
I I 11111111
ii 1111111

Applied
Microsystems
Corporation

User's Guide
for Unix

Code TEST™
Embedded Software Verification Tools

[mmm

Applied
Microsystems
Corporation

CodeTEST™ User's Guide
for Unix®

September 1996
P/N 924-08000-02
Copyright © 1996 Applied Microsystems Corporation.
All rights reserved.

:i~ ..

Information in this document is subject to change without
notice. Applied Microsystems Corporation reserves the right to
make changes to improve the performance and usability of the
products described herein.

CodeTEST tools patent pending.

CodeTEST software uses the EuroBridge Widget Set by VTI
Information Technology.

Trademarks
CodeTEST is a trademark of Applied Microsystems
Corporation.
Motorola is a registered trademark of Motorola, Inc.
AT is a trademark, and IBM is a registered trademark, of
International Business Machines Corporation.
Microsoft and MS-DOS are registered trademarks of Microsoft
Corporation.
Sun, Sun Microsystems, Sun Workstation, SunOS, Sun-4, and
NFS are trademarks of Sun Microsystems, Inc.
SPARC is a registered trademark of SPARC International, Inc.
SPARCstation is a trademark of SPARC International, Inc.,
licensed exclusively to Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T.

Preface

Note:

Assumptions

The CodeTEST
manual set

Preface

This manual provides operating instructions and usage
guidelines for Applied Microsystems CodeTEST tools for
embedded systems software development and testing.

For additional important information, please refer to the
release notes in the CodeTEST Online Help or in the
README file in your CodeTEST installation directory.

All materials in the CodeTEST manual set assume that
you are familiar with embedded software development
practices and have a working knowledge of the Unix
operating system and the C or C++ programming language.
Also, it is assumed that you have a working knowledge of
the target you will be testing and have access to processor­
specific documentation from the processor manufacturer.

The CodeTEST manual set includes:

o The CodeTEST User's Guide (this book) provides
operating instructions and usage guidelines for the host
application, the source code instrumenter, and related
support files and utilities.

o The CodeTEST Installation Guide covers hardware and
software installation procedures and guidelines.

o The CodeTEST Online Help gives quick reference and
procedural information for the CodeTEST system.

o The probe booklets provide information specific to each
version of the CodeTEST probe.

iii

Notational Conventions
This manual uses the following notational conventions:

Element

mono space
font

monos pace

italics

[option]

{ optl I opt2}

Meaning

Monospace (typewriter-like) font indicates
commands that you must enter as shown.
This font is also used to represent screen text
and file contents.

Monospace italic font within a command
indicates a variable for which you must
substitute a value. (Within body text, italics
are used for emphasis and for first occurrence
of key terms or concepts.)

Square brackets enclose an optional item or
list of optional items. Do not enter the
brackets.

A vertical bar separates items in a list of
mutually exclusive alternatives. Do not enter
the vertical bar.

Curly braces enclose a list from which you
must choose one item. Do not enter the
braces.

Horizontal ellipsis indicates that you may
repeat an argument zero or more times. Do
not enter the ellipsis.

<Fl> Angle brackets signify a key on the keyboard.
Do not enter the brackets.

other punctuation Within command syntax, punctuation marks
other than those defined above must be
entered as shown.

iv CodeTEST User's Guide

Support Services

Frequently
asked questions

Support Services

Applied Microsystems Corporation provides a full range of
support services. New software is covered by a 90-day war­
ranty that includes full applications phone support. Addi­
tional support agreements are available to extend the
initial warranty and to provide additional services.

If you encounter trouble installing or using your CodeTEST
system, consult your manuals to verify that you are follow­
ing appropriate procedures. If a problem persists, call Ap­
plied Microsystems Customer Support. Customers outside
the United States should contact their sales representative
or local Applied Microsystems office.

Before contacting Customer Support, please check the fol­
lowing list of frequently asked questions.

1. Probe connection errors can result from:

o Trying to connect to a probe that is already in use.

1:1 Trying to connect to a probe for which you have no
license.

o Trying to connect to a networked device that is not a
CodeTEST probe (e.g., a workstation or an emulator).

1:1 Trying to connect to a probe that is not correctly
configured on your network, is not powered up, or is
connected to a target that is not powered up. Refer to
the CodeTEST Installation Guide and to your probe
booklet for details about setting up your probe.

2. Licensing problems

Licensing error messages may be caused by incorrect
configuration of the FLEXlm license manager or prob­
lems with your license file. Refer to the installation in­
structions supplied with your CodeTEST software.

v

vi

3. GUI appearance problems

Unusual appearance of the CodeTEST host application
user interface (e.g., unusual colors or labels with under­
bar instead of space between words) indicates a problem
with the Xll application defaults files. See ''X defaults"
on page A-4.

4. IDB problems

For CodeTEST to make accurate measurements, the
host application must be configured to find the correct
version of the IDB file (or set of compatible IDB files) for
the target program. See "Target program configuration"
on page 2-15 and "Compatible IDB Files" on page 6-23.

5. Errors finding source files

For the host application to access the source files for
your target program (for display in the source code view­
er and in the Source view of trace) all source directory
paths (or an ASCII file containing those paths) must be
entered in the configuration dialog. See "Target program
configuration" on page 2-15.

6. Loading and viewing data files

To load a CodeTEST data file, the host application must
be able to find the IDB for that data. The IDB for saved
data is identified at the top of the data file itself, not in
the configuration dialog. See "Saving and Loading Data"
on page 2-19.

7. Instrumenter environment errors

The environment must be correctly set up for your use of
the instrumenter. In addition to creating a ctcc/ctc++
configuration file (described on page 5-13) this often de­
pends upon having various other toolchain variables set
(e.g., for an MRI compiler, the variable MRI_68K_INC
may need to be set to point to -I include paths). Example
configuration files are included in $AMC_HOME/bin.

Code TEST User's Guide

Required
Information

Contact
numbers

Support Services

When you contact Customer Support, please have the
following information available:

a Your support agreement number, if applicable.

a The version number of your CodeTEST software.

a The serial number of your probe (printed on a small
sticker affixed to the bottom of the probe chassis).

a The version numbers of the probe's DRP and Controller
firmware. This is displayed in the Status Window, which
is accessible from the host application Tools menu. It can
also be seen by running the ctupdate utility (refer to the
software installation procedures before running
ctupdate).

a The type of host workstation and operating system you
are using.

a The exact sequence of operations or commands that will
duplicate the problem.

Applied Microsystems product support is available at the
following numbers:

a 800-ASK-4AMC (800-275-4262)

a 206-882-2000 (from Washington state and Canada)

a World Wide Web: http://www.amc.com

a E-mail: support@amc.com

vii

viii CodeTEST User's Guide

Contents

Preface
Assumptions . iii

The CodeTEST manual set iii

Notational Conventions iv

Support Services . v

Frequently asked questions . v

Required Information vii

Contact numbers vii

Chapter 1
Introduction

CodeTEST System Overview 1-2

The instrumenter 1-2

The probe .. 1-3

The host application 1-4

RTOS support 1-5

What will it do for me? 1-6
The Continuous mode toolset 1-6

The Coverage tool 1-6

The Memory tool 1-7

The Performance tool 1-7

The Trace tool 1-8

CodeTEST utilities 1-9

How do I use it? .. 1-10

RTOS instrumentation 1-10

Target program instrumentation 1-10

Interactive operation 1-12

Code TEST User's Guide ix

Chapter2
Running CodeTEST

Getting Started .. 2-2

Preliminaries 2-2

RTOS connection 2-3

Commercial RTOS 2-3

Custom RTOS or other commercial RTOS 2-4

Probe installation 2-5

RTOS measurements 2-5

Complete implementation 2-6

Running the Host Application 2-8

Syntax .. 2-8

Options .. 2-8

CodeTEST Windows 2-9

Toolbar ... 2-9

Toolbar Command Summary 2-10

Configuring a Session 2-13

Configuration dialog 2-13

Configuration categories 2-13

Probe configuration 2-14

Update interval 2-14

Timeout interval 2-14

Probe network ID 2-14

Probe configuration file 2-14

Target program configuration 2-15

Source code directories 2-15

IDB path and file name 2-15

Instrumentation database directories 2-15

Instrumentation database 2-16

User defined tag file 2-16

x CodeTEST User's Guide

Memory call definition file 2-16

Using an RTOS? 2-16

RTOS map file 2-17

License options 2-17

Configuration files 2-18

Saving a configuration file 2-18

Startup configuration 2-18

Loading a configuration file during a session 2-18

Saving and Loading Data 2-19

Saving data .. 2-19

Loading data 2-19

Licensing 2-19

IDB location 2-19

Source files 2-19

General CodeTEST Utilities 2-20

Macro dialog 2-20

Creating a macro 2-21

Saving a macro 2-21

Executing a macro from within the host application 2-21

Executing a macro upon starting the host application ... 2-21

Status window 2-22

Error log ... 2-22

Window resize dialog 2-23

Print dialog .. 2-23

Selection lists 2-24

Export dialog 2-25

File save dialogs 2-26

File load dialogs 2-27

Code TEST User's Guide xi

Chapter3
The Continuous Mode Toolset

Overview ... 3-2

Making a measurement 3-2

Continuous mode commands 3-3

Button Controls 3-4

Right mouse button pop-up menu 3-4

Continuous Mode Setup 3-5

Qualifying measurements to an RTOS task 3-5

The Coverage Tool 3-6

Branch coverage 3-6

Viewing line coverage 3-9

Coverage trend 3-10

Coverage summary 3-11

Merging coverage data 3-12

The Performance Tool 3-13

Task performance 3-13

Special entries in the Task Performance view 3-14

Function performance 3-15

Special entry in the Function Performance table 3-17

Right mouse-button menu 3-17

Call linkage . 3-1 7

Right mouse-button menu 3-18

The Memory Tool 3-19

Memory allocation 3-19

Special entry in the Memory Allocation table 3-21

Viewing the source 3-21

Memory error log 3-22

Error severity levels 3-22

Error messages 3-23

xii Code TEST User's Guide

Continuous Mode Utilities 3-25

Function summary 3-25

Source code viewer 3-26

Sort utilities .. 3-27

Search utilities 3-28

Filter utilities 3-29

Search and filter expressions 3-30

Expressions that match a single character 3-30

Multi-character expressions 3-31

Anchoring an expression 3-31

Chapter4
The Trace Tool

Overview ... 4-2

Making a trace measurement4-2

Trace commands 4-3

Button Controls4-4

Trace Setup ... 4-5

Default trace setup4-6

Trace setup options4-6

Trigger position4-6

Trace depth 4-7

Trigger event 4-7

Trigger context 4-8

Storage context 4-9

The Trace Window 4-10

High Level view 4-10

Control Flow view4-14

Source view .. 4-16

AMCPrintf and AMCPuts4-17

CodeTEST User's Guide xiii

AMCPrintf Syntax 4-17

AMCPuts Syntax 4-17

Description . 4-17

Support files 4-18

Limits .. 4-18

Examples ... 4-18

User Defined Tags 4-20

User Defined Tag file 4-20

Placing user defined tags 4-20

The Trace Data Finder 4-21

Trace search options 4-21

Chapters
The CodeTEST Compiler Driver

Overview ... 5-2

Approaches to instrumentation 5-3

The ctcc/ctc++ command flow 5-3

Preprocessing with amctag 5-4

Customizing the ctcc/ctc++ command flow 5-5

Invoking amctag directly 5-6

Configuring ctcc/ctc++ 5-7

Environment variables 5-7

Configuration variables 5-7

Command variables 5-11

Response files 5-12

Response file variables 5-12

Using ctcc/ctc++ Configuration Files 5-13

Creating a .ctccrc-$AMC_TARGET file 5-13

Using the ctcc/ctc++ Command 5-16

ctcc syntax .. 5-16

xiv CodeTEST User's Guide

etc++ syntax 5-16

Command description 5-16

Example 1: running ctcc from the command line 5-17

Example 2: invoking etc++ from a makefile 5-17

Example 3: using the make -n option 5-17

Assigning Addresses for the Tag Ports 5-18

MRI example 5-18

Chapter6
The lnstrumenter

Theory Overview 6-2

Performance tagging 6-3

Coverage tagging 6-6

Coverage tags 6-6

Trace tags 6-6

Memory tagging 6-8

CodeTEST memory management support files 6-8

Tagging summary 6-10

Tagging Inline functions 6-10

Compiler-specific extensions 6-10

Additional tag types 6-11

RTOS tags 6-11

User-defined tags 6-11

Writing values to the tag ports 6-11

Performance overhead 6-12

Impact on build time 6-12

Using the amctag Command 6-13

Syntax .. 6-13

Options .. 6-13

Example 1: using amctag to preprocess/instrument code 6-13

Code TEST User's Guide xv

Example 2: instrumenting preprocessed files 6-14

Example 3: invoking amctag from a makefile 6-14

Changing the CodeTEST tag format 6-15

Using -Xtag-format with amctag 6-15

Using -Xtag-format with ctcc or etc++ 6-15

Instrumenter Options 6-16

Selectively Turning Off Tagging 6-22

Compatible IDB Files 6-23

Compatible with a single existing IDB file 6-23

Multiple compatible IDB files 6-23

The amctag C and C++ Preprocessor Features 6-24

Compatibility modes 6-24

Predefined macros 6-26

Pragmas .. 6-27

Include files 6-27

Chapter 7
CodeTEST Memory Functions

CodeTEST Memory Management Routines 7-2

Compiling the memory management sources 7-4

Memory Call Definition file 7-4

CodeTEST Memory Error Checking 7-5

Severity levels 7-5

Guard bytes 7-5

CodeTEST memory management switches 7-6

The amc_ ChkConsistency flag 7-6

The amc_ZeroFreedBlocks flag 7-7

The amc_ZeroAllocBlocks flag 7-7

The amc_N oFreeReuse flag 7-7

The AMC_MEMFLAGS symbol 7-7

xvi CodeTEST User's Guide

Error codes and messages 7-8

Memory Management Code Portability 7-12

Assumptions 7-12

ctmenv.h .. 7-12

Defined symbol TALIGN 7-12

ctmenv.c ... 7-13

Function amc_enlargeheap() 7-13

Function amc_gettopofheap() 7-13

Function amc_lockheap() and
Function amc_unlockheap() 7-13

Function amc_initheap() 7-13

Chapters
Using CodeTEST with an RTOS

Overview ... 8-2

Continuous mode features 8-2

Trace mode features 8-2

RTOS preparation 8-2

RTOS Task Tracking 8-3

Limits ... 8-3

Error log 8-3

RTOS tag formats 8-3

Task name tags 8-3

Task ID tags 8-4

Control tags 8-5

RTOS tag writing 8-6

Instrumenting Your RTOS 8-7

Instrumenting a commercial RTOS 8-7

Instrumenting a custom RTOS 8-8

Creating an RTOS Map File 8-9

Code TEST User's Guide xvii

Appendix A System Configuration Reference

Appendix B Code TEST Error Messages

Appendix C Customizing ctcc/ctc++

Appendix D Hybrid Tagging

xviii CodeTEST User's Guide

I Chapter 1

Introduction

CodeTEST System Overview.. 1-2

What will it do for me?. 1-6

How do I use it? 1-10

Introduction 1-1

CodeTEST System Overview

The
instrumenter

1-2

Applied Microsystems CodeTEST tools provide the first
software verification solution designed specifically for em­
bedded software engineers-an easy-to-use suite of shared
network resources for your entire development and testing
team.

CodeTEST has hardware and software components:

o The instrumenter-a set of software utilities that
prepare your target program for testing.

o The probe-a hardware device that connects to your
network and to your target hardware, to monitor your
program as it runs in-circuit and transmit accumulated
measurement data to a host workstation.

o The host application-a set of software tools that run on
a workstation and can measure performance, coverage,
memory allocation, and trace.

The CodeTEST source code instrumenter prepares your
program for in-circuit testing by filtering your source files
to insert test point instructions, or tags, into your code.
These tags enable the probe to identify and track various
program activities.

The instrumenter also creates and maintains an Instru­
mentation Database (IDB) which CodeTEST uses for dis­
play of program symbols. (CodeTEST does not use the
symbol file created by your compiler.)

The instrumenter supports many implementations of the C
and C++ languages, in compliance with the ANSI C, K&R
C, and emerging ANSI C++ standards.

CodeTEST User's Guide

The probe

The instrumenter comprises several interrelated utilities:

a amctag is the program that actually inserts tags into
your source code, creates and maintains the IDB, and
optionally performs C or C++ preprocessing.

a ctcc and etc++ are compiler drivers for C and C++
compilers respectively. They behave much like other
compiler drivers (gee for example, the driver for GNU C).
But in addition to driving the build procedure, ctcc and
etc++ incorporate instrumentation by calling amctag
and linking in various CodeTEST support files.

a The ctcc/ctc++ configuration file defines a set of
variables that adapt the instrumenter to your compiler,
environment, and particular build methods.

The probetip connects to the microprocessor socket on your
target board, either directly or by means of an adapter. The
network interface on the probe's main chassis connects di­
rectly to your LAN, so access to CodeTEST connected to
your target is sequentially available to multiple users.

The probe passively monitors two specific tag port address­
es, a control port and a data port, which you assign in the
target memory space. As the target program runs, the tags
the instrumenter placed in your code write values to the
monitored addresses. The probe captures the stream of tag
values, performs some initial processing with its internal
data reduction processor, and sends measurement data via
the network to a host workstation.

Note: Several versions of the CodeTEST probe are available, to
support many different processors from a variety of manu­
facturers. Check with your sales representative for current
information.

CodeTEST System Overview 1-3

The host
application

1-4

[]
~~ ~~robe-Tip

Tar~t

~lJ Outlet

The host application's four software tools are sold as sepa­
rate packages, each of which can operate independently.

The three Continuous mode tools (Performance, Memory,
and Coverage) can also operate simultaneously and per­
form several kinds of measurements in a single test run.
You need only instrument your code at an appropriate level
and select a license for each tool you want to use during
your session. Continuous mode measurement setup allows
you to qualify your performance and memory measure­
ments to a specific RTOS task.

CodeTEST User's Guide

RTOS support

CodeTEST System Overview

Trace is an alternative mode that operates independently.
The Trace tool provides versatile triggering and context
qualification features, as well as display options and search
capabilities to give you excellent control over your view into
the target program's execution behavior.

When your workstation receives data from the probe, the
host application retrieves symbol information from the
IDB, then presents measurement results in the various
data views. In Continuous mode, you can observe the peri­
odic data update until you decide to stop the measurement.
In Trace mode, once the trigger event occurs and the trace
buffer fills to the selected depth, the probe stops automati­
cally and the results are presented in the Trace window.
Though you cannot run Trace and Continuous mode mea­
surements simultaneously, you can display Trace and Con­
tinuous mode views side-by-side and toggle between modes
without losing data.

Regardless of whether your program is executed from
cache, or dynamically relocated by the operating system,
CodeTEST produces accurate and reliable measurements,
overcoming the potential confusion surrounding instruc­
tion pre-fetch and caching.

For targets that employ a real-time operating system
(RTOS) CodeTEST provides task-based triggering and
measurement qualification, and a number of features for
monitoring the target program on a task-by-task basis.

CodeTEST supports connection to custom RTOS systems
and to these commercial RTOS products:

o pSOS from Integrated Systems, Inc.

o VxWorks from Wind River Systems, Inc.

o VRTX from Microtech Research, Inc.

1-5

What will it do for me?

The Continuous
mode toolset

1-6

Software testing strategies generally focus on three recog­
nized phases of system development: unit testing, integra­
tion testing, and system testing. Each of the CodeTEST
tools is useful during all development and testing phases,
though the emphasis of their usage will vary from one
phase to the next.

Development engineers will be most interested in using
CodeTEST to debug and unit test relatively small blocks of
code. The Trace and Memory tools will be of immediate
interest at this stage. Test engineers on the other hand,
who are not so concerned with code behavior per se as with
determining when sufficient testing has been done and
requirements specifications have been met, will likely focus
first on the Coverage and Performance tools. But to get
maximum benefit, try using each CodeTEST tool at every
stage of development and testing.

The Coverage tool
With the Coverage tool, you can pinpoint untested code and
identify the additional test cases necessary to reduce the
chances of passing undetected defects to the next stage.

o View a function-by-function display of the target
program's branch coverage (i.e., the percentage of basic
blocks that have executed).

o Pop up the right-mouse-button menu to display:

- source code for any function in the target program,
with executed lines highlighted.

- a summary of the Continuous mode data collected for
any function.

CodeTEST User's Guide

What will it do for me?

o Monitor test progress with the Coverage Trend view-a
dynamic XY graph that tracks coverage over time.

o Check the Coverage Summary view-a bar graph that
shows the overall level of coverage achieved.

o Merge coverage data from multiple measurements to see
the composite coverage achieved by a test suite.

The Memory tool
Use the Memory tool to examine dynamic memory manage­
ment behavior proactively and preventively, to root out la­
tent problems before symptoms develop.

o Monitor the allocation and deallocation performed by
each line of your code that calls a memory routine.

o Pop up the right-mouse-button menu to display:

- source code with memory calls highlighted.

- a summary of the collected Continuous mode data for
any function that has called a memory routine.

o Review a log of detailed messages and diagnostics for the
memory error conditions CodeTEST detects.

o Qualify memory measurements to a specific RTOS task.

The Performance tool
Use the Performance tool to run timing benchmark tests
and check for call-pair thrashing or other algorithmic prob­
lems, in the your entire program or a single code module.

o View your target program's execution timing and counts
on a task-by-task basis.

o View timing and counts function-by-function.

o View the call-pair relationships among functions.

1-7

The Trace tool

1-8

o Pop up the right-mouse-button menu to display:

- source code for any function that has executed (in the
Function Performance table) or any calling or called
function (in the Call Linkage table).

- a summary of the collected Continuous mode data for
any function listed in the performance tables.

o Qualify your performance measurements to a specific
RTOStask.

Interactively trace target program execution and view the
results at several levels of detail.

o Take quick snapshots of up to 4K or 40K events, or
capture a very deep trace of up to 400K events.

o Trigger on a specific function entry or exit, an RTOS task
entry, exit, creation or deletion, a memory allocation,
deallocation or error, an AMCPrintf, AMCPuts, or
AMCUserTag call, or any event (i.e., the first tag the
probe receives).

o Run Trace without a trigger and manually halt the
probe, or use the no trigger feature to trace events
leading up to a target program crash.

o Position the trigger at the beginning, middle, or end of
the trace buffer.

o Qualify the trigger context to a specific task, function or
function calling sequence, or task and function or
function calling sequence.

o Qualify the storage context to a specific task, function or
function calling sequence, or task and function or
function calling sequence.

Code TEST User's Guide

Code TEST
utilities

What will it do for me?

o Place AMCPrintf or AMCPuts calls in your code to see
printf-style or puts-style strings in trace, or place calls to
AMCU serTag to manually flag areas of interest.

o Display a High Level view of the trace buffer, showing
only RTOS task creation, entry, exit, and deletion
events, and function entry and exit points.

o Switch to the Control Flow view to add executed branch
points and memory management events to the display.

o Switch to the Source view to see each executed line of
source code.

o Use the Trace Find utility to search the buffer for a
variety of event types.

o Expand loops to show each iteration as a separate event
line, or collapse loops to a single event line with a
numeric execution count.

o Display elapsed time from the start of the trace to each
event, or time intervals between events.

o Select any two events and display the elapsed time
between them.

o Save measurement data for later review, or continuation
of Continuous mode measurements.

o Record CodeTEST command macros.

o Find, filter, and sort Continuous mode data based on the
contents of any table column.

o Print or export data, with your filters and sorting
reflected in the output.

o View or save a log of any CodeTEST host application
error messages generated during your session.

1-9

How do I use it?

RTOS
instrumentation

Target program
instrumentation

This section briefly overviews the ways you can use Code­
TEST. Guidelines for actually getting CodeTEST up and
running are covered under "Getting Started" on page 2-2.

If your target system uses a custom or commercial RTOS,
you will need to add a small amount of instrumentation to
track each task creation, entry and deletion.

There are a number of ways you can incorporate the instru­
mentation step into your target program build procedure.

Using a CodeTEST compiler driver
Generally the simplest approach to instrumenting your
source code is to use one of the provided compiler drivers
(ctcc for C compilers or etc++ for C++ compilers).

Set configuration variables.
Replace "cc" with ctcc/ctc++.

Optionally preserved
instrumented sources

I main. i- I

1-10

ctcc/ctc++ calls
amctag to instrument
your source files.

ctcc/ctc++ calls
your "cc" to compile ...

I I t-h. ---: --' I
1 IS. I
'I,~--',

"- I that._i I

/

. .. and link your
instrumented program.

CodeTEST User's Guide

Run amctag to
instrument sources.

main. i
this._i

that._i

CodeTEST link libs

E~

How do I use it?

By defining a set of variables to adapt the instrumenter to
your environment, and substituting ctcc or etc++ wherever
"cc" appears in your makefile or build script, you can auto­
matically instrument your sources with each compilation,
link in the necessary CodeTEST libraries, and assign mem­
ory locations to the two CodeTEST port addresses. This ap­
proach is designed to ease instrumentation into your
environment with minimal change to existing procedures.

Invoking amctag directly
An alternative to using the ctcc/ctc++ compiler driver is to
invoke amctag explicitly to instrument a body of sources,
then follow your usual build procedure to compile and link
the instrumented code. If you opt to use this method, you
will also need to explicitly build and link the supplied
CodeTEST library routines with your target program.

IDB file

Route through your
usual build procedure.

Instrumented

1-11

Interactive
operation

Code TEST
macros

1-12

To run CodeTEST interactively:

0 Load your instrumented program into the target system
using your usual method. (CodeTEST does not provide
this capability.)

8 Start the CodeTEST host application and set the config­
uration options for your session.

8 Set up your Continuous mode or Trace measurement
(optional) or use the tools with their default setup.

e Start the probe to begin a measurement.

0 Use your run control device or stimulus to manipulate
the target through some test scenario.

0 In Continuous mode, the probe sends measurement data
to your host workstation at an interval you specify. The
measurement runs until you manually halt the probe.

In Trace mode, the probe halts automatically, when the
trigger event occurs and the buffer fills.

@ View the results using the various display controls, find,
filter, and sort features, etc.

0 Once you've captured data, you may want to:

o Save the results for later review.

o Print all or part of the data.

o Export data to a spreadsheet for post-processing, or a
publishing program for producing reports.

Q) Use the CodeTEST macro utility to streamline testing:

o Record commands to set up measurements, load data,
etc. Most host application procedures can be recorded.

o Execute your macros from the Macro utility itself, or
supply the macro file name as a command line
argument when starting the host application.

CodeTEST User's Guide

0 ----­
(/Load instrumented" 1

program.*
' /

Target
System

Probe
Cable

0/- --~-,

1 Run tests.* J

'\ /

Commands &
Messages

Probe

*CodeTEST does not
provide these capabilities.

How do I use it?

8 Run CodeTEST &
Configure Session

8 Set up measurement
(optional)

8 Start probe

(i) Stop probe

@ Viewdata

..... : ·~·: t .. ,.,i ,

CD Create macros

CodeTEST Application

Export

Save

Results

Record

Macro
Play File

1-13

1-14 CodeTEST User's Guide

I Chapter2

Running CodeTEST

Getting Started 2-2

Running the Host Application 2-8

Code TEST Windows. 2-9

Configuring a Session. 2-13

Saving and Loading Data 2-19

Saving and Loading Data 2-19

General Code TEST Utilities 2-20

Running CodeTEST 2-1

Getting Started

Preliminaries

The approach outlined in this section will help you get
CodeTEST up and running, making actual measurements
on your own code as expeditiously as possible. Guidelines
are given to help you identify the individuals within your
organization best suited to handle each task, and pointers
are provided to the appropriate documentation for details.
Actual startup doesn't usually take long, and most of the
effort is a one-time investment that will make day-to-day
CodeTEST operation easy for your whole team.

Note: To succeed with CodeTEST, individuals knowledgeable
about your target code must be available to assist in the
preparation. When the right people participate the process
goes quite smoothly; when they don't time and resources
may be wasted.

1. Install CodeTEST software
If your Code TEST software is not already installed, install
it now. Most sites require that this be done by a System Ad­
ministrator. For details, refer to the CodeTEST Installa­
tion Guide. Also check the contents of the README file
placed in your installation directory by the CodeTEST in­
stallation script.

Note: To begin preparing for testing with CodeTEST it is not nec­
essary to have your probe installed. When you are ready to
begin using your probe, your System Administrator will
need to provide an IP address and netmask and the correct
type of ethernet transceiver (see step 5 below).

2-2 CodeTEST User's Guide

RTOS
connection

Getting Started

2. Select some code to test

Note:

3.

To get started, select a self-contained subsystem, ideally
about 5-lOK lines. This code must currently compile, link,
and run. It's important that the person assigned to deal
with this code through the startup process be able to build,
load and run the program in the target hardware.

If your target uses a real-time operating system (RTOS) fol­
low these steps to begin making CodeTEST measurements
of basic task activity. If your target system does not use an
RTOS, skip ahead to "Probe installation".

Unless your program is strictly single-threaded and doesn't
use an RTOS, you cannot skip these steps and expect Code­
TEST to work properly. (In single-threaded operation, in­
terrupts are okay provided they return whence they came.)

Prepare your RTOS
To make accurate performance, trace, or memory allocation
measurements in a multi-tasking environment, CodeTEST
must track the program's RTOS task context. For this to
happen, the RTOS must communicate to the CodeTEST
probe each time a task is created, deleted, or a swap occurs.
See Chapter 8, Using CodeTEST with an RTOS for details
about preparing a commercial or custom RTOS.

Commercial RTOS
CodeTEST provides simple callout functions for pSOS,
VRTX, and VxWorks, which connect to the standard ven­
dor-supplied hooks and emit the necessary information for
tracking task context. The person responsible for dealing
with this must be able to compile the appropriate (sup­
plied) file for your target processor and link this code with
your RTOS/application. This entails modifying your RTOS
configuration file so the CodeTEST callouts are executed
with each task creation, deletion, or switch.

2-3

Custom RTOS or other commercial RTOS
As in the case of a commercial RTOS, the person assigned
to this task needs to get the RTOS to "tell" the CodeTEST
probe every time a task creation, deletion, or swap occurs.
For a custom RTOS this individual must identify in the OS
code the location(s) where these events take place, then add
code that emits the required "tags" to CodeTEST, and then
rebuild the RTOS with these changes. Each callout will re­
quire perhaps a half-dozen lines of code.

4. Link the RTOS and locate CodeTEST ports
Once the RTOS callouts are tagged, the RTOS must be
linked and loaded into the target system. This process also
involves locating two variables ("ports") that the Code­
TEST instrumentation will write to as the target program
runs. The person who does this will need to select two con­
secutive non-cached addresses to serve as the CodeTEST
ports and locate these anywhere in the processor's address
space, beginning on a OxO address boundary. This requires
knowledge of the target system's memory map, including
chip selects, MCON s, or other processor-specific memory
configuration information. Actual location of the ports is
accomplished with your linker. See "Assigning Addresses
for the Tag Ports" on page 5-18.

5. Run your instrumented RTOS and application
in-circuit
Run the application in your target system and verify that
everything still works as it did before. The person who does
this must be able to download and run the build in-circuit,
should be experienced in debugging embedded code, and
should have tools available for debugging if needed.

Note: It's a good idea to use a software debugger, logic analyzer
or emulator to verify that RTOS tags are emitted correctly
before proceeding.

2-4 CodeTEST User's Guide

Probe
installation

RTOS
measurements

6.

7.

If your Code TEST probe is not already installed on your
network and connected to your target hardware, install it
now. See the CodeTEST Installation Guide for details.

Install the probe on the network
Your System Administrator needs to assign the probe an IP
address and netmask, update the hosts and ethers files,
and provide the correct transceiver type (twisted pair or co­
axial cable) for connecting the probe to ethernet.

Connect the probe to target hardware
The person assigned to connect the probe to the target sys­
tem should first make sure the target processor is a foot­
print CodeTEST supports directly (PGA package) or via an
adaptor. If an adapter is required, it should be installed by
the time you expect to start using Code TEST. In some cases
it may be necessary to solder an adaptor to the target
board. If this is the case, verify that the target system
works properly by installing the processor in the adaptor
and running your program as usual before connecting the
CodeTEST probe.

If your target system uses an RTOS, you are now ready to
begin making some basic CodeTEST measurements. With
your "instrumented" RTOS and your uninstrumented ap­
plication program, you can make two kinds of measure­
ments-task performance timing and counts, and task
execution traces.

If your target does not use an RTOS, skip ahead to "Com­
plete implementation."

8. Start up and configure CodeTEST
Start the host application and configure CodeTEST for
your probe, your target program, etc. See "Running the
Host Application" on page 2-8 and "Configuring a Session"
on page 2-13 ofthis manual.

Getting Started 2-5

Note: To configure the probe for your target processor, you will
need to run a utility to generate a configuration file that
will enable the probe to monitor the two port addresses you
assigned at link time. The person assigned to this task will
need all of the relevant memory map information. Refer to
the booklet supplied with your probe.

9. Measure task performance, trace task execution
The Task Performance view will show you a complete mea­
surement of all of the executing tasks in your system, in­
cluding the task name, number of instances, number of
entries, min/max/avg execution time slice, and cumulative
time spent in the task. See "Making a measurement" on
page 3-2 and "Task performance" on page 3-13.

Running CodeTEST Trace and displaying the High Level
view of the trace buffer will show the execution sequence of
tasks and the amount of time spent in each time slice. See
"Making a trace measurement" on page 4-2 and "High Lev­
el view" on page 4-10.

Complete
implementation

You can now turn your attention to preparing your applica­
tion code for the other types of CodeTEST measurements.

2-6

10. Instrument your selected source code
The person responsible for instrumenting the code that was
selected at the beginning of this procedure must be able to
build the program, either via a makefile or by manually
compiling and linking the code.

