
Instruments

Unilablltm

Volume Two
Reference Manual

Copyright 1984, 1985, 1986 by Orion Instruments, Redwood City, California
All rights reserved

:>wer On
LED

Power
On/Off
Switch

ORION
Instruments

Universal Development Laboratory

Unilab JI
48 CHANNEL BUS STATE ANALYZER

Emulator (ROM)
Cable Connector

(CB-24/28, C16-24/28,
CB-D, or C16-D)

.................

Analyzer Cable
Connector
(CA-A,B, ...)

Oscilloscope
Trigger Output

(Strobes when trigger
is met. Can be connected

to oscilloscope to
synchronize scope with

analyzer trigger.)

24-pin Package is
shifted all the way

to the left

EPROM PROGRAMMER

Pers4>nality
Module for EPROM

EPROM PROGRAMMER

EPROM Clamp
(Down to connect
EPROM in Socket)

EPROM Socke1t
(Also used for

Stimulus Cable)

Vp

•

Programming
Voltage for

EPROM Burner
(Vpp)

24 Pin EPROM in Programming Socket

28 Pin EPBOM in Programming Socket

r
Trigger

Truth-
I--

Table
Ram

\. J '\..

/'

Host
1/0

'\..

/' ' Enable

Map
Ram

' ,,I

Orion. In.strum.en.ts 1 9 84

Sequence'
Logic I

Pass & 1--i

Delay

r
Trace

Buffer

Ram
J

(
Latches Inputs

& (48)

Input]Ii
Multiplexer (DO-DIS ..

AO-A14
from

Emulator
Cable)

Counts .1 \. ------

Z-80 CPU
Rom/Ram

PIO I Timers
Serial 1/0

/' ' Emulation
St.a.tic
Ram

'\.. ./

/'
""" Eprom

Programmer
t---

&

r

'\..

Stimulus
, Generator .,I

Idle
Register

......
~:~~~~~~~~
100.n
(16)

"'
Address

Latch
~

,.,/

Stimuli
Outputs

(9)

Data
Lines

(16)

Addr ess
Lin es
(20)

(A15-A19
from

Analyzer
Cable)

ALH

Chapter One:

Chapter Two:

Table of Contents
UniLab Manual

VOLUME ONE
User's Guide

The UniLab IItm Method

Installing The UniLab

For Me?
Introduction
Useful Information
Quick Step-by-Step

Detailed
1.

2.

3.

4.

Step-by-Step
Connect the UniLab to Host

Find the Correct Port
Serial Port of AT
Connect the Cable
Turn on the UniLab
Trouble?

Software Installation
Install the Software

On a Hard Disk
On a Floppy Disk Drive

Reboot Your Computer
Start Up the UniLab Program
Patch Required?

Connect the UniLab to Target Board
Overview
All About Cables
Take PROM off Board
Put ROM Cable in ROM Socket
Put DIP Clip onto Microprocessor
Attach Proper Wires to the Clip
Attach the RESET Wire
Attach the NMI Wire
Plug Cables into UniLab Connectors

Check Out Your Equipment
Load a Sample Program
Run the Program
Compare to Sample Trace
Play Around a Little
How to Exit

Where to Go Next
Special Note: Display Characteristic Commands

UniLab is a trademark of Orion Instruments, Inc.

2-2
2-3
2-7
2-9

2-10
2-11

2-14

2-25

2-40

2-46
2-47

July 16, 1986 Page i Contents --

Chapter Three: Guided Demonstration

Overview
Call Up the Software
Get the MAIN Menu

The Five-Step Procedure:

3-2
3-3
3-4

1. Enable Memory 3-5
2. Load a Program 3-6
3. Examine the Program 3-7

Memory Dump
Disassemble from Memory

4. Use the Analyzer 3-9
Get the First Cycles of Program
Sample the Bus
Set a Trigger on an Address

5. Use the Debugger 3-13
Set a Breakpoint to Establish Debug Control
Set Another Breakpoint
Single Step Through Code

Summary 3-16

Chapter Four: Getting Started-- The Menus, the Commands,
and the Special Features

Overview 4-2

1. Menu Mode

2. Command Mode
Command Tail and Batch Files
Using the Command Language
Trigger Specs: Theory and Conventions
Trigger Specifications: Examples

3e Special Features
Function Keys

-- Contents --

Cursor Keys: Traces and Line History
Windows
Viewing Textf iles
Cursor Key Summary

Page ii

4-4

4-19
4-20
4-23
4-24
4-27

4-33
4-34
4-36
4-41
4-49
4-51

Chapter Five: On-Line Help

1. Command Reference

2. Alphabetical Lookup

3. Reminders

4. Function Keys

5= Mode Panels

6. Help Screens: By Category

INDEX for volume one

July 16, 1986 Page iii

5-2

5-3

5-4

5-5

5-7

5-10

-- Contents --

VOLUME TWO
Reference Manual

Chapter Six: The UniLab in Detail

A Guide to This Chapter 6-2

1. Interpreting the Trace Display 6-5
What Each Column Means ••• Sample Traces ••• Moving
through Trace ••• Symbolic Names ••• Toggling Display
Options (Mode Panels)

2. Readying and Loading Memory 6-34
Emulation ROM ••• Getting Ready ••• Loading Programs
••• Saving Programs

3. Examining and Altering Memory 6-47
Memory Access ••• Read ••• Alter ••• Optional Assembler

4. Setting up a Trigger (generating a trace) 6-64
Simple Example ••• NORMx Words ••• RESETting ••• General
Purpose Triggers ••• Real-life Examples ••• Limits .••
Filtered Traces ••• Qualifying Events ••• Refining

5. Saving Information 6-90
Screen History ••• Log File ••• Printer ••• Trace Save •••
Symbol Table ••• Binary Image ••• SAVE-SYS

6. Breakpoints and the Debugger 6-100
Establish Debug Control ••• Breakpoint Display •••
Within the Debugger ••• Trigger-Style Breakpoints
••• Exit from Debugger ••• Disable

7. Burning Proms 6-125
Personality Modules ••• Plugging In ••• Checksums
••• Verify ••• 16-bit ••• Standalone ••• Macros

8. Generating Stimuli 6-135
How to do it

9. Special Keys 6-140
Function Keys ••• Cursor Keys

10. Mode Panels-- easy toggling of options 6-146
Analyzer ••• Display ••• Log

11. Windows 6-151

12. Histograms 6-152
When to Use ••• How to Make a Histogram

-- Contents -- Page iv

Chapter Seven:

Chapter Eight:

UniLab Command Reference

The Categories
The Commands

Target Notes

7-2
7-9

(software order #)
General Information •.•.•••..•.•••.••••••...••....... 8-2
1802/4/5/6 (disassembler only) •••••••••••• (DIS-18) ••• 8-5
6301/3 •••••••••••••••••••••••••••••••••••(DDB-63) ••• 8-7
6500 series where the SYNC output exists •• (DDB-65) ••• 8-10
6500 series piggyback devices w/o SYNC •••• (DDB-65P) •• 8-14
6800/2/8 with external memory at page 0 •• (DDB-68) ••• 8-18
6801/3 •••••••••••••••••••••••••••••••••••(DDB-681) •• 8-21
6802 without external RAM at page 0 •••••• (DDB-682) •• 8-24
6805 •••••••••••••••••••••••••••••••••••••(DDB-685) •• 8-25
6809 •••••••••••••••••••••••••••••••••••••(DDB-689) •• 8-30
68000 ••••••••••••••••••••••••••••••••••••(DDB-68K) •• 8-32
68008 ••••••••••••••••••••••••••••••••••••(DDB-688) •• 8-36
68HC11 •••••••••••••••••••••••••••••••••••(DDB-611) •• 8-38
8048/35/39/40/49/50 ••••••••••••••••••••••• (DDB-48) ••• 8-40
8051/31/32/52 & 8051P ••••••••• (DDB-51) & (DDB-51P) •• 8-45
8085 or 8080 ••••••••••••••••••••••••••••• (DDB-85) ••• 8-50
8086/186/286 & 8088/188 •••••••• (DDB-86) & (DDB-88) ••• 8-53
8094/5/6/7 •••••••••••••••••••••••••••••••(DDB-96) ••• 8-61
SUPER 8 ••••••••••••••••••••••••••••••••••(DDB-88) ••• 8-65
Z8 ••••••••••••••••••••••••••••••••••••••• (DDB-Z8) ••• 8-68
Z80 and NSC-800 and HD64180 •••••••••••••• (DDB-Z80) •• 8-72
Z8000 •••••••••••••••••••••••••••••••••••• (DDB-Z8K) •• 8-76

July 16, 1986 Page v -- Contents --

Chapter Nine: Troubleshooting

Explanation 9-2
Solutions in Depth:

Program hangs up on "Initializing UniLab ••• " message ••
Program hangs on initialization some of the time, not all of

the time •
RS-232 error message "RS-232 Error #XX" • • • • • • • • •
STARTUP does not work -- never get to see trace, or see

trace filled with garbage • • • • • • ••
Error message: "NO ANALYZER CLOCK" • • • • • • • • • • • •
Program runs, UniLab traces, but reads bad data from stack
Program runs and UniLab traces, but does not disassemble

properly •
Program runs, UniLab traces properly, but cannot set a

breakpoint-- gives a Debug Control not Established
message •

Program runs, UniLab traces properly, but cannot set a
breakpoint-- hangs with red light next to Analyzer
socket on until key pressed • • • • • • • • • • • • •

Bad Input buffers on the UniLab, as if an IC has been blown.
Screen flickers when you use PgUp key to look at line

history. • ••••••••••••••••••••••

APPENDICES:

Appendix A: UniLab Command and Feature List

Appendix B: Sources of Cross Assemblers

Appendix C: Cabling Chart

Appendix D: Custom Cables

Appendix E: Uni Lab II Specifications

Appendix F: Writing Macros

Appendix G: EPROMs and EEPROMs Supported

Appendix H: Microprocessors Supported

Appendix I: System Messages

Appendix J: .BIN files and .TRC files

INDEX for both volumes

-- Contents -- Page vi

9-3

9-5
9-6

9-8
9-10
9-12

9-13

9-14

9-15
9-16

9-17

Chapter Six:
The UniLab in Detail

Contents:

A Guide to This Chapter 6-2

1. Interpreting the Trace Display 6-5
What Each Column Means ••• Sample Traces ••• Moving
through Trace ••• Syrnbolic Names ••• Toggling Display
Options (Mode Panels)

2. Readying and Loading Memory 6-34
Emulation ROM ••• Getting Ready ••• Loading Programs
••• Saving Programs

3. Examining and Altering Memory 6-47
Memory Access ••• Read ••• Alter ••• Optional Assembler

4. Setting up a Trigger (generating a trace) 6-64
Simple Example ••• NORMx Words ••• RESETting ••• General
Purpose Triggers ••• Real-life Examples ••• Limits •••
Filtered Traces .•• Qualifying Events ••• Refining

5. Saving Information 6-90
Screen History ••• Log File ••• Printer ••• Trace Save •••
Symbol Table ••• ninary Image ••• SAVE-SYS

6. Breakpoints and the Debugger 6-100
Establish Debug Control ••• Breakpoint Display •••
Within the Debugger ••• Trigger-Style Breakpoints
••. Exit from Debugger ••• Disable

7. Burning Proms 6-125
Personality Modules ••• Plugging In ••• Checksums
••• Verify ••. 16-bit ••• Standalone ••• Macros

8. Generating Stimuli 6-135
How to do it

9. Special Keys 6-1 40
Function Keys ••• Cursor Keys

10. Mode Panels-- easy toggling of options 6-146
Analyzer ••• Display ••• Log

11. Windows 6-151

12. Histograms 6-152
When to Use ••• How to Hake a Histogram

July 15, 1986 Page 6-1 -- In Detail --

A Guide to this Chapter

rrhis chapter covers the capabilities of the UniLab II in
detail. It's meant primarily as a reference chapter.

Review: What the UniLab does

The UniLab lets you look at the bus activity on your
microprocessor control board. The UniLab captures a bus cycle in
its trace ouffer whenever your microprocessor:

writes data to memory,
reads data from memory,
sends to a port,
reads from a port,
or fetches an opcode from ROM.

Capture bus activity

The UniLab can "freeze" this trace buffer at any tirae, and
thus capture a record of bus activity. It then sends this record
to your host computer, where you can:

examine it,
compare it to previous traces,
save it,
or print it.

Each line of the trace display includes the address your
microprocessor is fetching from, reading from or writing to, and
the data that appeared on the bus. If you have your disassembler
enabled, you will also get the assembly language instructions
that were fetched from ROH.

See: Section One: Interpreting the Trace Display

Program memory

Before you can capture a trace of your program, you have to
load it into the UniLab's emulation memory (except when you run
the program from a PHOM chip-- see page 6-38).

See: Section Two: Readying and Loading Memory.

Once you have the program in emulation ROM, you can look at
the program, and change it.

See: Section Three: Examining and Altering Memory.

-- In Detail -- 6-2

capture the activity you need to see

You want to look at only a few of the millions of bus cycles
that happen each second. You tell the UniLab what cycles you
want to see by describing a "trigger event." The UniLab watches
for that event on the bus.

See: Section Four: Setting a Trigger (generating a trace).

Record what you did

You can save any trace, any section of memory, or the
current symbol table. You can also save the current state of the
UniLab software.

While working with the UniLab, you can send all screen
displays to the screen and also a file or a printer or both. You
can also choose a mode which logs on the printer only the
commands that access memory.

See: Section Five: Saving Information.

Look at the Internal State of the Processor

You can set a breakpoint in your program, and then restart
the target board. The program will run to the breakpoint, then
show you the register display when it stops.

After you have gained debug control you can:

continue to another breakpoint,
single step through your program,
examine and change RAM, emulation ROM, and internal

registers,
or leave debug control.

See: Section Six: Breakpoints and the Debugger.

Save your code to silicon

Once you've completed testing your program, you can program
an EPROM or EEPROM with the UniLab. See Appendix G for a list of
PROMS that Orion supports.

See: Section Seven: Burning PROMs.

July 1 5, 1 986 Page 6-3 -- In Detail --

"Mock up" peripheral inputs

Sometimes you need to see how your microprocessor board
responds to an input from a peripheral device. The stimulus
generator of the UniLab allows you to produce any 8 bit signal
you want-- or toggle individual lines.

See: Section Eight: Generating Stimuli.

Make use of special features and shortcuts

The UniLab makes full use of the function keys of your
personal computer, including ALTered, SHIFTed, and CTRLed
function keys, and the keys of the numeric key pad.

Some of the function keys are pre-assigned to help screens
(see On-Line Help chapter) or to commands. The others are left
available for you to assign as you please.

See: Section Nine: Special keys. See also Chapter Four.

Function key 8 has a special effect-it gives you access to
the pop-up panels, where you can easily change many options,
including display and logging features.

See: Section Ten: Mode Panels.

Function key 2 also is special-- it splits the screen,
giving you the ability to look at different parts of your trace
at the same time, or to examine a textfile while looking at a
breakpoint display, or •••

See: Section Eleven: Windows. See also Chapter Four.

The Software Graphical Performance Measurement option gives
you the ability to generate histograms of your target program's
activity.

See: Section Twelve: Histograms.

-- In Detail -- 6-4

1. Interpreting the Trace Display

Introduction

This section covers the trace display-- the record of bus
activity that the UniLab captures for you.

The trace examples show a Z80 processor and an Intel 8096
processor.

Why you care about the trace display:

You want to find the bugs in your system. Bugs cause
undesirable behavior in your system, which you can track down by
looking at the record of bus activity on your board-- the trace
display.

Contents

1.1 Feature Summary 6-6

1. 2 The Trace: What Each Column Means 6-8

1. 3 Sample Traces 6-10

1. 4 Moving through the Display 6-17

1.5 Symbolic Names in the Display 6-21

1. 6 Toggling Display Options 6-28

July 1 5' 1986 Page 6-5 -- In Detail

-- Interpret the Trace

~ Feature Summary

While you are examining a trace, you can turn these options
on and off:

Option

Disassemble code
Substitute symbolic names

for numbers
Show CONTrol column
Show MISCellaneous column
Binary number base for MISC
Fixed header
Stop display after each screen
Define symbolic names
Show source lines in trace

Mode panels:

Mode

1. ANALYZER modes
DISASSEMBLEH
SYMBOLS

-- In Detail --

2. DISPLAY modes
MISC COLUI1IN
cowr COLUMN
MISC # BASE
PAGIHATE
FIXED HEADEH

Panel

Yes

Yes
Yes
Yes
Yes
Yes
Yes
NO
NO

6-6

Commands

OASM OASM'

SYMB SYMB'
SHOWC SHOWC'
SHOWM SHOWM'
2 =MBASE
HOG HOG'

PAGINATE PAGINATE'
IS SYMFILE SYMLOAD

SOURCE SOURCE'

Commands:

OASM OASM'
SYMB SYMB'

SHOWM SHOWM'
SHOWC SHOWC'

=MBASE
PAGINATE PAGINATE'

HOG HOG'

-- Interpret the Trace --

You can look at any portion of a trace you want:

Feature Cursor key

Show trace from top
Show next step of trace
Show next page of trace
Show trace from step <n>

(resets default to n)
Show trace from step <n>, with no

effect upon the default
Dump trace buff er from UniLab

HOi:ViE
Down Arrow
PgDn

none

none
none

You can save and compare traces (details in Saving
Information) :

Feature Command

Command

TT
none
TR

<n> TN

<n> TNT
TD

Save a trace to a file TSAVE <file name>
Compare last <n> cycles of saved trace to

current trace <n> TCOMP <file name>
Coillpare saved trace to result of current

trigger specification <count> SC <file name>

July 15, 1986 Page 6-7 -- In Detail --

-- Interpret the Trace --

1.2 The Trace: What Each Column Means

The header line of the display labels all but one of the
columns:

cyl CONT ADR DATA HDATA MISC
(unlabeled column)

Each column displays a different piece of information:

cyl shows you what cycle you are looking at, relative to
the trigger event. The trigger event is always labeled
as cycle zero.

CONT

This column starts with an f when you produce a
filtered display.

shows you what the UniLab sees on the control inputs,
and on the upper four bits of the address inputs.

The UniLab uses four of its inputs, labeled as

C7, C6, CS, and C4

to determine whether the bus cycle is a fetch, read, or
write. r11he first digit of the CONT column shows those
four inputs as a hexadecimal digit. The disassembler
needs this information, but you can ignore it-- except
when you are trouble shooting the wiring of the
connection from your UniLab to your target board.

The second digit shows the four highest bits of
the 20 bit address inputs to the UniLab, labeled as

A19 through A16.

While working with most 8-bit processors, these
wires are not attached to anything, and so float high,
at logic level one. The ZBO, 8085, and NSC-800
processors don't follow this general rule-- they have
one of these upper four wires connected to a processor
pin. See the explanation on page 6-13.

You can use the mode panel (hit function key 8) to
hide this column.

ADR shows the first 16 bits of the address bus,
AO through A15. See the Disassembler Note below.

The highest four bits, A16 to A19, appear as the
right-hand digit in the CONT column.

-- In Detail -- 6-8

DATA

-- Interpret the Trace --

shows you what data was put on the bus. Depending on
the type of the cycle, that "data" is either a data
vaiue or a machine ianguage instruction. The data is 8
bits or 16, depending on the processor.

The center (unlabeled) column

HDATA

MISC

shows the disassembled instructions. Data reads and
writes are also identified.

This column appears when you are working with the
disassembler enabled, as you usually will.

shows you what values the UniLab reads on 08 through
015. This column only appears with 8 bit processors.

The UniLab doesn't use the full 16 bits of data
input when working with processors that have an 8 bit
wide external data bus. That makes these 8 inputs
available to you for gathering more information about
the outputs of other chips or ports on your board.

shows you what values the UniLab reads on MO through
M7, the MISCellaneous inputs. These wires are always
available for you to connect anywhere you want on your
board.

The number base is normally binary, but you can
change it with the mode panel (F8). You can also use
the mode panel to hide this column.

Disassembler note

With a processor-specific disassembler enabled, each line of
the trace shows a complete assembly language instruction, no
matter how many bytes it takes. On those lines that show an
instruction which takes more than one cycle to fetch from memory,
the cyf column contains the cycle number of the first fetch, and
the ADR column contains the address of the first byte of the
instruction (the first word on 16-bit processors).

The MISC and HDATA columns show only the state of those
inputs during the last cycle of the instruction. Use the mode
panel (F8) to turn off the disassembler if you want to see the
state of these inputs during every bus cycle.

July 1 5, 1 986 Page 6-9 -- In Detail --

-- Interpret the Trace

1.3 Sample Traces

This section shows two sample traces and explains the first
few lines of both in detail.

The 8-bit processor example shows the Orion test program for
a Z80 processor. The 16-bit processor example shows a trace of
the test program for the Intel 8096.

A trace of the test program for your processor appears in
the Target Notes chapter, and also in the Disassembler/Debugger
writeup for your processor.

-- In Detail -- 6-10

-- Interpret the Trace --

An 8 bit processor: zao trace

The following display shows a trace of the test program for
the Z80 microprocessor. The test program was first loaded into
the UniLab from disk with LTARG, and then started up with
STARTUP. The STARTUP command captures a trace of the bus cycles
starting at the reset address-- for the Z80, address 0000.

cyl CONT ADR DATA
0 B7 0000 310019
3 B7 0003 3E12
5 B7 0005 015634
8 B7 0008 119A78
B B7 OOOB 21DEBC
E B7 OOOE CS
F D7 18FF 34 write

10 D7 18FE 56 write
11 B7 OOOF C1
1 2 F7 18FE 56 read
13 F7 18FF 34 read
1 4 B7 0010 3C
15 B7 0011 3C

2B B7 0027 3C
2C B7 0028 3C
2D B7 0029 C30300
30 B7 0003 3E12

LD SP,1900
LD A, 12
LD BC,3456
LD DE,789A
LD HL,BCDE
PUSH BC

POP BC

INC A
INC A

INC A
INC A
JP 3
LD A,12

HDATA MISC
11111111 1 1 1 1 1 1 1 1
11111111 11111111
11111111 11111111
11111111 11111111
1 1 1 1 1 1 1 1 11111111
11111111 11111111
11111111 11111111
1 1 1 1 1 1 1 1 11111111
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11111111 11111111
11111111 1 1 1 1 1 1 1 1
11111111 11111111
11111111 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

This simple program is an infinite loop. It first
initializes several registers, starting with the stack pointer.*

Then the program pushes a value on the stack and pops the
same value, to demonstrate the working stack. Notice the cycles
associated with memory reads and writes. These show you register
and memory locations, just when you most want to know them.

After that come a series of "increment register A"
instructions. The last command in the program, at address 29H,
is an unconditional jump back to address 3, so that the program
goes back to the second instruction.

* You must have a working stack for debugger commands to work.

July 15, 1986 Page 6-11 -- In Detail --

Interpret the Trace --

An examination of the first two lines

This section dissects the first two lines of the Z80 trace.
For the sake of simplicity, the HDATA and MISC columns (which
were not attached to anything on the board) are not displayed.

cyil
0
3

B7 0000 310019
B7 0003 3E12

LD SP,1900
LD A,12

The first line of the display starts with cycle zero, which
means that this cycle was the "trigger event."

The UniLab trace buffer captured a 31 on bus cycle o, 00 on
bus cycle 1, and 19 on cycle 2. These hexadecimal numbers were
then translated by the disassembler into LD SP,1900.

The second line is labeled as cycle three, which lets you
know that the Z80 microprocessor required three bus cycles to
read the first instruction from ROM.

CONT
0 B7 0000 310019
3 B7 0003 3E1 2

LD SP,1900
LD A,12

The CONTrol column shows two different types of information.
The high four bits of the byte (nibble) shows the control inputs,
C4 through C7. The low nibble shows the highest four bits of the
address inputs, A16 through A19. Both nibbles are important to
the proper functioning of the disassembler and emulation ROM.
You will only have to pay attention to this column if you suspect
that the wires carrying these signals are improperly connected.

The high nibble is used by the processor-specific
disassembler to distinguish between cycle types.

If the wires that carry the control signals have been
incorrectly connected, then the disassembler will not work
properly. The disassembler needs these control signals to
classify each bus cycle as a fetch or read or write.

The first two lines both show the microprocessor fetching an
instruction from ROM. With the Z80, B in the control column
always indicates an instruction fetch, D marks the write cycles,
and F marks a read.

-- In Detail -- 6-12

CONT
0 B7 0000 310019
3 BJ 0003 3E1 2

LD SP,1900
LD A,12

-- Interpret the Trace --

The low nibble carries information that is used by the
emulation ROM. It is useful while troubleshooting, but otherwise
is only for the curious. If you are curious, read on.

If the value of this nibble matches the value set by =EMSEG
then the UniLab's emulation ROM will check whether the address is
enabled.

The emulation ROM will put data on the bus only when the low
16 bits of the address fall into an enabled range (EMENABLE) and
the number on inputs A16 through A19 match =EMSEG. ~-

Every line of the ZBO test program display will have 7 as
the upper four bits of the address. Three of the address inputs
to the UniLab, A18, A17, and A16, are left to float high.

A19, however, is connected to the MREQ pin of the
microprocessor. This "active low" output of the ZBO goes low
when the processor Memory is REQuired. The Z80 needs memory
access on all bus cycles, except when it is writing to or reading
from a port.

Thus, these four inputs to the UniLab are usually 0111,
which is hexadecimal 7. When the MREQ signal goes high, the 7
becomes F-- for example, when the ZBO is addressing a port
address rather than memory.

If you have a different processor, your UniLab's inputs will
be connected differently.

ADR
0 B7 0000 310019
3 B7 0003 3E12

LD SP,1900
LD A,12

The first line shows address 0000, the reset address for the
ZBO. The zao starts executing code from this address whenever
it receives a reset signal. The second line shows address 0003,
since the first instruction occupies bytes at addresses O, i,
and 2.

July 15, 1986 Page 6-13 -- In Detail --

Interpret the Trace

DATA
0 B7 0000 310019 LD SP,1900

The first byte of the first instruction is 31 hex, which
decodes as a command to load an immediate value into the stack
pointer. The stack ~ointer of the Z80 holds a 16 bit value.

DATA
0 B7 0000 310019 LD SP,1900

That immediate value is 1900. Notice that the two bytes
appear on the bus in reverse order, following the Intel
convention, rather than the one adopted by Motorola.

DATA
0 B7 0000 310019
3 B7 0003 3E12

LD SP,1900
LD A,12

The second instruction loads an immediate value into the A
register. This register of the zao only holds an eight bit
value.

DATA
0 B7 0000 310019
3 B7 0003 3E12

LD SP,1900
LD A,12

The whole instruction only takes up 2 bytes, since the Z80
only needs one byte of data for the A register.

-- In Detail -- 6-14

-- Interpret the Trace --

An 8096 trace-- 16-bit processor

The display below shows the trace of the test program for
the 8096. The trace is shown only to highlight the difference
between an 8-bit trace and a 16-bit trace.

Notice that there is no HDATA column in the trace, and that
instead the UniLab shows 16-bits of data for each bus cycle.

The 8096 has a full 16-bit external data bus. With each bus
cycle, the UniLab records a 16-bit word of either opcode or data.

A brief discussion of the trace appears on the following
page.

cyf CONT ADR DATA
0 FF 2080 A1004118
2 FF 2084 A100A01C
4 FF 2088 A100B01E
6 FF 208C A100C020
8 FF 2090 A100D022
A FF 2094 CA1C
C EF AOOO AOOO
D CF 40FE AOOO
B FF 2096 CE1C
F EF 40FE AOOO

10 CF AOOO AOOO
E FF 2098 071C

11 FF 209A 071C
12 FF 209C 071C
13 FF 209E 071C
14 FF 20AO 071C
15 FF 20A2 071C
16 FF 20A4 071C
17 FF 20A6 071C
18 FF 20A8 071 C
19 FF 20AA 071C
1A FF 20AC 071C
1B FF 20AE 071C
1C FF 20BO E7E5FF
1F FF 2098 071C
20 FF 209A 071C

LD
LD
LD
LD
LD
PUSH

read
write

POP
read
write

INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
INC
LJMP
INC
INC

SP,#4100
AX,#AOOO
BX,#BOOO
CX,#COOO
DX,#DOOO
[AX]

[AX]

AX
AX
AX
AX
AX
AX
AX
AX
AX
AX
AX
AX
2098
AX
AX

MISC
11111111
11111111
11111111
1 1 1 1 1 1 1 1
11111111
1 1 1 1 1 1 1 1
11111111
11111111
11111111
11111111
1 1 1 1 1 1 1 1
11111111
11111111
11111111
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
11111111
1 1 1 1 1 1 1 1
11111111
1 1 1 1 1 1 1 1
11111111
11111111
11111111
1 1 1 1 1 1 1 1
11111111
11111111

This simple program functions just about the same as the Z80
test program. Both are infinite loops that first initialize
several internal registers, nex~t push and. pop a value, and then
go through a series of "increment A" instructions.

The last command of the 8096 test program is a jump back to
the first "increment A" instruction.

July 15, 1986 Page 6-15 -- In Detail

Interpret the Trace --

CONT
0 FF 2080 A1004118 LD SP,#4100

Remember that you can usually ignore the CONT column.
But if you want to pay attention to it, notice that for the 8096,
F marks a fetch, C marks a write and E marks a read cycle.

CONT
0 FF 2080 A1004118 LD SP,#4100

All four of the high address inputs to the UniLab,
A19 through A16, float high. They are not attached to anything
on the target board.

ADR
0 FF 2080 A1004118 LD SP,#4100

The reset address for the 8096 is 2080. Contrast this to
the Z80, which has a reset address of 0000.

DATA
0 FF 2080 A1004118
2 FF 2084 A100A01C
4 FF 2088 A100B01E

LD
LD
LD

SP,#4100
AX,#AOOO
BX,#BOOO

The opcode A1 decodes as a load of an immediate value into
an internal register.

DATA
0 FF 2080 A1004118
2 FF 2084 A100A01C
4 FF 2088 A100B01E

LD
LD
LD

SP,#4100
AX,#AOOO
BX,#BOOO

The last byte of the 4 byte instruction tells the 8096 which
register to load the immediate value into.

DATA
0 FF 2080 A1004118
2 FF 2084 A100A01C
4 FF 2088 A100B01E

LD
LD
LD

SP,#4100
AX, #AOOO
BX,#BOOO

The two-byte immediate value appears on the bus as the
second and third bytes of the instruction. As with the zao, the
bytes appear on the bus in reverse order.

-- In Detail -- 6-16

-- Interpret the Trace --

1.4 Moving through Your Trace Display

When the UniLab sends its trace buffer to the host machine,
the host displays it starting from either cycle 0 or whatever
cycle number was last set with <n> TN.

You will sometimes see everything you needed to know in the
first screenful of the trace.

But much of the time you will need to look at a different
part of the trace.

A small but complete set of commands moves you through the
trace buffer.

Dumping the trace

Usually the UniLab will automatically dump the trace into
the host computer. But if the trace buffer in the UniLab does
not fill (especially when producing aa filtered trace) then you
will need to manually dump the trace to the host, with TD.

Look at next line of trace

Use the Down Arrow key (number 2 on the numeric key pad) to
see the line of the trace that follows the "current" line.

The current line is usually the last one that you displayed
on the screen. However, refer to the discussion of the history
mechanism on the second page following.

Look at the next screen of trace

Use the Pg Dn key (number 3 on the numeric key pad) to see
the next screenful of the trace, starting from the "current" line
(or use the command TR).

July 15, 1986 Page 6-17 -- In Detail --

-- Interpret the Trace --

Look at the trace, starting from cycle number <N>

Use one of the two commands: <n> TN or <n> TNT •

. TN will also reset the default cycle number that T displays
from (normally -5).

Use TN'l' to look at a particular cycle of the trace, without
changing the default used by T.

To look at the trace starting from the top

The HOME key (number 7 on the numeric key pad) shows you the
trace from the top (or use the command TT).

-- In Detail -- 6-18

-- Interpret the Trace --

The trace and the "history" mechanism

Everything that goes by on the full screen or the lower
window gets saved by the history mechanism of the UniLab. This
handy'feature allows you to review your past actions and past
traces.

The PgUp key (number 9 on the numeric key pad) shows you one
screen full of history.

The Up Arrow key (number 8 on the numeric key pad) shows you
one line of the history.

Cursor Key Assignments for Viewing Trace Buffer Display

Trace Display Previous Line

Trace Display
Top of Buffer • [][][]
Toggle betveen ~
Upper & Lover
Vindow End •

Trace Display
Previous Screen

Trace Display
Next Screen

Trace Display Dovn One Line

July 15, 1986 Page 6-19 -- In Detail --

-- Interpret the Trace --

The trace, the history, and the Down Arrow

The UniLab "remembers" the cycle number of the last line of
trace buffer you saw. Whenever you use one of the trace commands
that start displaying from the "current" cycle number
(PgDn, TR, or Down Arrow), the UniLab will normally start the
display from after that last line.

However, if you use the Up Arrow and PgUp keys to look at
the history of your session, you can end up with the cursor
sitting on a line of trace display. The UniLab will temporarily
call that cycle the current cycle.

If that is what you want, then you don't need to worry. But
if instead you want to start displaying from the line of the
trace buffer that you last displayed, first hit ENTER to get the
cursor to a blank line, and then use any display command.

-- In Detail -- 6-20

. ..\
.,_;)

~

Interpret the Trace --

1.5 Symbolic Names in the Trace Display

Most people find it convenient to assign symbolic names to
numbers. For example, LOOP.START conveys more information than
address 2098. You will find your traces easier to read if you
have symbolic names assigned to important addresses, ports and
data.

You can load in the symbol table that your assembler
generated, and -have the same symbolic names that your source
program assigned.

Or you can assign symbolic names one by one, using the IS
command to give names to numbers.

You should not use a symbol name that is identical to a
UniLab command. That would prevent you from using the command
because the new interpretation of the name takes precedence.

Entering SYMB' tells the UniLab to ignore the symbol
definitions.

slsp. -ro t.f(r;."A~-;";

/.), 5,. t;. ,f\U,S(

~~- ~L~/ <~Ii: . tJ 13..J / To <. rl 1,:. 4c.S ") T..Yt.E-F (. 6et..15~f6())
T1--)1 s. 1.NrLL t c~N , A- Lt~T f1Le Nt71-f '"15;"/ 8'.li;f..-i .,AJ

~ S.'"f,.,, File- < FilBAIAJ..1~. l-\S-1/ 'Fe---·-~!Af~·-r ~r~.

{§) /;(~ S'j',J\ ''J fl? 'fo 'H /J() I~ L t>t!ivS: l - Aot.JA Pi'r"

July 15, 1986 Page 6-21 -- In Detail --

-- Interpret the Trace --

Choosing symbol file formats

Enter the SYMTYPE command to get the menu of predefined
symbol table formats:

SYMBOL FILE FORMAT MENU

F1 2500AD SOFTWARE
F2 2500AD SOFTWARE (ABBREVIATED)
F3 ALLEN ASHLEY
F4 MANX AZTEC C
F5 AVOCET
F6 OTHER FIXED FORMAT

F10 RETURN TO COMMAND MODE

At this point you can select the desired format from the menu.
If the format you require is not on the menu, see the subsection
on SYMFIX on page 6-27 and in Chapter Seven.

Enter SAVE-SYS to make the selection permanent. (You can
still change it again with SYMTYPE, then save the system again.)

If you don't use SAVE-SYS, the format you choose will only
be used during the current session with the UniLab.

Load symbol table from file

After choosing the symbol file format, use:

SYMFILE <filename>

to load symbols in from a file. You will be prompted for the
file name if you do not include it on the command line.

SYMFILE clears out the symbol table before loading the file.
You can load in several symbol files, by using SYMFILE+ to load
each additional file.

-- In Detail -- 6-22

-- Interpret the Trace --

Define individual symbols

A single symbol can be defined at any time with:

<n> IS <name> •

For example if you enter 1234 IS DELAYLOOP, then DELAYLOOP will
be displayed instead of the 1234, whenever 1234 occurs on the
trace display.

You can also use DELAYLOOP in trigger specs, or to set
breakpoints. For example:

DELAYLOOP AS

Toggle symbol translation on and off

To turn the symbol translation feature on for the trace
display with SYMB or the Mode Panel (function key 8). Use the
Mode Panel or SYMB' to turn the symbol translation off.

Note that enabling translation of the symbols will not
change anything unless you have some symbols defined.

You can greatly improve readability of a hex trace by
identifying the crucial subroutines and storage areas. If you
are programming in a high-level language you can identify the
run-time routines for improved readability.

You can redefine a symbol at any time, simply by using with
IS to define it again (only the most recent definition will be
found). You cannot clear out only one symbol definition, but you
can forget an entire symbol table with CLRSYM.

Save a symbol table as a file

You can save an existing symbol table as a named file with
SYMSAVE, and reload a previously saved table from disk with
SYMLOAD.

July 15, 1986 Page 6-23 -- In Detail --

-- Interpret the Trace --

Setting the size of the symbol table

You can allocate up to hexadecimal 80 K (128K decimal) to
the symbol table.

The size of the symbol table is set by giving the command:

<hex # of Kbytes> =SYMBOLS

then saving the newly altered UniLab software with SAVE-SYS. You
must exit the program with BYE and start it again.

The size of the symbol table is allocated when the program
starts up, and cannot be changed on the fly.

Use the command ?FREE to find out how many bytes are
allocated to the symbol table and to the line history. That
display appears in decimal base, not hexadecimal.

-- In Detail -- 6-24

-- Interpret the Trace --

Symbol example

The trace printout below shows a disassembled trace with
symbol translation.

First eight symbol names were entered by hand:

1900 IS !nit.Stack
3 IS Start.Loop
29 IS End.Loop
10 IS First.IncA
3456 IS !nit.BC
789A IS !NIT.DE
BCDE IS INIT.HL
28 IS LAST.INCA

And then F9 was pressed, to get a trace of the startup:

cyl ADR DATA
0 0000 310019 LD SP,INIT.STACK
3 START.LOOP 0003 3E12 LD A,12
s ooos 01S634 LD BC,INIT.BC
8 0008 119A78 LD DE,INIT.DE
B OOOB 21DEBC LD HL,INIT.HL
E OOOE CS PUSH BC
F 18FF 34 write

10 18FE S6 write
11 OOOF C1 POP BC
12 18FE S6 read
13 18FF 34 read
1 4 FIRST.INCA 0010 3C INC A
1S 0011 3C INC A

2A 0026 3C INC A
2B 0027 3C INC A
2C LAST.INCA 0028 3C INC A
20 END.LOOP 0029 C30300 JP START.LOOP
30 START.LOOP 0003 3E12 LD A,12
32 ooos 01S634 LD BC,INIT.BC
3S 0008 119A78 LD DE,INIT.DE
38 OOOB 21DEBC LD HL,INIT.HL
3B OOOE cs PUSH BC

July 1S, 1986 Page 6-2S -- In Detail --

Interpret the Trace --

After these symbols have been loaded in, you can set a
trigger or a breakpoint using the symbolic name:

LAST.INCA AS

The last example, below, shows breakpoint displays with
these same symbols defined:

RESET END.LOOP RB resetting

AF=2B28 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900 PC=0029
END.LOOP 0029 C30300 JP START.LOOP (next step) ok

SSTEP NMI
AF=2B28 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900 PC=0003
START.LOOP 0003 3E12 LO A,12 (next step) ok

N
AF=1228 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900 PC=0005

0005 015634 LO BC,INIT.BC (next step) ok

-- In Detail -- 6-26

Interpret the Trace --

Reading other symbol table file formats

If the format you need is not included in the SYMTYPE menu,
use SYMFIX to describe the format of other fixed length format
files.

Fixed length format

The SYMFIX- command is used to define parameters for any
symbol file format which uses fixed length records. The 6
parameters for the SYMFIX command are as follows:

a =
b =
c =
d =
e =
f =

Examples

offset from start of record to start of name field.
1 if address is 4 ASCII digits or 0 if 16-bit binary.
offset from start of record to start of addr field.
1 if binary address has most significant byte first.
pad characters used to fill between symbols.
record length in bytes

The format of the 2500AD global symbol table is:

0 0 21 1 0 24 SYMFIX

The format for the ALLEN-ASHLEY symbol table is:

0 1 D 0 21 12 SYMFIX

Variable length format

If you have a variable length format symbol file, use the
AVOCET choice in the menu if the format is NAME followed by
VALUE.

Use the MANX AZTEC C choice if the format is VALUE followed
by NAME.

July 15, 1986 Page 6-27 -- In Detail --

-- Interpret the Trace --

1.6 Toggling Display Options On and Off

You can alter the way the trace gets displayed on your
screen. Depending upon what you need, you can do everything from
displaying only machine code to displaying source code lines in
your trace.

You can change these options, either from the mode panels or
with commands, ~s detailed in the following pages:

Disassemble code

Substitute symbolic names for numbers

Show CONTrol column

Show MISCellaneous column

Binary number base for HDATA and MISC

Fixed header

Stop display after each screen

Show source lines in trace.

-- In Detail -- 6-28

-- Interpret the Trace --

Disassembly

When you don't want or don't need to see the assembly
language instructions that each opcode represents, you can turn
off the disassembler and then look at the same trace again. The
disassembler remains off until you turn it on again.

Mode Panel:
1. ANALYZER modes

DISASSEMBLER
SYMBOLS
RESET

Command:

DASM DASM'

The display below shows the first fourteen cycles of the Z80
test program, with the disassembler on and with the disassembler
off.

The LD A,12 instruction is underlined and the PUSH BC
instruction is highlighted in both traces. The disassembled
display has been extended so that cycle numbers will match up.

DISASSEMBLER ON DISASSEMBLER OFF

cyl ADR DATA + cyf ADR DATA
0 0000 310019 LD SP,1900 + 0 0000 31

+ 1 0001 00
+ 2 0002 19

3 0003 3E12 LD A, 12 + 3 0003 3E
+ 4 0004 12

5 0005 015634 LD BC,3456 + 5 0005 01
+ 6 0006 56
+ 7 0007 34

8 0008 119A78 LD DE,789A + 8 0008 11
+ 9 0009 9A
+ A OOOA 78

B OOOB 21DEBC LD HL,BCDE + B OOOB 21
+ c oooc DE
+ D OOOD BC

E OOOE cs PUSH BC + E OOOE CS
F 18FF 34 write + F 18FF 34

1 0 18FE 56 write + 1 0 18FE 56
1 1 OOOF C1 POP BC + 1 1 OOOF C1
1-2 18FE 56 read + 12 18FE -56
1 3 18FF 34 read • 13 18FF 34
1 4 0010 3C INC A + 14 0010 3C

July 15, 1986 Page 6-29 -- In Detail

-- Interpret the Trace

Translate symbols

When you load a symbol table or define a symbol, symbol ·
translation gets turned on. However, you may want to turn symbol
translation off, to see the numeric values more easily.

Turn symbol translation on and off with the mode panel or
with the commands:

-- In Detail --

Mode Panel:
1. ANALYZER modes

DISASSEMBLER
SYMBOLS
RESET

6-30

Commands:

SYMB SYMB'

-- Interpret the Trace --

Show or hide MISCell~neous column

When your MISC wires (MO through M7) are connected to
signals on your board, you will want to.see the sign~ls
displayed. Otherwise that display just clutters up the screen.

This also hides the HDATA column on 8 bit processors.

Turn it off and on with the mode panel or with the commands:

Mode Panel:
2. DISPLAY modes

MISC COLUMN
CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER

Show or hide CONTrol column

Commands:

SHOWM SHOWM'

When you are troubleshooting, you will need to see the CONT
column.

Most of the time it represents needless clutter-- unless you
need to routinely see the full 20-bit address.

Turn it off and on with the mode panel or with the commands:

July 1 5 I 1 9 8 6

Mode Panel:
2. DISPLAY modes

MISC COLUMN
CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER

Page 6-31

Commands:

SHOWC SHOWC'

-- In Detail --

-- Interpret the Trace --

Change the MISCellaneous display number base

When you have the MISC inputs connected to a port or a
register, you will probably want to display that column in octal
or hexadecimal, rather than in binary.

This feature alters the display base of the HDATA column at
the same time.

Alter this variable with a command, or toggle between binary
and octal with the mode panel:

-- In Detail --

Mode Panel:
2. DISPLAY modes

MISC COLUMN
CONT COLUMN
MISC I BASE
PAGINATE
FIXED HEADER

6-32

Command:

<n> =MBASE

-- Interpret the Trace --

Stop after each screenful of trace

You usually want the display to stop after each screenful of
display. But sometimes, when you are sending data to a file or
a printer, you might want to have the whole trace scroll on by.

Turn this option off and on-with the mode panel or with
the commands:

Mode Panel:
2. DISPLAY modes

MISC COLUMN
CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER

Have a fixed header for the display

Commands:

PAGINATE PAGINATE'

This little extra allows you to have a fixed header on your
lower display window, if you want.

Turn it off and on with the mode panel or with the commands:

July 15, 1986

Mode Panel:
2. DISPLAY modes

MISC COLUMN
CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER

Page 6-33

Commands:

HDG HDG'

-- In Detail --

2. Readying and Loading Memory

Introduction

This section covers emulation memory--

how to tell the UniLab what addresses to emulate,
how to load information into emulation ROM,
and how to save the data in emulation ROM.

The UniLab controls your target processor by emulating
program memory~ When the processor tries to fetch instructions
or data from an address that has been emulator enabled
(EMENABLE), the UniLab's emulation ROM responds on the bus.

Remember that the UniLab replaces your ROM rather than your
microprocessor, and then watches the bus while the processor
runs.

Contents

2. 1 Feature Summary 6-35

2.2 What is Emulation ROM 6-36

2.3 Getting Ready 6-38

2.4 Loading Programs 6-42

2.5 Saving Programs 6-46

-- In Detail -- 6-34

-- Loading Emulation ROM --

2.1 Feature Summary

Feature Menu Commands

Yes ESTAT Report Emulation STATus
Choose 64K Segment
Enable 2K blocks within

Yes <hex digit> =EMSEG

64K segment
Load from an Intel HEX

format file

Yes <addr> EMENABLE

Yes HEXLOAD
Load from a binary file
Save a block of memory

to disk

Yes <from addr> <to addr> BINLOAD

Yes <from> <to> BINSAVE
Enable minimal memory and

load test program
Load from a ROM

Yes LTARG
Yes Commands are

available, but the use of
the menus is recommended

Commands: .Menus:

ENABLE PROGRAM MEMORY MENU

ESTAT F1
<addr> EMENABLE F2

ALSO <addr> EMENABLE F3

DISPLAY CURRENT STATUS OF EMULATION MEMORY
ENABLE ONE BLOCK OF EMULATION MEMORY
ADD ANOTHER BLOCK OF MEMORY

=EMSEG F4 SET A16-A19 MEMORY SEGMENT BITS
DISABLE ALL EMULATION MEMORY EMCLR F5

HEXLOAD
<from> <to> BINLOAD
<from> <to> BINSAVE

LTARG

<from> <to> RP ROM
<from> <to> R2532
<from> <to> R2732A
<from> <to> RP ROM

F10 RETURN TO MAIN MENU

LOAD OR SAVE PROGRAM MENU

F1 LOAD INTEL HEX FILE
F2 LOAD BINARY OBJECT FILE
F3 SAVE A BLOCK OF MEMORY TO DISK FILE
F4 LOAD A SAMPLE PROGRAM

F10 RETURN TO MAIN MENU

PROM READER MENU

F1 READ 2716/48016 - use PM16
F2 READ 2532 - use PM16
F3 READ 2732 - use PM32
F4 READ 2764 - use PM64

<from> <to> RP ROM F5 READ 27128 - use PM64 PM56 for 27128A)
<from> <to> RP ROM F6 READ 27256 - use PM56
<from> <to> R27512 F7 READ 27512 - use PM512

F9 Goto Prom Programmer Menu
F10 RETURN TO MAIN MENU

See also Appendix G for more info on EPROMs.

July 15, 1986 Page 6-35 -- In Detail --

-- Loading Emulation ROM --

2.2 What Is Emulation ROM ?

You use the UniLab to watch the execution of a program on
your microprocessor board. Microprocessors usually run a program
that is loaded into ROM or RAM. While using the UniLab, you load
the program into emulation ROM.

32K or more of emulation memory

The standard UniLab contains 32K bytes of 195 ns static RAM
which functions as emulation ROM. An optional expansion board
can expand this capacity up to 128K bytes. This RAM appears to
the target system as ROM, and cannot be altered by the target
microprocessor.

cable Connections

Most of the data and address lines are connected by plugging
the emulator cable into a single PROM socket in the target
system, as explained in the Installation chapter (two sockets for
a 16 bit data bus).

Many ROMs can be emulated with one connection socket, but
the sockets of emulated ROM must be empty to prevent bus
contention.

Using the Emulator without the Analyzer

The analyzer cable must be hooked up for the emulator to
operate properly. In the unlikely event that you want to use the
emulation ROM without using the analyzer, you must still connect
the analyzer cable from the UniLab to your board.

The UniLab must see the full address bus to emulate
properly, and some of the address signals are picked up by the
analyzer cable.

-- In Detail -- 6-36

-- Loading Emulation ROM --

20-bit addresses

Since the UniLab accepts a 20 bit address input, it can
handle target systems with up to 1 megabyte of active memory, or
even more if you connect chip select logic to the A19 input to
the UniLab.

Emulate throughout a 128K region

Any como1na~1on of 2K byte memory segments can be enabled,
as long as they are all in the same 128K region. That is, you
can emulate 2K chunks scattered throughout the range COOOO
through DFFFF, since that forms one 128K region.

However, you would not be able to emulate some memory within
the range 10000 to 1FFFF and other memory in the range 30000 to
3FFFF, since those two 64K segments are not contained within the
same 128K region.

The general rule-- all emulated memory must have the same
value for the upper three bits of the full 20 bit address. You
set this value with =EMSEG. You rarely need to change this
value.

Watch out

Since the 32K UniLab emulates 128K of address space in only
32K of physical RAM, each physical location represents four
emulation ROM addresses. This can cause problems if you are not
aware of it.

For example, the four addresses 00000, 08000, 10000 and
18000 all refer to the same physical memory location.

If you try to enable both 0 TO 7FF and 8000 TO 87FF, then
you will find that both sections of memory always contain the
same data. Those two ranges of emulation ROM both refer to the
same RAM locations in the 32K UniLab.

July 15, 1986 Page 6-37 -- In Detail --

-- Loading Emulation ROM

2.3 Getting Ready • ••

Before you can start working on your program, you have to
enable the emulation ROM and load your software into the UniLab's
emulation memory •

. When you enable a section of memory, you are telling the
UniLab what addresses you want it to respond to.

The minimal memory necessary

The LTARG command enables a 2K section of memory and loads
in a simple test program (on some packages, such as the 8096, the
LTARG command enables several 2K sections). If you are in doubt
about what memory to enable for your processor, type in LTARG,
and note the values of =EMSEG and EMENABLE.

For example, the Z80 test program sets up the variables as:

LTARG
Emulator Memory Enable Status:

7 =EMSEG
0 TO 7FF EMENABLE

In general, you have to enable the reset address for your
processor. The only exception occurs when you want to analyze a
program running from ROM chips instead of emulated ROM.

The exception: Running a program from ROM chip

When you want to run a program entirely from ROM on your
target board you must first use EMCLR to clear emulation memory,
and then use the Mode Panel option SWI VECTOR (Software Interrupt
VECTOR) or the command RSP' to disable the debugger.

If you don't disable the software interrupt vector under
these circumstances, then the UniLab will give you an error
message when you try to start the analyzer. When the debugger is
enabled, the UniLab writes information into the reserved area
when you start the analyzer. If the reserved area is not being
emulated, you will get the message "Debug Control not
established."

You can use ROM chips for some of your program, and use
emulation""'""iliemory for the rest of it.

No matter what else you do, you must always either emulate
the reserved area (see appendix H) or disable the debugger.

-- In Detail 6-38

-- Loading Emulation ROM --

The high four address bits

Address bits A16 to A19 are set with <hex number> =EMSEG,
where hex number is the desired digit for A19-A16. With this
command you tell the UniLab which 64K segment of memory you want
to emulate, out of the possible 1 megabyte that a processor with
a 20 bit address bus can access.

The value of =EMSEG is initialized to the correct value.
You will probably never have to alter it.

The UniLab uses =EMSEG to decide whether to put data on the
bus. When the processor tries to fetch information from ROM, the
UniLab first checks whether the upper four bits of its address
inputs match the value of =EMSEG.

If the UniLab finds that the upper four bits match, then it
checks whether the lower 16 bits of the address are enabled.

On many 8 bit processors these inputs just float high, so
that the =EMSEG value is usually F (1111 binary).

Emulating two 64K segments

You can emulate address in 128K, as long as the two 64K
segments are neighboring segments (that is, only A16 differs).
Use =EMSEG to set the values of A16 through A19 that the UniLab's
emulation ROM will respond to.

For example, 4 is 010~ in hexadecimal,
while 5 is 0101, so that you could give this enable

command:

4 =EMSEG 0 TO 7FF EMENABLE
ALSO 5 =EMSEG 1000 TO 17FF EMENABLE

July 1 5, 1 986 Page 6-39 -- In Detail --

-- Loading Emulation ROM --

The other 16 bits

You can enable the UniLab's memory 2K at a time. The memory
that you enable will be in the 64K segment that you last set with
=EMSEG •

. You are telling the UniLab what range of addresses on AO
through A15 you want it to respond to.

To enable ROM from address 0 to 17FF you type:

0 TO 17FF EMENABLE

You could instead enable locations F800 to FFFF by entering:

F800 TO FFFF EMENABLE

The TO is necessary to indicate an address range. If you
enter <16 bit address> EMENABLE the single 2K segment which
includes that address will be enabled. For example,

1000 EMENABLE

will enable the 2K segment 0 to 17FF.

Enabling several areas

Each EMENABLE statement usually clears out the previous
settings. However, if you use ALSO you can have the UniLab
respond to both the previous setting and the new one.

For example, to enable 0 to 17FF and F800 to FFFF, you type:

0 TO 17FF EMENABLE ALSO F800 TO FFFF EMENABLE

Be careful when enabling several areas with a 32K UniLab.
The 128K area within which you can enable 2K blocks gets mapped
onto the 32K of the UniLab. This means that 0000 addresses the
same memory location as 8000. 2000 refers to the same location
as AOOO.

Keeping track

Every time you issue the EMENABLE command, the system will
display the complete resulting memory enable status. If you want
to see this enable status display without changing enables, just
enter ESTAT.

-- In Detail -- 6-40

-- Loading Emulation ROM --

Saving the settings

Once you have them set properly for a project, you will want
to can save the enable settings of emulation memory. The
contents of emulation memory can also be saved, with the BINSAVE
comman.

You enter:
SAVE-SYS <filename>

after you enable the memory to save the current state of the
UniLab software, including the emulation memory settings.

From then on, when you start the program by typing in the
filename, the proper area of the UniLab's memory will already be
enabled.

July 15, 1986 Page 6-41 -- In Detail --

-- Loading Emulation ROM --

2.4 Loading the Target Programs into Memory

You load in your program after you have enabled a section of
memory large enough to contain your program.

You can load opcodes into memory from a disk file, by hand,
from-a ROM chip or from an Orion test program.

Loadinq from disk files

The UniLab software provides you with four different ways to
load a program from a file on disk. Depending on your assembler
or compiler, you will chose one of these methods.

1. If you compiled or assembled the code into a binary
file on a disk, then load it with

<from addr> <to addr> BINLOAD <filename>

The filenames usually end in .BIN, .COM, or .TSK. You will
be prompted for the file name if you do not include it on
the command line. You can use the DOS command EXE2BIN if
your assembler produces a .EXE file.

The program will be loaded starting at the address you
gave.

You save memory to a file with the BINSAVE command.

2. Read Intel-format HEX object files from a disk with

HEXLOAD <file name>.

You will be prompted for a file name if you do not include
it on the command line. The addresses will automatically be
converted to the correct ones for the host image of the
target program. This method is much slower than BINLOAD.

If your assembler will only make Intel Hex files, you
can still use the UniLab command BINSAVE to make a binary
format file. Just load the hex file the first time, and
then use

<from> <to> BINSAVE <filename>

to save the memory as a binary image. From then on you can
use

<from> <to> BINLOAD <filename>
to load the program into memory.

In Detail 6-42

-- Loading Emulation ROM --

3. Download Intel hex format programs from another
computer system with HEXRCV, if your PC has two serial
ports. The sending computer must support the XON/XOFF
protocol.

After you type this command, your PC will accept hex
code through its second port until you press a key or the PC
receives an end of file message.

While this method is useful for interfacing with
existing systems, it makes more sense to use your personal
computer for program development and avoid the bottleneck of
program downloading. See Appendix B for a partial list of
assemblers and compilers for the personal computer.

4. If your assembler or compiler can assemble directly
into memory at a specified location other than the origin,
you can instruct it to leave the object code in some unused
area of host memory (COOO to EOOO is free in most systems).

Then when you enter the UniLab program you can download
from your host's memory to the UniLab's emulation ROM with

<fromadr> <toadr> <targadr> MLOADN.

Note that the first two addresses refer to RAM in your host
machine, the third address is in UniLab emulation ROM.

Hand enter Code

You can also hand enter a program, poking machine language
instructions into memory. We recommend this only to those
suffering from computer nostalgia.

You hand-enter a short program by using the memory patching
commands of the UniLab system. Type in <address> ORG, where the
address is the start of the target program, then enter <byte> M
or <word> MM for each byte or word of the program.

July 15, 1986 Page 6-43 -- In Detail --

-- Loading Emulation ROM

Read a program from ROM

The UniLab software also allows you to read a program from
ROM. We support all of the most popular EPROMs-- see Appendix G:
EPROMs Supported.

Read a program from a ROM by first placing the chip into the
UniLab's programming socket. Hit function key 10 to get the main
menu, and then function key 9 to get the PROM reader menu.

EPROM PROGRAMMER EPROM PROGRAMMER __r=:r-- PIN 1 [ljJ!uJ(l_D
PM16 e e tt

2716
3S32

48016

,----,

·D llJJ11,Jfl.
PM16 v" • •

2716
3~.12

4801b

28 Pin EPROM in Programming Socket 24 Pin EPROM in Programming Socket

PROM READER MENU

F1 READ 2716/48016 - use PM16
F2 READ 2532 - use PM16
F3 READ 2732 - use PM32
F4 READ 2764 - use PM64
F5 READ 27128 - use PM64 (PM56 for 27128A)
F6 READ 27256 - use PM56
F7 READ 27512 - use PM512
F9 Go to Prom Programmer Menu

F10 RETURN TO MAIN MENU
(Press the Function Key to select item):

Watch out

Avoid leaving any PROM in the socket after you read it or
program it.

2764s and up will sometimes erase location zero when you
turn on the UniLab.

-- In Detail -- 6-44

-- Loading Emulation ROM --

Loading the sample program

Or instead, you can load a test program, with LTARG (Load
TARGet memory).

LTARG enables emulation memory and loads a simple test
program. Chapter 9 contains a trace of the test program for each
microprocessor, along with examples of debugging operations.

The separate Disassembler/Debugger writeup on your processor
covers the test program and the debugging operations more
completely.

July 15, 1986 Page 6-45 -- In Detail --

-- Loading Emulation ROM --

2.5 Saving Programs

You can save a program for later use with BINSAVE as
described below. There are at least five situations in which you
will want to save a program:

1) You have changed the program since you loaded it in, by
moving sections of memory or poking in an opcode.

2) You have loaded a program using HEXLOAD, and want to be
able to use BINLOAD instead.

