptr) int ~i ~ *joptr;

This call writes the integer ~ on the named output
stream.

Zilog 16

PGMG

17

Zilog PGMG

setbuf(iQptr, hut) flL£ *ioptr; ~ *hut;

The function setbuf can be used after a stream has been
opened, but before I/O has started. If hYf is ~, ,
the stream is unbuffered. Otherwise, the buffer sup­
plied, which must be a character array of sufficient
size, is used:

char buf[BUFSIZ};

fileno(ioptr) ~ *ioptr;

This call returns the integer file descriptor associ­
ated with the file.

fseek(ioptr, offset, ptrname) ~ *ioptr; lQng offset;
.in.t ptrname;

The location of the next byte in the stream named by
ioptr is adjusted. The argument offset is a long
integer. If ptrname is 0, the offset is measured from
the beginning of the file. If ptrname is-I, the offset
is measured from the current read or write pointer. If
ptrname is 2, the offset is measured from the end of
the file. This routine accounts for any buffering.
When this routine is used on non-ZEUS systems, the
offset must be a value returned from ftell and the
ptrname must be O.

lQng ftell(ioptr) ElL£ *iopt,;

The byte offset (measured from the beginning of the
file) associated with the named stream is returned.
Any buffering is accounted for. On non-ZEUS systems,
the value of this call is useful only for handing to
fseek, to position the file to the same place it was
when ftell was called.

getpw (.Y.i.d, hu:f) .in.t.Y.i.d; ~ *hu:f;

The password file is searched for
user ID. If an appropriate line is
into the character array hYf, and 0
line is found corresponding to
returned.

~ *malloc(nYm); .in.t nYmi

the given integer
found, it is copied
is returned. If no
the user lD, 1 is

This call allocates nYm bytes. Because the pointer
returned is sufficiently well aligned, it can be used
for any purpose. NULL is returned if no space is
available.

Zilog 17

PGMG

18

Zilog PGMG

~ *calloc (nwn, ~); .in.t llWIl, ~;

This call allocates space for nwn items, each of size
~. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for
any purpose. NULL is returned if no space is avail­
able.

cfree(~) ~ *~;

Space is returned to the operating system used by ~
~. If the pointer was not obtained from calloc, this
will not function properly.

2.7 Macros

The definitions of the following macros can be obtained by
including <ctype.h>.

isalpha CcJ

returns nonzero if the argument is alphabetic

isupper (~)

returns nonzero if the argument is upper-case alpha­
betic

islower (~)

returns nonzero if the argument is lower-case alpha­
betic

isdigit (~)

returns nonzero if the argument is a digit

isspace (~)

returns nonzero if the argument is a spacing character
(tab, new line, carriage return, vertical tab, form
feed, or space)

ispunct(~}

returns nonzero if the argument is any punctuation
character (not a space, letter, digit, or control char­
acter)

Zilog 18

PGMG

19

Zilog PGMG

isalnum(k)

returns nonzero if the argument is alphanumeric

isprint (k)

returns nonzero if the argument is printable (a letter,
.digit, or punctuation character)

iscntrl (k)

returns nonzero if the argument is a control character

isascii <.~}

returns nonzero if the argument is an ASCII character

toupper(&)

returns the upper-case character corresponding to the
lower-case letter k

tolower (&)

returns the lower-case character corresponding to the
upper-case letter &

Zilog 19

PGMG

{

20

3.1 General

Zilog

SECTION 3

LOW-LEVEL I/O

PGMG

The bottom level of I/O on ZEUS is described in this sec­
tion, and it does not provide buffering or any other ser­
vices. It is a direct entry into the operating system. The
calls and usage are simple and the user has control over
what happens.

3.2 File Descriptors

In the ZEUS operating system, all input and output is done
by reading or writing files, because all peripheral devices
(including the user's terminal) are files in the file sys­
tem. This means that a single, homogeneous interface han­
dles all communication between a program and the peripheral
devices.

Before reading or writing ~ file, the file must be opened.
If a file to be written on does not exist, it is created.
The system checks to see if the user has permission to write
on a file and if the file exists. If everything is in order,
the system returns a small, positive integer called a file
descriptor. Whenever I/O occurs, the file descriptor iden­
tifies the file. All information about an open file is
maintained by the system; the user program refers to the
file only by the file descriptor.

The file pointers discussed in Section 3 are similar to file
descriptors, except that file descriptors are more fundamen­
tal. A file pointer points to a structure that contains,
among other things, the file descriptor for the file in
question.

Since input and output involving the user's terminal are so
common, special arrangements exist to make this convenient.
When the command interpreter (the shell) runs a program, it
opens three files (with file descriptors 0, 1, and 2) called
the standard input, the standard output, and the standard
error output. All of these are normally connected to the
terminal, so if a program reads file descriptor 0 and writes
file descriptors 1 and 2, it can perform terminal I/O
without opening the files.

Zilog 20

PGMG

21

Zilog PGMG

If I/O is redirected to and from files with < and >, as in

prog < infile > outfile

the shell changes the default assignments for file descrip­
tors 0 and 1 from the terminal to the named files. If the
input or output is associated with a pipe, the results are
similar. Normally, file descriptor 2 remains attached to
the terminal. Therefore, error messages can go to the ter­
minal. To redirect the standard error output, type an
ampersand (&) after the >. For example:

prog >& errsmgs

In all cases, the file assignments are changed by the shell,
not by the program. The program does not need to know where
its input comes from or where its output goes, as long as it
uses file 0 for input, and files 1 and 2 for output.

3.3 Read and Write

All input and output is done by the functions ~ and
write. For both read and write operations, the first argu­
ment is a file descriptor. The second argument is a buffer
in the program where tne data is to corne from or go to. The
third argument is the number of bytes to be transferred.
The calls are: ..

n_read = read(fd, buf, n);

n_written = write{fd, buf, n);

Each call returns a byte count of the number of bytes actu­
ally transferred. When reading, the number of bytes
returned can be less than the number asked for, if fewer
than n bytes remain to be read. (When the file is a termi­
nal, ~ normally reads only up to the next new line, which
is generally less than what was requested.) A return value
of zero bytes implies ~ and -1 indicates an error of some
sort. For writing, the returned value is the number of
bytes actually written; an error is returned if this number
is not equal to the number of bytes requested.

The number of bytes to be read or written is arbitrary. The
two most common values are 1, which means one unbuffered
character at a time, and 512, which corresponds to a physi­
cal block size on some peripheral devices.

A simple program to copy the program's input to its output
can now be written. This program copies anything to any-

Zilog 21

PGMG

22

Zilog PGMG

thing, since the input and output can be redirected to any
file or device.

#define BUFSIZE 512 /* best size for ZEUS */

main ()
{

/* copy input to output */

}

char' buf [BUFSIZE] ;
int n;

while «n = read(stdin, buf, BUFSIZE» > 0)
write(stdout, buf, n);

exit(O);

If the file size is not a multiple of BUFSIZE, a ~
returns a smaller number of bytes to be written by write.
The next call to ~ returns zero.

It is instructive to see how ~ and write can be used to
construct higher-level routines like getchar and putchar.
For example, the followng is a version of getchar that does
unbuffered input.

#define CMASK 0377 /* for making char's> 0 */

getchar() /* unbuffered single character input */
{

char c;
return«read(O, &c, 1) > 0) ? c & CMASK : EOF);

}

The variable & must be declared ~, because ~ accepts a
character pointer. The character being returned must be
masked with Qll2 (octal) to ensure that it is positive; oth­
erwise, sign extension can make it negative.

The second version of getchar inputs in big chunks and out­
puts the characters one at a time.

#define
#define

CMASK
BUFSIZE

0377 /* for making char's> 0 */
512

getchar() /* buffered version */
{

static char
static char
static int

buf[BUFSIZE];
*bufp = buf;
n = 0;

if (n == 0) { /* buffer is empty */
n = read(O, buf, BUFSIZE);
bufp = buf;

Zilog 22

PGMG

23

Zilog PGMG

}
return«--n >= 0) ? *bufp++ & CMASK : EOF) 1

}

3.4 Open, Creat, Close, Unlink

Files must be
(unless they
error files).
opening files

explicitly opened to be read
are the default standard input,
The two system entry points for

are ~ and creat.

or written
output, and
explicitly

The entry point ~ is similar to fopen (discussed in Sec­
tion 3.2) except that instead of returning a file pOinter,
~ returns a file descriptor, which is an integer.

int fd:

fd = open(name, rwmode):

As with fopen, the name argument is a character string
corresponding to the external file name. The access mode
argument is different, however. The rwmode argument is 0
for read, 1 for write, and 2 for read and write access. If
any error occurs, ~ returns -11 otherwise, it returns a
valid file descriptor. .

Trying to open a file that does not exist results in an
error. The entry point creat is provided to create new
files or to rewrite old ones.

fd = creat(name, pmode):

returns a file descriptor if it was able to create the file
called nam&, and -1 if not. If the file already exists,
creat truncates it to zero length. It is not an error to
creat a file that already exists.

If the file is new, creat creates it with the protection
~ specified by the pmode argument. In the ZEUS file sys­
tem, there are nine bits of protection information associ­
ated with a file, controlling read, write, and execute per­
mission for the owner of the file, for the owner's group,
and for all others. A three-digit octal number is most con­
venient for specifying the permissions. For example, 0755
(octal) specifies read, write, and execute permission for
the owner, and read and execute permission for the group and
everyone else.

To illustrate, here is a
utility~, a program

simplified version of
that copies one file to

Zilog

the ZEUS
another.

23

PGMG

24

Zilog PGMG

(This version copies only one file and does not permit the
second argument to be a directory.)

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644 /* RW for owner, R for group, others */

main{argc, argv)
int argci

/* cp: copy fl to f2 */

char *argv [] ;
{

}

int fl, f2, n;
char buf[BUFSIZE];

if (argc 1= 3)
error {"Usage: cp from to", NULL);

if {(f1 = open(argv[l] , a)} == -1)
error("cp: can't open %s", argv[l]);

if ({f2 = creat{argv[2], PMODE» == -1)
error("cp: can't create %s·, argv[2]);

while «n = read(fl, buf, BUFSIZE» > 0)
if (write(f2, buf, n) 1= n)

error("cp : write error", NULL);
exit(O);

error(sl, s2) /* print error message and die */
char *sl, *s2;
{

}

printf{sl, s2);
printf('\n');
exit(l);

As stated earlier, there is a limit to the number of files
(typically 15-25) that a program can have open simultane­
ously. Accordingly, any program that processes many files
must be prepared to reuse file descriptors. The routine
close breaks the connection between a file descriptor and an
open file, freeing the file descriptor for use with some
other file. Termination of a program via ~, or return
from the main program, closes all open files.

The function unlink(filename) removes the file filename from
the file system.

Zilog 24

PGMG

25

~ Zilog PGMG

3.5 Random Access With lseek

File I/O is normally sequential: each ~ or write is per­
formed after the previous one. When necessary, however, a
file can be read or written in an arbitrary order. The sys­
tem call lseek provides a way to move around in a file
without reading or writing.

lseek(fd, offset, origin);

forces the current position in the file, whose descriptor is
tg, to move to position offset, which is taken relative to
the location specified by o,igin. Subsequent reading or
writing begins at that position. The argument offset is a
long integer; !d and o,igin are integers. The argument ~
gin can be 0, 1, or 2 to specify that offset is to be meas­
ured from the beginning, from the current position, or from
the end of the file. For example, to append to a file and
seek to the end before writing, type:

lseek(fd, OL, 2);

To get back to the beginning {rewind}, type:

lseek(fd, OL, 0);

The QL argument can also be written as (lQrig) ~.

With lseek, it is possible to treat files like large arrays,
at the price of slower access. For example, the following
simple function reads any number of bytes from an arbitrary
place in a file.

get{fd, pos, buf, n) /* read n bytes from position pos */
int fd, n;
long pos;
char *buf;
{

}

lseek(fd, pos, 0); /* get to pos */
return(read(fd, buf, n»;

3.6 Error Processing

All routines that are direct entries into the system can
incur errors. Usually an error is indicated by the return
of a value. To enable the use~ to learn what sort of error
occurred, all these routines leave an error number in the
external cell e"no. The meanings of the various error

Zilog 25

PGMG

26

Zilog PGMG

numbers are listed in Section 2 of the Z£llS Reference
Manual. If the reason for failure is to be printed out, the
routine perror must be used1 this prints a message associ­
ated with the value of errno. The routine sys errno is an
array of character strings that can be indexed by errno and
printed by the user's program.

Zilog 26

PGMG

27

Zilog PGMG

SECTION 4

PROCESSES

4.1 System Function

This section describes how to execute a program from within
another program.

The easiest way to execute a program from another program is
to use the standard library routine system, which takes one
argument, a command string exactly as typed at the terminal
(except for the new line at the end), and executes it. For
instance, to time-stamp the output of a program:

maine)
{

system("date");
/* rest of processing */

}

If the command string has to be built from pieces, the in­
memory formatting capabilities of sprintf can be useful.

Remember that ~ and ~ normally buffer
terminal I/O is not properly synchronized
buffering is avoided. For output, use fflush;
see setbuf in Section 3.6.

4.2 Low-Level Process Creation

their input;
unless this
for input,

If the standard I/O library is not used, or if finer control
is needed, calls to other programs must be contructed using
the routines on which the standard library's system routine
is based.

The most basic operation is execution of another program
without returning, using the routine execl. To print the
date as the last action of a running program, use

execl("/bin/date", "date", NULL);

The first argument to execl is the file name of the command,
whose address in the file system must be known. The second
argument is conventionally the program name, but it is sel­
dom used except as a place holder. If the command takes
arguments, they are strung out after the program name. The
end of the list is marked by a ~ argument.

Zilog 27

PGMG

28

Zilog PGMG

The exec I call overlays the existing program with the new
one; it runs the new program and then exits. There is no
return to the original program.

It is more common, however, for a program
or more phases that communicate only
files. If this happens, it is natural to
pass simply an execl call from the first.

to fall into two
through temporary
make the second

The one exception to the rule that the original program
never gets control back occurs when there is an error (for
example, if the file can1t be found or is not executable).
If the location of ~ is not known, enter

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n");

Use execy, a variant of execl, when the number of arguments
is not known in advance. The call is

execv(filename, argp);

where ALQR is an array of pointers to the arguments. The
last pointer in the array must be NULL so that execy can
tell where the list ends. As with execl, 'filename is the
file in which the program is found, and ALQR[~] is the name
of the program. (This arrangement is identical to the ~
array for program arguments.)

Because neither of these routines provides automatic search
of multiple directories, the location of the command must be
precisely known. The expansion of metacharacters like <, >,
*, ?, and [] in the argument list cannot be obtained. If
these metacharacters are desired, use execl to invoke the
shell (ab), which then does all the work. A string command­
line that contains the complete command as it would have
been typed at the terminal is constructed. Then enter:

execl("/bin/sh", ash", "_c n , commandline, NULL);

The shell is assumed to be at a fixed place, /hin/Qh. Its
argument -~ means that the next argument should be treated
as a whole command line. The only problem is in construct­
ing the right information in commandline.

4.3 Control of Processes

The following explains how to regain control after running a
program with exec I or execy. Since these routines simply
overlay the new program on the old one, to save the old one

Zilog 28

PGMG

29

Zilog PGMG

requires that it first be split into two COpies1 one of
these copies can be overlaid, while the other waits for the
new, overlaying program to finish. The splitting is done by
a routine called ~.

proc_id = fork()1

splits the program into two copies, both of which continue
to run. The only difference between the two is the value of
the process ID (proc id). In one of these processes (the
child), proc id is zero. In the other (the parent), proc id
is nonzero--it is the process number of the child. Thus,
the basic way to call and return from another program is

if (fork() == 0)
execl(n/bin/sh n, "sh n, n_c n, cmd, NULL)1 /* in child */

In fact, except for handling errors, this is sufficient.
The ~ makes two copies of the program. In the child, the
value returned by f2Lk is zero. It calls execl, which does
the command and then dies. In the parent, ~ returns
nonzero, so it skips the execl. (If there is any error, !2Lk
returns -1) •

More often, the parent waits for the child to terminate
before it continues. This is done with the function ~:

int status1

if (fork() == 0)
execl(•••);

wait(&status)1

This still does not handle any abnormal conditions, such as
a failure of execl or ~, or the possibility that there
might be more than one child running simultaneously. (The
~ returns the process ID of the terminated child, which
can be checked against the value returned by ~.) Also,
this fragment does not deal with any abnormal behavior on
the part of the child (which is reported in status). How­
ever, these three lines are the heart of the standard
library's system routine.

The status returned by ~ encodes in its eight low-order
bits the child's termination status. A 0 indicates normal
termination, and a nonzero indicates various kinds of prob­
lems. The next higher eight bits are taken from the argu­
ment of the call to ~, which causes a normal termination
of the child process. It is good coding practice for all
programs to return meaningful status.

Zilog 29

PGMG

30

Zilog PGMG

When a program is called by .the shell, the three file
descriptors (0, 1, and 2) point to the correct files; all
other possible file descriptors are available for use. When
this program calls another program, make certain the same
conditions hold. Neither ~ nor the ~ calls affect
open files. If the parent is buffering output that must be
output before the output from the child, the parent must
flush its buffers before the execl. Conversely, if a caller
buffers an input stream, the called program loses any infor­
mation that has been read by the caller.

4.4 Pipes

A ~ is an I/O channel used between two processes. One
process writes into the pipe, whil.e the other reads. The
system buffers the data and synchronizes the two processes.
Most pipes are created by the shell, as in:

Is I pr

which connects the standard output of la to the standard
input of ~. Sometimes, however, it is more convenient for a
process to set up its own commands.

The·system call ~ creates a pipe. Since a pipe is used
for both reading and writing, two file descriptors are
returned. The actual usage is like the following:

int fd[2];

stat = pipe(fd);
if (stat == -1)

/* there was an error ••• */

The !.d is
the read
These can
any other

an array of two file descriptors, where !.d[~] is
side of the pipe and !.d[ll is the write side.

be used in ~, write, and glose calls, just like
file descriptors.

If a process attempts
until data arrives.
pipe that is full, it
write side of the
encounters .£Q,[.

to read a pipe that is empty, it waits
If a process attempts to write into a

waits until the pipe empties. If the
pipe is closed, a subsequent ~

The following example illustrates the use of pipes. A func­
tion called popen(~, InQde) creates a process .kllUi and
returns a file descriptor that either reads or writes the
process, according to ~. That is, the call

fout = popen ("pr", WRITE);

Zilog 30

i

\',

"

PGMG

31

Zilog PGMG

creates a process that executes the ~ command. Subsequent
write calls using the file descriptor ~ send data to that
process through the pipe.

The function popen first creates the pipe with a ~ system
call, then forks to create two copies of itself. The child
determines whether. to read or write. It closes the other
side of the pipe, then calls the shell (via execl) to run
the desired process. The parent, likewise, closes the end
of the pipe it does not use. These closes are necessary to
make end-of-file tests execute properly. For example, if a
child that intends to read fails to close the write end of
the pipe, it will never see the end of the pipe file because
there is one potentially active writer.

#include <stdio.h>

#define
#define
#define
static

READ 0
WRITE 1
tst(a, b) (mode -- READ? (b)
int popen_pid;

popen(cmd, mode)
char *cmd;
int -mode;
{

int p[2];
if (pipe (p) < 0)

return(NULL);
if «popen_pid = fork(» == 0) {

close(tst(p[WRITE], p[READ]»;
close(tst(O, 1»;

(a))

dup(tst(p[READ], p[WRITE]»;
close(tst(p[READ], p[WRITE]»;
execl("/bin/sh", nshn, "-c", cmd, 0);
_exit(l); /* disaster has occurred if we get here */

}

}
if (popen_pid == -1)

return (NULL) ;
close(tst(p[READ], p[WRITE]»;
return(tst(p[WRITE], p[READ]»;

The sequence of closes in the child is as follows. The task
is to create a child process that reads data from the
parent. The first close closes the write side of the pipe,
leaving the read side open. The lines

close(tst(O, 1»;
dup(tst(p[READ], p[WRITE]»;

Zilog 31

PGMG

32

Zilog PGMG

are the conventional way to associate the pipe descriptor
with the standard input of the child. The close closes file
descriptor 0, the standard input. The system call ~
returns a duplicate of an already open file descriptor.
File descriptors are assigned in increasing order, and the
first available one is returned, so the effect of the ~ is
to copy the file descriptor for the pipe (read side) to file
descriptor O. Thus, the read side of the pipe becomes the
standard input. Finally, the old read side of the pipe is
closed. A similar sequence of operations takes place when
the child process is supposed to write from the parent
instead of read. .

The function pclo§e closes the pipe created by popen. The
main reason for using a function other than close is to wait
for the termination of the child process. The return value
from pclose indicates whether or not the process succeeded.
Equally important, when a process creates several children,
is that only a certain number of unwaited-for children can
exist, even if some of them have terminated. Performing the
~ removes the child from the unwaited-for status. For
example,

#include <signal.h>

pclose (fd)
int fd;

/* close pipe fd */

{
register r, (*hstat) (), (*istat) (), (*qstat) () ;
int status;
extern int popen_pid;

close(fd);
istat = signal(SIGINT, SIG_IGN);
qstat = signal(SIGQUIT, SIG_IGN);
hstat = signal(SIGHUP, SIG_IGN);
while «r = wait(&status» 1= popen_pid && r 1= -1);
if (r == -1)

}

status = -1;
signal (SIGINT, istat);
signal(SIGQUIT, qstat);
signal (SIGHUP, hstat);
return(status);

The calls to signal ensure that no interrupts occure during
the wait process.

The routine as written is limited in that only one pipe can
be open at one time because of the single shared variable
popen pid. A popen function, with slightly different argu­
ments and return values, is available as part of the

Zilog 32

PGMG

33

Zilog

standard I/O library discussed in Section 3.
written, it shares the same limitation.

Zilog

PGMG

As currently

33

PGMG

34

Zilog PGMG

SECTION 5

SIGNALS·

5.1 General

This section discusses external signals and program faults.
Since nothing useful can be done within C about program
faults that arise from illegal memory references or from
execution of peculiar instructions, the following discussion
concerns only external signals:

$ interrupt: sent when the DEL character is typed

$ gyit: generated by control backslash

$ hangup: caused by hanging up the phone

$ terminate: generated by the kill command

When one of these events occurs, the signal is sent to all
processes that were started from the corresponding terminal.
Unless other arrangements have been made, the signal ter­
minates the process. In SYit, a core image file is written
for debuggin~ purposes.

5.2 Signal Routine

The routine signal alters the default action. It has two
arguments. The first specifies the signal, and the second
specifies how to treat it. The first argument is a number
code. The second, the address, is either a function or a
code that requests that the signal either be ignored or be
given the default action. The include file signal.n gives
names for the various arguments and must be included when
signal is used. For example,

#include <signal.h>

signal (SIGINT, SIG_IGN);

causes interrupts to be ignored, while

signal (SIGINT, SIG_DFL);

restores the default action of process termination. In all
cases, signal returns the previous value of the signal. The
second argument to signal can be the name of a function
(which has to be declared explicitly if it has not been

Zilog 34

PGMG

35

Zilog PGMG

compiled). In this case, the named routine is called when
the signal occurs. This facility is generally used by the
program to clean up unfinished business before it ter­
minates. For example, to delete a temporary file:

#include <signal.h>

main ()
{

}

int onintr()1

if (signal (SIGINT, SIG_IGN>" != SIG_IGN)
signal(SIGINT, onintr)1

/* Process ••• */

exit(O)1

onintr()
{

}

unlink(tempfile);
exit(l);

5.3 Interrupts

Signals like INTERRUPT are sent to all processes started
from a particular terminal. When a program is to be run
noninteractively (started by &), the shell pervents it from
rece1v1ng interrupts. If the program begins by announcing
that all interrupts are to be sent to the onintr routine,
this command cancels the shell's effort to protect it when
the program is run in the background.

The solution to this is to test the state of interrupt han­
dling and continue to ignore interrupts if they are already
being ignored. The program code depends on the fact that
signal returns the previous state of a particular signal.
If signals are already being ignored, the process continues
to ignore them1 otherwise, they are caught.

A more sop~isticated program can intercept an interrupt and
interpret the interrupt as a request for the program to stop
executing and return to its own command-processing loop. In
a text editor, interrupting a long printout should not cause
the editor to terminate and lose the work already done. The
outline of the code for this can be written as follows:

Zilog 35

PGMG

36

#include <signal.h>
#include <setret.h>
ret_buf sjbuf;

main ()
{

Zilog

int (*istat) (), onintr () ;

istat = signal(SIGINT, SIG_IGN);

PGMG

/* save original status */
setret(sjbuf); /* save current stack position */
if (istat != SIG_IGN)

signal(SIGINT, onintr);

}
/* main processing loop */

onintr()
{

printf("OnterruptO);
longret(sjbuf); /* return to saved state */

}

The include file setret.h declares the type ret buf to be an
object in which the state can be saved. The sjbuf type, an
array, is such an object. The setret routine saves the
state. When an interrupt occurs, a call is forced to the
onintr routine, which can-print a message and set flags.
The longret routine takes as an argument an object stored by
setret and restores control to the location after the call
to setret. Thus, control is returned to the position in the
main routine where the signal is set up and where the main
loop entered. Notice that the signal gets set again after
an interrupt occurs. This is necessary because most signals
are automatically reset to their default action when they
occur. Functions containing calls to setret() should not
have any register variable declarations.

Some programs that need to detect signals cannot be stopped
at an arbitrary point. If the routine calls on the
occurrence of a signal, sets a flag, and then returns
instead of calling ~ or longret, execution continues at
the exact point it was interrupted. The interrupt flag can
be tested later.

One difficulty associated with the above approach arises if
the program is reading data from the terminal when the
interrupt is sent. The specified routine is called, and it
sets its flag and returns. If execution resumes at the
exact point it was interrupted, the program continues read­
ing data from the terminal until another line is entered.
This response could be confusing, since it might not be

Zilog 36

PGMG

37

Zilog PGMG

obvious that the program is reading. It is better to have
the signal take effect instantly. To resolve this diffi­
culty, terminate the terminal read when execution resumes,
this returns an error code indicating what happened.

Programs that catch and resume execution after signals
should be designed to handle errors that are caused by
interrupted system calls such as reads from a terminal,
~, and pause. A program whose onintr program only sets
intflag, resets the interrupt signal, and returns, should
include code such as the following, when it reads the stan­
dard input:

if (getchar() == EOF)
if (intflag)

1* EOF caused by interrupt */
else

/* true end-of-file */

When signal-catching is combined with execution of other
programs, the code should look something like the following:

if (for k () == 0)
execl (•••) ;

signal (SIGINT, SIG_IGN}; /* ignore interrupts */
wait(&status); /* until the child is done */
signal (SIGINT, onintr); /* restore interrupts */

If the program called catches its own interrupts, when the
subprogram is interrupted, it gets the signal and returns to
its main loop, and probably reads data from the terminal.
But the calling program also pops out of its wait for the
subprogram and reads the terminal. The system does not have
a protocol for determining which program gets each line of
input. A simple solution is to have the parent program
ignore interrupts until the child is done. This reasoning
is reflected in the standard I/O library function system:

Zilog 37

PGMG

I
\,

c:

38

Zilog

. #include <signal.h>

system(s) /* run command string s */
ehar *s;
{

}

int status, pid, w;
register int (*istat) (), (*qstat) ();

if «pid = forkO) == 0) {
exeel("/bin/sh", "sh", "-e", s, 0);
_exit(127);

}
istat = signal(SIGINT, SIG_IGN)i
qstat = signal(SIGQUIT, SIG_IGN);
while «w = wait(&status» 1= pid && w 1= -1) . ,
if (w == -1)

status = -1;
signal (SIGINT, istat);
signal (SIGQUIT, qstat);
return(status);

Zilog

PGMG

38

PLZ/SYS Zilog PLZ/SYS

S8000 PLZ/SYS USER GUIDE

1 ZEUS 1

PLZ/SYS Zilog PLZ/SYS

2

PREFACE

This document describes how PLZ/SYS source
under ZEUS on the S8000. Details about
piler and code generator, and information
requirements and conventions are included.

programs are run
invoking the com­
about execution

PLZ/SYS source programs running under ZEUS are discussed in
Section 2.

The operation of the PLZ/SYS compiler is described in Sec­
tion 3. Use of the code generator is discussed in Section
4.

The implementation conventions used in the representation
and execution of PLZ/SYS programs on the S8000 are described
in Section 5. Programmers writing PLZ/ASM modules that are
linked with PLZ/SYS modules will find the necessary informa­
tion in this section.

Examples of a PLZ/SYS module and an equivalent PLZ/ASM
module are given in Section 6.

The compiler and code generator error number explanations
appear in Appendices A and B.

For a description of the language PLZ/SYS, refer to Report
Qn ~ Programming Language ~S1S by Snook, Bass, Roberts,
Nahapetian, and Fay (Springer-Verlag, 1978) and to Introduc­
tiQn ~ Microprocessor Programming Using ELZ by Conway,
Gries, Fay, and Bass (Winthrop, Cambridge, Massachusetts,
1979) •

Other documents describing PLZ program preparation for S8000
include:

$ Z800a ~AaM Assembly Language Programming Manual,
Zilog part number 03-3055

$ Z8000 ~AaM Assembler ~ Guide, Zilog part number
03-3078

$ ~ Reference Manual, Zilog ~ number Ql-~
(Rlz(~), plzsys(l), plzcg(~), ~ uimage(l»

The implementation of PLZ/SYS on the S8000 incorporates
several extensions to the original language. These exten­
sions are documented in Addendum ~ ~ Report Qn ~ ~
gramming Language ~S1S (Zilog part number 03-3136).

ZEUS 2

..

PLZ/SYS

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTION 5

3

Zi10g PLZ/SYS

TABLE OF CONTENTS

INTRODUCTION •••••••••••••••••••••••••••••••••• 7

PLZ/SYS RUNNING UNDER ZEUS •••••••••••••••••••• 11

2.1
2.2
2.3

Overview •................................
Limitations
Run-Time Conventions .

11
11
11

PLZ/SYS COMPILER ••••••••••••••••••••••••••••••• 13

3.1 Overview •••••••••••••••••••••••••••••••••• 13
3.2 P1zsys Command Line ••••••••••••••••••••••• 13
3.3 PLZ/SYS Version 3.1 Features and

Limitations 14

3.3.1
3.3.2

3.3.3
3.3.4

3.3.5
3.3.6

3.3.7

3.3.S
3.3.9

Character Conventions .~ •••••••••••• 15
Character Sequence and Identifier
Length ••••••••••••••••••••••••••••• 15
Source Line Length ••••••••••••••••• 15
Procedure, Data, and Program
Size Limitations ••••••••••••••••••• 15
Error Recovery ••••••••••••••••••••• 15
Compiler Evaluation of Constant
Expressions •••••••••••••••••••••••• 16
Literal Constants or Compile-Time
Constant Expressions ••••••••••••••• 16
Constant Type Determination •••••••• 17
Structured Return Parameters ••••••• lS

CODE GENERATOR . 21

4.1
4.2

Overview •....•.............•........•••..•
P1zcg Command Line .

PLZ/SYS IMPLEMENTATION CONVENTIONS
FOR THE ZSOOO .

Overview 5.1
5.2 Data Representation •••••••••••••••••••••••

ZEUS

21
21

23

23
23

3

PLZ/SYS Zi10g PLZ/SYS

TABLE OF CONTENTS (continued)

5.2.1 Primitive Data Type
Representation ••••••••••••••••••••• 23

5.2.2 Structured Data Type
Representation ••••••••••••••••••••• 25

5.3 Data Alignment •••••••••••••••••••••••••••• 25
5.4 Data Access Methods ••••••••••••••••••••••• 27
5.5 Run-Time Storage Administration ••••••••••• 28

5.5.1 Nonsegmented Code •••••••••••••••••• 28
5.5.2 Segmented Code ••••••••••••••••••••• 30

·5.6 Register Conventions •••••••••••••••••••••• 32

5.6.1
5.6.2

..
Nonsegmented Code •••••••••••••••••• 32
Segmented Code ••••••••••••••••••••• 33

5.7 Execution Preparation ••••••••••••••••••••• 33

5.7.1
5.7.2

Nonsegmented Code •••••••••••••••••• 33
Segmented Code ••••••••••••••••••••• 33

SECTION 6 PLZ/SYS - PLZ/ASM INTERFACE EXAMPLE •••••••••••• 35

6.1 Purpose ...••........•••..........•.•...... 35
6.2 Nonsegmented Code ••••••••••••••••••••••••• 37
6.3 Segmented Code •••••••••••••••••••••••••••• 40

APPENDIX A PLZ/SYS ERROR MESSAGES •••••••••••••••••••••••• 47

APPENDIX B PLZCG ERROR NUMBERS AND EXPLANATIONS •••••••••• 51

4 ZEUS 4

PLZ/SYS Zilog PLZ/SYS

TABLE OF CONTENTS (continued)

LIST OF TABLES

Table

3-1 Evaluation of Constant Expressions •••••••••••••••••• 17

LIST OF ILLUSTRATIONS

Figure

5

1-1 Linking of PLZ/SYS and PLZ/ASM Source Code •••••••••• 9

5-1 Nonsegmented Run-Time Stack--General Layout ••••••••• 29
5-2 Segmented Run-Time Stack--General Layout •••••••••••• 31

6-1 Example 2: PLZ/ASM Module for the Nonsegemented
S8000 ••••.••••••••••••.••••••••••••••••••••••••••.•.. 36

6-2 Nonsegmented Run-Time Stack Detail After Entry
Sequence •• 38

6-3 Nonsegmented Run-Time Stak Detail Before
Recursive Call •••••••••••••••••••••••••••••••••••••• 39

6-4 Example 3: PLZ/ASM Module for the Segmented
S8000. • • . • . • . • • . . • • • • • . • • • . • . . • • . • • . • • • . . • • . • . • . . • • .. 42

6-5 Segmented Run-Time Stack Detail After Entry
Sequence. •• 44

6-6 Segmented Run-Time Stack Detail Before
Recursive Call 45

ZEUS 5

PLZ/SYS Zilog PLZ/SYS

6 ZEUS 6

(

PLZ/SYS Zilog PLZ/SYS

7

SECTION 1

INTRODUCTION

The PLZ/SYS compiler (plzsys), code generator (plzcg), and
the package driver program (plz) are described in this docu­
ment. When used in conjuntion with a ZEUS editor, PLZ/SYS
source files can be created and processed into a linked,
relocatable object module suitable for running under ZEUS or
loading into a standard zaooo. Programs can be prepared for
either the segmented or nonsegmented version of the zaooo
microprocessor.

A PLZ/SYS program is composed of separately compiled source
modules. A PLZ/SYS source module can contain control lines
of the form

#include "filename"

Such a control line causes the replacement of itself by the
entire contents of the file filename ••

There are four stages in the process of a PLZ/SYS source
module. They are:

1. Replace all control lines in the source module.

2. Use plzsys to generate an intermediate z-code
module.

3. Use plzcg to generate a machine code module in zobj
format.

4. Use uimage to translate the result of Step 3 into
a.out format.

After all the PLZ/SYS source modules in a program are pro­
cessed, the ZEUS linker (ld) can be invoked to link all
these machine code modules with possibly other existing
machine code modules (libraries, assembler output, or C com­
piler output) to produce an object module that can be run
under ZEUS (Figure 1-1).

The PLZ.IO I/O package is contained in the library
/lib/libp.a. Plz-callable versions of the ZEUS system calls
are also in /lib/libp.a.

In this document, all file extensions are written in lower­
case. However, uppercase extensions .P and.Z are also
acceptable by these programs.

ZEUS 7

PLZ/SYS Zilog PLZ/SYS

BLOCK DIAGRAM

TO BE SUPPLIED

8 ZEUS 8

PLZ/SYS

9

PLZ/SIS
SOURCE

Cpp

PLZ/SIS
JlTERMEDUT

SOURCE

PLZ SIS

Z-CODE
OBJECT
MODULE

PLZCC

~A.CHIIE CODE
pBJECT MODULI!

II
zobj FORMAT

~
UIMAGE

tfCHIIIE COD~I BJECT MODUL
1M

Ia.out FORMAT

I I

Zilog

PLZ/ASM
SOURCE

AS

~fCHIIE CODE
BJECT MODULE

III
a.out FORMAT

LD

LIlltED
OBJECT
MODULE

--' -------------_.----- -- - - ----

PLZ/SYS

PLZ C
LIBUIY· LIBRARY

Figure 1-1. Linking of PLZ/SYS and PLZ/ASM Source Code

ZEUS 9

PL.Z/SYS Zi10g PLZ/SYS

10 ZEUS 10

(

PLZ/SYS Zilog PLZ/SYS

11

SECTION 2

PLZ/SYS RUNNING UNDER ZEUS

2.1 Overview

PLZ/SYS source programs intended to run under ZEUS can be
compiled, code generated, and linked using the simplified
user interface, Rlz(~). Plz is a driver for the compiler and
code generator which, along with the assembler, C preproces­
sor, and ZEUS linker, are invoked automatically with default
command line options. Together they produce an object
module that is loaded and run by ZEUS.

The plz driver programs work similarly to ~(~) for C pro­
grams. To compile a plz source program composed of several
modules, a single command must be issued to produce a ZEUS­
loadable program. For example, a program consisting of
three PLZ/SYS modules, a.~, h.~, ~.~, and the PLZ/ASM
modules ~.a and ~.a is compiled by:

%plz a.p b.p c.p d.s e.s -0 program

leaving the output on the file program. Default output is
a.out. Several options are accepted by plz and are
explained in the Z£llS Reference Manual under ~(~) •

2.2 Limitations

The plz programs created with the plz driver program are
limited because they cannot contain z-code modules. This is
because the ZEUS linker cannot create the appropriate tables
to link z-code. (See ~(l) in the ZEUS Reference Manual.)

2.3 Run-Time Conventions

PLZ/SYS programs running under ZEUS must have an entry point
called main. The declaration for main is:

global

main procedure (argc integer, argv AAbyte)
returns (retcd integer)

where ~ is the number of arguments supplied by ZEUS to
the program, and ~ is a pointer to an array of pointers,

ZEUS 11

PLZ/SYS Zilog PLZ/SYS

12

one for each argument. The return parameter retcd is zero ~,
for normal termination. An error is indicated by a nonzero
return.

ZEUS system calls are supported and can be called from
PLZ/SYS programs. The library /lib/libp.a contains a ZEUS
implementation of the PLZ.IO I/O package and plz-callable
versions of the system call library. There are some limita­
tions, however. The variable number of 'argument forms of
~ (execl, execle, etc.) are not supported. The exit sys­
tem call is renamed Exit to differentiate it from the plz
"exit" reserved word. The signal system call requires func­
tion parameters that plz/sys does not allow. Therefore, the
signal system call cannot be called.

NOTE

Releases of the PLZ/SYS compiler dated from Sep­
tember 30, 1981, will conform to the S8000 calling
conventions instead of those described in Sections
5 and" 6. Programs compiled under these releases
will be able to declare ZEUS Utilities and C func­
tions as external procedures and invoke them
directly. The library /lib/libp.a will no longer
be necessary.

ZEUS 12

PLZ/SYS Zilog PLZ/SYS

13

SECTION 3

PLZ/SYS COMPILER

3.1 Overview

The PLZ/SYS compiler translates source
intermediate code. The ZEUS editor
PLZ/SYS source modules. The source file
the file name extension .p.

code modules into
is used to create
name must end with

With the -1 option, the PLZ/SYS compiler creates a listing
file with the default source file name with the extension .1
rather than .p, and an object file with the default exten­
sion .z. In creating the object file, plzsys uses a tem­
porary scratch file that is deleted when compilation is fin­
ished. The listing file contains the source code with line
numbers, statement numbers, and syntax error messages. The
messages consist of a pointer to each erroneous token, fol­
lowed by an error number for each pointer. The list of
error numbers in Appendix A can be used to determine the
corresponding compilation error. Occasionally, the pointer
does not point directly at the incorrect token. Error mes­
sages can be copied to a separate file with the error (-e)
option described in Section 3.2.

The object file contains z-code. The plzcg code generator
compiles z-code to zaooo machine code.

3.2 Plzsys Command Line

In the following description, the word filename is used to
specify an arbitrary ZEUS path name.

The compiler is invoked by the following general shell com­
mand line. Do not type the square brackets; they simply
indicate that options are not required.

plzsys [options1 filename

where filename contains the source for a single plz module.
The extension .p is optional; if it is missing, the compiler
appends it before attempting to open the file. The options
listed below can appear in any order, separated by delim­
iters.

ZEUS 13

PLZ/SYS . Zi10g PLZ/SYS

14

Option

-1

-0

-e

-nd

-nc

-t zao

-t zaooos

-t ZaOOOns

Function

Creates a listing file with .1 substituted
for the .p extension of ·source file. Default
is no listing.

Assigns the name filename to the object file,
instead of the default source file name with
the extension .z. If no object is desired,
use /dev/nu11 for filename.

Copies error messages to the file whose name
is the same as the source file with extension
.e. If no errors occur, the error file is
deleted at the end of compilation.

Omits symbol, type, constant, and statement
number information for a hypothetical
debugger. The default is to generate debug
symbols.

Omits
STANT
named
boIs.

debug symbol information for any CON­
names. The default is to generate

constants when generating debug sym-

Generates output suitable for the zao. Does
not allow extensions to p1zsys such as long
variables and structure comparison and
assignment. The output can run on MCZ only.

Generates output suitable for the segmented
zaooo. Treats pointers as four-byte objects,
instead of two-byte objects. Aligns word­
size data on even addresses. Allows long
variables and structure comparison and
assignment.

Generates output suitable for the nonseg­
mented zaooo. Allows long variables and
structure comparison and assignment. This is
the default.

3.3 PLZ/SYS Version 3.1 Features and Limitations

The following zaooo PLZ/SYS features and limitations are
dependent on site implementation.

ZEUS 14

'-

PLZ/SYS Zilog PLZ/SYS

15

3.3.1 Character Conventions

The PLZ/SYS compiler uses the standard ASCII character set.
Upper or lowercase characters are recognized and treated as
different characters; therefore, keywords are recognized
only if they are either all upper or all lowercase. For
example, GLOBAL and global are recognized as keywords, but
Global is not. Hexadecimal numbers and special string char­
acters can be either upper or lowercase.

3.3.2 Character Sequence and Identifier Length

A character sequence cannot be less than one character or
more than 255 characters. Identifiers can be any length less
than 256 characters; however, only the first 127 characters
determine the uniqueness of the name.

3.3.3 Source Line Length

Source lines of more than 120 characters are accepted, but
are truncated in the listing. The entire listing line,
including line numbers and statement numbers, can be up to
132 characters. Comments and quoted character sequences can
extend over an arbitrary number of lines. Mismatched com­
ment delimiters (1) or character sequence delimiters (')
must be avoided.

3.3.4 Procedure, Data, and Program Size Limitations

A single procedure cannot be larger than 1000 bytes of
intermediate code.

Data and program addressing within a module are limited to
16-bit quantities. Consequently, a module cannot contain
more than 65536 bytes of data or z-code.

3.3.5 Error Recovery

Error recovery by the compiler is limited. If an error is
discovered, symbols can be scanned without being checked
until the compiler can continue. Within CONSTANT, TYPE, or
variable declarations, the compiler can skip ahead until it
finds the next keyword (CONSTANT, TYPE, GLOBAL, EXTERNAL, or
INTERNAL) that starts a declaration class. Within procedure
declarations, the compiler skips ahead until it finds the
next keyword (IF, DO, EXIT, REPEAT, RETURN, END, etc.) that
starts a new statement. This skipping ahead can cause

ZEUS 15

PLZ/SYS Zilog PLZ/SYS

16

several compilations before all errors are detected and
removed.

3.3.6 Compiler Evaluation of Constant Expressions

Numeric constants are represented internally as 16-bit quan­
tities. Each operand in a constant expression is evaluated
as if it is declared to be of type WORD. Thus, 4/2 equals
2, but 4/-2 equals 0, since -2 is represented as a very
large positive number. There is no overflow checking during
evaluation of a constant expression. Since constants are
represented as l6-bit values, a maximum of two characters
are allowed in a character sequence used as a constant. The
order of bytes within a WORD quantity is implementation­
dependent when stored in memory. Programs that depend on a
certain order (high-order, then low-order as in the PLZ/SYS
implementation on the ZaOOO) cannot transport easily to
other machines or translators.

