uages/Programming Tools Manual

93-3249-01
May, 1983

Copyright 1983 by Zilog, Inc. All rights reserved. No part
of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of Zilog.

The information in this publication 1is subject to change
without notice.

Zilog assumes no responsibility for the use of any circuitry
other than circuitry embodied in a Zilog product. No other
circuit patent licenses are implied.

ZEUS Languages/Programming Tools Manual

ZEUS Release 3.2

10/14/83

Zilog

Preface

This document and the related manuals listed below provide
the complete software technical documentation for the stan-
dard ZEUS Operating System.

System 8000 ZEUS Utilities Manual 23-31540
System 8@@0 ZEUS Reference Manual 33-3255

System 8000 ZEUS Administrator Manual #3-3246
(Models 21/31)

System 8000 Model 11 ZEUS Administrator ©3-3254
Manual

Of particular interest to the System 8000 programmer are
Sections 2 (system calls) and 3 (C library functions) of the
System 8000 ZEUS Reference Manual.

In addition, the following manuals, also supplied with the

system, complement the System 8000 ZEUS
Languages/Programming Tools Manual:

The C Programming Language by Brian W. Kernighan and Dennis
M. Ritchie

The Z80@0@ PLZ/ASM Assembly Language Programming Manual (@3-
3055)

iii Zilog iii

Zilog

TABLE OF CONTENTS

Introduction to ZEUS Languages/Programming Tools INTRO

A Tutorial Introduction to ADB ADB
System 8000 Assembly Language Reference Manual AS
The C Programming Language C
System 8000 Calling Conventions CALL CONV
C-ISAM Programmer's Guide C-ISAM
Screen Updating and Cursor Movement Optimization:

A Screen Package CURSES
Lex: A Lexical Analyzer Generator LEX
Lint: A C Program Checker LINT
Make MAKE
The M4 Macro Processor MP
Zeus Programming PGMG
ZEUS PLZ/ASM Assembler User Guide PLZ/ASM
System 8000 PLZ/SYS User Guide PLZ/SYS
Screen Handling SCREEN
YACC: Yet Another Compiler-Compiler YACC

Zilog v

INTRODUCTION Zilog INTRODUCTION

Introduction to ZEUS Languages/Programming Tools Manual

Languages

ZEUS supports many languages -- FORTRAN, Pascal, BASIC,
among them., C is the primary programming language, however:
recent changes to C and special considerations of program-
ming in C on the System 800¢ are listed in The C Programming
Language (C). ZEUS Programming (PGMG) explains how C pro-
grams interact with ZEUS and handle command arguments,
input/output, etc, Lint: A C Program Checker (LINT) detects
implementation dependent code and other bad features.

PLZ/SYS is another ZEUS language. Along with the PLZ/ASM
assembler, it can be used to design low-level programs. So
too can the System 8000 assembler, known simply as the
assembler. With the 3.1 release, this assembler becomes the
System 8000 core assembler operating as the backend proces-
sor for the ZEUS high-level language compilers and translat-
ing programs written in the language described in System
8000 Assembly Language Reference Manual (AS).

All languages supported by ZEUS can communicate with each
other and share common libraries provided they observe cer-
tain calling conventions described in System 8@@g@¢ Calling
Conventions (CALL CONV).

Tools

A Tutorial Introduction to ADB describes a program which is
used to examine core files resulting from aborted programs,
to patch object files, and to run programs with embedded
breakpoints.

Make describes a program used to maintain a large group of
interrelated files, such as the source code files and their
associated object files that are behind a large C program.

Lex: A Lexical Analyzer Generator and YACC: Yet Another Com-
piler Compiler decribe tools useful in developing programs
which apply translation rules to input.

1 Zilog 1

INTRODUCTION Zilog INTRODUCTION

The M4 Macro Processor (MP) is a user's manual for a front-
end program suitable for use with high-level languages such
as C and Fortran,

CURSES: Screen Updating and Cursor Movement Optimization: A
Library Package and SCREEN: Screen Interface Library:
describe a set of tools for developing C programs that main-
pulate video displays. C-ISAM Programmer's Guide describes
the available tools for the <creation and malintenance of
indexed file systems.

2 Zilog 2

A Tutorial Introduction to ADB *

* This information is based on an article originally
written by J.F. Maranzano and S.R.Bourne, Bell Laboratories.

ADB

ii

Zilog

Zilog

ADB

ii

ADB Zilog ADB

Preface

This document contains information on ADB (A De Bugger), a
new debugging program. With ADB, it is possible to examine
core files resulting from aborted programs, print variable
contents in a variety of formats, patch files, and run pro-
grams with embedded breakpoints.

This document is written as a tutorial. It is assumed that
the reader is familiar with the C language.

The examples referenced in the text are located in Appendix
A. For ease of reference, it is recommended that the exam-
pPles be brought up on the terminal while the text 1is read
from the hard copy. '

iii zilog iii

ADB Zilog ADB

iv Zilog iv

ADB

SECTION

i el
. « o«
ObhwnH

SECTION

DN DNDN
adwidH-=

SECTION

SECTION

4.1.
4.2,
4.3.
4.4.
4.5.

SECTION

SECTION

Zilog

Table of Contents

1 A QUICK SURVEY .¢icavcesncnnnns

Basic Command Format .
File Locations
Current AJAress
Formatscccceeees
General RequEeStS seeeeenrteccsssse

s * e @
.
.
.

»
-
.
.
e o e o
.
.
.
.
.
.

2 DEBUGGING C PROGRAMS ..::ccvs0s

Debugging a Core Image «sscecosseos
Calling Multiple Functions
Setting Basic Breakpoints
Setting Advanced Breakpoints
Using Other Breakpoint Facilities

3 MAPS ® 8 2 6 ¢ 0 0 0 0 s P e N0 L0

4 ADVANCED USAGE ..cccevesvoonsoe
General ® & 5 0 & 0 0 0 P P 0 0200l NN e
Formatted DUmMP .ceceveseccosssosas
Directory DUMP «cccsescaovcoscnsns

Ilist Dump ® € ® ¢ & 9 0 O 5 9 O " S B 0P 0 PP 00
Value Conversion .eeceseessosnssse

5 PATCHING 4 8 0 0 0 0 5 00 00600 00 00 05 000

6 CAUTIONS G e B & 8 S 0 4 0 B 0 B 2 P b 0N 0 e

Zilog

ADB

ADB 7ilog ADB

APPENDIX A PROGRAM EXAMPLESccc0c0cceceonsccsecscss A=l

APPENDIXB A.DBSUMMARY ® 6 5 2 0 5 0 0 0 @ ® 6 6 0 & 2 4 0 0 8 4 0 s 0 e s s e e B_l

vi Zilog vi

ADB 7ilog ADB

SECTION 1
A QUICK SURVEY

1.1. Basic Command Format

The ADB command copies core to an output file. The command
format is:

adb objfile corefile
where objfile is an executable ZEUS file (default is a.out)
and corefile (default is core) is a core image file. When
the defaults are used, the command appears as:

adb

The file name minus (-) means ignore an argument, as in:

adb - core

1.2. File Locations
ADB has requests for examining locations in the contents of
objfile, (the ? request) or the corefile (the / request).
The general form of these requests is:

address ? format
or

address / format

where format describes the printout (Section 2.4).

1.3. Current Address

ADB maintains a current address, called dot, similar in
function to the current pointer in the ZEUS editor. The
request:

.,1@/4a

prints ten decimal numbers starting at dot. Dot then refers
to the address of the last item printed.

1-1 zilog 1-1

ADB zilog ADB

When an address is entered, the current address 1is set to
that location, so that:

@126?1i

sets dot to octal 126 and prints the instruction at that
address.

When used with the ? or / requests, the current address can
be advanced by typing a new line, and it can be decremented

by typing ~.

Addresses are represented by expressions of decimal, octal,
and hexadecimal integers, and symbols from the program under
test. These can be combined with the operators +, -, *, %
(integer division), & (bit and), | (bit inclusive or), #
(round up to the next multiple), and ~ (not). All arith-
metic within ADB is 32 bits. When typing a symbolic address
for a C program, type name or name; ADB recognizes both
forms. -

l.4. Formats

To print data, specify a collection of letters and charac-
ters that describe the format of the printout. Typing a
request without a format causes the new printout to appear
in the previous format. The following are the most commonly
used format letters:

one byte in octal

one byte as a character

one word in octal

one word in decimal

two words in floating point
728009 instruction

a null terminated character string
the value of dot

one word as unsigned integer
print a new line

print a blank space

backup dot

R ocpOHMAOQD

Format letters are also available for long values (for exam-
ple, D for long decimal and F for double floating point).

1-2 zilog 1-2

ADB zilog

1.5. General Requests
Requests of the form
address,count command modifier
set dot to address and execute the command count times.

The following table gives general ADB command meanings:

9]
0
g
o
o]
Q

Meaning

Print contents from a.out file
Print contents from core file
Print value of "dot"
Breakpoint control
Miscellaneous requests

Request separator

Escape to shell

- Lo J| W

Use the request $q or $Q (or control-D) to exit from ADB.

1-3 Zilog

ADB

ADB Zilog ADB

SECTION 2
DEBUGGING C PROGRAMS

2.1. Debugging a Core Image
Example 1 (Appendix A) changes the string pointed to by
charp, then writes the character string to the file indi-
cated by argument 1. The common error shown is that a null
character ends a character string. In the loop to print the
characters, the ending condition is based on the value of
the pointer charp, not the character that charp points to.
Executing the program produces a core file because of an
out~of~bounds memory reference.
The following explanation refers to Example 2.
ADB is invoked by the command:

adb a.out core
The first debugging request:

Sc

is used to give a C Dbacktrace through the subroutines
called.

The next request

$C
is used to give a C backtrace plus an interpretation of all
the local variables in each function and their values in
octal.
The next request

Sr

prints the registers, including the program counter and an
interpretation of the instruction at that location.

The request
Se

prints out the values of all external variables.

2-1 Zilog 2-1

ADB Zilog ADB

The request
Sm

produces a report of the contents of the maps. A map exists
for each file handled by ADB. The map for the a.out file is
referenced by ?, and the map for the core file is referenced
by /. Use ? for instructions and / for data when looking at

programs.

To see the contents of the string pointed to by charp, enter
*charp/s

This uses charp as a pointer in the core file and prints the

information as a character string. This printout shows that

the pointer to the character buffer points to an address
outside of the program's memory.

The request

. =0
prints the current address, not its contents, in octal.
This has been set to the address of the first argument. The

current address, dot, is used by ADB to keep the current

location. It allows reference to locations relative to the
current address; for example,

.~1@/4d

2.2. Calling Multiple Functions
The C program shown in Example 3 calls functions £, g, and h
until the stack is exhausted and a core image is produced.
The following explanation refers to Example 4.
Enter the debugger with the command

adb

which assumes the names a.out and core for the executable
file and core image file respectively. The request

Sc
fills a page of backtrace references to £, g, and h. Enter-

ing DEL terminates the output and returns to ADB request
level.

2-2 Zilog 2-2

ADB %ilog ADB

The request
+58C
prints the five most recently called procedures.

Each function (f,g,g) has a counter of the number of times
it was called. The request

fent/d
prints the decimal value of the counter for the function f.

To print the the decimal value of x in the last call of the
function h, type

h.x/d

It is not currently possible to print the value of 1local
variables.

2.3. Setting Basic Breakpoints

The C program in Example 5 changes tabs into blanks (adapted
from Software Tools by Kernighan and Plauger, pp. 18-27).

Run this program under the conﬁrol of ADB (Example 6) by
adb a.out -
Set breakpoints in the program as:
address:b [request]
The requests
settab:Db
open:b
read:b
tabpos:b
set breakpoints at the start of these functions.
To print the location of breakpoints, enter
$b
The display indicates a count field. A Dbreakpoint is

bypassed count -1 times before causing a stop. The command
field indicates the ADB requests to be executed each time

2-3 zilog 2-3

ADB zilog ADB

the Dbreakpoint 1is encountered. 1In the example, no command
fields are present.

Displaying the original instructions at the function settab
sets the Dbreakpoint to the entry point of the settab rou-
tine. Display the instructions using the ADB request

settab, 5?ia
This request displays five instructions starting at settab
with the addresses of each location displayed. Another
variation is :

settab, 571

which displays the instructions with only the starting
address.

The addresses are accessed from the a.out file with the ?
command. When asking for a printout of multiple items, ADB
advances the current address the number of bytes necessary
to satisfy the request. In Example 6, five instructions are
displayed and the current address is advanced 18 {(decimal)
bytes.
To run the program, enter

:r

To delete a breakpoint, for instance the entry to the func-~-
tion settab, enter:

settab:d

To continue execution of the program from the breakpoint,
enter :

:C
Once the program has stopped (in this case at the breakpoint
for open), ADB requests can be used to display the contents
of memory. For example, use

$C
to display a stack trace, or

tabs/8x

to print three lines of 80 locations each from the array
called tabs. At location open in the C program, settab has

2-4 Zilog 2-4

ADB zilog ADB

been called to set a one in every eighth location of tabs.
Printing the tabs array allows verification of settab.
2.4. Setting Advanced Breakpoints
Continue execution of the program (Example 6) with
:C
is displayed each time. The single character on the left
edge is the output from the C program.
Continue the program with the command
:C

The program hits the first breakpoint at tabpos because
there is a tab following the "This" word of the data.

Several Dbreakpoints of tabpos occur until the program
changes the tab into equivalent blanks. Remove the break-
point at that location by entering
tabpos:d
If the program is continued with
:C
it resumes normal execution after ADB prints the message
a.out:running
The ZEUS quit and interrupt signals act on ADB itself rather
than on the program being debugged. If such a signal
occurs, the program being debugged is stopped and control is
returned to ADB. To save the signal and pass it to the test
program, enter

:C

This can be useful when testing interrupt handling routines.
Enter

tc O

if the signal is not to be passed to the test program.

2-5 zilog 2-5

ADB zilog ADB

Now reset the breakpoint at settab and display the instruc-
tions located there when the breakpoint is reached. This is
accomplished by: ‘

settab:b settab,5?ia

Owing to a bug in early versions of ADB (including the ver-
sion distributed in Generic 3 ZEUS), these statements must
be written as:

settab:b settab,5?ia;®
read, 3:b main.c?C; 0
settab:b settab, 5?ia; 0
The ;0 sets dot to zero and stop at the breakpoint. To

request each occurrence of the breakpoint and stop after the
third occurrence, type:

read, 3:b tabs/8x

This request prints the local variable ¢ in the function
main at each occurrence of the breakpoint. The semicolon
separates multiple ADB requests on a single line.

NOTE

Setting a breakpoint causes the value of dot to be
changed. Executing the program under ADB does not
change dot. For example, the commands

settab:b .,5%7ia
open:b

print the last value dot was set to (example open)

not the current location (example settab) at
which the program is executing.

A breakpoint can be overwritten without first deleting the
0ld breakpoint. Enter

settab:b settab,5?ia;
The display of breakpoints

$b
shows the above request for the settab breakpoint. When the
breakpoint at settab 1is encountered, the ADB requests are

executed. The location at settab has been changed to plant
the breakpoint. All the other 1locations match their

2-6 Zilog 2-6

ADB Zilog ADB

original value.
The execution of each function (£, g, and h in Example 3)
can be monitored by planting nonstop breakpoints. Call ADB
with the executable program of Example 3 as follows:

adb ex3 -

Enter the following breakpoints:

h:b hent/d; h.hi/; h.hr/
g:b gent/d; g.gi/: g.gr/
f:b fent/d; f.fi/; f.fr/

:r

Each request line indicates that the variables are printed
in decimal (by the specification d). The format is not
changed and the d can be left off all but the first request.

The output in Example 7 illustrates two points. First, the
ADB requests 1in the breakpoint line are not examined until
the program under test is run., This means any errors in
those ADB requests are not detected until run time. At the
location of the error, ADB stops the program.

Example 7 also illustrates the way ADB handles register
variables. ADB uses the symbol table to address variables.
Register variables, like f.fr in the previous example, have
pointers to uninitialized places on the stack and print the
message "symbol not found."

Another way of getting at the data in this example is to
print the variables used in the call as with

f:b fent/d; f.a/; f£.b/; £.£fi/
g:b gent/d; g.p/: g.4/: g.gi/
: C

The operator / was used instead of ? to read values from

the core file. The output for each function, as shown in
Example 7, has the same format. For the function £, for
example, it shows the name and value of the external vari-

able fcnt. It also shows the address on the stack and wvalue
of the variables a, b, and fi.

The addresses on the stack continue to decrease until no
address space 1is left for program execution. At this time

the program under test aborts. A display with names is pro-
duced by requests

£:b fent/d; f£.a/"a="d; f£.b/"b="d; f.fi/"fi="d

2-7 Zilog 2-7

ADB Zilog ADB

In this format, the quoted string is printed 1literally and
the d produces a decimal display of the variables. The
results are shown in Example 7.

2.5. Using Other Breakpoint Facilities

Arguments and change of standard input and output are passed
to a program as

:r argl arg2 ... <infile »>outfile

This request aborts any existing program under test and res-
tarts a.out.

The program being debugged can be single-stepped by
:S

If necessary, this request starts the program being debugged
and stops after executing the first instruction.

ADB allows a program to be entered at a specific address by
entering

address:r

The count field is used to skip the first n breakpoints as

The request

is also used for skipping the first n breakpoints when con-
tinuing a program.

A program is continued at an address different from the
breakpoint by

address:c

The program being debugged runs as a separate process and is
aborted by

:k

2-8 Zilog 2-8

ADB Zilog ADB

SECTION 3
MAPS

ZEUS supports several executable file formats that tell the
loader how to load the program file. File type E707 is the
most common and is generated by a C compiler invocation such
as c¢c pgm.c. An E711 file is produced by a C compiler com-
mand of the form cc -i pgm.c. ADB interprets these dif-
ferent file formats and provides access to the different
segments through a set of maps (see Example 8).

To print the maps, enter
$m

In E707 files, both instructions and data (I & D) are inter-
mixed. This makes it impossible for ADB to differentiate
data from instructions, and some of the printed symbolic
addresses look incorrect (for example, printing data
addresses as offsets from routines).

In E711 files with separated I & D space, the instructions
and data are also separated. However, in this case, since
data is mapped through a separate set of segmentation regis-
ters, the base of the data segment is also relative to
address zero. In this case, since the addresses overlap, it
is necessary to use the ?* operator to access the data space
of the a.out file. ‘

Example 9 shows the display of two maps for the same program
linked as an E707 file and an E711 file respectively. The
b, e, and £ fields are used by ADB to map addresses into
file addresses. The fl field is the length of the header at
the beginning of the file (@20 bytes for an a.out file and
92000 bytes for a core file). - T

The £f2 field is the displacement from the beginning of the
file to the data. For an E707 file with mixed text and
data, this is the same as the length of the header; for an
E711 files, this is the length of the header plus the size
of the text portion.

The b and e fields are the starting and ending locations for
a segment. Given an address, A, the location in the file
(either a.out or core) is calculated as:

bl<A<el => file address = (A-bl)+f1l
b2<A<e2 => file address = (A-b2)+f2

3-1 Zilog 3-1

ADB zilog ADB

Locations can be accessed by using the ADB defined vari-
ables. The $v request prints the following variables ini-
tialized by ADB:

b base address of data segment
d length of the data segment
s length of the stack
t length of the text
m execution type (E7807 and E711)
In Example 9 those variables not present are zero. These

variables can be used by expressions such as
<b

in the address field. Similarly, the value of the variable
can be changed by an assignment request such a

22803>b

which sets b to octal 2000. These variables are useful to

know if the file under examination is an executable or core
image file.

ADB reads the header of the core 1image file to find the
values for these variables. If the second file specified is
not a core file, or if it is missing, the header of the exe-
cutable file is used.

3-2 zilog 3-2

ADB zilog ADB

SECTION 4
ADVANCED USAGE

4.1. General

It is possible with ADB to combine formatting requests to
provide elaborate displays. Several examples follow.

4.2. Formatted Dump

To print four octal words followed by their ASCII interpre-
tation from the data space of the core image file, enter

<b,-1/404"8Cn

The various request pieces mean:

<b The base address of the data segment.
<b, -1 Print from the base address to the end of
file. A negative count 1is used here and

elsewhere to loop indefinitely or until some
error condition, such as end of file, is

detected.
40 Print four octal locations.
4" Back up the current address four locations

(to the original start of the field).

8C Print eight consecutive characters using an
escape convention. Each character in the
range ¥ to @037 is printed as @ followed by
the corresponding character in the range 9140
to @177. An @ is printed as @@.

n Print a new line.

The request:

<b, <d/404"8Cn

allows the printing to stop at the end of the data segment.
The <d provides the data segment size in bytes.

The formatting requests can be combined with the ADB ability
to read 1in a script to produce a core image dump script.

4-1 Zilog 4-1

ADB Zilog ADB

Invoke ADB as:
adb a.out core < dump

to read in a script file, dump, of requests. An example of
such a script is:

1208w
40958s
Sv
=3n
Sm
=3n"C Stack Backtrace"
$C
- =3n"C External Variables"
Se
=3n"Registers"
Sr
dS$s
=3n"Data Segment"”
<b,~-1/8ona

The request 120%w sets the width of the output to 120 char-
acters (normally, the width is 80 characters). ADB prints
addresses as symbol + offset.

The request 4095$s increases the maximum permissible offset
to the nearest symbolic address from 255 (default) to 4095.

The request = can be used to print literal strings. Head-
ings are provided in this dump program with requests of the
form

=3n"C Stack Backtrace"
which spaces three lines and prints the literal string.
The request $v prints all nonzero ADB variables (Example 8).
The request @$s sets the maximum offset for symbol matches
to zero, thus suppressing the printing of symbolic labels in

favor of octal values. This is only done for the printing
of the data segment. The request

<b,-1/8ona
prints a dump from the base of the data segment to the end
of file with an octal address field and eight octal numbers
per line.

Example 11 shows the results of some formatting requests on
the C program of Example 14.

4-2 zilog 4-2

ADB zilog ADB

4.3. Directory Dump

Example 12 dumps the contents of a directory made up of an
integer inumber followed by a l4-character name

adb dir -
=n8t"Inum"8t"Name"
@,-1? u8tldcn

In this example, the u prints the inumber as an unsigned
decimal integer, the 8t means that ADB spaces to the next
multiple of 8 on the output line, and the 1l4c prints the
l4-character file name.

4.4. 1Ilist Dump

The contents of the 1ilist of a file system, such as
/dev/src, is dumped with the following set of requests:

adb /dev/src -

d2089>b

?m <b

<b,-1?"flags"8ton"links,uid,gid"8t3dn",
size"8tDn"addr"8t2dun"times"8t2¥YnY¥2na

In this example, the value of the base for the map was
changed to 02009 (by saying ?m<b) because that is the start
of an ilist within a file system. The last access time,
last modify time, and creation time are printed with the
2¥nY operator. Example 12 shows portions of these requests
as applied to a directory and file system.

4.5. Value Conversion

ADB can convert values from one representation to another.
For example:

972 = odx
prints
@72 58 %3a

which are the octal, decimal, and hexadecimal representa-
tions of 972 (octal). ADB keeps track of format so that as
subsequent numbers are entered they are printed in the pre-
vious formats. Character values are similarly converted.
For example:

4-3 Zilog 4-3

ADB Zilog

prints
¥0061

It can also evaluate expressions, but all

binary

ADB

operators

have the same precedence, which is lower than for unary

operators.

4-4 Zilog

4-4

ADB Zilog ADB

SECTION 5
PATCHING

Patching files with ADB is done with the write (w or W)
reguest, not to be confused with the ed editor write com-
mand. This is often used in conjunctionfﬁith the locate, (1
or L) request.

The request syntax for 1 and w is:
address range file designator command argument

where the address range gives the characters to be searched,
the file designator is ? or /, the command is either a write
or locate variation, and the argument is an expression and
can support decimal and octal numbers or character strings.
The address range can appear as zero, one, or two charac-
ters, including dot (current address). The request 1 is
matched on two bytes, and L is used for four Dbytes. The
request W writes two bytes, and W writes four bytes. For
example,

@, 109021 searches the original file from @ to 1000
109008721 searches the original file from 1009 to end
?1 searches the entire file

To modify a file, c¢all ADB as
adb -w filel file2

When called with this option, filel and file2 are created
and opened for both reading and writing.

For example, to change the word "This" to "The" in the exe-
cutable file in Example 14, use the following requests:

adb -w ex7 -
.?21 'Th'
.?W 'The '

The request 2?1 starts at dot and stops at the first match of
"Th" having set dot to the address of the location found.
The use of ? writes to the a.out file. The form 2* is used
for an E711 file.

More frequently, the request is typed as:

?21 'Th'; ?s

5-1 Zilog 5-1

ADB zilog ADB

This locates the first occurrence of "Th" and prints the
entire string. Execution of this ADB request sets dot to
the address of the "Th" characters.

Following is an example of the utility of the patching
facility that has a C program with an internal logic flag.
The flag can be set through ADB and the program can be run.

adb a.out -
:s argl arg2
flag/w 1

o]

The :8 request is normally used to single step through a
process or start a process in single-step mode. In this
case, it starts a.out as a subprocess with arguments argl
and arg2. If there is a subprocess running, ADB writes to
it rather than to the file. The w request causes flag to be
changed in the memory of the subprocess.

5-2 zilog 5-2

ADB

Zilog ADB

SECTION 6
CAUTIONS

ADB has the following idiosyncrasies:

1.

2.

The value of 1local variables cannot currently be
printed.

Function calls and arguments are put on the stack by
the C save routine. Putting breakpoints at the entry
point to routines means that the function appears not
to have been called when the breakpoint occurs.

When printing addresses, ADB uses either text or data
symbols from the a.out file. This sometimes causes
unexpected symbol names to be printed with data (for
example, savr5+022). This does not happen if ? is used
for text or instructions and / is used for data.

Zilog 6-1

ADB 7ilog

APPENDIX A
PROGRAM EXAMPLES

Example 1
char *charp = "this is a sentence";

main(argc, argv)

int argc;

?har **argv;
int fd;
char c¢;
%f (argec < 2)

printf("Input file missing\n"):

\ exit(8);

%f ((fda = open(argv[l],0))== -1)
printf("%s : not found\n", argv[1l]);

} exit (8);

charp = "hello";
printf("debug 1 %s\n", charp):
while(charp++)
write (£fd4, *charp, 1);

*kkh] Kk * %

A-1 Zilog

ADB

ADB 7ilog ADB

Example 2
adb a.out core
ADB: S89@0 1.2
? $c
no process
? §C
no process
? $r
r9d 0009
rl L0000
r2 k14143414]
r3 209000
r4 20099
r5 00999
ré6 0009
r7 00949
r8 L0099
r9 30909
rl@d 0009
rll 900090
rl2 0909
rl3 0000
rl4 L0009
sp 29909
fow - 30099
pc 39009
main: jr _main+37c¢
? Se
_environ: $ffbc
charp: $£1400
—_iob: %$113c
sobuf: 20000
~_lastbu: $0£26
__sibuf: 0009
nd: %133c
end: 20000
_deverr %0009
errno: $0099
? Sm
? map '‘a.out’
bl = %0 el = %£f3a f1 = %28
b2 = %0 e2 = %$f3a £2 = %28
/ map 'core'
bl = 30 el = %1400 fl = 3400
b2 = $fadod e2 = %10000 £2 = 31800

A-2 zilog A-2

ADB

Zilog

? *charp/s _end+%c4:
data address not found
? charp/s

charp:

? main.argc/d

Sorry,
? $q

kkk] ok

local variable names not implemented

* %

Zilog

ADB

ADB

Zilog

Example 3

int fcnt, gcnt, hent:

h(x,y)
{

g(p,q)
{

f(a,b)
{

main()

kk]

int hi; register int hr;
hi = x+1;

hr = x-y+1;

hcont++;

f{hr,hi);

int gi; register int gr;
gi = g-p:

gr = gq-p+l;

gent++;

h(gr,qgi):

int fi; register int fr;
fi = a+2*b;

fr = a+b;

font++;

g(frlfi)7

f(lll)7

* %k

Zilog

ADB

ADB

adb

ADB: S8
o

? ,58C

o3 1.2

Zilog

Example 4

Local variables not implemented

_h()

—g()

£(0)

h()

? fent/d
_fent:

? gent/d
_gcnt:

stack frame:
202f6:
t92£8:
302fa:
d2fc:
202fe:

stack frame:
0309 .
30392
20304
%0306
30308

stack frame:
3@30a:
3030c:
2030e:
20310:
$0312:

stack frame:
%0314:
$3316:
30318:
2@3la:
3@031lc:

¥03le:
30320:
%0322
%0324:
%0326

2157

2157

0000
k35141417]
0000
0000
390%7a (return

%21b4
%13db
21049
$10db
$@Pae (return

%1049
20002
221b4
0002
20048 (return

%1047
£14d8
%1949
%1348
$007a (return

221bgd
%1049
%1047
%1449
%00ae (return

Zilog

address)

address)

address)

address)

address)

ADB

ADB

Zilog

? hent/d

hcnt:

? h.x/d
Sorry,

? $q

kk]

2157

local variable names not implemented

* %

Zilog

ADB

ADB Zilog
Example 5
#define MAXLINE 80
#define YES 1
#define NO)
#define TABSP 8
char input[] = "data";
int tabs[MAXLINE];
main()
int £4;
int col, *ptab;
char c¢;
ptab = tabs;
settab(ptab);
col = 1;
if ((fa = open(input, @)) == -1
{

}

printf("%s
} exit(8);

while(read(fd, &c,

switch(c)

: not found\n", input);

1) > 0)

case '\t':

while(tabpos(col)
{

putchar(' ');
col++;

}

break;

case '\n':
putchar('\n');
col = 1;
break;
default:
putchar(c);
break;

tabpos(col)
int col;

if (col > MAXLINE

)

return(YES);

else

Zilog

l= YES)

ADB

ADB Zilog

return(NO);

}
settab(tabp)
int *tabp;
{

int i;

for (i=0; i <=MAXLINE; i++)

(i 8 TABSP) ? (tabs[i] = NO

YES);
}
***l* LR

A-8 Zilog

ADB

(tabs[i] =

ADB zilog

Example 6
adb a.out -

ADB: S80@0 1.2

? settab:b
? open:b
? read:b
? tabpos:b
? $b
breakpoints
count bkpt command
1 _tabpos
1 _read
1 open
1 “settab
? settab,5?ia
settab: jr _settab’48
_settab+%2: clr %0002 (sp)
_settab+%6: cp 30002 (sp), #30050
_settab+3ic: jr gt,_settab+3’44
_settab+%e: 14 r3,30992(sp)
settab+%12:
? settab,57?i
_settab: jr _settab+3%48
clr 20002 (sp)
cp $00092(sp), #309590
jr gt, settab+%44
1d r3,%0002(sp)
? :r
fig5: running
breakpoint _settab: jr _settab+%48
? settab:d
? :cC
fig5: running
breakpoint _open: 14 rd,r7
? SC
_open()
stack frame:
3£ffb2; 30048 (return
main()
- stack frame:
2ffbd: 0000
2ffb6: 20001
$£fb8: @fd4
$ffba: %0000
$ffbc: %0022 (return
? tabs/8x

_tabs: 30001 30000 30000 G000 200D Q000
0001 0000 20000 0000 0000 0000
3QOYL 0000 0000 9000 0000 30000

A-9 Zilog

ADB

address)
address)
20000 0099
30000 30009
300008 0000
A-9

ADB

Zilog

14

14

command
tabs/8x
settab,b5?ia;

¥0000 30000

30000 0000

30000 300900
14

fig5: running
breakpoint read:
? :cC -
fig5: running
breakpoint read:
? tabpos:d -

? settab:b settab,5?7ia
? settab,5:b settab,5?ia; ¢
? read,3:b tabs/8x

? $b

breakpoints

count bkpt

3 read

1 _settab

1 _open

?:cC

? fig5: running

T tabs: 30001 390000
h tabs: 0001 9900
i:tabs: 0001 0000
breakpoint _read:
? $Sq

***l* * %k

A-19

Zilog

rd,xr?

rd,xr?

V00Y 0000

L0000 29000

30900 9900
rd,r7

ADB

30000 <0000

30000 30000
30009 0000
A-10

ADB Zilog ADB

Example 7
adb ex3 -

ADB: S800@ 1.2

? h:b hent/d; h.hi/; h.hr/

? g:b gent/d; g.gi/; £.fr/

? :x

ex3: running

_gent: 4]

Sorry, local variable names not implemented

? f£:b fent/d; f.a/"a = "d; £.h/"b = "d; £.£fi/"fi = "d
? g:b gent/d; g.p/"p = "d; g.q/"q = "d; g.gi/"gi = "d
2 h:b hent/d; h.x/"x = "d; h.y/"y = "d; h.hi/"hi = "4
? :rx

ex3: running

_fent: . 9

Sorry, local variable names not implemented

? Sq

***l* * %

A-11 Zilog ‘ A-11

ADB Zilog ADB

Example 8
E7087 files
a.out hdr text+data
| lﬂ I)|
core hdr text+data stack
| Ig D... .IS

E711 files (separated I and D space)

a.out hdr text data

! | I
2 T @

core hdr data stack

| | - |
1} D S E
The following adb variables are set.

E707 RM E711
b base of data 17} b 2
d length of data®3/28/83 17:20:05D-B D
s length of stack S S S

t length of text 7} T T

A-12 Zilog A-12

ADB Zilog
Example 9

adb mapE7@7 coreE787

ADB: $S80090 1.1

? Sm

? map 'mapE707'
bl = %0
b2 = SO

/ map ‘coreE707"'
bl = %0
b2 = %200

? Sv

variables

address
e = %a4
other

d = %100

m = %e7@87

s = %feldd

? $q

adb mapE711 coreE71l1

ABD: S8000 1.1

? Sm

? map 'mapE711'
bl = %0
b2 = 30

/ map 'coreE711"
bl = %0
b2 = %200

? variables

address

e = %a4d
other

d = 3100

m = %e7ll

s = %feld

t = %100

? $q

***l* *k %
A-13

Zilog

el
e2

el
e?

el
e?

el
e2

Hou

2dc
%dc

109
21009

%100
%0

%100
310039

fl
£2

f1
f2

f1
f2

fl
£2

T

o

hn

ADB

%38
%38

2400
3509

338
%138

$409
2500

A-13

ADB zilog ADB

Example 10
char stri[] = "This is character string";
int che = 1;
int number = 456;
long lnum = 1234L;
char str2[] = "This is the second character string";
main()
one = 2;
}
***l* *%

A-14 zilog A-14

ADB

adb mapE71l coreE711

ADB: S8000 1.1

? <b,-1/80a
_strl

_strl+310:
_lnum:
_str2+38:
_str2+%18:
_environ+%2:
_environ+%1l2:
_environ+%22:
_environ+%32:
_environ+%42:
_environ+$52:
_environ+%62:
_environ+%72;
_environ+%82:
_environ+%92:

environ+%a2:

052150
972145
0O330Y
072150
261564
VOBBBY
Judagalatil
Jofuladalil
000030
100101030
00a239
000000
Jaduguloly)
PYRABY
Jutudulugy)

Jatulalalsl

? <b,20/40on"8Cn

_strl:

A-15

252150
062449
072145
267147
ujolotula]e)
852150
072159
067144
061564
964556
laaladuly
olalaulay
aJofutlate]
RBBB3Y

Z

ilog

Example 11

064563
271040
002322
062440
P62562
ufalapil i)
ol
Jalutulul]
ujafalagalal
aJufululal]
ajaalala]e]
101a14101)
POBBDD
ufugululaly
0000933
000990
064563
061550
271040
0oBOBD

002322
264563
062449
023143
062562
063409
aJaolula]e]
200000
jalalaa]
Jutagulalul

Z

023151
871564
937640
@71545
020163
Jautagaly)
1a1a1011%)
ulatutalul]
0IAB3D
0OABBD
ol
ulatuliul]
lolaulal]
fufalutuld]
029000
JaJulagal]
220151
g6B562
@71564
00B291
937640
920151
@71545
264141
020163
200329
Jatuloful]
P0000D

POBBAD
Jatulaly]

ilog

071440
871151
2993992
961557
072162
ala]o1u1u1)
092099
002030
aJulao1]
203239
ufaggalaly)
003000
Jotululal)
023200
Q33203

oudalul]

071440
068543
@71151
0oB710
ulugulagal]
271449
061557
071141
@72162
177662
000039
000339
13ttty
022000

260440
067147
052150
367144
@64556
00BBBD
0oOBD29
BoB33D
200000
0OBB2D
JJululals)
229029
Juudululy)
0o0VOD
Judnatals)

Jatulala]y

ADB

961550 060562

200000 090901

064563 0920151

020143 064141

0634090 Q90007

POY000 0VBR3D

000003 VVVODD

000000 VVVI0D

POBBBD VVVDVD

PPOVAY B0Y000D

0B0I00 VO3B0

000000 V900090

003000 GY000D

P0OVVOD CABIID

0OVY03 BBABAD

200000 003000
This is

a charac

ter stri

ng@ @' @' @aaH
@*@°@aRrR? @'@*
This is

the seco

260543
vA3710
071440
071141
177662
]l 1a]a1%)
ajlayagagy)
000030
0000080
lagagagal]
ufgalalagy
200200
V0B322
ufulaluiols
P0a3A2

Bo00ALC

ADB

202039
afajaloly
alo1a]u]u1y,
jayalolal]
023339
0RBYID

? <b, 20/404"8t8cna

_strl:
strl+%8:
:str1+%l@x
_strl+%18::
lnum:
:strZ}
_str2+3%8:
str2+%19:
:str2+%18 .
_str2+%20:
_environ+%2:
_environ+%a:
_environ+%12:
_environ+%la:
environ+%22:
_environ+%2a:
_environ+%32:
environ+%3a:
_environ+%42:
environ+%4a:
Tenviron+%$52:

@52159
060449
@72145
267174
299039
052150
272150
067144
761564
264556
POBVIY
jaatalale
51515141 91%]
a191aya3aly]
ulatalala3]
ujalalatolil
200239
aJalagalaly)
uja]a1a3 03,
uJurayugily

? <b,10/2p8t"2cn

0054
%0069
30020
20073
¥0d61
$0063
3261l
30061
30074
30072

_strl:

?
%k

$q
* 3]16R%*%

$0068
$0373
$0069
30029
09020
30068
20072
30063
20965
30020

Zilog
000039 OO3009
990000 Q02000
0oRA08 VOAVBY
goovos 0OPI009
000009 Q03909
000008 QO030900
g64563 @20151
61550 @60562
271949 @71564
220099 ©O0001
Pg2322 @37649
264563 Q20151
062449 @71545
@20143 @64141
262562 029163
063400 Q00099
200000 @003034d
000900 @I0000
000030 000090
000008 QOID0d
000000 QI9039
200003 Q02009
000000 QOY039
Po00e0 QI9909
0000093 Q0009
200090 QOI000

Th
is
i
s
a
ch
ar
ac
te

Zilog

ujalalugal]
20333D
0B3220
Jatalaale]
022029
jaadalal]

271449
260543
071151
0oa719
290999
271440
061557
071141
@72162
177662
Julalala]s]
fagugalali]
000330
292339
ujatulalale]
0O2BB3D
0RPBD
]]o1u1]
Joulug)
2090030

¥

ae e
= m e

oo oo e D
rd , » 4 rd 4
oo
rd » rd 4 » L4
» 4 o rd » »
ooe R e e
» 2 2 2 s, 0
oo D

o

This is
a charac
ter stri
ngH

R?