3) You have loaded a program from a ROM.
4) You have "hand assembled" a program.
5) You want to make a macro that tests equipment by

loading and running a test program.

When you have completed your design, you can "save" a
program to ROM with the PROM programmer menu. See section 7.

Saving with BINSAVE

Any area of emulation memory can be saved to disk as a named
file. Type in

<from address> <to address> BINSAVE <file name>.

The addresses refer to emulated memory. If you leave off the
filename, then you will be prompted for a name.

-- In Detail -- 6-46

3. Examining and Altering Memory

Introduction

After loading a program into emulation memory, you can
immediately run it. However, you often want to look at the
program first, to refresh your understanding of the code, or to
verify that you have loaded in the correct file.

And as you work on the program, you will want to look at
portions of your code, and perhaps alter the code.

You can also examine and alter RAM, but only after you have
established debug control (see subsection 3.2 and section 6).

Contents

3.1

3.2

3.3

3.4

3.5

July 16, 1986

Feature Summary

Memory Access

Read from Memory
Disassemble
Peek, dump or compare

Alter Memory
Fill
Move
Poke

On-Line Assembler

Page 6-47

6-48

6-49

6-52

6-57

6-61

-- In Detail --

-- Examine and Alter Memory --

3. 1 Feature Summary

All memory access commands work both on emulated ROM and on
target RAM. However, to access RAM you have to first establish
debug control. See the next two pages.

Feature

Examining Memory
Dump a range of memory
Disassemble a range of
Disassemble into right

Menu

Yes
memory Yes
hand window NO

Command

<start> <end addr> MDUMP
<start> <# of lines> DM

<start> DN
Compare two ranges of memory Yes

Look at one byte
Look at one word

Altering Memory

<start> <end> <comparison addr> MCOMP
NO <addr> M?
NO <addr> MM?

Fill a range of memory with Yes
one byte value

Alter a single byte
Alter a single word

<start> <end> <byte> MFILL
<value> <addr> M!
<value> <addr> MM!

Move a range of memory to a
different place

Yes
Yes
Yes

<start> <end> <new start> MMOVE

Set up the address for subsequent NO
M and MM commands <addr> ORG

<byte> M
<word> MM

Store one byte and update ORG NO
Store a word and update ORG NO

Optional
On-line assembler
Assemble code from

FORTH file

Command:

MF ILL
DM
Ml
MM!
MF ILL
MMOVE
MCOMP

-- In Detail --

NO
NO

<addr> ASM

<addr> <from scr> <to scr> ASM-FILE

Menu:

EXAMINE OR CHANGE PROGRAM MEMORY MENU

F1 EXAMINE A RANGE OF MEMORY
F2 DISASSEMBLE FROM MEMORY
F3 CHANGE ONE BYTE
F4 CHANGE ONE WORD
FS FILL A RANGE OF MEMORY WITH ONE VALUE
F6 MOVE AN AREA OF MEMORY
F7 COMPARE TWO AREAS OF MEMORY

F10 RETURN TO MAIN MENU

6-48

-- Examine and Alter Memory --

3.2 Memory Access: Emulation ROM and RAM

The commands that access memory have two complications:

1) When you access emualtion ROM, you will
cause the program to stop.

2) You cannot access RAM unless you have
first established debug control.

Access to emualtion ROM

When you read from or change emulation ROM, the UniLab has
to take control of the memory chips that emulate ROM. While this
is going on, your processor will not be able to read instructions
from ROM-- which causes your target program to crash.

Be aware that you have to restart the target program after
examining emulation ROM, because you and the processor cannot
look at program memory at the same time.

Access without crashing

While at a breakpoint, you can examine emulation ROM without
crashing your target system. Your processor does not need access
to memory while you have debug control.

July 16, 1986 Page 6-49 -- In Detail --

-- Examine and Alter Memory --

Access to RAM

Normally, all the commands that read and write memory
perform their work on emulation ROM. However, you can examine or
alter RAM once you have established debug control. See section
6 of this chapter to learn how to establish debug control.

If you try to read or write RAM without first establishing
debug control, the attempt will fail, and you will get two
messages:

1) a "not enabled" message, informing you that you
are trying to access an address that the UniLab is
not emulating,

2) a "Debug Control not established" message, when
the UniLab software tries to access the RAM.

Since you are trying to access RAM, not emulated ROM, the
address you specify has not been enabled-- that is the meaning of
the first message.

The second message tells you that the routines which alter
RAM will not work, because you have not established debug
control.

Successful Access to RAM

If you first get debug control, then you can access RAM.
You will still get the "not enabled" message, to remind you that
you are working on RAM, not on emulated ROM.

-- In Detail -- 6-50

-- Examine and Alter Memory --

Processors with RAM and ROM in the Same Address Space

With most processors, RAM occupies one range of memory, and
ROM another range.

However, some processors allow you to have RAM and ROM at
the same addresses at the same time, such as:

the 8051 family,
the za family,
and the 64180.

If you have one of these processors or the others that allow
ROM and RAM to simultaneously occupy the same address, you will
not be able to access RAM that occupies the same addresses as
emulated ROM until you have established debug control and have
issued the command TRAM. This command tells the UniLab to try to
access RAM rather than emulation ROM.

It would be wise, after you've used TRAM, to issue the
command TRAM' when you are done with looking at or altering
target RAM.

July 16, 1986 Page 6-51 -- In Detail --

-- Examine and Alter Memory

3.3 Read from Memory

When you read from memory, you have a choice of
disassembling from memory or just dumping the hexadecimal
opcodes. You will usually disassemble program memory and dump
data memory.

If you don't have a disassembler package for your processor,
you will not, of course, be able to disassemble.

-- In Detail -- 6-52

-- Examine and Alter Memory --

Disassemble from memory

Two commands allow you to disassemble from memory:

DM and DN

Both.commands take as a parameter the starting address to
disassemble from. DM has a second parameter-- the number of
lines of disassembled code to display=

DN outputs until it fills up the right hand window of the
screen, and so does not need a second parameter.

Watch out

On some processors-- those that do not have a signal to mark
the first fetch of a multi-byte opcode-- if you specify an
address that starts the disassembly from anywhere but the first
byte of an instruction, you will see at least a few incorrectly
decoded instructions. Your Orion disassembler simply starts
disassembling from whatever address you give it.

No matter what address you tell the disassembler to start
from, it will try to interpret the hexadecimal code it sees as
the first byte of an opcode. Once the disassembler gets back "in
sync," it will decode properly.

Good disassembly:
0 7 DM
0000 310019
0003 3E12
ooos 01S634
0008 119A78
OOOB 21DEBC
OOOE CS
OOOF C1

"Out of Sync" disassembly:

Back in sync --->

1 7 DM
0001 00
0002 19
0003 3E12
0005 01S634
0008 119A78
00013 21DEBC
OOOE CS
OOOF C1

LD SP,1900
LD A,12
LD BC,3456
LD DE,789A
LD HL,BCDE
PUSH BC
POP BC

NOP
ADD HL,DE
LD A,12
LD BC,34S6
LD DE,789A
LD HL,BCDE
PUSH BC
POP BC

July 1 6 I 1986 Page 6-S3 -- In Detail --

-- Examine and Alter Memory --

Peeking at, dumping or comparing memory

You can either "peek" at a byte or two, or dump a range of
memory. You can also compare two ranges of memory.

Peek:lng

You peek into memory with:

<addr> M?
<addr> MM?

The first command looks at a byte, the second at a word (two
bytes).

Peeking example

13 M? 3C ok

C MM? BCDE ok

-- In Detail -- 6-54

-- Examine and Alter Memory --

Dumping

One command allows you to see the hexadecimal contents of a
range of memory:

<start> <end addr> MDUMP

MDUMP will start dumping from whatever address you specify,
showing 10 (hex) bytes of memory on each line. It always
displays a full line, so that the second address will get rounded
up, if necessary. The right-hand side of the display shows what
ASCII characters, if any, the hexadecimal codes correspond to.

0 14 MDUMP
0 31 00 19 3E 12 01 56 34

10 3C 3C 3C 3C 3C 3C 3C 3C

July 16, 1986

11 9A 78 21 DE BC CS C1
3C 3C 3C 3C 3C 3C 3C 3C

1 •• > •• V4 •• x! ••••
< < < < < < < < < < < < < < < <

Page 6-55 -- In Detail --

-- Examine and Alter Memory --

Comparing

This command compares two ranges of memory, and reports any
discrepancies it finds:

<start> <end addr> <comparison addr> MCOMP

MCOMP will start comparing from whatever address you
specify. It compares the range that you specify.

You will find this command especially useful for comparing
the contents of a PROM to the expected contents:

Example

1) Put the expected contents in one range of memory,
2) move the actual contents to another range (with

the PROM reader menu), and
3) use MCOMP to compare the two.

Notice how, in this example, MCOMP starts finding bytes that
don't match after comparing five of them. It would continue to
compare bytes until it had compared the data at 120 (hex) to that
at 820 (hex)-- or you can terminate the display by hitting any
key.

105 120 805 MCOMP
Data is 1 6 at addr 0110 .• but is 5 at addr 0810
Data is 90 at addr 0112 •. but is 80 at addr 0812
Data is 27 at addr 0116 •• but is 23 at addr 0816

-- In Detail -- 6-56

Examine and Alter Memory --

3.4 Alter Memory

You can alter memory in a heavy-handed manner, filling or
moving blocks of memory. You can also alter it byte by byte, or
word by word.

And with the optional on-line assembler, described in sub­
section j.~, you can aLter memory by entering assembly language
commands rather than poking bytes into memory.

Filling blocks

You generally fill blocks only for test purposes-- putting
into a range of memory a long series of identical instructions.
You move blocks only for patching purpose-- pushing a block of
memory up or down to make room for an extra instruction or block
of code.

Altering bytes or words

You will more often patch code on the fly by altering code a
byte or a word at a time. For example, you can change the value
a program sets the register to, or you can replace one
instruction with another, by pushing in the hexadecimal opcode.

July 16, 1986 Page 6-57 -- In Detail --

-- Examine and Alter Memory --

Fill memory

You fill a range of memory with the MFILL command. It sets
every byte in the range to the same value:

<from address> <to address> <byte value> MFILL

Testing

This is a handy way to test the data and address lines of
your processor board:

Example

1) Fill a range of emulation memory with the opcode
for NOOP, or other simple instruction, starting at
the reset address.

2) Start up the processor and capture a trace, using
the command STARTUP.

3) Examine the trace and verify that the address
lines and data lines work properly.

To fill 80 bytes of emulation ROM with FA, starting at
address 00:

0 100 FA MFILL

-- In Detail -- 6-58

-- Examine and Alter Memory --

Move memory

You copy information from one range of memory to another
with:

<start address> <end address> <copy starting at address> MMOVE

You will want to do this to make room for extra instructions
when patching code, or to move large chunks of code or data for
other reasons.

Limitations

You can copy from any address to any other. However,
neither the source range nor the destination range is allowed to
cross over a 32K boundaries.

That is, you can copy from the range 5000-7000 to the range
8000 to 10000.

But you cannot copy from the range 7FFE-8001 to anywhere,
since that range, small as it is, crosses a 32K boundary.

overlapping ranges

This command is smart enough to decide whether to start
moving from the front or the back when moving into an overlapping
range of addresses.

Example

To copy the code at 100 through 152 into 105 through 157:

100 152 105 MMOVE

To copy from 230 through 370, starting at 220:

230 370 220 MMOVE

July 16, 1986 Page 6-59 -- In Detail --

-- Examine and Alter Memory --

Change memory byte-by-byte and word-by-word

There are three ways to alter memory on a small scale:

poking bytes into specific addresses, M!
poking words into specific addresses, MM!
setting up an origin address, and then storing bytes

and words at sequential addresses. ORG M MM

Poking bytes

You poke bytes into specific addresses with:

<byte> <address> M!

Poking words

You poke words into specific addresses with:

<word> <address> MM!

If you have a dissassembler, then the UniLab program knows which
order to store bytes into memory.

Setting up an origin and storing bytes and words

You set up an origin address with:

<address> ORG

and then can store either bytes or words with:

<byte> M
and

<word> MM

These commands both store the value and increment the address.
You will want to use this method whene1er you need to store

several opcodes at sequential addresses.

-- In Detail -- 6-60

-- Examine and Alter Memory --

3.5 On-Line Assembler

The processor specific on-line assemblers, ASM and ASM-FILE,
allow you to write assembly language patches to your target
program, instead of having to poke hexadecimal codes into memory.

Type <addr> ASM to invoke the assembler on the code that you
type in from the keyboard.

Type <addr> <from screen #> <to screen #> ASM-FILE to
invoke the assembler on code that has already been written into a
FORTH file.

Overwrite memory locations

Both commands process assembly code instructions and write
machine language codes into memory. You overwrite-- and therefor
lose-- the data already in memory.

Choose the starting address

If you do not include the address, the assembler will use
the last address stored by the ORG command.

Conventions

The on-line assembler will only accept assembly language
instructions, not ORIGIN statements or EQU statements. (You can
use the UniLab command IS to define symbols.)

Only one instruction per line.

The normal conventions of assembly language apply. For
example, at least one space between the instruction and the
operands.

You can include comments on a screen by putting a semicolon
(;) on a line. The assembler will ignore everything after the
semicolon on that line. The semicolon must either be the first
character on the line, or be preceded by at least one space.

July 16, 1986 Page 6-61 -- In Detail --

-- Examine and Alter Memory --

Entering instructions from the keyboard

When you use ASM you can include an assembly language
instruction on the command line, and assemble only that one
instruction:

1200 ASM INC A

You can enter multiple lines if you do not include an
assembly language instruction on the command line:

1100 ASM

ASM will give you as a prompt the address to which it is
assembling, and wait for you to give it an instruction followed
by a carriage return.

The assembler will continue to prompt you with an address
and patch assembled code into memory, until you feed a blank line
(hit return on an empty line).

Entering instructions from a FORTH file

If you only have a few lines of code, you can use the screen
that MEMO puts you into, and the two following (screens 1D
through 1F). See the command reference entry for MEMO to get a
few pointers on using the FORTH screen editor. You might also
want to look at Appendix F.

You will want to put the code into a file of its own if you
have many lines of code, or if you want a more convenient way to
archive the code.

-- In Detail -- 6-62

Examine and Alter Memory --

Putting code in its own FORTH file

First close the current file (UniLab.SCR) with the command:

CLOSE

Next create a new file with:

OPEN-NEW <file name>

and give it a size with:

<# of screens> SCREENS

1K is allocated per screen. Use the command:

<screen #> EDIT

to get into the file. NEVER use screen zero.

Assembling code from FORTH screens

You will then be able to use ASM-FILE to assemble the code
stored in your new file. For example, to assemble screens one
through four into emulation ROM, starting at address 1200:

1200 1 4 ASM-FILE

When you are done with assembling, use OPEN UNILAB.SCR to
close your file and re-open the UniLab.SCR file. If you don't do
this, then some of the on-line help facilities and error messages
will not work.

July 16, 1986 Page 6-63 -- In Detail --

Introduction

4. Setting a Trigger
(Generating a Trace)

This section shows how you describe to the UniLab the bus
activity that you want it to search for. The power of the UniLab
comes from its ability to capture and display to you only the
program activity that you want to see.

Usually you will be looking at the bus activity when you are
trying to find a bug. But sometimes you will want to look at
your code as it executes just to see what is going on.

Contents

4. 1 Feature Summary 6-65

4.2 Overview 6-67

4.3 A Simple Example 6-68

4.4 The NORMx Words 6-72

4.5 RESETting 6-74

4.6 General Purpose Triggers 6-75

4.7 Real-life Examples 6-78

4.8 The Limits of Triggers 6-80

4.9 Filtered Traces 6-82

4.10 Qualifying Events 6-85

4. 11 Stepwise Refinement 6-89

-- In Detail 6-64

4.1 Feature Summary

Feature

Start the target program and
show first cycles

Show what the program is doing
right now

Sample address lines, twice/second
Sample all lines, once each second

Set a trigger on an address
Set trigger on CONTrol inputs
Set trigger on a data value
Set trigger on high byte of data
Set trigger on high byte of address
Set trigger on low byte of address
Set trigger on MISCellaneous inputs

Set trigger on Range of values
Invert following trigger
Add following trigger to current

Startup Analyzer
Startup Analyzer, capture new trace

starts where current trace ends
Don't restart target program when

Analyzer starts
Do restart target program when

Analyzer starts

Clear out previous trigger spec

Change Delay Count

that

Produce a filtered trace, showing only

Menu

Yes

Yes
Yes
Yes

Yes
NO
Yes
NO
NO
NO
NO

Yes
Yes
NO

Yes

NO

Yes

Yes

NO

NO

the cycles that match trigger Yes
Produce a filtered trace, showing one,

two or three following cycles NO

Set up a "qualifier" for trigger NO

July 1 6, 1 986 Page 6-65

-- Set Trigger --

Command

STARTUP

NOW?
ADR?
SAMP

<16 bit addr> ADR
<byte> CONT
<byte> DATA
<byte> HDATA
<byte> HADR
<byte> LADR
<byte> MISC

TO
NOT
ALSO

s

S+

RESET

RESET'

NORMT NORMM
NO RMB
<count> DCYCLES

ONLY

1AFTER 2AFTER
3AFTER

AFTER

-- In Detail --

-- Set Trigger --

Command:

STARTUP
NOW?
NORMT <addr> ADR S
<from> <to> CYCLES?
SAMP
ADR?
RESET RESET'

NORMT <addr> ADR S
NORMT <from> TO <to>

NORMT <f > TO <t> ADR

Menu:

ANALYZER MENU

F1 RESET AND TRACE FIRST CYCLES
F2 TRACE IMMEDIATELY
F3 TRACE FROM A SPECIFIC ADDRESS
F4 COUNT CYCLES BETWEEN TWO ADDRESSES
FS SAMPLE THE BUS CONTINUOUSLY
F6 SAMPLE ADDRESS ACTIVITY
F7 TURN RESET OFF

F10 RETURN TO MAIN MENU

ANALYZER TRIGGER MENU

F1 TRIGGER ON AN ADDRESS
ADR S F2 TRIGGER ON A RANGE OF

ADDRESSES
<byte> DATA S · F3 TRIGGER ON A RANGE OF

ADDRESSES AND
A DATA VALUE

NORMT NOT <f > TO <t> ADR S F4 TRIGGER OUTSIDE A RANGE
ADDRESSES

ONLY NOT <f > TO <t> ADR AFTER <addr> ADR S

0

FS FILTER, EXCLUDING A RANGE
OF ADDRESSES AFTER A
ADDRESS

RESET RESET' F6 TURN RESET OFF OR ON
(reset is now xxx

F10 RETURN TO MAIN MENU

-- In Detail -- 6-66

-- Set Trigger --

4.2 overview

All the examples show traces of a Z80 program, with the CONT
column and the MISC column turned off.

The first part introduces triggers with a simple example.
The simplest trigger, and the most commonly used, is a trigger on
a program address.

The next part covers general purpose triggers. You can
trigger on several different values and on ranges of values. You
can tell the analyzer to look at the control lines, the address
lines, the data lines, the miscellaneous inputs, or any
combination of them.

The real-life examples whos how you can put trigger specs
commands together to solve specific problems.

Filtered traces, introduced in the following part, allow you
to look at only the cycles that interest you. You use qualifiers
to set up preconditions-- the trigger will not occur until after
the preconditions are met.

July 16, 1986 Page 6-67 -- In Detail --

-- Set Trigger --

4.3 A Simple ExaJBple

When you use the UniLab, you will most often want to look at
a trace of the bus activity that follows a certain instruction.

For example, if you have a conditional jump instruction at
address 510 of your program and want to see where it jumps to,
type in the command:

510 AS

After you hit a carriage return, the UniLab will start
searching for address 510 on the target system's bus. The first
time it sees that address, it will "trigger," and then freeze the
trace buffer 165 bus cycles later.

While your target program continues, the UniLab sends that
trace buffer to the host computer. The top of the trace fills
your screen, showing the five bus cycles that preceded address
510 (labeled -5 to -1), the trigger cycle (labeled 0), and some
of the cycles that follow.

Simple Z80 example

It's easy to understand the test program loaded into the
UniLab's memory by the LTARG command. It initializes some
registers, and then goes into an infinite loop.

-- In Detail --

Start of
Proyram

v
Initialize
Stack Pointer

I
v

Initial~ze
Other Registers <----

1
v

Increment
the A register I \

a bunch of
times

I I \
v
1---->------>----

6-68

-- Set Trigger

The program that you work on will, of course, be more
complicated. But no matter how complicated or simple your
program, you can always tell the UniLab to trigger on the address
of an instruction.

There is only one mildly interesting point in the test
program for the Z80. That is the unconditional jump at address
29, that jumps back to address 3.

Start of
Proyram

v
Initialize
Stack Pointer

I
v

Initialize
Other Registers <----

1
v

Increment
the A register I \

a bunch of
times

I I \
v

Set the trigger here ---->----> !---->------>----

July 1 6, 1986 Page 6-69 -- In Detail --

Set Trigger --

To get a trace starting at that address, type in:

NORMT

NORM'l' 29 ADR S

clears out all previous trigger specifications,
and tells the UniLab that you want the trigger
event at the Top of the trace.

29 ADR is the trigger specification

s starts the analyzer

Which results in the following display (with MISC, HDATA and
CONT columns removed for the sake of simplicity):

resetting

cyl ADR DATA
-5 0024 3C INC A
-4 0025 3C INC A
-3 0026 3C INC A
-2 0027 3C INC A
-1 0028 3C INC A

0 0029 C30300 JP 3 <----<---- Here is the trigger
3 0003 3E12 LD A,12
5 0005 015634 LD BC,3456
8 0008 119A78 LD DE,789A
B OOOB 21DEBC LD HL,BCDE
E OOOE cs PUSH BC
F 18FF 34 write

10 18FE 56 write
1 1 OOOF C1 POP BC
12 18FE 56 read
13 18FF 34 read
14 0010 3C INC A
1 5 0011 3C INC A
16 0012 3C INC A
1 7 0013 3C INC A
18 0014 3C INC A

-- In Detail -- 6-70

-- Set Trigger --

Cycle numbers

The analyzer found the trigger event, and then sent to the
host computer a record of bus activity starting five cycles
before the trigger. The trigger event is labeled as cycle 0, the
cycles before it have negative numbers.

Explanation

The rest of the trace is fairly simple-- and very similar to
the display that results from STARTUP with the Z80 test program.

There are only two mysteries to clear up, before continuing
the discussion of trigger specifications:

July 16, 1986

1) what NORMT does

2) the meaning of the "resetting" message
that appears just before the trigger
display

Page 6-71 -- In Detail --

~RIGGER-->

-- Set Trigger

4.4 The NORMx Words

The three NORMx commands, NORMT, NORMM, and NORMB, first
clear out all previous trigger settings. They wipe the slate
clean.

And then each one sets up the "display window" to show a
different time portion of the program's execution. The diagram
below shows the effect of each instruction on a program that,
rather boringly, executes instructions starting at address O
without any jumps or calls or branches:

NORMB
128 ADR S

0

cyl adr

-AS 83

0 128

4 12C

-- In Detaj_l

NORMT
128 ADR S

0

cyl adr

-9 11 A

0 128

1 C3

NORMM
128 ADR S

0

cyl adr

D3

0 128

55 17D

6-72

NORMT 128 ADR
200 DCYCLES

0

128 <--TRIGGER

cy# adr

157 27F

Set 'rrigger

All four displays have the same trigger, and all of them
number the trigger cycle as cycle zero. They vary only in the
value of DCYCLES. The Delay CYCLES is the number of cycles that
will pass beteen when the trigger is seen, and when the buffer is
frozen. If this value is small (as happens when you use NORMB),
then most of the trace buffer will show what happened before the
trigger.

The fourth example shows how you can manually set the delay
count. Here the delay is so large that the trigger is not even
in the window. This example uses the NORMT command to clear out
the previous trigger spec, but then uses DCYCLES to change the
delay count.

Notice how the NORMx commands change the value of DCYCLES in
the following:

Summary

NORMT
TS TAT
Analyzer Trigger Status:

RESET
AO DCYCLES 0 QUALIFIERS

NORMM
TSTAT
Analyzer Trigger Status:

RESET
55 DCYCLES 0 QUALIFIERS

NORMB
TSTAT
Analyzer Trigger Status:

RESE'l1

4 DCYCLES 0 QUALIFIERS

The first address you see on the trace display after you
start the analyzer with the S command depends on two things:

1) The trigger address you selected with ADR

2) The delay you selected with NORMT, NORMM,
NORMB, or DCYCLES.

Ju 1 y 1 6 , 1 9 8 6 Page 6-73 -- In Detail --

-- Set Trigger --

4.5 RESETting-- Restarting the target program

The UniLab software usually responds with "resetting" when
you start up the analyzer. This message lets you know that the
UniLab is sending a reset signal to your processor, causing it to
start executing your program from the beginning.

Whenever you 'start up the analyzer with S, you can either

start analyzing the program running on the target
board, starting from whatever point the program has
reached (RESET')

OR

restart the program at the same time as you restart the
analyzer (RESET).

Turning RESET on and off

The RESET feature gets turned on by STARTUP. You can turn
it on and off yourself with the commands RESET and RESET', or
with the mode panel (function key 8).

-- In Detail --

Mode Panel:

1. ANALYZER modes
DISASSEMBLER on
SYMBOLS off
RESET enabled

6-74

-- Set Trigger --

4.6 General Purpose Trigger Definitions

While the previous examples were limited to address triggers
for simplicity, the UniLab allows much more complex triggers to
be defined, using all 48 analyzer inputs.

Each of the groupings of inputs can be ref erred to using the
same descriptive name used to label it on the trace display:

CONT ADR DATA HDATA MISC

Each of these names labels one byte of the inputs into the
UniLab, except for ADR, which labels 2 bytes. LADR and HADR each
label one byte of the address inputs.

Just as we used

<16 bit value> ADR

to define a single address trigger, we can define triggers for
the other input bytes:

<8 bit value> CONT

<8 bit value> DATA

<8 bit value> HDATA

<8 bit value> MISC

July 1 6 I 1 986

to trigger on cycle type and on A19-A16.

to trigger on the data byte.

to trigger on the upper byte of data on
16-bit processors, or on anything
like with an 8-bit processor.

to trigger on anything you like.
(Usually target system inputs and
outputs.)

you

Page 6-75 -- In Detail --

-- Set Trigger --

Modifying the input group words

All of the input group words can be altered in several
different ways, by preceding them with keywords. You can also
combine several input group words, as detailed on the next page.

Alone

enter a single number to trigger on a single value,
12 DATA

Using NOT and TO

enter a range separated by TO, to trigger on a range of
values, 12 TO 34 DATA

enter the command NOT to trigger on anything but the value
that follows, NOT 10 DATA

use both NOT and TO to trigger outside of a range of values
NOT 10 TO 13 DATA

Using MASK
or, most complexly, use the MASK command to ignore certain
input lines while triggering on other lines. The following
is identical to 10 TO 13 DATA: FC MASK 10 DATA

Or, in binary: B# 11111100 MASK Bl 00010000 DATA

Which tells the UniLab that we are only interested in the
values of the first six wires

1111 1100
and that on those wires we want to see the signals

0001 00
Since we don't care what the lowest two bits are, they can
be any value-- 00 or 01 or 10 or 11.

A Note on scope

These three words, NOT, TO, and MASK, only affect the first
input group word which follows.

For example:

NORMT NOT 12 DATA 400 ADR s

will trigger when the data is not 12 and the address is 400.

-- In Detail -- 6-76

-- Set Trigger --

Triggering on combinations

You can set a trigger on several different input bytes, and
the UniLab will search for a bus cycle that satisfies all the
conditions you describe. If you want to search for 12 on the
data lines AND for 100 on the address lines, all you have to do
is type in the command:

12 DATA 100 ADR

Using ALSO

However, declaring a trigger for any group of inputs will
clear the previous settings. If you want to search for 12 on the
data lines or 15 on the data lines, you have to use ALSO:

12 DATA ALSO 15 DATA

which tells the UniLab to trigger on either 12 or 15. If you had
left out the ALSO and just entered 12 DATA 15 DATA, then the
UniLab would watch the data lines for only one value, 15, the
last number specified.

When you make a new description for an input group without
ALSO, you clear out the previous trigger for that group, without
affecting the other groups. For example, if you enter

NORM 123 ADR 45 DATA S

trigger will occur only when the data is 45 during a bus cycle
with 123 address. If you then enter

60 TO 71 DATA S

the analyzer will restart and trigger will occur when data is
between 60 and 71 during a bus cycle with 123 address. You have
altered the DATA specification, but not the ADR spec.

July 16, 1986 Page 6-77 -- In Detail --

-- Set Trigger

4.7 Real-life Examples:

catching the program when it goes outside of program memory

One of the nastiest problems you encounter while checking
out hardware or software is when your program "blows up" and
begins executing data or garbage.

These errors not only are troublesome to recover from, but
the mistake that caused the blow up is almost impossible to find­
- until now. Trapping these problems is a pleasure with the
UniLab.

If, for example, your program is supposed to be limited to
addresses 0 to 1234, you can enter

RESET NORMB NOT 0 TO 1234 ADR S

The UniLab will reset the target system and wait for the target
program to access an address outside of the specified range. You
can then look back through the trace memory for the abnormal
operation which caused the program to "blow up."

Whether it is a hardware malfunction or a software bug you
will have trapped it effortlessly.

You can add FETCH to the above example, so that the UniLab
doesn't trigger on reads and writes outside of memory. Some
processors lack the fetch indicator.

catching garbage values being written to a single memory location

Another common bug you encounter is when some location in
RAM gets accidentally overwritten.

For example, a variable called STRING_LEN gets written with
the length of a string. But when your program reads the value,
it isn't the same as the value written into it.

One way to catch this bug is to produce a filtered trace
that shows every access to this variable, and the cycles that
immediately follow the access. You can then examine the trace,
and find the region of the program that causes the overwrite:

2AFTER STRING LEN ADR s

You can then trigger on the address of the bad instruction:

NORMM <address> ADR S

-- In Detail -- 6-78

-- Set Trigger --

catching a stack overflow

You can set the UniLab to trigger when your stack grows too
large.

For example, a target board has ROM at locations 0 to 1FFF,
and RAM at 2000 to 3FFF. The program sets the stack pointer to
address 20FF in RAM. This means the stack can grow to FF bytes
before running into ROM.

You can tell the UniLab to trigger when the program makes
reference to some address that the stack will write to when it
grows "too large"-- whatever too large means to you.

Some might want to wait until the stack is about to run
into hardware limitations:

NORMB 2001 ADR S

Others will want to trigger when the stack holds more than
2F bytes:

NORMB 20DO ADR S

Either way, you get to see what the program was doing just
before the stack grew too large.

catching bad data going into a string

You can use a combination of a range of data and a range of
addresses to catch the trace of a bug that causes an
inappropriate character to be written into a string.

Of course, you don't want to look at every access to the
memory locations-- you just want to see when the bad data comes
in.

Suppose the string sits at a location with the symbolic name
STRING1 and has a length of 50 (hex) characters. The string
should only contain characters between A (41 hex) and z (7A hex).

The instruction:

NORMM NOT 41 TO 7A DATA STRING1 TO STRING1 4F + ADR S

will cause the UniLab to trigger when any data outside the range
41 to 7A <;rets writte"n to any of the 50 data locations starting at
STRING1.

July 1 6 I 1986 Page 6-79 -- In Detail --

-- Set Trigger --

4.8 The Limits of Trigger Complexity

Since the UniLab trigger logic uses high speed truth tables
instead of comparators, there is no limit to the complexity of
triggers within bytes. For example:

12 DATA ALSO 34 DATA ALSO CO TO CS DATA ALSO FF DATA

is perfectly acceptable.

Another way to state the same thing is by entering:

12 34 CO Cl C2 C3 C4 CS FF 9 NDATA

Note that the 9 is the number of terms listed.

ALSO with ADR

You can run into problems with ADR, since that word actually
describes two bytes. If the high byte of several addresses that
you are using ALSO on don't match, you can produce unanticipated
cross products. For example:

1200 ADR ALSO 1S3S ADR

would cause the UniLab to trigger on either 1200 or 1535-- and
also on either 1235 or 12_00

These cross products usually are not a problem, but you
should be aware of them.

-- In Detail -- 6-80

-- Set Trigger --

MAS King

You can also specify triggers with a MASK format. For
example,

80 MASK 0 DATA

requires the MSB of the data bus to be O, but doesn't care about
the other 7 bits. It is identical to entering 0 TO 7F DATA or
NOT 80 TO FF DATA. All three commands give the same result so
you should simply use the format that seems most natural to you.

Triggering on 20-bit addresses

If your system uses more than 16 bits for addressing, you
can set triggers on 5-digit hex addresses by ending the address
with a period. For example, 12345. ADR will actually set a
trigger on 1 in the right digit of the CONT column (which is
connected to address bits A16-A19) and 2345 on the ADR inputs.

July 16, 1986 Page 6-81 -- In Detail --

-- Set Trigger --

4.9 Filtered Traces

The UniLab's trace buffer stores 170 48-bit samples of bus
activity. Other analyzers need gigantic trace buffers because
they lack the sophisticated triggering and filtering logic of the
UniLab.

Often the majority of bus cycles are not of interest-- for
example when most of the time is spent in a status loop or a
delay loop.

The sledgehammer solution: have a huge trace buffer. Then
you get to look through that buffer, hunting for the relevant
information.

The UniLab approach: have the computer throw away the
boring parts of the program.

With the UniLab you never have to look through thousands of
uninteresting cycles. The UniLab will filter the trace, and
record only the cycles that interest you.

An introduction to ONLY

If you enter:
ONLY 1234 ADR S

the UniLab will record only cycles that address location 1234.
If the instruction at 1234 is the one that reads input samples,
you will end up with a trace recording of nothing but input
samples.

Filter, excluding addresses

More practically, suppose that a boring status loop occupies
program memory from 1020 to 1060. You want to get a trace that
does not include the trace of the opcodes in those addresses.
The command is:

ONLY NOT 1020 TO 1060 ADR S

-- In Detail -- 6-82

Set Trigger --

Filter the trace, but don't start until AFTER

You can make a filtered trace even more useful by setting up
a separate trigger that tells the UniLab when to start checking
cycles against the filter specification. For example, the
program might not get interesting until after 30 gets written to
address 3000 of RAM:

ONLY NOT 1020 TO 1060 ADR AFTER 30 DATA 3000 ADR s

Further discussion of AFTER is deferred to the following sub­
section 4.10 on Qualifying Events.

The rest of the filter commands

ONLY is most useful when you want to exclude some type of
operation or some section of the program.

But when you filter to include cycles, you usually want to
see at least one cycle after the trigger.

For example, if you are looking at all the writes to RAM,
you can find out which section of the program performed the write
with

3AFTER WRITE S

which will show you every write along with the three cycles that
follow it.

2AFTER captures the two cycles that follow each trigger, and
1AFTER captures only one cycle after each trigger event.

Filtering and disassembly

Since filtering will produce a trace with partial opcodes,
the disassembler will not be able to interpret the sequence of
cycles properly. You will probably want to turn off the
disassembler when producing a filtered trace. Use DASM' or the
mode panel (F8).

July 1 6, 1 986

Mode Panel:

1. ANALYZER modes
DISASSEMBLER on
SYMBOLS off
RESET enabled

Page 6-83 -- In Detail --

-- Set Trigger --

Filtering and the MISC inputs

The filtering logic of the UniLab does not look at the MISC
inputs. This lets you tell the UniLab to filter a trace while
waiting for a trigger condition to appear on the MISC inputs.

This is not the same as using AFTER with the filter
commands-- with AFTER you get a filtered trace starting at some
bus event. With the use of the MISC lines, you can get a trace
that shows the bus activity before some event.

For example, if you want a trace with the delay subroutine
at AO-BO removed, but you want to trigger on an active high error
signal, you connect the error signal to one of the MISC inputs
and enter:

ONLY NOT AO TO BO ADR FF MISC

The filtered trace will exclude cycles accessing addresses AO to
BO, but trigger will not occur until the error input goes true,
thus causing FF on the MISC inputs.

-- In Detail -- 6-84

-- Set Trigger --

4.10 Qualifying Events

The UniLab can trigger on sequences of events, instead of
just when it sees a single trigger event. For example,

NORMT 78 DATA AFTER 56 DATA S

will not trigger until first 56 appears on the data bus and then,
anytime later, 78 appears.

The 56 is the qualifier, and 78 the trigger.

Up to three qualifiers

You can specify up to three sequential qualifying events.
Use AFTER when you want to start the description of the next
qualifier. For example:

NORMT 10 DATA AFTER 250 ADR AFTER 300 ADR S

will trigger on 10 data, anytime after 300 is immediately
followed by 250 on the address bus.

The UniLab will not start to search for the trigger itself
until after it sees the qualifiers.

The qualifiers must appear on the bus without any
intervening bus cycles. If the sequence does not appear, then
the UniLab starts searching for the first qualifier. However,
once all the qualifiers have shown up, the trigger does not have
to occur immediately.

You can specify a minimum number of bus cycles after the
time the last qualifier is seen, before the UniLab starts looking
for the trigger. The default is 0 PCYCLES. You can also specify
a number of complete repetitions of the sequence of qualifiers.
The default is 1 PEVENTS.

See the flowchart on the next page.

July 16, 1986 Page 6-85 -- In Detail --

-- Set Trigger --

The big picture

When you start up the analyzer, the UniLab will first search
for qualifier #3, then qualifier #2, and then qualifier #1.

After that, the UniLab waits until PCYCLES pass. Usually
this value will be zero.

Then the UniLab will check whether it has gone through the
qualifier sequence enough times. You specify this with
<value> PEVENTS.

If it requires more qualifier sequences, the UniLab will
start searching for qualifier #3 again. Otherwise, the UniLab
will start searching for the trigger itself.

-- In Detail --

Qualifier 3 <--------!
!

(immediate)
v

Qualifier 2
!

(immediate) !
v

Qualifier 1
!
v

(wait PCYCLES. !
Def au 1 t is 0 •) !

/!\
! (if PEVENTS

greater
than 1)

/!\

!---->------>----!
!
v

Trigger

6-86

-- Set Trigger --

Triggering for a filtered trace

Qualifiers also allow you to set up a trigger that is
different from the filter specification. That way you can
produce a filtered trace that starts after the qualifiers:

ONLY NOT 200 TO 250 ADR AFTER 368 ADR S

Tnis trigger specification will make a filtered trace that
excludes addresses 200 through 250. The UniLab will not start
making the filtered trace until it sees address 368 on the bus.

Triggering on sequential events

You can use qualifiers to trigger on a consecutive sequence.
Suppose there is a conditional branch at address 1010, which will
jump to address 250. Other instructions also cause a jump to
250, but you are not interested in those. You want to see what
happened before the branch at address 1010 is taken-- so you want
to trigger when 250 follows immediately after address 1010.

Using address 1010 as the qualifier and then 250 as the
trigger will not work, because the UniLab would trigger on
address 250 even if it occured hours after address 1010.
Instead, you want to have both addresses as qualifiers, and no
trigger event:

NORMB AFTER 250 ADR AFTER 1010 ADR S

Watch out

Note that the qualifiers must always appear one immediately
after another on the target system bus:

NORMT 10 DATA AFTER 250 ADR AFTER 300 ADR S

In this example, repeated from the previous page, as soon as
the UniLab sees 300 on its address inputs, it will look for
address 250. If that value does not appear on the address bus
immediately after 300, then the UniLab will go back to searching
for 300.

That particular trigger only makes sense if there is a jump,
call or conditional jump at 300, that could cause the next
address to be 250.

A RETurn from 300 to 250 would not qualify, because the
address would have to be pulled off the stack, and so several bus
cycles would appear between address 300 and address 250.

July 16, 1986 Page 6-87 -- In Detail

-- Set Trigger --

Delay between qualifiers and trigger

Though ~he qualifiers must follow one after another, the
trigger can come anytime after the qualifiers.

In fact, you can specify a minimum length to the delay
between the qualifiers and the trigger. This is useful for
avoiding trigger immediately after the qualifiers are seen.

If you want to keep the trigger disabled for 200 cycles
after the qualifying sequence you can simply enter

200 PCYCLES

This is the pass count.

For example:

NORMB 10 DATA AFTER 250 ADR 200 PCYCLES S

tells the UniLab to trigger when the data is ten. The UniLab
will not start to search for data 10 until 200 bus cycles after
the address appears on the bus.

Repetition of the qualifying events

You can also specify to the UniLab that the sequence of
qualifying events be repeated. This is useful for looking at the
nth pass through a loop, or the nth call to some routine.

If you want the UniLab to wait for 150 complete repetitions
of the qualifiers before starting to search for the trigger enter

150 PEVENTS

For example:

NORMT AFTER 1100 ADR 150 PEVENTS S

causes the UniLab to trigger after address 1100 has appeared on
the bus 150 times.

-- In Detail -- 6-88

-- Set Trigger --

4.11 Stepwise refinement

The UniLab allows you to build on existing trigger
definitions.

Trigger definitions can be gradually expanded in complexity
as you find limitations in your original idea. If you are trying
to see a subroutine at address 1200, that gets called from a
certain section of code, you might first enter

NORMB 1200 ADR S

only to find that the trace shows a call to the subroutine from a
section of the program that you are not interested in.

You can add a qualifier and restart the analyzer by entering

AFTER 5670 ADR S

This time the UniLab will search for 1200 only after address 5670
(an address in the desired calling routine) has been detected.

If you had thought of the need for a qualifier· in the first
place, you could have entered

NORM 1200 ADR AFTER 5600 ADR S

This ability to polish trigger definitions makes your
interaction with the UniLab conversational. You ask questions
about what the system is doing and receive immediate answers
all from the same keyboard you use to write and change the
programs.

July 16, 1986 Page 6-89 -- In Detail --

5. Saving Information

Introduction

The UniLab software lets you save transcripts of your
sessions, and also lets you save specific information as encoded
DOS files.

Contents

5. 1 Feature Summary 6-91

5.2 Overview 6-92

5.3 Screen History 6-93

5.4 Save Record of Session to Text File 6-94

5.5 Save Record of Session to Printer 6-95

5.6 Save Only Memory Changes to Printer 6-95

5.7 Save Trace 6-96

5.8 Save Symbol Table 6-98

5.9 Save a Range of Memory 6-98

5. 1 0 Save the State of UniLab Software 6-99

-- In Detail -- 6-90

5.1 Feature Summary

Features

Print out commands that alter memory
Send all screen display to DOS file
Print out everything

Save a trace to a file
Compare current trace to one saved as

a file
Save symbol table to a file
Save current state of UniLab program
Save memory to a file

Look at one line of "screen history"
Look at one page of history

July 16, 1986

Mode Panel:

3. LOG modes
LOG TO PRINT
LOG TO FILE
PRINTER

Page 6-91

-- Saving Information --

Mode
Panel

Yes
Yes
Yes

NO

NO
NO
NO
NO

Commands

LOG LOG'
TOFILE TOFILE'
PRINT PRINT'

TS.AVE

<n> TSAVE <file>
SYMSAVE <file>
SAVE-SYS <file>

<from> <to> BINSAVE <file>

NO
NO

Up Arrow key
PgUp key

Commands:

LOG LOG'
TOFILE TOFILE'

PRINT PRINT'

-- In Detail --

-- Saving Information

5.2 Overview

While using the UniLab software, you can preserve any
information you want about your session.

The software always preserves a history of your screen. You
can save up to 60K in this history, which starts up every time
you begin a session with the UniLab. After the history bufffer
fills, you start losing the oldest information.

You can also turn on features that will save all screen
displays

to a text file TOFILE
or to your printer. PRINT

You can also log only memory changes to the printer. LOG

Other commands save, as DOS files:

the current trace display,
the current symbol table,
any range of memory,
or the current state of the system.

-- In Detail -- 6-92

TSAVE
SYMSAVE
BINSAVE

SAVE

-- Saving Information --

5.3 Screen History

The screen history always preserves the last 20 to 60K of
screen display.

The information that scrolls off the top of either the the
full screen or the lower window gets saved.

You look at the history with the Up Arrow and Pg Up keys,
numbers 8 and 9 on the numeric key pad.

Setting the size of screen history

The size of the history is set by giving the command:

<hex # of Kbytes> =HISTORY

then saving the newly altered UniLab software with SAVE-SYS. You
must exit the program with BYE and start it again.

The size of the history buffer is allocated when the program
starts up, and cannot be changed on the fly.

The maximum number of kilobytes that you can allocate to
history is 3C (decimal 60K).

Use the command ?FREE to find out how many bytes are
allocated to history and to symbols. That display appears in
decimal base, not hexadecimal.

July 16, 1986 Page 6-93 -- In Detail --

-- Saving Information --

5.4 Save Record of Session to a Text File

You can save the record of a session with a text log file.
You can only save to one text file per session, but once you have
created a log file you can turn the logging on and off at will,
with the mode panel or with TOFILE and TOFILE':

Mode Panel:

3. LOG modes
LOG TO PRINT
LOG TO FILE
PRINTER
NMI VECTOR
SWI VECTOR

inactive
off
off
active
active

Creating the log file

You cannot create the file from the mode panel-- you must
use the command

TOFILE <file name>

to create the file in the first place.

This command can be used as a "command tail" when you call
up the UniLab software from DOS:

A> ULZ80 TOFILE JUNE3

will call up the UniLab program with "june3" as the log file.

You can also name the log file from within the UniLab
program, with TOFILE <file name>.

You will not be able to turn on logging to a file until you
have named a file.

-- In Detail -- 6-94

Saving Information --

5.5 Save Record of Session to a Printer

You can save all screen output to a printer with the Mode
Panel or with the PRINT and PRINT' commands.

Mode Panel:

3. LOG modes
LOG TO PRINT inactive
LOG TO FILE off
PRINTER off
NMI VECTOR active
SWI VECTOR active

5.6 Save Only Memory Changes to Printer

This feature helps make certain that you don't forget any
patches that you make to your program. It keeps a record on your
printer of all commands that alter memory.

You turn it on and off with the Mode Panel, or with the
commands LOG and LOG'.

July 1 6, 1 986

Mode Panels:

3. LOG modes
LOG TO PRINT inactive
LOG TO FILE off
PRINTER off
NMI VECTOR active
SWI VECTOR active

Page 6-95 -- In Detail --

-- Saving Information

5.7 Save and Compare Trace

You can save the trace as an encoded file, which can later
be retrieved with TSHOW or compared to the current trace with
TCOMP.

You save the current trace with the command:

TSAVE <file name>

This is very useful for production checkout of systems. You
can save the trace of a program on a known good system, and then
use TCOMP to compare the known good trace to the trace of the
hardware you want to check.

Comparing traces

Enter AA TCOMP <file name> to compare the last AA cycles of
the trace (which is the whole trace) currently in the trace
buffer with the trace previously saved as a file.

If the two traces are identical, the UniLab will respond
with an "OK" message. Ot.herwise it will display 1 4 lines of the
trace on disk including the first non-matching bus cycle,
followed by the non-matching cycle in the current trace~

You can completely test a system with a few such trace
comparisons, using programs that exercise the hardware of the
system. The UniLab's macro capability allows you to write a macro
which completely tests a system, automatically. (UniLabs are
given their final test at the factory with just such a macro.)

-- In Detail -- 6-96

-- Saving Information --

Example: Trace compare

This example shows the result of performing TCOMP on a
faulty trace produced by a Z80 board running the simple target
program (LTARG). One of the address lines of the board was
grounded, which pulled it low.

AA TCOMP TESTZ80.TRC

cy# CONT ADR DATA HDATA MISC
3 B7 0003 3E12 LD A, 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 B7 0005 015634 LD BC,3456 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 B7 0008 119A78 LD DE,789A 1 1 1 1 1 1 1 1 11111111
B B7 OOOB 21DEBC LD HL,BCDE 11111111 1 1 1 1 1 1 1 1
E B7 OOOE cs PUSH BC 11111111 1 1 1 1 1 1 1 1
F D7 18FF 34 write 11111111 11111111

10 D7 18FE 56 write 11111111 11111111
1 1 B7 OOOF C1 POP BC 11111111 11111111
12 F7 18FE 56 read 11111111 11111111
1 3 F7 18FF 34 read 11111111 11111111
1 4 B7 0010 3C INC A 11111111 11111111
1 5 B7 0011 3C INC A 11111111 11111111
16 B7 0012 3C INC A 11111111 1 1 1 1 1 1 1 1

No Good! (Above is correct.) Was:

cy# CONT ADR DATA HDATA MISC
F D7 18DF 34 write 11111111 11111111

TCOMP reports a discrepancy to you by showing the relevant
section of the trace on disk, and then showing the non-matching
line from the current trace.

You then have to perform a visual comparison of the two
cycles that don't match up.

In this case, you can see that in cycle F of the trace on
disk, the Z80 wrote to address 18FF. In that same cycle of the
new trace, the Z80 wrote to 18DF. Since the program is the same
in both cases, the difference is in the hardware.

while

ADDRESS LINE: 7654 3210
FF hexadecimal is 1111 1111 binary,
DF hexadecimal is 1101 1111 binary.

So,·obviously, address line AS has been accidentally
grounded.

July 1 6 I 1 9 8 6 Page 6-97 -- In Detail --

-- Saving Information --

5.8 Save Symbol Table as DOS File

You can save the symbol table as an encoded file, which can
later be retrieved with SYMLOAD.

You save the current symbol table with the command:

SYMSAVE <file name>

5.9 Save a Range of Memory as DOS file

You can save any range of emulation ROM as an encoded file,
which can later be retrieved with BINLOAD. You can use this
command to save the program you are working on.

You can also save from and load to RAM if you have first
established debug control. See section 6 on Breakpoints and The
Debugger.

You save a range of memory with the command:

<from address> <to address> BINSAVE <file name>

-- In Detail -- 6-98

-- Saving Information --

5.10 Save the State of the UniLab Software

You can save the current state of the UniLab program to a
command file. This allows you to save the software with a
certain range of memory enabled, and with other variables set up
to your preference. Saving the system will also preserve the
current trace.

You can save to a file with the same name as the current
.COM file, or to a different one.

To save the current state of the system, use the command:

SAVE-SYS <file name>

Unless you specify a different path, the file will get saved to
the Orion directory.

July 16, 1986 Page 6-99 -- In Detail --

6. Breakpoints and the Debugger

Introduction

The UniLab emulator includes special hardware that makes
possible virtually all of the traditional processor-pod
development system features. The basic UniLab software includes
all of the processor-independent debug features.

Processor-specific software packages add more features, such
as the ability to change specific registers, or take advantage of
special functions of the processor.

Contents

-- In Detail --

6. 1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Feature Summary

Overview

Establish Debug Control

Interpret the Breakpoint Display

Within the Debugger

"Trigger," style breakpoints

Exit from the Debugger

Disable Debugger-- How and Why

6-100

6-101

6-103

6-104

6-109

6-111

6-121

6-122

6-124

6.1 Feature Summary

Feature Menu

To enter debugger:
Establish debug control Yes
Gain debug control without setting

a breakpoint. Not supported on
all processors. NO

Within debugger:
All commands for reading and

altering memory work on RAM.
Resume execution to a breakpoint Yes
Set breakpoint at next

code address Yes
Show the "breakpoint display"

again NO
Execute the next instruction-- use

when single stepping for jumps
and branches. Not supported on
all processors. NO

Alter Program Counter,
then resume to breakpoint

Set Multiple Breakpoints
Clear one multiple breakpoint
Clear all multiple breakpoints

Yes
NO
NO
NO

-- The Debugger --

Command

RESET <addr> RB

NMI

<addr> RB

N

R

SS TEP

<New PC> <addr> GB
<addr> <bp #> SMBP
<bp #> RMBP
CLRMBP

Trigger style breakpoints (Not supported on all processors):
Set up a trigger for debugger NO RI <trigger spec>
Start program and gain debug control

when trigger seen on bus NO SI

To exit debugger:
Exit immediately-- set program

running again
Alter Program Counter, then exit

from debug control
Alter Program Counter, then wait

for the analyzer to start

NO RZ

NO <New PC> G

NO <New PC> GW

Additional (target specific) debugger commands alter register
contents, output values to ports, etc.

July 16, 1986 Page 6-101 -- In Detail --

-- The Debugger

Command:

RESET <addr> RB
<addr> RB
N

<New PC> <addr> GB
<New PC> G

-- In Detail --

F1
F2
F3
F4
FS

F10

Menu:

DEBUG MENU
SET A BREAKPOINT TO ESTABLISH DEBUG CONTROL
RESUME EXECUTION TO A BREAKPOINT
EXECUTE THE NEXT STEP (WON'T FOLLOW JUMPS)
GO TO AN ADDRESS WITH A BREAKPOINT SET
GO TO AN ADDRESS AND EXIT THE DEBUGGER

RETURN TO MAIN MENU

6-102

-- The Debugger --

6.2 Overview

The debugger commands of the UniLab software provide you
with the tools traditionally associated with development systems.

With the debugger commands, you can

set single or multiple breakpoints,
single step through code,
read and alter internal registers.

Also, once you have established debug control, you can read
and alter RAM using any of the commands that access memory (see
section three of this chapter).

The UniLab's powerful bus state analyzer replaces most of
the functions of the traditional debugging tools. But when you
have tracked a bug down to a small segment of code, it is handy
to be able to set a breakpoint and single step through the
program.

July 16, 1986 Page 6-103 -- In Detail --

-- The Debugger --

6.3 Establish Debug Control

Most of the debugger commands will not work until after the
UniLab's special debugger hardware has taken control of your
processor.

You can establish debug control with either RESET <addr> RB,
or, if it is supported by your processor, with NMI.

You cannot invoke the debugger until after your program
initializes the stack pointer. The debugger actually runs code
on your processor, and then uses the RETurn instruction to resume
execution of your program.

If the stack pointer is not initialized, you will not be
able to establish debug control at all.

Run to a breakpoint

You can invoke the debugger by setting a breakpoint at a
particular code address.

RESET <address> RB

The address you give must be the first address of an opcode.
In the fragment of Z80 code below, you could set a breakpoint at
any of the addresses that appear in the adr column. But you
would not be able to set a breakpoint on 131 or 132, for example.

Adr
012B
012E
012F
0130
0133
0134
0135
0138

Opcode
012COO
7C
BA
C23801
70
BB
CA4201
7E

Instruction
LD BC, 2C
LD A,H
CP D
JP NZ,138
LO A,L
CP E
JP Z,142
LD A, (HL)

Use a trace display, or disassemble from memory (with DN or
DM) to determine what addresses you can use for breakpoints.

-- In Detail -- 6-104

-- The Debugger --

Establish control with NMI

Using the Non-Maskable Interrupt (NMI) command is the other
way to gain debug control. This command will only work if

1) your processor was designed with a pin that lets you
give a non-maskable interrupt signal or some equivalent
feature,

and

2) your hardware does not make use of that feature.

The NMI command of the UniLab software sends a signal to the
NMI pin of your processor, which interrupts your program-- no
matter what it happens to be doing.

Of course, your program has to be running before NMI can
interrupt it, and your program must initialize the stack pointer
or the Orion dbugger will not work.

If you don't know whether your processor supports NMI, look
at Appendix H: Processor Features.

July 16, 1986 Page 6-105 -- In Detail --

-- The Debugger --

Commands dependent on NMI

NMI is used by the SSTEP and SI features. If your processor
does not have a non-maskable interrupt feature, then the UniLab
software does not support the commands NMI, SSTEP, nor the
RI & SI combination.

Of course, if you disable NMI, the features that make use of
it will not work.

Disabling NMI

If your hardware does make use of the NMI feature of your
processor, you will need to disable the UniLab software's use of
that feature. Disable the debugger's use of the NMI feature of
your processor with either the Mode Panel option "NMI VECTOR" or
the command NMIVEC'.

Whichever you use, the result is the same-- NMI and the
commands dependent upon it no longer work, but the rest of the
debugger commands, such as RB and GW, work fine.

However, you can turn off all debugger commands, including
NMI, with either the mode panel option "SWI VECTOR" or the
command RSP' .

-- In Detail --

Mode Panel:

3. LOG modes
LOG TO PRINT
LOG TO FILE
PRINTER
NMI VECTOR
SWI VECTOR

inactive
off
off
active
active

6-106

-- The Debugger --

Common pitfalls

1. Watchdog Timer:
Your microprocessor stops executing your program when you are at
a breakpoint.

If you have a watchdog timer, it will then try to restart
your target board. The watchdog thinks that something has gone
wrong with your program.

You must disable the watchdog timer to use the debugger.

2. Stack Pointer:
The Orion overlay routines make use of your processor's stack.
You cannot set a breakpoint until after your program initializes
the stack pointer. Most programs initialize the stack pointer
as one of the first few steps.

3. Opcode Address:
You can only set a breakpoint on the first address of an
instruction, as explained on the previous page.

4. Reserved bytes and the Overlay Area:
Your program cannot make use of the reserved bytes, and you
cannot set a breakpoint in the overlay area.

The addresses of the reserved bytes and the overlay area
appear in Appendix H, or hit C'l'RL-F3. The reserved area is
between one and six bytes of ROM, and the overlay area is the
area of 30 to 70 bytes above the reserved bytes.

Debug commands referencing addresses in the overlay area may
produce strange results. The safest practice is to not have any
code in there at all.

July 16, 1986 Page 6-107 -- In Detail --

-- The Debugger --

Example: Establish debug control with RB

When your program reaches a breakpoint, the UniLab takes
control of your processor. Your program actually stops
executing.

Your processor executes an Orion "overlay routine" that
results in a display of your processor's internal registers. The
display you get will depend on your processor. We can set a
breakpoint in the following Z80 code:

Adr Opcode Instruction
012B 012COO LD BC,2C
012E 7C LD A,H
012F BA CP D
0130 C23801 JP NZ,138
0133 7D LD A,L
0134 BB CP E
0135 CA4201 JP Z,142
0138 7E LD A,(HL)

In this example, we set a breakpoint on address 12F. The
UniLab replies with a "resetting" message, to let us know that it
is restarting the target board's program. When the processor
reaches the breakpoint, the register display appears.

RESET 12F RB resetting

AF=02AO (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1COO PC=012:
012F BA CP D (next step) ok

-- In Detail -- 6-108

-- The Debugger --

6.4 Interpreting the Breakpoint Display

The breakpoint display varies from processor to processor,
but always contains the same two basic parts:

The register display

~F=02AO (Sz-a-pncj BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1COO PC=Oi2F

and the display of the next step.

012F BA CP D (next step) ok

Register display

You can show the breakpoint display again with the command
R.

The register display varies from processor to processor, but
always includes the stack pointer (SP), the program counter
(PC), and the flags register (F).

~F=02AO (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1COO PC=012F

All registers are displayed in hexadecimal, and a single
letter abbreviation for each flag is also displayed.

~F=02AO (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1COO PC=012F

Notice how the flags display changes as the value stored in
the F register changes-- a capital letter indicates that the
value is high, a lowercase letter indicates that it is low:

July 1 6, 1 986

AF=02AO (~z-a-pnc}

AF=0242 (s~-a-p~c)

Page 6-109 -- In Detail --

-- The Debugger --

Next step

The display of the next step shows you the address of the
opcode which will execute next,

AF=02AO (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1COO PC=012:
012F BA CP D (next step) ok

and the opcode stored at that address,

012F BA CP D (next step) ok

and the disassembled instruction that the processor is about
to execute:

012F BA CP D (next step) ok

The address of the next instruction is, of course, the same
as the address contained in the Program Counter or Instruction
Pointer register.

-- In Detail -- 6-110

-- The Debugger --

6.5 Within the Debugger

Once you have established debug control, you can:

run to another breakpoint,
single step,
follow jumps while single stepping,
change the program counter and then run to a bp,
set multiple breakpoints,
examine and alter internal registers,
and examine and alter RAM or ROM.