3.3.7 Literal Constants or Compile-Time Constant Expres­
sions

Error 240 occurs if a literal constant greater than 65535 is
used. Constant expressions that must be evaluated at com­
pile time (such as initial values or CASE-select elements)
are restricted. Constant expressions are evaluated using
l6-bit operations on l6-bit quantities so no error message
is given.

When used with long (32-bit) types, a constant or constant
expression must be converted to 32 bits. This conversion is
performed by the compiler as follows:

~ If the constant or constant expression must be
LONG, then the l6-bit quantity is assumed to be
WORD, and a WORD-to-LONG conversion is performed.
(The WORD is right-justified in a field of zero
bits.)

If the constant or constant expression must be
LONG_INTEGER, then the l6-bit quantity is assumed
to be INTEGER, and an INTEGER-to-LONG_INTEGER
conversion is performed. (The INTEGER is sign­
extended.)

When a constant appears in a LONG executable expression
(assignment or parameter), the constant is always treated as
a 32-bit quantity with the high 16 bits all zeros, and any
operations on the constant are full 32-bit operations. This
includes negation (-) and operations with other constants.

ZEUS 16

\"--,. /'

PLZjSYS Zilog PLzjSYS

17

Unlike initial values and CASE-select elements, executable
expressions are evaluated at run time by the target machine
(the Z8000), which accommodates long operations.

Run-time and compile-time long constant expressions have the
same value in many cases, such as when the type is
LONG __ INTEGER and the value is in the range -32768 to 32767
(using the "-" operator to represent negative constants), or
the type is LONG and the value is in the range 0 to 65535.

Table 3-1 gives examples of compile-time and run-time
evaluation of constant expressions. An executable expres­
sion must be used to create a 32-bit value whose high-order
word is neither %FFFF nor O.

Table 3-1. Evaluation of Constant Expressions

Compile-Time Constant Run-Time Constant
Expression Value Expression Value

L LONG := -1 %OOOOFFFF L := -1 %FFFFFFFF
LI LONG_INTEGER := -1 %FFFFFFFF LI := -1 %FFFFFFFF

L LONG := %FFFF %OOOOFFFF L :=:= %FFFF %OOOOFFFF
LI LONG_INTEGER %FFFFFFFF LI := %FFFF %OOOOFFFF

:= %FFFF

L LONG := -%FFFF %00000001 L := -%FFFF %FFFFOOOl
LI LONG_INTEGER %00000001 LI := -%FFFF %FFFFOOOl

:= -%FFFF

L LONG := %OOOOBBBB L .-.- %AAAABBBB
%AAAA*(%FFFF+l) %AAAA* (%FFFF+l)

+ %BBBB + %BBBB

(*) "-" is a run-time unary operator in these cases.

3.3.8 Constant Type Determination

The compiler can usually determine from context the type of
constant load (long or word) to generate. For example, in
the assignment statement

X := 24

the compiler generat~s a word if X is a l6-bit quantity, and
a long word if X is a 32-bit quantity. Similarly, it deter­
mines the type of constant in parameter lists, case expres­
sions, and most relational expressions. The only instance
in which the compiler cannot determine from context what

ZEUS 17

(*)
(*)

(*)
(*)

PLZ/SYS Zilog PLZ/SYS

18

type of constant to generate is in a relational expression
where the constant appears lexically before any variable
appears (O<X).

To generate the correct constant, the compiler functions as
if long constants are required. When the compiler finally
determines what the type should be, it backs up and gen­
erates the proper constants. There are two important conse­
quences of this:

1. A maximum of 16 constants can be corrected. Error
236 occurs if more than 16 constants are encoun­
tered before their type can be established.

2. If the proper type of the constant is WORD,
one or more NOP (No-op) instructions (one
each) appears in the z-code. This lengthens
code and slows execution slightly.

then
byte

the

To avoid these-problems, reverse the order of operands in
the relational expression; use X>O instead of O<X.

3.3.9 Structured Return Parameters

The compiler does not allow field selection of a record­
return value or indexing of an array-return value.

Thus, in the context of

EXTERNAL
PROCA
PROCR

PROCEDURE RETURNS (ARP~Y [10 BYTE])
PROCEDURE RETURNS (RECORD [Fl F2 BYTE])

the following expressions are not accepted by the compiler:

PROCA() [2] PROCR() .Fl

The only operations allowed on array- and record-return
parameters are assignment and comparison.

The compiler allows dereferencing of pointer-valued pro­
cedures:

EXTERNAL PROCP PROCEDURE RETURNS (A ByTE) ...
PROCP()A

ZEUS 18

' •.•. c'

PLZ/SYS Zilog PLZ/SYS

19

When the return value is a structure that will not be
copied, it can be replaced by a pointer-return value that
can be dereferenced and then indexed or field selected:

TYPE
ATYPE ARRAY [S BYTE]

EXTERNAL
PROCA PROCEDURE RETURNS (AATYPE) ...
PROCA () ... [I] ...

ZEUS 19

PLZ/SYS Zilog PLZ/SYS

20 ZEUS 20

PLZ/SYS Zilog PLZ/SYS

21

SECTION 4

CODE GENERATOR

4.1 Overview

PLZ/SYS compiler output is a z-code object module that can­
not be executed directly on the S8BOO. The z-code must be
processed by the code generator to produce a machine-code
object module.

This section describes how to invoke the code generator and
select from the available options. The Z8000 plz code gen­
erator accepts a file of intermediate z-code as input and
produces a file of Z8000 relocatable object code in Zobj
format as output. This output must be translated into a.out
format by uimage. The output of uimage is linked with other
a.out format modules to form the complete executable load
module .'

4.2 Plzcg Command Line

The code generator is invoked by the following ZEUS command
line:

plzcg [-0 filename2J [-sJ [-lJ [-vJ filenamel

where filenamel can have the extension .z. The extension .z
in the command line is optional; if missing, the code gen­
erator appends it before attempting to open the file. In
the absence of the -~ filename2 option, the generated object
file has the name t.out; otherwise, the object code is gen­
erated in the file named filename2.

The shared code (-s) option is significant only for code
destined for the segmented Z8000 processor. The procedures
in a shared code module can be invoked and executed by dif­
ferent programs with independently allocated stacks, without
altering the shared code module. This is possible because
the local variable and parameters of a shared code module
are accessed on the calling program. Nonshared code modules
contain stack references in the code that are unchangeable
during execution.

The -1 options produces a pseudo-assembly languge listing of
the module. The listing file has the same name as the input
file with .1 substituted for the ~ suffix. No assembly
listing is produced for the data in the module and there are

ZEUS 21

PLZ/SYS Zilog PLZ/SYS

22

no symbolic labels. References to code are prefaced by the
letter ~; local data by L; global data by G~

The =x option causes plzcg to announce its presence when it
starts and to tell how much code and data were produced when
it finishes.

On the Z8000, stack-independent addressing of local and
parameter data is achieved with loss of speed and compact­
ness, so only modules that must be shared should be code­
generated with the shared code option. The effects of the
shared code option are described in more detail in Section
5.4.

ZEUS 22

PLZ/SYS Zilog PLZ/SYS

23

SECTION 5

PLZ/SYS IMPLEMENTATION CONVENTIONS FOR THE Z8000

NOTE

Refer to Section 2 for applicability of these con­
ventions to your release of PLZ/SYS and use of
library functions.

5.1 Overview

This section describes PLZ/SYS program conventions for the
Z8000. Included are details on data representation, data
alignment, data access methods, run-time storage administra­
tion, and register conventions. This section concludes with
a specification of the run-time environment required for
proper program execution. It is assumed that the reader is
familiar with the information in the Z800a H.ZiASM Assembly
Language Programming Manual.

5.2 Data Representation

This section defines the representation
fined simple types available in PLZ/SYS
SHORT_INTEGER, WORD, INTEGER, LONG,
pointer, and the storage layout of
ARRAY and RECORD.

of the seven prede­
on the Z8aOO: BYTE,

LONG_INTEGER, and
the structured types

5.2.1 Primitive Data Type Representation

The seven predefined simple data types available in PLZ/SYS
are represented on the Z8000 as follows:

BYTE

A BYTE value is a nonnegative integer in the range a to
255 (decimal) and is represented on the Z8000 as an
unsigned eight-bit byte.

SHORT_INTEGER

A SHORT_INTEGER value is an integer in the range -128
to 127 and is represented on the Z800a as a signed
eight-bit byte in twos-complement notation.

ZEUS 23

PLZ/SYS .Zilog PLZ/SYS

24

WORD

A WORD value is a nonnegative integer in the range 0 to
65535 (decimal) and is represented on the Z8000 as an
unsigned 16-bit word.

INTEGER

LONG

An INTEGER value is an integer in the range -32768 to
32767 and is represented on the Z8000 as a signed 16-
bit word in twos-complement notation.

A LONG value is a nonnegative integer in the range 0 to
4,294,967,295 (decimal) and is represented on the Z8000
as an unsigned 32-bit long word.

A LONG_INTEGER value is an integer in the range
-2,147,483,648 to 2,147,483,647 and is represented on
the Z8000 as a signed 32-bit long word in twos­
complement notation.

Pointer

Nonsegmented code:

A pointer value on the nonsegmented Z8000 is a storage
address represented as a 16-bit word. The dis­
tinguished value NIL is represented by the value zero
(0) •

Segmented code:

A pointer value on the segmented Z8000 is a storage
address composed of a seven-bit segment number and a
16-bit offset, represented as a 32-bit long word. The
value of the pointer literal NIL is the long value zero
(address 0): segment zero, offset zero.

NOTE

Because the size of a pointer is inherently
dependent on specific machine configurations,
programs that are to be easily transported

ZEUS 24

(

PLZ/SYS Zilog PLZ/SYS

25

from one machine to another the user must
avoid mixing pointer and nonpointer values in
expressions.

5.2.2 Structured Data Type Representation

The PLZ/SYS structured types ARRAY
represented on the Z8000 as follows:

and RECORD are

ARRAY

Elements of an array are allocated consecutively into
ascending storage addresses, beginning with element
zero. Arrays are subject to the alignment constraints
described in the next section.

RECORD

Fields within a record are stored in the order of
declaration, subject to the alignment rules in Section
5.3 •.

5.3 Data Alignment

On the Z8000, all word and long data must begin on even
addresses. The compiler aligns the data on even addresses
relative to the start of a module. The compiler, code gen­
erator, and Z8000 assembler also extend each module to an
even length. Thus, if the first module begins on an even
address, all word and long data in that module and the
PLZ/SYS modules that follow are correctly aligned.

The amount of storage wasted by aligning data is usually
negligible, but becomes significant with the creation of
certain structures. To avoid excessive waste, it is impor­
tant to understand the following rules. The same rules are
used by the Z8000 assembler, so that global data in PLZ/SYS
can be accessed from assembly language and vice versa.

Rule 1:

Rule 2:

A structure (array or record) is aligned only
if it contains a component that must be
aligned.

A structure is padded to even length only if
it contains a component that must be aligned.

ZEUS 25

PLZ/SYS Zilog PLZ/SYS

26

Rule 3: Record fields are stored in the order
declared and individually aligned as needed.

The following examples illustrate these rules:

TYPE
RREC RECORD [FI, F2, F3 BYTE 1
SREC RECORD [FI BYTE; F2 WORD; F3 BYTE1
TREC RECORD [FI, F3 BYTE; F2 WORD 1

INTERNAL

A ARRAY [9 BYTE 1

B ARRAY [3 WORD]

C RREC

D ARRAY [5 RREC1

E SREC

! Unaligned; 9 bytes

Aligned; 6 bytes !

Unaligned; 3 bytes

Unaligned; 15 bytes !

Aligned; 6 bytes (alignment byte !
after FI and padding byte after F3)

F ARRAY [5 SREC1 Aligned; 30 bytes--IO bytes wasted

G TREC Aligned; 4 bytes--no waste !

H ARRAY [5 TREC] 1 Aligned; 20 bytes--no waste !

Example 0 shows an array of records that do not have to be
aligned. Examples G and H show how the information con­
tained in variables E and F can be arranged more compactly.
Such compactness is achieved by placing the fields that
require alignment before the fields that do not require
alignment in a record or by ensuring that all fields requir­
ing alignment occur at an even offset from the start of the
record.

In PLZ/SYS, the same storage area can be treated through
pointers and type conversion. However, the contents of an
unaligned structure cannot be treated as aligned objects.
For example, the following program section might not execute
as intended:

TYPE
PTREC A TREC ! TREC defined above

INTERNAL
PTRT PTREC
A ARRAY [(SIZEOF TREC) BYTE1

ZEUS 26

PLZ/SYS Zilog PLZ/SYS

27

W WORD

PTRT := PTREC iA[O]
W := PTRT A .F2 ! Fails if A begins on odd address

To force A to be aligned, use

A ARRAY [(SIZEOF TREC)/2 WORD]

There is no guarantee that the compiler will allocate data
variables in order1 consequently, a variable or structure
that does not require alignment (for example, a byte array)
might not be aligned even if it is declared immediately
after an aligned variable of even length. However, a vari­
able appearing alone in a module is aligned.

5.4 Data Access Methods

Data accessible to PLZ/SYS programs is divided into two
storage classes: static data that is declared GLOBAL,
INTERNAL, or EXTERNAL, .and dynamic data that is declared
LOCAL or declared as parameters.

Static data is allocated once, before execution begins, and
is accessed by absolute addresses embedded in the code. On
the zaooo, Direct Addressing mode is used to access static
data.

Dynamic data is allocated during program execution on a
run-time stack. The input and output parameters in a pro­
cedure are allocated on the stack before invoking the pro­
cedure. The called procedure allocates its local variables
when it receives control. Within the body of the procedure,
the input parameters passed to it, as well as the output
parameters it yields, are accessed in exactly the same
manner as local variables.

Based Addressing is the appropriate mode for accessing
dynamic data on the zaooo. However, Based Addressing is
available on only a restricted set of machine instructions.
On the nonsegmented zaooo, Indexed mode is equivalent to
Based mode, and can be used in most instructions to achieve
the effect of Based Addressing. On the segmented zaooo,
Indexed and Based modes are functionally distinct. However,
Indexed mode can be used to access dynamic data by embedding
the segment number of the Local Stack in the code. Use of
Indexed Addressing implies that the Local Stack is res­
tricted to the segment specified by the code. This segment

ZEUS 27

PLZ/SYS Zilog PLZ/SYS

28

number is placed in the code during absolute address assign­
ment, usually performed by the Imager.

If Indexed Addressing, instead of Based Addressing, is used
for accessing dynamic data on the segmented Z8000, the code
is more compact; it cannot be shared by independent pro­
grams. Because Indexed Addressing mode specifies the seg­
ment number in the code, it is impossible for distinct pro­
grams to share the code and not share local and parameter
data as well. To allow for sharing at the expense of less
efficient code, the code generator option SHARED can be
specified on the command line. This ensures that local and
parameter data is always accessed using Based Addressing
mode.

5.5 Run-Time Storage Administration

PLZ/SYS procedures allocate local variables, expression tem­
poraries, and parameters on a run-time stack. Stacks on the
Z8000 grow toward lower addresses, so the most recently
allocated word (top) of a stack is at the lowest address.
Storage is allocated by decrementing a stack pointer and is
released by incrementing the pointer. Stack pointers always
refer to the top word on the stack, which must be at an even
address.

The diagrams in this section show stacks as 16 bits wide,
growing up toward the top of the page. Nonsegmented stacks
are drawn with their base at storage address FFFE; actual
stacks can begin" anywhere. Segmented diagrams show each
stack occupying an entire segment, growing up from storage
address FFFE in each segment. To move the stack pOinter up
the stack, it must be decremented. In the following discus­
sion, the word "above" means "closer to the top of the
stack." An item above another on the stack is closer to the
top of the diagram and is located at a lower memory address.

5.5.1 Nonsegmented Code

Nonsegmented code uses a single run-time stack. The portion
of the stack visible to a single procedure can be divided
into several zones (Figure 5-1).

The address of the top word on the stack is maintained in
register R15, the Stack Pointer (SP) register. The two
lowest zones, at the highest storage addresses, contain the
return and input parameters passed by the caller. These
zones are allocated on the stack by the calling procedure
during the calling sequence. Immediately above the input

ZEUS 28

/ '

PLZ/SYS Zi10g PLZ/SYS

STACK
HIGH ORDER HIGHER ADDRES
<--BYTE--) <--BYTE--)

LOW ADDRESS 0
2 I I

\ STACK GROWS TOWARD \
\ LOWER ADDRESSES \
I / \ I
I / \. I
I / __ \ I
I I I I
I I I I
I I_I I TOP STACK WORD

SP(R15)-----> I I
I INPUT PARAMETER I
I PASSING AREA I
I I
I I
I RETURN PARAMETER I
I RECEIVING AREA I
I I
I I
I TEMPORARY I
I EVALUATION AREA I
I I
I I

LB(R14)-----> I OLD LB I
I I
I I
I RETURN ADDRESS I
I I
I I
I LOCAL VARIABLES I
I I
I I
I INPUT PARAMETERS I
I FROM CALLER I
I I
I I
I RETURN PARAMETERS I
I TO CALLER I
I I
I I
\ \
\ \

FFFC I I
HIGH ADDRESS FFFE I I BASE STACK WORD

Figure. 5-1. Nonsegmented Run-Time Stack--Genera1 Layout

29 ZEUS 29

PLZ/SYS Zilog PLZ/SYS

30

parameters are the local variables. These are allocated at
the start of the procedure before execution of the procedure
body.

Above the local storage area are two words of control link­
age information. The word immediately above local storage
contains the return address. The next word contains the
caller's Local Base address, which must be restored in
register Rl4 before it is returned to the caller. During
execution of the procedure body, register Rl4, the Local
Base (LB) register, addresses this word. Local and parame­
ter data is referenced by a positive offset from the LB
register.

Above the control information is a dynamically changing
expression evaluation area. The expression stack provides
temporary storage for immediate results during the evalua­
tion of arithmetic and logical expressions and receives
parameters from, and passes arguments to, procedures invoked
during evaluation of the body.

All parameters reside in an even number of bytes. Parame­
ters of odd length are padded to an even number of bytes,
and aligned on an even address. Byte parameters reside in
the low-order eight b~ts of a word value, with an undefined
high-order byte.

5.5.2 Segmented Code

Segmented code uses two stacks, Control and Local (Figure
5-2). The Local Stack contains all local variables, expres­
sion temporaries, and input and return parameters. The Con­
trol Stack contains return addresses and fixed-base pointers
to the Local Stack. Neither stack is allowed to span seg­
ments. By separating return addresses from parameters, the
two-stack scheme enables faster procedure linkage than that
achieved using a single stack.

The portion of the Local Stack visible to anyone procedure
can be divided into the following zones. Return parameters
delivered by the procedure occupy the lowest zone on the
page, at the highest memory address. Above the return
parameters in the diagram are the input parameters passed to
the procedure. Storage for local variables declared within
the procedure occupy the next zone. The uppermost zone, at
the lowest memory address, is the expression evaluation
area. This includes temporaries and parameters passed to,
and slots for results received from, procedures called by
this routine. The location of parameters is such that input

ZEUS 30

(

PLZ/SYS Zilog PLZ/SYS

CONTROL STACK LOCAL STACK
HIGHER ORDER HIGHER ADDRESS HIGHER ORDER HIGHER ADDRESS

(--BYTE--) (--BYTE--) (--BYTE--) (--BYTE--)

0 , , 0 ,
\ \ \ STACK GROWS TOWARD
\ \ \ LOWER ADDRESES , / \ , / \ , / __ \

I , I , , ,
I 1_' , LP(RR12)--) INPUT PARAMETER , PASSING AREA
I
I
I RETURN PARAMETER , RECEIVING AREA

STACK GROWS ,
TOWARD I

LOWER ADDRESSES , TEMPORARY
/ \ , EVALUATION AREA

/ \ ,
/_-\ , ----------) , , , , LOCAL VARIABLES , I , ,

1_' , ,
CP (RR14) , , , INPUT PARAMETERS

31

----- FIXED BASE ------, , , FROM CALLERS
_'_I ,

, , , , , RETURN PARAMETERS
RETURN ADDRESS ---I , TO CALLER , , , ,

\ \ \
\ \ \

FFFC , , FFFC ,
FFFE , , HIGH ADDRESS'

FFFE

Figure 5-2. Segmented Run-Time Stacks--General Layout

parameters are evaluated and pushed on the stack, and return
parameters are on the top of the stack following completion
of a procedure call.

ZEUS 31

,
\
\ , , ,
I , , , ,
I
I , , ,
I
I , , , , , , , , , , , , , ,
\
\ , ,

PLZ/SYS Zilog PLZ/SYS

32

The Local Stack Pointer (LP) addresses the top word on the
Local Stack and is maintained in register pair RR12. Param­
eters are passed by pushing them on the Local Stack; result
parameters are accessed by popping them off. Local vari­
ables are accessed relative to LP, using either Based or
Indexed Addressing modes. The local base address is not
maintained in a register as with nonsegmented code. The
displacement of local variables from LP varies during execu­
tion as temporaries or parameters are pushed and popped.
However, the movement of LP is predictable during code gen­
eration and offsets to local variables can be adjusted for
each reference.

The Control Stack Pointer (CP) addresses the top word of the
Control Stack and is maintained in register pair RR14. This
register is used by the Call and Return instructions to
deposit and restore the program counter. Before execution
of the procedure body, the location of the lowest-address
word of local storage is pushed on the Control Stack. This
address is not required for execution, but it is"useful for
run-time debugging since local and parameter data are diffi­
cult to locate, due to the transient nature of LP.

5.6 Register Conventions

In both segmented and nonsegmented code, two address regis­
ters are dedicated to specific purposes. These registers
are used in accordance with the run-time storage management
conventions outlined in Sections 5.5, 5.5.1, and 5.5.2. All
other registers are available for local assignment within
the body of a procedure and are subject to modification dur­
ing any procedure call.

5.6.1 Nonsegmented Code

Register assignments in nonsegmented code are:

R15
R14
RO-R13

Stack Pointer (SP)
Local Base (LB)
Unassigned

Procedures use registers 0 through 13 without saving their
contents. The LB register, R14, is saved. Procedures
remove input parameters passed to them on the stack. The SP
register, R15, addresses the first return parameter after
completion of value-returning procedures.

ZEUS 32

PLZ/SYS Zilog PLZ/SYS

33

5.6.2 Segmented Code

Register assignments in segmented code are:

RR14
RR12
RO-Rll

Control Stack Pointer (CP)
Local Stack Pointer (LP)
Unassigned

Procedures use Registers a through 11 without saving their
contents. CP, RR14, is saved. Procedures deallocate input
parameters passed to them on the Local Stack. LP, RR12,
addresses the first return parameter after completion of
value-returning procedures.

5.7 Execution Preparation

To run PLZ/SYS programs on a standard Z8000, the run-time
environment, assumed by the conventions specified in Section
5.6.2, must be established. The ZEUS Operating System
automatically provides this function for PLZ/SYS programs,
executed by System 8000. The preparations necessary for
running segmented and nonsegmented code follow.

5.7.1 Nonsegmented Code

A region of memory adequate for the run-time stack must be
allocated; the SP register must be set to the next highest
word address. The first word allocated on the stack is at
the highest memory address reserved for the stack. Any
parameters for the main procedure must be passed in accor­
dance with the calling conventions for nonsegmented code
explained in Section 5.5.1. A return address is pushed on
the stack and the main procedure is invoked by loading its
entry address into the program counter. (This can be
achieved by executing a call instruction.) The LB register
does not require initialization.

5.7.2 Segmented Code

Segmented code requires the allocation of memory for two
run-time stacks: the Control Stack and the Local Stack.
These two stacks must not overlap. The CP register must be
set to the next highest word address above the region
reserved for the Control Stack. The LP register must be set
to the next highest word address above the Local Stack.

ZEUS 33

PLZ/SYS Zilog PLZ/SYS

34

On the Z8000, words must be located at an even memory
address, so the contents of both LP and CP must be even.
When LP and CP are properly initialized, any parameters for
the main procedure must be pushed on the Local Stack in
accordance with the calling conventions for segmented code
outlined in Section 5.5.2. A return address must be pushed
onto the Control Stack, and the main procedure must be
invoked by loading its entry address into the program
counter. (This can be achieved by executing a call instruc­
tion.)

As described in Section 4.4, programs containing modules
processed by the code generator without the shared code
option can specify the segment number of the Local Stack.
For proper execution, the LP register should be initialized
to address the next segment.

ZEUS 34

PLZ/SYS Zilog PLZ/SYS

35

SECTION 6

PLZ/SYS - PLZ/ASM INTERFACE EXAMPLE

NOTE

Refer to Section 2 for applicability of these con­
ventions to your release of PLZ/SYS and use of
library functions.

6.1 Purpose

This section presents an example module written in PLZ/SYS,
and shows equivalent modules written in PLZ/ASM for both
segmented and nonsegmented zaooo. The PLZ/ASM equivalents
conform to PLZ/SYS run-time conventions and can be substi­
tuted for the PLZ/SYS module as part of a larger program.
This example can be used as a model for writing PLZ/SYS­
compatible modules in PLZ/ASM.

The PLZ/SYS version is listed in Example #1. The module
declares the procedure Example, whose only statement is a
recursive call to itself. This example illustrates the
PLZ/SYS parameter passing conventions.

EXAMPLE #1:

PLZSYS
1
2
3
4
5
6
7
a
9

10
11
12
13
14
15
16
17

3.1
Example MODULE

1 Example PLZ/SYS module demonstrating procedure
1 calling conventions.

GLOBAL

Example
PROCEDURE (inl: BYTE; in2: A ByTE)
RETURNS (outl: BYTE; out2: WORD)
LOCAL

locall, loca12, loca13: BYTE
ENTRY

1 outl, out2 := Example (loca12, in2)
2 END Example

END Example

END OF COMPILATION: 0 ERROR(S) 0 WARNING(S)
o DATA BYTES 14 Z-CODE BYTES SYMBOL TABLE 2% FULL

ZEUS 35

PLZ/SYS

Z8000ASM 2.0
LOC OBJ CODE

0000

0000 97FO
0002 ASF3
0004 93FO
0006 93FE
0008 AIFE

OOOA ASF3

OOOC 30E8 0005
0010 93FO

0012 53FE 0008

0016 DOOC

OOla 57FE OOOC

OOIC 57 FE OOOE

0020 97FE
0022 97Fl
0024 A9F7
0026 lE18
0028

a errors
Assembly complete

Zilog PLZ/SYS

STMT SOURCE STATEHENT

1 Example MODULE
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

! Example module written in PLZ/ASM
! for the nonsegmented Z8000

CONSTANT
! Offsets from local base
out2 := 14
outl := 13
inl := 11
in2 := 8
loca13 := 6
loca12 := 5
locall := 4

GLOBAL

Example
PROCEDURE
ENTRY

! ---
POP
DEC
PUSH
PUSH
LD

Entry Sequence
RO,@R15
Rl5, #4
@R15,RO
@R15,F~4
R14,R15

--- !
! Pop return address

Allocate local variables!
Replace return address 1.
Save old Local Base
Establish new Local Base!

! outl, out2 := Example (10ca12, in2) !
DEC R15,'#4 Allocate return params

LOB RLO,Rl4(#loca12)
PUSH @R15,RO

PUSH @R15,in2(Rl4)

CALR Example

POP outl-l (Rl4) ,@R15

POP out2 (Rl4) ,@R15

! --- Exit Sequence
POP Rl4, @Rl5
POP Rl,@R15
INC Rl5, #8
JP @Rl

END Example

END Example

Push 1st input param

Push 2nd input param

Pop 1st return param

Pop 2nd return param

Restore old Local Base
Pop return address
Pop locals & input param!
Resume calling procedure!

Figure 6-1. Example 2: PLZ/ASM Module for the Nonsegmented S8009

36 ZEUS 36

PLZ/SYS Zilog PLZ/SYS

37

6.2 Nonsegmented Code

An equivalent module written in PLZ/ASM for the nonsegmented
Z8000 appears in Example #2 (Figure 6-1).

The entry sequence executed before the body of Example is
shown in lines 22 through 26. First, the return address is
popped from the stack, where it was deposited by the invok­
ing call instruction. This produces storage for the three
local variables to be allocated contiguously with the input
parameters by decrementing the Stack Pointer register. The
return address is then pushed back on the stack. The value
of the Local Base register is preserved on the stack for
restoration prior to resumption of the calling procedure.
Finally, addressing of local storage and parameters is esta­
blished by setting the Local Base register to the current
Stack Pointer register. Lines 22 through 24 are omitted if
no local variables are declared by Example.

Figure 6-2 depicts the displayed run-time stack after the
entry sequence for Example has been completed. The Local
Base register addresses a word containing the caller's Local
Base address. The next word deeper in the stack contains
the return address. The local variables begin at offset
four from the local base. Although the compiler does not
guarantee that local storage is allocated in the order
shown, two-byte variables can be packed into one word, as
demonstrated by the variables local I and local2.

Parameters passed as input to the routine reside beyond
local storage at higher storage addresses. The last parame­
ter declared, in2, is closest to the Local Base since it was
pushed last. The parameter inl is padded to word length.
All parameters occupy at least one word; byte parameters are
extended to word length, with the upper byte undefined.
Storage for the result parameters yielded by Example resides
beyond the input parameters, at higher storage addresses.
The first return parameter declared resides closest to the
Local Base, ready to be popped from the stack after Example
returns to its caller. Byte return parameters always occupy
the low-order (high-address) byte of a word, with a high­
order byte of undefined value.

ZEUS 37

PLZ/SYS Zilog PLZ/SYS

/"

STACK
HIGHER ORDER HIGHER ADDRESS

<--BYTE--> <--BYTE-->

LOW ADDRESS 0 I I
\ \
\ \
I I
I I
I I
I I
I I
I I
I I
I I

SP LB----->I OLD LB I
I I
I RETURN ADDRESS I
I I
I locall I local2 I
I I I
I local3 I unused I
I I I
I in2 I
I I
I unused I inl I
I I I
I unused I outl I
I I I
I out2 I
I I
I I
I I
I I
\ \
\ \
I I

HIGH ADDRESS FFFFE I I

Figure 6-2. Nonsegmented Run-Time Stack Stack Detail After
Entry Sequence (Before Line 29 in Example #2)

38 ZEUS 38

r{

PLZ/SYS Zilog PLZ/SYS

39

STACK
HIGHER ORDER HIGHER ADDRESS

<--BYTE--) <--BYTE--)

LOW ADDRESS 0 1 1
\ \
\ \
1 1
1 1 1 __________________ __

SP------>1 2nd INPUT PARAP.l

1---------------------1 unused IlstIN PARM
1----------1---------

unused lIst RESULT

----------1---------2nd RESULT PARAM

LB------) OLD LB

RETURN ADDRESS

locall 1 loca12
1

loca13 1 unused 1
1 1

1 in2 1
1 1
1 unused I inl 1
1 1 1
1 unused I outl 1
1 1 1
1 out2 1
1 1
1 1
1 I
\ \
\ \
1 1

HIGH ADDRESS FFFE 1 1

Figure 6-3. Nonsegmented Run-Time Stack Detail Before
Recursive Call (Before Line 36 in Example #2)

ZEUS 39

PLZ/SYS Zilog PLZ/SYS

40

Lines 29 through 40 demonstrat~ a typical call to Example.
Comparable code is used for any call to Example from other
modules. Storage for the two return parameters is allocated
by decrementing the Stack Pointer register. Then the input
parameters are evaluated and pushed onto the stack in their
order of declaration. Figure 6-3 shows the visible portion
of the stack prior to executing the call in line 36.

If Example returns from its recursive call, the Stack
Pointer register addresses the first return parameter. Pop­
ping it from the stack exposes the second return parameter.
Popping the second parameter leaves the Stack Pointer regis­
ter equal to the Local Base register, as it was before line
29 was executed.

The standard procedure exit sequence .for nonsegmented code
appears in lines 43 through 46. Before line 43 is executed,
the stack configuration is the same as it was immediately
after execution of the entry sequence. The Stack Pointer
and Local Base registers are equal and address the word con­
taining the caller's Local Base address saved during the
entry sequence. The Local Base of the calling procedure is
popped from the stack into the Local Base register and the
return address is popped into a temporary register. Next,
the local storage and input parameters are deallocated by
incrementing the Stack Pointer. The Stack Pointer register
addresses the first return parameter. Execution of the cal­
ling procedure is resumed by jumping to the return address.
If local variables or input parameters are not declared by
Example, lines 44 through 46 are replaced by a return
instruction.

6.3 Segmented Code

An equivalent module written in PLZ/ASM for the segmented
zeooo appears in Example #3 (Figure 6-4). In segmented
code, parameters and locals are allocated on the Local
Stack, while control information resides on the Control
Stack. Locals and parameters are stored in the same order,
but are accessed relative to the floating Local Pointer
rather than to a fixed base address. This requires compen­
sation for movement of the Local Pointer each time local or
parameter data is referenced.

The entry sequence in lines 26 and 27 is executed before the
body of Example. Line 26 allocates storage for the three
local variables on the Local Stack adjacent to the input
parameters. Line 27 saves the address of the lowest word of
local storage on the Control Stack. This value is addressed
by the Control Stack Pointer register during execution of
the procedure body and locates the base of local storage for

ZEUS 40

PLZ/SYS Zilog PLZ/SYS

41

the procedure. This value is not maintained in a register,
since it is not needed for execution, but it is extremely
helpful during debugging.

ZEUS 41

PLZ/SYS

Z8000ASM 2.0
LOC OBJ CODE

0000

0000 ABD3
0002 9lEC

0004 ABD3

0006 30C8
OOOA 93CO

OOOC 35CO
0010 9lCO

0012 DOOA

0014 57CD

0018 57CD

OOlC A909
OOlE A9F3
0020 9EOa
0022

0005

OOOA

00

00

OE

OE

o errors
Assembly complete

Zilog PLZ/SYS

STMT SOURCE STATE~1ENT

1 Example MODULE
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

! Example module written in PLZ/ASM
! for the segmen~ed zaooo.

$SEGMENTED

CONSTANT
LSseg := 0

! Offsets
out2 :=
outl :=
inl :=
in2 :=
local3 :=
local2 :=
locall :=

GLOBAL

Example
PROCEDURE
ENTRY

from
12
11

9
4
2
1
a

Local Stack Segment

base of locals !

--- ! ! --- Entry Sequence
DEC R13, #4 . ! Allocate local variables
PU SHL @RRl4, RRl2 ! Save Fixed Base (optional)

! outl, out2 := Example (loca12, in2) !
DEC R13,#4 ! Allocate return parameters

LOB
PUSH

LOL
PUSHL

CALR

POP

POP

! ---
INC
INC
RET

RLO,RRl2 (Uoca12+4)
@RR12,RO Push 1st input parameter

RRO,RRl2(#in2+6)
@RRl2,RRO Push 2nd input parameter

Example

I «LSseg»outl-l+4 I (Rl3) ,@RRl2 1st result

I «LSseg»out2+2 I (Rl3) ,@RRl2 2nd result

--- ! Exit Sequence
Rl3,nO
Rl5,i4

Pop locals & input params
Pop fixed base

! Resume calling procedure.
END Example

END Example

- - _. ____ --"_'0-' . ____ ._" ___ ._ .. _ .. _ ___ . __ .• ___ , __________ . ___ . __ . __

Figure 6-4. Example 3: PLZ/ASM Module for the Segmented S8000

42 ZEUS 42

(

PLZ/SYS Zilog PLZ/SYS

43

Figure 6-5 displays the portions of the two run-time stacks
visible to Example after execution of the entry sequence.
Parameters and local variables reside on the Local Stack.
Return addresses and Local Base addresses reside on the Con­
trol Stack. The size of parameter in2 is four bytes, since
segmented addresses occupy long words.

Lines 30 through 42 demonstrate a proper call to Example.
The sequence of events is identical to that of nonsegmented
code. Parameters are pushed on the Local Stack. The confi­
guration of the run-time stacks before execution of the call
instruction in line 38 is shown in Figure 6-6.

If Example returns from its recursive call, the Local Stack
Pointer register addresses the first return parameter. Pop­
ping it from the Local Stack exposes the second return
parameter. Popping the second parameter positions the Local
Stack Pointer register at the lowest-address word of local
storage.

The exit s~quence is shown in lines 45 through 47. Before
line 45 ~s executed, the Control and Local Stack Pointer
registers contain the same values they had after the entry
sequence. The local variables and input parameters are
deallocated by incrementing the Local Stack Pointer regis­
ter. This leaves the Local Stack Pointer register address­
ing the first return parameter. The' local storage base
address is removed from the Control Stack, and the return
instruction pops the return address from the Control Stack
and resumes the calling procedure. If no local variables or
input parameters are declared by Example, line 45 is omit­
ted.

ZEUS 43

PLZ/SYS Zilog PLZ/SYS

CONTROL STACK CONTROL STACK
HIGHER ORDER HIGHER ADDRESS HIGHER ORDER HIGHER ADDRESS

<--BYTE--) <--BYTE--) <--BYTE--) <--BYTE--)

0 I I LOW ADDRESS 0 I
\ \ \
\ \ \
I I
I I
I I
I I
I I --------LP---) locall loca12
I I I

1 1 local3 unused
1 I
1 1

CP----) I I in2
FIXED BASE ---1_1

1 unused 1 inl
I I

--RETURN ADDRESS---I unused I outl
I I
I out2
I
I
1

\ \ \
\ \ \
I I I

FFFE I I HIGH ADDRESS I
FFFE

Figure 6-5. Segmented Run-Time Stack Detail After Entry Sequence
(Before Line 30 in Example #3)

44 ZEUS 44

1
\
\

I
I
I
I
1
1
I
\
\
I
I

\

(

PLZ/SYS Zilog PLZ/SYS

CONTROL STACK
HIGHER ORDER HIGHER ADDRESS

<--BYTE--> < __ BYTE-->

CONTROL STACK
HIGHER ORDER HIGHER ADDRESS

<--BYTE--> <--BYTE-->

0 I I LOW ADDRESS 0 I I
\ \ \ \
\ \ \ \
I I I I
1 I I 1
I I I I
I I LP---->I I
1 1 I-- 2nd INPUT PARAM --I
I I 1
I 1 unused IlstIN PARA I
I I 1 1
I I unused lIst RESULT 1
I .. 1 I I
1 1 2nd RESULT PARAM I
I I 1
I ------------>1 local 1 loca12 I
1 I 1 1
I I I loca13 unused 1
1 I I I
I I I I

CP---->1 I 1--- in2 ---I

45

1---- FIXED BASE 1 1
1 __ I 1 unused I
1 I I I
I 1 1 unused 1
I---RETURN ADDRESS---I 1 1
I I I out2
1 I 1
1 1 1
1 1 1
\ \ \
\ \ \

FFFE 1 1 HIGH ADDRESS I
FFFE

Figure 6-6. Segmented Run-Time Stack Detail Before
Recursive Call (Before Line 38 in Example #3)

ZEUS

I
inl I

1
outl I

1
I
1
I
1
\
\
1

45

PLZ/SYS Zilog PLZ/SYS

46 ZEUS 46

.
I

(

PLZ/SYS Zilog PLZ/SYS

47

APPENDIX A

PLZ/SYS ERROR MESSAGES

The error messages in this appendix are shared with the
PLZ/ASM assembler. For a complete list of the PLZ/ASM error
messages, refer to the System ~ ~ASM ~ Guide (Zilog
part number 03-3189).

ERROR EXPLANATION

Warnings

o A minus sign (-) or a plus sign (+) treated as
binary operator

1 Missing delimiter between tokens
2 Array of zero elements
3 No fields in record declaration
4 Mismatched procedure names
5 Mismatched module names
6 constant out-of-range for type
8 Absolute address warning for System 8000

Token Errors

10 Decimal number too large
11 Invalid operator
12 Invalid special character after prompt (%)
13 Invalid hexadecimal digit
14 Character __ sequence of zero length
15 Invalid character
16 Hexadecimal number too large

DO Loop Errors

20 Unmatched OD
21 OD expected
22 Invalid repeat statement
23 Invalid exit statement
24 Invalid FROM label

30
31
32
33

IF Statement Errors

Unmatched FI
FI expected
THEN or CASE expected
Invalid selector record

ZEUS 47

PLZ/SYS Zilog PLZ/SYS

ERROR EXPLANATION

Symbols Expected

40) expected
41 (expected
42] expected
43 [expected
44 := expected
45 ~ expected

Undefined Names

50 Undefined identifier
51 Undefined procedure name

Declaration Errors

60 Type identifier expected
61 Invalid module declaration
62 Invalid declaration class
63 Invalid use of array [*] declaration
64 Uninitialized array [*] declaration
65 Invalid dimension size
66 Invalid array component type
67 Invalid record field declaration
68 Invalid type used in pointer declaration

Procedure Declaration Errors

70 Invalid procedure declaration
71 ENTRY expected
72 Procedure name expected after END
73 Formal parameter name expected
74 Invalid formal parameter type

Initialization Errors

80 Invalid initial value
81 Too many initialization elements for

declared variables
82 Invalid initialization
83 Array [*] gives single noncharacter __ sequence

initializer
84 Attempt to initialize an uninitialized data area

48 ZEUS 48

(

PLZ/SYS Zilog

49

ERROR EXPLANATION

Special Errors

90 Invalid statement
91 Invalid instruction
92 Invalid operand
93 Operand too large
94 Relative address out of range
95 : expected
97 Duplicate record field name
98 Duplicate CASE constant
99 Multiple declaration of identifier

Invalid Variables

100 Invalid variable ~
101 Invalid operand for # or SIZEOF
102 Invalid field name
103 Subscripting of nonarray variable
104 Invalid use of ~eriod (.)
105 Invalid use of

Expression Errors

110 Invalid arithmetic expression
III Invalid conditional expression
112 Invalid constant expression
113 Invalid select expression
114 Invalid index expression
115 Invalid expression in assignment

Constant Out of Bounds

120 Constant too large for 8 bits
121 Constant too large for ,16 bits
122 Constant array index out of bounds

130
131
132

133
134
135
136

Procedure Call Errors

Invalid arithmetic expression
Invalid procedure call
Procedure call with multiple out

parameters expected
Too few out parameters
Too many out parameters
Too few in parameters
Too many in parameters

ZEUS

PLZ/SYS

49

PLZ/SYS Zilog PLZ/SYS

50

ERROR EXPLANATION

Type Incompatibility

140 Character __ sequence initializer used with
array [*] declaration where component's
base type is not 8 bits

141 Type incompatibility with initialization
150 Type incompatibility in arithmetic expression
151 Invalid operand type for unary operator
152 Invalid operand type for binary operator
153 Unassigned type
154 Invalid index type
156 Parameter type incompatible
157 Invalid actual parameter
158 Return parameter type incompatible
159 Return value must be address
160 Type incompatibility in assignment
161 Invalid operand type for relational operator
162 Type incompatibility in conditional expression
163 Invalid type conversion
164 Invalid relational operator for structures

File Errors

198 EOF expected
199 Unexpected EOF encountered in source--possible

unmatched ! or ' in source

Implementation Restrictions

230 Character __ sequence or identifier too long
231 Symbol table overflow
232 Procedure too large
233 Left hand side of assignment too complicated
234 Too many initialization values
235 Stack overflow
236 Too many constants in expression
237 Static data overflow
238 Program area overflow
239 Too many internal or global procedures
240 Long constants not implemented

NOTE

Errors larger than 240 can occur. If there are no
other errors in the program preceding "one of
these errors, contact Zilog.

ZEUS 50

\

(

PLZjSYS Zilog PLZjSYS

51

APPENDIX B

PLZCG ERROR NUMBERS
AND EXPLANATIONS

When the capacity of the code generator's internal tables is
exceeded, the code generator aborts with an appropriate
error message. This error can usually be corrected by
increasing the size of the unallocated memory region, which
the code generator uses for these tables. If this is not
effective, the source must be modified to reduce its table
requirements.

ERROR EXPLANATION

1 Inappropriate z-code format. The z-code file was
probably produced by an outdated version of the
PLZjSYS compiler. Recompile the source module
using the companion PLZjSYS compiler: specify the
Z8000 as the target machine.