This is
the seco
nd chara
cter str
ing2

rJ d rd rd , »

DR o e D

ADB

L A B A 4
' » » P rd
[CECEOEREOEO

oo oo ®

A-16

T Y B R Y 1

ADB Zilog
Example 12
adb dir -
ADB: S80400 1.1
?2 =nt"Inode"t"Name"
? @,-1?utldcn
Inode Name
0000+ 2 .
2 ..
192 bin
1891 usr
157 1ib
164 dev
148 etc
197 pb.image
957 +tmp
261 zeus3_1.2
? $q

adb /dev/src -

ADB: S800¢ 1.1
? ?m O 31000000 1024

? @,~1?"flags"8ton"links,uid,gid"8t3dn"size"8tDn" \

addr"8t2@un"times"8t2Y¥2na

30099 :

times

flags 100390

links,uid,gid %] [}
size g
addr 4] a 4]

2 g %} 1}

7}] a)

1981 Feb 12 13:50:17 1981 Feb 12 13:50:17

1981 Feb 12 13:50:17

30040 :

13:10:41

30080 s

flags 243755

links,uid,gid 44]
size 704
addr 3 9984 819
7] @] @
)] 7} [} [}
times 1981 Jul 17 16:58:42

1981 Jul 15 10:10:41

flags 190664
links,uid,gid 1 25
size 34

Zilog

ADB

15

A-17

ADB Zilog

addr 52 12288 2
g a g 2
] 1% 0 g
times 1981 Jul 16 17:06:34

1981 Jul 16 17:94:23

Zilog

ADB

2 7] g 7}
[} [} J %]
7}

1981 Jul 16 17:94:23

A-18

ADB Zilog ADB

APPENDIX B
ADB SUMMARY

Command Summary

¢ Formatted Printing

? format print from a.out file according to format
/ format print from core file according to format
= format print the value of dot

?wW expr write expression into a.out file

/W expr write expression into core file

21 expr locate expression in a.out file

& Breakpoint and Program Control

:b set breakpoint at dot
o continue running program
:d delete breakpoint
:k kill the program being debugged
:r run a.out file under ADB control
:s single step
& Miscellaneous Printing
$b print current breakpoints
$c stack trace
Se external variables
Sf floating registers
Sm print ADB segment maps
Sq exit from ADB
Sr general registers
Ss set offset for symbol match
Sv print ADB variables
Sw set output line width

B-1 Zilog B-1

ADB Zilog ADB
& Calling the Shell
1 call shell to read rest of line

& Assignment to Variables

»name assign dot to variable or register name

Format Summary

a the value of dot

b one byte in octal

c one byte as a character

d one word in decimal

f two words in floating point

28080 instruction

fute

o one word in octal

n print a newline

r print a blank space

s a null terminated character string
nt move to next n space tab

u one word as unsigned integer

X hexadecimal

Y date

~ backup dot

feoo? print string

Expression Summary

& Expression Components
decimal integer for example 256
octal integer for example 2277
hexadecimal for example %ff

B-2 Zilog B-2

ADB

¢

@

symbols
variables
registers
(expression)

Dyadic Operators

add

subtract
multiply

integer division
bitwise and
bitwise or

w——" ¥ | 4+

Monadic Operators

not

* contents of location

- integer negate

Zilog

for
for
for
for

example
example
example
example

Zilog

ADB

flag _main main.argc
<b

<pc <rd

expression grouping

round up to the next multiple

System 8088 Assembly Language Reference Manual

19/14/83

AS

ii

Zilog

Zilog
10/14/83

AS

ii

AS Zilog AS

Preface

This manual describes the System 8000 assembly language and
serves as the primary reference manual for the System 80¢%
assembly language programmer.

A brief introduction to the assembler is given in Secticn 1
followed by four sections that describe the language begin-
ning with language structure and ending with program struc-
ture.

Section 2 describes: character set, numbers, identfiers,
unary and binary operators and expressions. The basic unit
of an assembly language program, the assembly language
statement, 1is presented in Section 3 followed by the avail-
able addressing modes and operators in Section 4. Section 5
describes how program structure allows logical grouping of
code and relocatability. The appendices contain a summary
of the assembler directives, keywords and special charac-
ters, Z8#00 instruction mnemonics, assembler error wmessages
and debugger support directives.

Invocation of the assembler and the 1loader/linker is
described in the ZEUS Reference Manual (cas(l), 1d(l) and
s1d(1)).

A detailed description of the instruction set, architecture,
and hardware-related features of the Z7Z8000 can be found in
the publication:

728000 CPU Technical Manual, 99¢-20109

A detailed description of the 789040 floating point instruc-
tion set can be found in the publication:

Floating Point Emulator Package User's Manual, @3-8201

iii Zilog ' iii
18/14/83

AS

iv

Zilog

Zilog
10/14/83

AS

iv

AS Zilog

Table of Contents

SECTION 1 GENERAL INFORMATIONcctocctneccsonccons

1.1. Assembler Overviewceceieeecencconcnnnns
1.2. Relationship to PLZ/ASM Assembler ...eveveeoas
103' Implementa‘:ion Notes @ ® & & & 0 0 P 0 0 S e O eSO e P e 00

SECTION 2 LANGUAGE STRUCTUREcccceeeeccoccccsscs

2.1, INtrodUCEION tuevrerereeeeeeceseseneesoaceenes
2.2, StYINgS .vueieesceeosssssascscscssscnssassssns
2.3, NUMDEES tcieresessscesocensocsssoscsssssonsssecs
2.3.1. INtEUEES teveeeesooenceoncnecanesannnanns
2.3.2. Floating Point Numberscecveeveasoces
2.4. TIdentifiers viveeeeeceesonoeesncosssossssnsacons
2.4.1. Keyword and Local Identifiersco.0.
2.5, Constants .cesecececsecpesscscsocsscccscsesocnnos
2.6. Unary and Binary Operatorsceceseses

2.7. Expressions -- Assembly Time Arithmetic
2.7.1. Absolute EXPressionseceescecccccsces
2.7.2. Relocatable EXpPressionsceeeecercecos

2.7.3. External EXPressionsSceeeecesss

SECTION 3 ASSEMBLY LANGUAGE STATEMENTScc00..

e INtroductionceecierecrcosccscsrsersecnccnss
. Assembly Language Statementsc.eeveeecscas

LADELlS tevevevscrcsacncsossssnscssscsscssosocnscsccses
.3.1. Internal LabelsS t.ceeeesercosresosnnccscos
3 Global Labels ...eeececvecocsonscs

3
3.
3.

W=

w

.

1=
WWWWwwes WWWwWwW:

«3.3. Local LabelsS ..cceecesccccsosscscsnosscnss
.3.4. External LabelsS ..cceececccscocsoscscccsss
«3.5. Common LAbels ..cieeeeoccecoccssssnscocsss

PEratorsS ceceeeeccescsrsccccscacsccssscccssscos

. Direct Assignmentcceecvveececccesocse
. Data DeclaratoY ..ceceeeecescesosoccnsans
. INStructions ...ceeeecesceeceoscanascasocnsns
. . Pseudo INStructionsceececcvecocscese
3.5. OperandsS ..cieeecsscccensccsnsossscssscsnssoces
3.6, COMMENES eevvevesvsscooscosossscossassssscnsasscsss

¢ @

2
3
4
5
Ope
4.1. Assembler DirectivesS .icecececcococcses
4.2
4.3
4.4
4,5

\Y Zilog
190/14/83

AS

(O | | Poro
ONAUND BWWNDNDND -

w
|
[

|
VNNV UBNTUVTEE DWW

WWwWwWwwwwwwwww
i

wWwww
[A |

AS

SECTION 4 ADDRESSING MODES AND OPERATORS

SECTION 5

4.1, Introduction
4.2

4.2.1. Immediate Data

Zilog

ooooo ® @ 6 ¢ e 0 e 00 000 0

.2, Addressing ModeScecescenens

4.2.2. Register Address

4.2.3. Indirect Register Address

4.2.4. Direct AJddress
4.2.5. Indexed Address ...ee..
4.2.6. Relative Address
4.2.7. Based Address ...cecees
4.2.8. Based Indexed Address .

PROGRAM STRUCTURE

3

* 20 e 003 00 0 0

4.3. Segmented Addressing Mode Operators
4.4. Addressing Mode Directives

5.1. Introductioncceeeececcsccncccos
5.2, MOAUlES ..ot eeeesocesasescscnansanascses
5.3. Sections and Areas ..ceiceccesccccces
5.3.1. Program Sections ...eceeveccacns
5.3.2. Absolute Sectionscccevee
5.3.3. Common Sectionsceeecoccsan
5.4. Local BloCKS .t.ieeevecssoancscssnsan
5.5. Location Counter ..ceevecceccccsocen
5.5.1. Location Counter Control
5.5.2. Line Number Directiveeceea
APPENDIX A SUMMARY OF ASSEMBLER DIRECTIVES
A.l. Introduction e eecvesssscecrsen

APPENDIX B KEYWORDS AND SPECIAL CHARACTERS

APPENDIX C ASSEMBLER

APPENDIX D DEBUGGER SUPPORT DIRECTIVES

vi

ERROR MESSAGES

Zilog
16/14/83

ooooooo

e e 0 0 0 o

AS

[~
|
[

TS

R N N O G N T Y NG O g
R T T T T
HQWOWORU D WN -

(%]
|
[a-]

ooty n
|
NSO bW

vi

AS

vii

Zilog

List of Tables

Special Characters Within Strings ...ceeeeesns
Floating Point Conversion Operators
Unary OperatorsS ..eeesescosossosossosscssscssss
Binary Operators in Order of Precedence

Summary of Language Statement Fields
Functional Summary of Assembler Directives ..

Segmented Addressing Mode Operators

Zilog
16/14/83

AS

vii

AS Zilog AS

SECTION 1
GENERAL INFORMATION

1.1. Assembler Overview

The System 8000 relocating Z8000 assembler, called cas, runs
on the System 80060 under the ZEUS operating system. It
translates assembly language source programs into object
modules that can be either separately executed by the System
8000, or can be linked with other assembler object modules
to form a complete program.

An editor is used to <create an assembly language source
module (file). The source filename should end with the
extension .s. Instructions for invoking the assembler are
contained in cas(l).

The assembler is a two-pass assembler. During the first
pass,; the assembler builds the symbol table and creates an
intermediate file that is deleted when the assembly is com-
plete. Symbols, which can have a variable length, appear in
the symbol table in the order in which they are defined in
the assembly language program. During the second pass, the
assembler creates a relocatable object module in a.out(5)
format and with the default filename a.out,

The relocatability feature of the assembler frees the pro-
grammer from wmemory management concerns during program
development (since object code can be relocated in memory)
and also allows programs to be developed in modules whose
addresses are resolved automatically when the modules are
linked.

l1.2. Relationship to PLZ/ASM Assemblerx

With the 3.1 release of the ZEUS operating system, the Sys-
tem 8000 assembler becomes the core assembler for the System
800@. In addition to translating programs written in the
language described in this manual, the assembler operates as
the back-end processor for the C and other language com-
pilers.

The System 800¢ assembler coexists with the 28000 PLZ/ASM
assembler. PLZ/ASM programs, however, cannot be assembled
by the System 8000 assembler nor can System 8000 assembler
programs be assembled by the PLZ/ASM assembler. Hereafter,
the System 8000 assembler will be referred to as simply the

1-1 Zilog 1-1
10/14/83

AS Zilog AS

assembler. Any references to the PLZ/ASM assembler will be
explicit to avoid confusion between the two assemblers.

1.3. Implementation Notes

Any limitations associated with a particular release of the
assembler are noted 1in the System 8000 ZEUS Reference
Manual, cas(l).

1-2 Zilog 1-2
10/14/83

aS zilog AS

SECTION 2
LANGUAGE STRUCTURE

2.1. Introduction

This section describes the basic structure of the assembly
language, encompassing numbers, expressions, and unary and
binary operators.

2.2. Strings

A string consists of a character sequence enclosed in double
guotes (") or single quotes ('). Consecutive strings are
concatenated. Strings cannot contain an actual newline char-
acter. Table 2-1 describes the special characters that can
be used within a string.

Table 2-1 Special Characters Within Strings

Character Definition
\g null
\n newline
\t tab
\b backspace
\1 linefeed
\r carriage return
\f formfeed
A\ backslash
\" double gquote
\' single quote
\%$nn two hexadecimal digits that form

an arbitrary bit pattern

The following are examples of valid strings:

"This is a string"

"This is a null terminated string "

"This is a \" double quote within a string"”
"This is a \' single quote within a sting"

"This is \n Multi-line \nString”
"Here is a \t tab, \b backspace, and \r carriage return"
“"Here is a \f formfeed \\ backslash and \%AB hex %AB"

2-1 Zilog 2-1
16/14/83

AS Zilog AS

2.3. Numbers

Two types of numbers are supported by the assembler:
integers and floating point numbers.

2.3.1. Integers

Integers can be represented in decimal, hexadecimal, octal
or binary format. The default representation is decimal.
Examples of each representation follow:

5023 decimal
$FA2E hexadecimal
%$(8)7726 octal

%$(2)10011101 binary

2.3.2. Floating Point Numbers

A floating point number consists of an integer part, a frac-
tional part, and an exponent part. The exponent part is pre-
ceded by an "E" or "e". Either the decimal point or the "E"
or "e" must be present to form a floating point number. Only
decimal digits can be used in a floating point number.

3.0
.023
3.23
3.23E7
4.5e6
287

2.

Floating point numbers are always preceded by a floating
point conversion operator. These operators, summarized in
Table 2-2, operate only on an integer or floating point
number. They cannot be used in expressions.

Table 2~2 Floating Point Conversion Operators

Operator Conversion
“F Convert to floating double extended
“FD Convert to floating double
“FS Convert to floating single
2-2 Zilog 2-2

190/14/83

AS Zilog AS

Examples of both valid and invalid use follow:

VALID INVALID

“F 3.5 “F (3+4)
“F1l0 “Fs L1

“FD 7 2 + "FD 3.5
"FS 10E7

“FD3.5

“F .23E4

2.4. Identifiers

An identifier is a nonnumeric character followed by a vari-
able number of numeric or nonnumeric characters. In addi-
tion to the upper and lower-case letters, a nonnumeric char-
acter can be a " " or "?". 1In addition to decimal digits, a
numeric character can be a ".". Identifiers can be up to
128 characters. Examples of both valid and invalid identif-
iers follow:

VALID INVALID
Myname 2label
countl 2 chickens
Ll .dot
done?

end

Tabel.one

2.4.1. Keyword and Local Identifiers

Two special forms of identifiers are supported by the assem-
bler: keyword and local identifiers.

Keyword identifiers are a special kind of identifier
reserved by the assembler as keywords. One kind of keyword,
the assembler directive, is immediately recognized by the
assembler as such, because it is always preceded by a period
(".ll). '

The remainder of the keyword identifier set consists of
instruction mnemonics, flag c¢odes, and condition codes.
They are listed in Appendix B.

Keyword identifiers are recognized in either all upper-case
or all lower-case:

2-3 Zilog 2-3
19/14/83

AS Zilog AS

.S5EG LD
.nonseg 1d
.word INC
.byte .EVEN
Identifiers become local labels when preceded by a "~". For

more information on local labels, refer to Section 3.

"Ll

~1
“jelly
“parm.l

2.5. Constants

A constant value is one that doesn't change throughout a
program module. Constants can be expressed as strings or as
an identifier representing a constant value. Identifiers
can take the form of internal, local or global labels as
described in Section 3.

2.6. Unary and Binary Operators

To perform assembly-time arithmetic, expressions are formed
using wunary and Dbinary operators in conjunction with con-
stants and variable names. (Variable names can be used as
part of expressions, but not the variables themselves.) In
order of precedence, the unary operators are listed in Table
2-3; the binary operators are listed in Table 2-4. Unary
operators take precedence over binary operators, but
parentheses can be used to override precedence of evaluation
in an expression.

Table 2-3 Unary Operators

Operator Function

+ unary plus
unary minus

> |

B binary coded decimal
“C ones complement
“FS convert to floating single
“FD convert to floating double
°F convert to floating extended
~s segment (see Section 4.3)
~0 offset (see Section 4.3)
2-4 Zilog 2-4

19/14/83

AS Zilog AS

Table 2-4 Binary Operators in Order of Precedence

Operator Function

multiply
divide

shift left
shift right
bitwise and
bitwise or
bitwise xor
binary plus
binary minus

> O\ *

> >
MV A

>

I+

2.7. Expressions -- Assembly Time Arithmetic

Arithmetic is performed in two ways in an assembly language
program. Run-time arithmetic is done while the program is
actually executing and is defined explicitly by an assembly
language instruction:

SUB R10, R1l2 //Subtract the contents of register
//12 from:the contents of register 10

Assembly-time arithmetic is done by the assembler when the
program is assembled and involves the evaluation of expres-
sions in operands, such as the following:

LD RO, #(22/7 + X)
Jp 7, LOOP1l + 12
ADD R2, #HOLDREG-1

Assembly-time arithmetic is more 1limited than run-time
arithmetic in such areas as signed versus unsigned arith-
metic and the range of values permitted. Only unsigned
arithmetic 1is allowed 1in assembly-time expression evalua-
tion. Run-time arithmetic uses both signed and unsigned
modes, as determined from the assembly-language instruction
specified and the meaning attached to operands by the pro-
grammer .

All assembly-time arithmetic is computed using 32-bit arith-
metic, "modulo 4,294,967,296" (2 raised to the thirty-second
power). Values greater than or equal to 4,294,967,296 are
divided by 4,294,967,296 and the remainder of the division
is used as the result. Depending on the number of Dbits
required Dby the particular instruction, only the rightmost

2-5 Zilog 2-5
10/14/83

AS Zilog AS

4, 8, 16, or 32 bits of the resulting 32-bit value are used.
If the result of assembly-time arithmetic is to be stored in
four bits, the value is taken "modulo 16" to give a result
in the range @ to 15. 1If the result is to be stored in a
single byte location, the value is taken "modulo 256" to
give a result in the range # to 255. If the result is to be
stored in a word, the value is taken "modulo 65536" to give
a result in the range @ to 65535.

LDB RL4, #X+22 //Result of (X+22) must be in
//range @ to 255

JP X+22 //Modulo 65536. Result is the
//address 22 bytes beyond X
//and may wraparound through
//zero

ADDL RR12, #32000*MAX //Result of (32000*MAX) is
//taken modulo 4,294,967,296

All arithmetic expressions have a mode associated with them:
absolute, relocatable and external. 1In the following dis-
cussions, these abbreviations are used:

AB -- absolute expression
RE -- relocatable expression
EX -- external expression

2.7.1. Absolute Expressions

An absolute expression consists of one or more numbers, or
absolute constants combined with unary or binary operators.
The difference between two relocatable expressions is also
considered to be absolute. The relocatable expressions must
be in the same area of the same section. If they are not,
the absolute difference can not be determined at assembly
time. (For more information on program sections and areas,
see Section 5). :

An absolute expression is defined as one of the following:

AB --> a number or absolute constant
AB <operator> AB
'+' AB, '-' AB
RE '-' RE

The segmented address constructors "<<" and ">>" can be used
in an absolute expression to form a long value. For exam-
ple: .

2-6 Zilog 2-6
19/14/83

AS Zilog AS

<<3>>%100
is equivalent to the long value
$03000100

and can be used in any expression where long values can be
used.

Strings can also be used as absolute values. However, only
the first four characters of a string are used to form the
absolute value.

At instruction assembly time, any absolute segmented direct
address that does not have zeroes in the lower byte of the
segment part is flagged as an error. In addition, the high
bit is set for segmented addresses at this time.

Examples of valid absolute expressions (where L1 and L2 are
relocatable labels and cl is a constant identifier) are:

%(8)2767 + (3 * 5)
cl * 6 + 3(2)01001100
$FEFEABAB + (L1 - L2)

5 °< 8
3+ <<2>>3100
4 + "ABCD"

Examples of invalid absolute expressions are:

2 + L1
(L1 * 3) - L2
cl + (L1 -3)

2.7.2. Relocatable Expressions

A relocatable expression contains exactly one identifier
subject to relocation after assembly. The expression can be
extended by adding or subtracting an absolute expression.
Plus and minus are the only operators allowed, however.

A relocatable expression can be defined as one of the fol-
lowing:

RE ~-> a relocatable identifier

RE '+' AB
AB '+' RE
RE '-' AB
+RE
2-7 : Zilog 2-7

19/14/83

AS Zilog AS

Examples of valid relocatable expressions (where L1 and L2
are relocatable labels and cl is constant identifier) are:

L1 + cl :

L1 + (%(8)@77 - %FE@2 / 2) "> 4
cl + (L1 - L2) + L2

Ll - (L1 -L2) + cl

Examples of invalid relocatable expressions are:

cl - L1

(3203F) - 100 - L2
(LL - L2) * L2

Ll / L2

L1 + (L2 + cl)

8

2.7.3. External Expressions

An external expression contains exactly one external iden-
tifier, possibly extended by adding or subtracting an abso-
lute expression. An external identifier is one that is used
in the current module but defined in another module. The
value of an external identifier 1is not known until the
modules are linked.

An external expression is defined as one of the following:

EX -=> external identifier

EX '+' AB
AB '+' EX
EX '-' AB
+EX

Examples of valid external expressions (where L1 is a relo-
catable label, ¢l is a constant identifier, and el is an
external label) are:

el - cl
el - (L1 - L2) + 5
cl + el

(3304 - 5) + el
%(2)01100111 * 2 + el

2-8 Zilog 2-8
19/14/83

AS Zilog

Examples of invalid external expression are:

el + (L1 - el)

$FEFE - el

cl * 2 + el - L1
2 * el

el °> 8

Zilog
19/14/83

AS

AS Zilog AS

SECTION 3
ASSEMBLY LANGUAGE STATEMENTS

3.1. Introduction

This section describes the fields and syntax of the assembly
language statement. The conventions used in describing the
syntax are as follows:

® Parameters shown within angle brackets represent items
to be replaced by actual data or names: <section_name>

® Optional items are enclosed in parentheses: (<expres-
sion>)
b Parameters separated by a "|" indicate that one or " the

other parameter can be used but not both.

® Possible repetition of an item is indicated by append-
ing a "+" (to signify one or more repetitions) or an
"*" (to signify zero or more repetitions) to the item:
(<expression>)* Each repetition after the first must be
preceded by a comma.

® Other special characters shown in statement and command
formats such as :=, (), will be enclosed in single
quotes and must be written as shown.

® The special symbol ":=" means "is defined as" or "is
assigned". Any label assigned a value using this con-
struct cannot be redefined later.

3.2. Assembly Language Statements

Assembly language programs consist of assembly language
statements, which can have up to four fields:

Label field -- symbolically defines a location in a program.

Operator field -- specifies the action to be performed by
the statement.

Operand field -- contains the data or the address of the
data to be operated upon.

Comment field -- contains a comment to document the action
of the statement. - -

3-1 Zilog 3-1
10/14/83

AS Zilog AS

Table 3-1 summarizes these fields which are described in
detail in the remainder of this section.

Each field must be separated from the other fields by one or
more delimiters. A delimiter can be one of the following:

space
tab
semicolon

A comma is required to separate components in the operands
field.

Bach assembly language statement is terminated by the new-
line or carriage return character. When a statement's
length exceeds the line length, it can be continued on the
next line by using the line continuation character "\".

A sample assembly language statement follows:

Label Operator Operand (s) Comment

Ll: LD RO, R1 //Load the contents of
//Register @ in Register 1.

Table 3-1 Summary of Language Statement Fields

Field Field Types

Label Internal
Global
Local
Ex ternal
Common

Operator Directive
Direct Assignment
Data Declarator
Instruction

Operands Address
Data
Condition Code

Comment

3-2 Zilog 3-2
16/14/83

AS 7ilog AS

Note that the order of fields shown in the example 1is not
required. While comments are always the last field in a
statement (when they are used), labels do not necessarily
precede operators. When the operator is a directive, for
example, a label can follow:

.extern L1

3.3. Labels

A label identifies a statement in a program allowing that
statement to be referenced symbolically. Constants, instruc-
tions, directives, and data declarators can all be labeled.
Any statement referenced by another statement must be
labeled. There can be more than one 1label per statement.
The following label types fit this description:

internal
global
local

Two additional label types, external and common, are defined
with the assembler directives, .extern and .comm respec-
tively. They are distinguished by the fact that they can be
referenced 1in the current module (file) but are defined as
global in another module.

external
common

3.3.1. Internal Labels

An internal label consists of an identifier followed by a
wew, An internal label restricts access to the identifier
to the module in which it is defined.

start: LD RG,R1 //an internal label for an
//instruction
count_1l: .word %200 //an internel label for a

//data declaration.

begin: .psec mysection //an internal label for an
//assembler directive

3-3 zilog ‘ 3-3
190/14/83

AS Zilog AS

3.3.2. Global Labels

A global label consists of an identfier followed by "::" It
allows the identifier to be accessed from modules other than
the one where it is defined.

Ll::L2::.word %ABCD //two global labels for
//a data declaration
Ll::
L2:: .woxrd $%ABCD //same as preceding example

done?:: PUSH @R15, R@O //a global label for an

//instruction
_start::.psec //a global label for a directive
foobar::= %20 //a global constant with

//value %20

A label by itself on a line is considered a null statement.
Such a statement is associated with the next non-null state-
ment in the program.

start:: //null statement consisting
//0f a label only

begin:: .code ' //mark beginning of code area

3.3.3. Local Labels

n~un

A local label consists of an identifier preceded by a
(making the identifier a 1local symbol) and followed by a
":", (Local labels are valid only within 1local blocks as
described in Section 5, Program Structure.)

“L1:"L2: LD RO, #20 //two local labels for
//an instruction

“num:= %100 //a local constant with
//value 188 (hex)
“count:.odd //a local label for a directive
3-4 Zilog 3-4

10/14/83

AS Zilog AS

3.3.4. External Labels

External specifies that a label can be referenced in the
current module but is defined as global in another module.
External labels are defined with the external directive,
.extern, :

.extern procl, done? //external labels are declared
.extern datum, _end

3.3.5. Common Labels

Common labels consist of the .comm directive followed by a
constant expression that indicates the number of bytes of
storage associated with the common symbol(s) and a comma.
These are followed by a list of identifiers separated by
commas. At link time, common symbols with the same name but
from different files are inspected. The common label with
the largest size is allocated as uninitialized data (BSS
storage) . If a global definition with the same name is
found, all common labels refer to the global definition.

.comm 2@, datal, data2 //two common symbols of size 2@

.comm 5+3, myname, //common symbol of size 8

3.4. Operators

The operator field specifies the action to be performed by
the statement. This field can contain one of the following:

directive

direct assignment
data declarator
instruction

3.4.1. Assembler Directives

An assembler directive either directs the operation of the
assembler or allocates storage but does not itself result in
executable code. A period, ".", precedes every assembler
directive. Table 3-2 gives a functional summary of the
directives and a reference to the section containing a
description of the directive and examples of its use.

3-5 Zilog 3-5
19/14/83

AS Zilog AS

Table 3-2 Functional Summary of Assembler Directives

Category Directives See
Data Storage .byte Section 3
and Initialization .word
Directives .long
.quad
.extend
.addr
.blkb
.blkw
.blkl
Label Control . comm
Directives .extern
Segment Control .seg Section 4
Directives .nonseg
Program Section .psec Section 5
Directives .csec
.asec
.data
.bss
.code
Location Counter .even
Control .odd

Directives

Listing Directive .line

3.4.2. Direct Assignment

A direct assignment statement allows symbols to be associ-
ated with constants, labels, or keywords. Specifically, a
direct assignment statement is a symbol (usually a 1label)
followed by a "=" and one of the following:

32-bit absolute constant

32, 64, or 80 bit floating point constant
Relocatable expression

Location Counter

Keyword (for keyword redefinition)

3-6 Zilog 3-6
126/14/83

AS Zilog AS

32-Bit Absolute Constants

A internal, global, or local label can be assigned the value
of a 32-bit constant expression.

cl:= 20 //internal label cl is assigned the
//constant value 240.

c3::= 2+3*5 //9lobal label c3 is assigned the
//the constant value 17.

“cd:=L1-L2 ‘ //local label "c4 is assigned the
//absolute difference between
//label L1 and L2

cS:= <<4>>%1020 //internal label c5 is assigned the
//long value %04001020

Floating Point Constants

An internal or local label (but not a global label) can be
assigned the wvalue of a 32, 64, or 8@-bit floating point
constant. The floating point constant can be a constant
expression or floating point number preceded by a floating
point type conversion unary operator as described in Section
2. Floating point constants can only replace floating point
numbers.

L3:= “F 3 //internal label L3 is assigned
//the extended floating point
//representation of 3.

glbl:= "FS 3.5 //internal label glbl is assigned
//the single floating point
//representation of 3.5.

~“loc2:= “FD 2.23E7 //local label ~loc2 is assigned
//the double floating point
//representation of 2.23E7.

3-7 Zilog 3-7
19/14/83

AS Zilog AS

Relocatable Expressions and Symbols

An internal, global, or local 1label can be assigned the
value of a relocatable expression. ‘

cl:= .+2 //internal label cl is assigned
//the value of the current
//location counter plus 2.

g3::= L47-%30 //9lobal label g3 is assigned
//the address of label L47-%34.

“dum:= 6@+start //local label “dum is assigned

//the value 60 plus the address
//0f label start.

NOTE
If assembled in segmented mode, ".", P"L47", and
"start™ are full segmented addresses.

Location Counter Control

The location counter symbol "." can be assigned the value of
a constant expression, a relocatable expression, or a loca-
tion counter relative expression.

L=.+10 //the location counter is increased
//by 10
© . =20 //the location counter is assigned

//the value 20

e=.=(345) //the location counter is decreased
//by 8
.= L2 + 10 //the location counter is set to

//18 bytes beyond the symbol L2

3-8 Zilog 3-8
18/14/83

AS Zilog AS

Keyword Redefinition

A local or internal label, but not a global 1label, can be
associated with a keyword for purposes of keyword redefini-
tion. Keyword redefinition gives the label all the attri-
butes of the keyword being assigned to it.

location:= . //the internal label location
//is synonymous with "."

sdefault:= .psec //the internal label sdefault
//is synonymous with .psec

“wval:= .word //the local label ~“wval is
//synonymous with .word

“pl:=R0O //the local label “pl is
//now synonymous with the
//register RO

3.4.3. Data Declarator

A data declaration statement allocates and initializes
storage. Such a statement consists of a data declaration
directive preceded by a label (optional) and followed by a
series of constant and relocatable expressions.

The nine data declaration directives are:

.byte
.word
.long
.quad
.extend
.addr
.blkb
.blkw
.blkl

3-9 Zilog 3-9
10/14/83

AS Zilog AS

.byte (<number> '('<expression>')'|<expression>| ""'string'"")*

Allocates storage and initializes it with the specified byte
value(s) which <can be a series of constant and relocatable
expressions or an ascii string. Number is the repetition
factor. When a number is specified, the expression must be
enclosed in parentheses; strings are enclosed in double
quotes:

name:.byte "Babe Ruth" //allocates storage for ascii
//representation of named string

place:.byte "Anytown"\ //Continues a long string onto
"Ugsa" //the next line

L4::.byte 3, "joe" //allocates four bytes with initial
//value three and ascii string joe

.word (<number)> '('<expression>’)'|<expression>)*

Allocates storage and initializes it with the specified word
value(s) which can be a series of constant and relocatable
expressions. Number is the repetition factor. When a number
is specified, the expression must be enclosed in
parentheses.

count:.word %20 //allocates a word with initial
//value %20

L2:.word 28, 3+5, 5 //allocates three words with initial
//values 20,8, and 5

.long (<number> '('<expression>')'|<expression>)*

Allocates storage and initializes it with the specified long
value(s) which <can be a series of constant and relocatable
expressions. Number is the repetition factor. When a number
is specified, expression must be enclosed in parentheses.

.long 18 (%ABCDABCD) //allocates 19 long values
//with initial value $ABCDABCD

3-10 Zilog 3-10
16/14/83

AS Zilog AS

.quad (<number> '(‘<expression>')'|<expression>)*

Reserves 64 bits of storage. Only double precision floating
point numbers fill the allocated storage completely. If the
value does not fill the allocated storage completely, no
sign extension is performed. Number is the repetition fac-
tor. When a number is specified, the expression must be
enclosed in parentheses.

.quad %FFFFFFFF //initializes the lower 32 bits
//0f the quad with %FFFFFFFF

.quad "FS3.5 //initializes the lower 32 bits
//0f the quad with the floating
//point value 3.5

.quad "FD3.4 //initializes entire quad with
//double floating point number 3.4

.extend (<number> ' ('<expression>')'|<expression>)*

Allocates 80 Dbits of storage. Only extended precision
floating point numbers £fill the allocated storage com-
pletely. If the value does not fill the allocated storage
completely, no sign extension is performed. Number is the
repetition factor. When a number is specified, the expres-
sion must be enclosed in parentheses.

.extend 1@ ("Fl.234E5) //allocates 1@ extended floating
//point numbers with the value
//1.234E5

.addr (<number> '('<expression>')'|<expression>)*

When assembling in non-segmented mode, allocates storage and
initializes it with the specified 16-bit value which can be
a series of constant and relocatable expressions. Number is
a repetition factor. When a number is used, expression must
be enclosed in parentheses.