You can also exit from the debugger, and start using
analyzer commands again.

Since your processor is idling, you can safely look at or
change emulated ROM without crashing the program.

If your processor supports NMI, then it also supports
analyzer trigger-style breakpoints, as described in the next
subsection, 6.6.

On some processors, you can also send data to a port, and
examine the contents of a port.

Missed breakpoints

You will lose debug control if you use RB or GB to set a
breakpoint which your program never reaches.

When this occurs you can press any key and NMI will be
executed, regaining debug control-- but only if your processor
supports NMI (see Appendix H). Otherwise, the only way to again
establish debug control is with RESET <addr> RB.

If you accidentally set a breakpoint in the middle of an
instruction, it will probably crash your program, in which case
RESET <addr> RB will be the only way to regain debug control.

July 16, 1986 Page 6-111 -- In Detail --

-- The Debugger --

Run to another breakpoint

After establishing debug control, you can let the program
run to another breakpoint:

<address> RB

In the transcript below, the UniLab was used to first
establish debug control, and then to run to a second breakpoint.
From the second breakpoint, we let the program run to a third.

RESET 14C RB resetting

AF=786A (sZ-a-pNc) BC=040E DE=0200 HL=1801 IX=FFFF IY=FDFF SP=1COO PC=0141
014C OB DEC BC (next step) ok

15E RB
AF=0044 (sZ-a-Pnc) BC=0086 DE=FFFE HL=OOOO IX=FFFF IY=FDFF SP=1BFE PC=015J
015E 39 ADD HL,SP (next step) ok

177 RB
AF=0044 (sZ-a-Pnc) BC=0086 DE=1BEE HL=OOOO IX=FFFF IY=FDFF SP=1BFO PC=017
01 77 C9 RET (next step) ok

Notice that you only enable RESET to establish debug
control, not when running to subsequent breakpoints. If you
enabled RESET each time, your program would start running again
from the beginning, rather than continuing from the breakpoint
where it is stopped.

In Detail -- 6-11 2

-- The Debugger --

Single-Stepping

After you have established debug control, you can step
through your program, executing one opcode at a time.

To step through a series of instructions that do not have
jumps, calls, or branches, use N. This command actually sets a
breakpoint following the next opcode.

You use this command when:

Example

the next instruction is not a jump,

or when it is a jump, call, or branch, but you don't
want to see the program until it reaches the
instruction that comes immediately after the current
instruction.

In the transcript below, we first establish debug control
with RB, and single-step through a series of stack and register
manipulations.

Notice that the Program Counter is always the same as the
address of the "(next step)." You can also see the effects of
the register manipulations in this code. The registers that are
about to change are in bold text, and the ones that have just
changed are underlined.

RESET 170 RB resetting
AF=0040 (sZ-a-pnc) BC=OODE DE=0002 HL=OF83 IX=FFFF IY=FDFF SP=1BEA PC=0170
0170 EB EX DE,HL (next step) ok
N
AF=0040 (sZ-a-pnc) BC=OODE DE=OF83 HL=0002 IX=FFFF IY=FDFF SP=1BEA PC=0171
01 71 E1 POP HL (next step) ok
N
AF=0040 (sZ-a-pnc) BC=OODE DE=OF83 HL=1BEE IX=FFFF IY=FDFF SP=1BEC PC=0172
0172 F9 LD SP,HL (next step) ok
N
AF=0040 (sZ-a-pnc) BC=OODE DE=OF83 HL=1BEE IX=FFFF IY=FDFF SP=1BEE PC=0173
0173 C1 POP BC (next step) ok
N
AF=0040 (sZ-a-pnc) BC=0086 DE=OF83 HL=lBEE IX=FFFF IY=FDFF SP=1BFO PC=0174
0174 EB EX DE,HL (next step) ok
N
AF=0040 (sZ-a-pnc) BC=0086 DE=1BEE HL=OF83 IX=FFFF IY=FDFF SP=1BFO PC=0175
0175 7C LO A,H (next step) ok

July 1 6' 1986 Page 6-113 -- In Detail

-- The Debugger --

Single stepping, following jumps

When the next instruction is a jump, branch, or call, and
you do want to see the program execute it, you should use the
command SSTEP-- if it is included in the debugger package for
your processor.

Otherwise, you will have to manually set a breakpoint on the
address that the code jumps to.

Do not use N, since that command does not follow jumps.

Example: Watch a Jump

Notice how N was used to step up to the jump, and then SSTEP
was used to execute the jump itself.

RESET 134 RB resetting

AF=7842 (sZ-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1COO PC=0134
0134 BB CP E (next step) ok

N
AF=786A (sZ-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1COO PC=0135
0135 CA4201 JP Z,142 (next step) ok

The program executes the jump to 142.

SSTEP NM!
AF=786A (sZ-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1COO PC=0142
0142 210018 LD HL,1800 (next step) ok

-- In Detail -- 6-114

The Debugger --

Change the program counter and the run to breakpoint

To restart the program at a different address than the one you are
stopped at, use

<New PC> <address> GB

This command takes two arguments. It puts the first value into the
program counter, and sets a breakpoint at the second value. Then the
UniLab releases the processor, so that it runs the program starting at the
new code address pointed to by the program counter.

Note that this can have some unexpected results-- you are interfering
with the program flow.

See the example on the next page.

July 16, 1986 Page 6-115 -- In Detail --

-- The Debugger

Example: Change PC, then run to a breakpoint

First, while stopped at a breakpoint
reset the PC and set a breakpoin

on the very next opcode address
RESET 160 RB resetting

AF=004C (sZ-a-Pnc) BC=0086
0160 39 ADD HL,SP

170 171 GB
AF=004C (sZ-a-Pnc) BC=0086
0171 E1 POP HL

DE=1BFE HL=FFFE IX=FFFF IY=FDFF SP=1BFE PC=0160
(next step) ok

DE=FFFE HL=lBFE IX=FFFF IY=FDFF SP=1BFE PC=0171
(next step) ok

Of course, you can set the breakpoint
and the new PC to the same address

RESET 160 RB resetting

AF=004C (sZ-a-Pnc)
0160 39 ADD

171 171 GB
AF=004C (sZ-a-Pnc)
01 71 E1 POP

BC=0086 DE=1BFE HL=FFFE IX=FFFF IY=FDFF SP=1BFE PC=0160
HL,SP (next step) ok

BC=0086 DE=1BFE HL=FFFE IX=FFFF IY=FDFF SP=1BFE PC=0171
HL (next step) ok

Notice the difference in the HL register whe
you actually run the program to the nex
breakpoint, instead of changing the PC

This is an example of the unexpected results that
come from interfering with program flow

RESET 160 RB resetting

AF=004C (sZ-a-Pnc) BC=0086 DE=1BFE HL=FFFE IX=FFFF IY=FDFF SP=1BFE PC=0160
0160 39 ADD HL,SP (next step) ok

171 RB
AF=0040 (sZ-a-pnc) BC=OODE DE=OOOO HL=0002 IX=FFFF IY=FDFF SP=1BEA PC=0171
01 71 E1 POP HL (next step) ok

-- In Detail -- 6-116

-- The Debugger --

Set multiple breakpoints

Traditionally, multiple breakpoints were used when you did
not know where the program was going to go next. You would try
to block all exits by setting a breakpoint at every place the
program could go.

The UniLab's ability to show you program flow makes multiple
breakpoints obsolete. But, if you want to use them, here's how:

After establishing debug control, use

<address> <breakpoint #> SMBP

to set one of the eight numbered breakpoints.

You should set all but one of your breakpoints with SMBP,
and then use

<address> RB

OR

<New PC> <address> GB

to set the last breakpoint and set the processor running again.

Establish debug control

You can also use SMBP before a

RESET <addr> RB

to establish debug control in the first place.

Clear breakpoints

If you want to clear out all multiple breakpoints, use
CLRMBP. The command <breakpoint #> RMBP will clear one of
the breakpoints ..

Ju 1 y 1 5, 1 9 8 6 Page 6-117 -- In Detail --

-- The Debugger --

Example: Set multiple breakpoints

The transcript below shows an example of the use of the SMBP
command while checking out the following code:

0140
014E
014F
0152

79
BO
C24A01
C38000

LD A,C
OR B
JP NZ,14A
JP 80

The problem to be solved: where does the program go after
executing the code at address 014E. It might jump back to 014A,
it might continue beyond that instruction and jump to 80. So you
have to set two breakpoints:

RESET 14E RB resetting

AF=OD6A (sZ-a-pNc) BC=040D DE=0200 HL=1801 IX=FFFF IY=FDFF SP=1COO PC=014J
014E BO ORB (next step) ok

14A 1 SMBP
1 $014A 2 $---- 3 $---- 4 $---- 5 $---- 6 $---- 7 $---- 8 $----

80 RB
AF=0D08 (sz-a-pnc) BC=040D DE=0200 HL=1801 IX=FFFF IY=FDFF SP=1COO PC=014j
014A 73 LD (HL),E (next step) ok

We find, not surprisingly, that the program jumps back to
address 014A. But to find out about how the program flows, you
will probably prefer to use the analyzer command <addr> AS
as illustrated below. The analyzer trace shows you what happens
each time the program reaches the code at 014E.

14E AS resetting

cyl CONT ADR DATA HDATA MISC
-1 B7 0140 79 LD A,C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 B7 014E BO OR B 1 1 1 1 1 1 1 1 11111111
1 B7 014F C24A01 JP NZ,14A 1 1 1 1 1 1 1 1 11111111
4 B7 014A 73 LD (HL), E 1 1 1 1 1 1 1 1 11111111
5 D7 1801 00 write 1 1 1 1 1 1 1 1 11111111
6 B7 014B 23 INC HL 1 1 1 1 1 1 1 1 11111111
7 B7 014C OB DEC BC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 B7 0140 79 LD A,C 1 1 1 1 1 1 1 1 11111111
9 B7 014E BO OR B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A B7 014F C24A01 JP NZ,14A 1 1 1 1 1 1 1 1 11111111
D B7 014A 73 LD (HL) IE 1 1 1 1 1 1 1 1 11111111
E D7 1802 00 write 1 1 1 1 1 1 1 1 11111111

In Detail -- 6-118

RESET

-- The Debugger --

Examine and alter internal registers

The breakpoint display shows your internal registers. Of
course, this display varies from processor to processor.

You can display all registers again with R.

And you can alter them with commands that follow this
pattern:

<value> =Name_of_Register

The commands for altering registers are processor specific.
For example, the Z80 package includes:

=AF =BC =DE =HL =IX =IY

Check the glossary section in the Disassembler/Debugger
writeup for your processor, or press CTRL-F3.

Example: Alter the flags register

Notice how, in the example below, we change the flow of the
program by altering the "Zero" Flag.

R shows you the register display again-- very handy for
verification after you've changed a register.

After we alter the flag, we single step, and see that the
program takes the jump, because of the change to the flag.

12F RB resetting

AF=02A8 (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1COO PC=012F
012F BA CP D (next step) ok

N
AF=0242 (s!-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1COO PC=0130
01 30 C23801 JP NZ,138 (next step) ok

0202 =AF ok

R
AF=0202 (sz-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1COO PC=0130
01 30 C23801 JP NZ,138 (next step) ok

SSTEP NMI
AF=0202 (sz-a-pNc) BC=002C DE=0278 HL=0278 IX=FFYF IY=FDFF SP=1COO PC=0138
0138 7E LD A, (HL) (next step) ok

July 16, 1986 Page 6-119 -- In Detail --

-- The Debugger --

Examine and alter RAM

While stopped at a breakpoint, you can use all the memory
access commands to examine and alter either RAM or ROM.

If you have not established debug control, most of these
commands will only work on emulation ROM-- and access to
emulation ROM will cause your program to crash.

For details on the memory commands, see section 3: Examining
and Altering Memory.

-- In Detail -- 6-120

-- The Debugger --

6.6 Trigger-Style Breakpoints

On some processors you can establish debug control using
trigger-style commands-- and thus establish a breakpoint when
certain conditions appear on the bus. This feature is only·
supported on microprocessors that support NMI (see Appendix H).

You use RI and SI to invoke the debugger on your program a
cycle or two after the bus conditions appear.

You can use RI and SI either to establish debug control in
the first place, or to run to the next breakpoint after you have
already established control.

RI declares that the trigger spec which follows will be used
to establish debug control. SI then sets the analyzer going.
Like this:

RI <trigger spec> SI

Qualifiers should not be used in this trigger spec. If you
do use them, the result will be that the qualifier and trigger
must occur one immediately after another.

Example: Trigger style breakpoints

Here, as usual in these examples, we are again looking at
the Z80 test program. The example shows the setting of two
breakpoints using analyzer style commands. Note that the
breakpoint occurs one cycle after the trigger event occurs. The
disassembly of the code in which we are setting breakpoints
appears below, for convenience.

0005 015634 LD BC,3456
0008 119A78 LD DE,789A
OOOB 21DEBC LD HL,BCDE
OOOE cs PUSH BC
OOOF C1 POP BC
0010 3C INC A
0011 3C INC A
(... jump back to address 3 ...)

RI 10 ADR 3C DATA SI resetting
AF=1300 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=E5C1 IY=E5C1 SP=1900 PC=0011
0011 3C INC A (next step) ok

RI 18FF ADR AFTER OE ADR SI
AF=1228 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=E5C1 IY=E5C1 SP=18FE PC=OOOF
OOOF C1 POP BC (next step) ok

July 1 6 I 1 986 Page 6-121 -- In Detail

-- The Debugger --

6.7 Exit from Debugger

There are four ways to exit from the debugger:

1) RZ immediately releases the program from debug control,
so that it starts running again,

2) <addr> G releases the processor from debug control
after changing the Program Counter,

3) <addr> GW changes the Program Counter, and then waits
to release the processor until you restart the
analyzer,

4) or you can define a trigger spec, and start up the
analyzer.

If you exit from the debugger by starting up the analyzer be
sure to remember that the debugger has disabled reset. If you do
want the program to start over from the beginning, you have to
enable automatic resetting with RESET or the mode panel (function
key 8).

You will definitely want to ~se NORMx to clear out the
special trigger specifications that the debugger commands use.

A simple alternative is to just use STARTUP, which clears
out the previous trigger and starts the program over from the
beginning.

Exit after a target system crash

If you crash the target system while you are in the
debugger, you will need to start the target program over from the
beginning.

-- In Detail -- 6-122

-- The Debugger --

Examples: Exiting from the debugger

If you want the processor to start executing the program
again, without restarting the program, use:

<New PC> GW <analyzer trigger spec>

to change the program counter, and then wait for the analyzer to
start up. The analyzer trigger specification can appear on the
same line or on a separate line.

8 GW
cy#

-5
-4
-3

0
2
5
8
B

For example:

03 AS
ADR DATA

0027 3C
0028 3C
0029 C30300
0003 3E12
0005 015634
0008 119A78
OOOB 21DEBC
OOOE CS

INC A
INC A
JP 3
LD A,12
LD BC,3456
LD DE,789A
LD HL,BCDE
PUSH BC

If you want to release the processor and set it running,
without setting any analyzer trigger spec, use:

<New PC> G

July 16, 1986 Page 6-123 -- In Detail --

-- The Debugger --

6.8 Disabling the Debugger: How and Why

Why

The Orion debuggers reserve between one and six bytes of
your ROM, and overlay code into an additional 30 to 70 bytes.

You can put your own code in the overlay area, but never in
the reserved area (CTRL-F3 tells you where the reserved area is
on your processor). If you disable the debugger, then you can
make use of these small areas of memory.

The NMI command makes use of the non-maskable interrupt
feature of your processor. If your target board hardware makes
use of that feature, you will want to disable the UniLab NMI
Vector.

If you want to run a program from a ROM chip on your target
board, you must first clear out emulation memory enables with
EMCLR and then disable the debugger as well-- you will, of
course, still be able to use the analyzer and disassembler.

How: Disable the debugger

If you need to use that reserved area of one to four bytes,
you can turn off all debugger commands with RSP' or with the mode
panel (F8).

Mode Panel:
3. LOG modes

LOG TO PRINT
LOG TO FILE
PRINTER
NMI VECTOR
SWI VECTOR

inactive
off
off
active
active

How: Disable use of the NMI feature

If you need to disable the Orion software's use of the
hardware interrupt feature of your processor, use NMIVEC' or
the mode panel (F8). This will disable NMI, SSTEP, and
RI and SI.

NMI VECTOR active

-- In Detail -- 6-124

7. Burning PROMS

Introduction

You can do all your EPROM programming from the menu system.
The menus allow you to program any EPROM with just a few key
strokes. The menus include reminders about which "personality
module" is required.

When your program is working perfectly under emulation, you
can copy it into virtually any single-supply EPROM or EEPROM
directly from the emulator memory. To program a 2716, for
example, from target locations 800 to FFF, you just put an erased
2716 in the socket and choose the appropriate menu option. You
will be prompted for the starting and ending addresses, then the
ROM will be programmed.

Erase check, programming, and verification will immediately
begin, and the LED to the right of the socket will light. The
light goes out when the PROM has been programmed (usually just a
few seconds).

Contents

7. 1 Feature Summary 6-126

7.2 Personality Modules 6-127

7.3 Plugging in PROMS 6-129

7.4 Calculate Checksums 6-131

7.5 Verify Your PROM 6-132

7.6 PROMs for 16-bit Processors 6-132

7.7 P~og~~ffifulng -r~ Standalone M6de 6-133

7.8 Sample Macro for EPROM Production 6-134

July 16, 1986 Page 6-125 -- In Detail --

-- Burning PROMS --

7.1 Feature Summary

Though there are commands for burning programs into each
type of EPROM we support, we recommend that you use the EPROM
burning Menu whenever possible. These menus are always just a
few keystrokes away, and include reminders about which PM
(personality module) you need for each EPROM.

The only time you would really need the command rather than
the menu item, is when you want to burn a EPROM from within a
macro. See also Appendix G for information on EPROMs.

All the EPROM programming commands are covered by the menus:

Menu: Command:

PROM PROGRAMMING MENU #1

F1 PROGRAM A 2716 (use PM16 personality module) P2716
F2 PROGRAM A 2532 (use PM16 personality module) P2532
F3 PROGRAM A 2732A (use PM32 personality module) P2732A
F4 PROGRAM A 2764A (use PM64 personality module) P2764
F5 PROGRAM A 27128A (use PM56 for A version) P2764
F6 PROGRAM A 27256A (use PM56 personality module) P27256
F7 PROGRAM A 27512 (use PM512 personality module) P27512
F9 Next page of Prom Programming Menu

F10 RETURN TO MAIN MENU

PROM PROGRAMMING MENU #2

F1 PROGRAM A 27C16 (use PM16 personality module) PD2716
F2 PROGRAM A 48016 (use PM16 personality module) P48016
F3 PROGRAM A 27C32 (use PM16 personality module) P27C32
F4 PROGRAM A 2764 (use PM64 personality module) PD2764
F5 PROGRAM A 27128 (use PM64 personality module) PD2764
F6 PROGRAM A 27256 (use PM56 personality module) PD27256
F9 RETURN TO PROM READER MENU

F10 RETURN TO MAIN MENU

-- In Detail "·· ·-., 6~126

-- Burning PROMS --

7.2 Personality Modules

Whether reading or burning an EPROM or EEPROM, you have to
have the correct Personality Module in the 16 pin socket just to
the left of the EPROM PROGRAMMER socket.

ORION Universal Development Laboratory
Instruments

UnilablI EPROM PROGRAMMER
n-PIN1 [i] ,---, 111111111111111112! r--;J

M@l\,
PM18 • • 48 CHANNEL BUS STATE ANALYZER I ~ 1~·-~.·~~~~ .. ~~~~~ ························!~

2711

I 3532 1111111111111111 '6016
•••••••••••••••••••••••• @

PERSONALITY MODULE /

The personality module is necessary because control signals
vary from EPROM to EPROM. The Orion UniLab uses the personality
module to alter the voltage and pin location of control signals.
This makes it possible for one unit to program all the most
popular EPROMs, with a simple change in PM.

ORION Universal Development Laboratory
Instruments

Unilab :0:

I ~'.''.'.'~~·~:'.~'.~~~~ ··············~!

48 CHANNEL BUS STATE ANALYZER-----.

I : : : : : : : : : : : : :-: -: :-: -: :-: -: :-: :~1 •

July 16, 1986 Page 6-127 -- In Detail --

... •

-- Burning PROMS --

See Appendix G for full information on EPROMs and
Personality Modules.

The UniLab is shipped with:

For 21 volt EPROMs:

PM16 for programming 2716, 27C16 and 2532 EPROMs.

PM32 for programming 2732 and 2732A EPROMs.

PM64 for programming 2764, 27C64 and 27128 EPROMs.

For 12.5 volt EPROMs:

PM56 for programming 12.5 volt programmed EPROMs
such as 2764A, 27C64, 27128A, 27C128, and
27256.

You can also purchase:

PM512 for programming 12.5 volt 27512 EPROMs.

PM56-21 for programming 21 volt 27256 EPROMs.

-- In Detail -- 6-128

-- Burning PROMS --

7.3 Plugging in PROMs

ORION Universal Development Laboratory
Instruments

~ Unilab][rt"'"' I EPROM PROGRAMMER 1
~ 111 II I II I 1111111 I! .I §

I ~'.'.rr.'~~~~-~'.~~o~~
'6CHANNEL BUS ST""' ANALVZER~ I[.. ,. • I . ; • I a ~111111111111 I I I:::::::::::::::::::::::: I@

EPROM Programmmg Socket /

Be sure to plug PROMs into the socket with the notch to the
right.

24-pin EPROMs should
be inserted into the socket
shifted as far to the left
as possible:

EPROM PROGRAMMER M@l!:D
PM16 e

2716
3532

48016

28 Pin EPROM in Programming Socket

July 16, 1986

·D Vp

• •

24 Pin EPROM in Programming Socket

Page 6-129

28-pin EPROMs will
fill up the whole
socket.

-- In Detail --

Burning PROMS --

Never turn power on and off with a PROM in the socket-- this
could erase location 0. The same warning applies to changing the
personality module with the PROM in the socket.

In general, don't leave the PROM in the socket any longer
than necessary to read or program it.

The UniLab's smart programming algorithm guarantees a 4:1
margin on stored charge while taking a minimum amount of
programming time. An erase check is done before programming
starts and all locations are verified during programming.

-- In Detail -- 6-130

Burning PROMS --

7.4 calculate Checksums

If you want to put checksums in your EPROMs, a CKSUM command
is provided to compute them for you. Enter:

adr toadr CKSUM

to calculate the sum.

Then use the MM! command to put the checksum in the desired
location before burning the PROM.

Be sure to have a known value (such as 0 or 1) in the
location you plan to put the checksum in (usually the top or
bottom of memory) before executing CKSUM.

July 16, 1986 Page 6-131 -- In Detail --

-- Burning PROMS

7.5 Verify Your PROM

PROMs are verified during the programming process.

However, if you want to separately verify a PROM, you can
read it into another area of memory and use the MCOMP command to
compare to the original data.

7.6 Program PROMs for 16-bit Processors

When the 16-bit mode has been selected (by entering 16BIT)
the prom programmer will automatically select odd or even bytes
to go with the first address you have selected.

1 TO FFF RPROM or 1 TO FFF P2716

will thus read or write odd bytes only, while

0 TO FFF P2716

will write even bytes only.

The same rule applies when programming or reading using the
PROM menus (F9 under the menu system).

-- In Detail -- 6-132

-- Burning PROMS --

7.7 Standalone PROM Programming

Programming a large EPROM can take a significant amount of
time. If you want to use your host computer for some other task
while the UniLab burns the EPROM, you can precede an EPROM
programming command with the word STANDALONE.

You can also type in the command STANDALONE, and then use
one of the EPROM programming menus to start the programming
operation going.

This will cause the UniLab to do its work without needing to
be in contact with the host computer. When the UniLab is
finished programming, the red light next to the EPROM PROGRAMMING
socket will go out. You can then use the command PROMMSG to get
the message that tells you the completion status of the
programming operation.

July 16, 1986 Page 6-133 -- In Detail --

-- Burning PROMS --

7.8 Sample Macro for Production of EPROMs

It can be tiring, when programming many identical EPROMs, to
keep typing in the same series of instructions to the menu.

Fortunately, you can make a simple macro that will take care
of the EPROM programming for you. For example, if you are
burning a 2764 with the code that starts at 0 and goes to 1300:

: BURN 0 1300 P2764 ;

After that, all you have to do is type in BURN to program
the ROM.

Appendix F tells you more about macros.

If you choose to not use the menus, check Appendix G to find
out more about what commands and PMs you'll need for each EPROM.

-- In Detail -- 6-134

-- Burning PROMS --

8. Generating Stimuli

Introduction

Often in system checkout it is useful to build a switch
panel to allow system inputs to be changed easily. The UniLab
stimulus outputs make this unnecessary by providing eight latched
output bits that are controlled from your keyboard.

Contents

8. 1 Feature Summary 6-136

8.2 How to Do It 6-137

July 16, 1986 Page 6-135 -- In Detail --

-- Generate Inputs --

8.1 Feature Summary

Feature Menu Command

Generate a high signal on one wire
Generate a low signal on one wire
Define bit pattern of all 8 wires

Yes
Yes
Yes

<wire #> SET
<wire #> RESET
<hex byte> STIMULUS

Command:

<wire #> SET
<wire #> RESET

<hex byte> STIMULUS

-- In Detail --

F1
F2
F3

F10

Menu:
STIMULUS MENU

SET A STIMULUS BIT
RESET A STIMULUS BIT
DEFINE ALL 8 STIMULUS BITS
RETURN TO MAIN MENU

6-136

-- Generate Inputs --

8.2 How to Do It

The eight stimulus generator signals, asserted at the EPROM
programmer socket, can be individually set or reset from the
keyboard, set and reset as a group, or programmed to produce a
repeating pattern.

A ninth output (ST-) gives a 4-microsecond low pulse
whenever any of the wires are changed.

Connecting Stimulus cable

The stimulus cable actually plugs into the EPROM programming
socket and brings the signals out to .025" receptacles, like the
ones used on the analyzer cable. These output signals of the
UniLab can be plugged into wire wrap pins or DIP-CLIPs.

You then connect the signals to the inputs of your target
system, and use the stimulus generator as a "control panel"
during system checkout.

ORION Universal Development Laboratory
Instruments

1

8.116 BIT IN-CIRCUIT EMULATOR~

I · · · · · · · · · · · .H • • • • • • • • • • • I

Unilab :0:
48 CHANNEL BUS STATE ANALYZER~

............ '-:'• 1•...... 1@

Stimulus Cable in Programming Socket

July 16, 1986 Page 6-137

EPROM PROGRAMMER----­_ .-r- P•N 1

--- IG5i j'""'L.-J
llD@t\,

PMlS • STIMULUS CABLE e e
2718

-- In Detail --

-- Generate Inputs

Specify all 8 bits

You can specify the 8 bits of the stimulus signal with
<value> STIMULUS. For example, to make bits 7 and 2 high, while
all other bits are low, type in:

84 STIMULUS

The number 84 hex is, of course, 1000 0100 binary.
bit # 7654 3210

Change one bit at a time

You can also set or reset the bits individually with
<bit #> SET and <bit #> RES. For example,

1 SET

will set bit # 1 high.

You can also use these two commands to "pulse" target system
inputs. For example, to pulse an "active high" signal with
stimulus wire 3:

3 SET 3 RES

-- In Detail -- 6-138

-- Generate Inputs --

Stimulus generator and macros

You can assign a convenient name to any stimulus conf igura­
tion by simply preceding the name with a colon, and ending the
definition with a semicolon. For example,

: START1 0 SET 1 RES 3 RES .
I

will define a word START1, which causes the UniLab to perform
three operations: set stimulus #0 high, then set stimulus #1 low,
last set stimulus #3 low.

You could also define START this way:

: START2 01 STIMULUS ;

though this will have a slightly different effect than the first
definition-- it sets bit 0 high, bits 1 through 7 low, and it
does this all at the same time.

The stimulus generator commands are very useful in test
programs. You can use the generator to change the inputs to the
target system in sequence, and then compare the resulting traces.
See Appendix F for more info on test macros.

JU 1 Y 1 6 I 1 9 8 6 Page 6-139 -- In Detail --

Contents

9. 1

9.2

9.3

-- In Detail --

9. Special Keys

Feature Summary 6-1 41

Function Keys 6-142

Cursor Keys 6-144

6-140

-- Special Keys --

9.i Feature Summary

When you are in command mode, some UniLab features can be
accessed through the function keys and cursor keys.

~I I 1 I !
~' I ~~I

F5 F6
4 ~ ..
, 2 3

F7 F8 End • PIJDa

F9 F10

Function Keys and Cursor Keys

In the UniLab software, the cursor keys are always used by
themselves. The function keys can be used by themselves, or
while you are holding down any one of:

the ALT key,
the SHIFT key,
the CTRL key.

This means that you really have access to forty function keys.

ALT, SHIFT and Control Keys

Of ten used commands and help screens have been pre-assigned
to many of the 40 function keys. You can change the function
associated with any of the function keys.

You use the cursor keys to move through textfiles, trace
displays, and the line history.

July 1 6 I 1 986 Page 6-141 -- In Detail --

-- Special Keys --

9.2 Function Keys

All the commands that you call up with the function keys can
also be executed by typing in the command-- but it is usually
more convenient to use the function key. The only time you would
need to use the command is within a macro definition.

See the commands assigned to the function keys

Function key one tells you the current assignments of the
function keys.

Hit function key one (F1) to find out what commands have
been assigned to the "bare" function keys.

Hit F1 while holding down ALT to see the current assignments
of the ALTered function keys.

Hit F1 while holding down SHIFT to see the current
assignments of the SHIFTed function keys.

Hit Fl while holding down CTRL to get a display of the help
screens assigned to the CONTROLled function keys.

Change the commands assigned to the function keys

You can easily change the command that gets executed by any
function key. You use one of four commands to do this. All of
them take the same parameters:

<# of key> FKEY <command>
<# of key> ALT-FKEY <command>
<# of key> SHIFT-FKEY <command>
<# of key> CTRL-FKEY <command>

Any command that does not take parameters can be reassigned
to a function key-- including any macros that you write.

-- In Detail -- 6-142

Help for using
on-line displays

Help for Debuggers

He 1p for Emuiation
memory functions

Help for loading I
saving programs

Help for displaying I
altering memory

List Function Key
assignments for Shift

List Function Key
assignments for Alt

HELP with genera 1 instructions
for using glossary . Also
Function Key assignments.

Next Step - Execute next
instruction. Will not follow jumps
or branches.

Restore window split to
Defa~lt sizes.

TST AT - Display current
trigger spec.

STARTUP - Issue reset pulse
to target and tr ace first
cycles of target operation.

July 1 6, 1 986

Help for using windows

Help for simple analyzer
triggers

More he ip for analyzer
triggers

Help for mode pane 1
switches

Help for tr ace display

Memo - Bring up system editor
for use as custom memo pad

Ascii display - Shows ascii values
for keys.

Set new window split size

SPLIT mode - Enter /Exit split
screen mode.

NMI - Issue NMI pulse to target
to get breakpoint.

Single Step - Execute next
instruction. Will follow jumps

Function Key
assignments
when

gkey
'---./

held down

Function Key
assignments
when

~key
held down

Function Key
assignments
when

~key
held down

Function Key
assignments
when
no other key
held down

and branches. May be same as NM I.

MODE - Bring up pop-up mode
pan~ ls for changing display or
system modes.

MENU - Enter /Exit menu mode.

Page 6-143 -- In Detail --

-- Special Keys --

9.3 Cursor keys

You use the cursor keys on the numeric key pad to move
through various displays. The functions of the keys changes as
you change the task you are working on.

Cursor Key Assignments for Viewing Trace Buffer Display

Trace Display
Top of But.fer

Trace Display Previous Line

Toggle between ~
Upper & Lover
Vindov End

Trace Display
Previous Screen

Trace Display
Next Screen

Trace Display Down One Line

-- In Detail -- 6-144

Cursor Key Assignments for Viewing Text Flies
Up One Line

Beginning of :File

Toggle betveen ~
Upper & Lover End
Vindov

Dovn One Line
Other Cursor Key Uses

Split Screen Set Up One Line

(Jome) [J ~gUp)
Split Screen Set (4..) (sl (~)
Left One Column l__J ...,.

Exit Mode Panel (11 (fl (31
Exit Split Screen Setting ~ lLJ ~

-- Snecial Keys --

Previous Page

Next Page

Mode select toggle
Split Screen Set
Right One Column

Hore Words
Hore HELP
Next Hode Panel

Split Screen Set D-0vn One Line

July 16, 1986 Page 6-145 -- In Detail --

10. Mode Panels

Introduction

The mode panels, available at the press of a button (FB),
let you toggle features on and off without any need to remember
commands.

The Mode Panels are very simple to use, including on-line
help. Each mode panel and its help screens are reproduced here
as a courtesy, as well as in Chapter 5.

Contents

10.1 Feature Summary 6-147

10"2 Analyzer Modes 6-148

10.3 Display Modes 6-149

1 0. 4 Log Modes 6-150

-- In Detail -- 6-146

-- Mode Panels --

10.1 Feature Summary

Press F2 to get into the Mode Panels. Once you have a mode
panel on the screen, you can run through all of them, by hitting
F2 repeatedly.

Use the UpArrow and DownArrow keys to move around within
each mode panel, from option to~option.

The RightArrow toggles the current option. Press Fl to get
help screen for the current option.

Press END to exit from the Mode Panels.

Equivalent
commands:

DASM DASM'
SYMB SYMB'
RESET RESET'

SHOWM SHOWM'
SHOWC SHOWC'
<value> =MBASE
PAGINATE PAGINATE'
HOG HOG'

LOG LOG'
TOFILE
PR1NTPRINT 1

NMIVEC NMIVEC'
RSP RSP'

July 16, 1986

Mode Panel:

1. ANALYZER modes
DISASSEMBLER
SYMBOLS
RESET

2. DISPLAY modes
MISC COLUMN
CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER

3. LOG modes
LOG TO PRINT
LOG TO FILE
PRIN'PER-
NMI VECTOR
SWI VECTOR

Page 6-147 -- In Detail --

-- Mode Panels --

10.2 Analyzer Modes

1. ANALYZER modes
DISASSEMBLER
SYMBOLS
RESET

Help with the DISASSEMBLER option of Mode Panel
This option toggles the processor-specific disassembler.
Turn off when examining most filtered traces.
The equivalent commands are: DASM DASM'

Help with the SYMBOLS option of Mode Panel
Toggles translation of numbers into symbolic names.
Define symbols with IS , or load from file with SYMLOAD
or SYMFILE • The equivalent commands are: SYMB SYMB'

Help with the RESET option of Mode Panel
When enabled, the processor is reset whenever the
analyzer starts up. Turn off to catch trace of program
in progress. The equivalent commands are: RESET RESET'

-- In Detail -- 6-148

10.3 Display Modes

2. DISPLAY modes
MISC COLUMN
CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER

-- Mode Panels --

Help with the MISC COLUMN option of Mode Panel
When enabled, shows the MISCellaneous inputs to
the UniLab (wires MO through M7) on the trace display.
The equivalent commands are: SHOWM SHOWM'

Help with the CONT COLUMN option of Mode Panel
When enabled, shows on the trace display the CONTrol
inputs (C4 to C7), along with the high four bits of the
address (A16 to A19). The commands are: SHOWC SHOWC'

Help with the MISC #BASE option of Mode Panel
Changes the base in which the MISCellaneous inputs are
displayed. Toggles between binary and octal.
The equivalent command is: <base> =MBASE

Help with the PAGINATE option of Mode Panel
When enabled, stops the trace display when screen fills.
Disable only when you want to log entire trace to a file
or a printer. The commands are: PAGINATE PAGINATE'

Help with the FIXED HEADER option of Mode Panel
Labels the columns of the trace display with a fixed
header, rather than one that scrolls up with the display.
Lower window only. The equivalent commands are: HDG HDG'

July 16, 1986 Page 6-149 -- In Detail --

-- Mode Panels

10.4 Log Modes

3. LOG modes
LOG TO PRINT
LOG TO FILE
PRINTER
NMI VECTOR
SWI VECTOR

Help with the LOG TO PRINT option of Mode Panel
When enabled, logs on the printer any commands that
alter memory, such as M! and MM! • See also PRINTER
option. The commands are: LOG LOG'

Help with the LOG TO FILE option of Mode Panel
Starts logging all screen output to the logfile. Create
the file with TOFILE <name>, which can appear on the
DOS command line. The commands are: TOFILE TOFILE'

Help with the PRINTER option of Mode Panel
When enabled, logs all screen output to the printer.
The commands are: PRINT PRINT'

Help with the NMI VECTOR option of Mode Panel
When disabled, turns off the UniLab software's use of
the hardware interrupt feature of your microprocessor.
Disable if your target board needs to use that feature,
or to have nearly transparent emulation. NMIVEC NMIVEC'

Help with the SWI VECTOR option of Mode Panel
When disabled, turns off all the debugger features of the
UniLab software, such as RB and N • Turn off for
completely transparent emulation. The commands: RSP RSP'

-- In Detail -- 6-150

11. Windows

Introduction

A complete discussion of the split screen capabilities of
the UniLab software appears in the third section of the Getting
Started chapter. The material here includes only the summary of
split screen features.

Feature Summary

Function
Feature key Command

Toggle the horizontal split on and off F2 SPLIT

Disassemble into the left-hand window No <addr> ON

Display text file in upper window No TEXTFILE

Change the size of the split screen SHIFT-F8 WSIZE

Return split screen size to the latest setting,
after a help screen has altered it FS DEF

Switch between top and bottom screens End TOP/BOT

Screen History display

Look at one page of screen history Pg Up No

Look at one line of screen history UpArrow No

July 1 6, 1 986 Page 6-151 -- In Detail --

Introduction

12. Histograms
Graphical Performance Measurement Option

(Advance Information)

This optional UniLab feature produces a bar graph that helps
you to assess the performance of your target software.

The histogram points out to you where your program is
spending its time, so that you can decide where to focus your
time and energy.

You can produce two types of histograms, as described in the
following pages.

Before you can use histograms, you must enable them with the
command DOHIST. This word saves the system and then causes you
to exit to DOS. When you invoke the newly saved system, you will
be able to use histograms.

Contents

12.1

12.2

12.3

-- In Detail --

Feature Summary

When to Use Histograms
Address HISTograms
Time HISTograms

Making Histograms

6-152

6-153

6-154

6-157

-- Histograms --

12.1 Feature Summary

You only need two commands to gain access to the power of
the histogram. After you have typed one of the commands, you are
interacting with the fully menu-driven histogram generator.

You press F10 to exit from the histogram.

In normal operationt you can exit from the histogram
feature, and later in the same UniLab session re-enter the
histogram with all your data preserved. Two additional commands
allow you to save the information about a histogram to a file,
and later reload it.

Feature Command

Produce and display histogram of relative time the AHIST
program spends in each of up to 15 user-specified
address ranges. Address HISTogram.

Produce and display histogram of how often the elapsed THIST
time between two addresses falls into each of up
to 15 user-specified time ranges. Time HISTogram.

Save to a file the data from the most recent
histogram

Retrieve from a file the data from a previously
saved histogram

July 16, 1986 Page 6-153

HSAVE <file>

HLOAD <file>

-- In Detail --

-- Histograms --

12.2 When to Use Histograms

The two types of histograms share the same screen layout.
Both show bins running down the left-hand side of the screen,
column labels at the top of the screen and the function key menu
at the bottom.

This similarity masks a fundamental difference:
the Address HISTogram (AHIST) shows you a graph based on address
bins, while the Time HISTogram (THIST) shows you a graph based on
time bins.

What the address histogram does

The address histogram helps you find bugs, and discover the
time hogs in your code.

You invoke this feature with the command AHIST, and then
specify up to 15 address bins by filling in the starting and
ending addresses.

When you start the histogram with Fl, the UniLab will count
the number of times your program executes an address that falls
into each bin. This information is automatically sent to your
host computer, which displays a histogram of the results.

How to zero in with the address histogram

The very first thing you will want to do is set up address
bins that cover the entire range of addressable memory-- that way
you will be able to check that your program is executing code
only where you expect it to be. Set the histogram going with
function key 1 (Fl). Counts appearing outside of the expected
range indicate possible bugs.

After you've verified that the program is well-behaved, you
will probably want to divide the active range of memory based on
the functional units of your code. For example, the addresses 0
to 200 contain the initialization code, 210 to 400 contains the
main loop, 1500 to 1600 is an error handling routine, etc.

You will then be able to start the histogram and see where
your program is spending most of its time.

-- In Detail -- 6-154

-- Histograms --

What the time histogram does

The time histogram helps you speed up routines and determine
the efficiency of program flow.

You invoke this feature with the command THIST. This
Time HISTogram shows you how frequently the elapsed time between
two addresses falls into each of the time bins that you specify.

You will want to first set up the starting and ending
addresses of the routine or loop that you are interested in
timing (use F7). Then you can fill in the limits of the time
bins.

When you start the histogram, the UniLab will keep a count
of the elapsed time between the single starting address and the
ending address. This information is sent up to your host
computer, which displays a histogram showing how frequently the
elapsed time falls into each bin.

Note that the time histogram functions as a stop watch-- it
starts a time count when the starting address appears on the bus,
and stops the time count when the ending address shows up. This
means that you must choose your address boundaries carefully-- if
the ending address is not executed, then the stop watch will
never stop.

How to zero in with the time histogram

The very first thing you will want to do is set the time
units (F8) to the highest value-- 10 milliseconds. Then set up
time bins that cover the range from 0 to 60000. Time values are
entered in decimal, not in hexadecimal. By starting out with
this "big picture" view, you will be certain to catch all the
information, and then narrow down with confidence.

Start up the histogram and you will be able to see in what
range of time periods the routine falls. By adjusting the time
units (in powers of ten, down to 10 microseconds) and the time
bins, you will be able to get whatever resolution you desire.

Measure, then adjust

Once you have established how long your time-critical
routine takes, you can make modifications to your code or outside
conditions, and then measure the routine again. THIST will show
you how much time has been gained (or lost) by the alterations.

You can also use THIST to determine the efficiency of
program flow. For example, the time histogram might reveal to

July 16, 1986 Page 6-155 -- In Detail --

-- Histograms --

you that a routine takes 40 microseconds 80% of the time, but
requires 10000 microseconds 20% of the time.

You will probably want to write a special routine to correct
this lopsided time performance. THIST will then help you
evaluate your efforts.

-- In Detail -- 6-156

-- Histograms --

12.3 Making Histograms

When you call up the histogram, the cursor and function keys
are reassigned. When you exit from the histogram by hitting F10
you return to the state you were in when you called the
histogram.

Filling in the bin limits

Before you can generate a histogram, you have to fill in the
upper and lower bounds of at least one "bin." When you enter the
histogram, your cursor will be positioned for entering the lower
bound of the first bin. Just type in the number, and then hit
return, the right arrow or the TAB key to move to the next entry
field. See the shortcut below (F3).

Starting display

Once you've filled in as many bins as you want, press Fl to
start the display. You cannot start the display of a time
histogram (THIST) until after you've filled in the address range
(F7).

When you do start the display, you will see the data three
ways: absolute counts, percentage, and a bar graph of the
percentage.

The program will inform you if you've made an error, such as
giving overlapping ranges, or leaving off a limit.

Press any key to stop the display.

Name your bins-- Value/Name toggle

You can name your bins by pressing F2 and then filling in
the name fields that replace the limit field.

Press F2 again to return to the value fields.

July 16, 1986 Page 6-157 -- In Detail --

-- Histograms --

Subdivide-- Shortcut to entering limits

You can divide a bin into a number of bins of equal size.

Place the cursor on the bin you wish to divide and press F3.
Then use the DownArrow key to move down, and press F3 again. The
range contained in the original bin will be divided among the
number of bins that you spanned.

The original bin must already contain a valid range.

Delete entry

Press F4 to delete the bin that the cursor is on.

Clear accumulated values

Press F5 to clear any counts accumulated so far, before
restarting the histogram with Fl.

Clear all

Press F6 to clear out all counts and the bin boundaries.

Address limits (THIST) or title (AHIST)

Within THIST you must press F7 to enter the upper and lower
address for the time histogram. You will not be able to start
accumulating and displaying data until you enter this
information. Hit return after you've entered the values.

Within AHIST you can enter a title for your histogram by
pressing F7 and entering the name. Hit return after you've
entered the title.

Time unit (THIST) or Trigger Spec (AHIST)

Within THIST you can display and alter the unit of time in
which your input is interpreted and the output displayed by
pressing F8. The default is 10 (decimal) microseconds, mainly
because it is fairly easy to think in units of 10.

The resolution of the histogram generator is actually 20
microseconds-- don't let the time unit give you a false sense of
accuracy. No matter what value you choose as the time unit, the

-- In Detail -- 6-158

-- Histograms

histogram can be off by as much as 10 microseconds.

Within AHIST press F8 to change the trigger spec, or enter
any other command.

16/20- bit toggle (AHIST only)

Normally you enter 16 bit addresses as the boundaries of
AHIST bins. That means the largest address you can enter is
FFFF. Press F9 to toggle over to 20-bit addresses-- values up to
FFFFF.

Exit

Press F10 to exit.

July 16, 1986 Page 6-159 -- In Detail --

Chapter Seven:
UniLab Command Reference

Introduction

This chapter contains the reference material for the UniLab
command language, a rich, flexible language that you use to work
on your microprocessor control board.

The first, brief, section divides the words into one of five
categories:

1. Beginner words-- the minimal vocabulary you need
to talk to the software.

2. Common words-- commands that you will quickly
learn and use often.

3. Advanced words-- commands that you will find
useful, but can function fine without knowing.

4. Special key and mode panel words-- commands that
perform the same function as one of the mode panel
switches or one of the function or cursor keys.

5. Rarely used words-- commands that you will
probably be able to live without.

The second of the two sections in this chapter contains a
page or so of reference material for each important command. The
format is explained, and then the entries follow.

You can also get the entry for any command on-line by typing

HELP <command>.

An alphabetical listing of all words appears in Appendix A.

Warning

Each disassembler/debugger includes commands that are
specific to that package. These words are not documented in this
chapter. To learn more about target-specific words, look at the
separate writeup for your software package.

Contents

July 16, 1986

The Categories
The Commands

Page 7-1

7-2
7-9

-- Command Reference

The categories

The Orion software provides you with access to commands that
let you:

set triggers on any input or combination of
inputs,

alter the display and logging features,
set breakpoints and alter registers.

You will be able to do most of your work with just a few
commands: the beginner and common words, with occasional forays
into the advanced words.

The panel words help you find out more about the features
that you toggle with the Mode Panel.

The rarely used words are provided as a service to those of
you who wish to delve deeper into the capabilities of the
instrument.

-- Command Reference -- Page 7-2

-- The Categories

1. Beginner words-- the minimal vocabulary you need to talk to
the software.

Get On-Line Help
HELP
PIN OUT

MENU
WORDS

Load the Simple Target Proqram
LTARG

Trigger on Address
AS

Start Analyzer
s STARTUP

Exit the Program
BYE

Memory Enable
EMENABLE

Memory Reading
DM DN

Predefined Triggers
ADR? CYCLES?
NOW? SAMP

Status Enquiry
EST AT

Debugger Words
N

July 16, 1986

TS TAT

RB

Page 7-3

MESSAGE

MD UMP

EVENTS?

-- Command Reference --

The Categories --

2. Common words-- commands you will quickly learn and use
often.

Set Trigger
ALSO
NORMB
NOT

ADR
NORMM
ONLY

DATA
NORMT
TO

Set Trigger-- Not supported on all processors
FETCH READ

Start Analyzer
S+

call DOS
DOS

Trace Reading Commands
TCOMP TD
TN TSAVE

Debugger Commands
G
RB

N
SS TEP

Stimulus Generator Commands
RES SET

Memory Reading
M? MM?

TMASK
TSHOW

NMI

STIMULUS

MCOMP

Memory Writing
ASM and ASM-FILE
MF ILL

(processor specific on-line assembler)
M M!

MF ILL MM MM!
MMOVE

Define Symbols
IS

Save Information
BINSAVE
SYMSAVE

ORG

TOFILE
TSAVE

Load Program From File
BINLOAD HEX LOAD

Examine Text File

Initialize Instrument

-- Command Reference --

SAVE-SYS

TEXTFILE

INIT

Page 7-4

-- The Categories

3. Advanced words-- commands that you will sometimes find
useful, but can live without.

On-Line Displays
CATALOG ASC

Graphical Performance Measurement (optional feature)
AH I ST

Trigger Commands
DCYCLES
LADR

muTC'lm
J.Il...LO J.

HADR
MASK

Start the Analyzer Repeatedly
SR

Filter the Trace
1 AFTER 2AFTER

Define a Pre-Qualifier
AFTER PCYCLES

Debugger Commands
GB

Multiple Breakpoints

GW

CLRMBP DMBP
SMBP

Symbol Table manipulation
CLRSYM SYMFILE
SYMLOAD SYMSAVE

Disable Emulation Memory
EMCLR

Assign a Function to a Function Key
ALT-FKEY CTRL-FKEY
SHIFT-FKEY

calculate a Checksum

Macro Definition

Show $_<>_urce File on $~~~~~ in Trace
SOURCE SOURCE'

HD AT A
MISC

3AFTER

PEVENTS

RZ

RMBP

SYMFILE+
SYMTYPE

FKEY

CK SUM

BPEX

Display and Change RAM Allocated to Screen History and to Symbols
?FREE =HISTORY =SYMBOLS

July 16, 1986 Page 7-5 -- Command Reference --

The Categories --

4. Special key and mode panel words-- commands that perform the
same function as one of the mode panel switches, or the same
as the cursor keys or a function key.

Mode Panel Access
MODE

Mode Panel 1
DASM
SYMB
RESET

Mode Panel 2
SHOWM
SHOWC
=MBASE
PAGINATE
HDG

Mode Panel 3
LOG
TOFILE
PRINT
NMIVEC
RSP

Function Keys
ALT-FKEY?
FKEY?
WSIZE

cursor Keys
TOP/BOT

DASM'
SYMB'
RESET'

SHOWM'
SHOWC'

PAGINATE'
HDG'.

LOG'
TOFILE'
PRINT'
NMIVEC'
RSP 1

CTRL-FKEY?
MEMO

-- Command Reference -- Page 7-6

DEF
SHIFT-FKEY?

-- The Categories

5~ Rarely used words-- commands that you will probably not
often use.

Trigger Commands
ASEG
INT
SC

Standalone Operation

CONT
INT'
TNT

SST TS

PreQualif ier Commands
INFINITE Q1
Q3 QUALIFIERS

Filter Commands
FILTER HDAT

Emulation Memory Enable
=EMSEG

Temporary Number Base Change

CONTROL
NDATA

Q2
TRIG

MISC'

B# B. D#
H>D

Special Display Characteristic Commands
CLEAR CLEAR' COLOR
SET-COLOR

Serial Port Setting
AUX1 AUX2

Receive HEX format file from another system
HEXRCV

Symbol File Format
SYMFIX

PROM Burning Mode
8BIT 16BIT

Loading from Host RAM

Pause for a Few Milliseconds

-12BK UniLab Only
PAGEO PAGE1

Burn PROMs in Standalone Mode
STANDALONE PROMMSG

July 16, 1986 Page 7-7

MLOADN

MS

-- Command Reference --

(this page intentionally left blank)

-- Command Reference -- Page 7-8

THE UniLab COMMANDS

July 16, 1986 Page 7-9 -- Command Reference --

-- The Commands

Entry format

The First Line

The first item on the first line of each entry is the
command itself, always printed in bold capital letters. The rest
of the line always contains either the phrase "no parameters" or
the command repeated along with its parameters.

The parameters always appear inside <pointy brackets>.

Last, if the word can be called up with a function key, the
name of that function key appears on the far right hand side of
the first line. If the word is rarely used, than the phrase
"RARELY USED" appears on the far right.

The Definition

The first block of text tells you what the command does.

Usage

The next block of text tells you how and when you use the
command-- sometimes warning you that you only want to use the
word in extraordinary circumstances.

Example

Almost every command includes a section showing examples of
how to use the word.

Comments

This optional section includes warnings, historical notes,
and various other bits and pieces of information.

-- Command Reference -- Page 7-10

-- The Commands --

1AFTER 1AFTER <trigger spec>

Clears out previous trigger spec and enables trace filtering.
Only the bus cycle that satisfies the trigger spec and one cycle
immediately after will be kept.

USAGE
The UniLab stores the trigger cycle and the one
immediately after, every time it sees conditions that
match the trigger specification. The "trigger status
display line" shows how many cycles have been stored
away.

Note that you have to use S to start the analyzer after
setting this trigger spec.

The UniLab automatically displays the trace after the
entire trace buffer has been filled.

The disassembler will not work properly on fragments of
code. The disassembler should be disabled with DASM'
while you are looking at the results of any of the
xAFTER commands.

CHECKING THE TRACE
If you want to see the trace before the buff er has been
completely filled, then press any key to stop the cycle
recording. Then type in TD to dump the trace, and
display part of it on the screen.

The trace buffer fills from the bottom, and each new
cycle pushes up the already recorded data. If you end
up with a partially filled buffer, then the cycles you
want to see are in the last part of the buffer.

EXAMPLES

1AFTER 1200 ADR S
shows only those cycles with adr =1200 and one
cycle following.

1AFTER 235 TO 560 ADR S
shows 2 consecutive cycles each time a cycle has
an address between 235 and 560.

(continued on next page)

July 16, 1986 Page 7-11 -- Command Reference --

-- The Commands

(continued from previous page)

COMMENTS
Do not put a space between the number and AFTER.
1AFTER is a single word, not a word preceded by a
parameter. This command can be used when seeking the
cause of a memory cycle error. It will show the
program address of the cycle after the one that caused
the memory access. xAFTER initializes all trigger
features, so NORMx is unnecessary with these commands.

-- Command Reference -- Page 7-12

-- The Commands --

16BIT no parameters

Selects 16-bit mode for memory emulation and for trace display
and for PROM burning and reading.

USAGE
You will probably not use this command. It sets up the
UniLab to work with processors that have a 16 bit data
bus. If you have purchased a disassembler, then either
this command or 8BIT has been "built-in" to your
software.

COMMENTS
Note that 16BIT is one word with no space after the 16.
The 16BIT command changes both the signals put onto the
target system's bus by the UniLab and the way the
UniLab displays the trace display. That means you need
a 28 pin ROM emulation cable, or the 16 bit emulation
will not work.

The BL and LB commands determine the order in which the
trace displays the bytes. If you have a disassembler
these modes have already been set for you.

July 16, 1986 Page 7-13 -- Command Reference --

-- The Commands --

2AFTER 2AFTER <trigger spec>

Same as lAFTER except that two cycles are kept immediately
following each trigger cycle.

USAGE
Enables a filtered trace that gives you a little more
information than lAFTER does.

COMMENTS
See lAFTER.

3AFTER 3AFTER <trigger spec>

Same as lAFTER, except that the three cycles after the trigger
cycle get stored.

USAGE
Enables a filtered trace that gives you a little more
information than 2AFTER does.

COMMENTS
See lAFTER. And notice that this filtered trace will
contain enough information to make a disassembled trace
sensible-- sometimes.

-- Command Reference -- Page 7-14

-- The Commands --

8BIT no parameters
Selects 8-bit mode for trace display and memory emulation and for
PROM burning and reading.

USAGE
You will probably not use this command. It sets up the
UniLab to work with processors that make use of 8 bit
data. If you have purchased a disassembler, then
either this command or 16BIT has been "built-in" to
your software.

COMMENTS
Use the 24 pin ROM cable with this command. Note that
8BIT is one word, with no space between the number 8
and the rest of the command.

July 16, 1986 Page 7-15 -- Command Reference --

-- The Commands --

. . no parameters

The colon character starts a macro definition. The word that
follows the colon is the name of the macro.

USAGE
Once a macro has been defined, you can execute any
lengthy series of commands with a single word. See
Appendix F for further information. See also BPEX.

WHAT A MACRO IS
A macro is a command that you create out of previously
defined commands.

For example,

: LOADUP 0 TO 3FFF BINLOAD A:MYPROG ;

creates a macro called LOADUP, which uses the
previously defined UniLab command BINLOAD.

LOADUP will always load from a file on drive A: called
myprog. You can see how this would be easier than
using BINLOAD every time you wanted to load this file.

HOW TO WRITE MACROS
A macro definition begins with a colon and ends with a
semicolon (;). The first word after the : is the name
of the macro, and all the other words are the
definition of it.

There must be at least one space between the colon and
the name of the macro, and at least one space between
the last word and the semicolon. Like this:

: NAME FIRS'l'WORD SECONDWORD VALUE THIRDWORD ;

FORTH
When you define a macro, you are actually making use of
the programming language FORTH. With this powerful
language you can define new words that make use of
conditional statements, looping, and more. The best
introduction to the language is Leo Brodie's Starting
FORTH.

(continued on next page)

-- Command Reference -- Page 7-16

-- The Commands --

(continued from previous page)

;

WHY MACROS
The example below defines a macro called READRAM.
After the new word has been defined, you would just
type in READRAM every time you want to set up the
trigger specification that shows only the cycles that
read from the address range 1000 to 1FFF. This will
save you a lot of keystrokese

EXAMPLE

. .

COMMENTS

READRAM. ONLY READ 1000 TO 1FFF ADR S ;
defines a macro called READRAM.

Whenever the word immediately following : is entered
the result is the same as if the rest of the words up
to ; were entered. After typing in the example above,
the word READRAM will have the same effect as entering
II ONLY READ 1000 TO 1FFF ADR s ." Note that to
preserve the macro definition, you must SAVE-SYS before
leaving the UniLab program.

See also appendix F.

no parameters

Ends a macro definition started by . . .

July 16, 1986 Page 7-17 -- Command Reference --

-- The Commands --

=BC <word> =BC

Changes the contents of the BC register to n.

USAGE
An example of the type of register control command
available with debuggers. This command addresses the
Z-80 internal register BC. Consult the target notes
for your debugger.

EXAMPLE

1234 =BC
puts 1234 in the BC register.

COMMENTS
You can use the register commands only after the
debugger has gained control of your microprocessor.
See NMI or RB for more information on debug control.

This is a typical register changing instruction format.
A similar command is provided for each of the
processors internal registers (except SP). No space
appears between the = and the register name.

-- Command Reference -- Page 7-18

-- The Commands --

=EMSEG <hex digit> =EMSEG

Sets A16-A19 context for subsequent EMENABLE statement(s).
Determines which 64K "bank" of memory the emulated ROM will be
in.

YOU PROBABLY DON'T NEED TO BOTHER
This value must be set properly, or the UniLab will not
put the program opcodes onto the target system bus.
However, if you have a disassembler/debugger, then this
variable is already set properly.

WHY IT MIGHT MATTER
Though the upper 4 bits of our 20-bit address bus are
meaningful only with processors that can address more
than 64K of memory, =EMSEG must always be set.

On some microprocessors, those four lines are floating
high, on other mp's several of the lines are pulled
low.

HOW IT WORKS
This command only sets a variable. EMENABLE is the
command that actually enables memory.

WHEN IT MATTERS
The UniLab looks at the upper 4 bits of address (A16
through A19) during fetch and read cycles, to determine
whether your microprocessor wants to fetch an
instruction from emulation ROM. If the upper 4 bits
that the UniLab sees don't match the =EMSEG
specification, then the UniLab will not respond to the
mp's request.

Use ESTAT to see how this command effects the settings
of emulated memory.