2 Statement too large

3 Expression too large

4 Procedure call nesting too deep

5 Too many internal and global procedures defined
in module

6 Too many alternatives in select statement

7 Procedure too large

NOTE

Error numbers higher than 7 should be reported to
Zilog along with any pertinent information con­
cerning their occurrence.

ZEUS 51

SED

*

1

Zilog SED

SED

A Noninteractive Text Editor*

This information is based on an article originally writ­
ten by Lee E. McMahon, Bell Laboratories.

Zilog 1

SED

2

Zilog SED

PREFACE

This document is for users of ~, a noninteractive context
editor that runs on the ZEUS Operating System. It is
assumed that the user has some familiarity with string
matching and substitution features of 21, the interactive
screen-oriented editor of ZEUS.

Section 1 provides an introduction to ~. The format of
~ editing commands appears in Section 2. Section 3 gives
the available ~ commands and use of arguments.

Examples appear throughout the text. Except where otherwise
noted, the examples use the following input text:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Zilog 2

SED

1.0

2.0

3.0

4.0

3

Zilog SED

TABLE OF CONTENTS

INTRODUCTION 4

COMMAND OPERATION . 5

2.1 General Information 5
2.2 Command Line Flags 5
2.3 Flow of Edit Commands .. 5
2.4 Pattern Space 6

LINE SELECTION 7

3.1
3.2
3.3
3.4

Selecting Lines for Editing •••••••••••••••••• 7
Line Number Addresses •••••••••••••••••••••••• 7
Context Addresses •••••••••••••••••••••••••••• 7
Number of Addresses •••••••••••••••••••••••••• 9

FUNCTIONS ... 10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

.......................... General Information
Whole Line Functions
Substitute Functions
Input/Output Functions

.........................
Patterns with New Line •••••••••••••••••••••••
Hold and Get Functions •••••••••••••••••••••••
Flow-of-Control Functions ••••••••••••••••••••
Miscellaneous Functions ••••••••••••••••••••••

Zilog

10
10
12
15
16
17
18
19

3

SED

(
4

Zilog SED

SECTION 1

INTRODUCTION

~ is a noninteractive context editor designed for three
cases:

1. Editing files too large for efficient interactive
editing

2. Editing any size file when the sequence of editing
commands is too complicated to be efficiently typed
in interactive mode

3. Performing multiple "global" editing functions
efficiently in one pass through the input

~ is a descendant of the editor,~. Because of the
differences between interactive and noninteractive opera­
tion, considerable changes have been made between ~ and
~. Even experienced users of ~ will be surprised if they
use ~ without reading Sections 3 and 4 of this document.
The most striking resemblance between the two editors is in
the class of patterns or regular expressions they recognize.
The code for matching patterns is copied almost verbatim
from the code for ~, and the description of regular expres­
sions in Section 3 is copied almost verbatim from the
writeup for ~ in the Z£llS Programmer'a Manual.

Zilog 4

~.~ , ~

SED

5

Zilog SED

SECTION 2

COMMAND OPERATION

2.1 General Operation

~ copies the standard input to the standard output, and
can perform one or more editing commands on each line before
writing it to the output. This action can be modified by
flags on the command line (Section 2.2).

The general format of an editing command is:

[addressl,address2] [function] [arguments]

One or both addresses can be omitted. Any number of blanks
or tabs can separate the addresses from the function. The
function must be present. The arguments can be required or
optional, according to which function is given. Tab charac­
ters and spaces at the beginning of lines are ignored.

2.2 Command Line Flags

Three flags are recognized on the command line:

-n: tells ~ not to copy all lines, but only those
specified by R functions or R flags after ~ func­
tions (Section 4.4)

-e: tells ~ to take the next argument as an editing
command

-f: tells ~ to take the next argument as a file
name; the file should contain one editing command
to a line

2.3 Flow of Edit Commands

For more efficient execution, all the editing commands are
first compiled in the order they are encountered. This is
generally the order in which they are attempted at execution
time. During the execution phase, the commands are applied
one at a time, and the input to each command is the output
of all preceding commands.

The linear order of application of editing commands can be
changed by the flow-of-control commands, ~ and ~ (Section
4.7). Even when the order of application is changed by

Zilog 5

SED

6

Zilog SED

these commands, the input line to any command is the output
of any previously applied command.

2.4 Pattern Space

The range of pattern matches is called the pattern space.
Ordinarily, the pattern space is one line of the input text,
but more than one line can be read into the pattern space by
using the ~ command (Section 4.5).

Zilog 6

SED

7

Zilog SED

SECTION 3

LINE SELECTION

3.1 Selecting Lines for Editing

Lines in an input file can be selected by addresses.
Addresses can be either line numbers or context addresses.

The application of a group of commands can be controlled by
one address or address-pair by grouping the commands with
braces ({ }) (Section 4. 7) •

3.2 Line Number Addresses

A line number is a decimal integer. As each line is read
from the input, a line number counter is incremented. A
line number address matches the input line, which causes the
internal counter to equal the address line number. The
counter runs cumulatively through multiple input files; it
is not reset when a new input file is opened.

As a special case, the character $ matches the last line of
the last input file.

3.3 Context Addresses

A context address is a pattern "regular expression" enclosed
in slashes (I). The following regular expressions are
recognized by ~:

1. An ordinary character (not one of the special char­
acters discussed in this section) is a regular
expression, and matches itself.

2. A circumflex (A) at the beginning of a regular
expression matches the null character at the begin­
ning of a line.

3. A dollar sign ($) at the end of a regular expres­
sion matches the null character at the end of a
line.

4. The characters \n match an embedded new line char­
acter, but not the new line at the end of the pat­
tern space.

Zilog 7

SED

8

Zilog SED

5. A period (.) matches any character except the ter- "' ...
minal new line of the pattern space.

6. A regular expression followed by an asterisk (*)
matches any number (including none) of adjacent
occurrences of the regular expression it follows.

7. A string of characters in square brackets ([])
matches any character in the string, and no others.
If the first character of the string is circumflex
(A), the regular expression matches any character
except the characters in the string and the termi­
nal new line of the pattern space.

8. A concatenation of regular expressions is itself a
regular expression. It matches the concatenation
of strings that match the components of the regular
expression.

9. A regular expression between the sequences \(and
\) is identical to the regular expression, but has
side-effects described in Section 4.3.

10. The expression \d means the same string of charac­
ters matched by an expression enclosed in \(and \)
earlier in the same pattern. Here g is a single
digit. The string specified begins with the gth
occurrence of \(, counting from the left. For
example, the expression A\{.*\)\l matches a line
beginning with two repeated occurrences of the same
string.

11. The null regular expression
example, II) is equivalent
expression compiled.

To use one of the special characters:

$

*
[]
\
I

standing alone (for
to the last regular

as a literal to match an occurrence of itself in the input,
precede the special character with a backslash (\).

If a context address is to match the input, the whole pat­
tern within the address must match some portion of the pat­
tern space.

Zilog 8

'"",- ./

SED

9

Zilog SED

3.4 Number of Addresses

The commands in the next section can have zero, one, or two
addresses. Two addresses are separated by a comma. Under
each command, the maximum number of allowed addresses is
given. It is an error for a command to have more addresses
than the maximum allowed.

If a command has no addresses, it is applied to every line
in the input.

If a command has one address, it is applied to all lines
that match that address.

If a command has two addresses, it is applied to the first
line that matches the first address, and to all subsequent
lines until and including the first subsequent line that
matches the second address. An attempt is made on subse­
quent lines to again match the first address, and the pro­
cess is repeated.

Examples:

lanl
lan.*anl
IAanl
1.1
1\.1
Ir*anl
I\(an\).*\ll

matches lines 1, 3, 4 in the sample text
matches line 1
matches no lines
matches all lines
matches line 5
matches lines 1,3, 4 (number = zero!)
matches line 1

Zilog 9

SED

10

Zilog SED

SECTION 4

FUNCTIONS

4.1 General Information

All functions are named by a single character. In this sec­
tion, the command format shows the maximum number of allow­
able addresses enclosed in parentheses, the single character
function name, and possible arguments enclosed in angle
brackets « ». The angle brackets around the arguments are
not part of the argument and must not be typed in actual
editing commands. An expanded English translation of the
single character name and a description of each function
also appear.

4.2 Whole Line Functions

Within the text output by these functions, leading blanks
and tabs disappear. To include leading blanks and tabs in
the output, precede the first desired blank or tab with a
backslash. The backslash does not appear. in the output.

(2)d -- delete lines

The g function deletes from the file all those lines
matched by its address(es).

It also has the effect that no fUrther commands are
attempted on the deleted lines. As soon as the ~ func­
tion is executed, a new line is read from the input,
and the list of editing commands is restarted from the
beginning on the new line.

(2)n -- next line

(l)a\

The n function reads the next line from the input,
replacing the current line. The current line is writ­
ten to the output if it should be. The list of editing
commands is continued following the n command.

<text> -- append lines

The ~ function writes the argument <text> to the output
after the line matched by its address. The ~ command
is inherently multiline; ~ must appear at the end of a
line, and <text> can contain any number of lines. The
interior new lines must immediately follow a backslash

Zilog 10

SED

11

character (\).
the first new
backslash.

Zilog SED

The <text> argument is terminated by
line not immediately preceded by a

Once an
written
deleted
output.

A function is successfully executed, <text> is
to the output. The triggering line can be

entirely, but. <text> is still written to the

(l)i\

The <text> is not scanned for address matches, and no
editing commands are attempted on it. It does not
cause any change in the line number counter.

<text> -- insert lines

(2)c\

The ~ function behaves like the A function, except that
<text> is written to the output before the matched
line. All other comments about the A function apply to
the ~ function.

<text> -- change lines

The ~ function deletes the lines selected by its
address(es) and replaces them with the lines in <text>.
Like A and ~, ~ must be followed by a new line entered
after a backslash. Interior new lines in <text> must
follow backslashes.

The ~ command can have two addresses, and thereby
select a range of lines. If it does, all the lines in
the range are deleted, but only one copy of <text> is
written to the output. As with A and ~, <text> is not
scanned for address matches, and no editing commands
are attempted on it. It does not change the line
number counter.

After a line has been deleted by a ~ function, no
further commands are attempted on it.

If text is appended after a line by A or ~ functions,
and the line is subsequently changed, the text inserted
by the ~ function is placed before the text of the A or
~ functions.

Zilog 11

, ./

SED

12

Example:

Zilog

NOTE

Within the text put in the output by these
functions, leading blanks and tabs will
disappear, as always in ~ commands. To
get leading blanks and tabs into the output,
precede the first desired blank or tab by a
backslash; the backslash will not appear-in
the output.

The list of editing commands:

n
a\
XXXX
d

applied to the standard input produces:

In Xanadu did Kubhla Khan
XXXX
Where Alph, the sacred river, ran
XXX X .
Down to a sunless sea.

SED

In this particular case, the same effect is produced by
either of the two following command lists:

n
i\
XXX X
d

n
c\
XXXX

4.3 Substitute Functions

A substitute function changes parts of lines selected by a
context search within the line.

(2)s<pattern><replacement><flags> -- substitute

The ~ function replaces the part of a line selected by
<pattern> with <replacement>. It is also read:

Substitute for <pattern>, <replacement>

The <pattern> argument contains a pattern, exactly like
the patterns in addresses (Section 3.3). The only

Zilog 12

SED

13

Zilog SED

difference between <pattern> and a context address is
that the context address must be delimited by slash (I)
characters and <pattern> can be delimited by any char­
acter other than space or new line.

By default, only the first string matched by <pattern>
is replaced.

The <replacement> argument begins immediately after the
second delimiting character of <pattern> and must be
followed immediately by another instance of the delim­
iting character. Thus, there are three instances of
the delimiting character.,

The <replacement> is not a pattern, and the characters
that are special in patterns do not have special mean­
ing in <replacement>. Instead, other characters are
special:

& is replaced by the string matched by <pattern>

\d (where g is a single digit) is replaced by the gth
substring matched by parts of <pattern> enclosed
in \(and \). If nested substrings occur in <pat­
tern>, the gth string is determined by counting
opening delimiters. As in patterns, special char­
acters can be made literal by preceding them with
a backslash (\).

The <flags> argument can contain the following flags:

g -- substitute <replacement> for all nonoverlapping
instances of <pattern> in the line. After a successful
substitution, the scan for the next instance of <pat­
tern> begins just after the end of the inserted charac­
ters. Characters put into the line from <replacement>
are not rescanned.

p -- print the line if a successful replacement was
done. The ~ flag prints the line to the output if a
sUbstitution was actually made by the ~ function. If
several ~ functions, each followed by a ~ flag, suc­
cessfully substitute in the same input line, multiple
copies of the line are written to the output--one for
each successful substitution.

w <filename> -- write the line to a file if there was a
successful replacement. The ~ flag causes lines that
are actually substituted by the ~ function to be writ­
ten to a file named by <filename>. If <filename>
exists before ~ is run, it is overwritten; if not, it
is created.

Zilog 13

SED

14

Zilog SED

A single space must separate ~ and <filename>.

The possibilities of multiple, somewhat different
copies of one input line being written are the same as
for ~.

A maximum of ten different file names can be mentioned
after ~ flags and ~ functions.

Examples:

Applied to the standard input, the following command,

s/to/by/w changes

produces, on the standard output:

In Xanadu did Kubhla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and, on the file "changes":

Through caverns measureless by man
Down by a sunless sea.

If the nocopy option is in effect, the command:

s/[.,;?:]/*P&*/gp

produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

In nocopy mode, the command:

/X/s/an/AN/p

produces

In XANadu did Kubhla Khan

and the command:

/X/s/an/AN/gp

Zilog 14

SED

15

Zilog

produces:

In XANadu did Kubhla KhAN

4.4 Input/Output Functions

(2)p -- print

SED

The print function writes the addressed lines to the
standard output file. They are written at the time the
~ function is encountered, regardless of what subse­
quent editing commands do to the lines.

(2)w <filename> -- write on <filename>

The write function writes the addressed lines to the
file named by <filename>. If the file previously
existed, it is overwritten1 if not, it is created. The
lines are written exactly as they exist when the write
function is encountered for each line, regardless of
what subsequent editing commands do to them.

One space must separate the ~ and <filename>. A max­
imum of ten different files can be mentioned in write
functions and ~ flags after ~ functions.

(l)r <filename> -- read the contents of a file

The read function reads the contents of <filename> and
appends them after the line matched by the address.
The file is read and appended regardless of what subse­
quent editing commands do to the line that matched its
address. If L and A functions are executed on the same
line, the text from the A functions and the L functions
is written to the output in the order that the func­
tions are executed.

One space must separate the ~ and <filename>. If a
file mentioned by an L function cannot be opened, it is
considered a null file, not an error, and no diagnostic
is given.

Since there is a limit to the number of files that can be
opened simultaneously, take care not to mention more than
ten files in ~ functions or flags. The number is reduced to
nine if any L functions are present.

Zilog 15

SED

16

Zilog SED

Examples:

Assume that the file notel has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-
1294) was the grandson and most eminent successor of
Genghiz (Chingiz) Khan, and founder of the Mongol
dynasty in China.

The following command:

/Kubla/r notel

produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent suc­
cessor of Genghiz (Chingiz) Khan, and founder of
the Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

4.5 Patterns with New Line

Three functions, all entered as
specifically with pattern spaces
lines. They provide pattern matches
input.

capital letters, deal
containing embedded new
across lines in 'the

(2)N Next line

The next input line is appended to the current line in
the pattern space and the two input lines are separated
by an embedded new line. Pattern matches can extend
across the embedded new line(s).

(2)0 -- Delete first part of the pattern space

Delete up to and including the first new line character
in the current pattern space. If the pattern space
becomes empty (the only new line is the terminal new
line), read another line from the input. Begin the
list of editing commands again from its beginning.

(2)P -- Print first part of the pattern space

Zilog 16

SED

17

Zilog SED

Print up to and including the first new line in the
pattern space.

The ~ and ~ functions are equivalent to their lowercase
counterparts if there are no embedded new lines in the pat­
tern space.

4.6 Hold and Get Functions

Four functions save and retrieve part of the input for later
use.

(2)h -- hold pattern space

The h function copies the contents of the pattern space
into a hold area, destroying the previous contents of
the hold area.

(2)H -- Hold pattern space

The H function appends the contents of the pattern
space to the contents of the hold area. The former and
new contents are separated by a new line.

(2)g -- get contents of hold area

The S function copies the contents of the hold area
into the pattern space, destroying the previous con­
tents of the pattern space.

(2)G -- Get contents of hold area

The ~ function appends the contents of the hold area to
the contents of the pattern space. The former and new
contents are separated by a new line.

(2)x -- exchange

The exchange command interchanges the contents of the
pattern space and the hold area.

Example:

The commands

Ih
lsi did.*//
Ix
G
s/\n/ :/

Zilog 17

SED

\

18

Zilog

applied to the standard example, produce:

In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

4.7 Flow-of-Control Functions

SED

These functions control the application of functions to the
lines selected by the address portion. They do no editing
on the input lines.

(2)! -- Don't

The UQn'~ command causes the next command written on
the same line to be applied to input lines not selected
by the address part.

(2) { Grouping

The grouping command, a left brace ({), causes the next
set of commands to be applied (or not applied) as a
block to the input lines selected by the addresses of
the grouping command. The first of the commands under
control of the grouping command can appear on the same
line as the {, or on the next line.

The group of commands is terminated by a right brace
(}) standing on a line by itself.

Groups can be nested.

(0) : <label> place a label

The label function marks a place in the list of editing
commands that can be referred to by h and ~ functions.
The <label> can be any sequence of eight or fewer char­
acters. If two different colon functions have identi­
cal labels, a compile-time diagnostic is generated, and
no execution is attempted.

(2)b<label> -- branch to label

The branch function causes the sequence of editing
commands being applied to the current input line to be
restarted immediately after a colon function with the
same <label> is encountered. If no colon function with
the same label can be found after all the editing com­
mands have been compiled, a compile-time diagnostic is

Zilog 18

SED

19

Zilog SED

produced, and no execution is attempted.

A h function with no <label> is a branch to the end of
the list of editing commands; whatever should be done
with the current input line is done, and another input
line is read. The list of editing commands is res­
tarted from the beginning on the new line.

(2)t<label> -- test sUbstitutions

The ~ function tests whether any successful substitu­
tions have been made on the current input line. If so,
it branches to <label>; if not, it does nothing. The
flag indicating that a successful substitution has been
executed is reset by:

1. reading a new input line, or
2. e~ecuting a ~ function.

4.8 Miscellaneous Functions

(1)= -- equals

The = function writes to the standard output the line
number of the line matched by its address.

(l)q -- quit

The £ function writes the current line to the output,
writes any appended or read text, and terminates execu­
tion.

Zilog 19

SHELL

*

1

Zilog SHELL

An Introduction to the ZEUS Shell*

This information is based on an article originally
written by S.R. Bourne, Bell Laboratories.

Zilog 1

.'

SHELL

2

Zilog SHELL

PREFACE

The shell is both a command language and a programming
language that provides an interface to the ZEUS Operating
System. This document describes, with examples, the ZEUS
shell.

This version of the shell is sometimes referred to as the
"Bourne Shell" after its original author, S. R. Bourne of
Bell Laboratories. There are at least four other shell pro­
grams in moderately widespread use. Users can select the
shell they feel most comfortable with. Most of Zilog1s
internal users use the C Shell (see), which has additional
features for interactive work.

The first section covers most requirements of terminal
users. Some familiarity with ZEUS is an advantage when
reading this section. Z£llS ~ Beginners in this manual
provides the basis for this familiarity.

Section 2 describes features of the shell primarily intended
for use within shell procedures. These include control-flow
primitives and string-valued variables. Knowledge of a pro­
gramming language is helpful when reading this section.

The last section describes more advanced features of the
shell. References of the form "~ (2)" refer to a section
of the .z.E.U.S Reference l-tanual.

Zilog 2

SHELL

SECTION 1

SECTION 2

SECTION 3

APPENDIX A

APPENDIX B

3

Zilog SHELL

TABLE OF CONTENTS

BASIC TASKS .
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

Introduction •••••••••••••••••••••••••••••
Simple Commands ••••••••••••••••••••••••••
Background Commands ••••••••••••••••••••••
Input/Output Redirection •••••••••••••••••
Pipelines and Filters ••••••••••••••••••••
File Name Generation •••••••••••••••••••••
Quoting
Prompting ••••••••••••••••••••••••••••••••
The Shell and Login .
Summary .

SHELL PROCEDURES .
Introduction
Control Flow--For ••••••••••••••••••••••••
Control Flow--Case •••••••••••••••••••••••
Here Documents •••••••••••••••••••••••••••• .

5

5
5
5
6
6
7
9
9
10
10

11

11
12
13
15
16
19
19
20

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2·.9
2.10
2.11

Shell Variables
Test Command
Control Flow--While
Control Flow--If
Command Grouping •••••••••••••••••••••••• .- 22
Debugging Shell Procedures
The man Command .

KEYWORD PARAMETERS .
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Introduction •••••••••••••••••••••••••••••
Parameter Transmission •••••••••••••••••••
Parameter Substitution •••••••••••••••••••
Command Substitution •••••••••••••••••••••
Evaluation and Quotation •••••••••••••••••
Error Handling •••••••••••••••••••••••••••
Fault Handling •••••••••••••••••••••••••••
Command Execution ••••••••••••••••••••••••
Invoking the Shell .

GRAMMAR .
METACHARACTERS AND RESERVED WORDS

Zilog

22
23

25

25
25
26
27
28
31
33
35
37

38

40

3

SHELL

4

Zilog SHELL

LIST OF ILLUSTRATIONS

Figure

2-1 A Version of the man Command ••••••••••••••••••••••• 24

3-1
3-2
3-3

ZEUS Signals ••••••••••••••••••••••••••••••••••••••• 32
The touch Command •••••••••••••••••••••••••••••••••• 34
The ~ Command ••••••••••••••••••••••••••••••••••• 34

Zi10g 4

SHELL

5

Zilog SHELL

SECTION 1

BASIC TASKS

1.1 Introduction

The shell is a command programming language that provides an
interface to the .ZEUS Operating System. Its features
include control-flow primitives, parameter passing, vari­
ables, and string sUbstitution. Constructs such as while,
if-then-else, case, and for are available. Two-way communi­
cation is possible between the shell and commands. String­
valued parameters, typically file names or flags, can be
passed to a command. A return code that is set by commands
can be used to determine control flow, and the standard out­
put from a command can be used as shell input.

The shell modifies the environment in which commands run.
Input and output can be redirected to files, and processes
that communicate through pipes can be invoked. Commands are
found by searching directories in the file. Commands can be
read either from the terminal or from a file.

l.i Simple Commands

Simple commands consist of one or more words separated by
blanks. The first word is the name of the command to be
executed; any remaining words are passed as arguments to the
command. For example,

who

is a command that prints the names of users logged in. The
command

Is -1

prints a list of files in the current directory. The argu­
ment -1 tells ~ to print status information, size, and the
creation date for each file.

1.3 Background Commands

To execute a command, the shell normally creates a new pro­
cess and waits for it to finish. A command can also be run
in the background, that is, without waiting for the process
to finish. For example,

Zilog 5

SHELL. Zilog SHELL

6

cc pgm.c &

calls the C compiler to compile the file RSID.~. The trail­
ing & is an operator that instructs the shell to run the
command in the background. To help keep track of such a
process, the shell- reports its process number following its
creation. A list of currently active processes can be
obtained using the Ra command.

1.4 Input/Output Redirection

Most commands produce output on the standard output device
(the terminal). This output can also be sent to a file by
writing, for example,

Is -1 >file

The notation >~ is interpreted by the shell and is not
passed as an argument to~. If ~ does not exist, the
shell creates it; otherwise, the original contents of ~
are replaced with the output from~. Output can be
appended to a file using the notation

Is -1 »file

The standard input of a command can be taken from a file
instead of the terminal by entering

wc <file

The- command ~ reads its standard input (in this case
redirected from ~) and prints the number of characters,
words, and lines found. If only the number of lines is
required,

wc -1 <file

is used.

1.5 Pipelines and Filters

The standard output of one command can be connected to the
standard input of another by entering the pipe operator (I),
as in,

Is -1 I wc

Zilog 6

~{-
"

SHELL Zilog SHELL

7

Two commands connected in this way constitute a pipeline and
the overall effect is the same as

Is -1 >file; wc <file

except that no file is used. Instead, the two processes are
connected by a ~ (2) and are run in parallel. Pipes are
unidirectional. Synchronization is achieved by halting ~
when there is nothing to read and halting ~ when the pipe
is full.

A filter is a command that reads its standard input,
transforms it in some way, and prints the result as output.
One such filter, ~, selects from its input those lines
that contain some specified string. For example,

Is I grep old

prints those lines of the output from ~ that contain the
string~. Another useful filter is~. For example,

who.-I sort

prints an alphabetically sorted list of logged-in users.

A pipeline can consist of more than two commands. For exam-
ple,

Is I grep old I wc -1

prints the number of file names in the current directory
containing the string .Ql.Q.

1.6 File Name Generation

Many commands accept arguments that are file names. For
example,

Is -1 main.c

prints information relating to the file main.~.

The shell provides a mechanism for generating a list of file
names that match a pattern. For example,

Is -1 *.c

generates, as arguments to ~, all file names
directory that end in .~. The character * is
matches any string including the null string.
specified as follows:

Zilog

in the current
a pattern that
Patterns are

7

SHELL Zilog SHELL

8

* matches any string of characters including the
null string

? matches any single character

[...] matches anyone of the characters enclosed; a
pair of characters separated by a minus matches
any character lexically between the pair

For example,

[a-z]*

matches all names in the current directory beginning with
one of the letters A through z.

/usr/fred/test/?

matches all names in the directory /usr/fred/test that con­
sist of a single character. If no file name is found that
matches the pattern, the pattern is passed unchanged as an
argument.

This mechanism saves typing, selects names according to some
pattern, and finds files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub­
directories of /usr/fred. (~is a standard ZEUS command
that prints its arguments, separated by blanks.) This last
feature can be expensive, requiring a scan of all sub­
directories of /usr/fred.

There is one exception to the general rules given for pat­
terns. A single period (.) at the start of a file name must
be explicitly matched. For example,

echo *

echoes all file names in the current directory not beginning
with

echo .*

echoes all those file names that begin with • •
matching the name (the current directory)
parent directory). The lQ command suppresses
for the. and •• files.

Zilog

This avoids
with •• (the

information

8

SHELL

('

9

Zilog SHELL

1.7 Quoting

Characters that have a special meaning to the shell, such as
<, >, *, 1, I, &, and, are called metacharacters. (A com­
plete list of metacharacters is given in Appendix B.) Any
character preceded by a backslash {\} is quoted and loses
its special meaning. The \ itself is not echoed, so

echo \1

echoes a single 1 and

echo \\

echoes a single \. To allow long strings to be continued
over more than one line, the sequence \new line is ignored.

The \ is convenient for quoting single characters, but
clumsy when more than one character needs quoting. A string
of characters can be quoted by enclosing the string between
single quotes. For example,

echo xx'****'xx

echoes

xx****xx

The quoted string can contain new lines,
preserved; it cannot contain a single quote.
mechanism is the simplest and is recommended.

which are
This quoting

A third quoting mechanism uses double quotes (Section 3.5).

1.8 Prompting

When the shell is used from a terminal, it issues a prompt
before reading a command. By default, this prompt 1S a dol­
lar sign ($); it can be changed by the PSI command. For
example,

PSl=yesdear

sets the prompt to be the string yesdear.

If a new line is typed and further input is needed, the
shell issues the > prompt. Sometimes this can be caused by
mistyping a quote mark. If it is unexpected, an interrupt

Zilog 9

SHELL Zilog SHELL

10

returns the shell to read another command. This prompt can
be changed by the PS2 command. For example,

PS2=more

1.9 The Shell and Login

Following login (1), the shell is called to read and execute
commands typed at the terminal. If the user's login direc­
tory contains the file .profile, it is assumed to contain
commands and is read by the shell before any commands are
read from the terminal.

1.10 Summary

Is
Print the names of files in the current directory.

Is >file
Put the output from la into ~.

Is I wc -1
Print the number of files in the current directory.

Is I grep old
Print those file names containing the string ~.

Is I grep old I wc -1
Print the number of files whose names contain the string
~.

cc pgm.c &
Run ~ in the background.

Zilog 10

SHELL Zilog SHELL

SECTION 2

SHELL PROCEDURES

2.1 Introduction

The shell reads and executes commands contained in a file.
For example,

sh file args. •.]

calls the shell to read commands from~. Such a file is
called a command procedure or shell procedure. Arguments
can be supplied with the call and are referred to in ~
using the positional parameters such as $1. For example, if
~the file ~ contains

11

who I grep $1

then

sh wg fred

is equivalent to

who I grep fred

ZEUS files have three independent attributes: read, write,
and execute. The ZEUS command chmod (1) can be used to make
a file executable. For example,

chmod +x wg

ensures that the file ~ has execute status.
this, the command

Following

wg fred

is equivalent to

sh wg fred

This allows shell procedures and programs to be used inter­
changeably •. In either case, a new process is created to run
the command.

In addition to providing names for
ters, the number of pOSitional
available as $#. The name of the
available as $0.

Zilog

the positional parame­
parameters in the call is
file being executed is

11

SHELL

12

Zilog

A special shell parameter, $*,
tional parameters except $0.
arguments, as in,

nroff -T450 -ms $*

SHELL

substitutes for all posi­
This provides some default

which prepends some arguments to those already given.

2.2 Control Flow--For

A frequent use of shell procedures is to loop through the
arguments ($1, $2 •••), executing commands once for each
argument.

An example of such a procedure is~, which searches the
file /usr/lib/telnos, which contains lines of the form

...
fred mh0123
bert mh0789 ...

The text of ~ is

for i
do grep $i /usr/lib/telnos; done

The command

tel fred

prints those lines in /usr/lib/telnos that contain the
string .f.I..e.g.

tel fred bert

prints those lines containing.f.I..e.g followed by those for
l2.llt..

The ~ loop notation is recognized by the shell and has the
general form

for .n.am.e in ld lt2.
do command-~
done

...

A cornmand-~ is a sequence of one or more simple commands
separated or terminated by a new line or semicolon.
Reserved words like ~ and ~ are only recognized follow­
ing a new line or semicolon. ~ is a shell variable that
is set to the words ld lt2. ••• in turn each time the cornmang-

Zilog 12

SHELL

13

Zilog

liat following ~ is executed.
the loop is executed once for
that is, "in $*" is assumed.

I f .in ld lt2. •••
each positional

SHELL

is omitted,
parameter,

Another example of the loop is the create command, for which
the text is

for i do >$i; done

The command

create alpha beta

ensures that two files, alpha and ~, exist and are empty.
The notation >~ can be used on its own to create or clear
the contents of a file. A semicolon (or a new line) is
required before ~ • ..
2.3 Control Flow--Case

The case notation provides a multiple branch. F.or example,

case $# in
1) cat » $1 ;;
2) cat » $2 <$1 tt

*) echo 'usage: append from] to' ;;
esac

is an append command. When called with one argument as

append file

$# is the string L and the standard input is copied onto the
end of ~ using the ~ command. The command

append filel file2

appends ~he contents of filel to file2. If more than two
arguments are supplied to append, a message is printed indi­
cating improper usage.

The general form of the case command is

case liQ.t.d in
pattern) command-~;;

esac

The shell attempts to match ~ with each pattern in the
order in which the patterns appear. If a match is found,
the associated command-liat is executed, and execution of

zilog 13

SHELL

14

Zilog SHELL

the case is complete. Since * is the pattern that matches
any string, it can be used for the default case.

No check is made to ensure that only one pattern matches the
case argument. The first match found defines the set of
commands to be executed. In the next example, the commands
following the second * are never executed.

case $# in
*) • • • · . , ,
*) • • • · . , ,

esac

Another example of the case construction
between different forms of an argument.
ple is a fragment of a ~ command.

for i
do case $i in

done

- [ocs]) ...;;
-*) echo 'unknown flag $i' ;;
*.c) /lib/cO $i ••• ;;
*) echo 'unexpected argument
esac

is distinguishing
The following exam-

$i' ;;

To allow the same commands to be associated with more than
one pattern, the case command provides for alternative pat­
terns separated by a I. For example,

case $i in
-x I -y) •••

esac

is equivalent to

case $i in
-[xy])

esac
· ..

The usual quoting conventions apply so that

case $i in
\?) . . .

matches the? character.

Zilog 14

(~
,,~

SHELL

15

Zilog SHELL

2.4 Here Documents

The shell procedure ~ in Section 2.2 uses the file
/usr/lib/telnos to supply the data for~. An alternative
includes this data within the shell procedure as a ~
document, as in,

for i
do grep $i «

1
done

...
fred mh0123
bert mh0789 ...

In this example, the shelr takes the lines between «1 and !
as the standard input for~. The string ! is arbitrary;
the document is terminated by a line that consists of the
string following «, whatever that is.

Parameters are substituted in the document before it is made
available to ~, as illustrated by the following procedure
called ..e.dg.

ed $3 «%
g/$l/s//$'J./g
w
%

The call

edg stringl string2 file

is then equivalent to the command

ed file «%
g/stringl/s//str~ng2/g
w
%

and changes all occurrences of stringl in ~ to string2.
Substitution is prevented if \ is used to quote the special
character $, as in

ed $3 «+
1,\$s/$1/$2/g
w
+

Zilog 15

SHELL Zilog SHELL

16

This version of ~ is equivalent to the first except that
~ prints a ? if there are no occurrences of the string $1.
Substitution within a ~ document is prevented entirely by
quoting the terminating string. For example,

grep $i «\# ...
The document is presented without modification to ~. If
parameter sUbstitution is not required in a ~ document,
this latter form is more efficient.

2.5 Shell Variables

The shell provides string-valued variables. Variable names
begin with a letter and consist of letters, digits, and
underscores. Variables can be given values with commands
such as

user=fred box=mOOO acct=mhOOOO

which assigns values to the variables user, box, and acct.
A variable can be set to the null string by entering, for
example,

null=

The value of a variable is substituted by preceding its name
with $; for example,

echo $user

echoes ..f.t.e.g.

Variables can be used interactively to provide abbreviations
for frequently used strings. For example,

b=/usr/fred/bin
mv pgm $b

moves the file ~ from the current directory to the direc­
tory /usr/fred/bin. A more general notation is available
for parameter (or variable) substitution, as in,

echo ${user}

which is equivalent to

echo $user

Zilog 16

SHELL

17

Zilog SHELL

and is used when the parameter name is followed by a letter
or digit. For example,

tmp=/tmp/ps
ps a >${tmp}a

directs the output of ~ to the file /tmp/psa, whereas,

ps a >$tmpa

substitutes the value of the variable ~.

Except for $?, the following are set initially by the shell.
$? is set after executing each command.

$? The exit status (return code) of the last com­
mand executed as a decimal string. Most com­
mands return a zero exit status if they com­
plete successfully; otherwise, a nonzero exit
status is returned. Testing the value of
return codes is dealt with under if and while
commands.

$# The number of positional parameters in decimal.
Used, for example, in the append command to
check the number of parameters.

$$ The process number of this shell in decimal.
Since process numbers are unique among all
existing processes, this string is frequently
used to generate unique temporary file names.
For example,

ps a >/tmp/ps$$. . .
rm /tmp/ps$$

$1 The process number of the last process run in
the background (in deriimal) •

$- The current shell flags, such as -x and -v.

The following variables have a special meaning to the
shell and must be avoided for general use.

$MAIL When used interactively, the shell looks at the
file specified by this variable before it
issues a prompt. If the specified file has
been modified since it was last looked at, the
shell prints the message ~ ~ mail before
prompting for the next command. This variable

Zilog 17

SHELL

18

$HOME

$PATH

Zilog SHELL

is typically set in the file .profile, in the
user's login directory. For example,

MAIL=/usr/mail/fred

The default argument for the ~ command. The
current directory resolves file name references
that do not begin with a /, and is changed
using the ~ command. For example,

cd /usr/fred/bin

makes the current directory /usr/fred/bin.

cat wn

prints on the terminal the file ~ in this
directory. The command ~ with no argument is
equivalent to

cd $HOME

This variable is set in the user's login pro­
file.

A list of directories that contain commands
(the search ~). Each time a command is exe­
cuted by the shell, a list of directories is
searched for an executable file. If $PATH is
not set, the current directory, /bin, and
/usr/bin are searched by default. Otherwise,
$PATH consists of directory names separated by
:. For example,

PATH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null
string before the first :) /usr/fred/bin, /bin,
and /usr/bin, are to be searched, in that
order. Individual users can have their own
private commands that are accessible indepen­
dently of the current directory. If the com­
mand name contains a /, this directory search
is not used. A single attempt is made to exe­
cute the command.

$PSI The primary shell prompt string, by default, $.

$PS2 The shell prompt when further input is needed,
by defaul t, >.

Zilog 18

SHELL

19

Zilog SHELL

$IFS The set of characters used by blank interpreta­
tion (Section 3.5).

2.6 Test Command

The ~ command, although not part of the shell, is used by
shell programs. For example,

test -f file

returns zero exit status if ~ exists and nonzero exit
status otherwise. In general, ~ evaluates a predicate
and returns the result as its exit status. Some of the more
frequently used ~ arguments are given here. (~(l)
contains a complete specification.)

test s true if the argument .a is not the null
string

test -f file true if ~ exists
test -r file true if ~ is readable
test -w file true if .f..ia is writable
test -d file true if .f..ia is a directory

2.7 Control Flow--While

The actions of the for loop and the case .branch are deter­
mined by data available to the shell. A while or until loop
and an it ~ ~ branch are also provided; their actions
are determined by the exit status returned by commands. A
while loop has the general form

while command-listl
do command-list2
done

The value tested by the while command is the exit status of
the last simple command following while. Each time around
the loop, command-liat is executed. If a zero exit status
is returned, coromand-li.at is executed; otherwise, the loop
terminates. For example,

while test $1
do •••

shift
done

is equivalent to

Zilog 19

SHELL

20

for i
do •••
done

Zilog SHELL

Shift is a shell command that renames the positional parame­
ters $2, $3 ••• as $1, $2... and loses $1.

Another use for
external event
until loop, the
example,

the while/until loop is to wait until
occurs and then run some commands.
termination condition is reversed.

until test -f file
do sleep 300; done
commands

some
In an

For

loops until ~ exists. Each time around the loop, it
waits for five minutes before trying again.

2.8 Control Flow--If

Also available is a general conditional branch of the form,

if command-.l;i.R
then command-liQt
else command-liat
fi

which tests the value returned by the last simple command
following if.

The if command can be used in conjunction with the ~ com­
mand to test for the existence of a file as in

if test -f file
then process ~
else ~ something ~
fi

A multiple test if command of the form

if •••
then •••
else if •••

then
else if ••• . . .

fi
fi

fi

Zilog 20

SHELL

/
(

21

Zilog SHELL

can be written using an extension of the ~ notation as,

if •••
then
elif •••
then •••
elif •••

fi

The following example is the touch command, which changes
the "last modified" time for a list of files. The command
can be used in conjunction with ~ (1) to force recompila­
tion of a list of files.

flag=
for i
do case $i in

done

-c) flag=N, ,
*) if test -f $i

esac

then In $i junk$$; rm junk$$
elif test Sflag
then echo file \'$i\' does not exist
else >$i
fi

The -c flag in this command forces subsequent files to be
created if they do not already exist. Otherwise, if the
file does not exist, an error message is printed. The shell
variable !lgg is set to some non-null string if the -c argu­
ment is encountered. The commands

In ••• ; rm •••

make a link to the file and then remove it, thus causing the
last modified date to be updated.

The sequence

if commandl
then command2
fi

can be written

commandl && command2

Conversely,

commandl I I command2

Zilog 21

..

SHELL

22

Zilog SHELL

executes command2 only if comrnandl fails. In each case, the
value returned is that of the last simple command executed.

2.9 Command Grouping

Commands can be grouped in two ways,

{ cOmmand-liat ; }

and

command-liat

In the first form, command-liQt is
second form executes comrnand-liat
For example,

(cd x; rm junk)

simply . executed. The
as a separate process.

executes Lm iYnk in the directory x without changing the
current directory of the invoking shell.

The commands

cd x; rm. junk

have the same effect, but leave the invoking shell in direc­
tory x.

2.10 Debugging Shell Procedures

The shell provides two tracing
shell procedures. The first
cedure, as with

set -v (v for verbose)

mechanisms to help debug
is invoked within the pro-

and causes lines of the procedure to be printed as they are
read. This is useful to help isolate syntax errors. It can
be invoked without modifying the procedure by using

sh -v proc •••

where ~ is the name of the shell procedure. This flag
can be used in conjunction with the -n flag, which prevents
execution of subsequent commands. (Using ~ -n at a termi­
nal renders the terminal useless until an end-of-file is
typed.)

Zilog 22

SHELL Zilog SHELL

23

The command

set -x

produces an execution trace. Following parameter
tion, each, command is printed as it is executed.
can be turned off by entering

set -

substitu­
Both flags

The current setting of the shell flags is available as $-.

2.11 The man Command

The man command can be used used to print sections of a
document. It is called, for example, as ...

man sh
man -t ed
man 2 fork

In the first line, a section of the sb manual is printed.
Since no section is specified, Section 1 is used. The
second example typesets (-t option) a section of the manual
~. The last prints the fQLk manual page from Section 2.

A more elaborate example of the man command appears in Fig­
ure 2-1.

Zilog 23

SHELL

24

Zi10g SHELL

cd /usr/man

: 'colon is the comment command'
: 'default is nroff ($N), section 1 ($s)'
N=n s=l

for i
do case $i in

[1-9*] s=$i ;;

-t) N=t; ;

-n) N=n;;

-*) echo unknown flag \'$i\' ;;

*) if test -f man$s/$i.$s
then ${N}roff manO/${N}aa man$s/$i.$s
else: 'look through all manual sections'

found=no
for j in 1 2 3 4 5 6 7 8 9
do if test -f man$j/$i.$j

done

then man $j $i
found=yes

fi

case $found in
no) echo 'Si: manual page not found'

esac
done

esac
fi

Figure 2-1. A Version of the man Command

Zilog 24

SHELL

25

Zilog SHELL

SECTION 3

KEYWORD PARAMETERS

3.1 Introduction

Shell variables are given values by assignment or by invok­
ing a shell procedure. An argument to a shell procedure of
the form ~=value that precedes the command name causes
value to be assigned to ~ before execution of the pro­
cedure begins. The value of ~ in the invoking shell is
not affected. For example,

user=fred command

executes command with~~ set to~. The -k flag causes
arguments of the form ~=yalue to be interpreted in this
way anywhere in the argument list. Such names are called
keyword parameters. If any arguments remain, they are
available as positional parameters $1, $2, and so on.

The ~ command can also be used to set positional parame­
ters from within a procedure. For example,

set - *
sets $1 to the first file name in the current directory, $2
to the next, and so on. The first argument (-) ensures
correct treatment when the first file name begins with a -

3.2 Parameter Transmission

When a shell procedure is invoked, both positional and key­
word parameters can be supplied with the call. Keyword
parameters are implicitly available to a shell procedure by
specifying in advance that such parameters are to be
exported. For ex"ample, the command

export user box

marks the variables user and box for export. When a shell
procedure is invoked, copies are made of all exportable
variables for use within the invoked procedure. Modifica­
tion of such variables within the procedure does not affect
the values in the invoking shell. A shell procedure cannot
modify the state of its caller without explicit request on
the part of the caller. Shared file descriptors are an
exception to this rule.

Zilog 25

SHELL

26

Zilog SHELL

Names whose value is intended to remain constant can be
declared readonly. The form of this command is the same as
that of the export command,

readonly name •••

Subsequent attempts to set readonly variables are illegal.

3.3 Parameter Substitution

If a shell parameter is not set, the null string is substi­
tuted for it. For example, if the variable d is not set

echo $d

or

echo ${d}

echoes nothing. A default string can be given as in

echo ${d-.}

which echoes the value of the variable d if it is set and
n" otherwise. The default string is evaluated using the
usual quoting conventions so that

echo ${d-'*'}

echoes * if the variable d is not set. Similarly,

echo ${d-$l}

echoes the value of d if it is set and the value (if any) of
$1 otherwise. A variable can be assigned a default value
using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d was not previously set, then it is set to the
string • • The notation ${ ••• = .•• } is not available for
positional parameters.

If there is no default, the notation

echo ${d?message}

Zilog 26

SHELL

27

. .

