

03-3196-01

April 1982

Copyright 1981 by Zilog, Inc. All rights reserved. No part

of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the
prior written permission of Zilog.

The information in this publication is subject to change
without notice.

Zilog assumes no responsibility for the use of any circuitry
other than circuitry embodied in a Zilog product. No other
circuit patent licenses are implied.

Portions of the material have been reproduced with the per-]
mission of Western Electric Company, Incorpovated. (ﬁ“\

£

03-0171-01 Note to user SADIE 3.0

SADIE Diagnostic Tape
14-0009-03

The following items apply to Version 3.0 of SADIE
release on cartridge tape with part number 14-0009-03.
Please report any additional problems to Zilog immedi-
ately by recording them on your machine with the STR
command. The listing resulting from the STRPRINT com-
mand can then be sent directly to Zilog.

DATA PRODUCTS INTERFACE TEST ERROR : DR.PRT, the Data
Products Interface test does not work correctly. The
routine times out while waiting for the printer to come
on line. This problem will be fixed in the next
release of SADIE.

MEMORY TESTS DO NOT CHECK PARITY : NEWMEMl, NEWMEM2,
and NEWMEM3 tests do not detect parity errors. They
detect only data-line and address-line errors. This
problem will be corrected in the next release of SADIE.

!

NTU Zileg . - NTU

Z2EUS Software leleasé, 1.7
NOTE TO USER .

P/N 03-0200-01 - %i-

&

ggesfollowing modes need to be corrected to accurately run
us: ,

1. 'ézegﬁz; permission modes set as 751 needs to be changed
o .

2. /usr/lib/tmac/tmac.an; permission mode set at 640 needs
to be changed to 644.

These changes can be accomplished easily by issuing the fol-
lowing commands as super user:

ed /

chmod 0644 zeus®

upkeep -d (if there appears to be a difference at
this point, you may need to re-initialize
your contents file by "upkeep -i". If
you do not receive a difference then you
may proceed to the next command.)

ed /usr/lib/tmac
chmod 0644 tmac.an
upkeep ~-d (same as above)

1 Zilog . 1

E3-0152-03, Errata, ZEUS Operating System, Version 1.7

The following items apply to Version 1.7 of ZEUS
releases on cartridge tape with part number 14-0006-03.
Please report any additional problems to Zilog
immediately by recording them on your machine with-

the STR command. The listing resulting from the
STRPRINT command can then be sent directly to

Zilog.

1.

C.

The cartridge tape unit in your System 8000 is a very
high recording density unit (6400 bits per inch).
Z2ilog subjects cartridge tapes to additional screening
before making them acceptable for shipment. Zilog
recommends that users buy cartridge tapes for their
systems directly from Zilog or contact the major
cartridge tape vendors directly for tapes screened

for 6400 bits per inch., Customers may find that

they have tape reliability problems if they purchase
standard tapes from distributors as these tapes are
intended for 1600 bits per inch use., It is expected
that within one year standard tapes certified four 6400
bits per inch will be available directly from the
distributor.

The following programs normally found in Version 7
releases are not currently in ZEUS:

cu iostat refer

The uucp program erroneously sets the tty device

(/dev/tty3 by default) to mode 0600. This should
be reset to mode 0666 for use by remote.
When using sysgen to generate new operating systems
the /swap file system's size must remain 3200.
The following problems may occur in the ZEUS 1.7 Tape
Release:

C Compiler

If two external names are identical in the first

seven characters the two variables are mapped
into one memory location. For example,

int gl23456x;
int gl23456y;
main ()

g1234567x = 1;

A}

the two global variables are mapped into one
location named _gl23456. The C compiler trun-
cates names after the first eight characters.
The only way around this problem now is not to
have external names that are identical in the
first seven characters.

D. Secondary Bootstrapper Anomaly

Occassionally the secondary bootstrapper prompts
with a message "no more file slots®". This seems

to occur after a large number of programs have been
executed. This has not occured when following the
steps given in the System Administrator Manual.

If this should occur, you should reboot the system
from tape.

NOTICE TO OWNER

FEDERAL COMMUNICATIONS COMMISSION
RADIO FREQUENCY INTERFERENCE
STATEMENT

Warning: This equipment generates, uses, and can radiate radio frequency energy and if not
instailed and used in accordance with the instructions manual, may cause interference to
radio communications. As temporarily permitted by regulation it has not been tested for com-
pliance with the limits for Class A computing devices pursuant to Subpart J of Part 15 of FCC
Rules, which are designed to provide reasonable protection against such interference. Opera-
tion of this equipment in a residential area is likely to cause interference in which case the
user at his own expense will be required to take whatever measures may be required to cor-
rect the interference.

ZEUS UTILITIES

03-3196-01

PRELIMINARY VERSION

The information contained in
this draft may undergo
changes, both in content and
organization, before arriving
at its final form.

.

ZEUS Utilities Zilog ZEUS Utlities

PREFACE

The ZEUS™ Utilities Manual documents, in handbook and
tutorial form, important ZEUS features and complex programs
that run under ZEUS. System 8000™ hardware and ZEUS
software are used in the Zilog System 8000. This manual and
the related manuals below provide the complete technical
documentation of the System 8000 and ZEUS.

System 8000

Hardware Reference Manual 03-3198
System 8000 ’

User Manual 03-3199
ZEUS System Administrator Manual 03-3197
ZEUS Reference Manual 03-3195

ZEUS™ and System 8000™ are registered trademarks of Zilog,
Inc.

ii Zilog ii

i,

ZEUS Utilities Zilog ZEUS Utlities

iii

TABLE OF CONTENTS

Introduction to Zeus Utilities «¢¢ee... INTRODUCTION

A Tutorial Introduction to ADB .seecess ADB
ZEUS PLZ/ASM Assembler User Guide AS
Awk: A Pattern Scanning
and Processing Language ..ececeeesee AWK

The C Programming Language .eeescceocsses C
ZEUS Communication Package .ecoeeescces COMM
An Introduction to the C Shell CSH
The ZEUS Line-Oriented

Text EQitor, ed .ecececececsssoncsee ED
File System Integrity .eeeececececccecenscns FSCK
LEArN cecececccccsscesssoscsossccsccoscsscs LEARN
Lex: A Lexical Analyzer Generator LEX
Lint: A C Program Checker ...cceeceess LINT
Make ceceecccecoocnoscossesssssccacsnnasas MAKE
Typing Documents on the ZEUS System ... MS
Nroff/Troff Reference Manual ...«eece... NROFF/TROFF
Zeus ProgramminNg eeeececececccesscscccnocsce PGMG
S8000 PLZ/SYS User Guide ceeeeecoeccens PLZ/SYS
SED: A Noninteractive Text Editor SED
The ZEUS Shell .cveecececccrcsonsassense SHELL
A Troff Tutorial ..ceeeecccessscccscccss TROFF
UUCP Installation ..eieeeececccccccccens uucpe
Introduction to

Display Editing with vi ...eceeecee VI
YACC: Yet Another Compiler-Compiler .. YACC
ZEUS for BeginNerS .cceccesescsscccccscsse ZEUS

Zilog iii

GEUS Utilities Zilcg

File System Integrity

File System Integrity ceececececcccces

iv Zilog

ZEUS

Utlities

FSCK

iv

e,

INTRODUCTION Zilog INTRODUCTION

INTRODUCTION TO ZEUS UTILITIES

This volume contains manuals and tutorial describing the
basic utility programs of ZEUS.

ZEUS for Beginners describes the basics of logging in, run-
ning programs, creating and modifying files, etc.

Learn is an teaching-machine program for practice in using
ZEUS.

The ZEUS mechanism for running programs 1is itself a user
program called a ghell. Commonly used under ZEUS is c¢sh,
described in An Introduction to the C Shell. An alternative
is sh (known simply as "The Shell,"); it is described in The

ZEUS Shell.

There are two utilities for the maintaining of text files.
They are the command-line oriented editor ed, and the screen
oriented editor vi and are described in The ZEUS Line-
oriented Text Editor, ed, and Introduction to D;aplax Edlt_
ing with vi.

Troff is a macro-oriented typesetting program; nroff approx-
imates troff on typewriter-like devices. The Nroff/Troff
Reference Manual describes these programs. They are used
with a package of commands (macros); Iyping Documents on the
ZEUS System Using the -ms Macros with Troff and Nroff is a
first-time document that describes a simple macro package.
A Troff Tutorial describes problems of typesetting docu-
ments.

SED: A Noninteractive Text Editor describes a program which
edits input of indefinite length; commands are similar to

those of ed.

Awk: A Pattern Scanning and Processing Language describes a
stream editor with a powerful command language.

The primary programming language on ZEUS is C. Spec1a1 con-

siderations of programming in C on ZEUS are listed in The C
' . Lint: A C Program Checker detects

implementation-dependent code and other bad features.

PLZ/SYS is another high-level ZEUS language; PLZ/ASM is the
ZEUS resident assembler. They <can be used together to
design low-level programs.

ZEUS Programming explains how programs running under ZEUS
interact with ZEUS; it describes how ZEUS programs handle

1 Zilog 1

INTRODUCTION Zilog INTRODUCTION

command arguments, input/output; etc.

A Tutorial Introduction to ADB describes a program which is
used to examine core files resulting from aborted programs,

patch object files, and run programs with embedded break-
points.

Lex: A Lexical Analyzer Gepnerator and XYACC: Yet Another
-Compiler describe tools useful in developing pro-
grams which apply translation rules to input.

Make describes a program used to maintain a large group of
interrelated files, such as the source code files and their
associated object files that are behind a large C program.

i Package describes a communications path
between ZEUS and remote systems.

UUCP Installation describes a program that 1links to other
ZEUS systems (or any other system that can run UUCP) via tty

port-to-port connections or transient telephone connections.

Program (ESCK) Reference Manual

describes how file systems can be protected against corrup-
tion upon reboot.

2 Zilog 2

ADB

*

Zilog ADB

A Tutorial Introduction to ADB*

This information is based on -an article originally
written by J.F. Maranzano and S.R. Bourne, Bell Labora-
tories.

zilog 1

ADB

Zilog ' ADB

PREFACE

This document contains information on ADB (A DeBugger), a
new debugging program. With ADB, it is possible to examine
core files resulting from aborted programs, print variable
contents in a variety of formats, patch files, and run pro-
grams with embedded breakpoints.

This document is written as a tutorial. It is assumed that
the reader is familiar with the C language.

The examples referenced in the text are located in Appendix
A. For ease of reference, it is recommended that the exam-
ples be brought up on the terminal while the text 1is read
from the hard copy.

Zilog 2

S

ADB

Zilog ADB

TABLE OF CONTENTS

SECTION 1

Formats

A
1l
1
1
1
1 General

UICK SURVEY @ ® 0 0 ¢ 000 000000009008 0008000000000 o

Q

1 Basic Command Format .c.ceccececesccccoannsce
2 File Locations ® © © ® © © 9 & O 0 ¢ O O S O OO OO a0 00 e
3 Current Address ® @ © © © & 0 & 0 O O O O O 8 O 00 0SSO O e
4

5

® © 0 0 0 0@ 00 00 00 0 E 000 C OSSOSO O GO ECEECOSCTOCTOE

Requests @ ®© 80 00600000000 000600000000

SECTION 2 DEBUGGING C PROGRAMS ..cieeceecccccccscscnsanse

2.1 Debugging a Core IMAge ceeeecceccscsscsoscs

Calling
Setting

NN
bW

Multiple Functions .ceeeeeccecccecces
Basic BreakpointsS .eeceececccceccns

Setting Advanced Breakpoints ...ccceccccee
Using Other Breakpoint Facilities .eeeceee

SECTION3 MAPS ® 6 0 0 0 0 0 0 00 000 08 000000000 SN OO LNV

SECTION4 ADVANCED USAGE ® ® 9 0 6 600600 © 09000 0000000000000

4.1 General

.
.
.
[
.

BB
U Wi

® © 6 0 0 0 060 000000600060 0000080000080 00000

Formatted DUMP .ccecevcecscccssccsnsccnscns
DirectOory DUMP cecesscescscsssscsscscsassss
I1iSt DUMDP cceevasesccccsssscosssasssncnss
Value CONVErSiON .ceeecceccccccssccscccnans

SECTIONS PATCHING ® © 0 © 0606 0060000000000 0 000 0000000000000

SECTION6 CAUTIONS ® © 0 0 0 20 0 000 00 00000 0L L L 0L OO0 0GOSO 0o

APPENDIXA PROGRA}I EXAMPLES ® & 8 © 0 0 0 0 0 0 0 O W O PO OO OO OO OO e e 00

APPENDIX B ADB SUMMARY

©® © © 00 0 00 00000 00000000 s 00000000

Zilog

O U1 > > >

Yoo ~
> -

17

17
17
19
19
19

21

23

24

41

ADB zZilog ADB

SECTION 1

A QUICK SURVEY

1.1 Basic Command Format

The ADB command copies core to an output file. The command
format is:

adb objfile corefile
where objfile is an executable ZEUS file (default is a.out)
and corefile (default is core) is a core image file. When
the defaults are used, the command appears as:

adb

The file name minus (-) means ignore an argument, as in:

adb - core

1.2 File Locations
ADB has requests for examining locations in the contents of
objfile, (the ? request) or the corefile (the / request).
The general form of these requests is:

address ? format
or

address / format

where format describes the printout (Section 2.4).

1.3 Current Address
ADB maintains a current address, called dot, similar in
function to the current pointer in the ZEUS editor. The
request:

.,10/d

prints ten decimal numbers starting at dot. Dot then refers
to the address of the last item printed.

When an address is entered, the current address is set to
that location, so that:

4 zilog 4

ADB

Zilog ADB

01262i

sets dot to octal 126 and prints the instruction at that
address.

When used with the ? or / requests, the current address can
be advanced by typing a new line, and it can be decremented

by typing ~.

Addresses are represented by expressions of decimal, octal,
and hexadecimal integers, and symbols from the program under
test. These can be combined with the operators +, -, *, %
(integer division), & (bit and), | (bit inclusive or), #
(round up to the next multiple), and ~ (not). All arith-
metic within ADB is 32 bits. When typing a symbolic address
for a C program, type name or _name; ADB recognizes both
forms. .

1.4 Formats

To print data, specify a collection of letters and charac-
ters that describe the format of the printout. Typing a
request without a format causes the new printout to appear
in the previous format. The following are the most commonly
used format letters:

one byte in octal

one byte as a character

one word in octal

one word in decimal

two words in floating point
z8000 instruction

a null terminated character string
the value of dot

one word as unsigned integer
print a new line

print a blank space

backup dot

MM B CONHMOLO OQOUD

Format letters are also available for long values (for exam-
ple, D for long decimal and F for double floating point).

Zilog 5

ADB zilog ADB

1.5 General Requests
Requests of the form-

address,count command modifier
set dot to address and execute the command count times.
The following table gives general ADB command meanings:

Command Meaning

Print contents from g.out file
Print contents from core file
Print value of "dot"
Breakpoint control
Miscellaneous requests

Request separator
Escape to shell

e e I NQ W

Use the request $q or $Q (or control-D) to exit from ADB.

6 Zilog 6

ADB

Zilog ADB

SECTION 2

DEBUGGING C PROGRAMS

2.1 Debugging a Core Image
Example 1 (Appendix A) changes the string pointed to by
charp, then writes the character string to the file indi-
cated by argument 1. The common error shown is that a null
character ends a character string. In the loop to print the
characters, the ending condition is based on the value of
the pointer charp, not the character that charp points to.
Executing the program produces a core file because of an
out-of-bounds memory reference.
The following explanation refers to Example 2.
ADB is invoked by the command:

adb a.out core
The first debugging request:

$c

is used to give a C backtrace through the subroutines
called.

The next request
$C

is used to give a C backtrace plus an interpretation of all
the 1local variables in each function and their values in
octal.

The next request
Sr

prints the registers, including the program counter and an
interpretation of the instruction at that location.

The request
Se

prints out the values of all external variables.

Zilog 7

ADB

zilog ADB

The request
$m

produces a report of the contents of the maps. A map exists
for each file handled by ADB. The map for the a.out file is
referenced by ?, and the map for the core file is referenced
by /. Use ? for instructions and / for data when looking at
programs.

To see the contents of the string pointed to by charp, enter

*charp/s
This uses charp as a pointer in the core file and prints the
information as a character string. This printout shows that
the pointer to the character buffer points to an address
outside of the program's memory.
The request

«=0

prints the current address, not its contents, in octal.
This has been set to the address of the first argument. The
current address, dot, is used by ADB to ‘'keep the current
location. It allows reference to locations relative to the
current address; for example,

.-10/4d

2.2 Calling Multiple Functions
The C program shown in Example 3 calls functions £, g, and h
until the stack is exhausted and a core image is produced.
The following explanation refers to Example 4.
Enter the debugger with the command

adb

which assumes the names ga.out and core for the executable
file and core image file respectively. The request

$c
fills a page of backtrace references to £, g, and h. Enter-

ing DEL terminates the output and returns to ADB request
level.

Zilog 8

ADB

zilog ADB

The request
158$C
prints the five most recently called procedures.

Each function (£,g,h) has a counter of the number of times
it was called. The request

fent/d
prints the decimal value of the counter for the function f.

To print the the decimal value of x in the last call of the
function h, type

h.x/d
It is not currently possible to print the value of 1local
variables.
2.3 Setting Basic Breakpoints

The C program in Example 5 changes tabs into blanks (adapted
from Software Tools by Kernighan and Plauger, pp. 18-27).

Run this program under the control of ADB (Example 6) by
adb a.out -
Set breakpoints in the program as:
address:b [request]
The requests
settab:b
open:b
read:b
tabpos:b
set breakpoints at the start of these functions.
To print the location of breakpoints, enter
$b
The display indicates a c¢count field. A breakpoint is

bypassed count -1 times before causing a stop. The command
field indicates the ADB requests to be executed each time

Zilog 9

10

Zilog ADB

the breakpoint is encountered. In the example, no command
fields are present.

Displaying the original instructions at the function settab

sets the breakpoint to the entry point of the gettab rou-

tine. Display the instructions using the ADB request
settab,5?ia

This request displays five instructions starting at gettab
with the addresses of each 1location displayed. Another
variation is

settab,57?i

which displays the instructions with only the starting
address.

The addresses are accessed from the g.out file with the ?
command. When asking for a printout of multiple items, ADB
advances the current address the number of bytes necessary
to satisfy the request. In Example 6, five instructions are
displayed and the current address is advanced 18 (decimal)
bytes.

To run the program, enter

:r

To delete a breakpoint, for instance the entry to the func-
tion settab, enter:

settab:d

To continue execution of the program from the breakpoint,
enter

:C
Once the program has stopped (in this case at the breakpoint
for open), ADB requests can be used to display the contents
of memory. For example, use

$C
to display a stack trace, or

tabs/8x
to print three lines of 80 locations each from the array

called tabs. At location gpen in the C program, settab has
been called to set a one in every eighth location of tabs.

Zilog 10

P

ADB

11

Zilog ADB

Printing the tabs array allows verification of settab.

2.4 Setting Advanced Breakpoints
Continue execution of the program (Example 6) with

:C
Read is called three times and the contents of the array
tabs 1is displayed each time. The single character on the
left edge is the output from the C program.
Contine the program with the command

:C

The program hits the first breakpoint at tabpos because
there is a tab following the "This" word of the data.