When assembling in segmented mode, allocates storage and
initializes it with a 32-bit value.

.addr L2 //allocates two (non-segmented) or
//four (segmented) bytes for
//address L2

3-11 Zilog 3-11
10/14/83

AS Zilog AS

.blkb <expression>

Allocates storage in bytes. The number of bytes is speci-
fied by the expression. No initialization occurs.

.blkb 20 //allocates storage for 20 bytes

.blkw <expression>

Allocates storage in words. The number of words is speci-
fied by the expression. No initialization occurs.

.blkw (3+5) //allocates storage for 8 words

.blkl <expression>

Allocates storage in long words. The number of 1long words
is specified by the expression. No initialization occurs.

cl:= 29 //defines constant
.blkl (2*cl) //allocates storage
//foxr 40 long words

Commas are required in initializer lists; consider this data
declarator:

.byte 2 -3

It has one value, 2-3. 1If two values are to be initialized,
use a comma:

.byte 2, -3

3.4.4. Instructions

An instruction is the assembly language mnemonic describing
a specific action to be taken. Instructions comprising the
Z8000 instruction set are described in the Z8§000 CPU Techni-
cal Manual. The floating point instruction set is described
in the Floating Point Emulator Package User's Manual.

3.4.5. Pseudo Instructions

The majority of code in the assembly language program will
normally be assembler directives, data declarators, direct
assignment statements, the assembly language instructions

3-12 Zilog 3-12
10/14/83

AS Zilog AS

described in the 78000 CPU Technical Manual, and the float-
ing point instructions described in the Floating Point Emu-

lator Package User's Manual.

The System 8000 is capable of performing Jjump and call
optimization. When the assembler encounters the pseudo jump
and call instructions (JPR and CALLR), it determines the
range of the jump or call and produces the relative (short)
form of the instruction (JR or CALR) wherever possible. If
it cannot produce the relative form of the instruction, it
produces the absolute (long) form of the instruction (JP or
CALL) .

Jump Optimization

Jump optimizatioﬁ is explicitly provided to the programmer
via a JPR control instruction with the following form:

JPR [cc] ',' <Jjpr_expr>

where:
cc is any condition code that can be used with a JP

JR instruction
<jpr_expr> => <label> [('+']| '-') <const_expr>]

where:
<label> is an internal, global, or local 1label.
<const_expr> is a constant expression

A JPR (<jpr_expr>) expression is a relocatable expression
containing exactly one relocatable value (<label>). The
destination of a JPR must be a program 1label with an
optional constant added to or subtracted from it. However,
one particular form of <label> + <const_expr> cannot be
optimized. This form is ©best explained by the following
example:

Ll: JPR L2-300

L3: JPR L99

L2:
If L2-L1 is less than 300 bytes, the JPR at L1 is actually a
backward jump. The destination -actually becomes further
3-13 Zilog 3-13

10/14/83

or

AS Zilog AS

away if the JPR at L3 is optimized. This case 1is very
expensive to handle and is rare enough not to be optimized.

Certain JPR and CALLR instructions cannot be optimized to a
short (relative) instruction. The following types of state-
ments cannot be optimized:

1. A JPR or CALLR instruction whose target is not in the
same section.

2. A JPR or CALLR instruction whose target is not 1in the
same module (external).

During the course of assembly, it is possible to encounter a
statement that cannot be assembled unless jump optimization
has occured. If jump optimization is performed before the
target 1label for a particular jump is found, the jump is
made long. The following conditions cause jump optimization
to occur before the end of the first pass of the assembler.

1. Location counter direct assignment (as in .=.+20)

2. A constant expression that contains the difference
between two relocatable values (for example, L1-L2)
when there is an optimizable jump between the two relo-
catable values.

Call Optimization

The assembler also provides call optimization wvia a CALLR
control instruction that will produce a relative call when-
éver possible. The call control instruction has the follow-
ing form:

CALLR <jpr_expr>

where <jpr_expr> is a simple, relocatable expression, as
described previously. '

Calls are optimized under the same conditions that cause
jump optimization.

3.5. Operands

Operands supply the information an instruction needs to
carry out 1its action. Depending on the instruction speci-
fied, this field can have zero or more operands. An operand
can be:

3-14 Zilog 3-14
10/14/83

AS Zilog AS

& Data to be processed (immediate data).

® The address of a location from which data is to Dbe
taken (source address).

® The address of a location where data is to be put (des-
tination address).

® The address of a program location to which program con-
trol is to be passed.

& A condition ccde, used to direct the flow of program
control.

Although there are a number of valid combinations of
operands, there 1is one Dbasic convention to remember: the
destination operand always precedes the source operand.
Refer to the specific instructions in the Z8000¢ CPU Techni-
cal Manual for valid operand combinations.

With the exception of immediate data and condition codes
(described in the 2Z80@@ CPU Technical Manual and Floating
Point Evaluator Package User's Manual), all operands are
expressed as addresses: register, memory, and I/0 addresses.
For example, an operand may name a register whose contents
are added to the contents df another register to form the
address of the memory location containing the source data
- (based indexed addressing).

Addressing modes and operators are the subject of Section 4.

3.6. Comments

Comments are used to document program code as a guide to
program logic and also to simplify present or future program
debugging. Two types of comments are available: the end-
of-line comment and the multi-line comment. The end-of-line
comment begins with the characters "//" and ends at the next
carriage return.

LD R@, R1 //This is an end-of-line comment
The multi-line comment begins with the characters "/*", ends
with the characters "*/" and spans one or more lines in
between.
LD R@, R1 /* This is an example of a
** multi-line comment
*/
3-15 Zilog 3-15

10/14/83

AS Zilog AS

SECTION 4
ADDRESS ING MODES AND OPERATORS

4.1. Introduction

This section describes the System 8000 addressing modes and
operators and contains examples of assembler instructions
that use them. ‘

4.2. Addressing Modes
Data can be specified by eignht distinct addressing modes:

Immediate Data
Register

Indirect Register
Direct Address
Indexed Address
Relative Address
Based Address

Based Indexed Address

[3 N 2N S X N X 4

Special characters are used in operands to identify certain
of these address modes. The characters are:

o "R" preceding a word register number;

) "RH" or "RL" preceding a byte register number;

["RR" preceding a register pair number;

° "RQ" preceding a register quadruple number;

o "@" preceding an indirect-register reference;

o "4" preceding immediate data;

o "()" used to enclose the displacement part of an

indexed, based, or based indexed address;

o ".," signifying the current program counter location,
usually used in relative addressing.

The use of these characters is described in the following
sections.

4-1 Zilog 4-1
10/14/83

AS Zilog AS

Not every address mode can be used by every instruction.
The individual instruction descriptions in the Z8000 CPU
Technical Manual tell which address modes can be used for
each instruction.

4.2.1. Immediate Data

Although considered an addressing mode for purposes of this
discussion, Immediate Data 1is the only mode that does not
indicate a register or memory address.

The operand value used by the instruction in Immediate Data
addressing mode 1is the value supplied in the operand field
itself.

Immediate data is preceded by the special character "#" and
can be either a constant expression (including character
constants and symbols representing constants) or a relocat-
able expression. Immediate data expressions are evaluated
using 32-bit arithmetic. Depending on the instruction being
used, the value represented by the rightmost 4, 8, 16, or 32
bits is actually used. An error message is generated for
values that overflow the valid range for the instruction.

LDB RHO, #100 //Load decimal 106 into byte
// register RHO

LDL RRO, #%8000 * REP__COUNT
//Load the value resulting from
//the multiplication of hexadecimal
//8080 and the value of constant
// REP_COUNT into register pair RR@

If a variable name or address expression is prefixed by "#",
the value used is the address represented by the variable or
the result of the expression evaluation, not the contents of
the corresponding data location. In non-segmented mode, all
address expressions result in a 1l6-bit value.

For segmented addresses, the assembler automatically creates
the proper format for a long offset address which includes
the segment number and the long offset in a 32-bit value. It
is recommended that symbolic names be used wherever possible
since the corresponding segment number and offset for the
symbolic name will be managed automatically by the assembler
and can be assigned values later when the module is linked
or loaded for execution.

4-2 Zilog 4-2
16/14/83

AS Zilog AS

For those cases where a specific segment 1is desired, the
following notation can be used (the segment designator is
enclosed in double angle brackets):

<<segment>>offset

where "segment" is a constant expression that evaluates to a
7-bit wvalue, and "offset" is a constant expression that
evaluates to a 16-bit value. This notation is expanded into
a long offset address by the assembler.

4.2.2. Register Address
In Register addressing mode, the operand value is the con-

tent of the specified general-purpose register. There are
four different sizes of registers on the Z8000:

* Word register (16 bits),

") Byte register (8 bits),

- Register pair (32 bits), and
] Register quadruple (64 bits).

A word register is indicated by an "R" followed by a number
from @ to 15 (decimal) corresponding to the 16 registers of
the machine. Either the high or low byte of the first eight
registers can be accessed by using the byte register con-
structs "RH" or "RL" followed by a number from @ to 7. Any
pair of word registers can be accessed as a register pair by
using "RR" followed by an even number between @ and 14.
Register gquadruples are equivalent to four consecutive word
registers and are accessed by the notation "RQ" followed by
one of the numbers @, 4, 8, or 12.

If an odd register number is given with a register pair
designator, or a number other than @, 4, 8, or 12 is given
for a register quadruple, an assembly error will result.

In general, the size of a register used in an operation
depends on the particular instruction. Byte instructions,
which end with the suffix "B" are used with byte registers.
Word registers are used with word instructions, which have
no special suffix. Register pairs are used with 1long word
instructions, which end with the suffix "L". Register qua-
druples are used only with three instructions (DIVL, EXTSL
and MULTL) which use a 64-bit value. An assembly error will
occur 1f the size of a register does not correspond
correctly with the particular instruction.

4-3 Zilog 4-3
10/14/83

AS Zilog AS

LD R5, #%3FFF //Load register 5 with the
//hexadecimal value 3FFF

LDB RH3, #%F3 //Load the high order byte of
//word register 3 with the
//hexadecimal value F3

ADDL RR2, RR4 //Add the register pairs 2-3 and
//4-5 and store the result in 2-3

MULTL RQ8, RR12 //Multiply the value in register
//pair 10-11 (low order 32 bits of
//register quadruple 8-9-10-11) by
//the value in register pair 12-13
//and store the result in register
//quadruple 8-9-1¢-11

4.2.3. Indirect Register Address

In Indirect Register addressing mode, the operand value is
the content of the location whose address is contained in
the specified register. A word register is used to hold the
address in non-segmented mode, whereas a register pair must
be used in segmented mode. Any general-purpose word regis-
ter (or register pair in segmented mode) can be used except
RO or RRH.

Indirect Register addressing mode is also used with the 1I/0
instructions and always indicates a 16-bit I/0 address. Any
general-purpose word register can be used except RO.

An Indirect Register address is specified by a "commercial
at" symbol (@) followed by either a word register or a
register pair designator. For Indirect Register addressing
mode, a word register is specified by an "R" followed by a
number from 1 to 15, and a register pair is specified by a
"RR" followed by an even number from 2 to 14.

JP @Rr2 //Pass control (jump) to the
//program memory location
//addressed by register 2
// (non-segmented mode)

LD @R3, R2 //Load contents of register
//2 into location addressed by
//register 3 (non-segmented mode)

4-4 Zilog 4-4
16/14/83

AS Zilog AS

LD @QRR2, #30 //Load immediate decimal value 30

//into location addressed by regis-

//ter pair 2-3 (segmented mode)

state2: CALL @R3 //Call indirect through register 3
// (non-segmented mode)

4.2.4. Direct Address

The operand value used by the instruction in Direct address-
ing mode 1is the content of the location specified by the
address in the instruction. A direct address can be speci-
fied as a symbolic name of a memory or I/O location, or an
expression that evaluates to an address. For non-segmented
mode and for all 1I/0 addresses, the address is a 1l6-bit
value. In segmented mode, the memory address is either a
16-bit value (short offset) or a 32-bit value (long offset).
All assembly-time address expressions are evaluated using
32-bit arithmetic, with only the rightmost 16 bits of the
result used for non-segmented addresses.

LD R1l9, datum //Load the contents of the
//location addressed by datum
//into register 10

LD struct+8, R10 //Load the contents of register
//19 into the location addressed
//by adding 8 to struct

JP C, %2F00 //Jump to location %2F@@ if the
//carry flag is set (non-segmented
//mode)

INB RHO, 77 //Input the contents of the I1/0

//location addressed by decimal
//77 into RH@

L2:: INC count, #2 //Increment instruction with
//direct address "count" and
//immediate value 2

For segmented addresses, the assembler automatically creates
the proper format which includes the segment number and the
offset. It is recommended that symbolic names be used wher-
ever possible, since the corresponding segment number and
offset for the symbolic name will be automatically managed
by the assembler and can be assigned values later when the
module is linked or loaded for execution.

4-5 Zilog 4-5
16/14/83

AS Zilog AS

For those cases where a specific segment 1is desired, the
following notation can be used (the segment designator is
enclosed in double angle brackets):

<<segment>>offset

where "segment" is a constant expression that evaluates to a
7-bit value, and "offset" 1is a constant expression that
evaluates to a 16-bit value. This notation is expanded into
a long offset address by the assembler.

To force a short offset address, a short offset operator is
available which can be used with a direct address in seg-
mented mode only. The short offset operator is a pair of
vertical bars "|" which surround the address. For a valid
address, the offset must be in the range ¢ to 255; the final
address includes the segment number and the short offset in
a 1l6-bit wvalue.

NOTE
Since short offset addresses can be relocatable,

they are checked for validity at link time.

Examples of the short offset address operator:

.Seg //enter segmented mode
Ll:.word %ABAB //declare data
.code //enter code area
LD RO, |L1| //load register @ from
//short address L1
CP RO, %0D //compare with %0D
JP EQ, |L2+ 19] //jump to short address
//L2 + 19
ADD RO, R2 //add RO to R2
L2: RET //return

4.2.5. Indexed Address

An Indexed address consists of a memory address displaced by
the contents of a designated word register (the index).
This displacement is added to the memory address and the
resulting address points to the location whose contents are
used by the instruction. In non-segmented mode, the memory
address is specified as an expression that evaluates to a
16-bit value. In segmented mode, the memory address is

4-6 Zilog 4-6
10/14/83

AS Zilog AS

specified as an expression that evaluates to either a 16-bit
value (short offset format) or a 32-bit value (long offset
format) . All assembly-time address expressions are
evaluated using 32-bit arithmetic, with only the rightmost
16 bits of the result used for non-segmented addresses.
This address is followed by the index, a word register
designator enclosed in parentheses. For Indexed addressing,
a word register is specified by an "R" followed by a number
from 1 to 15. Any general-purpose word register can be used
except RU.

LD R1l@, table(R3) //Load the contents of the
//location addressed by table
//plus the contents of reg-
//ister 3 into register 10

LD 240+38(R3), R10O //Load the contents of reg-
//ister 18 into the location
//addressed by 278 plus the
//contents of register 3
// (non-segmented mode)

ADD R2, tab(R4) //Load register 2 with
//contents of register 2
//added to contents of the
//address "tab" indexed
//by the value in register 4

For segmented addresses, the assembler automatically creates
the proper format for the memory address, which includes the
segment number and the offset, As with Direct addressing,
symbolic names should be wused wherever possible so that
values can be assigned later when the module 1is 1linked or
loaded for execution.

For those cases where a specific segment is desired, the
following notation can be used (the segment designator is
enclosed in double angle brackets):

<<segment>>offset

where "segment" is a constant expression that evaluates to a
7-bit wvalue, and "offset" is a constant expression that
evaluates to a 16-bit value. This notation is expanded into
a long offset address by the assembler.

4-7 Zilog 4-7
19/14/83

AS Zilog AS

4.2.6. Relative Address

Relative address mode is implied by its instruction. It is
used by the Call Relative (CALR), Decrement and Jump If Not
Zero (DJNZ), Jump Relative (JR), Load Address Relative
(LDAR), and Load Relative (LDR) instructions and is the only
mode available to these instructions. The operand, in this
case, represents a displacement that is added to the con-
tents of the program counter to form the destination address
that is relative to the current instruction. The original
content of the program counter is taken to be the address of
the instruction byte following the instruction. The size
and range of the displacement depends on the particular
instruction, and 1is described with each instruction in the
28008 CPU Technical Manual.

The displacement value can be expressed in two ways. In the
first case, the programmer provides a specific displacement
in the form ".+n" where n is a constant expression in the
range appropriate for the particular instruction and "."
represents the contents of the program counter at the start
of the instruction. The assembler automatically subtracts
the size of the relative instruction from the constant
expression to derive the displacement.

JR 0OV, .+K //Add value of constant K to program
//counter and jump to new location if
//overflow has occurred!

JR .+4 //Jump relative to program counter "."
//plus 4

In the second method, the assembler calculates the displace-
ment automatically. The programmer simply specifies an
expression that evaluates to a number or a program label as
in Direct Addressing. The address specified by the operand
must be in the valid range for the instruction, and the
assembler automatically subtracts the value of the address
of the following instruction to derive the actual displace-
ment.

DJINZ R5, loop //Decrement register 5 and jump to
//loop if the result is not zero

LDR R1l@, data //Load the contents of the location
//addressed by data into register 10

4-8 Zilog 4-8
10/14/83

AS Zilog AS

4.2.7. Based Address

A based address consists of a register that contains the
base and a 16-bit displacement. The displacement is added
to the base and the resulting address indicates the location
whose contents are used by the instruction.

In non-segmented mode, the based address is held in a word
register that 1is specified by an "R" followed by a number
from 1 to 15. Any general-purpose word register can be used
except RU. The displacement is specified as an expression
that evaluates to a 16-bit value, preceded by a "#" symbol
and enclosed in parentheses.

In segmented mode, the segmented based address is held in a
register pair that 1is specified by an "RR" followed by an
even number from 2 to 14. Any general-purpose register pair
can be used except RRO. The displacement is specified as an
expression that evaluates to a 16-bit value, preceded by a
"#" symbol and enclosed in parentheses.

LDL RR2, R1(#255) //Load into register pair 2-3 the
//long word value found in the
//location resulting from adding
//255 to the address in register
//1 (non-segmented mode)

LD RR4 (#%4000), R2 //Load register 2 into the loca-
//tion addressed by adding %4000
//to the segmented address found
//in register pair 4-5
// (segmented mode)

LD RO, R2(#14) //Load register @ from 1@ bytes
//past the base address in
//register 2 (non-segmented mode)

4.2.8. Based Indexed Address

Based Indexed addressing is similar to Based addressing
except that the displacement (index) as well as the base is
held in a register. The contents of the registers are added
together to determine the address used in the instruction.

In non-segmented mode, the based address is held in a word
register that 1is specified by an "R" followed by a number
from 1 to 15. The index is held in a word register speci-
fied in a similar manner and enclosed in parentheses. Any
general-purpose word registers can be used for either the
base or index except RO.

4-9 zilog 4-9
10/14/83

AS ‘ Zilog AS

In segmented mode, the segmented based address is held in a
register pair that is specified by an "RR" followed by an
even number from 2 to 14. Any general-purpose register pair
can be used except RRf. The index is held in a word regis-
ter that is specified by an "R" followed by a number from 1
to 15. BAny general-purpose word register can be used except
RO.

LD R3, R8(R15) //Load the value at the location
//addressed by adding the address
//in R8 to the displacement in
//R15 into register 3 (nonseg-
//mented mode)

LDB RR14 (R4), RH2 //Load register RH2 into the
//location addressed by the
//segmented address in RR14
//indexed by the value in R4
// (segmented mode)

init: LD R®, R2(R4) //Load into register @
//the base address
//in register 2 indexed
//by the value in register 4
// (non-segmented mode)

4.3. Segmented Addressing Mode Operators

Two special operators, summarized in Table 4-1, ease the
manipulation of segmented addresses. While addresses can be
treated as a single value with a symbolic name assigned by
the programmer, occasionally it is useful to determine the
segment number or offset associated with a symbolic name.

The ""S" unary operator is applied to an address expression
that contains a symbolic name associated with an address,
and returns a 1l6-bit value. This value is the 7-bit segment
number associated with the expression and a one bit in the
most significant bit of the high-order byte, and all zero
bits in the low-order byte. '

The ""S" operator can be used in segmented mode only.
The ""0" unary operator is applied to an address expression

and returns a 1l6-bit value that is the offset value associ-
ated with the expression.

4-10 Zilog 4-19
16/14/83

AS Zilog AS

The offset operator can be used in either segmented or non-
segmented mode, but has no effect in non-segmented mode.

Because of the special properties of these address opera-
tors, no other operators can be applied to a subexpression
containing a segment oxr offset operator, although other
operators can be wused within the subexpression to which
either is applied.

.seg //segmented mode
Ll:.word $%ABCD //declare data
.code //enter the code area
LD R4, #°S L1 //load the segment value
LD R5, #70 L1 //load the offset value
LD R3, @RR4 //load indirect through RR4
.nonseg //non-segmented mode
L2:.word %BBCC //declare data
.code //enter the code area
LD R5, #70 L1 //offset operator has
LD R5, #L1 //no effect; the first

//instruction is
//equivalent to second
//instruction

Table 4-1 Segmented Addressing Mode Operators

Operator Function
°s Access segment portion of address
~0 Access offset portion of address

4.4. Addressing Mode Directives

Two directives allow the programmer to determine whether the
assembly process takes place in segmented or non-segmented
mode.

.Seg

Directs the assembler to begin assembling in segmented mode.
By default, the assembler assembles in non-segmented mode.
Any program that contains a .seg directive is assumed to be
a segmented program.

4-11 zilog 4-11
10/14/83

AS

.nonseg

Directs the assembler
segmented mode.

4-12

to

Zilog

return

Zilog
16/14/83

to

assembling

in

AS

non-

AS zilog AS

SECTION 5
PROGRAM STRUCTURE

5.1. Introduction

The structuring of programs and the concept of relocatabil-
ity are the subject of Section 5.

5.2. Modules

An assembly language program consists of one or more
separately-coded and assembled modules (also referred to as
files.) These modules are combined into an executable pro-
gram using the module linkage and relocation facilities of
the operating system.

Modules are made up of assembly language statements that
define data or perform some action, as described in Section
3.

The assembler produces relocatable object modules. This
relocatability feature of the assembler frees the programmer
from memory management concerns during program development.
Relocatability is supported by several directives, discussed
below, that determine where data and action statements are
loaded into memory.

5.3. Sections and Areas

In addition to the logical structuring provided by modules,
it is ©possible to divide a program into sections which can
be mapped into various areas of memory when the module is
linked or loaded for execution. For example, the programmer
may choose to group a set of data structures and statements
that manipulate them together in the same module. But it
may also be desirable to physically separate the object code
for the statements from the data in a system where read-only
memory is used for the statements and read/write memory is
used for the data.

Each section might be allocated to a different address
space. In segmented mode, each section might be mapped into
a different segment, or several sections from different
modules might be combined into the same segment. A single
module may contain several sections, each of which will be
allocated a different area in memory. Alternatively, the

5-1 ' Zilog 5-1
16/14/83

AS Zilog AS

portions of a single section may be spread through several
modules and the portions automatically combined into a sin-
gle area by the linker.

There is a one-to-one mapping between sections and segments
in segmented mode. In non-segmented mode, the capability for
such one-to-one mapping does not exist, although sections
allow portions of a user's program to be grouped logically
as they do segmented mode.

Currently on the System 8000, the code, data, and bss areas
of a module can be manipulated separately. If all of the
data in one module is contained in one section, it is possi-
ble to manipulate that section at link time. The capability
to manipulate sections by name, whatever their contents, 1is
not yet implemented.

The assembler allows a program to be divided into up to
three types of sections: program section, absolute section
and common section. Each section can contain up to three
areas: a code area, a data area, and a bss (uninitialized
data area). The code and data areas can contain any legal
assembler statement, but the bss area can contain uninitial-
ized data only. In addition, the code area is 1limited to
64K; the the data and bss areas combined cannot exceed 64K.

There are three area assembler directives,

AREA ASSEMBLER DIRECTIVES

.code

Directs the assembler to change to the code area of the
current section.

.data

Directs the assembler to change to the data area of the
current section.

.bss

Directs the assembler to change to the wuninitialized data
area of the current section.

.code //enter the code area of current
//section

5-2 Zilog ' 5-2
16/14/83

AS Zilog AS

.data //en;er the data area of current
//section

.bss //enter the bss area of current
//section

5.3.1. Program Sections

A program section contains any 1legal assembly language
statement. Each module must have one unnamed program section
but can have additional named program sections. A section
name consists of a valid identifier. By default, a module
is in the data area of the unnamed program section at the
beginning of assembly. The assembler directive .psec both
indicates the beginning of a program section and allows
changing among program sections.

.psec [<section name>]

Indicates the beginning of a program section or directs the
assembler to change to the specified program section, or to
the default program section if section is not specified.

Whenever a new program section is entered, the module is in
the data area of that section, by default. Upon return to a
section, the module is in the the last previously entered
area of that section. An example of the use of the .psec
directive along with the area directives follows:

.psec arithmetic //enter the data area (default) of
//the program section named
//arithmetic

count: .word @ //declare a word named count

//with initial value @

.code //enter code area of program
//section arithmetic

LD R@, count //1load the count into register @
INC RO //increment the count by 1
LD store, RO //load the new count into bss
//symbol store
.bss //enter the bss area
5-3 Zilog 5-3

19/14/83

AS Zilog AS

store: .word //word value store

.psec //return to the unnamed (default)
//program section. The program
//returns to the last previously entered
//area of the default program section

5.3.2. Absolute Sections

An absolute section is one whose memory image reflects the
absolute location of the section in memory. Since there can
be only one absolute section per module, it has no name.

Absolute Section Directive
.asec

Directs the assembler to change to the absolute section of
the current module. The module is in the data area of the
section, by default. Examples of its use follow:

.asec //enter the absolute section
.extern procl, proc2\ //define external symbols
proc3,proc4

.=10
jumptab::.addr procl\ //absolute location 10
proc2, proc3\ //define jump table
proc4\ //containing addresses
//0of external routines

5.3.3. Common Sections

Common sections allow reference to sections of the same name
in several different modules. At link time, such sections
are merged into one section using the size o0of the largest
section for the merged one. A common sSection name consists
of a valid identifier.

Common Section Directive

.csec <section_name>

Indicates the beginning of a common section or directs the
assembler to change to the specified common section. The

5-4 Zilog 5-4
10/14/83

AS Zilog AS

following example shows the use of common sections in three
different modules:

Module 1, named filel.s, contains:

.Csec mycommons
.F.+10
Ll::.word %$FEFE //a word at location 10

Module 2, named file2.s, contains:

.CsSec mycommons
.=.+20
L2::.word %$ABAB //a word at location 20

Module 3, named file3.s, contains:

.CSec mycommons
I=. +lg
L3::.woxrd 3CDCD //a word at location 10

When these three files are linked with the command
1ld -o final filel.o file2.0 file3.o

the resulting common section is equivalent to a single
module that contains the following code:

.Csec mycommons
Ll::L3:: .word 3CDCD //a word at location 19
L2::.word %ABAB //a word at location 20

NOTE

The value at location 19 in the 1last file takes
precedence owver the value at location 18 in the
first file because of the order in which the files
were placed in the linker command line.

5.4. Local Blocks

Local blocks allow further structuring of assembly language
programs. Local blocks are enclosed within the the symbols
"{" and "}". They can be nested. The symbols "{" and "}"
must be the only characters on the line.

5-5 Zilog 5-5
10/14/83

AS Zilog AS

Locals labels, described in Section 3, can be used within
local blocks only. The scope of any local symbol is the
nearest enclosing local block delimiter. For example:

{ //start local block
"Ll:=20 //declare local constant
14 r9, #7L1 //reference local constant
“L2:14 r2, #%10 //declare local label
14 @, #7L2 //reference the local label
{ //start nested local block
“Ll:=190 //declare local constant
1d x9, #°L1 //reference “L1 equals 10
} //end nested local block
1d ¥r@, #°L1l //reference "L1 equals 20
} //end local block

5.5. Location Counter

The assembler tracks the location of the current statement
with a 1location counter, just as an executing program does
with its program counter. There is a location counter asso-
ciated with each of the three possible areas of a section:
data, code and bss. The counter value represents a 16-bit
offset within the current area. The offset can be an abso-
lute value if the area falls within an absolute section or
it can be a relocatable value if the area falls within a
program or common section. If it is an absolute value, the
location counter reflects the absolute memory location of
the current statement. If it is relocatable value, the
location counter reflects the relocatable offset of the
statement. The relocatable offset can be adjusted at 1link
time, depending on whera the section is finally allocated.

The location counter symbol "." can be used in any expres-
sion, and represents the address of the first byte of the
current instruction or directive.

5.5.1. Location Counter Control

Two assembler directives enable control of the location
counter:

5-6 Zilog 5-6
10/14/83

AS Zilog AS

- even

Increases the location counter by one if it holds an odd
address. Has no effect if the location counter holds an
even address.

.odd

Increases the location counter by one if it holds an even
address. Has no effect if the location counter holds an odd
address.

5.5.2. Line Number Directive

An additional directive is provided by the assembler:

.1ine <number> ['"'(filename)'""']

Sets the current line number to the number specified. An
optional filename can be provided to indicate the name of
the file (module) being processed. In conjunction with the

System 8000@0's include facility, this directive can be used
for error reporting.

5-7 Zilog 5-7
19/14/83

AS Zilog AS

APP#NDIX A
SUMMARY OF ASSEMBLER DIRECTIVES

A.l. Introduction

This appendix summarizes the assembler directives. The
grammar rules that apply to their use are described in Sec-
tion 3.

.seg

Directs the assembler to begin assembling in segmented mode.
By default, the assembler assembles in non-segmented mode.
Any program that contains a .seg directive is assumed to be
a segmented program.

.nonseg

Directs the assembler to return to assembling in non-
segmented mode.

- even

Increases the location counter by one if it holds an odd
address. Has no effect if the location counter holds an
even address.

.odd

Increases the location counter by one if it holds an even
address. Has no effect if the location counter holds an odd
address.

.line <number> ['"'(filename)'""']

Sets the current line number to the number specified. An
optional filename <can be provided to indicate the name of
the file (module) being processed. 1In conjunction with the
System 8000@'s include facility, this directive can be used
for error reporting.

A-1 Zilog A-1
10/14/83

AS Zilog aAS

.comm <{expression> <label>+

Defines a label as a common label.

.extern <label>+

Defines a label as an external label.

.code

Directs the assembler to enter the code area of the currect
section.

.data

Directs the assembler to enter the data area of the current
section.

.bss

Directs the assembler to enter the uninitialized data area’
of the current section.

.psec [<section_name)>]

Directs the assembler to change to the specified section.

.csec <section_name>

Directs the assembler to change to the specified common sec-
tion.

.asec
Directs the assembler to change to the the absolute section.
.byte (<number> '('<expression>')'|<expressiom>| ""Istring'"")*

Allocates storage and initializes it with the specified byte
value(s) which can be a series of constant and relocatable
expressions or an ascii string. Number is the repetition
factor. When a number is specified, the expression must be
enclosed in parentheses; strings are enclosed in double
gquotes.

A-2 Zilog A-2
19/14/83

AS Zilog aAS

-word (<number> '('<expression>')'|<expression>)*

Allocates storage and initializes it with the specified word
value(s) which can be a series of constant and relocatable
expressions. Number is the repetition factor. When a number
is specified, the expression must be enclosed in
parentheses.

.long (<number> '('<expression>')'|<expression>)*

Allocates storage and initializes it with the specified long
value(s) which can be a series of constant and relocatable
expressions. Number is the repetition factor. When a number
is specified, expression must be enclosed in parentheses.

.quad (<number> '('<expression>')'|<expression>)*

Reserves 64 bits of storage. Only double precision floating
point numbers fill the allocated storage completely. If the
value does not fill the allocated storage completely, no
sign extension is performed. Number is the repetition fac-
tor. When a number is specified, the expression must be
enclosed in parentheses.

.extend (<number> '('<expression>')'|<expression>)*

Reserves 80 bits of storage. Only extended precision float-
ing point numbers fill the allocated storage completely. If
the value does not fill the allocated storage completely, no
sign extension is performed. Number is the repetition fac-
tor. When a number is specified, the expression must be
enclosed in parentheses.

.addr (<number> '('<expression>')'|<expression>)*

When assembling in non-segmented mode, allocates storage and
initializes it with the specified 16-bit value which can be
a series of constant and relocatable expressions. Number is
a repetition factor. When number is used, expression must
be enclosed in parentheses.

When assembling in segmented mode, allocates storage and
initializes it with a 32-bit value.

A-3 Zilog A-3
190/14/83 .

AS Zilog AS

.blkb <expression>

Allocates storage in bytes. The number of bytes is speci-
fied by the expression. No initialization occurs.

.blkw <expression>

Allocates storage in words. The number of words 1is speci-
fied by the expression. No initialization occurs.

.blkl <expression>

Allocates storage in long words. The number of 1long words
is specified by the expression. No initialization occurs.

A-4 Zilog A-4
16/14/83

AS

KEYWORDS

Certain special symbols are reserved for the

Zilog

APPENDIX B
KEYWORDS AND SPECIAL CHARACTERS

AS

assembler and

can not be redefined as symbols by the programmer. These
are the names of condition codes, register symbols, assembly

language instructions.

CONDITION CODES

C LE
EQ LT
GE MI
GT NC

NE
NOV
NZ
ov

PE
PL
PO
UGE

CONTROL REGISTER SYMBOLS

FCW
FLAGS
NSP

NS POFF
NS PS EG

ZN< W

PSAP

PSAPOFF
PSAPSEG
REFRESH

Flag Names

Zilog
10/14/83

UGT
ULE
ULT

AS

AFF
CMPFLG
DBL

DE

DZ
FFLAGS

Zilog

FLOATING POINT KEYWORDS

FOP1 INV OUFLG RP US ER
FOP2 INX PCI RZ WARN
FOVv IN PCZ SCON
INTFLG IX PROJ SGL
INVFLG NAN RM SYSFLG

NORM RN TRAPS

FLOATING POINT CONDITION CODES

FEQ FGU FLU
FGE FLE ENEU
FGEU FLEU FORD
FGT FLT FUN
Zilog

19/14/83

AS

AS

ADC
ADCB
ADD
ADDB
ADDL
AND
ANDB
BIT
BITB
CALL
CALR
CLR
CLRB
COM
COMB
COMFLG
CP
CPB
CPL
CPD
CPDB
CPDR
CPDRB
CPI
CPIB
CPIR
CPIRB
CPSD
CPSDB
CRSDR
CPSDRB
CPS1I
CPSIB
CPSIR
CPSIRB
DAB
DBJINZ
DEC
DECB
DI
DIV
DIVL
DJINZ

Zilog

ASSEMBLY LANGUAGE INSTRUCTIONS

EI

EX
EXB
EXTS
EXTSE
EXTSL
FABS
FABSD
FABSS
FADD

FADDD

FADDS
FCLR
FCP
FCPD
FCPF
FCPS
FCPX
FCPXD
FCPXF
FCPZ
FCPZX
FDIV
FDIVD
FDIVS
FEXM
FEXPL
FINT
FINTD
FINTS
FLD
FLDBCD
FLDCTL
FLDCTLB
FLDD
FLDIL
FLDIQ
FLDP
FLDPD
FLDPS
FLDS
FMUL
FMULD

FMULS
FNEG
FNEGD
FNEGS
FNORM
FNORMD
FNORMS
FNXM
FNXMD
FNXMS
ENXP
ENXPD
FNXPS
FREM
FRESFLAG
FRESTRAP
FSCL -
FSETFLAG
FSETMODE
FSETTRAP
FSIGQ
FSQR
FSQRD
FSQRS
FSUB
FSUBD
FSUBS
HALT

IN

INB

INC

INCB

IND

INDB
INDR
INDRB
INI

INIB
INIR
INIRB
IRET

JP

JR

zilog

19/14/83

LD
LDA
LDAR
LDB
LDCTL
LDCTLB
LDD
LDDB
LDDR
LDDRB
LDI
LDIB
LDIR
LDIRB
LDK
LDL
LDM
LDPS
LDR
LDRB
LDRL
MBIT
MREQ
MRES
MSET
MULT
MULTL
NEG
NEGB
NOP
OR
ORB
OTDR
OTDRB
OTIR
OTIRB
OUT
OUTB
OUTD
OUTDB
OUTI
OUTIB
POP

POPL
PUSH
PUSHL
RES
RESB
RESFLG
RET
RL
RLB
RLC
RLCB
RLDB
RR
RRB
RRC
RRCB
RRDB
SBC
SBCB
sC
sba
SDAB
SDAL
SDL
SDLB
SDLL
SET
SETB
SETFLG
SIN
SINB
SIND
SINDB
SINDR
S INDRB
SINI
SINIB
SINIR
SINIRB
SLA
SLAB
SLAL
SLL

aAS

SLLB
SLLL
SOTDR
SOTDRB
SOTIR
SOTIRB
souT
S0ouUTB
SOUTD
S0UTDB
SOUTI
SOUTIB
SRA
SRAB
SRAL
SRL
SRLB
SRLL
SuB
SUBB
SUBL
SWAP
TCC
TCCB
TEST
TESTB
TESTL
TRDB
TRDRB
TRIB
TRIRB
TRTDB
TRTDRB
TRTIB
TRTIRB
TSET
TSETB
XOR
XORB

AS Zilog aS

Pseudo Instructions
JPR CALLR

When defining symbols, users must also avoid the forms:

Rn where n is a number from @ to 15

RHn or RLn where n is a number from @ to 7

RRN where n is any of the even numbers from 7 to
RQnN where n is any of the numbers @, 4, 8, 12

Fn where n is a number from @ to 7

SPECIAL CHARACTERS

The list of special characters below includes delimiters and
special symbols. The difference between them is that delim-
iters have no semantic significance (for example, two tokens
can have any number of blanks separating them), whereas spe-
cial symbols do have semantic meaning (for example, # 1is
used to indicate an immediate value).