If using a makefile, the normal procedure is to replace your
"cc" command with CodeTEST's compiler driver (ctcc or
etc++) which in turn calls your cc. By default, the ctcc/ctc++
driver first invokes your preprocessor, then the CodeTEST
instrumenter, and then your compiler.

CodeTEST User's Guide

Getting Started

If you don't want to use a makefile, you don't have to. You
can invoke the instrumenter directly, as you would a com­
piler or any other software tool. For a small test program,
this may be easier than modifying an existing makefile. See
"Approaches to instrumentation" on page 5-3 for more in­
formation.

Note: Switches are available for controlling the level of instru­
mentation, depending on the kinds of measurements you
want to make. By default, your code is instrumented for
performance, coverage, and trace only. To instrument for
memory allocation measurements, you must supply the
-Xtag-allocator instrumenter switch, in addition to per­
forming the following step. See "Instrumenter Options" on
page 6-16.

11. Prepare for memory allocation measurements
To prepare your program for memory allocation measure­
ments, one additional step is necessary. CodeTEST pro­
vides a set of special memory management routines that
correspond to the standard C and C++ allocation calls (mal­
loc, free, delete, etc.). Replace your current library with the
CodeTEST version of these routines. The person assigned
to do this must modify a few lines of source to be consistent
with your system, then compile these routines for your tar­
get processor and link them in with your application. See
Chapter 7, CodeTEST Memory Functions.

12. Test your software with CodeTEST
You can now make performance, coverage, memory alloca­
tion, and trace measurements. Just download your instru­
mented application (linked in with your instrumented
RTOS, if applicable) and run the program in-circuit. Start
the CodeTEST host application and configure your session
as explained in the following sections and you're off and
running!

2-7

Running the Host Application

Syntax

You can run the CodeTEST host application to load and
view saved data without having a probe installed. To ac­
quire new data from your target system, a probe must be
correctly installed on your network and connected to the
target hardware.

Note: Refer to the CodeTEST Installation Guide and the booklet
supplied with your probe for installation and configuration
procedures. See Appendix A of this manual for a quick-ref­
erence guide to the system-wide configuration require­
ments for using CodeTEST.

The host application command syntax:

CodeTEST [-configfile name] [-datafile name]

[-macrofile name] [-version]

Options

- con fig f i 1 e name Starts the host application with a pre­
defined configuration. See "Configuring a
Session" on page 2-13 and "Configuration
files" on page 2-18.

-data f i 1 e name Loads a data file upon starting the host
application. See "Saving and Loading
Data" on page 2-19.

-macrofile name Executes a predefined macro upon start­
ing the host application. See "Creating a
macro" on page 2-21.

-version Displays the version number of the Code­
TEST software.

2-8 CodeTEST User's Guide

CodeTEST Windows

Toolbar

CodeTEST uses standard X/Motif-style windows, with pull­
down command menus and point-and-click tool buttons.

The CodeTEST toolbar provides top-level program controls
as well as access to data views and various utilities. You
will generally want to keep the toolbar displayed through­
out your operating session.

Code TEST

File Run Tools Options Help

Performance

Task ~unc"~i:J Calls

Done

The status line at the bottom of the toolbar displays self-ex­
planatory operational and error messages. To see a listing
of any error messages generated during your session, select
Error Log from the Tools menu. Appendix B provides trou­
bleshooting information for the CodeTEST error messages.

Click the tool buttons to display the various data views.
Each view is presented in a free-floating window with its
own command menus and button controls.

Note: To set preferences such as default window size, placement,
colors, etc., you can copy the CodeTEST application
defaults file from $AMC_HOME/lib/Xll/app-defaults to
your home directory. Then edit your copy of that file and set
the XFILESEARCHPATH environment variable to point to
it. Refer to your Xll online man pages for information
about the X resource options.

CodeTEST Windows 2-9

Toolbar Command Summary

Command

File Menu

Load Data ...
[Ctrl]-[L]

Save Data ...
[Ctrl]-[S]

Load IDB ...
[Ctrl]-[I]

Avail. Function

All modes Displays the dialog for loading a CodeTEST measurement data
file. See "Saving and Loading Data" on page 2-19.

All modes Displays the dialog for saving the current measurement data. All
(unfiltered) Continuous mode data and all Trace data is saved in a
single file. The host application must be connected to a probe when
you save a data file. See "Saving and Loading Data" on page 2-19.

All modes Displays the dialog for loading an IDB file. This command allows
you to load an IDB without affecting anything else in the configura­
tion (e.g., probe communications).

Merge Coverage Coverage
Data ... [Ctrl]-[M] license

Displays the dialog for merging coverage data acquired from multi­
ple measurements. See "Merging coverage data" on page 3-12.

Exit [Ctrl]-[X]

Run Menu

Start Probe

Stop Probe

Continue

Set Continuous
Mode [Ctrl]-[C]

2-10

All modes Exits the CodeTEST host application.

Cont.
mode

Cont.
mode

Cont.
mode

Trace
mode

Clears any Continuous mode data that has been acquired, then
begins a new Continuous mode measurement. The kind of data
that will be acquired depends upon the level of instrumentation in
the target program and the license(s) you have chosen. (To start a
Trace measurement, use the Start button on the Trace window.)

Halts Continuous mode data acquisition . (To stop a Trace mea­
surement, use the Stop button on the Trace window.)

Resumes a Continuous mode measurement without clearing exist­
ing data.This command can be used to resume the current mea­
surement, or to add new data to a file that has been saved and then
reloaded into the host application.

Switches from Trace mode to Continuous mode. Any data currently
in the trace buffer is retained.

Code TEST User's Guide

Toolbar Command Summary (cont'd)

Command Avail. Function

Set Trace Mode Cont. Switches from Continuous mode to Trace mode. Any existing Con-
[Ctrl]-[T] mode tinuous mode data is retained.

Reset Probe All modes Re-establishes the network communication channel with the probe.
Connection

Tools Menu

Macros ... All modes Displays the dialog for recording, saving and executing a Code-
[Ctrl]-[M] TEST macro. See "Macro dialog" on page 2-20.

Error Log ... All modes Displays a log of any error messages generated.

Status All modes Displays information about your probe (including firmware version,
Window ... total measurement time, etc.). Also shows IDB and RTOS map files

in use, and licensing information.

Probe All modes All installed probe configuration utilities are listed in this menu.
configuration Refer to your probe booklet for information about using the appro-
utilities priate utility to generate a binary configuration file for your probe.

Options Menu

Edit Options ... All modes Displays the dialog for configuring CodeTEST. See "Configuring a
Session" on page 2-13.

Load Options All modes Displays the dialog for loading a saved configuration file. See •File
File ... load dialogs" on page 2-27.

Save Options All modes Displays the dialog for saving the current configuration. See "File
File ... save dialogs" on page 2-26.

Help Menu

Help on All modes Displays the help topic for the current window.
Window ...

Contents ... All modes Displays the help Contents page.

Search ... All modes Displays the help Keyword Search dialog.

CodeTEST Windows 2-11

Toolbar Command Summary (cont'd)

Command

How to Use
Help ...

About
CodeTEST ...

Avail. Function

All modes Displays help on how to use the help viewer.

All modes Displays the CodeTEST version number.

Button Controls

Performance:
Task

Performance:
Function

Performance:
Calls

Coverage:
Summary

Coverage:
Function

Coverage:
Trend

Memory:
Usage

Memory:
Errors

Trace

2-12

Perform.
license

Perform.
license

Perform.
license

Coverage
license

Coverage
license

Coverage
license

Memory
license

Memory
license

Trace
license

Displays the RTOS Task Performance view. When you acquire
task performance data from the probe or load it from a file, it is dis­
played here. See "Task performance" on page 3-13.

Displays the Function Performance view. When you acquire func­
tion performance data from the probe or load it from a file, it is dis­
played here. See "Function performance" on page 3-15.

Displays the Call Linkage view. When you acquire call pair data
from the probe or load it from a file, it is displayed here. See "Call
linkage" on page 3-17.

Displays a bar graph that summarizes the coverage achieved dur­
ing a measurement. See "Coverage summary" on page 3-11 .

Displays the Branch Coverage view. When you acquire coverage
data from the probe or load it from a file, it is displayed here. See
"Branch coverage" on page 3-6.

Displays a trend graph, which plots the progress of a coverage
measurement as it runs. See "Coverage trend" on page 3-10.

Displays the Memory Allocation view. When you acquire memory
allocation data from the probe or load it from a file, it is displayed
here. See "Memory allocation" on page 3-19.

Displays the Memory Error log, for viewing or saving a list of mem­
ory errors generated. See "Memory error log" on page 3-22.

Displays the Trace window. When you acquire trace data from the
probe or load it from a file, it is displayed here. See "The Trace
Window" on page 4-10.

CodeTEST User's Guide

Configuring a Session

Configuration
dialog

Note:

CodeTEST requires certain basic information, such as the
probe's network ID, paths to your source files, etc., which
you enter in the Configuration Options dialog. Once you
have entered the required information, you may want to
save your configuration for use in future sessions.

To view or edit the configuration at any time during your
session, select Edit Options from the toolbar's Options
menu.

Some configuration changes will clear existing measure­
ment data from memory. Before you change the configura­
tion during a session, first save any collected measurement
data that you wish to keep.

Configuration categories
The Configuration Options dialog is partitioned into pages
for the following information categories:

a Probe configuration

a Target program configuration

a License options

To display the page you want, select a category from the
categories menu. To put your configuration into effect, click
the Apply button.

Note: Before you can configure your session to access a probe, you
need to generate a probe configuration file. See your probe
booklet for details.

Configuring a Session 2-13

Probe
configuration

2-14

To define the probe's operating variables, select Probe from
the configuration categories menu, then enter the informa­
tion as described below.

CodeTEST Configuration Options

Co nfig uratio n categories Probe

Update Interval (in seconds)

Timeout Interval (in seconds)

Probe Network Id r.···.·· -... -.d .· .. ·-:-····· .~ ... ·~ ~ ... · .. ·.·-.. ··.·.~.· ... ··.·.-..... · ... ~ ~ , i sun ae:,

Probe Configuration File I /proj2/mod6/mod6.bin Ii
iAillli~I f Cl~sll I rH~i~]·

-------------------. ...!

Update interval
Enter the interval for updating the host application data
views with new data from the probe. If the host application
receives data faster than it can be processed, this interval
will be adjusted automatically.

Timeout interval
Enter the interval after which CodeTEST times out if no re­
sponse is received from the probe.

Probe network ID
Enter the host name of the probe you will be using. An en­
try in this field is required. There is no default. (The host
name is assigned during installation. See your System Ad­
ministrator if this has not been done.)

Probe configuration file
Enter the name of a binary (.bin) configuration file gener­
ated by the configuration utility for your probe. Refer to
your probe booklet for information about using the utility.
To download a new configuration file to the probe, stop the
probe before clicking Apply.

CodeTEST User's Guide

Target program
configuration

IDB path and file
name

Configuring a Session

To configure CodeTEST to monitor your target program,
select Target Program from the Configuration Categories
menu, then enter values in the fields described below .

............................... ,.,. ·····'"""""'"""""-·--------··•···
CodeTEST Configuration Options

source Code Directories [i~roj2;.;;;dG fproj:it~od6ii

Instrumentation Database Directories f/proj2/modGl;roj2/~'-o~d~6~<i:~,--...

Instrumentation Database 1;;;1-;;;:id'i. ___ ,,,,~~-,,
User Defined Tag File

Memory Call Definition File F2/-;~det;st/lib/allocator/ctcall.rnaP., I

Using an RTOS? RTOS Map File (/proj2/rtos.map . . . JI

Source code directories
Enter the full absolute path (beginning with a slash char­
acter) to the source files for your target program. This can
be a single directory path, multiple directory paths sepa­
rated by spaces, or the name of an ASCII text file contain­
ing a list of directory paths. An entry in this field is
required. There is no default.

For CodeTEST to produce accurate results, the instrumen­
tation database (IDB) you specify must match the instru­
mented target program (i.e., must be produced during the
same instrumentation).

Instrumentation database directories
Enter the full absolute path or a partial path to the IDB, be­
ginning with a slash(() character. This can be a single di­
rectory path, multiple directory paths separated by spaces,
or the name of an ASCII file containing a list of directory
paths. CodeTEST will search the path or paths for the file
you specify in the Instrumentation Database field below.

2-15

2-16

No entry in this field is required if you choose to specify the
full path and file name in the field below.

Instrumentation database
Specify the IDB file for your target program. This can be a
single IDB file created by the instrumenter, or an ASCII
text file containing a list of compatible IDB file names (see
"Compatible IDB Files" on page 6-23).

The entry in this field can be a full absolute path and file
name, a relative path and file name, or simply a file name.
When searching for the IDB, CodeTEST will append the
entry in this field to the entry in the Instrumentation Da­
tabase Directories field above (if any). Only the first file
found will be used.

Note: The entry in this field is written at the top of each saved
data file. See "Saving and Loading Data" on page 2-19.

User defined tag file
If you place user defined tags in your target code (i.e., calls
to the AMCUserTag function) you can create an optional
map file to associate each call's numeric argument with a
text string to be displayed in trace. See "User Defined Tags"
on page 4-20.

Memory call definition file
Enter the name of the Memory Call Definition file to be
used for your target program. The default version of this
file is $AMC_HOME/lib/allocator/ctcall.map. See "Memory
Call Definition file" on page 7-4.

Using an RTOS?
Select this box if your target system uses a custom or com­
mercial real-time operating system (RTOS) . See
Chapter 8, Using Code TEST with an RTOS for information
about preparing your RTOS for use with CodeTEST.

CodeTEST User's Guide

License options

RTOS map file
If your target system uses an RTOS, you may want to cre­
ate an RTOS map file to define a text string to represent
each task in the CodeTEST user interface. See "Creating
an RTOS Map File" on page 8-9.

To select one or more CodeTEST licenses, select Licensing
from the Configuration Categories list box, then make your
selection from the list of options. To make new measure­
ments, you must select a license for each tool you plan to
use.

configuration categories r~~~Licensini ,~:;!

CT Performance License

El Memory License

RI Coverage License

'::! Trace License

I
I
I

j

To load and view saved data that was acquired with any or
all of the CodeTEST tools, you need only one license of any
type. If you load a data file without first selecting a license,
CodeTEST will automatically determine what licenses are
available and select one for you.

Note: CodeTEST is a FLEXlm-licensed product. Refer to the
CodeTEST Installation Guide for information about the li­
cense manager and your CodeTEST license file.

Configuring a Session 2-17

Configuration
files

Note:

Saving a configuration file
To save your current configuration, select Save Options
File from the Options menu. The Save Configuration File
dialog is displayed for you to enter the path and file name.
See "File save dialogs" on page 2-26.

At startup the host application will automatically search
for a file named .ctconfig in your home directory. However,
you may name your configuration files anything you wish
and load them explicitly.

Startup configuration
To start CodeTEST with a predefined configuration, you
can use the -configfile option to load a configuration file.
For example:

CodeTEST -configfile /proj/mod3/ctconfig-mod3

If you do not specify a configuration file at startup, Code­
TEST searches your home directory for a .ctconfig file. If
.ctconfig is not present, CodeTEST is started with default
values for all of the configuration variables that have de­
faults (described earlier under "Configuring a Session").

Loading a configuration file during a session
To load a previously-saved configuration while the host ap­
plication is running, select Load Configuration File from
the Options menu. The Load Configuration File dialog is
displayed for you to select a configuration file of any name.
See "File load dialogs" on page 2-27.

Note: Most configuration changes will purge existing measure­
ment data from memory. Before you change the configura­
tion during a session, first save any collected measurement
data that you wish to keep.

2-18 CodeTEST User's Guide

Saving and Loading Data

Saving data

Loading data

Saving and Loading Data

To save collected CodeTEST measurement data, select
Save Data from the toolbar Files menu. All of the current
Continuous mode data (regardless of filtering) and all of
the current trace data are saved in a single file.

To load a data file upon starting the host application:

CodeTEST -datafile mydata.dat

To load a data file during a session, select Load Data from
the toolbar File menu.

Licensing
To load and view data acquired with any or all of the Code­
TEST tools, you need only one license of any type. If you
load a data file without first checking out a license, Code­
TEST will determine what licenses are available and auto­
matically check one out for you.

IDB location
The IDB that was used when the data was captured must
be available when you load a CodeTEST data file. The host
application does NOT look for the IDB in the location spec­
ified in the Configuration dialog. The IDB file is specified
at the top of each data file. If you have moved the IDB since
saving the data, either move it back to its original location
or use a text editor to edit the data file to reflect the new
location.

Source files
For CodeTEST to find the source code for your saved data
(for display in the Source Code Viewer or Source view of a
trace) the host application must be configured for the path
or paths for all directories containing target source files.

2-19

General CodeTEST Utilities

Macro dialog

2-20

The utilities described in this section are available for use
with all of the CodeTEST tools. Utilities for specific modes
or tools are covered in Chapter 3 and Chapter 4.

To display the Macro dialog, select Macros from the toolbar
Tools menu. With the Macro dialog you can create, save,
and execute command macros using most CodeTEST host
application commands.

Command Macros
....................... ··-······

,,.,,,,~~-~S!!.~ R~cordi n.!L!,,!'.!!lE",! .••. ~···---J
... ~,,··~~~!~-~s~~~~···~···~·-J
Filter

/u7/greg/macros/*.log

Selection

r;;; /gregfmac~~s,f

1
1 .. -··· ·;~~~~~ ·.-..•. ·.·.··.·== Tl

_i ·-"-"""="··~-·~·--·------·~ ~~~·-

Load

~------------- .. .i

CodeTEST User's Guide

Creating a macro
To create a macro, click Start Recording a Macro, then use
the keyboard and mouse controls to execute the series of
CodeTEST commands you want to capture. (If you have
previously recorded any commands, click the Clear Current
Macro button before you begin recording a new macro.)

Note: To save a measurement setup, turn on macro recording to
capture your Continuous Mode or Trace Mode setup
commands.

General CodeTEST Utilities

Click Stop Recording when you have finished recording
commands.

Saving a macro
To save the current macro, enter the path and file name in
the Selection box, then click Save.

Executing a macro from within the host
application
To run a previously-saved macro, first select the directory
where the macro file is stored. If you wish, you can specify
a file filter in the Filter box (top text entry box) and click
Filter to display a list of files matching your filter criteria
(*.log in the example above). Select the desired macro file
from the list, then click the Load button to load and execute
the macro.

Executing a macro upon starting the host
application
To execute a macro automatically upon starting the host
application, use the -macrofile command line argument to
supply a macro file name. For example:

CodeTEST -macrofile mymac.log

2-21

Status window Select Status Window on the Tools menu to see information
about your probe (including firmware version, total mea­
surement time, etc.). Also shown are the file names in use
during your session.

........... CodeTESTStai:us··· ·········--·····

Probe Information I"'
rro-be-iiietwori<lii:iieterk3
Probe Type: Motorola 68360
DRP ID: 1.30
Current Pro be Status: The pro be is stopped ...
Commands sent to probe: 2783
Responses from probe: 2783

Session Information

ciirrentlo87svtl/svtictde mo/360de mo n/work/peterk/master.id b
Rtos map file: /svt1/svVctdemo/360demon/work/peterk/rtos-strings.map
User tag map file: /svt1 /svVctde mo/360demon/work/peterk/usertags.map
Memory call map file: /u33/sheldon/svVlib/ctcall.map

1:1
IJ,. :;;

•••

··· Cius~ --~:J He_!i:i_ J !

Error log Select Error Log on the Tools menu to see a listing of the
messages generated during your session. Appendix B gives
troubleshooting tips for CodeTEST error messages.

Fri Oct 13 14:11 :34 1995 Couldn"1: open a connection to the probe!

&rec:::..~~ .. :::::.= .. ·.:_::,.~ ,;;::..=:._·~~~ ·~·. ~.~.~.~~··-· ... ~. ~ .. ~ .. -~. -~-···-· ~~~·== .. -1>.
Close j Clear Save As... • H.~~P .. J ..:;;;=====···;;;,· _____:;;;=====------....:;====;;;;;;. ___;=====;;.....-.J

2-22 CodeTEST User's Guide

Window resize
dialog

Print dialog

General CodeTEST Utilities

You can set the width of each column in any CodeTEST
tabular view. To display the resizing dialog, select Resize
on the Window menu for the view of interest. The example
below shows the resize dialog for the Function Performance
view. Edit the width value for any column you want to
resize. Width is specified in M spaces (i.e., the width of an
uppercase M in the screen font).

r Performance Window Resize

Function

II XEQ

Min

Max

Avg

Cumulative

% Total Time

,Ai1i11vl ! c1ose J .•·Help I
----------------.. ..l

You can print the contents of any CodeTEST view on a
PostScript printer, or send the data to a printer-ready file
for later printing. To print data, first apply any filters or
sorting you want reflected in your printout (Continuous
mode only). Only the data that is actually displayed will be
printed. Select Print on the File menu for the view of inter­
est, then specify a print queue, or click the Print to File box
and enter a file name. Click Apply to execute the print com­
mand.

Printer

lu Print to File? I Hl(rnaw;1

2-23

Selection lists Selection list dialogs are available for browsing lists of task
and function names while setting up your measurements.

2-24

Note: The Function Name selection list includes the names of all
target program functions listed in the IDB (i.e., all instru­
mented functions). The Task Name selection list displays
the task names from your RTOS map file (see "Creating an
RTOS Map File" on page 8-9).

For example, if you are setting up the Trace tool to trigger
on entry into a specific function, first select Function Entry
as the trigger event, then click to display a list of your
program's functions.

Function Names

void • ets mNode(int size)
int getcom(void)
void handleCmd(void)
void hit(void)
void house(void)
void init(void)
void initial(void)
void *initializeSyml'ool(int size)
void killNode(void *block)
void killRecExtension(void *block) r = '1~ ~;:::_.~-:-,~~~= J~~:,~~ /'. .,

C.\pJiivl : c11lse I ·• iielp I ________________]

To search for a name, enter a text string in the Search box
and click Search to bring to the top of the list the first item
that includes the specified string. Continue clicking Search
to find other names that include the specified string.

To copy the highlighted function or task name to the parent
dialog, click Apply.

CodeTEST User's Guide

Export dialog

Note:

General CodeTEST Utilities

You can export the contents of any CodeTEST view to an
ASCII comma delimited format (CDF) file.

Before exporting from a Continuous mode view, first apply
any filters or sorting you want reflected in the exported da­
ta. In Trace mode, first select the view (High Level, Control
Flow, or Source) you want reflected in the exported data.
Only data that is actually displayed will be exported.

Select Export from the File menu on the view of interest.
The Export dialog is displayed. Specify a path and name for
the export file, then click OK.

Save Data to Export File
·····-···--:-:-······-···-··-··-·····-·······--·-·-·-·-···~··--····-----·········--·-········---··---··-···--,

Filter

Directories

Selection

Flies
malloc.cdf I · ' ·
perLtskl.cdf i I
perLtsk2.cdf I

I
~ r~ rc:;~-~;q r "~·~ 1 I

···································-·--·-:'..!

You can import CodeTEST CDF files into most popular
spreadsheet programs for post-processing measurement
data, or into publishing programs for producing printed
reports.

2-25

File save dialogs

2-26

The Save Collected Data dialog is displayed when you se­
lect Save Data from the toolbar File menu. A similar dialog
is displayed when you select any CodeTEST save command
(e.g., Save Options on the toolbar Options menu or Save As
on the CodeTEST error log). The format and basic function­
ality of all CodeTEST file save dialogs is the same.

Directories Files
!iiiiJlmtlfdmilttPi J. ,...p,~e,r_f __ ,t~s-kl ·.·d,~at-~ !3:
/u7 /greg/ct_data/.. J trace_ts kl .dat I !

trace_ ts k2 .d at

! 11
r::r-:~. ··---,,~ N~~·~___;:;

Selection

,,_, ____________ ,_._._··:!..J

To save a file, first select a directory in the Directories
scroll box. This places the directory path in the Filter box.
If you wish, you can specify a file filter in the Filter box (us­
ing the * and? wildcard characters). Click the Filter button
to put your filter into effect. In the example above, the filter
/auto/u7 /greg/ct_data/* .dat was applied.

A list of files matching the filter criteria appears in the
Files list. To overwrite an existing file, select the file name.
To create a new file, type the file name into the Selection
box. When the Selection box shows the correct path and file
name, click OK to execute the save.

Code TEST User's Guide

File load dialogs

General CodeTEST Utilities

The Load Collected Data dialog is displayed when you se­
lect Load Data from the tool bar File menu. A similar dialog
is displayed when you select any CodeTEST load command
(e.g., Load Options on the toolbar Options menu). The for­
mat and basic functionality of all CodeTEST file load dia­
logs is as shown below .

..-=========================""""-; Load Collected Data

Filter

(!auto/u7/greg/ct_data/*.da(
,. w~w;, =, ;w;• • • ,.,.,.m ;.,~w==·~' ''=•'

Directories
iiiiilldii@IWj!illlM I .
/u7/greg/ct_data/ .. :

Files
perf_tskl.dat i · '
trace_tskl .dati
trace_tsk2.dati

!

'·,;;;;• ==-······-······-······-······-...······-······-······-...···-·-···· =--=--"---····-······-······--········ .. .J

To load a file, first select the directory in the Directories
scroll box. This places the directory path the Filter box. If
you wish, you can also specify a file filter in the Filter box
(using the* and? wildcard characters). Click the Filter but­
ton to put your filter into effect. In the example above, the
filter /auto/u7/greg/ct_data/*.dat was applied.

A list of files matching the filter criteria appears in the
Files box. Select the file name you want. When the Selec­
tion box shows the correct path and file name, click OK to
load the file.

2-27

2-28 CodeTEST User's Guide

I Chapter3

The Continuous Mode Too/set

Overview. 3-2

Continuous Mode Setup 3-5

The Coverage Tool 3-6

The Performance Tool 3-13

The Memory Tool 3-19

Continuous Mode Utilities 3-25

The Continuous Mode Toolset 3-1

Overview

Making a
measurement

3-2

The CodeTEST Continuous mode tools work together as a
unified toolset, allowing you to make performance, cover­
age and memory allocation measurements simultaneously,
monitoring up to 32,000 target program functions.

To make a Continuous mode measurement:

1. Prepare your target system according to the guidelines
under "Getting Started" in Chapter 2.

2. Download your instrumented program to the target
hardware.

3. Start the CodeTEST host application and configure your
session for the probe, target program, and licenses you
want to use (see Chapter 2).

4. Select Set Continuous Mode on the toolbar Run menu.
(Although you cannot make Trace and Continuous mode
measurements simultaneously, you can display Trace
and Continuous views side-by-side and toggle between
modes without losing data.)

5. Click the tool buttons to display the views you want. Use
the tools with their default setup, or click Setup on any
Continuous mode view to set up the measurement.

6. Select Start Probe on the toolbar Run menu.

7. Use your run control device or stimulus to exercise the
target system through some test scenario.

8. As data is received from the probe, views are updated at
the rate you specified in step 3. The measurement
continues until you select Stop Probe on the Run menu.

9. To add data to an existing measurement (or to a saved
data file that has been reloaded into the host
application) select Continue on the Run menu.

Code TEST User's Guide

Continuous
mode commands

The commands summarized in the following tables are
available on the Continuous mode data views.

Command

File Menu

Print. ..

Export ...

Close

Window Menu

Resize ...

Help Menu

Function

Displays the dialog for printing data (or print­
ing to a file, which can later be sent to a
printer). Only the currently displayed data
(sorting and filters applied) is printed.

Displays the dialog for exporting data to an
ASCII comma delimited format (CDF) file.
Only displayed data in the current view (sort­
ing and filters applied) is exported. Exported
data can be loaded into most spreadsheet
and publishing programs.
Note: To save data in a form you can reload

into CodeTEST, use the Save com­
mand on the toolbar File Menu.

Dismisses the view without losing data.

Displays the dialog for setting column widths.

Help on Window... Displays help for the current window.

Contents... Displays the help Contents page.

Search... Displays the help Keyword Search dialog.

How to Use Displays help on how to use the help viewer.
Help ...

About Displays the CodeTEST version number.
CodeTEST ...

Overview 3-3

3-4

Button Controls

Command

Find ...

Sort ...

Filter ...

Setup ...

Function

Displays the Find dialog for the active view.
See "Search utilities" on page 3-28.

Displays the Sort dialog for the active view.
See "Sort utilities" on page 3-27.

Displays the Filter dialog for the active view.
See "Filter utilities" on page 3-29.

Displays the Continuous Mode Setup dialog.
See "Continuous Mode Setup" on page 3-5.

Right mouse button pop-up menu
Several of the Continuous mode views have pop-up menus
you can display by positioning the cursor on any row in the
table, then clicking and holding the right mouse button.

View

Function
Performance

Call Linkage

Branch Coverage

Memory
Allocation

Menu Options

Display source code of function xxx
Display statistics for function xxx

Display source code for calling function xxx
Display source code for called function xxx
Display statistics for called function xxx

Display coverage in source file xxx
Display statistics for function xxx

Display line nn of file xxx
Display statistics for function xxx

For information on the viewer, see "Source code viewer" on
page 3-26. For information on function statistics, see
"Function summary" on page 3-25.

CodeTEST User's Guide

Continuous Mode Setup
For RTOS applications, you have the option of qualifying
performance and memory allocation measurements (not
coverage measurements) to a specific task.

Note: For Continuous mode measurements that are not qualified
to a specific task, CodeTEST begins the measurement
when the first tag is received. For task-qualified measure­
ments, CodeTEST does not begin the measurement until
the first task switch is detected. See Chapter 8 for informa­
tion about RTOS task tracking.

To display the Continuous Mode Setup dialog, click Setup
on any Continuous mode view.

r Continuous Mode Setup Options
MHoOMooOMM•-.. HOMOH_O_O••OOOOOOOOO-OOHH••••OOOO HOMnHo••••••OOOOOOOOOHOHOO•••ooomUHOOOOM;-•••••ooo:•·--••MM•M••••OMOOO:•.:.:;:.:•Moo>•••ooo•OOO HoMo• H ·1"" OO mo .. •••••••••.•••••••••oHHOO>•moo•••••"'••••OOOoOOOoOO···.·••••••••MHOOOHMOO

Performance and Memory Allocation rn Task GJI ROOT_ The Root Task

i !™"i\iiiiiv'] r ciosMe Ml rwwHelpww]

Qualifying
measurements
to an ATOS task

Note:

Continuous Mode Setup

To qualify the acquisition of performance and memory allo­
cation data, click the name entry box. Then either type in
the task name or click [J to make your selection from a list
of task names derived from your RTOS map file. See "Cre­
ating an RTOS Map File" on page 8-9.

To save a measurement setup, turn on macro recording to
capture your setup commands in a CodeTEST macro. See
"Creating a macro" on page 2-21.

3-5

The Coverage Tool

Branch
coverage

3-6

Note:

The CodeTEST Coverage tool can provide valuable infor­
mation about your target program and your test cases by
examining your program's flow of execution to reveal exact­
ly which code executes under each set of test conditions.
With this knowledge you can develop additional tests more
efficiently, and eliminate redundant or ineffective ones.

See "Coverage tagging" on page 6-6 for an explanation of
how the instrumenter places coverage tags in your code
and how CodeTEST tracks coverage.

The Branch Coverage view shows which areas of the target
program have or have not executed during a measurement
(or if you have merged coverage, during multiple measure­
ments). If you display the Branch Coverage view after con­
figuring your session to monitor the target program, but
before starting a measurement, you will see a listing of the
program's functions with 0% coverage shown for each.

,-.z.-'""J _______ Fu_n_ct_io_n_L-is-t:-Br-a-nc_h_C_ov-e-ra_g_e ______ ···I

File Window He~
r5;tup: .. 1

CodeTEST User's Guide

Once you select Start Probe on the toolbar Run menu, and
the host application begins to receive data, the view is up­
dated periodically to show the coverage achieved.

' .. cJ Function List: Branch Coverage

File Window

Function

main

Fath its Ed it

Font Changed

···

The Branch Coverage table contains:

Column Description

o.oo
o.oo
o.oo
o.oo

0.00

o.oo

Function All of the target program's instrumented functions.

File Source file in which each function is located.

% Coverage The percentage of basic blocks within each function
that have executed during the measurement (or
suite of measurements if you have merged coverage
data). The function with the highest percentage has
a full histogram; histograms for all other functions
are sized relative to the high value.

. ..I

The Coverage Tool 3-7

3-8

To sort the data so you can easily see which areas have
been covered, perform a sort on the % Coverage column.
Click the Sort button on the Branch Coverage view, set up
the dialog as follows, then click Apply.

Branch Coverage Sorter

Criterion 111 ':,,,coverage (in%) _,I Decreasing ~J

Criterion 112 Source File Don't care ~,I

Criterion 113 Function Name _,j Don't care

~--A_P_P_•_v_l ___ ~_c_io_s_e J ____ ;_H_e_IP_.,,_I --.. ...i

With the% Coverage column sorted in decreasing order,
functions with the highest levels of coverage are arranged
at the top of the table.

Help !
~~~·-~--~~~-'H'~--~,,~-~-~-W=~~h~=o~~~--~ A,-,,A•,,_,.n~hhuu_,~,1 

File Window 

1!~.~oi.;~iRi:_;h;·;;·~ov_e~~~Ji:-:-:t:·····:······~c·· n~t~.c~liiiiiiil!l!I~' I blobOp.c 

undoGrow lr~i~tundo.c i 
··········+· .. , 

.J>~l:.tteAlloc _JP::e~~:I:_.. lllllllllilli'il!fZlll;iitil 
StopPoly i polyOp.c 

tio n I circle o p.c 
--~WWWHAW""""--~m=·~"'M"""""'=~w'~ 

PaletteFindDpy I palette.c 
···············•·••· ········-···+···················· 
StartSelect ! selectOp.c 

setOperation ! operation.c 
~~~L~~----~ ,, ,,~·~·-

iI~4fiw•~!.~¥~±~F;f3!#ii§'.4f4
1 M1 rW*t•a

+~i!dtill!ij'' ~ J

CodeTEST User's Guide

Viewing line
coverage

When coverage analysis reveals untested areas of your pro­
gram, you can use the Source Code Viewer to see exactly
which code has executed, and examine the control flow
leading to uncovered branches.