Several breakpoints of tabpos occur wuntil the program
changes the tab into equivalent blanks. Remove the break-
point at that location by enteringg
tabpos:d
If the program is continued with
:C
it resumes normal execution after ADB prints the message
a.out:running
The ZEUS quit and interrupt signals act on ADB itself rather
than on the program being debugged. If such a signal
occurs, the program being debugged is stopped and control is
returned to ADB. To save the signal and pass it to the test
program, enter

:C

This can be useful when testing interrupt handling routines.
Enter

sc 0
if the signal is not to be passed to the test program.
Now reset the breakpoint at settab and display the instruc-

tions located there when the breakpoint is reached. This is
accomplished by:

Zilog 11

12

Zilog ADB

settab:b settab,5?ia *

* Owing to a bug in early versions of ADB (including the
version distributed in Generic 3 ZEUS), these statements
must be written as:

settab:b settab,5?ia;0
read,3:b main.c?C;0
settab:b settab,5?ia;0

The ;0 sets dot to zero and stop at the breakpoint. To
request each occurrence of the breakpoint and stop after the
third occurrence, type:

read,3:b tabs/8x

This request prints the local variable ¢ in the function
main at each occurrence of the breakpoint. The semicolon
separates multiple ADB requests on a single line.

NOTE

Setting a breakpoint causes the value of dot to be
changed. Executing the program under ADB does not
change dot. For example, the commands

settab:b .,5?ia
open:b

print the last value dot was set to (example open)

not the current location (example settab) at
which the program is executing.

A breakpoint can be overwritten without first deleting the
old breakpoint. Enter

settab:b settab,57ia; *
The display of breakpoints

$b
shows the above request for the §§;;§b breakpoint. When the
breakpoint at gsettab is encountered, the ADB requests are
executed. The location at gettab has been changed to plant
the breakpoint. All the other locations match their origi-

nal value.

The execution of each function (£, g, and h in Example 3)
can be monitored by planting nonstop breakpoints. Call ADB

Zilog 12

R,

ADB

13

Zilog ADB

with the executable program of Example 3 as follows:
adb ex3 -
Enter the following breakpoints:

-h:b hent/d; h.hi/; h.hr/
g:b gent/d; g.g9i/; g.gr/
f:b fent/d; f£.fi/; f.fr/
i r

Each request line indicates that the variables are printed
in decimal (by the specification d). The format is not
changed and the d can be left off all but the first request.

The output in Example 7 illustrates two points. First, the
ADB requests in the breakpoint line are not examined until
the program under test is run. This means any errors 1in
those ADB requests are not detected until run time. At the
location of the error, ADB stops the program.

Example 7 also illustrates the way ADB handles register
variables. ADB uses the symbol table to address variables.
Register variables, like f£.fr in the previous example, have
pointers to uninitialized places on the stack and print the
message "symbol not found."

Another way of getting at the data in this example is to
print the variables used in the call as with

f:b fent/d; f.a/; £.b/; £.fi/
g:b gcnt/d; g.p/; 9.9/ g.9i/
:C

The operator / was used instead of ? to read values from
the core file. The output for each function, as shown in
Example 7, has the same format. For the function £, for
example, it shows the name and value of the external vari-
able fcpnt. It also shows the address on the stack and value
of the variables a, b, and fi.

The addresses on the stack continue to decrease until no
address space 1is left for program execution. At this time
the program under test aborts. A display with names is pro-
duced by requests

f:b fecnt/d; £f.a/"a="d; £f.b/"b="d; f.fi/"fi="4d
In this format, the quoted string is printed 1literally and

the d produces a decimal display of the variables. The
results are shown in Example 7.

zilog 13

ADB

14

zilog | ADB

2.5 Using Other Breakpoint Facilities

Arguments and change of standard input and output are passed
to a program as

cr argl arg2 ... <infile >outfile

This request aborts any existing program under test and res-
tarts a.out.

The program being debugged can be single-stepped by
:s

If necessary, this request starts the program being debugged
and stops after executing the first instruction.

ADB allows a program to be entered at a specific address by
entering

address:r

The count field is used to skip the first p breakpoints as
sn:I

The request
ynzc

is also used for skipping the first n breakpoints when con-
tinuing a program.

A program is continued at an address different from the
breakpoint by

address:c

The program being debugged runs as a separate process and is
aborted by

:k

zilog 14

.

ADB

15

Zilog ADB

SECTION 3

MAPS

ZEUS supports several executable file formats that tell the
loader how to load the program file. File type E707 is the
most common and is generated by a C compiler invocation such
as cc pgm.c. An E711 file is produced by a C compiler com-
mand of the form cc -i pgm.c. ADB interprets these dif-
ferent file formats and provides access to the different
segments through a set of maps (see Example 8).

To print the maps, enter
$m

In E707 files, both instructions and data (I & D) are inter-
mixed. This makes it impossible for ADB to differentiate
data from instructions, and some of the printed symbolic
addresses look incorrect -(for example, printing data
addresses as offsets from routines).

In E711 files with separated I & D space, the instructions
and data - are also separated. However, in this case, since
data is mapped through a separate set of segmentation regis-
ters, the base of the data segment is also relative to
address zero. In this case, since the addresses overlap, it
is necessary to use the ?* operator to access the data space
of the a.out file.

Example 9 shows the display of two maps for the same program
linked as an E707 file and an E711 file respectively. The
b, e, and £ fields are used by ADB to map addresses into
file addresses. The fl field is the length of the header at
the beginning of the file (020 bytes for an a.out file and
02000 bytes for a core file). The f2 field is the displace-
ment from the beginning of the file to the data. For an
E707 file with mixed text and data, this is the same as the
length of the header; for an E711 files, this is the 1length
of the header plus the size of the text portion.

The b and e fields are the starting and ending locations for
a segment. Given an address, A, the location in the file
(either a.out or gcore) is calculated as:

bl<A<el => file address
b2<A<e2 => file address

(A-bl) +f1
(A-b2)+£2

Locations can be accessed by using the ADB defined vari-
ables. The $v request prints the following variables

Zilog 15

ADB

16

zilog ADB

initialized by ADB:

base address of data segment
length of the data segment
length of the stack

length of the text

execution type (E707 and E711)

SScnoo

In Example 9 those variables not present are =zero. These
variables can be used by expressions such as

<b

in the address field. Similarly, the value of the variable
can be changed by an assignment request such a

02000>b

which sets b to octal 2000. These variables are useful to
know 1if the file under examination is an executable or core
image file.

ADB reads the header of the core image file to find the
values for these variables. If the second file specified is
not a core file, or if it is missing, the header of the exe-
cutable file is used.

Zilog 16

17

Zilog ADB

SECTION 4

ADVANCED USAGE

4.1 General

It is possible with ADB to combine formatting requests to
provide elaborate displays. Several examples follow.

4.2 Formatted Dump

To print four octal words followed by their ASCII interpre-
tation from the data space of the core image file, enter

<b,~1/404"8Cn
The various request pieces mean:
<b - The base address of the data segment.
<b,-1 Print from the base address to the end
of file. A negative count is used here
and elsewhere to 1lcocop indefinitely or

until some error condition, such as end
of file, is detected.

40 Print four octal locations.

4" Back up the current address four loca-
tions (to the original start of the
field).

8C Print eight consecutive characters using

an escape convention. Each character in
the range 0 to 037 is printed as @ fol-
lowed < by the corresponding character in
the range 0140 to 0177. An @ is printed
as @@.

n Print a new line.

The request:
<b,<d/404"8Cn

allows the printing to stop at the end of the data segment.
The <d provides the data segment size in bytes.

Zilog 17

ADB .

18

Zilog ADB

The formatting requests can be combined with the ADB ability
to read in a script to produce a core image dump script.
Invoke ADB as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of
such a script is: ‘

1205w

40958s

Sv

=3n

$m

:3n"c Stack Backtrace"
C

ZBn“C External Variables"
e

=3n"Registers"

Sr

0Ss

=3n"Data Segment"
<b,-1/80na

The request 120$w sets the width of the output to 120 char-
acters (normally, the width is 80 characters). ADB prints
addresses as symbol + offset.

The request 4095$s increases the maximum permissible offset
to the nearest symbolic address from 255 (default) to 4095.

The request = can be used to print literal strings. Head-
ings are provided in this dump program with requests of the
form

=3n"C Stack Backtrace"
which spaces three lines and prints the literal string.
The request $v prints all nonzero ADB variables (Example 8).
The request 08s sets the maximum offset for symbol matches
to zero, thus suppressing the printing of symbolic labels in
favor of octal values. This is only done for the printing
of the data segment. The request

<b,-1/80na
prints a dump from the base of the data segment to the end

of file with an octal address field and eight octal numbers
per line.

Zilog 18

ADB

19

Zilog ADB

Example 11 shows the results of some formatting requests on
the C program of Example 10. '

4.3 Directory Dump

Example 12 dumps the contents of a directory made up of an
integer jinumber followed by a l4-character name

adb dir -
=n8t"Inum"8t"Name"
0,-1? u8tldcn

In this example, the u prints the jnumber as an unsigned
decimal integer, the 8t means that ADB spaces to the next
multiple of 8 on the output line, and the 1l4c prints the
l4-character file name.

4.4 Ilist Dump

The contents of the jilist of a file system, such as
/dev/src, is dumped with the following set of requests:

adb /dev/src -

02000>b

?m <b

<b,-1?"flags"8ton"links,uid,gid"8t3dn",
size"8tDn"addr"8t20un"times"8t2¥YnY¥2na

In this example, the value of the base for the map was
changed to 02000 (by saying ?m<b) because that is the start
of an jlist within a file system. The last access time,
last modify time, and creation time are printed with the
2YnY operator. Example 12 shows portions of these requests
as applied to a directory and file system.

4.5 Value Conversion

ADB can convert values from one representation to another.
For example:

072 = odx
prints
072 58 $3a
which are the octal, decimal, and hexadecimal representa-

tions of 072 (octal). ADB keeps track of format so that as
subsequent numbers are entered they are printed in the

zilog 19

ADB

20

zilog ADB

previous formats. Character values are similarly converted.
For example: ‘

'‘a'! = crb
prints
20061

It can also evaluate expressions, but all binary operators
have the same precedence, which 1is lower than for unary
operators.

Zilog 20

ADB

21

Zilog ADB

SECTION 5

PATCHING

Patching files with ADB is done with the write (w or W)
request, not to be confused with the ed editor write com-
mand. This is often used in conjunction with the Jlocate, (1
or L) request.

The request syntax for 1 and w is:
address range file designator command argument

where the address range gives the characters to be searched,
the file designator is ? or /, the command is either a write
or locate variation, and the argument is an expression and
can support decimal and octal numbers or character strings.
The address range can appear as zero, one, or two charac-
ters, including dot (current address). The request 1 is
matched on two bytes, and L is used for four bytes. The
request w writes two bytes, and W writes four bytes. For
example,

0, 100021 searches the original file from 0 to 1000
100071 searches the original file from 1000 to end
?1 searches the entire file

To modify a file, call ADB as
adb ~w filel file2

When called with this option, filel and £file2 are created
and opened for both reading and writing.

For example, to change the word "This" to "The" in the exe-
cutable file in Example 10, use the following requests:

adb ~w ex7 -
.21 'Th'
«?W 'The '

The request ?1 starts at dot and stops at the first match of
"Th" having set dot to the address of the location found.
The use of ? writes to the a.out file. The form ?2* is used
for an E711 file.

Zilog 21

ADB

22

- Zilog ADB

More frequently, the request is typed as:
?21 '"Th'; ?s

This locates the first occurrence of "Th"™ and prints the
entire string. Execution of this ADB request sets dot to
the address of the "Th" characters.

Followng is an example of the utility of the patching facil-
ity that has a C program with an internal logic flag. The
flag can be set through ADB and the program can be run.

adb a.out -
:s argl arg2
flag/w 1

:C

The :s request is normally used to single step through a
process or start a process in single-step mode. 1In this
case, it starts a.out as a subprocess with arguments argl
and arg2. If there is a subprocess running, ADB writes to
it rather than to the file. The w request causes flag to be
changed in the memory of the subprocess.

Zilog 22

ADB

23

ADB has

1.

2.

Zilog ADB

SECTION 6

CAUTIONS

the following idiosyncrasies:

The value of local variables cannot currently be
printed.

Function calls and arguments are put on the stack
by the C save routine. Putting breakpoints at the
entry point to routines means that the function
appears not to have been called when the breakpoint
occurs.

When printing addresses, ADB uses either text or
data symbols from the g.out file. This sometimes
causes unexpected symbol names to be printed with
data (for example, savr5+022). This does not hap-
pen if ? is used for text or instructions and / is
used for data.

zilog 23

i,

ADB

24

ook wNH+

Zilog

APPENDIX A

PROGRAM EXAMPLES

char *charp = "this is a sentence";

main(argc, argv)
int argc;
char **argv;

int fd;
char cc;

if (argc < 2)
{

printf("Input file missing\n");

exit(8);
}
%f ((fd = open(argv([l],0))== -1)

printf("%$s : nor found\n", argv(l]):
| exit (8);

charp = "hello"; :

printf("debug 1 %s\n", charp);

while(charp++)
write (fd, *charp, 1):;

* %

Example 1

Zilog

ADB

24

ADB

25

CoOdONULIbWN K

39
40
41
42
43
44
45

adb a.out core

ADB: S8000 1.1
? Sc

Zilog

Stack backtracing not implemented

$£72
$£72

$1400

? $C

Stack backtracing not implemented

? $r

r0 %0000

rl %0000

r2 %0000

r3 %0000

rd %0000

r5 %0000

ré %0000

r7 %0000

r8 %0000

r9 %0000

rl0 %0000

rll %0000

rl2 %0000

rl3 %0000

rl4 %0000

sp %0000

fcw 30000

pc %0000

_main: jr _main+%7c

? Se

_charp: %1400

__iob: $1172

—_Ssobuf: %0000

_lastbu: $0f5e

—Sibuf: $0000

—environ: sffab

—end: %0000

nd: %1374

_errno: %0009

? $m

? map 'a.out'
bl = %0 el =
b2 = %0 e2 =

/ map 'core!
bl = %0 el =
b2 = %£a00 e2 =

? *charp/s

Zilog

$10000

£l
2

£l
f2

[}

%38
%38

%400
%1800

ADB

25

ADB

26

Zilog

46 _end+%8c:

47 data address not found

48 ? charp/s

49 _charp:

50 ? main.argc/d

51 Sorry, local variable names not implemented

kk] * %

Example 2

Zilog

ADB

26

ADB

27

Hoo~Nouid W
o

=
N

13

Zilog

int fcnt, gent, hent:
?(XIY)

}

int hi; register
hi = x+1;

hr = x-y+1;
hent++;
f(hr,hi);

g(p,9q)
{

}

int gi; register
gi = q-p;

gr = g-p+l;
gcnt++;
h(gr,gi);

f(a,b)
{

}

int fi; register
fi = a+2*b;

fr = a+b;
fent++;
g(fr,£i);

main()

£(1,1);

* %

Example 3

int hr;

int gr;

int fr;

Zilog

ADB .

27

ADB

28

Zilog

1 adb

2

3 ADB: S8000 1.1

4 ? Sc

5 Stack backtracing not implemented
6 ? ,58C

7 Stack backtracing not implemented
8 ? fcnt/d

9 _fent: 2156

10 ? gent/d

11 —gcnt: 2156

12 ? hent/d

13 _hent: 2157

14 ? h. x/d

15 Sorry, local variable names not implemented
16 ? $q

***l* * %

Example 4

Zilog

ADB

28

ADB

29

Coo~NNAAUTdWND

Zilog

#define MAXLINE 8
#define YES 1
$#define NO 0
$define TABSP 8

char input[] = "data";
int tabs|[MAXLINE 1];

main()

{
int f£d;
int col, *ptab;
char c;

ptab = tabs;
settab(ptab);

ADB

col = 1;
if ((fd = open(input, 0)) == -1)
{
printf("%$s : not found\n", input);
exit(8):
}
while(read(£fd, &c, 1) > 0)
{)
switch(c)
case '\t':
while(tabpos(col) != YES)
{
putchar ()
col++;
}
break;
case '\n':
putchar('\n');
col =1
break;
default:
putchar(c);
break;
}
}
}
tabpos(col)
int col;
{

if (col > MAXLINE)
return(YES) ;

Zilog

29

daiatt,

ADB ‘ Zilog ADB

53 else
54 return(NO) ;
55 }

57 settab(tabp)
58 int *tabp;
{

60 int i;

62 for (i=0; i <=MAXLINE; i++)
63 (i ¥ TABSP) ? (tabs[i] = NO : (tabs[i] = YES);

***l* * %

Example 5

30 Zilog 30

ADB

31

OB WNH

Zilog

adb a.out -

ADB: S8000 1.1

settab:b

open:b

read:b

tabpos:b

$b

breakpoints

count bkpt command
1 _tabpos
1 _read
1
1

[AS LAV ALV USRS J

_open

_settab
? settab, 5ia
_Settab: jr _settab%48
_settab+%2: clr %0002(sp)
_sSettab+%6: cp %0002 (sp) ,#%0050

_settab+%c: jr gt,_settab+%44
_settab+3e: 1d r3,%0002(sp)
_settab+%12:

? settab,57?i

_Settab: jr _settab+%48
-~ clr %0002(sp)
cp %0002 (sp) ,#%0050
jr gt,_settab+%44
1d r3,%0002(sp)
? :r
fig5: running
breakpoint _settab: jr _settab+%48
? settab:d
? :cC
fig5: running
breakpoint _open: 14 r0,r7
? SC
Stack backtracing not implemented
? tabs/8x
_tabs: %0001 %0000 30000 20000 ¢0000 %0000
$0001 %0000 %0000 %0000 %0000 %0000
%0001 20000 30000 20000 %0000 %0000

? :cC

fig5: running

breakpoint _read: 1d r0,r7
? :cC

fig5: running

breakpoint _read: 1d r0,r7
? tabpos:d

? settab:b settab,57ia
settab,5:b settab,5?ia; 0
read,3:b tabs/8x

? $b

reakpoints

[o RV IV IEN |

Zilog

" ADB

30000
%0000
$0000

31

%0000
%0000
%0000

ADB

32

53
54
55
56
57
58
59
60
61
62

*k%k] *

count bkpt
3 _read

1 _settab

1 _open

Zilog

command
tabs/8x
settab,5%?ia;

? fig5: running

T_tabs: %0001
h_tabs: %0001
i_tabs: 30001
sbreakpoint

? $q

* %

%0000 %0000
%0000 %0000
%0000 30000
read:

Example 6

Zilog

0

%0000 %0000
$0000 %0000
$0000 %0000

1d

r0,r7

%0000
%0000
%0000

ADB

$0000 %0000
$0000 %0000
$0000 %0000

32

ADB

33

woduldwWwNh -

zilog ADB

adb ex3 -

ADB: S8000 1.1

? h:b hent/d; h.hi/; h.hr/

? g:b gcent/d; g.gi/; f.fr/

? sr

ex3: running

_fent: 0 -

Sorry, local variable names not implemented

f:b fcnt/4; f.a/"a = "d; f.h/"b = "d; f.fi/"fi = "d
g:b gnt/d; g.p/"p = "d; g.9/"q = "d; g.gi/"gi = "d
h:b hent/d; h.x/"x = "d; h.y/"y = "d; h.hi/"hi = "d

))

running 0

X
orry, local variable names not implemented

0 R L e
'Qﬂ'cﬂt

* %

Example 7

Zilog 33

ADB

34

Zilog ADB
E707 files
a.out hdr text+data
I | |
0 D
core hdr text+data | stack
I | ® @ & ° @
0 D S

E711 files (separated I and D space)

a.out hdr| text data
| l
0 T O

core hdr data stack
| | eeesl |
. 0 D S E

The following adb variables are set.