The class of delimiters includes the space (blank), tab,
line feed, carriage return, semicolon (;), and comma (,).
The comment construct enclosed in the symbols /* is also
considered a delimiter.

The special symbols and their uses are as follows:

+ Binary addition; unary plus

- Binary subtraction; unary minus

* Unsigned multiplication
/ Unsigned division

< Shift left

> Shift right

~$ Bitwise and

| Bitwise or

“x Bitwise xor

Internal label terminator

e

Global label terminator

e

B-4 Zilog B-4
10/14/83

14

AS

o0

()

//
<< >>

Zilog AS

Local label indicator

Constant and variable initialization

Nondecimal number base specifier

Immediate data specifier

Indirect address specifier

Enclose expressions selectively; enclose octal or
binary number base indicator; enclose index part
of indexed, based, and based indexed address
Location counter indicator

Begin comment

Denotes segmented address

Enclose short offset segmented address

Access segment portion of address

Access offset portion of address

Binary-coded decimal

Ones complement

Convert to floating single

Convert to floating double

Convert to floating extended

Zilog B-5
16/14/83

AS Zilog AS

APPENDIX C
ASSEMBLER ERROR MESSAGES

Appendix C describes the assembler warning and error mes-
sages.

Warnings

Errors that cause warning messages do not interfer with the
operation of the assembler, but they should be corrected
before the a.out file is executed.

Cperand too large

Value too large
A number too large for a data type or instruction field
has been used; for example, ".byte %ffff".

Syntax errors

Most syntax error messages are self explanatory; those that
are not self-explanatory are listed here.

When there is more than one syntax error per line, only the
first 1is reported. When syntax errors are detected, no
a.out file is created. Check the appropriate section of
this manual for correct syntax.

Expecting carriage return or linefeed
Extra characters (identifiers, expressions, punctuation
etc.) were found at the end of a statement. The most
common situations where this can occur are 1listed
below. :

A label is followed by something other than a statement
beginning or the ":=" operator.

An opcode is followed by something other than an
operand, or floating point rounding or infinity mode.

A ".psec" directive is followed by something other than
an identifier.

A ".byte," ".word," ".long," or ".addr" is followed by
something other than an address expression or an
address expression repeat count.

Commas are missing between operands, rounding modes,
infinity modes, address expressions in ".byte",

Cc-1 Zilog c-1
16/14/83

AS Zilog AS

".word", ".long", or ".addr" statements, identifiers in

".comm" and ".extern" statements, or Dbetween the
expression and the first identifier in a ".comm state-
ment ., "

Missing binary operators such as "+", "-",6 "%x" jp

expressions.

Addressing modes must be punctuated exactly as
explained in Section 4 of this manual. 1In certain
cases a missing left parenthesis will cause this error
message. ‘

The ".line" directive has an optional string argument
for the filename. Anything other than a string after
the line number will result in this error.

Expecting beginning of line
The first symbol in the statement is one that cannot
legally begin a statement.

Expecting beginning of program
The first symbol in the first line of the program |is
one that cannot legally begin a statement.

Semantic or Fatal errors

Only the first semantic error for a line 1is reported. An
a.out file may be created but it will be corrupt. Semantic
errors are often associated with syntax errors. Correct the
syntax errors first.

Block specifier must be constant
Expression used to specify the size of a block of
storage for a ".blkb", ".blkl", or ".blkw" statement
was relocatable.

Bss cannot be initialized
This indicates that the programmer entered the bss area
with a ".bss" directive and placed instructions or ini-
tialized data there. The ".bss" area can only contain
uninitialized storage as in ".blkb", ".blkl", ".blkw"
etc.

Invalid assignment
An attempt was made to associate a symbol name with an
external or undefined value in a ":=" direct assign-
ment.

c-2 Zilog c-2
10/14/83

AS : Zilog AS

Invalid constant
An expression that should have been constant was found
to be relocatable or external.

Invalid operand combination
The operand combination used with a specific instruc-
tion was invalid. Refer to the 78000 CPU Technical
Manual or Floating Point Emulator User's Manual entry
for the specific instruction to f£ind the valid operand
combinations.

Invalid section name ,
A ".psec", ".csec", or ".asec" directive was used with
a name that had been defined as a label elsewhere.
Section names can only be defined with section direc-
tives.

Invalid token
An invalid token was discovered, such as an improper
identifier or floating point number.

Mixed relocatable and absolute
A relative instruction's target was absolute yet the
instruction was in a relocatable section or vice versa.

Nesting too deep
Nested blocks denoted by enclosing brackets "{" and "}"
exceeded the currently implemented nesting depth.

Out of nodes
The assembler has run out of space for initialization.
This usually indicates that too many values were used
in a data statement. It is suggested that the state-
ment be broken into several statements.

Register must be 0-7
A byte register was used with a register number other
than @-7. Only the first seven registers of the zZ8000
may be used as byte registers.

Symbol redefined
A symbol that was previously defined has been rede-
fined.

Segment overflow
More than 64K bytes of code, data and bss has been
placed into a single section.

Too many segments
More than 256 sections (i.e. ".psec", "“.csec", or
".asec") have been defined.

Cc-3 Zilog Cc-3
10/14/83 '

AS Zilog AS

Undefined symbol
A symbol has been referenced but no definition has been
found. If the -u option of the assembler is used, all
such references will be made external without an expli-
cit ".extern" statement.

Unknown keyword
A symbol beginning with "." was used but no keyword by

that name was found. Only assembler keywords are
allowed to begin with ".".

Both sides of <binary operator> must be constants

Invalid addition (or subtraction) expression

Invalid expression type for °S (or "o, or |) operator

Invalid expression type for left (or right) side

of <binary operator>
The rules for relocatable, constant or external expres-
sions may have been violated. Also some operators have
additional constraints (for example, ""s", "70") and
the rules for operators may have been violated.

Bad relocation bits

Cannot determine expression type

Erroneous expression type

Nodes allocated at end of statement

Too many bits assembled for word

Unexpected tag in intermediate file

Unexpected tag in symbol file

Unknown area

Unknown expression type

Unknown scope

Unknown tag in intermediate file
Generally these are errors associated with syntax
errors, Or a previous semantic error. Correct the
other errors first, before attempting tc fix these. If
one of these errors occurs without other errors it may
be an assembler internal error.

Fatal errors

These errors cause the assembler to abort immediately.

Invalid option
An unknown command line option was invoked.

Yacc stack overflow
Too many states were used in parsing the grammar.

C-4 Zilog C-4
18/14/83

AS Zilog AS

APPENDIX D
DEBUGGER SUPPORT DIRECTIVES

The following directives are for debugger support and are

only produced by compilers. They are not intended for use
by assembly language programmers.

.s5table <number>
Allocate space for source code line number with associ-
ated assembly language code.

.Stabn <constant_expr> 'y <constant_expr> ‘!
<constant_expr> ',' '"' string '"'
Allocate symbol table entry for non-relocatable symbol
debug information.

.stabp {constant_expr> e {constant_expr> '

<constant expr> ',' <constant expr> ',' '"' string '"'
Allocate symbol table entry for parameter debug infor-
mation.

.stabr <constant expr> ',' <constant expr> ','

v string XN - -
Allocate symbol table entry for relocatable symbol
debug information.

D-1 Zilog D~-1
12/14/83

THE C PROGRAMMING LANGUAGE

ii

Zilog

Zilog

ii

c Zilog C

Preféce

The System 8000 uses the C programming language extensively.
The operating system, ZEUS, and a majority of the programs
are written in C. This document supplements the information
in The C Programming Language by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, 1978). The reader should be fami-
liar with the basic concepts of C before reading this docu-
ment. For information on the calling conventions, see Sys-
tem 8000 Calling Conventions (CALL CONV).

Each installation contains machine dependencies that affect
the C programming language, despite the universality of the
language. Also, as a dynamic language, C reflects changes
to handle situations not previously addressed. This docu-
ment describes these machine dependencies and <C language
changes.

Conversion of programs to the ZEUS system is described in
Section 1. Machine and object format dependencies, the
setret and longret routines, and the problems encountered
when passing parameters in registers are discussed.

Recent changes to the C language not documented in The C
Programming Language are discussed in Section 2.

iii Zilog iii

iv

Zilog

Zilog

iv

@]

Zilog

Table of Contents

SECTION 1 CONVERSION OF PROGRAMS TO ZEUS ceeresecacens

«l. Introduction ...ceceiiseseccceccsosssccscssoncsns
.2. Setret and Longret Routinescecececnceccces
3. Impact of Passing Parameters in Registers
4. Object Format DependencCiesS ...eesceveccssccoenscs
.5. Byte Order Within Words .cecececceccccscccsssass
6. Machine Architecture DependenciesS .c.ceeeescasas
7. C Compiler FeatUreS ccececsoccossscccssncasncssnae

SECTIONz RECENT CHANGES Toc....l...'.........'....O

el General ... iieecertcssorsssosoeressssscscssseansca
«2. Structure Assignment ..ecececsccrenccrssocscacnane
3. Structure and Union Members ...c.eiceceescocccccase
4. Enumeration TYPE ceeeeecsccscsscsasssssossscnsaoss
5. Void Datad TYPE scesecccoccccoscscssssssccssssssnse

v Zilog

Figure

vi

1-1
1-2
1-3

Zilog

List of Illustrations

Example of PDP-11 Program ..ecscoccacsscssosss
System 89000 Version of Figure 1-1 Program ...
S8000 Program: Different Type Arguments

Named Structured Fields Within Unions

Zilog

vi

cC Zilog C

SECTION 1
CONVERSION OF PROGRAMS TO ZEUS

1.1. Introduction

Although the standard System III UNIX runs on the System
80@g@ and the C compiler accepts the C language, users must
be aware of machine dependencies that may be present in
their programs. This section describes the most common
machine dependencies that must be removed when porting pro-
grams to the System 8000.

1.2. Setret and Longret Routines

When using the C 1language routine on the System 80@@, there
are problems of declaring register variables when setjmp and
longjmp are used. Replacing setjmp and longjmp wit setret
and longret and removing the register attribute of variable
declarations makes the program executable on the System
8000. :

The System 8000 C compiler's stackframes differ from the
PDP-11 UNIX. The System 8¢00 contains only one register
that is used as both the frame pointer and stack pointer.
It is not possible to move back up the subroutine call chain
(as the PDRP-11l UNIX does) to restore :the register variables.

1.3. Impact of Passing Parameters in Registers

The Z7Z800#® processor has a larger register set than the PDP-
11 processor, To use these registers efficiently, parame-
ters are passed in registers on the System 8000 instead of
being passed on stack as on the PDP-11. Programs using
parameters that are passed on the stack and then picked off
from the stack do not work on the System 800@¢. Most pro-
grams need only to be recompiled to accommodate this change.
In cases when procedures handle a variable number of parame-
ters, however, a special process must be followed, as
described in the paragraphs that follow.

Figures 1-1 and 1-2 illustrate how a machine-dependent pro-
gram with a variable number of parameters can change to
accommodate parameter passing in the registers. Figure 1-1
shows a program running on PDP-11 with arguments picked off
from the stack. This program can have up to two pointer
arguments. The same program 1is shown in Figure 1-2 with

1-1 7ilog 1-1

Zilog

changes to handle parameter passing in the registers.

/*
* %

* %

* %

* %

* %

* %

* %

* %k

* %

*/
char *
copy(na,
char

{

This program allocates space for up to two
string arguments and then copies them in
the allocated space. The first argument
(na) is the number of arguments and the
second (ap) and the third (optional) argu-
ments are the pointers to the strings to
be copied. It returns a pointer to the
location where the strings have been copied.
have been copied.

ap)
*ap;
register char *p, *np:
char *onp;
register int n;
(*p == @)
return @;
n++;

} while (*p++):
if (na > 1)

p = (&ap)[1]);
while (*p++)
n+-+;

= np = alloc(n);
ap;

while (*np++ = *p++)

continue;

if (na > 1)

p = (&ap)[1];

np--=;

while (*np++ = *p++)
continue;

return onp;

Figure 1-1. Example of PDP-11 Program

Zilog

c Zilog

char *
copy(na, apl, ap2)
?har *apl, *ap2;
reg char *p, *np;
char *onp;
reg int n;
p = apl:;
n = @;
if (*p == 0)
return @;
do

{
n++;
} while (*p++);
if (na > 1)
{
p = ap2:
while (*p++)
n++;
}
onp = np = alloc(n);
p = apl:
while (*np++ = *p++)
continue;
%f (na > 1)

np--;
while (*np++ = *p++)
continue;

}

return onp;

Figure 1-2. System 8099 Version of Figure 1 Program

1-3 Zilog

C Zilog c

Modifying programs with a variable number of arguments of
different types 1is difficult. Figure 1-3 shows a routine
with a variable number of arguments of different types.
This 1is a version of the C library routine printf, modified
to illustrate parameter passing in registers.

#define R7 @ /* prcent == @ implies r7 already seen */
#define R5 @ /* prcnt == ¢ implies r5 already seen */
#define R3 @ /* prcnt == @ implies r3 already seen */
$define prmax 5 /* max. number of register parameters */
#define true 1

/*

* Routine to align parameter pointer consistent with
*k the 28000 <calling conventions. It skips over
* % unused registers. This happens in C only for long
* % parameters passed in registers.

*/

zalign(preont, ip, stk)

int *prent; /* parameter count */

int **ip; /* pointer to low-order word of long word */
int *stk; /* address of first parameter in the stack */

{ -
int t;
/* long cannot start in r6 or r4 */
if (*prent == R7 || *prcnt == R5)

(*prcnt) ++; /* skip over the unused register */
(*ip) ++;

else if (*prcnt == R3) /* long cannot start in r2 */

prent += 2; / skip over r2 */
*ip = &(*stk); /* parameter comes from the stack */
return;

}

/* exchange order of the words in a long word; they were

inverted when they were put into local storage */

t = **ip;

**ip = *(*ip + 1);

*(*ip + 1) = t;

1-4 Zilog 1-4

/*
%k
* &
* k

*/

Zilog C

An example routine using a variable number of parameters
each of which can be a different size. This is a sample
of a formatted I/0 routine.

printz(fmt,r6,r%,r4,r3,r2,stack)
register unsigned char *fmt; /* pointer to format string */

int r6,r5,r4,r3,r2; /* parameters passed in registers */
int stack; /* first parameter in the stack */
{
int pré; /* storage for parameter register 6 */
int pr5; /* the order of declaration of storage for */
int pr4; /* parameter registers has two effects: */
int pr3; /* first, long words have their words */
int pr2; /* exchanged; second, the pointer to

/* parameter storage can be incremented */
/* for parameters in registers and the stack */
int prent; /* number of parameters seen */

int 1i;

union{ int *ip; long *1p;
}ox:

/* save register parameters in storage */

pPré = r6;

pPrS5 = r5;

prd = rd4;

pr3 = r3;

pr2 = r2;

X.ip = &pré6;

prcnt = @;

while (true)

Zilog 1-5

c Zilog c

{ /* once through for each format character */
i = *fmt++; :
switch (i)
case ' ': return; /* end of format */
case '$': I = *fmt++;
switch (i)
{
case 'd': putint(*x.ip++);
break;

case 'D': if (prcnt < prmax)
zalign(&prent,&x.ip,&stack);
putlong (*x.1lp++);
/*second word done below*/
prcnt++;
break;
case 'c': putchar(*x.ip++);
break;
default: putchar('s');
putchar (i) ;

break;
}
prcnt++;
if (prcnt == prmax) .
/* start using stack parameters */
X.ip = (int *)&stack;
break;
default: putchar (i);
break;
}
}
}
main ()
{

printz("%c@,'z");

printz("double: %D@,1lL);

printz("decimal: %d@,69);
printz("%c%c%cscscicscd,'a’','b’','c','d’','e','£','q9");
printz("%D %D %D %D#,100L,123456L,1L,98765432L);
printz ("%D %d %c %d0,32L,10,'x',52);

}

Figure 1-3. A System 8840 Program with Variable Number
of Arguments of Different Types

1-6 Zilog 1-6

c Zilog c

1.4. Object Format Dependencies

Programs that extract header information from the object
files must be modified. Typical UNIX utilities that look at
the object files (for example make and nlist) are already
available on the System 8#0@. The entire object file pro-
duced by the language processors on the System 8088 conform
to the System 8000 object code format. Refer to a.out (5)
for a complete description of the System 800@ object code

format.

1.5. Byte Order Within Words

Byte order on the System 8000 differs from byte order on the
PDP-11. On the System 8000, the high-order byte of a word
has an even address and the 1low-order byte has the next
higher odd address. On the PDP-11, this is reversed. This
means that the PDP-11 programs that manipulate bytes within
a word or 1long quantities with pointers may not work
correctly on the System 8000. Also, transporting files
between a System 8000 and a PDP-11 requires any word quanti-
ties within the file to be byte-swapped.

For example, suppose that starting at memory: location 104,
there is a string of eight bytes (all numbers are in hex):

oo, o1, 062, 03, 04, 05, 06, @7

On both the PDP-11 and the Z8Q@Q, these wvalues occupy the
eight consecutively addressed locations 10¢-107. However,
consider: the word value at location 1¢2. On the 28000, 82
is the high-order byte, so the value is @2¢3. On the PDP-
11, 93 is the high-order value, so the value is @392. Mani-
pulations such as:

char *p;
int 1i;
1 = (*p++*256) + *p++;

produce different results on the two machines.

To illustrate the problemm of transferring files between the
two machines, consider the string to have originated on the
PDP-11 as a structure containing four byte values followed

by two word values:

1-7 Zilog 1-7

c Zilog C

100 g0
101: gl
192: g2
103: g3
194: @504
105: @796

When this string is moved to a Z80@@, it becomes:

100: 1§}
191: g1
192: @2
103: 33
104: g4@5
105: 3607

So, before the data can be processed, the words at 104 and
196 must have the bytes reserved, while the bytes at 100
through 163 must not be changed. :

1.6. Machine Architecture Dependencies

Another architecture dependency concerns the wuse of the
/dev/mem device. On the PDP-11, the system data space
begins at location @ of /dev/mem. On the System 8¢08, this
system instruction space begins at #. A program such as ps
that needs to examine locations in the system data memory
must use the device /dev/kmem instead of /dev/mem (mem(4)).

The -n option, which takes advantage of the PDP-11l's 8K page
size, 1is not supported. The System 80@# has a 64K page
size. The ~i option (separate I&D) can be used instead.
Both options 1link a program so that several copies of the
same program can share the first several pages.

1.7. C Compiler Features

The ZEUS C compiler allows register variables of types
short, 1int, pointer, 1long, and double. These can be
unsigned where appropriate. Declarations of register char
are ignored. In nonsegmented mode, there are seven ordinary
registers and four floating (double) registers available for
register variables. In segmented mode, the number of ordi-
nary registers is reduced to six.

1-8 Zilog 1-8

c Zilog c

The sizes of the various variable types are as follows:

Type Size (in bits)
character 8
unsigned character 8
short 16
unsigned short 16
int 16
unsigned int 16
pointer (nonsegmented) l6
pointer (segmented) 32
long 32
unsigned long 32
float 32
double 64
register double - 80 (IEEE format)

Although 80 bits are used internally for register double
variables, this does not mean that results will be accurate
to 80 bits. For example, in the statement

register double d=1.1;

only 64 bits for the floating representation of 1.1 are used
to initialize d. 1In converting PDP-11 C programs to System
80008 C programs, be aware that the PDP-11 C compiler (CC)
does not do sign extension when characters are cast as

unsigned.

PDP-11 C programs that contain expressions like
(unsigned) C

where C is a character, must be changed to

(unsigned character) C

to suppress sign extension on the System 8000.

1-9 Zilog 1-9

c Zilog c

SECTION 2
RECENT CHANGES TO C

2.1. General

A few extensions have been made to the C language described
in The C Programming Language. This section discusses these
extensions.

2.2. Structure Assignment

Structures can be assigned, passed as arguments to func-
tions, and returned by functions. The types of operands
taking part must be the same.

NOTE

There is a limitation to the C language in ZEUS
implementation of functions that return struc-
tures. If an interrupt occurs during the return
sequence and the same function is called again
during the interrupt, the value returned from the
first call can be corrupted. The problem can
occur only in the presence of true interrupts, as
in an operating system or a user program that
makes significant use of signals. Ordinary recur-
sive calls are safe.

2.3. Structure and Union Members

Structure and union members are now uniquely identified by
the struct or union of which they are a part. It is legal
for the same identifier to be used, even with different type
and location, in different structures or unions. A simple
example is shown in Figure 2-1.

2-1 Zilog 2-1

C Zilog c

/*
*% The following is a simple example
** of the use of named structured fields
** within unions or structures.
* % The value of the "all" field should
* % be 000109203 <hex>.
*/
main ()
{
union
{
struct
{
int 3;
int k;
}os1;
struct
{
int p;
char j;
char k;
}s2;
long all;
} u,*p;
p = &u;
p->sl.j =1;
p->s2.j + 2;
p->s2.k + 3;
}

Figure 2-1. Sample Code For Named Structured Fields

2.4. Enumeration Type

There is a data type similar to the scalar types of PASCAL.
To the type-specifiers in the syntax on page 193 of The C
Programming Language, add

enum-specifier

with syntax

2-2 Zilog 2-2

c Zilog c

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier
enum-list:
enumerator
enum-1list, enumerator
enumerator:
identifier

identifier = constant-expression

The role of the identifier in the enum-specifier is similar
to the structure tag in a struct-specifier; it names a par-
ticular enumeration. For example,

enum color { chartreuse, burgundy, claret, winedark };

enum color *cp, col;

makes color the enumeration tag of a type describing various
colors, and then declares cp as a pointer to an object of
that type and col as an object of that type.

The identifiers in the enumlist are declared as constants,
and can appear wherever constants are required. 1If no
enumerators appear with the equal sign (=), the wvalues of
the constants begin at =zero and increase by one as the
declaration is read from left to right. An enumerator with
the equal sign gives the associated identifier the value
indicated. Subsequent identifiers continue the progression
from the assigned value.

Enumeration tags and constants must be distinct and, unlike
structure tags and members, are drawn from the same set as
ordinary identifiers.

Objects with a given enumeration are distinct £from objects

of all other types. In the ZEUS implementation, all
enumeration variables are treated as integers.

2-3 Zilog 2-3

C Zilog c

2.5. Void Data Type

A new data type, void, allows a routine to return nothing.
This data type makes it unnecessary to declare such routines
as returning an integer. An error message is 1issued 1if an
attempt is made to use a value from a function returning a
void or if such a function tries to return a value.

2-4 Zilog 2-4

SYSTEM 8098 CALLING CONVENTIONS

CALL CONV

ii

Zilog

Zilog

CALL CONV

ii

CALL CONV

Table of Contents

Zilog

CALL CONV

SECTION 1 SYSTEM 8@006 CALLING CONVENTIONS 1-1

3. Stack Organization
4'

l1.4.1. The Parameter
Assignment Algorithm
1.4.2. The Algorithm

APPENDIX A SAMPLE PROGRAM

iii

'l. Introduction ® & & 6 0 & 06 0 0 2 5 O s o0
2. Register UsS@ge .vecevcccscces

® 6 0 0.0 06 00 00

Parameters @ e e 00 0000002000000

Register

® 0 0 0 0 000 00

*

3

® 9 0 06 0 0 & 9 s 0 0 0 06 0 000 l—l
© ¢ 0 2 09 00000000 1-2
® & & & & & 0 0 0 0 s 0 0 0o 1—4
® 00600000000 1—7
e o e 0 00 c 000008000 1—8

© 6 0600098000 0000 l—'lg

USING CALLING CONVENTIONS .. A-1

Zilog

iii

CALL CONV Zilog CALL CONV

iv Zilog iv

CALL CONV Zilog CALL CONV

List of Illustrations

Figure

1-1 28000 Register US8ge .eeececccsscsssnssscasss 1=2
1-2 28000 Floating Point Register Usage ..eeeeee. 1-4
1-3 Stack Upon Entry To

and After Return From a Procedure ..eeesseess 1=5
1-4 Stack During Procedure Execution .ieeeeseeese 1-6
1-5 Underlying RegiSterS .eeeecesesssescccscssssecs 1-9
A-1 A Sample C Program ..eeeesssoscssesscsscsscssss A-1
A-2 Registers Upon Entry To

And Return From Called Routine ..eeceeeeeceees A=2
A-3 Stack Frame During

Execution of Called Routine ...ceeeceeccesssss A=3
A-4 Assembly Language Code

For PrOgram in Figure A—l ® e e 0 s 0000000000000 A_S

v Zilog v

CALL CONV Zilog CALL CONV

List of Tables

Table
1-1 Definition of Algorithm Elementscc0000s0 1-12

vi Zilog vi

CALL CONV Zilog CALL CONV

SECTION 1
SYSTEM 80@@¢ CALLING CONVENTIONS

1.1. Introduction

The System 8000 Calling Conventions allow programs written
in various System 800@ languages to communicate with each

other and to share common libraries. The conventions
include argument passing, Stack Pointer status, and register
assignments on entry to and exit from a routine. The con-

ventions described here apply to all programming languages
supported by the Z80ZW-based System 800d.

The calling conventions:

@ Satisfy the requirements of languages such as C,
PLZ/SYS, FORTRAN, and PASCAL.

& Do not introduce undue call and return overhead in code
generated by one language processor at-the expense of
another.

® Minimize the complexity of the code generators.

& Allow passing of structure parameters by value.

& Encourage efficiency by allowing local variables to be
kept in registers and parameters to be passed in regis-
ters.

The calling conventions have three parts which are described
in the following sections. These three parts describe:

& How registers may be used by procedures and what hap-
pens to the register contents when calling or return-
ing.

& How the stack must be organized when entering, execut-

ing in, and returning from a procedure.

& Where parameters must be when entering or returning
from a procedure.

1-1 Zilog 1-1

CALL CONV Zilog CALL CONV

1.2. Register Usage

As shown in Figure 1-1, the Z8000's general-purpose register
set 1is divided into three groups for the purposes of this
calling convention.

NON-SEGMENTED SEGMENTED
PROGRAMS PROGRAMS

RO RO

SCRATCH

)<—— REGISTERS —><

R?7 R7
R8 ? R8

}4—-—- REg{ASETEERS \

OPTIONAL { R12
SEPARATE

FRAME R13
R14 POINTER R14

R15 STACK POINTERT R15

Figure 1-1 78009 Register Usage
The first group is called the scratch registers and consists
of R2-R7.
NOTE

RO and R1l, although also considered scratch regis-
ters, are never used for parameter passing.

These registers contain value or reference parameters when
entering a procedure and result parameters when returning

1-2 Zilog 1-2

CALL CONV Zilog CALL CONV

from a procedure. While executing, the procedure may use
these registers in any way and does not need to restore them
to their original values when it returns.

The second group is called the safe registers and consists
of R8-R14 for nonsegmented programs and R8-R13 segmented
programs. The value in these registers must Dbe the same
when a procedure returns as they were when the procedure was
entered. This means a safe register can hold the value of a
local variable, because procedure calls do not alter its
value. If a procedure changes the value of a safe register,
it must save the value of that register when it is entered,
and restore it when it returns.

The third group consists of the stack pointer (SP), which is
R15 for nonsegmented programs and Rl14 and R15 for segmented
programs. The stack pointer always points to the top of the
stack.

The calling convention also allows for, but does not
require, the use of a separate frame pointer to point to the
current stack frame (described in the next section). When a
separate frame pointer 1is wused, it is always the highest
safe register, R14 for a nonsegmented program, RR12 for a
segmented program.

The Z80WY Floating-Point Registers (either simulated in
software by the 278070 emulation package or provided in
hardware by the Z807@ arithmetic processing unit) are simi-
larly divided into two groups as shown in Figure 1-2.

1-3 zilog 1-3

CALL CONV Zilog CALL CONV

(FO
[]
FLOATING :
SCRATCH .
REGISTERS °
F3
" Fa
®
FLOATING .
SAFE (Y
REGISTERS o

F7

Figure 1-2 78000 Floating-Point Register Usage

The first group is the floating scratch registers, Fg-F3.
These registers contain floating-point value parameters upon
entering a procedure and floating-point result: parameters
when returning from a procedure. While executing, the pro-
cedure can use these registers in any way and does not need
to restore them to their original values.

The second group is the floating safe registers, F4-F7.
These registers are wused 1in the same way as the general-
purpose safe registers and thus the values in these regis-
ters must be the same when a procedure returns as they were
when the procedure was entered.

1.3. Stack Organization

Figure 1-3 shows how the top of the stack must look when a
procedure is entered. The return address must be on the top
of the stack (pointed to by the stack pointer), followed by
any parameters that must be passed in on the stack. This
figure also shows the stack after the same procedure has
returned. The only difference is that the return address
has been popped off the stack.

1-4 Zilog 1-4

CALL CONV

STACK
POINTER

During the execution of a procedure, the stack will
(also known as the
The stack

a data

allocated
values,
procedure.
executing.
separate

temporary

CALL CONV

Zilog
UPON ENTRY AFTER RETURN
TO A FROM A
PROCEDURE PROCEDURE
“v——""'-“~\P§ -—r’——’-'-‘-~h~
PARAMETERS PARAMETERS
PASSED iN PASSED IN
STORAGE STORAGE
STACK
-
RETURN POINTER
ADDRESS
—p
STACK
GROWTH
STACK
GROWTH
- ~ - ~,
Figure 1-3 Stack Upon Entry to and
After Return From a Procedure

area
activation record)

on

local variables,
Figure 1-4 shows the stack while a procedure is
The called procedure
frame
pointer is used,
while the procedure is executing.
storage by calls from this procedure must be accommodated in
the bottom of the stack frame,
This organization of

locations

called the

pointer

at

not pushed onto the stack.
substantially

sequence.

shortens

and

as

the

stack
for that procedure.
the stack by the procedure and contains saved
temporary

shown.

subroutine

Zilog

frame

or
If

may

locations

may
no separate frame
the size of the stack frame must not change
Thus parameters passed in

entry

for

not

the
and

contain

frame

CALL CONV

SEPARATE FRAME POINTER

STACK
FRAME

FOR
EXECUTING
PROCEDURE

Figure 1-4

If a separate frame pointer is used,

frame

7

STACK WITHOUT

PARAMETERS
PASSED IN
STORAGE

JRETURN ADDRESS

SAFE REGISTER
SAVE AREA

FLOATING SAFE
REGISTER
SAVE AREA

LOCAL
VARIABLES
AND
TEMPORARIES

!

STACK
GROWTH

Zilog

SEPARATE

FRAME —>

POINTER

STACK
POINTER

STACK WITH

PARAMETERS
‘PASSED IN
STORAGE

JRETURN ADDRESS]

OLD VALUE OF
FRAME POINTER

SAFE REGISTER
SAVE AREA

FLOATING SAFE
REGISTER
SAVE AREA

LOCAL
VARIABLES
AND
TEMPORARIES

In this case,

STACK
GROWTH

CALL CONV

SEPARATE FRAME POINTER

STACK
FRAME

FOR
EXECUTING
PROCEDURES

The Stack During Procedure Execution

the calling procedure's

the size of

pointer must be saved on the stack by the called rou-
tine as shown in Figure 1-4.

the

stack frame can vary, and thus parameters can be pushed onto
the stack if desired.

The calling convention allows procedures with and without a

frame
view,

pointer to be mixed on the stack.
the frame pointer is just a safe register that is used

in an agreed upon way by certain procedures.

If a procedure modifies the contents

of any of

From this point of

the safe

registers while it executes, then
these registers in its stack from

registers or floating safe
it must save the values of

when it 1s entered so that it can restore them when it
returns. The highest safe register not wused as a frame
1-6 Zilog 1-6

CALL CONV Zilog CALL CONV

pointer should be saved at the top of the activation record
(nearest the return address) with lower number registers
saved at 1lower addresses. This is the same order used by
the LDM instruction. Only those safe registers actually
modified by the procedure need to be saved.

Any floating safe registers that are modified by the pro-
cedure are saved 1in the activation record just below the
last general purpose safe register. Higher numbered float-
ing registers are saved toward the top of the activation
record.

l1.4. Parameters

Parameters provide &a substitution mechanism that permits a
procedure's activity to be repeated, varying its arguments.
Parameters are referred to as either formal or actual. For-
mal parameters are the names that appear in the definition
of a procedure. Actual parameters are the values that are
substituted for the corresponding formal parameters when the
procedure is called.

The System 8000 parameter-passing conventions cover three
kinds ~of parameters: value, reference, and result. Value
and reference parameters are passed from the calling routine
to the called routine. For value parameters, the value of
the actual parameter is passed. For reference parameters,
the address of the actual parameter is passed. For result
parameters, the value of the formal parameter in the called
routine 1s passed to the corresponding actual parameter of
the calling routine when the called routine returns.

Each kind of parameter has a length given in bytes (denoted
as length(p) for a parameter p). For value and result
parameters, this is the length of the declared formal param-
eter as determined by its type. In the absence of formal
parameters, the length of the actual parameter is used. For
reference parameters, the length is the length of an
address, in other words, two bytes in nonsegmented mode and
four bytes in segmented mode.

In addition to a parameter's length, the calling convention
distinguishes between parameters of floating-point type and
parameters of all other types.

The kind, type and length of a parameter are determined by
the conventions of the language in which the calling and the
called procedures are written. The user must ensure that
these conventions match when making interlanguage calls.

1-7 Zilog 1-7

CALL CONV Zilog CALL CONV

1.4.1. The Parameter Register Assignment Algorithm: This
section describes an algorithm that assigns every parameter
in a parameter list to either a general-purpose register,
floating register, or storage offset. The parameter
assigned to storage offset is passed in a storage location
whose address is the given offset from the Stack Pointer on
entry to the called routine. The algorithm assigns as many
parameters to general-purpose registers r2-r7 and floating-
point registers f@-f3 as possible.

The algorithm makes the following assumption:

There are four kinds of general-purpose registers:

& Byte (denoted as rln, rhn, n = @...15)

& Word (denoted as rn, n = @....15)

& Long Word (denoted as rrn, n=9¢ 2, 4, 6, 8, 10, 12,
14)

& Quad Word (denoted as rqn, n = @, 4, 8, 12)

® The length of a general-purpose register r [(denoted

length(r)] is 1 for a byte register, 2 for a word
register, 4 for a long word register, and 8 for a quad
word register.

) Each general-purpose register has a set of underlying
byte registers as follows:

The underlying register of a
byte register is the register itself.

The underlying registers of a
word register (rn) are the byte
registers rln and rhn.

The underlying registers of a
long word register (rrn) are
rln, rhn, rin+l, and rhn+l.

The underlying registers of a
quad word register (rgn)

are rln, rhn, rln+l, rhn+l,
rln+2, rhn+2, rln+3, and rhn+3.

This is illustrated in Figure 1-5.