EXAMPLES

7 =EMSEG
sets A19 to 0 and A16, A17, and A18 to one.

(continued on next page)

July 16, 1986 Page 7-19 -- Command Reference --

-- The Commands

(continued from previous page)

F =EMSEG 0 'l'O 1FFF EMENABLE
enables addresses FOOOO to F1FFF.

E =EMSEG 0 EMENABLB ALSO F =EMSEG 0 EMENABLE
enables emulation of addresses
EOOOO - E07FF and FOOOO - F07FF.

COMMENTS
The 4 most significant bits of the 20 bit UniLab enable
addressing are selected with =EMSEG so that subsequent
statements only refer to 16-bit addresses. EMENABLE
commands enable emulation memory in blocks of 2K.

A read or fetch command from the target microprocessor
will reference emulation memory only when the A16-A19
inputs agree with an =EMSEG statement and A11-A15
indicate an enabled 2K block of emulation ROM.

Note that latched inputs A16-A19, displayed on the
trace display as the right-hand digit of the CONT
column, are the values seen by the emulation enable
logic. If the inputs are not connected then they will
"float," and appear as all 1s (hex F).

=EMSEG itself has no effect on the UniLab until an
EMENABLE or INIT sends the data to the UniLab.

-- Command Reference -- Page 7-20

-- The Commands --

=HISTORY <hex# of Kbytes> =HISTORY

Selects the size of the screen history saved during each session
with the UniLab.

USAGE
Allows you to change the amount of host RAM dedicated
to saving information that scrolls off the top of the
screen. The maximum is hexadecimal 3C Kbytes (decimal
60).

The new setting will not take effect until you SAVE­
SYS, exit from the UniLab software, and start it up
again.

Use ?FREE to find out how much is allocated right now.

WHY CHANGE
You might want to have a longer history, or you might
want to free up some of the host RAM for other
purposes.

EXAMPLE

3C =HISTORY
allocates the maximum space to the line history.

July 16, 1986 Page 7-21 -- Command Reference --

-- The Commands --

=MBASE <n> =MBASE F8

Selects number base for the trace display of the MISC inputs to
the UniLab, MO through M7.

USAGE
The miscellaneous inputs (MISC) to the UniLab usually
get displayed in binary format. This format allows you
to easily tell which MISC inputs are receiving a high
signal, and which are receiving a low.

This command also changes the number base for the HDATA
column for 8 bit processors.

However, you might have an application for these
inputs, such as reading the data from onboard RAM,
where a hex or decimal display would be more useful.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

The panel only toggles between binary and hex.

EXAMPLES

10 =MBASE
hexadecimal display, the most space efficient

8 =MBASE
selects octal display mode.

A =MBASE
selects decimal display mode.

2 =MBASE
returns to binary display mode.

COMMENTS
The MISC inputs can be connected to any signals you
like.

Note that A, not 10, must be used to specify decimal
ten.

-- Command Reference -- Page 7-22

-- The Commands --

=SYMBOLS <hex # of Kbytes> =SYMBOLS

Selects the amount of space allowed for symbol tables within the
UniLab software.

?FREE

USAGE
Allows you to change the amount of host RAM dedicated
to storing the symbol table. The maximum is hexadecimal
80 Kbytes (decimal 128).

The new setting will not take effect until you SAVE­
SYS, exit from the UniLab software and start it up
again.

Use ?FREE to find out how much is allocated right now.

WHY CHANGE
You might want to have a larger symbol table, or you
might want to free up some of the host RAM for other
purposes.

EXAMPLE

80 =SYMBOLS
allocate the maximum space you can to the symbol
table.

no parameters

Displays the amount of host RAM allocated to the screen history
and to the symbol table. Also shows how much host RAM is
currently free.

USAGE
Find out how much you can increase the amount of space
dedicated to history or symbol table, or whether you
need to reduce it. See =HISTORY and =SYMBOLS.

JU 1 Y 1 6 I 1 9 8 6 Page 7-23 -- Command Reference --

-- The Commands --

ADR <word> ADR
<word> TO <word> ADR

Sets up the trigger specification for analyzer inputs AO through
A15. (Sets trigger for AO to A19 if five-digit address ends in a
period.)

USAGE
Determines which 16 bit addresses the analyzer will
trigger on. Can also trigger on 20-bit addresses.

With '1'0 the trigger will occur on the address range
from ADR1 to ADR2.

If NOT precedes the value(s) of the address, the UniLab
will trigger outside of the specified address or range
of addresses.

All previous entries to the address trigger spec are
erased unless you precede this spec with the word ALSO.

Note that you can inadvertently produce "cross
products" when making use of ALSO with ADR. See the
fourth example below.

EXAMPLES

NORMT 1023 ADR S
trigger on address 1023. NORMT causes the trigger
to appear at the Top of the trace.

NOT 120 TO 455 ADR S
trigger if address outside 120-455 range.

12345. ADR S
trigger on 20-bit address 12345. The 1 will
appear in right digit of the CONT column.

1200 ADR ALSO 8 ADR
sets the analyzer to trigger when the
address is 1200 or 0008. Because of cross
products, will also trigger on address 0000 and
1208.

(continued on next page)

-- Command Reference -- Page 7-24

-- The Commands --

(continued from previous page)

ADR?

COMMENTS
ALSO must be used with caution with ADR. Generally you
can use ALSO once, if the high-order byte of the
previous spec and the new one match. To do more than
that you should work with the two bytes of the address
separately using HADR and LADR.

AS is a convenient abbreviation for NORMT ADR s.

You can define a 20-bit address trigger by ending the
number in a period. See ASEG for another approach to
20-bit addresses.

no parameters

Displays random examples of the addresses seen on the bus-­
approximately two every second.

USAGE
This command displays two of the addresses that appear
on the bus each second. A useful command for getting a
rough-grained idea of how the program behaves.

Terminate the display by pressing any key.

EXAMPLE

ADR?

COMMENTS

This command is never used in combination with
anything else.

Useful for monitoring program flow in a rough manner.
For example, it will be obvious to you ii the target
program gets stuck in a loop. ADR? turns RESET mode off
and sets up a trigger spec of its own. Be sure to use
NORMx at the start of the first trigger spec after
using this word.

July 1 6, 1 986 Page 7-25 -- Command Reference --

-- The Commands --

AFTER <qualifier specification>

Sets the stage for the description of a qualifying event.
Qualifying events are bus states that must be seen before the
analyzer starts to search for the trigger.

USAGE
When you have specified qualifying events, the UniLab
will not recognize the trigger until after the
"qualifiers" have been seen.

You can set up to three qualifying events. Each
qualifier spec must start with AFTER.

All the qualifiers must appear on the bus one
immediately after another, without intervening bus
cycles. However, the trigger itself can appear anytime
after all the qualifiers have been satisfied.

You cannot use MISC inputs as qualifiers.

DELAYS AND REPETITIONS
You can specify a minimum number of bus cycles after
the time the last qualifier is seen, before the UniLab
starts looking for the trigger. See PCYCLES. The
default is 0 PCYCLES.

· You can also specify a number of complete repetitions
of the sequence of qualifiers. See PEVENTS. The
default is 1 PEVENTS.

Qualifier 3
1

(immediate) 1
v

Qualifier 2
1

(immediate) 1
v

Qualifier 1
1
v

(wait PCYCLES. 1
Def au 1 t is 0 •) 1

<--------!

1
/1\

! (if PEVENTS
1 greater

/!\
!

than 1)

!---->------>----!

-- Command Reference --

1
v

Trigger

Page 7-26

-- The Commands --

(continued from previous page)

EXAMPLES

NORMT 100 ADR AFTER 535 ADR S
will trigger on address 100 only after address 535
gets seen on the bus.

AFTER 3F DATA S
You can add a second qualifying event-- which must
occur earlier than the first. Now address 535
must be immediately preceded by data 3F hex before
UniLab will look for address 100 on the bus.

NORMT 100 ADR AFTER 535 ADR AFTER 3F DATA S
a single statement with the same result as the two
above.

NORMT AFTER NOT 345 ADR AFTER 344 ADR S

COMMENTS

triggers if any address other than 345 follows
immediately after 344. By starting with AFTER we
are able to describe two events which must follow
one another without intervening bus cycles.

Equivalent results can be obtained by using
<n> QUALIFIERS to set the number of qualifiers. The
four related commands TRIG, Q1, Q2, and Q3 can then be
used to set the various triggers. But AFTER is the

· more natural way to do it.

You will find Q1, etc., handy when you want to "change
context" to alter the description of an event that you
though you had completed.

July 16, 1986 Page 7-27 -- Command Reference --

-- The Commands --

AH I ST no parameters

Address HISTogram invokes the optional histogram generator that
allows you to display the relative time your target program falls
into each of up to 15 user-specified address ranges. See also
THIST.

USAGE
Allows you to examine the performance of your software.
You can find out where your program is spending most of
its time.

Press F10 to exit from this menu-driven feature.

You must (only once) issue the command DOHIST to enable
this optional feature. DOHIST performs a SAVE-SYS, and
then causes an exit to DOS. The next time you call up
the software, both AHIST and THIST will be enabled.

MENU DRIVEN
You produce a histogram by first specifying the upper
and lower limits of each address "bin" that you want
displayed, then starting the display.

When you give the command AHIST you get the histogram
screen with the cursor positioned at the first bin.
You can then start typing in the lower and upper limits
of each bin. Use return, tab or an arrow key after you
enter each number, to move to the next entry field.

Press function key 1 (F1) to start displaying the
histogram.

SAVE TO A FILE
You can save the setup of a histogram as a file with
the HSAVE <file>. Issue this command after you exit
from the histogram.

You load the histogram back in with HLOAD <file>.
Issue this command before invoking the histogram.

EXAMPLE

AH I ST
This command is never used in combination with
anything else.

-- Command Reference -- Page 7-28

-- The Commands --

ALSO no parameters

Used with both EMENABLE and with trigger specification commands.
Prevents clearing of previous settings.

USAGE
The trigger spec commands, CONT, ADR, DATA, HDATA,
HADR, LADR and MISC, normally cause the UniLab to
trigger on the new conditions instead of the old
conditions. By using ALSO, you can instruct the UniLab
to trigger on the old conditions OR the new conditions.

The memory enable command, EMENABLE, normally enables
only the new settings of memory. By using ALSO, you
can enable both the old range of memory and the new.

Note that you have to use ALSO for each new setting
that you declare. See the second example below.

ALSO is not necessary when you want to trigger on
several different categories. The UniLab will
automatically AND together the specifications in
different categories.

Note that you can inadvertently produce "cross
products" when making use of ALSO with ADR. See ADR.

EXAMPLES

12 DATA ALSO 34 DATA
sets the analyzer to trigger on either 12 or 34
data (without the ALSO only 34 data would remain
set).

10 DATA ALSO 5 DATA ALSO 3 DATA 1200 ADR
sets the analyzer to trigger when the
data is 10 or 5 or 3 and the add~ ess is 1200.

0 TO 7FF EMENABLE ALSO 2000 TO 2FFF EMENABLE
enables two ranges of emulation ROM.

COMMENTS
Applies on-l¥ to the -first -EMENABLE- or- trigger spec
command that follows.

July 1 6 I 1 986 Page 7-29 -- Command Reference --

-- The Commands --

ALT-FKEY <# of key> ALT-FKEY <command>

Assigns a command to an ALTered function key.

USAGE
Reassign the function keys on PCs and PC look-alikes.
Use ALT-FKEY? (or hit F1 while holding down ALT) to
find the current assignments.

The function keys allow you to execute any command or
string of commands with a single keystroke. The
initial assignments represent our best guess at what
you will need. But you might want to change them.

To make your reassignments permanent, use
SAVE-SYS.

EXAMPLE

2 ALT-FKEY WSIZE
assigns WSIZE to ALT-F2.

COMMENTS

ALT-FKEY?

To execute a string of commands, define a macro first
(using :) and then assign the macro to the function
key.

See also FKEY, CTRL-FKEY, and SHIFT-FKEY.

no parameters ALT-F1

Displays the current assignments of the ALT< red function keys.

USAGE
Whenever you want to be reminded what command will be
executed when you press a function key while holding
down the ALT key.

See ALT-FKEY to reassign the keys.

-- Command Reference -- Page 7-30

-- The Commands --

AS <addr> AS

An abbreviation for NORMT ADR S.

USAGE
Defines an analyzer trigger spec, and starts the
analyzer working. The trigger event appears near the
top of the trace as cycle zero. A useful abbreviation­
- saves you key strokes. When entering the most common
trigger spec-- triggering on a code address.

Will not work on ranges of addresses (with TO) or with
NOT.

EXAMPLE

1234 AS
triggers when address is 1234

COMMENTS
The macro definition of this command:

: AS NORMT ADR S ;

July 16, 1986 Page 7-31 -- Command Reference --

-- The Commands --

ASC no parameters SHIFT-F4

Displays the handy reference ASCII table.

USAGE
Shows each character, along with its decimal and hex
value.

EXAMPLE

ASC

COMMENTS

This command is never used in combination with
anything else.

This is a bonus feature provided to save you the
trouble of hunting for a printed ASCII table.

-- Command Reference -- Page 7-32

-- The Commands --

ASEG <hex digit> ASEG RARELY USED

Sets a trigger spec on address bits A16-A19. Note that ASEG
cannot be used with NOT, ALSO, or TO.

USAGE
Normally, you set a trigger address with ADR, either a
16 bit or 20-bit address. This command allows you to
set a trigger on the upper 4 bits of the 20 bit
address. See =EMSEG for a longer discussion of the
addressing scheme of the UniLab.

EXAMPLES

5 ASEG
requires a hex value of 5 on A16-A19 for trigger.

COMMENTS
Normally useful only if you have over 64K of memory in
your target system. Even then, a better way to define
a trigger on a 5-digit address is just to enter the
5-digit address ending in a period followed by ADR.

The command "n ASEG" has the same effect as "F MASK n
CONT."

July 1 6, 1 986 Page 7-33 -- Command Reference --

-- The Commands --

ASM <address> ASM <instruction>

Invokes the processor-specific assembler.

USAGE
Patch assembly language code to the given address in
emulation ROM. Allows you to overwrite locations in
the copy of your target program residing in the
UniLab's emulation ROM, so that you can quickly fix
bugs when you find them. Note that the assembler
writes over memory-- it does not insert instructions.

If you do not include the address, ASM will refer to
the current value stored by the ORG command.

ASSEMBLING MULTIPLE INSTRUCTIONS
If you do not include an assembly language instruction,
then ASM will give you as a prompt the address to which
it is assembling, and wait for you to give it an
instruction followed by a carriage return.

The assembler will continue to prompt you with an
address and patch assembled code into memory, until you
feed a blank line (hit return on an empty line).

CONVENTIONS

BASE

The on-line assembler will only accept assembly
language instructions, not ORIGIN statements or EQU
statements. (You should use the UniLab command IS to
define symbols.)

Only one instruction per line.

The normal conventions of assembly language apply. For
example, at least one space between the instruction and
the operands.

The default number base is hexadecimal, as it is
throughout the UniLab software. You can change the
base by storing a new value in the variable BASE. For
example, to change to decimal base type in:

A BASE !

(continued on next page)

-- Command Reference -- Page 7-34

-- The Commands --

(continued from previous page)

EXAMPLES

0 ASM LD SP,3000
alters the first instruction of the LTARG program
of the zao package.

100 ASH

July 16, 1986

invokes the assembler, starting at address 100.
The assembler will prompt you with that same
address, and wait for you to enter an assembly
language instruction.

Page 7-35 -- Command Reference --

-- The Commands --

ASM-FILE <addr> <start screen> <end screen> ASM-FILE

Invokes a version of the on-line assembler that assembles code
contained on the screens of a FORTH file.

USAGE
A way to make large patches to your program, or to
write prototype code without leaving the UniLab
environment-- or just to write a few lines that you
will want to be able to edit and re-enter.

ASM-FILE follows the same conventions as ASM.

You can include comments on a screen by putting a
semicolon(;) on a line. The assembler will ignore
everything after the semicolon on that line. The
semicolon must be the first character on the line, or
be preceded by at least one space.

FORTH FILES AND THE EDITOR
If you only have a few lines of code, you can use the
screen that MEMO puts you into, and the two following
(screens 10 through 1F). See the entry for MEMO to get
a few pointers on using the FORTH screen editor.

OPENING A NEW FILE
You will want to put the code into a file of its own if
you have many lines of code, or if you want a more
convenient way to archive the code.

First close the current file (UniLab.SCR) with the
command CLOSE.

Next create a new file with OPEN-NEW <file name>, and
determine its size with <# of screens> SCREENS (1K
allocated per screen). Use the command <screen #> EDIT
to get into the file. Don't make use of screen zero.

You will then be able to use ASM-IILE to assemble the
code stored in your new file.

When you are done with assembling, use OPEN UNILAB.SCR
to close your file and re-open the UniLab.SCR file. If
you don't do this, then some of the on-line help
facilities and error messages will not work.

(continued on next page)

-- Command Reference -- Page 7-36

-- The Commands --

(continued from previous page)

AUX1

EXAMPLES

1200 1D 1F ASM-FILE
loads assembly code, starting at address 1200,
from screens 1D through 1F of the currently opened
FORTH file.

1 4 ASM-FILE
loads code from screens 1 through 4, starting at
the current value of ORG.

no parameters

Tells the host computer to look for the UniLab on serial port 1.
This is the normal default condition.

AUX2 no parameters

Tells the host computer to look for the UniLab on serial port 2.
Use this command if you can't get the UniLab to initialize.

July 16, 1986 Page 7-37 -- Command Reference --

-- The Commands --

Bf B# <binary number>

Interprets the number following as a binary number.

B.

USAGE
Useful when you want to input a number as a binary-­
saves time with pencil and paper. Quick, what is the
hex value of a number with 1 at locations O, 3, 7, 9
and 10? Let the computer do that work for you.

EXAMPLES

Bf 0101010001001
has the same effect as entering OA89H

NORMT Bl 1111110 MISC S
will trigger when the MISC inputs are 11111110

COMMENTS
Changes the base to binary, just for the next number.
Allows entering numbers in binary format, just as DI
allows decimal format.

<hexadecimal number> B.

Displays the hex number as a binary number.

USAGE
When you want to find out the binary equivalent of a
hex number, saves you time with pencil and paper.

EXAMPLE

A89 B.
displays the binary equivalent of A89, which is
0101010001001.

-- Command Reference -- Page 7-38

-- The Commands ~-

BIRLOAD <from addr> <to addr> BINLOAD <filename>

Loads a binary file from disk into emulation memory. Prompts you
for the name of the file if you don't include it on the command
line.

USAGE
Starts loading a binary file into the from addr. Stops
loading at the to addr, or when end of file is reached.
The binary file should contain a program. Can be used
to load the product of a cross compiler into emulation
memory.

This command fully supports DOS pathnames.

You can save a program to a file with BINSAVE.

EXAMPLE

0 400 BINLOAD \ASM\MAIN.BIN

COMMENTS

loads a binary DOS file, starting at location O
and ending at location 400.

Loads exact binary contents of file until DOS indicates
end of file, or the "to address" is reached. If you
don't know the ending address, you can just enter FFFF
as toadr and loading will stop on end-of-file.

As with all memory writing commands, don't write into
your stack area when loading into RAM.

Use with .COM,.BIN, or .TSK files. See HEXLOAD for
Intel Hex files.

You can use the DOS command EXE2BIN to convert .EXE
files into .BIN files.

The system can load to target RAM-- if debug control
has been established (see RB).

July 16, 1986 Page 7-39 -- Command Reference --

-- The Commands --

BINSAVE <1st addr> <2nd addr> BINSAVE <file name>

Saves the specified section of memory as a file. Prompts you for
the file name if you do not include it.

USAGE
This command saves the program memory to disk. Saves
everything in memory between the first address and the
second address.

This command fully supports DOS pathnames.

EXAMPLE

100 4FF BINSAVE
saves target locations 100 - 4FF.

COMMENTS
Saves exact binary contents of a range of target memory
as a named file. This file can later be re-loaded with
the BINLOAD command.

Can save from target RAM, but only if debug control has
been established. See RB.

-- Command Reference -- Page 7-40

-- The Commands --

BPEX BPEX <macro name>

Executes the specified macro at each breakpoint, after the
register display.

USAGE
Allows you to automatically execute any command or
group of commands, at every breakpoint. You must first
define a macro, or use one of the pre-defined Orion
command words.

BPEX will not accept a string of commands, only the
first word that follows. This means that only certain
commands are suitable-- those that require no
parameters. In the example below, we first write a
macro that requires no parameters, called SEE-RAM.
Notice that SEE-RAM makes a call to MDUMP, which does
require parameters.

See : for more info on macros.

TURN IT OFF
To turn off the automatic execution use BPEX HOOP.

EXAMPLES

. . SEE-RAM 8000 8080 MDUMP ;
defines a macro called SEE-RAM which dumps out 80
memory locations.

BPEX SEE-RAM

COMMENTS

executes your macro at every subsequent
breakpoint.

Available only with debugger packages. Useful if, for
example, you want to watch a memory window as you
single step through the program.

Note that you must define a macro first because BPEX
patches in only the single word following it.

July 1 6, 1986 Page 7-41 -- Command Reference --

-- The Commands --

BYE no parameters

Exits from UniLab program.

USAGE
To return to DOS. Use SAVE-SYS first, if you want to
save the current state of the system.

Use DOS instead if you want to execute just a few DOS
commands and then return to the UniLab program.

EXAMPLE

BYE

CATALOG

This command never used in combination with
anything else.

no parameters

Displays a directory of all the available pinouts-- the proper
cable hook-ups for each microprocessor.

USAGE
Once this word is entered, any of the listed pinouts
can be displayed on the screen.

This word "opens" the pinout library.
as soon as you enter another command.

It closes again

Until you use this command, the only pinout diagram
available is that of the mp you are using. You get
that with the command PINOUT.

-- Command Reference -- Page 7-42

-- The Commands --

CK SUM <from addr> <to addr> CKSUM

Calculates the checksum for a given range of memory. Useful for
error-checking.

USAGE
A good way to make a PROM easy to check for burn-in
errors, or corrupted locations. Allows you to record
the checksum of your program-- or better yet, make the
checksum equal to zero.

EXAMPLE

800 FFF CKSUM

COMMENTS

prints a 16-bit checksum for the data in addresses
800-FFF

You may want to patch the complement of this value into
your PROM. You can produce a PROM with a checksum of
zero, using the following method, which sacrifices only
two bytes.

First store zero where the checksum will be
(0 FFE MM! in the above example). Second, find the
checksum, using CKSUM. Lastly, patch in the complement
of the sum.

For example, if the sum is 1234, then use the command
-1234 FFE MM!. The resulting PROM will have a checksum
of O.

July 1 6 I 1 986 Page 7-43 -- Command Reference --

-- The Commands --

CLEAR no parameters

Clears the screen before performing a PgUp. Use with some of the
older color monitor cards, that will otherwise flicker when you
use PgUp.

CLEAR' no parameters

The normal default condition-- the screen is not cleared before a
PgUp is executed. Use only to restore the default condition
after executing a CLEAR.

-- Command Reference -- Page 7-44

-- The Commands --

CLRMBP no parameters

Clears all multiple breakpoints.

USAGE
Use to wipe the slate clean,
multiple breakpoints again.

and start out setting
SMBP sets the breakpoints.

EXAMPLE

cLRMBP

COMMENTS

This command never used in combination with
anything else.

Use to clear all the numbered breakpoints which you set
with SMBP and can clear one at a time with RMBP.

July 16, 1986 Page 7-45 -- Command Reference --

-- The Commands --

CLRSYM no parameters

Clears out the current symbol table.

USAGE
When you want to get rid of the symbols that you have
defined for your program. It's a good idea to first
save the symbols, just in case you decide you want
those symbols after all. See SYMSAVE.

The symbol table also gets cleared by SYMFILE and
SYMLOAD before they load in the new symbols. SYMFILE+
adds to the existing symbol table.

Unless you save the symbols, you cannot recover them
later. You could instead use SYMB', which turns off
the symbol table without erasing it.

EXAMPLE

CLRSYM
This command never used in combination with
anything else.

COMMENTS
You might want to clear out the table before loading in
a new one from a file. See SYMFILE and SYMLOAD.

-- Command Reference -- Page 7-46

-- The Commands --

COLOR no parameters

Displays in color. Only has an effect with a color monitor.

USAGE
Turns on color display.

You have to save the system afterward, if you want the
UniLab program to start up with color display.

CHANGING COLORS
Use the UniLab command SET-COLOR, which shows you what
the new settings are as you change them.

You will have to save the system with SAVE-SYS if you
want to preserve the new colors.

EXAMPLES

COLOR

July 16, 1986

This command never used in combination with
anything else.

Page 7-47 -- Command Reference --

-- The Commands --

COM1 no parameters

Enables dumb terminal emulation mode, using serial communications
port 1 of your personal computer. This is the port normally used
by the UniLab.

USAGE
Allows you to use your PC as a dumb terminal while
within the UniLab software. Press the ESCape key to
exit.

COMMUNICATION SETTINGS
The default settings are:

300 baud
8 bits, 2 stop bits, no parity.

CHANGING SETTINGS
You can change these settings by changing the values
stored in two constants, BR2 (Baud Rate) and LCR2 (Line
Control Register: bits per character, etc.).

Put the value 60 into BR2 to change to 1200 baud:

60 I BR2 !

You may miss characters at 1200 baud, due to the screen
scroll times. Put a 180 into BR2 to change back to
300 baud.

You can change to 7 bits, 2 stop bits with:
6 I LCR2 !

TABLE OF SET'l'INGS
bits Earity #stoE bits value to store at LCR2
7 None 1 2
7 None 2 6
7 Odd 1 A
7 Odd 2 E
7 Even 1 1A
7 Even 2 1E
8 None 1 3
8 None 2 7
8 Odd 1 B
8 Odd 2 F
8 Even 1 1B
8 Even 2 1F

(continued on next page)

-- Command Reference -- Page 7-48

-- The Commands --

(continued from previous page)

COM2

To change to 5 or 6 bits per character look at the
information on the Line Control Register of the INS8250
in a reference manual on that chip, or in the Hardware
Technical Reference Manual for your computer.

no parameters

Enables dumb terminal emulation mode, using serial communications
port 2 of your personal computer. See the entry for COM1 for
details.

USAGE
Allows you to use your PC as a dumb terminal while
within the UniLab software. Press the ESCape key to
exit.

Change the communications settings the exact same way
that you do for COM1.

July 16, 1986 Page 7-49 -- Command Reference --

-- The Commands --

CONT <byte> CONT
<byte> TO <byte> CONT

<byte> MASK <byte> CONT

Sets up the analyzer trigger spec for the CONT inputs (control
lines C4 - C7, and A16 - A19).

USAGE
The CONT input lines actually represent two different
types of information. The upper four bits represent
the processor cycle type. The lower four bits come
from the four highest address lines, A16 through A19.

When you precede it with one number, CONT causes the
UniLab to trigger when the inputs equal that number.
When you use TO the UniLab triggers on any value from m
to n. NOT causes the UniLab to trigger when the value
falls outside of the specified range or value.

You can use k MASK 1 to examine any subset of the 8
input lines. See Comments below for more details.

Unless you use ALSO the previous trigger spec gets
cleared out.

EXAMPLES

Bf 00011111 CONT
requires C7-C5 = O, C4 & A19-A16 = 1.

70 TO 7F CONT
requires C7=0 and C6-C4 = 1, A19-A16 any value.

F MASK 3 CONT
requires A19 & A18 = O, A17 & A16 = 1, C7-C4 any
value.

(continued on next page)

-- Command Reference -- Page 7-50

-- The Commands --

(continued from previous page)

COMMENTS
The low four bits of the CONT lines refer to the
highest four bits of the address-- the same segment
address bits set by =EMSEG.

When you use the command k MASK 1 CONT, the value of k
determines which bits the UniLab will examine-- the
bits with a value of one. The 1 then indicates the
value those lines must have before trigger occurs. For
example, FO MASK FF tells the UniLab to only look at
the upper 4 bits of the CONT lines. The AF tells the
UniLab to trigger when bits 7 and 5 are high while bits
6 and 4 are low. Note that the UniLab will not care
about the value of the lower four bits.

July 16, 1986 Page 7-51 -- Command Reference --

-- The Commands --

CONTROL no parameters RARELY USED

Used before FILTER to set up a filter spec based only on the CONT
inputs.

USAGE RARELY USED
You will probably never use this command. Triggers on
the full specification, but filters based only on the 8
bits of the CONT inputs.

The filter mechanism of the UniLab gets turned on for
you by the xAFTER macros. Those commands set the
filter to MISC' FILTER, which allows you to set up a
trigger spec based on all inputs except for the
MISCellaneous wires.

See also HDAT and MISC.

THE CONT INPUTS
The upper four bits identify processor cycle type,
while the lower four bits identify the address bits
A19-A16.

This command makes it possible to filter on cycle type
and on memory segments.

EXAMPLE

NORMT CONTROL FILTER WRITE 1200 ADR A7 DEVENTS S
triggers on 1200 address, and then records only
writes. Note that you have to use DEVENTS to get
a trace buffer full of the event you are filtering
on.

-- Command Reference -- Page 7-52

-- The Commands --

CTRL-FKEY <# of key> CTRL-FKEY <command>

Assigns a command to a function key hit while the CTRL key is
held down.

USAGE
Reassign the function keys on PCs and PC look-alikes.
Use CTRL-FKEY? (or CTRL-F1) to find the current
assignments.

The function keys allow you to execute any command or
string of commands with a single keystroke. The
initial assignments represent our best guess at what
you will need. But you might want to change them.

To make your reassignments permanent, use
SAVE-SYS.

EXAMPLE

5 CTRL-FKEY DOS
assigns DOS to CTRL-FS.

COMMENTS

CTRL-FKEY?

To execute a string of commands, define a macro first
(using :) and then assign the macro to the function
key.

See also FKEY, ALT-FKEY, and SHIFT-FKEY.

no parameters CTRL-F1

Displays the current assignments of the ConTroLled function keys.

USAGE
Whenever you want to be reminded what command will be
executed when you press a function key while holding
down the CTRL key.

- --

See CTRL-FKEY to reassign the keys.

July 16, 1986 Page 7-53 -- Command Reference --

-- The Commands --

CYCLES? <from addr> <to addr> CYCLES?

Counts the number of bus cycles between two addresses.

USAGE
Can use to count the number of bus cycles in a loop, as
in the first example below, or the "distance" between
two addresses.

BUS CYCLE COUNT
Not the number of machine cycles, nor the number of
instructions fetched, but instead the number of reads
and writes that occur between one command and another.
The read could be instruction fetches, or could be data
fetches.

EXAMPLES

123 123 CYCLES?
counts cycles between two occurrences of the
address 123.

123 456 CYCLES?
counts cycles between address 123 and address 456.

12300. 12450. CYCLES?

COMMENTS

counts cycles between address 12300 and address
12450.

Useful for checking quickly whether a loop works as you
intended. CYCLES? makes its own trigger spec, so you
will have to start fresh on your trigger after using
this command. Use one of the NORMx commands to clear
out the trigger spec set by CYCLES?.

When specifying a five-digit address, the • which
designates a five-digit address must be used with both
addresses.

-- Command Reference -- Page 7-54

-- The Commands --

DI D# <decimal number>

Treats the number that follows as a decimal value, rather than as
a hexadecimal, which is the default.

USAGE
Saves you the trouble of converting the number by hand
or with a calculator.

EXAMPLES

DI 16 ADR
equivalent to entering "10 ADR".

DI 32 •
will display 20 (the hex equivalent of 32
decimal).

DI 135 B.
converts a number from decimal to binary.

DI 1000 MS
will pause 1 second.

COMMENTS

See also Bl for entering binary numbers.

July 16, 1986 Page 7-55 -- Command Reference --

-- The Commands --

DASM no parameters FB

Enables the trace disassembler.

USAGE
Turns on the translation of machine code into assembly
language mnemonics. You will usually want to keep this
on, only turning it off for special applications such
as xAFTER. To turn off the disassembler, use DASM'.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

EXAMPLE

DASM
selects disassembled mode for trace display.

COMMENTS
Works only if you have an optional disassembler
installed.

-- Command Reference -- Page 7-56

-- The Commands --

DASM' no parameters F8

Disables the trace disassembler.

USAGE
Turns off the translation of hexadecimal machine codes
into assembly language mnemonics. See DASM above for
more details.

Typically you will use the MODE panel (function key 8)
when you want to change this feature.

EXAMPLE

DASM' selects hex mode for trace display.

July 16, 1986 Page 7-57 -- Command Reference --

-- The Commands --

DATA <byte> DATA
<byte> TO <byte> DATA

<byte> MASK <byte> DATA

Changes the analyzer trigger for the DATA inputs (DO to D7).

THE DATA INPUTS:

USAGE

The UniLab gets both the address and the data from the
bus during each memory read and write. The "data" that
appears on the bus could be either a value or a machine
code instruction. See COMMENTS below for information
on triggering on a 16-bit data bus.

The simplest use sets up a trigger for a single data
value. The UniLab will search for the byte value, and
trigger when it sees that hex number on the bus as
data. See the first example below.

RANGES OF DATA:

NOT

'l'O lets you set up a trigger on any data between two
byte values, inclusive. See the second example below.

NOT causes the UniLab to trigger when the value falls
outside the specified range or value.

MASKING
You can use k MASK 1 DATA to examine any subset of the
8 data lines. The high bits of k mark which bits will
be examined, while the bit configuration of byte 1
indicates the values the lines must have for a trigger
to occur.

For example, 80 MASK FF DATA selects only the highest
data bit for examination (with binary value 1000 0000).
The UniLab would trigger when this bit has a high
value. Note that the instruction 80 MASK 80 DATA would
have the same effect.

(DATA continued on next page)

-- Command Reference -- Page 7-58

-- The Commands --

(continued from previous page)

EXAMPLES

NORMT 12 DATA S
after clearing all previous settings with NORMT,
sets up a trigger for data input 12, and then uses
S to start the analyzer.

12 TO 34 DATA
requires data value between 12 and 34 hex.

FO MASK 30 DATA
sets a trigger based only on the four highest bits
of data. UniLab will look for a 3 on those lines.

23 DATA ALSO 45 DATA

COMMENTS

sets a trigger on cycles where data is either 23
or 45 hex.

The data inputs (DO-D7) are normally connected via the
emulator cable at the ROM socket. On 16-bit processors
DATA is only half of the data bus, while HDATA is the
other half.

If you need to use a large number of ALSO terms, then
see NDATA.

July 16, 1986 Page 7-59 -- Command Reference --

-- The Commands --

DCYCLES <number of cycles> DCYCLES

Sets number of cycles the UniLab will continue to record after
the trigger.

USAGE
When the UniLab sees the trigger event on the target
board, it consults the delay cycles variable to
determine how many more cycles to record. Each time a
new cycle enters the trace buffer you lose the oldest
recorded cycle. After the UniLab records the specified
number of cycles, it shows the trace buffer on the
screen.

WHY YOU DON'T NEED TO BOTHER
This command gets executed by a number of other
commands. NORMT, for example, sets the delay value to
AO (160 decimal). That delay count puts the trigger
event near the top of the trace buffer, after the ten
cycles that came just before it.

WHY YOU MIGHT WANT TO
You might want to see the trace starting 260 cycles
after a known event-- perhaps you don't know where the
program ends up at that time. The DCYCLES command will
do the job perfectly.

EXAMPLE

104 DCYCLES
selects 104 (hex) delay cycles (260 decimal)

COMMENTS
NORMT, NORMM, and NORMB select AO, 55, and 4 DCYCLES
respectively. S+ increases the number of delay cycles
by A6, so you can see what happens after the end of the
current trace.

The maximum possible delay count is FFFF.

-- Command Reference -- Page 7-60

-- The Commands --

DEF no parameters FS

Returns the window to the size last set with WSIZE, or to the
default if you have not changed the window size.

USAGE
The help screens readjust the window size, to make the
lower window as large as possible without overwriting
the information in the upper window. After you have
used a help screen, you might want to return the
DEFault window size. Just press Function key 5.

SAVING A DEFAULT
You can use SAVE-SYS to save all the current settings
at any time.

EXAMPLES

DEF

July 16, 1986

This command never used in combination with
anything else.

Page 7-61 -- Command Reference --

-- The Commands --

DM <start address> <count> DM

Disassembles <count> number of lines, starting at the given
address.

DMBP

USAGE
Allows you to check that emulation memory has the
proper data stored in it, and that the trace shows the
same instructions as the stored program.

See also DN.

EXAMPLE

100 10 DM
disassembles 10 lines starting at address 100

COMMENTS
Normally disassembles from ROM. Works only if you have
an optional disassembler. Can disassemble from target
RAM once debugger has control. See RB.

no parameters

Displays the settings of all eight multiple breakpoints.

USAGE
When you forget the settings of your multiple
breakpoints. Automatically executed whenever you set
one of the 8 multiple breakpoints with SMBP.

EXAMPLES

DMBP
This command never used in combination with
anything else.

-- Command Reference -- Page 7-62

-- The Commands --

DN <start address> DN

Disassembles the number of lines necessary to fill the right-hand
side of current window.

USAGE
When you want to see your code, and keep it on the
screen while looking at a trace. This command is
similar to DM.

EXAMPLES

20FO DN

July 16, 1986

Fills the right side of the current window with
assembly language code, starting from address
20FO.

Page 7-63 -- Command Reference --

-- The Commands

DOS DOS <DOS command>

Execute a DOS command from the UniLab program.
Or, use with no parameters to exit to DOS temporarily. Return to
UniLab program by typing EXIT.

USAGE
When you forget the name of the file where you stored
that program, or have any other reason to use the DOS
utilities. You can either execute a single command, or
you can go to DOS and execute a series of commands.

If you go to DOS, you can re-enter the UniLab program.
Return to the UniLab program by typing EXIT at the DOS
prompt (A> or B> or C>).

If you use BYE to exit the UniLab program, you have to
start it up again by typing ULxx at the DOS prompt.

EXAMPLES

DOS DIR /w

DOS

Executes the DOS command "DIR /w."

Allows you to execute any series of DOS commands,
then return to the UniLab program.

DOS ASMB SOURCE.ASM OBJECT.BIN
Assembles a new version of the program you are
working on.

-- Command Reference -- Page 7-64

-- The Commands --

EMCLR no parameters

Tells the UniLab not to emulate ROM-- clears out the emulation
memory settings.

USAGE
Commands the UniLab to not respond to any
microprocessor requests for data or instructions. Use
only when you want to run a program from on-board ROM.

Before you can run a program from a ROM chip on your
board, you will need to disable the debugger. Use the
SWI VECTOR choice on the mode panel(F8) or RSP'.
Note that you can use the PROM READER MENU (F9 from the
MAIN MENU) to read a program into emulation memory from
a ROM chip.

EXAMPLE

EMCLR

July 16, 1986

This command never used in combination with
anything else.

Page 7-65 -- Command Reference --

-- The Commands --

EMENABLE <address> EMENABLE
<from address> TO <to address> EMENABLE

Enables emulation memory, needed before you can load in a
program. But first, set =EMSEG properly.

USAGE
With a single address, enables the
that includes the given address.
just sets a variable in the host's
EMENABLE sends all the information

2K memory region
Note that =EMSEG
memory, while
to the UniLab.

You can use SAVE-SYS to make the current settings
permanent.

ON RANGES OF ADDRESSES
TO enables the emulation memory from the beginning of
the 2K segment that includes the <from> address to the
end of the 2K segment that the <to> address is in.

CLEARING PREVIOUS SETTINGS
Unless you precede emulation statement with ALSO,
clears out previous EMENABLE statements.

WATCH OUT
When you try to emulate two separate ranges of memory,
you can accidentally overlay the two. For example,
with a 32K UniLab, 0 and 8000 reference the same memory
location in the UniLab.

Of course, you can enable areas that do not overlap.
For example, 0 TO 3FFF and also COOO TO FFFF would not
conflict.

EXAMPLES

F =EMSEG 0 EMENABLE
enables target addresses 0-7FF with A16-19 all set
high.

0 TO 1 FFF EMENABLE ALSO FFFF EMENABLE
enables 0-1FFF and F800-FFFF

F =EMSEG 0 EMENABLE ALSO E =EMSEG 0 EMENABLE
enables locations FOOOO - F07FF and EOOOO - E07FF

(continued on next page)

-- Command Reference -- Page 7-66

-- The Commands --

(continued from previous page)

COMMENTS
The UniLab's enable logic first compares the A16-A19
value from the most recent =EMSEG statement with the
present bus address. Address inputs A11-A15 then get
compared to an enable map, where each entry corresponds
to a 2K segment of memory. When both the segment and
the 2K block are enabled, the UniLab accepts the
address, and puts its data on the bus.

July 16, 1986 Page 7-67 -- Command Reference --

-- The Commands --

ESTAT no parameters

Tells you the current status of emulation memory.

USAGE
When you want to find out what range of addresses is
currently enabled.

EXAMPLES

ESTAT
This command never used in combination with
anything else.

-- Command Reference -- Page 7-68

-- The Commands --

EVENTS? no parameters

Starts the analyzer and counts occurrences of the currently
defined trigger event.

USAGE
Useful for monitoring occurrences that you don't need a
trace of. An excellent way to see whether the program
does what it should. If the program messes up
spectacularly, or performs flawlessly, then this
command will show you that.

Otherwise, you're left in the dark.

EXAMPLES

NORMT 123 ADR EVENTS?
counts occurrences of address 123.

NORMT 123 ADR FF DATA EVENTS?
counts occurrences of data FF when the address is
123.

NORMT WRITE 78 TO FF DATA 1210 ADR EVENTS?

COMMENTS

Counts the number of times a data value greater
than 78 gets written to location 1210.

You can also count such things as error conditions or
system usage.

You can use this command if you want to sync a scope on
the UniLab's test point output.

July 16, 1986 Page 7-69 -- Command Reference --

-- The Commands --

FETCH no parameters

Tells the UniLab to look for trigger event only during fetch
cycles.

USAGE
To search for a particular opcode. After you give it
this command, the UniLab will not look for the trigger
event during reads or writes.

This command is not available on all processors.

This command is used as part of a trigger spec, as
shown in the examples below.

EXAMPLES

NORMT FETCH 120 ADR S
triggers when the program fetches from address
120.

NORMT FETCH NOT 0 TO 7FF ADR S

COMMENTS

triggers if the program tries to fetch an
instruction from outside the 0 to 7FF range.

This command, loaded with the disassembler, specifies a
range of CONT values corresponding to fetch cycles.

-- Command Reference -- Page 7-70

-- The Commands --

FILTER no parameters RARELY USED

Selects trace filtering mode, according to previous
word: CONTROL, HDAT, or MISC'.

WHY YOU DON'T NEED TO BOT~ER
For most filtering of the trace, you will use commands
such as ONLY or xAFTER. These words automatically
select the MISC' filtering mode for you. The NORMx
words turn off filtering.

You can use this command to set up a filter spec that
is different from your trigger spec. This is sometimes
a very useful thing to be able to do.

EXAMPLE

NORMT CONTROL FILTER READ 1200 ADR A7 DEVENTS S
triggers when the processor reads from address
1200-- then produces a filtered trace of the A7
(hex) read cycles that occur after that.

COMMENTS
You would want to bother when inventing your own
filtering command.

July 16, 1986 Page 7-71 -- Command Reference --

-- The Commands --

FKEY <# of key> FKEY <command>

Assigns a command to a function key.

USAGE
Reassign the function keys on PCs and PC look-alikes.
Use FKEY? (or F1) to find the current assignments.

The function keys allow you to execute any command or
string of commands with a single keystroke. The
initial assignments represent our best guess at what
you will need. But you might want to change them.

Note that you have to use "A" (hexadecimal) as the
number to assign a command to FlO.

To make your reassignments permanent, use
SAVE-SYS.

EXAMPLE

2 FKEY STARTUP
assigns STARTUP to the F9 key.

COMMENTS
If you find yourself performing some one action
repeatedly, you can save time by making it into a macro
and then assigning it to a function key. For example

: DUMPl 00 0 1 00 MDUMP ;
6 FKEY DUMP100

will allow you to dump locations 0 to 100 by pressing
function key 6.

See also ALT-FKEY, CTRL-FKEY, and SHIFT-FKEY.

-- Command Reference -- Page 7-72

-- The Commands --

FKEY? no parameters F1

Displays the current function key assignments.

USAGE
Whenever you want to be reminded what pressing a
function key will do for you.

See FKEY to reassign the keys.

EXAMPLES

FKEY?

July 16, 1986

This command never used in combination with
anything else.

Page 7-73 -- Command Reference --

-- The Commands --

G <address> G

Goes to the indicated address. Exits debugger, lets the target
run.

USAGE
After you have set a breakpoint, and want to release
debug control and let the target run. G is one of
several ways to do this.

G just gets the target board going. After that, you
can enter a trigger spec and restart the analyzer, or
you can use one of the "big picture" words: ADR?, SAMP,
or NOW?.

You could instead use STARTUP to restart the analyzer
and the board at the same time. Or use NORMx followed
by a trigger specification and s, to restart the
analyzer and give you a trace of the event that you
describe.

EXAMPLE

1030 G
exits from debug control, and resumes the target
program at location 1030.

COMMENTS
Appropriate only if you have an optional debugger and
have established control by entering RESET adr RB, or
NMI. You can return to any point in the program you
like, but debug control will be lost.

Use GB if you wish to resume the program at an address
different from the one you are stopped at but with
another breakpoint set.

-- Command Reference -- Page 7-74

-- The Commands --

GB <addr to go to> <bpoint addr> GB

Goes to the first address, and starts executing code, with a
breakpoint set at the second address.

USAGE
When you want to move around the program without losing
debug control ..

EXAMPLES

1200 330 GB

COMMENTS

resumes the program at address 1200, with a
breakpoint set at 330.

Available only if you have an optional debugger and
have established debug control. See RB to establish
debugger control.

July 16, 1986 Page 7-75 -- Command Reference --

-- The Commands --

GW <address> GW

Goes to the indicated address and waits until the analyzer is
started. Releases the target board from debugger control.

USAGE
To continue the execution of the program, starting at
the given address, after a new trigger spec has been
defined.

A rather specialized but very useful command.

EXAMPLE

1100 GW NORM'!' 1200 ADR S
Goes to address 1100 and waits for the analyzer to
be started. The trigger spec command sets the
analyzer to capture a trace showing the code at
address 1200.

-- Command Reference -- Page 7-76

-- The Commands --

H>D <hex number> H>D

Displays the decimal equivalent of a hex number.

USAGE
Shows you ~ne decimal equivalent-- compare this wi~n
DI, which allows you to enter a decimal number that
will then be used by the next command.

This word is similar to B. which shows you the binary
equivalent of a hex number.

EXAMPLE

10 H>D
will cause "16" to be displayed.

333 133 - H>D

July 16, 1986

will display "512," which is the decimal
equivalent of 333 minus 133 (hex).

Page 7-77 -- Command Reference --

-- The Commands --

HADR RARELY USED < byte > HADR
< byte > TO < byte > HADR

< byte > MASK < byte > HADR

Changes the analyzer trigger for the high-order byte of the 16-
bit address (A8-A15).

THE ADDRESS INPUTS

USAGE

You should normally use ADR to set 16 or 20 bits at
once, but there are limits to the use of ALSO in
combination with ADR.

The UniLab gets both the address and the data from the
bus during each bus cycle. The UniLab works with up to
20-bit addresses. You can change the trigger
specification of the least significant byte with LADR,
the second byte with this command, and the high four
bytes with CONT or ASEG.

You can use this trigger spec command in the same way
you use DATA, CONT, etc •• However, the most frequent
use of this command is to set up a trigger spec on the
address lines that makes use of many calls to ALSO.

EXAMPLES

NORMT 12 HADR ALSO 34 LADR ALSO 10 LADR ALSO 5 LADR
sets up the analyzer to trigger on any of the
addresses 1234, 1210 or 1205.

COMMENTS
Makes it possible to treat the first two bytes of the
address separately. LADR is the lower half.

-- Command Reference -- Page 7-78

-- The Commands --

HDAT no parameters RARELY USED

Used before FILTER to set up a filter spec based only on the high
byte of the DATA inputs (DB - D15).

USAGE -- RARELY USED
You will probably never use this command. Triggers on
the full specification, but filters based only on the B
bits DB through D15.

The filter mechanism of the UniLab gets turned on for
you by the xAFTER macros. Those commands set the
filter to MISC' FILTER, which allows you to set up a
trigger spec based on all inputs except for the
MISCellaneous wires.

See also CONTROL and MISC.

THE HIGH DATA INPUTS

USAGE

These lines read from the high byte of the 16-bit data
path of 16-bit processors. On B-bit processors, the
lines can be left to float, or be used to sense other
logic signals on your target board.

Used to show only the cycles that meet your
description. While deciding whether to include the
current cycle in a filtered trace, the UniLab will
check only these B bits of the 4B inputs.

A good way to look at all the bus cycles that have some
specific data value as the upper byte of data.

EXAMPLE

NORMT HDAT FILTER 80 TO FF HDATA 3410 ADR A7 DEVENTS S
will give a trace showing only those cycles with
D15 high, starting with the bus cycle that has D15
high and address 3410. Note that you have to use
DEVENTS to get a trace full of the event you are
filtering on.

July 16, 19B6 Page 7-79 -- Command Reference --

-- The Commands --

HDATA < byte > HDATA
< byte > TO < byte > HDATA

< byte > MASK < byte > HDATA
Changes the analyzer trigger for the high byte of 16-bit data
path (DB through D15). Spare inputs on B-bit processors.

THE DATA INPUTS

USAGE

The UniLab gets both the. address and the data from the
bus during each bus cycle. The "data" that appears on
the bus could be either a value or a machine code
instruction. On B-bit processors the inputs DB through
D15 can be hooked up to anything you like.

The simplest use sets up a trigger for a single value
on the high order byte of the data inputs. The UniLab
will search for the byte value, and trigger when it
sees that hex number on the bus as data.

Note that just looking at the high order byte means
that the UniLab doesn't care about the low order byte,
and so actually searches for a range of values. See
the first example below.

To specify just one full 16 bit wide data value, you
must use both HDATA and DATA.

RANGES OF DATA

NOT

TO lets you set up a trigger on any data between two
byte values, inclusive. See the third example below.

NOT causes the UniLab to trigger when the value falls
outside the specified range or value.

MASKING
You can use <i> MASK <j> HDATA to examine any subset of
the B most significant data lines. The high bits of i
mark which bits will be examined, while the bit
configuration of byte j indicates the values the lines
must have for a trigger to occur.

For example, 01 MASK FF HDATA selects only data bit DB
for examination (with binary value 0000 0001). The
UniLab would trigger when this bit has a high value.
Note that the instruction 01 MASK 01 HDATA would have
the same effect.

(HDATA continued on next page)

-- Command Reference Page 7-BO

-- The Commands --

(continued from previous page)

EXAMPLES

NORMT 12 HDATA S
after clearing all previous settings with NORMT,
sets up a trigger for data input 12XX -- actually
1200 through 12FF-- then uses S to start the
analyzer.

1 2 HDATA 80 DATA
sets a trigger for only data 1280.

12 TO 34 HDATA
requires data value between 12XX and 34XX hex.
That is, 1200 through 34FF.

FO MASK 00 HDATA
sets a trigger based only on the four highest bits
of data. UniLab will look for a 0 on those lines.

12 TO 23 HDATA ALSO 45 HDATA

COMMENTS

sets a trigger on cycles where the highest byte of
data is either 12 to 23, or 45 hex.

You must use a special 16-bit cable with processors
that use a 16-bit data bus. That cable has two ROM
plugs-- one for the even byte, one for the odd byte.

If you need to use a large number of ALSO terms, then
see NDATA.

The HDATA inputs are named for their use in the 16BIT
mode. In the 8BIT mode they are displayed as a
separate column and can be used as for anything you
like just like the MISC inputs. On eight- bit systems
they are typically used to look at system inputs and
outputs.

July 16, 1986 Page 7-81 -- Command Reference --

-- The Commands --

HDG no parameters F8

Has a fixed header for trace displays-- one that does not scroll
up with the rest of the trace.

USAGE

HOG'

One of the display attributes. Usually you will toggle
this with the mode panel, function key 8.

no parameters F8

Makes a non-fixed header for trace displays-- one that scrolls
with the rest of the trace.

USAGE
One of the display attributes. Usually you will toggle
this with the mode panel, function key 8.

-- Command Reference -- Page 7-82

-- The Commands --

HELP HELP <command> F1

Finds the reference information for a command or feature. With
no word, brings up the help screen, including soft-key prompt
line.

USAGE
Look up information on a command, in the abridged on­
line command reference. See also WORDS.

EXAMPLES

HELP
displays help screen.

HELP BYE
gives information on command "bye."

July 16, 1986 Page 7-83 -- Command Reference --

-- The Commands --

HEXLOAD HEXLOAD <file name>

Loads an Intel HEX format object file into the UniLab's emulation
memory. Prompts you for the file name if you don't include it.

USAGE
Load into emulation memory a program stored in Intel
HEX format. You can then run, debug and alter that
program as you would any other.

Binary format files are more compact and load two to
three times faster. You might want to direct your
assembler to produce binary format files, if it has
that capability. Or you can save your program memory
with BINSAVE to produce a binary format file.

Binary format files are loaded with BINLOAD.

Intel HEX format files contain the information about
where each opcode should be stored. Be certain to have
the proper sections of emulation memory enabled before
loading in the file. See EMENABLE.

LOADING INTO RAM
The UniLab will not load a file into RAM unless you
have first established debug control. To do that you
must first have a program already loaded into emulation
memory (LTARG for example) and then run to a breakpoint
with RESET <address> RB.

If the debugger is not in control, attempts to load
memory that is not enabled will generate an error
message and will not be loaded. Enabled areas in the
same file will be loaded.

EXAMPLE

HEXLOAD MYPROG.HEX
load an Intel HEX format file called MYPROG.HEX.

(continued on next page)

-- Command Reference -- Page 7-84

-- The Commands --

(continued from previous page)

COMMENTS
Only record types 0 to 3 are supported. Bytes 7 and 8
of each line of the file tell what record type that
line uses.

16-bit processor note: If the UniLab detects a type 2
(extended address) record then address bits A16-A19
will be compared to the current =EMSEG and data will
not be loaded if it is intended for some segment other
than the current one. This will be indicated by a
"not enb" message for each invalid address. Enabled
addresses in the file will be properly loaded.

July 1 6 I 1 986 Page 7-85 -- Command Reference --

-- The Commands --

HEXRCV no parameters

Loads an Intel HEX file from another computer, via a second
serial port.

USAGE
The serial transmission must be done on a separate
serial channel with the UniLab connected to its normal
serial port. XON and XOFF characters are used to
start and stop the data transmission. Transmission is
normally done on COM2 on IBM PC's while the UniLab is
connected to COM1.

EXAMPLE

HEXRCV
loads a hex file serially

-- Command Reference -- Page 7-86

-- The Commands --

INFINITE INFINITE PEVENTS RARELY USED

Used only before PEVENTS, instead of a count, to indicate that
the trigger event must immediately follow the qualifying events.

USAGE
Along with a trigger specification (see ADR, DATA,
READ, WRITE, etc.) and a qualifying event specification
(see AFTER or QUALIFIERS), when you are only interested
in the trigger event if it occurs immediately after the
qualifying events.

BACKGROUND
The default is for the UniLab to search for the
qualifying sequence only once. After the sequence has
been found once, it is discarded and the UniLab looks
for the trigger.

With PEVENTS and a normal count, the UniLab searches
for the qualifying events until it finds them the count
number of times. Then it discards the qualifiers, and
looks only for the trigger.

WHAT IT REALLY DOES
INFINITE causes the UniLab to search for the qualifying
sequence and then immediately look for the trigger
event. If the trigger event is not the very next
cycle, then the UniLab starts looking for the
qualifiers again.

EXAMPLE

123 ADR AFTER 345 ADR INFINITE PEVENTS

COMMENTS

triggers if address 123 follows immediately after
address 345.

Pretty obscure. But might be highly useful in certain
restricted situations.

Pressing any key stops the search.

July 16, 1986 Page 7-87 -- Command Reference --

-- The Commands --

INIT no parameters

Sends an initialization message to the UniLab.

USAGE
To reset the UniLab after you are in the UniLab
program.

When you start up the program, it tries to initialize
the instrument after the screen has been cleared and
the UniLab version number displayed. If you tap any
key after the screen is cleared, then the automatic
init will not occur. You will then have to use INIT
before you can send any commands to the instrument.

Also, if the UniLab was not properly connected when you
called up the program, or if you turned off the UniLab
at any time during the program, then the UniLab needs
to be initialized.

IF IT FREEZES
If the program stops after printing the
"Initializing UniLab •••• " message, hit the BREAK key
while holding down the CONTROL key. This breaks you
out of the initializing sequence. Make certain that
you have turned on the UniLab and connected it to the
host computer.

Try INIT again. If it still freezes up, check the
Trouble Shooting Chapter.

EXAMPLES

INIT

COMMENTS

This command is never used in combination with
anything else.

Initializes all of the mode bits, baud rate and
emulation enable map. Sent automatically after PROM
programmer operations to re-initialize the analyzer
modes.

-- Command Reference -- Page 7-88

-- The Commands --

INT no parameters RARELY USED

Enables NMI- interrupt output when trigger state reached.

USAGE-- RARE
Available only on processors that have a ncn-maskable
hardware interrupt feature. If you want the target
system to execute an interrupt routine when it goes
into trigger search state(i.e., after the "qualifier
has been found). Used to prevent damage to equipment
by branching control to a "soft shutdown" routine when
some error condition occurs.

You must write and install your own shutdown routine.

Note that Orion debuggers use this command internally.
If you want to make use of it, you must disable the NMI
feature of the Orion debugger with the Mode Panel (F8)
or with NMIVEC'.

NORMx disables the INT mode.

EXAMPLES

NORMT INT AFTER 123 ADR S
will interrupt the target processor during the bus
cycle after address 123 is re~ched, then trigger
immediately.

NORMT INT 12 DATA AFTER 345 ADR S

COMMENTS

will interrupt during the bus cycle after address
345 occurs, then the analyzer will trigger when 12
data occurs.

Note that the interrupt occurs when the qualifying
sequence is complete not on analyzer trigger. This
makes it possible to trigger on something specific
after the interrupt occurs.

July 16, 1986 Page 7-89 -- Command Reference --

-- The Commands --

INT' no parameters RARELY USED

Disables the INT mode.

USAGE
Rare.

COMMENTS
Not often used since NORMx also disables the INT mode.

-- Command Reference -- Page 7-90

-- The Commands --

IS <value> IS <name>

Assigns a symbol name to an address or data value.

USAGE
To show mnemonic names of memory locations on traces.
If you already have an assembler generated symbol
table, you will prefer to use the symbol table features
of the UniLab. See SYMFIX and SYMFILE.

You can use the IS command to add symbols after you
have loaded in a symbol table. IS turns on symbol
display mode.

EXAMPLE

1234 IS MREGISTER
gives 1234 the symbol name "MREGISTER"

COMMENTS
Used to manually create a symbol table or to add
symbols to an existing table.

Use SYMB to enable the symbol display on trace. See
also SYMB', SYMSAVE, CLRSYM, SYMLOAD, and SYMFILE.
Symbol translation will work with or without a
disassembler.

July 16, 1986 Page 7-91 -- Command Reference --

-- The Commands --

LADR <byte> LADR
<byte> TO <byte> LADR

<byte> MASK <byte> LADR

RARELY USED

Sets the truth table for the low order byte of the address
(AO-A7) separately.