E707 RM E711
b base of data 0 b 0
d length of data D D-B D
s length of stack S S S
t length of text 0 T T
Example 8

Zilog 34

ADB

35

oAU WD

S8000 1.1

S8000 1.1

Zilog

adb mapE707 coreE707

'mapE707"
bl = %0
b2 = §$0

'coreE707!
bl = %0
b2 = %200

ADB:

? Sm

? map

/ map
10
11 ? Sv
12 variables
13 address
14 e = %ad
15 other
16 d = %100
17 m= %e707
18 s = %$£fe00
19 ? $q
20
21
22 adb mapE711 coreE711
23
24 ABD:
25 ? $m
26 ? map
27
28
29 / map
30
31
32 ? variables
33 address
34 e = %a4
35 other
36 d = %100
37 m= %e7l1ll
38 s = %$fel0
39 t = %100
40 ? $q
***1* * %%

'mapE711"
bl = %0
b2 = %0
'coreE711"
bl = %0
b2 = %200
Example 9

Zilog

el
e2

el
e2

el
e2

el
e2

$dc
$dc

$100
%1000

%100
%0

%100
%10000

fl
£2

fl

fl
f2

fl
f2

ADB

35

%38
338

%400
3500

%38
%138

%400
3500

ADB zilog ADB

1 char strl[] = "This is character string";

2 int one = 1;

3 int number = 456;

4 long lnum = 1234L;

5 char str2[] = "This is the second character string";
6 main()

7

8 one = 2;

9

***1* * %

Example 10

36 zilog 36

ADB

oUW K

37

adb mapE711 coreE711

ADB: S8000 1.1
? <b,~1/80a

_strl

_strl+%10:

_lnum:

0521

000

_str2+%8: 0

_str2+%18:

_environ+g2:

_environ+%12:

_environ+%22:

_environ+%32:

_environ+%42:

_environ+%52:

_environ+%62:

_environ+%72:

_environ+%82:

_environ+%92:

_environ+%a2:
? <b,20/40n"8Cn

_strl:

05
060440
072145
067147
000000
052150
072150
067144
061564
064556
000000
000000
000000
000000
000000
000000

Z2il

50 064563 0201

Cg

51 0714

000 002322 037640 000

72150 062440 O

061564 062562

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

2150 064563

061550
071040
000000
002322
064563
062440
020143
062562
063400
000000
000000
000000
000000
000000
000000

000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

060562
071564
000001
037640
020151
071545
064141
020163
000000
000000
000000
000000
000000
000000
000000

Zil

71545 0
020163
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

020151 07

060543
071151
000710
000000
071440
061557
071141
072162
177662
000000
000000
000000
000000
000000
000000

°g

ADB

40 060440 061550 060562 060543

072145 071040 071564 071151 067147 000000 000001 000710

000 052150 064563 020151 071440

61557 067144 020143 064141 071141

072162
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000
000000

064556 063400 000000 177662

000000 000000 0000O0Q
000000 000000 00GO0OOO
000000 000000 000O0OCO
000000 000000 000000
000000 000000 000GOO
000000 000000 000000
000000 000000 000000
0060000 000000 00O0O0OQO
000000 000000 000000
000000 000000 000000
000000 000000 000000

1440 This is
a charac
ter stri
ng@'@‘@ @a@aH
@'@‘edr? @@

This i

S

37

000000
000000
000000
000000
007700
000000
000000
000000
000000
000000
000000

ADB Zilog ADB
53 000000 000000 000000 000000 E'@'@'@'@'@‘@ @’
54 000000 000000 000000 000000 e@'@'@'@'@'@'@ @’
55 000000 000000 000000 000000 @'@'@'@'@'@‘@‘@"
56 000000 000000 000000 000000 @'@'e‘@'@'@'e‘@’
57 ? <b,20/404"8t8cna
58 _strl: 052150 064563 020151 071440 This is
59 _strl+%8: 060440 061550 060562 060543 a charac
60 _strl+gl0: 072145 071040 071564 071151 ter stri
61 _strl+318: 067174 000000 000001 000710 ngH
62 _lnum: 000000 002322 037640 000000 R?
63 _str2: 052150 064563 020151 071440 This is
64 _str2+38: 072150 062440 071545 061557 the seco
65 _str2+%10: 067144 020143 064141 071141 nd chara
66 _str2+%18: 061564 062562 020163 072162 cter str
67 _str2+%20: 064556 063400 000000 177662 ing2
68 _environ+%2: 000000 000000 000000 000000
69 _environ+ga: 000000 000000 000000 000000
70 _environ+%12: 000000 000000 000000 000000
71 _environ+%la: 000000 000000 000000 000000
72 _environ+%22: 000000 000000 000000 000000
73 _environ+%2a: 000000 000000 000000 000000
74 _environ+%32: 000000 000000 000000 000000
75 _environ+%3a: 000000 000000 000000 000000
76 _environ+%42: 000000 000000 000000 000000
77 _environ+%4a: 000000 000000 000000 000000
78 _environ+%52:
79 2?2 <b,10/2b8t"2c¢cn
80 _strl: %0054 %0068 Th
81 %0069 %0073 is
82 %0020 %0069 i
83 %0073 %0020 (S
84 30061 $0020 a
85 %0063 %0068 ch
86 $0061 $0072 ar
87 20061 %0063 ac
88 %0074 230065 te
89 $0072 %0020 r
90 ? $q
* %% 3168***
Example 11
38 Zilog 38

ADB

39

wodoumbdhWwWihH

~9

Zilog

adb dir -

ADB: S8000 1.1
? =nt"Inode"t"Name"
? 0,-1?utlédcn
Inode Name
$0000: 2 .
2 ..
102 bin
101 usr
157 1ib
164 dev
148 etc
197 pb.image
957 tmp
261 =zeus3_1l.2-
? $q

adb /dev/src -

ADB: S8000 1.1

?2 ?m 0 %$1000000 1024

? 0,-1?"flags"8ton"links,uid,gid"8t3dn"size"8tDn" \
addr"8t20un"times"8t2¥2na ‘

$0000s: flags 100000
links,uid,gid 0 0 0
size 0
addr 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0

times 1981 Feb 12 13:50:17 1981 Feb 12 13:50:17

1981 Feb 12 13:50:17

$0040: flags 040755
links,uid,gid 44 0 0
size 704
addr 3 9984 810 0 0
0 0 0 0 0 0
0 0 0 0 0

times 1981 Jul 17 16:58:42 1981 Jul 15 10:10:41

1981 Jul 15 10:10:41

%$0080: flags 100664
links,uid,gid 1 25 0
size 34
addr 52 12288 0 0 0
0 0 0 0 0 0
0 0 0 0 0

Zilog

ADB

39

ADB

40

52
54

Zilog

times 1981 Jul 16 17:06:34
1981 Jul 16 17:94:23

Example 12

Zilog

ADB

1981 Jul 16 17:04:23

40

Zilog ADB

APPENDIX B

ADB SUMMMARY

Command Summary

® Formatted Printing

? format print from a.out file according to for-
mat

/ format print from core file according to format

= format print the value of dot

?W expr write expression into g.out file

/W expr - write expression into core file

2?1 expr locate expression in a.out file
® Breakpoint and Program Control

:b set breakpoint at dot

:C continue running program

:d delete breakpoint

:k kill the program being debugged
:r run a.out file under ADB control
:s single step

® Miscellaneous Printing

$b print current breakpoints
$c C stack trace

Se external variables

St floating registers

Sm print ADB segment maps

$q exit from ADB

Sr general registers

$s set offset for symbol match
Sv print ADB variables

Sw set output line width

® Calling the Shell

! call shell to read rest of line

zilog 41

ADB

42

®

Format Summary

Zilog

Assignment to Variables

>name

)M%CamHSOH-PhQ:()U'N

L

assign dot to variable or register name

the value of dot

one byte in octal

one byte as a character

one word in decimal

two words in floating point
z8000 instruction

one word in octal

print a newline

print a blank space

a null terminated character string
move to next n space tab

one word as unsigned integer
hexadecimal

date

backup dot

print string

Expression Summary

®

Expression Components

decimal integer for example 256

octal integer for example 0277

hexadecimal for example %ff

symbols for example flag _main main.argc
variables for example <b

registers for example <pc <r0

(expression) for example expression grouping

Dyadic Operators

add

H— ® x| +

subtract

multiply

integer division

bitwise and

bitwise or

round up to the next multiple

Monadic Operators

~

not

* contents of location
- integer negate

Zilog

ADB

42

AS

Zilog

ZEUS PLZ/ASM ASSEMBLER

USER GUIDE

Zilog

AS

AS

zilog AS

PREFACE

This manual describes how to use the z8000 PLZ/ASM language
translator (as) for the ZEUS Operating System. The Z8000
PLZ/ASM language is described in the Z8000 PLZ/ASM Assembly
Language Programming Manual (03-3055). Implementation-
dependent features are described in this document.

The S8000 version of PLZ/ASM depends on certain features of
ZEUS. It uses the stream Input/Output (I/O) package to han-
dle files, but otherwise is self-contained and system-
independent. It 1is the resident assembler for ZEUS. A
description of its exact invocation is contained in Section
1 of the ZEUS Reference Manual.

Refer to a.out(5) of the ZEUS Reference Manual, and to Sec-

tion 7 of this manual, for a description of the object code
format.

Zilog 2

AS

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

Zilog

TABLE OF CONTENTS

INTRODUCTION ® 6 6 0606060000 000000000 000000000000

1.1 General DesCription .cececeececcecceccsacces
llz Relocatability ® @ ® © & © 0 0 0 & O 0 OO O S 0 O 0 O 0 0 0 0
1.3 Assembler Abort ConditionNS .ccececcessccse

INPUT/OUTPUT ® @ @ 2 @ 0% 0 0 0 00 90 OO O OO OO OSSO O OO 00
2 .l User Input ® ® © © & ¢ 0 0 0 00 0 S 5 O S 00 000 000 0 000
2.2 Assembler Output ..ceecceeccccocsccscncses
ASSEMBLER COMMAND L INE ® ® 0 6 & 8 ® 0O &0 0 O 00O SO0 e
3 .1 Command Line ® @ ® 9 © ¢ ¢ 00 @0 O OO 0 OO S SO0 e e 0o
3 .2 Options e o o ® ® & &6 0 & 6 0 0 00 8 OO0 OO 8 000 0 0 0 0 8o
LISTING FORMAT ® @ 6 & 0 0 0 O 0 0 8 0 0 OO 0SSOSO OO NS e
4.1 Format DeSCription ® 6 © 0 9 0 O 05 00 0 O 0O O o0 00
4 .2 Sample Listing @ e @ 0o 0 0 0 0 0 0 0‘. ® ® 0 & 0 ® 00 0 0 0 02
MINIMAL PROGRAM REQUIREMENTS .ccccccesccccscas
IMPLEMENTATION FEATURES AND LIMITATIONS

OBJECT CODE @ ® 00 ¢ 0 060 000 0000000000 000000000000

PLZ/ASM ERROR MESSAGES ® ® 000600000000 000000000

Zilog

AS

Lo - >

(8]

(S 6]

[=) X))

10

12

13

17

AS

Z2ilog AS

SECTION 1

INTRODUCTION

1.1 General Description

The 28000 PLZ/ASM assembler (invoked by the command as) is
the relocating assembler for ZEUS. It accepts a source file
(a symbolic representation of a program in 2Z8000 assembly
language) and translates it into an object module. It can
also produce a listing file containing the source and assem-
bled code.

1.2 Relocatability

Relocation refers to the ability to bind a program module
and its data to a particular memory area after the assembly
process. The output of the assembler is an object module
that contains enough information to allow a loader or linker
to assign a memory area to that module. Refer to the
description of the ZEUS linker/loader in l1d(l) of the ZEUS
Reference Manual.)

1.3 Assembler Abort Conditions

There are two assembler abort conditions.

1. If I/0 errors are returned during a system call, an
error is printed out and the assembly is aborted.

2. If error conditions cause the assembler to become
completely lost, the assembly is aborted and an
Assembler Abort error (error 255) is printed out to
the standard error and the listing file.

Zilog 4

AS

Zilog AS

SECTION 2

INPUT/OUTPUT

2.1 User Input

An editor is used to create a 728000 PLZ/ASM source program.
The source file should end with the file name extension .s
(upper or lowercase). Instructions for invoking the assem-
bler are defined in Section 3.

2.2 Assembler Output

The assembler creates two files: a listing file, with the
default name of the source file and the extension .1 in
place of .s, and an object file, with a.out or t.out as the
default name (Section 7). 1In creating the object file, the
assembler uses a temporary, intermediate file that is
deleted when the assembly is complete. The listing file
contains the source statements and corresponding line
numbers; any error message numbers are listed following the
line on which the error occurred. Refer to Section 8 for
explanations of error messages.

Zilog 5

AS

Zilog AS

SECTION 3

ASSEMBLER COMMAND LINE

3.1 Command Line

The assembler is invoked by the following command line:

as filename [options]

The extension .s, which specifies that filename contains the
source for

to filename.

3.2 Options

a single 7Z8000 PLZ/ASM module, must be appended

The following options are valid and can appear in any order,
separated by delimiters such as a blank or tab.

-d

-0

-P

string

filename

in combination with the -1 option, specifies
a date (up to 19 characters) to be put in the
listing header.

allows assembly of floating point Extended
Processor Unit (EPU) instructions.

requests that the intermediate file the
assembler uses be saved. The file name for
the intermediate file is the input file name
with the .i extension.

requests a listing file. The file name for
the 1listing file is the input file name with
the .1 extension. No listing is produced if
this option is not used.

allows the user to name the output file. If
this option 1is not used, the default file
name is a.out or t.out (Section 7).

prints the listing file to the user console
as it 1is being produced. Only source lines
containing errors are printed to the console
if this option is not specified.

requests that the relocation information file
be saved. The relocation file name is the
input file name with the .r extension.

Zilog 6

AS

-u

-V

Zilog AS

all undefined symbols are treated as exter-
nal.

turns on the console message (name and ver-
sion number, passl message, and assembly com-
plete).

causes the assembler to produce type z object
format rather than a.out. Also causes the

default file name to be t.out rather than-

a.out (Section 7).

turns on the passl trace facility.

Zilog 7

Zilog AS

SECTION 4

LISTING FORMAT

4.1 Format Description

The assembler produces a listing of the source program,
along with generated object code. The various fields in the
listing format are described in this section. Refer also to
the sample listing in Section 4.2.

AS
HEADING
LOC
OBJ CODE
STMT
SOURCE

8

The first page heading contains the assembler
version number and column headings as
explained below. In addition; the heading
can contain a user-specified string that is
usually the date of the assembly (see Date
option, Section 3.2).

The location column contains the value of the
reference counter for statements. The
counter starts at zero for each different
section.

The object code column contains the value of
generated object code. It is blank if a
statement does not generate object code.

Each byte or word of object code is followed
by either a single quote ('), an asterisk
(*), or a blank line. A single quote indi-
cates that the value 1is relocatable. An
asterisk indicates that the value is depen-
dent on an external symbol. A blank indi-
cates that the value will not change. A
value that is either relocatable or dependent
on an external is likely to be modified by
either the 1linker or loader. The value in
the listing can be different from the value
during program execution. Three dots (...)
indicate that the preceding byte, word, or
long word is repeated (only in data initiali-
zation).

The statement number column contains the
sequence number of each source line.

The remainder of the line contains the source
text.

Zilog 8

AS

4.2 Sample Listing

28000ASM 3.0
LOC OBJ CODE

Zilog

STMT SOURCE STATEMENT

Assembly complete

1 bubble_sort MCODULE t
2
3 CONSTANT !
4 FALSE :=0
5 TRUE 1= 1
6
7 EXTERNAL
8 list ARRAY [10 WORD]
9
10 INTERNAL
0000 11 switch BYTE !
12
0000 13 sort PROCEDURE !
14 ENTRY !
15 DO !
0000 4C05 0000' " 16 LDB switch, #FALSE !
0004 0000
0006 8D1l8 17 CLR R1 !
18 DO
0008 0BO1 19 CP R1,RO !
000A E701 20 IF UGE THEN EXIT FI
000C EB811
000E All2 21 LD R2,R1 1
0010 A921 22 INC R2,#2 1
0012 6114 0000* 23 LD R4,list(Rl)
0016 6126 0000* 24 LD R6,list(R2).
001A 8B64 25 CP R4,R6 1
001C E307 26 IF UGT THEN !
- 001E 4C05 0000" 27 LDB switch, #TRUE !
0022 0101 ¥
0024 6F16 0000* 28 LD-1ist (R1l) ,R6
0028 6F24 0000* 29 LD list(R2),R4
30 FI
002C A911 31 INC R1,#%#2 !
002E E8EC 32 (o)1) !
0030 4C01 0000' 33 CPB switch, #FALSE !
0034 0000
0036 EEO1 34 IF EQ THEN RET FI
0038 9E08
0032 E8E2 35 oD !
003C gg END sort !
38 GLOBAL !
003C 39 main PROCEDURE !
40 ENTRY
003C 2100 0012 41 LD RO,#9*2 !
42 !
0040 D021 43 CALR sort 1
0042 9EO08 44 RET .
0044 45 END main !
46
47 END bubble_sort
0 errors

Zilog

AS

Module declaration !

Constant declarations !

Loop control switch !

Procedure declaration
Begin executable part
Loop til EXIT !
Initialize switch !

[

Clear array pointer i !
Done ?2.!

Initialize pointer j !
j = i+l (dble for words)!

Iff,1ist[i] > list[j]... !
. «»exchange to bubble... !
.s.largest to top !

A

- Advance word pointer !

End nested DO loop !
Test switch !

End outer DO loop !
End of procedure !

New procedure declaration
Program entry procedure !

Initialize loop control !
Double for word array !

"Call sort procedure !

End of main procedure !

AS

10

Zilog AS

SECTION 5

MINIMAL PROGRAM REQUIREMENTS

The examples in this section illustrate the minimal amount
of PLZ/ASM structuring required to make a working program.
The first example shows the absolute minimal structuring
required: a module definition, a declaration class, and a
procedure definition. The second example shows the same
program, but includes examples of how to use symbolic con-
stants and data declarations.

EXAMPLE #1:

anyname MODULE

GLOBAL ! or INTERNAL depending on whether !
! intermodule linking is desired. !

- somename PROCEDURE
ENTRY

! The program goes here !
RET

END somename

END anyname

Zilog 10

zilog AS

EXAMPLE #2:
anyname MODULE
CONSTANT ! Symbolic constants are declared here. !
one :=1 |

hexten := %10

GLOBAL or INTERNAL depending on whether !

!
! intermodule linkage is desired. !
a BYTE ! Data declarations can go here. !

b WORD
buffer ARRAY [100 BYTE]

hed

GLOBAL !Restate the declaration class [optional]. !

somename PROCEDURE
ENTRY

! The program goes here!
RET

END somename

END anyname

Zilog 11

AS

12

Zilog AS

SECTION 6

IMPLEMENTATION FEATURES AND LIMITATIONS

The Z8000 PLZ/ASM assembler limitations and implementation
features follow.

1.

The Z8000 PLZ/ASM assembler uses the standard ASCII
character set. Upper or lowercase characters are
recognized and treated as different characters; key-
words are recognized only if they are either all upper
or all lowercase (GLOBAL or global, but not Global).
Hexadecimal numbers and special string characters can
be either upper or lowercase (%Ab, 'lst 1line%R2nd
linesr').

Source lines longer than 132 characters are accepted,
but only 132 characters are printed for error messages.
Comments and quoted strings can extend over an arbi-
trary number of lines. Caution should be exercised to
avoid unmatched comment delimiters (!) or string delim-
iters (").

Strings cannot be zero length ('').

Constants are represented internally as 32-bit unsigned
quantities. Each operand in a constant expression is
evaluated as though it were declared to be of type
LONG. For example, 4/2 equals 2, but 4/-2 equals zero
since -2 1is represented as a very large unsigned
number. There 1is no overflow checking during evalua-
tion of a constant expression. Because constants are
represented as 32-bit values, only the first four char-
acters in a character sequence used as a constant are
meaningful ('ABCD' = 'ABCDE'). An exception 1is a
string used for array initialization, which can have a
length of up to 127 characters.

Identifiers can be of any length up to a maximum of 127
characters.

After an error occurs within CONSTANT, TYPE, or vari-
able declarations, the assembler skips ahead until it
finds the next keyword that starts a new statement (an
opcode, IF, DO, EXIT, REPEAT, or END). This skipping
ahead may necessitate several assemblies before all
errors are detected and removed.