1-8 Zilog 1-8

CALL CONV Zilog CALL CONV

RQO RQ4
RRO RR2 RR4
o000
RO R1 R2 R3 R4
UNDERLYING
BYTE JRHO|RLO|RH1|RL1|RH2|RL2|RH3|RL3}RH4
REGISTERS

Figure 1-5 The Underlying Registers

& If n > m, general-purpose register rxn or rn is higher
than a general-purpose register rxm or rm. A byte
register rln is higher than a byte register rhn.

& There are eight floating-point registers, £f@-£f7, each
capable of holding one floating point value of any pre-
cision. :

& A floating register fn is higher than a floating regis-

ter fm if n > m.

The algorithm starts by processing each value or reference
parameter in the call in left-to-right order. 1If there are
available registers of the same size and type as the parame-
ter, the parameter is assigned to the highest of these
registers; otherwise, it is assigned to the next available
storage location. Once a parameter is assigned to storage,
all the parameters in the parameter list that follow it are
also assigned to storage. The same thing is then done for
the result parameters, except they are assigned to the
lowest available registers in sequence r2, r3, r4, ... r7 (
or f@, fl1, £f2, £3), whereas the other parameters are
assigned to the registers in sequence r7, r6, r5, ... r2 (or
£3, £2, fl1, f@). The result parameters can overlap value or
reference parameters in registers, but not in storage.

The algorithm marks byte registers and floating point regis-
ters as avalilable or unavailable to keep track of which

1-9 Zilog 1-9

CALL CONV Zilog CALL CONV

registers have been assigned to parameters, and it wuses a
variable, current offset, to indicate which storage offsets
have been assigned parameters.

1.4.2. The Algorithm: This algorithm assigns parameters to
registers and storage. The phrases in bold are defined in
detail in Table 1-1.

1. Mark all byte registers underlying r2-r7 as available,
and mark all other byte registers as unavailable. Mark
floating-point registers f@-f3 as available and mark
all other floating-point registers unavailable.

2. Initialize current offset to 4 if in segmented mode or
to 2 if in nonsegmented mode (this allows for the
return address to which the stack pointer points).

3. For every value or reference parameter in left-to-right
order in the parameter list, do the following:

a. Determine whether p will fit into a register.

b. If p will fit into a register, assign p to a
value/reference register and mark the underlying
byte registers as unavailable.

c. If p will not fit into a register, assign p to
storage and mark all available byte and floating-
point registers as unavailable.

4. Mark all byte registers underlying r2-r7 as available
and all other byte registers as unavailable. Mark
floating-point registers f@-f3 as available and all
other floating-point registers as unavailable.

5. For every result parameter in left-to-right order in
the parameter list, do the following:

a. Determine whether p will fit into a register.

b. If p will fit into a register, assign p to a
result register.

c. If p will not fit into a register, assign p to

storage and mark all available byte and floating-
point registers as unavailable.

1-10 Zilog 1-19

'CALL CONV Zilog CALL CONV

Table 1-1. Definition of Algorithm Elements

Determine whether p will fit into a register:

If p is a floating-point value or result parameter,
then p will fit into a register if there 1is a
floating-point register which is available. Otherwise,
p will £fit into a register if there is a register r
such that length(p) = length(r) and all byte registers
underlying r are available.

NOTE

C structure parameters greater than four Dbytes
will not fit in a register. :

Assign p to a value/reference register:

If parameter p 1is a floating-point value parameter
then:

a. Assign p to the highest available floating-point
register r.

b. Mark floating-point register r as unavailable.

Otherwise:

a. Find the highest general-purpose register r such

that length (p) = length(r) and all byte registers
underlying r are available.

b. Assign parameter p to register r.

c. Mark all byte registers underlying r as unavail-
able, and mark any higher available byte registers
as unavailable.

Assign p to a result register:

If parameter p is a floating-point result parameter
then:

a. Assign p to the 1lowest available floating-point
register r.

b. Mark floating-point register r as unavailable.

Zilog 1-11

CALL CONV

Zilog CALL CONV

Otherwise,

a.

Find the lowest general-purpose register r such
that length(p) = length(r) and all byte registers
underlying r are available.

Assign parameter p to register r.
Mark all byte registers underlying r as unavail-

able, and mark any lower available byte register
as unavailable.

Assign p to storage:

If length(p) > 1 and current offset is odd, then
add 1 to current offset.

Assign parameter p to storage at offset current
offset.

Add length(p) to current offset.

Zilog 1-12

CALL CONV Zilog CALL CONV

APPENDIX A
SAMPLE PROGRAM USING CALLING CONVENTIONS

This appendix gives an example that uses the System 8000
calling conventions for a C language routine, "caller",
which calls another routine, "called".

Figure A-1 shows the C «c¢ode, and Figure A-4 shows the
corresponding assembly language code. Figure A~2 shows the
registers upon entry to "called" and after returning from
routine "called". Figure A~3 shows how the stack looks dur-
ing execution of "called".

* % Called routine - returns long

called (a, b, ¢, 4, e)
long b, c:

int a, d, e;
{
long y:
return y{
}
/*
* % Calling routine
*
caller()
{
long a2, a3, x:
int al, a4, a5;

x = called(al, a2, a3, a4, ab5);

Figure A-1 A Sample C Program

A-1 Zilog A-1

CALL CONV

UPON-ENTRY
TO “CALLED”

;';f/
v

N

N
N
NN

SN
N \\
N\

e AJ(C)

- A2(B)

A1(A)

STACK

POINTER

Figure A-2

RO

Z L

R2

R3

R4

RS

i [T

R7J

R8

‘

>

R13J
R14

R15

Zilog
UPON RETURN
FROM “CALLED”
T
/Z]no
“f R1
RETURN R2
VALUE R3
SCRATCH
REGISTERS< ///// R4
"
("
VALUE
UNCHANGED
SAFE FROM
REGISTERS ENTRY TO
“CALLED”
N R— —
R13
R14
STACK R1E
POINTER
Registers Upon Entry To and
Return From Routine Called
Zilog

CALL CONV

CALL CONV ‘ Zilog

(" |LOCALVARIABLES|
SAFE REGISTER
SAVE AREA AND

TEMPORARIES
STACK “ ”
FRAME OF “CALLER

OF “CALLER” A4 (D)

A5 (E)
\ <—— SP BEFORE CALL
RETURN

_ | —ADDRESS __ | SPON ENTRY
SAVED SAFE TO “CALLED”
REGISTERS

STACK
FRAME ¢
OF “CALLED”

LOCAL
VARIABLES
AND
TEMPORARIES
OF “CALLED”

SP WHILE
- “CALLED” IS
i EXECUTING

| STACK i
l GROWTH l

Figure A-3 The Stack Frame When the
Routine Called is Executing

A-3 Zilog

CALL CONV

CALL CONV

L1Q232:

L1ll:
L19003:

L1233

L12@J35:

L13:
L19333:

L1000d4:

fp
sp

. code

Zilog

([
Iallia]
-
LR,

e 90

called::

T
jpr
141
jpr

add
ret

sub
1dm

jpr
~Ll
~L2

}

.data

.code

4]
2

L109g1
rr2, “L1+12(£fp)
L1l

fp, #7L2

fp, #7L2
Qfp,r2,#6
L1903@2

]

/* called */

caller::

jpr

14

1d

1d

1d

14
141
141
callr
1d1l

add
ret

L19020d4

r2, L1+14(fp)
Qfp,r2

r3, L1+16(£fp)
2(fp),r3

r7, L1+12(fp)
rr4, “L1(£fp)
rr2, “L1+4(£fp)
called

“L1+8(fp),rr2

fp,#7L2

Zilog

CALL CONV

CALL

CONV

Zilog
sub fp,#"L2
jpr L1@@@35
"Ll := 4
L2 := 22
} /* _caller */
.data

Figure A-4. Actual 78001 Assembly Language Code for
in Figure A-1l.

Zilog

CALL CONV

Program

Indexed Sequential Access Method (C-ISaM)

C-ISAM Zilog C-ISAM

ii Zilog ii

C-ISAM Zilog C-ISAM

Table of Contents

SECTION]. OVERVIEW ® % & 0 0 4 00050 W 500500 TR PSSP OSSNSO

=
|
[

|
DWW

1.1, IntrodUcCtion ..eeeecensssccsoanossccssscscssscssssns
1.2, Indexed File SyStemS .eecevecsssocscrsesccssscns
1.2.1. Data (.dat) File seeeerescscsosscccnccsocs
1.2.2. Index (.idX) File teeeevencccsacsssccsnnece

e i
|

SECTION 2 FILE CREATION AND
INDEX DEFINITIONQ.......‘...............

N
|
[

o« INtroduction ..eeeeeecsscsecscscssssccssnccccsncs
C-ISAM File Creation .ceeeececcescsssccccncnccss
. Index Definition ...cceceecececcccscsocscnccnsnse

2.3.1., KeydeSc StructuUre ..ceceeeceeoscsasscccnccns
4, Building A C-ISAM File ..cveveccccsscscsccscccs
5. Adding Secondary INAEXEeS eeeceossscccsrsccsscscscs
6. AdAdIng Dat@ ...eeoeecesecooscsssssssscscsscsscssecs

2.6.1. Reading and Locating ReCOrdS «ecesescscces

2.6.2. Updating A File .seeececcscoceccsssscsssnsnse
2.7. Sequential ACCESS cecescsssosccossssccsacsasesscns
2.8. RAGNAOM ACCESS .eeeccvesscssosssescssssscsncssesss
2.9. Chaining .c.ueeeceeeceoscosscossccscossoscsccsosoccs

.

W N
L]

[

|
ABNOIANTWNEH -

INNNl\)l‘\’(\JNNN

hJﬁJN
-

SECTION 3 INDEX COMPRESSION AND CHECKING ..:ccccceoeee 3-1

3’10 Introduct1011 ® & & 0 0 0 % 8 0 2 B 0O e @B OO 00O e O N e 3 1
3.2. Index CompresSsSioN ceeesvsecosccscescoscossssecsss 3-1
3.3. Index CheCk'i.ng ® 6 0 & 0 0 O % & 0O S O O P S S O E SO O e s 08 s O e e 0o 3 4

SECTION 4 FILE AND RECORD LOCKING ..c.cccoccvseccscceess 4-1

. Introduction ..ceeeceesoccccccccsscssoscscncces 4-1
File LoCKkiNg cueaveveescesssccccocsscccsseccsass 4-1
2.1. Exclusive File LoCking ..c.ceieseccecesecoeces 4-1
2.2. Manual File Locking ...cccecececscoccescess 4-1

4-2
4-3
4-3

4.
4.2,
4,
4,
4.3. Record LoOCKING ceeeeeonccecssccosccscscsssccnsnse
4,
4,

1
2

3.1. Automatic Record Lockingcccecceccccss
3.2. Manual Record LoCKiNg ceeescsscccoccccocsse

iii Zilog iii

C-ISAM Zilog C-ISAM

APPENDIX A C-ISAM CALLS IN SUMMARY ..:ccccceeececsesses A-1

APPENDIX B ERROR MESSAGES AND STATUS BYTES¢..... B-1

APPENDIXC DATATYPES ® 6 8 0 0 5 0 0 8 0 082000 S S OL eSS s NS C-l

APPENDIX DI HEADER FILES ® 8 5 8 0 06 06 0600060600000 000000000000 D-l

D-l. HEADER FILE ® 6 0 0 0 0 0 4 00 90 0060 00 98P0SO S OEOEEN SO OEDINOS D—l

APPENDIXE FILE FORMATS ® @ 6.5 0 0 060006006060 5000000000000 00 E'—l

iv Zilog iv

C-ISAM Zilog C~ISAM

List of Illustrations

Figure
2-1 Keydesc and Keypart Structurescceeeeee 2=}
2-2 Program To Create C-ISAM File .iiceeecccecees 2-4
2-3 Program To Add Secondary Indexescceceeeee 2=6
2-4 Program To Add Data eeeceescessccecaccasacees 2-9
2-5 Program To Access File Sequentially ..ceceeee 2~12
2-6 Program To Access File Randomly ...ecceeeeses 2-15
2-7 Program To Interactively Add Record 2=18

www
|
w N

Leading Character CompressSion ...ececeescsses 3I=2
Leading and Trailing Character Compression .. 3-2
Combined CompresSsSion .cceesccecsecncscsscsscs 373

v Zilog Y

C-15AM

vi

Zilog C-ISAM

List of Tables

Functional Summary of C-ISAM Functions 1-2
Mode Parameter for Isread/Isstart Functions . 2-7
C-ISAM Error Codes ® 8 8 5 8 0 & 00 0 P OB OO SO e OO P e

B-1
Status Byte One S 0 8 0 00 00 005008000 NN OONSLeeoe B-3
Status Byte Two ® 8 5 9 0 3 5 0 2 8 H OSSP OE N O O ONE N B 3

Zilog vi

C-15AM Zilog C-IsaM

SECTION 1
OVERVIEW

1.1. Introduction

The C-Indexed Sequential Access Method (C-ISAM) is a library
of C 1language functions that create and manipulate indexed
file systems. The C~ISAM library, /usr/lib/libcisam.a (non-
segmented) or /usr/slibcisam.a (segmented), is available to
the loader when the C compiler, c¢c, is invoked with the
-lcisam option. When linked with a user-written C language
program (or any program written in a language with access to
C libraries), the C-ISAM library enables programmers to:

* Create an indexed file system

* Define primary and secondary keys (indexes)
* Add and delete indexes

* Add and delete data records

* éequentially or randomly access records

* Lock individual records, groups of records,
or whole file systems

* Rename and erase indexed file systems

* Compress index files to optimize disk access
and save space

This manual describes the use of these functions (summarized
in Table 1-1) in building indexed file systems. The indivi-
dual functions are described in the ZEUS Reference Manual,
in keeping with ZEUS documentation conventions. A summary of
the function calls can be found in Appendix A.

1-1 Zilog 1-1

C-ISAaM

Zilog

Table 1-1. Functional Summary of C-ISAM Functions

C-ISAM

Group FUNCTION DESCRIPTION
Unopen File isbuild create and
Operations open a file
isopen open an existing file
isrename rename a file
iserase erase a file
Open File isclose close an open file
Operations
isaddindex add a secondary index
isdelindex delete a secondary index
isstart reset the current key
and the current record
islock read-lock the file
isunlock unlock the file
isindexinfo get index/directory
information about the file
isuniqueid define a unique key
for the file
isaudit perform audit trail functions
Record
operations isread read a record in sequential
or random mode
iswrite insert a record into a file
isrewrite rewrite a record
(isrewcurr)
isdelete delete a record
Misc isperror print C-ISAM error
isld load value from byte string
isst store value in byte string
1-2 Zilog 1-2

C-ISAM Zilog C-ISAM

1.2. Indexed File Systems
An indexed file system is composed of two types of files:

Data File
Index PFPile(s)

1.2.1. Data (.dat) File:

ZEUS imposes no structure on a file; a file is treated sim-
ply as a string of bytes. In contrast, C-ISAM allows a
structure to be imposed upon a data file, making information
access easier and quicker. This' structure allows a data file
to be treated as a collection of records, and a record to be
treated as a collection of fields, with one or more fields
within a record defined as the primary key. The primary Xkey
serves to identify the record and as an index to the file.

For example, consider an employee file that has one record
for each employee. Such a file might have the employee iden-
tification number defined as the primary key. One or more

secondary keys can be defined for a file providing an alter-
nate index to the file. With the employee file, a secondary

key could be defined for the employee's last name.

All C-ISAM data filenames (10 characters maximum) are
appended automatically with the suffix .dat when they are
created.

Records

A record is a logical unit of information, composed of one
or more fields. A typical example is an employee record
within a company employee file that contains one such record
for each employee.

Fields

A field is a logical unit of information within a record.
For example, an employee record could contain several fields
including employee 1id number, name, salary, department
number and so on.

1-3 Zilog 1-3

C-ISAM Zilog C-ISAM

C-ISAM recognizes fields with the following data types
(described in detail in Appendix C):

Fixed-Length Character Strings (@-255 bytes)
Integers

Long Integers

Floating Point

Double Floating Point

A field can start at any offset within a record, allowing
data to be packed within a record.

Primary Key

Every C-~ISAM file must have a primary Xkey by which the
records of the file are indexed, and hence, accessed. A key
can comprise one to eight fields. By default, a primary key
must uniquely identify the records of a file. Otherwise, it
must be defined as allowing duplicates.

For example, an employee's last name could be defined as the
primary key for the employee file. But such a key would not
index each record uniquely since more than one employee
could have the same last name. Such a primary key must be
defined as allowing duplicates. Furthermore, it could be
defined to comprise three fields: an employee's first, mid-
dle and last names.

A special C-ISAM function, isuniqueid, supplies a primary
key for a file when a natural one does not exist.

Secondary Keys

In addition to the indexing provided by the primary key, any
number of secondary keys can be defined for a file.

1.2.2. Index (.idx) File:

Every C-ISAM data file has an associated index file created
when the the C-ISAM file is built. The index filename is the
C-ISAM filename appended with the .idx suffix. The index
file holds a dictionary describing the file's primary and
secondary Xeys.

Since there is no limit to the number of keys that can be
defined for a file, the index file can grow quickly. This
consumes disk space and degrades performance. C-ISAM has
the capacity, however, to compress the key values held in
the index file. In addition to space savings, compression
can improve performance. Index compression is the subject
of Section 3.

1-4 7ilog 1-4

C-ISAM Zilog C-ISAM

SECTION 2
FILE CREATION AND INDEX DEFINITION

2.1. Introduction

This section describes, through the use of several sample
programs, the <creation and manipulation of C-ISAM files,
including index definition, and the addition of indexes and
data.

2.2, C-ISAM File Creation

The C-ISAM function isbuild(3) defines and creates a C-ISAM
file. As a result of a call to this function two files are
actually created: a data file with the suffix .dat appended
to the filename parameter and an index file with the suffix
.idx appended to the filename parameter. The .dat file con-
tains data only; the .idx file holds a dictionary that
decribes the file's indexes, and the indexes themselves.

2.3. Index Definition

Every C-ISAM file must have a primary key; secondary keys
can also be defined for a file either at the time the file
is created or at a 1later date. The keydesc and keypart
structures, shown 1in Figure 2-1, define a file's indexes.
These structures are used by the isbuild and isaddindex
functions. :

struct keydesc

{

int k flags; /* flags */
int k_nparts; /* number of parts in key */
struct keypart '

k_part[NPARTS]; /* each key part */

}i

struct keypart
{

int kp start; /* starting byte of key part */
int kp_leng; /* length in bytes */
int kp_type; /* type of key part */

}i

Figure 2-1. Keydesc and Keypart Structures For Index Definition

2-1 Zilog 2-1

C-ISAM Zilog C-I1SAM

2.3.1. Keydesc Structure:

In the keydesc structure, the integer k flags holds compres-

sion information and indicates if duplicate key values are
allowed. This integer is the arithmetical sum of the values
of the following key descriptors:

ISNODUPS - No duplicates (default)

ISDUPS - Duplicates

DCOMPRESS - Duplicate Compression

LCOMPRESS - Leading byte compression

TCOMPRESS - Trailing byte compression

COMPRESS - Complete compression (all three of the above)

Index compression is described in the next section.

Integer K_nparts indicates how many parts (fields) make up
the key. Each part must be described by a keypart structure.
The number of elements in the k_part array should be equal
to the integer value in k_nparts.

Keypart Structure

The keypart structure allows a key to be composed of multi-
ple fields, referred to as parts. A key can have as many as
eight parts. The parts of an index need not be contiguous
within record, nor do they have to exist in any particular
order within the record. kp_ start ‘indicates the starting
byte of the key part, defined as the byte offset from the
beginning of the record. kp length is a count of the number
of bytes in the part, and kp type designates the data type
of the part. The types allowed by C-ISAM are described in
Appendix €. If this part of the key is in descending order,
the type macro should be arithmetically added to the ISDESC
macro.

The following examples, based on a mythical personnel sys-
tem, illustrate file creation and index definition. The
personnel system consists of two C-ISAM files, the
"employee" file, and the "performance" file. The employee
file holds a record for each employee consisting of:

employee number

name
address

2-2 Zilog 2-2

C-ISAM Zilog C-ISAM

The performance file holds information pertaining to all job
performance reviews for each employee. There is one record
for each performance review, job title <change, or salary
change an employee has had. Thus, for every employee record
in the personnel file there may be many records in the per-
formance file, The field definitions for the records in
both the personnel file and the performance file are shown
below.

Employee File Definition

—— - ——— - . " = — W " " cam mam

Field Name Location in Record
Employee number @ - 3 LONGTYPE
Last name 4 - 23 CHARTYPE
First Name 24 - 43 CHARTYPE
Address 44 - 63 CHARTYPE
City 64 - 83 CHARTYPE

Performance File Definition

 —— — - . - Y N — ——— ——

Field Name) Location in Record
Employee number # - 3 LONGTYPE
Review date 4 - 9 CHARTYPE
Job rating 19 - 11 CHARTYPE
Salary after review 12 - 19 DOUBLETYPE
Title after review 20 - 50 CHARTYPE

2.4. Building A C-ISAM File

Figure 2-2 shows a sample program that creates both the
employee and performance files, using the isbuild function.
For the employee file, the primary key 1is defined as the
employee ID number., For the performance file, the primary
key is a two-part key consisting of the employee ID number
and the review date.

2-3 Zilog 2-3

C-ISAM

zilog C-ISAM

#include <isam.h>

struct keydesc key;
int fdemploy, fdperform;

* This program builds the C-ISAM file systems for the
* data files employees and performance.

main()

{

mkemplkey ()
fdemploy = isbuild("employee", 84, &key,ISINOUT + ISEXCLLOCK) ;
if (fdem?loy < 0)

printf("isbuild error %d for employee file\n", iserrno);
?xit(l);

mkperfkey() ;
fdperform = isbuild("perform", 49, &key,ISINOUT + ISEXCLLOCK) ;
if (fde?ploy < 0)

printf("isbuild error %d for performance file\n", iserrno);
exit(l);
}

isclose (fdperform) ;

?kemplkey()

key.k_£flags = 0; /* no dups, no compression *
key.k_nparts = 1; /* one part index */
key.k_part[0] .kp_start = 0; /* offset is zero */
key.k_part([0] .kp_type = LONGTYPE; /* type long */
key.k_part[0] .kp_leng = 4; /* 4 bytes */

}

?kperfkey()
key.k_flags = 0; /* no dups, no compression*/
key.k_nparts = 2;
key.k_part[0] .kp_start = 0; /* offset is zero */
key.k_part([0] .kKp_type = LONGTYPE; /* type long */
key.k_part[l] .kp_start = 4; /* offset is four */
key.k_part[l] .kp_type = CHARTYPE; /* type char */
key.k_part{l] .kp_leng = 6; /* 6 bytes */

}

Figure 2-2. Program To Build Files and Create Indexes

Zilog

C-1IsAM Zilog : C-ISsAaM

2.5. Adding Secondary Indexes

With some applications, a primary key is not sufficient to
fully index a file. In such cases, one or more secondary
indexes can be defined. There is no limit to the number of
such indexes; in practice, however, space and access time
must be considered. In the case of the sample employee file
system, two secondary indexes are desirable -- an index on
"last name" in the employee file, and an index on the field
"salary" in the performance file. The following program
(Figure 2-3) creates these two indexes. It is important to
note that while adding indexes the file must be opened with
an exclusive lock. Exclusive file locks are specified in
the mode parameter of the isopen call by initializing that
parameter to ISINOUT + ISEXCLLOCK. The ISINOUT specifies
that the file is to be opened for both input and output, and
the ISEXCLLOCK macro added to ISINOUT indicates that the
file is to be exclusively locked for the current process and
that no other process will be allowed to access this file.
Note also that duplicates are to be allowed for both secon-
dary indexes and that the name field is to have full
compression for its values stored in the index file.

#include <isam.h>
#define SUCCESS 0

struct keydesc key:
int cstart, nparts;
int fdemploy, fdperform;

/ *
* This program adds secondary indexes for the
* last name field in the employee file, and the
* salary field in the performance file.
* .

main()

{

int ccj;

fdemploy = cc = isopen("employee"”, ISINOUT + ISEXCLLOCK) ;
if (cc < SUCCESS)

printf("isopen error %d for employee file\n", iserrno);
exit(1l):;
}

mklnamekey () ;
cc = isaddindex(fdemploy, &key):
if{(cc = SUCCESS)

printf("isaddindex error %d for employee lname key\n",iserrno);
exit(1);

isclose (fdemploy) :

fdperform = cc = isopen("perform", ISINOUT + ISEXCLLOCK);
if (cc < SUCCESS)
{

printf("isopen error %4 for perform\n", iserrno);
exit(l);
}

2~5 Zilog 2-5

C-ISAM Zilog C-ISAM

mksalkey() ;
cc = isaddindex(fdperform, &key);
if (cc != SUCCESS)
{
printf("isaddindex error %d for perform\n", iserrno);
isclose (fdperform) ;
§Xit(l);

isclose(fdperform) ;

mklnamekey ()
key.k_flags = ISDUPS + COMPRESS;
key.k_nparts = 0;

cstart 4;
nparts 0;

y addpart (&key, 20, CHARTYPE):;

Tksalkey()

key.k_flags = ISDUPS;
key.k_nparts = 0;
cstart = 12;

nparts = 0;

} addpart (&key, sizeof (double), DOUBLETYPE);

addpart (keyp, len, type)

register struct keydesc *keyp:
int len;

int type;

{

keyp->k_part[nparts] .kp_start = cstart;
keyp->k_part[nparts] .kp_leng = len;
keyp->k_part[nparts].kp_type = type;
keyp->k_nparts = ++nparts;

cstart += len;

Figure 2-3. Program to Add Secondary Indexes

2.6. Adding Data

When a file is opened with the isopen function, the type of
operation that 1is to take place and the type of locking
desired must be specified. These are the function's mode
parameter.

2-6 zilog 2-6

C-ISAM zilog C-ISAM

The three types of operations are:

ISINPUT - Read requests only
ISOUTPUT - Write requests only
ISINOUT - Read and write requests

Available locking options are discussed in the next section.
2.6.1. Reading and Locating Records:

Records are accessed with the isread function or the isstart
function. 1isread reads the record into the buffer, whereas
isstart only locates the record, but does not return it.

Both of these functions use a mode parameter, defined 1in
Table 2-1.

Table 2-1. Mode Parameter For Isread and Isstart Functions

Mode Description

ISFIRST Locate the first record

ISLAST Locate the last record
ISNEXT Locate the next record
ISPREV Locate the previous record
ISCURR Locate the current record

ISEQUAL Locate the record
with key value equal to the
- specified value
ISGREAT Locate the record with key
value greater than the specified value
ISGTEQ Locate the record with key value
greater or equal to the specified value

When ISEQUAL, ISGREAT or ISGTEQ is specified, the call
searches for a record according to the value specified by
the user. With isread, it must be the current key. 1In the
case of isstart any key may be specified in the key descrip-
tor parameter. It is the user's responsibility to place the
search value into the record buffer, at the location the
value is located in the record.

For example, 1f the primary key is a 3 byte character string
starting at offset 2 within the record, and the first record
to be accessed has the primary key value "ABC", the string
"ABC" must be located at offset 2 within the record buffer.

With isstart, partial key searches can be used. For exam-

ple, to retrieve the first record with key value starting
with "A", put a single "A" at offset 2 with a specified

2-7 zilog 2-7

C-ISAM Zilog C-ISAM

length of 1. This allows retrieving record "AAA" before
record "ABC".

If isread is used, and if manual locking is specified when
the file 1is opened, the record can be locked by adding the
ISLOCK value to the mode. Refer to the next section.

2.6.2. Updating a File:

Inserting a record in a data file is accomplished with the
iswrite function. When the record is inserted, the indexes
for each of the keys (primary and secondaries) are updated.
An error message is issued if an attempt is made to insert a
record with a duplicate key value when the file does not
allow duplicate values.

When a record is rewritten (with the isrewrite or isrewcurr
functions) the existing record is replaced by the new one.
The value of the primary key cannot be changed during this
operation.

To change the value of a primary key, insert the record with
the new key wvalue and delete the record with the old key
value. :

The commands to update and delete records have two forms.
If the file has a unique primay key, use the isrewrite or
isdelete functions to add or delete a record. If the file
does not have a unique primary, locate the record using the
isread or isstart function and update it using the isrewcurr
or isdelcurr functions.

Figure 2-4 is a sample program that adds records to the
"employee" file by prompting standard input for values of
the fields in the data record. Note that the "employee”
file is opened with the ISOUTPUT flag as its mode parameter.

2-8 Zilog 2-8

C-ISAM Zilog C-ISAM

#include <isam,h>
#include <stdio.h>

#define WHOKEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char emprec[85];
char perfrec[51];
char line[82];
long empnum;

struct Keydesc key;

int cstart, nparts;

int fdemploy, fdperform;
int finished = FALSE;

*
* This program adds a new employee record to the employee file.

" * It also adds that employee's first employee performance reccrd
* to the performance file.

main()
{
int cc;

fdemploy = cc = isopen("employee", ISMANULOCK+ISOUTPUT);
if %cc < SUCCESS)

printf("isopen error %d for employee file\n", iserrno);
exit(l);

}
fdperform = cc = isopen("perform", ISMANULOCK+ISOUTPUT) :;
if ECC < SUCCESS)

printf("isopen error %d for performance file \n", iserrnc);
?xit(l);

getemployee() ;
whi%e(lfinished)

addemployee ()
?etemployee()

H
i
isclose (fdemploy) ;
isclose (fdperform);

}
getperform()

{

double new_salary:;
if (empnum == 0)

finished = TRUE;
return(0);

stlong(empnum, perfrec);

2-9 Zilog

C-ISAM

Zilog

printf("start Date: ");
getline(line, 80);
stchar(line, perfrec+4, 6):;

stchar("g", perfrec+l0, 1);

printf("Starting salary: ");
getline(line, 80);

sscanf(line, "$1f", &new_salary):
stdbl (new_salary, perfrec+ll);

printf("Title : ");
getline(line, 80);
stchar(line, perfrec+l9, 30);

printf ("\n\n\n");

}
addemployee ()
{
int cc;
cc = iswrite(fdemploy, emprec):
if (cc = SUCCESS)
{ .
printf("iswrite error %d for employee\n", iserrno):;
isclose (fdemploy) ;
exit(l);
}
}
addperform()
{
int cc;

cc = iswrite(fdperform, perfrec);
if (?c 1= SUCCESS)

printf("iswrite error %d for performance\n", iserrno):

isclose(fdperform) ;
exit(l);
}

}

putnc(c, n)
char *c;
int n;

{
}

while(n--) putchar(*(c++));

getemployee ()
{

printf("Employee number (enter 0 to exit):
getline(line, 80);

sscanf(line, "%1ld", &empnum) ;

if (empnum == 0)

{
finished = TRUE;
return(0);

stlong(empnum, emprec);

Zilog

C-ISAM

C-ISAM

2-11

Zilog

printf("Last name: ");
getline(line, 80);
stchar(line, emprec+4, 20);

printf("First name: ");
getline(line, 80);
stchar(line, emprec+24, 20);

printf ("Address: ");
getline(line, 80);
stchar(line, emprec+44, 20);

printf("City: ")
getline(line, 80);
stchar(line, emprec+64, 20);

getperform() ;
addperform() ;

} printf ("\n\n\n");

getline(s, lim)
char s([];
%nt lim;

int ¢, i;

i<1lim-1 &&

s[i] = '\0’';
return(i);

stchar(a,b,c)
char *a, *b;
int c¢;

{

register int 1i;

for (i=0;*a &&
Htt =
return(0);

*at++;

Figure 2-4.

Zilog

C-ISAM

(c=getchar()) !=EOF && c!='\n"'; ++1i)

(1 < c); i++)

Prbgram to Add Data

C-ISAM Zilog C-ISAM

2.7. Sequential Access

Figure 2-5 shows how to read a file sequentially. In this
case, the "employee" file is being read in order of the pri-
mary Key "employee number". Since the ‘"employee number"

index 1is defined as ascending with no duplicate key values
allowed, the sequence of records will print from the lowest
value of employee number to the highest value of employee
number. This continues wuntil the isread function wusing
ISNEXT returns a -1 with an EENDFILE value in the iserrno
field, indicating the end-of-file.

#include <isam.h>

#define WHOLEKEY 0
#cdefine SUCCESS 0
#cdefine TRUE 1
#define FALSE 0

char emprec[83];

struct keydesc key;

int cstart, nparts;

int fdemploy, fdperform;
int eof = FALSE;

/ #*
* This program sequentially reads through the
* employee file by employee number, printing each
* record to stdout as it goes.

#

main()
{

int cc;

fdemploy = cc = isopen("employee", ISINPUT+ISAUTOLOCK) ;
if écc < SUCCESS)

printf("isopen error %d for employee file\n", iserrno);
exit(1l);
}

mkemplkey () ;
cc = isstart(fdemploy, &key, WHOLEKEY, emprec, ISFIRST);
if (cc != SUCCESS)

{

printf("isstart error %d\n", iserrno);
isclose (fdemploy) ;
?xit(l);

getfirst();
whi%e(leof)

showemployee () ;
?etnext();

isclose (fdemploy) ;

}

showemployee ()

{
printf ("Employee number: %1d", ldlong(emprec))

printf("\nLast name: "); putnc(emprec+4, 20);

printf("\nFirst name: "); putnc (emprec+24, 20);
printf("\nAddress: "); putnc(emprec+44, 20);
printf("\nCity: "): putnc(emprec+64, 20);

s tf(“ n ;
12) prin \n\n\n") 2-12

N
i

C-ISsAM Zilog C-ISAM

putnc{c, n)

char *c;
int n;

while(n--) putchar(*(c++));

}
getfirst()
{
int cc;
if gcc = isread(fdemploy, emprec, ISFIRST))
switch(iserrno) ‘
case EENDFILE: eof = TRUE;
break;
default:
{
printf("isread ISFIRST error %d \n", iserrno);
eof = TRUE;
return(l);
}
return(0);
getnext ()
{
int cc;
if %cc = isread(fdemploy, emprec, ISNEXT))
switch(iserrno)
case EENDFILE: eof = TRUE;
. break;
default:
{
printf("isread ISNEXT error %d \n", iserrno);
eof = TRUE;
return(l);
}
return(0);
}

?kemplkey()

key.k_flags = 0; /* no dups, no compression */
key.k_nparts = 1; /* one part index */
key.k_part[0] .kp_start = 0; /* offget is zero */
key.k_part[0] .kp_type = LONGTYPE; /* type long */
key.k_part[0] .kp_leng = 4; /* 4 bytes */

}
Figure 2-5. Program to Access File Sequentially

2-13 zilog 2-13

C-I1sAM Zilog C-IsSAM

2.8. Random Access

Figure 2-6 describes how random access to a C-ISAM file can
be accomplished. This program interactively retrieves an
employee number from standard input, searches for it in the
employee file, and prints the results of its search to stan-
dard output. Note that the ISEQUAL macro is used to specify
the read mode to isread in the C function called "reademp".
If no record which corresponds to the value entered by the
user is Ffound with the employee number a condition code of

ENOREC is returned in iserrno and isread returns a -l. It
is the responsibility of the C programmer to handle that
return code 1in an appropriate manner. If ENOREC is

returned, the record buffer sent as the record parameter to
the isread call will not have been changed (i.e. no record
will have been read).