Position the cursor on the Branch Coverage row for the
function of interest, click the right mouse button, and select
"Display coverage in source file xxx." The source viewer dis­
plays the selected file, with executed code highlighted.

Source File: /svtl /svt/ctdemo/lib/work/peterk/ctdemo.c

void
showMemory(char *start .. int count)
(

unsigned char *s.:
int i;

s = (char *) (((int) start) & "OxF);
i = 16 - (((int) start) X 16 J;
while (count > 0)
(

AMCPrintf("%08lx: !.02x %02x %02x !.02x X02x %02x %02x !.02x !.02x !.02x !.02x X02x 7.02x 7.02x !.02x 7.02x
count -= i;
s += 16;
i = 16;

return;

void
userProgr-a111 < void }

ch<U" 't"msg ::::: !1quick'1;
inti= 7;
List.J!Jode node;
int *list:
int count:

count = ra.ndO ~;.:l 4;
list= (mt') malloc(count' sU...of(int));
switch("""dO % 8)
(

oo.se 0:

node.count= count:
node.li.stHd•• = (List') list;
node.pre" = N!JH;

!

j

nod~.ne..Yt = (ListNode 't.) &1.ist,; :'.
showListNode(&node);

IF"!'.__..,,.b .. "'-ak,.,· · ,.,.._,,...,.,,.,..,.,..,.,_,,,,..,.,..,.,_..,.,,.,.-.._,.,,.,..,.,..,.,,.,,.,,.,,.,,.,,.,,.,,.,,.,,., ______ ,.,,.,__, IA
11_~1 .• ~··-· ·-~. .J<::J

cios0···~

The Coverage Tool 3-9

Coverage trend

File

3-10

The Coverage Trend view is an XY graph showing the level
of coverage over time that your testing achieves. As a cov­
erage measurement runs, the graph plots the percentage of
the target program's branch points that are executed as of
each update from the probe. You specify the update inter­
val on the Probe section of the Configuration dialog (see
page 2-14). The graph's horizontal axis automatically
scales and adjusts time increments, providing trend infor­
mation for measurements that run minutes, hours, or days.

Function Coverage Trend

Help

Current coverage level: 71.38%

80

70

60

go. 50

~
~ 40
0
'-'

"' 30

20

10

o*===-=""===~o=.s:::__~----~~~~-+-~~~--+-~~~---­

o 1 2 4 5
T ifte of "easurenent OUnutes)

. ...J

With the Coverage Trend view, you can easily identify dead
spots in your testing, where no new coverage is being
achieved. By modifying your test stimulus accordingly, you
may be able to reduce your testing time substantially,
while still testing just as thoroughly.

CodeTEST User's Guide

Coverage
summary

The Coverage Tool

The Coverage Summary view displays a bar graph showing
the overall level of coverage achieved during a measure­
ment (or during multiple measurements, if you have
merged coverage data).

The graph categorizes your program's functions into the
percentile ranges indicated along the vertical axis. The hor­
izontal axis indicates the total number of target program
functions and the number of functions with coverage levels
that fall within each percentile range.

In the example below, the majority of the target module's
77 functions have achieved 100% coverage, but there are
still 27 functions that have achieved 0%.

::s···· F'iillc:tTiin ciiveriliie siimmilri/
File

···············-·························

% Coverage

100%······················ < 100%
< 90%
< 80%

< 70%

< 60%

< 50%
< 40%

< 30%

< 20%

< 10%

0%

0 10 20 30 40

Help

50
Nunber of Functions (out of a total of 77 functions in the progra11)

3-11

Merging
coverage data

•

3-12

You can merge the coverage data from multiple measure­
ments to see the composite level of coverage achieved in a
suite of tests.

1. Configure the host application for your probe, target
program, and licenses. Then either make a new
Continuous mode measurement or load a data file that
contains coverage data.

2. Select Merge Coverage Data on the toolbar Files menu
and load a file that contains coverage data you want to
merge with the data acquired in step 1. Note that the
IDB for the file you select must be the same as the IDB
that was used when you acquired the data in step 1.

Directories

iJlliiJJJDlfAIWi!lmt41
/u7 /greg/ct_data/ ..

Files

26b.dat ,
mem_errs.dat'
storqual.dat

µ,J. ' ~~!:::! ~·~-,

\f

L~ [[~;t~]] (Cancel I ~ !
···- ··--······- ·······-· Ji

3. Repeat step 2 for each file whose coverage data you want
to merge. Composite coverage is reflected in the Branch
Coverage view and the Coverage Summary graph.

4. To save your merged coverage data, select Save Data on
the toolbar Files menu.

CodeTEST User's Guide

The Performance Tool

Task
performance

The Performance Tool

The Performance tool can help you determine whether your
program is responding quickly enough to meet efficiency
requirements for response times and throughput rates. By
analyzing performance data, comparing each task against
the other tasks, each function against the other functions,
you can determine without guesswork which parts of your
program need tuning for optimum performance.

For RTOS applications, CodeTEST internally tracks the
function context for each task running in the target system.
See Chapter 8 for information about RTOS task tracking
and about preparing your RTOS for use with CodeTEST.

The Task Performance view displays your target program's
timing and counts information on a task-by-task basis.

If the probe doesn't capture all of the tags written to the tag
port addresses, the sampling rate (i.e., the percentage of
time within the update period the ports were monitored) is
displayed above the column headings.

3-13

3-14

The Task Performance table contains:

Column Description

Task Name The name of each task that has executed. This can
be either the task name or a string associated with
the name in an RTOS map file (see Chapter 8).

#Instances The number of instances (creations) of each task
during the measurement. CodeTEST can track up
to 1,000 active task instances at a time, and tabu­
late results for thousands of task instances over the
duration of the measurement.

Entries The number of entries into each task.

Min The minimum time slice for each task.

Max The maximum time slice for each task.

Avg The average time slice for each task.

Cumulative The cumulative execution time for each task.

% Total Percentage of total measurement time represented
Time by the cumulative execution time for this task,

shown as a histogram and a numeric value. The
task with the highest percentage has a full histo­
gram bar; histograms for all other tasks are sized
relative to the high value.

Special entries in the Task Performance view
The Unknown Task entry shows execution time for a task
that could not be identified. This typically occurs for a task
that was already running when you started the measure­
ment-often a task containing an idle loop of some kind.

The All Other Tasks entry accumulates time for all tasks
that could not be tracked individually because the maxi­
mum number of tasks has been exceeded, or because mea­
surement qualification is in effect (see "Continuous Mode
Setup" on page 3-5.)

CodeTEST User's Guide

Function
performance

The Performance Tool

The Function Performance view presents timing and
counts information for each function that executes during
the measurement, allowing you to compare relative effi­
ciencies of various portions of your target program and
quickly identify slow-running code. For a discussion of how
the instrumenter places function entry and exit tags in
your code, see "Performance tagging'' on page 6-3.

3-15

The Function Performance table contains:

Column Description

Function The name of each function that has executed.

XEQ The number of times each function has executed.

Min The minimum execution time for each function.

Max The maximum execution time for each function.

Avg The average execution time for each function.

Cumulative The cumulative execution time for each function.

% Total Time The percentage of the target program's overall
CPU time each function has consumed, shown as
a histogram and a numeric value. The function
with the highest percentage of overall execution
time has a full histogram bar; histograms for all
other functions are sized relative to the high value.

Note: It is possible for a function to show zero in the #XEQ col­
umn and yet have some non-zero execution time attributed
to it. This happens when a function entry occurs while a
measurement is running, but there is no exit from that
function while the measurement is still running. (Execu­
tion is counted when CodeTEST detects the function exit,
not the entry.) The minimum and maximum execution
times are not shown in such a case because it was just a
"partial" execution. This situation typically occurs with
high-level idle loops that never exit, as in main(). For rou­
tines with direct recursion, CodeTEST averages each call's
execution time before updating the minimum and maxi­
mum execution times.

3-16 CodeTEST User's Guide

Call linkage

The Performance Tool

Special entry in the Function Performance table
A special entry in the Function Performance table identi­
fied as Unknown Function shows execution time for a func­
tion whose identity is not known because there was no
entry or exit during the measurement. This typically occurs
for an idle routine the program frequently returns to, or the
top-level function of a program that was already running
when you started the measurement.

Right mouse-button menu
To display the source code or a summary of the accumulat­
ed data for any function position the cursor on the function
line, then click the right mouse button.

The Call Linkage view provides information about the call
pair relationships among your target program's functions.

~! Performance:call Linkage Tabl-e -··
'~~~---www----~------~--------··~-~~-~--www••-·--~---~-·-----·~--~~-----------•--------

~',~ ___ wi~~------------- ·---~---~-·----~--~J
r;;~;:~.; ... 1

7

2

22

motion 33

StartBlob 2

Stop Blob 2

Stop Box 2

StopArc 2

draw 7

motion 55

2

1

3-17

3-18

Rather than relying on a static call tree, the Performance
tool tracks calls at run time, by means of performance tags
in your code, so the Call Linkage table includes function
calls made via pointers.

Each row in the Call Linkage table represents a call pair.
CodeTEST defines a call pair as any two function entry
tags captured sequentially by the probe. For each call pair,
the Number of Calls column shows how many times the
"caller" has called the "callee." The call pair with the high­
est number of calls has a full histogram bar; histograms for
all other call pairs are sized relative to the high value. The
default sort for this view is by number of calls.

Investigating a function with an extremely high occurrence
count may reveal an algorithmic problem, such as thrash­
ing, or it may be that the frequently called function is a can­
didate for in-lining.

Right mouse-button menu
To display the source code for any calling or called function,
or to display a summary of the current measurement data
for the called function, position the cursor on the table en­
try of interest, then click the right mouse button.

Code TEST User's Guide

The Memory Tool

Memory
allocation

,, ,.

File Window

The Memory Tool

Note:

Memory allocation errors can be among the most difficult
soft.ware defects to track down and eliminate. Because the
C language and its derivatives are so flexible, errors such
as memory leaks and multiple frees can evade detection,
their actual cause often far removed from any visible symp­
tom. Using the Memory tool to preventively monitor your
program, you can "filter out" these latent errors, whether a
symptom has actually appeared or not.

To use the Memory tool, you must instrument your code for
memory monitoring (see "Memory tagging'' on page 6-8)
and build and link the CodeTEST memory management
routines with your target program (see Chapter 7).

The Memory Allocation by Function view tracks your pro­
gram's dynamic allocation and deallocation of memory.

3-19

Each row in the table represents an allocation caller (i.e., a
specific location in your target code where a memory allo­
cation routine is called). Columns are defined as follows.

Column

Function

Source
File

Line#

#XEQ

Type

Min
Block

Max
Block

Average

Bytes
Allocated

Description

The function in which each allocation caller is
located.

The source file that contains the function in which
each allocation caller is located.

The caller's line number location.

The number of times each allocation caller has exe­
cuted in the current measurement.

The type of memory management routine called.

The smallest memory block allocated by this alloca­
tion caller during the measurement.

The largest memory block allocated by this allocation
caller during the measurement.

The average memory block size allocated by this
allocation caller during the measurement.

The number of bytes currently allocated by each allo­
cation caller, shown numerically and by the light-col­
ored portion of the histogram. The darker portion of
the histogram represents the caller's highwater mark
(i.e., the maximum amount of memory allocated at
any one time).

Note: A negative value in the Bytes Allocated column indicates
that CodeTEST monitored a deallocation but did not moni­
tor the original allocation. To avoid negative allocation val­
ues, be sure to start the probe before your target program
allocates memory.

3-20 CodeTEST User's Guide

Viewing the
source

Special entry in the Memory Allocation table
The Unidentified Malloc Call entry in the Memory Alloca­
tion table represents allocations that cannot be credited to
a known (i.e., instrumented) allocation caller. This is the
result of non-instrumented code calling the CodeTEST
memory routines.

To view the source code for any executed memory manage­
ment call, position the cursor on the row of interest in the
Memory Allocation table, click the right mouse button,
then select "Display line xxx of file xxx."

The Source Code Viewer displays the file containing the se­
lected function, with the relevant code highlighted .

............. ... --·········· -·····--······· ···············--··················-

Source Fi le: /svtl /svt/ctde mo/Ii b/work/peterk/ctde mo.c ''''''''''''' - '' -·· - ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -·· ;"F?!''
void !-'
userProgram(void)
{

char *msg = "quick";
int i = 7;
ListNode node;
int *list;
int count;

count= rand() 7. 4;
list = (int *) malloc(count' si.Mof(int));
switch(rand() .% 8)
{

case O:
{

}

node.count = count;
node.listHdr = (List*) list;
node.prev = NULL;
node.next = (ListNode *) &list;
showListNode(&node >;
break;

case 1;
{

AMCPrintf("The 7.s brown fox jumped over 7.d laz~ dogs\n", msg, i) ; !

J
preak; , .J..

K ~

__ Close__J Help···~ ____ ___::::::::=:::::::::::::::::=... ____ ___::::::::___:=:::::::::::=... ______ J

The Memory Tool 3-21

Memory error
log

The Memory Error log displays a listing of up to 200 mem­
ory error messages. Beyond that, any messages generated
are ignored for the remainder of the measurement .

3-22

.=_I Memory Errors
... ·--·····························;··_:;-···;······ ··.:;······

"'' J File

Memory error in unknown function
The error is 'Invalid pointer'.
The error occurred in task 'Ei-cercise Allocation'
The associated memory block= 0K100008
The memory block size= O

Memory error in unknown function
The error is 'Attempt to free a null pointer'.
The error occurred in task 'EKercise Allocation'
The associated memory block= Oi-cO
The memory block size= 0

Memory error in unknown function
The error is 'Attempt to free a null pointer'.
The error occurred in task 'Exercise Allocation'
The associated memory block= OxO
The memory block size= O

Memory error in unknown function

::::;::T:he::::::er=r=or=·i=s='l=n=v=al=id==p=oi=n=te=r='·====::::::::::::==::::::::::::============~[;
r:c:==-:~ ··~~::

Note: Checking the consistency of the heap's internal data struc­
tures can sometimes be quite slow. See "CodeTEST memo­
ry management switches" on page 7-6 for information
about enabling or disabling memory error checks.

Error severity levels
Fatal-continued execution of the target program is not
prevented, but future calls to the CodeTEST allocator will
return their normal error return values, e.g., malloc() will
return NULL. This condition can only be cleared by reini­
tializing the task that encountered the error.

Nonfatal-the current memory management call failed,
but future calls may succeed.

Info-the message does not indicate an error condition.

CodeTEST User's Guide

The Memory Tool

Error messages
o NoErrors

This is a normal return from a memory management
routine.

o Out of heap space (nonfatal)

There is not enough memory available in the heap to sat­
isfy an allocation request. Future requests for smaller
heap blocks may succeed. Retrying this request may suc­
ceed if the target program first frees one or more heap
blocks. Consider reducing the target program's heap us­
age, or reconfigure the task or operating system to make
more memory available to the heap.

o Heap has been corrupted (fatal)

Consistency checks have discovered a corrupted field in
a heap block header. This is usually caused by a write
through an incorrect pointer, possibly to a location in a
heap block that was allocated, then freed, then reused as
part of a new heap block. Sometimes this is caused by a
bad array index.

o Free with invalid pointer (nonfatal)

The target program passed an invalid pointer to a deal­
location routine. The pointer either contains an address
that is not within the heap, or it is incorrectly aligned
(possibly due to an error in pointer arithmetic). Other
wild pointers may be caused by uninitialized memory,
reading from a freed heap block, incorrect use of a union,
or adding two pointers together.

o Trailing guard bytes overwritten (fatal)

One or more of the guard bytes immediately following
your data have been overwritten. Try looking for incor­
rect pointer arithmetic, a bad array index, a write
through a pointer in a freed heap block. There could be
an off-by-one or other length calculation error causing
the target program to write past the end of a string.

3-23

3-24

o Leading guard bytes overwritten (fatal)

One or more of the guard bytes immediately preceding
your data have been overwritten. Try looking for incor­
rect pointer arithmetic, a bad array index, or a write
through a pointer in a freed heap block.

o Free with NULL pointer (nonfatal)

Target program has passed a NULL pointer to a deallo­
cation routine. ANSI C allows NULL pointers to be
passed to heap deallocators but since this sometimes in­
dicates a problem in the target program, the CodeTEST
memory manager reports it.

o Free of already free heap block (nonfatal)

The target program has tried to free a heap block that
has already been freed. This error is returned only ifthe
space for the previously-freed block has not been reused
as part of a more recently allocated block. This error of­
ten indicates a serious defect in the target program. Try
looking for duplicate pointers to this heap item in struc­
tures or arrays, or for functions that are called more
than once as expression side effects. There is a slight
chance this error is caused by a wild write that corrupted
the heap structure.

o New heap highwater mark (info)

If the CodeTEST memory management routines have
been compiled to do so, this message will be generated
each time the total size of the heap grows past its previ­
ous maximum.

CodeTEST User's Guide

Continuous Mode Utilities

Function
summary

Continuous Mode Utilities

The Function Summary summarizes all Continuous mode
data collected for a given function during the current mea­
surement. You can access the Function Summary from the
Function Performance, Call Linkage, Branch Coverage,
and Memory Allocation views by positioning the cursor on
the function of interest, clicking the right mouse button,
and selecting "Display statistics for function xxxx".

Function Name: userProgram
Source File: ctdemo.c

FunctfO.n Summary

Full Function Name: void userProgram(void)

Percent Coverage: 87.5%

Number of Calls: 154
Minimum Execution time: 1.691 mS
Maximum Execution time: 25.106 mS
Cumulative Execution time: 1.144 S

Malloc functions called by userProgram:

Source Llne Number: 181
Current Allocation Size: 0
Maximum Allocation Size: 12

Functions called by userProgram:

showParams: 36 tinies
showLlstNode: 27 times

Functions that call userProgram:

(None)

j

3-25

Source code
viewer

You can use the Source Code Viewer to browse the source
for any function listed in the Function Performance, Call
Linkage, Branch Coverage, or Memory Allocation views. To
invoke the viewer, position the cursor on the table entry for
the function of interest, click the right mouse button, then
select "Display source code offunctionxxx" from the pop-up
menu.

3-26

Note: If you instrumented your code for coverage monitoring and
selected the Coverage license for your session, code that
has executed is highlighted.

source File: 1sv1:i/svi/ctlieiiili/iiii/wlirkiiiei:erkictdemo.c

void
showMernor!:.J{ char *start ... int count)
[

unsigned char *s;
int i;

s = (char *) (((int) start) & "OxF);
i = 16 - («intl start) X 16) ;
while (count > 0)
[

'"---------········--······--··-········-·· ---- ····-····-·-
""~'-~~~ """"--~-""~~-V~-~==~~~~~N-

AMCPrintf("%08lx: X02x X02x X02x %02x %02x X02x X02x %02x !02x X02x %02x X02x X02x 7.02x %02x %02x
count -= i;
s += 16;
i = 16;

return;

void
userProgram (void)
{

dtru~ *msg =· Hquick. 11.:
inti= 7:
l~i.stNod.f nocfe:
int *list_;
int count:

count= r<mdO % 4:
Ii.st= (int') ma1loc(count' si.z.eoj(inl)):
mvitrJ.(rnnd () % 8)
(

case():
{

}

node.count= <X>unt:
node.lis1Hd1• =(List') list:
node.p>..,v "' NULL.:
node.neo,""'t :;:o (ListNode '!:.) &list:
showl.istNode(&nod€);
bt..,ak:

Close

J

Help _____ __;;::;:=;::;:=;::;:==:;;;::;:=;;;:,_ _____ __;=:;;=:;;:::;;;;;;;=:;;;::;:=:..,_ _____ _1

CodeTEST User's Guide

Sort utilities

Continuous Mode Utilities

To perform a single-level or multi-level sort on any Contin­
uous mode tabular view, click the Sort button on the view
of interest to display a sort dialog.

~ormance Sorter

Criterion 111 "~umulative Time (in uS)""":::d Dec!easing .::J
Criterion 112 ~~~!m~!!l,_!,!~e (in us) _"c:::J "pecreasing -'I
Criterion 113 ~~!~~Un:!_!!_f!l_!~i,~g_:.:~J Don't care

Criterion 114 ~-"~~~!!!~2!~~g~::_J Don't care

Criterion 115 Function Name Don't care

Criterion 116 Number of Calls Don't care

A single-level sort arranges the table's rows in ascending or
descending order according to the contents of any one of the
columns. A multi-level sort arranges the table rows accord­
ing to the contents of multiple columns, in hierarchical or­
der.

The list boxes on the left contain the column headings for
the active view. The list boxes on the right contain the sort
options (Increasing, Decreasing, and Don't Care). In the top
pair oflist boxes (criterion #1) select the column heading
and sort order for your first priority. You are now set for a
single-level sort. If you want to perform a multi-level sort,
in the second pair of list boxes select the column heading
and sort order for your second criterion. You can set sort
criteria for as many of the table's columns as you wish.
Click Apply to sort the data.

The above example is set to sort the Function Performance
view such that the functions with the highest cumulative
CPU times will appear at the top of the table. The second
level of the sort will order function rows that have the same
cumulative CPU time in descending order by maximum ex­
ecution time.

3-27

Search utilities To perform a search in any Continuous mode tabular view,
click the Find button on the view of interest to display a
search dialog.

3-28

Function Name

Source File

Coverage (in %)

From the Top

, Find First I

Branch Coverage Finder

= ~JII
,,,,,_,, __

J r--·-~---,,,·-··-·-,,--,,,,,,,,, ___ ,,, ___ ·~··- '"m""""=~

= .::::L mod451.q
' -"- -"-

<= -=.I [so
From the Bottom

Find Neld! Close J Heip_j
__ j

The left portion of the dialog lists the column headings for
the view you are searching. The boxes on the right are for
entering your search strings. The list boxes in the middle
provide a set of standard relational operators you can apply
to each search string:

< > <= >= !=

Note: Selecting the Like option enables a set of special characters
you can use to build complex search expressions. See
"Search and filter expressions" on page 3-30.

You can specify search criteria for as many columns as you
wish. In the example above, the dialog is set to search the
Branch Coverage view for functions in mod451.c that have
achieved 50% coverage or less.

CodeTEST User's Guide

Filter utilities You can define a filter to display only the data of interest in
any Continuous mode tabular view. Click the Filter button
on the view of interest to display a filter dialog.

---~-~--------MemOrv Allocation Filter

Source File ----~ ~~md4SlT'~-,.-·-~-·•••m••• -= '

Line Number ··-~-~ r:~.. ~--·····-·~·················~~ -.
Bytes Currently Allocated _._> ..• -CC;;..>l sooo j
Maximum Bytes Allocated ·-~~r .

ic.. Apply J Close ~ ___ __;====------=====----__;====-----.1
The left side of the dialog lists the column headings of the
active view. In the entry fields on the right, you can enter a
filter value for each column. The list boxes in the middle
provide a set of standard relational operators you can apply
to each filter string:

= < > <= >= !=

Note: Selecting the Like option enables a set of special characters
you can use to build complex filter expressions. See "Search
and filter expressions" on page 3-30.

Continuous Mode Utilities

Select any operator to apply to each filter string you enter.
You can specify filter criteria for as many of the columns as
you wish. The example above is set to filter everything out
of the Memory Allocation view except entries for functions
in mod451.c that currently have more than 5,000 bytes of
memory allocated.

3-29

Search and filter
expressions

When you select the Like option in the operators list box on
any Continuous mode search or filter dialog, a set of special
characters are enabled that you can use to form complex
search or filter expressions:

3-30

+ * ? $

Note: A backslash{\) followed by a special character matches the
literal character (i.e., this "escapes" the special character).

Expressions that match a single character
To build a single-character expression (i.e., an expression
that matches a single character in a target string) you can
use the literal characters themselves, plus the following
special characters:

o A period(.) matches any single character .
. umpty matches Humpty or dumpty

o A set of characters enclosed in brackets [] forms an
expression that matches any character within the set.
[akm] matches a, k, or m
[a-z] matches any lower-case letter
[Aak.m] matches any character except a, k, or m

Note: The carat (A) looses this negating functionality ifit is not
the first character in a set. (Also see "Anchoring an expres­
sion" on page 3-31" for another use of the carat character.)

Matching a single-character expression to a character in
any position within a target string counts as a match. So,
the letter "a" by itself matches the words apple, star and
car, and [a-c] matches banana.

CodeTEST User's Guide

Continuous Mode Utilities

Mu !ti-character expressions
A multi-character expression finds a match in a target
string only if all of its component single-character expres­
sions find a match. To build multi-character expressions,
you can concatenate single-character expressions, and use
the following special characters:

o An expression followed by an asterisk(*) matches zero or
more occurrences of that expression.
a* matches zero or more occurrences of the letter a
[a-z]* matches zero or more lower-case letters

o An expression followed by a plus sign (+) matches one or
more occurrences of that expression.
[a-z]+ matches one or more lower-case letters

o An expression that precedes a question mark (?) can
occur zero or one time in the matching string, no more.
xy?z matches xyz or xz, but not xyyz

Anchoring an expression
You can anchor an entire expression, so it will find a match
only at the beginning or end of a line:

o If a caret (") is at the beginning of the expression, a
matching string must be at the beginning of a line.
"a matches abc, but not bac
"[A-Z] matches any string that begins in a capital letter
"["A-Z] matches any string not beginning with a capital

o Ifa dollar sign($) is at the end of the expression, a
matching string must be at the end of the line.
a$ matches Data and Area but not abc
[A-Z]$ matches any string that ends with a capital letter
["A-Z]$ matches any string not ending with a capital

3-31

3-32 CodeTEST User's Guide

I Chapter4

The Trace Tool

Overview. 4-2

Trace Setup. 4-5

The Trace Window 4-10

AMCPrintf and AMCPuts. 4-17

User Defined Tags 4-20

The Trace Data Finder 4-21

The Trace Tool 4-1

Overview

Making a trace
measurement

4-2

The Trace tool captures and stores in a buffer a trace of
events derived from the tag values the probe receives from
your target. You can display trace data in several levels of
detail, using a variety of display options.

The Trace tool can take snapshots of system activity with
no pre-fetch or cache-execution confusion, and can even
trace dynamically relocated code.

To make a trace measurement:

1. Prepare your target system according to the guidelines
under "Getting Started" in Chapter 2.

2. Download your instrumented program to the target
hardware.

3. Start the CodeTEST host application and configure your
session for the probe, target program, and licenses you
want to use.

4. Select Set Trace Mode on the toolbar Run menu.
(Although you cannot make Trace and Continuous mode
measurements simultaneously, you can display Trace
and Continuous views side-by-side and toggle between
modes without losing data.)

5. Click the Trace button to display the Trace window.

6. Click Setup on the Trace window if you want to use the
trace setup controls. This is optional. See "Default trace
setup" on page 4-6.

7. Click the Start button on the Trace window. CodeTEST
now waits for the trigger event. When the trigger event
occurs, CodeTEST continues accumulating data until
the buffer is filled to the selected depth, then the probe
stops automatically and the trace data is displayed.

Code TEST User's Guide

Trace
commands

Overview

The following commands are available on the Trace window.

Command

File Menu

Print ...

Export ...

Close

Window Menu

Resize ...

Help Menu

Function

Displays the dialog for printing data (or printing
to a file, which can later be sent to a printer).
Only currently displayed data (High Level,
Control Flow, or Source view) is printed.

Displays the dialog tor exporting data to an
ASCII comma delimited format (CDF) file.
Only the currently displayed data (High Level,
Control Flow, or Source view) is exported.
Exported data can be loaded into most
spreadsheet and publishing programs.

Note: To save data in a form that can be re­
loaded into CodeTEST, use the Save
command on the toolbar File Menu.

Closes the Trace window without losing data.

Displays the dialog tor setting column widths.

Help on Window... Displays help for the current window.

Contents ...

Search ...

How to Use
Help ...

About
CodeTEST ...

Displays the help Contents page.

Displays the help Keyword Search dialog.

Displays help on how to use the help viewer.

Displays the CodeTEST version number.

4-3

4-4

Button Controls

Command

High Level

Control Flow

Source

Indenting On
Indenting Off

Expand Loops
Collapse Loops

Elapsed Time
Time Intervals

Start

Stop

Find ...

Setup ...

Function

Displays a view of the trace that shows only
function entry and exit points and RTOS
events. See "High Level view" on page 4-10.

Displays the Control Flow view of the trace,
with all the information in the High Level view
plus executed branch points. See "Control
Flow view" on page 4-14.

Displays the Source view of the trace, showing
every line of source code that has executed.
See "Source view'' on page 4-16.

Toggles indentation in the source column on
and off.

Toggles the Control Flow and Source views
between expanded (one line per iteration) and
collapsed (single line) view of loops.

Toggles the information in the Time column
between elapsed time (time from the start of
the trace to each event) and time intervals (the
intervals between events).

Purges any existing trace data, then starts the
probe. (To start the probe in Continuous
mode, select Start Probe on the Run menu.)

Stops the probe and displays contents of the
trace buffer. (To stop the probe in Continuous
mode, select Stop Probe on the Run menu.)

Displays the Trace Find dialog. See "The
Trace Data Finder'' on page 4-21.

Displays the Trace Setup dialog. See "Trace
setup options" on page 4-6.

Code TEST User's Guide

Trace Setup

Trace Setup

The Trace Setup dialog offers a variety of controls that gov­
ern when and how a trace is triggered and stored. To dis­
play the Trace Setup dialog, click Setup on the Trace
window.

Note: To save a setup, turn on macro recording to capture your
setup commands. See "Creating a macro" on page 2-21.

--=============""""'-! Trace Setup Options

Trigger Position I Start of Trace ;:;JI
Trace Depth i N'.i'~,m~i ;_, I

Trigger Event f~A~y Event ';;j

Trigger Context Any Context , '.=;]

Storage Context

4-5

Default trace
setup

Trace setup
options

By default, the Trace tool is set up as follows:

o Trigger on any event (trace will be initiated by the first
tag the probe receives).

o Trigger position is at the start of the trace.

o Trace depth is normal (up to 4K events).

o Trigger will be recognized in any context.

o Storage is enabled in any context.

Trigger position

Option

Start of
Trace

Center of
Trace

End of
Trace

Definition

The trigger event is positioned at the beginning of
the trace buffer (i.e., trace will show events that
follow the trigger). Approximately 20 events are
included before the trigger event.

The trigger event is positioned at the center of the
trace buffer (i.e., trace will show a fifty-fifty split of
events that precede and follow the trigger).

The trigger event is positioned at the end of the
trace buffer (i.e., trace will show events that pre­
cede the trigger). Approximately 20 events are
included after the trigger event.

Note: The default trigger (Any Event) triggers on the first tag the
probe receives. Used in combination with the End of Trace
trigger position, this will not produce much data because
the buffer will be empty when the trigger event occurs.
Likewise, using Any Event and Center of Trace will pro­
duce a trace that shows only events following the trigger.

4-6 CodeTEST User's Guide

Trace Setup

Trace depth

Option

Normal

Deep

Very Deep

Definition

Up to 4K events

Up to 40K events

Up to 400K events

Trigger event

Event

Any Event

Function
Entry

Function
Exit

Memory
Error

Memory
Allocation

Memory
Deallocation

ATOS Task
Entry

ATOS Task
Exit

Description

Trigger on the first tag the probe receives.

Trigger on entry into any function or a specified
function.

Note: When you select Function Entry or Function
Exit, a box is displayed for you to enter a
function name. Click to make your selec-
tion from a list of your target program's in­
strumented functions (from the IDB).

Trigger on exit from any function or a specified
function.

Trigger on the first memory error detected. See
Chapter 7 for a list of CodeTEST memory errors.

Trigger on the first memory allocation detected.

Trigger on the first memory deallocation detected.

Trigger on entry into any task or a specified task.

Trigger on exit from any task or a specified task.

4-7

Event Description

Note: When you select any of the ATOS options
(ATOS users only) a box is displayed for you
to enter the task name. Click LJ to make
your selection from the task list (from your
ATOS map file). See Chapter 8 for defini­
tions of these events and a discussion of
how Code TEST tracks tasks.

ATOS Task Trigger on creation of any task or a specified task.
Creation

ATOS Task Trigger on deletion of any task or a specified task.
Deletion

AMCPrintf
Call

AMCUserTag
Call

No
Trigger

Trigger on any AMCPrintf (or AMCPuts) call, or on
a specified call. When you select this event type, a
box is displayed. To trigger on a specific call, enter
the first few characters of the call's text output. See
"AMCPrintf and AMCPuts" on page 4-17.

Trigger on any AMCUserTag call or no a specified
call. When you select this event type, a box is dis­
played. To trigger on a specific call, enter the
appropriate integer value. See "User Defined Tags"
on page 4-20.

Trace is initiated as soon as you start the probe
and continues until you stop the probe or until the
target program stops executing.

Trigger context
Trigger context is the execution context within which Code­
TEST will recognize the specified trigger event.

Option Definition

Any Trigger event will be recognized in any context.

Task For ATOS applications only. Trigger event will be rec­
ognized only within the task that you specify.

4-8 CodeTEST User's Guide

Trace Setup

Option Definition

Function Trigger event will be recognized only within the func­
tion or function calling sequence that you specify.

Task and Trigger event will be recognized only within the task
function and function or function calling sequence you specify.

Note: If you specify a task-qualified trigger or storage context,
CodeTEST does not begin searching the tag stream for a
trigger event until after the first task switch is detected.
Otherwise, CodeTEST begins searching for the trigger
event when the first tag is received.

Storage context
Storage context is the execution context within which the
probe will store events in the trace buffer. When one or
more qualification criteria are not met, all events are disre­
garded. The storage may go "on and off' multiple times dur­
ing a single trace. The elapsed time during a "storage off'
period will be reflected in the trace display.