Zilog 12

AS

13

Zilog AS

SECTION 7

OBJECT CODE

Depending on command line options, the assembler produces
object files 1in one of two formats: object code compatible
with that produced by the MCZ 28000 PLZ/ASM assembler
(t.out) and ZEUS object code (a.out). Refer to Section 3
for the appropriate command-line options.

When producing ZEUS object code, a.out is the default file
name. This object code format 1is fully described in

a.out(5) of the ZEUS Reference Manual.

When producing MCZ object code, t.out is the default file
name. Below is a list of the object tags, their functions,
and the corresponding fields that make up this object code
format. The tags are classified into three groups: control
tags that are used to transfer control information, entry
tags that define the code, and modifier tags that act as
modifiers for the entry tags.

The following is a list of symbols used in the object code
syntax: : i

| The vertical bar separates two mutually exclusive
items. The user enters one or the other, but not
both. Multiple vertical bars separate three or
more mutually exclusive items. Parameters
separated by a vertical bar can be delimited by
brackets (see below).

* An asterisk placed after an item indicates that
the item appears zero or more times in the syntax.

+ A plus sign placed after an item indicates that
the item appears at least once in the syntax.

[] Brackets enclose an optional parameter-—-a parame-
ter that can appear zero or more times.

() Parentheses enclose parameter pairs, or group
items so that a repetition symbol (+ or *) can be
applied to the group.

vt Single quotes enclose character strings that must
be entered with a particular parameter. However,
the single quotes only delimit the required char-
acter string and must not appear in the command
line.

Zilog 13

AS Zilog AS

OBJECT CODE SYNTAX

The object code format is still wunder development and is
subject to change.

U
v

object_module [tagged_entry] *

I
v

tagged_entry control_entry | modified_entry

NOP

SEGMODULE bcount size size name
NONSEGMODULE bcount size name
ENDMODULE

SECTION bcount attr size name

GLOB bcount secw loc attr typew name
ABSGLOB bcount secw loc attr typew name
EXTERN bcount typew name

ENTRYPT sec loc

ABSENTRYPT sec loc

DEBUGSYMBOL bcount secw loc [bvall*
DEBUGINFO bcount {bvall*

MESSAGE bcount [bvall*

SETDATA sec

SETPROG sec

BEGSEC sec

LOCNT loc

ABSLOCNI loc :

MODULEDEF secw loc wval size
MODULEREF wval

control_entry

Wononwwnnnnnnnnnnnnnunn

VVVVVVVVVVVVVVVVVVVYV

modified_entry => [REP bcount]
(modified_addr | modified_value)

modified_addr => [SHORT] [SEGMENT | OFFSET]
[HIBYTE | LOBYTE]
[DISP offset] addr_entry

modified_value => [(REL sec) | RELPROG | RELDATA]
[SEQUENCE bcount] value_entry

addr_entry => EXREF ext
= SECREF sec
= SECADDR sec offset
=> ZREF ext

14 Zilog 14

AS

15

Zilog AS

value_entry _ => LDBYTE bval
= LDWORD wval
=> LDLONG lval

name => [bytel*
length = byte
size = word
attr = byte
secC = byte
secw = word
loc = word
typel = byte
type2 = byte
bval = byte
wval = word
lval = long
count = word
ext = word
offset => word

OBJECT CODE TAGS

CONTROL TAGS:

HEX

00 NOP Null operation

0l SEGMODULE Segmented module definition

02 NONSEGMODULE Nonsegmented module definition

03 ENDMODULE End module

04 SECTION Section definition

05 GLOB Global symbol definition

06 ABSGLOB Global symbol definition with
absolute offset

07 EXTERN External symbol definition

08 ENTRYPT Entry point with relocatable offset

09 ABSENTRYPT Entry point with absolute offset

oA DEBUGSYMBOL Debug symbol

0B DEBUGINFO Debug information

0cC MESSAGE Variable length message

0D SETDATA Set current data section

OE SETPROG Set current program section

OF BEGSEC Begin section

10 LOCNT Relocatable program counter

11 ABSLOCNT Absolute program counter

12 MODULEDEF Module definition for z-code

13 MODULEREF Module reference used for z-code

machines

Zilog 15

zilog As

ENTRY TAGS:

HEX

20 LDBYTE Load byte value

21 LDWORD Load word value

22 LDLONG Load long value

23 EXREF External reference

24 SECREF Section reference

25 SECADDR Section address

26 ZREF Z-code module reference

MODIFIER TAGS:

HEX

40 REP Repeat

41 SEQUENCE) Sequence

42 REL Relocatable

43 RELDATA Relocatable with respect to current
data area

44 RELPROG Relocatable with respect to current
program area

45 DISP Displacement

46 *LOBYTE Low order byte of

47 *HIBYTE High order byte of

48 **SHORT Short segment address

49 **QFFSET Offset of

4A **SEGMENT Segment of

* 78/Z-UPC

** 728000

Zilog 16

S

AS

18

Zilog AS

SECTION 8

PLZ/ASM ERROR MESSAGES

ERROR EXPLANATION

oW

20

22
23
24

30
31
32
33

WARNINGS

Missing delimiter between tokens

Array of zero elements

No fields in record declaration
Mismatched procedure names

Mismatched module names

Absolute address warning for System 8000

TOKEN ERRORS

Decimal number too large

Invalid operator

Invalid special character after %
Invalid hexadecimal digit
Character_sequence of zero length
Invalid character

Hexadecimal number too large

DO LOOP ERRORS

Unmatched OD

OD expected

Invalid repeat statement
Invalid exit statement
Invalid FROM label

IF STATEMENT ERRORS

Unmatched FI

FI expected

THEN or CASE expected
Invalid selector record

SYMBOLS EXPECTED

) expected
(expected
] expected
[expected
:= expected

Zilog 18

Zilog

ERROR EXPLANATION
INVALID VARIABLES

100 Invalid variable

101 Invalid operand for # or SIZEOF
102 Invalid field name

103 Subscripting of nonarray variable
104 Invalid use of period (.)

EXPRESSION ERRORS

110 Invalid arithmetic expression
111 Invalid conditional expression
112 Invalid constant expression

113 Invalid select expression

114 Invalid index expression

115 Invalid expression in assignment

CONSTANT OUT OF BOUNDS

120 Constant too large for 8 bits
121 Constant too large for 16 bits
122 Constant array index out of bounds

TYPE INCOMPATIBILITY

140 Character_sequence initializer used
with array [*] declaration where
component's base type is not 8 bits

141 TYPE incompatibility with initilization

SEGMENTATION ERRORS

170 Invalid operator in nonsegmented mode
171 Mismatched short address operator
172 Mismatched segment designator

DIRECTIVE ERRORS

180 Inconsistent area specifier

181 Invalid area specifier

182 Mismatched conditional assembly directives

183 Invalid conditional assembly expression

184 Attempt to mix segmented and nonsegmented code
185 Directive must appear alone on a single line
186 Invalid $CODE or S$DATA directive

Zilog

AS

20

Zilog

ERROR EXPLANATION
FILE ERRORS

198 EOF expected

199 Unexpected EOF encountered in source--possible

unmatched ! or ' in source

IMPLEMENTATION RESTRICTIONS

224 Too many symbols--hash table full

226 Short segmented offset out of range

227 Object symbol table overflow

228 Relocation out of range (word overflow)
229 Unimplemented feature

230 Character_sequence of identifier too long
231 Too many symbols--symbol table full

234 Too many initialization values

235 Stack overflow

236 Operand too complicated

NOTE

Errors larger than 240 can occur. If there are no
other errors in the program preceding one of these
errors, this indicates an assembler bug that
should be reported to Zilog along with any per-
tinent information concerning its occurence.

Zilog

AS

20

*

zZilog

Awk - A Pattern Scanning and Processing Language *

This information is based on an
written by Alfred V. Aho, Brian W.
J. Weinberger, Bell Laboratories.

Zilog

article
Kernighan,

originally
and Peter

AWK Zilog ' AWK

TABLE OF CONTENTS
SECTION 1 INTRODUCTION @ ® © © ® 0 0 @ 9 O 0 0 0 0 8 S0 O OO0 O S s eo
l .l Usage ® 9 ® @ 0 0 6P 00 0 0 O O 0 S PSSO s a0 P OO0

1.2 Program StruCtUre ...ceescececsscocccssce
1.3 Records and FieldS ...eecescccccsccss

[= V8] w

SECTIONZ PATTERNS ® ® 6 9 0 0000 00600000 000000000000

2.1 BEGIN and END ..c.ciceesccessscccncosnas
Regular EXPreSSiONS .eeeceeccscssccscs
Relational EXpressSions ..ccececeececes
Combinations of Patterns ...ceecceeeee
Pattern RAanges ..ceeceecececscccccccccacs

NN N
VwOwoodd ~

Ul W

SEC'i:IONB ACTIONS ® © 0 0 00 006 00 00 0000000000000 o0 ll

3.1 Built=in Functions ..ececececccccessss 11
Variables, Expressions,

and Assignments ...cccececcrsccccscecs 12
Field Variables .ceeceeecccesscasasaas 12
String Concatenation ...cceeeeeesases 13
AFTAYS eececeoscosscoccccsccsssccsssee 14
Flow-of-Control Statements ..ce¢eceee. 14

wWwww w
YUl > W [\

SECTION4 DESIGN ® 9 6 0 06 00600 00 0000000000000l 17

SECTION 5 IMPLEMENTATION ..cceceeeeccecccccsscnssas 19

2 Zilog 2

i

AWK Zilog AWK

SECTION 1
INTRODUCTION

Awk is a programming language designed to make many common
information retrieval and text manipulation tasks easy to
state and to perform.

The basic operation of awk is to scan a set of input 1lines
in order, searching for lines which match any of a set of
patterns which the user has specified. For each pattern, an
action can be specified; this action will be performed on
each line that matches the pattern.

Readers familiar with the ZEUS program grep (see ZEUS Refer-

ence Manual, Sectign 1) will recognize the approach,

although in awk the patterns may be more general than in

grep, and the actions allowed are more involved than merely

printing the matching line. For example, the awk program
{print $3, $2}

prints the third and second columns of a table 1in that
order. The program

$2 ~ /A|BIC/
prints all input lines with an A, B, or C in the second
field. The program

$1 != prev { print; prev = $1 }
prints all lines in which the first field is different from
the previous first field.
1.1. Usage
The command

awk program [files]
executes the gwk commands in the string program on the set
of named files, or on the standard input if there are no
files. The statements can also be placed in a file pfile,

and executed by the command

awk -f pfile [files]

3 Zilog 3

AWK Zilog AWK

l.2. Program Structure

An awk program is a sequence of statements of the form:
‘pattern { action }
pattern { action }

LI)

Each line of input is matched against each of the patterns
in turn. For each pattern that matches, the associated
action is executed. When all the patterns have been tested,
the next line is fetched and the matching starts over.

Either the pattern or the action may be left out, but not
both. If there 1is no action for a pattern, the matching
line is simply copied to the output. (Thus a 1line which
matches several patterns can be printed several times.) If
there is no pattern for an action, then the action is per-
formed for every input line. A line which matches no pat-
tern is ignored.

Since patterns and actions are both optional, actions must
be enclosed in braces to distinguish them from patterns.

1.3. Records and Fields
Awk input is divided into '‘records'' terminated by a record
separator. The default record separator is a newline, so by
default awk processes its input a 1line at a time. The
number of the current record is available in a variable
named NR.

Each input record is considered to be divided into
*‘fields.'' Fields are normally separated by white space -
blanks or tabs - but the input field separator may be
changed, as described below. Fields are referred to as §1,
$2, and so forth, where $1 is the first field, and $0 is the
whole input record itself. Fields may be assigned to. The
number of fields in the current record 1is available in a
variable named NF.

The variables FS and RS refer to the input field and record
separators; they may be changed at any time to any single
character. The optional command-line argument -F¢c may also
be used to set FS to the character c.

If the record separator is empty, an empty input 1line is
taken as the record separator, and blanks, tabs and newlines
are treated as field separators.

The variable FILENAME contains the name of the current input

4 _ zilog 4

ooy

AWK Zilog AWK

file.
1.4. Printing

An action may have no pattern, in which case the action 1is
executed for all 1lines. The simplest action is to print
some or all of a record; this is accomplished by the awk
command print. The awk program

{ print }
prints each record, thus copying the input to the output

intact. More useful is to print a field or fields from each
record. For instance,

print $2, §1

-

prints the first two fields 1in reverse order. Items
separated by a comma in the print statement will be
separated by the current output field separator when output.
Items not separated by commas will be concatenated, so

print $1 $2

runs the first and second fields together.

The predefined variables NF and NR can be used; for example
{ print NR, NF, $0 }

prints each record preceded by the record number and the

number of fields.

Output may be diverted to multiple files; the program

{ print $1 >"fool"; print $2 >"foo2" }
writes the first field, $1, on the file fool, and the second
field on file foo2. The >> notation can also be used:

print $1 >>"foo"
appends the output to the file foo. (In each case, the out-
put files are created if necessary.) The file name can be a

variable or a field as well as a constant; for example,

print $1 >$2

5 Zilog 5

AWK Zilog AWK

uses the contents of field 2 as a file name.

Naturally there is a limit on the number of output files;
currently it is 10.

Similarly, output can be piped into another process for
instance,

print | "mail bwk"

mails the output to bwk.

The variables OFS and ORS may be used to change the current
output field separator and output record separator. The.
output record separator is appended to the output of the
print statement.

Awk also provides the printf statement for output format-
ting:

printf format ekpr, €XPL; oo«

formats the expressions in the list according to the specif-
ication in format and prints them. For example,

printf "%$8.2f %101d\n", $1, $2

prints §1 as a floating point number 8 digits wide, with two
after the decimal point, and $2 as a 10-digit long decimal
number, followed by a newline. No output separators are
produced automatically; you must add them yourself, as in
this example. The version of printf is identical to that
used with C.

6 zilog 6

AWK Zilog AWK

SECTION 2
PATTERNS

A pattern in front of an action acts as a selector that
determines whether the actiocn is to be executed. A variety
of expressions may be used as patterns: regular expressions,
arithmetic - relational expressions, string-valued expres-
sions, and arbitrary boolean combinations of these.

2.1. BEGIN and END

The special pattern BEGIN matches the beginning of the
input, before the first record is read. The pattern END
matches the end of the input, after the last record has been
processed. BEGIN and END thus provide a way tq gain control
before and after processing, for initialization and wrapup.
As an example, the field separator can be set to a colon by

BEGIN { F§ = ":" }

... rest of program ...

Or the input lines may be counted by
END { print NR }
If BEGIN is present, it must be the first pattern; END must
be the last if used.
2.2. Regular Expressions

The simplest regular expression is a literal string of char-
acters enclosed in slashes, like

/smith/
This is actually a complete awk program which will print all
lines which contain any occurrence of the name " ‘smith''.
If a line contains '‘smith'' as part of a larger word, it

will also be printed, as in

blacksmithing

Awk regular expressions include the regular expression forms
found in the ZEUS text editor ed (see ZEUS Reference Manual,

7 zilog 7

AWK Zilog AWK

Section 1) and grep (without back-referencing). In addi-
tion, "awk allows parentheses for grouping, | for alterna-
tives, + for ‘‘one or more'', and ? for " “zero or one'', all
as in lex. Character classes may be abbreviated:
[a~2A-20-9] is the set of all letters and digits. As an
example, the awk program

/[Aalho| [Ww]einberger | [Kk]ernighan/

will print all lines which contain any of the names *“Aho, "'
Weinberger'' or "‘“Kernighan,'' whether capitalized or not.

Reqgular expressions (with the extensions listed above) must
be enclosed in slashes, Jjust as in ed and ged. Within a
regular expression, blanks and the regular expression meta-
characters are significant. To turn of the magic meaning of
one of the regular expression characters, precede it with a
backslash. An example is the pattern

AVESAVY

which matches any string of characters enclosed in slashes.
One can also specify that any field or variable matches a
regular expression (or does not match it) with the operators
~ and !, The program

$1 = /[jJdlohn/
prints all lines where the first field matches '‘john'' or
“*John.'' Notice that this will also match " ‘Johnson'',
**St. Johnsbury'', and so on. To restrict it to exactly
[jJdlohn, use

$1 = /" [jJ]ohn$/

The caret " refers to the beginning of a line or field; the
dollar sign § refers to the end.

2.3. Relational Expressions

An awk pattern can be a relational expression involving the
usual relational operators <, <=, ==, l=, >=, and >. An
example is

$2 > $§1 + 100

which selects lines where the second field is at 1least 100
greater than the first field. Similarly,

8 Zilog . 8

AWK zilog AWK

NF % 2 == 0

prints lines with an even number of fields.

In relational tests, if neither operand is numeric, a string
comparison is made; otherwise it is numeric. Thus,

$l >= llsll
selects lines that begin with an s, t, u, etc. In the
absence of any other information, fields are treated as

strings, so the program

$1 > §2

will perform a string comparison.
2.4, Combinations of Patterns

A pattern can be any boolean combination of patterns, using
the operators || (or), && (and), and ! (not). For example,

$1 >= "g" && S1 < "t" && $1 != "smith"

A Y

selects lines where the first field begins with ‘s'', but
is not '‘smith''. && and || guarantee that their operands
will be evaluated from left to right; evaluation stops as
soon as the truth or falsehood is determined.

2.5. Pattern Ranges

The ‘pattern'' that selects an action may also consist of
two patterns separated by a comma, as in

patl, pat2 { «oo }
In this case, the action is performed for each line between
an occurrence of patl and the next occurrence of pat2

(inclusive). For example,

/start/, /stop/

prints all lines between start and stop, while

NR == 100, NR == 200 { ... }

9) Zilog 9

AWK Zilog

does the action for lines 100 through 200 of the input.

10 zilog

AWK

10

e

AWK Zilog AWK

SECTION 3
ACTIONS

An awk action is a sequence of action statements terminated
by newlines or semicolons. These action statements can be

used to do a variety of bookkeeping and string manipulating
tasks. :

3.1. Built-in Functions

Awk provides a "‘length'' function to compute the length of
a string of characters. This program prints each record,
preceded by its length:

{print length, $0}

length by itself is a ‘pseudo-variable'' which yields the
length of the current record; length(argument) is a function
which yields the 1length of its argument, as in the
equivalent

{print length($0), $0}

The argument may be any expression.

Awk also provides the arithmetic functions sqrt, 1log, exp,
and int, for square root, base g logarithm, exponential, and
integer part of their respective arguments.

The name of one of these built-in functions, without argqu-
ment or parentheses, stands for the value of the function on
the whole record. The program

length < 10 || length > 20

prints lines whose length is less than 10 or greater than
20. :

The function substr(s, m, n) produces the substring of s
that begins at position m (origin 1) and is at most n char-
acters long. If n is omitted, the substring goes to the end
of s. The function index(sl, s2) returns the position where
the string s2 occurs in sl, or zero if it does not.

The function sprintf(f, el, e2, ...) produces the value of

the expressions el, e2, etc., in the printf format specified
by £. Thus, for example,

11 , zilog 11

AWK Zilog AWK

x = sprintf("%8.2f %1014d", $1, $2)

sets x to the string produced by formatting the values of §1
and $2.

3.2. Variables, Expressions, and Assignments

Awk variables take on numeric (floating point) or string
values according to context. For example, in

x =1

X is clearly a number, while in

X = "smith"

it is clearly a string. Strings are converted to numbers
and vice versa whenever context demands it. For instance,

X = ll3ﬂ + “4"

assigns 7 to x. Strings which cannot be interpreted as
numbers in a numerical context will generally have numeric
value zero, but it is unwise to count on this behavior.