Zilog SHELL

echoes the value of the variable d if it has one; otherwise,
message is printed by the shell, and execution of the shell
procedure is abandoned. If message is absent, a standard
message is printed. An example of a shell procedure that
requires some parameters to be set starts as follows:

: ${user?} ${acct?} ${bin?} . . .
Colon (:) is a command built into the shell and does nothing
once its arguments have been evaluated. If any of the vari­
ables ~, ~, or Qin are not set, the shell abandons
execution of the procedure.

3.4 Command Substitution

The standard output from a commana can be substituted in a
manner similar to parameter sUbstitution. The command ~
prints on its standard output the name of the current direc­
tory. For example, if the current directory is
/usr/fred/bin, the command

d= 'pwd'

is equivalent to

d=/usr/fred/bin

The entire string between grave accents is taken as the com­
mand to be executed and is replaced with the output from the
command. The command is written using the usual quoting
conventions, except that a ' must be escaped using a \. For
example,

Is ' echo "$1"'

is equivalent to

Is $1

Command substitution occurs in all contexts where parameter
substitution occurs, including ~ documents, and the
treatment of the resulting text is the same in both cases.
This mechanism allows string processing commands to be used
within shell procedures. An example of such a command is
basename, which removes a specified suffix from a string.
For example,

basename main.c

prints the string main. Its use is illustrated by the

Zilog 27

SHELL

28

Zilog SHELL

following fragment from a ~ command.

case $A in

*.c) . . .
esac

B= 'basename $A
,

.c

Here, B is set to the part of $A with the suffix .c
stripped.

Here are some composite examples:

$ for i in 'Is -t'1 do •••
The variable i is set to the names of files in
time order, most recent first.

set 'date'1 echo $6 $2 $3, $4
prints, for example, l2al ~ 1, 2l:~:~

3.5 Evaluation and Quotation

The shell is a macroprocessor that provides parameter sub­
stitution, command substitution, and file name generation
for the arguments to commands. This section discusses the
order in which these evaluations occur and the effects of
the various quoting mechanisms.

Commands are parsed initially according to the grammar given
in Appendix A. Before a command is executed, the following
substitutions occur:

$ parameter substitution; for example, $user

$ command substitution; for example, 'pwd'

Only one evaluation occurs, so that if the value
of the variable X is the string $~, then

echo $X

echoes $~.

blank interpretation

Following the above substitutions, the resulting
characters are broken into nonblank words (blank
interpretation). For this purpose "blanks" are
the characters of the string $IFS. By default,
this string consists of blank, tab, and new line.
The null string is not regarded as a word unless

Zilog 28

SHELL

29

Zilog SHELL

it is quoted. For example,

echo "

passes the null string as the first argument to
~, whereas

echo $null

calls ~ with no arguments if the variable null
is not set or set to the null string.

file name generation

Each word is then scanned for the file pattern
characters comma, question mark, and [••• l, and an
alphabetical list of file names is generated to
replace the word. Each such file name is a
separate argument.

The evaluations just described also occur in the list of
words associated with a.fsu. loop. Substitution occurs in
the ~ used for a case branch.

In addition to the quoting mechanisms described previously,
a third quoting mechanism is provided that uses double
quotes. Within double quotes, parameter and command substi­
tution occurs, but file name generation and the interpreta­
tion of blanks does not. The following characters have a
special meaning within double quotes and are quoted using \.

$
"
"
\

parameter substitution
command substitution
ends the quoted string
quotes the special characters $ " " \

For example,

echo "$x"

passes the value of the variable x as a single argument to
~. Similarly,

echo "$*"

passes the positional parameters as a single argument and is
equivalent to

echo "$1 $2 " ...
The notation $@ is the same as $* except when it is quoted.

Zilog 29

SHELL Zilog SHELL

30

The command

echo "$@"

passes the positional parameters, unevaluated, to ~ and
is equivalent to

echo "$1" "$2" •••

The following chart gives, for each quoting mechanism, the
shell metacharacters that are evaluated.

metacharacter

\ $ *
,

"
n n n n n t ,
Y n n t n n

" y y n y t n

t terminator
y interpreted
n not interpreted

In cases where more than one evaluation of a string is
required, the built-in command ~ is used. For example,
if the variable X has the value $~, and if y has the value
l25U" then

eval echo $X

echoes the string l?£t..

The ~ command evaluates its arguments (as do all com­
mands) and treats the result as input to the shell. The
input is read and the resulting command{s) executed. For
example,

wg='eval who I grep'
$wg fred

is equivalent to

who I grep fred

In this example, ~ is required since there is no
interpretation of metacharacters, such as I, following sub­
stitution.

Zilog 30

SHELL

31

Zilog SHELL

3.6 Error Handling

The treatment of errors detected by the shell depends on the
type of error and on whether the shell is being used
interactively. An interactive shell is one whose input and
output are connected to a terminal (as determined by gtty
(2». A shell invoked with the -i flag is also interactive.

Execution of a command (Section 3.8) can fail for any of the
following reasons:

$ Input/output redirection fails, for example, if a
file does not exist or cannot be created

The command itself does not exist or cannot be
executed

The command terminates abnormally, for example,
with a "bus error" or "memory fault" (see Figure
3-1 for a complete list of ZEUS signals)

The command terminates normally but returns a
nonzero exit status

In all of these cases, the shell goes on to execute the next
command. Except for the last case, an error message is
printed by the shell. All remaining errors cause the shell
to exit from a command procedure. An interactive shell
returns to read another command from the terminal. Such
errors include the following:

$ Syntax errors; for example, if ••• then ••• done

$ A signal such as interrupt; the shell waits for
the current command, if any, to finish execution
and then either exits or returns to the terminal

$ Failure of any of the built-in commands such as ~

The shell flag -e causes the shell to terminate if any error
is detected.

Zilog 31

SHELL

32

Zilog

1 hangup

2 interrupt

3* quit

4* illegal instruction

5* trace trap

6* lOT system call

7* Unused (formerly EMT instruction)

8* floating point exception

9 kill (cannot be caught or ignored)

10* Unused (formerly bus error)

11* .segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read it

14 alarm clock

15 software termination (from kill (1»

16 unassigned

SHELL

Signals marked with an asterisk produce a core dump if not
caught. However, the shell itself ignores ~, which is
the only external signal that causes a dump. The signals in
this list of potential interest to shell programs are 1, 2,
3, 14, and 15.

Figure 3-1. ZEUS Signals

Zilog 32

SHELL Zilog SHELL

33

3.7 Fault Handling

Shell procedures normally terminate when an interrupt is
received from the terminal. The ~ command is used if
some cleaning up is required, such as removing temporary
files. For example,

trap 'rm /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt), and if this
signal is received, executes the commands

rm /tmp/ps$$; exit

~ is another built-in command that terminates execution
of a shell procedure. The ~ is required; otherwise,
after the trap has been taken, the shell resumes executing
the procedure at the place where it was interrupted.

ZEUS signals can be handled in one of three ways. They can
be ignored, in which case the signal is never sent to the
process. They can be caught, in which case the process must
decide what action to take when the signal is received.
They can be left to cause termination of the process without
any further action. If a signal is being ignored on entry
to the shell procedure, for example, by invoking it in the
background (Section 3.8), ~ commands and the signal are
ignored.

The use of ~ is illustrated by the modified version of
the touch command in Figure 3-2. The cleanup action is to
remove the file junk$$.

The ~ command appears before the creation of the tem­
porary file; otherwise, it would be possible for the process
to terminate without removing the file.

Since there is no signal 0 in ZEUS, it is used by the shell
to indicate the commands executed on exit from the shell
procedure.

A procedure can itself ignore signals by specifying the null
string as the argument to trap. The following fragment is
taken from the nohup command:

trap .. 1 2 3 15

which causes hangup, interrupt, ~, and kill to be ignored
both by the procedure and by invoked commands.

Zilog 33

..

SHELL

34

Zilog

flag=
trap 'rm -f junk$$; exit' 1 2 3 15
for i
do case $i in

-c) flag=N;;
*} if test -f $i

esac
done

d='pwd'
for i in *

then In $i junk$$; rm junk$$
elif test $flag
then echo file \'$i\' does not exist
else >$i

Figure 3~2. The touch Command

do if test -d $d/$i
then cd $d/$i

fi
done

while echo "$i:"
trap exit 2
read x

do trap : 2; eval $x; done

Figure 3-3. The ~ Command

Zilog

SHELL

34

.SHELL

35

Zilog SHELL

Traps can be reset by entering

trap 2 3

which resets the traps for signals 2 and 3 to their default
values. A list of the current values of traps can be
obtained by entering

trap

The procedure ~ (Figure 3-3) is an example of the use of
~ where there is no exit in the ~ command. S£an takes
each directory in the current directory, prompts with its
name, and then executes commands typed at the terminal until
an end-of-file or an interrupt is received. Interrupts are
ignored while executing the requested commands but cause
termination when ~ is waiting for input·.

~ X is a built-in command that reads one line from the
standard input and places the result in the variable x. It
returns a nonzero exit status if an end-of-file is read or
an interrupt is received.

3.8 Command Execution

To run other than a built-in command, the shell first
creates a new process using the system call~. The exe­
cution environment for the command includes input, output,
and the states of signals, and is established in the child
process before the command is executed. The built-in com­
mand ~, used in the rare cases when no fork is required,
replaces the shell with a new command. For example, a sim­
ple version of the nohup command looks like

trap n 1 2 3 15
exec $*

The ~ turns off the signals specified so that they are
ignored by subsequently created commands, and ~ replaces
the shell with the command specified.

In the following, ~ is subject only to parameter and com­
mand sUbstitution. No file name generation or blank
interpretation takes place so that, for example,

echo ••• > *.c

writes its output into a
Input/output specifications
they appear in the command.

Zilog

file whose name is .c.
are evaluated left to right as

35

SHELL Zilo9 SHELL

36

>~

»~

< < l'l.QL.d

>& digit

<& gigit

<&-

>&-

The standard output (File Descriptor 1) is sent
to the file ~,which is created if it does
not already exist.

The standard output is sent to file~. If
the file exists, output is appended by seekin9
to the end; otherwise, the file is created.

The standard input (File Descriptor 0) is taken
from the file ~.

The standard input is taken from the lines of
shell input that follow, up to but not includin9
a line consistin9 only of~. If ~ is
quoted, no interpretation of the document
occurs. If ~ is not quoted, parameter and
command substitution occur and \ is used to
quote the characters \, $, and " and the first
character of~. In the latter case, \new
line is i9nored.

The file descriptor gigit is duplicated usin9
the system call ~ (2), and the result is used
as the standard output.

The standard input is duplicated from file
descriptor gigit.

The standard input is closed.

The standard output is closed.

Any of the above can be preceded by a di9it to create the
file descriptor specified by the di9it instead of the
default 0 or 1. For example,

••• 2>file

runs a command with message output (File Descriptor 2)
directed to~. Also,

••• 2>&1

runs a command with its standard output and
merged. File descriptor 2 is created by
descriptor I, but the effect is usually to
streams.

message output
duplicatin9 file

merge the two

The environment for a command run in the back9round such as

list *.c I lpr &

Zilo9 36

SHELL Zilog SHELL

37

is modified in two ways. First, the default standard ·input
for such a command is the empty file /dev/null. This
prevents two processes (the shell and the command), which
are running in parallel, from trying to read the same input.
For example,

ed file &

allows both the editor and the shell to read from the same
input at the same time.

The other modification to the environment of a background
command is to turn off the QUIT and INTERRUPT signals so
they are ignored by the command. This allows these signals
to be used at the terminal without causing background com­
mands to terminate. For this reason, the ZEUS convention
for a signal is that if it is set to I (ignored) then it is
never changed. The shell command ~ has no effect for an
ignored signal.

3.9 Invoking the Shell

The following flags are interpreted by the shell when it is
invoked. If the first character of argument zero is a
minus, commands are read from the file .profile.

-c string
If the -c flag is present, commands are read from
string.

-s If the -s flag is present or if no arguments remain,
commands are read from the standard input. Shell out­
put is written to File Descriptor 2.

-i If the -i flag is present or if the shell input and
output are attached to a terminal (as told by ~) ,
this shell is interactive. In this case, TERMINATE is
ignored so that kill 0 does not kill an interactive
shell, and INTERRUPT is caught and ignored so that wait
is interruptable. In all cases, QUIT is ignored by the
shell.

Zilog 37

..

SHELL

38

i.t9:

Zilog

APPENDIX A

GRAMMAR

~
input-output
.n.am.e = value

SHELL

simple-COmmand: i.t9

command:

pipeline:

andor:

simple-command ~

simple-command
(command-.l.i.a.t)
{ command-.l.i.a.t }
for ~ do command-~ done
for ~ in ~ do command-.l.i.a.t done
while command-liat do command-.l.i.a.t done
until command-liat do command-~ done
case ~ in ~-~ ••• esac
if command-.l.i.a.t then command-.l.i.a.t ~-~ fi

command
pipeline I I command

pipeline
andor && pipeline
andor I I pipeline

command-~:· andor

input-output:

~:

~-~:

pattern:

~-Ra.r..t:

command-~ ;
command-~ &
cornmand-~ ; andor
cornmand-~ & andor

>~
<~
»~
«~

~
& digit
& -

pattern cornmand-.l.i.a.t;;

~
pattern I ~

elif command-~ then command-~ ~-~
else command-list
empty

Zilog 38

SHELL

empty:

~:

~:

digit:

...

39

, ,

Zilog SHELL

a sequence of nonblank characters

a sequence of letters, digits, or under­
scores starting with a letter

o 1 2 3 456 7 8 9

Zilog 39

SHELL Zilog SHELL

\. APPENDIX B

METACHARACTERS AND RESERVED WORDS

Syntactic

pipe symbol

&& "andf" symbol

II "orf" symbol

. command separator ,

.. case delimiter , ,

& background commands

() command grouping

< input Eedirection

« input from a here document

> output creation
,

» output append

Patterns

* match any character(s) including none

? match any single character

[...] match any of the enclosed characters

Substitution

${ ••• } substitute shell variable

" " ... substitute command output

40 Zilog 40

SHELL

41

Zilog

Quoting

\ quote the next character

••• ' quote the enclosed characters except for'

" ••• " quote the enclosed characters except
for $, " \, or n

Reserved Words

if then else elif fi
case in esac
for while until do done
{ }

Zilog

SHELL

41

'" \

UUCP

1

Zilog UUCP

UUCP INSTALLATION* ..

* This information is based on an article originally
written by D. A. Nowitz, Bell Laboratories.

Zilog 1

,(
l'-l

UUCP

2

Zilog UUCP

PREFACE

This document gives the system administrator/installer a
detailed description of uucp. The operation of each program
in the uucp system, the installation of the system, the
security aspects of the system, the files required for exe­
cution, and the administration of the system are discussed
in this document.

Zilog 2

UUCP

SECTION 1

SECTION 2

SECTION 3

(

3

Zi10g UUCP

TABLE OF CONTENTS

INTRODUCTION · 5

1.1
1.2

General
Security

· . 5
5

THE UUCP PROGRAMS · . 7

2.1

2.2

2.3

2.4
2.5
2.6

Uucp 7

2.1.1
2.1.2
2.1.3

Options•....... 7
Sources and Destinations •••••••• 7
Types of Work ••••••••••••••••••• 8

Uux . 10

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5

Uucico

2.3.1
2.3.2
2.3.3
2.3.4

User Line ••••••••••••••••••••••• 11
Required File Line •••••••••••••• 11
Standard Input Line ••••••••••••• 11
Standard Output Line •••••••••••• 11
Command Line •••••••••••••••••••• 12

.................................
Scan for Work •••••••••••••••••••
Call Remote System ••••••••••••••
Line Protocol Selection •••••••••
Conversation Termination ••••••••

12

13
14
15
16

. Uuxqt
Uu10g
Uuc1ean

16
16
17

. · .
UUCP INSTALLATION · . 18

3.1
3.2

3.3

General •••••••••••••••••••••••••••••••• 18
Files Required for Execution ••••••••••• 18

3.2.1
3.2.2
3.2.3

Myname •• 18
L-Devices •••••••••••• ~ •••••••••• 19
L-Dia1codes ••••••••••••••••••••• 19

Login/System Names . 19

3.3.1
3.3.2

. Userf i1e
L.sys · .

Zi10g

20
21

3

..

UUCP

SECTION 4

4

Zilog

TABLE OF CONTENTS (continued)

UUCP ADMINISTRATION .
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

General .
Sequence Check File ••••••••••••••••••••
Temporary Data Files •••••••••••••••••••
Log Entry Files ••••••••••••••••••••••••
System Status Files ••••••••••••••••••••
Lock Files •••••••••••••••••••••••••••••
Shell Files
Login Entry
File Modes

.

Zilog

UUCP

24

24
24
24
25
25
26
26
27
27

4

UUCP

(

5

Zilog UUCP

SECTION 1

INTRODUCTION

1.1 General

Uucp is a series of
between ZEUS systems
munication lines. It
command execution.

programs that permits communication
using either dial-up or hardwired com­
is used for file transfers and remote

Each system participating in the uucp network has a spool
directory that stores work to be done. There are three
types of files used for the execution of work: data files,
work files, and execution files. Data files contain data to
be transferred to remote systems. Work files contain the
directions for file transfers between systems. Execution
files contain the directions for ZEUS command executions
that involve the resources of one or more systems.

The uucp system consists of four primary and two secondary
programs. The following are primary programs:

uucp

uux

uucico

uuxqt

creates work files and gathers data files in the
spool directory for the transmission of files

creates work files, executes files, and gathers
data files for the remote execution of ZEUS com­
mands

executes the work files for data transmission

executes ZEUS execution files

The secondary programs are:

uulog

uuclean

updates the log file with new entries and reports
on the status of uucp requests

removes old files from the spool directory

1.2 Security

The uucp system, if left unrestricted, lets anyone execute
any command and copy in or out any file that is
readable/writable by the uucp login user. Necessary precau­
tions should be taken as required by the local implementa­
tion.

Zilog 5

UUCP

6

Zilog UUCP

There are security features available other than the normal
file-mode protections that must be set up by the installer
of the uucp system.

e The login for uucp does not get a standard shell;
the uucico program is started instead. The work
can be done only through uucico.

e A path check is performed on file names that are
to be sent or received. The user file supplies
the information for these checks. The user file
can also be set up to require call-back for cer­
tain login IDs. (See Section 3.5 for file
descr iption.)

e A conversation sequence count can be set up so
that the called system can verify the caller's
identity.

The uuxqt program comes with a list of commands
(cmp, diff, lpr, and mail) that it executes. A
path shell statement (/bin/user/bin) is prepended
to the command line by uuxqt.

e The L.sys file must be owned by uucp and have mode
0400 to pr.otect the phone numbers and login infor­
mation for remote sites. Programs uucp, uucico,
uux, and uuxqt must also be owned by uucp and have
the setuid bit set.

Zilog 6

UUCP

7

Zilog UUCP

SECTION 2

THE UUCP PROGRAl<1S

2.1 Uucp

The uucp command is the primary interface with th~ system.
It sets up file copying and is similar to the ZEUS copy com­
mand, cp. Uucp is invoked by the command line

uucp [option] ... source ••• destination

where source and destination contain the prefix system name
specifying the system on which files reside-or the system on
which the files will be copied.

2.1.1 Options

The following options are valid for the uucp command:

The

-d Make directories when necessary for copying
the file.

-c Use the specified source for the transfer.
Do not copy source files to the spool direc­
tory.

-gletter Insert letter as the grade in the name of the
work file. This can be used to change the
order of work for a specified system.

-m Send mail on completion of the work.

following options are used primarily for debugging:

-r Queue the job, but do not start the uucico
program.

-s.di.t. Use directory .diI. for the spool directory.

-xn,wn Rwn is the desired level of debugging output.

2.1.2 Sources and Destinations

If the destination is a directory name, the file name is
taken from the last part of the source name. The source
name can contain special shell characters such as",

Zilog 7

UUCP

8

Zilog UUCP

?, *, [, and]. If a source argument has a system-name!
prefix indicating a remote system, the file name expansion
is performed on the remote system.

The command

uucp *.c usg!/usr/dan

transfers all files with names ending in .c to the /usr/dan
directory on system usg.

The source and destination names can also contain a -user
prefix to refer to the login directory on the specified sys­
tem. The current directory is prepended to the file name
for names with partial path names. File names with •• / are
not permitted.

The command

transfers files whose names end with .h in dan's login
directory on system usg to dan's local login directory.

2.1.3 Types of Work

For each source file, the uucp program checks the source and
destination file names and the system-part of each to clas­
sify the work into one of five types:

1. copy source to destination on local system

2. receive files from other systems

3. send files to remote systems

4. send files from a remote system to another remote
system

5. receive files from remote systems when the source
contains special shell characters, such as n, ?,
*, [, and].

After the work has been set up in the spool directory, the
uucico program contacts the other system to execute the work
unless the -r option is specified.

Type I A ~ command copies source to destination on the
local system. The -~ and the -m options are not
valid in type-l operations.

Zilog 8

UUCP

9

Type 2

Type 3

Types 4
and 5

Zilog UUCP

A one-line work file is created for each file
requested and is placed in the spool directory
with the following fields, each separated by a
blank. All work files and execute files use a
blank as the field separator •

., R

., the full path name of the source or a
-user/pathname; the -user part is expanded on
the remote system

., the full path name of the destination file;
if the -user notation is used, it is immedi­
ately expanded to the user's login directory

., the user's login name

., a minus sign (-) followed by an option list;
only the -m and -d options appear in this
list

For each source file, a work file is created. The
source file is copied into a data file in the
spool directory. A -c option on the uucp command
prevents the data file from being created. The
file is transmitted from the indicated source.
The entry fields are as follows:

$ 5

., the full path name of the source file

., the full path name of the destination or
-user/filename

$ the user's login name

$ a minus sign (-) followed by an option list

., the name of the data file in the spool direc­
tory

., the file mode bits of the source file in
octal print format (mode 0666)

Uucp generates a uucp command and sends it to the
remote machine; the remote uucico executes the
uucp command.

Zilog 9

UUCP

10

Zilog

2.2 Uux

The uux command sets up the execution of a command
execution system and some of the files are remote.
tax of the uux command is

uux [-] [option J ••• command-string

UUCP

if the
The syn-

where commang-string is composed of one or more arguments.
All special shell characters such as <, >, I, and ~ must be
quoted, either by quoting the entire command string or by
quoting the character as a separate argument. Within
commang-string, the command and file names can contain a
system-name! prefix. All arguments must contain an exclama­
tion mark (!) if they are to be treated as files and to be
copied to the execution system. The minus sign (-) indi­
cates that the standard input for commang-string must be
from the standard input of the uux command. The options,
which are for debugging, are the following:

-r

-xnym

The command

do not start uucico or uuxqt after queuing
the job

nYm is the level of debugging output desired

pr abc I uux - usg!lpr

sets up the output of ~ ~ as standard input to a line
printer (lpr) command to be executed on system ~.

Uux generates an execute file containing the names of the
files required for execution, the user1s login name, the
destination of the standard output, and the command to be
executed. The execute file is placed in the spool directory
for local execution or is sent to the remote system using a
generated send command (Type 3 in Section 2.1.3).

Uux generates receive command files (Type 2) for files that
are not on the execution system. These command files are
placed on the execution machine and executed by the uucico
program if the local system has permission to place files in
the remote spool directory.

The execute file is processed by the uuxqt program on the
execution system. It is composed of several lines, each
containing an identification character and one or more argu­
ments. There is no set order for the lines and not all must
be present. Each line is described in the following sec­
tions.

Zilog 10

,
r

(

UUCP

11

Zilog UUCP

2.2.1 User Line

The user line is as follows

U user system

where ~ and system are the requester's login name and
system.

2.2.2 Required File Line

The required file line is

F filename realname

where filename is the generated name of an execution system
file and realname is the last part of the file name, which
contains no path information. Zero or more of these lines
are present in the execute file. The uuxqt program checks
for the existence of all required files before the command
is executed.

2.2.3 Standard Input Line

The standard input line is

I filename

The standard input is either specified by a < in the
command-string or obtained from the standard input of the
uux command if the - option is used. If the standard input
is not specified, /dev/null is used.

2.2.4 Standard Output Line

The standard output line is

o filename system-name

The standard output is specified by a > within the command
string. If the standard output is not specified, /dev/null
is used. The use of » is not implemented.

Zilog 11

UUCP

12

Zilog UUCP

2.2.5 Command Line

The command line is

C command [arguments] ...
The arguments are specified in the command string. The
standard input and standard output do not appear on this
line. All required files are moved to the execution direc­
tory (a subdirectory of the spool directory) and the ZEUS
command is executed using the shell specified in the ~.h
header file. In addition, a shell path statement is
prepended to the command line as specified in the uuxqt pro­
gram.

After execution, the standard output is copied or set up to
be sent to the designated place.

2.3 Uucico

The copy in, copy out (uucico) program performs the follow­
ing communications functions between two systems:

$ scans the spool directory for work

$ places a call to a remote system

$ negotiates a line protocol to be used

$ executes all requests from both systems

$ logs work requests and work completions

Uucico can be started by a system daemon, by
uucp, uux, uuxqt, or uucico programs, directly
or by a remote system. The uucico program must
as the shell field in the /etc/passwd file
logins.

one of the
by the user,
be specified
for the uucp

When started by a remote system, the program is in SLAVE
mode. When started by any other method, the program is in
MASTER mode, and a connection is made to a remote system.

The MASTER mode operates in one of two ways. If a system
name is specified, that system is called and work is done
only for that system. If a system name is not specified,
the program scans the spool directory for systems to call.

Zilog 12

UUCP

13

Zilog UUCP

The uucico program is generally started by another program.
There are several options used for execution:

-rl

-s~

Start the program in ~~STER mode.. This is
used when uucico is started by a program or
"cron" shell.

Do work only for system~. If -~ is speci­
fied, a call to the specified system is made
even if there is no work for system ~ in
the spool directory. This program is useful
for polling systems that do net have the
hardware to initiate a connection.

The following options are used primarily for debugging:

-d.dU:

-xmun

Use directory .dU: for the spool directory.

NYm is the desired level of debugging output.

The following subsections describe the major steps within
the uucico program.

2.3.1 Scan for Work

The names of the work-related files in the spool directory
have the format

type • system-name grade number

where ~ is an uppercase ~ (copy command file), D (data
file), or X (execute file), system-~ is the remote sys­
tem, grade is a character, and number is a padded four-digit
sequence number~ For example, the file

C.res45n0031

is a work file for a file transfer between the local machine
and the res45 machine.

The scan for work is done by looking through the spool
directory for work files (files with prefix C.). A list is
created for all systems to be called: uucico then calls each
system and processes all work files.

Zilog 13

UUCP

14

Zilog UUCP

2.3.2 Call Remote System

The call is made using information from several files that
reside in the uucp program directory. At the beginning of
the call process, a lock is set on the system being called
to prevent multiple conversations between the two systems.

The system name is found in the L.sys file. The information
contained for each system is the system name, the time to
call the system (days-of-week and times-of-day), the device
or device type to be used for the call, the line speed, the
phone number if the device or device type is an automatic
call unit (ACU) or the device name if the device or device
type is not ACU, and the login information.

The time field is checked against the present time to see if
the call should be made.

The phone number field can contain abbreviations (for exam­
ple, mh, py, or boston), that get translated into dial
sequences using the L-dialcodes file. The same phone number
can then be sorted at every site, despite local variations
in telephone services and dialing conventions. The phone
number field can also contain the string "passive" to denote
that this system must initiate the conversation and cannot
be called. This configuration is useful for conversing over
hardwired connections.

The L-devices file is scanned using the device and line
speed from the L.sys file to find an available device for
the call. The program tries all devices that satisfy the
device types and line speed until the call is made, or until
no more devices can be tried. If a device is successfully
opened, a lock file is created so that another copy of
uucico does not attempt to use it. If the call is complete,
the login information is used to log in to the remote sys­
tem. A command is then sent to the remote system to start
the uucico program.

The conversation between the two uucico programs begins with
a handshake started by the called (SLAVE) system. The SLAVE
sends a message to let the MASTER know it is ready to
receive the system identification and conversation sequence
number. The response from the MASTER is verified by the
SLAVE and, if acceptable, protocol selection begins. The
SLAVE can also reply with a "call-back required" message and
the current conversation is terminated.

Zilog 14

UUCP

15

Zilog UUCP

2.3.3 Line Protocol Selection

The remote system sends the message

Pproto-.lli.t

where proto-.lli.t is a string of characters, each represent­
ing a line protocol.

The calling program
corresponding to an
use-protocol message.

u~

checks proto-liQt for a letter
available line protocol and returns a
The use-protocol message is

where ~ is either a one-character protocol letter or N,
which means there is no common protocol.

The initial-role (MASTER or SLAVE) for the work processing
is the mode in which each program starts. The ~~STER is
specified by the -rl uucico option.

There are five messages used during the work processing,
each specified by the first character of the message. They
are

S Send a file

R Receive a file

C Copy complete

X Execute a ~ command

H Hangup

The MASTER sends B, S, and X messages until all work from
the spool directory is complete. It then sends an R mes­
sage. The SLAVE replies with SY, SN, RY, RN, HY, HN, XY, or
XN, corresponding to yes or no for each request.

The basis for the send and receive replies is the access
permission for the requested file/directory obtained by
using the userfile and read/write permissions of the
file/directory. A copy-complete message is sent by the
receiver of the file after each file is copied into the
spool directory of the receiving system. The message CY is
sent if the file has been successfully copied from the tem­
porary spool file to the actual destination. Otherwise, a
CN message is sent. In the case of CN, the transferred file

Zilog 15

UUCP

16

Zilog UUCP

is in the spool directory with a name beginning with TM.
The requests and results are logged on both systems.

The hangup response is determined by the SLAVE program by a
work scan of the spool directory. If work for the remote
system exists in the SLAVE's spool directory, an HN message
is sent, and the programs switch roles. If no work exists,
an BY response is sent.

2.3.4 Conversation Termination

When an BY message is received by the MASTER, it is echoed
back to the SLAVE and the protocols are turned off. Each
program sends a final 00 message to the other. The original
SLAVE program cleans up and terminates. The MASTER calls
other systems and processes work, or terminates if a -~
option is specified.

2.4 Uuxqt

The uucp command execution (uuxqt) program executes execute
files generated by uux. The uuxqt program is started by
either theuucico or uux programs. The program scans the
spool directory for execute files (prefix X.). Each execute
file is checked to see if all the required files are avail­
able. If so, the command line or send line is executed.

Uuxqt is initiated by executing the shell with the -c option
after the appropriate standard input and standard output
have been opened. If the standard output is specified, the
program creates a send command or copies the output file as
designated.

2.5 Uulog

create individual log files for each pro­
Periodically, uulog can be executed to
to the system log file. This method of
file locking of the log file during pro-

The uucp programs
gram invocation.
prepend these files
logging minimizes
gram execution.

The uucp log inquiry (uulog) program merges the
log files and outputs specified log entries.
request is specified by the following options:

individual
The output

-s~ Print entries where ~ is the remote system
name.

-uJJ.an Print entries for user JJ.an.

Zilog 16

UUCP

17

Zilog UUCP.

The intersection of lines satisfying the two options is out­
put. A null ~ or ~ means all system names or users.

2.6 Uuclean

The uucp spool directory cleanup (uuclean) program is
started by the cron process once a day. It removes files
that are more than three days old from the spool directory.
These are usually files for work that could not be com­
pleted.

The uuclean program should be owned by uucp with the setuid
bit set (mode 4700).

The options available for uuclean are:

-d,dll The directory to be scanned is ~.

-nhours. Change the aging time from 72 hours to hours
hours.

-p~

-xn,wn

Examine files with prefix ~ for deletion.
Up to ten file prefixes can be specified.

NYm is the desired level of debugging output.

Zilog 17

UUCP

18

Zilog UUCP

SECTION 3

UUCP INSTALLATION

3.1 General

Installing uucp under ZEUS requires little effort. The uucp
files and directories are described here to facilitate
tailoring uucp to a specific environment.

The following three directories are required for execution
{default values appear within parentheses}:

program

spool

xqtdir

{/usr/lib/uucp} This directory contains the
executable. system programs and the system
files.

{/usr/spool/uucp} This spool directory is
used during uucp execution.

(/usr/spool/uucp/.XQTDIR) This directory is
used during execution of execute files.

The names program, spool, and xgtdir are used in this sec­
tion as a shorthand form to represent their corresponding
directory path names.

The modes of spool and xqtdir should be mode 0777, that is,
readable, writable, and executable by everyone •.

3.2 Files Required for Execution

The five files required for execution must reside in the
program directory. The field separator for all files is a
space unless otherwise specified.

3.2.1 Myname

This file contains the name of the local system and is used
by uucico and mail to identify themselves to other systems.
This file should be owned by uccp and should be readable by
others (mode 0644).

Zilog 18

UUCP

19

Zilog UUCP

3.2.2 L-Dev~ces

This file contains entries for the call-unit devices and
hardwired connections that are to be used by uucp. The spe­
cial device files are in the /dev directory. The format for
each entry is

line call-unit speed

where line is the device for the line (for example, cuIO),
and ~-Ynit is the automatic call unit associated with
line (for example, cuaO). Hardwired lines have a number 0
in this field. Speed is the line speed.

The line

culO cuaO 300

is for a system that has device culO wired to a call-unit
cuaO for use at 300 baud.

3.2.3 L-Dialcodes

This file contains entries with location abbreviations used
in the L.sys file (for example, py, mh, or boston). The
entry format is

abb dial-seq

where ~ is the abbreviation and ~-~ is the dial
sequence to call that location.

The line

py 165-

is set up so that entry py7777 sends 165-7777 to the dial­
unit.

3.3 Login/System Names

The login name used by a remote computer to
computer must not be the same as the login
user. However, several remote computers can
login name.

call a local
name of a local
employ the same

Each computer has a unique system name that is transmitted
at the start of each call. This name identifies the calling
machine to the called machine.

Zilog 19

,
./

uuCP

20

Zilog uUCP

3.3.1 Userfile

This file contains user accessibility information. It
specifies four types of constraints:

1. which files can be accessed by a normal user of the
local machine

2.

3.

which files can be accessed from a remote computer

which login name is used by a particular remote
computer

4. whether a remote computer should be called back in
order to confirm its identity

Each line in the file has the following format

login,sys [c] path name [path name] •••

where login is the login name for a user or the remote com­
puter, ~ is the system name for a remote computer, ~ is
the optional call-back required flag, and ~ ~ is a
path name prefix that is acceptable for ~.

The constraints are implemented as follows:

1. When the program is obeying a command stored on the
local machine (MASTER mode) the path names allowed
are those given for the first line in the user file­
that has a login name matching the login name of
the user who entered the command. If no such line
is found, the first line with a null login name is
used.

2. When the program is responding to a command from a
remote machine (SLAVE mode) the path names allowed
are those given for the first line in the file that
has a system name matching the system name of the
remote machine. If no such line is found, the
first one with a null system name is used.

3. When a remote computer logs in, the login name that
it uses must appear in the user file. There can be
several lines with the same login name, but one of
them must either have the name of the remote system
or must contain a null system name.

4. If the line matched contains a ~, the remote
machine is called back before any transactions take
place.

Zilog 20

UUCP

21

Zilog UUCP

The line

u,m /usr/xyz

allows machine m to log in with name ~ and request the
transfer of files whose names start with /usr/xyz.

The line

dan, /usr/dan

allows the ordinary user, ~, to issue commands for files
whose names start with /usr/dan.

The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allow any remote machine to log in with name ~,. If its
system name is not m, it can only ask to transfer files
whose names start with /usr/spool.

The lines

zeus, /
, /usr

allow any user to transfer files beginning with /usr. The
user with login a.l.Ui can transfer any file.

3.3.2 L.sys

Each entry in this file represents one system that can be
called by the local uucp programs. The fields are described
below.

SYSTEM NAME

The name of the remote system.

TIME

This string indicates the days-of-week and times-of-day when
the system is called (for example, MoTuTh0800-1730). Alter­
natively, the string can be "passive" to show that only the
remote system can initiate a conversation. If the field is
passive, the remaining fields are ignored.

Zilog 21

UUCP

(

22

Zilog UUCP

The day portion can be a list containing

or it can be Nk for any week-day or ~ for any day.

The time must be a range of times (for example, 0800-1230).
If no time portion is specified, any time of day can be used
for the call.

DEVICE

This is either ACU or the hardwired device to be used for
the call. For hardwired devices, the last part of the spe­
cial file name is used (for example, ttyO).

SPEED

This is the line speed for the call (for example, 300).

PHONE

The phone number is made up of an optional alphabetic abbre­
viation and a numeric part. The abbreviation is one that
appears in the L-dialcodes file (for example, mh5900, bos­
ton995-9980) •

For hardwired devices, this field contains the same string
as the device field.

LOGIN

The login information is given as a series of fields and
subfields in the format

expect send [expect send] . . .
where expect is the string expected to be read and ~ is
the string to be sent when the expect string is received.

The expect field is made up of subfields of the form

expect[-send-expect] •••

where the ~ is sent if the prior expect is not success­
fully read and the expect following the ~ is the next
expected string.

Zilog 22

UUCP

23

Zilog UUCP

There are two special names available to be sent during the
login sequence. The string EOT sends an EOT character and
the string BREAK tries to send a BREAK character. The BREAK
character is simulated using line speed changes and null
characters and may not work on all devices and systems.

A typical entry in the L.sys file is

sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm looks at the last part of the string as
illustrated in the password field.

Zilog 23

./

UUCP

(

24

Zilog UUCP

SECTION 4

UUCP ADMINISTRATION

4.1 General

This section describes some events and files that must be
administered for the uucp system. Some administration can
be accomplished by shell files initiated by crontab entries.
Others require manual intervention. Some sample shell files
are given toward the end of this section.

4.2 Sequence Check File

The Sequence Check File (SQFILE) in the program directory
contains an entry for each remote system with which conver­
sation sequence checks are to be performed. The initial
entry is the system name of the remote system. The first
conversation adds two items to the line: the conversation
count, and the date/time of the most resent conversation.
These items are updated with each conversation. If a
sequence check fails, the entry must be adjusted.

4.3 Temporary Data Files

Temporary Data Files (TM) are created in the spool directory
while files· are being copied from a remote machine. Their
names have the form

TM.pid.ddd

where Rid is a process-id and ggg is a sequential three­
digit number starting at zero for each invocation of uucico
and incremented for each file received.

After the entire remote file is received, the TM file is
moved or copied to the requested destination. If processing
is abnormally terminated or if the move or copy fails, the
file remains in the spool directory. These unused files
must be removed periodically with the uuclean program. The
command

uuclean -pTM

removes all TM files more than three days old.

Zilog 24

UUCP

25

Zilog UUCP

4.4 Log Entry Files

During execution of programs, individual Log Entry Files
(LOG files) are created in the spool directory with informa­
tion about queued requests, calls to remote systems, execu­
tion of uux commands, and file copy results. These files
must be combined into the LOGFILE by using the uulog pro­
gram. The command

uulog

puts the new LOG files at the beginning of the existing LOG­
FILE. Options are available to print some or all the log
entries after the files are merged. The LOGFILE must be
removed periodically since it is copied each time new log
entries are put into the file.

The log files are created with mode 0222. If the program
that creates the file terminates normally, it changes the
mode to 0666. Aborted runs can leave the files with mode
0222 and the uulog program does not read or remove them. To
remove them, use either rm or uuclean, or change the mode to
0666 and let uulog merge them with the logfile.

4.5 System Status Files

System Status Files (STST) are created in the spool direc­
tory by the uucico program. They contain information of
failures such as login, dialup, or sequence check. They
contain a TALKING status when two machines are conversing.
The form of the file name is

STST. sys

where ~ is the remote system name.

For ordinary failures, such as dialup and login, the file
prevents repeated tries for about one hour. For sequence
check failures, the file must be removed before any future
attempts to converse with that remote system.

If the file is left due to an aborted run, it contains a
talking status. In this case, the file must be removed
before a conversation is attempted.

Zilog 25

UUCP

26

Zilog UUCP

4.6 Lock Files

Lock files (LCK) are created for each device in use, for
example, the automatic calling unit and each system convers­
ing. This prevents duplicate conversations and multiple
attempts to use the same devices. The form of the lock file
name is

LCK •• str

where atL is either a device or system name. The files can
be left in the spool directory if runs abort. They are
ignored (reused) after 24 hours. When runs abort and calls
are desired before the time limit, the lock files must be
removed.

4.7 Shell Files

The uucp program spools work and attempts to start tbe
uucico program, but the starting of uucico sometimes fails.
Therefore, the uucico program must occasionally be started.
The command to start uucico can be put in a shell file with
a command to merge log files and started by a crontab entry
on an hourly basis. The file contains commands such as

program /uulog
program /uucico -rl

The "-rl" option is required to start the uucico program in
MASTER mode.

Another shell file can be set up on a daily basis to remove
TM, ST, and LCK files, and C. or D. files for work that
cannot be accomplished. Use a shell file containing com­
mands such as

program /uuclean
program /uuclean

-pTM -pC. -pD.
-pST -pLCK -n12

The -n12 option causes the ST and LCK files older than 12
hours to be deleted. If there is no -n option, a three-day
limit is used.

A daily or weekly shell must also be created to remove or
save old logfiles. Use a shell such as

cp spool /LOGFILE
rm spool /LOGFILE

spool /o.LOGFILE

Zilog 26

UUCP

27

Ziiog UUCP

4.8 Login Entry

One or more logins must be set up for uucp. Each of the
"/etc/passwd n entries must have program/uucico as the shell
to be executed. The login directory is not used, but if the
system has a special directory for use as a sending or
receiving file, it must be the login entry. The various
logins are used in conjunction with the user file to res­
trict file access. Specifying the shell argument limits the
login to the use of uucp (uucico) only.

4.9 File Modes

The owner and file modes of various programs and files are
to be set as follows.

The programs uucp, uux, uucico, and uuxqt must be owned by
uucp with the setuid bit set and execute only permissions
(mode 04111). This prevents outsiders from modifying the
programs to get at a standard shell from the uucp login.

The L.sys, SQFItE, and the user file that are in the program
directory must be owned by uucp and set with mode 0400.

Zilog 27

VI

,4'tI~' .. '

I';

I"

*

i

Zilog VI

Introduction to Display Editing with vi*

This information is based on an article written by Wil­
liam Joy and revised by Mark Horton.