Option

Any

Task

Function

Task and
function

Definition

Trace storage is enabled in any context.

For ATOS applications only. Storage is enabled
only within the task that you specify.

Storage is enabled only within the function or func­
tion calling sequence that you specify.

Storage is enabled only within the task and func­
tion or function calling sequence that you specify.

4-9

The Trace Window

Note:

High Level view

File Window

ctdemo.c

cdemon.c

cdemon.c

sort.c

sort.c

sort.c

sort.c

sort.c

sort.c

sort.c

surt.c

4-10

113 Exit

Task £xited

344 Entry

344 Exit

Task Entered

159 Entry

26 Entry

26 Exit

78 Entry

65 Entry

65 Exit

65 Entry

65 E:.:it

The Trace window displays the execution history of your
target program, with several user-selectable levels of detail
and other viewing options available.

The type of data the Trace tool captures is dependent on
the level at which you have instrumented your target code
(see "Instrumenter Theory Overview" on page 6-2 and
"Tagging summary" on page 6-10).

The High Level trace view gives you the big picture of
execution activity. The example below is a High Level view
of a trace captured with the default setup. Two RTOS
events and a number of function entries and exits are
shown.

Trace

checkCo n nectio n

TSK6

outdsp

outdsp

Multiple Sorts

multiS01t

gen_random

gen_random

bubble_sort

swap

swap

swap

swap

. ~~;~ I
~~!:lj~Pj IET~

Time

4.2 us

79.5 us

43.6 us

208.8 us

36.0 us

23.0 us

127.3 us

20.3 us

35.7 us

8.5 us

22.l us

8.4 us

Code TEST User's Guide

For each displayed event, High Level trace view shows:

Column Definition

File Target program events: source file name
ATOS events: blank

Line Target program events: source file line number
ATOS events: blank

Type Target program events: function entry and exit
ATOS events: task creation, entry, exit, and deletion

Source Target program events: function name
ATOS events: task name or string from ATOS map file

Time Elapsed time from the start of the trace to each event,
or the time intervals between events.

The trigger event (exit from function outdot in the example
below) is highlighted, and shows zero in the Time column.
Event times before the trigger are shown as negative num­
bers; event times after the trigger as positive numbers.

'·.~::.J····· ····Trace
File Window

I High Leve11 ··Control~ s~u~ce!

ctdemo.c 92 Entry

ctdemo.c 71 Entry

ctdemo.c 64 Entry

ctdemu.c 42 Entry

cdemon.c 378 Entry

ctdemo.c 14 Entry

ctdemo.c 14 Exit

ctdemo.c 24 Entry

ctdemo.c 24 Exit

ctdemo.c 33 Entry

ctdemo.c 33 Exit

ctdemo.c 14 Entry

The Trace Window

verifyco nteKt

lowCTX

processCommand

handle Crud

getCmdFromHost

parseCmd

pat'secmd

returnCmdResult

returnCmdResult

getCmd From Host

4-11

File Window

cblemo.c 44 Exit

ctdemo.c 25 Entry

ctdemo.c 25 Exit

ctdemo.c 35 Entry

ctdemo.c 35 Exit

ctdemo.c 44 Entry

cblemo.c 44 Exit

ctdemo.c 25 Entry

ctdemo.c 25 Exit

ctdemo.c 35 Entry

ctdemo.c 35 Exit

ctdemo.c 35

ctdemo.c 44 Entry

, ctdemo.c 44 Exit

1\~emo.c 25 Entry

ctdemo.c- is Enit

ctdemo.c 35 Entry I ctdemo.c 35 Exit

L~~-~~,--~ 44 Entry

4-12

By default, the time column shows the intervals between
events. Click Elapsed Time to see the total elapsed time
from the trigger event to each successive event.

Trace
····.._J

returnCmdResult

getCmdFro m Host

getCmdFromHost

parseCmd

parseCmd

returnCmdResult

returnCmdResult

getCmd From Host

getCmdFromHost

parseCmd

parseCmd 467.0 us

To see the time interval between any two events, left
mouse-button click an event to place the first marker, then
middle mouse-button click a second event to place the sec­
ond marker. The interval between marked events is dis­
played in the Trace window's toolbar.

returncmdResult

returnCmdResult

getC'mdfromHost

oet.~ouifl.otftitOst
parseCmd

parsecmd 470.7 us

returnCmdResult 474.7 us _,

CodeTEST User's Guide

For this example, the storage context was qualified to a task named "Task #1." Note
the "Storage Disabled" event lines in the resulting trace, showing target execution time
outside Task #1.

Task Entered Task 11 0.0 us

ctdemo.c 113 Entry checkConnection 10.0 us

ctdemo.c 113 Exit checkconnection 0.0 us

cdemon.c 344 Entry outdsp 50.0 us 'J

cdemon.c 344 Exit outdsp 200.0 us

Task Exited Task 11 80.0 us

Storage Disabled 222.930 ms

Task Entered Task 11 0.0 us

ctdemo.c 113 Entry checkConnection 10.0 us

ctdemo.c 113 Exit checkConnection 0.0 us

cdeman.c 344 Entry outdsp 50.0 us

cdeman.c 344 Exit outdsp 200.0 us

Task Exited Task 81 80.0 us

Storage Disabled 508.450 ms

Task Entered Task 11 o.o us

d:demo.c 113 Entry checkConnection 10.0 us

ctdemio.c 113 Exit checkConnection 10.0 us

cdeman.c 344 Entry outdsp 40.0 us

cdemon.c 344 Exit outdsp 210.0 us

Task Exited Task 11 30.0 us

Storage Disabled 775.240 ms

Task Entered Task 11 0.0 us

ctdelfto.c 113 Entry checkConnection 10.0 us

ctdemo.c 113 Exit checkconnectlon 10.0 us

cdemon.c 344 Entry outdsp 40.0 us

cdemon.c 344 Exit outdsp 210.0 us

Task Exited Task 11 80.0 us

Storage Disabled 555.860 ms
o '" o~ ~ •• o;~~' '"N,,,,,, '""' m--~~m"~"~NN

The Trace Window 4-13

Control Flow
view

-- .:J
File Window

Click Control Flow to add the dimension of executed branch
points to your view of the trace. This example shows loops
collapsed. Note the indicators showing the number ofloop
iterations and path taken at decision points.

········--·:rrace····

Help I
""'"'"""·~-,~-,.,.~,.,-~ , .,., . ..,.-~,..,,.,,,~~--~-~-·..,-- "'"'~.,, ,,,~.,-.,,~··},

_Hi9hJ-~~I Control Flowl SourceJ ~~~~L~.~J ~~:.~~~~~~~·'--~.!~Ti~ .~0.J S1(~~ Fin~:J -~,~P:d
File

sort.c 70 Branch (2 times)

sort.c 69 Branch

sort.c 70 Branch

sort.c 65 [Nit

sort.c 13 Entry

sort.c 17 Branch (9 times)

sort.c 13 Exit

sort.c - 81 Entry

sort.c 85 Branch

sort.c 86 Branch

sort.c 88 Branch

sort:.c 91 Branch (If)

sort.c 94 Branch

sort.c 86 Branch

sort:.c 88 Branch

sort.c 93 Branch (Else)

:f

Source

for (kk = 1; kk < k; kk++) !

for Ck = n; k > 1; k--) !

for (kk = 1; kk < k; kk++) !

buhble_sort

gen_random

for (j = o; j < n; j++)

gen_random

she IL.sort

while (gap> 0) {

for (k "" gap: k < n; k++) {

while (kl > -1) !

it (a[kl] <= a[k2])

k1 -= gap;

for (k = gap; k < n: k++) {

while (kl > -1) !

if (a[kl] <= a[k2])

14.7 us

35.2 us

14.3 us

35A us

28.5 us

14.3 us

62.7 us

24.9 us

15.2 us

14.9 us

15.4 us

23.1 us

8.2 us

20.9 us

15.5 us

23.9 us

Expand loops to show each iteration as an event line.

File Window --~-----------,--------,--------------------------------_----_-----------~------~----------------==-~=--~

!t~~)JI Control Flowl ~ ~~ Expand Loops I Elapsed Times I ~!~J-~J !l~d::Ls~
Source

cdemon.c 344 Entry outdsp 36.8 us Ci: ,...
cdemon.c 351 Branch for(i • 5; i >= O; i--) 21.0 us !'

f ~

cdemon.c 351 Branch for(i = 5; i >= O; i--) 313 us !:;
cdemon.c 351 Branch for(i = 5; i >• O; i--)

cdemon.c 351 Branch for(i = 5; i >• O; i--)

cdemon.c 351 Branch for(i = 5; i >• o; i--l

cdemon.c 351 Branch for(i = 5; i >• o; i---l

31.3 us I 31.3 us

I' 31.5 us

31.3 us i
cdemon.c 344 Exit outdsp 30.6 us I
ctdemo.c 102 Entry checkConnection 27.0 us

;r

L
~ 1

4-14 CodeTEST User's Guide

If your code is instrumented for memory monitoring, Control Flow view will show any
memory events that occurred.

Trace

File Window Help f

~-~.0:ij I control Flowl .~.~'.~ :!~de~t~ng o~ E;~a~~~oop~J .~i~R~!! Tim~~ St~!!] Stop] ~ ~~

!~_l•---~~,~]~~ine !l~~pe "_,= .,,~~~~~~-~]~~~!~~~~-:~~-~- --~~=~:=~:::~:~:~,,v~~,~:~,~'"- -=---- :~·-~-~~~~=:=-r~~--
memMgmt.c 22S Entry extendNode 179.0 us

memMgmt.c 226 Memory Allocation Calling func"' eNtendNode Called func • Kealloc Size = 984 3.501 ms

memMgmt.c 271 Memory Dealloc Freed 496 bytes allocated in 'enlargePacket' 16.4 us

memMgmt.c 225 Exit extend Node 2.031 ms

memMgmt.c 143 Branch (Else) if (listHdr[j].block ••NULL) 13.1 us

memMgmt.c 118 Branch for (i"' D; i < numBlocks; i++) 9.8 us

memMgmt.c 132 Branch (Else) if (listHdr[j].block •• NULL) 56.5 us

memMgmt.c 305 Entry addRecExtension 178.7 us

memMgmt.c 306 Memory Allocation Calling func"' addRech.1:ension Called func"" Realloc Size= 504 3.420 ms

memMgmt.c 271 Memory Dealloc Freed 336 bytes allocated in 'enlarge Packet' 16.3 us

memMgmt.c 305 Exit addRecE:dension 1.391 ms

L memMgmt.c 143 Branch (Else) if (listHdr[j].block •• NULL) 13.0 us

In this example, the trigger event was set to Memory Error. The resulting trace shows
the details of an invalid pointer error that occurred.

File Window

~~.control~~~ Source\ Indenting on! _coll::-:ps~"~ -Elapsed TimeS!

- File ,~~·-~~-~~,~:.!JTvP_•--~,~~-
memMgmt.c 347 Exit ki11Recb1:ension2

memMgmt.c

memMgmt.c

memMgmt.c

memMgmt.c

memMgmt.c

177

178

187

201

104

The Trace Window

Branch

Branch (If)

Branch

:M~morv~

Branch

Exit

if ((rand0% 10) =· 0)

it ((randO % 10) •• o l

· Allo"'l;llon oeeurred !!tan u~0kn<1wn f~uetio~
Deallocation occurred in function 'memMgrnt'

The error is "Invalid pointer"

Call type = Free

Memory Block .. OxlOOOOU Block size= o

if (beginAgain)

mernMgmt
l

4-15

Source view Click Source to reveal the target program's complete
execution history. Note that time information is shown
only for the actual events in the trace buffer (derived from
the tag values received from the target). The displayed
source lines are gathered from the files you specified in the
Configuration dialog. If CodeTEST cannot find some or all
of your source files, an error message is displayed when you
switch to this view.

Trace
File Window .. _ ···································~·;~~-- ... !

~~;:;r-~:;;~Tri,;:f~~;.r;~~-;~;;-;~:"~;;~~"~~~;;;:;;~:;;~;~-~"--~~~~~;:Q

_!'.~Line nJ~ Jsource JTime

multiSort 31.488 ms fSJ sort.c 159 Exit

Task Exited

c:demon.c 344 Entry

cdemon.c 345 Source

cdemon.c 346 Source

cdemon.c 347 Source

cdemon.c 348 Source

cdemon.c 349 Source

cdemon.c 350 Source

cdemon.c 351 Source

cdemon.c 351 Branch (6 ti mes)

cdemon.c 352 Source

cdemon.c 353 Source

cdemon.c 354 Source

cdemon.c 355 Source

cdemon.c 356 Source

cdemon.c 357 Source

cdemon.c 358 Source

cdemon.c 344 Exit

Task Entered

sort.c 159 Entry

sort.c 160 Source

sort.c 161 Source

sort.c 162 Source

sort.c 163 Source

sort.c 164 Source

4-16

Multiple Sorts

outdsp

char *ptr;

int i;

segment_pott =(char *)OISPLAV_ZERO:

ptr =segment_ port;

for(i = 5; i >= o; i--l

""ptr++ =*(string+ i);

/*

**Echo display to memory representation.

*/

mem_port[((i * 2) + 1)] = ascii[il;

outdsp

Multiple Sorts

multiSort

int i,datasize;

i = rand0%20;

while (i--l

31.572 ms

31.615 ms

31.793 ms

31.823 ms

31.859 ms

Jl.882 ms

Ii

CodeTEST User's Guide

AMCPrintf and AMCPuts

AMCPrintf
Syntax

AMCPuts
Syntax

Description

AMCPrintf and AMCPuts

The AMCPrintf and AMCPuts functions are respectively
analogous to the standard C print{ and puts library func­
tions. You can place AMCPrintffunction calls in your tar­
get source code to write printf-formatted output to the trace
buffer, or use AMCPuts calls as a faster alternative for
writing simple character strings. The output of these func­
tions will be displayed in the trace Control Flow and Source
views. Calls to AMCPrintf and AMCPuts are disregarded
when you run CodeTEST in Continuous mode.

To "disable" calls to these functions without removing them
from your code, use the -Xremove-calls-to=AMCPrintf or
-Xremove-calls-to=AMCPuts instrumenter option.

For C code:

void AMCPrintf(const char* ...);

For C++ code:

extern "C" void AMCPrintf(const char* ...);

For C code:

void AMCPuts(const char*);

For C++ code:

extern "C" void AMCPuts(const char*);

AMCPrintf accepts the same format specifiers and argu­
ments as your compiler's printf function. AMCPrintf uses
either stdarg.h or varargs.h macros and your compiler's
vsprintf library function to perform formatting. AMCPuts
takes a single argument, which must be a character string.

4-17

Support files To use the AMCPrintf and AMCPuts functions, compile
and link these files with your target code:

Limits

Examples

File Window

Note:

$AMC_HOME/lib/printf/ctprintf.c
$AMC_HOME/lib/printf/ctprintf.h

Do not instrument ctprintf.c with the instrumenter.

AMCPrintf can handle a single string up to 1024 bytes in
length. Formatted strings longer than 1024 bytes may
cause target memory corruption. You can modify ctprintf.c
to enlarge this limit if you wish. See comments in the file
for details.

The Trace window can only display approximately 70 char­
acters per line using the default screen font. Use newlines
{\n) to break longer strings into multiple lines.

The AMCPrintf event in the trace below was produced by:

AMCPuts("The quick brown fox jumped over 7
lazy dogs\n");

Help J

, 1 ~;;~;:i:~~ri~f~~;;~il.;~~filip58d~;;:~~;~j·~···-·-·~~-~~·~-···~·-~.s~~~~~-~j~'":_~Si~~-~~· -·1 firid ... [~!!~