By default, variables (other than built-ins) are initialized
to the null string, which has numerical value zero; this
eliminates the need for most BEGIN sections. For example,
the sums of the first two fields can be computed by

{ sl += $1; s2 += $2 }

END { print sl, s2 }

Arithmetic is done internally in floating point. The arith-
metic operators are +, -, *, /, and % (mod). The C incre-
ment ++ and decrement -- operators are also available, and
so are the assignment operators +=, -=, *=, /=, and %=.
These operators may all be used in expressions.

3.3. Field Variables
Fields in awk share essentially all of the properties of
variables - they may be used in arithmetic or string opera-

tions, and may be assigned to. Thus one can replace the
first field with a sequence number like this:

12 Zilog 12

AWK Zilog AWK

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ 81 = $2 + $3; print $0 }

or assign a string to a field:
{ if ($3 > 1000)
$3 = "too big"

print

which replaces the third field by "‘too big'' when it 1is,
and in any case prints the record.

Field references may be numerical expressions, as in

{ print $i, $(i+l), $(i+n) 1}
Whether a field is deemed numeric or string depends on con-
text; in ambiguous cases like

if ($1 == $2) ...

fields are treated as strings.
Each input line is split into fields automatically as neces-
sary. It is also possible to split any variable or string
into fields:

n = split(s, array, sep)
splits the the string s into arrayl[l], ..., arrayl[n]. The
number of elements found is returned. If the sep argument
is provided, it is used as the field separator; otherwise FS
is used as the separator.
3.4. String Concatenation

Strings may be concatenated. For example

length(S1 $2 $3)

13 zilog 13

AWK zilog AWK

returns the length of the first three fields. Or in a print
statement, '

print $1 " is " $2

A Y

prints the two fields separated by ' is ''. Variables and
numeric expressions may also appear in concatenations.

3.5. Arrays

Array elements are not declared; they spring into existence
by being mentioned. Subscripts may have any non-null value,
including non-numeric strings. As an example of a conven-
tional numeric subscript, the statement

x[NR] = S0
assigns the current input record to the NR-th element of the
array Xx. In fact, it 1is possible in principle (though
perhaps slow) to process the entire input in a random order
with the awk program
{ x[NR] = $0 }

END { ... program ... }

The first action merely records each input line in the array
X.

Array elements may be named by non-numeric values, which
gives awk a capability rather like the associative memory of
Snobol tables. Suppose the input contains fields with
values like apple, orange, etc. Then the program

/apple/ { x["apple"]++ }

/orange/ { x["orange"]++ }

END { print x["apple"], x["orange"] }
increments counts for the named array elements, and prints
them at the end of the input.
3.6. Flow-of-Control Statements
Awk provides the basic flow-of-control statements if-else,
while, for, and statement grouping with braces, as in C. We
showed the if statement in section 3.3 without describing

it. The condition in ©parentheses is evaluated; if it is
true, the statement following the if is done. The else part

14 Zilog 14

AWK : zilog AWK

is optional.

The while statement is exactly like that of C. For example,
to print all input fields one per line,

i=1
while (i <= NF) {
print $i

++i

The for statement is also exactly that of C:
for (i = 1; i <= NF; i++)

print $i

does the same job as the while statement above.

There is an alternate form of the for statement which is
suited for accessing the elements of an associative array:

for (i in array)

statement

does statement with i set in turn to each element of array.
The elements are accessed in an apparently random order.
Chaos will ensue if i is altered, or if any new elements are
accessed during the loop.

The expression in the condition part of an if, while or for
can include relational operators like <, <=, >, >=, == (‘is
equal to''), and != ('‘not equal to''); regular expression
matches with the match operators ~ and !7; the logical
operators ||, &, and !; and of course parentheses for
grouping.

The break statement causes an immediate exit from an enclos-
ing while or for; the continue statement causes the next
iteration to begin.

The statement next causes awk to skip immediately to the
next record and begin scanning the patterns from the top.
The statement exit causes the program to behave as 1if the
end of the input had occurred.

15 Zilog) 15

AWK Zzilog

AWK

Comments may be placed in awk programs: they begin with the

character # and end with the end of the line,

print x, y # this is a comment

16 zilog

as in

16

AWK : Zilog AWK

SECTION 4
DESIGN

The ZEUS system already provides several programs that
operate by passing input through a selection mechanism.
Grep, the first and simplest, merely prints all lines which
match a single specified pattern. Egrep provides more gen-
eral patterns, i.e., regular expressions in full generality;
farep searches for a set of keywords with a particularly
fast algorithm. Sed provides most of the editing facilities
of the weditor ed, applied to a stream of input. None of
these programs provides numeric capabilities, logical rela-
tions, or variables.

Lex provides general regular expression recognition capabil-
ities, and, by serving as a C program generator, is essen-
tially open—-ended in its capabilities. The use of lex, how-
ever, requires a knowledge of C programming, and a lex pro-
gram must be compiled and 1loaded before use, which
discourages its use for one-shot applications.

Awk is an attempt to f£ill in another part of the matrix of
possibilities. It provides general regular expression capa-
bilities and an implicit input/output 1loop. But it also
provides convenient numeric processing, variables, more gen-
eral selection, and control flow in the actions. It does
not require compilation or a knowledge of C. Finally, awk
provides a convenient way to access fields within lines; it
is unique in this respect.

Awk also tries to integrate strings and numbers completely,
by treating all quantities as both string and numeric,
deciding which representation is appropriate as late as pos-
sible. In most cases the user can simply ignore the differ-
ences.

Most of the effort in developing awk went into deciding what
awk should or should not do (for instance, it doesn't do
string substitution) and what the syntax should be (no
explicit operator for concatenation) rather than on writing
or debugging the code. The syntax is powerful but easy to
use and well adapted to scanning files. For example, the
absence of declarations and implicit initializations, while
probably a bad idea for a general-purpose prodgramming
lanquage, is desirable in a language that 1is meant to be
used for tiny programs that may even be composed on the com-
mand line.

In practice, awk usage seems to fall into two broad

categories. One 1is what might be called "‘report genera-
tion'' - processing an input to extract counts, sums, sub-

17 zilog 17

AWK zilog AWK

totals, etc. This also includes the writing of trivial data
validation programs, such as verifying that a field contains
only numeric information or that certain delimiters are
properly balanced. The combination of textual and numeric
processing is invaluable here.

A second area of use is as a data transformer, converting
data from the form produced by one program into that
expected by another. The simplest examples merely select
fields, perhaps with rearrangements.

18 Zilog 18

—

AWK Zilog - AWK

SECTION 5
IMPLEMENTATION

The actual implementation of awk uses the language develop-
ment tools available on the ZEUS operating system. The
grammar is specified with yacc; the lexical analysis is done
by lex; the reqular expression recognizers are deterministic
finite automata constructed directly from the expressions.
An awk program is translated into a parse tree which is then
directly executed by a simple interpreter.

Awk was designed for ease of wuse rather than processing
speed; the delayed evaluation of variable types and the
necessity to break input into fields makes high speed diffi-
cult to achieve in any case. Nonetheless, the program has
not proven to be unworkably slow.

As might be expected, awk is not as fast as the specialized
tools wc, sed, or the programs in the grep family, but is
faster than the more general tool lex. The tasks are about
as easy to express as awk programs as programs in these
other languages; tasks involving £fields are considerably
easier tc express as awk programs.

19 Zilog 19

Zilog

THE C PROGRAMMING LANGUAGE

Zilog

Zilog C

PREFACE

The S8000 system uses the C programming language almost
exclusively. The operating system, ZEUS, and a majority of
the programs are written in C. This document supplements
the information in The € Programming Language by B. W. Ker-
nighan and D. M. Ritchie (Prentice-Hall, 1978). The reader
should be familiar with the basic concepts of C before read-
ing this document.

Despite its universality, each installation contains machine
dependencies that affect the C programming language. Also,
as a dynamic language, C reflects changes to handle situa-
tions not previously addressed. This document describes
these machine dependencies and C language changes.

Conversion of programs to the ZEUS system is described 1in
Section 1. Machine and object format dependencies, the
setret and longret routines, and the problems encountered
when passing parameters in registers are discussed.

Recent changes to the C language not documented in The ¢
Programming Language are discussed in Section 2.

Zilog 2

SECTION 1

SECTION 2

Zilog

TABLE OF CONTENTS

CONVERSION OF PROGRAMS TO ZEUS .veeececcsccocccccssnse
1.1 Introduction ..ceceecesccecceccccscccscsccosacs
Setret and Longret Routines ...ceecceeccececcccsce
Impact of Passing Parameters in Registers
Object Format DependencCi€sS ..ceccecesccocsccss
Byte Order Within Words ...eceececccccceccacecs
Machine Architecture Dependencies ..ecececesces
C Compiler FeaAtUrES .cecesseesssocccsccssscccns

N L
° [] [] [] . [} []

NoOouesWwnN

RECENT CHANGES TOC..oo.ou...o-...oo.oo..n-oo.o.oo
201 General ® ® 6 06 05 6 0 000 000 0006060060000 0000000000000

2.2 Structure ASSignmeNt ...ecececcccessssscscccecs
2.3 Enumeration TYPE ceeeceecscscccccccsssscscsncssnse

Zilog

OO RS

(S

13
13
13

Zilog C

SECTION 1

CONVERSION OF PROGRAMS TO ZEUS

l.1 Introduction

Although the standard Version 7 UNIX runs on the S8000 sys-
tem and the S8000 C compiler accepts the C language, users
must be aware of machine dependencies that may be present in
their programs. This section describes the places for users
to look for machine dependencies in their programs when try-
ing to bring them up on the S8000 system.

1.2 Setret and Longret Routines

When using the C language routine on the S8000 system,
there are problems of declaring register variables when
setijmp and longjmp are used. Replacing setjmp and longjmp
with setret and longret and removing the register attribute
of variable declarations causes the program to continue to
function as on PDP-11 UNIX.

The S8000 C compiler's stackframes are different from the
PDP-11 ©UNIX. The S8000's contain only one register that is
used as both the frame pointer and stack pointer. It is not
possible to move back up the subroutine call chain (as the
PDP-11 UNIX does) to restore the register variables.

1.3 Impact of Passing Parameters in Registers

The 728000 processor has a larger register file than the
PDP-11 processor. To use these registers efficiently,
parameters are passed in registers on the S8000 instead of
being passed on stack as on the PDP-11. Programs using
parameters that are passed on the stack and then picked off
from the stack do not work on the S8000 system. Most pro-
grams need only to be recompiled to accomodate this change.
In cases when procedures handle a a variable number of
parameters, however, a special process must be followed, as
described in the paragraphs that follow.

Figures 1-1 and 1-2 illustrate how a machine-dependent pro-
gram with a variable number of parameters can change to
accomodate parameter passing in the registers. Figure 1-1
shows a program running on PDP-11l with arguments picked off
from the stack. This program can have up to two pointer
arguments. The same program 1is shown in Figure 1-2 with
changes to handle parameter passing in the registers.

Zilog 4

/*
* %
* %
* %
* %
* %
* %
* %
* %
* %

*/

char *
copy(na, ap)

char *ap;

{

Zilog

'~ This prodram allocates space for up to two

string arguments and then copies them in
the allocated space. The first argument
(na) is the number of arguments and the
second (ap) and the third (optional) argu-
ments are the pointers to the strings to
be copied. It returns a pointer to the
location where the strings have been copied.
have been copied.

register char *p, *np;

char *onp;
register int n;
p = api
n=0;
if (*p == 0)

return 0;
do

{

n++;

} while (*p++);
%f (na > 1)

p = (&ap)[1];
while (*p++)

n++;
}
onp = np = alloc(n);
p = ap;
while (*np++ = *p++)
continue;
if (na > 1)
{
p = (&ap)[1l];
np=-=;
while (*np++ = *p++)
continue;
}

return onp;

Figure 1-1. Example of PDP-1l1 Program

Zilog

Zilog

char *
copy(na, apl, ap2)
char *apl, *ap2;

reg char *p, *np;

char *onp;
reg int n;
p = apl;
n=20;
if (*p == 0)
return 0;
do
{
n++;
} while (*p++);
%f (na > 1)
p = ap2;
while (*p++)
n++;
}
onp = np = alloc(n);
p = apl;
while (*np++ = *p++)
continue;
}f (na > 1)
p = ap2;
np--;
while (*np++ = *p++)
continue;
}

return onp;

Figure 1-2, S8000 Version of Figure 1 Program

Zilog

Zilog C

Modifying programs with a variable number of arguments of
different types is difficult. Figure 1-3 shows a routine
with a variable number of arguments of different types.
This is a version of the C library routine printf, modified
to illustrate parameter passing in registers.

#define R7 0 /* prcnt == 0 implies r7 already seen */
#define R5 0 /* prcnt == 0 implies r5 already seen */
#define R3 0 /* prcnt == 0 implies r3 already seen */
#define prmax 5 /* max. number of register parameters */

$define true 1

/*
** Routine to align parameter pointer consistent with
*% the Z8000 calling conventions. It skips over
* % unused registers. This happens in C only for long
** parameters passed in registers.
*/
zalign(prent, ip, stk)
int *prcnt; /* parameter count */
int **ip; /* pointer to low-order word of long word */
int *stk; /* address of first parameter in the stack */
{

int t;

/* long cannot start in r6 or r4 */

if (*prcnt == R7 || *prcnt == R5)

{ ‘ ,
(*prcnt) ++; /* skip over the unused register */
(*ip) ++;

else if (*prcnt == R3) /* long cannot start in r2 */

{

prcent += 2; / skip over r2 */
*ip = &(*stk); /* parameter comes from the stack */
return;

}

/* exchange order of the words in a long word; they were
inverted when they were put into local storage */

t = **ip;

**ip = *(*ip + 1);

*(*ip + 1) = t;

** An example routine using a variable number of parameters
** each of which can be a different size. This is a sample
** of a formatted I/0 routine.

*/

Zilog 7

Zilog C

printz(fmt,r6,r5,r4,r3,r2,stack) .
register unsigned char *fmt; /* pointer to format string *

int
int

{

int
int
int
int
int

int

in
un

r6,r5,r4,r3,r2; /* parameters passed in registers */

stack;

pr6;
pr5;
pré4;
pr3;
pr2;

prcnt;

t i;

ion{
int
long

}ox;

/* first parameter in the stack */

/* storage for parameter register 6 */

/* the order of declaration of storage for */
/* parameter registers has two effects: */

/* first, long words have their words */

/* exchanged; second, the pointer to

/* parameter storage can be incremented */

/* for parameters in registers and the stack */
/* number of parameters seen */

*ip;
*1p;

/* save register parameters in storage */

pr
pPr
pr
jo)
pr

X.1p = &pr6;

pr

while (true)

{

6
5
4
3
2

r6;
r5;
rd;
r3;
r2;

(LI LA |

cnt = 0;

/* once through for each format character */
i = *fmt++;

switch(i)
{
case
case

' ': return; /* end of format */
'$': i = *Emt++;
switch(1i)

case 'd': putint(*x.ip++);
break;

case 'D': if (prcnt < prmax)
zalign(&prcnt, &x.ip, &stack) ;
putlong(*x.1lp++) ;
/*second word done below*/
prcnt++;
break;

case 'c': putchar(*x.ip++);
break;

Zilog 8

Zilog C

default: putchar('s');
putchar(i);

| break;
prcnt++;
if (prent == prmax)
/* start using stack parameters */
X.ip = (int *)é&stack;
break;
default: putchar(i);
break;
}
}
}
main ()

printz("%c0,'z');

printz("double: %D0,1L);

printz("decimal: %d0,69);
printz("%c%c%c%c¥cscscO,'a','b','c','d','e','f','g");
printz("%D %D %D %D0,100L,123456L,1L,98765432L);
grintz("%D ¢d %c %d0,32L,10,'x"',52);

Figure 1-3. An S8000 Program with Variable Number
of Arguments of Different Types

1.4 Object Format Dependencies

Programs that extract header information from the object
files must be modified. Typical UNIX utilities that look at
the object files (for example make and nlist) are already
available on the S8000. The entire object file produced by
the language processors on the S8000 conform to the S8000
object code format. Refer to a.out (5) for a complete
description of the S8000 object code format.

1.5 Byte Order Within Words

Byte order on the S8000 differs from byte order on the PDP-
1ll1. On the 58000, the high-order byte of a word has an even
address and the low-order byte has the next higher odd
address. On the PDP-11l, this is reversed. This means that
the PDP-11 programs that manipulate bytes within a word or
long quantities with pointers may not work correctly on the

Zilog 9

Zilog C

S8000. Also, transporting files between a S8000 and a PDP-
11 requires any word quantities within the file to be byte-
swapped. '

For example, suppose that starting at memory 1location 100,
there is a string of eight bytes (all numbers are in hex):

00, 01, 02, 03, 04, 05, 06, 07

On both the PDP-11 and the 28000, these values occupy the
eight consecutively addressed locations 100-107. However,
consider the word value at location 102. On the Z8000, 02
is the high-order byte, so the value is 0203. On the PDP-
11, 03 is the high-order value, so the value is 0302. Mani-
pulations such as:

char *p;
int 1i;
i = (*p++*256) + *p++;

produce different results on the two machines.

To illustrate the problemm of transferring files between the
two machines, consider the string to have originated on the
PDP-11 as a structure containing four byte values followed
by two word values:

100: 00
101: 01
102: 02
103: 03
104: 0504
105: 0706

When this string is moved to a 28000, it becomes:

100: 00
101: 01
102: 02
103: 03
104: 0405
105: 0607

So, before the data can be processed, the words at 104 and

106 must have the bytes reserved, while the bytes at 100
through 103 must not be changed.

Zilog 10

11

Zilog C

1.6 Machine Architecture Dependencies

Another architecture dependency concerns the use of the
/dev/mem device. On the PDP-11, the system data space
begins at location 0 of /dev/mem. On the S8000, this system
instruction space begins at 0. A program such as ps that
needs to examine locations in the system data memory must
use the device /dev/kmem instead of /dev/mem (mem(4)).

The -n option, which takes advantage of the PDP-1ll's 8K page
size, is not supported. The S8000 has a 64K page size. The
-i option (separate I&D) can be used instead. Both options
link a program so that several copies of the same program
can share the first several pages.

1.7 C Compiler Features

The ZEUS C compiler allows register variables of types
short, int, pointer, 1long, and double. These can be
unsigned where appropriate. Declarations of register float
or char are ignored. In nonsegmented mode, there are seven
ordinary registers and four floating (double) registers
available for register variables. 1In segmented mode, the
number of ordinary registers is reducted to six.

The sizes of the various variable types are as follows:

Iype Size (in bits)
character 8
unsigned character 8
short 16
unsigned short 16
int . 16
unsigned int 16
pointer (nonsegmented) 16
pointer (segmented) 32
long - 32
unsigned long 32
float 32
double 64
register double 80 (IEEE format)

Although 80 bits are used internally for register double
variables, this does not mean that results will be accurate
to 80 bits. For example, in the statement

register double d=1l.1;

only 64 bits fo the floating representation of 1.1 are wused

Zilog 11

12

Zilog C

to initialize d. 1In converting PDP-11 C programs to S8000
C programs, be aware that the PDP-11] C compiler (CC) does
not do sign extension when characters are cast as unsigned.
PDP-11 C programs that contain expressions like

(unsigned) C
where C is a character, must be changed to

(unsigned character) C
to suppress sign extension on the S8000.
The legal source file names for C programs are restricted to
contain only alphanumeric, period (.), and minus (-) charac-

ters. This restriction exists because the file name is used
in constructing the module name for the assembler.

Zilog 12

13

Zilog C

SECTION 2

RECENT CHANGES TO C

2.1 General

A few extensions have been made to the C language described
in The C Programming Language. This section discusses these

extensions.

2.2 Structure Assignment

Structures can be assigned, passed as arguments to func-
tions, and returned by functions. The types of operands
taking part must be the same.