THE ADDRESS INPUTS

USAGE

You should normally use ADR to set 16 or 20 bits at
once, but there are limits to the use of ALSO in
combination with ADR.

The UniLab gets both the address and the data from the
bus during each bus cycle. The UniLab works with up to
20-bit addresses. You can change the trigger
specification of the least significant byte with this
command, the second byte with HADR and the high four
bytes with CONT or ASEG.

You can use this trigger spec command in the same way
you use DATA, CONT, etc •• However, the most frequent
use of this command is to set up a trigger spec on the
address lines that makes use of many calls to ALSO.

LADR is also useful for setting a trigger on a port
address of the Z80. The ports of the Z80 processor
have only one byte addresses-- and the Z80 puts the
contents of the A register on the upper byte of the
address lines when it outputs to a port.

EXAMPLE

NORMT 12 HADR ALSO 34 LADR ALSO 10 LADR ALSO 5 LADR
sets up the analyzer to trigger on any of the
addresses 1234, 1210, or 1205.

COMMENTS
Makes it possible to treat the first two bytes of the
address separately. HADR is the upper half.

-- Command Reference -- Page 7-92

-- The Commands --

LOG no parameters F8

Enables automatic logging of target program patches on printer.

USAGE

LOG'

Keeps a record of any program patches you make, but
other operations are not logged to the printer.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

no parameters F8

Disables logging of program patches to printer. See LOG above.

USAGE
Normally you will use the MODE panel (function key 8)
when you want to change this feature.

July 16, 1986 Page 7-93 -- Command Reference --

-- The Commands --

LP no parameters

Goes around a loop once and stops.

USAGE
You must already have established debug control
(see RB), and be stopped at a breakpoint within a loop.
This command allows the program to run once around the
loop and stop at the current address, displaying the
registers as the UniLab does for any breakpoint.

WATCH OUT
Will not work if the program counter register is
pointing above the first instruction or below the last
instruction in the loop. Only works when you are
within the loop.

EXAMPLES

LP

COMMENTS

This command never used in combination with
anything else.

Works by first saving the current breakpoint address,
executing N (a single step without following branches)
and then executing < saved address > RB. Note that
this will not work if you are at the end of the loop.

-- Command Reference -- Page 7-94

-- The Commands --

LTARG no parameters

Loads a simple target program into the UniLab's emulation memory.

USAGE
A good way to gain familiarity with the UniLab. Comes
packaged with the disassembler. This command enables
the proper section of emulation memory and loads a
simple program. A STARTUP command then sets the
analyzer and your target system going.

WATCH OUT: PROCESSORS WITH EXTERNAL STACKS
The LTARG program uses the memory map of the Orion demo
board. If your target system was designed with the RAM
and ROM resources at different addresses, then the
LTARG program might not run on your board without some
patching.

See LTARG in the reference section of your debugger
notes if you have a problem.

EXAMPLE

LTARG

COMMENTS

This command never used in combination with
anything else.

Available only if you have an optional disassembler.
The program loaded by this command is used in the
debugger writeup as a demonstration. This makes it
possible for you to duplicate exactly the demo in the
target-specific notes.

If you are having trouble using the debugger with your
program, try using it with the LTARG program. Note
that the ROM that occupies the addresses used by the
LTARG program must be unplugged to prevent bus
conflicts.

July 16, 1986 Page 7-95 -- Command Reference --

-- The Commands --

M <byte> M

Stores one byte in ROM or RAM and increments reference address.

USAGE
Used after an ORG statement (which sets up address), to
patch program memory. Can only be used to change RAM
after debug control has been established. See RB.

REMEMBERING CHANGES
LOG sends all memory access commands such as M to the
printer, saving a record of any changes you make.

EXAMPLES

3000 ORG 12 M
stores a 12 at 3000

150 ORG 5 M 10 M
stores 5 at location 150, 10 at 151

COMMENTS
Used for entering data tables, program patches, etc.
See also MM, MMI, and Ml.

Will store to emulated memory if the address is
enabled, otherwise will attempt to store to target RAM
if the optional debugger is in control (see RB).

As with all memory writing commands, don't write into
your stack area when loading into RAM.

-- Command Reference -- Page 7-96

-- The Commands --

M! <byte> <address> M!

Stores a byte of data at the specified address.

USAGE
Used to paten program memory. Does not require a
previous ORG command-- instead requires an address as
the second parameter. See M. Can also be used to
change RAM, but only after debug control has been
established. See RB.

REMEMBERING CHANGES
LOG sends all memory access commands, such as M!, to
the printer, saving a record of any changes you make.

EXAMPLES

12 3000 M!
stores a 12 at 3000.

5 150 M! 10 150 M!
stores 5 at location 150, 10 at 151.

COMMENTS
Used for entering small patches-- anything larger than
one byte can be done by one of the other memory patch
commands with fewer keystrokes. See also MM, MM!, and
M.

Will store to emulated memory if the address is
enabled, otherwise will attempt to store to target RAM
if the optional debugger is in control (see RB).

If the debugger is not in control, you will be told:
"Debug Control not established!"

July 16, 1986 Page 7-97 -- Command Reference --

-- The Commands --

M? <address> M?

Displays the byte that is stored at the specified address.

USAGE
To find out what is stored at a single memory location,
either ROM or RAM. Use MM? for looking at words, and
MDOMP or DM for larger areas of memory.

EXAMPLES

1210 M?
displays the byte stored at 1210.

COMMENTS
If the address is EMENABLEd then emulation memory will
be displayed, otherwise the UniLab will attempt to use
the debugger to display target RAM contents.

-- Command Reference -- Page 7-98

-- The Commands --

MASK <byte> MASK <byte>

Specifies a mask for the trigger spec that immediately follows.

USAGE
A modifier to ADR, CONT, DATA, PADR, HDATA, LADR, or
MISC.

The first byte describes which of eight wires to pay
attention to-- a one means pay attention, a zero means
don't care.

The second byte tells the UniLab what inputs to look
for on the wires that you care about. The UniLab
ignores the bits for the ~nputs that the first byte
told it to ignore. Thus 01 MASK 01 has the same affect
as 01 MASK FF.

EXAMPLES

NORMT 2 MASK 2 MISC S
will trigger if input M1 goes high.

NORMT Bl 0010 MASK Bf 0010 MISC S
has the same effect as the first example-- will
trigger if input M1 goes high.

NORMT 3 MASK 2 MISC S
requires inputs M1=1, MO=O for trigger.

COMMENTS
MASK cannot be used with TO, NOT, ALSO

July 16, 1986 Page 7-99 -- Command Reference --

-- The Commands --

MCOMP <start addr> <end addr> <comp addr> MCOMP

Compares two areas of memory and indicates discrepancies.

USAGE
Compares the two areas of memory, and gives you a
message about each discrepancy. Hit any key to abort.
For example:

110 117 810 MCOMP
Data is 16 at addr 0110 •• but is 5 at addr 0810
Data is 90 at addr 0112 •• but is 80 at addr 0812
Data is 27 at addr 0116 •• but is 23 at addr 0816

You only need to enter three addresses-- the starting
and ending address of the first block of memory, and
the starting address of the second.

VERIFYING ROMS
If you want to compare a ROM to a program on disk,
first load the program using BINLOAD or HEXLOAD. After
that use the PROM READER MENU to read from the PROM
into a different memory area.

You can then use MCOMP to compare the two target areas.

EXAMPLE

100 300 800 MCOMP

COMMENTS

compares data at target addresses 100-300 to the
data at 800-AOO.

Works on any combination of emulated ROM and, if the
debugger is in control, target RAM.

Both areas must be in the same 32K block of memory-­
that is, A15-A19 must be the same for both sections.

-- Command Reference -- Page 7-100

121
131

-- The Commands --

MDUMP <from addr> <to addr> MDUMP

Display the contents of an area of memory.

USAGE
Allows you to look at any block of memory. For example:

121 131 MDUMP

F3 31 00 1C 21 78 02 11 78 02 01 2C 00 7C BA C2
38 01 70 BB CA 42 01 7E 12 23 13 OB 79 BO C2 38

.1 •• !x •• x •• , •••
8 ••• B •• # •• y •• 8

Press any key to freeze scrolling of display. Press
any key again to continue scrolling. While scrolling
is stopped, press any key twice quickly to stop.

EXAMPLE

1234 1334 MDOMP

COMMENTS

displays the contents of locations
in hex and ASCII.

1234 to 1334

As with all M commands, display will be from emulation
memory if the address has been EMENABLEd. If the
debugger is in control, you can also display target RAM
memory.

July 16, 1986 Page 7-101 -- Command Reference --

-- The Commands --

MEMO no parameters SHIFT-F2

Displays and allows editing of the on-line memo pad.

USAGE
A handy way to write notes to yourself. Hitting
CONTROL and Z at the same time toggles the on-line
editor help screen on and off. This screen shows you
the ESCape key sequences and ConTRL key combinations
that you use with the editor. See COMMENTS below.

You exit the full screen editor with ESCAPE followed by
F if you want to save the changed memo pad. ESCAPE
followed by ESCAPE allows you to leave the memo pad
without saving your changes.

EXAMPLE

MEMO

COMMENTS

This command never used in combination with
anything else.

This command works only when the EDITxx.VIR file is
present in the same directory as the UniLab program.

The powerful editor allows you to write complicated
macros and enable them at will. If you want to use
this feature to the fullest, order the PADS manual from

Mountain View Press
PO Box 4656

Mountain View, CA 94040

(continued on next page)

-- Command Reference -- Page 7-102

-- The Commands --

(continued from previous page)

EDITOR HELP (repeated on-line):

Hit SBIF'l'-F2 to get the editor.
Once in the editor, hit CTRL-Z to get the on-line help.

BIT WHILE BOLDING DOWN THE CONTROL KEY:

CONTROL: CURSOR
S=Lef t
E=Up
F=Rtab
F=Forwd

D=Right
X=Down
I=Ltab
A=Bkwrd

Q=Home

CHARACTER CONTROL:
Del=Delete char
J=Jerk-->buffer
C=Chars<--buffer
V=Insert chars
P=Pullup words

LINE CONTROL:
K=Kill line
G=Gobble-->buffer
Y=Copy-->buffer
L=Line<--buffer
N=New lines

HIT THE ESCAPE KEY AND FOLLOW WITH:

ESC=Esc no update
W=Word for search
S=Search screens
U=Update now
R=Restore screen

July 16, 1986

F=Updat & Fin edit
B=Updat & Back scr
N=Update & Nxt scr
L=Update & Load

Page 7-103 -- Command Reference --

-- The Commands --

MENU no parameters F10

Selects the menu-driven mode.

USAGE
The menu- driven mode helps first time users by
allowing you to use the UniLab simply by choosing from
list of options. This command, whether typed in or
picked with function key 10, reassigns the function
keys and shows the menu on the screen. The command
line that you would use gets displayed as it is
executed, so you can learn how to enter the command
directly.

While using the menu, you can also type commands
directly.

Menu mode also comes in handy when you have forgotten a
command.

All PROM programming commands are available under the
PROM menu.

Hitting F10 again from the main menu gets you out of
menu mode.

EXAHPLE

MENU

MESSAGE

This command never used in combination with
anything else.

no parameters

Gives a screenful of information on the most recent updates and
additions to the UniLab software.

USAGE
Make certain that you know all the capabilities of the
UniLab software.

-- Command Reference -- Page 7-104

-- The Commands --

MF ILL <from addr> <to addr> <byte> MFILL

Fills every location in an area of memory with the same byte.

USAGE
A good way to check that memory address and data lines
connect properly on the target board. You can fill an
area of memory, and then examine it with MDUMP.

One way to find out what is happening on your board
when LTARG test program will not run: fill a block of
memory with NOOP instructions, starting at the reset
address, and then use STARTUP. You should see a trace
of consecutive addresses.

Also a heavy-handed way to push a byte into memory.
See also MM, M, MM!, and Ml, for more elegant ways to
manipulate memory.

Note that the <from> and <to> addresses must be in the
same 32K block.

EXAMPLE

1200 1300 20 MFILL
fills locations 1200-1300 with the value 20 hex.

COMMENTS
To fill target RAM a debugger must be in control.

As with all memory writing commands, don't write into
your stack area when loading into RAM.

July 16, 1986 Page 7-105 -- Command Reference --

-- The Commands --

MISC <byte> MISC
<byte> TO <byte> MISC

<byte> MASK <byte> MISC
Changes the analyzer trigger for the miscellaneous inputs.

THE MISCELLANEOUS INPUTS

USAGE

The UniLab 1 s 48-bit-wide trace buffer has room for 8
more bits than are used for data, address, and control
lines. These eight input lines are available to you,
for sensing anything on the target board that you want
to know about, or that you want the UniLab to trigger
on.

For example, you might hook them up to an output port,
to trigger when a particular bit configuration gets
asserted on that port.

Note: The qualifier and filter specifications always
ignore the MISC inputs.

The simplest use sets up a trigger for a single value
on miscellaneous inputs. The UniLab will search for
the byte value, and trigger when it sees that hex
number on the lines. See the first example below.

RANGES

NOT

TO lets you set up a trigger on any input between two
byte values, inclusive. See the second example below.

NOT causes the UniLab to trigger when the value falls
outside the specified range or value.

MASKING
You can use k MASK 1 MISC to examine any subset of the
8 miscellaneous lines. This is particularly handy when
you only have one or two of the MISC inputs connected
to your board. You don't care about the logic level of
the other 6 lines, since they don't mean anything.

The high bits of k mark which bits will be examined,
while the bit configuration of byte 1 indicates the
values the lines must have for a trigger to occur.

(continued on next page)

-- Command Reference -- Page 7-106

-- The Commands --

(continued from previous page)

For example, 03 MASK FF MISC selects only bits MO and
M1 for examination (with binary value 0000 0011). The
UniLab would trigger when both these bits have a high
value. Note that the instruction 03 MASK 03 MISC would
have the same effect.

WITH TRACING
All trace filtering modes and qualifiers ignore the
MISC inputs. Since they still effect triggering, this
makes the MISC inputs particularly useful as trigger
inputs for filtered traces.

EXAMPLES

NORMT 12 MISC S
after clearing all previous settings with NORMT,
sets up a trigger for miscellaneous input 12, then
uses S to start the analyzer.

12 TO 34 MISC
requires miscellaneous input value between 12 and
34 hex.

FO MASK 00 MISC
sets a trigger based only on the four highest
bits. The UniLab will look for a 0 on those lines.

23 MISC ALSO 45 MISC
sets a trigger on cycles where the misc input is
either 23 or 45 hex.

ONLY 100 TO 400 ADR FF MISC

COMMENTS

traces only cycles where ADR is 100-200. Triggers
when MISC is FF. Filtering ignores MISC.

The MISC inputs can be connected to anything you like.
They are often used to look at system input and output
ports.

July 16, 1986 Page 7-107 -- Command Reference --

-- The Commands --

MISC' MISC' FILTER RARELY USED ,

Used only before FILTER to enable trace filtering on all inputs
except the MISCellaneous wires(MO to M7). NORMx turns this mode
off.

WHY YOU DON'T NEED TO BOTHER
Because this is taken care of for you by ONLY and by
xAFTER, so it is unlikely that you will need to use
this command.

See also CONTROL and HDAT.

EXAMPLE

MISC' FILTER
enables filtering on all except MO-M7 inputs.

-- Command Reference -- Page 7-108

-- The Commands --

MLOADN <from addr> <to addr> <target addr> MLOADN

Moves a block of memory from the memory of the host to the target
memory.

USAGE
Allows you to assemble or load a program into host
memory, and then move it to UniLab emulation ROM or
target RAM.

Most people will prefer to assemble into a file, and
then load from the file into UniLab emulation memory.

FREE MEMORY
The host memory area that is available generally starts
right above COOO. PAD 100 + u. displays the first free
address. SO u. shows you the upper limit of the unused
memory.

EXAMPLE

COOO C800 0 MLOADN

COMMENTS

moves data at C000-C800 in the host computer to
target locations 0-800.

You must have emulation memory enabled to load the
program into ROM (see EMENABLE).

The debugger must be in control if you want to load
into target RAM.

July 16, 1986 Page 7-109 -- Command Reference --

-- The Commands --

MM <word> MM

Stores one 16-bit word in ROM or RAM and increments reference
address.

USAGE
Used after an ORG statement (which sets up address), to
patch program memory. Can only be used to change RAM
after debug control has been established. See RB.

REMEMBERING CHANGES
LOG sends all memory access commands such as MM to the
printer, saving a record of any changes you make.

EXAMPLES

3000 ORG 1210 MM
stores 1210 at 3000.

150 ORG 5000 MM 7001 MM
stores 5000 at location 150,

COMMENTS

7001 at 152.

Used for entering data tables, program patches, etc.
See also M, MM!, and M!.

Will store to emulated memory if the address is
enabled, otherwise will attempt to store to target RAM
if the optional debugger is in control (see RB).

As with all memory writing commands, don't write into
your stack area when loading into RAM.

If you have a disassembler the byte order is set
correctly, otherwise you can set it with HL or LH.

-- Command Reference -- Page 7-110

-- The Commands --

MM! <word> <address> MM!

Stores a 16-bit word of data at the specified address.

USAGE
Used to patch program memory. Does not require a
previous ORG command-- instead requires an address as
the second parameter. See MM. Can also be used to
change RAM, but only after debug control has been
established. See RB.

REMEMBERING CHANGES
LOG sends all memory access commands, such as MM!, to
the printer, saving a record of any changes you make.

EXAMPLES

1200 3000 MM!
stores a 1200 at 3000

5000 150 MM! 1000 152 MM!
stores 5000 at location 151, 1000 at 153.

COMMENTS
Used for entering small patches-- anything larger than
one word can be done by one of the other memory patch
commands with fewer keystrokes. See MM and M.

Will store to emulated memory if the address is
enabled, otherwise will attempt to store to target RAM
if the optional debugger is in control (see RB).

As with all memory writing commands, don't write into
your stack area when loading into RAM.

If you have a disassembler the byte order is set
correctly, otherwise you can set it with BL or LB.
Words are stored to emulation memory if it is enabled,
otherwise the debugger is used (if in control) to store
to target RAM.

July 16, 1986 Page 7-111 -- Command Reference --

-- The Commands --

MM? <address> MM?

Displays the 16-bit word that is stored at the specified address.

USAGE
To find out what is stored at a single memory location,
either ROM or RAM. Use M? to look at bytes and MDUMP
or DM for larger areas of memory.

EXAMPLE

1210 MM?
displays the word stored at 1210.

COMMENTS
If the address is EMENABLEd, then emulation memory will
be displayed. Otherwise the UniLab will attempt to use
the debugger to display target RAM contents.

If you have a disassembler, the byte order is set
correctly, otherwise you can set it with HL or LH.

-- Command Reference -- Page 7-112

-- The Commands --

MMOVE <start addr> <end addr> <dest> MMOVE

Moves a block of memory from one area to another in the target
memory space.

USAGE
Good way to make a little more room when you need to
patch some extra code into a program.

You can also use it to relocate a relocatable code
module.

SMAH.T MOVER
Automatically chooses the order of moving, to prevent
overwriting caused by moving from one area to an area
that overlaps. Starts moving from either the beginning
or the end of the area to be moved, as necessary. See
the two examples below.

The source and destination range can be anywhere in
memory, but neither range can cross a 32K boundary.
That is, the start and end address of a range must be
within a 32K block.

EXAMPLES

1000 2000 1005 MMOVE
moves the data in locations 1000-2000 up 5 places.
Starts moving from the end.

200 300 125 MMOVE

COMHENTS

moves the data in 200-300 down 75 spaces. Starts
moving from the beginning.

Make certain that the code you moved is relocatable.
If it is not, you might have to patch some of the
absolute address references. In general, exercise
caution, and use DM on the moved memory, to see if the
instructions still do what you want them to do.

As with all memory writing commands, don't write into
your stack area when loading into RAM.

July 16, 1986 Page 7-113 -- Command Reference --

-- The Commands --

MODE no parameters F8

Gives you the mode panels, which allow you to change mode of
display, mode of debugger functioning, etc.

USAGE
Hit function key 8 (F8) once to get the first mode
panel, which contains the analyzer mode switches. Press
(F8) again to get the second panel that contains the
trace display mode switches. The third panel contains
the log mode switches and debug disable switches.

MOVING AROUND
To get from one panel to another, hit F8 repeatedly, or
use PgDn key. Use the END key to exit from mode
setting.

Once you are in a pop-up panel, you can move around,
selecting different features, with the up arrow and
down arrow keys. The right arrow key toggles the
feature on and off.

WHAT THEY ALL DO
See the Special Functions section of the manual for the
complete story.

You can also check
each feature:

Panel One DASM
Panel 'l'vo SBOWM
Panel Three LOG

EXAMPLE

MODE

the listings in the glossary for

SYMB
SBOWC
TO FILE

RESET
=MBASE
PRINT

PAGINATE HDG
HMIVEC RSP

This command never used in combination with
anything else.

-- Command Reference -- Page 7-114

-- The Commands --

MS <count> MS

Pauses for count number of milliseconds.

USAGE
In test programs where you need a pause.

Note that 400 hex milliseconds is one second.

EXAMPLE

800 MS
pauses for 2 seconds (800 hex ms)

July 16, 1986 Page 7-115 -- Command Reference --

-- The Commands --

N no parameters

Resumes program, with a breakpoint set to the address after the
next instruction.

USAGE
While stopped at a breakpoint, when you want to execute
only the next instruction pointed to by the Program
Counter. Note, however, that you will "fall through"
loops and branches.

This "falling through" is often very useful. For
example, if the PC is pointing at a subroutine call, N
will show you the state of the processor when it
returns from the call.

Use SSTEP (see the Disassembler/Debugger writeup on
your processor to make certain that your processor
supports this feature) if you want to follow loops and
branches.

FALL THROUGH LOOPS
When you single-step through a program, you will
usually not want to bother going through loops the same
number of times that the microprocessor does. This
command allows you to go through a loop just once.

HOW IT WORKS
This command uses RB to set a breakpoint at the address
just after the disassembled instruction that the PC
points to. So the program runs until it reaches that
address.

WATCH OUT
If the program never reaches the address of the
breakpoint, then the program will run without stopping.
For example, if the program contains an infinite loop,
and you will not want to use N on the last command in
the loop (the jump back up to the top). The program
never reaches the code that follows that last jump.

COMMENTS
Available only when a debugger has control.

-- Command Reference -- Page 7-116

-- The Commands --

NDATA <byte #1> <byte #2> . . . <byte #N> <N> NDATA

Sets N different bytes as trigger events for the analyzer.

USAGE
A quick way to set triggers on many different data
codes that do not fall into ranges. Easier than using
ALSO again and again, as in:
18 DATA ALSO 32 DATA ALSO 36 DATA ALSO 47 DATA.

RANGES OF DATA
If the data does fall into ranges, then you can use TO
instead. For example, 12 TO 25 DATA sets the analyzer
looking for any data between twelve and 25, inclusive.

EXAMPLE

18 32 36 47 4 NDATA

COMMENTS

Does the same thing as the ALSO example in the
text above.

Really the same as "ORing" together the terms with
ALSO. Any number of terms can be listed, but be sure
to get the count correct.

You can use ALSO in combination with this command to
add a range of values.

July 16, 1986 Page 7-117 -- Command Reference --

-- The Commands --

NMI no parameters F4

Establishes debug control immediately.

USAGE
Only supported on microprocessors that provide a
hardware Non-Maskable Interrupt feature.

Allows you to establish debug control on a program that
is currently running.

See also RB. See Appendix H to find out whether your
processor supports NMI.

DISABLE
If your target board makes use of the non-maskable
interrupt feature of your processor, or you wish to
disable NMI for any other reason, use the Mode Panel
(F8) or NMIVEC • •

Disabling the entire debugger (Mode panel choice "SWI
VECTOR" or command RSP') also disables NMI.

COMMENTS
The hardware interrupt feature is also utilized by
SSTEP and SI. Disabling NMI also disables those two
commands.

-- Command Reference -- Page 7-118

-- The Commands --

NMIVEC no parameters F8

Enables the Non-Maskable Interrupt vector installation.

USAGE

NMIVEC'

This command re-enables the UniLab's ability to perform
NMI. You only want to disable this feature when you
want more transparent operation and don't need to use
all the debugger features. See RSP' for complete
transparency.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

no parameters F8

Disables the Non-Maskable Interrupt vector installation.

USAGE
This command disables the UniLab's ability to perform
NMI.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

The debugger usually gives you the ability to send a
non-maskable interrupt to the microprocessor. This
interrupt, a standard feature on microprocessors, tells
the processor to jump to whatever code location the NMI
vector register contains. Orion debuggers use this
feature so that you can assert debugger control over
your processor at any time.

WHEN YOU WILL WANT TO DISABLE NMI
When your system makes use of the NMI, and you want to
preserve that ability while testing the system.

COMMENTS
Either the panel toggle or NMIVEC re-eneibles the vector
installation. ·

July 1 6, 1 986 Page 7-119 -- Command Reference --

-- The Commands --

NO RMB no parameters

Clears out (NORMalizes) all trigger descriptions and sets the
trigger event near Bottom of trace buffer.

USAGE
To start a new trigger definition when you want to see
the events that led up to the trigger •

•
Use TSTAT to look at how this command changes the
DCYCLES setting.

When you want to start from scratch with a new trigger
description, always begin with one of the variations of
NORM. The three commands, NORMB, NORMM, and NORMT,
vary only in where within the trace buffer they place
the trigger event-- at the bottom, in the middle or at
the top.

TO SEE WHAT HAPPENS NEXT
S+ restarts the target board with the same trigger
specification, but with 170 (decimal) added to the
delay cycle count, so that you can see what happened
after the current trace window.

HOW THEY WORK
The commands clear out the truth tables the analyzer
used to search for the trigger event, and set the
number of delay cycles that the analyzer will wait
between seeing the trigger and freezing the buffer.
See DCYCLES for more information about delay cycles.

EXAMPLES

NO RMB
Sets 4 delay cycles

NORMB NOT 0 TO 1000 ADR S

COMMENTS

will show what happened before the address went
outside of the 0-1000 range.

NORMB should be used where you want to know what
happened before the trigger.

-- Command Reference -- Page 7-120

-- The Commands --

NORMM no parameters

Clears out (NORMalizes) all trigger descriptions and sets the
trigger event at Middle of trace buffer.

USAGE
To start a new trigger definition when you want to see
the events that led up to the trigger, and also see
what followed.

You will find it very useful when you want to see the
complete context within which the trigger occurred.

Use TSTAT to look at how this command changes the
DCYCLES setting.

See NORMB for more details.

EXAMPLE

NORMM
sets delay cycles to 85 (decimal).

July 1 6, 1 986 Page 7-121 -- Command Reference --

-- The Commands --

NORMT no parameters

Clears out (NORMalizes) all trigger descriptions and sets the
trigger event near Top of trace buffer.

USAGE
To start a new trigger definition when you want to see
the events that followed the trigger.

Use TSTAT to look at how this command changes the
DCYCLES setting.

See NORMB for more details.

EXAMPLE

NORMT
sets delay cycles to 165 (decimal).

-- Command Reference -- Page 7-122

-- The Commands --

NOT NOT <trigger description>

The trigger description gets interpreted as a description of when
not to trigger.

USAGE
To tell the analyzer to trigger when some byte of the
48-channel input bus goes outside of a certain range or
value. Most commonly used to trap bad data or a bad
address.

EXAMPLES

NORMT NOT 00 TO 4FF ADR S
triggers if the address goes outside the 00 to 4FF
range.

ONLY 127 ADR NOT 12 DATA S
shows only cycles where the data at 127 address is
not 12.

NORMM NOT 12 DATA ALSO NOT 34 TO 56 DATA S
triggers when the data is not either 12 nor
between 34 and 56.

COMMENTS
Sets a flag for the next trigger word (ADR, CONT, DATA,
HADR, HDATA, LADR, and MISC).

Except when used with ALSO, the NOT command causes the
truth table to be cleared to all 1 's. Then O's get
written into the specified areas. This is the opposite
of what happens without NOT.

With ALSO, the NOT command does not clear out the truth
table first.

July 1 6, 1 986 Page 7-123 -- Command Reference --

-- The Commands --

NOW? no parameters

Shows you what is happening on the target board right now.

USAGE
To see the code the microprocessor executes during the
next 170 bus cycles.

EXAMPLES

NOW?

COMMENTS

This command never used in combination with
anything else.

This command is a simple macro that turns off the
RESET, so that it does not restart the target board,
then sets its own trigger and captures a trace.

-- Command Reference -- Page 7-124

-- The Commands --

ONLY ONLY < trigger description >

Gives you a trace buffer filled only with cycles that match your
description.

USAGE
Clears out the previous trigger spec and enables trace
filtering. Only the bus cycles that contain the
trigger cycle will be recorded.

Use this command when you want to see on the trace only
the cycle described in the trigger specification. For
example, only the read cycles, or only the command at
address 0100.

ELIMINATE BORING LOOPS
This command is especially useful for filtering out
status and timing loops that hog the trace space. See
the second example below.

Notice that when filtering you have to use AFTER if you
want to start the trace at some particular point in the
program.

ONLY AND THE DISASSEMBLER
You will sometimes want to turn off the disassembler
while using this feature. Disassembling partial
instructions will give confusing results. Either the
mode panel (F8) or DASM' turns off the disassembler.

EXAMPLES

ONLY READ
searches for and records only the read cycles.

ONLY NOT 120 TO 135 ADR AFTER 750 ADR S
produces a trace starting at address 750, excludes
from the trace the routine at addresses 120
through 135.

ONLY 0100 ADR
records only the cycle executed at address 0100.

(continued on next page)

July 16, 1986 Page 7-125 -- Command Reference --

-- The Commands

(continued from previous page)

COMMENTS
The analyzer will run until the trace buffer is full
while keeping you informed of the number of spaces
remaining. You can stop the analyzer at anytime by
pressing a key. Then enter TD to see what you have
captured in the trace buffer.

-- Command Reference -- Page 7-126

-= The Commands --

ORG <address> ORG

Sets the origin (address at which you will start to poke new
values into memory) for subsequent M and MM commands.

USAGE
To change the information stored in several sequential
bytes of program or data memory.

You can alter emulation ROM at any time. However,
before you can alter RAM, the debugger must be in
control. See RB.

EXAMPLES

101 ORG 12 M 3410 MM

COMMENTS

stores 12 to location 101 and 3410 to locations
102 & 103.

Useful for entering program patches.

See also M! and MM!.

July 16, 1986 Page 7-127 -- Command Reference --

-- The Commands --

PAGEO no parameters

Only for UniLabs with 128K of memory. Selects the bottom 64K
page of emulation memory.

PAGE1

USAGE
Addresses that are four hex digits long (16 bit binary
numbers) cover a 64K memory space, but your UniLab has
128K memory space. You must establish a context for
the addresses to follow.

This command sets the offset to 0000, while PAGE1 sets
the offset to 10000. Thus, address 1300 after PAGEO
refers to location 1300. Address 1300 after PAGE1
means location 11300.

EXAMPLE

PAGEO
This command never used in combination with
anything else.

no parameters

Only for UniLabs with 128K of memory. Selects the top 64K page
of emulation memory.

USAGE
See PAGEO above.

Address 1300 after PAGE1 means location 11300.

EXAMPLE

PAGE1
This command never used in combination with
anything else.

-- Command Reference -- Page 7-128

-- The Commands --

PAGINATE no parameters F8

Enables pagination of trace display.

USAGE
The default condition. The trace stops after each
screenful.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

You can turn this off with the pop-up panel, or with
PAGINATE'.

COMMENTS

PAGINATE'

If you press any key while display is scrolling, trace
display will stop.

no parameters F8

Disables pagination of trace display.

USAGE
The trace display will scroll by continuously. Not
very useful, unless you want to save an entire trace to
a disk file. See PAGINATE above.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

July 16, 1986 Page 7-129 -- Command Reference --

-- The Commands --

PCYCLES <count> PCYCLES

Sets the number of bus cycles that the analyzer waits between
seeing the last qualifier and starting to search for the trigger
event.

USAGE
The default is zero. Usually you will want the
analyzer to start its search for the trigger event
immediately after the qualifiers.

However, you will sometimes want the UniLab to wait
some number of cycles after the qualifiers, before it
looks for the trigger.

For example, you know that the program jumps to address
1000 from address 235. What you can't understand is
why the code at address 1000 is being executed again,
later on. So you do not want the UniLab to search for
address 1000 until some time has passed since it saw
address 235.

EXAMPLES

NORMB 1000 ADR 10 PCYCLES AFTER 235 ADR S

COMMENTS

triggers if 1000 occurs 10 or more cycles after
address 235.

A pass cycle count can be used to hold off the search
for a trigger, for whatever reason.

If there are several qualifiers the pass count starts
after the complete sequential qualifier sequence has
occurred.

-- Command Reference -- Page 7-130

-- The Commands --

PEVENTS <n> PEVENTS

Sets the number of times the UniLab will want to see the
qualifying events before starting to search for the trigger
event.

USAGE
The default value is one-- the UniLab will start to
search for the trigger as soon as it has seen the
qualifying event once.

You would use PEVENTS when you don't want to search for
the trigger until the qualifiers have been seen a
number of times. Useful for catching a trace after the
nth iteration of a sequence.

This command is different from PCYCLES, which delays
searching for the trigger an absolute number of bus
cycles after the qualifiers have been seen.

EXAMPLES

NORMT 1 2 DATA 4 PEVENTS AFTER 30 DATA S
searches for 12 data anytime after 30 data has
been seen four times

NORMT 100 PEVENTS AFTER 123 ADR S

July 16, 1986

triggers as soon as address 123 has occurred 100
times.

Page 7-131 -- Command Reference --

-- The Commands --

PINOUT no parameters

Displays pinout of target processor.

USAGE
A handy reference showing signal names and analyzer
cable connections versus pin numbers.

EXAMPLE

PINOUT
This command never used in combination with
anything else.

-- Command Reference -- Page 7-132

-- The Commands --

PRINT no parameters FB

Logs all screen output to the printer.

USAGE

PRINT'

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

no parameters FB

Turns off logging all screen output to printer.

USAGE

PROMMSG

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

no parameters

Use after a STANDALONE EPROM programming command, to display
completion message.

USAGE
You use STANDALONE when you want to make use of your
host computer while the UniLab is programming an EPROM.
After the programming light goes out, you can use
PROMMSG to check the outcome of the programming
operation.

July 1 6, 1 986 Page 7-133 -- Command Reference --

-- The Commands --

01 Q1 <trigger spec> RARELY USED

Selects the event description (trigger spec) that follows as
qualifier one.
See QUALIFIERS.

02

USAGE
When you don't want to use AFTER, which you will find
to be a more natural way to set qualifiers.

You will rarely use this, since AFTER automatically
increments the context from TRIG to 01 to 02 to 03 each
time it is used. You will find these words handy when
you want to change your mind about one of the
qualifying steps without entering the entire definition
again.

EXAMPLES

01 15 LADR
Changes qualifier number one, so that the UniLab
looks for 15 on the low byte of the address lines.

01 ALSO 28 LADR
Alters qualifier one, so that the UniLab accepts
either 15 or 28 on the low byte of the address.

Q2 <trigger spec> RARELY USED

Selects the event description that follows as qualifier number
two. See 01 for details.

03 Q3 <trigger spec> RARELY USED

Selects the event description that follows as qualifier number
two. See Q1 for details.

-- Command Reference -- Page 7-134

-- The Commands --

QUALIFIERS <1, 2, or 3> QUALIFIERS RARELY USED

Selects the number of qualifying events.

USAGE
Allows you to reduce the number of qualifying events.
Usually you'll use AFTER to set qualifiers, and would
use this command only to reduce the number of
qualifiers if you change your mind.

When there are qualifiers, the UniLab searches for the
qualifying events before it looks for the trigger.

You will probably prefer to use AFTER, rather than this
command.

THE ORDER OF QUALIFIERS
If you have defined three qualifiers, the UniLab looks
first for Q3, then for Q2 and lastly for Q1. It must
see the qualifying events one immediately after the
other. If it does not see one of them, it starts
searching for Q3 again.

Of course, if there are only two qualifiers, then the
UniLab looks for Q2 and Q1.

AFTER THE QUALIFIERS
Unless PEVENTS or PCYCLES has been set, the UniLab will
immediately start searching for the trigger after it
finds the last qualifier. OF course, the trigger event
does not have to follow immediately after the last
qualifier.

EXAMPLE

2 QUALIFIERS S

July 16, 1986

changes the number of qualifiers, so that the
third one is ignored.

Page 7-135 -- Command Reference --

-- The Commands --

RB <address> RB

Resumes executing program, with a breakpoint set at indicated
address. Must be used with RESET to establish debug control.

USAGE
The first breakpoint must be in emulated ROM, and come
after the stack pointer has been initialized. If your
program does not initialize the stack pointer, then you
cannot set a breakpoint. However, setting up the stack
pointer usually only takes three or four bytes.

Available only with debugger software for your
processor.

You can also use NMI to establish debug control-- if
your processor supports the Non-Maskable Interrupt
feature.

MISSED BREAKPOINTS
If the breakpoint is not reached, then the program will
continue to run until you hit any key. You must then
use RESET <address> RB to gain debug control. You can
only set a breakpoint on the address of the first byte
of an instruction.

If your processor supports NMI, the UniLab will, after
a missed breakpoint, try to achieve debug control by
asserting NMI.

Make certain that the address you try to set a
breakpoint on gets executed by the program-- set an
analyzer trigger on the same address with
NORMT <address> AS.

And make sure that your program does initialize the
stack pointer to point at RAM. The debugger uses the
stack to save the state of your system.

EXAMPLES

RESET 1 2 3 RB
enables reset, and then restarts the target system
with a breakpoint set at address 123

(continued on next page)

-- Command Reference -- Page 7-136

-- The Commands --

(continued from previous page)

1007 RB

COMMENTS

without restarting the target system, run the
program with a breakpoint set at address 1007.

The second example above will work only if you have
already established debugger control. The first
example will establish debug control, as will an NMI
command. RESET does not restart your target board-- it
enables the "reset" flag, so that the RB which follows
restarts the target.

July 16, 1986 Page 7-137 -- Command Reference --

-- The Commands --

READ no parameters

Narrows the trigger specification to read cycles only.

USAGE
Instructs the UniLab to trigger only on read cycles.
Handy when you want to trigger on data memory values,
not program memory opcodes. Or, when you want to
trigger on reads rather than writes to some address
range.

On some disassembler packages, FETCH instructs the
UniLab to trigger only on fetches from program memory.

EXAMPLES

READ 13 DATA
sets up to trigger when microprocessor reads a 13.

NORMT READ 1000 TO 2000 ADR S

COMMENTS

triggers when processor reads any data from
address range 1000H to 2000H.

A simple macro which specifies a range of CONT input
values. This command, like WRITE and FETCH, gets
defined for a particular processor by the optional
disassembler.

-- Command Reference -- Page 7-138

-- The Commands --

RES <n> RES

Clears bit n of the stimulus generator output. The number, of
course, must be between 0 and 7.

USAGE
Simulates a peripheral input going from voltage high to
voltage low. The stimulus generator allows you to test
how your system responds to digital signals on certain
lines.

EXAMPLES

2 RES
resets output S2.

1 SET 1 RES
pulses output S1.

COMMENTS
Used to reset individual bits of the 8 stimulus
outputs. See also SET and STIMULUS.

July 16, 1986 Page 7-139 -- Command Reference --

-- The Commands --

RESET no parameters F8

Selects automatic reset mode, which resets the target system when
you next start the analyzer.

USAGE
Along with RESET', allows you to choose whether to
restart the target board when you start searching for a
trigger, or just watch a program already in operation.

Note that the first time you use RB, this feature must
be enabled. Always type RESET <address> RB to be sure.

Automatic reset gets turned on by STARTUP, and gets
turned off by NOW, ADR?, SAMP, and RB. The status of
reset is not affected by NORMx.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

EXAMPLE

RESET
selects auto-reset

RESET' no parameters F8

Turns off the automatic reset mode. See RESET above.

USAGE
Normally you will use the MODE panel (function key 8)
when you want to change this feature.

-- Command Reference -- Page 7-140

-- The Commands --

RMBP <break point #> RMBP

Resets (clears) one of the multiple breakpoints and displays new
status of the multiple breakpoints.

USAGE
When you want to get rid of one of the breakpoints that
you set with SMBP.

See also CLRMBP, which clears out all the multiple
breakpoints.

EXAMPLE

3 RMBP
clears multiple breakpoint number 3.

COMMENTS
Multiple breakpoints are used with the debugger to
break on more than one address. There are 8 multiple
breakpoints available in addition to the standard
(unnumbered) breakpoint set by RB or GB.

July 16, 1986 Page 7-141 -- Command Reference --

-- The Commands --

RSP no parameters F8

Re-enables the debugger, after it has been disabled by RSP'.

USAGE

RSP'

Only when you have turned off the debugger, and now
want to be able to use it again. Not the same as
establishing debug control, which you do with NMI or
RB. However, if you have disabled the debugger, then
you cannot use either of those commands.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

no parameters F8

Turns off the debugger.

USAGE
Enables complete transparency-- no emulation memory is
affected by the UniLab operation.

You will have to disable the debugger if you want to
run a program from a ROM chip on your target board.
See EMCLR.

RESERVED AREA
Allows you to use for your program the areas that Orion
otherwise reserves for debugger vectors and overlays.
Hit CTRL-F3 to get a help screen that includes
information telling you where the reserved bytes are
for your processor.

MODE PANEL
You will not be able to use the debugger until you turn
it on again from the MODE panel, or with RSP.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

-- Command Reference -- Page 7-142

-- The Commands --

RZ no parameters

Resume program from breakpoint, without any breakpoints set.
Debug control will be lost.

USAGE
When you want to run the program starting from the
current address.

A handy command for exiting from the debugger.
However, a better command is GW which waits until you
start the analyzer, so that you can start the program
from the breakpoint with a trigger set.

EXAMPLE

RZ
Continues the program after a breakpoint.

COMMENTS
Don't try to specify a trigger event before RZ-- it
will not work.

July 16, 1986 Page 7-143 -- Command Reference --

-- The Commands --

s no parameters

Starts the bus state analyzer. Resets the target system if
automatic RESET is enabled.

USAGE
You do not need to start the analyzer on the same line
as the command that sets up the trigger event
specification, though that is the usual practice.
S is a separate command that gets the analyzer going
with whatever spec you created already in place.

You can use TSTAT to see what the trigger has been set
up to (Trigger STATus).

EXAMPLES

s
Starts the analyzer, with whatever trigger was
last defined.

NORMT RESET 123 ADR S
clears out the trigger spec, turns on auto-reset,
and then sets it to address = 123 before starting
the analyzer (and restarting the target board).

-- Command Reference -- Page 7-144

-- The Commands --

S+ no parameters

Identical to s, except that it increases the delay cycle count
by A6 counts.

USAGE
Handiest when you find that your current trace just
starts getting interesting at the end. S+ by itself
will trigger on the same event, but with a new trace
window that starts 3 cycles before the end of the
previous one.

You should use this when your trigger spec is an event
that gets regularly repeated during the program, or
with RESET enabled. All S+ does is change the value of
DCYCLES and then start the analyzer again.

So if your trigger spec only happens once in the
program, and RESET is disabled, then the UniLab will be
searching a program in progress for an event that has
already occurred.

EXAMPLE

S+

July 16, 1986

restarts the analyzer with an increased delay
setting.

Page 7-145 -- Command Reference --

-- The Commands --

SAMP no parameters

Samples the 48 input lines several times a second, and displays
them until any key is pressed.

USAGE
A good way to get a vague idea of what is going on. It
will be clear to you that the program has been stuck in
an infinite loop, or that it has gone far astray. But
you will not be able to tell much, as you only see one
cycle out of every several thousand.

DISASSEMBLY
You will probably want to turn off the disassembler,
with the Mode Panel (F8) or DASM'. When the
disassembler is enabled the isolated cycles will
probably be disassembled incorrectly.

EXAMPLE

SAMP

COMMENTS

This command never used in combination with
anything else.

Useful when you are trying to connect analyzer inputs
to something and you want to continuously monitor their
state. Similar to 1 SR but it runs faster. Gives more
detail on program execution than ADR?. Don't forget to
start from scratch on trigger specs after using SAMP,
because it defines its own trigger.

It also turns off the RESET.

-- Command Reference -- Page 7-146

-- The Commands --

SAVE-SYS SAVE-SYS <file name>

Saves the entire UniLab system program in its present state as a
named DOS file. Prompts you for file name if you do not include
it on command line.

USAGE
To save a version of the system with new macros, or
with default drives changed. Or, just to save the
current emulator enable values, the current trace, and
the trigger definition.

Warning-- does not save the symbol table. Do that with
SYMSAVE command.

EXAMPLE

SAVE-SYS B:NEWUL
Saves the system to a new file on the B: drive.

COMMENTS
Note that the target program, which is in the UniLab
itself, is not saved by this command. Use BINSAVE.

This command automatically makes the "file extension"
.COM.

Since the entire program image is saved including any
unintentional damage to the program, always keep backup
copies.

July 16, 1986 Page 7-147 -- Command Reference --

-- The Commands --

SC <count> SC <file name>

Starts the analyzer and waits the specified maximum number of
milliseconds for trigger. When trigger occurs, the trace gets
compared to a previously saved trace.

USAGE
Very useful when writing test programs that compare the
trace to a known good trace that you have stored away.
Save traces with the TSAVE command. If a trace does
not match, the host computer beeps and displays both a
section of the previous trace and the first bad step of
the new trace.

HARDWARE CHECKOUT
Probably most useful for hardware checkout. To get a
vague idea of the capabilities, save a trace right now
(TSAVE test). Then pull the RAM off your target board
and execute the command below. Don't change your
trigger spec between saving the good trace and getting
the new one. See Appendix F for examples.

EXAMPLE

test 400 SC

COMMENTS

Starts the analyzer board with a 400H ms trigger
time limit (1 sec.) and compares the trace to the
one saved in file "test."

If the time limit passes with no trigger, the host
displays a "NO TRIGGER" message and beeps.

-- Command Reference -- Page 7-148

-- The Commands --

SET <n> SET

Sets bit n of the stimulus generator output. The number, of
course, must be between 0 and 7.

USAGE
Simulates a peripheral input going from voltage low to
voltage high. The stimulus generator allows you to test
how your system responds to digital signals on certain
lines.

EXAMPLES

7 SET
sets stimulus output 7.

1 SET 1 RES
pulses output S1.

COMMENTS

SET-COLOR

Used to set individual bits of the 8 stimulus outputs.
See also RES and STIMULUS.

no parameters

Change the display colors for a color monitor.

USAGE
After you have issued the command COLOR to inform the
UniLab software that you have a color monitor, you can
change the display colors with this command.

You use the cursor keys to choose different colors, and
see them displayed as you choose. Press the END key on
the numeric key pad when you have completed your
choices. You will need to save the system with
SAVE-SYS if you want the colors to be permanent.

July 16, 1986 Page 7-149 -- Command Reference --

-- The Commands --

SHIFT-FKEY <# of key> SHIFT-FKEY <command>

Assigns a command to a function key hit while the SHIFT key is
held down.

USAGE
Reassign the function keys on PCs and PC look-alikes.
Use SHIFT-FKEY? (or SHIFT-F1) to find the current
assignments.

The function keys allow you to execute any command or
string of commands with a single keystroke. The
initial assignments represent our best guess at what
you will need. But you might want to change them.

To make your reassignments permanent, use
SAVE-SYS.

EXAMPLE

6 SHIFT-FKEY TSTAT
assigns TSTAT to SHIFT-F6

COMMENTS
To execute a string of commands, define a macro first
(using :) and then assign the macro to the function
key.

See also FKEY, CTRL-FKEY, and ALT-FKEY.

SHIFT-FKEY? no parameters SHIFT-F1

Displays the current assignments of the SHIFTed function keys.

USAGE
Whenever you want to be reminded what command will be
executed when you press a function key while holding
down the shift key.

See SHIFT-FKEY to reassign the keys.

-- Command Reference -- Page 7-150

-- The Commands --

SHOWC no parameters F8

Shows the control lines on the trace display (the default
condition).

USAGE

SHOWC'

Turn on display of the control lines, C7 through C4, as
well as the high four bits of the address bus, A19
through A16.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

no parameters F8

Turns off display of the control lines on the trace display.

USAGE
Turn off display of the control lines, C7 through C4,
as well as the high four bits of the address bus, A19
through A16.

Though the UniLab must always monitor these wires, and
sometimes they give you vital information (such as that
you have the wires hooked up wrong), usually you don't
need to see them.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

July 16, 1986 Page 7-151 -- Command Reference --

-- The Commands --

SHOWM no parameters F8

Shows the miscellaneous lines and the HDATA lines on the trace
display (the default condition).

USAGE

SHOWM'

Turn back on display of the miscellaneous lines and the
high data lines (on 8 bit processors).

You will want to see these lines when you have them
hooked up to your board. Otherwise, you can ignore
them.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

no parameters F8

Hides the miscellaneous lines and the HDATA lines on the trace
display (the default condition).

USAGE
Turn off display of the miscellaneous lines and the
high data lines (on 8-bit processors).

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

-- Command Reference -- Page 7-152

-- The Commands --

SMBP <addr> <breakpoint #> SMBP

Sets one of the 8 multiple breakpoints at the given address.

USAGE
Allows setting of up to 8 breakpoints, in addition to
the unnumbered breakpoint that is set by RB or GB. The
status of all 8 breakpoints gets displayed each time
you set or clear one.

You must already have debug control before you issue
this command.

To use multiple breakpoints, set all but one of your
breakpoints with this command, and then use RB or GB to
get the target program going again.

EXAMPLES

123 4 SMBP
sets a breakpoint #4 at address 123.

250 RB

COMMENTS

sets a breakpoint at 250 and starts the target
program going again.

See also N, CLRMBP, RMBP.

Before using multiple breakpoints, you should examine
the possibility of using the more powerful capabilities
of the analyzer to do the same thing.

July 16, 1986 Page 7-153 -- Command Reference --

-- The Commands --

SOURCE SOURCE <file name>

Enables the display of source code interleaved with disassembly.
You must supply the name of your source file.

USAGE
Allows you to have your high-level language source file
displayed in the trace. After you issue this command,
each line of your source code will be displayed just
before the instructions that were generated by that
line of the source code.

DISABLE
You turn this display option off again with SOURCE'.

EXAMPLE

SOURCE'

SOURCE C:\ASM\TEST.C
loads in the source file TEST.C and then uses the
symbol table to correlate lines of the source file
to instructions in the binary file.

no parameters

Turns off the display of source code in trace. See SOURCE.

-- Command Reference -- Page 7-154

-- The Commands --

SPLIT no parameters F2

Toggles split screen mode on and off.

USAGE
Gives you the ability to compare traces, or parts of
the same trace. You can also compare a trace to the
assembly code (DN), or to your source text file
(TEXTFILE) •

WHAT WINDOWS ARE FOR
The right quadrants are reserved for the output of DN,
and for the pop-up panels (MODE). TEXTFILE only works
in the top window. Help screens are always shown in
the top window.

MOVING AROUND
The END key moves you from one window to the other.

HISTORY
The history mechanism, which saves a record of what has
happened during your session with the UniLab, only
records information off of the bottom screen.

EXAMPLES

SPLIT

July 1 6, 1 986

This command never used in combination with
anything else.

Page 7-155 -- Command Reference --

-- The Commands --

SR <n> SR

Restarts the analyzer Repeatedly. Displays n lines each time
trigger occurs.

USAGE
Very useful for logging things repeatedly. You should
first set up the trigger and starting point of the
display with S and TN.

STOPPING
You start the infinite loop by entering SR.
out by hitting any key.

HARD COPY

You break

Use the Mode Panel (F8) or PRINT to log your output to
the printer. The Mode panel also contains a feature
that allows you to log to a file. See TOFILE.

RESETTING OR INTERRUPTING THE TARGET
If you use RESET, then the target system will be reset
each time the analyzer starts.

WHEN TO USE SOMETHING ELSE
If the events you want to see occur more often than
once per second and you want to see them in sequence,
you can use XAFTER along with A9 SR to log bursts of
the events in filtered format.

EXAMPLES

20 SR
Repeatedly displays twenty lines of trace buffer,
starting the analyzer again after each display.

-- Command Reference -- Page 7-156

-- The Commands --

SST <trigger spec> SST

Starts the analyzer in the standalone mode.

USAGE
Set the analyzer looking for a bug that you think will
take a while to find. After you issue this command,
you can disconnect the UniLab from your host, or you
can keep it plugged in but exit from the UniLab program
(BYE).

Either way, the LED on the UniLab goes out when it
finds the trigger. You then plug in the UniLab again,
call up the UniLab program, and enter TS to display the
trace.

EXAMPLE

NORMB 1200 TO 1300 ADR WRITE 3F TO FF DATA SST
Searches for this trigger in standalone mode~

COMMENTS
Handy when you want to search for an obscure bug
without tying up the host computer.

July 16, 1986 Page 7-157 -- Command Reference --

-- The Commands --

SS TEP no parameters F6

Only on processors that support NMI (see appendix H), this
command allows you to follow jumps, calls, and branches.

USAGE
After you have established debug control with

RESET <addr> RB
or

NMI
you can single-step through your code using a
combination of N and SSTEP.

Both instructions can be used only when you are stopped
at a breakpoint. SSTEP is appropriate when the
instruction pointed to by the program counter is a
jump, call, return, or branch. N is the correct
command at all other times.

Use appendix H to check whether or not your processor
supports NMI.

EXAMPLE

SS TEP
This command never used in combination with
anything else.

-- Command Reference -- Page 7-158

-- The Commands --

STANDALONE STANDALONE <prom programming command>

Selects the standalone mode for the EPROM programming command
that follows.

USAGE
Allows you to use the host computer for something else
while the UniLab programs an EPROM. Especially handy
when programming large EPROMs.

You can type in STANDALONE and press return, then use
the PROM programming menu to program the EPROM.

When the LED next to the PROM programming socket goes
out, the command has been completed. You can then
enter PROMMSG to get the completion status message.
The UniLab must remain connected to the host computer,
or you will not be able to get the message.

EXAMPLES

STANDALONE
use this command and then make use of the
convenient PROM programming menu to burn an EPROM
in standalone mode.

STANDALONE 0 TO 1FFF P2764

July 16, 1986

you can also use STANDALONE along with a PROM
burning command, if you know the commandse

Page 7-159 -- Command Reference --

-- The Commands --

STARTUP no parameters F9

Restarts the target system and gives a trace of the first 170
cycles of target system operation.

USAGE
Very useful mode at the first stages of system
checkout. Allows you to check out the first few
instructions, make certain that they execute properly.

The RES- wire from the analyzer cable must be properly
connected to the target system, or the UniLab will not
be able to reset the target processor. See the
INSTALLATION chapter of the manual.

The very first cycle (cycle 0) is particularly
important because if correct data is not fetched (often
due to the address not being properly EMENABLEd), then
the program will immediately "blow up."

MULTIPLE RESET
Some systems with simple R-C reset circuits (no
hysteresis) will appear to reset intermittently many
times before they finally settle down to stable
operation. This is a nuisance if you want to look at a
trace early in the program, but you will be able to see
the program when it does finally settle down.

If your system does this, you might want to consider
putting a logic element-- such as two Schmitt triggers
in a row (part number LS14)-- into your reset circuit.
That way your system will always get a good strong
reset signal.

EXAMPLES

STARTUP

COMMENTS

This command never used in combination with
anything else.

This is a target specific macro that usually looks for
the reset vector address on the bus. If that address
does not show up, system will wait forever. Or if a
HALT instruction is fetched, will give a "NO ANALYZER
CLOCK" message. See TROUBLE SHOOTING chapter.

-- Command Reference -- Page 7-160

-= The Commands --

STIMULUS <byte> STIMULUS

Changes the 8 stimulus outputs (SO-S7) to correspond to the
specified byte. Also pulses the ST- output.

EXAMPLE

10 STIMULUS
makes all stimulus outputs zero, except S4

COMMENTS
Useful for changing all stimulus outputs at once. Use
SET or RES to set and reset individual signals. The
stimulus outputs originate in the PROM socket on the
front of the UniLab and are normally connected by the
stimulus cable provided with your system. The stimulus
signals are usually used to provide test inputs for the
target system.

July 16, 1986 Page 7-161 -- Command Reference --

-- The Commands --

SYMB no parameters F8

Enables the symbol translation feature.

USAGE

SYMB'

Turns symbol translation back on, after it has been
disabled with SYMB'. Symbols make the trace more
readable, by allowing you to replace data and addresses
with symbolic names.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

Symbols are entered by using IS or SYMFILE, either of
which will turn on symbol translation.

no parameters F8

Disables the symbol translation feature.

USAGE
To turn symbol translation off without clearing out the
symbol table. See CLRSYM if you want to clear out the
table.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

-- Command Reference -- Page 7-162

-- The Commands --

SYMFILE SYMFILE <file name>

Loads a symbol table file produced by a cross assembler or by the
UniLab program. Prompts for a file name if you don't include it
on command line.

USAGE
Capable of loading symbol tables in almost any format.
The first time you use it, SYMFILE presents you with a
menu of predefined formats. You can choose one of
those, and then save the system with SAVE-SYS to make
that the default format.

You can change the default format with SYMTYPE.

After you have defined a format, SYMFILE will prompt
you for a file name and load a symbol file into memory.

Formats not on the menu can be defined using SYMFIX for
fixed length files. Variable length files only come in
two formats: name and then value, or value and then
name.

The AVOCET format on the menu is for symbol files that
are name, then value.

The MANX format on the menu is for symbol files that
are value, then name.

EXAMPLES

SYMFILE C:\ASM\OUT.SYM

July 16, 1986

Loads into the UniLab a symbol file created by an
assembler.

Page 7-163 -- Command Reference --

-- The Commands --

SYMFILE+ SYMFILE+ <file name>

Appends the contents of a symbol file to the symbol table.

USAGE
Provides a way of adding to a symbol table that already
exists. SYMFILE, on the other hand, automatically
clears the existing symbol table.

SYMFILE+ allows you to combine several symbol tables.

See also CLRSYM.

EXAMPLES

SYMFILE+ A:EXTRA.SYM
Adds to the symbol table the symbols stored in a
file on the A drive.

-- Command Reference -- Page 7-164

-- The Commands --

SYMFIX <a> <c> <d> <e> <f > SYMFIX

Defines symbol file parameters for formats that use fixed length
records.

USAGE
Use this word to define your own SYMFILE format for
fixed length records, if none of the predefined formats
available on the SYMFILE menu suit your purposes.
There are only two types of variable length record
formats (value then name or name then value) and both
appear in the menu.

The definitions of the 6 parameters:

a = offset from start of record to start of name field.
b = 1 if address is 4 ASCII digits or 0 if 16-bit

binary.
c = address field offset from start of record.
d = 1 if binary address has most significant byte

first.
e = pad characters used to fill between symbols.
f = record length.

EXAMPLES

0 0 B 1 0 E SYMFIX

July 16, 1986

defines the format for 2500AD abbreviated symbol
table files. These tables follow the format:

ten bytes for the symbol name,
two bytes for the symbol value,
two pad bytes.

Page 7-165 -- Command Reference --

-- The Commands --

SYMLOAD SYMLOAD <file name>

Loads a UniLab format symbol table file from the disk. Prompts
for you for file name if you don't include it on command line.

USAGE
Loads up a symbol table that was saved with SYMSAVE.

These files are variable length, allowing symbols up to
255 characters long.

Warning: not compatible with symbol tables saved with
pre-version 3.0 SYMSAVE.

EXAMPLE

SYMSAVE

SYMLOAD B:oldsyms
Loads into the UniLab a symbol table file from the
B drive.