Type Source Time
~~~~. 

ctdemo.c 194 Bra11c-h 101.0uS 

S.148 ms 

25.2 us 

3.165 ms 

42.1 us 

43.4 us 

43.4 us 

177.8 us 

30.5 us 

10.2 us 

AMCPrintf Call The quick brown fox jumped over 7 lazy dogs 

ctdemo.c 219 Branch free( list); 

ctdemo.c 181 Memory Dealloc Freed 12 bytes allocated in 'userProgram' 

ctdemo.c 173 E>:it userP'rogram 

Task E:-:ited User Tag9in9 

cdemon.c 344 Entry outdsp 

cdemon.c 351 Branch (6 time<s>) tor( i = s; i >= o; i--l 

cdemon.c 344 Ex: it outdsp 

lask fntered Short Check 

ctdemo.c 121 Entry 

4-18 CodeTEST User's Guide 



ctdemo.c 

ctdemo.c 

ctdemo.c 

ctdemo.c 

ctdemo.c 

129 Entry 

129 

219 

173 

145 

145 

AMCPrintf Call 

[Kit 

AMCPrintf Call 

Branch 

Exit 

Task Exited 

Entry 

AMCPrintf call 

Exit 

AMCPrintf and AMCPuts 

Here AMCPrintf displays the values of passed parameters: 

showParams( int mode, int *ptr 

AMCPrintf ( "showParams () 
Ox%08lx", mode, ptr ); 

mode %d, listPtr 

.J.source 

showParams 

Trace 

showParamsO: mode= 3, listPt:r = OxffOOfe9c 

showParams 

userProgramO: showParams returned: 1 

free( list); 

userProgram 

User Tagging 

58.S us 

5.197 ms 

21.7 us 

6.853 ms • 

24.5 us 

2.835 ms 

43.7 us 

This AMCPrintf call shows the contents of a structure: 

AMCPrintf( "(ListNode *) Ox%08lx:\n\ 
\tbyteCount:\t%ld\n\ 
\tlistHdr:\t0x%08lx\n\ 
\tprev:\t0x%08lx\n\ 
\tnext:\t0x%08lx\n", node->count, 
node->listHdr, node->prev, node->next 

showlistNode 

(ListNode ') oxoooooooo: 

byteCount:l 065044 

I istHdr:OxOOOOOOOO 

prev:O:dfOOfe9c 

ne><t:Ox00008708 

showli~tNode 

19.4 us 
8.626 ms 

23.6 us 

f 

4-19 



User Defined Tags 

User Defined 
Tag file 

Placing user 
defined tags 

4-20 

To manually flag events of interest, you can place calls to 
the AMCU serTag function in your source code. When you 
compile and run the program, your manually-tagged 
events will be reflected in the Control Flow and Source 
trace views. User defined tags are disregarded when you 
run CodeTEST in Continuous mode. 

To "disable" calls to AMCUserTag without removing them 
from your code, use the -Xremove-calls-to=AMCUserTag 
instrumenter option. 

To map each AMCUserTag call to a text string, you can 
create a User Defined Tag file and enter the file name in 
the Configuration Options dialog (see page 2-16). 

1 "Set up structure" 

2 "Add new nodes" 

3 "Begin read data loop" 

4 "Handle out-of-memory error• 

To place a user defined tag in your code, insert a function 
call to AMCUserTag at the point where you want the text 
string to be displayed. AMCUserTag takes a single argu­
ment: an integer value (which can be mapped to a string in 
your User Defined Tag file). The minimum value is 1; max­
imum is 1048575. To use hexadecimal, prefix each value 
with Ox. Values without this prefix are interpreted as deci­
mal. For example: 

AMCUserTag(3) 

will cause the instrumenter to place a proper CodeTEST 
tag in your code, which will ultimately cause the text line 
"Begin read data loop" to be displayed in trace. 

CodeTEST User's Guide 



The Trace Data Finder 
Click Find on the Trace window to display the Trace Data 
Finder and search the trace buffer for specific events. 

·Trace Data Finder 

Find trace tag of type I Function Entry --'1 and Function Name= r 

11" From the Top .,,; From the Bottom 

Trace search options 

The Trace Data Finder 

Option 

Function 
entry 

Function 
exit 

Memory 
allocation 

Memory 
deallocation 

Definition 

Search for function entry events, for any func­
tion or a function you specify. 

Note: When you select Function Entry or Exit, a 
box is displayed for you to enter a func­
tion name. Click ~ to make your selec­
tion from a list of your target program's 
instrumented functions (from the IDB). 

Search for function exit events, for any function 
or a function you specify. 

Search for events that reflect calls to the Code­
TEST allocation routines. See "CodeTEST 
Memory Management Routines" on page 7-2. 

Search for events that reflect calls to the Code­
TEST deallocation routines. See "CodeTEST 
Memory Management Routines" on page 7-2. 

4-21 



4-22 

Option 

Memory 
error 

RTOStask 
entry 

RTOStask 
exit 

RTOStask 
created 

RTOS task 
deleted 

Storage 
disabled 

Unknown 
tag 

Processing 
limit 

Capture limit 

Definition 

Search for memory error events. See "Error 
codes and messages" on page 7-8 for informa­
tion about memory error conditions CodeTEST 
can detect. 

Note: When you select any of the following 
RTOS options, a box is displayed for you 
to enter the task name. Click d to make 
your selection from the task list (from 
your RTOS map file). 

Search for RTOS task entry events, for any task 
or a task you specify. 

Search for RTOS task exit events, for any task 
or a task you specify. 

Search for RTOS task creation events, for any 
task or a task you specify. 

Search for RTOS task exit deletion, for any task 
or a task you specify. 

Search for a gap in the trace during which no 
tags were stored due to a storage context 
qualification. 

Search for an event associated with an unrec­
ognized tag type. When you select this option, a 
tag value entry box is displayed for you to enter 
the hex value of the unknown tag. 

Search for events that indicate a period when 
the tag rate from the target exceeded the 
probe's processing limit (i.e., a FIFO buffer 
overflow). The time tags are ignored is indicated 
in the Time column. 

Search for events that indicate a period during 
which the tag rate from the target exceeded the 
probe's capture rate. The time shown for these 
events indicates how long tags are ignored. 

CodeTEST User's Guide 



The Trace Data Finder 

Option 

Target reset 

AMCPrintf 
Call 

AMCUserTag 
Call 

Trigger position 

Definition 

Search for an event that indicates a reset of the 
target hardware. 

Search for any AMCPrintf (or AMCPuts) call, or 
a specified call. When you select this event 
type, a box is displayed. To search for a specific 
call, enter the first few characters of the call's 
text output. See "AMCPrintf and AMCPuts" on 
page 4-17. 

Search for any AMCUserTag call or a specified 
call. When you select this event type, a box is 
displayed. To search for a specific call, enter the 
appropriate integer value. See "User Defined 
Tags" on page 4-20. 

Search for the trigger event. 

4-23 



4-24 CodeTEST User's Guide 



I Chapters 

The CodeTEST Compiler Driver 

Overview. . . . . . . . . . . . . . . . . . . . . . . 5-2 

Configuring ctcc!ctc++. . . . . . . . . . . . 5-7 

Using ctcc!ctc++ Configuration Files. 5-13 

Using the ctcc!ctc++ Command . . . . 5-16 

Assigning Addresses for the 
Tag Ports. . . . . . . . . . . . . . . . . . . . 5-18 

The CodeTEST Compiler Driver 5-1 



Overview 

5-2 

The CodeTEST compiler driver (ctcc for C compilers, etc++ 
for C++ compilers) is designed to incorporate the instru­
mentation of your target source code and linking of Code­
TEST support libraries into your build procedures. In most 
cases configuring ctcc/ctc++ and introducing it into your 
build routine is relatively simple and straightforward, and 
once you have things set up, it's generally not something 
you'll need to change very often. 

Note: Aside from minor differences for language support, ctcc and 
etc++ are functionally identical and will be treated here as 
a single utility. 

To use ctcc/ctc++, you first need to edit one of the supplied 
configuration templates to create a target-specific configu­
ration file. The ctcc/ctc++ configuration file defines a set of 
variables that specify how things are named, where files 
are located, etc. Once you've created a configuration file, 
using ctcc/ctc++ can be as succinct as substituting ctcc/ 
etc++ for your compiler's own driver or "cc" command. For 
example, if you currently use gee, the driver for the GNU C 
compiler, and your build procedure is based on use of a 
makefile, you need only substitute CC=ctcc for CC=gcc in 
your makefile. (If you use g++, the driver for the GNU C++ 
compiler, you would substitute etc++.) 

The primary advantage of using ctcc/ctc++ is the ease with 
which you can incorporate instrumentation into your build 
procedure. A potential drawback is the assumption that 
you will want to instrument every file your makefile com­
piles. Excluding individual files from instrumentation 
would require explicit rules to direct those files to your 
compiler's driver instead of ctcc/ctc++. 

CodeTEST User's Guide 



The ctcc/ctc++ command flow Approaches to 
instrumentation The usual C compiler driver command flow is: 

Overview 

foo.c 

cpp 
preprocess 

foo. i 

"cc" command 

eel 
front end 

foo. s 

as 
back end 

foo.o 

ld 
link 

foo.x 

Substituting ctcc/ctc++ for your "cc" changes the flow to: 

foo.c 

cc 
preprocess 

foo. i 

amctag 
instrument 

foo ._i 

ctcc/ctc++ (default flow) 

cc 
compile 

foo.o 

cc 
link 

foo.x 



5-4 

By default, ctcclctc++ first invokes your compiler's driver to 
perform CIC++ preprocessing, then calls the instrumenter 
(amctag) to insert CodeTEST tags into your preprocessed 
code, and then sends the instrumented code back to your 
compiler's driver to complete the build. 

However, to support many implementations of C and C++, 
as well as differences in environment, build methods, etc., 
ctcclctc++ is a highly configurable utility, flexible enough to 
provide a variety of ways you can go about incorporating in­
strumentation into your build. The following are just a few 
examples of the many ways ctcc/ctc++ can be configured. 

Preprocessing with amctag 
The instrumenter will automatically perform any CIC++ 
preprocessing that has not already been done. In some cas­
es, you may want amctag to preprocess as well as instru­
ment your code. The -Xamctag-cpp instrumenter option 
changes the ctcc/ctc++ flow to: 

ctcc/ctc++ 

foo.x 

amctag 

preprocess 

instrument 

foo.~i 

cc 
compile 

foo .o 

cc 
link 

foo.x 

Code TEST User's Guide 



foo.c 

cc optional 
preprocess prefilter 

• •• 
foo.i foo.j 

Customizing the ctcc/ctc++ command flow 
In some cases, it may be necessary to tailor the compiler 
driver by changing the actual syntax ctcdctc++ uses to 
build the command lines that are executed at each succes­
sive stage of the build. (i.e., preprocessing, instrumenta­
tion, and compilation). A special set of ctcc/ctc++ command 
variables are available for this purpose, which you can de­
fine in your configuration files or in the environment. 

In some cases, it may be necessary to perform minor filter­
ing of your target source files, before or after instrumenta­
tion. If so, ctcc/ctc++ can be configured to include a prefilter 
and/or postfilter step. 

amctag 
instrwnent 

foo. i -

: optional 
post filter: 

• foo. _j 

cc 
compile 

+ 
foo.o 

cc 
link 

ctcc/ctc++ (configured for prefilter and postfilter) 

foo.x 

Note: These and other ctcdctc++ customizing capabilities are 
provided to ensure compatibility. Most users will never 
need these features. See Appendix C for details. 

Overview 5-5 



Invoking amctag 
directly 

An alternative to using ctcdctc++ is to run amctag directly 
to produce a set of instrumented sources, then route those 
sources through your usual build procedure. Procedures 
and examples are covered in Chapter 6. 

foo.c 

cpp amctag eel as ld 
preprocess instrument front end back end link 

foo.i foe ._i foe. s foo.o foo.x 
\___ 

This approach can also be quite straightforward, though in 
some cases it requires a bit of effort to set up. Instead of de­
fining configuration variables and letting ctcc/ctc++ handle 
things, you need to use explicit command line switches to 
control each instrumentation. A potential drawback to this 
method is that your existing build procedures may require 
considerable modification. In most cases, this should be 
fairly easy; in the worst case you would need to insert a new 
step to instrument each file before compiling. The more ex­
plicit compilation rules your build procedure has, the less 
concise this approach tends to be. 

Note: Running amctag directly can be particularly useful when 
you want to instrument a small amount of code, such as 
when you are first getting started with CodeTEST or when 
you are setting up a new target for testing. 

5-6 CodeTEST User's Guide 



Configuring ctcc/ctc++ 

Environment 
variables 

Note: 

Configuration 
variables 

Configuring ctcc/ctc++ 

The ctcc/ctc++ compiler driver is configured by variables 
defined in your environment and in a configuration file. 

CodeTEST definitions for C and C++ are provided in files 
amc_c.h and amc_cxx.h installed under $AMC_HOME/lib. 
Refer to the comments in those files for edits that may be 
required for your environment. 

Before you run ctcc/ctc++, the following variables must be 
set in the environment. 

Variable Description 

AMC_HOME The home directory of the CodeTEST software 
installation. 

AMC_ TARGET The target-specific portion of an instrumenter 
configuration file name or include-file path. 
See "Using ctcc/ctc++ Configuration Files" on 
page 5-13. 

The following variables, if needed, should be defined in a 
configuration file. Note that these variables must be de­
fined if ctcc/ctc++ will be asked to perform the specific tasks 
that require them. For information about the naming of 
configuration files and the paths ctcdctc++ searches for 
them, see ''Using ctcdctc++ Configuration Files" on 
page 5-13. For definitions of the instrumenter options ref­
erenced here, see "Instrumenter Options" on page 6-16. 

5-7 



Variable 

AMC_CPP 

AMC_CC 

AMC_CXX 

AMC_RCFILE 

AMC INSTRUMENTER 

AMC_TAGDEFAULTS 

AMC_CC_LIBS 

AMC_CXX_LIBS 

5-8 

Description 

The name of your CIC++ preprocessor. 

The name of your C compiler's driver 
command. This is the default name ctcc 
will invoke to preprocess and compile 
your target C source files. 

The name of your C++ compiler's driver 
command. This is the default name 
etc++ will invoke to preprocess and 
compile your target C++ sources. 

The base name of your ctcc/ctc++ 
configuration file(s). Default: .ctccrc 
See "Using ctcc/ctc++ Configuration 
Files" on page 5-13. 

The path and name of the Code TEST 
source code instrumenter. 
Default: $AMC_HOME\bin\amctag.exe 

The default instrumenter options to be 
sent to amctag for each source file to be 
instrumented. Default: -Xtag-level 
See "lnstrumenter Options" on 
page 6-16. 

One or more paths to the Code TEST­
specific libraries and objects needed at 
link time for C programs. See "Code­
TEST Memory Management Routines" 
on page 7-2. 

One or more paths to the CodeTEST­
specific libraries and objects needed at 
link time for C++ programs. See "Code­
TEST Memory Management Routines" 
on page 7-2. 

CodeTEST User's Guide 



Variable 

AMC_LIBS 

AMC_CC_MLIBS 

AMC_CXX_MLIBS 

AMC_MLIBS 

AMC_CC IFLAGS 

AMC_CXX_IFLAGS 

AMC_IFLAGS 

AMC_CC_LFLAGS 

Configuring ctcc/ctc++ 

Description 

One or more paths to the CodeTEST­
specific libraries and objects needed at 
link time for either C or C++ programs. 
(Used only if a language-specific ver­
sion of this variable is not defined.) 

One or more paths to the CodeTEST­
specific memory management libraries 
needed at link time for C programs. See 
"CodeTEST Memory Management 
Routines" on page 7-2. 

One or more paths to the CodeTEST­
specific memory management libraries 
needed at link time for C++ programs. 
See "CodeTEST Memory Management 
Routines" on page 7-2. 

One or more paths to the CodeTEST­
specific memory management libraries 
needed at link time for either C or C++ 
programs. (Used only if a language­
specific version of this variable is not 
defined.) 

One or more preprocessor options used 
if preprocessing C source files. 

One or more preprocessor options used 
if preprocessing C++ source files. 

One or more preprocessor options used 
if preprocessing C or C++ source files. 
(Used only if a language-specific ver­
sion of this variable is not defined.) 

One or more link-time options required 
by the CodeTEST-specific libraries and 
objects for C programs. 

5-9 



5-10 

Variable Description 

AMC CXX_LFLAGS One or more link-time options required 
by the CodeTEST-specific libraries and 
objects for C++ programs. 

AMC_LFLAGS One or more link-time options required 
by the CodeTEST-specific libraries and 
objects for C or C++ programs. (Used 
only if a language-specific version of 
this variable is not defined.) 

AMC_CC_INCLUDE One or more -I preprocessor options 
used if amctag is to perform C prepro­
cessing (i.e., if the -Xamctag-cpp 
option is used). 

AMC_CXX_INCLUDE One or more -I preprocessor options 
used if amctag is to perform C++ pre­
processing (i.e., if the -Xamctag-cpp 
option is used). 

AMC_INCLUDE One or more -I preprocessor options 
used if amctag is to perform C or C++ 
preprocessing. (Used only if a lan­
guage-specific version of this variable is 
not defined.) 

AMC_CC_DEFINITIONS One or more -i = include_file options 
added when you instrument C sources 
to provide instrumenter definitions. 
Default: -i=$AMC_HOME\lib\ 
$AMC_TARGEn amc_c.h 

Note: See comments in amc_c.h and 
amc_cxx.h for edits that may be 
required for your environment. 

AMC_CXX_DEFINITIONS One or more -i = include_file options 
added when you instrument C++ 
sources to provide instrumenter defini­
tions. Default: -i=$AMC_HOME\lib\ 
$AMC_TARGEn amc_cxx.h 

CodeTEST User's Guide 



Command 
variables 

Note: 

Configuring ctcc/ctc++ 

Variable 

AMC_TMPDIR 

AMC_TAGFORMAT 

Description 

The path to the directory for storing 
temporary files created during instru­
mentation. Default: .\tmp 

A printf-style format string, where up to 
8 integer format specifiers can be sup­
plied, each of which will be replaced 
with a tag value. The default format is 
equivalent to amc_ctrt_port=%d. See 
"Changing the Code TEST tag format" 
on page 6-15. 

The following variables can also be defined in your ctcd 
etc++ configuration file if you need to modify the syntax of 
the commands ctcc/ctc++ executes at various stages of the 
build. 

Appendix C provides complete descriptions of the default syntax and 
information about editing these commands. 

Variable 

AMC_CMD_CPP 

AMC_CMD_TAG 

AMC_CMD_CPPTAG 

Description 

Syntax of the command line ctcc/ 
etc++ builds to call your compiler's 
driver command in order to perform 
CIC++ preprocessing. 

Syntax of the command line ctcc/ 
etc++ builds to call amctag when 
amctag is to perform instrumenta­
tion only (not preprocessing). 

Syntax of the command line ctcc/ 
etc++ builds to call amctag when 
amctag is to perform preprocessing 
and instrumentation. 

5-11 



Response tiles 

5-12 

Variable 

AMC CMD_COMPILE 

Description 

Syntax of the command line ctcc/ 
etc++ builds to call your compiler's 
driver command in order to compile 
the target sources. 

AMC_CMD_PREFILTER Syntax of an optional command 
ctcc/ctc++ can execute to filter the 
target source files before they are 
sent to amctag for instrumentation. 

AMC_CMD_POSTFILTER Syntax of an optional command 
ctcc/ctc++ can execute to filter the 
target source files after instrumen­
tation and before compilation. 

To enable ctcc/ctc++ to construct long command lines for 
the user-configurable commands described above, you can 
use @{ and }@ in the command syntax to delimit any part 
of the command you want to be placed in a temporary re­
sponse file. See "Response Files" on page C-9 for examples. 

Response file variables 
You can define the following variables in your ctcc/ctc++ 
configuration file to name any response files created by the 
user-configurable commands. 

Variable 

AMC_RSP_CPP 

AMC_RSP_TAG 

Description 

Names response files created by the 
AMC_CMD_CPP command. 

Names response files created by the 
AMC_CMD_ TAG command. 

AMC_RSP _COMPILE Names response files created by the 
AMC_CMD_COMPILE command. 

CodeTEST User's Guide 



Using ctcc/ctc++ Configuration Files 
To configure ctcc/ctc++, create one or more files with names 
equivalent to .ctccrc-$AMC_TARGET, then set the envi­
ronment variable AMC_ TARGET to point to the file you 
want ctcc/ctc++ to use. For example, to use .ctccrc-gnu, set 
AMC_TARGET to gnu. The ctcc/ctc++ command searches 
in the following order for a configuration file: 

$AMC_HOME/bin/.ctccrc-$AMC_TARGET 
$HOME/.ctccrc-$AMC_TARGET 
./.ctccrc-$AMC_TARGET 

If .ctccrc-$AMC_TARGET is present in more than one of 
the above directories, the individual variable settings in 
each successive file override previous settings: 

o Any variable set in the $HOME version of the file 
overrides the setting for that variable in the 
$AMC_HOME/bin version 

o Any variable set in the current directory version 
overrides the setting from the $HOME version. 

o Finally, any variable set in your environment (e.g., via 
the setenv command) overrides the setting made by any 
version of the .ctccrc-$AMC_TARGET file. 

Creating a .ctccrc-$AMC_TARGET file 
The example file on the following pages shows how the ctcc/ 
etc++ variables might be set for an MRI 68K compiler envi­
ronment. Refer to $AMC_HOME/bin for other examples on 
which to model your own configuration files. 

One or more default configuration files for your site should 
be stored in your $AMC_HOME/bin directory. If you want 
to define a personal default configuration file, store it in 
your $HOME directory. Keep project-specific configuration 
files in the directory from which you will run ctcc/ctc++. 

Using ctcc/ctc++ Configuration Files 5-13 



An example configuration file: 

#******************************************************************************** 
# .ctccrc-$AMC_TARGET 
#******************************************************************************** 
# ctcc/ctc++ requires that AMC_HOME and AMC_TARGET be defined. 
# AMC_HOME is the CodeTEST installation directory. 
# AMC_TARGET is a user-chosen name of a build target environment (e.g., "mri360"). 
# 
# 
# 

Note: ctcc/ctc++ looks for {.,$HOME,$AMC_HOME/bin}/.ctccrc-$AMC_TARGET 
(e.g., $AMC_HOME/bin/.ctccrc-mri360). 

#******************************************************************************** 
#================================================================================ 
# The following variable definitions are intended for C and C++ environments. 
#================================================================================ 
#--------------------------------------------------------------------------------
# Path/filename of the CodeTEST Instrumenter. 
#--------------------------------------------------------------------------------

AMC_INSTRUMENTER=$AMC_HOME/bin/amctag 

#--------------------------------------------------------------------------------
# Default options for the CodeTEST Instrumenter. 
#--------------------------------------------------------------------------------
# Note: These are for amctag, only. Do not put ctcc-specific options here 
# (e.g., -Xuse-cpp or -Xkeep) ! 

AMC_TAGDEFAULTS=-Xtag-level=2 -Xmri 

#================================================================================ 
# The following variable definitions are paired into C and C++ 
# (AMC_CC_* and AMC_CXX_*) language-specific definitions. 
#================================================================================ 
#--------------------------------------------------------------------------------
# Default "include" file for each C and C++ source. 
#--------------------------------------------------------------------------------
# These provide required declarations, and are always supplied to amctag. 

AMC_CC_DEFINITIONS=-i=$AMC_HOME/lib/$AMC_TARGET/amc_c.h 
AMC_CXX_DEFINITIONS=-i=$AMC_HOME/lib/$AMC_TARGET/amc_cxx.h 

#--------------------------------------------------------------------------------
# Default include directory for C and C++ preprocessing. 
#--------------------------------------------------------------------------------
# These are used only when amctag is asked to perform C or C++ preprocessing 
# (i.e., when the -Xamctag-cpp switch is used with ctcc or etc++). 
# 
# 
# 

Note: This example expects the environment variable MRI_68K_INC to be 
defined. This *will* go badly if MRI 68K_INC is not defined! 

AMC_CC_INCLUDE=-I$MRI_68K_INC 
AMC_CXX_INCLUDE=-I$MRI_68K_INC 

5-14 CodeTEST User's Guide 



Example configuration file (cont'd): 

#--------------------------------------------------------------------------------
# Default preprocessor options, when using amctag as a preprocessor. 
#--------------------------------------------------------------------------------
# These are used only when amctag is asked to perform C or C++ preprocessing 
# (i.e., when the -Xamctag-cpp switch is used with ctcc or etc++). 

AMC_CC IFLAGS=-D __ MRI_68K __ 
AMC CXX IFLAGS=-D __ MRI 68K __ 

#--------------------------------------------------------------------------------
# The name for each of the C and C++ compiler [drivers] . 
#--------------------------------------------------------------------------------
# These are used by ctcc/ctc++ to preprocess any c or C++ source files 
# (unless the -Xamctag-cpp switch is used) , to compile instrumented 
# source and non-C/C++ source files, and link objects. 

AMC_CC=mcc68k -Fee 
AMC_CXX=ccc68k -Fee 

#--------------------------------------------------------------------------------
# Default link-time options. 
#--------------------------------------------------------------------------------
# If AMC_CC_LIBS or AMC_CXX_LIBS is used to specify source rather than objects 
# or libraries, these variables might be used to specify compiler options at 
# "link• time. 

AMC CC LFLAGS=-D __ MRI_68K __ 
AMC CXX LFLAGS=-D __ MRI 68K __ 

#--------------------------------------------------------------------------------
# Default link-time files. 
#--------------------------------------------------------------------------------
# Generally, these variables will specify the libct.a support libraries, 
# but can be used to reference, e.g. support source files to be compiled 
# and linked in at "link" time. 

AMC_CC_LIBS=$AMC_HOME/lib/$AMC_TARGET/libct.a 
AMC_CXX_LIBS=$AMC_HOME/lib/$AMC_TARGET/libct.a 

#--------------------------------------------------------------------------------
# Default link-time files for -Xmalloc support. 
#--------------------------------------------------------------------------------
# Generally, these variables will specify a libct-*.a support library for 
# inclusion when the -Xmalloc switch is used. 

AMC_CC_MLIBS=$AMC_HOME/lib/$AMC_TARGET/libctmalloc.a 
AMC_CXX_MLIBS=$AMC_HOME/lib/$AMC_TARGET/libctmalloc.a 

Using ctcc/ctc++ Configuration Files 



Using the ctcc/ctc++ Command 

ctcc syntax 

etc++ syntax 

Command 
description 

5-16 

The ctcc command accepts C source files as input; the etc++ 
command accepts C++ source files as input. Both of these 
commands produce as output executable load modules or 
relocatable binary programs for subsequent loading with 
your linker. 

ctcc {options] sourcefile ... 

etc++ {options] sourcefile ... 

See "Instrumenter Options" on page 6-16 for definitions of 
all ctcc/ctc++ and amctag command options. 

The ctcc command assumes that files with the suffix .c are 
C source program. The etc++ command assumes that files 
with a suffix of .C, .cc, .cpp, or .cxx are C++ source pro­
grams. Files with names that do not end in one of these suf­
fixes are not instrumented and are passed unchanged to 
the compiler. 

By default, all CIC++ source files are first routed to your 
compiler's cc driver for preprocessing (e.g., gee with the -E 
switch). The preprocessed files are then routed to amctag to 
be instrumented. The instrumented source files are then 
passed back to your cc command, along with any options or 
switches that were not intended for ctcdctc++ or amctag. 

If ctcdctc++ determines that it will be producing an execut­
able (i.e., ifthe -c, -E, and -P switches are not present) your 
instrumented programs, together with the results of any 
other specified compilations or assemblies and any re­
quired CodeTEST-specific libraries, are loaded in the order 
given to produce an executable output file. 

CodeTEST User's Guide 



Example 1: running ctcc from the command line 
Suppose you have written an application that uses a.c, b.c, 
and c.c to create executable foo. Ordinarily, to compile and 
link foo using the GNU C compiler, you might: 

$ gee -ofoo a.e b.e e.e 

To instrument this program before compiling, you could: 

Using the ctcc/ctc++ Command 

1. Create a configuration file (for example, ctccrc-gnu960) 
to define a set of variables for the ctcc compiler driver. 

2. Set the environment variable AMC_ TARGET to point to 
the correct configuration file: 

setenv AMC_TARGET gnu960 

3. Run ctcc to C preprocess, instrument, compile, and link 
foo: 

$ etee -ofoo a.e b.e e.e 

Example 2: invoking etc++ from a makefile 
If your build procedure uses a makefile, you can change an 
existing definition of the CC macro to invoke etc++ in place 
of your usual "cc" command. Or, in many environments, 
simply define the CC macro on the make command line: 

$ make CC=ete++ 

Example 3: using the make -n option 
In some cases, the best approach may be to invoke your 
makefile as it currently exists, using the -n (no execution) 
make option to produce a text file of the commands that 
would have executed. 

This use of make resolves all of the various dependencies, 
and builds command lines for each tool the makefile in­
vokes. You could then edit the resulting command file to 
build as much or as little of the code as you want, substitut­
ing ctcc or etc++ for cc. 

5-17 



Assigning Addresses for the Tag Ports 

MRI example 

5-18 

In the normal CodeTEST tagging scheme, two tag port 
variables ( amc_ctrl_port and amc_data_port) must be de­
fined and each assigned a specific absolute 32-bit address 
in the target address space. The address assigned to 
amc_ctrl_port is the address you will need to enter in the 
Port Address field of the probe configuration utility to gen­
erate a probe configuration file. 

Note: Hybrid tagging, an alternative CodeTEST instrumentation 
scheme for supporting 16-bit core processors, has different 
memory requirements. See Appendix D for details. 

The address assigned to amc_ctrl_port must precede the 
amc_data_port address, and the two ports must be located 
at adjacent 32-bit words aligned on an 8-byte boundary. In 
other words, amc_ctrl_port must be located at an address 
that ends in 0 or 8 hex, and amc_data_port must be located 
at an address that ends in 4 or C hex. The following exam­
ple shows one approach for locating the ports. 

This example shows how tag port addresses can be 
assigned in an MRI environment, using the PUBLIC 
command in the linker command file link.cmd. 

ORDER 
ORDER 
SECT 
ORDER 
LOAD 
LOAD 
LOAD 
PUBLIC 
PUBLIC 
END 

vectors,startup,code 
strings, literals, canst 
vars=$00100000 
vars,zerovars,data,heap 
vectors.a 
startup.a 
sample.a 
_amc_ctrl_port=OxFFOOFFFO 
_amc_data_port=OxFFOOFFF4 

CodeTEST User's Guide 



I Chapter6 

The lnstrumenter 

Theory Overview. . . . . . . . . . . . . . . . . 6-2 

Using the amctag Command . ...... 6-13 

lnstrumenter Options. . . . . . . . . . . . . 6-16 

Selectively Turning Off Tagging . . . . 6-22 

Compatible IDB Files . . . . . . . . . . . . 6-23 

The amctag C and C++ 
Preprocessor Features . . . . . . . . . 6-24 

The lnstrumenter 6-1 



Theory Overview 

6-2 

The source code instrumenter prepares your program for 
in-circuit testing by filtering your source files to insert test 
point instructions, or tags, into your code. 

Command options are provided to allow you to control the 
level of tagging the instrumenter performs, based on which 
CodeTEST tools you plan to use and how critical perfor­
mance is in your current testing. If you want to see the in­
strumented version of your code, you can use the -Xkeep 
option to preserve the otherwise intermediate files. 

While instrumenting your code, the instrumenter also cre­
ates and maintains an Instrumentation Database (IDB) for 
your program, which contains the symbolic information 
necessary for CodeTEST to gather measurement data. The 
host application reads the IDB you specify for your session 
(i.e., the IDB produced during the build of your target pro­
gram). If your target includes executables from multiple 
builds, you can specify multiple compatible IDB files. 

Another set of duties the instrumenter can optionally per­
form are those of a C or C++ preprocessor (i.e., expansion of 
include files, macro replacements, etc.). Generally, howev­
er, you will want to filter your code through your compiler's 
own preprocessor before instrumenting. By default, ctcc/ 
etc++ does this automatically. 

When you compile and run the instrumented program, the 
tags placed by the instrumenter write values to a pair of 
port addresses (amc_ctrl_port and amc_data_port) which 
you assign in your target memory space at link time. Be­
cause the C language variables associated with these port 
addresses are declared to be volatile, tags will not be affect­
ed by any optimization that might be performed during 
compilation. 

CodeTEST User's Guide 



Performance 
tagging 

Theory Overview 

Performance tagging enables CodeTEST to track function 
entries and exits as your execution path threads through 
the instrumented program. This level of tagging provides 
the data necessary to calculate the amount of CPU time 
consumed by each function, and to dynamically identify the 
call pair relationships among your target program func­
tions. 

Performance tagging is generally the least invasive level of 
instrumentation, and the only kind that is required for you 
to use the Function Performance, Call Linkage, and High 
Level Trace views. 

Note: The instrumenter does not perform the tagging necessary 
for you to use the Task Performance view, or any of the oth­
er task-based CodeTEST features. See Chapter 8, Using 
CodeTEST with an RTOS. 

When you instrument your code at the performance level 
(using the -Xtag-level=l option) the instrumenter reads 
your sources and inserts a tag at the start of each function, 
at each function's return statement, and at any other func­
tion entry or exit points. The following tag types are used: 

o function entry 
o function exit 

The instrumenter assigns each function a unique number, 
which serves as a reference to that function's description in 
the IDB. All entry and exit tags placed in a given function 
contain that reference number. During execution, the entry 
and exit tag values are written to amc_ctrl_port. When 
your workstation receives function entry or exit data from 
the probe, the CodeTEST host application looks up the cor­
responding function description in the IDB, then gathers 
the necessary information for display. 

6-3 



The following example shows a code fragment (AddMove) before instrumentation. 
Throughout this discussion AddMove will be used to illustrate the tagging levels. 

int AddMove (uint *touch, uint from, uint to, Piece becomes) 
{ 

6-4 

/* We can't move there (or any further) if it's invalid, or*/ 
/* occupied by our own.*/ 

if ((board[to] & PieceMask) ==invalid I I 
(board[to] !=empty && ( ((board[to] ~ board[from]) & BLACK) 0)) 

) 

return 0; 
} 

/*Make sure we have room for it on the stack.*/ 

if (SzMStk <= MSPtr) 
MStk = (Move ( *) [] ) real lac 
(MStk, (SzMStk + IncrSzMStk) * sizeof (Move)); 
if (MStk == NULL) { 

fatal (ucouldn't realloc MStk!"); 
} 

SzMStk += IncrSzMStk; 
} 

/* Add the new move to the list.*/ 

( *MStk) [MSPtr] . from = from; 
( *MStk) [MSPtr] . to = to; 
{*MStk) [MSPtr] .becomes.p =becomes; 
MSPtr += 1; 

/* Keep track of the fact that we've reached this location, and*/ 
/*by whom (for check and castling).*/ 

if (becomes & BLACK) 
touch[to] += 256; 

} 
else { 

touch[to] += 1; 
} 

/*Okay, we did it. Let 'em know if they can continue.*/ 

return ((board[to] & PieceMask) ==empty); 

CodeTEST User's Guide 



In this example AddMove has been instrumented with performance tagging. Note that 
both return statements emit the same exit tag value. 

int AddMove{uint *touch, uint from, uint to, Piece becomes) 

unsigned long amc_entry_dummy = (amc_ctrl_port = 1947205646UL); 

if { {board[to] & (7)) == invalid 11 

{board[to] !=empty && { {{board[to] A board[ from]) & 8) == 0)) 
) 

return {amc_ctrl_port 571473934UL,0); 

if {SzMStk <= MSPtr) { 

MStk = {Move {*) [O])realloc{MStk, {SzMStk + lOOU) * sizeof{Move)); 

if {MStk == 0) { 

fatal{ucouldn't realloc MStk!"); 

SzMStk += 100; 

{*MStk) [MSPtr] .from = from; 

{*MStk) [MSPtr] .to = to; 

{*MStk) [MSPtr] .becomes.p =becomes; 

MSPtr += 1; 

if {{becomes & 8) != 0) { 

touch[to] += 256; 

else { 

touch[to] += 1; 

return {amc_ctrl_port 571473934UL, 
{{board[to] & (7)) ==empty) 

) ; 

Theory Overview 6-5 



Coverage 
tagging 

6-6 

For CodeTEST to track which parts of each function actu­
ally execute, your code must be instrumented with coverage 
tagging in addition to the performance tagging previously 
described. Coverage tagging enables CodeTEST to analyze 
code coverage, and also enables use of the Trace tool's Con­
trol Flow and Source views. 

Coverage tags 
When you instrument at the coverage level (using the 
-Xtag-level=2 option) the instrumenter places coverage 
tags at branch points in your code. CodeTEST can then 
track the execution paths taken or not taken. For purposes 
of coverage analysis, CodeTEST treats code as a series of 
basic blocks (i.e., sequences in which execution of the begin­
ning of a block implies execution of all code within the 
block). It is not necessary to know the sequence of execution 
or the number of iterations; it is only necessary to know 
whether each block has executed. Control structures that 
execute a block of code at least once, such as do loops, do not 
require a separate coverage tag. For control structures that 
may or may not execute a block, such as if statements, for 
loops and while loops, the instrumenter inserts a tag at the 
beginning of the block. For switch statements, the instru­
menter inserts a tag at the beginning of each case, includ­
ing the default case. Subroutine calls are not tagged, 
because a subroutine may longjmp or throw an exception. 
Subroutine returns are tagged. 

Trace tags 
The Trace tool requires some additional information to de­