Zilog i

VI zilog VI

ii Zilog ii

VI

SECTION 1

SECTION 2

SECTION 3

SECTION 4

iii

Zilog VI

TABLE Op·CONTENTS

INTRODUCTION 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.S
1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16

vi

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.S

General
Command Notation •••••••••••• • ••••
Special Characters •••••••••• • ••••
Invoking vi
Operating Modes •••••••••
Escape to the Shell •••••
Leaving vi •••••••••••••••••
vi and ex
Using vi on Hardcopy Terminals and

· · · · · · · ·
"Glass TTYs" ••••••••••••••••••••••••••••
Uppercase Terminals •••••••••••••••••••••
Slow Terminals ••••••••••••••••••••••••
Abbreviations •••••••••••••••••••••••••••
Line Numbers ••••••••••••••••••••••••••••
Line Representation in the Display ••••••
End of Pile Indicators ••••• • ••••••
Coun ts ••••••••••••••••••••••••••••••••••

DISPLAY CONTROL

Scroll Control ••••••••••••••••••••
Page Control................ • ••••••
String Searches ••••••••••••••••••••••
Cursor Position Control.... • ••••••••••
Tags ••••••••••••••••••••••• • ••••••••••
Pile Status ••••••••••••••••••••••••••
Clearing the Display •••••••••••••••••
Window Size

1
1
2
3
5
6
6
7

7
9
9
9
9
10
10
10

13

13
13
13
15
IS
19
19
19

EDIT COMMANDS 23

3.1
3.2
3.3
3.4
3.5
3.6
3.7

General 23
Insert Text •••••••••••••••••••••••••• 24
Delete and Insert Characters •••• 26
Delete Operator ••••••••••••••••••••••••• 27
Undo Operator ••••••••••••••••••••••••••• 30
Program Editing Peatures •••••••••••••••• 31
Erase and Line Kill Characters •••••••••• 32

REARRANGING AND DUPLICATING TEXT 33

4.1
4.2
4.3

General .•..........................•.•.. 33
Buffers 34
Text Manipulation •••••• • ••••••••••••• 34

Zilog iii

VI

SECTION 5

SECTION 6

SECTION 7

SECTION 8

Zilog VI

TABLE OF CONTENTS (continued)

FILE MANIPULATION . 39

5.1 Writing, Quitting
and Editing New Files ••••••••••••••••••• 39

5.2 File Manipulation Commands •••••••••••••• 40

OPTIONS •••••••••••••••••••••••••••••••••••••• 45

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16

General ••••••••.••••••••••••••••••••••••
Editing on Slow Terminals •••••••••••••••
Ignore case
Magic Characters ••••••••••••••••••••••••
Autoindent and Shiftwidth •••••••••••••••
Continuous Text Input •••••••••••••••••••
LISP Editing Options and Commands •••••••
Line Numbers ••••••••••••••••••••••••••••
Tabs and Ena of Line Indicators •••••••••
Automatic Writing of Files ••••••••••••••
Defining Paragraphs and Sections ••••••••
Terminal Type••.••.•...•.•...•••.
Scroll•...........
Te r se •••••••••••••••••••••••••••••••••••
Window ••••••••••••••.•••••••••••••••••••
Wrapping Around the End of Files ••••••••

45
47
47
48
49
50
50
51
51
51
52
52
53
53
53
53

RECOVERING LOST INPUT •••••••••••••••••••••••• 55

7.1
7.2

Lost Lines
Lost Files

.............................. 55
55

MISCELLANEOUS •••••••••••••••••••••••••••••••• 57

8.1 Filtering Portions of the Buffer •••••••• 57
8.2 Typing Non-Printing Characters •••••••••• 57

APPENDIX A SPECIFYING TERMINAL TYPE •••••••••••••••••••• 59

APPENDIX B vi CORRECTION CHARACTERS •••••••••••••••••••• 61

APPENDIX C vi SYMBOL DICTIONARy •••••••••••••••••••••••• 63

iv Zilog iv

VI Zilog VI

APPENDIX D vi QUICK REFERENCE •••••••.•••••••••••••••••• 77

LIST OF TABLES

Table

5-1 File Manipulation Commands ••••••••••••••.••••••••• 40

6-1 Frequently Used Options ••.••••••••••.••••••••••••• 45
6-2 Magic Option Extended Operators •••••••••••••••••.. 48

B-1 Operators Used for Corrections and Changes ••.••••• 61

(
v Zilog v

VI Zilog VI

vi Zilog vi

VI

1

Zilog VI

SECTION 1

INTRODUCTION

1.1 General

Vi (Visual) is a display oriented interactive text editor in
which the display acts as a window into the file being
edited. Changes are reflected in the display, and this sim­
plifies modifications. The regularity and the mnemonic
assignment of commands makes the editor command set easy to
remember and use. The full command set of the more tradi­
tional, line-oriented editor ex is available with vi, and it
is easy to switch between the two editing modes.

Vi can be used on a wide variety of display terminals. New
terminals are easily driven after editing a terminal
description file. While it is advantageous to have an
"intelligent" terminal that can insert and delete lines and
characters from the local display, the editor functions well
on "dumb" terminals with low-bandwidth telephone lines. The
editor optimizes response time by using a smaller window and
a different display updating algorithm. The command set of
vi can be used as a one-line-window editor on hard-copy ter­
minals, storage tubes, and "glass TTYs."

This document was written on the assumption that the system
being used is a Zilog S8000, that the system console is a
Lear Siegler ADM-31, and that the system software is Zilog
ZEUS, a super-set of UNIX.

1.2 Command Notation

In this document, the following notation is used in command
descriptions.

< > Angle brackets enclose descriptive names for
the data or item to be entered. For example,
<filename>.

] Square brackets enclose optional data.

Bar denotes an OR function.

ESC denotes the escape key (ALT on some keyboards)

RUB denotes the delete key (DEL on some keyboards)

Zilog 1

VI

2

Zilog VI

CTRL denote~ the CONTROL key. On certain terminals,
CTRL 1S echoed as the circumflex symbol (A).
Do not confuse the echo with the symbol used in
this document for the up arrow (shown below).

i denotes an up arrow

1.3 Special Characters

ESC key: this key
also terminates
already quiescent
annunciator.

cancels partially entered commands. It
text mode operations. If the terminal is
this key may also trigger a bell or audio

RETURN key: this key initiates execution of most commands.
It also initiates the csh (C Shell) commands.

RUB key: this key interrupts and stops the editor.

Interrupting the editor while it is redrawing or otherwise
updating large portions of the display, might cause a con­
fused display. If this occurs, it is still possible to con­
tinue editing by:

1. Entering the command

~TRL-z

redraws th~ display.

2. Ignoring the state of the display and either moving
or searching again.

For the purposes of this document, the use of RUB is
equivalent to an interrupt.

Slash (I): This symbol specifies a string for a search. When
this key is pressed, the cursor moves to the bottom line of
the display, where it acts as a prompt. To return the cur­
sor to the current position, press RUB. Backspacing over
the slash will also cancel the search.

The line kill and erase characters are user programmable.
They can be changed with the program ~ (refer to ~(l)
in the ZEUS programmer's Reference Manual).

Line kill: the line kill character is usually the character

@

Zilog 2

VI

(
\ .. ,

3

Zilog VI

Character erase: the erase character is usually

CTRL-h

1.4 Invoking vi

When the system is up and running, set the terminal type, as
shown:

%setenv TERM <code> (RETURN)

where: % is the system prompt
setenv is the command for setting the environment
TERM is a required keyword
<code> is the terminal type code to be entered
For the Lear Siegler terminal, <code> is adm3l
(RETURN) is the RETURN key

For other terminals, and additional information relevant to
setting the terminal type, refer to Appendix A.

After the terminal type has been set, invoke vi.
mand format is

The com-

% vi [-t <tag>] [-r[<filename>]] [+[<command>]]
[+<n>] [+/<string>] [-1] [<filename>] (RETURN)

where: % is the system prompt

vi is the command to invoke the visual display edi­
tor

-t <tag> is the option to edit the file containing
the tag <tag> at <tag> (see Section 5.2)

-r [<filename>] is the option used to recover a file
after an editor or system crash (see Section 7.2)

+[<command>] executes the ex command <command> prior
to entering visual mode. Without <command> the
visual editor starts at the end of file (see also
Section 5.2)

+<n> starts the visual editor at line number <n>

+/<string> causes vi to search for and start at the
string <string>

-1 is the option to set editing options for LISP
(see Section 6)

Zilog 3

VI

4

Zilog

<filename> is the name of the file to be edited.

NOTE

Do not include the square brackets ([1) and
the angle brackets «» in the command.

Examples:

VI

1. The simplest vi command is to invoke vi for editing a
single file:

%vi <filename> <RETURN>

where: <filename> is the name of the file to be edited.

NOTE

All entries must be terminated by a RETURN. For
the remainder of this document, neither RETURN nor
the system prompt is shown in the system commands;
however, it is assumed that each command is ter­
minated by RETURN.

2. To start vi at line number n, use the form

vi [+<n>1 <filename>

3. To start vi at some string <string>, use the form

vi [+/<string>] <filename>

vi searches
<string>.

for <string> and, if found, starts
For additional details, see Section 5.2.

at

After the command is entered, the file name is echoed on the
screen. The editor does not directly modify the file being
edited. Rather, the editor copies the file in a buffer, and
then remembers the file name. The contents of the file are
not affected until the changes are written back to the ori­
ginal file.

After a file has been copied, vi edits that file. The
display clears, and the text of the file appears on the
display. If it does not

1. Check for the correct terminal type code. An incorrect
type code entry produces an unusable display. To check

Zilog 4

VI

5

Zilog VI

exit vi, enter

:q

Following the RETURN, control returns to the shell (command
interpreter). To verify the correct terminal code, enter:

printenv TERM

and reenter it as described above.

2. Check for the correct filename. An incorrect filename
can result in the display of an error diagnostic. If
this occurs, return to the shell (as shown in 1. above)
and restart.

3. If the editor does not respond, interrupt it with the
delete key DEL (or RUB). Then, return to the shell (as
shown in 1. above).

1.5 Operating Modes

Vi has four operating modes:

1. Command mode. This is the initial state and the normal
oper_ating mode. The other modes return to this mode.
The escape key (ESC) cancels any partially entered com­
mand.

2. Text mode. This mode is entered by one of the following
operators:

a A i 100 c C s S R

Any desired text can be entered in this mode. Text
entry is normally terminated with the ESC. Text entry
can also be terminated (abnormally) with RUB.

3. Last line mode. This mode is initiated by the following
operators:

/ ?

Commands or string searches are executed after a RETURN
or ESC. Commands are canceled with DEL (or RUB).

When the editor is in this mode, commands are echoed on
the last line. If the cursor is in the first position
of the last line, the editor is performing a computation
such as computing a new position in the file after a
search, or running a. command to reformat part of the

Zilog 5

VI

6

Zilog VI

buffer. While this is happening, it is possible to stop
(interrupt) the editor with RUB. On some systems, when
the cursor is on the bottom line, and the editor has
been interrupted, the operator cannot type ahead.

4. Open mode. This is described in Section 1.9.

1.6 Escape to the Shell

To execute a shell command, while in vi, use a command of
the form

: 1 <command>

where <command> is the shell command. The system runs the
<command> and returns to vi when the command is completed.
The operator is prompted

Hit RETURN to continue

After RETURN is entered, the editor clears and redraws the
display; vi resumes control, and editing can continue. How­
ever, if another : command is entered prior to the RETURN,
the display is not redrawn.

To execute more than one command in the shell, enter the
command

:sh

When all necessary shell commands are completed, return to
vi by entering

CTRL-d

Vi clears the display and editing can continue.

1.7 Leaving vi

To leave vi and return to the shell, use the command

ZZ

If changes have been made to the text, the contents of the
vi buffer are written back into the original file, and the
editor exits. If no changes have been made, the editor
exits.

It is also possible to write the changes to the file without
leaving vi b~ using the command

Zilog 6

VI

(

(

7

Zilog VI

:w

To exit vi (quit) without writing the ch~nges, use the com­
mand

:q!

This discards all text changes. This command is convenient
when changes have been made to the contents of the buffer
and the original file must remain unchanged. Do not use
this command for changes that must'be saved.

1.8 vi and ex

Vi is one mode of editing within the line-oriented editor
ex. Some operations are easier in ex than in vi, such as
systematic changes in line-oriented material. Experienced
users often mix vi and ex commands to facilitate their work.

When vi is running, it is possible to escape to ex with the
command

Q

Ex prompts with a colon (:). The vi commands prefaced with
a colon (:) that a~e described in this document are avail­
able in ex. Similarly, most of the ex commands are avail­
able in vi when prefaced with a colon.

In rare instances, an internal error may occur in vi. In
this case, a diagnostic is displayed, vi exits, and control
returns to the command mode of ex. It is then possible to
either:

1. Save the work in progress and quit by entering the
command

x

or,

2. Re-enter vi with the command

vi

1.9 Using vi on Hardcopy Terminals and "Glass TTYs"

It is possible to use vi on a hardcopy terminal, or a termi­
nal with a cursor that cannot move from the bottom line. On
these terminals, vi runs in "open" mode. In this mode, when

Zilog 7

VI

8

Zilog VI

a vi command is entered, the editor states that it is in
open mode. This name comes from the open command in ex,
which invokes the open mode. with a "dumb" terminal, vi
automatically enters open mode.

To invoke open mode manually, enter ex, and then, from ex,
enter the command

open

to return to ex from open mode, enter the command

Q

To return to vi from ex, enter

vi

The differences between visual and open mode are:

1. The way the text is displayed. In open mode, the
editor uses a single-line window into the file.
Moving backward and forward in the file displays
new lines, which are always below the current line.

2. The command

z

takes no parameters, but draws a window of context
around the current line and returns to the current
line.

3. On a hardcopy terminal, the command

CTRL-R

retypes the current line. On these terminals, the
editor usually uses two lines to represent the
current line. The first line is a copy of the ori­
ginal line, and the second line is the work line;
that is, it shows any editorial changes. When
characters are deleted, the editor displays a
number of backslashes (\) to show what characters
were deleted. The editor also reprints the current
line soon after such changes so that they are visi­
ble.

Zilog 8

\

/
l
\ ,

VI

9

Zilog VI

1.10 Uppercase Terminals

Vi can be used on uppercase-only terminals by using the nor­
mal terminal typing conventions. All characters are con­
verted to lowercase characters. However, each upper case
character must be preceded with a backslash (\). The combi­
nation "\character" does not echo until the backs lash is
followed by the second character.

The following characters are not available on uppercase­
only-terminals:

{ }

These characters can be entered as shown below:

For { use \(
For } use \}
For use \A
For I use \1
For

,
use \'

1.11 Slow Terminals

The vi editor minimizes the delay. time required for display
updates by limiting the output to the display. For slow and
for "dumb" terminals, vi optimizes screen updates during
text mode, and it replaces deleted lines with the symbol
"@".

On slow terminals that can support vi in the full screen
mode, it is useful to use "open" mode.

Vi has an operating option (slowopen) that is convenient
when a slow terminal is being used. For additional informa­
tion, see Section 6.2.

1.12 Abbreviations

Vi has a number of short commands that abbreviate longer
commands that have been introduced above. These commands
are listed on the quick reference card.

1.13 Line Numbers

The vi editor, if desired, can number each line. Use the
editor option, "number" (line number option) which is
described in Section 6.8.

Zilog 9

VI

10

Zil,og VI

1.14 Line Representation in the Display

The vi editor folds long logical lines into shorter physical
lines on the display. Commands that advance lines also
advance logical lines. Hence they skip over all segments of
a line in one motion. The command

moves the. cursor to a specific column, and it can be useful
for getting near the middle of a long line to split it.
(This command is a vertical bar, not a numeral one or a
lowercase 1). For example, the command

80 I

places the cursor on the 80th column in a long sentence.

On a "dumb" terminal, the editor puts only full lines on the
display; if there is not enough room on the display to fit a
logical line, the editor leaves the physical line empty and
places an @ on the line as a place indicator. When lines
are deleted, the editor often just clears each text line and
displays an "@" to save time, rather than rewriting the
entire display. To maximize the information on th€ display
enter:

CTRL-R

1.15 End of File Indicators

When the end of the file is displayed, and the last line is
not at the bottom of the display, the vi editor displays the
tilde (-) at the left end of each remaining line. This
indicates that the 1st line of the file is shown in the
display, and that those lines with the tilde are past the
end of the file.

1.16 Counts

A count is an argument that affects the number of times the
command is executed, or the number of lines affected.
Several vi commands use a preceding count that affects the
operation of the command. Some of the most common are the
following:

Zilog 10

VI

11

Zilog VI

1. For the following commands, a preceding count
affects the amount of scroll:

CTRL-d CTRL-u

2. For the following commands, the count affects the
line or column number:

z G I (vertical bar)

3. For most vi commands, a preceding count affects the
number of times the command is repeated. For exam­
ple, the command

SRETURN

advances S words. The command

Sdw

deletes Swords

3.

deletes 3 more words.

Zilog 11

VI Zilog VI

12 Zilog 12

VI

(-

13

Zilog

SECTION 2

vi DISPLAY CONTROL

2.1 Scroll Control

Use the following commands to scroll the display:

[<n>]CTRL-u to scroll up n lines.
[<n>]CTRL-d to scroll down n lines.

If n is omitted the default is half the window size.

NOTE

Certain "dumb" terminals cannot scroll up. In
this case, CTRL-U clears the display and refreshes
it with a line that is farther back in the file
(towards the top).

2.2 Page Control

VI

The functions CTRL-F and CTRL-B move the viewing window for~
ward and backward one page, respectively. Both commands
retain a few lines of text from the previous page for con­
tinuity. It is possible to read through a file using the
page commands rather than the scroll commands. The primary
difference is that the scroll commands move the text
smoothly and leave more of the previous text, whereas the
page commands change a page at a time, leaving only a few
lines of text for continuity.

2.3 String Searches

The search function also positions the display within a
file. This function searches the text file for a particular
string of characters and positions the cursor at the next
occurrence of the specified string. The search command is:

/<string>

To search backwards from the location of the cursor, use the
command

1<string>

Zilog 13

VI

14

Zilog VI

To repeat the forward or backward string search to the next
occurrence of <string>, use the command

n

To repeat the string search in the reverse direction enter

N

If <string> is not present in the text file, vi prints the
message "Pattern not found" on the. last line of the screen,
and returns the cursor to its original position. String
searches normally wrap around the end of the file, and to
find the string even if it is not in the direction or1g1-
nally specified in the command (provided the string is
indeed in the file). The wraparound function can be dis­
abled by the editor option "nowrapscan" (or nows). The no­
wrapscan option is one of the options described briefly in
Section 6. Refer to the "Ex Reference Manual" by William
Joy; July 20, 1979.

If the search is to match a string at the beginning of a
line, then precede the search string with an up arrow (T).
To match only at the end of a line, end the search string
with $.

Examples:

IAsearch

searches for the word "search" at the beginning of a line,
and

Ilast$

searches for the word "last" at the end of a line.

If the search string contains a slash (I), it must be ~re­
ceded by a backslash (\). This is also true if the ed1tor
option, "magic," is set (see Section 6).

At the end -of the string search, vi places the cursor at the
next or the previous occurrence of the string, as appropri­
ate.

Whole lines of text can be affected up to the line prior to
the line containing the string. To do so, use a search com­
mand with the form

l<string>I-<n>

where: <string> is part of the search command, and

Zilog 14

VI

15

Zilog

<n> is the number of lines preceding the line
containing the string.

VI

A "+" can be sUbstituted for the "-" The result is that
the search locates the string <n> lines after the line con­
taining <string>. If no line offset is included, the editor
affects characters up to the point of the string match,
rather than whole lines. Thus, use "+0" to affect the line
that matches.

The editor, if commanded, ignores the case of words in the
string search. This is briefly described in the ignore case
option in Section 6.

String searches can also be used in conjunction with the
operators "d" and "c" (see Section 3.4), and "y" (see Sec­
tion 4.3).

2.4 Cursor Position Control

To position the cursor at any particular line, where the
lines are identified by number, use the command

[<n>]G

where n is a line number. Thus, lG moves the cursor to the
first line in the file •. If <n) is omitted, the default is
the last line of the file.

The cursor can be moved up, down, forward and back by the
following keys:

up: k, CTRL-p, or CTRL-k
down: j, CTRL-n, or CTRL-j

back: h, CTRL-h, or backspace
forward: space bar, or 1

Some terminals have arrow keys (four or five keys with
arrows going in various directions) that have the same func­
tions. (On the HP 2621 the function keys must be shifted.)

To advance the cursor to the first non-white position of the
next line in the file, strike RETURN or "+" key. Similarly,
strike "-" to move the cursor back to the first non-white
position on the preceding line. These keys can also be used
to scroll when the cursor is at the top or bottom of the
display, as appropriate.

Vi also has commands to position the cursor at the top,
middle,or the bottom of the display. For the top, strike

Zilog 15

VI

16

Zilog

the H key. Striking

<n>H

moves the cursor n lines down from the top of
The <n> is optional; the default position is
display. Similarly, the command "M" positions
the middle of the display. The command

<n>L

VI

the display.
the top of the
the cursor in

positions the cursor either on the last line of the display,
or the nth line from the bottom. If the <n> is omitted, the
default is the bottom of the display.

The cursor can also be moved within a line with any of the
following commands. To position the cursor on some word
other than the first word, use the command

[<n>] w

which moves the cursor right to the beginning of the nth
word on the line. The default is one word. The command

[<n>]b

moves the cursor back n words. The default is one word.
The command

[<n>]e

advances the cursor right to the end of the nth word, rather
than the beginning of the word. The default is one word.

The commands "b", "w" and "e" stop at punctuation marks. To
move the cursor forward or backward without stopping at
punctuation, use the characters oWn, "B" or "E", respec­
tively. The word keys wrap around the end of the line, and
continue to the next line.

After the cursor has been moved for any reason, it can be
returned to its previous position with the command " (two
back single quotation marks). The command II (two forward
single quotation marks) moves the cursor to the first non­
white character of the line containing the previous position
mark (I I) •

This is often more convenient than the command G because it
requires no line count or other preparation.

To move the cursor to the first non-white position on the
current line of text, use either "0" or the up arrow (T).

Zilog 16

VI

(

(

17

Zilog VI

To move the cursor to the end of the current line, use "$."

The command

[<n>]f<c>

moves the cursor to the nth subsequent occurrence
character <c>. The default is the next occurrence.
by using the semicolon (;). The inverse command is

[<n>]F<c>

of the
Repeat

This performs the same function, but moves the cursor back­
ward (into the preceding text). Repeat with a semicolon.

To move the cursor to the character preceding the nth
occurrence of the character <c>, enter:

[<n>]t<c>

To move the cursor backwards to the character following the
nth occurrence of the character <c>, enter:

[<n>]T<c>

The commands (f, ,F, t, and T) can be repeated wi th the semi­
colon, or the direction can be reversed with the comma.

To move the cursor to the matching parenthesis in a pair,
place the cursor at either an opening or closing parenthesis
and strike the percent (%) key. This feature also works for
braces ({}) and square brackets ([1) •

To advance the cursor to the beginning of the nth sentence
following, use the command:

[<n>])

where the default for n is one. Similarly, to move the cur­
sor back to the beginning of a sentence, use the command

[<n>] (

where the default for n is one. A sentence is defined as
ending with a period, a question mark or an exclamation
point, followed either by two spaces or by an end of line.
Sentences also begin at paragraph and section boundaries.
For example, the command

2)

Zilog 17

VI

18

Zilog VI

advances the cursor one sentence beyond the end of the
current sentence.

To move the cursor forward to the beginning of the next
paragraph, use the closing brace (}); similarly, to move the
cursor back to the beginning of the preceding paragraph, use
the opening brace ({). To move the cursor additional para­
graphs, precede the brace with a count, n. For example, the
command

3}

advances three paragraphs. A paragraph begins after an empty
line or at a section boundary.

Finally, to move the cursor to the beginning of th~ next
section, use a double closing square b~acket:

]]

Use a double opening square bracket:

[[

to move the cursor back to the previous section boundary.

2.5 Tags

It is possible to mark a position in the editor file with a
single letter tag, and then to return to any particular tag.
To tag a position in text, use the command

m<tag>

where the tag is any letter of the alphabet.

To return to the tag, use the command

'<tag>

When using operators (such as the delete operator) with a
tagged line, it may be convenient to operate on entire lines
(for example, to delete entire lines), rather than to the
exact position of the tag. In this case, use the form

'<tag>

rather than the form

'<tag>

Zilog 18

f
(,

(

VI

19

. .

Zilog VI

For example, the command

d'<tag>

deletes entire lines from the position of the cursor to the
line with the tag.

2.6 File Status

To find out the file status, enter the command

CTRL-g

The editor displays the name of the file being edited, the
number of the current line, the number of lines in the
buffer, and the relative position in the buffer as a percen­
tage.

2.7' Clearing the Display

If, for any reason, the terminal display is garbled, it is
often possible to obtain a correct display by using the com­
mand:

CTRL-l

or

CTRL-z

depending on the terminal. On a "dumb" terminal, when one
or more lines have been deleted, it is possible to eliminate
the "@" symbols with the command

CTRL-R

or

CTRL-r

This redraws the display and closes the deleted line(s).

2.8 Window Size

The window size is the number of lines written on the
display. Vi maintains the current or default window size.
On terminals that run at speeds greater than 1200 baud, the
editor uses the full terminal display. On slower terminals
(most dialup lines are in this group) the editor uses eight

Zilog 19

VI

20

Zilog VI

lines as the default window size. On terminals that run at
1200 baud, the default window size is 16 lines.

The appropriate window size is used when the editor clears
and refills the display after a search or other motion that
moves beyond the edge of the current window. Commands that
take a new window size as count (see Section 1.16) often
cause the display to be redrawn. With some of these com­
mands, a smaller window size may be equally convenient, and
it may be expedient to specify a smaller window size with
the appropriate command. In any case, the number of lines
displayed increases when:

1. Commands such as "_II are used; these move the win­
dow up.

2. commands such as "+", RETURN or CTRL-d are used;
these move the window down.

The scroll commands CTRL-d and CTRL-u "remember II the amount
of scroll last specified. The default is half the window
size.

The editor makes editing easier at low speeds by starting
with a small window and expanding as the editing progresses.
The editor can expand the window "easily when inserts are
placed in the middle of the display on intelligent termi­
nals.

The window can be enlarged or reduced, and the current line,
or any desired line, can be placed anywhere in the window
with the command

<m>z<n><suffix>

where: <m> is the line number. The default is the current line

z is the command operator

<n> is the number of lines in the window

<suffix> controls the position of the desired
line within the window, and is any of
the following:

<RETURN> places the line at the top
• places the line at the center
- places the line at the bottom

For example, the command

z5.

Zilog 20

VI

\.

(

21

Zilog

redraws the display with the current line in the center
of a five line window, while the command

5z5.

places line five in the center of a five line window •

..

Zilog

VI

21

VI Zilog VI

22 Zilog 22

VI

(

23

Zilog VI

SECTION 3

EDIT COMMANDS

3.1 General

In general, the edit commands use text mode. Text mode is
initiated by entering of one of the various insert commands.
Following the entry of the insert command, all subsequent
keystrokes become text insertions. The text insert mode is
always terminated by striking the (ESC) key.

Many related editor commands are invoked by the same alpha
key and differ only in that one is given by a lowercase key,
and the other is given by an uppercase key. The uppercase
key usually aiffers from the lowercase key only in the sense
of direction: the uppercase key operates backward and/or up
and the lowercase key operates forward and/or down.

Using any of the text mode commands, it is possible to
insert one letter, or many lines of text. To insert more
than one line of text, strike the RETURN key in the middle
of the input. A new line is then created for text and the
insertion can continue. For slow or "dumb" terminals"the
editor may wait to redraw the tail of the screen. In this
case, the new text overwrites existing lines on the display.
This avoids delays that occur if the editor attempts to keep
the tail of the display up to date. The display is updated
correctly when text mode is terminated.

Those characters normally used at the system command level
for character or line deletion can also be used in text mode
(e.g., CTRL-h or #; and @, CTRL-x or CTRL-u, as appropri­
ate). CTRL-H always erases the last input character,
regardless of the erase character.

Backspacing (while in text mode) does not erase characters.
The cursor moves backwards, but the characters remain on the
display. This is useful for entering similar text. The
display is updated after the escape. To correct the display
immediately, use the ESC, and reenter text mode.

It is not possible to backspace around the end of a line.
To back up for a correction on a previous line, use ESC and
then move the cursor back to the previous line. Make the
correction, return and then reenter the appropriate text
command.

Zilog 23

VI

24

Zilog

NOTES

The character CTRL-W erases a whole word and
leaves a space after the previous word. This is
useful for backing up quickly for an insert.

It is not possible to erase characters with CTRL-W
unless these characters were entered in text mode.

3.2 Insert Text

The general form of the text mode command is

<n><command><string>ESC

VI

where: <n> is a preceding count; the default is one
<command> is one of the insert mode commands listed
below
<string> is the inserted text string
ESC is the escape key

The effect of the preceding count is to repeat the inserted
string n times. All one of the following command operators
can be used to enter insert mode:

a A i I 0 0 c C s S R

These commands and their variations are described below.

To insert text in the file, use one of the insert mode com­
mands. For example,

i

Following the "i" (or other insert mode operator), all sub­
sequent string of characters or text entered on the terminal
are inserted in the file, until insert mode is terminated.
To terminate insert mode, strike ESC (escape). On certain
"dumb" terminals, when text is inserted, the display appears
to overwrite the original text. When insert mode is ter­
minated, all inserted and previous text is displayed prop­
erly.

A variation of the "i" command is

Ai

which inserts text at the beginning of a line. The command

I

Zilog 24

VI

("

25

Zilog VI

is equivalent.

In general, most of the insert commands can have a preceding
count. For example, the command

5iapple

repeats the word "apple" five times:

appleappleappleappleapple

In the following description the preceding count is not
always shown.

The command

a ..
also enters the vi text mode. The difference between the
two commands is that with the command "i," text is inserted
before the cursor (to the left), whereas with "a," text is
inserted after the cursor (to the right). The command Ita II •

is sometimes convenient for appending one or more letters to
a word. The append operation is also terminated with the
ESC key.

A variation of the command Ita" uses the dollar sign,

$a

to move the cursor to the end of the current line and append
text. An equivalent command is

A

Another way to add one or more lines of text to the file is
to use the command

o

This opens the existing text and adds new text below the
current line. Similarly, the command

o

opens and adds new text above the current line. Both com­
mands are terminated with ESC. A preceding count opens n
lines.

It is also possible to insert non-printing characters in the
text. Refer to Section 8.2.

Zilog 25

VI

26

Zilog VI

3.3 Delete And Insert Characters

To delete a character or characters, place the cursor on the
character to be deleted. Use the following command

[<n>]x

where: <n> is the number of characters and spaces to be
deleted; the default is one.

x is the character delete command

To delete a character or characters preceding the cursor,
use the command

[<n>]X

where: <n> is the number of characters and spaces to be
deleted; the default is one.

X is the character delete command

To replace (change) one or more characters, use the command

[<n>]r<c>

where: <n> is the number of characters to be changed,

r is the replace command,

<c> is limited to one character which is repeated n
times in place of n deleted characters.

To replace (change) one or more characters with a string,
use the command

[<n>]R<string>

where: <n> is the number of times the replacement is per­
formed

R is the replace command

<string> is the string used for replacement. The
string can be any length.

To replace a number of characters with more than one char­
acter, use the command:

[<n>]s<string>

Zilog 26

/~

I
\
~

(

VI

27

Zilog VI

where: <n> is the number of characters to be replaced,

s is the substitute command,

<string> is the string that is substituted for the
deleted characters. The string can be any length.

Use ESC to terminate string input.

3.4 Delete Operator

The command

d

acts as the delete operator.
the cursor, and then enter

To delete n words,
~

position

[<n>]dw
or

d[<n>]w

The default is one word.

To delete a word backwards (to the left of the cursor),
enter

[<n>]db

or

d[<n>]b

The default is one word.

To delete n single characters, position the cursor on the
appropriate starting character, and enter the command

[<n>]d<space>

This is equivalent to the x command.
space.

The default is one

A variation of the "d" command is

d$

which deletes the rest of the text on the current line.
equivalent command is

Zilog

An

27

VI

28

Zilog VI

o

The operator nco changes entire words. To change n words,
enter the command

[<n>]cw

When the commmand is entered, the end of the text to be
changed is marked with the symbol "$". Enter the replace­
ment text, and terminate text entry with ESC. The default
is one word.

A variation of the "c" command is

c$

which changes the rest of the text on the current line. An
equivalent command is

C

When operating on a line of text, it is often desirable to
delete the characters up to the "first instance of a charac­
ter. To do so, use the command

[<n>]df<x>

where f<x> locates the nth occurrence of the character <x>
following the cursor. The default is the first occurrence
of <x>. This command deletes the text up to--and
including--the character <x>. A variant is the command

[<n>]dt<x>

where the operator f is replaced by the t. In this
instance, the text is deleted up to--but not including--the
character <x>. The command

T

is similar, but it operates in the reverse of the t
operator--that is, it operates in the preceding text.

To delete n entire lines, use the delete operator twice:

[<n>1dd

The default is one line.

On a "dumb" terminal, the editor may sometimes erase the
entire line on the screen and replace it the symbol "@" at
the far left. This does not correspond to any line in the

Zilog 28

VI

I

\.

(
29

Zilog VI

file, but is a place indicator; it helps avoid a lengthy
redraw of the display, which would be required in order to
close up the deleted lines.

The operator

[<n>]cc

is similar to the command "dd", but it leaves vi in text
mode, whereas dd does not. The command "cc" is convenient
for changing an entire line. Position the cursor as
appropriate, enter the command, and then enter the replace­
ment text. Terminate text mode operation with ESC. The
command

[<n>]S

is synonymous to the command "cc", and it is analogous to
the command Us". Think of the "s" as a character substitute
and the "S" as a line sUbstitute.

There are several other variations on the line delete com­
mands. The command

d<n>L

deletes all of the lines from the cursor down to the nth
line from the botttom of the display. The default is all
lines to the bottom of the display.

It is also possible to use a string search with the delete
operator:

d/<string>

This command deletes characters from the cursor position to
the point of the string match. Similarly, the command

d/<string>/-n

deletes characters from the cursor position to the nth line
preceding the string match. The command

d/<string>/+n

deletes characters from the cursor to the nth line following
the string match. Similar commands can be used to change
entire lines in relation to a string:

c/<string>/-n

and

Zilog 29

VI

30

Zilog VI

c/<string>/+n

In editing a document, it is usually easiest to edit in
terms of sentences, paragraphs and sections. The operators
n(n and n)n can be used with the delete operator. For
example, the command

[<n>]d)

deletes the rest of n sentences. The default is from the
cursor position to the end of the current sentence. Simi­
larly,

[<n>]d(

performs one of two deletions:

1. With the cursor at the beginning of a sentence, the
command deletes the previous n sentences, or

2. When the cursor is not at the beginning of a sen­
tence, the command deletes the text from the cursor
back to the beginning of n sentences. The default
is the beginning of the current sentence. The edi­
tor displays the extent of the change; it also
indicates when a change will affect text that is
not shown on the display.

To repeat the command more than once, use the period (.)
key.

3.5 The Undo Operator

Vi has an undo operator

u

that reverses the last change made. The undo command can
undo the preceding undo command--that is, the first undo
command can return the text to its original state, and the
second command can reinsert the change, but it can involve
several lines. The undo command reverses only a single
change. However, after having made more than one change to
a line, the line can be restored to its original state with
the command U.

Deleted text can be recovered even when the undo operator
does not recover it. Recovering lost text is discussed in a
separate section.

Zilog 30

VI

(

31

Zilog VI

3.6 Program Editing Features

The editor has a number of commands for program editing.
One of the most convenient is the autoindent option, which
helps generate correctly indented programs. Another is the
shiftwidth option, which is used to reset the backtab value.
Both are discussed in Section 6.5.

The operators "<" and ">" are used to shift individual lines
left or right, respectively, by one shiftwidth. To shift a
line, use the double operators, as shown:

[<n>]« shifts the line to the left one shiftwidth, and
[<n>]» shifts the line to the right one shiftwidth.

Where n specifies a nu·mber of lines; the default is one
line.

It is also possible to shift all lines from the cursor to
the bottom of the display, either to the left or to the
right, respectively. Use the command

<L

or

>L

respectively.

Another feature is useful for matching the opening and clos­
ing parenthesis in complicated expressions. To see the
matching parenthesis, place the cursor at either an opening
or a closing parenthesis and strike the percent key (%).
This feature also works for braces ({}) and brackets ([]
) .
For editing programs in C, the double brackets ([[and]].
) advance and retreat, respectively, to a line starting with
a brace ({)--that is, one function declaration at a time.
When the closing double brackets (]]) are used with an
operator, it stops after a after a line that starts with a
brace ({). This is sometimes useful with the command nyu,
as shown:

y]]

where the y operator yanks a line, and stores it in a
buffer.

Zilog 31

..

VI Zilog VI

3.7 Erase and Line Kill Characters

The most common way to correct input text is to strike
CTRL-B to delete an incorrect character, or to strike
CTRL-W to delete incorrect words. If the normal system uses
the crosshatch as the character erase (i), it works like
CTRL-B in vi.

The line kill character is normally one of the following:

@

CTRL-X

CTRL-U

which erases all input on the current line. In general, the
kill character does not erase back around an end of line,
nor will it erase characters that were not inserted with
the current text mode command. To make corrections on the
previous line--after a new line"has been started--use the
following procedure:

1. Strike ESC to terminate input mode.

2. Move the cursor as appropriate to make the correc­
tion.

3. Return and continue in input mode. When continu­
ing, the operator "An is often convenient for
appending the current line.

32 Zilog 32

VI

(

33

Zilog VI

SECTION 4

REARRANGING AND DUPLICATING TEXT

4.1 General

By definition, a sentence ends with a period (.), an excla­
mation point (1), or a question mark (?); and is followed by
either the end of a line, or two spaces. Any number of
closing parens, brackets, or quotation marks may appear
after the closing punctuation marks, but before the spaces
or new line.

The operators (and) move the cursor to the beginning and
the end of the previous and next sentences, respectively.
Similarly, the operators { and }, and the operators [[and
J] move over paragraphs and sections, respectively. The
square bracket operators require a double operator entry
because they can move the cursor an appreciable distance.
While it is easy to return with the back quotation marks "
these commands could still be frustrating if they were easy
to execute accidentally.

By definition, a paragraph begins after each empty line, and
also at each of a set of paragraph macros. (Refer to the
NROFF and TROFF documentation in the ZEUS Programmer's
Manual.) The paragraph macros can be changed or extended by
assigning a different string to the the paragraphs option in
EXINIT. The sentence and paragraph commands can be given
counts to operate over groups of sentences and paragraphs.
Sections in the editor begin after each macro in the sec­
tions option. Section boundaries are always line and para­
graph boundaries.

It is possible to look through a large document by using the
section commands. It is also possible to use a preceding
count with each of the section and paragraph commands. The
section commands interpret a preceding count as a different
window size in which to redraw the screen display at the new
location. This window size is the base size for newly drawn
windows until another size is specified. This is useful
when looking for a particular section on a slow terminal.
It is possible to give the first section command a small
count, and then see each successive section heading in a
small window.

Zilog 33

VI

34

Zilog VI

4.2 Buffers

Vi has the following buffers:

1. A single, unnamed buffer, where the last delete or
changed text is saved, and

2. A set of named buffers--a through z--that can be
used to save or move text, either within a file, or
between files.

The buffers are used by the "yank" and "put" operators
described in section 4.3.

4.3 Text Manipulation

The operator (for "yank") is used to place text into the
unnamed buffer, or any of the named buffers. The command
syntax is

"[<buffer>] [<n>1yw

where: " indicates that the following character is a
buffer, and not a command
<buffer> is a buffername a through z; default is the
unnamed buffer
<n> is the number of words to yank; default is one
word
y is the yank operator
w is the word operator

This command does not delete the yanked text. Punctuation
marks are counted as words. To yank a complete word, the
cursor must be on the first ietter of the word. If the cur­
sor is not on the beginning of the word then all characters
from the cursor position to next white space (at the end of
the word) are yanked.

The operator "yy" is eqivalent to nyu; the command

"[<buffer>] [<n>1Y

yanks the entire line on which the cursor rests, and places
it in a buffer, as described above. The count <n> preceding
the Y operator yanks n lines of text. The default is one
line.

Zilog 34

f
I ,

(,

(

VI

35

Zilog VI

Examples:

The command

yw

yanks the word on which the cursor is located. The command

4yw

yanks the word on which the cursor is located, and the fol­
lowing three words into the unnamed buffer. The command

"a12yw

yanks 12 words into buffer a.

An ordinary delete command saves the text in the unnamed
buffer, so that an ordinary put command (p or P, described
below) can move it elsewhere. However, the unnamed buffer
contents are lost when files are changed; therefore, to
change text from one file to another, be sure to use a named
buffer.

Text that has been yanked can be reinserted (put) in the
text with the operators p or P, where the command syntax is

"[<buffer>]p

where quotation marks and <buffer> indicate the buffername,
where the yanked text was stored. Tha operator "p" rein­
serts the yanked text after or below the cursor, and the
operator "P" reinserts the text before or above the cursor.
Command syntax is identical for both P and p operators. If
a buffer is not specified, the default is the unnamed
buffer.

The text being yanked can be part of a line, or an object
such as a sentence that spans more than one line. In this
case, when the text is replaced, it is replaced after (or
before) the cursor, depending on the command. If the text
forms whole lines, then it is returned in whole lines,
without changing the current line.

The command

I<n>JYP

yanks a copy of n lines, and then reinserts the same text
immediately prior to the current line. The result is that
there are two identical text lines and the cursor moves to
the top line. The command

Zilog 35

VI

36

Zilog VI

[<n>]Yp

is similar, but it copies n lines and places them after
(below) the current line, so that there are two identical
lines. For example, the command 3YP repeats the line of
text three times. The default is one line of text.

The yank command, like the delete and change commands, can
be used with a string search. The command

y/<string>/-<n>

yanks the characters from the cursor position to the nth
line preceding the string match. Similarly, the command

y/<string>/+<n>

yanks characters from the cursor to the nth line following
the string.

The same buffers can be used with the delete operators to
move blocks of text within the file or to another file.
Moving a block of text requires three operations:

1. delete & store n lines

2. move cursor to the new location

3. "put" the text.

Example:

Delete five lines of text and temporarily store them in
buffer a:

The quotation marks indicate a buffername, not the "a" com­
mand. Next, move the cursor to the new text location, and
enter the command

nap

or the command

naP

to insert the text in the new location.

To switch to another file for editing before restoring the
yanked text use a command of the form

Zilog 36

VI

37

Zilog VI

:e <filename>

where <filename> is the other file to be edited.
commands are described in a l'ater section.)

(These

NOTE

If the contents of the current editor buffer have
been changed, they must be either written back or
discarded prior to switching to the other file.

Zilog 37

VI Zilog VI

38 Zilog 38

VI

(

(

39

Zilog VI

SECTION 5

FILE MANIPULATION

5.1 Writing, Quitting and Editing New Files

The basic write and quit commands are described in section
1.7.

If the text has been changed, but the changes are not to be
written to the file, the quit command (:q!) discards the
changes. To re-edit the same file (starting over) enter the
command:

: e!

This command is seldom used, because the changes cannot be
made after they have been discarded.

To edit a different file without leaving the vi editor enter

:e <filename>

If the changes have not been written to the file (prior to
this command), vi displays the message

No write since last change (:edit! overrides)

and delays editing the other file. Respond by entering the
command

:w

to save the changes in the first file. After the changes
are written, repeat the command ":e <filename>" or use the
command

:e!

to discard the changes in the first file and call the second
file. To save changes automatically set the autowrite
option. When autowrite is set, use the command

:n

rather than

:e

Zilog 39

VI

40

Zilog VI

5.2 File Manipulation Commands

Table 5-1 contains the vi file manipulation commands. These
commands are followed by a carriage return (RETURN) or an
escape (ESC). Most of the commands are self explanatory;
however, the following describes how to use these commands.

Table 5-1. File Manipulation Commands

CQmmand Function

:w Write changes back to file
:wq Write changes back and quit

:x Write, if necessary, and quit
:e<name> Edit file <name>

:e! Discard changes and re-edit
:e+<name> Edit file <name>, starting at end

:e+<n><name> Edit file <name> starting at line
n or with command n

:e# Edit alternate file, which is designated
by the last filename typed before the
current filename.

:e% Edit current file
:w <name> Write file <name>

:W! <name> Overwrite file <name>

:<x>,<y>w <name>
Write lines <x> through <y> to
<name>

:r <name> Read file <name> into buffer

:r!<cmd> Read output of <cmd> into buffer
:n Edit next file in argument list

:n!

:n <arg1ist>

:ta <tag>

Discard changes to current file,
and edit next file
Specify new list of arguments
<arg1ist>

Edit the file containing the tag
<tag>, at <tag>

The basic write command is

:w

Zilog 40

.,' ~

VI

41

Zilog VI

which writes changes to the file. When editing is completed
for a single file, write the changes back and terminate vi
with the command

ZZ

For editing long text, it is convenient to write back the
changes more frequently with the command ":w" and terminate
with the command "ZZ".

When editing more than one file, write back the
the command ":w" and start editing a new file
command. Another way is to set the autowrite
section 6) and use the command

:n <file>

changes with
with an ":e"
option (see

to fetch the next file for editing. This command is in­
operative unless the changes to the current file have been
written back.

Whenever changes have been made to the editor's copy of a
file, but they are not to be written back, then the exclama­
tion point (1) is added to the command being used. The
result is that the editor discards any changes that have
been made. For best results, use this command carefully.

The various ":e" commands can be given arguments. The argu­
ment "+" starts editing at the end of the file, and the
argument

+<n>

starts the editor at line n. Moreover, n can also be any
editor command not containing a space, such as a scan like

+/<string>

or

+?<string>

where the editor searches for <string>.