#include <isam.h>
#include <stdio.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char emprec[83];
lon¢g empnum;

struct keydesc key;

int cstart, nparts;

int fdemploy, fdperform;
int eof = FALSE;

/*
* This program interactively retrieves an employee's
* employee number from stdin, searches for it in
* the employee file, and prints the employee
* record which has that value as its employee number

: field.

main()

{

int cc;

fdemploy = cc = isopen("employee", ISINPUT+ISAUTOLOCK) ;
if %cc < SUCCESS)

printf("isopen error %d for employee file\n", iserrno);

exit(l);
}
mkemplkey () ;
getempnum() ;
while(empnum != 0)
if (reademp() == SUCCESS) showemployee():

getempnum() ;

isclose (fdemploy) ;

2-14 Zilog 2-14

C-ISAM

zilog C-ISAM

getempnum()

{
char *line;
printf("Enter the employee number (zero to quit): "):
getline(line, 80); ‘
sscanf(line, "%1d", &empnum);
stlong(empnum, emprec);
}

showemployee ()

{
printf("Employee number: $14", ldlong(emprec));
printf("\nLast name: "); putnc(emprec+4, 20);
printf("\nFirst name: "); putnc (emprec+24, 20);
printf("\nAddress: "); putnc(emprec+44, 20);
printf("\nCity: "); putnc (emprec+64, 20);
printf{("\n\n\n");

}

putnc(c, n)

char *c;

int n;

while(n--) putchar(*(c++)):

readenp ()

{

int cc;

if (cc 1= SUCCESS)
i

switch(iserrno)

cc = isread(fdemploy, emprec, ISEQUAL);

case EENDFILE:

{
eof = TRUE;
break;

default:
{
printf("isread ISEQUAL error %d \n", iserrno);
eof = TRUE;
return(l);

}

return(0) ;

15

Zilog 2

C-ISAM

?kemplkey()

key.k_flags = 0

i
key.k_nparts = 1;

key.k_part[0] .kp_start = 0;
key.k_part[0] .kp_type =
key.k_part[0] .kp_leng = 4;

}

getline(s, 1lim)
char s[]:
int lim;

int ¢, i;

Zilog

C-ISAM

/* no dups, no compression */
/* one part index

*/

/* offset is zero */

LONGTYPE; /* type
: /* 4 bytes */

long */

for (i=0; i<lim-1 && (c=getchar())!=EOF && cl!='\n'; ++i)

s[i] =c;
if (c=='\n') {

s[i] =c;

++1i;

}
s[i] = '\0';
return(i);

3

Figure 2-6. Program to Access File Randomly

2.9. Chaining

The following example shows how to chain to a record that is
An illus-

the last record in a chain of associated records.
logically by

tration of how the performance records appear
The primary index is a composite
index made up of the employee number and review date.

the primary key follows.

Emp. no. Review date

— - wre - o et - - - w w— ana w—- v tm m

790501
8001026
800585
760301
7690904
773305
770902
800420
800420

D WNNNND -

Job rating New Salary New Title

M ARQQUUQQ HYQQ

Zilog

20,9900
23,000
24,725
18, 090
20,799
23,805
27,376
18, 990
18,000

— g

SPA

C-ISAM %ilog C-ISAM

The following program's function is to interactively add a
new performance file record. The record contains the date
that the salary review took place, the employee's current
job rating, the employee's new salary (based on rating), and
the employee's new or current job title. All the fields
except new salary are entered by the user. The new salary
is calculated by multiplying the employee's most recent
salary, which can be found at the end of a "chain" of asso-
ciated performance history records for that employee, by a
factor that depends upon that employee's job rating. To find
the most recent performance history record for a given
employee, the record pointer in C-ISAM is positioned to the
record immediately after the highest possible review date
for that employee. 1In the example, every possible date is
smaller than 999999. To retrieve the most recent perfor-
mance history record for that employee, an isread is exe-
cuted with the ISPREV option as the mode parameter, This
technique is considerably faster than finding the first per-
formance history record for a particular employee, and then
executing ISNEXTs to "chain" through them all.

#include <isam.h>
#include <stdio.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char perfrec[51];

char operfrec[51];

char line([8l];

long empnum;

double new_salary, old_salary;

struct keydesc key;

int cstart, nparts;

int fdemploy, fdperform;
int finished = FALSE;

/*
* This program interactively reads data from
* gtdin and adds performance records to the
* "perform" file,
* Depending on the rating given the employee
* on job performance the following salary
* increases are placed in the salary field
* of the performance file.
*
* rating percent increase
| emmemmemem | e ————— o
* p (poor) 0.0 %
* f (fair) 7.5 %
* g (good) 15.0 %
*
*/

2-17 zZilog 2-17

C-ISAM Zilog C-ISAM

main ()

{

int cec;

fdperform = cc = isopen("perform", ISINOUT+ISAUTOLOCK) ;
if (cc < SUCCESS)
{

printf("isopen error %d for performance file\n", iserrno);
exit(l);

}
mkperfkey () ;
getperformance() ;
while(lfinished)

{

if (get_old_salary())

{
finished = TRUE;

else

addperformance () ;
getperformance() ;

}

isclose(fdperform);

addperformance ()
{ int cc;

cc = iswrite(fdperform, perfrec);
if {cc l= SUCCESS)
{

printf("iswrite error %d\n", iserrno);
isclose (fdperform) ;
TXit(l);

getperformance()

{

printf("Employee number (enter 0 to exit): ");
getline(line, 80);
sscanf(line, "%$1d4", &empnum);
if (empnum == 0)
i
finished = TRUE;
return(0);

étlong(empnum, perfrec);

printf("Review Date: ");
getline(line, 80);
stchar(line, perfrec+4, 6);

printf("Job Rating (p=poor, f=fair, g=good): ");
getline(line, 80);
stchar(line, perfrec+l0, 1);

printf("Salary After Review: (Sorry, you don't get to add this) \n");
new_salary = 0.0;

stdbl (new_salary, perfrec+ll);

printf("Title After Review: "):

getline(line, 80);

stchar(line, perfrec+l9, 30);

printf("\n\n\n");

2-18 Zilog 2-18

C-ISAM

Zilog

get_old_salary()

{ int mode, cc;
stchar (perfrec, operfrec, 4); /* get id number */
stchar("999999", operfrec+4, 6); /*largest possible
data */

cc = isstart(fdperform, key, WHOLEKEY, operfrec,
ISGTEQ) ;

if (cc !=SUCCESS)

switch(iserrno)

case ENOREC:
case EENDFILE: mode = ISLAST;
break;

C-ISAM

default: printf("isstart error %d ",iserrno);

printf("in get_old_salary\n");
return(l);

}
}
else
{
Tode = ISPREV;
cc = isread(fdperform, operfrec, mode) ;

if (cc I= SUCCESS)
printf("isread error $d in get_old_salary",
iserrno);
return(l);

if (cmpnbytes(perfrec, operfrec, 4))

printf("No performance record for employee number %1d.\n",

iserrno):;
return(l);

else

printf("\nPerformance record found.\n\n");
old_salary = new_salary = 1lddbl(operfrec+ll);
printf("Rating: ");

swi%ch(*(perfrec+10))

case 'p': printf("poor\n"):;
break;

case 'f': printf("fair\n");
new_salary *= 1,075;
break;

case 'g': printf("good\n");
new_salary *= 1.15;
break;

stdbl (new_salary, perfrec+ll);
print£("0ld salary was %f\n", old_salary);
printf("New salary is %f\n", new_salary);

getline(s, lim)
char sl};
int lim;

int ¢, i;

for (i=0; i<lim-1 && (c=getchar()) !=EOF && cl!='\n'; ++i)

s[i] =c;

if (e=='\n') {
s{i] =c;
++i;

Zilog

C-ISAM

Zilog

s[i] = '\0"';
return(i);

Tkperfkey()

key.k_flags = 0;
key.k_nparts = 2;

key.k_part[0] .kp_start =
key.k_part[0] .kp_type =

key.k_part[l] .kp_start =
key.k_part([l] .kp_type
key.k_part[1l] .kp_leng

6;

stchar(a,b,c)
char *a, *b;
int c;

register int i;

for (i=0;*a && (i < c); i++)
*h++ = *a++;

return(0);

cupnbytes{a,b,c)
char *a, *b;
int c;

register int i;
for (i=0; i < c; i++)
if (*a++ l= *b++)

return(l);
return(0) ;

Figure 2-7.

Zilog

LONGTYPE;

CHARTYPE;

Program to Interactively Add

C~-ISAM

/* no dups, no compression*/

/* offset is zero */

0.
] /* type long */

offset is
type char
*/

4; /*
/*
/* 6 bytes

four */
*

Record

C-ISaM Zilog C-ISAM

SECTION 3
INDEX COMPRESSION AND CHECKING

3.1. Introduction

Index compression, the ability to compress key values in an
index file to save space and enhance performance, and index
checking, the abiltiy to check and repair index files, are
the subject of Section 3.

3.2. Index Compression

C-ISAM can compress key values held in the index files,
using three types of compression: leading character compres-
sion (LCOMPRESS), trailing character compression (TCOMPRESS)
and duplicate compression (DCOMPRESS). 1In addition to disk
space savings, key compression can improve real time
response to random access requests, by increasing the number
of key values which can be held in an index file page. With
more key values per index file page, fewer disk accesses are
neccessary to find any given data record. Since disk
accesses use the overwhelming percentage of real time during
file accesses, key compression in index files can improve
real time response. This improvement becomes more dramatic
as field size increases and where duplicate values, leading
duplicate characters, and trailing blanks become a large
percentage of the characters of the key. With the use of
leading compression alone, a savings of 5 percent in index
page size can result. Much more dramatic savings can result
if trailing blanks are compressed as well. Assuming a field
length of 20, the page size savings from using both
TCOMPRESS and LCOMPRESS is 67.5 percent.

There are some disadvantages to compression: LCOMPRESS and
TCOMPRESS each add one byte, DCOMPRESS adds two bytes, and
all three combined (COMPRESS) add four bytes to each index
entry.

Figures 3-1 through 3-3 illustrate LCOMPRESS, LCOMPRESS and
TCOMPRESS, and combined compression (LCOMPRESS, TCOMPRESS,
and DCOMPRESS.)

3-1 Zilog 3-1

C-ISAM Zilog C-ISAM

Key Value Compressed with LCOMPRESS Bytes Saved
AbbOt . veveseoesaaas AbbOt s v evsesesesoane -1%
Able..ivivsoesnnceos le.coas et s s s ee 0 e +1
ACYre.iiesevnanssnnas CYr €t vesosssasnsonsone a
Albert.ciesesevocess 1bert.csseereeonans 7]
AlbertsSON.:.csseseses SBONtesvossanansnse 5
Morgan..e«.ooseseoeeos MOrgan...eseeeeecaces -1
McBride..ciceesoosoe CBride...oeeeocscns 7}
McCloud.eeseeeesenne Cloud.eeeeoosonsees 1
Richards...ceeeoes s Richards...eeeeeoeen -1
Richardson...ssveese o) o W 6
208 bytes 182 bytes 10 bytes
5 %

* There is a one byte penalty for LCOMPRESSION

Figure 3-1. Leading Character Compression

Key Value Compressed with LCOMPRESS Bytes Saved
+
TCOMPRESS

Abbot.l.‘.v....bilcl Abbot 13*
Able.."..m'..O‘.... le 16
ACY @ .ceiosiososoneaes cre 15
Albert.:cecveccoseces lbert 13
AlbertsSon.ecceeeesese son 15
Morga{nooooco¢o0oo . Morgan 12
McBride..ciceeenanse cBride 12
MCCloud:s e ceeoeeonne Cloud 13
Richards.eieeesoeeees Richards 19
Richardson..ceecooe.e on 16
200 bytes 135 bytes 67.5%

* There is a two-byte penalty for using LCOMPRESS and
TCOMPRESS

Figure 3--2. Leading and Trailing Character Compression

3=-2 Zilog 3-2

C-ISAM zZilog C-ISAM

The third compression method is duplicate compression
(DCOMPRESS.) When duplicate entries are allowed, DCOMPRESS
can be used to eliminate them. Fields holding city or state
values are often duplicate intensive. Figure 3-3 illus-
trates duplicate compression combined with leading and
trailing character compression (COMPRESS).

Key Value Compressed with LCOMPRESS Bytes Saved
+ TCOMPRESS
+ DCOMPRESS

- . e . - B e b T R e e . ——— ———

AbbOot.ev et evsertonenen Abbot 11*
F:N o) 070 3 S (no entry) 16
ADDOt ee vt vernnennsas (no entry) 16
ADlE. v esesensonocecs le 14
Able....... et easee (no entry) 16
ACrEC.iveeeosvonossnsoes cre 13
Albert...... st e lbert 11
AlbertsoOn..seeeesoeen son ‘ 13
Albertson..ceeeesees (no entry) 16
MOorgan...ceeeeseeueae Morgan 19
McBride...ooeeevesnn cBride 19
McCloud..eoeovensoas Cloud 11
RichardsS.ceeeeerenos Richards 8
Richardson...eeo e on 14
Richardson.......... (no entry) 16
300 bytes 46 bytes 195 bytes
65 %

* COMPRESS (all three compression types) adds four bytes per
entry (with DCOMPRESS adding two of the four bytes)

Figure 3-3. Combined Compression

3-3 7ilog 3-3

C-ISAM 7ilog C-1SAM

3.3. Index Checking

The bcheck program checks and repairs index files. Bcheck
checks the consistency of the files which have the .dat or
.idx suffix. The options and syntax for bcheck are listed
below. If there seems to be a problem with corrupted
indexes, bcheck should be run on the suspect files. Unless
the -n or -y option is used, bcheck is interactive and waits
for the user to respond to each error that is found. The -y
option should be used with caution. Bcheck should not be
run using the -y option if it is the first time the files
are being checked.

usage: bcheck -ilny cisamfiles
-i check index file only
-1 list entries in b-trees
-n answer no to all questions
-y answer yes to all questions

The following is an example of a bcheck run with no errors.
(Note that for each index a group of numbers is printed out.
There can be up to eight groups of numbers for each index.
These numbers indicate the position of the key in each
record and are for use in reporting problems to zilog.)

The command used for this bcheck run was:
bcheck sale.pros
BCHECK C-ISAM B-tree Checker version 1.9#@
Copyright (C) 1982, Relational Database Systems, Inc.
Software Serial Number 1

C-ISAM File: sale.pros.idx

** Check Dictionary

** Check Data File Records

** Check Indexes and Key Descriptions
* % Index 1 = unique key (9,4,2)

*x Index 2 = unique key (14,2,1)
>k Index 3 = unique key(62,35,0)
* % Index 4 = duplicates (37,25,9)
* ok Index 5 = duplicates (264,20,0)

** Check Data Record and Index Node Free Lists
479 index node(s) used, @ free -- 2638 data record(s) used,

The following is a sample run of bcheck where errors were
found.

3-4 zilog 3-4

C-ISAM Zilog C-ISAM

The -n option was used to answer no to all questions. The
command used was:

bcheck -n sale.ship.idx

BCHECK C-ISAM B-tree Checker version 1.80 Copyright

(C) 1982, Relational Database Systems, Inc. Software
Serial Number 1

C-ISAM File: sale.ship.idx

** Check Dictionary and File Sizes ** Check Data File Records
** Check Indexes and Key Descriptions ** Index 1 = unique
key (0,4,2)

ERROR: 12 bas data record(s) Delete index ? no

** Index 2 = duplicates (4,2,1)

ERROR: 12 bad data record{(s) Delete index ? no

** Index 3 = duplicates (6,6,0)

ERROR: 12 bas data record(s) Delete index ? no

** Check Data Record and Index Node Free Lists

ERROR: 12 missing data record(s) Fix data record free
list ? no

5 index node(s) used, P free ~-- @ data record(s) used,
12 free
In this case, the indexes must be deleted and rebuilt. To

correct these indexes, the -y option would be used to answer

yes

The

3-5

to all questions asked by bcheck.

command used to correct the errors was:

bcheck -y sale.ship.idx

BCHECK C-ISAM B-tree Checker version 1.00

Copyright (C) 1982, Relational Database Systems, Inc.
Software Serial Number 1

C-ISAM File: sale.ship.idx

** Check Dictionary and File Sizes

** Check Data File Records

** Check Indexes and Key Descriptions
* % Index 1 = unique key (8,2,4)

Zilog 3-5

C-ISAM zilog

ERROR: 12 bad data record(s)
Delete index ? yes

Remake index ? yes
* Index 2 = duplicates (4,3,1)

ERROR: 12 bas data record(s)
Delete index ? yes

Remake index ? yes
k% Index 4 = duplicates (6,6,0)

ERROR: 12 bad data record(s)
Delete index ? yes

Remake index ? yes
*¥** Check Data Record and Index Node Free Lists

ERROR: 12 missing data record(s)
Fix data record free list ? yes

** Recreate Data Record Free List
** Recreate Index 3
** Recreate Index 2
¥ Recreate Index 1

C-IsaM

5 index node(s) used, 9 dree -- @ date record(s) used,

12 free

Zilog

C-ISAM Zilog C-ISAM

SECTION 4
FILE AND RECORD LOCKING

4.1. Introduction

There are two levels of locking available from C-ISAM --
file—-level 1locking, and record-level locking. Within these
two levels, C-ISAM offers several methods from which to
choose.

4.2. File Locking

File locking can be accomplished in two ways: exclusive file
locking and manual file locking,

4.2.1. Exclusive File Locking:

Exclusive file locking prevents other processes from either
reading from or writing to a given C-ISAM file. This lock
remains in effect from the moment the file is opened, using
isopen or isbuild, until the file is closed using isclose.
Exclusive file locking is specified by adding ISEXCLLOCK to
the mode parameter of the isopen or isbuild function call.
Exclusive file level 1locking 1s not necessary for most
situations, but it must be used when an index is being added
using isaddindex, or when an index is being deleted using
isdelindex. The skeleton program shown below illustrates
how exclusive file level locking is done.

myfd = isopen("myfile", ISEXCLLOCK+ISINOUT):;

isclose(myfd);

4.2.2. Manual File Locking:

The manual file level locking method is referred to as a
"shared" lock. It prevents other processes from writing to
a given C~ISAM file, but allows other processes to read the
locked C-ISAM file. Shared file level locking is specified
with the islock and isunlock function c¢alls (MODE ISINPUT

4-1 Zilog 4-1

C-ISAM zilog C-ISAM

specified). When a C-ISAM file is to be locked in this
manner, C-ISAM must first be notified of the wuser's inten-
tion to use manual locking. This is done by adding ISMANU-
LOCK to the mode parameter of the isopen or isbuild call.
Later in the program, when locking is desired, islock should
be called to 1lock the file. When the file 1is to be
unlocked, isunlock should be called.

myfd = isopen("myfile", ISMANULOCK+ISINOUT);

. ("myfile" is unlocked in this section)

islock(my£fd);

. ("myfile" is locked in this section)

isunlock(my£d);

. ("myfile" is unlocked in this section)

isclose(my£d):

4.3. Record Locking

There are two basic types of record 1level locking imple-
mented in C-ISAM -- Automatic and Manual.

Automatic record locking locks a record just before it is
read using the isread call. It unlocks the record after the
next C-ISAM call has completed. Automatic record locking
locks one record at a time without regard to the length of
time it is locked.

Manual record locking, on the other hand, c¢an lock any
number o¢f records. Manual locking locks a record when that
record is read using isread. It unlocks that record, and
any other records that are currently locked, when
isreleaseis called. Manual record locking is used when more
control 1is required over when a record, or set of records,
is to be locked and unlocked.

Both automatic and manual locking techniques are "shared"

locks. Other processes may read records locked by the
current process, but they may not lock or re-write them.

4-2 zilog 4-2

C-ISAM Zilog C-ISAM

4.3.1. Automatic Record Lockihg:

Automatic record locking must be specified to C-ISAM when
the file 1is opened. This is done by adding ISAUTOLOCK to
the mode parameter of the isopen or isbuild function call.
From when the file 1is opened until it is closed, every
record will be locked automatically before it is read. Each
record remains locked until the next C-ISAM function call is
completed for the current file. Therefore, while using the
automatic record 1locking mechanism of C-ISAM, only one
record per C-ISAM file can be locked at a given time. An
example of automatic record locking is shown below.

myfd = isopen("myfile", ISINOUT+ISAUTOLOCK):;

isread(myfd, myrecord, ISNEXT); /* record locked here */
/* before record is read */

isrewcurr (myfd, myrecord); /* record unlocked here */
/* after completion */

.

isclose(my£fd);

4.3.2. Manual Record Locking:

The user's intention to use manual record 1locking must be
specified before any processing takes place. This is done
by adding ISMANULOCK to the mode parameter of isopen or
isbuild function calls when the file is opened. ~After the
file 1s open, if the user wishes a record to be locked,
ISLOCK must be added to the mode parameter of the isread
function call which is reading that record. Each and every
record which 1is read in this manner remains locked until
they are all unlocked by a call of the isrelease function of
C-ISAM. The number of records which may be locked in this
manner at any one time is operating system dependent. The
following example shows how a number of records in a partic-
ular file are locked and unlocked using manual record lock-
ing.

4-3 zilog 4-3

C-ISAM zilog C-ISAM

myfd = isopen("myfile", ISINOUT+ISMANULOCK);:;

isread(myfd, first_record, ISEQUAL+ISLOCK) ;

isread(myfd, second_record, ISEQUAL+ISLOCK);

isread(myfd, third record, ISEQUAL+ISLOCK);

.

isrelease(my£fd); /* unlock all three records */

isclose(my£fd);

4-4 zilog 4-4

C-ISAM Zilog C-ISAM

APPENDiX A
C-ISAM CALLS IN SUMMARY

Appendix A summarizes the C-ISAM function calls, which are
described 1in detail in Section 3 of the System 8000 ZEUS
Reference Manual.

All calls to C-ISAM return either a @ or -1 as the value of
the function and set the global integer iserrno to either 2
or an error indicator. 1In the case of isbuild and 1isopen,
the return value will be a legal C-ISAM file descriptor or a
-1. In the case of the other calls, the return value will
be a @ or a -1, A ~1 indicates that an error has occurred,
and iserrno has been set.

isbuild(filename, recordlength, keydesc, mode)
char *filename;

int recordlength;

struct keydesc *keydesc;

int mode;

isopen(filename, mode)
char *filename;
int mode;

isclose(isfd)
int isfd;

isaddindex (isfd, keydesc)
int isfd;
struct keydesc *keydesc;

isdelindex (isfd, keydesc)
int isfd;
struct keydesc *keydesc;

isstart(isfd, keydesc, length, record, mode)
int isfd;

struct keydesc *keydesc;

int length;

char recordl[];

int mode;

isread(isfd, record, mode)
int isfd;

char recordl[];

int mode;

A-1 Zilog A-1

C-ISAM Zilog

iswrite(isfd, record)
int isfd;
char recordl]:;

isrewrite(isfd, record)
int isfd;
char recordl[];

isrewcurr(isfd, record)
int isfd;
char recordl[];

isdelete (isfd, record)
int isfd;
char record([];

isuniqueid(isfd, uniqueid)
int isfd;

long *uniqueid
isindexinfo(isfd, buffer, number)
int isfd;

struct keydesc *buffer;

int number;

isaudit(isfd, filename, mode)
int isfd;

char *filename;

int mode;

iserase (filename)
char *filename;

islock (isfd)
int isfd;

isunlock (isfd)
int isfd;

isrelease(isfd)
int isfd;

isrename (oldname, newname)
isld -- load routines

isst -- store value routines

A-2 Zilog

C-1ISAM

C-ISAM Zilog C-ISAM

APPENDIX B
ERROR MESSAGES AND STATUS BYTES

B.1l. Error Messages

When a C-ISAM error occurs, iserrno can assume values rang-
ing from 1 to 113. ZEUS errors range from 1 - 99 and C-ISAM
errors range from 100 - 113. ZEUS error codes that can
appear in errno can also appear in iserrno.

Table B-1 defines C-ISAM error codes.

Table B-1. C-ISAM Error Codes

Macro Number Text Status Status
Byte 1 Byte 2

EDUPL 190 An attempt was made to add a
- duplicate value to an index via
iswrite, isrewrite, isrewcurr or
isaddindex.

N
N

ENOTOPEN 101 An attempt was made to perform
some operation on a C-ISAM file
that was not previously opened
using the isopen call. 9)

EBADARG 102 One of the arguments of the C-ISAM
call is not within the range of
acceptable values for that argument. 9]

EBADKEY 103 One or more of the elements that
make up the key description is
outside of the range of acceptable
values for that element. 9 4]

ETOOMANY 104 The maximum number of files that
may be open at one time would be
exceeded if this request were
processed. 9 7]

EBADFILE 105 The format of the C-ISAM file has
been corrupted. 9 0}

ENOTEXCL 106 In order to add or delete an index,

the file must have been opened with
exclusive access. 9 @

B-1 Zilog B-1

C-ISAM Zilog C-ISAM

ELOCKED 197 The record or file requested by
this call cannot be accessed
because it has been locked by

another user. 9
EKEXISTS 108 An attempt was made to add an

index that has been defined

previously. 9
EPRIMKEY 109 An attempt was made to delete

the primary key value. The
primary key may not be deleted

by the isdelindex call. 9
EENDFILE 119 The beginning or end of file was

reached. 1
ENOREC 111 No record could be found that

contained the requested value in

the specified position. 2
ENOCURR 112 This call must operate on the cur-

rent record. One has not been de-

fined. 2
EFLOCKED 113 The file is exclusively locked by

another userv.

B.2. Status Bytes

Two bytes (isstatl and isstat2) hold status information
after C-ISAM calls. The first byte (Table B-2) holds status
information of a general nature, such as success or failure
of a C-ISAM call. The second byte (Table B-3) contains more
specific information, which has meaning based on the status
code in bhyte one.

B-2 Zilog B-2

C-ISAM Zilog C-ISAM

Table B-2. Status Byte One

Byte One Value Status

a Successful Completion
1 End of File

2 Invalid Key

3 System Error

9 User Defined Errors

Table B-3, Status Byte Two

Status Byte Status Byte Two

One

g -9 @ - No further information is available
0 2 - Duplicate key indicator

- After a READ indicates that the
key value for the current key is
equal to the value of that same key
in the next record.

- After a WRITE or REWRITE indicates
that the record just written created a
duplicate key value for at least one
alternate record key for which
duplicates are allowed.

2 1 - The primary key value has been changed
between the successful execution of a READ
statement and the execution of the
next REWRITE statement.

2 - An attempt has been made to write or
rewrite a record that would create a
duplicate key in an indexed file.

3 - No record with the specified key can
be found.

4 - An attempt has been made to write
beyond the externally defined
boundaries of an indexed file.

9 The value of status key two is defined
by the user.

B-3 Zilog B-3

C-ISAM Zilog C-1ISAM

APPENDIX C
Data Types

The types of data which can be defined and manipulated using
C-ISAM functions are described in this Appendix. Descrip-
tions of how each data type is stored in data files and how
each data type must be treated are also discussed.

The data types for which C-ISAM can maintain properly
ordered indexes are character, 2 byte integer, 4 byte
integer, machine float (floating point), and machine double
(double precision floating point). The macro definitions
used to describe these types to C-ISAM are shown below,.
These definitions can also be found in "isam.h".

CHARTYPE character
INTTYPE 2 byte integer
LONGTYPE 4 byte integer
FLOATTYPE machine float
DOUBLETYPE machine double

C.1l. CHARTYPE

The data type CHARTYPE signifies to C~-ISAM that a particular
region of a data file consists of byte values from 0 to 255.
A typical example of data type CHARTYPE is a city name or an
address field.

C.2. INTTYPE and LONGTYPE

The data type INTTYPE and LONGTYPE consist of 2 and 4 byte
binary signed 1integer data. Integer data is always stored
in the data and index files as high/low, most significant
byte first, least significant byte last. This storage tech-
nique is independent of the form in which integers are
stored on the System 8000, although there is no difference
between the integer and long formats used by C-ISAM and
their C language counterparts, except that the C-ISAM values
can be placed on non-word boundaries, Four routines are sup-
plied to the user of C-ISAM for the conversion to and from
C-ISAM integer storage format.

ldint (p)

which returns a machine~format integer 1if p 1is a
char pointer to the starting byte of a C-ISAM-format

C-1 Zilog C-1

C-ISAM Zilog C-IsAaM

2 byte integer;

stint (i, p)
which stores a machine-format integer i as a C-
ISAM~-format 2 byte integer at location p where p is
a char pointer to the first byte of a C-ISAM-format
2 byte integer;

ldlong(p)
which returns a machine-format 4 byte integer if p
is a char pointer to the first byte of C-ISAM-format
4 byte integer;

stlong(l, p)
which stores a machine-format integer i as a C-
ISAM-format 4 byte integer at location p where p is
a char pointer to the first byte of a C-ISAM~format
4 byte integer:

The typical use for the above routines is after a C-ISAM
data record has been read into the user buffer. Integer
values which are to be used by the user program first have

to be converted to machine usable format by using ldint()
for type INTTYPE and ldlong() for LONGTYPE. This is shown
below.

int int machine;
long long machine;
char *p cisam_int, *p cisam long;

int_machine = ldint(p_cisam_int);
long _machine = ldlong(p_cisam_long);

Storage of machine-format integer data as C-ISAM-format
integer data requires the use of the stint() and stlong()
routines.

stint(int_machine, p_cisam_int);
stlong(long machine, p cisam long);

Note that the C-ISAM formatted integers need not be aligned
along word boundaries as do machine formatted integers.

C.3. FLOATTYPE and DOUBLETYPE

The Bata type FLOATTYPE and DOUBLETYPE are the two floating

point data types. The data type FLOATTYPE is the same as
the C data type float while the data type DOUBLETYPE is the

c-2 Zilog c-2

C-ISAM zilog C-ISAM

same as the C data type double. There is no difference
between the floating point format used by C-ISAM and its
counterpart in the C language except that C-ISAM floating
point numbers can be placed on non-word boundaries. Four
additional routines have been provided to the C-ISAM user to
retrieve or replace these non-aligned floating point numbers
from their positions in C-ISAM data records.

ldfloat(p)
which returns a machine-format float if p is a char

pointer to the starting byte of a C-ISAM-format
FLOATTYPE;

stfloat(f, p)
which stores a machine-format float £ as a C-ISAM-
format FLOATTYPE at location p where p is a char
pointer to the starting (leftmost) byte of a C-
ISAM-format FLOATTYPE;

1ddbl(p)
which returns a machine-format double if p is a char
pointer to the starting byte of a C-ISAM-format
DOUBLETYPE;

stdbl(d, p)

which stores a machine-format double 4 as a C-I1SAM-
format DOUBLETYPE at location p where p is a char
pointer to the starting (leftmost) byte of a C-
ISAM-format DOUBLETYPE,

The use of the floating point load and store routines 1is
analogous to the use of the integer load and store routines.

c-3 zilog c-3

C-1ISAM

D.l‘

The C-ISAM header file,
for

used

zilog C-ISAM

APPENDIX D
HEADER FILES

The Header File Isam.h

isam.h, contains defines that are
the mode arguments and also definitions of struc-

tures that are used in the functions.

#define
#define
#define
#define
tdefine
#define
#define

fdefine
#define
#define
#define
#define
#define
#define
#define

CHARTYPE 4]

INTTYPE 1

LONGTYPE 2

FLOTYPE 3

DBLTYPE 4

MAXTYPE 5

ISDESC 2009

ISFIRST /] /* position to first record */
ISLAST 1 /* position to last record */
ISNEXT 2 /* position to next record */
ISPREV 3 /* position to previous record */
ISCURR 4 /* position to current record */
ISEQUAL 5 /* position to equal value */
ISGREAT 6 /* position to greater value */
ISGTEQ 7 /* position to >= value * /

/* isread lock modes */

#tdefine

/* isopen, isbuild lock modes

ISLOCK /* lock record before reading

*/

(1<<8)

#define ISAUTOLOCK (3<<8) /* automatic record lock
#define ISMANULOCK (4<<8) /* manual record lock

#define ISEXCLLOCK (5<<8) /* exclusive isam file lock
#define ISINPUT 7] /* open for input only */
#define ISOUTPUT 1 /* open for output only */
$#define ISINOUT 2 /* open for input and output */
/* audit trail mode parameters */

#define AUDSETNAME] /* set new audit trail name * /
#define AUDGETNAME 1 /* get audit trail name */
#define AUDSTART 2 /* start audit trail */
#define AUDSTOP 3 /* stop audit trail */
#define NPARTS 8 /* maximum number of key parts */
struct keypart

D-1 zilog D-1

C~-ISAM

{

int kp_start;
int kp_ leng;

int kp_type;

}s

struct keydesc

int k_flags:

int k_nparts;

struct keypart
k_part[NPARTS];

-
!

#define ISDUPS 091
#define DCOMPRESS 002
#define LCOMPRESS @d4
$define TCOMPRESS @10
#define COMPRESS @16

struct dictinfo
{
int di_nkeys;
int di_recsize;
int di idxsize;
long di_nrecords;

7

Zilog

Zilog

C-IsaM

starting byte of key part
length in bytes
type of key part

flags
number of parts in key

each key part

duplicates allowed
duplicate compression
leading compression
trailing compression
all compression

number of keys defined
data record size

index record size

number of records in file

C-1I

25|
29|
33|
37|

SAM Zilog C-ISAM

APPENDIX E
FILE FORMATS

DICTIONARY FORMAT

te

sets
2 bytes - validation]
value = FE53 |
————————————————————————————— d——-—————————-————_—-—--—-—-—_————-———————-I
1 byte - number of reserved bytes at start of |
index record value = 2 |
____________ - e e e ————————— e e |
1 byte - number of reserved bytes at end of |
index record value = 2 |
_______________________________ > A o e . P > - i - D P 8 o e > e - - T s e |
1l byte - number of reserved bytes per key entry |
includes record number) value = 4 |
......... v it o s o -_..._...._..._.._._....___...__._-...._.__....._-..__-__...____._____I
1 byte - pointer type and length indicator |
value = 4 |
..... e o e 7 o b 0 e |
2 bytes - index file record length (excludes relative |
file flag bytes) value = 511 |
______________________________________ ey
2 bytes - number of keys |
______________________________ gy Sy S S|
2 bytes - flags (see explanation of flags, next page) |
value = ¢]
—————————————————————————————— -b--'—_-—--—-—n-—-.n—‘——r—-.——————————-———————I
1 byte - file version number |
....... e o o e 2 o e e ok e e e e o o e e |
2 bytes - data record length (excludes relative file |
flag bytes) I
___ |
4 bytes - record number of first key 1nformatlon record]
.............................. gy M SR
6 bytes - reserved for future use |
_______________________________ g S S
4 bytes - record number of first data free space record |
............................... L TSR ———
4 bytes - record number of first index free space record]
............................... gy |
4 bytes - record number of last record on data file |
------------------------------- 4‘-‘—'—-_—_-—‘-—_,-.4.-.--‘~————-‘-_—-—_-‘_‘-|

Zilog - E-1

C-ISAM Zilog C-ISAM

| 4 bytes - record number of last record on index file

Q] =~ e e e e ——————
| 4 bytes - transaction number

45| mm e e e - e
| 4 bytes - unique id

e I T e e e D

—————— —— - — D T W P D W N T ED WD A R D N NER S P M e e e S W W T A D W o™ - - D D AN AN s um = am -

E-2 Zilog E-2

C-ISAM Zilog : C-ISAM

KEYDESCRIPTION FORMAT

Byte
Offsets
]
| 2 bytes - number of bytes used in this node |
| I
 J [S SRR |
| 4 bytes - record number of continuation record |
| l
6 | o= e |
| 2 bytes - length of description |
I |
8 e e |
[4 bytes - address of root node |
[:) |
12 |wmmmm e e e ————————— e ————————— |
| 1 byte - compression flaga : |
| |
13 |- e e e |
| 2 bytes - length of key part 1 (top bit = dups) I)
I _ =)
15 |==—m———- e - e e e ————— |) re-
| 2 bytes - position |) peats
! |) for
17 | e e e e e |) each
| 1l byte - type (0 = alphanumerlc) |) part
I)
BPQ == e e e oo
| 1 byte - flag |
| value = FF |
510 | ===—=mm e e e —— - — - |

| 1 byte - end of record flag - indicates record type |
| high bit is used for security value = 7E |

- —— - T W D D M D D h WD D N S W T NS D D R D e R W N AL AP D Geh i W T . W W D S WD A B

E-3 Zilog E-3

C-ISAM Zilog

TREENODE FORMAT

C-ISAM

Byte
Of fsets
]
| 2 bytes - number of bytes used in this node
I
I B !
| 1l byte - count of leading bytes
I
e !
| 1 byte - count of trailing blanks
|
A | mmmm e e e |
| N bytes - key
I
44N | = e e e e e e e |
| 2 bytes - if needed for duplicates
|
6+N| -=-====m e ittt |
| 4 bytes - p01nter (top bit may be used as a
| duplicates flag)
59 = e e e -
| 1 byte - 1ndex tree number (this is always the
| second to the last byte in the node)]
R it e D L L |

| 1 byte - level in tree (ﬂ = leaf
| always the last byte in

node) (this is
the node)

——— . — D - " o) S TN D D A - —— AT

E-4 Zilog

N N et N Nt el P N ot el e el e s

re-
peats
for
each
part

Zilog C-ISAM

FREELIST FORMAT

number of bytes used in this node |

. . — ;WO =P W - —. MR A e > - S P D TE M e A A R NS A A e . - - W ———— — — - - ——

C-ISAM
Byte
Offsets
2

2 bytes
2

4 bytes
6

N bytes
509

1 byte
510}

1 byte
E-5

FF indicates a free list for data file |
FE indicates a free list for index file]

end of record flag - indicates record typel
high bit is used for security value = 7F|

Zilog E-5

C-ISAM

Byte
Offsets

0

Zilog

AUDITTRAIL NODE FORMAT

C-ISAM

2 bytes - number of bytes used in this node

2 bytes - flags # = audit trail is on
= audit trail is off

1l byte - end of record flag - indicates record
high bit is used for security value

typel
= 7D]

- —— . - - - YR o A L S W . - — - - - —— - - - -

23]
|
(o)}

Zilog

Screen Updating and Cursor Movement Optimization:
A Library Package *

* This information is based on an article originally written
by Kenneth C. R. C. Arnold

CURSES

ii

Zilog

Zilog

CURSES

ii

CURSES Zilog CURSES

Preface

This document describes a package of C library functions
which allow the user to:

(1)
(2)

(3)

update a screen with reasonable optimization,

get input from the terminal in a screen-oriented
fashion, and

independent from the above, move the cursor optimally
from one point to another.