NOTE

There is a limitation to the C language in ZEUS
implementation of functions that return struc-
tures. If an interrupt occurs during the return
sequence and the same function is called again
during the interrupt, the value returned from the
first call can be ’corrupted. The problem can
occur only in the presence of true interrupts, as
in an operating system or a user program that
makes significant use of signals. Ordinary recur-
sive calls are safe.

2.3 Enumeration Type
There is a data type similar to the scalar types of PASCAL.

To the type-specifiers in the syntax on page 193 of The C
Programming Language, add

enum-specifier
with syntax
enum-specifier:
enum { enum-list }

enum identifier { enum-list }
enum identifier

Zilog 13

14

Zilog C

enum-list:

enumerator

enum~-list, enumerator
enumerator:

identifier
identifier

constant-expression

The role of the identifier in the enum-gpecifier is similar
to the structure tag in a struct-specifier; it names a par-
ticular enumeration. For example,

enum color { chartreuse, burgundy, claret, winedark };

enum color *cp, col;

makes ¢color the enumeration tag of a type describing various
colors, and then declares ¢p as a pointer to an object of
that type and ¢ol as an object of that type.

The identifiers in the enum list are declared as constants,
and can appear wherever constants are required. If no
enumerators appear with the equal sign (=), the wvalues of
the constants begin at 2zero and increase by one as the
declaration is read from left to right. An enumerator with
the equal sign gives the associated identifier the value
indicated. Subsequent identifiers continue the progression
from the assigned value.

Enumeration tags and constants must be distinct and, unlike
structure tags and members, are drawn from the same set as
ordinary identifiers.

Objects with a given enumeration are distinct from objects

of all other types. 1In ZEUS implementation, all enumeration
variables are treated as integers.

Zilog 14

COMM Zilog COMM

»

ZEUS COMMUNICATIONS PACKAGE

1 Zilog 1

COMM

Zilog COMM

PREFACE

This document describes the ZEUS Communications Package, a
communication path between ZEUS and Zilog development tools.

In this document, the term "development system" refers to a
standard Z8(TM) or 7Z8000(TM) Development Module or to Z-SCAN
8000(TM). The term "remote system" refers to a System
8000(TM) executing the ZEUS Operating System. The term
"local system" refers to an MCZ(TM) or a ZDS system execut-
ing the RIO Operating System.

The LOAD/SEND function in ZEUS is analogous to the MCZ/ZDS

LOAD/SEND function. Refer to the 28000 Development Module
Hardware Reference Manual (03-3080) for specific informa-
tion.

»

Zilog 2

COMM Zilog COMM
TABLE OF CONTENTS

SECTIONl INTRODUCTION ® © 0 2 0 0 00 000000000000 0000 G OSSOSO 4

SECTION2 FUNCTIONAL DESCRIPTION ® & © 0 0 @ O 6 " 0 O P OO O O O 0O OO0 5
2.1 Upload/Download Functional Description 5
2.2 File Transfer Functional Description 5
SECTION 3 INVOCATION AND OPERATION cieececcsssassccocscccse 7

3.1 Upload/Download Invocation and Operation .. 7
3.2 File Transfer Invocation and Operation 7

hed

SECTION4 TERMINATION ® © 9 0 0 0 0006050000005 0006000000060 000000000 9

4.1 Upload/Download Termination ceceeceeessccacse 9
4.3 File Transfer Termination .ccccecesnccecces 9

3 Zilog 3

A,

Zilog COMM

SECTION 1

INTRODUCTION

The ZEUS Communications Package gives the ZEUS user a com-
munication path between ZEUS and the development tools
offered by Zilog (the 2Z8 and Z8000 Development Modules and
Z-SCAN 8000).

The upload/download capability includes the LOAD command,
which 1loads a ZEUS file to development tool memory, and the
SEND command, which transfers the contents of development
tool memory to a ZEUS file. These facilities also interface
with existing PROM programming products, giving the |user
PROM programming capability.

The package also provides a general-purpose file transfer
capability for transferring files between a local system and
a remote system. This includes software that executes under
both ZEUS and the RIO Operating System.

NOTE
This software package is not designed for communi-

cation between two ZEUS systems. For this capa-
bility, use the programs uucp, uux, and uulog.

Zilog 4

coMM

Zilog COMM

SECTION 2

FUNCTIONAL DESCRIPTION

2.1 Upload/Download Functional Description

The LOAD command downloads a Z8000 program to a development
system from a ZEUS file. The binary data in the file is
converted to Tektronix format and is transmitted to the
development system. An acknowledgment from the development
system causes the next record to be downloaded £from ZEUS.
If an acknowledgment is not received, the current record is
retransmitted up to ten times. After continued nonac-
knowledgment, a record with an error message is sent, and
the program aborts.

Possible error messages are:

/ABORT

/UNABLE TO OPEN FILE
/FILENAME ERROR
/INCORRECT FILE TYPE
/ERROR IN READING FILE
/CHECKSUM ERROR

The SEND command transfers the contents of development sys-
tem memory to a ZEUS file. The SEND program opens the file
and sends an acknowledgment to the development system to
start transmission. If the file cannot be opened, an
abort-acknowledgment is sent, and the program aborts. An
acknowledgment 1is sent after each good record received. If
the ASCII code double slash (//) 1is received from the
development system, the program aborts.

Possible error messages are:

/ABORT

/OPEN FILE ERROR
/FILE WRITE ERROR
/CHECKSUM ERROR

2.2 File Transfer Functional Description

The file transfer software copies files residing on the
remote system to files residing on the local system, and
vice versa. On invocation of the file transfer command
(Section 3), the remote system transmits a sequence of char-
acters to the local system to initiate the file transfer. A
file 1is transferred one record at a time, along with a

Zilog 5

COMM

Zilog © coMM

checksum to guarantee the accuracy of the data. For each
successful transmission, an acknowledgment is sent, and a
period (.) is displayed on the terminal to inform the user
that the transfer is proceeding. If a nonacknowledgment is
sent, the record is retransmitted up to ten times, after
which the program proceeds to the next file. An error mes-
sage is displayed for each retransmission that is necessary,
unless the nonfatal error messages are suppressed in the
command invocation (Section 3). A message is printed after
each successful transmission that includes the file name.
At the conclusion of the program, a message informs the user
of the number of successful and unsuccessful transmissions.
A control-x causes the current file transfer to terminate,
and the program proceeds to the next file on the list. The
termination message counts that file as an unsuccessful
transfer (Section 4.2). Pressing the -escape key (ESC)
aborts the program. ’

Possible messages are:

Normal transmission:
<filename>
. (one . for every record for positive feedback)

Error messages:
checksum error ... retry
‘Kfilename> ... transmission aborted

ZEUS file names cannot be longer than 14 characters, but RIO
file names can be as 1long as 32 characters. For file
transfers from the local system to the remote system, only
the first 14 characters of the file name are used. Path
names can be specified; they apply only to the file name on
the remote system. On the local system, all files to be
uploaded must be in the working directory, and all down-
loaded files are created in the working directory (this does
not apply to the MCZ/ZDS systems).

NOTE

If a duplicate file name exists on the target
system, the contents of pre-existing files are
automatically overwritten unless the [-q] option
is specified as part of the command (Section 3).
If the [-q] option 1is specified, the user is
queried for a replacement name.

Possible message is:

replace <filename> (y/n)?

Zilog 6

s,

COMM

Zilog COMM

SECTION 3

INVOCATION AND OPERATION

3.1 Upload/DownIoad Invocation and Operation

The LOAD command is given to the development system as fol-
lows:

LOAD <filename>

The development system Monitor program transmits the command
line to ZEUS exactly as it is entered, and the ZEUS program
(LOAD) opens the file specified by <filename>. The Monitor
on a Z8000 Development Module or Z-SCAN requires that
<filename> be all uppercase on the remote system. If "load
prog" 1is entered, the remote system searches for the file
PROG. The binary data in the file is transmitted to the
development system. Pressing ESC aborts the LOAD command.

The SEND command is given to the development systeﬁ as fol-
lows:

SEND <filename> <start address> <end address> [<entry address>]

This command transfers the contents of development system
memory to a ZEUS file specified by <filename>. The develop-
ment system transmits the command to ZEUS exactly as input,
causing execution of the SEND program. SEND opens the file
<filename> and stores in it the binary data received from
the development system. Pressing ESC aborts the SEND com-
mand.

3.2 File Transfer Invocation and Operation

File transfer is accomplished in three steps. In the first
step, control is transferred from the local system to the
remote system by entering the following command to the local
system.

remote [<rate>]

This command starts a program on the 1local system, which
places the user in remote mode. In this mode, all charac-

"ters entered from the keyboard are sent to the S8000, and

all characters from the S8000 (except for character
sequences that initiate file transfers and the return to
local mode) are sent to the terminal screen. Therefore, the
terminal is essentially operating as an S8000 terminal, and

Zilog 7

COMM

Zilog COMM

any ZEUS command can be executed. The default communication
rate is 9600 baud. Standard baud rates that can be speci-
fied for the MCZ/ZDS are 50, 75, 110, 150, 300, 600, 1200,
2400, 4800, 9600, 19,200, and 38,400.

The second step in file transfer involves two commands: put-—
file and getfile, which are invoked as follows:

putfile [-q] [-f] [-b] [-B] <filenamel> [[-b] <filename2>...]
getfile [-gq] [-f] [-b] [-B] <filenamel> [[-b] <filename2>...]

The command putfile transfers files from the remote system
to the local system; getfile transfers files from the local
system to the remote system.

The [-gq] option specifies that transfer of a file to the
target system where a file of the same name already exists
causes a query to the user (Section 2.2). If this option is
not given, the file is automatically overwritten.

~The [-f] option suppresses the nonfatal error message

"checksum error ... retry."

The [-b] option preceding a file name indicates a binary
file and suppresses translation of ZEUS new line characters
into RIO's carriage returns (and vice versa) for that file
only. The type defaults to ASCII for the next file. This
differs from the [-q] and [-f] options, which apply to the
remainder of the line following the point at which they are
invoked.

The [-B] option specifies that every file that follows is
binary.

A list of files can be specified on the command 1line. A
control-x aborts the transfer of a single file and proceeds
to the next file. Pressing ESC aborts the entire transfer
at any point.

The third step returns the user to the local system from the
remote system. The command is:

local [-1]
The [-1] option causes a logout to be given to the remote

system. It 1is necessary to log in after the next remote
command.

Zilog 8

COMM Zilog COMM

SECTION 4

TERMINATION

4.1 Upload/Download Termination

After completion of the loading process, the program's entry
point is displayed on the terminal, and the development sys-
tem returns to Monitor mode. The LOAD program terminates
and returns control to the ZEUS Operating System.

After completion of the sending process, the program's entry
point is stored in the ZEUS file, and the development system
returns to Monitor mode. The SEND program terminates and
returns control to the ZEUS Operating System.

If there is a user or program abort during either the 1load-
ing or sending process, an error message is printed (Section
2), the development system returns to Monitor mode, and the
program returns control to the ZEUS Operating System.

4.2 File Transfer Termination

After completion of the file transfer, the 1local system
returns to remote mode, enabling the user to continue to
execute ZEUS commands. One of the following messages is
printed on the terminal:

putfile:<nl> successful transfers <n2> unsuccessful transfers
getfile:<nl> successful transfers <n2> unsuccessful transfers

An unsuccessful file transfer does not cause the program to
terminate abnormally. If the program is aborted via the
escape key, it does not transfer any more files, and ter-
minates in a normal fashion.

9 Zilog 9

. 4:/&46%‘ S

CSH

*

zilog " CsH

AN INTRODUCTION TO THE C SHELL¥*

This information is based on an article orginally writ-
ten by William Joy, University of California, Berkeley.

Zilog 1

CSH

Zilog CSH

PREFACE

A shell is a command language interpreter; C shell, also
known as ¢sh is the name of an interactive command inter-
preter for ZEUS. Enter the command ¢sh to call the program
on the system. The primary purpose of csh is to translate
command lines typed at a terminal into system actions, such
as invocation of other programs. It incorporates features
of other shells and a history mechanism similar to the redo
of INTERLISP, all of which make csh easy to use.

This document gives instructions on the use of the <c¢sh and
describes its capabilities. The last two sections describe
features of the csh that are useful, but not necessary for
every user. Appendix A lists characters that have special
meaning for csh and ZEUS.

Appendix B is a glossary of terms and commands introduced in
this document.

In addition to this document, refer to csh(l) of the ZEUS

Reference Manual, which gives a full description of all
features of csh.

Names of commands and words that have special meaning in csh
and ZEUS are underlined. Refer to Appendix B to learn the
meaning of any words that are unfamiliar.

Zilog 2

CSH

SECTION 1

SECTION 2

SECTION 3

SECTION 4

Zilog

TABLE OF CONTENTS

INTERACTIVE USE 6680 0606000000000 000 000000

1.1

S
L] (] . .
UL W

[
] L]
<o

COmMMANAS «eeevececccsconsccoccasoncss
Flag ArgumentsS c.ccecscccccsasscsass
Output to FileS .c.eecececsascscncese
Metacharacters in Csh ..cceeevccccss
Input from FileS c.eceecescoccssocccss

1.501 Pipelines S 0 e 8050 0000000000000

File Nanles ® & & & ¢ & 0 0 0 00 O P S0 s 0ee e 000
Terminating Commands ..ceeesesccacscs

DETAILS OF CSH OPERATION ..ccceecccecccces

Csh Startup and Termination ...ec.s.
Csh Variables ® @ ® & & ® &6 & 0 5 9 0 O O O O " e 0 0o
Csh's History List .eeeeecececcocans
AliaSES cesececsscssssccscsasnasensss
Detached Commands and Redirection ..
Built=In CommandS e.ccecsesceoscsccscs

CONTROL STRUCTURES
COMMAND SCRIPTS ceccecscocsccsccccsscse

Introduction .ceeesccccoccssoscsssons
Invocation and the argv Variable ...
Variable Substitution ..cecececcccss
EXpresSSioOnsS .cceececccccceccccnsccncscs
Sample Csh SCript .c.cceecececsccccns
Other Control Structures ...ceceecess
Applying Input to Commandsc.s..
Catching InterruptS cececescsncscnss
Other FUNCtioONS .ceeeecoscsccscceccccnscs

OMake ® © 6 06 006060060 0000000800000 000080000

MISCELLANEOUS SHELL MECHANISMS ..ccccceso

4.1
4.2
4.3

Loops at the Terminal ...cccevececcas
Braces in Argument Expansion
Command Substitution ...ceceececcccces

Zilog

O (o] oo ~NNaovun w

14
15
16
18
20
21

34

34
35
36

CSH

CSH

Zilog

TABLE OF CONTENTS

APPENDIX A SPECIAL CHARACTERS

(continued)

® 6 060 00606000 000000000 37

APPENDIXB GLOSSARY ® 5 9 06 0000 0500009 0000000000 0000000 38

Zilog

CsH

CSH

Zilog ~ CSH

SECTION 1

INTERACTIVE USE OF THE C SHELL

1.1 Commands

A shell in ZEUS is, primarily, a medium through which other
commands are invoked. Csh has a set of built-in- commands
that it performs directly; however, most useful commands are
external to the shell. What distinguishes c¢sh from command
interpreters of other systems is that it is a user program
that acts almost exclusively as a mechanism for invoking
other programs.

Commands in the ZEUS system expect a 1list of strings or
words as arguments. For example, the command

mail bill

consists of two words. The first word, mail, names the com-
mand to be executed (in this case the mail program that
sends messages to other users). Csh looks in a number of
directories for a file with the name mail, which contains
the mail program.

The rest of the words of the command are given to the com-
mand itself to execute. In this case, the word bill is
interpreted by the mail program as the name of a wuser to
whom mail is to be sent. The mail command is normally used
as follows:

$ mail bill
I have a question about the csh documentation.
My document seems to be missing page five.
Does a page five exist?

Chuck
%

A message is sent to bill and is ended with a control-d,
which sends an end-of-file message to the mail program. The
mail program then transmits the message. The prompt charac-
ter % is printed before and after the majil command to indi-
cate that input to csh to is needed.

After giving the % prompt, csh reads the command input from
the terminal. After the command mail bill is typed, csh
executes the mail program with argument bill and waits for
it to complete. The mail program reads input from the ter-
minal until an end-of-file message notifies csh that mail is

Zilog 5

CSH

Zilog CSH

finished. Csh signals the user that it is ready to read
from the terminal again by printing another % prompt.

This is the basic pattern of all interactions with ZEUS
through csh. A complete command is typed at the terminal,
csh executes the command, and, when execution is completed,
prompts for a new command. This pattern is not affected by
the time it takes to execute a command. If the editor is
run for an hour, csh waits for editing to finish before
prompting the user again.

1.2 Flag Arguments

Flag arguments normally begin with a dash character (-) and
invoke an optional capability of the command. For example,
the command

1s

produces a list of the files in the current directory. If
the size option, =s, is added, as follows,

1s -s

ls also gives the size of the file in blocks of 512 charac-

ters for each file. Refer to the ZEUS Reference Manual for
the available options for each command.

1.3 Output to Files

Many commands read from or write to files rather than taking
input from and sending output to the terminal. These com-
mands take special words as arguments, indicating where the
output 1is to go. It is simpler, and usually sufficient, to
connect these commands to the files to be written. This 1is
done within csh just before the commands are executed.

The command
date

displays the current date on the terminal, which 1is the
default standard output for the date command. To save the
current date in a file called now, it 1is possible to
redirect the standard output. Csh allows the standard out-
put of a command to be redirected through a notation wusing
the metacharacter > and the name of the file where output is
to be placed. Thus, the command

date > now

Zilog 6

CSH

Zilog . CsH

runs the date command with the file pnow as its standard out-
put. This command then places the current date and time in
the file pnow. It is important to realize that the date com-
mand is not affected by its output going to a file rather
than to the terminal. Csh performs this redirection before
the command begins execution.

The file pow does not have to exist before the date command
is executed; csh creates the file if it does not exist. 1If

the file already exists, the previous contents are overwrit-
ten. The c¢sh option noclobber (Section 2.2) prevents this
from happening accidentally.

1.4 Metacharacters in Csh

Csh has a number of special characters (like >) that indi-
cate™ special functions. Appendix A lists these metacharac-
ters in functional groups. In general, most characters that
are neither 1letters nor digits have special syntactic or
semantic meaning to <c¢sh. Metacharacters normally have
effect only when csh is reading input.

Metacharacters cannot be used directly as parts of words.
For example, the command

echo *

does not echo the character *. It either echoes a sorted
list of file names in the current directory, or prints the
message No match if there are no files in the current direc-
tory.

The recommended mechanism for using metacharacters as argu-
ments 1is to enclose them in single quotation marks ('), for
example:

echo '*!
One special character, the exclamation mark (!), (used by
the history mechanism of csh) cannot be escaped in this way.
The ! and the single quote (') character can be preceded by
a single backslash (\) to prevent special interpretation.

These two mechanisms suffice to place any printable charac-
ter in a word that is an argument to a csh command.

Zilog 7

CSH

Zilog CSH

1.5 1Input from Files

Although it is also possible to route the standard input of
a command from a file, this is not usually necessary because
most commands are read from a file name given as an argu-
ment. The command

sort < data

runs the gort command with standard input, whereas the .com-
mand normally reads from the file data. It is easier to
enter

sort data

letting the sort command open the file data for ihput. If

sort

is entered, the sort program sorts lines from 1its standard
input. Since the standard input is not redirected, it sorts
lines as typed at the terminal until a control-d is typed to
generate an end-of-file.

1.5.1 Pipelines

Csh can combine the standard output of one command with the
standard input of the next. This procedure runs the com-
mands in a sequence known as a pipeline. Commands separated
by a vertical bar (|) are connected together by csh; the
output of each is run into the input of the next. The left-
most command in a pipeline normally takes its standard input
from the terminal, and the rightmost places its standard
output on the terminal.