SYMSAVE <file name>

Saves the symbol table as a named DOS file. Prompts for file
name.

USAGE
This command saves only the symbol table, which you
will be able to load in later with SYMLOAD.

Use SAVE-SYS to save the entire system.

EXAMPLE

SYMSAVE july3.sym
Saves the current symbol table to a file called
july3.sym.

-- Command Reference -- Page 7-166

-- The Commands --

SYM'l'YPE no parameters

Re-defines the file format assumed by the SYMFILE command.

USAGE
Allows you to pick a different predefined
after you have chosen one with SYMFILE.

The first time you use the SYMFILE command you are
presented with a menu selection of default formats.
Once you have saved the default format, SYMFILE simply
executes immediately, using the selected format. The
SYM'l'YPE command allows you to get that menu again so
that you can change your selection.

See also SYMFIX.

EXAMPLE

SYM'l'YPE

July 16, 1986

This command never used in combination with
anything else.

Page 7-167 -- Command Reference --

-- The Commands --

T no parameters

Displays the trace from its current starting point until any key
is pressed.

EXAMPLE

T
displays the trace.

COMMENTS
The current starting point for the trace display is
defined by the most recent TN command. (STARTUP
usually sets it to -4.)

If the starting cycle # is not actually in the trace
buffer, the trace is started 4 lines from the closest
cycle number which is in the trace buffer.

-- Command Reference -- Page 7-168

-- The Commands --

TCOMP <n> TCOMP <file name>

Compares the present trace buff er to a previously stored trace in
the named file. Compares the last <n> cycles. Aborts and
indicates error if any bit fails to compare.

USAGE
Very useful for writing automatic system test programsa
Use the value AA to compare the entire trace.

Use TSAVE to save the trace of a good system. You can
then use that saved trace to test other systems.

If TCOMP finds a difference between the current trace
and the one in the file, it will display 9 lines of the
stored trace and the first bad line in the trace of the
system under test.

You can use TMASK to tell TCOMP to ignore one or more
of the columns in the trace display. See TMASK for
details.

You can also use SC to compare traces.

EXAMPLE

AA march.2 TCOMP

COMMENTS

compares the entire trace to the one stored as
file "march.2."

If you want to compare only part of the trace, use a
smaller number. TCOMP will then skip over the first
part of the file. This is useful for skipping over the
already known discrepancies between two traces.

If TCOMP behaves in a confusing manner, try using it
with the disassembler disabled (DASM' or use the mode
panel, FB).

July 16, 1986 Page 7-169 -- Command Reference --

-- The Commands --

TD no parameters

Stops the analyzer and displays the current contents of the trace
buffer.

USAGE
To see what is going on, when trigger has not occurred,
or when you are producing a filtered trace that you do
not think will fill up the trace buffer. Normally the
trace is automatically uploaded to the host when
trigger occurs.

TD skips over the first cycle in the buffer, and any
other empty space (all 1's) at the top of the buffer.

EXAMPLE

TD

COMMENTS

This command never used in combination with
anything else.

Since the buffer is filled with 1's before the analyzer
is started, a partially filled filtered trace buffer
will have good data only near the end. TD
automatically skips over the empty space.

-- Command Reference -- Page 7-170

-- The Commands --

TEXTFILE TEXTFILE <filename>

Allows you to look over a text file from within the UniLab
program.

USAGE
TEXTFILE only works from the upper window. It will
take a few seconds to analyze the file, and then will
show you the first window full of text.

This feature is useful for looking at your source code
while you debug it-- this could replace hard copy
listings.

MOVING AROUND THE FILE
Use the PgDn key or the Down Arrow to see more of the
text. The PgUp key scrolls the screen back, the Up
Arrow moves you up one line.

The HOME key takes you back up to the top. The END key
just toggles you to the lower window.

WATCH OUT
You can't alter the file in any way-- only look it
over.

EXAMPLE

TEXTFILE \memo\project1

July 16, 1986

Opens the DOS file projectl, in a directory called
memo.

Page 7-171 -- Command Reference --

-- The Commands --

THI ST no parameters

Time HISTogram invokes the optional histogram generator that
allows you to display how of ten the elapsed time between two
addresses falls into each of up to 15 user-specified time
periods. See AHIST.

USAGE
Allows you to examine the performance of your software.
You can find out how the elapsed time between any two
addresses changes, as different conditional jumps or
branches are taken.

To get interesting and useful results, you will
probably want to measure the time between two addresses
in your main loop.

Press FlO to exit from this command.

You must (only once) issue the command IX>HIST to enable
this optional feature. DOHIST performs a SAVE-SYS, and
then causes an exit to DOS. The next time you call up
the software, both AHIST and THIST will be enabled.

MENU DRIVEN
You produce a histogram by first specifying the upper
and lower limits of each time "bin" that you want
displayed, then starting the display.

When you give the command THIST, you get the histogram
screen with the cursor positioned at the first bin.
You can then start typing in the lower and upper limits
of each bin. Use return, tab, or an arrow key after
you enter each number, to move to the next entry field.

Press function key 1 (Fl) to start displaying the
histogram.

SAVE TO A FILE
You can save the setup of a histogram as a file with
the HSAVE <file>. Issue this command after you exit
from the histogram.

You load the histogram back in with HLOAD <file>.
Issue this command before invoking the histogram.

-- Command Reference -- Page 7-172

-- The Commands --

TMASK <byte value> TMASK

Set up a mask which tells TCOMP which columns to compare.

USAGE
The lower six bits of the byte value tell TCOMP which
groupings of the trace display to use when comparing
traces. The default is 3F (00111111 binary) which
tells TCOMP to check all columns.

Used when comparing traces to filter out erroneous
error messages-- due, for example, to different wiring
of the MISC lines.

MASK VALUES
Each of the six bits corresponds to one of the
groupings. If the bit is one, then TCOMP will include
that grouping:

BINARY GROUPING HEXADECIMAL

0000 0001 LADR 1
0000 0010 HADR 2
0000 0100 CONT 4
0000 1000 DATA 8
0001 0000 HDATA 10
0010 0000 MISC 20

July 16, 1986 Page 7-173 -- Command Reference --

-- The Commands --

TN <n> TN

Displays the trace buffer, starting at cycle n. Sets the
starting point for future trace displays.

TNT

USAGE
For random access to the trace buffer, when you also
want to reset the starting point used by T. To access
the buffer without changing the default value of the
point where the display starts, use TNT.

EXAMPLE

12 TN

COMMENTS

Displays the trace, starting 12 cycles after the
trigger. The rest of the traces this session will
also be initially displayed starting 12 cycles
after the trigger.

You will usually want to use TNT. Use TN when you
think that you will want to display from the same point
on future trace displays.

<n> TNT

Displays the trace buffer, starting at cycle n.

USAGE
Allows you to immediately look at any point in the
trace buffer. TN does the same thing, but also changes
the default trace starting point used by T. The
default trace starting point is set to -5, until you
change it.

EXAMPLE

-7 TN
displays the trace starting 7 cycles before the
trigger.

-- Command Reference -- Page 7-174

-- The Commands --

TO <number> TO <number> <command>

Sets a flag that indicates that a range of numbers is being
entered.

USAGE
Used with all of the trigger event description commands
to define a trigger on a range of numbers. See ADR,
CONT, DATA, HADR, HDATA, LADR, and MISC.

EXAMPLE

12 TO 34 DATA

COMMENTS

Tells the analyzer to look for any data on the
range 12 to 34 on the data inputs.

In the example above omitting the TO would result in a
trigger spec that would accept only data = 34.

July 16, 1986 Page 7-175 -- Command Reference --

-- The Commands --

TOFILE TOFILE <filename> FB

Use to start sending screen output to a DOS textf ile as well as
to screen.

USAGE
Use for toggling on the logging of information to a
file. You can include that command on the DOS command
line as a "command tail. 11 For example:

C> ULZ80 TOFILE A:JUNE7.LOG

The usual DOS rules for naming files apply.

You will be prompted for the file name if you do not
include it.

Turn off logging to the file with TOFILE'.

You can use the MODE panel (function key 8) to toggle
logging to a file on and off, but you have to use the
command to open the file in the first place.

COMMENTS

TOFILE'

Files produced in this way can then be edited with a
word processor, or shown on the screen using the DOS
command: TYPE file name.

no parameters FB

Use to stop sending screen output to DOS textf ile as well as to
screen.

USAGE
Use for toggling off the logging of information to a
file.

Normally you will use the MODE panel (fonction key 8)
when you want to change this feature.

-- Command Reference -- Page 7~176

-- The Commands --

TOP/BOT no parameters END key

Moves you from top window to bottom, or from bottom window to
top.

USAGE
You will usually want to just use the END key, which is
the number one key of the numeric key pad.

Only active when the screen has been split with SPLIT
(function key 2). See that word for details about
windows.

EXAMPLE

TOP/BOT

July 16, 1986

This command never used in combination with
anything else.

Page 7-177 -- Command Reference --

-- The Commands --

TRIG TRIG <event description>

The event description that follows will be a trigger event.

USAGE
As opposed to Q1, Q2, and Q3, which tell the analyzer
that the following description is a qualifying event.
Useful if you want to alter the trigger event without
altering the qualifiers.

EXAMPLE

TRIG 123 ADR
searches for 123 on the address lines.

COMMEN'l.1 S
Used to select the TRIG truth table context again after
AFTER, Q1, Q2, or Q3 has caused another truth table to
be selected. Useful if you want to change your mind
about the trigger step after you have just defined a
qualifier. The 4 truth tables are Q3, Q2, Q1, and
TRIG.

-- Command Reference -- Page 7-178

-- The Commands --

TS no parameters

Displays trace after standalone mode trigger.

USAGE
To retrieve the trace from the UniLab's trace buffer,
after you start the analyzer in standalone mode with
SST.

When you use SST to start the analyzer, you can
disconnect your host computer from the UniLab and run
other programs on the computer. When the analyzer sees
the trigger, the light next to the analyzer goes out.
You can retrieve the trace at anytime after that.

To retrieve the trace you must start up the UniLab
program while the UniLab is disconnected from the host.
Use CONTROL - BREAK to break out of the Initializing
UniLab ••• message. Then reconnect the UniLab and issue
the TS command.

EXAMPLE

TS

COMMENTS

This command never used in combination with
anything else.

TS begins by sending a "wake-up" code to the UniLab.
Since this does not fit into the normal UniLab
communications protocol, don't enter TS unless you have
previously entered SST. If you do, the system will
hang.

July 1 6, 1 986 Page 7-179 -- Command Reference --

-- The Commands --

TSAVE TSAVE <filename>

Saves the current trace buffer as a file.

USAGE
A good way to save information about a trace for later
review with TSHOW or for automatic comparison to
another trace with TCOMP or SC.

EXAMPLE

TSAVE good.trc
saves current trace as a file called good.trc.

-- Command Reference -- Page 7-180

-- The Commands --

TS HOW TSHOW <file name>

Displays a previously saved trace.

USAGE
A useful way to examine traces saved while in the
field, or by an automatic testing program. TSAVE saves
the trace in the first place.

TCOMP will compare the present trace to the numbered
trace, and let you know if they differ. That will
probably, most of the time, serve your purposes better
than looking over a trace.

EXAMPLES

TSHOW good.trc

COMMENTS

Displays the trace saved by TSAVE into a file
called good.trc •

If you are tracking down a problem you can save
interesting traces as you go so that you can look at
them again later or even print them out (by using
control-P to turn on the printer).

Note that after you use TSHOW the trace image in the
host contains the recalled trace, so you can use T, TN,
or TNT to view it from various points.

When you want to load the UniLab's trace buffer back
into the host, enter TD. Since TSHOW changes the
setting of DCYCLES, the cycle numbers will be incorrect
unless the changed delay setting is the same as the
previous one.

July 16, 1986 Page 7-181 -- Command Reference --

-- The Commands --

TSTAT no parameters F7

Displays the complete status of the current trigger specification
including qualifiers, delay and pass counts filtering, and auto
reset.

USAGE
A good way to determine what the current settings are.
Also a good way to check on how the UniLab interprets
your trigger specifications.

EXAMPLE

TSTAT

WORDS

This command never used in combination with
anything else.

WORDS <command>

Displays an alphabetical listing of the UniLab's commands,
starting with the command or characters you include on the
command line.

USAGE
To remind you of the names of some UniLab commands. Hit
any key to stop the listing.

EXAMPLE

WORDS INIT
shows a list of commands, starting with INIT.

-- Command Reference -- Page 7-182

-- The Commands --

WSIZE no parameters SHIFT-F8

Allows you to redefine the size of the windows.

USAGE
Once you enter this command, only the cursor keys are
active. Use the "END" key {numeric pad key 1) to exit.

Use whenever you want to set the window size to
something other than the standard setup.

EXAMPLE

WSIZE

July 16, 1986

This command never used in combination with
anything else.

Page 7-183 -- Command Reference --

Chapter Eight:
Target Notes

Introduction

This chapter consists of separate writeups for each of
the processor specific software packages. The chapter
serves as both:

1) a guide to connecting your cable properly,
and

2) an overview of the special features of each
disassembler/debugger package and the quirks of
the microprocessor chips.

Be sure to read the General Information on pages 2 through 4
for important information common to all the processor-specific
software packages.

Consult Appendix C to double check the wiring of your
connection between the UniLab and your target board.

Each software package is shipped with a separate Disassembler/
Debugger Note. That document includes the printout of a full
demonstration of the analyzer and debugger for each processor.
It also includes any special information on the processor specific
on-line assembler (ASM) .

Contents

General Information 8-2
1802/4/5/6 (disassembler only) (DIS-18) ... 8-5
6301/3 (DDB-63) ... 8-7
6500 series where the SYNC output exists .. (DDB-65) ... 8-10
6500 series piggyback divices w/o SYNC (DDB-65P) .. 8-14
6800/2/8 with external memory at page 0 .. (DDB-68) ... 8-18
6801/3 (DDB-681) .. 8-21
6802 without external RAM at page 0 (DDB-682) .. 8-24
6805 (DDB-685) .. 8-25
6809 (DDB-689) .. 8-30
68000 (DDB-68K) .. 8-32
68008 (DDB-688) .. 8-36
68HC11 (DDB-611) .. 8-38
8048/35/39/40/49/50 (DDB-48) ... 8-40
8051/31/32/52 & 8051P (DDB-51) & (DDB-51P) .. 8-45
8080/85 (DDB-85) ... 8-50
8086/186/286 & 8088/188 (DDB-86} & (DDB-88} ... 8-53
8094/5/6/7 (DDB-96) ... 8-61
SUPER 8 ••••••••••••••••••••••••••••••••• (DDB-SB) ••. 8- 65
Z8 (DDB-Z8) ... 8-68
Z80 and NSC-800 and HD64180 (DDB-Z80} .. 8-72
Z8000 (DDB-Z8K} .. 8-76

July 15, 1986 Page 8-1 -- Target Notes --

GENERAL INFORMATION

All debugger packages have certain common requirements and
characteristics. Read this section to get a quick briefing.

Watch out

All Orion debuggers make use of some of your processors
resources. All of them require a several-byte "reserved area" in
emulation ROM that you cannot put code into, and a larger
"overlay area" that you can use.

Some debuggers also make use of a trap vector or a single
internal register of your processor.

And all of them use your stack.

Be certain to check the section on your processor for the
Reserved Area or Reserved Resources. You can also get
information on-line by pressing CTRL-F3 (hold down the control
key and tap function key three) . This Help Screen also appears
in the section on your processor. And Appendix H includes this
information for all processors.

How the debuggers work

All debuggers work by downloading Orion software routines to
your emulation ROM (in the overlay area) and using your processor
to execute routines that display target registers, alter target
RAM, etc.

While you can put code into the overlay area, most of the
debugger routines will not work on that area of memory.

Required code in user program

All the routines that are downloaded to your processor
require a working stack. Your code must initialize the stack
pointer, or the Orion routines will not work. You cannot set a
breakpoint in your code until the stack pointer is initialized.

Some processors automatically initialize their stack pointer
to use internal RAM.

A few debuggers, such as that for the 8088 and 8086
processors, require that your code initialize other resources,
such as interrupt vectors. Look for the heading Required Code
in User Program, in the following pages.

Some debuggers require you to issue a UniLab command that
specifies the areas of RAM or ROM you want the debugger to use.
Look for the heading Commands Required.

July 15, 1986 Page 8-2 -- Target Notes --

-- General Notes --

Patch words

Many packages support several slightly different processors.
If the differences are big enough, you have to enter a patch word
to configure the software package for your processor. The patch
words are always mentioned on the first page of the writeup on
your debugger; as well as in Appendix J of this manual.

Once you enter the patch word, your software is ready for
use.

Either use SAVE-SYS to save the configured software, or
enter the patch word at the start of each UniLab session.

Some packages now have a "Patch Menu." This menu is invoked
with the UniLab command PATCH, and gives you a choice of all the
processors supported by the package.

Connections

Each section of this chapter includes a diagram that shows
you how to connect your UniLab to your processor. You can get a
diagram on-line by typing in the command PINOUT. Some software
packages support more than one processor, and require different
cable connections for different processors.

You can also consult Appendix C to double-check your wiring.

Access to RAM, to internal registers, etc.

You cannot look at or alter RAM or internal registers until
you have first established debug control. You establish debug
control by setting a breakpoint (RESET <addr> RB) or by asserting
a non-maskable interrupt while your target program is running
{NMI) . Not all processors support NMI-- check appendix H, or
check whether the cable diagram calls for the NMI wire to be
connected to a processor pin.

For more information on debug control, check the entries for
NMI and RB in the command reference chapter.

July 15, 1986 Page 8-3 -- Target Notes --

-- General Notes --

Trace and breakpoint display

You will probably want to compare the trace you get with the
sample program to the printout that appears at the end of the
section on your processor. These sample sessions also include a
sample of the breakpoint display.

Enter LTARG to load the sample program, then follow the
steps shown in the printout. A more extensive demo session for
your software appears in the separate Disassembler/Debugger
writeup that is shipped with the Disassembler/Debugger diskette.

ROM Cables and Address Eleven (All)
Many processors show a connection to All. This is necessary

only with the 24-pin ROM cable (which is the usual ROM cable) .

July 15, 1986 Page 8-4 -- Target Notes --

180X DISASSEffBLER CpIS-18)

This version of the UniLab software disassembles 1802, 1804,
1805, and 1806 instruction sets. It is the only Orion package
that does D.Qt. yet include a debugger.

However, remember that you can use the UniLab's NMI output
or generic breakpoint capability to set multiple.breakpoints. If
you write your own breakpoint routine to put the desired
registers or memory location contents on the bus, you will have a
simple debug capability.

The 1802 family requires the G analyzer cable.

g Cable 1802 g Cable

CLOCK 1 40 Udd
UAIT 2 39 XTAL

RES CLEAR 3 38 DnA IH
Q 4 37 DnA OUT

C7 SCI 5 36 IHTERRUPT Hnl
C6 sco 6 35 nun UR-
RD- nRD 7 34 TPA

BUS 7 8 33 TP8 ALE
BUS 6 9 32 nA7
BUS 5 10 31 nA6
BUS 4 11 30 nA5
BUS 3 12 29 nA4
BUS 2 13 28 nA3
BUS 1 14 27 nA2
BUS 0 15 26 nA1

Ucc 16 25 nAO
H2 17 24 EF1
H1 18 23 EF2
HO 19 22 EF3

GHD Uss 20 21 EF4

July 15, 1986 Page 8-5 -- Target Notes --

-- DIS-18 --

Trace display

(Note user words entered at terminal are underlined)

~ (load sample program, set default area of emulation memory)

Emulator Memory Enable Status:
F =EMSEG

0 TO 7FF EMENABLE
ok

STARTUP resetting (issue reset to target, capture first cycles of bus activity)

(from top of buffer)
cyi CONT ADR DATA HDATA MISC

0 3F 0000 71 DIS 11111111 11111111
1 7F 0001 00 read 11111111 11111111
2 3F 0002 F800 LDI 0 11111111 11111111
4 3F 0004 Al PLO Rl 11111111 11111111
5 3F 0005 F808 LDI B 11111111 11111111
7 3F 0007 Bl PHI Rl 11111111 11111111
B 3F 0008 51 STR Rl 11111111 11111111
9 SF 0800 OB write 11111111 11111111
A 3F 0009 01 LDN Rl 11111111 11111111
B 7F 0800 08 read 11111111 11111111
c 3F OOOA 11 INC Rl 11111111 11111111
D 3F OOOB F6 SHR 11111111 11111111
E 3F oooc 3008 BR 8 11111111 11111111

10 3F 0008 51 STR Rl 11111111 11111111
11 SF 0801 04 write 11111111 11111111
12 3F 0009 01 LDN Rl 11111111 11111111
13 7F 0801 04 read 11111111 11111111
14 3F OOOA 11 INC Rl 11111111 11111111
15 3F OOOB F6 SHR 11111111 11111111
16 3F oooc 3008 BR B 11111111 11111111
18 3F 0008 51 STR Rl 11111111 11111111
Pg Dn Home (top) n TN (from step n) T (from n=-5) ok

(NOTE: no breakpoint display, because this package does not
include a debugger) .

July 15, 1986 Page 8-6 -- Target Notes --

630X DISASSEHBLER/DEBQGGER CQDB-63)

This version supports the 6303R, 6303X, and 6301 processors.
The 6301 is a piggyback chip that was discontinued in 1986.

This package is similar to the Orion software for the 6800.
Please refer to the 6800 writeup for important details.

The 6303R and 6303X processors require the B analyzer cable.

The piggyback 6301 requires the N cable.

Patch word

For operation with the piggyback 6301, you enter PBACK to
patch the program, then SAVE-SYS to save the newly configured
software.

6303R

GltD Uss 1 48 E RD-
XT1 2 39 SC1
XT2 3 38 SC2 C7

rtnI rtnI 4 37 P38
IRQ 5 36 P31

_,.,,. *•• RST 6 35 P32 connect to 7 34 P33 SBY
Reset RC p 2g 8 33 P34
network P21 g 32 P35

P22 18 31 P36
P23 11 38 P37
P24 12 29 P48
P18 13 28 P41
P11 14 27 P42
P12 15 26 P43 A11~
P13 16 25 P44 A12-..: (from J P14 17 24 P45 R13_/ Rom Cable
P15 18 23 P46 A14
P16 19 22 P47 A15
P17 28 21 Ucc

July 15, 1986 Page 8-7 -- Target Notes --

-- DDB-63 --

6301 Piggyback

GHD Uss 1 48 E MR-
XT1 2 39 SC1
XT2 3 38 SC2

HnI HnI 4 37 P38
IRQ s 36 P31

connect to ,,_.,,. ••• RST 6 3S P32
SBY 7 34 P33

Reset RC p28 8 33 P34
ne tworl< P2 1 9 32 P3S

P22 18 31 P36
P23 11 38 P37
P24 12 29 P48
P19 13 28 P41
P11 14 27 P42
P12 1S 26 P43
P13 16 2S P44
P14 17 24 P4S
P1S 18 23 P46
P16 19 22 P47
P17 28 21 Ucc

6303X

GHD USS 1 64 E RD-
XTL 2 63 P78/RD- cs
EXT 3 62 P71/MR- C4
nPe 4 61 P721R£M C7
nP~ s 68 P73lL R C6

,,_.,,. *** RE 6 S9 P741BA connect to STDBY 7 S8 P38lD8
Reset RC HnI HnI 8 S7 P31/D 1
network P29 9 S6 P32/02

P21 18 SS P33l03
P22 11 S4 P34l04
P23 12 S3 P3SlDS
P24 13 S2 P36l06
P25 14 S1 P377D7
P26 1S S8 P19/A9
P27 16 49 P11/A 1
PS8 17 48 P12/A2
P51 18 47 P13lA3
PS2 19 46 P14lA4
PS3 28 4S P1SZAS
PS4 21 44 P16ZA6
PSS 22 43 P17JA7
PS6 23 42 Uss
PS7 24 41 P48/A8
P68 2S 48 P41/A9
P61 26 39 P42/A18
P62 27 38 P43lA11 RU~(from P63 28 37 P44ZA12
P64 29 36 P4SlA13 A137 Rom Cable
P6S 38 3S P46ZA14 A14
P66 31 34 P477A1S A1S
P67 32 33 Ucc

Help Screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

Register change: n =A n =B n =CC nn =X

J

See also HD . $FFB9,A reserved. Overlay area
July 15, 1986 Page 8-8

$FFBC to reset
-- Target Notes

-- DDB-63 --

Trace and Breakpoint Display

{ Load built-in sample program, set typical emulation memory area)

Emulator Memory Enable Status:
F =EMSEG

F800 TO FFFF EMENABLE
ok

STARTUP resetting
(from top of buffer)
cy# CONT
-1 7F

(Reset target system, and start analyzer,)
(triggering on reset vector •••)

ADR DATA HDATA MISC
FFFE FF (reset vector) 11111111 11111111 (note)

0 7F FFFF 00 interrupted 11111111 11111111 (vectors)

11111111 11111111 (and data)
11111111 11111111

1
4
6
8
B

7F LTARG.PGM FFOO 8EOOFF LDS #FF
7F PGM.LOOP FF03 8612 LDAA #12
7F FF05 C634 LDAB #34 11111111 11111111
7F
7F

E 7F
F 7F

10 7F
13 7F
14 7F
11 7F INC.ST
15 7F
16 7F
17 7F
18 7F
19 7F
lA 7F
lB 7F
lC 7F

Pg Dn (trace resume)

FF07 CE5678
FFOA 3C

LDX #X.INIT
PSHX

OOFF FF (write)
OOFE FF (write)
FFOB 38 PULX
0 OFE FF (read)
OOFF FF (read)
FFOC 4C INCA
FFOD 4C INCA
FFOE 4C INCA
FFOF 4C INCA
FFlO 4C INCA
FFll 4C INCA
FF12 4C INCA

11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

FF13 4C INCA 11111111 11111111
FF14 4C INCA 11111111 11111111

Home (top) n TN (from step n) T (from n=-1) ok

BESET FFOC RB resetting
CC=ll (--hinzvC) B=34 A=l2 X=5678 SP=OOFF
FFOC 4C INCA (next step) ok

July 15, 1986 Page 8-9 -- Target Notes --

6500 DISASSEMBLER/DEBUGGER CDDB-65)

This version supports the 6500 series chips which have a SYNC
output signal. This includes the 6502, and 65C02.

The 6500 series processors require the B analyzer cable.

Debugger Patches

You cannot use the debugger until you have told the UniLab
software what location in RAM it can use to store the A register,
and where your interrupt routines are located. See the
subsection on The debugger, below.

6502/65C02

GHD Uss 1· 49 RES ••• - connect to
ROY 2 39 02 RD- Reset RC
01 3 38 so network

IRQ 4 37 00
rte 5 36 rte

HMI Hnl 6 35 HC
C6 SYHC 7 34 R/LI C7

Ucc 8 33 09
RB g 32 01
R1 19 31 02
R2 11 39 03
R3 12 29 04
R4 13 28 05
RS 14 27 06
R6 15 26 07
R7 16 25 R15 R15 from RS 17 24 R14 R14........._

from R9 18 23 R13 R 13/ Rom

·Rom R19 19 22 R12 R12 Cable

Cable 'R11 R11 29 21 Uss

Displaying all cycles

Sometimes the trace of your 6500 series processor will show
extra bus cycles. You can chose whether or not to display the extra
bus cycles by entering ALLCY or ALLCY'.

Since the extra cycles of the 6502 sometimes contain useful
information, you should normally keep them enabled with that
processor.

Whether you have ALLCY enabled or not, the UniLab can
trigger on the extra cycles.

Remember that these extra cycles can cause triggering. For
example, you may trigger on the address just after a conditional
branch .that doesn't actually branch because that byte is fetched
but not executed. (Breakpoints at such an address will work.)

July 15, 1986 Page 8-10 -- Target Notes --

-- DDB-65 --

Special STARTUP

STARTUP usually shows the first cycles of a program after it
starts. However, STARTUP is specially redefined for the 6500
family because most 6500 series chips fetch a single location
hundreds of times after reset, before they actually start program
execution.

If you really want to see those first fetches after reset,
just enter RESET NORMT S .

The debugger

You have to tell the debugger:
1) where it can save the A register
2) where you have your interrupt handling routine.

After you do that, as described below, you must SAVE-SYS to
preserve these changes.

Commands required: Where to save the A register

The debugger will save the A register at a reserved RAM
location in zero page which you must specify by entering <addr>
=ASAVE.

Commands required: Where to vector your interrupts

The debugger will install its own pointer at vector
location FFFE-F and vector your interrupts to a location that
you must specify by entering <addr> =INTADR.

The system can be saved to the disk with these 2 locations
specified by entering SAVE-SYS .

Reserved areas: Locations automatically taken by the
debugger

An interrupt routine is automatically installed by the
debugger at the reserved locations FFAD-FFBC. These locations
must be EMENABLEd for the debugger to work.

Addresses FEOO to FEFF are used by the debugger in such a
way that you cannot look at external RAM at those addresses. If
this is a problem, you can reassign this area to another starting
address by entering xxOO =DADR .

July 15, 1986 Page 8-11 -- Target Notes --

-- DDB-65 --

Increasing the speed of the breakpoint routine

When your program reaches a breakpoint,. your microprocessor
executes an Orion breakpoint routine. The breakpoint routine
takes 21 machine cycles.

If speed is critical, interrupt response time can be
improved by five cycles by patching in a BEQ instruction to the
interrupt routine in place of the BNE in the listing below and
covering the following 2 bytes with NOOP's. Note that the
interrupt routine must then restore the A register from the ASAVE
location before returning.

The address of the breakpoint routine image in the UniLab
program is RSTADRIMAGE 4 +. The routine is listed below. See
the Disassembler/Debugger writeup for further details.

FFAC 8510 STA ASAVE (location set by =ASAVE)
FFAE 68 PLA
FFAF 48 PHA
FFBO 2910 AND no
FFB2 DOOS BNE FFBB
FFB4 A510 LDA ASAVE
FFB6 4D1100 JMP INTADR (address set by =INTADR)
FFB9 8510 STA ASAVE
FFBB BS CLV
FFBC (.... overlay area begins here)
FFBE

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

register change: n =A n =X n =Y n =P (status)
n =ASAVE reserved adr page 0 where A is saved on int. n =INTADR
see also HD . (locations FF~F--BC reserved, overlay starts at FFBC)

July 15, 1986 Page 8-12 -- Target Notes --

-- DDB-65 --

Trace and breakpoint display

~ (Enable emulation memory, set up reset vectors, and load built-in sample
program)

Emulator Memory Enable Status:

ok

F =EMSEG
F800 TO FFFF EMENABLE

STARTUP resetting (Reset target system, and show trace of first cycles after
reset)

(from top of buffer)
cy* CONT ADR DATA

0 BF FFFC 00 read
1
2
4

6
8
A
c
E

$00EO)

BF FFFD FF read
FF FFOO A912
FF FF02 A2FF
FF FF04 9A
FF FFOS A056
FF FF07 A9AB
FF FF09 85EO
3F OOEO AB write

FF FFOB A9FE
FF FFOD 85El

LDA U2
LDX #FF
TXS
LDY f56
LDA #AB
STA EO

LDA #FE
STA El

HDATA MISC
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

(note reset vector data

read from FFFC,D)

11111111 11111111 (initialize stack ptr)

11111111 11111111
11111111 11111111
11111111 11111111 (store FEAB at EO) •••

11111111 11111111 see valid data to

F

11
13
14
16

3F OOEl FE write
FF FFOF BlEO LDA (EO),Y

11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

BF OOEO AB read
17 BF OOEl FE read
18 BF OOEl FE read
19 BF FFOl 12 read
lA FF FFll ca
lC FF FF12 48

INY
PHA

11111111 11111111 (extra read)

11111111 11111111 (address is FEAB+YJ

11111111 11111111
11111111 11111111
11111111 11111111 (Again, note stack

11111111 11111111 address and data)

lD BF FF13 Bl read
lE 3F OlFF 12 write
Pg Dn (trace resume) Horne (top) n TN (from step n) T (from n=-5)

BESET FF16 RB resetting (reset target system, run to breakpoint at $FF16)

PC=FF16 A=l2
FF16 E8

P=34(nv-Bdizc)
INX

July 15, 1986

X=FF Y=57 SP=lFF
(next step) ok

Page 8-13 -- Target Notes --

65xx PIGGYBACK PISASSEHBLER/DEBQGGER <PPB-65Pl

This version supports the R65/11EB, R65/41, and other
variations of piggyback ROM chips, as well as the R6511Q. This
version is derived from the DDB-65 version but is modified for
chips that do not have a SYNC output signal.

Please see the section on the DDB-65 for other important
details, including Commands required.

The R65/11EB requires the K analyzer cable.

The R65FllQ requires the B analyzer cable.

Patch word

For operation with the R6511Q you enter R65Q to patch the
program, then SAVE-SYS to save the newly configured software.

R6S11Q

connect to PD3 1 64 PD2

Reset RC~
PD4 2 63 PD 1
PDS 3 62 PDB

network PD6 4 61 PC7 A14-.......:;..
PD7 s 6B PC6 A 13 .,.:;- If ful 1

*•• RES 6 S9 PCS addressing
A14= I A1S A1S 7 S8 PC4 used A13 A12 A12 8 S7 PC3
(if not A11 A11 g S6 PC2

A1B 1B SS PC1
in full A9 11 S4 PCB
address AS 12 S3 DBB
•ode~ A7 13 S2 081

A6 14 S1 082
connect AS 1S S0 083
to A1S A4 16 49 084

A3 17 48 DBS
A2 18 47 086
A1 19 46 §~7 RB 2B 4S RD-
Ucc 21 44 SS GttD

SYHC 22 43 Urr
Hnl ttn1 23 42 XTL1

PB7 24 41 XTLB
PB6 2S 40 R/U C7
PBS 26 39 PA0
PB4 27 38 PA1
PB3 28 37 PA2
PB2 29 36 PA3
PB1 30 3S PA4
PB0 31 34 PAS
PA7 32 33 PA6

July 15, 1986 Page 8-14 -- Target Notes --

-- DDB-65P --

R6S/11

XTLB 1 48 Uss
XTL1 2 39 Urr

RD- $2 3 38 PBB
PCB 4 37 PB1
PC1 s 36 PB2

analyzer cable PC2 6 3S PB3
high address PC3 7 34 PB4
connections: PC4 8 33 PBS
R11- ro• plug PCS g 32 PB6

PC6 18 31 PB7 R12} PC7 11 38 PRB
R13 connected PD7 12 29 PR1 l =~~ together j PD6 13 28 PA2

PDS 14 27 PR3
PD4 1S 26 PR4

connect to PD3 16 2S PAS

Reset RC """
PD2 17 24 PR6

network PD1 18 23 PA7
PDB 19 22 HnI HnI

*••RES 28 21 Ucc GHD

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

register change: n =A n =X n =Y rt =P (status)
n =ASAVE reserved adr page 0 where A is saved on int. n =INTADR
see also HD . (locations FFAD-BC reserved, overlay starts at FFBC)

July 15, 1986 Page 8-15 -- Target Notes --

-- DDB-65P --

Trace and breakpoint display

R65/11 Trace display

lllABG
ok

STAR.TlJP resetting (reset, and trace. Note that many more cycles are hidden)
(from top of buffer)
cyt CONT ADR DATA HD AT A MISC

0 7F FFFC 00 fetch 11111111 11111111 (note that there are
1 7F FFFD FF fetch 11111111 11111111 no special values in
2 7F FFOO A912 LDA #12 11111111 11111111 the CONT column for
4 7F FF02 A2FF LDX :#:FF 11111111 11111111 READ, WRITE or FETCH)

6 7F FF04 9A TXS 11111111 11111111
8 7F FF05 A056 LDY :#:56 11111111 11111111
A 7F FF07 A9AB LDA :#:AB 11111111 11111111
c 7F FF09 85EO STA EO 11111111 11111111
F 7F FFOB A9FE LDA :#:FE 11111111 11111111

11 7F FFOD 85El STA El 11111111 11111111
14 7F FFOF BlEO LDA (EO) , Y 11111111 11111111
lA . 7F FFll ca INY 11111111 11111111
lC 7F FF12 48 PHA 11111111 11111111
lF 7F FF13 BlEO LDA (EO), Y 11111111 11111111
25 7F FF15 68 PLA 11111111 11111111
29 7F FF16 ES INX 11111111 11111111
2B 7F FF17 ES INX 11111111 11111111
2D 7F FFlS ES INX 11111111 11111111
2F 7F FF19 ES INX 11111111 11111111
31 7F FFlA ES INX 11111111 11111111
33 7F FFlB ES INX 11111111 11111111
Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5)

July 15, 19S6 Page S-16 -- Target Notes --

-- DDB-65P --

R6511Q Trace display

~ ok (configure disassembler for R6511Q target)
(We've disconnected the piggyback chip and hooked up the R6511Q:)

STARTUP resetting

cy:# CONT ADR DATA HD AT A MISC
0 BF FFFC 00 read 11111111 11111111
1 BF FFFD FF read 11111111 11111111
2 FF FFOO A912 LDA U2 11111111 11111111
4 FF FF02 A2FF LDX :#FF 11111111 11111111
6 FF FF04 9A TXS 11111111 11111111
8 FF FF05 A056 LDY #56 11111111 11111111
A FF FF07 A9AB LDA #AB 11111111 11111111
c FF FF09 85EO STA EO 11111111 11111111
F FF FFOB A9FE LDA #FE 11111111 11111111

11 FF FFOD 85El STA El 11111111 11111111
14 FF FFOF BlEO LDA (EO) , Y 11111111 11111111
lA FF FFll C8 INY 11111111 11111111
lC FF FF12 48 PHA 11111111 11111111
lF FF FF13 BlEO LDA (EO) , Y 11111111 11111111
25 FF FF15 68 PLA 11111111 11111111
29 FF FF16 EB INX 11111111 11111111
2B FF FF17 EB INX 11111111 11111111
2D FF FFlB EB INX 11111111 11111111
2F FF FF19 EB INX 11111111 11111111
31 FF FFlA E8 INX 11111111 11111111
33 FF FFlB E8 INX 11111111 11111111
Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5)

July 15, 1986 Page 8-17 -- Target Notes --

6800 DISASSEHBLER/DEBVGGER <DDB-68)

This version supports the 6800 processor. It also works
with 6808 systems that have an external RAM chip which works at
address zero.

The 6800 requires the B analyzer cable.

from

GHO

UR­
HnI

Rom "'-
Cable R11

Extra cycles

Uss
HLT
91
IRQ
unR
Hnl
BR
Ucc
R9
R1
R2
R3
R4
R5
R6
R7
RS
R9
R19
R11

6800

1
2
3
4
5
6
7
8
9
19
11
12
13
14
15
16
17
18
19
29

49
39
38
37
36
35
34
33
32
31
39
29
28
27
26
25
24
23
22
21

RST ••• ~Connect to RC
TSC network on
nc Reset
92 RO-
OBE
nc
RU- C7
oe
01
02
03
04
05
06
07
R15 R15 from
R14 R14---- Rom

:~~ :~~?Cable
Uss

The 6800 family often performs extra fetch cycles during
instruction execution. The UniLab program hides these cycles
from you, to make the trace easier to read.

However, if the disassembler is out of sync, it will interpret
extra cycles as instructions, and hide cycles that are not extras

Keeping the disassembler in sync

If the disassembler is out of sync, it will usually fall
back into sync after a few cycles.

One way to make sure the disassembler is in sync: always start
the trace a few cycles before the area of interest.

A better way to keep the disassembler in sync: start the
disassembly at the first cycle of an instruction. Use <n> TN,
~here n is the cycle number in the trace.

You can look at all cycles by turning off the disassembler
with DASM'.

July 15,1986 Page 8-18 -- Target Notes --

-- DDB-68 --

Reserved area

When the debugger is engaged by entering

RESET <adr> RB

a NOOP instruction is patched into the target program at location
FFB9 and FFBA. These are the only reserved program memory
locations. Overlays are installed above location FFBA and
automatically restored.

You can thus use the area above FFBA, but most debug
operations won't work properly in the 10-30 locations above this
address.

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

register change: n =A n =B n =CC n =IX
See also HD . FFB9-A reserved. Overlay above.

July 15,1986 Page 8-19 -- Target Notes --

-- DDB-68 --

Trace and breakpoint display

llUBG
Emulator Memory Enable Status:

F =EMSEG
FOOO TO FFFF EMENABLE

STARTUP resetting
(from top of buffer)
cyf CONT ADR DATA

0 FF FFFE FO read
1 FF FFFF 00 read
2 BF FOOO 8EOOFF
5 FF F003 8601
7 FF FOOS 36
9 7F OOFF 01 write
A FF F006 C678
C FF FOOS 37
E 7F OOFE 78 write

LDS # FF
LDAA #1
PSHA

LDAB *78
PSHB

F FF F009 32 PULA
11 FF OOFE 78 read
12 FF FOOA 33 PULB
14 FF OOFF 01 read
15 FF FOOB CE1234 LDX # 1234
18 FF FOOE 4C
lA FF FOOF 4C
lC FF FOlO 4C
lE FF FOll 4C
20 FF F012 4C
22 FF F013 4C
24 FF F014 4C

INCA
INCA
INCA
INCA
INCA
INCA
INCA

HDATA MISC
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

(stack in page 0)

(note address & data)

11111111 11111111 (note address -1)

11111111 11111111
11111111 11111111 (note address & data)

11111111 11111111
11111111 11111111 (address & data!

11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5)

RESET FOlO RB (reset, run to break at address FOlO)

PC=FOlO A=7A B=Ol IX=l234 CC=Fl(--HinzvC) SP= FF
FOlO 4C INCA (next step)

July 15,1986 Page 8-20 -- Target Notes --

6801 DISASSEHBLERlDEBUGGER (DDB-681>

This version supports the 6801 and 6803 processors. It
supports the piggyback chips without requiring a patch word.

The debugger is capable of displaying and changing internal
memory, even though read and write cycles to this memory do not
show on the bus.

This software package is similar to the DDB-68. Please read
the DDB-68 writeup for important information.

The 6801 requires the B analyzer cable. The piggyback
requires the N analyzer cable.

6801

GHD Uss 1 48 E RD-
XT1 2 39 SC1
XT2 3 38 SC2 C7

HnI HnI 4 37 P38
IRQ 5 36 P31

--·•• RST 6 35 P32
connect to Ucc 7 34 P33
Reset RC p 28 8 33 P34
ne tworlc P2 1 9 32 P35

P22 18 31 P36
P23 11 38 P37
P24 12 29 P48
P18 13 28 P41
P11 14 27 P42
P12 15 26 P43 R11~
P13 16 25 P44 R12~

Ro• Cable P14 17 24 P45 R13/0n
P15 18 23 P46 R14
P16 19 22 P47 R15
P17 28 21 Ucc

July 15,1986 Page 8-21 -- Target Notes --

-- DDB-681 --

6801 Piggy back

GHD Uss 1 48 E UR-
XT1 2 39 SC1
XT2 3 38 SC2

Hnl HnI 4 37 P38
IRQ 5 36 P31

_,,..,. ••• RST 6 35 P32
connect to Ucc 7 34 P33
Reset RC p28 8 33 P34
ne tworl< P21 9 32 P35

P22 18 31 P36
P23 11 38 P37

(:~~15
P24 12 29 P48
P18 13 28 P41
P11 14 27 P42
P12 15 26 P43

on Roa \
P13 16 25 P44

Cable P14 17 24 P45
P15 18 23 P46

Analyzer P16 19 22 P47
Cable P17 28 21 Ucc

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:
Register change: n =A n =B n =CC nn =X
See also HD . $FFB9,A reserved. Overlay area = $FFBC to reset
vectors

ALLCY shows hidden bus cycles, ALLCY' hides them.

July 15,1986 Page 8-22 -- Target Notes --

-- DDB-681 --

Trace and breakpoint display

(Load built-in sample program)

STARTUP resetting (Reset target system, start analyzer, show trace from reset
vector)

(from top of buffer)
cy* CONT ADR DATA
-1 FF FFFE FF (read)

HDATA MISC

0 FF FFFF 00 interrupted
11111111 11111111 (Note reset vector)

11111111 11111111 FFFE, FFFF come up

11111111 11111111 first on bus)

11111111 11111111
1 FF FFOO 8EOOFF LDS *FF
4 FF FF03 86FF LDAA #FF
6 FF FF05 9705 STAA $5
8 7F 0005 FF (write)
9 FF FF07 8600 LDAA #0
B FF FF09 9707 STAA $7
D 7F 0007 00 (write)
E FF FFOB 8616 LDAA #16

10 FF FFOD C627 LDAB #27
12 FF FFOF CEOE49 LDX #E49
15 FF FF12 AlOO CMPA $0,X
18 FF OE49 49 (read)

is

19 FF FF14 4C INCA
register!)

lB FF FF15 4C
lD FF FF16 4C
lF FF FF17 4C
21 FF FF18 4C
23 FF FF19 4C
25 FF FFlA 4C

INCA
INCA
INCA
INCA
INCA
INCA

11111111 11111111
11111111 11111111 (note address and data)

11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111 (Note value in address

11111111 11111111 contents of X

11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-1)

BESET FF14 RB resetting (Reset target board, and break at address FF14)

CC=39 (--HINzvC) B=27 A=l6 X=OE49 SP=OOFF
FF14 4C INCA (next step) ok

July 15,1986 Page 8-23 -- Target Notes --

6802 DISASSEHBLER/DEBVGGER (DDB-682)

This version supports the 6802 processor.

The debugger is capable of displaying and changing internal
memory, even though read and write cycles to this memory do not
show on the bus.

This software package is derived from the DDB-68 version.
Please read the DDB-68 writeup for more important details, and
refer to the Trace and breakpoint display in that section.

The 6802 requires the B analyzer cable.

6802

GHD Uss 1 40 RST ••• ~Connect to RC HLT 2 39 EXtal network on MR 3 38 Xtal
IRQ 4 37 E RD- Reset

UR- unA 5 36 RE
Hnl ttn1 6 35 YccStby
C6 BA 7 34 RU- C7

Ucc 8 33 08
AB 9 32 01
A1 18 31 02
A2 11 38 03
A3 12 29 04
A4 13 28 05
A5 14 27 06
A6 15 26 07
A7 16 25 A15 A15
AS 17 24 A14 A14 from

from A9 18 23 A13 A13- Rom
Rom

"--A11
A18 19 22 A12 A12,..........-- Cable

Cable A11 28 21 Uss

DDB-682 additional reserved resources

The DDB-682 version debugger requires 4 reserved locations in
the zero page on-chip RAM. The RAM is used by the UniLab software
to save information while reading or writing the internal RAM.

The default assignment for these locations is 50-53, but you
can change the starting address of that area with <address> =ZP.

See the writeup on DDB-68 for more information on Reserved
areas.

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

$FFB9,A reserved for breakpoint, $FFBA-$FFF7=overlay
4 bytes at $50-$53 reserved, change with xx =ZP .
Register change: n =A n =B n =IX n =CC
Also see HD

July 15,1986 Page 8-24 -- Target Notes --

6805 DISASSEHBLER/PEBQGGER CDPB-685)

This version supports the 6805 family including the 6805E2,
the 6805E3, and piggyback chips as well.

The 6805 requires the B analyzer cable. The piggyback
requires the M analyzer cable.

Patch word

For operation with piggyback chips, you enter PBACK to patch
the program.

For the HD6305 processor, you enter HD6305.

For the 6805E3, you enter RCA-E3.

Use SAVE-SYS to save the newly configured software.

6805E2/E3

••• Rst 1 40 Udd
Connect to/ HnI lrq 2 39 Os1
RC net•ork C6 LI 3 38 Os2
on Reset RO- OS 4 37 TnR

r 680SE2
"""

C7 RLI- s 36 PB8
RS 6 3S PB1

only / R15) PR7 7 34 PB2 680SE3
on Ro•~A13~ only A14JPA6 8 33 PB3

A13 PA5 g 32 PB4 Cab I e ~A 14 :::;::::::- GHO \.. ./ PA4 10 31 PBS , A1S .J PA3 11 38 PBS
PA2 12 29 PB7
PA1 13 28 B8
PA0 14 27 B2

on Ro•....___ A12 A12 1S 26 B2
Cab I e A 11 A 11 16 2S B3

R10 17 24 B4
A9 18 23 BS
AS 19 22 B6

GHO Uss 20 21 B7

July 15,1986 Page 8-25 -- Target Notes --

-- DDB-685 --

Ao of
Ron
Socket

Y+
from
Anal~zer

Cable

Connect to
RC network
on Reset

r on "I

Ro•
Cable
R12"-.
R13 ..,.'lGHO
R147 ,

\. R15 ./

From
6 8 0 5 .__ _ __.,,,,.
Xtal

6805 Piggg back

GHO Uss 1 48 R7
••• Rst 2 39 R6
Hnl lrq 3 38 R5

Ucc 4 37 R4
Xtal 5 36 R3

EXtal 6 35 R2
Hum 7 34 R1

Ti•er 8 33 RB
ce 9 32 87
C1 19 31 86
C2 11 39 8~i
C3 12 29 84
C4 13 28 83
C5 14 27 82
C6 15 26 81
C7 16 25 89

07/Uth 17 24 09
06 18 23 01
05 19 22 02
04 28 21 03

9
., .. HCT RD-

.,..
8

on
.__ _______ 1 __ 3... Anal9zer

Cable

Note: the logic gates shown above are part of the M cable,
not additional hardware for you to put on your board.

July 15,1986 Page 8-26 -- Target Notes --

-- DDB-685 --

Reserved area

When the debugger is engaged by entering

RESET adr RB

a NOOP instruction is patched into the target program at
locations:

1FB9
OFB9
FFB9

for the 6805E2
for the piggyback
for the 6805E3

Overlays are installed above the reserved area, in location
$xFBA (x equals: 0 for 6805E2, 1 for piggyback, F for 6805E3). You
can use the area above $xFBA but most debug operations won't work
properly in the 30 locations above this address.

Other locations used by the debugger

Location 3F is used by the debugger and should not be used.
You may change this location by entering <addr> =ZP, where nn is
the location in RAM reserved for the debugger. This address must
be greater than 20 and less than 6F.

Showing all cycles

Sometimes the trace of your processor will show extra bus
cycles, recorded while your processor was busy executing code.
You can chose whether or not to display the extra bus cycles by
entering ALLCY or ALLCY' .

Since the extra cycles contain useful information you can
choose to show them, or you can show only instruction cycles if
you prefer.

Enter ALLCY to show most useful extra cycles in the trace,
ALLCY' turns this mode off and shows only instruction cycles.
RAM may be added to your circuit to "shadow" the operation of the
internal RAM and allow correct data to be seen on the trace data
column for internal RAM r/w.

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

Register change: n =X n =A n =CC
$xFB9,A reserved for breakpoint, $xFBA-$xFDA=overlay
(x=l for 6805E2, x=O for piggyback}
$3F reserved, change with xx =ZP
Also see HD

July 15,1986 Page 8-27 -- Target Notes --

-- DDB-685 --

Trace and breakpoint display

~ (Load built-in sample program, set up emulation memory)

Emulator Memory Enable Status:
F =EMSEG

1800 TO lFFF EMENABLE

STARTUP resetting
(from top of buffer)
cyi CONT ADR DATA

-1 BF lFFE lF (read)
0 BF lFFF 00 (read)
1 BF lFOO AE interrupted
2 FF lFOO AEOE LOX :#:E
4 FF 1F02 060800 LOA $800,X
8 BF 080E 00 (read)
9 FF 1F05 B74E STA $4E
c 3F 004E 00 (write)
D FF 1F07 6C40 INC $40,X

11 BF 004E 4E (read)
12 3F 004E 01 (write)
13 FF 1F09 4C INCA
16 FF lFOA 4C INCA
19 FF lFOB 4C INCA
lC FF lFOC 4C INCA
lF FF lFOD 4C INCA
22 FF lFOE 4C INCA
25 FF lFOF 4C INCA
28 FF lFlO 4C INCA
2B FF lFll 4C INCA
2E FF 1F12 4C INCA
Pg On (trace resume) Home (top) n

BESET lFOA RB resetting (Reset target,

SP= 7F X=OE A=Ol CC=19(---HinzC)
lFOA 4C INCA (next

HD AT A MISC
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111 (note address

1111111 11111111 and control

11111111 11111111 values for

11111111 11111111 fetch , r/w)

11111111 11111111 (note address,

11111111 11111111 good data?)

11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

TN (from step n) T (from n=-1)

trigger analyzer on RESET vec)

step) ok

July 15,1986 Page 8-28 -- Target Notes --

-- DDB-685 --

6805 Piggyback Trace display

Here is a listing of a trace using the 6805 piggyback µP to
show the differences from the 6805E2 version:

~ ok (convert to piggyback mode)
~ (enable emulation memory, load built-in test program)

Emulator Memory Enable Status:
F =EMSEG

800 TO FFF EMENABLE
ok

STARTUP resetting
(from top of buffer)
cy# CONT ADR DATA
-1 FF OFFE OF (read)

1 FF 8000 FF interrupted
2 FF OFOO AEOE LDX IE
4 FF OF02 D60800 LDA $800,X
A FF OFOS B74E STA $4E
F FF OF07 6C40 INC $40,X

16 FF OF09 4C INCA
lA FF OFOA 4C INCA
lE FF OFOB 4C INCA
22 FF OFOC 4C INCA
26 FF OFOD 4C INCA
2A FF OFOE 4C INCA
2E FF OFOF 4C INCA
32 FF OFlO 4C INCA
36 FF OFll 4C INCA
3A FF OF12 4C INCA
3E FF OF13 4C INCA
42 FF OF14 4C INCA
46 FF OF15 4C INCA
4A FF OF16 4C INCA
4E FF OF17 4C INCA
Pg Dn (trace resume) Home (top) n

BBSB~ llO RB resetting

SP= 7F X=OE A=36 CC=09(---hinzC)

HD AT A MISC
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

TN (from step n) T

OFlO 4C INCA (next step) ok

(from n=-1)

July 15,1986 Page 8-29 -- Target Notes --

6809E PISASSEHBLER/DEBUGGER <PPB-689)

This version supports the 6809E.

The 6809E requires the B analyzer cable.

6809E

GND Uss 1 40 Hit
Hnl Hnl 2 39 TSC

IRQ 3 38 LIC cs
FRQ 4 37 RES -connect to C7 BS 5 36 unR C4

BR 6 35 Q Reset RC
Ucc 7 34 E RD- Het•ork

RO 8 33 BSY
R1 9 32 R/U C6
R2 10 31 01
A3 11 30 01
R4 12 29 02
RS 13 28 03
R6 14 27 04
R7 15 26 05
RS 16 25 06
A9 17 24 07

A10 18 23 R15 A15
Ro• Cable<~g R11 19 22 A14 A14--...Ro• Cable

A12 20 21 R13 A13---

The disassembler and hidden cycles

The 6809E performs extra fetch cycles during instruction
execution. Since these extra cycles are predictable, the
disassembler hides them from you.

The analyzer connections to the LIC, and AVMA pins are used
to distinguish opcode fetch instruction cycles from extra cycles.
Most non-interesting ones are filtered out, and only useful
read/write will show in the trace. Turn off the disassembler
with DASM' to view all cycles.

Reserved area

When the debugger is engaged by entering RESET adr RB, a NOOP
instruction is patched into the target program at location FFB9.
This is the only reserved location.

Other areas used by Debugger

Overlays are installed above location FFBA and automatically
restored. You can thus use the area above FFBA but most debug
operations won't work properly in the 10-30 locations above this
address.

July 15,1986 Page 8-30 -- Target Notes --

-- DDB-689 --

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

register change: n =A n =B nn =X nn =Y
FFB9-A reserved. Overlay above. See also

n =U
HD .

n =CC

Trace and breakpoint display

LTl\.llG (load sample program~ set up default emulation memory area)

Emulator Memory Enable Status:
F =EMSEG

FOOO TO FFFF EMENABLE

STABTUP resetting (Reset the target processor, and trace
the first cycles after it starts up)

(from top of buffer)
cy* CONT ADR DATA HDATA
-1 DF FFFE FF (interrupt) 11111111

vector

MISC
11111111

n =DP

(Note Reset

1 7F FFFF 00 (read) 11111111 11111111 fetch from FFOO)

2 SF FFOO lOCEOOFF LDS fFF 11111111 11111111
6 SF FF04 8612 LDA U2 11111111 11111111
8 SF FF06 8EOOOO LDX *O 11111111 11111111
B SF FF09 A780 STA ,x+ 11111111 11111111
D 4F FFOB 08 (read) 11111111 11111111 (extra cycle • •)

10 3F 0000 12 (write) 11111111 11111111 (note good
address

ASL 0 11111111 11111111 and data)

(read) 11111111 11111111(

(write) 11111111 11111111 clearly shown)

STA ,X+ 11111111 11111111
(read) 11111111 11111111
(write) 11111111 11111111

LDY 0 11111111 11111111
(read) 11111111 11111111
(read) 11111111 11111111
PSHS Y/ 11111111 11111111
(read) 11111111 11111111
(write) 11111111 11111111 (note stack

29 3F OOFD 24 (write) 11111111 11111111 and write data)

2A SF FF14 3S20 PULS Y/ 11111111 11111111
2E SF OOFD 24 (read) 11111111 11111111 (data comes off ••

2F SF OOFE 12 (read) 11111111 11111111 •• indicates good

30 7F OOFF 12 (read) 11111111 11111111 stack)

31 SF FF16 4C INCA 11111111 11111111
Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-1)

BESET FF2A RB -resetting (Reset target, set .breakpoliit To-oi:Cur- JusT before
opcode at address FF2A is executed)

PC=FF2A A=26 B=02 X=0002 Y=2412 U=FEFE DP=OO CC=DO(EFhinzvc) SP=OOFF
FF2A 4C INCA (next step) ok

July 15,1986 Page 8-31 -- Target Notes --

68000 DISASSEHBLER/DEBUGGER CDDB-68Kl

This version supports the 68000 processor.

The 68000 requires the P analyzer cable.

&l:IUUU

04 1 64 05
03 2 63 06

/'"Connect ' 02 3 62 07
01 4 61 08 RD- and llR- 08 5 68 09

to U+ K2 RS 6 59 018

' ..I R8 uos 7 58 011
LOS 8 57 012

C7 R{U 9 56 013
Connect to K1 D K 18 55 014

BG 11 54 015
Reset RC BGK 12 53 Gnd GHD
Het•ork BR 13 52 A23

Ucc 14 51 A22
(consult Hanufacturer·s Data Clk 15 58 A21

Gnd 16 49 Ucc
Book for Ha 1t connection) HLT 17 48 A28

RST 18 47 A19 R19
rHnI should be "'I unR 19 46 A18 R18
connected to E 28 45 A17 R17

UPA 21 44 A16 A16
IP1,,2,,&3 if BER 22 43 A15 R15
they are not used,, ~IP2 23 42 R14 A14----- Cable
or should be connected IP1 24 41 A13 A13- Ro•

IP8 25 49 A12 A12~
to provide level 7 C6 FC2 26 39 R·IJ A11

,interrupt. CS FC1 27 38
..I C4 FC9 28 37 A9

A1 29 36 AS
A2 39 35 A7
A3 31 34 A6
A4 32 33 A5

Reserved resources

The 68000 debugger uses one trap vector for its operation,
as well as a reserved area. Initially it uses trap O, but this
can be changed by entering <hex digit> =TRAP, where the digit is
the new trap vector number to be used (from 0 to F) .

The reserved area is 07A8 through 07AB.

The debugger needs the first 2K of emulation ROM enabled.
Use:

0 TO 7FF EMENABLE

then use ALSO <range> EMENABLE to enable any other areas you
need.