Other arguments for ":e" include the character "%", which,
when used in the command, is interpreted as the current file
name. Another argument is "i", which is interpreted as an
alternate filename, where the alternate filename is the last
filename typed other than the current filename. For exam­
ple, suppose the command

:e

Zilog 41

VI

42

Zilog VI

has been entered, and a diagnostic is
that the file has not been written.
enter the command

returned indicating
One possibility is to

:w

which writes the file, and then the command

:e#

to redo the previous ":e". The command

CTRL-T

performs the same function.

To write a part of a buffer to a file, first determine the
line numbers that bound the portion to be written. Use the
command

CTRL-g

to display the line numberwhere the cursor is located or set
the option number. Then enter the command

:<x>,<y>w <name>

where: <x>,<y> specify the top and bottom line numbers
<name> is the file name of the destination file.

If the destination file does not exist, it will be created1
otherwise vi prints the diagnostic message

"<name)" File exists - use "w! <name>" to overwrite

command. Then, instead of line numbers, use the address
marks in the command. For example, the command

rna

marks the first line in register a, and

mb

marks the last line in register b. The command

'a,'bw <name>

writes these lines to the file <name>.

It is possible to read another file into the buffer after the
current line. Use the command

Zilog 42

/
(
'-

/'
I

.(

VI

43

Zilog

:r <name>

To edit a set of files in succession, first enter
all of the filenames as arguments in the command

:n <namel> <name2> <namex>

,then edit each one, in turn, using the command

:n

VI

It is also possible to use the command ":n" and specify a pattern
to be expanded, such as with an asterisk (*) or a set of
characters to match. This can also be done with the initial vi
command.

The command

:ta

is very useful for editing large programs. It uses a data base
of function names and their locations (which can be created by the
program ctags(l).
See the ZEUS Programmer's Reference Manual) for
finding a function with a name.
If the ":ta" command requires the editor to switch files, any current
work must be written to a file or abandoned prior to switching files.
To relocate a tag, repeat this command without any arguements.

To read in the output from a shell command, use an exclamation point
with a shell command <cmd>, as shown:

:!<cmd>

Zilog 43

VI Zilog VI

44 Zilog 44

VI

45

Zilog VI

SECTION 6

OPTIONS

6.1 General

As noted previously, the options in the editor ex are also
available and easy to use with Vi. The most useful ones are
listed in Table 6-1 below.

Option

auto indent
autowrite

ignorecase
lisp

list

magic

number

paragraphs

redraw

scroll
sections

shiftwidth

showmatch

slowopen

term

terse
window

wrapmargin

wrapscan

Table 6-1. Frequently Used Options

Default

noai
noaw

noic
nolisp

nolist

-magic

nonu

para=
IPLPPPQPP Llbp

nore

1/2
sect=NHSHH HU

sw=8

nosm

noslow

adm3l

noterse
speed
dependent
wm=O

ws

Function

Automatic indentation
Automatic write before :n, :ta,
CTRL-j, and!
Ignore case in searching
({)} commands deal with S­
expressions
Tabs print as CTRL-I; end of
lines are marked with $
The characters. [and * are
special in scans
Lines are displayed prefixed
with line numbers

Macro names ·that start para­
graphs
~imulate a smart terminal on
a dumb one
Number of lines scrolled
Macro names that start new
sections
Shift distance for <, > and
input CTRL-d and CTRL-t
~how matching (or { as) or
} is typed
Postpone display updates dur­
ing inserts
The type of terminal being
used
Shorter error diagnostics
Number of lines in display
window
Bring right margin in from the
right
Wrapping around end-of-file

Zilog 45

VI

46

Zilog VI

In general, there are three kinds of options: numeric
options, string options, and toggle options. Numeric and
string options are set by commands of the form:

set <opname>=<val>

where: <opname> is the name of the option
<val> is the appropriate string or numeric
value for the option

Toggle options can be set or reset, respectively, with the
following commands:

set <opname>
set no<opname>

These options can be entered while in vi by preceding the
set command with a colon, and the command can be abbrevi­
ated as shown:

:se <opname>=<value>

or

:se <opname>

To display a list of those options that have been set, enter
the set command without any option name, as shown:

:set

To display the value of a single option enter the command:

:set <opname>?

Similarly, to display a list of all possible options and
their current values, enter the command

:set all

Note that the above commands can also be
that multiple options can be placed
option command:

:se ai as nu

abbreviated, and
set using only one

The options that are set during an editing session last only
until the editor is exited. However, it may be convenient
to have a list of options that are set whenever the editor
is used. This can be accomplished by creating a list of ex
commands--that is, commands used by the text editor ex--that
are to be run every time the programs ex, edit, or vi are

Zilog 46

VI

,::
(

(

47

Zilog VI

invoked. (Note that all commands that start with a colon
are ex commands.) It is good practice to list these com­
mands on a single line.

It is possible to put any number of the option commands in
the environment variable EXINIT. When options are set in
the environment, then they are automatically set at each
entry to vi. For example, to set autoindent, autowrite and
terse, the command would be (using csh):

setenv EXINIT 'set ai aw terse'

6.2 Editing on Slow Terminals

The slow terminal text mode is controlled by the slowopen
option. This option is set by the command

:se slow

On slow systems this option limits the output to the termi­
nal. It is also possible to force the editer to use this
option even on faster terminals by using this option. To
disable the slowopen option, use the command

:se noslow

It is also possible to simulate an intelligent terminals
with the redraw option. This simulation generates a great
deal of output, and is generally tolerable only on lightly
loaded systems and fast terminals. This option is set with
the command

:se redraw

and it is cancelled with the command

:se noredraw

6.3 Ignore Case

The editor will, if commanded, ignore the case of words in
the string search. The appropriate command is:

:se ic

To turn off the ignore case option, use the command

:se noic

Zilog 47

VI

48

Zilog VI

6.4 Magic Characters

Strings used in a string search can contain characters that
have "magic" meanings to vi. If this capability is not
desired, then reset the magic option with the command

:se nomagic

With nomagic, 'only the characters "A" and
patterns. The character "\" is also
almost everywhere in the system), and may
extended pattern matching capability.

"$" are special in
special {as it is
be used for an

With either magic or nomagic, it is necessary to use a "\"
(backslash) before a "j" in a forward string search or a"?"
in a backward string search. That is, if the string search
is for either a "j" (forward) or a "?" (backward), then the
character must be preceded by a backslash. Table 6-2
lists the extended forms that are used when the magic option
is set.

Table 6-2. Magic'Option Extended Operators

Operator Function

$

\<str

str\>

[str]

[x-y]

*

At the beginning of a pattern, matches
the beginning of a line

At the end of a pattern,matches the end
of a line

Matches any character

Matches string str at the beginning of a
word

Matches string str at the end of a word

Matches any single character in the
string str

Matches any single character not in the
string str

Matches any character between x and y,
where x and yare alpha-numeric charac­
ters

Matches any number of the preceding pat­
tern

Zilog 48

VI

I
\

\

(

49

Zilog VI

Note that in the nomagic mode the primitives

and *

are used with a preceding "\".

6.5 Autoindent and Shiftwidth

The auto indent option is convenient for generating correctly
. indented programs. To set the autoindent option, use the

command

:se ai

To demonstrate the operation of the option, open a new line
with the letter "0", enter a few tabs, type some characters,
and then start another line. The editor supplies white space
at the start of the new line, so that it is lined up with
the previous line of text. Note that it is not possible· to
backspace over the automatic indentation.

When the auto indent option is being used, it is sometimes
convenient to return to the margin--for example, to place a
label at the margin. To defeat the autoindent, use the com­
mand

CTRL-d

which then backspaces over the automatic indent. Each time
this command is entered, the cursor backs up one shiftwidth.
If the shiftwidth is set to eight, the cursor backs up eight
columns. Note that this only works immediately after the
supplied autoindent.

To stop all indent, including the next line, strike:

OCTRL-d

An easy way to place a label at the left margin is
the up-arrow (A) and then CTRL-D. The editor
cursor to the left margin for one line, and then
the indent on the next line.

to strike
moves the
restores

There is normally an eight column left boundary. To reset
this boundary, use the shiftwidth option, which is entered
by the command

:se sw=<n>

where <n> is the number of columns that sets the width of
the boundary.

Zilog 49

VI

50

Zilog VI

6.6 Continuous Text Input

When large amounts of text are being entered, it is often
convenient to have lines broken near the right margin
automatically. To have the text broken n columns from the
right margin, use the command

:se wm=<n>

If the editor breaks an input line, it can be rejoined with
the command

[<n>]J

where n is the number of lines to be joined. The default is
to move the following line to the end of the current line.
The editor supplies white space, as appropriate, at the
juncture of the joined lines, and leaves the cursor at this
white space. To delete the white space use the command "x".

6.7 LISP Editing Options and Commands

The vi editor has some convenient options for editing pro­
grams in LISP. The first is the lisp option which is set
with the command

:se lisp

This option changes the parenthesis commands "(" and ")" so
that they move backward and forward over s-expressions. The
braces-- "{" and "}"--are like the parenthesis commands, but
they do not stop at atoms. These commands can be used to
skip quickly through a comment, or to the next list.

The auto indent option works differently for LISP. It
plies indent to align at the first argument to the last
list. If there is no such argument, then the indent is
spaces more than the last level

sup­
open

two

The showmatch option is convenient for typing in LISP. Pro­
viding that the opening parenthesis is showing on the
display, if a closing parenthesis is typed, the cursor then
briefly moves to the position of the opening parenthesis.
To set this option, use the command

:se sm

The vi editor also uses the operator

=

Zilog 50

VI

(
51

Zilog VI

which realigns existing lines as though they had been typed
with the lisp and the auto indent options set. For example,
the command

=%

at the beginning of a function realigns all the lines of the
function declaration.

Finally, when editing LISP, the double brackets "[[" and
"]]" cause .the cursor to advance or retreat, respectively,
to lines beginning with an opening parenthesis. This is use­
ful for dealing with entire function definitions.

6.8 Line Numbers

If desired, the editor can place line numbers before each
line of text on the display. Use the command

:se nu

To disable the line number option, use the command

:se nonu

6.9 Tabs and End of Line Indicators

It is possible to have the display represent tabs as CTRL-I
and represent the ends of lines with the symbol "$" by
using the list option. Give the command

:se list

This option can be disabled with the command

:se nolist

6.10 Automatic Writing of Files

When a file has not been written out prior to changing to a
new file, vi prints the diagnostic

"No write since last change (edit! overrides)".

To have the editor automatically save changes, set the
"autowrite" option

:se aw

Zilog 51

VI

52

Zilog VI

To change files, use the command

:n

instead of

:e

To disable this option use the command

:se noaw

6.11 Defining Paragraphs and Sections

There are editor options available to define a paragraph
and/or section for NROFF macros (see Section 7 of the Zeus
~rogrammer's Manual). A paragraph normally begins after
each empty line; these paragraph boundaries are used by the
operators "{" and "I" (see Section 2.4). By setting the
"paragraph)' option

set para=<macro name>

where <macro name> is an NROFF macros(s) that defines the
start of a paragraph. Similarly, sections can be redefined
by using

set sections=<macro name>

By definition, a section begins after each line with a
formfeed CTRL-L in the first column; section boundaries are
also line and paragraph boundaries. These boundaries are
used by the operators "[[" and "]]" (see Section 2.4).

6.12 Terminal Type

The terminal type is determined from the environment when

% setenv TERM <type>

was executed (see Section 1.4). This option

:se term

simply outputs the terminal type.

Zilog 52

VI

53

Zilog VI

6.13 Scroll

The amount of scroll when using the CTRL-d, CTRL-u and HZ"
commands can be altered by issuing

:se scroll=<val>

where: <val> is the amount of scroll (number of lines)

6.14 Terse

The error diagnostics can be shortened with the command

:se terse

and lengthened again with

:se noterse

This is desirable for the more experienced user.

6.15 Window

The number of lines in a text window can be altered with
this command

:se window=<val>

For slow terminals (600
for medium terminals
high speed terminals,
assigned.

baud or less), the window size is 8;
(1200 baud), the size is 16; and for

the full screen size minus 1 is

6.16 Wrapping Around the End of Files

String searches normally proceed through a file and then
continue to search at the beginning. This capacity can be
disabled with

:se nows

Zilog 53

VI Zilog VI

54 Zilog 54

VI

(

55

Zilog VI

SECTION 7

RECOVERING LOST INPUT

7.1 Lost Lines

The editor saves the last nine blocks of deleted text in a
set of registers numbered 1 through 9. Register 1 contails
the most recently deleted text. To access any block of
deleted text in any register, use the command

"<bufferid>p

or
"<bufferid>P

where: "indicates that a register name is to follow,
<bufferid> is a buffer number in the range 1-9

If, for any reason, this command is not successful, use the
undo command, followed by a period:

u.

This repeats the put command.

In general, the period (.) is a command to repeat the last
change made. As a special case, when the last change refers
to a numbered text register, the period command increments
the register number before repeating the command. Thus, a
sequence of the form

"lpu.u.u

when the command ".u" is repeated restores to the display
each of the deleted block of text stored in the nine
buffers. To display all of the deleted text, omit the undo
commands, and repeat the period command until the desired
text is displayed. It is possible to stop after any period
command and keep the text recovered to that point.

7.2 Lost Files

If the system should crash, most of the work in progress can
be saved. Following a crash, to access the lost files,
first change to the directory in use at the time of the
crash. Then invoke vi with the command

vi -r <filename>

Zilog 55

VI

56

Zilog VI

where <filename> was the file being edited. See Section
1.4. This usually recovers most of the text up to the point
where work was discontinued. In rare cases, some of the
lines in the file may be lost. The editor lists the numbers
of these lines and the text of the lost lines is replaced by
the string "LOST." These lines are almost always among the
last few changed. At this point, either discard the changes
or replace the few lost lines manually.

To list the files saved, use the command

vi -r

Current files are saved if the system crashes. If there is
more than one crash, there will be one copy saved for each
crash. Files are recovered on a last-in, first-out basis.
Therefore, to recover an earlier copy of a file, first
recover the later copies. The invocation "vi -r" does not
always list all saved files, but they can be recovered even
if they are not listed.

Zilog 56

VI

(

57

Zilog VI

SECTION 8

MISCELLANEOUS

8.1 Filtering Portions of the Buffer

System commands can be run over portions of the buffer with
the operator

For example, it can be used to sort lines in the buffer. As
an example, type a list of random words, one per line, and
end with a blank line. Then return the cursor to the begin­
ning of the list, and enter the command:

!}sort

This command sorts the material in the following paragraph
alphabetically. The blank line ends the paragraph.

8.2 Typing Non-Printing Characters

In general, to enter non-printing characters (such as con­
trol characters) in the file, precede them with

CTRL-V

This command echoes as an up-arrow (A) on which the cursor
rests. This indicates that the next character entered will
be a control character. In fact, any character can be
inserted in the text except:

1. The null character, CTRL-@

2. The linefeed, CTRL-J, which is used to separate
lines in the file.

After vi echoes the up-arrow, any character is treated as a
request to insert the corresponding control character. This
is the only way to type CTRL-S or CTRL-Q, which are used by
the system to suspend and resume output (respectively).
These characters are not processed by the editor.

More specifically, to enter the erase or kill characters
(for example, the "#" or "@"), simply precede the character
with a backslash {\>.

Zilog 57

VI Zilog VI

58 Zilog 58

VI

59

Zilog VI

APPENDIX A

SPECIFYING TERMINAL TYPE

Before calling vi, the correct terminal type must be
entered. The following is an incomplete list of terminals
and terminal type numbers that can be entered in vi, as
appropriate. Unless indicated by an asterisk (*), the ter­
minals listed here are all intelligent.

Terminal

Hewlett-Packard 262lA/P
Hewlett-Packard 264x

Microterm ACT-IV
Microterm ACT-V

Lear Siegler ADM-3a
Lear Siegler ADM-3l

Human Design Concept 100
Datamedia 1520

Datamedia 2500
Datamedia 3025

Perkin-Elmer Fox
Hazeltine 1500

Heathkit h19
Infoton 100

Teleray 1061
Dec VT-52

2621
2645

act4 *
actS *

adm3a *
adm3l

clOO
dm1520 *

dm2500
dm3025

fox *
h1500

h19
ilOO

tl06l
vt52 *

To enter the type of terminal, use the command

setenv TERM <code>

where <code> is the terminal type code listed above.

Example:

The terminal normally supplied with
8000 is the Lear Siegler ADM-3l.
command:

the Zilog System
Use the following

setenv TERM adm3l

Zilog 59

VI Zilog VI

60 Zilog 60

VI

61

Zilog VI

APPENDIX B

vi CORRECTION CHARACTERS

Vi correction characters are listed in Table B-1.

Table B-1. Operators Used for Corrections and Changes

Operator Function

CTRL-H Deletes the last character input

CTRL-W

erase

kill

\

ESC

Deletes the last word input, as defined by
the operator lib"

your system erase character; same as CTRL-H

your system line delete character

Escapes a following erase, kill or CTRL-H

Escape key; terminates "text mode

DEL Delete key; interrupts an text mode opera­
tion, terminating it abnormally

RETURN

CTRL-D

OCTRL-D

"'CTRL-D

CTRL-V

Carriage return, or more simply, RETURN;
starts a new line.

Backspaces over auto indent

Kills all the auto indent

Same as above, but restores indent next line

Quotes the next non-printing character into
the file.

Zilog 61

VI Zilog VI

62 Zilog 62

VI

63

Zilog VI

APPENDIX C
vi SYMBOL DICTIONARY

This appendix gives the uses the editor makes of each char­
acter. The characters are presented in their order in the
ASCII character set: Control characters come first, then
most special characters, then the digits, upper and then
lowercase characters.

The information for each character includes the meaning it
has as a command, and any meaning it has during an insert.
If it has only meaning as a command, then only this is dis­
cussed.

CTRL-@

CTRL-A

CTRL-B

CTRL-C

CTRL-D

CTRL-E

CTRL-F

CTRL-G

Not a command character. If typed as the
first character of an insertion it is
replaced with the last text inserted, and the
insert terminates. Only 128 characters are
saved from the last insert; if more charac­
ters were inserted the mechanism is not
available. A A@ cannot be part of the file
due to the editor implementation.

Unused.

Backward window. A count specifies repeti­
tion. Two lines of continuity are kept if
possible.

Unused.

As a command, scrolls down a half-window of
text. A count gives the number of (logical)
lines to scroll, and is remembered for future
CTRL-D and CTRL-U commands. During an
insert, backtabs over autoindent white space
at the beginning of a line; this white space
cannot be backspaced over.

Unused.

Forward window. A
tion. Two lines
possible.

count specifies repeti­
of continuity are kept if

Equivalent to :fCR, printing the current file
name, whether it has been modified, the
current line number and the number of lines
in the file, and the percentage of the way
through the file that you are.

Zilog 63

VI

64

CTRL-H (BS)

CTRL-I (TAB)

CTRL-J (LF)

CTRL-K

CTRL-L

CTRL-M (RETURN)

Zilog VI

Same as
insert,
backing
remains
.wish to
ferent.

left arrow. (See h.) During an
eliminates the last input character,
over it but not erasing it1 it
so you can see what you typed if you

type something only slightly dif-

Not a command character. When inserted
prints as some number of spaces. When
cursor is at a tab character it rests at
last of the spaces which represent the
The spacing of tabs tops is controlled by
tabstop option.

Same as down arrow (see j).

Same as up arrow (see k).

it
the
the

tab.
the

Same as right arrow. The ASCII formfeed
character, this causes the screen to be
cleared and redrawn on dumb terminals. This
is useful after a transmission error, if
characters typed by a program other than the
editor scramble the screen, or after output
is stopped by an interrupt.

A carriage RETURN advances to the next line,
at the first non-white position in the line.
Given a count, it advances that many lines.
During an insert, a RETURN causes the insert
to continue onto another line.

CTRL-N Same as down arrow (see j).

CTRL-O Unused.

CTRL-P Same as up arrow (see k).

CTRL-Q Not a command character. In input mode,
CTRL-Q quotes the next character, the same as
AV, except that some teletype drivers eat the
CTRL-Q so that the editor never sees it.

CTRL-R Same as replacement operator (see r). On
hardcopy terminals in ~ mode, retypes the
current line.

CTRL-S Unused. Some teletype drivers use CTRL-S to
suspend output until CTRL-Q is typed.

Zilog 64

VI

(

65

CTRL-T

CTRL-U

CTRL-V

CTRL-W

CTRL-X

CTRL-Y

CTRL-Z

CTRL-[(ESC)

CTRL-\

CTRL-j

Zilog VI

Not a command character. During an insert,
with auto indent set and at the beginning of
the line, inserts shiftwidth white space.

Scrolls the screen up, inverting CTRL-D,
which scrolls down. Counts work as they do
for CTRL-D, and the previous scroll amount is
common to both. On a dumb terminal, CTRL-U
will often necessitate clearing and redrawing
the screen further back in the file.

Not a command character. In input mode,
quotes the next character so that it is pos­
sible to insert non-printing and special
characters into the file.

Not a command character. During an insert,
backs up as b would in command mode; the
deleted characters remain on the display (see
CTRL-h) •

Unused.

Unused.

Redraws the screen.

Cancels a partially formed command, such as a
z when no following character has yet been
given; terminates inputs on the last line
(read by commands such as : / and ?); ends
insertions of new text into the buffer. If
an ESC is given when quiescent in command
state, the editor rings the bell or flashes
the screen. Thus, ESC can be used to stop
any function and reenter command mode. The
flash or ring indicates that all functions
have been stopped, and vi has returned to
command mode. Prior to entering insert mode,
if there is any doubt about what mode is
currently in effect, then press ESC, followed
by an insert mode command, such as a. the
result is that vi enters insert mode, regard­
less of the previous mode.

Goes to ex.

Searches for the word which is after the
sor as a tag. Equivalent to typing :ta,
word, and then a RETURN. Mnemonically,
command is "go right to"

Zilog

cur­
this
this

65

VI

CTRL-i

CTRL-_

SPACE

$

&

"

66

Zilog VI

Equivalent to :e #. Display returns to the
previous position in the last edited file.
To edit a file that was specified by this
command, and the system response was the
diagnostic "No write. since last change",
enter the command :w. This allows CTRL-T to
operate. To change files without writing the
current underscore file, use the command :e1
instead.

Unused. Reserved as the command character
for the Tektronix 4025 and 4027 terminal.

Same as right arrow (see 1).

An operator that processes lines from the
buffer with reformatting commands. Follow!
with the object to be processed, and then the
command name terminated by RETURN. Doubling
! and preceding it bY,a count causes count
lines to be filtered; otherwise the count is
passed on to the object after the' Thus
2!}sort sorts the next two paragraphs by run­
ning them through the program sort. To read
a file or the output of a command into the
buffer use :r. To simply execute a command
use : 1 •

In input mode, if this is the erase charac­
ter, it deletes the last character typed in
input mode. It must be preceded with a \ to
insert it, since it normally backs over the
last preceding input character.

Moves the cursor to the end of the current
line. With a count <n>, the cursor advances
to the nth end of line following. For exam­
ple, 2$ advances the cursor to the end of the
following line. With the list option, the
end of each line is indicated by a $.

Moves to the parentheses or
balances the parentheses
current cursor position.

brace {}
or brace

which
at the

Same as :& RETURN; repeats a previous substi­
tution.

Precedes a named buffer specification. There
are named buffers 1-9 that save deleted text,
and named buffers a-z that store "yanked"
text.

Zilog 66

VI

*
+

,

(
67

Zilog VI

The ' can be used the following ways:

a. When followed byanother', the cursor
returns to its previous position, but at
the beginning of the line. The previous
position is set whenever the cursor is
moved from the current line.

b. When the ' is followed by a letter a-z,
the cursor returns to the line that was
marked with this letter (by _ the m
command} ,at the first non-white character
in the line.

c. When' is used with a second and an
operator such as d, the -operation takes
place over complete lines. Example: d"
deletes the lines between the appropriate
marks. Similarly, when used with a "
the operation takes place from the exact
marked place to the current cursor posi­
tion within the line.

Retreats to the beginning of a previous sen­
tence, or to the beginning of a LISP s­
expression if the ~ option is set. Any
number of closing)] " and ' characters may
appear after the. ! or ?, and before the
spaces or end of line. A count <n> advances
n sentences.

Advances to the beginning of the next sen­
tence. A count repeats the effect. See (
above for the definition of a sentence.

Unused.

Same as RETURN when used as a command.

Reverse of the last f F t or T command,
ing the other way in the current line.
cially useful after hitting too many ;
acters. A count repeats the search.

look­
Espe­
char-

Retreats to the previous line at the first
non-white character. This is the inverse of
+ and RETURN. If the line moved to is not on
the screen, the screen is scrolled, or
cleared and redrawn if this is not possible.
If a large amount of scrolling would be
required the screen is also cleared and
redrawn, with the current line at the center.

Zilog 67

VI

•

/

o

1-9

68

Zilog VI

Repeats the last command which changed the
buffer. Especially useful when deleting
words or lines; use n." to delete more and
more words or lines. A count is passed on to
the command being repeated. Thus, after 2dw,
3. deletes three words.

Reads a string from the last line on the
screen, and scans forward for the next
occurrence of this string. The normal input
editing sequences may be used during the
input of the bottom line; an (ESC) returns to
command state without searching. The search
begins with the RETURN which terminates the
pattern. The cursor moves to the beginning
of the last line to indicate that the search
is in progress; the search may then be ter­
minated with a DEL or RUB, or by backspacing
when at the beginning of the bottom line.
The cursor returns to its initial position.
Searches normally wrap end-around to find a
string anywhere in the buffer.

When used with an operator the enclosed
region is normally affected. By mentioning
an offset from the line matched by the pat­
tern, whole lines are affected. To do this,
give a pattern with a closing / and then an
offset +n or -no

To include the character / in the search
string, escape it with a preceding \. A T at
the beginning of the pattern forces the match
to occur at the beginning of a line only;
this speeds the search. A $ at the end of
the pattern forces the match to occur at the
end of a line only. More extended pattern
matching is available. Unless nomagic is set
in the .exrc file, the characters ., [, *,
and - in the search pattern must be preceded
with a \ to get them to work as expected.

Moves to the first character of the current
line. Also used to form numbers after an
initial 1-9.

Used to form numeric arguments to commands

A prefix for the commands for file and
option manipul~tio~, and for escapes to the
system. Input 1S g1ven on the bottom .line
and terminated with a RETURN; and the command

Zilog 68

VI

<

=

>

?

@

A

B

C

D

E

F

G

(.
69

Zilog VI

then executed. If the colon (:) is hit
accidentally, return by hitting DEL (or RUB).

Shifts lines left one shiftwidth (normally 8
spaces) • Like all operators, affects lines
when repeated, as in «. Counts are passed
through to the basic object, thus 3« shifts
three lines.

Reindents line for LISP, as though they were
typed in with lisp and autoindent set.

Shifts lines right one shiftwidth (normally 8
spaces). Affects lines when repeated as in
». Counts repeat the basic object.

Scans backwards; the opposite of I.
details see the I description above.

For

If this is the
a \ to type
normally backs
line.

kill character, escape it with
it in during input mode, as it
over input on the current

Appends at the end of line, a synonym for $a

Backs up a word, where words are composed of
non-blank sequences, placing the cursor at
the beginning of the word. A count repeats
the effect.

Changes the rest of the text on the current
line; a synonym for c$.

Deletes the rest of the text on the current
line; a synonym for d$.

Moves forward to the end of a word, defined
as blanks and non-blanks, like Band W. A
count repeats the effect.

Finds a single following character, backwards
in the current line. A count repeats this
search that many times.

Goes to the line number given as preceding
argument, or the end of the file if no
preceding count is given. The screen is
redrawn with the new current line in the
center if necessary.

Zilog 69

VI

H

I

J

K

L

M

N

o

P

70

Zilog VI

Home arrow. Homes th~ cursor to the top line
of the screen. If a count <n> is given, then
the cursor moves to the nth line of the
screen. In any case, the cursor moves to the
first non-white character on the line. If
used as the target of an operator, full lines
are affected.

Inserts at the beginning of a line; a synonym
for T i.
Joins together lines, supplying appropriate
white space; one space between words, two
spaces after a ., and no spaces at all if the
first character of the joined line is). A
count causes that many lines to be joined
rather than the default two.

Unused.

Moves the cursor to the first non-white char­
acter of the last line on the screen. With a
count <n> to the first non-white character on
nth line from the bottom. Operators affect
whole lines when used with L.

Moves the cursor to the middle line on the
screen, at the first non-white character on
the line.

Scans for the next match of the last pattern
given to / or?, but in the reverse direc­
tion; this is the reverse of n.

Opens a new line above the current line and
inputs text there. Terminate with (ESC). A
count can be used on dumb terminals to
specify a number of lines to be opened; this
is generally obsolete, as the slowopen option
works better.

Puts the last deleted text back before/after
the cursor. The text goes back as whole
lines above the cursor if it was deleted as
whole lines. Otherwise, the text is inserted
between the characters before and at the cur­
sor. May be preceded by a named buffer
specification "x to retrieve the contents of
the buffer; buffers 1-9 contain deleted
material, buffers a-z are available for gen­
eral use.

Zilog 70

(

\

(

VI

71

Q

R

S

T

U

V

w

x

Y

ZZ

[[

Zilog VI

Quits from vi to ex command mode. In this
mode, whole lines form commands, ending with
a RETURN. For all commands; the editor ex
prompts with the colon.

Replaces characters on the screen with char­
acters you type (overlay fashion). Terminate
with (ESC).

Changes whole lines, a synonym for cc. A
count substitutes for that many lines. The
lines are saved in the numeric buffers, and
erased on the screen before the sUbstitution
begins.

Takes a single following character, locates
the character before the cursor in the
current line, and places the cursor just
after that character. A count <n> repeats
the effect n times. Most useful with opera­
tors such as d.

Restores the current line to its state
before you started changing it.

Unused.

Moves forward to the beginning of a word in
the current line, where words are defined as
sequences of blank/non-blank characters. A
count <n> repeats the effect n times.

Deletes the character before the cursor. A
count repeats the effect, but only characters
on the current line are deleted.

Yanks a copy of the current line into the
unnamed buffer, to be put back by a later p
or P; a very useful synonym for yy. Count
<n> yanks n lines. May be preceded by a
buffer name to put lines in that buffer.

Exits the editor (Same as :xRETURN).
changes have been made, the buffer is
out to the current file. Then the
quits.

If any
written
editor

Backs up to the previous section boundary. A
section begins at each macro in the sections
option, normally a ".NH" or ".SH" and also at
lines which start with a formfeed A L• Lines
beginning with { also stop [[; this makes it

Zilog 71

VI

72

\

]J

i

a

b

c

Zilog VI

useful for looking backwards, a furiction at a
time, in C programs. If the option ~ is
set, stops at each (at the beginning of a
line, and is thus useful for moving backwards
at the top level LISP objects.

Unused

Forward to a section boundary; see [[for a
definition.

Moves to the first non-white position on the
current line.

Unused.

When the ' is followed by another 'the cur­
sor returns to the previous context. The
previous context is set when the cursor is
moved from the line. When followed by a
letter a-z, returns to the position which was
marked with this letter by the m command.
When used with an operator such as d, the
operation takes place from the exact marked
place to the current position within the
line. When is used, the operation takes
place over complete lines. See forward quote
(I) •

Appends arbitrary text after the current cUr­
sor position; the insert can continue onto
multiple lines by using RETURN within the
insert. A count causes the inserted text to
be replicated, but only if the inserted text
is all on one line. The insertion terminates
with (ESC).

Backs up to the beginning of a word in the
current line. A word is a sequence of
alphanumerics, or a sequence of special char­
acters. A count <n> repeats the effect n
times.

An operator that changes the following object
and replaces it with following input text.
The c command must take an object, such as
the operator w. Terminated by (ESC). If
more than one line is affected, then the pre­
vious text is saved in the numeric named
buffers. If only part of the current line is
affected, then the last character to be
changed is marked by $. A count <n> affects

Zilog 72

VI

~
i

\ ,

d

e

f

g

h

i

j

k

1

m

n

(
73

Zilog VI

n objects. For example, both 3c) and c3)
change the following three sentences.

An operator d deletes the following object;
an object is an operator like w. If more
than part of a line is affected, the text is
saved in the numeric buffers. A count <n>
affects n objects. Thus 3dw is the sames as
d3w.

Advances to the end of the next word, defined
as for band w. A count <n> repeats the
effect n times.

Finds the first instance of the next charac­
ter following the cursor on the current line.
A count <n> repeats n times.

Unused.

Arrow keys h, j, k, 1, and H.

Left arrow. Moves the cursor one character
to the left. hand CTRL-H have the same
effect. On terminals that sena escape
sequences (such as vt52, clOO, or hp), the
arrow keys cannot be used. A count repeats
the effect.

Inserts text before the cursor; otherwise
like a.

Down arrow. Moves the cursor one line down
in the same column. If the position does not
exist, Yi comes as close as possible to the
same column. synonyms include A J (linefeed)
and AN.

Up arrow. Moves the cursor one line up.
is a synonym.

Right arrow.
to the right.

Moves the cursor one
SPACE is a synonym.

character

Marks the current position of the cursor in
the mark register, which is specified by the
next character a-z. Return to this position
or use with an operator using' or '.

Repeats the last string search command.

Zilog 73

VI

o

p

q

r

s

t

u

v

w

x

y

74

Zilog VI

Opens new lines below the current line; oth­
erwise like o.

Puts texts after/below the cursor; otherwise
like P.

Unused.

n~places the single character at the cursor
with another single character. The new char­
acter may be a RETURN; this is the easiest
way to split lines. A count replaces each of
the following count characters with the sin­
gle character given; see R, which is usually
more useful.

Changes the single character under the cursor
to the text that is inserted. Terminate with
(ESC). With a count, the count characters on
the current line are changed. the last char­
acter to be changed is marked with $ (as in
c) •

Advances the cursor up to the character
before the next character typed. Most useful
with operators such as d and c to delete the
characters up to a following character. Use
• to delete more.

Undoes the last change made to the current
buffer. If repeated, will alternate between
these two states. When used after an insert
which inserted text on more than one line,
the lines are saved in the numeric named
buffers.

Unused.

Advances to the beginning of the next word,
as defined by b.

Deletes the single character under the cur­
sor. With a count deletes that many charac­
ters forward from the cursor pOSition, but
only on the current line.

An operator, yanks the following object into
the unnamed temporary buffer. If preceded by
a named buffer specification, HZ, the text is
placed in that buffer also. Text can be
recovered by a later p or P.

Zilog 74

VI

z

{

}

CTRL-? (DEL)

75

Zilog VI

Redraws the screen with the current line
. placed as specified by the following charac­
ter; RETURN specifies the top of the screen,
• the center of the screen, and - at the bot­
tom of the screen. A count may be given
after the z and before the following charac­
ter to specify the new screen size for the
redraw. A count before the z gives the
number of the line to place in the center of
the screen instead of the default current
line.

Retreats to the beginning of the preceding
paragraph. A paragraph begins at each macro
in the paragraphs option, normally, '.IP',
'.LP,' '.PP,' '.QP,' and '.bp.' A paragraph
also begins after a completely empty line,
and each section boundary (see [[above).

Places the cursor on the character in the
column specified by the count.

Advances to the beginning of the next para­
graph.

Unused.

Interrupts the editor, returning it to com­
mand accepting state.

Zilog 75

-.

VI Zilog VI

76 Zilog 76

VI

77

Zilog VI

APPENDIX D

vi QUICK REFERENCE

Interrupting and Canceling

File manipulation

:w
:wq
:q
: q!
:e~

: e!
:e i
:w ~
:w I
: lcmd
:n
:f
:sh

write back changes
write and quit
quit
quit; discard changes
edit file ~
reedit, discard changes
edit alternate file (also CTRL-A)
write file ~
overwrite file ~
run ~, then return
edit next file in arglist
show current file and line number (also CTRL-g)
escape to shell (CTRL-d) for return)

Cursor Positioning within file

CTRL-f
CTRL:"b
CTRL-d
CTRL-u
G
/<string>
?<string>
n
N
/<string>/+n
?<string>?-n
]]
[[
%

forward screenful
backward screenful
scroll down half screen
scroll up half screen
goto line (end default)
next line matching <string>
previous line matching <string>
repeat last / or ?
reverse last / or ?
n'th line after <string>
n'th line before <string>
next section/function
previous section/function
find matching parenthesis or brace

Marking and returning
, ,
I I

mx
'x
IX

return to previous position in text
cursor moves to first non-white character
on the line at the previous position
mark position with letter x
to mark x at position within line
to mark x at first non-white character in line

Zilog 77

VI

78

Line positioning

H
L
M
+

RETURN

-j
k

Zilog

home window line
last window line
middle window line
next line, at first non-white
previous line, at first non-white
same as carriage return; moves cursor to

beginning of next line
next line, same column
previous line, same column

Cursor positioning within line

T
a
$
h or ->
1 or <­
CTRL-H
space
fx
Fx
tx
Tx
;
,
I

first non white
beginning of line
end of line
forward
backwards
same as <-
same as ->
find x forward
f backward
upto x forward
back upto x
repeat last f F t or T
inverse of ;
to specified column

Words, sentences, paragraphs

w
b
e
)
}
(
{
W
B
E

word forward
back word
end of word
beginning of next sentence
beginning of next paragraph
beginning of previous sentence
beginning of previous paragraph
blank delimited word
back W
to end of W

Zilog

VI

78

VI

79

Zilog

Corrections during insert

CTRL-H
CTRL-W
erase
kill
\
ESC
CTRL-?
CTRL-D
"CTRL-D
OCTRL-D
CTRL-V

erase last character
erases last word
your erase; same as CTRL-h
your kill; erase input this line
escapes CTRL-h; your erase and kill
ends insertions, back to command
interrupt, terminates insert
backtab over auto indent
kill autoindent, for one line only
kills all auto indent
quote non-printing character

Insert and replace

a
i
A
I
o
o
rx
R

append after cursor
insert before cursor
append at end of line
insert before first non-blank
open line below
Open above
replace single character with x
replace characters

Operators (double to affect lines)

d
c
<
>

=
y

dele-te
change
left shift
right shift
filter through command
indent for LISP
yank lines to buffer

Miscellaneous operations

C
D
s
S
J
x
X
y

change rest of line
delete rest of line
substitute chars
substitute lines
join lines
delete character at cursor
delete character before cursor
yank lines

Zilog

VI

79

VI

80

Yank and

p
P
xp
"xd
"xy

Put

Zilog

put back line(s) after current line
put back line(s) before current line
put from buffer x
delete into buffer x
yank to buffer x

VI

Undo, redo, retrieve

u
U .
"dp

undo last change
restore current line
repeat last change
retrieve d th last delete

Entering/leaving vi

%vi name
ZZ

The display

Last line

@lines
-lines
CTRL-x
tabs

Simple Commands

dw
de
dd
3dd
i.t.eAt.ESC
cw~ESC
ea.s.ESC
xp

edit ~ at top
exit from vi, saving changes

Error messages, echoing input to :/ ?
and 1, feed back about i/o and large
changes.
On screen only, not in file (on dumb terminals)
Lines past end of file
Control characters, CTRL-? is delete
~xpand to spaces, cursor at last

delete a word
delte a word, leave punctuation
delete a line
delete 3 lines
insert text ~
change word to ~
pluralize word
transpose characters

Zilog 80

\

YACC

*

c
1

Zilog YACC

YACC*

YET ANOTHER COMPILER-COMPILER

This information is based on an article originally
written by Stephen C. Johnson, Bell Laboratories.

Zilog 1

YACC

2

Zilog YACC

PREFACE

This document describes the basic p~ocess of preparing a
Yacc specification. Section 1 glves an introduction to
Yacc, Section 2 describes the preparation of grammar rules,
Section 3 the preparation of the user-supplied actions asso­
ciated with these rules, and Section 4 the preparation of
lexical analyzers. Section 5 describes the operation of the
parser. Section 6 discusses various reasons why Yacc may be
unable to produce a parser from a specification, and how to
solve them. Section 7 describes a simple mechanism for han­
dling operator precedences in arithmetic expressions. Sec­
tion 8 discusses error detection and recovery. Section 9
discusses the operating environment and special features of
the parsers Yacc produces. Section 10 gives some sugges­
tions that should improve the style, Section 11 discusses
some advanced topics, and Section 12 gives acknowledgments.

Appendix A gives a summary of the Yacc input syntax and
Appendix B has a brief example. Appendix C gives an example
using some of the more advanced features of Yacc. Appendix
D describes mechanisms and syntax no longer actively sup­
ported, but is provided for historical continuity with older
versions of Yacc.

Zilog 2

YACC

(-

3

Zilog YACC

TABLE OF CONTENTS

SECTION 1 INTRODUCTION ••••••••••••••••••••••••••••••• 5

SECTION 2 BASIC SPECIFICATIONS ••••••••••••••••••••••• 8

SECT ION 3 ACT IONS •••••••••••••••••••••••••••••••••••• 11

SECTION 4 LEXICAL ANALYSIS ••••••••••••••••••••••••••• 14

SECTION 5 HOW THE PARSER WORKS ••••••••••••••••••••••• 16

SECTION 6 AMBIGUITY AND CONFLICTS •••••••••••••••••••• 21

SECTION 7 PRECEDENCE ••••••••••••••••••••••••••••••••• 26

SECTION 8 ERROR HANDLING ••••••••••••••••••••••••••••• 29

SECTION 9 THE YACC ENVIRONMENT ••••••••••••••••••••••• 32

SECTION 10 HINTS FOR PREPARING SPECIFICATIONS ••••••••• 34

10.1 General .•..•.•••••....•....•••.•...•.• 34
10.2 Input Style ••••••••••••••••••••••••••• 34
10.3 Left Recursion •••••••••••••••••••••••• 34
10.4 Lexical Tie-Ins ••••••••••••••••••••••• 35
10.5 Reserved Words •••••••••••••••••••••••• 36

SECTION 11 ADVANCED TOPICS •••••••••••••••••••••••••••• 37

11.1 Simulating Error and Accept
in Actions 37

11.2 Accessing Values in Enclosing Rules ••• 37
11.3 Support for Arbitrary Value Types ••••• 38

APPENDIX A YACC INPUT SYNTAX ••••••••••••••••••••••••• 40

APPENDIX B A SIMPLE EXAMPLE •••••••••••••••••••••••••• 43

Zilog 3

YACC Zilog YACC

TABLE OF CONTENTS (continued)

APPENDIX C AN ADVANCED EXAMPLE •••••••••••••••••••••• 46

APPENDIX D OLD FEATURES ••••••••••••••••••••••••••••• 52

4 Zilog 4

YACC

(-

5

Zilog YACC

SECTION 1

INTRODUCTION

Yacc is a general tool for imposing structure on the input
to a computer program. The Yacc user prepares a specifica­
tion of the input process. This includes rules describing
the input structure, code to be invoked when these rules are
recognized, and a low-level routine to do the basic input.
Yacc then generates a function to control the input process.
This function, a parser, calls the user-supplied low-level
input routine (the lexical analyzer) to pick up the basic
items (tokens) from the input stream. These tokens are
organized according to the input structure rules (grammar
rules). When one of these rules has been recognized, user
code supplied for this rule (an action) is invoked. Actions
have the ability to return values and make use of the values
of other actions.

Yacc is written in a portable dialect of the C Programming
Language, and the actions and output subroutine are in C as
well. Many of the syntactic conventions of Yacc also follow
C.

The input specification is a collection of grammar rules.
Each rule describes an allowable structure and gives it a
name. For example, one grammar rule is

date . . month_name day , , , year

Here, ~, month name, ~, and ~ reptesent structures
of interest in the input process; month name, ~, and ~
are defined elsewhere. The comma (,) is enclosed in single
quotes to imply that it is to appear in the input. The
colon and semicolon serve as punctuation in the rule and
have no significance in controlling the input. Thus, with
proper definitions, the input

July 4, 1776

is matched by this rule.

An important part of the input process is carried out by the
lexical analyzer. This user routine reads the input stream,
recognizing the low-level structures, and communicates these
tokens to the parser. A structure recognized by the lexical
analyzer is called a terminal symbol, or token, and the
structure recognized by the parser is called a nonterminal
symbol.

Zilog 5

YACC

6

Zilog YACC

There is considerable leeway in deciding whether to recog­
nize structures using the lexical analyzer or grammar rules.
For example, the rules

month_name
month_name

. . .
'J' 'a ' 'n'
'F' 'e' 'b '

'D' 'e ' 'c '

; . ,

;

can be used' in the previous example. The lexical analyzer
recognizes only individual letters, and month name is a non­
terminal symbol. Such low-level rules waste time and space,
and can complicate the specification beyond Yacc's ability
to deal with it. Usually, the lexical analyzer recognizes
the month names, and returns an indication that a month name
was seen; in this case, month name is a token.