These routines all use the /etc/termcap database to describe
the capabilities of the terminal.

iii

Zilog iii

CURSES

iv

Zilog

Zilog

CURSES

iv

CURSES 71ilog

Table of Contents

SECTION 1 SCREEN PACKAGEcto000s0

1.1. USAQQEe cevcrvvrrecenocsonsooans

Conventions ...ceoveeooses
Terminal Environment
Screen Initialization ...
Screen Scrolling
Screen Updatingceee.
Screen Input «..csieeoveen
Exit Processing
Internal Description

. o o - .
. .
¢ o s @

e e
- . .

el
OO d wWwN

SECTION 2 CURSES FUNCTIONS ..t cceooes
APPENDIX A EXAMPLE A ... ¢¢cecceeacsans
A.l. Variables Set By setterm() ...

A.2. Variables Set By gettmode() ..

APPENDIXB EXAMPLEBQCOOOO....O'OO.YO

v Zilog

.1.1. Updating the Screeén

CURSES

e e e 2 e R e
[
COUTUITUIA D WN N

[\8)
|
b

A-1
A=-2

CURSES Zilog CURSES

SECTION 1
SCREEN PACKAGE

With this package the C programmer can do the most common
type of terminal dependent functions; that is, movement
optimization and optimal screen updating.

The package is split into three parts: (1) Screen updating;
(2) Screen wupdating with user input; and (3) Cursor motion
optimization.

Screen updating and input can be done without using any pro-
grammer knowledge of motion optimization or the database
itself. The motion optimization can be used without either
of the other two.

In this document, the following terminology is used:

window: An internal representation containing any image
of what a section of the terminal screen can look like
at some point in time. This subsection can encompass
the entire terminal screen or any smaller portion down
to a single character within that screen.

terminal: Also called terminal screen, the current
image on the terminal's screen.

screen: A subset of windows as large as the terminal
screen. One of these, stdscr, is automatically pro-
vided for the programmer.
l1.1. Usage
In order to use the library, it is necessary to have certain
types and variables defined. Therefore, the programmer must
have:
#include <curses.h>
at the top of the source program. The header file
<curses.h> includes <sgtty.h> and <stdio.h>. It is redun-
dant (but harmless) for the programmer to define them again
in the source program.

Compilations must have the following form:

cc [flags] file ... -lcurses ~-ltermlib

1-1 zilog 1-1

CURSES Zilog CURSES

1.1.1. Updating the Screen: A data structure (WINDOW)
describes a window image to the routines, including its
starting position on the screen (the y, x of the upper left
hand corner) and its size. One of these structures, called
curscr (current screen), is a screen 1image of what is
currently on the screen. Another structure, stdscr (stan-
dard screen) is provided by default for making changes.

A window is a purely internal representation. It is used to
build and store a potential image of a portion of the termi-
nal screen. It doesn't bear any necessary relation to what
is really on the terminal screen. It is more like an array
of characters on which to make changes.

When a window describes what a part of a terminal should
look 1like, the routine refresh() (or wrefresh()) makes the
terminal, in the area covered by the window, look like that
window. Changing something on a window does not change the
terminal. Actual updates to the terminal screen are made
only by calling refresh() or wrefresh(). This allows the
programmer to maintain several different ideas of how a por-
tion of the terminal screen should look. Also, changes can
be made to windows in any order, without regard to motion
efficiency. Then, at will, the programmer can effectively
say "make it look like this" and the package takes the best
way to do it.

The routines can use several windows, but two are automati-
cally given: curscr knows what the terminal looks like, and
stdscr knows what the programmer wants the terminal to 1look
like next. The user never accesses curscr directly.
Changes are made to the appropriate screen, and then the
routine refresh() (or wrefresh()) is called.

1.1.2. Conventions: Many functions are set up to deal with
stdscr as a default screen. For example, to add a character
to stdscr, call addch() with the desired character. If a
different window is to be used, the routine waddch() (for
window-specific addch()) is provided. The routine addch()
is a "#define" macro with arguments using sgtdscr as a
default. The convention of prepending function names with a
"w" when applied to specific windows is consistent. The
only routines that do not adhere to this convention are when
a window must be specified.

To move the current (y, x) from one point to another, the
routines move() and wmove() are provided. However, it is
often desirable to first move and then perform the 1I/0
operation. Most I/O routine names can be preceded by the

1-2 zilog 1-2

CURSES Zilog CURSES

prefix "mv" and the desired (y, x) coordinates are added to
the function arguments. For example, the calls

move(y, X);
addch(ch);

can be replaced by
mvaddch(y, x, ch);
and

wmove(win, y ,x);
waddch(win, ch);

can be replaced by
mvwaddch(win,y ,x ,ch);

Note the window description pointer, win, comes before the
added (y, x) coordinates. If win polinters are needed, they
are always the first parameters passed.

1.1.3. Terminal Environment: Many variables to describe
the terminal environment are available to the programmer.
They are:

Type Name Description

WINDOW *curscr current version of the
screen (terminal screen)

WINDOW *stdscr standard screen; most
updates are usually done here

char *Def term default terminal type if
type cannot be determined

bool My term use the terminal specifications
in Def term as terminal,
irrelevant of real terminal type

char *ttytype full name of current terminal
int LINES number of lines on the terminal
int COLS number of columns on the terminal

1-3 zilog 1-3

CURSES 7ilog CURSES

int ERR error flag returned by routines
on a fail

int OK error flag returned by routines
when successful

There are also several "#define" constants and types which
are useful:

reg storage class "register" (for example,
reg int;)
bool boolean type, actually a "char"

(for example, bool doneit;)

TRUE boolean "true" flag (1)

FALSE boolean "false" flag (0@)

1.1.4. Screen Initialization: To use the screenv,package,
the routines must know about terminal characteristics and

the space for curscr and stdscr must be allocated. These
functions are performed by initscr(). Since it must allo-
cate space for the windows, it can overflow core when

attempting to do so. When this occurs, initscr() returns
ERR. The routine initscr() must be called before any rou-
tines which affect windows are used. If not, the program
will core dump as soon as either curscr or stdscr are refer-
enced. Terminal status changing routines, like nl() and
crmode(), should be called after initsecr().

1.1.5. Screen Scrolling: When the screen windows have been
allocated, they can be set up for the run. To allow the
window to scroll, use scrollok(). For the cursor to be left
after the 1last change, use leaveok(). Otherwise, refresh
moves the cursor to the window's current (y, x) coordinates
after wupdating it. New windows are created by newwin() and
subwin(). The routine delwin() gets rid of old windows. To
change the official size of the terminal by hand, set the
variables LINES and COLS, and then call initscr(). This is
best done before the first call to initscr(), but can be
done after, as initscr() deletes any existing stdscr and/or
curscr before creatling new ones.

1-4 zilog 1-4

CURSES Zilog CURSES

1.1.6. Screen Updating: The basic functions to change what
goes on a window are addch() and move(). The routine
addch() adds a character at the current (y, Xx) coordinates
returning ERR if it would cause the window to scroll ille-
gally (print a character in the lower right hand corner of a
terminal which automatically scrolls if scrolling is not
allowed).

The routine move() changes the current (y, x) coordinates.
If move() causes the new coordinates to move off the window
when scrolling is not allowed, ERR is returned. As men-
tioned in section 1.1.2, the two <can be combine into
mvaddch() to do both in one function call.

The other output functions, such as addstr() and printw(),
call addch() to add characters to the window.

After the window is modified as desired, call refresh() to
display it. To optimize finding changes, refresh() assumes
that any part of the window not changed since the last
refresh of that window has not been changed on the terminal;
that 1s, a portion of the terminal has not been refreshed
with an overlapping window. Otherwise, the routine
touchwin() is provided to cause the entire window to Dbe
changed, making refresh() check the whole subsection of the
terminal for changes.

I1f wrefresh() is called with curscr, the current screen 1is
displayed. This is useful for implementing a command to
redraw the screen if necessary.

1.1.7. Screen Input: Input is essentially a mirror image
of output. The complementary function to addch() is getch()
which, if echo is set, calls addch() to echo the entire
character. If the terminal is not in raw or cbreak mode,
getch() sets it to cbreak, and reads in the character.

1.1.8. Exit Processing: To do certain optimizations, some
things must be done Dbefore the screen routines start up.
These functions are performed in gettmode() and setterm(),
which are called by initscr(). The routine endwin() cleans
up after the routines. It restores the terminal modes to
what they were when initscr was first called. Thus, anytime
after the call to initscr(), endwin() must be called before
exiting.

1-5 Zilog 1-5

CURSES Zilog CURSES

1.1.9. Internal Description: The cursor optimization func-
tions of this screen package can be used without the over-
head and additional size of the screen updating functions.
The screen updating functions are used where parts of the
screen are changed but the overall image remains the same.
Graphics programs, designed to run on character-oriented
terminals find it difficult to use these functions without
considerable unnecessary program overhead. A certain amount
of familiarity with programming problems and some finer
points of C is assumed to understand the following descrip-
tion of the happenings at the lower levels.

The /etc/termcap database describes a terminal's features,
but a certain amount of decoding is necessary. The algo-
rithm used is from vi. It reads the terminal capabilities
from /etc/termcap “in a tight loop into a set of variables
whose names are two uppercase letters with some mnemonic
value. For example, HO is a string which moves the cursor
to the "home" position. See Appendix A for a complete 1list
of those capabilities read and termcap (5) for a full
description.

There are two routines to handle terminal setup in
initsecr(). The first, gettmode, sets some variables based

upon the terminal modes accessed by tt and stty (see
ioctl(2)). The second, setterm(), reads in the descriptions
from the /etc/termcap database. The following example shows
how these routines are used.

%f (isatty(@))

gettmode();
if (sp=getenv("TERM"))
setterm(sp);

}

else
setterm(Def term);
_puts(TI);
“puts(Vs);
isatty() determines if file descriptor @ is a terminal. It

does ‘a qttz on the descriptor and checks the return value.
gettmode(b then sets the terminal modes from a gtty call.
The routine getenv() is then called to get the name of the
terminal. A polnter to a string containing the terminal
name 1is returned, which is saved in the character pointer
sp, and is passed to setterm(). The routine setterm() then
reads in the capabilities associated with that terminal from
/etc/termcap.

1-6 zilog 1-6

CURSES Zilog CURSES

If isattz() returns false, the default terminal Def term 1is
used. The TI and VS sequences initialize the terminal by
calling puts; this macro uses tputs() (see termlib (3)) to
put out a string. The routine endwin() undoes the previous
operations.

The most difficult thing to do properly is motion optimiza-
tion. When considering how many different features various
terminals have (tabs, backtabs, non-destructive space, home
sequences, absolute tabs, ...) it can be a decidedly non-
trivial task to decide how to get from here to there. The
editor vi uses many of these features and the routines it
uses take up many pages of code. Fortunately, these rou-
tines are available here.

After using gettmode() and setterm() to get the terminal
descriptions, the function mvcur() deals with this task.
Its usage is simple: tell it where it is now and where to
go. For example:

mvcur (@, @, LINES/2, COLS/2)

moves the cursor from the home position (@, @) to the middle
of the screen. To force absolute addressing, use the func-
tion tgoto() from the termlib(3) routines or notify mvcur()
that the cursor is positioned elsewhere. For example, to
absolutely address the lower left hand corner of the screen
from anywhere, 3just c¢laim to Dbe in the upper right hand
corner:

mvcur (@, coL$s-1, LINES-1, @)

1~7 zilog 1-7

CURSES Zilog CURSES

SECTION 2
CURSES FUNCTIONS

In the following definitions, "[*]" means that the function
is really a "“$#define” macro with arguments (found in
/usr/include/curses.h). This means it does not show up in

stack traces 1in the debugger or, in the case of such func-
tions as addch(), it shows up as its "w" counterpart. The
arguments are given to show the order and type.

addch(ch) [*]
char ch;

waddch(win, ch)
WINDOW *win;
char ch:

adds the character ch on the window at the current (y, x)
coordinates. If the character is a newline ('\n') and new-
line mapping is on, the line is cleared to the end and the
current (y, x) coordinate is changed to the beginning of the
next line. If newline mapping is off, the line 1is cleared
to the end and the coordinate is changed. A return ('\r')
moves to the beginning of the 1line on the window. Tabs
('\t') are expanded into spaces in the normal tabstop posi-
tions of every eight characters. This returns ERR if it
would cause the screen to scroll illegally.

addstr(str) [*]
char *str;

waddrstr(win, str)
WINDOW *win;
char *str;

adds the string, str, on the window at the current (y, x)
coordinates. This returns ERR if it would cause the screen
to scroll illegally. In this case, addstr puts on as much
as it can.

box(win, vert, hor)
WINDOW *win;
char vert, how:

draws a box around the window using vert as the character

2-1 zilog 2-1

CURSES Zilog CURSES

for drawing the vertical sides, and hor for drawing the hor-
izontal lines. If scrolling is not allowed and the window
encompasses the lower right hand corner of the terminal, the
corners are left blank to avoid a scroll.

clear() [*]

wclear(win)
WINDOW *win;

resets the entire window to blanks. If win is a screen,
this sets the clear flag which causes a clear-screen
sequence to be sent on the next refresh call. This also
moves the current (y, x) coordinates to (9, @).

clearok(scr, boolf) [*]
WINDOW *scr;
bool boolf:

sets the clear flag for the screen scr. If boolf is TRUE,
this forces a clear-screen to be printed on the next
refresh, or stops it from doing so if boolf is FALSE. This
only works on screens, and, unlike clear, does not alter the
contents of the screen. If scr is curscr, the next refresh
call causes a clear-screen even if the window passed to
refresh is not a screen.

clrtobot() [*]

welrtobot(win)
WINDOW *win;

clears the window from the current (y, x) coordinates to the
bottom. This does not force a clear-screen sequence on the
next refresh. There is no associated "mv" command.

clrtoeol() [*]

wclrtoeol (win)
WINDOW *win:

clears the window from the current (y, x) coordinates to the
end of the line. There is no associated "mv" command.

2-2 Zilog 2-2

CURSES Zilog CURSES

crmode() [*]
nocrmode() [*]

sets or unsets the terminal to/from cbreak mode.

delch()

wdelch(win)
WINDOW *win;

deletes the character at the current (y, x) coordinates.
Each character after it on the line shifts to the left, and
the last character becomes blank.

deleteln()

wdeleteln(win)
WINDOW *win;

deletes the current line. Every line below the current one
will move up, and the bottom line becomes blank. The
current (y, x) coordinates remain unchanged.

delwin(win)
WINDOW *win;

deletes the window from existence. All resources are freed
for future use by calloc (see malloc(3)). If a window has a
subwin() allocated window inside it, and the outer window is
deleted, the subwindow is not affected even though this does
invalidate it. Therefore, subwindows must be deleted before
their outer windows are.

echo() [*]

noécho() [*]

sets the terminal to echo or not echo characters.

endwin()

finishes up window routines before exits and restores the
terminal to the state it was before initscr() (or gettmode()
and setterm()) was called. It should always be called
before exiting. This 1is especially useful for resetting

2-3 Zilog 2-3

CURSES Zilog CURSES

terminal status when trapping rubouts via signal(2).

erase() [*]

werase(win)
WINDOW *win;

erases the window to blanks without setting the clear flag.
This 1is analogous to clear(), except that it never causes a
clear-screen sequence to be generated on a refresh(). There
is no associated "mv" command.

getch() [*]

wgetch(win)
WINDOW *win:

gets a character from the terminal and (if necessary) echos
it on the window. This returns ERR if it would cause the
screen to scroll illegally. Otherwise, the character is
returned. If noecho is set, the window is left unaltered.
In order to retain control of the terminal, it is necessary
to have noecho, c¢break, or rawmode set. If not, whatever
routine called to read characters sets cbreak mode and
resets to the original mode when finished.

getstr(str) [*]
char *str;

wgetstr(win, str)
WINDOW *win;
char *str;

gets a string from the window and put it in the location
pointed to by str. It sets terminal modes if necessary, and
calls getch (or wgetch(win)) to get the characters needed to
fill 1in the string until a newline or EOF is encountered.
The newline is stripped off the string. This returns ERR if
it would cause the screen to scroll illegally.

gettmode()
gets the terminal modes. This 1is normally called by
initscr.

getyx(win, y, x) [*]

2-4 zilog 2-4

CURSES zilog CURSES

WINDOW *wing;
int Y X3

puts the current (y, x) coordinates of win in the variables
y and Xx. Since it is a macro, not a function, the address
of y and x is not passed.

inch() [*]

winch(win) [*]
WINDOW *win;

returns the character at the current (y, x) coordinates 1in
the given window. This does not make any changes to the
window. There is no associated "mv" command.

initser()

initializes the screen routines. This must be called before
any screen routines are used. It initializes the terminal-
type data and without it, none of the routines can operate.
If standard input is not a terminal, it sets the specifica-
tions to the terminal whose name is pointed to by Def term
(initially "dumb"). If the Boolean My term is true,
Def term is always used.

insch(c)
char c¢:

winsch(win, c¢)
WINDOW *win;

inserts ¢ at the current (y, x) coordinates. Each character
is shifted to the right and the last character disappears.
This returns ERR if it would cause the screen to scroll
illegally.

insertln()

winsertln(win)
WINDOW *win;

inserts a line above the current one. Every line below the
current line is shifted down, and the bottom line disap-
pears. The current line becomes blank, and the current (y,
X) coordinates remain unchanged. This returns ERR if it
would cause the screen to scroll illegally.

2-5 Zilog 2-5

CURSES Zilog CURSES

leaveok(win, boolf) [*]
WINDOW *win;:
bool boolf:

sets the Boolean flag for leaving the cursor after the last
change. If boolfdf is TRUE, the cursor is left after the
last update on the terminal, and the current (y, Xx) coordi-
nates for win are changed accordingly. If FALSE, the cursor
is moved to the current (y, x) coordinates. This flag (ini-
tially FALSE) retains it value until changed by the user.

longname (termbuf, name)
char *termbuf, *name:

fills in name with the full name of the terminal described
by the termcap entry in termbuf. This is available in the
global variable ttytype. Termbuf is wusually set via the
termlib routine tgetent().

move(y, x) [*]
int y, x:

wmove(win, y, x)
WINDOW “*win;
int vy, Xx;

changes the current (y, x) coordinates of the window to (y,
5). This returns ERR if it would cause the screen to scroll
illegally.

mvcur(lasty, lastx, newy, newx)
int lasty, lastx, newy, hewx;

moves the terminal's cursor f from (lasty, lastx) to (newy,
newx) in an approximation of optimal fashion. It is possi-
ble to use this optimization without the benefit of the
screen routines. With the screen routines, this should not
be called by the user. Move and refresh should be used to
move the cursor position, so that the routines are aware of
the movement. This routine uses the functions borrowed from
the ex editor.

mvwin(win, y, x)
WINDOW *win;
int y" X

moves the home position of the window win from its current

2-6 Zilog 2-%

CURSES Zilog CURSES

starting coordinates to (y, x). If that would put part or
all of the window off the edge of the terminal screen,
mvwin() returns ERR and does not change anything.

nl() [*]
nonl() [*]

sets or unsets the terminal to/from nl mode, i.e.,
start/stop the system from mapping <RETURN> to <LINE-FEED>.
If the mapping is not done, refresh can do more optimiza-

tion, so it 1is recommended, but not required, to turn it
off.

overlay(winl, win2)
WINDOW *winl, *win2;

overlays winl on win2. The contents of winl, (as much as
will fit), are placed on win2 at their starting (y, x) coor-
dinates. This is done non-destructively, i.e., blanks on

winl leave the contents of the space on win2 untouched.

overwrite(winl, win?2)
WINDOW *winl, *win2;

overwrites winl on win2. The contents of winl, (as much as
will fit), are placed on win2 at their starting (y, x) coor-
dinates. This is done destructively (blanks on winl become
blank on win2). ‘

printw(fmt, argl, arg2, ...)
char *fmt;

wprintw(win, fmt, argl, arg2, ...)
WINDOW *win;
char *fmt;

performs a printf on the window starting at the current (y,
x) coordinates. It uses addstr to add the string on the
window. It is often advisable to use the field width
options of printf to avoid leaving things on the window from
earlier calls. This returns ERR if it would cause the
screen to scroll illegally.

2-7 zilog 2-7

CURSES Zilog CURSES

CURSES Zilog CURSES

WINDOW *

newwin{lines, cols, begin vy, begin_x)
int lines, cols, begin y, begin_x;

creates a new window with lines 1lines and c¢ols columns
starting at position (begin y, begin x). If either lines or
cols is @ (zero), that dimension is set to (LINES - begin y)
or (COLS - begin x) respectively. Thus, to get a new window
of dimension LINES x COLS, use newwin(@, 9, @, 9).

WINDOW *

subwin(win, lines, cols, begin_y, begin_ x)
subwin(win, lines, cols, begin y, begin Xx)
WINDOW *win; - -
int lines, cols, begin__y, begin_ x:

creates a new window with lines 1lines and c¢ols c¢olumns
starting at position (begin y, begin_x) in the middle of the
window win. Any change made to either window in the area
covered by the subwindow is made to both windows. The coor-
dinates begin y,begin x are specified relative to the
overall screen, not the relative (@, @) of win. If either
lines or col is @ (zero), that dimension is set to (LINES -
begin_y) or (COLS - begin x) respectively.

CURSES Zilog CURSES

APPENPIX A
EXAMPLE A

The following is only a summary of the capabilities. For a
full description of terminals, see termcap(5).

Capabilities from termcap are of three kinds: string valued
options, numeric wvalued option, and Boolean options. The
string valued options are the most complicated, since they
can include padding information.

Intelligent terminals often reguire padding on intelligent
operations at high (and sometimes even low) speed. This is
specified by a number before the string in the capability,
and has meaning for the capabilities which have a P at the
front of their comment. This is normally a number of mil-
liseconds to pad the operation. In the current system,
which has no true programmable delays, we do this by sending
a sequence of pad characters (normally nulls, but can be
changed (specified by PC)). In some cases, the pad is
better computed as some number of milliseconds times the
number. of affected lines (to the bottom of the screen except
when terminals have insert modes which will shift several
lines). This is specified as, e.g. "12*", before the capa-
bility, to say 12 milliseconds per line. Capabilities where
this makes sense have "P*" designated.

A.1l. Variables Set By setterm()

Type Name Pad Description

char * AL - p* Add new blank Line
bool AM Automatic Margins
char * BC Back Cursor movement
bool BS BackSpace works

char * BT P Back Tab

bool CA Cursor Addressable
char * CD p* Clear to end of Display
char * CE P Clear to End of 1line
char * CL p* Clear screen

char * CM P Cursor Motion

char * DC p* Delete Character
char * DL p* Delete Line sequence
char * DM Delete Mode (enter)
char * DO DOwn line sequence

A-1 Zilog A-1

CURSES Zilog CURSES

Type NMame Pad Description

char * ED End Delete mode

bool EO can Erase Overstrikes with ' '

char * EI End Insert mode

char * HO HOme cursor

bool HZ HaZeltine ~ braindamage

char * IC P Insert Character

bool IN Insert-Null blessing

char * IM enter Insert Mode (IC usually set, too)
char * Ip p* Pad after char Inserted using IM+IE
char * LL quick to Last Line, column @

char * MA ctrl character MAp for cmd mode
bool MI can Move in Insert mode

bool NC No Cr: \r sends \r then eats @

char * ND Non-Destructive space

bool 0s OverStrike works

char PC Pad Character

char * SE Standout End (may leave space)

char * SF P Scroll Forwards

char * S0 Stand Out begin (may leave space)
char * SR P Scroll in Reverse

char * TA P TAb (not I or with padding)

char * TE Terminal address enable Ending sequence
char * T1 Terminal address enable Initialization
char * uc Underline a single Character

char * UE Underline Ending sequence

bool UL Underlining works even though !0S
char * up UPline

char * us Underline Starting sequence

char * VB Visible Bell

char * VE Visual End sequence

char * VS Visual Start sequence

bool XN a Newline gets eaten after wrap

A.2. Variables Set By gettmode()

Type Name Description
bool NONL Term can't hack linefeeds doing a CR
bool °~ GT Gtty indicates Tabs

bool UPPERCASE Terminal generates only uppercase letters

If US and UE do not exist in the termcap entry, they are
copied from SO and SE in setterm(). Names starting with X
are reserved for unusual circumstances.

A-2 Zilog A-2

CURSES Zilog CURSES

APPENDIX B
EXAMPLE B

The WINDOW structure is defined as follows:

define WINDOW struct _win_st

struct winst f
short _cury,_curx;
short _maxy,_ maxx;
short _begy, begx:
short flags;
bool “clear;
bool _leave:
bool scroll;
char ** y;
short * firstch;
short *"lastch;

}:

cury and curx are the current (y, x) coordinates for the
window. New characters added - to the screen are added at
this point. ‘

maxy and maxx are the maximum values allowed for (cury,
curx).

begy and _begx are the starting (y, x) coordinates on the
terminal for the window, that is, the window's home.

Note that cury, curx, maxy and maxx are measured rela-
tive to (begy, begx), not the terminal's home.

flags can have one or more of the following values "or'd"
into 1t.

#define -SUBWIN 21
#define _ENDLINE a2
#define FULLWIN 24
#define TSCROLLWIN a10
$define —=STANDOUT 0200

SUBWIN means that the window is a subwindow, which indi-
cates to delwin() that the space for the lines is not to be
freed.

B-1 Zilog B-1

CURSES Zilog CURSES

ENDLINE says that the space for the 1lines 1is not to be
freed. _FULLWIN says that this window is a screen.

SCROLLWIN indicates that the last character of this screen
is at the lower right-hand corner of the terminal; that is,
if a character is put there, the terminal will scroll.

STANDOUT says that all characters added to the screen are
in standout mode.

clear tells if a clear-screen sequence is to be generated
on the next refresh() call. This is only meaningful for
screens. The initial clear-screen for the first refresh()
call 1is generated by initially setting clear to be TRUE for
cursor, which always generates a clear-screen 1if set,
irrelevant of the dimensions of the window involved.

leave is TRUE if the current (y, x) coordinates and the
cursor are to be left after the last character changed on
the terminal, or not moved if there is no change.

scroll is TRUE if scrolling is allowed.

_y is a pointer to an array of lines which describe the ter-
minal. Thus:

_ylil
is a pointer to the ith line.
firstch represents the first character position in a 1line
fo be changed during a refresh(). This position is stored
in . —
_firstch[i]
for the ith line.

_lastch represents the last character position in a line to
be changed during a refresh(). This position is stored in

_lastch[i]

for the ith line.

B-2 Zilog B-2

CURSES zilog CURSES

starting coordinates to (y, x). If that would put part or
all of the window off the edge of the terminal screen,
mvwin() returns ERR and does not change anything.

nl() [*]
nonl() [*]

sets or unsets the terminal to/from nl mode, i.e.,
start/stop the system from mapping <RETURN> to <LINE-FEED>.
If the mapping is not done, refresh can do more optimiza-

tion, so it 1is recommended, but not required, to turn it
off.

overlay(winl, win2)
WINDOW *winl, *win2;

overlays winl on win2. The contents of winl, (as much as
will fit), are placed on win2 at their starting (y, x) coor-
dinates. This is done non-destructively, i.e., Dblanks on
winl leave the contents of the space on win2 untouched.

overwrite(winl, win2)
WINDOW *winl, *win2;

overwrites winl on win2. The contents of winl, (as much as
will fit), are placed on win2 at their starting (y, x) coor-
dinates. This is done destructively (blanks on winl become
blank on win2).

printw(fmt, argl, arg2, ...)
char *fmt;

wprintw(win, fmt, argl, arg2, ...)
WINDOW *win;
char *fmt;

performs a printf on the window starting at the current (y,
X) coordinates. It uses addstr to add the string on the
window. It is often advisable to use the field width
options of printf to avoid leaving things on the window from
earlier calls. This returns ERR if it would cause the
screen to scroll illegally.

2-7 zilog 2-7

CURSES Zilog CURSES

raw() [*]
noraw() [*]

sets or unsets the terminal to/from raw mode. This also
turns off newline mapping (see nl()).

refresh() [*]

wfresh(win)
WINDOW *win;

synchronizes the terminal screen with the desired window.
If the window is not a screen, only the part covered is
updated. This returns ERR if it would cause the screen to
scroll illegally. 1In this case, it updates whatever it can
without causing the scroll.

savetty() [*]
resetty() [*]

savetty() saves the current terminal characteristic flags.
resetty() restores the flags to what savetty() stored.
These functions are performed automatically by initscr() and
endwin().

scanw(fmt, argl, arg2, ...)
char *fmt;

wscanw(win, fmt, argl, arg2, ...)
WINDOW *win;
char *fmt;

performs a scanf from the window using fmt. It does this
using consecutive getch()'s (or wgetch(win)'s). This

returns ERR if it would cause the screen to scroll ille-
gally.

scroll(win)
WINDOW *win;
scrolls the window upward one line. This is normally not

used by the user.

scrollok(win, boolf) [*]

2-8 Z2ilog 2-8

CURSES Zilog ' CURSES

WINDOW *win;
bool boolf:

sets the scroll flag for the given window. If boolf is
FALSE, scrolling is not allowed. This is its default set-
ting.

setterm(name)
char *name;

sets the terminal characteristics to be those of the termi-
nal named name. This is normally called by initscr().

standout() [*]

wstandout (win)
WINDOW *win;

standend() [*]

wstandend(win)
WINDOW *win;

starts and stops putting characters onto win in standout
mode. The routine standout() causes any characters added to
the window to be put in standout mode on the terminal (if it
has that capability) and standend() stops this. The
sequences SO and SE (or US and UE if they are not defined)
are used (see Appendix A). T

touchwin(win)
WINDOW *win:

makes it appear that every location on the window has been
changed. This is usually only needed for refreshes with
overlapping windows.

2-9 7ilog 2-9

CURSES Zilog CURSES

WINDOW *

newwin(lines, cols, begin y, begin_x)
int lines, cols, begin_y, begin_x;

creates a new window with 1lines 1lines and c¢ols columns
starting at position (begin y, begin x). If either lines or
cols is @ (zero), that dimension is set to (LINES - begin y)
or (COLS - begin x) respectively. Thus, to get a new window
of dimension LINES x COLS, use newwin(@, @, @, 0).

WINDOW *

subwin(win, lines, cols, begin_y, begin_x)
subwin(win, lines, cols, begin y, begin x)
WINDOW *win; - -
int lines, cols, begin__y, begin__ x;

creates a new window with lines 1lines and c¢ols columns
starting at position (begin y, begin_x) in the middle of the
window win. Any change made to either window in the area
covered by the subwindow is made to both windows. The coor-
dinates begin y,begin x are specified relative to the
overall screen, not the relative (@, @) of win. If either
lines 6r col is @ (zero), that dimension is set to (LINES -
begin_y) or (COLS - begin_x) respectively.

2-10 Zilog 2~10

LEX
A LEXICAL ANALYZER GENERATOR *

USER GUIDE

* This information is based on an article originally written by
M. E. Lesk and E. Schmidt, Bell Laboratories.

LEX Zilog LEX

ii Zilog ii

LEX Zilog LEX

Preface

This document is a reference manual for Lex, a 1lexical
analyzer generator that accepts string matching specifica-
tions and produces a program in a general-purpose language.
The reader 1is assumed to have some experience with Lex
before using this document.

Sections 1-6 give an introduction to Lex and describe its
internal rules. Hints for compiling Lex appear in Section
7. Section 8 describes the interface between Lex and Yacc
(yet another compiler-compiler). Examples of Lex are shown
in Section 9, and Section 10 gives ways to define different
Lex environments. Sections 11-13 summarize the Lex charac-
ter set, source format, and cautions.

iii Zilog iii

LEX

iv

Zilog

Zilog

LEX

iv

LEX Zilog

Table of Contents

SECTION 1 INTRODUCTION ...ccecoves

SECTION 2 LEX SOURCE ...ccceveesse

SECTION 3 LEX REGULAR EXPRESSIONS

.7. Alternation and Grouping

SECTION 4 LEX ACTIONSccc000

. Introduction ...eeccecese
. Regular Routinesc0.,
. Input/Output Routines ...
. Library Routines ...cc¢e.s

SECTION 5 AMBIGUOUS SOURCE RULES

SECTION 6 LEX SOURCE DEFINITIONS

\Y Zilog

®© 0 0 8 0000000000000 00
® 060 5 0000000000000 000

® 9 06 0000000 00600000000

o INtroduction ...eecereesccsessscccsssorcsccnses
e OperatorS coeecesesocososscsoscsoscscsnsansosasces
. Character ClaSSeS cecesecoerocsscsssssassscscas
. Arbitrary Character .eiceceesecscecccccecccancs
. Optional EXpressionNsS c.ceececcccscescccsscscsscns
. Repeated EXpPresSSioNS eceeeecccceccescsscsscccncss

® 6 0 00 0000600000000 09000

® o 0000000000 000

0600000 0000900

® 5 0600060000000

®© 0 060000000 0000

® 00 00600000000

®© 80 690060000000

Context Rec()gnition ® O & & 6 0 0 6 6 00O BSOS P e s e 0 s
. Repetitions and Definitions
J. Segment SepPArator eesesccccsosscsoscsccsssossscss

© ® 0 4 0 00000 0090000000

* o 0 e

.

o o0 e

LEX

1-1

w
I
=

WWwwwwwwwww
|
VO WWWN -

LEX Zilog LEX

or more ..."; the $ indicates "end of line." No action is
specified, so the program generated by Lex (yylex) ignores
these characters. Everything else is copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
[\t1+$;
[\t]l+ printf("™ ");

This source scans for both rules at once and executes the
desired rule action. The first rule matches all strings of
blanks or tabs at the end of 1lines, and the second rule
matches all remaining strings of blanks or tabs.

Lex can be used alone for simple transformations, or for
analysis and statistics gathering on a lexical level. Addi-
tional programs can be added easily to programs written by
Lex. Lex <can also be used with a parser generator such as
Yacc to perform the lexical analysis phase. When used as a
preprocessor for a later parser generator, Lex partitions
the input stream, and the parser generator assigns structure
to the resulting pieces. The flow of contrcl in such a case
(which might be the first half of a compiler, for example)
is shown below

lexical grammar
rules rules
(Lex) (Yacc)
Input -> yylex -> yyparse -> Parsed input

Yacc users realize that the name yylex is what Yacc expects
its lexical analyzer to be named, so the use of this name by
Lex simplifies interfacing.

The time a Lex program takes to recognize and partition an
input stream 1is proportional to the length of the input.
The number of Lex rules or the complexity of the rules |is
not important in determining speed, unless rules that
include forward context require a significant amount of
rescanning. What does increase with the number and complex-
ity of rules is the size of the program generated by Lex.

Lex is not limited to source that can be interpreted on the
basis of one-character look-ahead. For example, if there
are two rules, one looking for ab and another for abcdefq,
and the 1input stream is abcdefh, Lex recognizes ab and
leaves the input pointer just before cd. Such backup 1is
more costly than the processing of simpler languages.

LEX zilog LEX

SECTION 2
LEX SOURCE

The general format of Lex source is:

{definitions}
%%
{frules}

%%
{user subroutines}

The definitions and the user subroutines are often omitted.