Consult seperate Disassembly/Debugger writeup if you need to
use RAM at these addresses, 0 to 7FF.

Other resources

The overlay area is above the reserved area, at 07AC through
07FC. You can use this area, but most debug operations won't work
properly in the 10-40 locations above this address. The debugger
operates from the supervisor mode.

July 15, 1986 page 8-32 -- Target Notes --

-- DDB-68K --

Addresses interpreted as interrupts

If your microprocessor tries to access an area below 400 hex
occurs, it will be interpreted as an interrupt. That area is
designated as an interrupt vector area. If you want to use any of
these addresses for your program, you can move the boundary down to
100 by typing in:

100 INTMAX

and then use SAVE-SYS to save the newly configured software.

32-bit addresses and . . .

The UniLab software works with the 32-bit external address
space of the 68000 by using several different commands to set the
upper 16 bits of the address. The different commands affect
different groups of UniLab words, as described below.

. Register change words

All of the register change words such as =D3 and =USP can
accept 32-bit values if the number ends in a decimal point.

For instance, entering 12345678. =AO will send a full
32-bit long word into register AO.

. Memory access words

The words to examine and modify target memory (MDUMP, MMOVE,
MM!, M?, etc.) can, indirectly, make use of 32-bit addresses.

Initially the value of the upper 16 bits of the full address
is set to O, but can be changed. The command
<value> =TOMV will change the upper 16 bits of the destination
address, while <value> =FROMMV will change the upper 16 bits of
the source address.

Those values will remain constant until you use =TOMV or
=FROMV again.

The values of the lower 16 bits are enterea as arguments to
the MDUMP, MM?, etc. commands.

. . . Breakpoint words

The command <value> =TOGO sets the upper 16 bits of the 32-bit
address used by the debugger words such as G, GB, or RB.

July 15, 1986 page 8-33 -- Target Notes --

-- DDB-68K --

The CONT column

The upper 4 bits in the CONT column in the analyzer trace
represent the state of the R/W line and the FCl, FC2, and FC3
pins. These are used by the disassembler to give the following
cycle types:

0 ?cy=O (unassigned) 8 ?cy=S (unassigned)
1 write (write user data) 9 read (read user data)
2 pwrit (write user program) A fetch (read user program)
3 ?cy=3 (unassigned) B ?cy=B (unassigned)
4 ?cy=4 (unassigned) c ?cy=C (unassigned)
5 sdwrt (write supervisor data) D sread (read sup. data)
6 spwrt (write supervisor program) E sftch (read supervisor pgm)
7 ?cy=7 (unassigned) F iack (interrupt acknow.)

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

Register change: n =RO n =AO (use nnn. for 32bit).
Also n =USP

n =TRAP changes trap vector.
n =TOGO n =TOMV n =FROMMV for long word addr's.

SBOWM and SHOWM' to turn MISC column on/off.

n =SR

$07A8,B reserved for breakpoint, $07AC-$07FC=overlay. Also see HO.

July 15, 1986 page 8-34 -- Target Notes --

-- DDB-68K --

Trace and breakpoint display

~ (Load built-in sample program, set up default emulation memory)

Emulator Memory Enable Status:
0 =EMSEG

0 TO 7FF EMENABLE

STARTUP resetting (Issue reset to target, trace first few cycles)

(from top of buffer)
cyf CONT ADR DATA MISC

0 EO 0000 0000 iread (note stack ptr) 11111111
1 EO """" 1100 ire ad 11111111 ..L. vvv~

2 EO 0004 0000 iread (and program ctr) 11111111
3 EO 0006 0400 iread 11111111
4 EO 0400 46FC2700 MOVE :!1=$2700,SR 11111111
6 EO 0404 91C8 SUB.L AO,AO 11111111
8 EO 0406 223C00021706 MOVE.L :!1=$21706,Dl 11111111
B EO 040C 4E71 NOP 11111111
c EO 040E 4E71 NOP 11111111
D EO 0410 207C12345678 MOVE.L :!1=$12345678,AO 11111111

10 EO 0416 48E700CO MOVEM.L /Al/A0,-(A7) 11111111
12 EO 041A 4CDF0300 MOVEM.L (A7)+,/AO/Al 11111111
13 50 lOFE FFFF sdwrt (write to supervisor stack)

14 50 lOFC FFFF sdwrt 11111111
15 50 lOFA 5678 sdwrt (note good data on this write and)

16 50 10F8 1234 sdwrt (read on cycles below .•.)

18 EO 041E 5400 ADDQ.B :!1=$2,DO 11111111
19 DO 10F8 1234 read 11111111
lA DO lOFA 5678 read 11111111
lB DO lOFC FFFF read 11111111
lC DO lOFE FFFF read 11111111

Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5)

BESET 41E RB resetting (Reset target, get debug control just before
address 41E is executed)

DO= FFFF OOE4 Dl= 0002 1706 D2= 0000 007F D3= FFFF FFFF D4= FFFF FFFF
DS= FFFF FFFF D6·= FFFF 7FFF D7= FFFF FFFF AO= 1234 5678 Al= FFFF FFFF
A2= FFFF FFFF A3= FFFF FFFF A4= FFFF FFFF AS= FFFF FFFD AG= 0000 0008
PC= 0000 041E USP= FFFF FFFF SSP= 0000 1100 SR= 2700 (t. S .. III. .. xnzvc)

041E 5400 ADDQ.B #$2,DO (next step)

July 15, 1986 page 8-35 -- Target Notes --

ok

68008 DISASSEHBLER/DEBUGGER {DDB-6881

This version supports the 68008 processor.

The 68008 requires the P analyzer cable.

Please refer to the writeup on the 68000 for all details
except for the Trace and breakpoint display and the cable
wiring diagram.

68008

A3 1 48 A2
A4 2 47 A1
AS 3 46 A8
A6 4 4S FC8 C4 HnI should be A7 s 44 FC1 cs connected to AS 6 43 FC2 C6
A9 7 42 IP2~ IPl & 2 if

A19 8 41 IP1 they are not used,
~A11 A11 9 48 BER or should be connected

Ro• Cable ~12 A12 18 39 UPA to provide level 7
""A13 A13 11 38 E interrupt.

A14 A14 12 37 RST
RD- Ucc 13 36 HLT~
A15 A1S 14 3S Gnd GHD Connect to

Gnd 1S 34 Clk Reset RC
A16 A16 16 33 BR Hetwork
A17 A17 17 32 BG (consult Manufacturer·s Data
A18 A18 18 31 DTK K1- Book for Ha 1t connection)
A19 A19 19 38 R/LI C7

07 28 29 OS Connect
06 21 28 AS K2- RD- and LIR-
OS 22 27 08 to U+
04 23 26 01
03 24 2S 02

July 15, 1986 page 8-36 -- Target Notes --

-- DDB-688 --

Trace and breakpoint display

~
Emulator Memory Enable Status:

0 =EMSEG
0 TO 7FF EMENABLE

ok
STARTUP resetting
(from top of buffer)
cy# CONT ADR DATA

0 EO 0000 00 iread
1 EO 0001 00 ire ad
2 EO 0002 OF iread
3 EO 0003 00 ire ad
4 EO 0004 00 iread
5 EO 0005 00 iread
6 EO 0006 04 iread
7 EO 0007 00 ire ad
8 EO 0400 46FC2700 MOVE #$2700,SR
c EO 0404 91C8 SUB.L AO,AO
E EO 0404 91C8 SUB.L AO,AO

10 EO 0406 223C00021706 MOVE.L #$21706,Dl
16 EO 040C 4E71 NOP
18 EO 040E 4E71 NOP
lA EO 0410 207C12345678 MOVE.L 1$12345678,AO
20 EO 0416 48E700CO MOVEM.L /Al/A0,-(A7)
24 EO 041A 4CDF0300 MOVEM.L (A7)+,/A0/Al
26 50 OEFE FF sdwrt
27 50 OEFF FF sdwrt
28 50 OEFC FF sdwrt
29 50 OEFD FF sdwrt

Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5)

RESET 424 BB resetting

DO= FFFF FF41 Dl= 0002 1706 D2= FFFF FFFF D3= FFFF FFFF D4= FFFF FF07
DS= FFFF FFFF D6= FFFF FFFF D7= FFFF FFFF AO= 1234 5678 Al= FFFF FFFF
A2= FFFF FFFF A3= FFFF FFFF A4= FFFF FFFF AS= FFFF FFFF A6= FFFF FFFF
PC= 0000 0424 USP= FFFF FFFF SSP= 0000 OFOO SR= 2700 (t.S .. III ... xnzvc)

0424 5400 ADDQ.B 1$2,DO (next step) ok

July 15, 1986 page 8-37 -- Target Notes --

illlell DlSASSEHBLER/t>EBUGGER (DDS-611)

This version supports the 68HC11 processor.

The 68HC11 requires the B analyzer cable.

Analyzer Cab le B MC68HC11A8 Analyzer Cab le B

PR7 1 48 Udd
PR6 2 47 PDS
PAS 3 46 PD4
PR4 4 4S PD3
PR3 s 44 PD2
PR2 6 43 PD1
PR1 7 42 PDO
PRO 8 41 IRQ

R1S R1S/PB7 9 48 XIRg Hnl c14 R14/PB6 18 39 RESET *** ~Connect to RC
rom rom R13 R13/PBS 11 38 PC7/AD7 network on

cable R12 R12/PB4 12 37 PC6/RD6 Reset
A11 R11/PB3 13 36 PCS/RDS

R10/PB2 14 3S PD4/RD4
R9/PB1 1S 34 PD3/RD3
R8/PBO 16 33 PD2/RD2

PEO 17 32 PD1iRD1
PE1 18 31 PDO/RDO
PE2 19 38 XTRL
PE3 28 29 EXTRL
Uri 21 28 R/il C7
Urh 22 27 E RD-

GHD Uss 23 26 RS
nooe 24 2S nooR C6

Reserved area

The reserved area is FF71 to FF73.

Overlay area

The overlay area is from FF74 to FFBF.

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

Register change: n =A n =B n =CC nn =XX nn =Y
See also HD. $FF71-73 reserved. Overlay area = $FF74-FFBF.
Display special function register names: SHOW-REGS
Show - don't show reg. names: SHOW-NAMES / HIDE-NAMES
n =SFPAGE sets page where special function registers are mapped.

July 15, 1986 page 8-38 -- Target Notes --

-- DDB-611 --

Trace and breakpoint display

STAR.TUP resetting (reset the target, show first cycles of trace}

(from top of buffer)
cy# CONT ADR DATA
-1 FF FFFE FF (read)

O FF FFFF 00 interrupted
1 BF FFOO 8EOOFF LDS #FF
4 BF FF03 07 TPA
6 BF FF04 84BF ANDA #BF
8 BF FF06 06 TAP
A BF FF07 86FF
C BF FF09 9705
E 7F 0005 FF (write)
F BF FFOB 8600

11 BF FFOD 9707
13 7F 0007 00 (write)
14 BF FFOF 8616
16 BF FFll C627
18 BF FF13 CE1234
lB BF FF16 18CE5678
lF BF FFlA AlOO

address

22 FF 1234 31 (read)
contents)

LDAA #FF
STAA 5

LDAA #0
STAA 7

LDAA U6
LDAB *27
LDX U234
LDY #5678
CMPA O,X

INCA
INCA

HDATA MISC
11111111 11111111
11111111 11111111
11111111 11111111 (set stack}

11111111 11111111
11111111 11111111 (enable nmi}

11111111 11111111
11111111 11111111
11111111 11111111 (note valid

11111111 11111111 data}

11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111 (note

11111111 11111111 = x

11111111 11111111
11111111 11111111

23 BF FFlC 4C
25 BF FFlD 4C
27 BF FFlE 4C INCA 11111111 11111111

Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-1)

RESET FFlC RB resetting (Set first breakpoint at FFlC, display regs)

A = 16 B = 27 X = 1234 Y
FFlC 4C INCA

July 15, 1986

5678 SP= OOFF CC= B9(SxHINzvC)
(next step) ok

page 8-39 -- Target Notes --

8048 DISASSEMBLER/DEBUGGER (PDB-48)

This version supports the 8048 family including the 8035,
8039, 8040, 8049, and 8050. The processor may be a piggyback
version or normal chip operating with a separate ROM (in expanded
mode) .

In expanded mode all members of the 8048 family require the
E analyzer cable. The piggyback chips require the F analyzer
cable.

Patch word

If you are using the National piggyback ROM processor
(NS87P50), enter PIGGYBACK to patch the program. Use SAVE-SYS to

make this change permanent.

If you have no external memory in your piggyback system,
only the reset wire and the ROM plug need be connected. However,
you will need to ground Kl andd all unused address lines.

e Cable

RES

""'
K1
RO­
MR-

July 15, 1986

TO
XT1
XT2
RST
SS
IHT
EA
RD­
PSH
UR­
A LE
DO
01
02
03
04
05
06
07
Uss

1
2
3
4
5
6
7
8
g

10
11
12
13
14
15
16
17
18
19
20

8048

page 8-40

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

Ucc
T1
P27
P26
P25
P24
P17
P16
P15
P14
P13
P12
p 11
P10
Udd
PRG
P23
P22
P: 1
P20

-- Target Notes --

-- DDB-48 --

The disassembler and hidden cycles

The 8048 performs extra fetch cycles during instruction
execution. Since these extra cycles are predictable, the
disassembler hides them from you.

You can look at these cycles by turning the disassembler off
with DASM' .

Reserved locations

The debugger requires 5 reserved bytes (for example, 7FB-7FF
or FFB-FFF) at the top of each 2K memory bank where the debugger
is to be used.

These locations are used to disable timer and external
interrupts before the processor is stopped at a breakpoint and
also to re-enable them (if you have selected that mode by
entering ENI or ENTCTI) and return to the program. The required
instructions are patched in when you enter RESET <adr> RB for any
address in that bank.

Overlay areas

The top 21 (hex) bytes of the page are used for overlaying
the debug routines. Since this area is restored between debug
steps, you can use it for program storage but you cannot use the
debugger on that part of the program.

Block writes to memory also use and restore target locations
7BD-7DD, FBD-FDD, etc. so these addresses can be debugged, but
block moves to target memory cannot be done from these locations.

How to set breakpoints

If you want to debug in more than one 2K bank, you must enter
RESET adr RB for an address in each bank to install the reserved
bytes at the top of the page. Once this is done, you can use
n RB to set breakpoints in any of the active banks until the
program is reloaded. While you are stopped at a breakpoint, you
can use GB, G, or GW to transfer control within that bank.

July 15, 1986 page 8-41 -- Target Notes --

-- DDB-48 --

Naming registers

The 7 working registers and A, PSW, and T are displayed
automatically at the breakpoint. If you are not changing
register banks much, you can assign mnemonic names to RO-R7.

For example, if you enter 6 RNAME USER# the breakpoint
display will print USER# instead of R6.

Altering registers

You can change any of these registers while stopped at a
breakpoint by entering the desired contents followed by a space
then the register name with an equal sign. For example, 12 =A
will put 12 in the A register.

Accessing external RAM

If you have external memory, you can access it with any of
the commands used to read and write emulation memory such as
MDUMP, MFILL, MMOVE, M?, MM?, M!, and MM!. They will go to
external memory if the address isn't enabled for emulation.

If you have external memory that uses the same addresses as
emulated program memory, you can fool the UniLab by setting a bit
that is not decoded by the hardware. For example, if your
hardware does not look at AlS, (while the UniLab's emulation ROM
does) use 8000 to address external location 0. The UniLab's
emulation ROM then sees address 8000 and so does not respond,
while the hardware sees address 000.

You can also use INTRAM or EXTRAM to select whichever memory
you want. This will patch the debugger to use LDC or LDE
instructions for looking at non-emulated memory. Notice that if
you try to look at the internal memory locations that are used
as RO, Rl, and PSW as memory (e.g., MDUMP) you will not get the
right results. These registers are used by the downloaded Orion
routine, which displays memory.

July 15, 1986 page 8-42 -- Target Notes --

-- DDB-48 --

Special STARTUP

STARTUP is specially redefined for the 8048 family because
most chips fetch a single location hundreds of times after reset
before they actually start program execution. If you really want
to see the first fetches after reset, just enter RESET NORMT s.

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

m n OUT writes
register change: n =A
n RN.AME name assigns
opcode.

m to port n. n INP reads port n.
n =RO n =Rl ... n =R7 n =T

10 char name to reg n. op EXEC executes

ENI enables interrupts. DISI disables. ENTCTI, DISTCTI for
counter.
Type EXTRAM or INTRAM to select ram mode.
Use 80nn or TRAM nn to access location nn with MDUMP, etc.
See also HD . {locations 7FA-F reserved, overlay starts at 7DE)

July 15, 1986 page 8-43 -- Target Notes --

-- DDB-48 --

Trace and breakpoint display

~ (set up default emulation memory, load sample program)

Emulator Memory Enable Status:
E =EMSEG

0 TO 7FF EMENABLE
ok

STARTUP resetting (issue reset to target, and capture cycles after reset on bus)

(from top of buffer)
cy* CONT ADR DATA
-1 FE 0000 2312

1 FE 0002 17
2· FE 0003 AS
3 FE 0004 17
4 FE 0005 A9
5 FE 0006 17
6 FE 0007 AA
7 FE 0008 17
8 FE 0009 AB
9 FE OOOA 17
A FE OOOB AC
B FE OOOC 17
C FE OOOD AD
D FE OOOE 17
E FE OOOF AE
F FE 0010 17

10 FE 0011 AF
11 FE 0012 17
12 FE 0013 AS
13 FE 0014 17
14 FE 0015 17

MOV A,U2
INC A
MOV RO,A
INC A
MOV Rl,A
INC A
MOV R2,A
INC A
MOV R3,A
INC A
MOV R4,A
INC A
MOV R5,A
INC A
MOV R6,A
INC A
MOV R7,A
INC A
MOV RO,A
INC A
INC A

HDATA MISC
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5) ok

BESET 3A RB resetting (set a breakpoint at address 003A, run to get breakpoint
control)

A=41 PSW=48(cAfb) RO=lB Rl=l4 R2=15 R3=16 R4=17 R5=18 R6=19 R7=1A T=OO
003A 17 INC A (next step) ok

July 15, 1986 page 8-44 -- Target Notes --

8051 DISASSENBLER/DEBUGGER <PDB-511 & <ooB-51Pl

DDB-51 supports any of the following processors with
separate ROM sockets (in expanded mode) : 8051, 80C51, 8031, 8032,
or 8052.

DDB-51P supports the OKI piggyback M80C51VS.

Both the piggyback and non-piggyback processors require the
E analyzer cable.

8031

P18 1 48 Ucc
P11 2 39 P88
P12 3 38 P81
P13 4 37 P82
P14 5 36 P83

V+ P15 6 35 P84
rom lt>-P16 7 34 P85

Un;Lab P17 8 33 P86
RST g 32 P87

Analyzer RX8 18 31 EA- K2-
Cable RES- 74LS14 TX 1 11 38 ALE

HnI IH2 12 29 PSH
IH3 13 28 P27
T04 14 27 P26
T15 15 26 P25

UR- UR6 16 25 P24
K1- RD7 17 24 P23

XT2 18 23 P22
XT2 19 22 P21

GHD Uss 28 21 P28

80C51

P18 1 48 Ucc
P11 2 39 P88
P12 3 38 P81
P13 4 37 P82
P14 5 36 P83

lf>-
P15 6 35 P84

rom P16 7 34 P85
Un;Lab P17 8 33 P86

RST 9 32 P87
Analyzer RX8 18 31 EA-
Cable RES-

74LS14 Hnl
TX1 11 38 ALE K2-
IH2 12 29 PSH
IH3 13 28 P27

A 11 Connected to ROM Plug
T04 14 27 P26
T15 15 26 P25

A 12-A 15 connected to ground UR6 16 25 P24
K 1-connected to ground RD7 17 24 P23
RD-, WR- not coM~cted(floating high) XI2J . .1.8 23 TP22

XT2 19 22 P21
GHD Uss 28 21 P28

July 15, 1986 page 8-45 -- Target Notes --

-- DDB-51 --

Reset circuit

The reset circuit on the 8051 is non-standard (high-going
rather than low-going), so the UniLab's open-collector active low
RES- output on the analyzer cable will not work if connected
directly. We suggest that you build the adapter curcuit shown
in the pinout diagram above or add the components to your prototype
system. (The debugger will not work without a working automatic
reset.)

The disassembler and hidden cycles

The 8051 disassembler automatically skips extra fetches
that occur during instruction execution, and pre-fetches that
occur before branches. If you want to see all the cycles, you
can turn the disassembler off with DASM' .

Hidden cycles and the analyzer

Since the analyzer sees all cycles yo~ should be careful about
~(,aetting a trigger on the address immediately after a conditional

;~i' ~jump. The UniLab will trigger on that address when it is pre-
~· 6fetched, whether the branch occurs or not. Breakpoints at such
~ ~ an address, however, will be effective only if the instruction

1,l /i is actually executed by the microprocessor.
~r /!
~ ~ Reserved area

The 8051 debugger requires 8 reserved memory bytes
(FFC0-FFC7) at the top of memory for saving and restoring
interrupt enable status, and returning to the program. This
memory space must be enabled.

Enter ALSO FFOO EMENABLE after the EMENABLE statements you
would normally make for your system.

The size of the breakpoint

The breakpoint is set by patching a 3-byte LCALL instruction
into your program. If your program tries to jump to or otherwise
use either of the 2 bytes following the address of a breakpoint,
there will be trouble.

Each time a new breakpoint is set, the previous breakpoint
locations have their original contents restored.

Overlay area

The program memory locations above FFCO are used for
overlaying the debug routines. You can use them for programs, if
necessary, as they are restored between debug steps, but you
cannot use the debugger on them.

July 15, 1986 page 8-46 -- Target Notes --

-- DDB-51 --

All sorts of memory

The 8051 family makes use of a somewhat confusing scheme of
overlapping areas of memory. When you refer to address 83, for
example, you could be trying to access internal RAM, external RAM,
external ROM, or the special function registers. See the chart on
the following page.

The UniLab software deals with this quirk by providing you
with commands that "set the context." After you issue the command
EXTRAM, the software knows that you are trying to access external
RJ\.."'1. The other "context" words are INTRAM and PMEM. For more
information, read the discussion that follows, and the separate
writeup on the DDB-51.

Internal registers

The 7 working registers and A, PSW, SP, DPTR, and IE are
displayed automatically at the breakpoint.

Naming internal registers

If you are not changing register banks much, you can assign
mnemonic names to R0-R7. For example, if you enter 6 RNAME
USER#, the breakpoint display will print USER# instead of R6.

Pre-assigned names

The internal registers of the 8051 are assigned symbolic
names automatically when the symbol table is turned on.

Altering internal registers

You can change any of the registers on the breakpoint
display (except SP) while stopped at a breakpoint. Enter the
desired contents followed by a space, then the register name
preceded by an equal sign.

For example, 12 =A will put 12 in the A register.

Accessing internal memory

The internal memory locations can be written to by entering

<data> <adr> R!

and displayed with
<adr> R?

All of the named locations such as PO, IP, THO, etc are
defined as constants, so you can, for example, look at IP by
entering IP R?. Enter 23 PO R! to write 23 to port 0.

July 15, 1986 page 8-47 -- Target Notes --

-- DDB-51 --

Accessing external memory

If you have external memory, you can access it with any of
the commands used to read and write emulation memory such as
MDUMP, MFILL, MMOVE, M?, MM?, M!, and MM!. They will go to
external memory if the address isn't enabled for emulation.

Enter EXTRAM to access external RAM that occupies the same
addresses as emulation ROM.

Access to internal RAM

Enter INTRAM to use MDUMP on the internal RAM (addresses
0000 through OOFF) .

PMEM resets to normal use of MDUMP.

You use <byte> <address> DR! to store a byte into
internal RAM.

Type <address> DR? to display contents of internal RAM.

CHART OF 8051 FAMILY OVERLAPPING MEMORY MAP
AND THE UniLab COMMANDS TO ACCESS EACH

.

$80

SpecieJ
Function
Registers

'-::::::: :' .
.

~=-=-=-= =~

R?R!

Rom
E>4emeJ (E>4emeJ or

Ram Pigg'yba.ck) Top of
'-:::::::::' --,. ... ·.·.·.~ -tv1emory
: Spa.ce "'

.
0- ·-··-··-·-··-··~· --------~=·:·:·:·:~ --~=·=·=·=·=~ - 0

IN TRAM

(M>UMP I M? Mm
DR?, DR!)

EX TRAM

(i'vl>UMP I M? I rvM? I
tvt= ILL, M, ~

PtvEM
(Ail UDL patching

commands)

July 15, 1986 page 8-48 -- Target Notes --

-- DDB-51 --

Help Screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

n R? displays, m n R! writes ram 0-$7F and special reg's $80-$FF.
n DR? displays, m n DR! writes ram $80-$FF.

INTRAM allows mem read of internal RAM, O-$FF
PMEM for norm or EXTRAM for external ram read.

n RNAME name assigns 10 char name to working reg n on bp display
n =A, n =IE, n =DPTR, n =RO, n =Rl, n =R7 changes
registers.

BPEX word executes word (macro) at breakpoint.

Trace and breakpoint display

~ (Load in sample program, set up emulation memory)

Emulator Memory Enable Status:
F =EMSEG

0 TO 7FF EMENABLE (enable rom area)

ALSO F800 TO FFFF EMENABLE (enable overlay area)

STARTUP resetting (reset target, show first cycles of operation)

cy# CONT ADR DATA HD AT A MISC
0 7F 0000 020030 LJMP 30 11111111 11111111
4 7F 0030 758168 MOV 81,*68 11111111 11111111 (set stack ptr)

8 7F 0033 7412 MOV A,U2 11111111 11111111
A 7F 0035 7834 MOV R0,*34 11111111 11111111
c 7F 0037 7956 MOV Rl,#56 11111111 11111111
E '7F 0039 7A78 MOV R2, *78 11111111 11111111

10 7F 003B 7B9A MOV R3, *9A 11111111 11111111
12 7F 003D 7C04 MOV R4,*4 11111111 11111111
14 7F 003F 04 INC A 11111111 11111111
16 7F 0040 04 INC A 11111111 11111111
18 7F 0041 04 INC A 11111111 11111111
lA 7F 0042 04 INC A 11111111 11111111
lC 7F 0043 04 INC A 11111111 11111111
lE 7F 0044 04 INC A 11111111 11111111
20 7F 0045 04 INC A 11111111 11111111
22 7F 0046 04 INC A 11111111 11111111
24 7F 0047 04 INC A 11111111 11111111
26 7F 0048 04 INC A 11111111 11111111
28 7F 0049 04 INC A 11111111 11111111
2A 7F 004A 04 INC A 11111111 11111111
2C 7F 004B 04 INC A 11111111 11111111
Pg Dn (trace resume) Horne (top) n TN (from step n) T (from n=-5

BESET 40 RB resetting (set a breakpoint at address $0040, reset target
and run until we break to get debug control)

) ok

PC= 40 A=13 PSW=Ol(cafbbv-P) R0=34 Rl=56 R2=78 R3=9A R4=04 R5=03 R6=FF R7=FF
DPTR= 0 SP=68 IE=60

0040 04 INC A (next step) ok

July 15, 1986 page 8-49 -- Target Notes --

8085 DISASSEMBLER/DEBUGGER CDDB-85)

This version supports the 8085 and 8080 processors.

It works almost exactly the same as the Z80 package.

The 8085 requires the A analyzer cable.

The 8080 requires the H analyzer cable.

Patch word

For operation with the 8080, you enter 8080PATCH to patch
the program, then SAVE-SYS to save the newly configured software.

A Cable 808S A Cable

X1 1 40 Ucc
X2 2 39 HOLD

K2 Reset Out 3 38 HLDA
SOD 4 37 CLK <out>
SID 5 36 RESET IH ... --NMI from --TRAP 6 3S READY Connect to Unilab RST 7.5 7 34 101n C7 RC network

RST 6.5 8 33 S1 C4 on RESET
RST 5.5 9 32 RD- RD-

IHTR 10 31 llR- llR-
K1 IHTA 11 30 ALE ALE

ADO 12 29 so cs
ADI 13 28 A1S A1S
AD2 14 27 A14 A14..._ From Emulator
AD3 1S 26 A13 R131 Rom Cable
AD4 16 2S R12 R12
ADS 17 24 A11 R11
RD6 18 23 A10
AD7 19 22 A9

GHD Uss 20 21 RS

NMI note

The NMI wire from the UniLab must be feed through an inverting
circuit before connecting to the TRAP pin of the 8085.

The 8080 does not haY.e. a TRAP pin. So the NMI features will
not work for the 8080 (NMI, SSTEP, RI, SI) .

July 15, 1986 Page 8-50 -- Target Notes --

-- DDB-85 --

H Cable 8080 H Cable

R10 1 40 R 11 R11
GttD GttD 2 39 A14 R14

C6 04 3 38 R13 R13
C7 DS 4 37 R12 R12

D6 s 36 R1S R1S
D7 6 3S R9
D3 7 34 RS From Emulator
D2 8 33 R7 Rom Cable

cs D1 9 32 R6
C4 DO 10 31 RS

-Su 11 30 R4
......... RESET 12 29 R3

Connect to HOLD 13 28 +12u
IHTE 14 27 R2

RC network 12 1S 26 R1
on RESET IHE 16 2S RO

ALE DBIH 17 24 llAIT
RD- UR- 18 23 READY

SYltC 19 22 11
+5u 20 21 HLDR

About " ... "

Note that since the second byte is not fetched on
conditional jumps that don't actually jump, you will see a ...
on the disassembled display in place of the destination address.

Reserved area

Bytes eight through eleven are reserved. The overlay is
above there.

Reserved resources

In additon, 3 bytes of RAM at addresses 24-26 are used for the
8085 NMI vector.

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

m n OUT- writes mto port n. n INP··- react·s port n.
EINT reenables target interrupts after bp, DINT leaves disabled
register change: n =AF n =BC n =DE n =HL
See also HD . (locations 8-11 reserved, overlay above.)

July 15, 1986 Page 8-51 -- Target Notes --

-- DDB-8S --

Trace and breakpoint display

~ (set up default emulation memory, load sample program)
Emulator Memory Enable Status:

F =EMSEG
0 TO 7FF EMENABLE

ok
STARTUP resetting (issue reset

(from top of ·buffer)
to target, show first cycles upon start up)

cyi CONT ADR DATA
0 7F 0000 C38000
3 7F 0080 31001A
6 7F 0083 3E12
8 7F 008S 01S634
B

E

11
12
13

7F 0088 119A78
7F 008B 21DEBC
7F 008E CS
6F 19FF 34 write
6F 19FE S6 write

14 7F 008F Cl
lS SF 19FE 56 read
16 SF 19FF 34 read
17 7F 0090 3C
18 7F 0091 3C
19 7F 0092 3C
lA 7F 0093 3C
lB 7F 0094 3C
lC 7F 009S 3C
lD 7F 0096 3C
lE 7F 0097 3C
lF 7F 0098 3C

JMP 80
LXI SP,lAOO
MVI A,12
LXI B,34S6
LXI D,789A
LXI H,BCDE
PUSH B

POP B

INR A
INR A
INR A
INR A
INR A
INR A
INR A
INR A
INR A

HDATA MISC
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5) ok

BESET SF RB resetting (set a breakpoint at OOBF, reset target, run to
breakpoint)
AF=1214 (sz-A-Pnc) BC=3456 DE=789A HL=BCDE SP=879S

008F Cl POP B (next step) ok

July 15, 1986 Page 8-52 -- Target Notes --

DISASSEM:BLER/DEBQGGER CDDB-86) & CDDB-88)

DDB-86 supports the 8086, 80186, and 80286 processors.

DDB-88 supports the 8088 and 80188 processors.

The 8086/88 in min mode requires the A analyzer cable.
The 8086/88 in max mode requires the L analyzer cable.
The 80186/188 requires the A analyzer cable.
The 80286 requires the I analyzer cable.

Patch words

To configure DDB-86 properly you must first enter one of the
following: 86MIN, 186PATCH, or 286PATCH, depending upon which
processor you will be using.

To configure DDB-88 properly, you must initially enter one
of the following commands: 88MIN, 88MAX, or 188PATCH .

. Then you must use SAVE-SYS to save the newly configured
software.

8088/86 max

Gnd 1 48 Ucc cable L
A14 A14 2 39 A15 A15 connections
A13 A13 3 38 A16 A16 to 8288 bus
A12 A12 4 37 A17 A17 control I er A11 A11 5 36 A18 A18

A18 6 35 A1Q A19
AQ 7 34 BHE/SSO
AS 8 33 ""' A7 g 32 RD K2-A6. 18 31 HLD
A5 11 38 HLD ALE K1-
A4 12 29 LIR
A3 13 28 n10 C7
A2 14 27 DTR C6 LIR-A1 15 26 DEtt C5

"From ~ A9 16 25 ALE RD-

NMI .-ttn1 17 24 IHA
"-Inverter~ IttT 18 23 TST

Clk 19 22 ROY
GttO Gnd 28 21 RST ••• <to reset cap>

July 15, 1986 Page 8-53 -- Target Notes --

-- DDB-86 & DDB-88 --

8088/86 min

Gnd 1 49 Ucc
R14 R14 2 39 R1S R1S
R13 R13 3 38 R16 R16
R12 R12 4 37 R17 R17
R11 R11 s 36 R18 R18

R19 6 3S R19 R19
R9 7 34 BHE/SSO CS
RS 8 33 ""' R7 9 32 RD RD-
R6 19 31 HLD
RS 11 39 HLD
R4 12 29 LIR LIR-
R3 13 28 n10 C7
R2 14 27 DTR K1-

from NMI R1 1S 26 DEH
inverter R9 16 2S ALE ALE

Hnl 17 24 IHA K2-
IHT 18 23 TST
Clk 19 22 ROY

GHD Gnd 29 21 RST---From Reset
Circuit

Special note on 86MIN

The SO signal is not brought out, so address bits A16-19 are
used to identify fetch cycles. The code is assumed to be in
segment Fxxxx. You can include a larger memory area by changing
system constants FMASK and F=, which are now set to CF and SF
respectively.

For example, to allow code fetches in addresses Exxxx to
Fxxxx, change FMASK to CE by entering CE ' FMASK ! . (FMASK is
ANDed with the CONT inputs and the result is tested for equality
to F= to determine if a cycle is a fetch cycle.)

NMI connection

The NMI input on the 8088 and 8086 family members, requires a
positive - going transition, the opposite of most processors. You
cannot connect the UniLab's negative-going NMI output directly to
the NMI pin of the 8088 or 8086 (pin 17).

Instead, you must put the signal through an inverting
circuit first.

July 15, 1986 Page 8-54 -- Target Notes --

" QI -.Q

" (J

cable a

cs so
C6 S1
C7 S2

ARDY
CLKOUT

RESET
X2
X1

USS
ALE ALE/QSO
RD RD/Qsno
MR MR/QS1

S7/BHE
A19 A19/S6
A18 A18/S5
A17 A17/S4
A16 A16/S3

" QI -.Q
Cl
u

Connections

"from NMI~
inverter

\..circuit ~

=­cz:cc z: z:

'' CZ:Q>~t- c- NM= c-NM
Q~QU~-t-t-Uli-li-'Z:~~~~
~===~cz:z:uz:z:t-~UUUU
==~~t-z:--~--QQCCCC

80186/8

~~·~M~N•U-MQN~-==
-=-=-=-=u-=-=====
========~==== CZ: a:
~ • M N -- - - - -a: a: a: a: a:

-- DDB-86 & DDB-88 --

ucs
LCS
PCS6/A2
PCS5/A1
PCS4
PCS3
PCS2
PCS1

cable a

USS GHD
PCSO
RES ***
TnR OUT1
TnR OUT 0
TnR IH 1
TnR IH 0
DRQ1
DRQO

The DIP-clip is not practical for the 80188, 80186, and
80286 packages. Normally this is not a problem, however, since you
can pick up the required signals by placing DIP clips on the bus
controller and address latch ICs.

July 15, 1986 Page 8-55 -- Target Notes --

-- DDB-86 & DDB-88 --

pisassembler

Data memory reads and writes

The 8088/6 disassemblers automatically unscramble the bus
cycles into two separate streams: if a data memory read or write
occurs during the decoding of an instruction its display is
deferred until the instruction's disassembly is complete.

The fetch and non-fetch cycles are thus treated as two
separate streams. The read and write cycles that result from an
instruction will usually appear on the trace display one or two
instructions later due to prefetching.

You can cause the disassembler to group data memory access
cycles with the commands that cause them, by using the command
ALIGN. Turn this back off with ALIGN'. Or, use the Mode panel
to toggle this option off and on (F8) .

The disassembler and hidden cycles

Extra pref etches that are not executed due to a branch are
automatically thrown away by the disassembler. You can look at
the true sequence of cycles by turning the disassembler off with
DASM'.

Hidden cycles and the analyzer

Don't try to trigger the analyzer on the 2 bytes immediately
after a conditional jump. They will be pre-fetched even if they
aren't executed. (Breakpoints in these bytes are OK however.)

Special MISC display

The MISC display column of the disassembled trace display
shows the state of the MISC inputs during the first cycle of the
disassembled instruction. (Most other UniLab disassemblers show
the MISC bits during the last cycle of the disassembled
instruction.)

pebugger

A demo program is included with your system so that you can
familiarize yourself with the debug commands while working on a
program that is known to work. To load this program just enter
LTARG. If you then enter STARTUP you will see a trace of the
program, which simply initializes the stack pointer to 100,
installs the breakpoint vector, then sets all registers to known
values. If you then enter RESET F842 RB you will see a
breakpoint display.

July 15, 1986 Page 8-56 -- Target Notes --

-- DDB-86 & DDB-88 --

Reserved Area

The reserved area is at FFFBl and B2. The overlay area is
above.

Overlay area

The locations above FFFB2 are used as an overlay area but
are restored between operations, so you can use them but the
debugger may not work on them. Note that this top end of memory
must be emulated for the debugger to work.

Required code in user program

The INT3 instruction is used as a breakpoint code so your
program must install the correct pointer at locations
OOOOC-OOOOF. Your program must install the vector at 00004-7 if
you want to be able to use the single step function. The vector
at 00008-B is used for the NMI feature.

Most programs will initialize the interrupt pointers from an
array in ROM, or you can include this code:

C7060400B1FF MOV 04H,OFFB1H
C706060000FO MOV 06H,OFOOOH
C7060800B1FF MOV 08H,OFFB1H
C7060AOOOOFO MOV OAH,OFOOOH
C7060COOB1FF MOV OCH, OFFBlH
C7060EOOOOFO MOV OEH,OFOOOH

If your target prog~am doesn't initialize these locations,
you can run the demo program LTARG to initialize them, then load
in and run your program.

,July 15, 1986 Page 8-57 -- Target Notes --

-- DDB-86 & DDB-88 --

Segments and addresses

All operations that require an address expect a 16-bit
offset address from the "current user segment."

You can change the current segment with the CS: or DS: or
ES: or SS:. The segment will remain selected until another
segment is selected. Other commands allow you to change the
value of the segments.

Note that the absolute address is calculated by multiplying
the current segment by 10 (hex) and then adding the value of the
offset.

Use SEGS to find the current value of all the segments, and
the current segment.

You can put the segment selection on the same line as the
command. For example:

CS: 1234 100 MDUMP

Consult the Disassembler/Debugger writeup for more details.

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

Register change: n =F n =AX n =BX
n =BP n =SI n =DI n =CS n =DS

CS: DS: ES: SS: select segments for
b p OOTB w p OOTW p INB p INW
see also HD FFFB1-FFFB2 reserved,

July 15, 1986 Page 8-58

n =CX n =DX
n =ES n =IP
M operations.
for port I/O
overlay above.

-- Target Notes --

-- DDB-86 & DDB-88 --

Trace and breakpoint display

8088 Trace display

A>~(User entry into program •.. Note user words entered at terminal are
under l j ngd)

Uni Lab
II

Version 3.00

Copyright 1986
Orion Instruments
Redwood City, CA

8088 disassembler installed - with debugger. (Note log on display)

~ (load built-in sample program, set up emulation area)

STARTUP resetting (Reset target, show first cycles of operation)

(from top of buffer)
cyi CONT ADR DATA

0 9F CS:07FO EA000080FF JMP O,FF80:
6 9F CS:OOOO B80000 MOV AX,0
9 9F CS:0003 8EDO MOV SS,AX
B 9F CS:0005 BCOOOl MOV SP,100
E 9F CS:0008 C7060COOB1FF MOV [C],FFBl

15 DO DS:OOOC Bl write interrupt i3
16 DO DS:OOOD FF write interrupt 13
14 9F CS:OOOE C7060EOOOOFO MOV [E],FOOO
lD DO DS:OOOE 00 write interrupt f3
lE DO DS:OOOF FO write interrupt f3
lC 9F CS:0014 C7060800B1FF MOV [8],FFBl
25 DO DS:0008 Bl write interrupt #2
26 DO DS:0009 FF write interrupt f2
24 9F CS:OOlA C7060AOOOOFO MOV [A],FOOO
2D DO DS:OOOA 00 write interrupt f2
2E DO DS:OOOB FO write interrupt i2
2C 9F CS:0020 C7060400B1FF MOV [4],FFBl
35 DO DS:0004 Bl write interrupt fl
36 DO DS:0005 FF write interrupt fl
34 9F CS:0026 C706060000FO MOV [6],FOOO
3D DO DS:0006 00 write interrupt fl

HDATA MISC
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5)

BESET 50 RB resetting (set a breakpoint at address 50)

IP=0050 F=F002(---oditsz-a-p-c)
CS=FF80 DS=3000 SS=OOOO ES=2000
CS:0050 40 INC AX

AX=l237 BX=5678 CX=9ABC DX=DEFO
SP=OOFE BP=llll DI=3333 SI=2222

(next step) ok

July 15, 1986 Page 8-59 -- Target Notes --

-- DDB-86 & DDB-88 --

8086 Trace display

A>.Uli.8.ir Hook up BOB6 target system to show trace differences from BOBB •••)

Uni Lab
II

Version 3.00

Copyright 1986
Orion Instruments
Redwood City, CA

8086 disassembler installed - with debugger. (Note log on display)

lll'.ABG (load built-in sample program, set up emulation area)

STARTUP resetting (Reset target, show first cycles of 8086 operation)

(from top of buffer)
cyi CONT ADR DATA

0 BF CS:O?FO EA000080FF JMP O,FF80:
4 BF CS:OOOO B80000 MOV AX,O
5 BF CS:0003 8EDO MOV SS,AX
6 BF CS:OOOS BCOOOl MOV SP,100
8 BF CS:0008 C7060COOB1FF MOV [C],FFBl
D FO DS:OOOC FFBl write interrupt #3
B BF CS:OOOE C7060EOOOOFO MOV [E],FOOO

11 FO DS:OOOE FOOO write interrupt #3
F BF CS:0014 C7060800B1FF MOV [8],FFBl

15 FO DS:0008 FFBl write interrupt #2
13 BF CS:OOlA C7060AOOOOFO MOV [A],FOOO
19 FO DS:OOOA FOOO write interrupt #2
17 BF CS:0020 C7060400B1FF MOV [4],FFBl
lD FO DS:0004 FFBl write interrupt fl
lB BF CS:0026 C706060000FO MOV [6],FOOO
21 FO DS:0006 FOOO write interrupt #1
lF BF CS:002C B80020 MOV AX,2000
20 BF CS:002F 8ECO MOV ES,AX
22 BF CS:0031 B80030 MOV AX,3000
24 BF CS:0034 8ED8 MOV DS,AX
25 BF CS:0036 B83412 MOV AX,1234

MISC
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5

RESET 50 RB resetting (Reset target, set breakpoint at 50 in code segment)

IP=OOSO F=F002(---oditsz-a-p-c)
CS=FF80 DS=3000 SS=OOOO ES=2000
CS:OOSO 40 INC AX

AX=l237 BX=5678 CX=9ABC DX=DEFO
SP=OlOO BP=llll DI=3333 SI=2222

(next step) ok

July 15, 1986 Page 8-60 -- Target Notes --

8096 DISASSEMSLER/DEBUGGER CDDB-961

This version supports the ROM-less versions of the MCS-96
family of Intel processors. We fully support the 64 pin
packages, the 8096 and the 8097.

We cannot provide the NMI command nor related features on
the 48 pin packages, the 8094 and 8095, since those do not have
an NMI pin.

All members of the MCS-96 family require the R analyzer
cable.

Ro• Cable

AO ---+
A12---+ Fro• latch
A13---+ outputs
A14---+ <not direct
R15---+ to 11P pins>

ACHS P0.5
ACH4 P0.4

A HG HD
UREF

UPD
EXTIHT P2.2

RESET
XO P2. 1
XO P2.0

~RC P1 0
~network P1: 1

P1.2
P1.3
P1.4
HSIO
HSI 1

HS12 HS04

July 15, 1986

fro• Hnl
inverter @

-NM•~~~=~C-NM•~~~ --------68 18
67 19
66 20
65 21
64 22
63 23
62 24
61 ~
60 8096 26
59 27
58 28
57 29
56 30
55 31
54 32
53 33

5~=~=~~~•MN-c~=~~~4
~~········••MMMMM

~=-~~~~NM0m~~1=~•> === I I I ·==0m I •:Z:: tQ
000---N00~~NNlmN=
===a.a.a.a.== I a.a. a.~
M z: Ii-

~ I ~ ~

@ ®

ADO P3.0
RD1 P3. 1
AD2 P3.2
AD3 P3.3
RD4 P3.4
RDS P3.5
AD6 P3.6
AD7 P3.7
ADS P4.0
AD9 P4. 1
AD10 P4.2
AD11 P4.3
AD12 P4.4
A013 P4.5
AD14 P4.6
AD15 P4.7
T2CLK P2.3

Page 8-61 -- Target Notes --

-- DDB-96 --

The MCS-96 family:

I/O
48 PIN

64 PIN

Caution

d
d&a

d
d&a

ROMLESS
8094
8095

8096
8097

ROM
8394
8395

8396
8397

SSTEP is only appropriate for following branches. Otherwise
it tends to "double-step."

Use N to single-step on instructions other than jumps-- or
to "fall through" jumps.

Reserved resources

Note that INTEL reserves 2012H through 2079H for "Factory
test code." And they reserve NMI for use only by their
development system. NMI jumps to location 00.

Since the internal RAM cannot be used for program code, any
fetches from the address range 00 to 255 go to external memory.
INTEL reserves use of that range for their development code.

The Orion Debugger uses all the above resources anyway.

We reserve locations 2016H to 201CH for our debugger vector.
The overlay area-- the place we put the routines that read your
processor's internal state-- takes up 2016H and above.

You can change the starting address of overlay area with
<addr> =OVERLAY. But right now it occupies the hole in the
memory map that INTEL uses for factory test code, so you are
advised to not move the overlay area.

The Orion debugger also uses register 50H. You can change
which register is used with the command <adr> =DBG.

July 15, 1986 Page 8-62 -- Target Notes --

-- DDB-96 --

Internal registers

The named registers of the 8096 family (AX, BX, ex, and DX)
are symbolic names assigned to an arbitrary eight byte region of
the register file. The degugger assumes that your program uses
the region lCH through 23H.

The IS-xx commands can reassign the names somewhere else.
For example, 44 IS-AX would tell the Orion debugger that your
target program uses register 44 (hex) as register AX.

See the separate document on the 8096 debugger/disassembler
for more details.

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

Register change: n =F n =AX n =BX
Store to any register: n reg# R!
Change register assignment: n IS-AX

n =CX n =DX
Display any register. reg# R?

n IS-BX n IS-CX n IS-DX

Display special function register names: SHOW-REGS
Assign a symbolic name to a register: n RN.AME name
Show - don't show reg. names: SHOW-NAMES I HIDE-NAMES
Adjust - don't adjust memory cycles. ALIGN I ALIGN'
See also HD. 2016-201c reserved, overlay above.

July 15, 1986 Page 8-63 -- Target Notes --

-- DDB-96 --

Trace and breakpoint display

~ (load built in sample program, set up default emulation memory area)
Emulator Memory Enable Status:

F =EMSEG
0 TO 2FFF EMENABLE

ok

S~ARTUP (Reset target, capture first cycles of operation)

resetting
(from top of buffer)
cyf CONT ADR DATA MISC

0 FF 2080 A1004118 LD SP,#4100 11111111
2 FF 2084 AlOOAOlC LD AX, #AOOO 11111111
4 FF 2088 AlOOBOlE LD BX,#BOOO 11111111
6 FF 208C A100C020 LD CX,#COOO 11111111
8 FF 2090 Al00D022 LD DX,f:DOOO 11111111
A FF 2094 CAlC PUSH [AX] 11111111
c EF AOOO AOOO read 11111111
D CF 40FE AOOO write 11111111
B FF 2096 CElC POP [AX] 11111111
F EF 40FE AOOO read 11111111

10 CF AOOO AOOO write 11111111
E FF 2098 071C INC AX 11111111

11 FF 209A 071C INC AX 11111111
12 FF 209C 071C INC AX 11111111
13 FF 209E 071C INC AX 11111111
14 FF 20AO 071C INC AX 11111111
15 FF 20A2 071C INC AX 11111111
16 FF 20A4 071C INC AX 11111111
17 FF 20A6 071C INC AX 11111111
18 FF 20A8 071C INC AX 11111111
19 FF 20AA 071C INC AX 11111111

Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5

BESET 209E RB resetting (enable reset, run to address 209E and break)

SP = 4100 AX = A003 BX = BOOO ex = cooo DX = DOOO
FLAGS= 4000(zNvtc.ismrn:mmmmmm)

209E 071C INC AX

July 15, 1986 Page 8-64

(next step) ok

-- Target Notes --

SUPER 8 DISASSEKBLER/DEBUGGER CDDB-S8l

This version supports the Super 8 family, including all
ROMless and piggyback chips. As of July, 1986, Zilog has released
one 48-pin ROMless chip, the 8800, and one prototype chip, the
8822.

The Super 8 requires the D cable.

~ablg D caaagcliaas tg Suggc 8
D Cable Super 8 D Cable

P10 1 48 POO
P11 2 47 P01
P12 3 46 P02
P13 4 45 P03 A11
P14 5 44 P04 A12 from
P15 6 43 P05 A13 Emulator
P16 7 42 P06 A14 Rom Cable
P17 8 41 P07 A15
P24 9 40 P34
P25 10 39 P35
Yee 11 38 AS
XT2 12 37 OS RD-
XT1 13 36 P40
P44 14 35 P41
P45 15 34 Yss GHD
P46 16 33 P42
P47 17 32 P43

C7 'Connect tci P22 18 31 R/M
P32 19 30 RST ... __, Reset RC
P33 20 29 P36 "-Hetwork

~
P23 21 28 P37
P20 22 27 P27
P21 23 26 P26
P31 24 25 P30

Reserved area

The area form 0781 to 0785 is reserved . The overlay starts
at 0786. You can alter the location of reserved and overlay areas
with <adr> =OVERLAY.

Reserved resources

The debugger also requires 3 bytes of RAM from addresses 24
to 26. You can alter the location of that area with <adr> =PTR.

July 15, 1986 Page 8-65 -- Tatget Notes --

-- DDB-S8 --

Accessing external RAM

After you have established debug control (see RB or NMI in the
Command Reference chapter) you can access internal RAM with any
of the commands used to read and write emulation memory such as
MDUMP, MFILL, MMOVE, M?, MM?, M!, and MM! . These commands
automatically go to external RAM if the address isn't enabled for
emulation.

Enter EXTRAM to access external RAM that occupies the same
addresses as emulation ROM. You use the command EXTROM when you
want to switch back to accessing emulation ROM at those addresses.

Help screen

Press CTRL-F3 to get the help screen that includes this
target-specfic information:

n R? displays register 0-FF. m n R! writes m to register n
n DR? displays data reg CO-FF. m n DR! writes m to data reg n
n RNAME name assigns 10 char name to working reg n on bp

display
=PTR defines 3 bytes ram used by debug. Must load before bkpt.
EXTRAM or EXTROM select target ram/rom read mode.

(locations 0781-0785 reserved, overlay above there)

July 15, 1986 Page 8-£6 -- Tatget Notes --

-- DDB-S8 --

Trace and breakpoint display

STAATYP resetting (reset target, show trace of startup routine)

cy# CONT ADR DATA
-2 FF 0020 E66007

1 FF 0023 E66181
4 FF 0026 C6D80000
8 FF 002A C6C01234
C FF 002E C6C25678

10
14
18

FF 0032 C6C4ABCD
FF 0036 C6C6EF12
FF 003A C6C80123

lC FF 003E C6CA4567
20 FF 0042 C6CC89AB
24 FF 0046 C6CECDEF
28 FF 004A EE
29 FF 004B EE
2A FF 004C EE
2B FF 0040 EE
2C FF 004E EE
20 FF 004F EE
2E FF 0050 EE
2F FF 0051 EE
30 FF 0052 EE
31 FF 0053 EE

LD 60, fl
LD 61,#81
LDW D8,#0
LDW C0,#1234
LDW C2,#5678
LDW C4,#ABCD
LDW C6,:fl:EF12
LDW C8,U23
LDW CA, *4567
LDW CC,#89AB
LDW CE,#CDEF
INC RE
INC RE
INC RE
INC RE
INC RE
INC RE
INC RE
INC RE
INC RE
INC RE

HDATA MISC
11111111 11111111 (load ptr with address

11111111 11111111 of overlay .•.)

11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111
11111111 11111111

PgDn Home (top) n TN (from step n) T (from n=-2)

RESET SO RB resetting (set a breakpoint at address 50 and run to get debug
control)

PC=0050 FLAGS=AO(CzSodhfb) RPO=CO RPl=CB SP=OOOO IMR=6E
R0=12 Rl=34 R2=56 R3=78 R4=AB R5=CD R6=EF R7=12
RB=Ol R9=23 RA=45 RB=67 RC=89 RD=AB RE=D3 RF=EF
0050 EE INC RE (next step) ok

July 15, 1986 Page 8-67 -- Tatget Notes --

Z-8 DISASSEHBLER/DEBUGGER <oDB-Z8)

This version supports the Z-8 with separate ROM or the
piggyback version.

The Z8 requires the D analyzer cable.

d Cable ZS

+Su 1 40 P36
XT2 2 39 P31
XT1 3 38 P27

(Res to +ca~ P37 4 37 P26

"""···
P30 5 36 P25
RST 6 35 P24

C7 RU- 7 34 P23
RD- OS- 8 33 P22

(RD- for Piggy back)-- RS- 9 32 P21
P35 10 31 P20

GHD GHD 11 30 P33
P32 12 29 P34
POD 13 28 P17
POI 14 27 P16
P02 15 26 P15

Connected A11 P03 16 25 P14
to Emulato ~A12 P04 17 24 P13
Rom Cable :...---A13 P05 18 23 P12
(grounded ---A14 P06 19 22 P11

on pback) A15 P07 20 21 P10

Note: The above diagram is for a separate ROM configuration. See
Appendix C for piggyback wiring.

The disassembler and hidden cycles

The Z-8 disassembler automatically skips extra fetches that
occur during instruction execution, and pre-fetches that occur
before branches. You can look at these cycles by turning the
disassembler off with DASM' .

Special STARTUP

Since the Z-8 does repeated fetches during reset that are
not actually executed, the STARTUP command is redefined to look
for address D immediately after C.

If you want to look at the actual first cycles after reset,
enter RESET NORMT S .

July 15, 1986 Page 8-68 -- Tatget Notes --

-- DDB-Z8 --

Reserved resources

The debugger requires one register pair and 5 reserved
memory locations for breakpoints. The register pair must be
specified by entering <value> =PTR where the value is the
address of the lower numbered register in hex, and is between 3
and 80.

You can make this assignment permanent by entering SAVE-SYS.

Required code in user program

Normally the debugger uses a 2-byte interrupt by assuming
that your program has loaded the address of the Orion breakpoint
routine into the pointer register pair. You must add code to the
beginning of your program to initialize the register pair that
you choose with =PTR.

For example, since the breakpoint address is 7AF, if you
have chosen register 60 as your pointer (by entering 60 =PTR),
your program must include the code:

LD 60,#7
LD 61,#AF

While installation of the pointer is a bit of a nuisance, it
reduces the length of the breakpoint instruction to 2 bytes.
This greatly reduces the possibility of weird effects due to your
program trying to use the third byte of a breakpoint, say by
jumping to the start of the instruction that was there before you
set a breakpoint.

Of course when you exit from the debugger, the code that was
overwritten by the breakpoint code is restored.

As it is you must not place breakpoints on l=byte
instructions if the program might jump to the instruction
following.

Internal registers

The 16 working registers are displayed automatically at the
breakpoint. If you are not changing the register pointer much,
you can assign mnemonic names. For example, if you enter
4 RNAME USER#, the breakpoint display and disassembler will
print USER# instead of R4.

Once you have established debug control, any internal
register can be altered by entering <data> <address> R! or
examined by entering <address> R?. For example, entering 12 34
R! will write 12 into register 34. {Register 34 will be called
R4 on the debug display if the bank of working registers starts
at 30.)

July 15, 1986 Page 8-69 -- Tatget Notes --

-- DDB-Z8 --

To look at the same register you just enter 34 R?. Note
that the Zilog-def ined register names can be used in place of
numbers. For example SIO R? will display the SIO register, and
50 SIO R! will write 50 to it.

Access to external RAM

If you have external memory, you can access it with any of
the commands used to read and write emulation memory, such as
MDUMP, MFILL, MMOVE, M?, MM?, M!, and MM!. They will go to
external memory if the address isn't enabled for emulation.

If you have external memory which uses the same addresses as
emulated program memory, you can fool the UniLab by setting a bit
which is not decoded by the hardware. For example, if your
hardware does not look at AlS (while the UniLab's emulation ROM
does) ,use 8000 to address external location 0.

You can also use PMEM or EXTRAM to select which memory you
mean. This will patch the debugger to use LDC or LDE
instructions for looking at non-emulated memory.

Address lines and the UniLab

Remember that if you have a ROM that is external to the Z-8,
the most significant 8 bits of the Z-8 address output float until
enabled by the program. You must have pulldown or pullup
resistors on these signals so that their initial state is
defined.

If you have used pulldown resistors that are greater than
3K, you will have to replace U14 and UlS in the UniLab with
74HCT373's so that input loading won't cause indeterminate
levels. Orion will supply these chips free of charge if you
need them (the chips are socketed) .

If you have pullup resistors, you can ensure proper startup
by entering ALSO FFOC EMENABLE C 15 FFOC MMOVE to put a copy
of the start of your program up at address FFOC.

HELP Screen

Press CTR-F3 to get the help screen that includes this
target-specific information:

n R? displays register 0-FF. m n R! writes m to register n
n RNAME name assigns 10 char name to working reg n on bp display
=PTR defines bp pointer register pair. Must load before bkpt.
EXTRAM or PMEM select ram mode. use 8nnn to access location nnn.
EXTDATA or INTDATA for stack in ext or int ram
PBACK for piggyback chip, PBACK' for regular.