For example, the command

ls -s
produces a list of the files in the directory with the size
of each in blocks of 512 characters. Combining the ls com-
mand with options of the gort command sorts the directory
files by size rather than by name. |
The -n option of gsort specifies a numeric sort rather than
an alphabetic sort. Combining this command with ls -s using
the pipe command (1)

l1s -s | sort =-n

Zilog 8

CSH

Zilog CSH

specifies that the output of the ls command, run with the
option =5, is to be piped to the command sort, run with the
numeric sort option. This gives a sorted list of files by
size with the smallest first. Use the reverse sort (-r)
option and the head command in combination with the previous
command as follows:

ls -s | sort -n -r | head -5

The list of files is now sorted alphabetically, with the
size of each in blocks. This is run to the standard input
of the sort command, asking it to sort numerically in
reverse order (largest first). This output is then run into
the command head, which displays the first few lines of each
file. In this example, head is asked to run the first five
lines, so it gives the names and sizes of the five 1largest
files.

-

1.6 File Names

Every ZEUS file has a file name up to 14 characters 1long.
Every file is listed by name in a directory. The relation-
ship of files to directories is expressed by path names.

ZEUS path names consist of a number of components separated
by a slash (/). Each component, except the last, names a
directory in which the next component resides. For example,
the path name

/etc/motd

specifies a file (motd) in the directory etc, which is a
subdirectory of the root directory (/). File names that do
not begin with / are interpreted starting at the current
working directory. This directory is, by default, the home
directory. The home directory can be changed dynamically
with the change directory (chdir or c¢cd) command.

All printable characters except / can appear in file names,
but characters that have special meaning should be avoided.
Most file names consist of a number of alphanumeric charac-
ters and periods (.). The period character is not a shell
metacharacter and is often used to separate an extension
from a base name. For example,

prog.c prog.o prog.errs prog.output
are four files that share a root portion of a name. (A root
portion is that part of the name that is left when a trail-

ing period and following characters are stripped off.) The
file prog.c¢ is the source for a C program, the file prog.o

Zilog 9

CSH

10

Zilog CsH

is the corresponding object file, the file prog.errs is the
list of errors resulting from a compilation of the program,
and the file prog.output is the output of a run of the pro-
gram.

The metanotation
prog.*

can be used in a command to refer to all four of these
files. This word is expanded by the shell (before the com-
mand to which it is an argument is executed) into a list of
names that begin with prog. The asterisk (*) character
matches any sequence (including the empty sequence) of char-
acters in a file name. The names that match are sorted
alphabetically into the list of command arguments. The com-
mand

echo prog.*
echoes the names

pProg.c prog.errs prog.o prog.output
The names are in alphabetic order here (a different order
than 1listed previously). -The echo command receives four
words as arguments, even though only one word 1is directly
entered as an argument. The four words are generated by
file name expansion of the metasyntax in the one input word.
Another metanotation for file name expansion is the question
mark (?) character, which matches any single character in a
file name. For example,

echo ? 2?2 2?2?
echoes a line of file names; first, those with one-character
names, then those with two-character names, and finally,
those with three-character names are echoed. The names of
each type are independently sorted alphabetically.
Another mechanism consists of a sequence of characters

between brackets ([]). This metasequence matches any sin-
gle character from the enclosed set. For example,

prog. [co]
matches

pProg.c prog.o

Zilog 10

CSH

11

Zilog CSH

in the example above. Two characters separated by a hyphen
(=) denote a range. For example,

chap.[1-5]

matches files
chap.l chap.2 chap.3 chap.4 chap.5

if they exist. This is an abbreviated version of
chap. [12345]

and is otherwise equivalent.

If a list of arguments to a command contains £file name
expansion syntax, and if this syntax fails to match any
existing file names, the shell -considers this to be an error
and prints

No match.

The period character (.) at the beginning of a file name is
treated specially. The matching mechanisms *, ?, and [] do
not match it. This prevents accidental matching of file
names that have special meaning to the system (such as . and
.«)s and files (such as .cshrc) that are not normally visi-
ble.

Another file name expansion mechanism gives access to the
path name of the home directory of other users. This nota-
tion consists of the tilde character (~) followed by another
user's login name. For instance, the word “bill maps to the
path name /z/bill if the home directory for bill is the
directory /z/bill. On large systems, users can have login
directories scattered over many different disk volumes with
different prefix directory names. This notation provides a
reliable way of accessing the files of other users.

A special case of this notation consists of a ~ alone, for
example ~/mbox. This notation is expanded by c¢csh into the
file mbox in the user's home directory. This can be very
useful if the user uses chdir to change to another user's
directory and then decides to copy a file there wusing g¢p.
The entry

cp thatfile ~
is expanded by csh to
cp thatfile /z/bill

Zilog 11

sy,

CSH

12

Zilog CSH

which the copy command interprets as a request to make a
copy of thatfile in the directory /z/bill. Unlike the
matching characters (*, ?, and []), the ~ notation does
not, by itself, force named files to exist. This is useful
when using the ¢p command, as in

cp thatfile ~/saveit

Braces ({ }) can be used for abbreviating a set of words
that have common parts, but cannot be abbreviated by the
above mechanisms because they are not files, are the names
of files that do not yet exist, or are not conveniently
described by the other mechanisms. This mechanism is
described in Section 4.3.

1.7 Terminating Commands

It is possible to terminate programs that are running while
csh is dormant without terminating c¢sh itself. For
instance, if the command

cat /etc/passwd

is entered, the system displays on the terminal a 1list of
all wusers of the system. Pressing the DEL or RUB key sends
an interrupt signal to the cat command and terminates it.
Actually, pressing the key sends the interrupt signal to all
programs running on the terminal, including csh. Csh nor-
mally ignores such signals, however, so that the only pro-
gram affected by the interrupt is cat, which has no mechan-
ism for ignoring interrupts. Upon termination of the com-
mand, csh leaves the dormant state and prompts the user with
% If the interrupt is entered again, csh simply repeats
its prompt, since it catches (ignores) interrupt signals.

Many programs terminate when they receive an end-of-file
message from their standard input. The mail- program example
in Section 1.1 was terminated when the wuser typed a
control-d, which generates an end-of-file from the standard
input. Csh also terminates when it receives an end-of-file.
ZEUS then 1logs the user off the system. Since this means
that typing too many control-d's can accidentally 1log the
user off the system, c¢sh has a mechanism for preventing
this. This ignoreeof option is discussed in Section 2.2.

If the command has its standard input redirected from a
file, it normally terminates when it reaches the end of this
file. Thus, if

mail bill < prepared.text

Zilog 12

CSH

13

Zilog CSH

is executed, the mail command terminates when it reads the
end-of-file for the file prepared.text.

Programs that have not been fully debugged can be stopped by
entering a control-\. Csh responds with a message similar
to:

a.out: Quit -- Core dumped

This indicates that a file core has been created that con-
tains information about the program a,out's state when it
encountered problems. This file can be examined by the
user, or can be forwarded to the maintainer of the program
describing where the core file is.

If background commands are running, they ignore interrupt
and quit signals entered at the terminal. To stop the back-
ground commands, use the kill program. (See Section 2.6 for
an example.)

zilog 13

CSH

14

Zilog CSH

SECTION 2

DETAILS OF CSH OPERATION

2.1 Csh Startup and Termination

When the user logs in, the system places the c¢sh in the
user's home directory and begins by reading commands from

the file .cshrc in this directory. All user-created shells
are read from this file.

After it reads commands from .cshrc, a login shell (executed
after the user logs in to the system) reads commands from a
file, .login, also in the user's home directory. This file
contains commands to be executed each time the user logs in
to the ZEUS system. The following is an example of a typi-
cal .login file:

setenv TERM adm3a
set history=20
set time=3

This file contains three commands executed by ZEUS each time
the user 1logs in. The first is a setenv command, which
informs the system that this user wusually dials in on a
Lear-Siegler ADM-3A terminal.

The next two set commands are interpreted directly by csh
and affect the values of certain variables that modify the
future behavior of csh. Setting the variable time tells csh
to print time statistics on commands that take more than a
certain threshold of machine time (in this case three CPU
seconds) . Setting the variable history tells csh how much
history of previous command words it should save in case the
user wants to repeat or rerun modified versions of previous
commands. Since there is a certain overhead in this mechan-
ism, c¢sh does not set this variable by default; it allows
users who wish to use the mechanism to set this variable
themselves. The value of 20 is a reasonably large value to
assign to historv. A value of 5 or 10 is more commonly
used. The use of the history mechanism is described Section
2.3.

After executing commands from .login, c¢sh reads commands
from the user's terminal, prompting for each with %. When
it receives an end-of-file from the terminal, c¢sh prints
logout and executes commands from the file .logout in the
user's home directory. After that, csh terminates, and ZEUS
logs the user off the system.

Zilog 14

CSH

15

Zilog CsH

2.2 Csh Variables

Csh maintains a set of variables that have as a value an
array of zero or more gstrings. Shell variables can be
assigned values by the gset command. The most useful form of
set is

set name=value

Csh variables can be used to store values that are to be
reintroduced into commands later through a substitution
mechanism. The csh variables most commonly referenced are
those referred to by csh itself. By changing the values of
these variables, it 1is possible to directly affect the
behavior of csh.

One of the most important variables is path, which contains
a sequence of directory names where the shell searches for
commands. The get command shows the value of all variables
currently defined in csh. The default value for path is
shown by set to be

% set

argv

home /z/bill

path (. /bin /usr/bin)
prompt %

shell /bin/csh

jtatus0

%

This notation indicates that the variable path points to the
current directory (.), then /bin, and finally /usr/bin.
Commands that the user can write might be in . (usually one
of the wuser's directories). The most heavily used system
commands reside in /bin and less heavily used system com-
mands reside in /usr/bin.

A useful built-in variable is home, which shows the wuser's
home directory. The wvariable ignoreeof can be set in the

.login file to tell csh not to exit when it receives an
end-of-file from the terminal. To log out from ZEUS with

ignoreeof set, type
logout

To set this variable, type
set ignoreeof

and, to unset it, type

Zilog 15

CSH

16

Zilog CsH

unset ignoreeof
Both set and unset are built-in commands of csh.

Another built-in csh variable is noclobber, which prevents
files from being overwritten. The metasyntax

> filename

(which directs the output of a command) overwrites and des-
troys the previous contents of the named file. A file that
is valuable can be accidentally overwritten. To prevent csh
from overwriting files in this way, enter

set noclobber
in the .login file. Then, entering
date > now

causes a diagnostic if pow already exists. The special
metasyntax >! indicates that "clobbering" the file is allow-
able. Entering

date >! now
makes it possible to overwrite the contents of now.

The variable mail is also built in. To be notified of the
arrival of mail while logged in, place the following command

in the .login file:
set mail=/z/mail/yourname

Csh checks this file every 10 minutes to see if new mail has
arrived. Since this variable can delay the shell's response
while it checks for mail, use it only if mail arrives fre-
quently.

The use of csh variables to introduce text into commands,
which is most useful in c¢sh command scripts, is introduced
in Section 2.4.

2.3 The C Shell's History List

Csh can maintain a history list that contains the words of
previous commands. It is possible to use a metanotation to
reintroduce commands, or words from commands, to form new
commands, repeat previous commands, or to correct minor typ-
ing mistakes in commands.

Zilog 16

CSH

17

Zilog CsH

The following transcript asks the system where michael is
logged in. '

% where michael

michael is on tty0 dialup 300 baud 642-7927
% write !$

write michael

Long time no see michael.

Why don't you call me at 524-4510.

EOF

%

The system specifies that he is on tty0. Csh is then told
to invoke a write command to !$. This is a history notation
that means the last word of the last command executed--in
this case, michael. Csh performs this substitution, and then
echoes the command as it is executed. The following inter-
change might take place if there is no response from

% ps -t0
PID TTY TIME COMMAND
4808 O 0:05 -
g 1!
ps -t0
PID TTY TIME COMMAND
5104 O 0:00 - 7
% !where
where michael
michael is not logged in
%

A ps on the teletype michael is logged in on is run to see
if he has a shell. Repeating this command via the history
substitution, !!, shows that he has logged out and that only
a getty process is running on his terminal. Repeating the
where command shows that he is indeed gone.

This illustrates several useful features of the history
mechanism. The form !! repeats the last command execution.
The form !string repeats the last command that began with a
word, of which string is a prefix. Another useful command
form is TlhsTrhs, which performs a substitute similar to
that in ed or ex. Thus, after

% cat ~“bill/csh/sh..c

/m?t/?ill/csh/sh..c: No such file or directory
% LR J L]

cat “bill/csh/sh.c

#include "sh.h"

/*

Zilog 17

CSH

18

Zilog CSH

C Shell

*
*
* Bill Joy, UC Berkeley
* October, 1978

*/

char *pathlist[] = { SRCHP
%

the substitution is used to correct a typing mistake, then
rub out the command after the file is located. The substi-
tution changes the two periods (..) to a single period (.).

The following command can then be used to put a copy of this
file on the line printer:

$ 1! | lpr

cat ~“bill/csh/sh.c | 1lpr

Or, immediately after the cat, the following can be used to
print a copy on the printer using pr:

$ pr !'$ | lpr
pr ~“bill/csh/sh.c | lpr
S

More advanced forms of the history mechanism are also possi-
ble. A notion of modification on substitutions makes it
possible to say (after the first successful cat)

% cd !S:h
cd ~“bill/csh
%

The trailing :h on the history substitution causes only the
head portion of the path name reintroduced by the history
mechanism to be substituted. This mechanism and related
mechanisms are used less often than the other forms.

A complete description of history mechanism features is
given in csh(l) in the ZEUS Reference Manual.

2.4 Aliases

. The shell has an alias mechanism that makes transformations

on input commands by simplifying the commands typed, supply-
ing default arguments to commands, or performing transforma-
tions on commands and their arguments. The alias facility
is similar to the macro facility of many assemblers.

Zilog 18

T,

CSH

19

Zilog CSH

Some of the features obtained by "aliasing" can also be
obtained using c¢sh command files, but these take place in
another instance of the shell and cannot directly affect the
current shell's environment and commands.

As an example, suppose that there is a new version of the
mail program on the system called Mail, that is to be used
instead of the standard mail program (which is called mail).
If the csh command

alias mail Mail

is placed in the user's .login file, csh transforms an input
line of the form

mail bill
into a call on Mail.

To cause the command ls to show sizes of files (that is, to
do -s), enter

alias 1ls 1s -s
or even
alias dir 1s -s

which creates a new command syntax dir, which does an ls -s.
If ’

dir ~bill
is entered, csh translates this to
1s -s /z/bill

Thus, the alias mechanism can be used to provide short names
for commands, to provide default arguments, and to define
new short commands in terms of other commands. It 1is also
possible to define aliases that contain multiple commands or
pipelines that show where the arguments to the original com-
mand are to be substituted, using the facilities of the his-
tory mechanism. The definition

alias cd 'cd \!* ; 1s!

does an ls command after each change directory (cd) command.
The entire alias definition is enclosed in single quote
characters to prevent most substitutions from occuring and
the semicolon (;) character from being recognized as a
parser metacharacter. The exclamation mark (!) here 1is

Zilog 19

csH

20

Zilog CSH

escaped with a backslash (\) to prevent it from being inter-
preted when the alias command is typed in. The \!* substi-
tutes the entire argument list to the pre-aliasing ¢d com-
mand, without giving an error if there are no arguments.
The ; that separates commands indicates that one command is
to be executed before the next is executed. Similarly, the
definition

alias whois 'grep \!T /etc/passwd’'

defines a command that looks up its first argument in the
password file.

2.5 Detached Commands and Redirection

The ampersand (&) metacharacter can be placed after a com-
mand, or after a sequence of commands separated by ; or |.
This prevents csh from waiting for the commands to terminate
before prompting again. These commands are said to be
detached or background processes. In the following example,

% pr ~bill/csh/sh.c | lpr &
5120

5121

%

Csh prints two process numbers and comes back very quickly
rather than waiting for the pr and lpr commands to finish.
The numbers 5120 and 5121 are the process numbers assigned
by the system to the pr and lpr commands.

Running commands in the background tends to slow down the
system and is not a good idea if the system is overloaded.
When overloaded, the system has a slower user response when
a large number of processes are run at once.

Severe complications can be expected if a command run in the
background is read from the user's terminal at the same time
as csh reads a command run from the terminal. To avoid this
problem, the default standard input for a command run in the
background is not the terminal but an empty £file <called
/dev/null. Commands run in the background are also unaf-
fected by interrupt and quit signals generated at the termi-
nal. (If a background command stops suddenly when INTERRUPT
or QUIT is pressed, a bug probably exists in the background
program.)

If it is necessary to log off the system before the command
completes, the command must be run immune to hangup signals.
This is done by placing the word nohup before each program
in the command. For example

Zilog 20

N

CSH

21

Zilog CSsH

nohup man csh | nohup lpr &
In addition to the standard output, commands also have a
diagnostic output that is normally directed to the terminal
even when the standard output is directed to a file or a
pipe. It is occasionally desirable to redirect the diagnos-
tic output along with the standard output. For instance, if
the output of a 1long running command is to be redirected
into a file, and it would be helpful to have a record of any
error diagnostic it produces, enter

command >& file

The >& tells csh to route both the diagnostic output and the
standard output into f£ile. Similarly, the following command

command |& lpr
can be used to route both standard and diagnostic output
through the pipe to the line printer lpr. 1In this example,
a command of the form

command >&! file
is used when pnoclobber is set and file already exists.
Finally, it is possible to use the form

command >> file
to place output at the end of an existing file.
If noclobber is set, an error results if £file does not
exist; otherwise, csh creates file if it does not exist. To
eliminate the error condition if file does not exist when

noclobber is used, enter the following:

command >>! file

2.6 Built-In Commands
The alias command described in Section 2.4 assigns new
aliases and displays the existing aliases. With no argu-
ments, it prints the current aliases. It can also be given
an argument, such as

alias 1s

to show the current alias for ls, for example.

Zilog 21

CSH

22

Zilog CSH

The ¢d and c¢chdir commands, which are equivalent, change the
working directory of csh. It is useful to make a directory
for each project being worked on, and to place all files
related to that project in that directory. For example, the
following commands can be used to enter the directory newpa-

per:

$ pwd

/2/bill

% mkdir newpaper
% chdir newpaper
% pwd
/z/bill/newpaper
%

A group of related files can be placed there. The print
working directory (pwd) command shows the name of the
current directory, which is usually a subdirectory of the

home directory. It is possible to return to the home login
directory by entering

chdir

with no arguments.

The echo command prints its arguments. It is often used 1in
csh scripts or as an interactive command to see what file
name expansions yield.

The history command shows the contents of the history 1list.
The numbers given with the history events can be used to:
reference previous events that are difficult to reference
using contextual mechanisms. If a ! character is placed in
the value of the shell variable prompt, the shell substi-
tutes the index of the current command in the history list.
This number can be used to refer to this command in a his-
tory substitution. Thus, it is possible to use the command

set prompt='\!%"'

Note that the ! character has to be escaped, even here,
within single quote characters.

The logout command can be used to terminate a 1login shell
that has ignoreeof set.

The repeat command can be used to repeat a command several
times. Thus, to make £five copies of the file gone in the
file five, enter

repeat 5 cat one >> five

Zilog 22

CSH

23

Zilog CsH

The setenv command can be used to set variables in the
environment. For example,

setenv TERM adm3a

sets the value of the environment variable TERM to adm3a.
The wuser program printenv prints out the environment, as
follows:

% printenv

HOME /z/bill

SHELL /bin/csh
TERM adm3a

%

The gource command can be used to force the current shell to
read commands from a file. For example,

source .cshrc

can be used after a change is made to the .cshrc file that
is to take effect before the next time the user logs in.