Literal characters such as , must also be passed through the
lexical analyzer, and are also considered tokens.

Specification files are very flexible. It is relatively
easy to add to the previous example the rule

date : month '/' day '/' year

allowing

7 / 4 / 1776

as a synonym for

July 4, 1776

. ,

In most cases, this new rule can be inserted into a working
system with minimal effort and little danger of disrupting
existing input.

The input being read may not conform to the specifications.
The resulting input errors are detected early with a left­
to-right scan. Thus, not only is the chance of reading and
computing with bad input data substantially reduced, but the
bad data is usually found quickly. Error handling, provided
as part of the input specifications, permits the reentry
of bad data, or the continuation of the input process after
skipping over the bad data.

In some cases, Yacc fails to produce a parser when given a
set of specifications. For example, the specifications may
be self-contradictory, or they may require a more powerful
recognition mechanism than that available to Yacc. The

Zilog 6

YACC

7

Zilog YACC

former cases represent design errors; the latter cases are
often corrected by making the lexical analyzer more powerful
or by rewriting some of the grammar rules. While Yacc can­
not handle all possible specifications, its power compares
favorably with similar systems. The constructions that are
difficult for Yacc to handle are also frequently difficult
for human beings to handle. The discipline of formulating
valid Yacc specifications often reveals errors of design
early in the program development.

Zilog 7

YACC

8

Zilog YACC

SECTION 2

BASIC SPECIFICATIONS

Names refer to either tokens or nonterminal symbols. Yacc
requires token names to be declared as such. In addition,
it is useful to include the lexical analyzer and other pro­
grams as part of the specification file. Thus, every
specification file consists of three sections: the declara­
tions, (grammar) rules, and programs. The sections are
separated by double percent (%%) marks. (The single percent
(%) is generally used in Yacc specifications as an escape
character.) In other words, a full specification file looks
like

declarations
%%
rules
%%
programs

The declaration section can be empty. If the programs sec­
tion is omitted, the second %% mark is omitted. Thus, the
smallest legal Yacc specification is

%%
rules

Blanks, tabs, and new lines are ignored except that they
cannot appear in names or multicharacter reserved symbols.
Comments can appear wherever a name is legal, and are
enclosed in /* ••• */, as in C language and PL/I.

The rules section is made up of one or more grammar rules.
A grammar rule has the form:

A BODY . ,
A represents a nonterminal name, and ~ represents a
sequence of zero or more names and literals. The colon and
the semicolon are Yacc punctuation.

Names have arbitrary length, and can be made up of letters,
dot (.), underscore (_), and noninitial digits. Upper and
lowercase letters are distinct. The names used in the body
of a grammar rule can represent tokens or nonterminal sym­
bols.

A literal cons~sts of a character enclosed in single quotes
(I I). As ~n C, the backslash (\) is an escape character
within literals, and all the C escapes are recognized.

Zilog 8

YACC

9

I\n l new line
I\rl return

Zilog

1\11 single quote (')
1\\1 backslash (\)
I\t' tab
'\b ' backspace
'\f' form feed
I\XXX' ·xxx" in octal

YACC

The NUL character ('\0' or 0) is never used in grammar
rules.

If there are several grammar rules with the same left side,
the vertical bar (I) can be used to avoid rewriting the left
side. In addition, the semicolon at the end of a rule can
be dropped before a vertical bar. Thus the grammar rules

A · B C D . · I

A · E F . • I

A · G ; ·
can be given to Yacc as

A B C D
E F
G

;

It is not necessary that all grammar rules with the same
left side appear together in the grammar rules section,
although it makes the input more readable and easier to
change.

If a nonterminal symbol matches the empty string, this can
be indicated as:

empty : .
I

Names representing tokens must be declared; this is most
simply done by writing

%token namel name2. • •

in the declarations (Sections 4, 6, and 7). Every name not
defined in the declarations section is assumed to represent
a nonterminal symbol. Every nonterminal symbol must appear
on the left side of at least one rule.

Of all thenonterminal symbols, the start symbol has partic­
ular importance because it is recognized by the parser.
This symbol represents the largest, most general structure
described by the grammar rules. By default, the start

Zilog 9

YACC

(
~.

i'

II' •

10

Zilog YACC

symbol is the left side of the first grammar rule in the
rules section. It is recommended to declare the start sym­
bol explicitly in the declarations section using the %start
keyword:

%start symbol

The end of the input to the parser is signaled by a special
token called the endmarker. If the tokens up to, but not
including, the endmarker form a structure that matches the
start symbol, the parser function returns to its caller
after the endmarker is seen and accepts the input. If the
endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical
return the endmarker when appropriate (Section
the endmarker represents some I/O status, such
file" or "end-of-record."

Zilog

analyzer to
4). Usually,
as "end-of-

10

YACC

11

Zilog YACC

SECTION 3

ACTIONS

With each grammar rule, there are associated actions to be
performed each time the rule is recognized in the input pro­
cess. These actions can return values and can obtain the
values returned by previous actions. The lexical analyzer
can also return values for tokens.

An action is an arbitrary C statement and as such can do
input and output, call subprograms, and alter external vec­
tors and variables. An action is specified by one or more
statements enclosed in braces ({ and }). For example,

and

A '(I B I)'
{ hello(1, "abc"); }

xxx YYY ZZZ
{ printf(" a message\n");

flag = 25; }

are grammar rules with actions.

To facilitate
parser, the
symbol dollar
context.

easy communication between the actions and the
action statements are slightly altered. The
sign ($) is used as a signal to Yacc in this

To return a value, the action normally sets the pseudo­
variable "$$" to some value. For example, an action that
does nothing but return the value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the
lexical analyzer, the action uses the pseudovariables $1,
$2, ••• , which refer to the values returned by the com­
ponents of the right side of a rule. Thus, if the rule is

A BCD ;

for example, then $2 has the value returned by C, and $3 the
value returned by D.

As another example, consider the rule:

expr : , (, expr ')' ;

Zilog 11

YACC

12

Zilog YACC

The value returned by this rule is the value of the ~ in
parentheses. This can be indicated by

expr : I (I expr I)' { $$ = $2; }

By default, the value of a rule is the value of the first
element in it ($1). Thus, grammar rules of the form

A B ;

frequently do not need to have an explicit action.

In the previous examples, all the actions come at the end of
their rules. Sometimes it is desirable to get control
before a rule is fully parsed. Yacc permits an action to be
written in the middle of a rule as well as at the end. This
rule returns a value, accessible through the usual mechanism
by the actions to the right of it. In turn, it can access
the values returned by the symbols to its left. Thus, in
the rule

A B
{ $$ = 1; }

C
{ y = $3; } . ,

the effect is to set ~ to 1, and set ~ to the value returned
by C.

Actions that do not terminate a rule are actually handled by
Yacc by manufacturing a new nonterminal symbol name, and a
new rule matching this name to the empty string. The inte­
rior action is the action triggered by recognizing this
added rule. Yacc treats the previous example as if it had
been written:

$ACT /* empty */
{ $$ = 1; }

;

A B $ACT C
{ x = $2; y = $3; }

;

In many applications, output is not done directly by the
actions; rather, a data structure, such as a parse tree, is
constructed in memory, and transformations are applied to it
before output is generated. Parse trees are particularly
easy to construct, given routines to build and maintain the
tree structure desired. For example, suppose there is a C
function ~, written so that the call

Zilog 12

YACC

13

Zilog YACC

node (L, nl, n2)

creates a node with label L, and descendants nl and n2, then
returns the index of the newly created node. The parse tree
is built by supplying actions such as:

expr : expr '+' expr
{ $$ = node('+', $1, $3)~ }

in the specification.

Other variables can be defined for the actions. Declara­
tions and definitions can appear in the declarations sec­
tion, enclosed in the marks %{ and %}. These declarations
and definitions have global scope, so they are known to the
action statements and the lexical analyzer. For example,

%{ int variable = O~ %}

can be placed in the declarations section, making variable
accessible to all of the actions. The Yacc parser uses only
names beginning in "yy"~ such names must be avoided.

In these examples, all the values are integers. A discus­
sion of other value types is found in Section 11.

Zilog 13

YACC

14

Zilog

SECTION 4

LEXICAL ANALYSIS

YACC

A lexical analyzer must be supplied to read the input stream
and communicate tokens (with values, if desired) to the
parser. The lexical analyzer is an integer-valued function
called yylex. The function returns an integer (the token
number), representing the kind of token read. If there is a
value associated with that token, it must be assigned to
the external variable yylval.

The parser and the lexical analyzer must agree on these
token numbers for communication between them to take place.
The numbers are chosen by Yacc or by the user. In either
case, the Wi define" mechanism of C allows the lexical
analyzer to return these numbers symbolically. For example,
suppose that the token name DIGIT has been defined in the
declarations section of the Yacc specification file. The
relevant portion of the lexical analyzer looks like the fol­
lowing code:

yylex () {
extern int yylval;
int c;
• • •
c = getchar () ; · . .
switch (c) { . . .
case 10 1 :

case Ill: . . .
case 19 I:

• • •

yylval = c-IO I;
return(DIGIT);
• • •
}

The intent is to return a token number of DIGIT and a value
equal to the numerical value of the digit. Provided that
the lexical analyzer code is placed in the programs section
of the specification file, the identifier DIGIT is defined
as the token number associated with the token DIGIT.

This mechanism leads to clear, easily modified lexical
analyzers. In the grammar, avoid using any token names that
are reserved or significant in C or the parser. For exam­
ple, the use of token names if or while causes severe diffi­
culties when the lexical analyzer is compiled. The token

Zilog 14

YACC

15

Zilog YACC

name error is reserved for error handling and must not be
used (Section 8) •

In the default situation, the token numbers are chosen ~y
Yacc. The default token number for a literal character 1S
the numerical value of the character in the local character
set. Other names are assigned token numbers starting at
257.

To assign a token number to a token (including literals),
follow the first appearance of the token name or literal in
the "declarations section with a nonnegative integer. This
integer is the token number of the name or literal. Names
and literals not defined by this mechanism retain their
default definition. All token numbers must be distinct.

The endmarker must have token number 0 or a negative number.
This token number cannot be redefined by the user1 thus, all
lexical analyzers must be prepared to return 0 or negative
as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the
~ program. These lexical analyzers are designed to work
in close harmony with Yacc parsers. The specifications for
these lexical analyzers use regular expressions instead of
grammar rules. .

Zilog 15

YACC

(

16

Zilog YACC

SECTION 5

HOW THE PARSER WORKS

Yacc turns the specification file into a C program that
parses the input according to the specification given. The
parser itself is relatively simple, and understanding how it
works makes treatment of error recovery and ambiguities much
more comprehensible.

The parser produced by Yacc consists of a finite state
machine with a stack. The parser is also capable of reading
and retaining the next input token, called the lookahead
token. The current state is always the one on the top of
the stack. The states of the finite state machine are given
small integer labels; initially, the machine is in state 0,
the stack contains only state 0, and no lookahead token has
been read.

The machine has only four actions available to it; they are
called shift, reduce, accept, and error. Movement of the
parser is done as follows:

1. Based on its current state, the parser determines
whether it needs a lookahead token to determine
what action should be done; if it needs one, and
does not have one, it calls-yylex to obtain the
next token.

2. Using the current state, and the lookahead token
if needed, the parser determines its next action
and carries it out. This results in states being
pushed onto the stack or popped off the stack, and
in the lookahead token being processed or left
alone.

The shift action is the most common action the parser takes.
Whenever a shift action is taken, there is always a look­
ahead token. For example, in state 56 there is an action:

IF shift 34

which means in state 56, if the lookahead token is IF, the
current state (56) is pushed down on the stack, and state 34
becomes the current state (on the top of the stack). The
lookahead token is cleared.

The reduce action keeps the stack from growing without
bounds. Reduce actions are taken when the parser has seen
the right side of a grammar rule and is prepared to announce
that it has seen an instance of the rule, replacing the

Zilog 16

YACC

17

Zilog YACC

rig~t side with the left side. It may be necessary to con­
sult the lookahead token to decide whether to reduce. This
is not usually the case, since the default action
(represented by a .) is often a reduce action.

Reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, which
can lead to some confusion. The action

• reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to ~tate 34.

Suppose the rule being reduced is

A x y z . ,
The reduce action depends on the left symbol (A in this
case), and the number of symbols on the right side (three in
this case). To reduce, first pop off the top three states
from the stack. (The number of states popped equals the
number of symbols on the right side of the rule.) After pop­
ping these states, a state is uncovered that is the state
the parser was in before beginning to process the rule.
Using this uncovered state and the symbol on the left side
of the rule, perform what is in effect a shift of A. A new
state is obtained, pushed onto the stack, and parsing con­
tinues. There are significant differences between the pro­
cessing of the left symbol (called a goto action) and an
ordinary shift of a token. The lookahead token is cleared
by a shift, and is not affected by a goto. The uncovered
state contains an entry such as:

A goto 20

causing state 20 to be pushed onto the stack and become the
current state.

In effect, the reduce action "turns back the clock" in the
parser, popping the states off the stack to go back to the
state where the right side of the rule was first seen. The
parser then behaves as if it had seen the left side at that
time. If the right side of the rule is empty, no states are
popped off the stack~ the uncovered state is in fact the
current state.

The reduce action is also important
user-supplied actions and values.

Zilog

in the treatment of
When a rule is reduced,

17

YACC

(

18

Zilog YACC

the code supplied with the rule is executed before the stack
is adjusted. In addition to the stack holding the states,
another stack, running in parallel with it, holds the values
returned from the lexical analyzer and the actions. When a
shift takes place, the external variable yylval is copied
onto the value stack. After the return from the user code,
the reduction is carried out. When the goto action is done,
the external variable yyval is copied onto the value stack.
The pseudovariables $1, $2, etc. refer to the value stack.

The other two parser actions are conceptually much simpler.
The accept action indicates that the entire input has been
seen and that it matches the specification. This action
appears only when the lookahead token is the endmarker, and
indicates that the parser has successfully done its job.
The error action, on the other hand, represents a place
where the parser can no longer continue parsing according to
the specification. The input tokens it has seen, together
with the lookahead token, cannot be followed by anything
that results in a legal input. The parser reports an error,
and attempts to recover and resume parsing. The error
recovery (as opposed to the detection of error) is discussed
in Section 8.

Consider the specification

%token DING DONG DELL
%% .
rhyme sound place

;
sound DING DONG

;
place DELL

;

When Yacc is invoked with the
y.output is produced, with a
the parser. The y.output file
(with some statistics stripped

-v option, a file called
human-readable description of
corresponding to this grammar
off the end) is:

state 0
$accept _rhyme $end

DING shift 3
error

rhyme go to 1
sound goto 2

state 1
$accept rhyme_$end

Zilog 18

YACC

19

Zilog

Send a,ccept
• error

state 2
rhyme sound_place

DELL shift 5
error

place go to 4

state 3
sound : DING_DONG

DONG shift 6
• error

state 4
rhyme . sound place_ .

reduce 1

state 5
place DELL_ (3)

• reduce 3

state 6
sound DING DONG_

reduce 2

YACC

(1)

(2)

In addition
description
state. The
what is yet

to the actions for each state, there is a
of the parsing rules being processed in each

_ character indicates what has been seen and
to come in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while
processing this input.

Initially, the current state is state O. The parser refers
to the input to select among the actions available in state
0, so the first token (DING) is read, becoming the lookahead
token. The action in state 0 on DING is Ashift 3,n so state
3 is pushed onto the stack, and the lookahead token is
cleared. State 3 becomes the current state. The next
token, DONG, is read, becoming the lookahead token. The
action in state 3 on the token DONG is nshift 6,A so state 6
is pushed onto the stack, and the lookahead is cleared. The
stack now contains 0, 3, and 6. In state 6, without even

Zi10g 19

YACC

20

Zilog YACC

consulting the lookahead token, the parser reduces by rule
2.

sound DING DONG

This rule has two symbols on the right side, so two states,
6 and 3, are popped off the stack; uncovering state 0. Con­
sulting the description of state 0, looking for a go to on
sound,

sound go to 2

is obtained; thus, state 2 is pushed onto the stack, becom­
ing the current state.

In state 2, the next token, DELL, must be read. The action
is "shift 5," so state 5 is pushed onto the stack (which now
has 0, 2, and 5 on it) and the lookahead token is cleared.
In state 5, the only action is to reduce by rule 3. This
has one symbol on the right side, so one state (5) is popped
off, and state 2 is uncovered. The go to in state 2 on
place, the left side of rule 3, is state 4. Now the stack
contains 0, 2, and 4. In state 4, the only action is to
reduce by rule 1. There are two symbols on the right, so
the top two states are popped off, uncovering state ° again.
In state 0, there is a goto on rhyme causing the parser to
enter state 1. In state 1, the input is read; the endmarker
is obtained, indicated by "Send" in the X.output file. The
action in state 1 when the endmarker is seen is to accept,
successfully ending the parse.

Consider how the parser
incorrect strings as
DELL DELL, etc. A few
simple examples will
complicated contexts.

works when confronted with such
DING DONG DONG, DING DONG, DING DONG

minutes spent with this and other
be repaid when problems arise in more

Zilog 20

YACC

21

Zilog YACC

SECTION 6

AMBIGUITY AND CONFLICTS

A set of grammar rules is ambiguous if there is some input
string that can be structured in two or more different ways.
For example, the grammar rule

expr : expr I.- 1 expr

is a natural way of expressing the fact that one way of
forming an arithmetic expression is to put two other expres­
sions together with a minus sign between them. Unfor­
tunately, this grammar rule does not completely specify the
way that all complex inputs should be structured. For exam­
ple, if the input is

expr expr expr

the rule allows this input to be structured as either

expr expr expr

or as

expr expr expr

The first is called left association, and the second is
called right association.

Yacc detects such ambiguities when it is attempting to build
the parser. Consider the problem that confronts the parser
when it is given an input such as

expr expr expr

When the parser has read the second expr, the input that it
has seen:

expr expr

matches the right side of the grammar rule above. The
parser could reduce the input by applying this rule. After
applying the rule, the input is reduced to ~ (the left
side of the rule). The parser then reads the final part of
the input:

expr

and again reduces. The effect of this is to take the left
associative interpretation.

Zilog 21

YACC

22

Zilog YACC

Alternatively, when the parser has seen

expr expr

it defers the immediate application of the rule, and contin­
ues reading the input until it had seen

expr expr expr

It then applies the rule to the rightmost three symbols,
reducing them to ~ and leaving

expr expr

Now the rule can be reduced once more; the effect is to take
the right associative interpretation. Thus, having read

expr expr

the parser can do two legal things, a shift or a
and has no way of deciding-between them. This
shift/reduce conflict. It may also happen that
has a choice of two legal reductions; this
reduce/reduce conflict. There are never any
conflicts.

reduction,
is called a
the parser
is called a
shift/shift

When there are shift/reduce or reduce/reduce conflicts, Yacc
still produces a parser. It does this by selecting one of
the valid steps wherever it has a choice. A rule describing
which choice to make in a given situation is called a disam­
biguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do
the shift.

2. In a reduce/reduce conflict, the default is to
reduce by the earlier grammar rule in the input
sequence.

Rule 1 implies that reductions are deferred in favor of
shifts whenever there is a choice. Rule 2 gives rather
crude control over the behavior of the parser, but
reduce/reduce conflicts should be avoided.

Conflicts arise because of mistakes in input or logic, or
because the grammar rules, while consistent, requlre a more
complex parser than Yacc constructs. The use of actions
within rules can also cause conflicts if the action must be
done before the parser can be sure which rule is being
recognized. In these cases,· the application of

Zilog 22

YACC

(
23

Zilog YACC

disambiguating rules is inappropriate, and leads to an
incorrect parser. For this reason, Yacc always reports the
number of shift/reduce and reduce/reduce conflicts resolved
by Rule 1 and Rule 2.

Whenever it is possible to apply disambiguating rules to
produce a correct parser, it is also possible to rewrite the
grammar rules so that the same inputs are read but there are
no conflicts. For this reason, most previous parser genera­
tors have considered conflicts to be fatal errors. This
rewriting is somewhat unnatural, and produces slower
parsers; thus, Yacc produces parsers even in the presence of
conflicts.

As an example of the power of disambiguating rules, consider
a fragment from a programming language involving an nif­
then-else n construction:

stat

. ,
IF 1(1 cond I)' stat
IF '(I cond ') I stat ELSE stat

In these rules, ~ and ~ are tokens, ~ is a nontermi­
nal symbol describing conditional (logical) expressions, and
~ is a nonterminal symbol describing statements. The
first rule is called the simple-if rule, and the second is
called the if-~ rule.

These two rules form an ambiguous construction, since input
of the form

IF Cl IF C2 Sl ELSE S2

can be structured according to these rules in two ways:

IF (Cl) {
IF C2 Sl
}

ELSE S2

or

IF (Cl) {
IF (C2 Sl
ELSE S2
}

The second interpretation is the one given in most program­
ming languages having this construct. Each ~ is associ­
ated with the last preceding nun-~Idn ~. In this exam­
ple, consider the situation where the parser has seen

Zilog 23

YACC

24

Zilog YACC

IF Cl IF (C2) Sl

and is looking at the ~. It can immediately reduce by the
simple-if rule to get

IF Cl stat

and then read the remaining input,

ELSE S2

and reduce

IF Cl stat ELSE S2

by the if-else rule. This leads to the first of groupings
of the input.

On the other hand, the ~ can be shifted, S2 read, and
then the right hand portion of

IF Cl IF C2 Sl ELSE S2

is reduced by the if-else rule to get

IF Cl stat

which is reduced by the simple-if rule. This leads to the
second of the groupings of the input, which is usually
desired.

The parser
conflict.
the parser
grouping.

can do two valid things--there is a shift/reduce
The application of Disambiguating Rule 1 tells

to shift in this case, which leads to the desired

This shift/reduce conflict arises only when there is a par­
ticular current input symbol,~, and particular inputs
already seen, such as

IF (Cl IF C2 Sl

There can be many conflicts, each associated with an input
symbol and a set of previously read inputs. The previously
read inputs are characterized by the state of the parser.

The conflict messages of Yacc are best understood by examin­
ing the verbose (-v) option output file. For example, the
output corresponding to the conflict state is:

Zilog 24

'\
I

YACC

(
25

Zilog YACC

23: shift/reduce conflict (shift 45, reduce 18) on ELSE

state 23

stat
stat

ELSE

IF
IF

cond
cond

shift 45
reduce 18

stat_ (18)
stat_ELSE stat

The first line describes the conflict, glvlng the state and
the input symbol. The ordinary state description follows,
giving the grammar rules active in the state, and the parser
actions. Recall that the underline marks the portion of the
grammar rules that has been seen. Here, in state 23, the
parser has seen input corresponding to

IF cond stat

and the two grammar rules shown are active at this time.
The parser can do two possible things. If the input symbol
is~, it shifts into state 45. State 45 has as part of
its description the line

stat IF cond stat ELSE_stat

since the ~ has been shifted in this state. Back in
state 23, the alternative action (described by.) is to be
done if the input symbol is not mentioned explicitly in the
above actions. In this case, if the input symbol is not
~, the parser reduces by Grammar Rule 18:

stat IF 1(1 cond I) 1 stat

The numbers following shift commands refer to other states,
while the numbers following reduce commands refer to grammar
rule numbers. In the ~.output file, the rule numbers are
printed after those rules that can be reduced. In most
states, there is at most one reduce action possible in the
state, and this is the default command. The user who
encounters unexpected shift/reduce conflicts should look at
the verbose output to decide whether the default actions are
appropriate.

Zilog 25

YACC

{

26

Zilog YACC

SECTION 7

PRECEDENCE

The rules given for resolving conflicts are not sufficient
in the parsing of arithmetic expressions. Most of the com­
monly used constructions for arithmetic expressions can be
naturally described by the notion of precedence levels for
operators, together with information about left or right
associativity. Ambiguous grammars with appropriate disambi­
guating rules can create parsers that are faster and easier
to write than parsers constructed from unambiguous grammars.
Writing grammar rules of the form

expr expr OP expr

and

expr UNARY expr

for all binary and unary operators creates a very ambiguous
grammar with many parsing conflicts. The precedence, or
binding strength, of all the operators, and the associa­
tivity of the binary operators must be specified as disambi­
guating rules. This information is sufficient to allow Yacc
to resolve the parsing conflicts in accordance with these
rules and to construct a parser that recognizes the desired
precedence levels and associative properties.

The precedence levels and associative properties are
attached to tokens in the declarations section. This is
done by a series of lines beginning with a Yacc keyword
(%left, %right, or %nonassoc) followed by a list of tokens.
All the tokens on the same line are assumed to have the same
precedence level and associativity. The lines are listed in
order of increasing precedence or binding strength. Thus,
the statements

% I ef t ' + ' , - ,
%left '*' 'I'

describe the precedence level and associative properties of
the four arithmetic operators. Plus and minus are left
associative, and have lower precedence than star and slash,
which are also left associative. The keyword %right is used
to describe right associative operators, and the keyword
%nonassoc is used to describe operators that cannot associ­
ate with themselves.

As an example of the behavior of these declarations, the
description

Zilog 26

YACC

27

Zilog YACC

%right '='
% 1 ef t ' + ' , - ,
%left '*' 'I'

%%

. expr expr '= , expr
expr '+ ' expr
expr '- , expr
expr ' * , expr
expr 'I' expr
NAME

1

is used to structure the input

a = b = c*d e f*g

as follows:

a = (b = (((c*d) -e) - (f*g)))

When this mechanism is used, unary operators must be given a
precedence level. Sometimes a unary operator and a binary
operator have the same symbolic representation, but dif­
ferent precedences. An example is unary and binary minus
(-); unary minus is given the same strength as multiplica­
tion, or even higher, while binary minus has a lower
strength than multiplication. The keyword, %prec, changes
the precedence level associated with a particular grammar
rule. %prec appears immediately after the body of the gram­
mar rule, before the action or closing semicolon, and is
followed by a token name or literal. It causes the pre­
cedence of the grammar rule to become that of the following
token name or literal. For example, to make unary minus
have the same precedence as multiplication, use the ·follow­
ing statements:

%left '+ '
,_ r

%left '* , 'I'
%%
expr expr '+ ' expr

expr I _ I expr
expr ' * , expr
expr I I' expr
'- , expr %prec ' * ,
NAME

1

A token declared by %left, %right, and %nonassoc need not
be, but can be, declared by %token as well.

Zilog 27

YACC

(

28

Zilog YACC

The precedence level and associativity are used by Yacc to
resolve parsing conflicts and to give rise to disambiguating
rules. Formally, the rules work as follows:

1. The precedence level and associativity properties
are recorded for those tokens and literals that
have them.

2. Some grammar rules have no precedence and associa­
tivity associated with them. In this is the case,
the precedence and associativity of the last token
or literal in the body of the rule are associated
with the grammar rule by default. If the %prec
construction is used, it overrides this default.

3. When there is a reduce/reduce conflict or a
shift/reduce conflict, and either the input symbol
or the grammar rule has no precedence level and
associativity, the two disambiguating rules given
the beginning of the section are used, and the
conflicts are reported.

4. If there is a shift/reduce conflict, and both the
grammar rule and the input character have pre­
cedence level and associativity connected to them,
the conflict is resolved in favor of the action
(shift or reduce) related to the higher precedence
level. If the precedence levels are the same,
then the associativity is used; left associative
implies reduce, right associative implies shift,
and nonassociating implies error.

Conflicts resolved by precedence levels are not counted in
the number of shift/reduce and reduce/reduce conflicts
reported by Yacc. This means that mistakes in the specifi­
cation of precedences can disguise errors in the input gram­
mar; it is a good idea to be sparing with precedences, and
use them in ncookbook" fashion until some experience has
been gained. Also, the ~.Qutput file is very useful in
deciding whether the parser is actually doing what was
intended.

Zilog 28

YACC

29

Zilog YACC

SECTION 8

ERROR HANDLING

Error handling is an extremely difficult area, and many of
the problems are semantic ones. When an error is found, for
example, it is often necessary to reclaim parse tree
storage, delete or alter symbol table entries, and, typi­
cally, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error
is found; it is more useful to continue scanning the input
to find further syntax errors. This leads to the problem of
getting the parser restarted after an error. A general
class of algorithms to do this involves discarding a number
of tokens from the input string and attempting to adjust the
parser so that input can continue.

To allow some control over this process, Yacc provides a
simple, but reasonably general feature: the token name
"error." This name is reserved for error handling and can be
used in grammar rules. It suggests places where errors are
expected and recovery can take place. The parser pops the
stack until it enters a state where the token "error" is
legal. It then behaves as if the token "error" were- the
current lookahead token, and performs the action encoun­
tered. The lookahead token is then reset to the token that
caused the error. If no special error rules have been
specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser,
after detecting an error, remains in error state until three
tokens have been successfully read and shifted. If an error
is detected when the parser is already in error state, no
message is given, and the input token is deleted.

As an example, a rule of the form

stat : error

means that on a syntax error, the parser skips over the
statement in which the error was seen. More precisely, the
parser scans ahead, 10Qking for three tokens that legally
follow a statement, and starts processing at the first of
these. If the beginnings of statements are not sufficiently
distinctive, it may make a false start in the middle of a
statement and report a second error where there is no error.

Actions can be used with these special error rules. These
actions attempt to do such things as reinitialize tables and
reclaim symbol table space.

Zilog 29

YACC

30

Zilog YACC

Such error rules are very general but difficult to control.
An easier error form is:

stat error

When there is an error, the parser skips over the statement,
but does so by skipping to the.next ; character. All tokens
after the error and before the next ; cannot be shifted, and
they are discarded.

Another form of error rule arises in interactive applica­
tions, where it may be desirable to permit a line to be
reentered after an error. A possible error rule is

input error '\n'
(printf("Reenter last line:");

{ $$ = $4;
} input

}

The problem with this approach is that the parser must
correctly process three input tokens before it correctly
resynchronizes after the error. If the reentered line con­
tains an error in the first two tokens, the parser deletes
the offending tokens and gives no message; this is unaccept­
able. For this reason, there is a mechanism that forces the
parser to function as though full error recovery has taken
place. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last
example is better written

input

;

error '\n'
(yyerrok;

input
{

printf("Reenter last line: ");

$$ = $4; }

The token seen immediately after the "error" symbol is the
input token at which the error was discovered. Sometimes
this is inappropriate; for example, an error recovery action
might take upon itself the job of finding the correct place
to resume input. In this case, the previous lookahead token
must be cleared. The statement

yyclearin ;

in an action produces this effect. For example, suppose the
action after error is to call some sophisticated resynchron­
ization routine, supplied by the user, that attempts to
advance the input to the beginning of the next valid

Zilog 30

}

YACC

31

Zilog YACC

statement. After this routine is called, the next token
returned by yylex is; presumably, the first token in a legal
statement. The old, illegal token must be discarded, and
the error state reset. This is done by a rule like

stat error

. ,
{ resynch()7

yyerrok 7
yyclearin ; }

These mechanisms allow for a simple, fairly effective
recovery of the parser from many errors. The error actions
required by other portions of the program can also be con­
trolled.

Zilog 31

YACC

32

Zilog YACC

SECTION 9

THE YACC ENVIRONMENT

When the user inputs a specification to Yacc, the output is
a file of C programs called y.tab.c on most systems (the
names can differ from installation to installation). The
integer-valued function produced by Yacc is called yyparse.
When it is called, it in turn repeatedly calls yylex, the
lexical analyzer supplied by the user (Section 4) to obtain
input tokens. Eventually, an error is detected and, if no
error recovery is possible, yyparse returns the value 1.
Otherwise, the lexical analyzer returns the endmarker token,
and yyparse returns the value O.

A certain amount of environment for this parser must be pro­
vided to obtain a working program. For example, as with
every C program, a program called main must be defined,
which eventually calls yyparse. In addition, a routine
called yyerror prints a message when a syntax error is
detected.

These two routines must be supplied by the user. To ease
the initial effort of using Yacc, a library has been pro­
vided with default versions of main and yyerror. The name
of this library is system dependent; on many systems the
library is accessed by a -ly argument to the loader. The
source for these default programs is given here:

and

main () {
return (yyparse());
}

include <stdio.h>

yyerror(s) char *s; {
fprintf(stderr, "%s\n", s);
}

The argument to yyerror is a string containing an error mes­
sage, usually the string "syntax error." The program must
keep track of the input line number and print it along with
the message when a syntax error is detected. The external
integer variable yychar contains the lookahead token number
at the time the error was detected; this gives better diag­
nostics. Since the main program is probably supplied by the
user (to read arguments, etc.), the Yacc library is useful
only in small projects or in the earliest stages of larger
ones.

Zilog 32

YACC

33

Zilog YACC

The external integer variable yydebug is normally set to O.
If it is set to a nonzero value, the parser outputs a ver­
bose description of its actions, including a discussion of
which input symbols have been read and what the parser
actions are.

Zilog 33

YACC

.,(,
\ "

34

Zilog YACC

SECTION 10

HINTS FOR PREPARING SPECIFICATIONS

10.1 General

This section contains miscellaneous hints on preparing effi­
cient, easy to change, and clear specifications. The indi­
vidual subsections are independent.

10.2 Input Style

It is difficult to provide rules with substantial actions
and still have a readable specification file. The following
are some hints:

1. Use all capital letters for .token names, all
lowercase letters for nonterminal names. This
help& isolate the source of problems.

2. Put grammar rules and actions on separate lines.
This allows either to be changed without an
automatic need to change the other.

3. Put together all rules with the same left side.
Put the left side in only once, and let all fol­
lowing rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a
given left side, and put the semicolon on a
separate line. This allows new rules to be easily
added.

5. Indent rule bodies by two tab stops and action
bodies by three tab stops.

The example in Appendix
as are the examples in
must decide how to make
of action code.

10.3 Left Recursion

B is written following this style,
the text of this document. The user
the rules visible through the bulk

The algorithm used by the Yacc parser encourages "left
recursive" grammar rules of the form

name :

Zilog 34

YACC

35

Zilog

These rules frequently arise when
sequences and lists are written:

and

list

. ,
item
list I I ,

seq item

. ,
seq item

item

YACC

specifications of

In each case, the first rule is reduced for the first item
only, the second rule is reduced for the second and all
succeeding items.

With right recursive rules such as

seq item
item seq

;

the parser is a bit bigger, and the items are seen and
reduced from right to left. An internal stack in the parser
is in danger of overflowing if a very long sequence is read.
Thus, left recursion must be used.

It is worth considering whether a sequence with zero ele­
ments has any meaning, and if so, consider writing the
sequence specification with an empty rule:

seq 1* empty *1
seq item

;

Once again, the first rule is always reduced once before the
first item is read, then the second rule is reduced once for
each item read. Permitting empty sequences often leads to
increased generality. However, conflicts arise if Yacc is
asked to decide which empty sequence it has seen when it has
not seen enough to know.

10.4 Lexical Tie-Ins

Some lexical decisions depend on context. For example, the
lexical analyzer deletes blanks normally, but not within
quoted strings. Names can be entered in a symbol table in
declarations, but not in expressions.

Zilog 35

YACC

36

Zilog YACC

One way of handling this situation is to create a global
flag that is examined by the lexical analyzer and set by·
actions. For example, suppose a program consists of zero or
more declarations followed by zero or more statements.

Consider the statements:

%{

%}

%%

prog

decls

int dflag;

other declarations

decls stats .
I

/* empty */
{ dflag = 1;

decls declaration
;

stats /* empty */
{ dflag = 0;

stats statement
;

. . . other rules ...

}

}

The flag dflag is now 0 when reading statements, and 1 when
reading declarations, except for the first token in the
first statement. The parser must see this token before it
can tell that the declaration section has ended and the
statements have begun. In many cases, this single token
exception does not affect the lexical scan.

10.5 Reserved Words

Some programming languages permit the use of words normally
reversed as label or variable names, provided that such use
does not conflict with the legal use of these names in the
programming language. This is extremely hard to do in the
framework of Yacc; it is difficult to pass information to
the lexical analyzer telling it "this instance of 'if' is a
keyword, and that instance is a variable." Therefore, do not
use keywords.

Zilog 36

YACC

37

Zilog YACC

SECTION 11

ADVANCED TOPICS

11.1 Simulating Error and Accept in Actions

The parsing actions of error and accept are simulated in an
action by use of macros YYACCEPT and YYERROR. YYACCEPT
causes yyparse to return the value O. YYERROR causes the
parser to behave as if the current input symbol had been a
syntax error; yyerror is called, and error recovery takes
place. These mechanisms are used to simulate parsers with
multiple endmarker or context-sensitive syntax checking.

11.2 Accessing Values in Enclosing Rules

An action can refer to values returned by actions to the
left of the current rule. The mechanism is the same as with
ordinary actions: a dollar sign followed by a digit, but in
this case the digit can be zero or negative. Consider the
commands

sent

adj

noun

· ,

· . . · ,

;

· . .

adj noun verb adj noun
{ look at the sentence . . .

THE
YOUNG

DOG
{

CRONE
{

{
{

$$ = THE; }
$$ = YOUNG; }

$$=Doo; }

if($0 == YOUNG) {
printf(nwhat?\nn);
}

$$ = CRONE;
}

}

In the action following the word CRONE, a check is made that
the preceding token shifted was not YOUNG. This is only
possible when a great deal is known about what might precede
the symbol n2YD in the input. The mechanism saves a great
deal of trouble, especially when a few combinations are
excluded from an otherwise regular structure.

Zilog 37

YACC

38

Zilog YACC

11.3 Support for Arbitrary Value Types

By default, the values returned by actions and the lexical
analyzer are integers. Yacc also supports values of other
types, including structures. In addition, Yacc keeps track
of the types, and inserts appropriate union member names so
that the resulting parser is strictly type checked. The
Yacc value stack is declared to be a union of the various
types of values desired, and union member names are associ­
ated with each token and nonterminal symbol having a value.
When the value is referenced through a $$ or $n construc­
tion, Yacc automatically inserts the appropriate union name
so that no unwanted conversions take place. In addition,
type-checking commands such as Lint are more silent.

There are three mechanisms to provide for this typing.
First, there is a way of defining the union; this must be
done by the user since other programs (notably the lexical
analyzer) must be informed of the union member names.
Second, there is a way of associating a union member name
with tokens and nonterminals. Finally, there is a mechanism
for describing the type of those few values where Yacc can­
not easily determine the type.

To declare the union, the following lines must be included
in the declaration section:

%union {
body of union
}

• • •

This declares the Yacc value stack and the external vari­
ables yylval and yyval to have type equal to this union. If
Yacc was invoked with the -d option, the union declaration
is copied onto the y.tab.h file. Alternatively, the union
can be declared in a header file, and a typedef can be used
to define the variable YYSTYPE to represent this union.
Thus, the header file can also contain:

typedef union {
body of union
} YYSTYPE;

. . .
The header file must be included in the declarations section
by use of %{ and %}.

Once YYSTYPE is defined, the union member names must be
associated with the various terminal and nonterminal names.
The construction

< name >

Zilog 38

YACC

(

(

39

Zilog YACC

indicates a union member name. If this follows one of the
keywords %token, %left, %right, or %nonassoc, the union
member name is associated with the tokens listed. Thus,
entering

%left <optype> '+' '-'

causes any reference to values returned by these two tokens
to be tagged with the union member name optype. Another key­
word, %type, is used similarly to associate union member
names with nonterminals, as with

%type <nodetype> expr stat

There are several cases where these mechanisms are insuffi­
cient. If there is an action within a rule, the value
returned by this action has no na priori n type. Similarly,
reference to left context values (such as $0 in the previous
subsection) leaves Yacc with no way of knowing the type. In
this case, a type can be imposed on the reference by insert­
ing a union member name between < and >, immediately after
the first $. An example of this usage is

rule

;

aaa {
{

$<intval>$ = 3; } bbb
funC $<intval>2, $<other>O); }

A sample specification is given in Appendix C. The facili­
ties in this subsection are not triggered until they are
used: in particular, the use of %type turns on these mechan­
isms. When they are used, there is a fairly strict level of
checking. For example, use of $n or $$ to refer to some­
thing with no defined type is diagnosed. If these facili­
ties are not triggered, the Yacc value stack is used to hold
int'a.

Zilog 39

YACC

40

Zilog YACC

APPENDIX A

YACC INPUT SYNTAX

This Appendix has a description of the Yacc input syntax as
a Yacc specification. Such items as context dependencies
are not considered. The Yacc input specification language
is most naturally specified as an LR grammar: the cumbersome
part comes when an identifier is seen in a rule, immediately
following an action. If this identifier is followed by a
colon, it is the start of the next rule: otherwise, it is a
continuation of the current rule that has an action embedded
in it. As implemented, the lexical analyzer looks ahead
after seeing an identifier and determines whether the next
token is a colon. If so, it returns the token C_IDENTIFIER:
otherwise, it returns IDENTIFIER. Literals (quoted strings)
are also returned as IDENTIFIERS, but never as part of
C_IDENTIFIERs.

/* grammar for the input to Yacc */

/* basic entities */
%token IDENTIFIER

/* includes identifiers and literals . */
%token C_IDENTIFIER

/* identifier (but not literal) */
/* followed by colon */

%token NUMBER
/* [0-9]+ */

/* reserved words */
/* %type => TYPE, %left => LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE

%token l-1ARK /* the %% mark */
%token LCURL /* the %{ mark */
%token RCURL /* the %} mark */

/* ascii character literals stand for

%start spec

%%

spec defs MARK rules tail . ,

START UNION

themselves */

tail MARK {In this action, eat up the rest of the file}
/* empty: the second MARK is optional */

Zilog 40

YACC

41

· I

Zilog

defs /* empty */
defs def

def

rword

;

;

I
I
I
I
;

START
UNION
LCURL
ndefs

IDENTIFIER
{ Copy union definition to output }
{ Copy C code to output file } RCURL
rword tag nlist

: TOKEN
LEFT
RIGHT
NONASSOC
TYPE

tag /* empty: union tag is optional */
'<' IDENTIFIER ,>,

nlist

nmno

;

I
I
· ,

• ,

: nmno
nlist nmno
nlist ',' nmno

IDENTIFIER
/* NOTE: literal illegal with %type */
IDENTIFIER NUMBER
/* NOTE: illegal with %type */

/* rules section */

rules
I
· I

: C_IDENTIFIER rbody prec
rules rule

rule C_IDENTIFIER rbody prec
, I' rbody prec

rbody
I
I

: /* empty */
rbody IDENTIFIER
rbody act

act ' {I { ~ action, translate $$, ~.} I} 1

· ,

Zilog

YACC

41

YACC

(

42

prec :
I
I
I . ,

Zilog

/* empty */
PREC IDENTIFIER
PREC IDENTIFIER
prec I • I ,

act

Zilog

YACC

42

..

YACC

43

Zilog YACC

APPENDIX B

A SIMPLE EXAMPLE

This example gives the complete Yacc specification for a
small desk calculator. The desk calculator has 26 regis­
ters, labeled "an through HZ," and accepts arithmetic
expressions made up of the operators +, -, *, I, % (mod
operator), & (bitwise and), I (bitwise or), and assignment.
If an expression at the top level is an assignment, the
value is not printed1 otherwise it is. As in the C
language, an integer that begins with a (zero) is assumed to
be octa11 otherwise, it is assumed to be decimal.

As an example of a Yacc specification, the desk calculator
does a reasonable job of showing how precedences and ambi­
guities are used, and of demonstrating simple error
recovery. The major oversimplifications are that the lexi­
cal analysis phase is much simpler than for most applica­
tions, and the output is produced immediately, line by line.
The way that decimal and octal integers are read in by the
grammar rules is primitive; this job is better done by the
lexical analyzer.

%{
i include
i include

<stdio.h>
<ctype.h>

int regs[26];
int base1

%}

%start list

%token DIGIT LETTER

%left
%left
%left
%left
%left

, I '
, & •
'+' 1_'
'*' 'I' 1%'
UMINUS
1* supplies precedence for unary

%% 1* beginning of rules section *1

list 1* empty *1
list stat '\n'
list error '\n'

{ yyerrok 1 }

Zilog

minus *1

43

YACC

44

stat

expr

;

. ,

I ...
I

;

..