The rules represent the user's control decisions. They are
in the form of a table, in which the left column contains
regularexpressions (Section 3) and the right column contains
actions--program fragments to be executed when the expres-
sions are recognized. The second %% is optional, but the
first is required to mark the beginning of the rules.

To change a number of words from British spelling to Ameri-
can spelling, start with Lex rules such as:

colour printf("color");
mechanise printf ("mechanize");
petrol printf("gas");

These rules are not quite enough, since the word petroleum
would become gaseum; a way of dealing with this will be
described in Sections 4 and 5.

An individual rule such as
integer printf ("found keyword INT");

is used to look for the string integer in the input stream;
it prints the message "found keyword INT" whenever it
appears. In this example, the host procedural language is C
and the C 1library function printf prints the string. The
end of the expression is indicated by the first blank or tab
character. 1If the action is merely a single C expression,
it can be given on the right side of the line; if it is com-
pound, or takes more than a line, it should be enclosed in
braces.

2-1 Zilog 2-1

LEX Zilog LEX

SECTION 3
LEX REGULAR EXPRESSIONS

3.1. Introduction

A regular expression specifies a set of strings to be
matched. It contains text characters that match the
corresponding characters in the strings being compared and
operator characters that specify repetitions, choices, and
other features.

The letters of the alphabet and the digits are always text
characters; thus, the regular expression

integer

matches the string integer wherever it appears, and the
expression '

as57D

looks for the string a57D.

3.2, Operators
The operator characters are

"NI] T =2 %+] () S/ {} <>
When operators are used as text characters, an escape must
be used. The quotation mark operator (") indicates that any
characters contained between a pair of quotes should be
treated as text characters. Thus,

XYZ" ++ll

matches the string xyz++ when it appears. A part of a
string can be quoted.

Ordinary text characters can be included within quotes. For
example, the expression

leyz++|l
is the same as the one above. The practice of quoting every

nonalphanumeric character being used as a text character
eliminates the need to remember the list of current operator

3-1 Zilog 3-1

LEX Zilog LEX

characters.

An operatcr character can also be turned into a text charac-
ter by preceding it with \, as in the command

xyz\+\+

which is another (less readable) equivalent of the above
expressions.

Another use of the quoting mechanism is to insert a blank
into an expression. Normally, blanks or tabs end a rule.
Any blank character not contained within brackets ([]) must
be quoted.

Several normal C escapes with \ are recognized: \n is new
line, \t 1is tab, and \b is backspace. To enter \ itself,
use \\. Since a new line is illegal in an expression, \n
must be used; it 1is not required to escape tab and back-
space. Characters other than blank, tab, new line, and the
operator characters are always text characters.

3.3. Character Classes

Classes of characters can be specified wusing the operator
pair []. The construction [abc) matches a single character,
which can be a,b, or c. When enclosed in brackets, most
characters lose any special meaning (they are not treated as

~

operators). The only exceptions are \, -, and ~.
The - character indicates ranges. For example,
[a-20-9<5>]

indicates the character class containing all the 1lowercase
letters, the digits, the angle brackets, and underline.
Ranges can be given in either order. Using - between any
pair of characters that are not both uppercase letters, both
lowercase letters, or both digits causes a warning message.
If a minus sign is included in a character class, it should
be first or last; thus,

[-+8-9]
matches all the digits and the two signs.

The " operator matches the complement of the subsequent
character string. Thus,

[Tabc]

3-2 Zilog 3-2

LEX Zilog LEX

matches all characters except a} b, or ¢, including all spe-
cial or control characters. The expression

["a-zA-Z)
matches any character that is not a letter.
The " operator must immediately follow the left bracket.
The \ character provides the usual escapes within character
class brackets.
3.4. Arbitrary Character
To match almost any character, use the operator character

o

which is the <c¢lass of all characters except new 1line.
Escaping 1into octal is possible, although nonportable, with
the command

[\4A-\176]
which matches all printable characters in the ASCII charac-
ter set, from octal 40 (blank) to octal 176 (tilde).

3.5. Optional Expressions

The operator ? indicates an optional element of an expres-
sion. Thus,

ab?c

matches either ac or abc.

3.6. Repeated Expressions

Repetitions of classes are indicated by the operators * and
+. "

a'k

is any number of consecutive a characters, including =zero;
while

a-+

3-3 Zilog 3-3

LEX Zilog LEX

is one or more instances of a. For example,

[a-2z]+
is all strings of lowercase letters. And

[A-Za-z] [A-Za-2z0-9]*
indicates all alphanumeric strings with a leading alphabetic
character, This 1is a typical expression for recognizing
identifiers in computer languages.
3.7. Alternation and Grouping
The operator | indicates alternation:

(ablcd)
matches either ab or cd. Parentheses are used for grouping,
although they are not necessary on the outside level. For
example,

ab|cd

is sufficient for the previous command.

Parentheses more commonly occur in more complex expressions,
such as:

(ablcd+)? (ef)*

which matches such strings as abefef, efefef, cdef, or cddd,
but not abc, abcd, or abcdef.

3.8. Context Recognition

Lex recognizes a small amount of surrounding context. The /
operator indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cdk. Thus,
abs$

is the same as

ab/\n

3-4 Zilog 3-4

LEX Zilog , LEX

The two simplest operators for this are ° and §. If the
first character of an expression is ", the expression is
only matched at the beginning of a line (after a new line
character, or at the beginning of the input stream). This
can never conflict with the other meaning of © (complementa-
tion of <character classes) since that only applies within
the [] operators. If the last character is $, the expres-
sion 1is only matched at the end of a line (when immediately
followed by a new line). If a rule is to be executed only
when the Lex interpreter is in start condition x, the rule
is prefixed by -

<x>
using the angle bracket operator characters. If "being at
the beginning of a line" is considered to be start condition
ONE, then the " operator is equivalent to

<ONE>

Start conditions are explained more fully in Section 10.

3.9. Repetitions and Definitions
The operator pair {} specifies either repetitions (if it
encloses numbers) or definition expansion (if it encloses a
name). For example, the command

{digit}
looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules.
In contrast,

af{l,5}

looks for one to five occurrrences of a.

3.190. Segment Separator

The initial % is the separator for Lex segments.

3-5 Zilog 3-5

LEX Zilog LEX

SECTION 4
LEX ACTIONS

4.1, Introduction

When an expression is matched, Lex executes the correspond-
ing action. This section describes some features of Lex
that aid in writing actions. There 1is a default action,
which consists of copying the input to the output, that is
performed on all strings not otherwise matched. Thus, to
absorb the entire input without producing any output, rules
must be provided to match everything. When Lex is used with
Yacc, this is the normal situation. Actions are used
instead of copying the input to the output. A character
combination that is omitted from the rules but appears as
input is likely to be printed on the output, calling atten-
tion to the gap in the rules.

4.2. Regqular Routines

Specifying a C null statement (;) as an action causes the
input to be ignored. A frequently used rule is

[\t\n] ;

which causes the three spacing characters (blank, tab, and
new line) to be ignored.

Another easy way to avoid writing actions 1is the action
character |, which indicates that the action for this rule
is the action for the next rule. The previous example could
also have been written

I
"\t" '
"\nll ;

with the same result. The quotes around \n and \t are not
required.

In more complex actions, it is often necessary to know the
actual text that matches some expression like [a-z]+. Lex
leaves this text in an external character array named
yytext. To print the name found, use a rule like:

[a—z]+ printf("%s", yytext);

4~-1 Zilog 4-1

LEX zilog LEX

This prints the string in yytext. The C function printf
accepts a format argument and data to be printed. 1In this
case, the format is "print string," % indicates data conver-
sion, s indicates string type, and the characters in yytext
are the data. This rule simply places the matched string on
the output.

This acticn is so common that it can be written as ECHO.
The expression

[a=-z]+ ECHO;

is the same as the previous example. Such rules are often
required to avoid matching some other rule that is not
desired. For example, if there is a rule that matches read,
it normally matches the instances of read contained in bread
or readjust. To avoid this, a rule of the form [a-z]+ 1is
needed. See examples in this section for variations of this
situation. ‘

Sometimes it is more convenient to know the end of what has
been found; therefore, Lex also provides a count (yyleng) of
the number of characters matched. To count both the number
of words and the number of characters in words in the input,
enter

[a-zA-Z]+ {words++; chars += yyleng;}
which accumulates in chars the number of characters 1in the

words recognized. The last character in the string matched
can be accessed by

yytext[yyleng-1]

Occasionally, a Lex action determines that a rule has not
recognized the correct span of characters. Two routines are
provided to aid with this situation. First, yymore() can be
called to indicate that the next input expression recognized
is to be tacked on to the end of this input. (Normally, the
next input string overwrites the current entry in yytext.)
Second, yyless(n) can be called to indicate that not all the
characters matched by the currently successful expression
are wanted right now. The argument n indicates the number
of characters in yytext to be retained. Further characters
previously matched are returned to the input. This provides
the same sort of look-ahead offered by the / operator, but
in a different form.

For example, consider a language that defines a string as a

set of characters between quotation marks ("), and provides
that to include a " in a string, it must be preceded by a \.

4-2 Zilog 4-2

LEX Zilog LEX

The regular expression that matches this requirement is
somewhat confusing, so it might be preferable to write

\"[“ll]* {
if (yytext[yyleng-1] == "'\\"')
yymore() ;
else

}

which, a upon finding a string such as "abc\"def", will
first match the five characters, "abc\. Then the call to
yymore () causes the next part of the string, "def", to be
tacked on the end. The final quote terminating the string
is picked up in the code labeled "normal processing."

... hormal user processing

The function yyless() reprocesses text in various cir-
cumstances. Consider the C problem of distinguishing the
ambiguity of "=-a"; to treat this as "=- a" but print a mes-
sage, it is possible to use a rule like:

=-[a-z2A-2] { .
printf ("Operator (=-) ambiguous\n");
yyless(yyleng-1);

oo 0 acti()n fOf == e e

}
This prints a message, returns the letter after the operator
to the 1input stream, and treats the operator as "=-",
Alternatively, to treat this as "= -a", Jjust return the

minus sign as well as the letter to the input. The follow-
ing command performs the other interpretation:

=-[a-2zA-Z] {
printf ("Operator (=-) ambiguous\n");
yyless(yyleng-2);
.+. action for = ...

}

The expressions for the two cases are more easily be written
as

==/[A-Za-2]
in the first case and
=/~[{A-Za~-2]

in the second. No backup 1is then required in the rule
action.

4-3 Zilog 4-3

LEX Zilog LEX

It is not necessary to recognize the whole identifier to
observe the ambiguity. The possibility of =-3, however,
makes

==/[" \t\n]

a better rule.

4.3. Input/Output Routines

Lex also permits access to the Input/Output routines it
uses. They are:

¢ input (), which returns the next input character

¢ output(c), which writes the character ¢ on the out-
put

¢ unput (¢), which pushes the character ¢ back onto

the input stream to be read later by input()

By default, these routines are provided as macro defini-
tions, but it is possible to override them and supply origi-
nal versions. These routines define the relationship
between external files and internal characters, and must all
be retained or modified consistently. They can be redefined
to cause input or output to be transmitted to or from
places, including other programs or internal memory. The
character set that 1is used must be consistent in all rou-
tines. This means that a value of zero returned by input
must mean end-of-file, and the relationship between unput
and input must be retained, or the Lex look-ahead will not
work.

Lex looks ahead with every rule ending in +, *, ?, or $§, or
containing /. Look-ahead 1is also necessary to match an
expression that is a prefix of another expression. 1In other
instances, Lex does not look ahead.

4.4. Library Routines

Lex library routine yywrap() is called whenever lex reaches
an end-of-file, The user may wish to redefine this func-
tion. If yywrap returns a 1, Lex continues with the normal
wrapup on end of input. Sometimes, however, it is con-
venient to arrange for more input to arrive from a new
source, In this case, it is necessary to provide a yywrap
that arranges for new input and returns @. This instructs

4-4 Zilog 4-4

LEX Zilog LEX

Lex to continue processing. The default yywrap always
returns 1.

This routine is convenient for printing tables and summaries
at the end of programs. It is not possible to write a nor-
mal rule that recognizes end-of-file; the only access to
this condition 1is through yywrap. Unless an original ver-
sion of input() is supplied, a file containing nulls cannot
be handled, because a value of @ returned by input is taken
to be end-of-file.

4-5 Zilog 4-5

LEX Zilog LEX

SECTION 5
AMBIGUOUS SOURCE RULES

Lex can handle ambiguous specifications. When more than one
expression can match the current input, Lex chooses as fol-
lows:

1. The longest match is preferred.

2. Among rules that match the same number of charac-
ters, the rule given first is preferred.

For example, given the following rules

integer keyword action ...;
[a-z]+ identifier action ...;

if the input is integers, it 1is taken as an identifier,
because [a-z]+ matches eight characters while integer
matches only seven. If the input is integer, both rules
match seven characters, and. the keyword rule is selected
because it is given first. Anything shorter (such as int)
does not match the expression integer, so the identifier
action is taken.

The principle of preferring the longest match makes rules
containing expressions like .* dangerous. For example,

"%k

might seem a good way of recognizing a string in single
quotes, but it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second’
which is probably not what was wanted. A better rule is of
the form

" ["l\n]*ll

5-1 Zilog 5-1

LEX Zilog LEX

which, on the above input, stops after 'first'. The conse-
quences of errors like this are mitigated by the fact that
the . operator does not match new line. Thus, expressions
like .* stop on the current line. Do not try to defeat this
with expressions like [.\n]+ or equivalents; the Lex gen-
erated program will try to read the entire input file, caus-
ing internal buffer overflow.

Lex normally partitions the input stream rather than search-
ing for all possible matches of each expression. This means
that each character is accounted for once only. For exam-
ple, to <count occurrences of both she and he in an input
text, some Lex rules might be - _—

she S++;
he h++;
\n |

. 4

where the last two rules ignore everything besides he and
she, This would, however, produce unexpected results; Lex
does not recognize the instances of he included 1in she,

since once it has passed she, those characters are not
analyzed again.

To override this choice, use the action REJECT, which means
"do the next alternative." It causes whatever rule was
second choice after the current rule to be executed. The
position of the input pointer is adjusted accordingly. To
count the included instances of he, change the previous
example to:

she {s++; REJECT;}
he {h++; REJECT;}
\n I
After being counted, each expression is rejected; whenever

appropriate, the other expression is then counted. 1In this
example, it is possible to omit the REJECT action o¢on he; in
other cases, however, it might not be possible to tell which
input characters fit in both classes.

Consider the two rules

albcl+ { ...
aflcdl+ { ...

REJECT; }
REJECT; }

-
4
.

’

5-2 Zilog 5-2

LEX Zilog LEX

If the input is ah, only the first rule matches; only the
second matches ad. The input string accb matches the first
rule for four characters and the second rule for three char-
acters. In contrast, the input accd agrees with the second
rule for four characters and with the first rule for three.

In general, REJECT is useful whenever the purpose of Lex is
to detect all examples of some items in the input, and the
instances of these items overlap or include each other. It
is not useful 1if the purpose is to partition the input
stream. Suppose a digram table of the 1input 1is desired.
Normally the digrams overlap; for example, the word the is
considered to contain both th and he. Assuming a two-
dimensional array called dT§ram to be incremented, the
appropriate source is

3%
[a-z][a-2] {digram[yytext[@]] [yytext[1]]++; REJECT;}
\n ;

where the REJECT is necessary to pick up a letter pair
beginning at every character, rather than at every other
character.

5-3 Zilog 5-3

LEX Zilog LEX

SECTION 6
LEX SOURCE DEFINITIONS

As Lex turns the source rules into a program, any source not
intercepted by ULex 1is copied into the generated program.
This happens in the following three cases:

1. Any line beginning with a blank or tab that is not part
of a Lex rule or action is copied into the Lex gen-
erated program. Such source input prior to the first
%% delimiter 1is external to any function in the code.
If it appears immediately after the first %%, it
appears in an appropriate place for declarations in the
function written by Lex that contains the actions.
This material must 1look 1like program fragments, and
must precede the first Lex rule.

As a side effect, lines beginning with a blank or tab
that contain a comment are passed;through to the gen-
erated program. This includes comnents in either the
Lex source or the generated code. The comments should
follow the host language convention.

2. Anything included between lines containing only %{ and
$} 1is <copied out as in the previous case. The delim-
iters are discarded. This format permits entering text
like preprocessor statements that must begin in column
l, or copying lines that do not look like programs.

3. Anything after the third %% delimiter, regardless of
format, is copied out after the Lex output.

In addition to the rules, options are required to define
variables used by Lex or by a user program.

Definitions intended for Lex are given before the first %%
delimiter. Any 1line in this section not contained between
${ and %}, and beginning in column 1, is assumed to define
Lex substitution strings. The format of such lines is

name translation

and it causes the string given as a translation to be asso-
ciated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out
by the {name} syntax in a rule. Using {D} for the digits
and {E} for an exponent field, for example, abbreviates

6-1 Zilog 6-1

LEX Zilog LEX

rules to recognize numbers, as follows:

D [8-9]

E [DEde] [-+]?{D}+
%%

{D}+ printf ("integer");

{D}+"."{D}* ({E})? I
{D}*"."{D}+({E})? |
{D}+{E} printf("real");

The first two rules for real numbers require a decimal point
and contain an optional exponent field, but the first rule
requires at least one digit before the decimal point and the
second rule requires at least one digit after the decimal
point. To handle the problem posed by a Fortran expression

such as 35.EQ.I, which does not contain a real number, a
context-sensitive rule such as

[0-9]1+/"."EQ printf ("integer");
can be used in addition to the normal rule for integers.
The definitions section can also <contain other commands,
including the selection of a host language, a character set
table, a list of start conditions, or adjustments to the

default size of arrays within Lex itself for larger source
programs.

6-2 Zilog 6-2

LEX Zilog LEX

SECTION 7
COMPILING LEX

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated pro-
gram in the host language. Then this program must be com-
piled and loaded, usually with a library of Lex subroutines.
The generated program is on a file named lex.yy.c. The 1I/0
library is defined in terms of the C standard library.

The library is accessed by the loader flag -1ll. An example
of a appropriate set of commands is

lex source
cc -u -main lex.yy.c -11

The resulting program is placed on the usual file a.out for
later execution. (To use Lex with Yacc, see Section 8.)
Although the default Lex I/0 routines wuse the C standard
library, Lex itself does not; if private versions of input,
output, and unput are given, the library can be avoided.

7-1 Zilog 7-1

LEX Zilog LEX

SECTION 9
EXAMPLES

9.1. Copy with Simple Arithmetic Changes

The following Lex source program copies an input file while
adding three to every positive number divisible by seven.

%%
int k; .
[0-91+ {
sscanf (yytext, "%4d", &k);
if (kg7 == @)
printf ("g4d", k+3);
else

printf ("3d",k);
}

The rule [@-9]+ recognizes strings of digits; sscanf con-
verts the digits to binary and stores the result in k. The
operator % (remainder) checks whether k is divisible by
seven; if it is, it is incremented by three as it is written
out.

This program alters such input items as 49.63 or X7. Furth-
ermore, it increments the absolute value of all negative
numbers divisible by seven. To avoid this, add a few more
rules after the active one, as follows:

%%
: int k;
-?2[0-91+ {
sscanf (yytext, "%d", &k);
printf("sd", k37 == 0 ? k+3 : K);
}
-?2[0-9.1+ ECHO;

[A-Za-z] [A~-Za-z0-9]+ ECHO;
Numerical strings containing a . or preceded by a letter are
picked up by one of the last two rules, and are not changed.
The if-else has been replaced by a C conditional expression
to save space. The form a?b:c means "if a then b else c."

9.2. Statistical Accumulations

The following program produces histograms of the lengths of
words, where a word is defined as a string of letters.

9-1 Zilog 9-1

LEX Zilog LEX

int lengs[100];

%%

[a=-2]+ lengs([yyleng]++;
L] I

\n ;

%%

{ywrap()

int i;

printf ("Length No. words\n");
for(i=@; i<190; i++)
if (lengs[i] > @)
printf ("%5d%10d\n", i ,lengs[i]);
return(l);

}

This program accumulates the histogram, while producing no
output. At the end of the input, it prints the table. The
final statement (return(l);) tells Lex to perform wrapup.
If yywrap returns zero (false), further input is available
and the program continues reading and processing. Providing
a yywrap that never returns true causes an infinite loop.

9~2 Zilog 9-2

LEX Zilog LEX

SECTION 10
LEFT CONTEXT SENSITIVITY

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For
example, a compiler preprocessor might distinguish prepro-
cessor statements and analyze them differently from ordinary
statements. This requires sensitivity to prior context, and
there are several ways of handling such problems.

This section describes three means of dealing with different
environments:

¢ using flags
¢ using start conditions for rules
& switching among distinct lexical analyzers

In each case, there are rules that recognize the need to
change the environment in which the following input text is
analyzed, and set some parameter to reflect the change.

A flag explicitly tested by the user's action code 1is the
simplest way of dealing with the problem, since Lex is not
necessarily involved. It may be more convenient, however,
to have Lex keep track of the flags as initial conditions on
the rules.

Any rule can be associated with a start condition and Iis
only recognized when Lex is in that start condition. The
current start condition can be changed at any time.

Finally, if the sets of rules for the different environments
are very dissimilar, write several distinct lexical
analyzers and switch from one to another as desired.

The following examples copy the input to the output, chang-
ing the word magic to first on every line that begins with
the letter a, changing magic to second on every 1line that
begins with the 1letter b, and changing magic to third on
every line that begins with the letter c. All other words
and all other lines are left unchanged.

These rules are so simple that the easiest way to do this
job is with a flag:

16-1 Zilog 10-1

LEX Zilog LEX

int flag;
%%
“a {flag = 'a'; ECHO;}
“b {flag = '"b'; ECHO;}
“c {flag = 'c'; ECHO;}
\n {flag = @ ; ECHO;}
magic {
switch (flag)
{
case 'a': printf("first"); break;

case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;

}

}

To handle the same problem with start conditions, each start
condition must be introduced to Lex in the definitions sec-
tion with a line reading
$Start namel name2 ...
The conditions can be named in any order. The word Start
can be abbreviated to s or S. The conditions can be refer-
enced at the head of a rule with brackets (<»). The command
<namel>expression
is.a rule that is only recognized when Lex is in the start
condition namel. To enter a start condition, execute the
action statement

BEGIN namel;

which changes the start condition to namel. To resume the
normal state, the command

BEGIN @;
resets the initial condition of the Lex automaton inter-
preter. A rule can be active in several start conditions.
For example,

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> pre-
fix operator is always active.

19-2 Zilog 19-2

LEX

Zilog

The previous example can be written:

$START AA BB CC

%%
~a
“b

c
\n

<AA>magic
<BB>magic
<CC>magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN 0;}
printf ("first");
printf ("second") ;
printf ("third");

The logic is the same as before, but Lex, rather

user

19-3

's code,

does the work.

Zilog

than

LEX

the

19-3

LEX zilog LEX

SECTION 11
CHARACTER SET

The programs generated by Lex handle character I/0 only
through the routines input, output, and unput. Thus the
character representation provided 1in these routines 1is
accepted by Lex and used to return values in yytext. For
internal use, a character is represented as a small integer.
If the standard 1library is used, this integer has a value
equal to the integer value of the bit pattern representing
the character on the host computer. If the interpretation
of a character is changed by I/0 routines that translate the
characters, a translation table must notify Lex. This table
must be in the definitions section and must be bracketed by
lines containing only %T. The table must contain lines of
the form

{integer} {character string}

which indicate the value associated with each character. A
sample character table follows:

$T

1 Aa
2 Bb
26 Zz
27 \n
28 +
29 -
30 [}
31 1
39 9
$T

This table maps the lower and uppercase 1letters together
into the integers 1 through 26, new line into 27, + and -
into 28 and 29, and the digits into 38 through 39. If a
table 1is supplied, every character that is to appear either
in the rules or in any valid input must be included in the
table. No character <can be assigned the number @, and no
character can be assigned a bigger number than the size of
the hardware character set. C users probably will not wish
to use the character table feature.

11-1 Zilog 11-1

LEX

Zilog

SECTION 12
SUMMARY OF SOURCE FORMAT

The general format of a Lex source file is:

The

&

12-1

{definitions}

%3

{rules}

%3

{user subroutines}

definitions section contains a combination of

LEX

Definitions, in the form "name space translation"

Included code, in the form "space code"
Included code, in the form

${
code
%}

Start conditions, given in the form

%S namel name2 ...

Character set tables, in the form

3T
number space character-string

o e 0

$T

Changes to internal array sizes, in the form

£€X nnn

where nnn is a decimal integer representing
size and x selects the parameter as follows:

Letter Parameter
P positions
n states

e tree nodes

Zilog

an array

12-1

LEX

Zilog

transitions
packed character classes
output array size

LEX

Lines in the rules section have the form "expression action"
action <can be continued on succeeding lines by
using braces to delimit it.

where the

Regular expressions in Lex use the following operators:

X

llxll

\x
[xyl
[x-2]
[“x]

X
<y>x
x$
X?
x*
X+
xly
(x)
X/y
{xx}

x{m,n}

12-2

the character x

an x, even if x is an operator

an x, even if x is an operator

the character x or y

the characters x, y, or z

any character but x

any character but new line

an x at the beginning of a line

an x when Lex is in start condition y
an x at the end of a line

an optional x

9,1,2, ... instances of x

1,2,3, ... instances of x

an x or ay

an Xx

an x, but only if followed by y

the translation of xx from the definitions
section

m through n occurrences of x

Zilog

12-2

LEX Zilog LEX

SECTION 13
CAUTIONS

There are some expressions that produce exponential growth
of the tables; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the
results of the previous scan. This means that if a rule
with trailing context is found, and REJECT 1is executed,
unput must not have been used to change the characters com-
ing from the input stream. This is the only restriction on
manipulation of the not-yet-processed input.

13-1 Zilog 13-1

LEX Zilog LEX

Table of Contents

SECTION]. INTRODUC’JPION ®© 5 0 0 6 0 8 0000 00000000000 1_1

SECTIONZ LEx SOUR(:E ® 0 0.9 9 0060 0 ¢ 00 00 0000000 L RGO s 0 2"'1

SECTION 3 LEX REGULAR ExPRESSIONS ® S 5 & 0 & 5 0 0 0 0 O 0 00 00 o0

w
|
=

INtrodUCtion ceeeeeeoessscscsssscoccssssssacscss
OpPEeratorS c.eeeeessescsccocosssssosssssnnscssnscs
. Character ClaSSeS sccesevsscscccosccsscscssssssne
. Arbitrary Character e.iceceeccccccccscsscncsnsnss
. Optional EXpPressSionsS .c.ceeeeeccccscccssocsnnnes
. Repeated EXpPresSioNnsS .ieeecsccoccsasscccossasss
.7. Alternation and Grouping ...ceecececcccccsccss

. Context Recognition ..seeeeseeeccecaseessncnsses

|

WWwwwwuwwww
I
VN HWWWN -

. Repetitions and Definitions ..eeeeeesescacs
g. Segment se]?arator ® © 9 5 ® 0 0 O 0 O 00t P00 00 0o

° o

SECTION4 LEXACTI‘ONS ® . 8 0 6 0 05 5 000 0060 0002000500 0000009000 4—1

4.1, Introduction eevececssnssscocccsssssssssnsssses 4
4.2. Regular RoutinesS ...eeecsescccocccccoscsssnscsss A4-
4.3, Input/Output Routines ...ccevescscsccsscssssees 4
4.4, Library RoOULINeS seeseececccecsccssssssssssooss 4

SECTION 5 AMBIGUOUS SOURCE RULES ...cccocecescscccaces 5-1

SECTION 6 LEX SOURCE DEFINITIONSc.cceccccc0esce0ceses 0O-1

v Zilog v

LEX

Zilog

SECTION? COMPILING LEX ® 6 8 00 6 0 0O 0P E O N OSSN SEe0e

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

vi

8 LEXAND YACC ® 86 8 5 5 60 0 060 0 0005 0600080000000 0 s o0

9 EXAMPLES

® © 0 0 0 8 8 2 00 2 ¥ SO O P 0N LG L 0N L0

Copy with Simple Arithmetic Changes ...cevecens
Statistical AccumulationsS .ceieeescsccsscscccssons

16 LEFT CONTEXT SENSITIVITY ..ccccoccevsvococccse

11 CHARACTERSET ® © 8 6 0 5 20 00000000 000000000000

12 SUMMARY OF SOURCE FORMAT ...ccvceeesvcscnss

13 CAUTIONS

® ® 0 06 06 0.6 000 00606 00000000000 006060008000

Zilog

LEX

7-1

19-1

11-1

12-1

13-1

vi

LEX Zilog LEX

SECTION 1
INTRODUCTION

Lex is a program generator for lexical processing of charac-
ter 1input streams. It accepts user-supplied specifications
for character string matching and produces a program 1in a
general-purpose language (yylex). This program recognizes
regular expressions in an 1input stream and performs the
specified actions for each expression as it is detected.
This entire process is shown as follows:

Source -> Lex -> yylex
Input -> yylex -> Output

Lex is not a complete 1language, but. rather a generator
representing a new language feature that can be added to
different programming languages, called host languages. Just
as general-purpose languages produce code to run on dif-
ferent computer hardware, Lex writes code in different host

languages. The host language is used for the output code
generated by Lex and also for the program fragments added by
the user. Compatible run-time libraries for the different

host languages are also provided. This makes Lex adaptable
to different environments and different users. Each appli-
cation can be directed to the combination of hardware and
host language appropriate to the task, the user's back-
ground, and the properties of 1local implementations. At
present, the only supported host language is C.

Code needed for task completion, except expression-matching,
is supplied by the user. This can include code written by
other generators. A high-level 1language 1is provided to
write the string expressions to be matched, while the user's
freedom to write actions is unimpaired. This allows the use
of several string manipulation languages.

For example, to delete from the input all blanks or tabs at
the ends of lines, all that is required is:

%%
[\t1+s ;

This program contains a %% delimiter to mark the beginning
of the rules and one rule that matches one or more instances
of the characters blank or tab (written \t for wvisibility)
just prior to the end of a line. The brackets indicate the
character class made of blank and tab; the + indicates "one

1-1 Zilog 1-1

LEX Zilog LEX

or more ..."; the $ indicates "end of line." No action is
specified, so the program generated by Lex (yylex) ignores
these characters. Everything else is copied. To change any
remaining string of blanks or tabs to a single hlank, add
another rule:

%%
[\t]l+$;
[\t]l+ printf("™ ");

This source scans for both rules at once and executes the
desired rule action. The first rule matches all strings of
blanks or tabs at the end of 1lines, and the second rule
matches all remaining strings of blanks or tabs.

Lex can be used alone for simple transformations, or for
analysis and statistics gathering on a lexical level. Addi-
tional programs can be added easily to programs written by
Lex. Lex can also be used with a parser generator such as
Yacc to perform the lexical analysis phase. When used as a
preprocessor for a later parser generator, Lex partitions
the input stream, and the parser generator assigns structure
to the resulting pieces. The flow of control in such a case
(which might be the first half of a compiler, for example)
is shown below

lexical grammar
rules rules
(Lex) (Yacc)
Input -> yylex -> yyparse -> Parsed input

Yacc users realize that the name yylex is what Yacc expects
its lexical analyzer to be named, so the use of this name by
Lex simplifies interfacing.

The time a Lex program takes to recognize and partition an
input stream 1is proportional to the length of the input.
The number of Lex rules or the complexity of the rules is
not important in determining speed, unless rules that
include forward context require a significant amount of
rescanning. What does increase with the number and complex-
ity of rules is the size of the program generated by Lex.

Lex is not limited to source that can be interpreted on the
basis of one-character 1look-ahead. For example, if there
are two rules, one looking for ab and another for abcdefg,
and the 1input stream 1is abcdefh, Lex recognizes ab and
leaves the input pointer just before cd. Such Dbackup is
more costly than the processing of simpler languages.

N

1-2 Zilog 1-

LEX Zilog LEX

SECTION 7
COMPILING LEX

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated pro-
gram in the host language. Then this program must be com-
piled and loaded, usually with a library of Lex subroutines.
The generated program is on a file named lex.yy.c. The 1I/0
library is defined in terms of the C standard library.

The library is accessed by the loader flag -1l1l. An example
of a appropriate set of commands is

lex source
cc -u -main lex.yy.c -11

The resulting program is placed on the usual file a.out for
later execution. (To use Lex with Yacc, see Section 8.)
Although the default Lex I/O routines wuse the C standard
library, Lex itself does not; if private versions of input,
output, and unput are given, the library can be avoided.

7-1 Zilog 7-1

LEX Zilog LEX

SECTION 8
LEX AND YACC

Lex is used with Yacc (yet another compiler-compiler) to
write a program named yylex(), required by Yacc for its
analyzer. Normally, the default main program on the Lex
library calls this routine, but if Yacc is loaded and its
main program is used, Yacc calls yylex(). In this case,
each Lex rule must end with

return(token);

where the appropriate token value is returned. An easy way
to get access to Yacc's names for tokens is to compile the
Lex output file as part of the Yacc output file by placing
the line

$# include "lex.yy.c"
in the last section of Yacc input.

To obtain the grammar named "good" and the 1lexical rules
named "better," use the commands in the following sequence:

yacc good
lex better
cc -u main y.tab.c -1y -11

The -u main must appear before y.tab.c, and the Yacc
library (-ly) must be 1loaded before the Lex library to
obtain a main program that invokes the Yacc parser. The
generations of Lex and Yacc programs can be done in either
order.

8-1 Zilog 8-1

LINT -- A C PROGRAM CHECKER *

* This information is based on an article
originally written by S.C. Johnson, Bell Laboratories.

LINT

ii

Zilog

Zilog

LINT

ii

LINT zilog LINT

Table of Contents

\
7

SECTIONl GENERAL CEE IR A U RE B R I O IO N I I I I I I I Y I U I I IR I I

[
|
[

A Word About PhiloSOPhY ceseeccesccssssconnscss
Unused Variables and FunctionsS ..ceeeecceoccensas
Set/Used INformation c.eeecesessosessssosoconss
Flow Of CoNErOl .seeeeesererencssssasssasssncnsce
Function ValuesS ...eeesoescossscscsoccocssscesces
Type ChecCKing ceveesoceocsssssscocssoscccsssassas
TYpe CASES seeseecocccssassosascsscsccassssessncscece
Nonportable Character US€ ..ceeeecscecososnssccss
. Assignments of longs to intsS .seeeeevcccicsoscns
Strange Constructions ...eeececeecccesssccosss
l.11. Ancient HiStOrY .eeceesvvecancscscacconsnsascss
1.12. Pointer Alignment «..eeececececccccsosssssconces
1.13. Multiple Uses and Side EffectS c.ceevecsceccone
1.14., Implementation .ceceeececcssssoscscsccasssssassss 1

1.15, Portability seeeecessesccescossssossscsssasssces 1l—
1.16. Shutting Lint UpPp ceeceeevsscssscsccccccosnscsssssss 1-12
10170 Library Declaration FileS ® @ 6 2 0 0000000000000 1-14
1018. BUgS, etC. 0000000000;00000iocoot-cnooaooootoo 1-14

|
FROVOVWOINOTUTDdWWN -

e o6 o 8 o ¢ o o

Rl e o I Ty Seyyarpra.
e e 3 s & ¢ o 4 0
WOV D WN -

°
—
Q
.

o e e b e s b b
1

|
=

APPENDIX A CURRENT LINT OPTIONS ...cccocccovcssveeceees A-l

iii Zilog iiid

LINT Zilog LINT

SECTION 1
GENERAL

Suppose there are two C source files, filel. ¢ and file2.c,
which are ordinarily compiled and loaded together. (See The
C Programming Language.) Then the command

lint filel.c file2.c

produces messages describing inconsistencies and inefficien-
cies in the programs. The program enforces the typing rules
of C more strictly than the C compilers (for both historical
and practical reasons) enforce them. The command

lint -p filel.c file2.c

will produce, in addition to the above messages, additional
messages which relate to the portability of the programs to
other operating systems and machines. Replacing the by will
produce messages about various error-prone or wasteful con-
structions which, strictly speaking, are not bugs. Saying
gets the whole works.

The next several sections describe the major messages; the
document closes with sections discussing the implementation
and giving suggestions for writing portable C. An appendix
gives a summary of the lint options.

l.1. A Word About Philosophy

Many of the facts which lint needs may be impossible to dis-
cover. For example, whether a given function in