termine the actual sequence of execution. When you instru­
ment at the coverage level, the instrumenter also places 
trace tags to flag the beginning of certain constructs of iter­
ative execution where coverage tagging alone is insufficient 
(e.g., do while loops). Coverage tagging would flag entry 
into such a construct, but would not reveal how many times 
the controlled block executed. Trace tags enable CodeTEST 
to track the actual number of iterations. 

CodeTEST User's Guide 



In this example, AddMove has been instrumented with coverage tagging. 

int AddMove(uint *touch, uint from, uint to, Piece becomes) 
{ 

unsigned long amc_entry_durnrny = (amc_ctrl__port = 1947205646UL); 
if ( (board[to] & (7)) == invalid I I 

(board[to] !=empty && (((board[to] A board[from]) & 8) == 0)) 
) 

amc_ctrl_port = 1141932295UL; 
return (amc_ctrl__port = 571473934UL,0); 

amc_ctrl_port = 1141932296UL; 
if (SzMStk <= MSPtr) { 

amc_ctrl_port = 1141932297UL; 
MStk = (Move (*) [OJ)realloc(MStk, (SzMStk + lOOU) * sizeof(Move)); 
if (MStk == 0) { 

amc_ctrl_port = 1141932298UL; 
fatal(ucouldn't realloc MStk!"); 

amc_ctrl_port = 1141932299UL; 
SzMStk += 100; 

amc_ctrl_port = 1141932300UL; 
(*MStk) [MSPtr] .from= from; 
{*MStk) [MSPtr] .to = to; 
(*MStk) [MSPtr] .becomes.p =becomes; 
MSPtr += 1; 
if ((becomes&8) !=0) { 

amc_ctrl_port = 1141932301UL; 
touch[to] += 256; 

else { 
amc_ctrl__port 1141932302UL; 
touch[to] += 1; 

amc_ctrl_port = 1141932303UL; 
return (amc_ctrl__port = 571473934UL, 

((board[to] & (7)) ==empty) 
) ; 

Theory Overview 6-7 



Memory tagging 

6-8 

Memory tagging enables CodeTEST to track your pro­
gram's dynamic allocation and deallocation of memory, and 
also to perform error checking and produce diagnostic mes­
sages when error conditions are encountered. You can in­
strument your code with memory tagging alone, or use 
memory tagging in conjunction with any of the other tag­
ging levels. 

When you instrument your code with memory tags (using 
the -Xtag-allocator option) the instrumenter replaces the 
standard CIC++ memory management calls (malloc, calloc, 
realloc, free, new, delete) with calls to corresponding Code­
TEST routines. For example, each call to malloc is replaced 
with a call to amc_malloc. The amc_malloc function takes 
as an argument a tag that identifies the line of code that 
originally called malloc (i.e., the caller id). Beyond that, 
amc_malloc simply serves as a wrapper for a memory allo­
cation routine. Once amc_malloc captures a tag and sends 
it to the control port address (amc_ctrl_port) it calls the 
memory allocation routine to perform the actual allocation. 

When a successful allocation or deallocation occurs, the Co­
deTEST library routines write additional tags to the data 
port (amc_data_port) to keep a running total of the amount 
of memory allocated, as well as the caller's allocation high­
water mark, etc. If an error condition occurs, data tags in­
dicate the nature of the error and point to the diagnostic 
information the host application will display. 

CodeTEST memory management support files 
In order for you to use the Memory tool, a supplied set of 
routines providing allocation, deallocation and consistency 
checking must be built and linked with your target pro­
gram. By default, the ctcc/ctc++ compiler driver will in­
clude these automatically at link time. 

Another instrumenter option (-Xmalloc) causes ctcc/ etc++ 
to include at link time a supplied set of allocation wrappers. 

CodeTEST User's Guide 



This effectively replaces all memory management calls 
with calls to the CodeTEST allocation routines, including 
calls made from uninstrumented code such as standard li­
braries or a portions of the target program that are not cur­
rently being tested. This is necessary for accurate memory 
error reporting and proper functioning of the Memory tool. 

Note: See Chapter 7 for information about using the memory 
management support files. 

In the following example, AddMove has been instrumented 
for memory monitoring only. 

int AddMove(uint *touch, uint from, uint to, Piece becomes) 
{ 

if ((board[to] & (7)) ==invalid I I 
(board[to] !=empty && (((board[to] A board[from]) & 8) 0)) 

) 

return O; 
} 

if (SzMStk <= MSPtr) { 
MStk = (Move (*) [O])amc_realloc(MStk, (SzMStk + lOOU) * sizeof(Move), 

672399367UL 
) ; 

if (MStk == 0) { 
fatal(°Couldn't realloc MStk!•); 

SzMStk += 100; 
} 

(*MStk) [MSPtr] .from = from; 
(*MStk) [MSPtr] .to = to; 
(*MStk) [MSPtr] .becomes.p = becomes; 
MSPtr += l; 
if ((becomes & 8) != 0) { 

touch[to] += 256; 
} 

else { 
touch[to] += 1; 

return ( (board[to] & (7)) 

Theory Overview 

empty); 

6-9 



Tagging 
summary 

The following table shows which CodeTEST tools (or tool 
features) are enabled by the various levels of tagging. 

Code TEST Tools 

Tagging Option Performance Coverage Memory Trace 

Performance tagging 
-Xtag-level=1 

Coverage tagging 
-Xtag-level=2 

Memory tagging 
-Xtag-allocator 

Full tagging 
-Xtag-level=2 and 
-Xtag-allocator 

Note: 

Tagging lnline 
functions 

Compiler­
specific 
extensions 

6-10 

• • 
(high level only) 

• • • 
• • 

(allocation calls only) 

• • • • 

If you want the instrumenter to exclude an individual func­
tion or functions from tagging, you can use the no_tagging 
pragma to turn off tagging. See "Selectively Turning Off 
Tagging" on page 6-22. 

An instrumenter option is available for controlling the level 
of tagging applied to functions defined with the inline key­
word. You can choose to turn off tagging of all inline func­
tions, tag only the inline functions in your target source 
files but not in include files (default), or tag all inline func­
tions. See "Instrumentation options" on page 6-19. 

The instrumenter provides options for enabling or dis­
abling support for the compiler-specific extensions avail­
able with several implementations of the C and C++ 
languages. See "Instrumentation options" on page 6-19. 

CodeTEST User's Guide 



Additional tag 
types 

Writing values 
to the tag ports 

Instrumented 
RTOS 
callouts 

In addition to the tags the instrumenter places in your 
code, two other CodeTEST tag types are of interest here. 

RTOStags 
If your target system uses a custom or commercial real­
time operating system, you must make some special prep­
arations to monitor basic task activity. See Chapter 8, Us­
ing CodeTEST with an RTOS. 

User-defined tags 
To flag events of interest in trace, you can insert function 
calls to AMCPrintf, AMCPuts, or AMCUserTag into your 
code. See "AMCPrintf and AMCPuts" on page 4-17 and 
"User Defined Tags" on page 4-20. 

All CodeTEST instrumentation writes tags to two moni­
tored ports, which you assign addresses in the target mem­
ory space according to guidelines on page 5-18. 

Target system 

- .... 
Performance, coverage Instrumented . ______________________________ .,... 

Tag port addresses 

amc_ctrl_port 

application and user-defined tags 

Code TEST 
memory 
routines 

Theory Overview 

amc_data_port 

6-11 



Performance 
overhead 

Impact on build 
time 

6-12 

Use of instrumented source code is fundamental to the 
CodeTEST design. This approach makes accurate mea­
surements possible, even for processors executing out of 
cache and operating systems that dynamically relocate 
code. However, running instrumented code is always going 
to incur some amount of execution overhead. The degree of 
performance degradation will vary with the specifics of the 
target program and the level of instrumentation used. 
Though there is no way of predicting the exact level you 
will experience, the figures in the following table are repre­
sentative of what can typically be expected. 

Tagging Performance Object Expansion 
Level Overhead 

Performance <2% 2-20% (9% typical) 

Coverage 10-20% 3-47% (29% typical) 

Memory * <2% 

All at once 12-22% 3-48% (30% typical) 

* If your program rarely calls memory allocation routines, 
there will be no noticeable effect. Intensive use of allocation 
routines will incur substantial overhead. In general, each 
allocation will take approximately twice as long to execute. 

Depending on the number of files and libraries in your 
build, the number of IDB files involved, etc., the instru­
mentation process can sometimes have a significant impact 
on build time. In general, instrumentation will increase 
build time by about 50%. 

Very large builds (>1,000 files) are best built in sections 
rather than all at once. The -Xidb-compatible-with option 
enables sequential builds to use compatible instrumenta­
tion. See "Compatible IDB Files" on page 6-23. 

CodeTEST User's Guide 



Using the amctag Command 

Syntax 

Using the amctag Command 

The amctagcommand takes a C or C++ source file as input, 
performs CIC++ preprocessing if needed, performs the 
specified (or default) level of tagging, and creates or up­
dates an IDB file whose name defaults to ./amctag.idb. 

If an output file name is not supplied, amctag sends its in­
strumented source output to stdout. 

ametag [options] sourcefile [outputfile] 

Options 
See "Instrumenter Options" on page 6-16 for definitions of 
all amctag and ctcc/ctc++ command options. 

Example 1: using amctag to preprocess and 
instrument code 
To invoke amctag explicitly to preprocess and instrument 
your code, you might replace the command: 

$ gee -ofoo a.e b.e e.e 

with the sequence: 

$ ametag -Xe-mode -Xtag-level=l a.e a. - i 
$ ametag -Xe-mode -Xtag-level=l b.e b. - i 
$ ametag -Xe-mode -Xtag-level=l e.e e. - i 
$ gee -ofoo a. - i b. - i e. - i 

The first three commands invoke amctag to pre process and 
instrument your original sources. The -Xe-mode option tells 
amctag to expect C rather than C++ code. The tagging op­
tion -Xtag-level=l instructs amctag to insert performance 
tags only. For each .c input file, amctag produces a new ._i 
output file. The last command invokes gee to compile the 
three source files to create foo. 

6-13 



6-14 

Example 2: instrumenting preprocessed files 
If you filter your source files through your compiler's own 
preprocessor before instrumenting with amctag, you must 
use the -Xtag-source option to identify the original sources 
so amctag can gather the correct information for the IDB. 
For example: 

g++ -E a.cxx > a.ii 
g++ -E b.cxx > b.ii 
g++ -E c.cxx > C.ll 

amctag -Xtag-source=a.cxx a.ii a. ii 
amctag -Xtag-source=b.cxx b.ii b. ii 
amctag -Xtag-source=c.cxx c.ii c._ii 
g++ -ofoo a._ii b._ii c._ii 

In this example, amctag is instrumenting preprocessed c++ 
code, using the default (-Xtag-level=2) tagging option. The 
-Xtag-source option identifies the original source files. The 
last command in the sequence invokes g++ to compile the 
preprocessed and instrumented files to create foo. 

Example 3: invoking amctag from a makefile 
If your build procedure is based on the use of a makefile, 
and the compilation of each source file can be specified by 
default rather than requiring an explicit makefile rule, you 
can insert the instrumentation step by modifying the de­
fault .c -> .o rule to run amctag prior to compiling. The de­
fault rule for a Sun makefile compiling .c to .o files, for 
example, might be: 

.c.o: $(CC) $(CFLAGS) -c $< 

All that's necessary in this case is to change the rule to: 

.c.o: 
amctag -Xe-mode -Xtag-level=l $< $(<: .c=.i) 
$(CC) $(CFLAGS) -c $(<:.c=.i) 

CodeTEST User's Guide 



Changing the 
CodeTESTtag 
format 

Using the amctag Command 

You can use the -Xtag-format option to change the format 
of the tags the instrumenter places in your source code. The 
default CodeTEST tag format is equivalent to: 

"arnc_ctrl_port = %d" 

The -Xtag-format option allows you to change the assign­
ment of amc_ctrl_port to a function call to AMCCtrlPort. 

Using -Xtag-format with amctag 
If you invoke amctag directly (without using the ctcc or 
etc++ compiler driver) you can supply the -Xtag-format op­
tion, as in: 

arnctag -Xtag-forrnat=AMCCtrlPort(%d) foo.c 
foo.I 

Using -Xtag-format with ctcc or etc++ 
If you use the ctcc or etc++ compiler driver, set the variable 
AMC_TAGFORMAT before using the -Xtag-format option. 

The AMC_TAGFORMAT variable is interpreted as a 
printf-style format string, where up to eight integer format 
specifiers can be supplied, each of which will be replaced 
with a tag value. 

To set AMC_TAGFORMAT in a .ctccrc-$AMC_TARGET 
file, for example: 

AMC_TAGFORMAT=(AMCCtrlPort(%d), arnc_ctrl__port=%d) 

The ctcc/ctc++ driver then builds the actual definition of 
the -Xtag-format option to supply to amctag when you spec­
ify: 

"-Xtag-forrnat=$AMC_TAGFORMAT" 

6-15 



lnstrumenter Options 

Note that some of the instrumenter options can only be 
used with the ctcdctc++ compiler driver, while others can 
be used either with ctcdctc++ or on the amctag command 
line. Any options or switches you supply that are not de­
fined below are passed through to the compiler. Refer to 
your compiler documentation as necessary. 

General operation and preprocessor options 
ctcc/ 

Option 

-c 

-D name [=def] 

-E 

-1 filel=file2 

-i filel= 

-i =file2 

-I include_path 

6-16 

etc++ amctag Description 

• 
• 

• 

• 
• 
• 
• 

Suppress linking and produce a .o file for each source file . 
A single object file can be named using the -o option. 

• Define the symbol (name) for the CIC++ preprocessor and 
for amctag, which can optionally do CIC++ preprocessing. 
Equivalent to a #define directive in the source. If you do not 
specify a definition (def), the value 1 is assigned. 

Perform only preprocessing and instrumentation on input 
source file(s). Send output (with cpp-style line numbering) to 
stdout or to a file named with the -o option. See also the -P 
option. 

• Use file2 instead of file1 in a #include statement. 

• Ignore any #include file1 statements . 

• Include file2 before preprocessing any other source file . 

• Add include_path to the list of directories to search for 
#include files with relative names. First, amctag searches 
the directory containing the source, then any directories 
named with the -I option, then directories named with the 
AMC_CC_INCLUDE or AMC_CXX_INCLUDE variables, 
and finally in lusrlinclude. 

CodeTEST User's Guide 



General operation and preprocessor options (cont'd) 
ctcc/ 

Option etc++ amctag Description 

-o filename • 

-P • 

-u name • 
-v • 
-Xpaths-from • 
=env_var ... 
-Xuse-cpp • 

-Xamctag-cpp • 
-Xrelaxed • 

-Xno-relaxed • 

-Xrernove-calls-to • 
=function 

-@filename 

lnstrumenter Options 

• 
• 
• 

Name the output file filename. The name must have the 
appropriate suffix for the type of file to be produced. The 
name you assign cannot be the same as the source file 
name; the compiler does not overwrite the source file. 

Perform only preprocessing and instrumentation on the 
source file(s). Send the output of each source file to a file of 
the same name with a .i suffix. No cpp-style line numbering. 

Remove any existing definition of the cpp symbol name . 
Equivalent to a #undef directive. (Inverse of the -D option.) 

Print on standard error output the command executed to run 
each stage of the compilation. 

Add include paths from one or more environment variable 
names matching the egrep pattern env_ var. 

Instruct ctcc to use the C compiler driver (e.g., gee with -E) 
to perform C preprocessing on the target source files before 
calling amctag to instrument the code. 
Instruct etc++ to use the C++ compiler driver (e.g., g++ with 
-E) to perform C++ preprocessing on the target source files 
before calling amctag to instrument the code. 

Use amctag to perform CIC++ preprocessing on the target 
source files, rather than calling the CIC++ compiler's driver. 

• Relax the level of error reporting amctag performs. Many 
amctag syntactic and semantic errors are relaxed to 
warnings or are silenced. This is the amctag default. 

• Allow amctag to perform strict error reporting. 

• Disable calls to function (AMCPrintf, AMCPuts, or 
AMCUserTag) without removing those calls from your code. 

• Specifies a response file (filename) which you can create to 
provide options and file names for amctag. 

6-17 



Compatibility options 
ctcc/ 

Option etc++ amctag Definition 

-Xe-mode • 

-Xk-and-r • 

-Xansi • 

-Xstrict-ansi • 
-Xpcc • 

-Xbcc • 
-Xno-bcc • 
-Xbso • 
-Xno-bso • 
-Xgnu • 

6-18 

• 

• 

• 

• 

• 

• 
• 
• 
• 
• 

Inform amctag that the target source files contain C rather 
than C++ code. Note: ctcc supplies this switch to amctag 
automatically. 

When instrumenting C source code, assume the code 
conforms to the Kernighan and Ritchie standard for C 
preprocessor directives. See "Compatibility modes" on 
page 6-24. 

When instrumenting C source code, assume the code 
conforms to the ANSI X3.159-1989 standard with some 
additions. See "Compatibility modes" on page 6-24. 

When instrumenting C source code, assume the code strictly 
conforms to the ANSI X3.159-1989 standard. See 
"Compatibility modes" on page 6-24. 

When instrumenting C source code, assume the code 
conforms to the System V.3 Unix C compiler standard for 
preprocessor directives. See "Compatibility modes" on 
page 6-24. 

Enable Borland C language extensions . 

Inverse of -Xbcc. This is the amctag default. 

Enable Boston Systems Office C language extensions . 

Inverse of -Xbso. This is the amctag default. 

Enable amctag support for GNU C language extensions: 
alternate and inline keywords, asm labels, cast to union, 
character escapes, $ in identifiers, explicit reg vars, extended 
asm syntax, function attributes, incomplete enums, long long, 
Lvalues, pointer arithmetic, statement expressions, typeof, 
variable attributes, variable length, zero length. 
Enable instrumenter support for GNU C++ extensions: 
destructors and goto. 

CodeTEST User's Guide 



Compatibility options (cont'd) 
ctcc/ 

Option etc++ amctag 

-Xno-gnu • • 
-Xghs • • 
-Xno-ghs • • 
-Xi cc • • 
-Xno-icc • • 
-Xmri • • 
-Xno-mri • • 
-Xmwc • • 
-Xno-mwc • • 

Instrumentation options 
ctcc/ 

Definition 

Inverse of -Xgnu. This is the amctag default. 

Recognize Green Hills Software asm syntax . 

Inverse of -Xghs. This is the amctag default. 

Enable lntrol C language extensions . 

Inverse of -Xicc. This is the amctag default. 

Enable MRI extensions: interrupt and packed keywords . 

Inverse of -Xmri. This is the amctag default. 

Enable MetaWare C language extensions . 

Inverse of -Xmwc. This is the amctag default. 

Option etc++ amctag Definition 

-Xtag-level [=0-2] • 

-Xtag-allocator • 

lnstrumenter Options 

• Cause amctag to insert tags into the target source 
code. The (optional) value you supply controls the 
tagging level. See "Theory Overview" on page 6-2 
for a discussion of tagging. 

o Do not insert any tags. 

1 Tag for performance monitoring only. 

2 Tag for performance, coverage, and trace. This 
is the amctag default. 

• Cause amctag to tag the target source code for 
memory monitoring, in addition to any tagging done 
with the -Xtag-level option. See Chapter 7. 

6-19 



Instrumentation options (cont'd) 
ctcc/ 

Option 

-Xno-tag-allocator 

-Xallocator-call-map 
=mapfile 

-Xmalloc 

-Xtag-inlines [=0-2] 

-Xno-tag-inlines 

-Xtag-source= 
sourcefile 

6-20 

etc++ amctag Definition 

• 
• 

• 

• 

• 

• 

• Inverse of -Xtag-allocator. This is the amctag default. 

• Cause amctag to use mapfile in place of the default 
Memory Call Definition file: $AMC_HOME/lib/ 
allocator/ctcall.map. If multiple instances of this 
switch are used, all mapfiles are read in order and 
duplicate mappings in successive files override 
previous ones. See "Memory Call Definition file" on 
page 7-4. 

When linking programs into executable load 
modules, include the Code TEST-specific definition 
of the malloc, calloc, realloc, free, new, and delete. 
With this option, all references to these routines are 
effectively replaced with references to CodeTEST­
specific versions, including references found in 
uninstrumented code. See "CodeTEST Memory 
Management Routines" on page 7-2. 

• Specify which functions defined with the in/ine 
keyword will or will not be tagged at the level you 
specify with -Xtag-level. 

O Do not tag any inline functions. 

1 Tag inline functions defined in the target source 
files, but do not tag inline functions defined in 
included files. This is the amctag default. 

2 Tag all inline functions. 

• Do not tag any functions defined with the inline 
keyword. This is the functional equivalent of 
-Xtag-inlines = 0. 

• Identify the original source file when instrumenting a 
source file that has been preprocessed. This 
enables amctag to incorporate the correct 
information in the IDB. 

CodeTEST User's Guide 



Instrumentation options (cont'd) 
ctcc/ 

Option etc++ amctag Definition 

-Xidb=idb_ file • • Name the Instrumentation Database (IDB) file 
created or updated during this instrumentation. The 
amctag default name is amctag.idb. 

-Xidb-compatible- • • Make the IDB file created or updated during this 
with={idb_filel@file} instrumentation compatible with idb_file, or with 

multiple compatible IDB files listed in ASCII file. See 
"Compatible IDB Files" on page 6-23. 

-Xkeep • Preserve the preprocessed and instrumented 
version of each source file. Preprocessed .c files are 
saved as .i files; instrumented as ._i files. 
Preprocessed .cpp, .cxx, .cc, or .C files are saved as 
.ii files; instrumented as ._ii files. 

-Xtag-format=format • • Specify format (a printf-style string) as the format of 
the tag statements that amctag inserts in your code. 
See "Changing the CodeTEST tag format" on 
page 6-15 

-Xtag-16 • • Enables 16-bit tagging. For use in target systems 
that employ the CodeTEST hybrid tagging scheme. 
See Appendix D. 

-Xpassthru • • If a syntactic or semantic error is encountered in a 
function, that function is passed through 
uninstrumented to the compiler. A list of all passed 
through functions is sent to stderr. This is the amctag 
default. 

-Xno-passthru • • If a syntactic or semantic error is encountered in a 
function, the instrumenter stops. 

-Xabsolute-paths • • Cause amctag to specify absolute paths to all files 
listed in the IDB. 

-Xno-absolute-paths • • Allows amctag to specify relative paths in the IDB . 
This is the amctag default. 

lnstrumenter Options 6-21 



Selectively Turning Off Tagging 
You can use the no_tagging pragma to exclude individual 
functions from tagging: 

#pragma no_tagging name [, name ... ] 

or: #pragma no_tagging qualified name 
[, qualified name ... ] 

C++ function names can be an operator, as in: 

#pragma no_tagging operator delete 
static void operator delete (void *) 
#pragma no_tagging operator delete[] 
static void operator delete[] (void *) 

In this example, functions are members of a specific class: 

#pragma no_tagging amc_guardclass::amc_guardclass 
#pragma no_tagging amc_guardclass::-amc_guardclass 

class amc_guardclass { 
public: 

amc_guardclass (amctag_t entry, amctag_t exit) 
{ 

amc_ctrl_port = entry; 
} 
-amc_guardclass () 
{ 

amc_ctrl_port exit tag; 

exittag (exit) 

private: 

} ; 

6-22 

amctag_t exittag; 

Note: No distinction is made among C++ overloaded functions. 
For example, foo() foo(int) foo(double) will all be excluded 
from tagging if they are defined following: 
#pragma no_tagging foo 

CodeTEST User's Guide 



Compatible IDB Files 

Compatible with 
a single existing 
IDB file 

Multiple 
compatible IDB 
files 

Compatible IDB Files 

If your target program is going to include executables pro­
duced by multiple builds, use the -Xidb-compatible-with 
option to make the IDB files compatible. To configure a ses­
sion to use multiple compatible IDB files, see "IDB path 
and file name" on page 2-15. 

To produce an IDB compatible with a single existing IDB 
file, supply the existing IDB file name in the ctcc/ctc++ 
command using the -Xidb-compatible-with option. For ex­
ample, suppose you instrumented a library called mod2, 
and during that instrumentation an IDB named mod2.idb 
was created. Now you want to build an application that 
uses mod2. Using the -Xidb-compatible-with option en­
sures that tag values in mod2 will not be reused when in­
strumenting your application. So, the IDB file produced by: 

ctcc -Xidb-cornpatible-with=rnod2.idb *.c 

will be compatible with mod2.idb. 

To produce an IDB that is compatible with several other 
compatible IDB files, enter the names of the existing com­
patible IDB files in an ASCII text file. Then specify the text 
file name (preceded by an @ sign) using the -Xidb-compati­
ble-with option. For example: 

etc++ -Xidb-cornpatible-with=@rnaster.idb *.c 

will produce an IDB compatible with all of the IDB files 
listed in the file master.idb. 

The warning "Unable to open compatible IDB" indicates 
that the instrumenter could not find a file specified with 
the -Xidb-compatible-with option. This warning does not 
prevent instrumentation or compilation. 

6-23 



The amctag C and C++ Preprocessor Features 

Compatibility 
modes 

6-24 

The amctag command will automatically perform any C/ 
C++ preprocessing that has not already been done. If you 
do not want amctag to do the preprocessing, simply filter 
your files through your compiler's own preprocessor before 
instrumenting with amctag. 

If you use the ctcc/ctc++ compiler driver, by default your 
source files will be sent to your compiler's preprocessor be­
fore being sent to amctag for instrumentation. In that case, 
refer to your compiler manual for information on prepro­
cessor issues and disregard the information in this section. 
In some cases, however, you may want to have amctag do 
the preprocessing. If so, use the -Xamctag-cpp option of the 
ctcc/ctc++ compiler driver. 

The amctag command offers four language compatibility 
modes for preprocessor functions. 

o K&R mode - conforms to the pre-ANSI de facto standard 
defined by The C Programming Language (1st ed.) by 
Kernighan and Ritchie. In this mode, most ANSI 
extensions are activated. (Use the -Xk-and-r option.) 

o ANSI mode - conforms to ANSI X3.159-1989 with some 
additions. (Use the -Xansi option.) 

o Strict ANSI mode - conforms strictly to the ANSI 
X3.159-1989 standard. (Use the -Xstrict-ansi option.) 

o PCC compatibility mode - emulates the behavior of 
System V.3 Unix compilers. (Use the -Xpcc option.) 

CodeTEST User's Guide 



The following table defines the differences among the four compatibility modes. 

K&R ANSI Strict PCC Feature 

n s s n Comments are replaced by nothing (n) or a space (s). 

y n n y Macro arguments are replaced in strings and character 
constants. For example: #define x(a) if (a) printf("a\n") 
Yes (y) or no (n). 

n n y n Missing parameter name after a # in a macro declaration 
generates an error. Yes (y) or no (n). 

n n y n Characters after an #endif directive will generate a warn-
ing. Yes (y) or no (n). 

e e e w Preprocessor errors are either errors (e) or warnings (w). 

n 0 1 n __ STDC __ macro is predefined to (0), (1), or is not 
defined (n). 

y y n y __ STDC -- macro can be undefined with #undef. Yes 
(y) or no (n). 

n n y n __ STRICT _ANSI__ macro is predefined. Yes (y) or no 
(n). 

n y y n Spaces are legal before cpp #directives. Yes (y) or no 
(n). 

w e e w Parameters redeclared in the outer-most level of a func-
tion will be given an error (e) or a warning (w). 

r s If the function setjmp() is used in a function, variables 
without the register attribute will be forced to the stack (s) 
or can be allocated into registers (r). 

y y n y C++ comments "If' are recognized in C files. Yes (y) or no 
(n). 

y y n y Predefined macros (such as unix, m68k, etc.) are avail-
able. Yes (y) or no (n). 

The amctag C and C++ Preprocessor Features 6-25 



Predefined 
macros 

6-26 

The instrumenter defines the following preprocessor mac­
ros. Macros not starting with two underscores (__)will not 
be defined if the -Xstrict-ansi option is given. 

Macro 

__ DATE __ 

__ DCC __ 

__ DCPLUSPLUS 

__ cplusplus __ 

__ STDC __ 

STRICT_ANSI 

__ FILE 

__ LINE __ 

__ TIME 

__ LDBL 

unix 

m68k 

mc68k 

__ m68k 

Definition 

The current data in "Mmm dd yyy" format. 
It cannot be undefined. 

The decimal constant 1. 

The decimal constant 1 in C++. Only 
defined when compiling in C++ mode. 

The constant 1 when compiling C++ code 
otherwise undefined. 

The constant O if -Xansi and the constant 1 
if -Xstrict-ansi is given in C mode. It cannot 
be undefined if -Xstrict-ansi is set. It is 
never defined in C++ mode. 

The constant 1 if -Xstrict-ansi. 

The current file name. It cannot be unde­
fined. 

The current source line. It cannot be unde­
fined. 

The current time in "hh:mm:ss" format. It 
cannot be undefined. 

The constant 1 if the type long double is 
different from double 

The constant 1 when compiling for a Unix 
target system. 

The constant 1. 

The constant 1 . 

The constant 1. 

CodeTEST User's Guide 



Prag mas 

Include files 

The instrumenter supports the following pragma for turn­
ing off tagging for a specific function or list of functions: 

#pragrna no_tagging name [, name ... ] 

or: #pragrna no_tagging qualified name 
[, qualified name ... ] 

Note: See "Selectively Turning Off Tagging" on page 6-22. 

All other pragmas are passed through to the compiler. 

The amctag command searches for include files in this or­
der: 

1. The directory that contains the source files. 

2. Directories named with the -I option to amctag or ctcc. 

3. Directories named in an environment variable supplied 
with the -Xpaths-from option to amctag or ctcc. 

4. Directories named in the ctcc environment variable 
AMC_CC_INCLUDE or AMC_CXX_INCLUDE. 

5. The default /usr/include directory. 

You can use the -i instrumenter command option to substi­
tute, exclude, or include individual include files. 

The amctag C and C++ Preprocessor Features 6-27 



6-28 CodeTEST User's Guide 



I Chapter 7 

CodeTEST Memory Functions 

Code TEST Memory Management 
Routines . . . . . . . . . . . . . . . . . . . . . 7-2 

Code TEST Memory Error 
Checking . . . . . . . . . . . . . . . . . . . . . 7-5 

Memory Management Code 

Portability. . . . . . . . . . . . . . . . . . . . 7-12 

CodeTEST Memory Functions 7-1 



CodeTEST Memory Management Routines 
CodeTEST-specific definitions of the following memory 
management routines are provided: 

o malloc 

o calloc 

o realloc 

o free 

o new 

o delete 

To use these routines, the appropriate files described in the 
table below (in your $AMC_HOME/lib directory) must be 
built and linked with your target programs. By default, the 
ctcc or etc++ compiler driver will handle this automatically. 
See "Configuring ctcc/ctc++" on page 5-7. 

If you run amctag directly to instrument your code (without 
using ctcc or etc++) you will need to explicitly build and in­
clude with your target program the files indicated below. 

All of the following sources are written in strict ANSI C, 
and can be compiled using any ANSI C compiler. 

Memory management support files 

File 

ctmalloc.c 
ctmalloc.h 

ctmenv.c 
ctmenv.h 

7-2 

Description C C++ Notes 

The low-level CodeTEST memory management rou- • • 
tines. These routines provide basic allocation, dealloca-
tion and consistency checking functions. 

Environment-dependent support routines for • • 
ctmalloc.c. Porting the CodeTEST memory manage-
ment routines to new hardware, new operating system 
or other environment change generally requires 
changes in this source file only. 

CodeTEST User's Guide 



Memory management support files (cont'd) 

File Description C C++ Notes 

ctmnew. cxx CodeTEST versions of the high-level, standard C++ 
library routines: operator new and new[] 

ctmlib.c Code TEST versions of the high-level, standard C library • 
routines: malloc(), callee(), realloc(), and free(). 
For calls made from uninstrumented code when the 
-Xmalloc instrumenter option is used. 

ctndlib. cxx CodeTEST versions of the C++ new and delete opera­
tors. For calls made from uninstrumented code when 
the -Xmalloc instrumenter option is used. 

ctmapi.h 

Notes: 

The API for the low-level Code TEST memory manage- • 
ment routines. If you are committed to using your own 
allocator, use this API to interface between your alloca-
tor and the functions in ctmlib.c 

• 
• 2,3 

• 2,3 

• 

1. These files must be referenced by the AMC_CC_LIBS variable (for C programs) or 
AMC_CXX_LIBS variable (for C++ programs) in your .ctccrc-$AMC_ TARGET file. The ctcc or 
etc++ compiler driver will then include them automatically in each build. To reduce the amount of 
compilation effort, you may choose to compile these files once and place them in a library (e.g., 
libct.a). If so, set AMC_CC_LIBS and AMC_CXX_LIBS to point to that library. 

2. These files must be referenced by the AMC_CC_MLIBS variable (for C programs) or 
AMC_CXX_MLIBS variable (for C++ programs) in your .ctccrc-$AMC_ TARGET file. The ctcc or 
etc++ compiler driver will then include them automatically when you use the -Xmalloc option. To 
reduce the amount of compilation effort, you may want to compile these files once and place them 
in a library (e.g., libctmalloc.a). If so, set AMC_CC_MLIBS and AMC_CXX_MLIBS to point to that 
library. 

3. The CodeTEST Memory Allocation view will attribute allocations and deallocations made by 
uninstrumented code to a special entry labeled UNKNOWN MALLOC CALL. If you do not include 
these routines with your uninstrumented code, CodeTEST may incorrectly report memory errors. 
For example, if an allocation is made by an instrumented area of code and then deallocated by an 
uninstrumented area of code, CodeTEST would erroneously report a memory error. 

CodeTEST Memory Management Routines 7-3 



Compiling the 
memory 
management 
sources 

Memory Call 
Definition file 

7-4 

Note: 

Any ANSI C compiler should be able to compile the Code­
TEST memory management files. 

An environment symbol must be defined during compila­
tion to specify a combination of a compiler and target oper­
ating system. For example, with most Unix-style 
compilers, adding to the compiler's command line: 

-DM68K 

specifies that the sources are being compiled by a Microtec 
68K compiler, and will run under an operating system that 
provides Unix-like brk() and sbrk() routines for allocating 
process memory. Check your compiler documentation to 
see how this symbol must be defined. 

The symbol AMC_MEMFLAGS may be defined at compile 
time to set the initial value of the error checking flags. See 
"The AMC_MEMFLAGS symbol" on page 7-7 for more in­
formation about the use of this flag. 

The Memory Call Definition file maps allocator function 
names to wrapper names and CodeTEST tag values. When 
instrumenting with the -Xtag-allocator option, amctag uses 
the contents of this file to build a table of allocator function 
names to look for. The default version of the Memory Call 
Definition file is: 

$AMC_HOME/lib/allocator/ctcall.map 

To override this default and specify a different file, you can 
use the -Xallocator-call-map=mapfile instrumenter option. 
If more than one instance of this switch is present, all spec­
ified files are read, in order, with duplicate mappings in 
successive files overriding the previous ones. 

CodeTEST User's Guide 



CodeTEST Memory Error Checking 

Severity levels 

Guard bytes 

CodeTEST's memory management routines perform a 
number of tests, each of which returns a different error 
code. The memory error codes are grouped into categories, 
according to the general types of error conditions that gen­
erated them (see "Error codes and messages" on page 7-8). 

In most cases, the messages provide enough information 
about the nature of the error. If you need to modify the 
memory manager for your own environment, you may be 
interested in the exact conditions each error code repre­
sents. (Refer to ctmalloc.c.) 

Each error category is assigned one of three severity levels: 

Fatal An unrecoverable error has occurred. Fatal errors do 
not prevent continued execution of the target program, 
but all future calls to CodeTEST memory management 
routines will return their normal error return values, e.g., 
malloc() will return NULL. This condition can be cleared 
only by reinitializing the task that encountered the error. 

Nonfatal A recoverable error has occurred. The current memory 
management call failed, but future calls may succeed. 

Info An informational message that does not indicate an 
error condition. 

A common heap-related error is for a target program to 
write to addresses just after the end of a heap block, or, less 
commonly, just before the beginning of a block. To detect 
these errors, the CodeTEST memory management routines 
insert a small number of bytes with known values, called 
guard bytes, immediately before and after the target pro­
gram's data area in each heap block. 

CodeTEST Memory Error Checking 7-5 



Code TEST 
memory 
management 
switches 

7-6 

Your target program can control some aspects of the behav­
ior of the CodeTEST memory management routines by set­
ting or clearing the following bit flags in the global variable 
amc_memFlags. 

Name 

amc_ChkConsistency 

amc_ZeroFreedBlocks 

amc_ZeroAllocBlocks 

amc_NoFreeReuse 

Value 

Ox00000001 

Ox00000002 

Ox00000004 

Ox00000008 

These symbols are defined in ctmalloc.h, which also con­
tains other symbols you might want to access, such as an 
external declaration of amc_memFlags. 

The amc_ChkConsistency flag 
The CodeTEST memory management routines can detect a 
number of error conditions. Because checking the consis­
tency of the heap's internal data structures can be slow 
when the number of heap blocks is large, the target pro­
gram can control whether or not these checks are per­
formed by using the amc_ ChkConsistency flag. Setting this 
bit enables the following checks. 

Error codes: 

Ox02,0x03,0x12,0x23,0x24,0x25,0x26,0x31,0x32 

Ox13, Ox21 

Ox14,0x22 

Ox16 

See "Error codes and messages" on page 7-8. 

CodeTEST User's Guide 



The 
AMC_MEMFLAGS 
symbol 

The amc_ZeroFreedBlocks flag 
The amc_ZeroFreedBlocks flag causes the contents of freed 
heap blocks to be set to all zeros. If you suspect the target 
program of reading data from a freed heap block, setting 
this switch may help detect the problem. 

The amc_ZeroAllocBlocks flag 