Zilog

expr
{

LETTER
{

printf ("%d\n", $1);
'=' expr

regs[$l) = $3; }

, (,

expr

expr

expr

expr

expr

expr
{

'+ '
{
'- ,

{
, * ,

{
'/ .

{
'% '

{

') ,
$$ =
expr

$$ =
expr

$$ =
expr

$$ =
expr

$$ =
expr

$$ =
expr '&' expr

{ $$ =
expr 'I' expr

{ $$ =
'-' expr

{ $$ =
LETTER

{$$ =
number

$1

$1

$1

$1

$1

+

*
/

%

}

$3;

$3;

$3;

$3;

$3;

}

}

}

}

}

$1 & $3; }

$1 I
%prec

$2;

$3; }
UMINUS

}

regs[$l); }

number DIGIT

YACC

}

{ $$ = $1; base = ($1==0) ? 8 10; }
number DIGIT

{ $$ = base * $1 + $2; }
;

%% /* start of programs */

yylex() { /* lexical analysis routine */
/* returns LETTER for a lower case letter */
/* yylval = 0 through 25 */
/* return DIGIT for a digit */
/* yylval = 0 through 9 */
/* all other characters */
/* are returned immediately */

int c;

while((c=getchar(» -- , ,) { /* skip blanks */ }

/* c is now nonblank */

Zilog 44

YACC Zilog YACC

if (islower(c {
yylval = c I a I ;

return LETTER) ;
}

if(isdigit(c {
yylval = c 10 I ;

return(DIGIT) ;
}

return(c) ;
}

(

45 Zilog 45

..

YACC

(
~.

\' ". ~

46

Zilog YACC

APPENDIX C

AN ADVANCED EXAMPLE

This Appendix gives an example of a grammar using some of
the advanced features discussed in Section 11. The desk
calculator example in Appendix B is modified to provide a
desk calculator that does floating point interval arith­
metic. The calculator understands floating point constants,
the arithmetic operations +, , *, /, unary -, and =
(assignment), and has 26 floating point variables, "an
through "z." Moreover, it also understands intervals, writ­
ten as

(x , y)

where X is less than or equal to ~. There are 26 interval
valued variables nAn through nZn that can also be used. The
usage is similar to that in Appendix B; assignments return
no value and print nothing, while expressions print the
floating or interval value.

This example explores a number of interesting features of
Yacc and C. Intervals are represented by a structure con­
sisting of, the left and right endpoint values, stored as
doubles. This structure is given a type name, INTERVAL, by
using typedef. The Yacc value stack can also contain float­
ing point scalars and integers (used to index into the
arrays holding the variable values). This entire strategy
depends strongly on being able to assign structures and
unions in C. In fact, many of the actions call functions
that return structures.

Observe the use of YYERROR to handle two error conditions:
division by an interval containing zero, and an interval
presented in the wrong order. In effect, the error recovery
mechanism of Yacc ignores the rest of the offending line.

In addition to mixing types on the value stack, this grammar
also demonstrates an interesting use of syntax to keep track
of the type (scalar or interval) of intermediate expres­
sions. A scalar can be automatically promoted to an inter­
val if the context demands an interval value. This causes a
large number of conflicts when the grammar is run through
Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can
be seen by looking at the two input lines:

2.5 + (3.5 - 4.)

and

Zilog 46

YACC

47

Zilog YACC

2.5 + (3.5 , 4.)

The 2.5 is used in an interval valued expression in the
second example, but this fact is not known until the , is
read; by this time, 2.5 is finished, and the parser cannot
go back. More generally, it .might be necessary to look
ahead an arbitrary number of tokens to decide whether to
convert a scalar to an interval. This problem is evaded by
having two rules for each binary interval valued operator:
one when the left operand is a scalar, and one when the left
operand is an interval. In the second case, the right
operand must be an interval, so the conversion is applied
automatically. Despite this evasion, there are still many
cases where the conversion can be applied or not, leading to
conflicts. They are resolved by listing the rules that
yield scalars first in the specification file; in this way,
the conflicts are resolved in the direction of keeping
scalar valued expressions sca~ar valued until they are
forced to become intervals.

This way of handling multiple types is very instructive, but
not very general. If there are many kinds of expression
types instead of just two, the number of rules needed
increase dramatically, and the conflicts even more dramati­
cally. Thus, while this example is instructive, it is
better practice in a normal programming language environment
to keep the type information as part of the value, and not
as part of the grammar.

The only unusual feature in lexical analysis is the treat­
ment of floating point constants. The C library routine
~ is used to do the actual conversion from a character
string to a double-precision value. If the lexical analyzer
detects an error, it responds by returning a token that is
illegal in the grammar, provoking a syntax error in the
parser, and error recovery.

%{

i include <stdio.h>
i include <ctype.h>

typedef struct
double 10,
} INTERVAL;

interval
hi;

{

INTERVAL vmul{) , vdiv{);

double atof () ;

double dreg[26 1;

Zilog 47

YACC Zilog YACC

(INTERVAL vreg[26] ;

%}

%start lines

%union {
int ivaI;
double dval;
INTERVAL vval;
}

%token <ivaI> DREG VREG
/* indices into dreg, vreg arrays */

%token <dval> CONST /* floating point constant */

%type <dval> dexp /* expression */

%type <vval> vexp /* interval expression */

/* precedence information about the operators */

%left '+ ' '- ,
%left '* , '/ '
%left UMINUS /* precedence for unary minus */

%%

lines . /* empty */ .
I lines line . ,

line dexp '\n'
{ printf (n % 15 • 8 f \n n , $1) ; }

vexp '\n'
{ printf(n(%15.8f, %15.8f) \n n,

$1.10, $1. hi) ; }
DREG '= ' dexp '\n'

{ dreg[$l] = $3; }
VREG '= ' vexp '\n'

{ vreg[$l] = $3; }
error '\n'

{ yyerrok; } . ,
dexp CONST

DREG
{ $$ = dreg[$l]; }

dexp '+ ' dexp
{ $$ = $1 + $3; }

C-- dexp '- , dexp

48 Zi10g 48

YACC Zi10g YACC

{ $$ = $1 $3; }
dexp 1 * 1 dexp

{ $$ = $1 * $3; }
dexp 1/1 dexp

{ $$ = $1 / $3; }
1- 1 dexp %prec UMINUS

{ $$ = - $2; }
1 (1 dexp I) 1

{ $$ = $2; } . ,

vexp dexp
{ $$.hi = $$.10 = $1; }

1 (1 dexp , , dexp I) 1 ,
{
$$.10 = $2;
$$.hi = $4;
if($$.10 > $$.hi) { ..

printf(" interval out of order\n") ;
YYERROR;
}

}
VREG

{ $$ = vreg[$l]; }
vexp 1 + 1 vexp

{ $$.hi = $l.hi + $3.hi;
$$.10 = $1.10 + $3.10; }

dexp '+ 1 vexp
{ $$.hi = $1 + $3. hi;

$$.10 = $1 + $3.10; }
vexp 1- 1 vexp

{ $$.hi = $l.hi $3.10;
$$.10 = $1.10 - $3.hi; }

dexp 1- 1 vexp
{ $$.hi = $1 $3.10;

$$.10 = $1 $3.hi; }
vexp 1 * , vexp

{ $$ = vmu1($1.10, $l.hi, $3) ; }
dexp , * 1 vexp

{ $$ = vmu1($1, $1, $3) ; }
vexp , /1 vexp

{ if(dcheck ($3)) YYERROR;
$$ = vdiv($1.10, $l.hi, $3) ; }

dexp 1/1 vexp
{ if(dcheck($3)) YYERROR;

$$ = vdiv($1, $1, $3) ; }
1- 1 vexp %prec UMINUS

{ $$.hi = -$2.10; $$.10 = -$2.hi; }
1 (1 vexp I) 1

{ $$ = $2; }
;

49 Zi10g 49

YACC

(

50

Zilog

%%

define BSZ 50
/* buffer size for floating point numbers */

/* lexical analysis */

yylex(){
register c;

while(
{

(c=getchar(»
/* skip over

if(isupper(c){

, ,
blanks

yy 1 v al • ivaI = c ' A' ;
return(VREG);
}

if(islower(c){
yylval.ival = c 'a';
return(DREG);
}

)
*/ }

if(isdigit(c)
/* gobble up

I I c==' • ') {
digits, points,

char buf[BSZ+l], *cp =buf;
int dot = 0, exp = 0;

exponents

fore . , (cp-buf) <BSZ ; ++cp,c=getchar()

*cp
if(
if(

/*

= c;
isdigit(c
c == , ,
if(dot++

will cause
continue;
}

if (c -- 'e'
if(exp++

/* will cause
continue;
}

)
){
II exp
syntax

) {

continue;

return(
error */

) return('e');
syntax error */

/* end of number */
break;
}

*cp = '\0';
if ((cp-buf) >= BSZ

YACC

*/

){

, I .) ;

printf("constant too long: truncated\n");
else ungetc(c, stdin);

/* push back last char read */

Zilog 50

YACC

51

Zilog

yylval.dval = atof{ buf);
return{ CONST);
}

return (c) ;
}

YACC

INTERVAL hilo(a, b, c, d) double a, b, c, d; {
/* returns the smallest interval */
/* containing a, b, c, and d */
/* used by *, I routines */
INTERVAL v;

if(a>b) { v.hi = a; v.lo = b; }
else { v.hi = b; v.lo = a; }

if (c>d) {
if (c>v.hi) v.hi = c;
if(d<v.lo) v.lo = d;
}

else {
if(d>v.hi) v.hi = d;
if(c<v.lo) v.lo = c;
}

return(v) ;
}

INTERVAL vmul(a, b, v) double a, b; INTERVAL v; {
return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo));
}

dcheck(·V) INTERVAL Vi {
if(v.hi >= O. && v.lo <= O.) {

printf("divisor interval contains O.\n"
return(1) ;
}

return(0) ;
}

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v.;
return(hilo(a/v.hi, a/v.l0, b/v.hi, b/v.l0)
}

Zilog

..

) ;

{
) ;

51

YACC

52

Zilog YACC

APPENDIX D

OLD FEATURES

This Appendix mentions synonyms and features that are sup­
ported for historical continuity, but, for various reasons,
are not encouraged.

1. Literals can also be delimited by double quotes
(") .

2. Literals can be more than one character long. If
all the characters are alphabetic, numeric, or _,
the type number of the literal is defined, just as
if the literal did not have the quotes around it.
Otherwise, it is difficult to find the value for

... such literals.

The use of multicharacter literals is likely to
mislead those unfamiliar with Yacc, since it sug­
gests that Yacc is doing a job that must be actu­
ally done by the lexical analyzer.

3. Most places where % is legal, backslash (\) can be
used (\\ is the same as %%, \left the same as
%left) •

4. There are a number of other synonyms:

%< is the same as %left
%) is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

5. Actions can also have the form

= { • • • }

and the curly braces can be dropped if the action
is a single C statement.

6. C code between %{ and %} used to be permitted at
the head of the rules section, as well as in the
declaration section.

Zilog 52

ZEUS

(

. (

1

Zilog ZEUS

ZEUS FOR BEGINNERS*

* This information is based on an article originally
authored by Brian W. Kernighan, Bell Laboratories •

Zilog 1

\,

I

(

,
~

ZEUS

2

Zilog ZEUS

PREFACE

This manual introduces the ZEUS operating system. It
includes the basic procedures and commands needed for day­
to-day use of the system. The major formatting programs and
macro packages used for document preparation and hints on
preparing documents are discussed. Descriptions of support­
ing software and ZEUS programming are also included.

This manual is divided into four sections. Section 1
describes how to log in, how to enter data, what to do about
typing errors, and how to log out. Some of this information
is dependent on the system and terminal that are being used,
so this section must be supplemented by local information.
Information required for day-to~day use of the system (such
as commonly used commands) is found in Section 2. Section 3
describes some of the formatting tools used in preparing
manuscripts. Some of the tools used for developing programs
are described in Section 4.

For further information, refer to the AEllS Reference Manual
and the ZEUS utilities Manual.

Zilog 2

ZEUS

SECTION 1

SECTION 2

SECTION 3

SECTION 4

3

Zilog ZEUS

TABLE OF CONTENTS

GETTING STARTED

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11

Logging In ••••••••••••••••••••
Typing Commands •••••••••••
Unusual Terminal Behavior ••••
Typing Errors •••••
Read-Ahead
Stopping a Program •••
Logging Out ••••••••••
Mail
Writing to Other Users •••••
On-Line Manual •.•.•••••..••
Computer-Aided Instruction

·
.

·
·

DAY-TO-DAY USE

2.1
2.2
2.3
2.4
2.5

2.6

2.7
2.8

The Editor •••••••••••
The List Command
Displaying Files
Rearranging Files ••••
File Names •••••••

. . .
.

.
2.5.1
2.5.2
2.5.3

Directories and Path Names
Current Directory
Subdirectories ••••

. .

· ·
Using Files Instead of Terminal Input
and Output •• .
Pipes ••••••• ·
The Shell ...•.... ·

DOCUMENT PREPARATION

3.1 Introduction · ..
3.2 Formatting Programs ·
3.3 Supporting Tools · ..
3.4 Hints for Preparing Documents ·
PROGRAMMING

4.1
4.2
4.3

. Introduction
Programming the Shell .•
Programming in C ••.••••

..
· ·

Zilog 3

4
4
5
5
6
6
6
6
7
8
8

9
10
11
12
13

15
17
17

18
19
20

23
23
24
25

26
27
27

ZEUS

4

Zilog ZEUS

SECTION 1

GETTING STARTED

1.1 Logging In

Terminals are connected to the system by a high-speed asyn­
chronous line. Log in when the message login: appears on
the terminal. If this message is not on the screen, press
the RETURN key. If the message still does not appear, con­
tact the System Administrator for assistance.

When login: is displayed, enter the login name in lowercase,
followed by a RETURN. For terminals that have only upper­
case, it is possible to type commands in uppercase. If the
login name is typed in uppercase, the entire terminal ses­
sion must be performed in uppercase. The system does not
respond until a RETURN is entered. If a password is
required, the message Password: appears. Enter the pass­
word, followed by a RETURN. The password, which protects
files from unauthorized access, is not echoed on the screen.

When a prompt character appears on the screen, the system is
ready to accept commands. The prompt character is usually a
dollar sign ($) or a percent sign (%). (Messages of the day
or notifications that mail is being held can appear on the
screen before the prompt character.)

1.2 Typing Commands

Once the prompt appears, commands (requests that the system
do something) can be entered. Type the command

date

followed by a RETURN. A response similar to

Mon Jan 16 14:17:10 EST 1978

is displayed.

Always press RETURN after every command line; the system
does not respond unless RETURN is pressed.

The command ~ specifies everyone who is currently logged
in to the system. Entering

who

Zilog 4

ZEUS

5

Zilog ZEUS

causes a response similar to the following:

ski ttyOS Jan 16 09:33
gam ttyll Jan 16 13:07

The time specifies when the user logged in1 ttyxx indicates
the terminal being used.

If a typing mistake is made when a command is entered,
thereby referencing a nonexistent command, the system
responds with an error message. For example, typing

whom

results in the response

whom: not found

If the name of some other command is inadvertently typed,
that command is run.

If the terminal does not have tabs, type the command

stty -tabs

The system then converts each tab into the correct number of
spaces when printing. If the terminal does have computer­
settable tabs, the command ~ sets the stops. Refer to
~(l) in the ~ Reference Manual. (The notation ~(l)
refers to the command ~ in Section 1 of the .z..E.I.lS Refer­
.e..n£.e Manual.)

1.3 Unusual Terminal Behavior

Sometimes the terminal functions incorrectly. For example,
each letter may be typed twice, or RETURN may not cause a
line feed or a return to the left margin. Logging out and
logging back in may correct this.

1.4 Typing Errors

A typing error that is discovered before RETURN is typed can
be corrected in one of two ways. Control-h (hitting "h"
while holding down the control key) erases the last charac­
ter typed. Control-h can be repeated to erase characters
back to the beginning of the line (but not beyond).

Control-x erases the current input line. If a line of text
has several errors, type control-x and then retype the line.
The system always echoes a new line after the contro1-x

Zi10g 5

ZEUS

('

6

Zilog ZEUS

character.

The ~(~) command can be used to change the erase and kill
characters. Backspace can also be used as an erase charac­
ter, and control-x can be used as a kill character.

1.5 Read-Ahead

Read-ahead capability allows typing to be done as fast as
possible, even while the system is responding to a command.
If typing is done while the system is outputting text, the
input characters appear intermixed with the output charac­
ters; however, they are interpreted in the correct order.
Several commands can be typed one after another without
waiting for each one to execute.

1.6 Stopping a Program

Most programs can be stopped by typing the character Blla
(usually the delete or rubout key on the terminal). On most
terminals, the "interrupt" or "break" key can also be used.
In a few programs, such as the text editor, RUB stops what­
ever the program is doing but does not stop the program
itself. Hanging up the phone also stops most programs, but
this is not a recommended method of exiting a program.

1.7 Logging Out

TO log out, type a control-d or type

logout

It is not sufficient to turn off the terminal because ZEUS
does not use a time-out mechanism. When using a phone, it
is possible to log out by hanging up, but this is not recom­
mended.

1.8 Mail

After logging in, the message

you have mail.

may appear. ZEUS provides a postal system, allowing for
communication with other users on the system. To read the
mail, type the command

mail

Zilog 6

ZEUS

7

Zilog ZEUS

Mail appears, one message at a time, with the most recent
message given first. After each message, mail waits for a
user response. Typing a .d deletes the message. Typing
RETURN causes mail to continue, leaving the message on the
system; it will appear again the next time mail is read.
Other responses are described in mail(~) of the ZEUS Refer­
~ Manual.

To send mail to "joe" (a user whose login name is joe), type

mail joe

Then enter the text of the letter, using as many lines as
necessary. After the last line of text, type control-d.

There are other ways to send mail. Mail can be sent to one­
self as a handy reminder mechanism. Previously prepared
mail can be sent to a number of people simultaneously. For
more details, see mail(~) •

1.9 Writing to Other Users

A message like

message from joe tty07 •••

may appear on tne terminal, accompanied by a beep. This
indicates that Joe is on line and wants to send a message.
To respond, type the command

write joe

This establishes a two-way communication path, and messages
can be exchanged via the terminals. This path is slow com­
pared to system response in general. It is necessary to
terminate any program that is being run before messages can
be received. (It is possible to temporarily escape from the
editor. Refer to the editor tutorial in the ~ utilitles
Manual.)

To keep the messages from becoming intermixed, care should
be taken to ensure that both users do not type messages at
the same time. A common way of doing this is to type an ~
on a line by itself at the end of the message to indicate
that the message is over. To terminate a conversation, each
side must type a control-d or a delete character on a line
by itself.

If an attempt is made to write to someone who is not logged
in, the system responds with the message

Zilog 7

ZEUS

8

Zilog ZEUS

person not logged in

If an attempt is made to write to someone who does not want
to be disturbed, the system responds with the message

permission denied

If the target person is logged in but does not answer, type
control-d to obtain a prompt.

1.10 On-Line Manual

The ~ Reference Manual is usually kept on line,
tions of it can be displayed at the terminal.
Reference Manual also contains the most up-to-date
tion on commands. To print a manual section, type

man command-name.

For example, to read about the ~ command, type

man who

1.11 Computer-Aided Instruction

and see­
The nus
informa-

The ZEUS system has a program called learn that provides
computer-aided instruction on the file system and basic com­
mands, the editor, document preparation, and programming in
C. Enter the command

learn

for further information.

Zilog 8

zms

(

9

Zilog ZEUS

SECTION 2

DAY-TO-DAY USE

2.1 The Editor

The ZEUS text editor, ~, is usually used to type papers,
letters, and programs, and to store information in the com­
puter. Refer to ~(~) and ~ in the ~ Reference Manual
for in-depth explanations on how to use the editor.

To create a file called jynk containing some text, enter

ed junk

a
text

(invokes the text editor; the system
responds by listing the number of
characters in the file)

{command to ed, to add text}

(signals the end of adding text)

A period (.) typed by itself at the beginning of a line
indicates the end of text addition. Until it is entered,
everything typed is treated as text to be added, and no

. other ~ commands are recognized.

To store the information that has been typed into a file,
use the editor command ~. The editor responds by listing the
number of characters in the file jynk. Until the ~ command
is entered, nothing is stored permanently. Therefore, if
the user hangs up or logs out, the information is lost.
(There is, however, a special feature of ZEUS that saves the
edited data in a file called ~.hYR.) After a ~ command is
issued, the stored information can be accessed at any time
by typing

ed junk

To exit from the editor, type a quit (g) command. If the g
command is entered before the text has been stored, ~
prints a ? as a reminder. Entering a second g followed by
an exclamation point (!) causes the exit to take place.

Now create a second file called ~ in the same manner.
Two files, iYnk and~, should now exist.

Zilog 9

ZEUS

10

Zilog ZEUS

2.2 The List Commands

The list (la) command lists the names (not contents) of all
files in the directory. If

is typed, the response is

junk
temp

These are the two files just created. Unless an optional
argument is added to the la command, the names are listed
alphabetically. Other variations are possible. For exam­
ple, the command

Is -t

lists the files
changed, with
Typing

in the order in which they were last
the most recently changed file listed first.

Is -1

produces a long listing similar to the following:

-rwxrwxrwx 1 bwk
-rwxrwxrwx 1 bwk

41 Jul 22 2:56 junk
78 Jul 22 2:57 temp

The date and time indicate when the last changes to the file
were made. The 41 and 78 refer to the number of characters
in the file. The initials ~ indicate the owner of the
file, that is, the person who created it. The -rwxrwxrwx
specifies who has permission to read, write, and execute the
file. The first dash in each line indicates an ordinary
file; a d instead of a dash indicates a directory. The
left-most ~ indicates the read, write, and execute permis­
sions for the owner of the file. The middle ~ pertains to
the read, write, and execute permissions for the user group
to which the owner belongs. The right-most ~ pertains to
everyone else. In this example, everyone has read, write,
and execute permission. For more information, refer to
chmod(~) and chmod(~).

Listing options can be combined. For example, the command
la -It gives a long listing (-~) in time order (-~). More
information is found in la(~} •

The use of optional arguments that begin with a dash (like
-~ and -It) is a common convention for ZEUS programs. In

Zilog 10

ZEUS

f.

if

(',

11

Zilog ZEUS

general, if a program accepts such optional arguments, they
precede any file name arguments. The various arguments must
be separated with a blank space (~-1 is not the same as
II -1).

2.3 Displaying Files

Use the editor to display a file of text on the screen. Type

ed junk
l,$p

and ~ lists the number of characters in iYnk and then
displays the entire file on the screen.

It is not always feasible to use the editor for displaying
files. There is a limit to the size of files that ~ can
handle, and only one file can be displayed at a time. There
are alternate programs suitable to specific applications.

The ~ command displays the contents of all the files named
in a list. For example,

cat junk

displays the file iwlk, and

cat junk temp

displays the files iYnk and ~. The files are simply con­
catenated (hence the name ~) onto the screen.

The ~ command produces formatted displays of files. As
with ~, ~ displays all the files named in a list, but ~
displays text in formatted form, including headings with
date, time, page number, and file name at the top of each
page. The command

pr junk temp

displays jynk, then skips to the top of a new page and
displays ~.

The ~ command can also produce multicolumn output. For
example,

pr -3 junk

prints the file iYnk in three-column format. Any number of
columns can be printed. See ~(l) for more information.

Zilog 11

ZEUS

12

Zilog ZEUS

The command ~ displays the contents of a specified file
one page at a time. For example,

dog junk

displays the first page of the file iYnk on the terminal.
Pressing the RETURN key causes the text to scroll forward,
displaying the next page.

There are also programs that print ZEUS f.iles on a high­
speed printer. See ~ in the Z£llS Reference Manual. The
nroff and troff programs are more complete text formatters.
They are discussed in Section 3 and in the ~ Utilitie§
Manual.

2.4 Rearranging Files

A file can be moved from one place to another (which amounts
to changing the name) using the ~ command. For example,
typing

mv junk stuff

moves the contents of the file iYnk into the file stuff. If
the lQ command is entered, the response is now

stuff
temp

NOTE

If a file is moved to another file that already
exists, the already existing contents are lost
forever.

To make a copy of a file, use the ~ command.

cp stuff tempI

makes a duplicate copy of §tuff in tempI.

The ~ command removes (deletes) files from a directory.
For example,

rm temp tempI

deletes the files t&mp and tempI.

Zilog 12

zms

1 ,

(
13

Zilog

NOTE

Be very careful when using the rm command.
Once files are removed with the rm command,
they no longer exist in the directory and
can never be recovered.

ZEUS

A warning is displayed if one of the named files does not
exist. Otherwise~, like most ZEUS commands, does its work
silently.

2.5 File Names

File names can be no longer than 14 characters. Although
almost any character can be used in a file name, it is
recommended that only letters, numbers, and the period be
used. This is to avoid characters that might have other
meanings. For example, if a file were created with the name
-t, listing it by name would be difficult, if not impossi­
ble, because -t is an optional argument for requesting a
time-order listing.

If a large manual is being typed, it must be divided into
several smaller sections because the size of files that ~
can handle is limited. The document should therefore be
typed as a number of smaller files. Each chapter can be in
a separate file named chapl, chap2, etc., or each chapter
can be broken into several files named chapl.l, chapl.2,
chapl.3, chap2.l, chap2.2, etc. This naming system makes
the relationship between the files obvious.

One advantage to a systematic naming convention is that the
entire book can be displayed with one command, such as

pr chap*

The asterisk (*) is a pattern matching character that means
"anything at all," so this command prints in alphabetical
order all files whose names begin with chap. This shorthand
notation is used system-wide, not just with ~. For example,
to list all the names of the files in the manual, enter

ls chap*

This lists

chapl.l
chapl.2
chapl.3

Zilog 13

ZEUS

14

Zilog ZEUS

The * is not limited to the last position in a file name--it
can be anywhere and can occur several times. For example,

rm *junk* *temp*

removes all files that contain iYnk or ~ as any part of
their name. As a special case, * by itself matches every
filename, so

pr *

prints all the user's files in alphabetical order; and

rm *
removes all files in the current directory.

The * is not the only pattern-matching feature available.
It is possible to match a group of characters by enclosing
them in brackets ([]). For example, if only Chapters 1
through 4 and Chapter 9 are to be printed, type

pr chap[12349]*

A range of consecutive letters or digits can be abbreviated.

pr chap[1-49]*

A range of letters can also be specified with brackets. For
example, [~-z] matches any character in the range ~ through
z.

The question mark (?) pattern matches any single character.
For example,

Is ?

lists all files that have single-character names, and

Is -1 chap?l

lists the first file of each chapter (chapl.L, chap2.L).

To cancel the special meaning of * or ?, enclose the argu­
ment in single quotes.

Is I?'

14

.~.

ZEUS

15

Zilog ZEUS

2.5.1 Directories and Path Names

Generally, each user has a private directory containing only
the files that belong to that user. When logged in, the
user is in his/her private directory, and unless special
action is taken when a new file is created, it is created in
the directory the user is currently in. This is most often
the user's own directory, and therefore, the file is unre­
lated to any other file of the same name that exists in
someone else's directory.

All files are organized in sets located in a tree, with the
individual user's files located several branches outward
from the root. Any file in the system can be found by
starting at the root of the tree and moving along the proper
set of branches. It is also possible to move inward toward
the root.

The command ~ (print working directory) prints the path
name of the directory the user is currently in.

The response to the ~ command is something similar to

/z/your-name

This indicates that the user is currently in the directory
~-~, which is in the directory /z., which is, in turn,
in the root directory, called /.

Typing

Is /z/your-name

lists the same file names obtained from the lQ command
alone. With no arguments, lQ lists the contents of the
current directorY1 given the name of a directory, it lists
the contents of that directory.

Typing

Is /z

prints a series of names, among which is ~-~. In many
installations, z. is a directory that contains the direc­
tories of all users of the system.

Typing

Is /

gives a response something like:

Zilog 15

zms

16

bin
dev
etc
lib
~p

usr

Zilog ZEUS

These are the basic directories of files--the root of the
tree.

The full name of the path to be followed from the root
through the tree of directories to get to a particular file
is the path name. The path name of the file jynk is

Iz/your-name/junk

It is a universal rule in the ZEUS system that anywhere an
ordinary file name can be used, a path name can be used.

Here is a picture of the tree used in this document:

(root)
11\
11\
11\

bin· etc z dev tmp
1 1'\1 1 \ 1 I \ 1 I \ 1 I \

1 I \
1 I \

adam eve
11\

1
junk

mary
\

\
temp

junk

Observe that mary's jynk file is unrelated to eve's jynk
file.

To obtain a listing of files in another user's directory,
type

Is Iz/neighbor-name

To copy of one of these files, type

cp Iz/your-neighbor/his-file yourfile

If users do not want other people examining these files,
privacy can be arranged. Each file and directory has read­
write-execute permissions for the owner, a group, and every­
one else, which control file access. (See ~(~) and
chmod(L) for details.) For an executable file, the owner
generally has read, write, and execute permission; other

Zilog 16

ZEUS

" '(

17

Zilog ZEUS

people in the owner's group might have read or execute per­
mission: everyone else might have only execute permission.

As a final experiment with path names, try

Is /bin /z/bin

2.5.2 Current Directory

When the name of a file (command) is entered in response to
the prompt character, the system looks for an executable
file of that name in the current directory. If the file is
not found in the current directory, the system searches
/hin, and finally /~hin. The search path, which is nor­
mally the current directory, /bin, and /usr/bin can be
changed. (See ~(~) and &ah(~) in the ~ Reference
Manual.)

If a user works regularly with someone else on common infor­
mation in the other's directory, the user could simply log
in under the other's login name each time the information is
needed. It is also possible to change directories. Type

cd /z/your-friend

and a file name used with a command like ~ or ~ refers to
the file in ~-friend directory. Changing directories
does not affect any permissions associated with a file.
That is, if a file could not be accessed from the user's own
directory, changing to another directory does not alter that
fact.

Type

pwd

to find out which directory is the current directory.

2.5.3 Subdirectories

It is convenient to arrange files so that all files on a
related subject are in a directory that is separate from
other projects. For example, when writing a manual, it
might be helpful to keep the text in a directory called
bQQk. To make the directory, use the command

mkdir book

This creates the directory called hQQk. To go to that direc­
tory, type

Zilog 17

ZEUS

18

Zilog zms

cd book

Separate files can now be established in this directory.
The path name of this directory is:

/z/your-name/book

To move back up to the login directory (one level up in the
tree), type

cd ••

The double period (••) indicates the parent of the currently
accessed directory. A single period (.) is an alternate name
for the working directory.

To remove the directory ~, type

rm book/*
rmdir book

The first command removes all files from the directory, and
the second removes the empty directory.

2.6 Using Files Instead of Terminal Input and Output

Most of the commands discussed so far produce output on the
terminal. Some, like the editor, also take their input from
the terminal. In ZEUS systems, input, output, or both can
go to or from files rather than the terminal. For example,

Is

lists all files on the terminal screen. However, entering

Is >filelist

places a list of files in the file filelist, which is
created if it does not exist or is overwritten if it does.
The symbol > means that the output should go to the follow­
ing file rather than the terminal screen. Several files can
be combined into one by capturing the output of ~ in a
file. For example,

cat fl f2 f3 >temp

This concatenates il, !2, and !l into the file ~.

The symbol » operates very much like > does. It means add
the listed files to the end of the file that follows the
symbol. That is,

Zilog 18

ZEUS

(.. -.
. -

(

(

19

Zilog ZEUS

cat fl f2 f3 »temp

means to
already
tents of
created.

add il, 12, and !l to the end of whatever is
in ~ (instead of overwriting the existing con­
~). As with >, if ~ does not exist, it is

The symbol < means take the input for a program from the
following file instead of from the terminal. For example,
it is possible to create a file called script containing a
group of editing commands that produces a specified set of
changes. Typing

ed file <script

causes the set of editing commands to be executed throughout
the file.

As another example, ~ can be used to prepare a letter in
the file ~. Then, the letter can be sent to several people
with

mail adam eve mary joe <let

2.7 Pipes

A ~ is a means of connecting the output of one program to
the input of another program so that the two run as a
sequence of processes. A command line that uses pipes is
called a pipeline.

For example,

pr f g h

displays the files ~, g, and h, beginning each on a new
page. It is possible to display them together without page
breaks by entering

cat f g h >temp
pr <temp
rm temp

A simpler way to do this is to take the output of ~ and
connect it to the input of ~ by using a pipe.

cat f g h 1 pr

The vertical bar (I), which is the pipe command, means take
the output from~, which would normally have gone to the
terminal, and put it into ~ to be formatted.

Zilog 19

zms

20

Zilog zms

The pipeline

Is I pr -3

displays a list of files in three columns.

Any program that reads from the terminal can also read from
a pipe. Any program that writes to the terminal can also
drive a pipe. Any number of elements can be used in a pipe­
line.

Many zms programs are written so that they can take their
input from one or more files if file arguments are given.
If no arguments are given, the programs read from the termi­
nal and can be used in pipelines. One example is ~.

pr -3 abc

prints files A, h, and ~ in order, in three-column format.
The command

cat abc I pr -3

produces the same output; ~ prints the information coming
down the pipeline in three-column format.

2.8 The Shell

The shell is the program that interprets the commands and
arguments entered at the terminal. (See ~(l) and ~(l) .)
It also interprets characters that have special meaning in
ZEUS. For example, two programs can be run with one command
line by separating the commands with a semicolon (;). The
shell recognizes the semicolon and breaks the line into two
commands. In the command line

date; who

the shell executes the ~ and ~ commands before return­
ing with a prompt character.

More than one program can be run simultaneously. For exam­
ple, if something time consuming, like the editor script, is
being run, type

ed file <script &

The ampersand at the end of a command line means start the
command running in the background and then take further com­
mands from the terminal immediately. To prevent the output
from interfering with what is being done on the terminal,

Zilog 20

zros

(

«
21

Zilog ZEUS

type

ed file <script)script.out &

which saves the output lines in a file called script.QYt.

When initiating a command with &, the system replies with a
number called the process number, which identifies the com­
mand so that it can be stopped later. To stop the command
from executing, type

kill process-number

If the process number is forgotten, the command ~ lists the
process numbers of everything that 1£ is running. (It is
possible to use the command kill ~, which kills all the user
processes that are running. This command should, of course,
be used with caution.) The command ~ -a lists all programs
in the system that are currently running.

The command

(command-I; command-2; command-3) &

can be used to start three commands in the background.
background pipeline can be started with

command-l I command-2 &

A

Just as the editor or some similar program can take its
input from a file instead of from the terminal, the shell
can read a file to get commands. For instance, suppose the
tabs on the terminal are to be set, and the date and who is
on the system are to be displayed every time the user logs
in. The three necessary commands (~, ~, ~) can be
put into a file called startup. To run this program, type

sh startup

The shell then runs with the file startup as input. This
has the same effect as entering the contents of startup on
the terminal.

To eliminate the need to type ~ each time, use the command

chmod +x startup

The chmod command marks the file as
recognizes this and runs it as
Thereafter, type only

startup

Zilog

executable; the shell
a sequence of commands.

21

ZEUS

22

Zilog ZEUS

to run the sequence of commands.

If startup is to be run automatically after every login,
place its contents in the current home directory in a file
called .profile (if running in shell), or .cshrc (f the
shell running is the C shell). When the shell gains control
after the login, it looks for and executes the .profile or
.csbrc file •

..

Zilog 22

ZEUS

,{".

23

Zilog ZEUS

SECTION 3

DOCUMENT PREPARATION

3.1 Introduction

The ZEUS system has two major formatting programs for docu­
ment preparation: nroff, which produces output on terminals
and line printers, and troff, which drives a photo­
typesetter.

3.2 Formatting Programs

Formatting programs use commands that are entered along with
the text that is to be formatted. The commands indicate in
detail how the formatted text is to look. For example,
there are commands that specify how long lines should be,
whether to use single or double spacing, and what running
titles are to be used on each page.

For nroff and troff, several packages of canned formatting
requests called macro packages are available. These allow
specification of formatting elements such as paragraphs,
running titles, footnotes, and multicolumn output. It is
not necessary to learn nroff and troff to use these macro
packages. Formatting requests typically consist of a period
and two uppercase letters; for example, .~ is used to
introduce a title, and .E£ is used to begin a new paragraph.

A document is typed so that it looks something like this:

.TL
title of document
.AU
author name
.SH
section heading
.PP
paragraph •••
• PP
another paragraph •••
• SH
another section heading
.PP

Zilog 23

ZEUS

24

Zilog ZEUS

The precise meaning of .~ depends on whether the output
device being used is a typesetter or terminal. For example,
a paragraph is normally preceded by a space (one line in
nroff, one half line in troff), and the first word is
indented. These rules can be changed as required.

To print a document in standard format using -ma, use the
command

troff -ms files

for the typesetter and

nroff -ms files

for a terminal. The -ma argument tells troff and nroff to
use the manuscript package of formatting requests. (Refer
to ~(2) for more information.)

There are several similar packages; see the information on
text formatting in the Z£US Utilities Manual.

3.3 Supporting Tools

In addition to the basic formatters, there are other sup­
porting programs for document preparation.

Any spelling errors in a document can be detected by the
programs spell and ~. The spell program compares the
words in the document to a dictionary, then prints those
that are not in the dictionary. The ~ program searches
for words that are unusual, then prints them.

The ~ program examines a set of files for lines that con­
tain a particular text pattern. For example,

grep ling$1 chap*

finds all lines that" end with the letters ins in the files
&haP*. (It is always good practice to put single quotes
around the pattern being searched for, in case it contains
characters like * or $ that have a special meaning to the
shell.) The ~ program is useful for discovering which set
of files contains the misspelled words detected by spell.

A list of the differences between two files is printed by
Qiff. Two versions of something can be compared automati­
cally, eliminating the necessity of proofreading.

The words, lines, and characters in a set of files are
counted by like

Zilog 24

ZEUS

(

(

(
25

Zilog ZEUS

The tL program translates characters into other characters.
For example, it converts uppercase to lowercase and vice
versa. The following command translates uppercase into
lowercase:

tr A-Z a-z <input >output

Files can be sorted in a variety of ways by ~.

The ~ program makes a permuted index (keyword-in-context
listing).

The ~ program provides many of the editing facilities of
~, but can apply them to arbitrarily long inputs.

For more information on these programs, see the ~ Refer­
~ Manual.

3.4 Hints for Preparing Documents

Most documents go through several drafts before they are
finished. The following hints make the process of revising
drafts easier •.

When the text is being typed, start each sentence on a new
line, make lines short, and break lines at natural places,
such as after commas and semicolons. Since most people
change documents by rewriting phrases and adding, deleting,
and rearranging sentences, these precautions will simplify
any editing done to the document.

Keep the individual files of a document short (perhaps ten
to fifteen thousand characters). Larger files edit more
slowly, and of course, if an error is made, it is better to
have destroyed a small file rather than a big one. Split
documents into files at natural boundaries.

Refrain from deciding formatting details too early. One of
the advantages of the formatting packages is that they per­
mit decisions to be delayed until the last possible moment.
As long as the text has been entered in some systematic way,
it can always be cleaned up and reformatted by a judicious
combination of editing commands and request definitions.

Zilog 25

..

ZEUS

26

Zilog ZEUS

SECTION 4

PROGRAMMING

4.1 Introduction

The ZEUS system is a productive programming environment
because it offers a rich set of programming tools. Facili­
ties such as pipes, I/O redirection, and the capabilities of
the shell make it possible to do a job by pasting together
programs that already exist instead of writing from scratch.

The pipe mechanism allows fabrication of complicated opera­
tions out of spare parts that already exist. For example,
an early version of the spell program was

ca t ••• I tr ••• I tr ••• I sor t I uniq I comm

where ~ collected the files, the first ~ put each word on
a new line, and the second ~ deleted punctuation. The
information was then sorted into dictionary order. The Ynig
command discarded duplicates, and ~ printed words that
were in the text but not found in the dictionary.

The editor can be made to do things that
require special programs on other systems.
list the first and last lines for each· file
files, the following can be laboriously typed

ed
e chapl.l
Ip
$p
e chapl.2
Ip
$p
etc.

An easier way is to type

Is chap* >temp

would normally
For example, to
in a set of

This lists the file names in the ~ file. Then this file
can be edited to incorporate the necessary series of editing
commands (using the global commands of ~). When these com­
mands have been written into script, the command

ed <script

produces the same output as the laboriously typed list of

Zilog 26

ZEUS

27

Zilog ZEUS

commands. Alternately, since the~hell performs loops, it
is possible to repeat a set of commands over and over again
for a set of arguments. For example,

for i in chap*
do

ed $i <script
done

sets the shell variable ~ to each file name in turn, then
does the command. This command can be typed at the terminal
or put in a file for later execution.

4.2 Programming the Shell

The shell itself is a programming language with variables,
control flow (if-~, while, ~, ~), subroutines, and
interrupt handling. Since there ar·e many building-block
programs, a new program can sometimes be created by piecing
together some of the building blocks' with shell command
files.

Examples and rules for running the shell and the C shell can
be found in SHELL, and CSHELL in the ZEUS utilities Manual.

4.3 Programming in C

ZEUS and most of the programs that run on it are written in
C. C is an easy language to learn and use. It is intro­
duced and fully described in ~ ~ Programming Language by
B. W. Kernighan and D. M. Ritchie (Prentice-Hall, 1978).
See the ZEUS Reference Manual for additional information.

Zilog 27

)

(... ~.

(.J~

Be"erl Com·eats

Your feedbaCk about this documel1t helps us ucertaiD your l1eeda aDd fulfill them ill the future. PI
take the time to fill out this quatioI1aire Uld retum it to us. this iDforJDAti.cm will be helpful to us Uld, ill
lima, to future usen of Ziloq producta.

Y~Neme: __ _
~Nua: __ ___

~: ---Tltleoi thiadoc:ument: __ ___

Briefly deecri.be application:

Do.thiapu.bliC4tioa.meetyou~? 0 Y. 0 No If not, why not?
'l..., '~~"

How are you usiIlq t.bt. pv.h1ic:attoa.?

CJ M an introdud1oa. to the subject?

o M a reference manual?

CJ M an iMtrUctor or student?

How do you find the material?

Technicality

Organization

Completen ..

Excellent

CJ

o
CJ

Good

o
o
o

Poor

o
o
o

~w0W4UY8bap~tJaematerial? __________________________________ ___

If you fOUDd aDy miItak .. ill this doc::umeDt, please let us know what and where they are: _____ _

t •••• O •.••••••••••••••••••••••••• ~ •••••••••••••••••••• •• :

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 35 CAMPBELL. CA.

POSTAGE WIll BE PAID BY ADDRESSEE

Zilog
Systems PubllcatioDS

1315 Dell Avenue
Campbell. CalUomia 95008
Attn: Publ1catioDS Manager

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

~~oooo •• ••

· · ·

· ·

~ ·

System. Publications

.. ader'.eo··
Your feedback about thlI dOCUJDeDt helps us ucertain your needs ud fulfill them in the iutue. PI
take the time to fill out thlI que8tiouira ud ratum it to us. thlI illiormation will be helpful to us ud, in
time, to future uer8 of Zi10q product..

Y~Nu.: __ _
~N __ : __ ____

~ --Tltleoi thisd.o!;:ument: . __ _

Briefly describe application:

DoeItb.i8publicatiollJUetyou..a? 0 Yes 0 No Unot, why not?

How are you UIDlq uu. puhJk:atioIa?

o h an intraduc:tlon to the subject?

o h a reference m.mual?

o h an instructor 01' student?

How do you fiDel the JDatarial?

Ezcellent

CJ

o
CJ

Good

o
o
o

Poor

o
o
o

What wOalci haft improwd. the material? ________________;...

If you fouzad ay DUatak_ in this document, please let us know what and where they are: _____ _

•••• 0 •••

""II
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 35 CAMPBELL. CA.

POSTAGE WILL BE PAID BY ADDRESSEE

Zilog
Systems PubllcatioDS

1315 Dell Avenue
Campbell. California 95008
Attn: Publicatiou Manager

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

GOOOOO ••

Zilog, Inc. 1315 Dell Ave., Campbell, California 95008 Telephone (408)370-8000 TWX 910-338-7621

00·2147·01 Printed in USA