The time command causes a command to be timed, no matter how
much CPU time it takes. For example,

% time cp five five.save
- 0.0u 0.3s 0:01 26%
% time wc five.save
1200 6300 37650 five.save
l1.2u 0.5s 0:03 55%
£

indicates that the c¢cp command used less that a tenth of a
second of user time and only three-tenths of a second of
system time in copying the file five to five,saveThe command
word count (w¢) on the other hand, used 1.2 seconds of user
time and 0.5 seconds of system time in three seconds of
elapsed time in counting the number of words, characters,
and lines in five,saveThe percentage (55%) indicates that
over this period of three seconds, the command w¢ used an
average of 55 percent of the available CPU cycles of the
machine. (This is a very high percentage and indicates that
the system is lightly loaded.)

The uynalias and upnset commands can be used to remove aliases
and variable definitions from the shell.

The wait command can be used after starting processes with &
to quickly see if they have finished. If the shell responds
immediately with another prompt, the commands have finished
executing. Otherwise, it is necessary to wait for the shell

Zilog 23

CSH

24

Zilog . CSH

to prompt, or interrupt the shell by sending a RUB or DELETE
character. If the shell is interrupted, it prints the names
and numbers of the unfinished processes. An example of the
response to a wait command follows. :

% nroff paper | lpr &

2450
2451
% wait

2451 1pr

2450 nroff
wait: Interrupted.
%

If it is necessary to stop running a background process,
the kill program must be used. The process number to be
killed must be entered. For example, to stop nroff in the
pipeline example, enter

% kill 2450

% wait

2450: nroff: Terminated.
%

Here the shell displayed a diagnostic indicating that the
user terminated nroff, only after a wait command was done.

Zilog 24

CSH

25

Zilog . CSH

SECTION 3

CSH CONTROL STRUCTURES AND COMMAND SCRIPTS

3.1 Introduction

It is possible to place commands in files called shell
scripts and to invoke shells to read and execute commands

from these files. Those features of csh useful to the writ-
ers of such scripts are detailed in this section.

3.2 Invocation and the argv Variable
A csh command script can be interpreted by entering
csh script ...

where script is the name of the file containing a group of
csh commands and ... is replaced by a sequence of arguments.
Csh places these arguments in the variable argv and then
begins to read commands from the script. These parameters

are then available through the same mechanisms used to
reference any other csh variables.

If the file script is made executable by entering

chmod 755 script

and placing a shell comment at the beginning of the shell
script, the command /bin/csh 1is automatically invoked to
execute script when

script

is entered. If the first character of the first line is not
a #, csh invokes /bin/sh to interpret the command script.

3.3 Variable Substitution

After each input line is broken into words and history sub-
stitutions are done on it, the input line is parsed into
distinct commands. Before each command 1is executed, a
mechanism known as variable substitution is applied to these
words. Keyed by the dollar sign ($) character, this substi-
tution replaces the names of variables with their values.
For example,

echo Sargv

Zilog 25

CSH

26

Zilog CSH

when placed in a command script, causes the current value of
the variable argv to be echoed to the output of the shell
script. It is an error for argv to be unset at this point.

A number of notations are provided for accessing components
and attributes of variables. The notation

$?name
expands to 1 if pame is set, or to 0 if pame is not set. It
is the fundamental mechanism used for checking whether par-

ticular variables have been assigned values. All other
forms of reference to undefined variables cause errors.

The notation

S#name

expands to the number of elements in the variable name, as
in the following example:

set argv=(a b c)
echo $?argv

echo S#argv

unset argv
echo $?argv

echo $argv
ndefined variable: argv

00 0P O o0 d° W dP 2 o 0P

It is also possible to access the components of a variable
that has several values. For example,

Sargv[l]

gives the first component of argv or, in the preceding exam-
ple, a. Similarly,

Sargv([Stargv]
gives ¢, and
Sargv([1-2]
giveé ab.
Other notations useful in csh scripts are

$n

zilog 26

CSH

27

zilog CSH

where n is an integer as a shorthand for S$argvin], the nth
parameter, and

S*
is shorthand for $argv. The form
$$

expands to the process number of the current shell. Since
this process number is unique in the system, it can be used
in the generation of unique temporary file names.

One minor difference between $n and $argvin] is that the
form $argvip]l yields an error if p is not in the range
1-$#argv, while Sn never yields an out-of-range subscript
error,

It is never an error to give a subrange of the form n-; if
there are 1less than n components of the given variable, no
words are substituted. A range of the form m=n likewise
returns an empty vector without giving an error when m-
exceeds the number of elements of the given variable, pro-
vided the subscript n is in range.

3.4 Expressions

To construct c¢sh scripts, it is necessary to evaluate
expressions in the shell based on the values of variables.
All the arithmetic operations of the lanquage C are avail-
able in <c¢sh with the same precedence that they have in C.
The operations == and != compare strings, and the operators
&& and || implement the boolean and/or operations.

Csh also allows file enquiries of the form
=2 filename

where ? is replaced by any of a number of single characters.
For instance, the expression primitive

=e filename

tells whether the file filename exists. Other primitives
test for read, write, and execute access to the file, and

test whether it is a directory, or whether it has nonzero
length.

Zilog 27

e

CSH

28

Zilog CSH

It is possible to test whether a command terminates normally
by wusing a primitive of the form { command }, which returns
1 if the command exits normally with exit status zero, or O
if the command terminates abnormally or with exit status
nonzero. If more detailed information about the execution
status of a command is required, it can be executed and the
variable $status examined in the next command. Since
$status is set by every command, it is very transient. How-
ever, it can be saved if it is more convenient to wuse it
more than once.

For a full list of expression components available, see
csh(l) in the ZEUS Reference Manual.
3.5 Sample Csh Script

A sample shell script that uses the expression mechanism of
csh and some of its control structure follows.

Zilog 28

CsH zilog CsH

cat copyc
#

Copyc copies those C programs in the specified list

to the directory “/backup if they differ from the files
already in ~/backup

#

set noglob
foreach i (Sargv)

if (S$i:r.c != $i) continue
not a .c file so do nothing

if (! -r ~/backup/$i:t) then
echo $i:t not in backup... not cp\'ed
continue

endif

cmp -s $i ~/backup/S$i:t
to set S$status

if ($status != 0) then
echo new backup of $i
cp $i ~/backup/Si:t
endif
end

This script uses the foreach command, which causes c¢sh to
execute the commands between the foreach and the matching
end for each of the values given between (and); the named
variable (in this <case, i) is set to successive values in
the list). Within this loop, it is possible to use the com-
mand break to stop execution of the loop, and continue to
prematurely terminate one iteration and begin the next.
After the foreach loop, the iteration variable retains the
value at the last iteration.

The variable noglob is set to prevent file name expansion of
the members of argv. This is advisable if the arguments to
a shell script are file names that have already been
expanded or if the arguments can contain file name expansion
metacharacters. It is also possible to quote each use of a
$ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the
form

if (expression) then
command

endif

The placement of the keywords here is not flexible due to

29 Zilog 29

CSH

30

Zilog CsH

the current implementation of csh.
Another form of the if statement

if (expression) command
can be written as follows:

if (expression) \
command

Here the new line has been escaped for the sake of appear-
ance, and the \ must immediately precede the end-of-line.
The command must not involve |, &, or ; and must not be
another control command.

The more general if statements in the previous examples can
also be used with a sequence of else-if pairs followed by a
single else and an endif, as in the following:

if (expression) then
commands

else if (expression) then
commands

else
commands
endif

Another important mechanism used in csh scripts is colon (:)
modifiers. The modifier :r can be used to extract a root of
a file name. If the variable i has the value foo.bar, the
following example

% echo Si Si:r
foo.bar foo
%

shows how the :r modifier strips off the trailing _Lbar.
Other modifiers take off the last component of a path name,
leaving the head (:h) or all but the 1last component of a
path name leaving the tail (:t). These modifiers are fully
described in c¢sh(l) of the ZEUS Reference Manual. It 1is
also possible to wuse the command substitution mechanism
described in Section 5 to perform modifications on strings
and then reenter the csh environment. Since each usage of
this mechanism involves the creation of a new process, it is
more expensive to use than the : modification mechanism.

It is also important to be aware that the current implemen-
tation of c¢sh 1limits the number of : modifiers on a §

zZilog 30

CSH

31

Zilog CSH

substitution to 1. Thus,

% echo $i Si:h:t
/a/b/c /a/b:t
%

does not do what one would expect.

3.6 Other Control Structures

Csh has control structures while and switch, similar to
those of C. These take the forms

while (expression)
commands
end

and

switch (word)

case strl:
commands
breaksw

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details, see ¢sh(l). C programmers should be aware that
breaksw is wused to exit from a switch, while break exits a
while or foreach loop. A common mistake to make in «csh
scripts is to use break rather than breaksw in switches.

Finally, csh allows a gg;g'statement with labels similar to
those in C. For example:

loop:

commands
goto loop

Zilog 31

CSH

32

Zilog CSH

3.7 Supplying Input to Commands

Commands run from csh scripts receive, by default, the stan-
dard input of the shell that is running the script. This
allows csh scripts to make full wuse of pipelines, but
requires extra notation for commands that are to take inline
data.

Thus, a metanotation for supplying inline data to commands
in csh scripts is needed. For example, the following script
runs the editor to delete leading blanks from the 1lines 1in
each arqument file.

% cat deblank

deblank -- remove leading blanks
foreach i (Sargv)

ed - $§i << 'EOF'

1,8s/10 1*//

w

q
'"EOF'!
end
%

The notation << 'EOF' means that the standard input for the
ed command is to come from the text in the csh script file,
up to the next line consisting of 'EOF'. The fact that the
EOF 1is enclosed in single quote (') characters prevents csh
from performing variable substitution on the intervening
lines. 1In general, if any part of the word following the <<
(which the csh uses to terminate the text to be given to the
command) is quoted, these substitutions are performed. 1In
this case, since the form 1,$ was used in the editor script,
it 1is necessary to ensure that this § is not variable sub-
stituted. It is also possible to ensure this by preceding
the $ with a \. For example:

1,\ss/T1 1*//
However, quoting the EOF terminator is a more reliable way
of achieving the same thing.
3.8 Catching Interrupts
If the csh script creates temporary files, it is helpful to
catch interruptions of the csh script so that these files

can be cleaned up. This can be done with

onintr label

Zilog 32

CSH

33

Zilog CSH

where label is a label in the program. If an interrupt is
received, the shell does a goto label. It is possible to
remove the temporary files and then do an exit command to
exit from the csh script. To exit with a nonzero status,
enter

exit(1l)

This exits with status 1.

3.9 Other Functions

There are other features of csh useful to writers of «c¢sh
procedures. The verbose and expand variables and the

.related -y and =-x command line options can be used to help

trace the actions of ¢csh. The =n option causes csh commands
to be read, but not executed.

It is important to note that csh only executes scripts that
begin with the character # (that is, shell scripts that
begin with a comment). Similarly, the /bin/sh on the system
defers to csh to interpret shell scripts that begin with #.
This allows scripts for both shells to coexist without com-
plications.

Another quotation mechanism uses double quotes ("), allowing
only some of the expansion mechanisms discussed so far to
occur on the quoted string, making the string into a single
word as ' does.

3.10 Make

Do not attempt to use shell scripts to perform taks that can
be handled by make (see make manual). The make program
maintains a group of related files or performs sets of
operations on related files. For instance, a large program
consisting of one or more files can have its dependencies
described in a makefile, which contains definitions of the
commands used to create these different files when changes
occur. Definitions of the means for printing listings,
cleaning up the directory in which the files re51de, and
installing the resultant programs are easily placed in this
makefile. Using this format is preferable to maintaining a
group of shell procedures to maintain these files.

A makefile can be used for applications other than programs.
For example, a makefile can be created to define how dif-
ferent versions of a document are to be created and which
options of nroff or troff are appropriate.

Zilog 33

CSH

34

Zilog CSH

SECTION 4

MISCELLANEOUS SHELL MECHANISMS

4.1 Loops at the Terminal

The foreach control structure can be used at the terminal
to aid in performing a number of similar commands. For
instance, suppose there were three shells in use on ZEUS,
/bin/sh, /bin/nsh, and /bin/csh. To count the number of
people using each shell, issue the commands

% grep -c nsh$ /etc/passwd
27
% grep -c¢ csh$ /etc/passwd
34

% grep -c¢ -v sh$ /etc/passwd
6
%
A simple method of requesting this information is:

$ foreach i (*nsh$' ‘csh$® ‘-v sh$’)
" ? grep -c $i /etc/passwd

? end

27

34

6

%

The shell prompts for input with ? when reading the body of
the loop.

Variables that contain lists of file names or other words
are useful with loops. For example,

$ set a=('1ls")
% echo Sa
csh.n csh.rm
% ls

csh.n

csh.rm

% echo S#a

2

%

Zilog 34

CSH

35

Zilog CSH

The set command gives, as the variable g, a list of all the
file names 1in the current directory as value. It is then
possible to iterate these names to perform any chosen func-
tion.

The output of a command within single back quote (') charac-
ters is converted by <c¢sh to a list of words. The quoted
string can also be placed within double quote (") characters
to take each nonempty line as a component of the variable,
preventing the lines from being split into words at blanks
and tabs. The modifier :x can be used later to expand each
component of the variable into another variable, splitting
it into separate words at embedded blanks and tabs.

4.2 Braces in Argument Expansion

Another form of file name expansion involves braces ({ and
}), which specify that the contained strings, separated by
a comma (,), are to be consecutively substituted into the
containing characters, and the results are to be expanded
left to right. For example,

A{strl,str2,...strn}B
expands to
AstrlB Astr2B ... AstrnB

This expansion occurs before the other file name expansions,
and can be nested. The results of each expanded string are
sorted separately, left to right. The resulting file names
are not required to exist if no other expansion mechanisms
are used. This means that this mechanism can be wused to
generate arguments that are not file names, but that have
common parts.

For example,

mkdir ~/{hdrs,retrofit,csh}
can be used to make subdirectories hdrs, retrofit, and csh
in the user's home directory. This mechanism is useful when
the common prefix is longer than in the above example, such
as in the following example:

chown bin /usr/{bin/{ex,edit},lib/{exl.lstrings,how_ex}}

Zilog 35

CSH

36

Zilog CsH

4.3 Command Substitution
A command enclosed in single back quote characters is
replaced, just before file names are expanded, by the output
from that command. Thus, it is possible to enter

set pwd='pwd’

to save the current directory in the variable pwd, or to
enter

ex ‘grep -1 TRACE *.c°
to run the editor ex, suppling as arguments those file names
ending in .c that have the string TRACE in them. (Command

expansion also occurs in input redirected with << and within
double quotations. Refer to g¢sh(l) for more details.)

Zilog 36

CSH - Zilog ‘ CSH

APPENDIX A

SPECIAL CHARACTERS

The following lists the special characters of c¢sh and the
ZEUS system. A number of these characters also have special
meaning shown in expressions. See ¢sh(l) in the ZEUS Refer-
ence Manual for a complete list of characters.

| separates commands in a pipeline; the output of one
command in a pipeline is the input to the succeeding
command

separates commands.to be executed sequentially

~e

& follows commands to be executed without waiting for
completion
() brackets expressions and variable values; any of

the preceding commands can be placed inside brackets
to form a command that in turn can be part of a
larger string

&& indicates a pipeline in which the second command is
executed only if the first command succeeds

| indicates a pipeline in which the second command is
executed only if the first command fails

< indicates redirected input
> indicates redirected output
<< reads shell input up to string matching the follow-

ing argument
>> writes output at end of argument file
! prevents metameaning of a group of characters

" similar to ', but allows variable and command expan-
sion

\ prevents special meaning of following single char-
acter

\new
line expands to an embedded new line if within a quoted
string; expands to a blank, otherwise

37 Zilog 37

CSH

38

N #

Zilog CsH

begins a shell comment
separates components of a file's path name
expansion character matching any single character

expansion character matching any sequence of charac-
ters

expansion sequence matching any single character
from a set

used at the beginning of a file name to indicate
home directories

used to specify groups of arguments with common
parts

indicates variable substitution

indicates history substitution

precedes substitution modifiers

used in special forms of histbry substitution
indicates command substitution

prefixes option (flag) arguments to commands

Zilog 38

CSH

39

zilog csH

APPENDIX B

GLOSSARY

The most important terms introduced in this document are
listed in this Appendix. References of the form (2.5) indi-
cate that more information can be found in Section 2.5 of
this document. References of the form pr(l) indicate that

the command pr is in Section 1 of the ZEUS Reference Manual.
To get an on-line copy of the manual page, enter

man 1 pr

. The user's current directory has the name .
as well as the name printed by the command
pwd. The current directory (.) is wusually
the first component of the search path con-
tained in the variable path. Thus, commands
that are in . are found first (2.2). The
period character is also used to separate
components of file names (1.6). The charac-
ter . at the beginning of a component of a
path name 1is treated specially and is not
matched by the file name expansion metachar-
acters ?, *, and [] pairs (1.6).

.o Each directory has a file .. in it, which is
a reference to its parent directory. After
changing directories with chdir, for example,

chdir paper

it is possible to return to the parent direc-
tory by entering

chdir ..

The current directory is printed by pwd
(206) L

alias An alias specifies a shorter or different
name for a ZEUS command, or a transformation
on a command to be performed in the shell.
The shell command alias establishes aliases
and can print their current values. The com-
mand unalias is used to remove aliases (2.6).

argument Commands in ZEUS receive a list of argument
words. Thus, the command

Zilog 39

T

CSH

40

argv

background

bin

break

builtin

case

cat

cd

Zilog CsH

echo a b ¢

consists of a command name echo and three
argument words a, b, and ¢ (l.1).

The list of arguments to a command written in
a shell script or shell procedure is stored
in a variable called argv within the shell.
This name is taken from the conventional name
in the C programming language (3.4).

A background command is a command that runs
while the shell executes other commands.
(2.5).

A directory containing binaries of programs
and shell scripts to be executed is typically
called a bin directory. The standard system
bin directories are /bin, which contains the
most heavily wused commands, and /usr/bin,
which contains most of the other user pro-
grams. Binaries can be placed in any direc-
tory. The name of the directories should be
a component of the variable path if the
binaries are to be executed often.

Break is a built-in command used to ekit from
loops within the control structure of the
shell (3.6).

A command executed directly by the shell is
called a builtin command. Most commands in
ZEUS are not built into the shell, but exist
as files in bin directories. These commands
are accessible because the directories in
which they reside are named in the path vari-
able.

A case command is used as a label in a switch
statement in the shell's control structure,
similar to that of the 1language C c¢sh(l)
(3.7) .

The cat program catenates a list of specified
files on the standard output. It is usually
used to look at the contents of a single file
on the terminal (1.7, 2.3).

The ¢d command changes the working directory.
With no arguments, c¢d changes the user's
working directory to be the user's home

Zilog 40

CSH

41

Zilog CSH

directory (2.3, 2.6).

chdir The chdir command is a synonym for ¢d, which
is usually used because it is easier to type.

chsh The chsh command is used to change the shell
that is used on ZEUS. By default, the user
uses csh, which resides in /bin/csh.

cmp cmp is a program that compares files. It is
usually used on binary files, or to see if
two files are identical (3.5). For comparing
text files, use the program diff, described
in diff(l).

command A function performed by the system, either by
the shell or by a program residing in a file
in the 2ZEUS system, is called a command
(2.1).

command substitution
‘ The replacement of a command enclosed in sin-
gle back quote (') characters by the text
output by that command is referred to as com—
mand substitution (3.7, 4.2).

component A part of a path name between slash (/) char-
acters 1is called a component of that path
name. A yariable that has mnultiple strings
as its value is said to have several com-—

ponents; each string is a component of the

variable.

continue A built-in command that causes execution of
the enclosing foreach or while loop to cycle
prematurely. Similar to the continue command
in the C programming language (3.5).

core dump When a program terminates abnormally, the
system places an image of its current state
in a file named core. The core dump can be
examined with the system debuggers adb(l) and
zdb(l) to determine what went wrong with the
program (1.7). If, for a system program, the
shell produces a message of the form:

commandname: Se