The amc_ZeroAllocBlocks flag causes the contents of all 
newly allocated blocks to be initialized to zero. Essentially, 
when this bit is set malloc() becomes functionally equiva­
lent to calloc(). 

The amc_NoFreeReuse flag 
The amc_NoFreeReuse flag prevents the memory manage­
ment routines from reusing freed heap blocks to satisfy fu­
ture allocation requests. This is another aid to debugging 
target program reads of data in freed heap blocks. It is par­
ticularly useful for diagnosing cases where the target pro­
gram is writing through pointers that are contained in 
freed heap items. 

To set default values of the CodeTEST memory manage­
ment switches, compile the CodeTEST memory manage­
ment sources with the symbol AMC_MEMFLAGS defined 
as the default switch bits. For example, with most compil­
ers, compiling with 

-DAMC_MEMFLAGS=0x09 

would set amc_ChkConsistency and amc_NoFreeReuse on 
by default. If AMC_MEMFLAGS is not set when these rou­
tines are compiled, amc_ChkConsistency and 
amc_ZeroFreedBlocks will be set by default. 

To change the value of a switch at target program run time, 
set or clear the switch bit in the global unsigned long 
amc_memFlags. The target program may modify these bits 
at any time. 

CodeTEST Memory Error Checking 7-7 



Error codes and messages 
Code Severity Messages 

OxOO No Errors 

This is a normal return from a memory management routine. 

Ox01 Nonfatal Out of heap space 

Ox02 Fatal 
Ox03 
Ox04 
Ox12 
Ox13 
Ox14 
Ox19 
Ox23 
Ox24 
Ox25 
Ox26 
Ox27 
Ox31 
Ox32 
Ox33 
Ox41 
Ox42 

7-8 

There is not enough memory available in the heap to satisfy an alloca­
tion request. Future requests for smaller heap blocks may succeed. 
Retrying this request may succeed if the target program first frees one 
or more heap blocks. 

Suggestions: 

Reduce the target program's heap usage. 

Reconfigure the task or operating system to make more memory 
available to the heap. 

Notes: 

Generated regardless of the state of amc_ChkConsistency flag. 

Heap has been corrupted 

The memory management routines' internal consistency checks have 
discovered a corrupted field in a heap block header. 

Suggestions: 

Usually caused by a write through an incorrect pointer, possibly to 
a location in a heap block that was allocated, then freed, then 
reused as part of a new heap block. Sometimes caused by a bad 
array index. 

Notes: 

These codes are only generated when the amc_ChkConsistency 
flag is set. 

CodeTEST User's Guide 



Error codes and messages (cont'd) 
Code Severity Messages 

Ox11 Nonfatal Free with invalid pointer 

Ox15 
Ox21 

Fatal 

The target program has passed an obviously invalid pointer to a deal­
location routine. The pointer either contains an address that is not 
within the heap, or it is not aligned correctly. 

Null pointers cause the error "Free with NULL pointer" (error code 
Ox17) rather than this error. 

Suggestions: 

An incorrectly aligned pointer might be due to an error in pointer 
arithmetic. 

Other wild pointers might be caused by uninitialized memory, 
reading from a freed heap block, incorrect use of a union, or add­
ing two pointers together. 

Notes: 

Error code Ox11 is generated regardless of the state of the 
amc_ChkConsistency flag. 

Trailing guard bytes overwritten 

One or more of the guard bytes immediately after the user's data have 
been overwritten. 

Suggestions: 

Try looking for incorrect pointer arithmetic, a bad array index, a 
write through a pointer in a freed heap block. 

There could be an off-by-one or other length calculation error that 
causes the target program to write past the end of a string. 

Notes: 

Error codes Ox13 and Ox21 are generated only when the 
amc_ChkConsistency flag is set. 

CodeTEST Memory Error Checking 7-9 



Error codes and messages (cont'd) 
Code 

Ox16 
Ox22 

Ox17 

7-10 

Severity Messages 

Fatal Leading guard bytes overwritten 

Nonfatal 

One or more of the guard bytes immediately before the user's data 
have been overwritten. 

Suggestions: 

Try looking for incorrect pointer arithmetic, a bad array index, or a 
write through a pointer in a freed heap block. 

Notes: 

Error codes Ox14 and Ox22 are generated only when the 
amc_ChkConsistency flag is set. 

Free with NULL pointer 

Target program has passed a NULL pointer to a deallocation routine. 

Suggestions: 

The ANSI C standard allows NULL pointers to be passed to heap 
deallocators. But since this sometimes indicates a problem in the 
target program, the CodeTEST memory manager reports it. 

Notes: 

Error code Ox15 is generated regardless of the state of the 
amc_ChkConsistency flag. 

CodeTEST User's Guide 



Error codes and messages (cont'd) 
Code Severity Messages 

Ox18 Nonfatal Free of already free heap block 

Ox43 Info 

The target program has tried to free a heap block that has already 
been freed. 

Suggestions: 

This error is returned only if the space for the previously-freed 
block has not been reused as part of a more recently allocated 
block. If this heap block has been reused as part of a new block, 
one of the following errors (listed from most to least likely) will be 
returned instead: 

Ox12 Block not free 

Ox13 End of block overwritten 

Ox14 Beginning of block overwritten 

This error often indicates a serious bug in the target program. Try 
looking for duplicate pointers to this heap item in structures or 
arrays, or for functions that are called more than once as expres­
sion side effects. There is a very slight chance that this error is 
caused by a wild write that corrupted the heap structure. 

Notes: 

Generated only when the amc_ChkConsistency flag is set. 

New heap highwater mark 

If the CodeTEST memory management routines have been compiled 
to do so, this message will be generated each time the total size of the 
heap grows past its previous maximum. 

CodeTEST Memory Error Checking 7-11 



Memory Management Code Portability 

Assumptions 

ctmenv.h 

7-12 

This section is only for users who want to modify the Code­
TEST memory management code to port it to their system. 

All environment dependencies are isolated in the ctmenv.h 
and ctmenv.c files, making these routines easy to port to 
other environments. If you are going to port this code to an­
other environment, you will need to examine ctmenv.h and 
ctmenv.c in detail. 

These routines assume about their environment: 

o All pointer types are the same size, and pointers are the 
same size as long integers. 

o There is only one heap. 
o The heap consists of a single contiguous block of 

memory. Multiple extents are not supported. 

o The size of the heap may be fixed during initialization, 
or there may be a way to expand the heap at runtime. If 
the heap can be enlarged, new space must be added 
immediately above the existing heap space. 

o The standard C library functions memset() and 
memcpy() must be available. 

Defined symbol T ALIGN 
This should be set to the basic alignment type on your CPU, 
(e.g., on machines that support 4 byte integers and require 
them to be aligned on a 4 byte address, TALIGN should be 
defined to be a type that is 4 bytes long). The actual type is 
not important; only the length of the type is significant. 

All other include files used by the CodeTEST memory man­
agement routines are #included by this file. Some compil­
ers and operating systems may provide different include 
files, or there may be differences in the symbols defined in 

CodeTEST User's Guide 



ctmenv.c 

particular include files in other environments. Any changes 
needed to the list of include files should be made in 
ctmenv.h. 

Function amc_enlargeheap() 
This function is called whenever the memory management 
routines need to ask the operating system for more heap 
memory. The new memory must be directly above the cur­
rent heap space (i.e., the address of the new space must be 
equal to the address of the old space plus 1). 

Function amc_gettopofheap() 
This function returns the highest address allocated by the 
operating system for use as heap space. 

Function amc_lockheap() and 
Function amc_unlockheap() 
The CodeTest memory management routines use a few 
static data items to describe the state of the heap at any 
given time. As a result, these routines are not reentrant, 
and must be protected from nested execution caused by in­
terrupts, including task or thread switching. 

The amc_lockheap{) function is called upon entry to the 
CodeTest memory management routines. It must turn off 
interrupts or implement a semaphore to prevent nested 
execution of the CodeTest memory management routines. 

The amc_unlockheap() function is called on exit from the 
memory management routines. It should re-enable inter­
rupts or release the semaphore. 

Function amc_initheap() 
This function is called once to initialize the heap. 

Function amc_initheap() is visible only within ctmenv.c. 

Memory Management Code Portability 7-13 



7-14 CodeTEST User's Guide 



I Chapters 

Using CodeTEST with an RTOS 

Overview. . . . . . . . . . . . . . . . . . . . . . . 8-2 

RTOS Task Tracking. . . . . . . . . . . . . . 8-3 

Instrumenting Your RTOS. . . . . . . . . . 8-7 

Creating an RTOS Map File . . . . . . . . 8-9 
8 

8-1 



Overview 

ATOS 
preparation 

8-2 

If your target system uses a custom or commercial real-time 
operating system (RTOS) you need to prepare your RTOS for 
use with CodeTEST. Once your RTOS is prepared, there are 
a number of task-oriented CodeTEST features available to 
you. 

Continuous mode features 
o Measurement of target program performance on a task-by­

task basis 

o Qualification of performance and memory measurements 
(not coverage measurements) to a specified task 

Trace mode features 
o Trace of task creation, entry, exit, and deletion 

o Triggering on creation, entry, exit, or deletion of a speci­
fied task 

o Searching the trace buffer for task creation, entry, exit, or 
deletion events 

o Qualification of the trigger context to a specified task 

o Qualification of the storage context to a specified task 

For CodeTEST to make accurate measurements within your 
RTOS environment, and to enable you to use the task-orient­
ed features, you need to "instrument" your RTOS to enable 
CodeTEST to track basic task activity. 

For the commercial RTOS products that CodeTEST supports 
(pSOS, VxWorks, and VRTX.) interface routines are provided 
to supply the necessary instrumentation. If you are using a 
custom RTOS, you will need to manually insert some instru­
mentation in your RTOS source code. Procedures and exam­
ples are provided later in this chapter. 

Code TEST User's Guide 



RTOS Task Tracking 

Limits 

RTOStag 
formats 

RTOS Task Tracking 

CodeTEST internally tracks the function context (call-chain) 
for each task running in the target system. For this to hap­
pen, the target system must notify CodeTEST when to create 
a new task context, switch from one context to another, or de­
lete a context that is no longer needed. 

o Task creation is the point at which the operating system 
allocates resources for the task. 

o Task switch is the point at which the task begins execut­
ing, either for the first time or any subsequent time. 

o Task deletion is the point at which the OS deallocates the 
task's resources. 

In Continuous mode, CodeTEST can track up to 1,000 dis­
tinct task instances per update period. Exceeding this limit 
results in new task creations being ignored until an update 
occurs. (This limit does not apply in Trace mode.) 

Error log 
If the 1,000 task limit is exceeded, a message is entered in the 
error log indicating that one or more tasks is being ignored. 
Execution time of any ignored (i.e., untracked) tasks is attrib­
uted to the All Other Tasks entry in the Task Performance 
view. 

For CodeTEST to track RTOS events, the RTOS must write 
to the tag port addresses (amc_ctrl_port and amc_data_port) 
tag values in the formats defined below. 

Task name tags 
The task name is the value by which the programer knows 
the task, and is the key used for specifying tasks in the Code­
TEST user interface. Multiple instances of a task with the 
same task name may be running at the same time. 

8-3 

8 



8-4 

Two types of task names are supported: integer names and 
string names. 

An integer name is a single task name tag, which is a unique 
32-bit integer value. 

A string name is a null-terminated character string compris­
ing 1 to 8 name tags, each of which contains up to 4 ASCII 
characters. Individual name tags are packed with the first of 
the 4 characters (C 1) in the high-order byte. 

31 0 

For example, the task name: 

"datalogger" 

would require three name tags. Note that name tags are 
emitted in reverse order, and any unused bytes in the last 
name tag must be set to 0. An entire RTOS event involving 
the task "datalogger" would be written: 

er\0\0 

logg 

data 

Task ID tag 

Control tag 

Task ID tags 
The Task ID tag is a unique 32-bit value containing the ID by 
which the OS knows the task. Typically, this is an integer the 
OS assigns at task creation. CodeTEST uses task ID to track 
individual instances of a task. Task IDs may be reused, pro­
vided there is never more than one instance of the same ID 
value in existence at a time. 

Code TEST User's Guide 



RTOS Task Tracking 

Control tags 
Each RTOS control tag specifies the type of event that oc­
curred, the type of task names used, and the number of task 
name tags being sent with the control tag. This information 
is carried in "fields" within the control tag format. Unused 
fields are always 0. 

04'1120007 
Event type field 

ox2A1looo1 
~---Name type field 

Ox2A 12001__ 
Count field 

The event type field specifies the type of event that occurred. 
RTOS event types are: 

2A1 Task create 

2A2 Task enter 

2A4 Task exit 

2A3 Task delete 

The name type field specifies the type of task names in use: 

Integer names 

2 String names 

The number of name tags used is encoded in the count field. 
The value of the count field is the number of name tags -1. 
For integer names, which require 1 name tag, the count field 
is always 0. For string names, the number of name tags may 
vary. For each individual task, it is only necessary to write 
the number of name tags required to hold that task's name. 
So a 14-character task name, for example, would require 4 
name tags and the value of the count field would be 3. 

8-5 

8 



RTOStag 
writing 

8-6 

Each time a task is created or deleted, the target system 
must write tags in this order: 

2 

3 

Task Name 

Task ID 

Task Create 
or 

Task Delete 

1 to 8 name tags written to amc_data_port 

1 task ID tag written to amc_data_port 

1 control tag written to amc_ctrl_port 

When a task switch occurs, the target system must write 
tags in this order: 

Previous 1 to 8 name tags written to amc_data_port 
Task Name 

2 Previous 1 task ID tag written to amc_data_port 
Task ID 

3 Task Exit 1 control tag written to amc_ctrl_port 

4 New 1 to 8 name tags written to amc_data_port 
Task Name 

5 New 1 task ID tag written to amc_ctrl_port 
Task ID 

6 Task Enter 1 control tag written to amc_ctrl_port 

CodeTEST User's Guide 



Instrumenting Your RTOS 

Instrumenting a 
commercial 
RTOS 

Use the following guidelines to instrument a commercial or 
custom RTOS for use with CodeTEST. 

CodeTEST provides RTOS instrumentation support files for 
pSOS, VRTX, and VxWorks. To instrument any of these 
RTOS products: 

1. Select the appropriate instrumentation support file from 
the RTOS-specific directory under $AMC_HOME/lib/rtos 
(see examples at the end of this chapter). To configure 
CodeTEST for use with VRTX, for example, select the 
instrumentation file in $AMC_HOME/lib/rtos/vrtx. 

Note: Make sure you select the correct file for your RTOS. 

2. Add the instrumentation file to your build procedure so it 
is compiled (or assembled) and linked with your target 
program. 

3. Add callouts for the instrumentation routines to your 
RTOS configuration file. The procedure for doing this 
varies with each RTOS. Typically it involves placing in a 
configuration file the names of the functions contained in 
the supplied instrumentation support file so they can be 
picked up when you link your kernel. 

Note: Check the comments in the supplied instrumentation files for 
additional information specific to each RTOS. 

Instrumenting Your ATOS 

4. Create an RTOS map file as explained on page 8-9. (This 
is optional.) 

8-7 

8 



Instrumenting a 
custom RTOS 

Note: 

8-8 

The following guidelines for instrumenting a custom RTOS 
assume that the RTOS is a true preemptive operating system 
(i.e., it can maintain multiple sets ofresources such as stacks, 
register sets, etc., it can suspend execution in one location, 
execute elsewhere, and then resume execution at the first 
location.) 

DO NOT use the CodeTEST source code instrumenter to 
instrument your RTOS source code. 

To instrument a custom RTOS: 

1. Identify the locations in the system where tasks are 
created, entered, or deleted. There may or may not be a 
single location for each of these event types. All such 
locations must be identified. Identifying all of these 
locations requires a good understanding of the RTOS. 

2. Identify the task names (integer or string ) and task IDs. 
If the system does not use task names, use the same value 
for task name and task ID. 

3. Refer to the example instrumentation files at the end of 
this chapter. Using the appropriate example (for integer 
names or string names) create code fragments that will 
write the necessary tag values to the tag port addresses, as 
explained under "RTOS Task Tracking" earlier in this 
chapter. The code fragments you create will need to 
extract the task name and ID. This requires knowledge of 
the RTOS data structures. 

4. Incorporate the code fragments you created in step 3, 
either by in-lining them at the appropriate locations in 
your RTOS source code, or by placing them in functions 
that are called from those locations. 

5. Compile/assemble and link the modified RTOS code. 

6. Create an RTOS map file as explained on page 8-9. (This 
is optional.) 

Code TEST User's Guide 



Creating an RTOS Map File 
Use of an RTOS map file allows you to map each task name 
to a text string that will represent the task in the CodeTEST 
user interface. If you do not create an RTOS map file, Code­
TEST will use the task name itself to represent each task. 

For example, if your RTOS uses ASCII task names, your map 
file might look like this: 

"ROOT" 

"TSKl" 

"TSK2" 

"Root Task" 

"Task #1" 

"Task #2" 

If your RTOS uses numeric task IDs (VRTXsa, for example) 
do not place quotes around the ID values: 

0 

1 

2 

"Root Task" 

"Task #1" 

"Task #2" 

Note: To make the RTOS map file known to the CodeTEST host ap­
plication, enter the file name on the Target Program page of 
the Configuration Options dialog. See "Target program con­
figuration" on page 2-15. 

Creating an ATOS Map File 8-9 



Example instrumentation support file for VRTX using integer task names: 

~·-----------------------------------------------------------------------------------
* File: ctvrtx.c 

Contents: Provides CodeTEST RTOS instrumentation for VRTX32 and VRTXsa. 
Copyright (c) 1995-1996 Applied Microsystems Corporation 

All Rights Reserved 

These routines are provided by AMC and must be called from the appropriate VRTX 
callout. These routines may be installed by adding the entry: 

sys.entry_point2: CodeTEST_hook_init 

to the system .def file. If a routine already exists for entry__point2 the routine 
CodeTEST_hook_init may be called from anywhere in the existing routine. 

These routines write the task name 1 the task ID, and a CodeTEST control tag to the 
CodeTEST tag ports. Integer task names are used. If you are not using variables named 
amc_ctrl_port and amc_data_port you must modify these routines to write to your port 
location. The write must be made as a single 32-bit operation. 

*-----------------------------------------------------------------------------------*/ 

#include <cornpiler.h> 
#include <vrtxvisi.h> 

extern 
extern 

volatile unsigned long 
volatile unsigned long 

arnc_ctrl_port; 
arnc_data_port; 

void 
CodeTEST_create_hook( TCB *createe, TCB *creator ) 
{ 

void 

register unsigned long id; 
id = (unsigned long) createe->tbid; 
amc_data_port id; 
arnc_data_port id; 
amc_ctrl__port = Ox2al10000; 
return; 

CodeTEST_delete_hook( TCB *deletee, TCB *deletor ) 
{ 

void 

register unsigned long id; 
id = (unsigned long) deletee->tbid; 
amc_data_port id; 
amc_data_port id; 
amc_ctrl__port = Ox2a310000; 
return; 

CodeTEST_switch_hook( TCB *old, TCB *new ) 
{ 

void 

register unsigned long id; 
id = (unsigned long) old->tbid; 
amc_data_port = id; 
amc_data__port = id; 
amc_ctrl__port = Ox2a410000; 
id = (unsigned long) new->tbid; 
amc_data_port id; 
amc_data_port id; 
amc_ctrl__port = Ox2a210000; 
return; 

CodeTEST_hook_init( void **arg ) 
{ 

sys_insert_hooks{ CodeTEST_create_hook, CodeTEST_delete_hook, CodeTEST_switch_hook ); 
return; 

8-10 Code TEST User's Guide 



Example instrumentation support file for VxWorks using string task names: 

-~-;ii~: ctvxworks.c 
Contents: Provides CodeTEST RTOS instrumentation for VxWorks. 

Copyright (c) 1995-1996 Applied Microsystems Corporation 
All Rights Reserved 

These routines are provided by AMC and are to be called from the appropriate VxWorks hook. 
These routines should installed by calling the function CodeTEST_hook_init() from the 
kernel context. 

These routines write the task name, the task ID, and a CodeTEST control tag to the 
CodeTEST tag ports. If you are not using variables named amc_ctrl_port and 
amc_data_l>Ort then you must modify this code to write to your port location. 
The write must be made as a single 32-bit operation. 

*-----------------------------------------------------------------------------*/ 
#include •taskLib.h• 
#include •taskHookLib.h• 

extern 
extern 

volatile unsigned long 
volatile unsigned long 

unsigned long 
CodeTEST_put_name( char *p ) 
{ 

int shift; 
int count; 
int i = 0; 
union 
{ 

unsigned char c[4]; 
unsigned long l; 

buffer; 

amc_ctrl_port; 
amc_data_port; 

while *p && ( i < 31 )) p++, i++; 

count i; 

void 

do { 
buffer.l ; O; 
do { 

buffer.c[i%4] ; *p--; 
) while ( ( i-- % 4 ) ! ; a ) ; 
amc_data_port ; buffer.l; 

while ( i >;a); 

return( count I 4 ); 

CodeTEST_create_hook( WIND_TCB *new_task 
{ 

unsigned long count; 

count; CodeTEST_put_name( new task->name ); 
amc_data_port (unsigned long) new_task; 
amc_ctrl_port ; Ox2a120000 I count; 
return; 

Creating an RTOS Map File 8-11 



Example instrumentation support file for VxWorks using string task names (cont'd): 

void 
CodeTEST_delete_hook( WIND_TCB *deleted_task 
{ 

unsigned long count; 

count = CodeTEST_put_name( deleted_task->name ) ; 
amc_data_port (unsigned long) deleted_task; 
amc_ctrl_port = Ox2a320000 I count; 

return; 

void 
CodeTEST_switch_hook( WIND_TCB *old_task, WIND_TCB *new_task 
{ 

void 

unsigned long count; 
count = CodeTEST_put_name( old_task->name ) ; 
amc_data_port = (unsigned long) old_task; 
amc_ctrl_port = Ox2a420000 I count; 

count = CodeTEST_put_name( new_task->name ) ; 
arnc_data_port (unsigned long) new_task; 
amc_ctrl_port = Ox2a220000 I count; 

return; 

CodeTEST_hook_init( void I 
{ 

8-12 

taskCreateHookAdd( (FUNCPTR) CodeTEST_create_hook 
taskDeleteHookAdd( (FUNCPTR) CodeTEST_delete_hook 
taskSwitchHookAdd( (FUNCPTR) CodeTEST_switch_hook 

return; 

Code TEST User's Guide 



I ""8d<A 

System Configuration Reference 

This appendix provides a quick reference for the system-wide CodeTEST 
configuration requirements. References are provided to detailed informa­
tion about configuring each CodeTEST component. 

Probe Configuration . . . . . . . . . . . . . . A-2 

Software Installation and User 
Configuration. . . . . . . . . . . . . . . . . . A-4 

lnstrumenter Configuration . . . . . . . . . A-5 

RTOS Configuration . . . . . . . . . . . . . . A-6 

Host Application Configuration . . . . . . A-7 

System Configuration Reference A-1 



Probe Configuration 

Network 
interface 

Target 
connection 

A-2 

Refer to the CodeTEST Installation Guide for details of the 
probe installation, configuration, and diagnostics. 

Chapter 5 of the CodeTEST Installation Guide covers the 
probe's network configuration requirements and provides a 
procedure for performing a confidence test. 

The basic requirements are: 

o The probe must be correctly cabled to your 10Base2, 
10Base5, or lOBaseT Ethernet medium. 

o The probe must be assigned an IP address and netmask, 
and a host name. These must be added to your network 
database files. 

o The mode switch on the probe's back panel must be set 
for the correct protocol for your network (O=RARP, 
l=BootP, 2=stored IP address). 

o To use RARP or BootP protocol, the appropriate server 
must be available on your network to answer address 
requests. To use a stored IP address, the IP address 
must be manually loaded into the probe's flash. 

Chapter 4 of CodeTEST Installation Guide covers the 
probe's target connection and configuration requirements. 

The probetip must be correctly connected to the target 
hardware. PGA processor applications are supported di­
rectly. Adapters are available for other processor packages 
and for raising or rotating the probetip. 

CodeTEST User's Guide 



Probe 
diagnostics 

Tag port 
addresses 

Note: 

Probe 
configuration 
file 

Probe firmware 
version 

Probe Configuration 

Appendix B of the CodeTEST Installation Guide describes 
normal and abnormal LED behavior, and provides proce­
dures for viewing power-up diagnostic messages. 

Two CodeTEST tag port variables (amc_ctrl_port and 
amc_data_port) must be assigned specific, absolute ad­
dresses in the target memory space. See "Assigning Ad­
dresses for the Tag Ports" on page 5-18 of this manual. 

If you are using hybrid tagging, see Appendix D for details 
of tag port memory requirements. 

Each version of the CodeTEST probe has its own processor­
specific configuration utility. To configure CodeTEST to 
work with your probe, you need to run the appropriate 
probe utility to generate a probe configuration file. You will 
need information from your target system's boot code (refer 
to the booklet supplied with your probe for details). 

Once you have generated a probe configuration file, you 
need to enter that file name on the Probe page of the Code­
TEST Configuration Options dialog. See "Probe configura­
tion" on page 2-14 of this manual for details. 

The probe must have the correct version of the Controller 
(ctrl.bin) and Data Reduction Processor (drp.bin) firmware 
for the version of the CodeTEST software you are using. To 
see the firmware version numbers, select Status Window 
from the host application Tools menu. Refer to the RE­
ADME file or the release notes in the online help to deter­
mine the correct version number. 

A-3 



Software Installation and User Configuration 

Permissions 

FLEXlm license 
manager 

User 
configuration 

X defaults 

A-4 

Refer to Chapter 2 of the CodeTEST Installation Guide for 
information about installing the CodeTEST software. 

The installed CodeTEST files must allow read and execute 
permission to all CodeTEST users. Only the owner (prefer­
ably someone designated to maintain CodeTEST at your 
site) should have write permission. 

CodeTEST tools are licensed with the FlexLM license man­
ager. To make the tools available on your network, your li­
cense file (supplied by your Applied Microsystems 
customer representative) must be correctly configured and 
the license manager daemon (lmgrd) must be running on 
the machine specified in the license file. (Refer to the Code­
TEST Installation Guide for details.) 

The installation script creates shell-specific environment 
configuration files. Before running the CodeTEST host ap­
plication or the source code instrumenter, each user should 
either "source" the appropriate file for the shell they are us­
ing or include its contents in a login script. See the Code­
TEST Installation Guide for details. 

The installation script places several XU application de­
faults files in $AMC_HOME/lib/XU/app_defaults. If your 
site has a standard location for XU application defaults (of­
ten /usr /lib/Xll/ app-defaults) these files should be 
moved there during installation. If these files are not 
moved to your standard XU application defaults location, 
the XFILESEARCHPATH environment variable must be 
to set to point to them before the X server is started. 

CodeTEST User's Guide 



lnstrumenter Configuration 

The ctcc/ctc++ 
environment 

lnstrumenter Configuration 

For details about instrumenter configuration, refer to 
Chapter 5 of this manual. 

The ctcc or etc++ CodeTEST compiler driver is configured 
by variables defined in your environment and in a configu­
ration file (.ctccrc-$AMC_TARGET). See "Configuring ctcc/ 
etc++" on page 5-7 of this manual. 

The AMC_ TARGET environment variable 
The AMC_TARGET environment variable must be set for 
ctcc/ctc++ to find the appropriate configuration file. 

The .ctccrc-$AMC_ TARGET file 
To define the variables necessary to configure ctcc/ctc++ for 
your environment, you can create one or more configura­
tion files named .ctccrc-$AMC_TARGET. Examples are in­
stalled in $AMC_HOME/bin. 

ctcc/ctc++ searches for .ctccrc-$AMC_TARGET in the fol­
lowing order: 

1. $AMC_HOME/bin 

2. $HOME (your home directory) 

3. current directory 

If you have versions of .ctccrc-$AMC_TARGET in more 
than one of these directories, the individual variable set­
tings in each successive version that ctcc/ctc++ finds over­
ride the setting made by previously-found versions. Any 
variable set in your environment (e.g., via setenv) overrides 
the setting made by any version of .ctccrc-$AMC_TARGET. 

A-5 



RTOS Configuration 

A-6 

For details about RTOS configuration requirements, see 
Chapter 8 of this manual. 

If your target system uses a custom RTOS or one of the off­
the-shelf commercial RTOS products CodeTEST supports, 
you need to instrument your RTOS before using CodeTEST 
with that target. This allows CodeTEST to make accurate 
measurements in your RTOS environment and enables use 
of the task-oriented CodeTEST features. 

Note: Do not use the CodeTEST instrumenter to instrument your 
RTOS source code. 

For the commercial RTOS products that CodeTEST sup­
ports (pSOS, VxWorks, and VRTX.) interface routines are 
provided to supply the necessary instrumentation. 

If you are using a custom RTOS, you need to manually in­
sert tags into your RTOS source code to track basic task ac­
tivity. 

RTOS map file 
Use of an RTOS map file is optional. It allows you to map 
each task name to a text string that will represent the task 
in the CodeTEST user interface. If you do not create an 
RTOS map file, CodeTEST will use the task names to rep­
resent tasks in the user interface. 

To make the RTOS map file known to the CodeTEST appli­
cation, enter the file name on the Target Program page of 
the CodeTEST Configuration Options dialog. See "Target 
program configuration" on page 2-15 of this manual. 

CodeTEST User's Guide 



Host Application Configuration 

Configuration 
files 

Note: 

Host Application Configuration 

To configure the CodeTEST host application to communi­
cate with your probe, find your target source files, etc., se­
lect Edit Options from the toolbar Options menu. Then 
enter your configuration information. 

For details, see "Configuring a Session" on page 2-13 of this 
manual. (Also see "Continuous Mode Setup" on page 3-5 
and "Trace setup options" on page 4-6 for information 
about setting up the tools to make measurements.) 

Once you have entered the necessary information, you can 
save your configuration in a file. 

You can give your configuration files any name, however 
CodeTEST will search at startup for a file named .ctconfig 
in your home ($HOME) directory. If no such file exists, the 
host application will be started with default values for all 
of the configuration variables that have defaults. 

Starting CodeTEST with a configuration file 
To start CodeTEST with a predefined configuration, use 
the -configfile command line option to supply a configura­
tion file name. 

Loading a configuration file during a session 
To load a predefined configuration during a session, select 
the Load Options File command of the Options menu and 
select the appropriate file. 

A-7 



A-8 CodeTEST User's Guide 



l ~d<B CodeTEST Error Messages 

The messages produced by the host application are generally self-explanatory and re­
quire no further information. The following list includes only those messages for which 
additional troubleshooting tips may be useful. 

CodeTEST Error Messages 



B-2 

An unknown tag was identified! 

A tag with an unrecognized format was captured by the 
probe and discarded. Possible causes are bad values 
written to the tag ports, or amc_ctrl_port and 
amc_data_port are inverted (see "Assigning Addresses 
for the Tag Ports" on page 5-18). The collected data is 
valid. 

Bad sequence number returned from the probe! 

There is a problem in network communications between 
the host application and the probe. Execute the Reset 
Probe Connection command on the Run menu. 

Couldn't find information about the unknown 
function "xxx''l 

Information for the specified function could not be found 
in the IDB. Make sure the host application is configured 
for the correct IDB (i.e., the IDB produced during the in­
strumentation of the target code you are testing. If you 
are using multiple compatible IDB files, see "Compatible 
IDB Files" on page 6-23. 

Couldn't find the source file "xxx"l 
Check the 'Source Code Directories' entry in the 
Configuration window! 

All source directory paths for the target program must 
be entered in the Configuration Options dialog. See 
"Target program configuration" on page 2-15 for infor­
mation about specifying one or more source directories. 

Couldn't get a license for the feature "xxx"l 
The specific error was: "xxx" 

Refer to the CodeTEST Installation Guide for informa­
tion about configuring the FLEXlm license manager and 
your CodeTEST license file. 

CodeTEST User's Guide 



CodeTEST Error Messages 

Couldn't initialize the licensing system! 
The specific error was: "xxx" 

Refer to the CodeTEST Installation Guide for informa­
tion about configuring the FLEXlm license manager and 
your CodeTEST license file. 

Couldn't load some of the source code from the file 
"xxx". Check the 'Source Code Directories' entry in 
the Configuration window. 

All directory paths for the target source files must be en­
tered in the Configuration Options dialog. See "Target 
program configuration" on page 2-15 for information 
about specifying one or more source directories. 

Couldn't obtain licenses for the unknown probe type 
"xxx''! 

The identified probe type is not included in your license 
file. Check with your CodeTEST system administrator 
about the probes for which you are licensed. 

Couldn't open a connection to the probe! 

The host application was unable to open a connection to 
the probe specified in the configuration dialog. Probe 
connection errors can result from: 

o Trying to connect to a probe that is already in use. 

o Trying to connect to a probe for which you have no 
license. 

o Trying to connect to a networked device that is not a 
CodeTEST probe (e.g., a workstation or an emulator). 

o Trying to connect to a probe that is not correctly 
configured on your network, is not powered up, or is 
connected to a target that is not powered up. (Refer to 
the CodeTEST Installation Guide and to your probe 
booklet for details about setting up your probe.) 

B-3 



B-4 

Couldn't release the license for the feature "xxx". 
The specific error was: "xxx'' 

Refer to the CodeTEST Installation Guide for informa­
tion about configuring the FLEXlm license manager and 
your CodeTEST license file. 

Event rate has exceeded real-time processing limit! 

The rate at which tags were being captured by the probe 
exceeded it's real-time processing capability. CodeTEST 
ignores some of the tags while it recovers. In Continuous 
mode, this initiates sampled operation. In Trace mode, a 
storage disabled event is written into the buffer. When 
the tag rate comes back within limits, CodeTEST contin­
ues normal operation. The collected data is valid. 

Invalid tag found on internal stack! 

This message may be caused by a variety of conditions, 
including: the target program writing invalid tags to the 
CodeTEST ports, corrupted tags due to faulty target 
hardware, or internal CodeTEST error conditions. The 
collected data may not be valid. 

Multiple functions with the same ID (x.xx) were 
found while loading IDB file "xxx''! 
Make sure that all IDBs were built to be compatible 
with one another. 

Compatible IDB files were not specified correctly during 
the target build process. See "Compatible IDB Files" on 
page 6-23. 

Must specify the probe host name or IP address! 

A host name and IP address are assigned to the probe 
and entered in your network database files during in­
stallation. Check with your site system administrator 
for this information. To configure a CodeTEST session, 
you must enter either the host name or the IP address in 
the Configuration Options dialog. See "Probe configura­
tion" on page 2-14. 

CodeTEST User's Guide 



CodeTEST Error Messages 

RTOS tags were encountered while in singletasking 
mode! 

Function context tracking is not working correctly. Try 
switching to RTOS mode in the Configuration Options 
dialog. See "Target program configuration" on page 2-15. 

Tags were identified as being out of sequence! 

A function exit tag was captured whose function ID did 
not match the function ID of the function currently exe­
cuting. The collected data is valid. 

Task instances exceeded capacity during update 
interval! 

More than 1,000 tasks were active and/or deleted during 
the update period. Some tasks were not tracked and 
their execution time was attributed to "All Other Tasks" 
in the Task Performance display. Try decreasing the up­
date interval in the Configuration Options dialog. See 
"Probe configuration" on page 2-14. 

The CodeTEST application has a protocol version 
(x.a-) that is incompatible with the probe ".a-x", and 
is unable to connect. 

The host application and the probe firmware versions 
are incompatible. Check the release notes supplied with 
your CodeTEST software (in $AMC_HOME/README) 
for information about updating the probe firmware to 
the correct version. 

The datafile "xxx" doesn't use the current IDB file 
".a-x". All merged datafiles must use the same IDB 
file. 

You have tried to merge coverage data from measure­
ments that were made using different IDB files. You can 
only merge coverage data for measurements that were 
made using the same IDB. See "Merging coverage data" 
on page 3-12. 

8-5 



B-6 

The datafile must contain a valid probe ID! 
Loading cancelled ... 

Near the top of each saved Code TEST data file, the probe 
ID is written. If the file is edited or becomes corrupted 
such that the probe ID is not present, you cannot load 
that data file into the host application. 

The environment variable 'AMC_HOME' is not set! 
The application may not run correctly ... 

AMC_HOME must point to the CodeTEST home directo­
ry. The CodeTEST Installation Script creates a shell­
specific configuration file for setting up the user environ­
ment. Each user should either source that file or copy it 
into a login script to set AMC_HOME as well as other en­
vironment variables. See the CodeTEST Installation 
Guide for details. 

The file "xxx'' has an inappropriate size ("xxx" bytes), 
and is probably not a Probe Configuration file! 

Run the configuration utility for your version of the Co­
deTEST probe to generate a binary configuration file. 
Then enter the configuration file name in the Configura­
tion Options dialog. See your probe booklet for details. 

The IDB file "xxx" has an incorrect version number 
for this version of CodeTEST! 

Refer to the release notes ($AMC_HOME/README) for 
compatibility information. You may need to reinstru­
ment your code for the current release. 

The IDB version file has the incorrect format! 
Consult your CodeTEST administrator. 

The file that specifies IDB versions that are compatible 
with the various host application and the instrumenter 
versions has become corrupted. Your CodeTEST admin­
istrator may need to reinstall this file. 

CodeTEST User's Guide 



CodeTEST Error Messages 

The IDB version file "xxx'' is missing! 
Consult your CodeTEST administrator. 

The file that specifies IDB versions that are compatible 
with the various host application and the instrumenter 
versions is missing. Your CodeTEST system administra­
tor may need to reinstall this file. 

The LCA file has an incorrect probe id (xxx) which 
doesn't match the probe's id (xxx)! 

See your CodeTEST system administrator about install­
ing the correct LCA file for your probe. 

The LCA file has an incorrect image size (xxx) which 
doesn't match the actual image size (xxx)! 

See your CodeTEST system administrator about install­
ing the correct LCA file for your probe. 

The LCA file has an incorrect checksum value (xxx) 
which doesn't match the actual checksum value 
(xxx)I 

See your CodeTEST system administrator about install­
ing the correct LCA file for your probe. 

The network connection to the probe has died unex­
pectedly! 

Try selecting the Reset Probe Connection command on 
the Run menu. If that doesn't work, check the probe's 
network connection. See the CodeTEST Installation 
Guide for details about network connection. 

The Probe Configuration file "xxx" was generated 
for a different type of probe than the current one 
(whose id = "xxx")! 

Run the correct configuration utility for your probe and 
generate a binary configuration file. Then enter the file 
name in the Configuration Options dialog. See your 
probe booklet for details. 

B-7 



B-8 

The target has been reset! 

The CodeTEST probe detected that the target processor 
was reset. CodeTEST continues normal operation. The 
collected data is valid. 

Unable to access file "xxx"I 
The reason was "xxx''. 
CodeTEST may not be installed correctly. 

The host application was unable to access one of its files. 
See your CodeTEST system administrator about install­
ing the specified file. 

Unable to process incoming data rapidly enough! 
Increasing the update interval to "xxx'' seconds. 

CodeTEST is automatically adjusting the update inter­
val. The change will be reflected in the configuration op­
tions dialog. You may want to save the new configura­
tion for future use with this target. 

You must load an IDB before starting the probe! 

Before you can make CodeTEST measurements, the host 
application must be configured to find the IDB file or list 
of compatible IDB files for your target program. See 
"IDB path and file name" on page 2-15 and "Compatible 
IDB Files" on page 6-23. 

You must obtain one or more licenses in order to 
view saved data! 

If you try to load a data file without selecting at least one 
license on the Configuration Options dialog, the host ap­
plication will automatically check out a license for you if 
one is available. If no license is available, you cannot 
load a data file. 

CodeTEST User's Guide 



CodeTEST Error Messages 

You must specify a Probe Configuration file before 
starting the probe! 

Before you can start the probe, you must run the appro­
priate probe configuration utility to generate a probe 
configuration file, then enter the file name in the Config­
uration Options dialog. See "Probe configuration" on 
page 2-14 and the booklet supplied with your probe. 

B-9 



8-10 CodeTEST User's Guide 



I "Rsd<C 

Customizing ctcc/ctc++ 

User-configurable Commands . . . . . . C-2 

Configuring Switch Recognition ..... C-7 

Response Files . . . . . . . . . . . . . . . . . . C-9 

Prefilter and Postfilter Commands ... C-1 O 

Customizing ctcc/ctc++ C-1 



User-configurable Commands 

Preprocessor 
command 
(AMC_CMD_CPP) 

C-2 

To ensure compatibility of the ctcc/ctc++ compiler driver 
with the widest possible assortment of CIC++ compilers, 
environments, user methods and preferences, a set ofuser­
configurable command variables enable you to modify the 
syntax used to build the actual command lines ctcclctc++ 
executes at each successive stage of the build . 

The definition of AMC_CMD_CPP is the syntax ctcc/ctc++ 
will use to build the preprocessor command line if your 
compiler's preprocessor is to perform CIC++ preprocessing 
(i.e., ifthe -Xuse-cpp switch is present). 

Default syntax 
$cc -E $cppflags $< > $@ 

$cc 

-E 

$cppflags 

$< 

> 

$@ 

Your C or C++ compiler's driver command, as 
defined by $AMC_ CC or $AMC_CXX. 

Causes your complier driver to perform only Cl 
C++ preprocessing on the input source file(s) 
and send the output (with cpp-style line number­
ing) to stdout. 

Accumulates flags intended for your compiler's 
preprocessor, such as -I, -D, -U, -J, etc. 
Default: $AMC_CC_IFLAGS (for C sources) 

$AMC_CXX_IFLAGS (for C++ sources) 
To modify the definition of this variable, see 
"Configuring Switch Recognition" on page C-7. 

The input source file. 

Redirects output from stdout to an output file. 

The preprocessor output file. 

CodeTEST User's Guide 



lnstrumenter 
command 
(AMC_CMD_ TAG) 

User-configurable Commands 

Example 
To invoke a preprocessor named cpp, for instance, you 
might first define the configuration variable AMC_CPP as 
/usr/lib/cpp, then modify the syntax of AMC_CMD_CPP as 
an environment variable: 

setenv AMC_CMD_CPP $AMC_CPP $cppf lags $< $@ 

or as a line in your configuration file: 

AMC_CMD_CPP = $AMC_CPP $cppf lags $< $@ 

The definition of AMC_CMD_TAG is the syntax ctcc/ctc++ 
will use to build the amctag command line if amctag is to 
perform instrumentation only and not CIC++ preprocess­
ing (i.e., ifthe -Xuse-cpp switch is present). 

Default syntax 
$AMC_INSTRUMENTER $AMC_TAGDEFAULTS $tagmode 
$tagformat $tagsource $tagf lags $< $@ 

$AMC_INSTRUMENTER The source code instrumenter. 
Default: $AMC_HOME/bin/amctag 

$AMC_TAGDEFAULTS Default options sent to amctag. 

$ t agmode For C sources: 

$tagformat 

$AMC_CC_DEFINITIONS 
-Xe-mode 

For C++ sources: 
$AMC_CXX_DEFINITIONS 

Format of the tags amctag places in 
your code, as defined by: 
-Xtag-format=$AMC_ TAGFORMAT 

$tagsource The name of the original source file, as 
defined by -Xtag-source=sourcefile 

C-3 



C-4 

$tagflags 

$< 

$@ 

Example 

Accumulates these amctag options: 
compiler extension switches 

(e.g., -Xmri or -Xno-mri) 
-Xrelaxed or -Xno-relaxed 
-Xpassthru or -Xno-passthru 
-Xtag-allocator or -Xno-tag-allocator 
-Xtag-inlines or -Xno-tag-inlines 
-Xtag-format 
-Xtag-level 
-Xtag-source 
-Xidb 
-Xidb-compatible-with 
-Xremove-calls-to 

To modify the definition of this variable, 
see "Configuring Switch Recognition" 
on page C-7. 

The input source file. 

The instrumenter output file. 

In the following example@{ and }@ have been inserted 
into the default syntax to delimit a part of the command 
line to be placed in a temporary response file (i.e., the defi­
nitions of$AMC_TAGDEFAULTS $tagmode $tagformat 
$tagsource and $tagflags). 

AMC_CMD_TAG = $AMC_INSTRUMENTER @{ 
$AMC_TAGDEFAULTS $tagmode $tagformat 
$tagsource $tagflags }@ $< $@ 

See "Response Files" on page C-9 for more information 
about response files and the variables you can define to 
name them. 

CodeTEST User's Guide 



Preprocessor/ 
instrumenter 
command 
(AMC_CMD_CPPTAG) 

The definition of AMC_CMD_CPPTAG is the syntax ctcd 
etc++ will use to build the amctag command line if amctag 
is to perform both preprocessing and instrumentation (i.e., 
when the -Xamctag-cpp option is present). 

Default syntax 
$AMC_INSTRUMENTER $AMC_IFLAGS $cpptagflags 

$include $AMC_TAGDEFAULTS $tagmode $tagformat 

$tagsource $tagflags $< $@ 

$AMC_INSTRUMENTER The source code instrumenter. 

$AMC_IFLAGS 

$cpptagflags 

Default: $AMC_HOME/bin/amctag.exe 

One or more preprocessor options (used 
only if a language-specific version of this 
variable is not defined.) 

Accumulates preprocessor switches 
intended for amctag, such as -1, -D, -U. 
Default: $AMC_CC_IFLAGS or 

$ AMC CXX IFLAGS 
See "Configuring Switch Recognition" on 
page C-7. 

$inc 1 ude -I preprocessor options, as defined by 
$AMC_CC_INCLUDE or 
$AMC_CXX_INCLUDE 

$AMC_TAGDEFAULTS Default options sent to amctag. See 
"lnstrumenter Options" on page 6-16. 

$tagmode For C: $AMC_CC_DEFINITIONS 
-Xe-mode 

For C++: $AMC_CXX_DEFINITIONS 

$tagformat Format of the tags amctag places in your 
code, as defined by : 
-Xtagformat=$AMC _ TAGFORMAT 

$tagsource The name of the original source file as 
defined by -Xtag-source=sourcefile. 

User-configurable Commands C-5 



Compile 
command 
(AMC_CMD_ COMPILE) 

$tagflags 

$< 

$@ 

Accumulates these amctag options:) 
compiler extension switches 

(e.g., -Xmri or -Xno-mri) 
-Xrelaxed or -Xno-relaxed 
-Xpassthru or -Xno-passthru 
-Xtag-allocator or -Xno-tag-allocator 
-Xtag-inlines or -Xno-tag-inlines 
-Xtag-format 
-Xtag-level 
-Xtag-source 
-Xidb 
-Xidb-compatible-with 
-Xremove-calls-to 

To modify the definition of this variable, 
see "Configuring Switch Recognition" on 
page C-7. 

The input source file name. 

The instrumenter output file name. 

The definition of AMC_CMD_COMPILE is the syntax ctcd 
etc++ uses to build the compiler command line. 

Default syntax 
$cc $ccargs { $lf lags $libs } 

$cc Your C or C++ compiler's driver command, as defined 
by $AMC_CC or $AMC_CXX. 

$ ccargs Accumulates arguments intended for the compiler (e.g., 
unrecognized switches, object files, etc.) 

$1 flags Link-time options required by Code TEST-specific librar­
ies, as defined by $AMC_CC_LFLAGS or 
$AMC_ CXX_LFLAGS. 

$1 ibs Paths to Code TEST link libraries and options, as 
defined by $AMC_CC_LIBS and $AMC_CC_MLIBS 
or $AMC_CXX_LIBS and $AMC_CXX_MLIBS. 

C-6 CodeTEST User's Guide 



Configuring Switch Recognition 
ctcdctc++ can be configured to "recognize" command 
switches and decide whether to pass them to the preproces­
sor, the instrumenter, or the compiler. To configure switch 
recognition, you append or delete switches from the list of 
switches that will be accumulated by the internal variables 
ctcdctc++ uses to build the command lines for the succes­
sive stages of the build. For example, if you need ctcc/ctc++ 
to pass -J switches to your compiler's preprocessor, you can 
add a line to your configuration file to append -J to the def­
inition of the variable cppflags (used by AMC_CMD_CPP). 
Then, when -J is present, ctcc/ctc++ will include it when it 
builds the preprocessor command line. 

Note: Configuring switch recognition can only be done via a con­
figuration file, not in the environment. 

The following table lists the variables you can configure for 
switch recognition. To append or delete a switch from a 
variable, you can enter in your configuration file regular 
expressions as described below. 

Variable 

cppflags 

tagflags 

Description 

Accumulates preprocessor switches for 
AMC_CMD_CPP (see page C-2). 

Accumulates various instrumenter options for 
AMC_CMD_TAG and AMC_CMD_CPPTAG 
(see page C-3). 

cpptagflags Accumulates preprocessor options for 
AMC_CMD_CPPTAG (see page C-5). 

ccargs Accumulates compiler options for 
AMC_CMD_COMPILE (see page C-6). 

Configuring Switch Recognition C-7 



C-8 

Appending a switch 
To append a switch to the definition of a variable: 

variable += switch 

For example, to configure ctcc/ctc++ to recognize a switch 
as one that needs to be passed to your compiler's preproces­
sor, you could enter in your configuration file: 

cppflags += -Yp, .* 

ctcc/ctc++ will then append to $cppflags any switch match­
ing the regular expression -Yp,.* for eventual use on the 
preprocessor command line. 

Appending a switch followed by an argument 
To append to the definition of a variable a switch followed 
by a space and then an additional argument: 

variable +=& switch argument 

For example: 

cppflags +=& -include argument 

will append to $cppflags any instance of -include fol­
lowed by a space then an argument. 

Deleting a switch 
To delete a switch from the definition of a variable: 

variable -= switch 

For example: 

ccargs -= -J.* 

deletes -J from the list of switches ctcc/ctc++ will use to 
build the compilation command line. 

CodeTEST User's Guide 



Response Files 

Response Files 

To allow ctcc/ctc++ to construct command lines longer than 
256 characters, you can define the syntax of the user-con­
figurable commands to place part of the command line in a 
temporary response file. Use@{ and}@ to delimit the part 
you want placed in the response file. Then, as ctcc/ctc++ 
builds the command line, everything between @{ and }@ 
will be placed in the response file, which will be called when 
the command executes. 

For example, if you define AMC_CMD_CPP: 

$cc @{ -E $cppflags }@ $< > $@ 

ctcc/ctc++ will create a temporary response file containing 
the definitions of: 

-E $cppflags 

Response file naming variables 
To accommodate differences in the naming conventions for 
response files used by various compilers, you can define the 
following variables: 

AMC_RSP_CPP 

AMC RSP_TAG 

AMC_RSP_COMPILE 

Names the response file created by 
AMC_CMD_CPP. Default: @$< 

Names the response file created by 
AMC_CMD_TAG. Default:-@$< 

Names the response file created by 
AMC_CMD_COMPILE. Default: @$< 

C-9 



Prefilter and Postfilter Commands 

Prefilter 
command 
(AMC_ CMD _PREFIL TER) 

Postfilter 
command 
(AMC_CMD_POSTFILTER) 

C-10 

In some cases it may be necessary to perform minor filter­
ing of your target sources, before and/or after sending them 
to amctag. 

To filter your source files before instrumentation, you can 
define AMC_CMD_PREFILTER to specify the prefilter 
syntax. AMC_CMD_PREFILTER requires input file and 
output file parameters. Input can be original C or C++ 
source files, or .i or .ii preprocessed files. Output files are .j 
or .jj for input to amctag. 

For example, the following definition calls bcpp2cpp.exe to 
prefilter your sources. 

AMC_CMD_PREFILTER = bcpp2cpp.exe $< $@ 

To filter instrumented sources before ctcc/ctc++ sends them 
to the compiler, you can define AMC_CMD_POSTFILTER 
to specify the postfilter syntax. AMC_CMD_POSTFILTER 
requires input file and output file parameters. Input files 
are .j or .jj instrumented CIC++ files produced by amctag. 
Output files are ._i or ._ii for input to the compiler. 

For example, the following definition adds the far keyword 
to the amc_ctrl_port and amc_data_port declarations in 
your instrumented sources before compiling with bee. 

AMC_CMD_POSTFILTER = sed -e "s/long 
\ ( arnc_ .... __port\) /long far \ 1 /" $< > $@ 

Use the -Xkeep instrumenter option if you want to see the 
intermediate ._j files. 

CodeTEST User's Guide 



I ""8d<D 
Hybrid Tagging 

Hybrid tagging, an alternative to the normal 32-bit CodeTEST tagging 
scheme, provides support for 16-bit core processors. 

BOC186EA/XL Support . ........... D-2 

Norma/Tagging .................. D-2 

Hybrid Tagging . . . . . . . . . . . . . . . . . . D-3 

Hybrid Tagging D-1 



80C186EA/XL Support 

Normal Tagging 

D-2 

The Intel 80C186EA/XL is a 16-bit core microprocessor, 
and therefore incapable of writing a 32-bit tag value in a 
single bus cycle using only the data bus. Each 32-bit data 
write will be broken into 2 or 4 bus cycles with the possibil­
ity of an interrupt being serviced between data cycles. If 
the interrupt service routine is instrumented, the tag 
stream will become corrupted. Two solutions are available: 

o Use the normal tagging scheme and prevent interrupts 
from occurring during a tag write. This approach is the 
most economical in terms of target memory space. 

o Use the hybrid tagging scheme, in which the entire tag 
is broadcast in a single bus cycle. This approach requires 
a larger amount of target memory space. 

In the normal tagging scheme, two CodeTEST tag ports 
(amc_ctrl_port and amc_data_port) must be defined and 
assigned specific absolute 32-bit memory locations in the 
target memory space. See "Assigning Addresses for the Tag 
Ports" on page 5-18 for further information and examples. 

Masking off interrupts 
When a tag is going to be written, the tagging software 
must mask off interrupts through the processor's status 
register. After the tag is written, the software will restore 
the interrupt to its previous value. This prevents all inter­
rupts except the non-maskable interrupt (NMI) from occur­
ring. 

The amc_c.h and amc_cxx.h files installed under 
$AMC_HOME/lib provide support for masking off inter­
rupts. Refer to comments in those files for edits that may 
be required for your environment. 

CodeTEST User's Guide 



Note: 

Hybrid Tagging 

Note: 

80C186EA/XL Support 

Include the following switch in your instrumenter com­
mand line: 

-Xtag-format = #AMCCtrlPort (%d) 

Disabling NMls 
If any of the following is true, disable NMis by setting 
jumper JPl to position 1=2. 

o If any of the NMI service routine (or function called by 
the service routine) is instrumented 

o If an RTOS task switch may occur within the NMI 
service routine 

o If user-defined tags (i.e., calls to AMCUserTag, 
AMCPrintf, or AMCPuts) have been placed in the NMI 
service routine 

The NMI disabling jumper is only effective for targets 
using solder-down adapters or socketed targets (i.e., 
targets in which the CPU is placed in the top socket on the 
CodeTEST probetip ). If a processor is installed in the target 
board's socket while CodeTEST is in use (i.e., using a clip­
on adapter) JPl must be in position 2=3. 

In the hybrid tagging scheme, the entire tag is written in a 
single instruction. During the tag write, the upper half of 
the tag value is placed on the lower 16 bits of the address 
bus, and the lower half of the tag value on the data bus. 

In this tagging scheme, interrupts do not need to be 
masked and the NMI should remain enabled (JPl in 
position 2=3). 

D-3 



Instrumenting your code for hybrid tagging 
To instrument your target source code for the hybrid tag­
ging scheme, use the -Xtag-16 instrumenter option. 

Reserving tag port memory 
Use of hybrid tagging requires two consecutive 64K-byte 
segments of target memory space, aligned on a 128K-byte 
boundary. The lower segment is used for control tags; the 
upper segment for data tags. 

The following example shows how the required memory 
can be reserved in an MRI environment using the PUBLIC 
command in the linker command file (link.cmd). 

ORDER vectors, startup, code 
ORDER strings,literals,const 

PUBLIC _amc_ctrl_array=OxFFOOOOOO 
PUBLIC _amc_data_array=OxFFOlOOOO 
END 

D-4 CodeTEST User's Guide 



I index 
Symbols 
-@filename instrumenter option 6-17 

Numerics 
16-bit core CPU support 
16-bit tagging 3 
80C186EA/XL processor family 2 

A 
AMC_ CC variable 5-8 
AMC_CC_DEFINITIONS variable 5-10 
AMC_CC_IFLAGS variable 5-9 
AMC_CC_INCLUDE variable 5-10 
AMC_CC_LFLAGS variable 5-9 
AMC_CC_LIBS variable 5-8 
AMC_CC_MLIBS variable 5-9 
amc_ChkConsistency flag 7-6 
AMC_CMD_COMPILE command syntax 6 
AMC_CMD_COMPILE variable 5-12 
AMC_CMD_CPP command syntax 2 
AMC_CMD_CPP variable 5-11 
AMC_CMD_CPPTAG command syntax 5 
AMC_CMD_CPPTAG variable 5-11 
AMC_CMD_POSTFIL TEA command 

syntax 10 
AMC_CMD_POSTFILTEA variable 5-12 
AMC_CMD_PAEFIL TEA command syntax 10 
AMC_CMD_PAEFILTEA variable 5-12 
AMC_CMD_TAG command syntax 3 
AMC_CMD_TAG variable 5-11 
AMC_CPP variable 5-8 
AMC_CXX variable 5-8 
AMC_CXX_DEFINITIONS variable 5-10 

AMC_CXX_IFLAGS variable 5-9 
AMC_CXX_INCLUDE variable 5-10 
AMC_CXX_LFLAGS variable 5-10 
AMC_CXX_LIBS variable 5-8 
AMC_CXX_MLIBS variable 5-9 
AMC_HOME variable 5-7 
AMC_IFLAGS variable 5-9 
AMC_INCLUDE variable 5-10 
AMC_INSTAUMENTEA variable 5-8 
AMC_LFLAGS variable 5-10 
AMC_LIBS variable 5-9 
AMC_MEMFLAGS symbol 7-7 
AMC_MLIBS variable 5-9 
amc_NoFreeAeuse flag 7-7 
AMC_ACFILE variable 5-8 
AMC_ASP _COMPILE variable 5-12, 9 
AMC_ASP _CPP variable 5-12, 9 
AMC_ASP _TAG variable 5-12, 9 
AMC_TAGDEFAULTS variable 5-8 
AMC_TAGFOAMAT variable 5-11 
AMC_TAAGET variable 5-7 
AMC_TMPDIA variable 5-11 
amc_ZeroAllocBlocks flag 7-7 
amc_ZeroFreedBlocks flag 7-7 
AMCPrintf function 4-17 

triggering trace on calls 4-8, 4-23 
AMCPuts function 4-17 
amctag 

command description 6-13 
compatibility modes 6-24 
introduction 1-11 
options 6-16 

compatibility 6-18 
general operation and 

preprocessor 6-16 
instrumentation 6-19 

lndex-1 



preprocessor features 6-24 
AMCUserTag function 4-20 
ANSI (strict) X3.159-1989 compatibility 

mode 6-24 
ANSI X3.159-1989 compatibility mode 6-24 

B 
BootP A-2 
branch coverage table 3-6 

c 
c and C++ compatibility modes 6-24 
-c instrumenter option 6-16 
call pairs 3-17 
Calls button, Performance 2-12 
capture limit 

finding in trace buffer 4-22 
cc command 5-3 
ccargs variable 6 
Close command 3-3 
Code TEST 

benefits 1-6 
command macros 2-20 
components 1-2 
configuration 2-13 
ctcc and etc++ compiler driver 5-2 
error log 2-22 
getting started 2-2 
host application configuration file 2-18 
host application, introduction 1-4 
manuals iii 
starting the application 2-8 

options 2-8 
status window 2-22 
system overview 1-2 
tag ports 

assigning addresses 5-18 
usage overview 1-12 
version 2-8 

lndex-2 

windows, host application 2-9 
column resizing 2-23 
commands 

amctag 6-13 
Continuous mode 3-3 
ctcc and etc++ 5-16 
mouse button 3-4 
toolbar 2-10 
Trace mode 4-3 
user-configurable ctcc and etc++ 

commands 5-11, 2 
compatible IDB files 6-23 
components of CodeTEST 1-2 
-configfile option 2-8 
configuration 

CodeTEST X resources file 2-9 
configuring a session 2-13 
ctcc and etc++ compiler drivers 5-7 
Edit Options command 2-11 
IDB 2-15, 2-16 
license manager (FlexLM) A-4 
Load Options File command 2-11 
loading a configuration file 2-18 
options dialog 2-13 
probe 2-14, A-3 
ATOS map file 2-17, 8-9 
Save Options File command 2-11 
software A-4 
starting CodeTEST with a .ctconfig file 2-8 
starting CodeTEST with a data file 2-8 
system-wide configuration guide A-1-A-7 
user A-4 
user map file 4-20 
X defaults A-4 

configuration files 
.ctccrc-$AMC_TARGET 5-13 
.ctconfig 2-18 
memory call definition file 7-4 
probe 2-14 

context qualification 
trace storage 4-9 

CodeTEST User's Guide 



trace trigger 4-8 
Continue command 2-10 
Continuous mode 

commands 3-3 
Continue command 2-10 
Coverage tool 3-6 
function summary 3-25 
making a measurement 3-2 
Memory tool 3-19 
mouse button commands 3-4 
Performance tool 3-13 
qualifying measurements 3-5 
Set Continuous Mode command 2-10 
setup 3-5 
source code viewer 3-26 
tools 3-2-3-31 

control flow trace view 4-14 
conventions, notational iv 
Coverage tool 3-6 

branch coverage table 3-6 
instrumentation theory 6-6 
introduction 1-6 
Merge Coverage command 2-10 
source code viewer 3-9 
summary view 3-11 
trend view 3-10 

cppflags variable 2 
cpptagflags variable 5 
ctcall.map file 7-4 
ctcc and etc++ 

ccargs variable 6 
command description 5-16 
command variables 5-11, 2 
compiler command line syntax 6 
configuration 5-13 
configuration file 5-13 
configuration variables 5-7 
cppflags variable 2 
cpptagflags variable 5 
instrumenter command line syntax 3 
introduction 1-10 

options 6-16 
compatibility 6-18 
general operation and 

preprocessor 6-16 
instrumentation 6-19 

prefilter command syntax 10 
preprocessor command line syntax 2 
preprocessor command syntax 10 
preprocessor/instrumenter command line 

syntax 5 
response file variables 5-12 
response filename variables 9 
response files 9 
switch recognition 7 
tagflags variable 4 

.ctccrc-$AMC_ TARGET 5-13 

.ctconfig file 2-18 
customer support v 

D 
-D instrumenter option 6-16 
data 

exporting 2-25 
Load Data command 2-10 
loading 2-27 
printing 2-23 
Save Data command 2-10 
saving 2-26 

-datafile option 2-8 
depth, trace 4-7 
documentation, CodeTEST iii 

E 
-E instrumenter option 6-16 
Edit Options command 2-11 
environment variables 

ctcc and etc++ 5-7 
user configuration A-4 

error log 

lndex-3 



CodeTEST application 2-22 
memory 3-22 

Error Log command 2-11 
error messages 

host application B-1 
instrumenter 

relaxed 6-17 
strict 6-17 

memory 3-23 
Errors button, Memory 2-12 
Export command 3-3 
export utility 2-25 

F 
fatal memory errors 7-5 
file load utilities 2-27 
file save utilities 2-26 
Filter button 3-4 
filter expressions 3-30 
filter utilities 3-29 
Find button 3-4 
find utilities 3-28 
FlexLM A-4 
function 

trace trigger context 4-9 
trigger trace on entry 4-7 
trigger trace on exit 4-7 

Function button, Coverage 2-12 
Function button, Performance 2-12 
function entry 

find in trace buffer 4-21 
function exit 

find in trace buffer 4-21 
function performance 3-15 
function selection list 2-24 
function summary 

description 3-25 
mouse menu access 3-4 

lndex-4 

G 
getting started 2-2 

CodeTEST ports 2-4 
complete implementation 2-6 
instrumentation 2-6 
preliminaries 2-2 
probe 2-5 
RTOS connection 2-3 
RTOS measurements 2-5 
selecting target code 2-3 

guard bytes 7-5 

H 
high-level trace 4-10 
host application 

see CodeTEST 
host application, introduction 1-4 
hybrid tagging 3 

I 
-I instrumenter option 6-16 
-i instrumenter option 6-16 
IDB 2-15, 2-16 

compatible IDB files 6-23 
Load IDB command 2-10 

include files 6-27 
inline functions 6-10 
instrumentation 

AMCPrintf 4-17 
AMCPuts 4-17 
amctag 

compatibility modes 6-24 
preprocessor features 6-24 

approaches 5-3 
configuration file 5-13 
Coverage tagging theory 6-6 
ctcc and etc++ configuration variables 5-7 
getting started 2-3 

CodeTEST User's Guide 



IDB 2-15,2-16 
impact on build time 6-12 
introduction 1-10 
Memory tagging theory 6-8 
overview 6-2-6-12 
performance overhead 6-12 
Performance tagging theory 6-3 
ATOS tagging theory 6-11 
selectively turning off 6-22 
tagging inline functions 6-10 
tagging summary 6-10 
Trace tagging theory 6-6 
user defined tags 4-20 

instrumenter 
error messages 

relaxed 6-17 
strict 6-17 

introduction 1-2 
options 6-16 

compatibility 6-18 
general operation and 

preprocessor 6-16 
instrumentation 6-19 

instrumenter options 
-@filename 6-17 
-c 6-16 
-D 6-16 
-E 6-16 
-I 6-16 
-i 6-16 
-o 6-17 
-P 6-17 
-U 6-17 
-v 6-17 
-Xabsolute-paths 6-21 
-Xallocator-call-map 6-20 
-Xamctag-cpp 6-17 
-Xansi 6-18 
-Xbcc 6-18 
-Xe-mode 6-18 
-Xghs 6-19 

-Xgnu 6-18 
-Xidb 6-21 
-Xidb-compatible-with 6-21 
-Xk-and-r 6-18 
-Xkeep 6-21 
-Xmalloc 6-20 
-Xmri 6-19 
-Xno-absolute-paths 6-21 
-Xno-bcc 6-18 
-Xno-ghs 6-19 
-Xno-gnu 6-19 
-Xno-mri 6-19 
-Xno-passthru 6-21 
-Xno-relaxed 6-17 
-Xno-tag-allocator 6-20 
-Xno-tag-inlines 6-20 
-Xpassthru 6-21 
-Xpaths-from 6-17 
-Xpcc 6-18 
-Xrelaxed 6-17 
-Xremove-calls-to 6-17 
-Xstrict-ansi 6-18 
-Xtag-16 6-21 
-Xtag-allocator 6-19 
-Xtag-format 6-21 
-Xtag-inlines 6-20 
-Xtag-level 6-19 
-Xtag-source 6-20 
-Xuse-cpp 6-17 

instrumenting 
commercial ATOS 8-7 
custom ATOS 8-8 

Intel 80C186EA/XL support 2 
introduction to CodeTEST 1-2 
IP address A-2 

K 
Kernighan and Ritchie C compatibility 6-24 

lndex-5 



L 
license manager A-4 
license options 2-17 
line coverage 3-9 
Load Data command 2-10 
Load IDB command 2-10 
Load Options File command 2-11 
loading a configuration file 2-18 

M 
-macrofile option 2-8 
macros 2-20 

creating 2-21 
executing upon starting host application 2-

21 
running from host application 2-21 
saving 2-21 
starting CodeTEST with a macro file 2-8 
usage overview 1-12 

Macros command 2-11 
manuals, CodeTEST iii 
map files 

memory call definition file 2-16 
ATOS map file 2-17, 8-9 
user defined tags 2-16, 4-20 

marker, trace event 4-12 
measurements 

continuing a measurement 2-10 
Continuous mode 3-2 
Continuous mode setup 3-5 
Trace mode 4-2 
Trace setup 4-6 

memory allocation, as trace trigger 4-7 
memory call definition file 2-16, 7-4 
memory deallocation, as trace trigger 4-7 
memory errors 

codes 7-8 
guard bytes 7-5 
messages 7-8 
severity levels 7-5 

lndex-6 

trigger trace on error 4-7 
Memory tool 3-19 

CodeTEST memory management routines 
compiling 7-4 
files 7-2 
portability 7-12 
switches 7-6 

error checking 7-5 
instrumentation theory 6-8 
introduction 1-7 
memory allocation table 3-19 
memory call definition file 2-16, 7-4 
memory error log 3-22 
qualifying measurements 3-5 

Merge Coverage command 2-10 
microprocessor support 1-3 
monitored ports 

assigning addresses 5-18 

N 
network configuration A-2 
network ID 2-14 
network protocol 

BootP A-2 
RAAP A-2 
stored IP address A-2 

no_tagging pragma 6-22 
non-fatal memory errors 7-5 
notational conventions iv 

0 
-o instrumenter option 6-17 
overhead, performance 6-12 

p 
-P instrumenter option 6-17 
PCC compatibility mode 6-24 
performance overhead 6-12 

CodeTEST User's Guide 



Performance tool 3-13 
call linkage table 3-17 
function performance view 3-15 
instrumentation theory 6-3 
introduction 1-7 
qualifying measurements 3-5 
task performance view 3-13 
unknown function 3-17 
unknown task 3-14 

ports 
assigning addresses 5-18 
getting started 2-4 

postfiltering sources 10 
pragma, no_tagging 6-22 
pragmas 6-27 
prefiltering sources 10 
preprocessor features, amctag 6-24 
preprocessor macros 6-26 
Print command 3-3 
print utility 2-23 
probe 

configuration 2-14, A-3 
configuration reference A-2 
configuration utilities 2-11 
continuing a measurement 2-10 
getting started 2-5 
host name 2-14 
introduction 1-3 
IP address A-2 
network ID 2-14 
network protocol A-2 
probe configuration file 2-14, A-3 
Reset Probe Connection command 2-11 
starting 2-10 
starting in Trace mode 4-4 
stopping 2-10 
stopping in Trace mode 4-4 
timeout interval 2-14 
update interval 2-14 

probe configuration file A-3 
processing limit 

finding in trace buffer 4-22 
processor support 1-3 
product support v 

frequently asked questions v 

R 
RARP A-2 
Reset Probe Connection command 2-11 
Resize command 3-3, 4-3 
resizing columns 2-23 
response files 9 
RTOS 

configuring a session for 2-16 
getting started 2-3 
instrumentation theory 6-11 
instrumenting a commercial RTOS 8-7 
instrumenting a custom RTOS 8-8 
map file 8-9 

configuration 2-17 
monitoring limits 8-3 
qualifying measurements 3-5 
tags 8-6 
task tracking 3-5, 4-9, 8-3 
using CodeTEST with an RTOS 8-2-8-9 

RTOS control tags 8-5 
RTOS task 

trace trigger context 4-8, 4-9 
trigger trace on creation 4-8 
trigger trace on deletion 4-8 
trigger trace on entry 4-7 
trigger trace on exit 4-7 

RTOS task events 
finding in trace buffer 4-22 

s 
Save Data command 2-10 
Save Options File command 2-11 
search expressions 3-30 
search utilities 3-28 

lndex-7 



selection lists 2-24 
Set Continuous Mode command 2-10 
Set Trace Mode command 2-11 
setup 

Continuous mode 3-5 
default trace setup 4-6 
Trace mode 4-6 

Setup button 3-4 
Sort button 3-4 
sort utilities 3-27 
source code directories, configuration 2-15 
source code viewer 

description 3-26 
mouse menu access 3-4 

source view, trace 4-16 
special characters, search and filter 3-30 
Start Probe command 2-10 
status line 2-9 
status window 2-22 
Status Window command 2-11 
Stop Probe command 2-10 
storage context, trace 4-9 
storage disabled 

find in trace buffer 4-22 
Summary button, Coverage 2-12 
support v 

frequently asked questions v 

T 
tag ports 

assigning addresses 5-18 
tagflags variable 4 
tagging options 6-10 
TALIGN symbol 7-12 
target code 

getting started 2-3 
target hardware 

getting started 2-5 
target program 

configuration 2-15 

lndex-8 

target reset 
finding in trace buffer 4-23 

Task button, Performance 2-12 
task ID tags 8-4 
task name tags 8-3 
task performance 3-13 
task selection list 2-24 
task tracking 3-5, 4-9, 8-3 
task tracking limits 8-3 
technical support v 

frequently asked questions v 
timeout interval 2-14 
tootbar 2-9 

commands 2-10 
status line 2-9 

tools 
Continuous mode 3-2-3-31 
licenses 2-17 
Trace 4-2-4-21 

trace 
depth 4-7 
event markers 4-12 
finding data 4-21 
search options 4-21 
storage context 4-9 
trigger context 4-8 
trigger event 4-7 
trigger position 4-6 

Trace button 2-12 
Trace tool 4-2-4-21 

AMCPrintf 4-17 
AMCPuts 4-17 
data finder 4-21 
default setup 4-6 
introduction 1-8 
making a measurement 4-2 
no trigger 4-8 
Set Trace Mode command 2-11 
setup 4-6 
trace tags 6-6 
trigger event options 4-7 

CodeTEST User's Guide 



-Xno-tag-inlines instrumenter option 6-20 -Xtag-16 instrumenter option 6-21 
-Xpassthru instrumenter option 6-21 -Xtag-allocator instrumenter option 6-10, 6-19 
-Xpaths-from instrumenter option 6-17 -Xtag-format instrumenter option 6-21 
-Xpcc instrumenter option 6-18 -Xtag-inlines instrumenter option 6-20 
-Xrelaxed instrumenter option 6-17 -Xtag-level instrumenter option 6-10, 6-19 
-Xremove-calls-to instrumenter option 6-17 -Xtag-source instrumenter option 6-20 
-Xstrict-ansi instrumenter option 6-18 -Xuse-cpp instrumenter option 6-17 

lndex-10 CodeTEST User's Guide 



user defined tags 4-20 
views 

control flow 4-14 
high-level 4-10 
source 4-16 

Trace tools 
commands 4-3 

Trend button, Coverage 2-12 
trigger 

options 4-7 
position 4-6 

trigger event 
finding in trace buffer 4-23 

typographical conventions iv 

u 
-U instrumenter option 6-17 
unknown function 3-17 
unknown tags 

finding in trace buffer 4-22 
unknown task 3-14 
update interval 2-14 
Usage button, Memory 2-12 
user defined tags 4-20 

v 

map file 2-16, 4-20 
placing in your code 4-20 

-v instrumenter option 6-17 
-version option 2-8 
version, CodeTEST software 2-8 
views 

Branch Coverage 3-6 
Branch Summary 3-11 
Call Linkage 3-17 
Control Flow Trace 4-14 
Coverage Trend 3-10 
Function Performance 3-15 
Function Summary 3-25 

w 

High Level Trace 4-10 
Memory Allocation 3-19 
Memory Error log 3-22 
Source Code viewer 3-26 
Source Trace 4-16 
Status Window 2-22 
Task Performance 3-13 

windows 
resizing columns 2-23 

X-Y-Z 
X defaults A-4 
X resource files 2-9 
-Xabsolute-paths instrumenter option 6-21 
-Xallocator-call-map instrumenter option 6-20 
-Xamctag-cpp instrumenter option 6-17 
-Xansi instrumenter option 6-18 
-Xbcc instrumenter option 6-18 
-Xe-mode instrumenter option 6-18 
XFILESSEARCHPATH environment 

variable A-4 
-Xghs instrumenter option 6-19 
-Xgnu instrumenter option 6-18 
-Xidb instrumenter option 6-21 
-Xidb-compatible-with instrumenter option 6-21 
-Xk-and-r instrumenter option 6-18 
-Xkeep instrumenter option 6-21 
-Xmalloc instrumenter option 6-20 
-Xmri instrumenter option 6-19 
-Xno-absolute-paths instrumenter option 6-21 
-Xno-bcc instrumenter option 6-18 
-Xno-ghs instrumenter option 6-19 
-Xno-gnu instrumenter option 6-19 
-Xno-mri instrumenter option 6-19 
-Xno-passthru instrumenter option 6-21 
-Xno-relaxed instrumenter option 6-17 
-Xno-tag-allocator instrumenter option 6-20 

lndex-9 



lmm1 
Applied 
Microsystems 
Corporation 
Applied Microsystems Corporation maintains a worldwide network of direct offices committed to quality service and support. 
For information on products, pricing, or delivery, please call the nearest office listed below. In the United States, for the number 
of the nearest local office, call 1-800-426-3925. 

Corporate Office 
Applied Microsystems Corporation 
5020 148th Avenue Northeast 
P.O. Box 97002 
Redmond, WA 98073-9702 
Tel: 206-882-2000 
Toll-free: 1-800-426-3925 
CodeTEST Sales: 
1-800-895-0831 
Customer Support: 
1-800-ASK-4AMC ( 1-800-275-4262) 
TRT Telex: 185196 
Fax: 206-883-3049 

Europe 
Applied Microsystems Corporation Ltd. 
AMC House, South Street 
Wendover, Buckinghamshire, HP22 6EF 
United Kingdom 
Tel: +44 (0) 1296-625462 
Fax:+44(0) 1296-623460 

Germany 
Applied Microsystems GmbH 
Stahlgruberring 11a, 81829 Muenchen 
Germany 
Tel: +49 (0)89-427-4030 
Fax: +49 (0)89-427-40333 

Japan 
Applied Microsystems Japan, Ltd. 
Arco Tower 13 F 
1-8-1 Shimomeguro, Meguro-ku 
Tokyo 153 
Japan 
Tel: +81-3-3493-0770 
Fax: +81-3-3493-7270 



Part No. Revision History Date 

924-08000-00 Initial release of Code TEST for Unix User's Guide. 11/95 
Three-ring bound, 8.5x11-inch page size. 

924-08000-01 Manual update concurrent with Code TEST v1 .1 2/96 
release for Sun and HP. First perfect-bound 
version. 

924-08000-02 Manual update concurrent with Code TEST v1 .3 9/96 
release for Sun-OS, Sun-Solaris, and HP. Also 
incorporates the ctcc and amctag changes from 
v1 .2 (formerly covered only in README). 



: :mm Applied Microsystems Corporation 