(locations 7AF -7B3 reserved, overlay above there)

July 15, 1986 Page 8-70 -- Tatget Notes --

-- DDB-Z8 --

Trace and breakpoint display

~ (set up default emulation memory~ load built~in sample program ••)

Emulator Memory Enable Status:
F =EMSEG

0 TO FFF EMENABLE

STAR.TUP resetting (issue reset to target and capture trace of first bus

(from top of buffer)
cy# CONT ADR DATA HDATA MISC
-2 FF OOOC E60000 LD 0,#0 11111111 11111111

1 FF OOOF E6F896 LD F8, *96 11111111 11111111
4 FF 0012 E66007 LD 60, *7 11111111 11111111
7 FF 0015 E661AF LD 61,#AF 11111111 11111111
A FF 0018 E6FD10 LD FD,UO 11111111 11111111
D FF OOlB E6FEOO LD FE,#0 11111111 11111111

10 FF OOlE E6FF40 LD FF,*40 11111111 11111111
13 FF 0021 E6FCOO LD FC,#0 11111111 11111111
16 FF 0024 OCOl LD RO,U 11111111 11111111
18 FF 0026 1C23 LD Rl, #23 11111111 11111111
lA FF 0028 2C45 LD R2,*45 11111111 11111111
lC FF 002A 3C67 LD R3,4f:67 11111111 11111111
lE FF 002C 4C89 LD R4,#89 11111111 11111111
20 FF 002E SCAB LD RS,4f:AB 11111111 11111111
22 FF 0030 BC12 LD RB,U2 11111111 11111111
24 FF 0032 CC34 LD RC, *34 11111111 11111111
26 FF 0034 DC56 LD RD,#56 11111111 11111111
28 FF 0036 EC78 LD RE,#78 11111111 11111111
2A FF 0038 FC9A LD RF, *9A 11111111 11111111
2C FF 003A EE INC RE 11111111 11111111
2D FF 003B EE INC RE 11111111 11111111

PgDn Home (top) n TN (from step n) T (from n=-5)

cycles)

!3.IS~~ 3A BB resetting (set breakpoint at address 003A and run to get debug
control)

PC=003A FLAGS=OO(czsodhQR) RP=lO SP=40 IMR=3F
RO=Ol R1=23 R2=45 R3=67 R4=89 RS=AB R6=00 R7=0E
R8=4C R9=00 RA=FF RB=l2 RC=34 RD=56 RE=78 RF=9A
003A EE INC RE (next step) ok

July 15, 1986 Page 8-71 -- Tatget Notes --

Z-80 DISASSEHBLER/PEBUGGER lDDB-Z80l

This version supports the Z-80, the Hitachi HD64180 and the
NSC-800 microprocessors.

The Z80 and HD64180 processors require the E analyzer cable.

The NSC-800 requires the Q analyzer cable.

Patch Words

For operation with the HD64180, you enter HD64180 to
patch the program.

For the NSC800, you enter NSC-800.

Then SAVE-SYS to save the newly configured software.

cable e Z80 cable e

R11 R11 1 48 R18
~R12 A12 2 39 A9

Ro• Cable~A13 A13 3 38 AS
A14 A14 4 37 A7
A15 A15 5 36 A6

Clk 6 35 A5
D4 7 34 A4
D3 8 33 A3
D5 9 32 A2
D6 18 31 A1
+5 11 38 AB
D2 12 29 Gnd GHD
D7 13 28 Rf s
DB 14 27 n1- K1- Connect
D1 15 26 Rst •••---'to Reset
Int 16 25 Brq Capacitor

HnI H•i 17 24 Uai
Hal 18 23 Bak

A19 nrq 19 22 UR- UR-
K2- I Or 28 21 RD- RD-

July 15, 1986 Page 8-72 -- Tatget Notes --

-- DDB-Z80 --

cable q NSC-800 cableq

A9 1 49 ucc
A9 2 39 PS-

A19 3 38 i.IRT
bA11 A 11 4 37 RSO K2-

A12 A12 5 36 BRQ
Ro• Cable ~A13 A13 6 3S BAK

'-A14 A14 7 34 ion A19 Connect
A1S A1S 8 33 RES •••--._to Reset

CLK g 32 RD- RD- Capacitor XOT 19 31 UR- UR-
XIH 11 39 ALE ALE
AD9 12 29 se cs
AD1 13 28 RFS
A02 14 27 S1 C4
A03 1S 26 IHA K1-
AD4 16 2S IHR
ADS 17 24 RSC
A06 18 23 RSB
AD7 19 22 RSA

GHD GHO 29 21 Hnl HnI

The HD64180's 64-pin package presents some difficulty in
making the cable connections. Until 64-pin DIP-clips become
available, the connections to the HD64180 will have to be made in
other ways.

You can connect wires to wire-wrap posts if the target is a
prototype board, or to a special bus strip of wire-wrap posts which
are connected to the appropriate pins of the HD64180. The signals
can also be picked up with jumpers at electrically equivalent
points in the circuit.

Cable E BD64180 Cable E

GHD USS 1 64 9
XTL 2 63 RD- RD-
EXT 3 62 UR- UR-
AIT 4 61 LIR K1-
BAK s 69 E
BRH 6 S9 nE- A19

~···
RE 7 S8 IOE K2-Connect HnI HMI 8 S7 REF

to Reset IH9 g S6 HLT
Capacitor lrt 1 19 SS TEH

lrt2 11 S4 DR~ ST 12 S3 CK
A9 13 S2 RXS
A1 14 S1 TXS
A2 1S S9 CK1
A3 16 49 RX1
A4 17 48 TX1
AS 18 47 CK&
A6 19 46 RX9
A7 29 4S TX&
AS 21 44 OCD
A9 22 43 CTS

A10 23 42 RTS
~A11 A 11 24 41 07

Ro• Cable ~A12 A12 2S 40 D6
--.:;::A 13 A13 26 39 DS

Rl4 aJJ Xl 38
A1S A1S 28 37 03
A16 R16 29 36 D2
R17 A17 39 3S D1
A18 R18 31 34 D9

ucc 32 33 USS

July 15, 1986 Page 8-73 -- Tatget Notes --

-- DDB-Z80 --

Reset Circuit

Unless you include logic gates in the reset circuit, your
processor might be subject to "multiple resets" each time you try
to start it up. We recommend that you include two Schmitt
triggers in your power-on reset circuit, as in the example below.

Reserved Area

3D.
The reserved area is from 38 to 3D. The overlay starts at

Connect RES- wire
from Unileb here

+SV

+ I 47).If

~ To RESET PIN
of Microprocessor

Typical "power on reset circuit" for
Z80 microprocessor, showinq connection

of RES- line from Unilab

Help Screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

m n OUT writes m to port n. n INP reads port n.
EINT reenables target interrupts after bp, DINT leaves disabled
register change: n =AF n =BC n =DE n =HL n =IX n =IY

see also HD (locations 38-3D reserved, overlay starts at 3D)

July 15, 1986 Page 8-7 4 -- Tatget Notes --

Trace and breakpoint display

~ (Load sample program and set up
Emulator Memory Enable Status

areaj
7 =EMSEG

0 TO 7FF EMENABLE

-- DDB-ZSO --

a typical emulation memory

(Again, LTARG establishes a MSEG and
area for emulation rom)

ok operating system response, telling us that command was executed,
now it's waiting for next command)

STARTUP resetting (Reset target system and show startup traces.)

cyt CONT ADR DATA HDATA MISC
0 B7 0000 3i0019 LD SP,1900 11111111 11111111
3 B7 0003 3E12 LD A, 12 11111111 11111111
5 B7 0005 015634 LD BC,3456 11111111 11111111
8 B7 0008 119A78 LD DE,789A 11111111 11111111
B B7 OOOB 21DEBC LD HL,BCDE 11111111 11111111
E B7 OOOE CS PUSH BC 11111111 11111111
F D7 18FF 34 write 11111111 11111111

10 D7 18FE 56 write 11111111 11111111
11 B7 OOOF Cl POP BC 11111111 11111111
12 F7 18FE 56 read 11111111 11111111
13 F7 18FF 34 read 11111111 11111111
14 B7 0010 3C INC A 11111111 11111111
15 B7 0011 3C INC A 11111111 11111111
16 B7 0012 3C INC A 11111111 11111111
17 B7 0013 3C INC A 11111111 11111111
18 B7 0014 3C INC A 11111111 11111111
19 B7 0015 3C INC A 11111111 11111111
lA B7 0016 3C INC A 11111111 11111111

BESET 10 RB resetting (Reset target and break at address 0010)

(Patch this to agree
with your ram

area ••••)

note stack
address and
data written
also shows up
when stack is
read. Change
stack address in
location 1,2 to
your target ram

area.)

AF=1241 (sZ-a-pnC) BC=3456 DE=789A HL=BCDE IX=l234 IY=EFA8 SP=l900 PC= 10
0010 3C INC A (next step) ok

July 15, 1986 Page 8-75 -- Tatget Notes --

zeooo PISASSEHBLER/DEBQGGER <ooB-Z8K)

This version supports the Z8000 family of CPUs. The Z8002
and Z8004 are unsegmented versions of this chip and may be run
directly. The Z8001 and Z8003 are segmented versions.

All members of this family require the C analyzer cable.

Patch Words

To use the debugger and disassembler with the segmented
chips the segment number for both ram and rom must be set using
the =RAM.SEGMENT and =ROM.SEGMENT commands. Then use SAVE-SYS
to save the newly configured program.

Z8002

A9 1 40 AO AO
A10 2 39 AS
A11 3 38 A7
A12 4 37 A6

Ro• Cable-A13 A13 s 36 AS
STP 6 3S A4
n1 7 34 A3

A1S A1S 8 33 A2
Ro• Cable-A14 A14 9 32 A1

+S 10 31 GHD GHD
UI 11 30 CLK
HU I 12 29 AS ALE

rtn I rtn I 13 28 RSU
••• RES 14 27 8/U

no 1S 26 rt/S
nRQ 16 2S R/U C7

RD OS 17 24 BAK
C6 ST3 18 23 MAT
cs ST2 19 22 BRQ
C4 ST1 20 21 STD

July 15, 1986 Page 8-7 6 -- Tatget Notes --

-- DDB-Z8K --

ANALYZER CABLE C Z8001 ANAL VZER CABLE C

Ro• Cable-AO ADO 1 48 ADS
AD9 2 47 Srt6

AD10 3 46 SrtS
AD11 4 4S AD7
AD12 s 44 AD6

Ro• Cable_...A13 AD13 6 43 AD4
STP 7 42 Srt4

n1 8 41 ADS
A1S AD1S 9 40 AD3

Ro• Cable....-A14 AD14 10 39 AD2
+Sv 11 38 AD1

UI 12 37 Srt2
HU I 13 36 GrtD GrtD
SEG 14 3S CLK

rtn I rtn1 1S 34 AS ALE
••• RST 16 33

no 17 32 B/LI
nRQ 18 31 rt/S

RD OS 19 30 R/LI C7
C6 ST3 20 29 BAK
cs ST2 21 28 URI

ST1 22 27 BRQ
C4 STO 23 26 SrtO

Srt3 24 2S Srt1

Reserved Area

The debugger needs locations 700-4.

The location of the reserved area may be changed by typing
in <address> =OVLAY.

The overlay area starts at 705.

Help Screen

Press CTRL-F3 to get the help screen that includes this
target-specific information:

Reg chng: n =RO n =FCW
LTARG uses RAM at 4000. n =RAM to change.
Overlay area begins at 700 n =OVLAY to change.
n =SEGMENT sets segment on ZS0-0-1 and Z8003.

July 15, 1986 Page 8-77 -- Tatget Notes --

-- DDB-Z8K --

Trace and breakpoint display

0 =BAM· SEGMENT ok (set initial segments for rom and ram on Z8001 target board)
0 =ROM.SEGMENT ok

~ (Load built-in sample program, set up default emulation area)
Emulator Memory Enable Status:

F =EMSEG
0 TO FFF EMENABLE

Breakpoint opcode set to OFOO. ok

S~AR~ll2 (Reset the target, and show the first cycles after target starts up)

resetting
(from top of buffer)
cyt CONT ADR DATA MISC

0 EF 0002 cooo fetch 11111111 (flag Control

1 EF 0004 0000 fetch 11111111 Word)

2 EF 0006 0010 fetch 11111111 (reset PC)

3 FF 0010 210EOOOO LD RE, tO 11111111
5 FF 0014 210F4800 LD RF,#4800 11111111 (stack ptr)
7 FF 0018 21024600 LD R2 I #4600 11111111 (program

9 FF OOlC 7D2D LDCTL PSAPOFF,R2 11111111 status
area)

A FF OOlE 7DEC LDC TL PSAPSEG,RE 11111111
B FF 0020 21019EOO LD Rl,:ft9EOO 11111111
D FF 0024 7D1B LDC TL REFRESH,Rl 11111111
E FF 0026 2101COOO LD Rl,tCOOO 11111111

10 FF 002A 6F218000000A LD 0 :A (R2) I Rl 11111111
13 4F 460A COOO write 11111111
14 FF 0030 4D258000000COOOO LD O:C(R2),t0 11111111
18 4F 460C 0000 write 11111111
19 FF 0038 4D258000000E0700 LD O:E(R2),t700 11111111 (set

exception
1D 4F 460E 0700 write 11111111 debug vector J
lE FF 0040 6F218000002A LD 0:2A(R2),Rl 11111111
21 4F 462A COOO write 11111111
22 FF 0046 4D258000002COOOO LD 0:2C(R2),t0 11111111
26 4F 462C 0000 write 11111111

Pg Dn (trace resume) Home (top) n TN (from step n) T (from n=-5

BESET 70 RB resetting

flags.)

(reset target, set breakpoint at address 0070H, and run
· to that address and break, displaying registers,

RO= 0000 Rl= 1111 R2= 4600 R3= D6F9 R4= 4444 RS= FDFB R6= 0008 R7= OOOE
RS= 0123 R9= OOOD RA= DB8C RB= 3B1B RC= CCCC RD= DDD9 RE= 0000 RF= 47FE
FCW= COAO (.Meii. .. CzSvdh ..)
0070 ABDO DEC RD,#1 (next step) ok

July 15, 1986 Page 8-78 -- Tatget Notes --

Chapter Nine:
Troubleshooting

overview

We designed this chapter to help you get the LTARG sample
program running on your target board. The use of a standard
program makes it much easier to pinpoint and solve any problem
that you have.

A sample trace of the LTARG for your processor can be found
in the Disassembler/Debugger writeup and is often distributed on
your software diskette as well.

Back to Basics

If you run into problems when trying to run your own
program, we recommend that you first go back to the LTARG
program. Check whether your system functions with that simple
program.

The LTARG program will help you pinpoint the problem-- after
all, you have to walk before you learn to run.

When the simple program runs, the soluation to the problem
with your software is usually clear.

Contents

Explanation
Solutions in Depth:

Program hangs up on "Initializing UniLab ••• " message ••
Program hangs on initialization some of the time, not all of

the time •
RS-232 error message "RS-232 Error #XX" •••••••••
STARTUP does not work -- never get to see trace, or see

trace filled with garbage • • • • • • ••
Error message: "NO ANALYZER CLOCK" ••••••••••••
Program runs, UniLab traces, but reads bad data from stack
Program runs and UniLab traces, but does not disassemble

properly •
Program runs, UniLab traces properly, but cannot set a

breakpoint-- gives a "Debug Control not Established"
message •

Program runs, UniLab traces properly, but cannot set a
breakpoint-- hangs with red light next to Analyzer
socke_t __ on until key pressed • • • • • • • • • • • • •

Bad Input buffers on the UniLab, as if an IC has been blown.
Screen flickers when you use PgUp key to look at line

history. • • • • • • • • • • •••••••••

9-2

9-3

9-5
9-6

9-8
9-10
9-12

9-13

9-14

9-15
9-16

9-17

July 16, 1986 Page 9-1 -- Troubleshooting --

Explanation

Symptoms

Find the symptom on the previous page that most nearly
matches your problem. Then turn to the page that covers that
symptom, to find the solution.

SUB-SYSTEMS OF THE UniLab

When you have a problem, you can usually trace it to only
one of the four functional "subsystems" of the UniLab. These
four systems handle:

1) communications between UniLab and the host computer,
2) emulation of target ROM,
3) analysis of target board program, setting triggers

and capturing traces,
4) debugger features, such as setting breakpoints in

target board program, single stepping, using MDUMP
on RAM, etc.

The above list forms a hierarchy of dependence. That ia,
the other three all depend on the communications subsystem-- if
it does not work, then the other three will act bizarrely, or not
act at all.

And if you cannot trace properly, then don't bother trying
to get a breakpoint.

FIRST THINGS FIRST

Similarly, if the trace show your target board starting to
execute at the wrong address, then you can ignore the rest of the
trace. You've already found the vital information-- the first
opcode address is wrong.

When to call

If you cannot get the LTARG program to run, or you cannot
figure out where the problem lies, then the next step is Orion
Technical Support. Call (415) 361-8883 for assistance.

-- Troubleshooting -- Page 9-2

Solutions in Depth

Program hangs up on "Initializing UniLab. .. message
Quick Check:

WHY

UniLab plugged in and turned on? Turn it on, enter
INIT, and try again.

UniLab connected to COM1? See below.
Do you have two serial ports? If so,is the second

one properly 11 jumpered 11 as CO£;i2? See page 9-7.
Is your serial port set up to work with a printer?

See below.

If the system freezes right after "Initializing
UniLab ••• " is displayed, it means that the program is
waiting to receive a character from the UniLab. You can
unlock the program by pressing the CONTROL and BREAK
keys at the same time.

It might be that the UniLab simply has not been hooked
up to the correct port.

Another possibility is that the UniLab is on the
correct port, but the computer is looking at the wrong
pin. The UniLab looks like Data Communications
Equipment (DCE) to the host computer. That is, the
UniLab expects to receive data on line 2 and send it on
line 3 of the RS-232 connection.

WHAT '"I10 DO
Check that the UniLab has been plugged into the correct
DB-25 pin connector on your computer. If you have two
25 pin sockets on your computer, you should unlock the
program with CONTROL-BREAK and move the UniLab cable to
the second socket. Then use the INIT command to
initialize the UniLab.

DB-25 Connector
1 2 3 4 s 6 7 8 9 10 11 12 13

0000000000000
00.0000000000

14 1 s 16 17 18 19 20 21 22 23 24 25

If that does not work, use AUX2 to reconfigure your
software, so that it expects the UniLab to be connected

July 16, 1986 Page 9-3 -- Troubleshooting --

Solutions in Depth --

to communications port 2. Again, try to initialize
with the UniLab on each of the two serial ports.

If that doesn't work, check that the connector on the
outside of your computer has actually been connected to
the circuitry inside.

The jumpers on the serial board must be configured for
operation with a modem or other DCE (Data
Communications Equipment), rather than for operation
with a printer or other DTE (Data Terminal Equipment).
All serial port boards have jumpers that allow you to
change the port to connect to a DTE or a DCE.

Only if you want to keep the port configured for a DTE,
you should make or buy a standard "null modem"
connector, or the non-standard null modem shown here •

..., ...,
0 0

0 an 0 an
N N N 0

N
0

0 v 0 v
0 N 0 N

0
...,

0
...,

0
00

N 0
00

N
N N
N N

0\ 00 - 0\ 00
11N111111111111111111111111111111111nn11

N
Q) 0111111111 nG:)

0
N

0 0\

'° Ommm 11iii11111111111111111111111111111111111n11 nG:)
0 Q) 0 Q)

an Om mm 11iii111111111111111111111111111111111uu11 11[)
0 0

v 0111111111 111ii1111111111111111111111111111111111u111 11[)
0 '° 0 '° ..., - an

N
v v

Cable Configuration for
Connection between

Unilab and DTE serial port
(Or use standard null modem)

-- Troubleshooting -- Page 9-4

-- Solutions in Depth --

Program hangs on initialization some of the time, not all of the
time
Quick Check:

WHY

Are your cables poorly connected? Check the UniLab
to host cable.

Are you running a background task or a program that
tries to write to the screen? See below.

Does your AUTOEXEC.BAT file set up a background task
when you turn on the computer? See below.

Your real-time clock interrupt might cause missed
characters by taking too much time to process
interrupts. One common cause of such problems is
on-screen clock display utilities from programs such as
Side-kick. If the clock interrupt routine does
anything time-consuming, like writing to the screen, it
can affect communications with the UniLab.

WHAT TO DO
Do not run desk accessories or background tasks such as
a print spooler, on-screen clock display, alarm clocks,
or multitasking, if you find that they affect the
communications with the UniLab.

Take a look at your autoexec file, with the DOS command
TYPE AOTOEXEC.BAT, to see if a background task has been
set up to start automatically.

July 16, 1986 Page 9-5 -- Troubleshooting --

-- Solutions in Depth

RS-232 error message "RS-232 Error llXX"
Quick Check:

WHY

Poorly connected cable? Check the UniLab to host
cable.

Running a background task or desk accessory program?
See previous page.

The program running on your host sees incorrect data
coming back when it tries to talk to the UniLab. The
hex number followjng the I sign indicates what the
error is.

All RS-232 messages are checked with a 16-bit checksum
and acknowledged with a single ACK (06) byte. Errors
are signaled with other single-character responses as
follows:

9B
A1
69,70,75, 7C
2D
54

Timeout error
Overrun or framing error
Checksum error
Length error
Load address error.

Other error codes indicate that the host is not
receiving the UniLab transmissions correctly. For
example, a 9600-baud host will usually get error CC or
FC from a 19,200-baud UniLab, while a 19,200 baud host
connected to a 9600-baud UniLab will usually get error
9E or FE.

WHAT TO DO
If you have two ports that might be "jumpered" to the
same address, open up your computer and look at the
boards that connect to the DB-25 connections on your
computer. One or both boards should have a group of
eight pins, as shown on the next page. This set of
jumpers is different from the set that determines
whether your port tries to talk to a DTE or a DCE,
which are explained on page 9-4.

-- Troubleshooting -- Page 9-6

-- Solutions

J~J
0

0
1 2 1 ?

Typical pin arrangement on
Serial port board

in Depth --

When the pins are jumpered as shown, then the port will
be COM1. If the pins labeled 2 are joined, then the
port will be COM2. If both ports are trying to be the
same port, then you will have a bus contention problem.

If you want to run a diagnostic test on your RS-232
port, first disconnect the UniLab from the host. Try
sending single characters from within the UniLab
program. You will have to jumper pins 2 and 3 on the
DB-25 connector of your computer. Then type INITRS232
to get the port ready. 30 SEND will then send out a 30
on the serial port. Since pins 2 and 3 are jumpered
together, the same port should receive a 30. Type
RCV • to see what was received.

Try sending other numbers as well. If the port works
fine, then you should suspect that pins two and three
are reversed on that port. You can take care of this
by.putting in a null modem that switches pin 2 to pin 3
and pin 3 to pin 2. Pin 7 carries ground, and no other
connections are necessary. See diagram below.

Another way to check the port. Put an oscilloscope on
pin 2 of the DB-25 connector, and then follow the
procedure above for sending characters. You will see
on the oscilloscope whether or not signals are being
sent on pin 2 •.

July 16, 1986 Page 9-7 -- Troubleshooting --

-- Solutions in Depth --

STARTUP does not work -- never get to see trace, or see trace
filled with garbage
Quick check:

WHY

UniLab turned on and initialized? Turn it on now,
then issue command INIT.

LTARG has been loaded? Issue the command LTARG.
RES- wire not connected properly? See below and

explanation in section 3 of chapter 2.
Are address lines properly hooked up? See below.
Error message: "NO ANALYZER CLOCK" ? See page 9-10.
Do you have an 8051 family processor? These require

a positive g·oing reset signal. See the
Disassembler/Debugger Notes, or Section 3 of
Chapter 2.

STARTUP watches for the reset address on the bus, and
then lets the trace buffer fill up before freezing the
trace. The trace buffer will never be displayed on the
screen if a proper reset never occurs, or if the lines
the UniLab uses to sense the address have not been
hooked up properly.

WHAT TO DO
Check the reset wire. First check it visually if you
are using cables (as opposed to pods)-- make certain
that it has been connected to the RC circuit that
drives the logic gate which drives the reset pin. See
below. Then check at the reset pin of the processor,
with a logic probe or oscilloscope, to make certain
that the chip gets a good reset signal when you
STARTUP.

Connect RES- wire
f ram Uni Lab here

+S V

---7- To RESET PIN
of Microprocessor

Typical "power on reset circuit" for
Z80 microprocessor, showi nq connection

of RES- line from Unilab

-- Solutions in Depth

Check the address lines. Make certain that the ROM
cable makes a good connection in the socket on your
board, and that the extra address lines, if any,
connect to the DIP clip at the proper pins.

Connect RES- wire
f ram Uni Lab here

19 CLK
+5 CLK 8

8086
8284A PROCESSOR

CLOCK GEN.

RESET 10 21 RESET
10KO OUT IN

11
RES

Typical .. power on reset circuit .. for
Intel microprocessor, showinq connection

of RES- line from Unilab

July 16, 1986 Page 9-9 -- Troubleshooting --

-- Solutions in Depth --

Error message: "NO ANALYZER CLOCK"
Quick check:

WHY

Power supply connected to target, and power on?
(Not necessary with pod connection).

Bad control wire connections? See below.
RES- wire not connected properly? See pages 9-8 and

Section 3 of Chapter 2.
Target system has gone to sleep? See below.

Usually a result of a bad connection-- the UniLab does
not sense the control signals from the microprocessor,
which tell it when the bus contains valid data and when
it holds a valid address. If the power is not on, or
the processor is doing nothing because it has not seen
a reset, then there will be no clock.

The same symptom will result if the target system
receives a command to wait or stop. This could happen
if there is a bad data or address line, or if the
target board does not restart because of an improperly
connected reset signal.

WHAT TO DO
Bad control wires. Double-check all the control wires
from the UniLab that sense the timing signals. These
are Kl-, K2-, RD-, and WR-.

Also check whether or not the you have the proper
analyzer cable for your microprocessor.

RD-~ TO ANALYZER CLOCK
WR-~

CLOCK LOGIC FOR MOTOROLA
PROCESSORS

Target system asleep. Hit any key to stop the search
for trigger, and then use the command TD to dump the
trace. Look at the bottom of the trace, and see if the
processor executed a halt command.

If it did, then check the address of the code that told
the processor to stop. Is that an address that the

Troubleshooting -- Page 9-10

-- Solutions in Depth --

processor should reach? If you use DM to disassemble
from memory, is the opcode commanding a halt actually
there?

If the program should not get to the code address
where it reads the halt, check the RES- wire. See two
pages back.

You should also check the address lines.

If the address is correct but the data is wrong,
check the data liries.

K1-
K2-

CLOCK LOGIC FOR INTEL
PROCESSORS

July 16, 1986 Page 9-11 -- Troubleshooting --

-- Solutions in Depth --

Program runs, UniLab traces, but reads bad data from stack
Quick Check:

WHY

Stack pointer not pointing at correct
location? See below.

RAM chip bad? See below.

The test boards that we use at Orion have RAM at some
location in the memory map. The program loaded into
emulation memory by the LTARG command was developed for
our test boards.

But you might very well not have RAM at the address
range where the Orion boards have RAM.

WHAT TO DO
To determine whether the stack pointer is okay, look at
the first few lines of the trace, where the stack
pointer gets initialized. Check the value of the stack
against the addresses on your board that are occupied
by RAM. Remember that the stack grows by decrementing
the pointer.

If the stack pointer needs a different value, use the
UniLab command <word> <addr> MM!. You use that
command to change the program memory. It pokes a new
16 bit word into emulation ROM •. Or, if your package
includes it, use the optional on-line assembler, ASM,
to change the instruction.

You will want to change the address field of the
instruction that initializes the stack pointer. You
should patch the program, so that the 16- bit address
of the stack pointer points to RAM.

If the stack pointer points to RAM, but you still get
bad values off the stack, you should suspect that you
have a bad RAM chip. Try swapping in a new chip. If
the bad values continue, then start checking your data
and address line connections, both between the board
and UniLab, and on the board.

-- Troubleshooting -- Page 9-12

-- Solutions in Depth --

Program runs and UniLab traces, but does not disassemble properly
Quick check:

WHY

First address of trace is not reset address? You
might have an improperly connected reset wire.
See page 9-8.

No disassembly at all? See below.
Clock speed of target board too high? See below.
CONT column correct? See below.
Correct disassembler for microprocessor? See below.
Correct cable for microprocessor? Double-check it.
Cable wired to DIP CLIP correctly? See below.

The UniLab listens to the bus, and interprets each 8-
bit value it sees as opcode, data, or address,
depending on the control signals it reads from the
microprocessor. It then tries to disassemble the
commands it sees, based on the disassembly table.

If you don't have all the wires connected properly, or
you have the wrong disassembler, or you don't have the
disassembler turned on, then you will not see what you
expect.

WHNr TO DO
If the first address of the trace is wrong, then there
is no point in looking at anything else. The only
thing that matters is the first wrong step. Look at
page 9-8.

If you think that you need to enable disassembler, just
type in the command DASM.

If the target system clock is too fast for the UniLab,
then some bus cycles will be skipped. Check for
missing addresses in the fetch stream.

If the left digit of the CONT column is different from
the sample trace, then the UniLab software does not
know whether each bus cycle is a read, a write, or a
fetch. That digit is generated by K1-, K2-, RD-, and
WR-.

If you don't have the proper disassembler for your
processor, then it's a surprise that you have gotten
this far. Type the UniLab command PINOUT to find out
what processor your software thinks it supports.

To check that-you-eonnec-t-ed-to-the -B-I-P elip correctly,
look at the connection diagram in the TARGET NOTES
section of the manual.

July 16, 1986 Page 9-13 -- Troubleshooting --

-- Solutions in Depth --

Program runs, UniLab traces properly, but cannot set a
breakpoint-- gives a "Debug Control not Established" message
Quick Check:

WHY

Are you trying to set a breakpoint at address 0?
This is not allowed-- try another address.

Does the analyzer work correctly? See below.
Does the emulator work correctly? See below.
Stack pointer points to real memory? See below and

on page 9-12.
Breakpoint set in code after stack pointer

initialized? See below.

The UniLab sets breakpoints by preserving the byte at
the address you specify, and inserting an absolute jump
instruction, or a software interrupt. When the target
system reaches that code, control gets passed to our
idle register. The idle register asserts a jump
instruction on the bus, which causes the processor to
jump to the beginning of the jump instruction. The
idle register thus holds the processor in an infinite
loop.

Meanwhile, the UniLab software uses "an overlay area"
in ROM, putting a routine there to save and read the
state of the processor. (HO tells you where the
overlay area is for your processor.) The idle register
then changes, to assert a jump to the overlay area,
which ends in a jump back to the idle register.
All this swapping of control requires that the
functions of the analyzer and emulator already work
properly, and that the stack pointer points to
functioning RAM.

WHAT TO DO
If either the analyzer or emulator does not work
properly, then you must get those functioning before
you try to set a breakpoint. Especially, read/write
cycles must be properly identified-- which means that
the disassembler must be working.
On processors with an external stack, if the stack
pointer does not point to a good RAM chip, then you
will not be able to set a breakpoint. Look at the
trace that results from STARTUP, paying special
attention to the POPs off the stack. Does the same
data you push-on the stack come back off it? If not,
look at patch instructions on page 9-12.
You must not set a breakpoint until after the stack
pointer has been initialized. Try setting the
breakpoint at the example address shown in the
Disassembler/Debugger writeup for your processor.

Troubleshooting -- Page 9-·1 4

-- Solutions in Depth --

Program runs, UniLab traces properly, but cannot set a
breakpoint-- hangs with red light next to Analyzer socket on
until key pressed
Quick Check:

WHY

Can you set a trigger on the breakpoint
address? (That is, does program actually
reach that address?) See below.

The UniLab sets a breakpoint at the address that you
specify. It sets the break point by swapping in a
special code at that address.

When the microprocessor hits that code, it behaves like
a train sent onto a siding in the train yard. But if
you don't put the code at the start of an instruction,
then the microprocessor gets derailed.

WHAT TO DO
Are you setting a breakpoint at the start of an opcode?
Double-check this by setting a trigger on the address
at which you are trying to set a breakpoint. The
UniLab command is NORMT <address> AS. If you cannot
set a trigger on the address, then that address is not
the start of an opcode. Try a byte or two in either
direction.

July 16, 1986 Page 9-15 -- Troubleshooting --

-- Solutions in Depth --

Bad input buffers on the UniLab, as if an IC has been blown
Quick check:

WHY

Does the UniLab mysteriously show bad data coming
in? Do some inputs always show up high or always
remain low, despite the reality? See below.

If you blow one of the input buffers-- by frying it
with a high voltage, or through some other mishap-­
then the IC will be damaged.

All ICs with external inputs are socketed, so they can
easily be replaced.

WHAT TO DO
Make certain that you know what the problem is.
Connect the suspicious input to ground, and then
capture a trace. Connect the input to +5 voltage, and
capture a trace. Inspect both traces to determine
whether or not the input responds to the actual state
of the circuit that it is meant to measure.

If you have a blown IC. Either send it to Orion for
repair work, or replace the ICs yourself. All the
Orion chips are standard pieces. All chips with
external inputs are socketed for easy replacement.

Inputs: Chip I on board: Input Group:
A0-A7 U14 LADR
A8-A15 U15 HADR
D0-D7 U9 DATA
D8-D15 ua HDATA
MO-M7 U7 MISC
C4-C7 U6 CONT

-- Troubleshooting -- Page 9-16

-- Solutions in Depth

Screen flickers when you use PgUp key to look at line history
Quick check:

July 16, 1986

Issue the command CLEAR. Then use
SAVE-SYS to save the altered system.

Page 9-17 -- Troubleshooting --

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Appendix E:

Appendix F:

Appendix G:

Appendix H:

Appendix I:

Appendix J:

LIST OF APPENDICES

UniLab Command and Feature List

Sources of Cross Assemblers and C Compilers

Cabling Chart

Custom Cables

UniLab II Specifications

Writing Macros

EPROMs and EEPROMs Supported

Microprocessors Supported

System Messages

.BIN Files and .TRC Files

Appendix A:
Uni Lab Command and Feature List

1AFTER • 1 1
16BIT • • 13
2AFTER • 14
3AFTER • 14
8BIT • 15 . • 16 . .

• • • • 17 ,
=BC • • 18
=EMSEG • 19
=HISTORY 21
=SYMBOLS • • 23
?FREE • • 23
ADR • • 24
ADR? 25
AFTER 26
AH I ST 28
ALSO 29
ALT-FKEY • • • 30
ALT-FKEY? • 30
AS • • • 31
ASC • • 32
ASEG • • 33
ASM • 34
ASM-FILE 36
AUX1 37
AUX2 • • 37
B# 38
B. • 38
BINLOAD • • 39
BINSAVE • • 40
BPEX • • • 41
BYE • • • • 42
CATALOG • • • 42
CKSUM • 43
CLEAR • • • • 44
CLEAR' • • 44
CLRMBP • • • • 45
CLRSYM • 46
COLOR 47
COM1 48
COM2 • 49
CONT • 50
CONTROL 52
C"'PRL--FKEY • 5~3
CTRL-FKEY? • • 53
CYCLES? • 54

July 16, 1986 Page A-1 Appendix A

Command List

D# 55
DASM • 56
DASM' • 57
DATA 58
DCYCLES • 60
DEF 61
DM • 62
DMBP • 62
DN 63
DOS • 64
EMCLR 65
EMENABLE 66
EST AT 68
EVENTS? • : . 69
FETCH • 70
FILTER 71
FKEY 72
FKEY? 73
G 74
GB • 75
GW 76
H>D 77
HADR 78
HDAT 79
HDATll. 80
HDG • 82
HDG' 82
HELP 83
HEXLOAD 84
HEXRCV • 86
INFINITE 87
INIT 88
INT 89
INT' 90
IS • 91
LADR 92
LOG 93
LOG' 93
LP 94
LrrARG 95
M 96
M! 97
M? 98
MASK 99
MCOMP 100
MDU MP 101
MEMO 102
MENU 104
MESSAGE 104
MF ILL • 105

Appendix A Page A-2

Command List

MISC 106
MISC' 108
MLOADN 109
MM 11 0
MM! 111
MM? 112
MMOVE • • 11 3
MODE 11 4
MS 115
N • 116
NDATA • 11 7
NMI 118
NMIVEC 119
NMIVEC' 119
NORNB 120
NORHM • • 121
NORMT 122
NOT 123
NOW? 124
ONLY 125
ORG 127
PAGEO 128
PAGE1 128
PAGINATE 129
PAGINNrE' 129
PCYCLES 130
PE VENTS 131
PINourr 132
PRINT 133
PIUNT' 133
PROMMSG 133
Q1 134
Q2 134
Q3 134
QUALIFIERS 135
HB 136
READ 138
RES 139
RESET 140
RESET' 140
RMBP 1 41
RSP 142
RSP' 142
RZ 143
s 1 44
s+ 145
SAMP 146
SAVE-SYS .- .- .- • • .- .- .- .- .- .- 147
SC • 148
SET • 149

July 1 6' 1986 Page A-3 Appendix A

Command List

SET-COLOR • • 149
SHIFT-FKEY • 150
SHIFT-FKEY'? • 150
SHOWC • • 1 51
SHOWC' • • 151
SHOWM • 152
SHOWM' • • • • 152
SMBP • 153
SOURCE 154
SOURCE' 154
SR 156
SST • • • • 157
SS TEP 158
srr ANDALONE 159
STARTUP • 160
STIMULUS • 161
SYMB 162
snrn' • 162
SYMFILE • 163
SYMFILE+ 164
SYMFIX 165
SYMLOAD 166
SYMSAVE • 166
SYMTYPE 167
T 168
TCOMP 169
TD 170
TEXTFILE • 1 71
THI ST • 172
TMASK • • 173
TN • 174
TNT • 174
TO 175
TOFILE • 176
TOFILE' 176
TOP/BOT • 177
TRIG • • 178
TS • • • • 179
TSAVE • 180
TSHOW 181
TS TAT • • • 182
WORDS • • 182
WSIZE 183

-- Appendix A -- Page A-4

Appendix B:
Sources of Cross Assemblers and C Compilers

The UniLab software is designed to work with any assembler
or compiler. The only thing the UniLab needs is the object code
in either binary format or INTEL hex format.

Even this hurdle can be overcome with one of the various
conversion programs on the market. For example, Avocet has a
product which converts Motorola S-records into binary format.
See the Vendor listing for Avocet below.

As a service to our users we have compiled the following
list of inexpensive cross assemblers and compilers. The two
character appreviations indicate the sources listed on the
following pages. We would appreciate any user feedback so that we
can keep this list current.

PROCESSOR
SC/MP
NS16000
1802/5
3870/F8
COP 400
6301
6502
6800/2/8
6801/3
6805
6809
68000
68HC11
TMS 7000
NEC 7500
NSC800
8048-50/41
8051/31
8054
8085
8086/8
8096
9900/5
Z-8
Z-80, 64180
Z-8000

ASSEMBLER COMPILER
SUPPLIERS SUPPLIERS
MI
25,PC
25,AV,MI,WE,AA,EN,RE,SD,UW
25,AV,MI,AA,SD,UW
25,AV,AA
25,EN,RE,UW IT
25,AV,MI,EN,RE,SD MX
25,AV,MI,DM,EN,RE,SD,UW
25,AV,MI,DM,EN,RE,SD,UW IT
25,AV,MI,DM,EN,RE,SD,UW IT
25,AV,MI,DM,EN,RE,SD,UW IT
25,AV,QU,EN,SD,UW MX,IT,MT,LA,UW
RE,SD,UW IT
AA,EN,CY,SD
25,AV
25,EN,RE MT
25,AA,AV,MI,CY,RE,SD
25,AA,AV,MI,CY,RE,SD,UW AR,MC
MI
25,AV,MI,EN,CY,RE,SD,UW
25,SW,EN,SP,CY,SD,UW
25,CY

MT
MX,MS,MT,LA

AA,EN,RE
25,AV,AA,EN,CY,RE,SD,UW
25,AV,AA,EN,RE,SD,UW
25,EN,RE

MX,KY,LA

Vendor List begins on next page.

November 26, 1986 Page B-1 -- Appendix B --

VENDORS

NOTE: All prices are approximate. Contact the vendor
directly for latest information. This listing is a service to
our customers, and does not constitute a recommendation.

25 2500AD Software Inc.
17200 East Ohio Dr.
Aurora, CO 80017, (303) 369-5001.

Eight-bit versions are $199.50, 16-bit are $299. They
include recursive macros, nested conditional assembly,
listing control, and a linker.

AA Allen Ashley
395 Sierra Madre Villa
Pasadena, CA 91107, (818) 793-5748.

Resident editing capability, assemble to memory. $150.
Macro/relocatable versions also available for $250.

AR Archimedes,(415) 771-3303. C cross compiler for 8051. $851.

AV Avocet Systems Inc.
804 South State St.
Dover, DE 19901, (302) 734-0151. (800) 448-8500.

$200 for CP/M-80 or MS-DOS versions. $500 for the NEC
7500 and 68000.
HEXTRAN converts Motorola S-records to binary format.
$250.

CY Cybernetic Micro Systems
P.O. Box 3000
San Gregorio, CA 94074, (415) 726-3000.

Conditionals, Macros. $295. Written in 8088 assembler.

DM Decision Microsystems Co.
Box 120783
Nashville, TN 37212, (615) 320-7221. $210.

EN Enertec Inc.
19 Jenkins Ave.
Lansdale, PA 19446, (215) 362 0966. $250 and up.

FA Farbware
1329 Gregory
Wilmette, IL 60091.

Structured macro assembler $200.

HA Hawkeye Graf ix
23914 Mobile
Canoga Park, CA 91307, (213) 348-7809. $100.

-- Appendix B -- Page B-2

IT Intro!, (414) 276-2937.
C cross compiler for 6801, 6301, 6805, 6809, 68HC11,
68000, 68020. $1950.

KY KYSO, (503) 389-3452.
c cross compiler for Z80.

LA Lattice, (312) 858-7950.
c cross compiler for 68000, 8088, Z80. $500.

MC Microcomputer Control, (609) 466-1751.
C cross compiler for 8051. $1495.

MI Midwest Micro-DelTek, Inc.
5930 Brooklyn Blvd.
Brooklyn Center, MN 55429, (612) 560-6530.

Limited macros, cross reference, conditionals, 1K of
object/minute. $300.

MS Microsoft
10700 Northup Way
Bellevue, WA 98004. C compiler for 8086, 8088. $495.
As of release 4.0 of their software, Microsoft does not make
ROMable code directly. You can purchase utilities which are
supposed to make the output of the Microsoft compiler into
ROMable code.

MT MicroTek, (408) 733-2919.
C cross compiler for 68000, 68008, 68010, 68020. $1750.
C cross compiler for 8085, Z80, 64180, 8088, 8086,
80188. $1550.

~X Manx Software Systems
One Industrial Way
Eatontown, NJ 07724, (800) 221-0440.

C cross compiler for 8086, 68000, 8080, Z80, 6502.
$750.

PC Program Concepts Inc.
P.O. Box 8164
Charlottsville, VA 22901, (804) 978-1850. $595.

QU Que lo
843 NW 54 th St.
Seattle, WA 98107, (206) 784-8018.

Macros, conditionals, linker, cross ref, in C, $300.

RD RD Software
1290 Monument St.
Pacific Palisades, CA 90272, (213) 459-8119.

This is based on one that appeared in Dr. Dobb's
Journal in June 1981 and April 1982. $200.

November 26, 1986 Page B-3 -- Appendix B --

RE Relational Memory Systems
PO Box 6719
San Jose, CA 95150, (408) 265-5411.

Three different prices:
Macro assembler, non-relocatable. $139.
Relocatable code for 8-bit systems. $395.
Relocatable code for 16-bit systems. $495.

SD Software Development Systems
3110 Woodcreek Dr.
Downers Grove, IL 60515, (312) 971-8170.

Relocatable code, macros.

SE Seattle Computer Products, Inc.
1114 Industry Dr.
Seattle, WA 98188, (206) 575-1830. $95.

SO Solutionware Corporation
1283 Mt. View-Alviso Rd., Suite B
Sunnyvale, CA 94086. Debuggers also.

SW Speed ware
118 Buck Circle, Box T
Folsom, CA 95630 (916) 988-7426. $99.

$295

With resident editor similar to Turbo-Pascal. Written
in 8088 assembly language for speed.

SY Syscon Corp.
3990 Sherman St.,
San Diego, CA 92110, (619) 222-6381. $250.

UW Uni Ware
Software Development Systems
3110 Woodcreek Dr.
Downers Grove, IL 60515, (312) 971-8170.

8 and 16-bit cross-assemblers, $295.
C cross-compiler for 68000, $595.

WE Westico
25 Vanzant St.
Norwalk, CT 06885, (203) 853-6880. $225 Macro, $225 Linker.

WW Western Wares
Box C,
Norwood, CO 81423, (303) 327-4898. $395.

All of the Intel Series III MDS software can be run on the
IBM PC with the UDI package from Real-Time Computer Science
Corp. , P.O. Box 3 0 0 0-8 8 6, Camar i 11 o, CA 93011 , (8 0 5) 4 8 2 - 0 3 3 3
($500), or the ACCESS package from Genesis Microsystems, 196
Castro St., Mountain View, CA 94041, (415) 964-9001.

-- Appendix B -- Page B-4

Appendix C:
cabling Chart

1 Non-Piggyback chips C-1 I •

2. Piggyback chips C-7

PROCESSOR: 1802 16032 6301XO+I 6303R 6303X 6502 6800

CABLE g c b b b b b

cable
wires:

A11 12 26 26 38 20 20
A12 11 25 25 37 22 22
A13 1 0 24 24 36 23 23
A14 9 23 23 35 24 24
A15 8 22 22 34 25 25

*RES- 3 34 6 6 6 cap cap
*NMI- 36 45 4 4 8 6 6

GND 20 25 1 1 1 1 21
RD- 7 33 40 40 64 39 37
WR- 35 5
K1-
K2-
ALE 33 37
C7 5 40 38 38 61 34 34
C6 6 41 60 7
cs 42 63
C4 43 62

A19 4
A18 5
A17 6
A16 7
AO 2

+ at the end of the processor name indicates expanded mode or max
mode

* RES- and NMI- are open collector outputs. Connect only to
appropriate points. (NMI- needed only for certain debugger
operations)

July 16, 1986 Page C-1 -- Appendix C --

6805E2
PROCESSOR: 68000 68008 6801 + 68021 6805E3 6809E

CABLE p p b b b b

cable
wires:

A11 39 9 26 20 16 19
A12 40 10 25 22 15 20
A13 41 1 1 24 23 gnd 21
A14 42 12 23 24 gnd 22
A15 43 1 4 22 25 gnd 23

*RES- 18 37 6 cap 1 37
*NMI- 23 42 4 6 2 2

GND 53 15 1 21 20 1
RD- 14 13 40 37 4 34
WR- 5
K1- 10 31
K2- 6 28
ALE
C7 9 30 38 34 5 5
CG 26 43 7 3 32
cs 27 44 38
C4 28 45 36

A19 47 19
A18 46 18
A17 45 17
A16 44 16
AO 7 46

+ at the end of the processor name indicates expanded mode or max
mode

* RES- and NMI- are open collector outputs. Connect only to
appropriate points. (NMI- needed only for certain
debugger operations)

-- Appendix C -- Page C-2

PROCESSOR:

CABLE

cable
wires:

A11
A12
A13
A14
A15

*RES­
*NMI­

GND
RD­
WR­
K1-
K2-
ALE
C7
C6
cs
C4

A19
A18
A17
A16
AO

68HC11

b

13
12
1 1
10

9
39
40

27

28
26

80186

a

10
7
5
3
1

24
ckt

26
62
63
40
39
61
54
53
52

65
66
67
68
17

80188

a

10
7
5
3
1

24
ckt

26
62
63
40
39
61
54
53
52

65
66
67
68

80286

i

20
19
18
17
16

cap
ckt

9
(11)
(9)
(17)
(16-)
(5)

67
4
5

66
12
13
14
15
34

8031+

e

24
25
26
27
28

ckt
12
20
29
16
17
31

+ at the end of the processor name indicates expanded mode or max
mode

() indicates a bus controller pin
* RES- and NMI- are open collector outputs. Connect only to

appropriate points. (NMI- needed only for certain
debugger operations)

ckt connect to processor pin through an inverting circuit

July 16, 1986 Page C-3 -- Appendix C --

PROCESSOR: 8048+ 8080 8085 8086 8086+

CABLE e h a a 1

cable
wires:

A11 24 40 24 5 5
A12 gnd 37 25 4 4
A13 gnd 38 26 3 3
A14 gnd 39 27 2 2
A15 gnd 36 28 39 39

*RES- 4 36 cap cap
*NMI- 6 ckt

GND 20 2 20 20 20
RD- 18 32 32 (11)
WR- 10 31 29 (9)
K1- 8 { 1 } 1 1 27 (1)
K2- gnd { 6} 3 24 (4)
ALE 17 30 25 (5)
C7 4 34 28 28
C6 3 27
cs 9 29 26
C4 1 0 33

A19 35 35
A18 36 36
A17 37 37
A16 38 38
AO 16 16

+ at the end of the processor name indicates expanded mode or max
mode

() indicates a bus controller pin
{ } indicates a clock controller pin
* RES- and NMI- are open collector outputs. Connect only to

appropriate points. (NMI- needed only for certain
debugger operations)

-- Appendix C -- Page C-4

PROCESSOR:

CABLE

cable
wires:

A11
A12
A13
A14
A15

*RES­
*NMI­

GND
RD­
WR­
K1-
K2-
ALE
C7
C6
cs
C4

A19
A18
A17
A16
AO

8088

a

5
4
3
2

39
cap

20
32
29
27
24
25
28

34

35
36
37
38
16

8088+

1

5
4
3
2

39
cap

20
(11)
(9)

(16)
(4)
(5)
28
27
26

35
36
37
38

8096

r

latch
latch
latch
latch

62
ckt
42
17
38

9

16

15

latch

HD64180

e

24
25
26
27
28

7
8
1

63
62
61
58

59
31
30
29

NSC800

q

4
5
6
7
8

33
21
20
32
31
26
37
30

29
27
34

+ at the end of the processor name indicates expanded mode or max
mode

() indicates a bus controller pin
* RES- and NMI- are open collector outputs. Connect only to

appropriate points. (NM!- needed only for certain
debugger operations)

ckt connect to processor pin through an inverting circuit

latch attach the UniLab wires to the outputs of the latches,
not directly to the processor pin.

July 16, 1986 Page C-5 -- Appendix C --

(8800) (8681/82) (8400)
PROCESSOR: SUPER 8 I Z-8+ I Z-80 Z8001 Z8002

CABLE d d e c c

cable
wires:

A11 45 16 1 4 3
A12 44 17 2 5 4
A13 43 18 3 6 5
A14 42 19 4 10 9
A15 41 20 5 9 8

*RES- 30 6 26 16 14
*NMI- 17 15 13

GND 34 1 1 29 36 31
RD- 37 8 21 19 17
WR- 22
K1- 27
K2- 20
ALE 34 29
C7 31 7 30 25
C6 20 18
cs 21 19
C4 23 20

A19 19
A18
A17
A16
AO 1 40

* RES- and NMI- are open collector outputs. Connect only to
appropriate points. (NMI- needed only for certain
debugger operations)

~- Appendix C Page C-6

2. Pigyback Chips

PROCESSOR: HD63P01 65/11EB 65F11Q I 65/41EBI 68P01

CABLE n k k k n

cable
wires:

A11 rom roa 9 rom rom
A12 join join 8 join join
A13 together together 60 together together
A14 A12-A15 A12-A15 61 A12-A15 A12-A15
A15 7

*RES- 6 20 6 20 6
*NM!- 4 22 23 22 4

GND 40 21 44 40 40
RD- 1 3 45 3 1
WR-
K1-
K2-
ALE
C7 40
C6

* RES- and NM!- are open collector outputs. Connect only to
appropriate points. (NM!- needed only for certain
debugger operations)

ckt connect to processor pin through an inverting circuit
rom A11 connects through the ROM plug

July 16, 1986 Page C-7 -- Appendix C --

(8613/03)
PROCESSOR: 68P05V07 80C51VS 87P50 I za I

CABLE m e f e

cable
wires:

A11 rODI rom rODI rom
A12 gnd gnd gnd gnd
A13 gnd gnd gnd gnd
A14 gnd gnd gnd gnd
A15 gnd gnd gnd gnd

*RES- 2 ckt 4 6
*NMI- 3 12 6

GND 1 20 11
RD- 9
WR- 10
K1- 8 8
K2- gnd gnd
ALE
C7 7
C6

* RES- and NMI- are open collector outputs. Connect only to
appropriate points. (NMI- needed only for certain
debugger operations)

ckt connect to processor pin through an inverting circuit
rom. A11 connects through the ROM plug
gnd ground these address lines

-- Appendix C -- Page C-8

How Cables Work

Appendix D:
custom cables

D-1
OE- Signals. D-2 Problems with Decoded

Customizing Cables
Analyzer Connector Signals
Analyzer Cable Design
The ROM Cable
ROM Connector Signals
UniLab Circuitry
Analyzer Cable Schematics

How cables Work

The Sockets

D-3
D-4
D-5
D-9
D-10
D-11
D-12

The two 50-pin connectors on the front of the UniLab bring
out extra signals so that operation of the instrument can be
easily altered to meet the needs of different processors.

Since clocking logic requirements vary from one processor
family to another, jumpers on the connector are used to make some
interconnections.

Altering Standard cables

Standard ribbon cables are provided that will work for most
systems. In some cases, these cables must be reconfigured for
proper operation with your system.

Since the connections are all made by the same
insulation-displacement "U" contacts used in "Scotchf lex" and
"Quick-Connect" prototyping systems, they can easily be changed.
A special wire-insertion tool is included with your UniLab for
this purpose.

The Analyzer cable

The analyzer is internally connected to all of the signals
on the ROM cable. Any additional signals required for full
monitoring of bus operations are picked up by connecting patch
wires on the analyzer cable to your processor pins. This is
usually done with a 40-pin Dip-Clip. The wires can also be
plugged in to .025" wire wrap pins.

July 16, 1986 Page D-1 -- Appendix D --

Your UniLab comes with an analyzer cable that is configured
for the processor of your choice. You can alter your cable to
support other processor families, or purchase additional cables.

Problems with Decoded OE- Signals

Most of the analyzer cable configurations (all except B, H,
M, & N-- see the diagrams at the end of this appendix) assume
that you have a memory enable signal connected to the OE- pin of
the ROM socket into which the emulator cable is plugged. the OE-
pin is pin 20 of the 24-pin ROM, pin 22 of the 28-pin ROM.

If you have address decoding in this signal, or if this pin
is simply grounded, there may be problems.

The problem is that this signal is used as a low true master
enable for the emulator's tri-state data bus outputs. This
signal is necessary in systems that multiplex addresses over the
data bus to prevent the UniLab from getting on the bus while
addresses are being multiplexed.

Most of the cable designs connect this input to the OE­
signal on the ROM socket with a jumper between pins 42 and 39 on
the analyzer connector. (The OE- signal is passed inside the
UniLab from the ROM cable to pin 39 of the analyzer connector.)

If your target system has a ground or address decoding on
the OE- pin of the ROM socket, you may have to separately connect
pin 42 of the analyzer cable to an appropriate memory enable
signal. On Intel bus controllers this signal is called MEMR-.
Note that this signal also prevents the UniLab from getting on
the bus during I/O cycles.

The problem with address decoding in the OE- signal is that
the UniLab will then be unable to emulate memory for other ROM
sockets.

-- Appendix D -- Page D-2

Customizing cables

Two special tools are included with the UniLab so that you
can easily modify the cables supplied. The first tool is
actually a # 16 wire brad with a piece of shrink tubing on it.
You can use it to open the connector by poking it into the space
at the end of the connector as shown below:

I ~PUSH NAIL PO•NT
INTO "Tl-HS HOLE.

-- - i='f\f'U i:"to..1n IOI IOI ~~~·E ~HOLDING
COl\INEC TOR BOD'<

lQl (g] ~

Carefully release each end of the connector before you try to
remove the cover. Don't try to remove the cover without the nail
or you may break the plastic tabs!

Wires can be disconnected by simply pulling them out of the
wedge in the connecting pin with small needle-nose pliers. A
special tool is included with your UniLab for pushing wires into
the connecting wedges (it looks like a tiny baseball bat). Note
that these connections are identical to the ones used on "Quick
Connect" , "Speedwire", and "Scotchflex" prototyping boards. The
drawing below shows the proper way to use the tool.

You can use #26-30 solid or stranded wire for making
connections. Wire-wrap wire works nicely. If you are jumpering
a probe wire across to a second pin (as on pins 21-22 in fig e),
hold the wire in place with your thumb while you use a small
needle-nosed plier to put the necessary "jog" in the wire before
you use the insertion tool.

If you are working with several different families of
processors which require different jumper options, you should
probably buy additional analyzer cables so you don't have to
change jumpers whenever you change processor family.

July 16, 1986 Page D-3 -- Appendix D --

Analyzer
PIN#

1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Connector
SIGNAL
M7
M6
MS
M4
M3
M2
M1
MO
GND
A19E
A18E
A17E
A16E
+SV
ROD
RES­
NMI­
GND
K2-
C7
K1-
C6
WR-
CS
RD-
C4
A15E
ALE
INV!
INVO
DTCY
CCK'
HACK'
MCK'
TCY'
ITCY'
MTCY'
ALE'
OE'
IDLE'
CE'
OEE'
C3
C2
C1
co
A19S
A18S
A17S
A16S

Appendix D --

Signals
REMARKS
MISC analyzer byte input.
II

II

II

II

II

II

II

Signal ground.
Msb emulator address inputs. Page select only
II

II

Msb emulator address input. To enable RAM.
Not used. Could power external circuits.
Emul enab. Can use to disable processor RD'.
Target reset. Open 7406 collector + 47 ohms.
Interrupt. Open 7406 collector.
Return for RES-.
Clock input. ITCY' = MTCY + (K1' and K2')
Control input. Normally used for R/W,I/O,etc
Clock input. ITCY' = MTCY + (K1' and K2')
Control input. Normally used for R/W,I/O,etc
Clock input. MTCY = RD' + WR'
Control input. Normally used for R/W,I/O,etc
Clock input. MTCY = RD' + WR'
Control input. Normally used for R/W,I/O,etc
Msb emulator address input.
Address Latch Enable for A0-A19.
Uncommitted inverter input.
Uncommitted inverter output.
TCY clock delayed 100 ns.
CONTROL byte input register clock (+ edge).
HADRess byte input register clock.
MISC byte input register clock.
LADR,DATA,& HData input register clock.
Intel clock output. Jumper to TCY,CKs above.
Motorola clock output. Jumper to TCY,CKs.
Inverter output from pin 28 input.
Output Enable' signal from ROM socket.
Not Used. Low when IDLE loop active. OMA?
Chip Enable' signal fr(m ROM socket.
Emulator Output Enable' (unlatched).
CONTROL inputs. Normally A16-A19 from below.
II

II

II

Latched emulator address signal (A19E).
II

II

II

Page D-4

Analyzer cable Design

You can design your own cables for new processor types by
copying and combining the techniques used in the cables shown in
figure 7.1. The signal list for the analyzer connector
immediately preceding this section should assist you further.
While most of those signals are self explanatory, the analyzer
input register clocking deserves some explanation. The analyzer
logic and 3 of the 6 analyzer input bytes are clocked by the +
edge of TCY' (pin 35). The other 3 input bytes (pins 32-34) are
usually jumpered to this clock, but can be connected separately
to clock their inputs at other parts of the clock cycle.

The diagram below shows the UniLab clocking logic:

--,
/ '

.'Pl 1
I

DTCY :31 : i
TCY-

135 I

~~ 4---""---~-------> TO ANAL'IZ.ER CL.OCK AND
HD,A\TA, DATA, ANO LAOR LATCHES

ITCY- '36
I

RD- '25 I

WR- 123 I

MTCY- 137 I

K2- :19
Kl- :z1

I
\ /

' _,,,

The usual source of TCY' is ITCY' for Intel-type processors,
or MTCY' for Motorola-types. MTCY' goes low whenever both RD­
and WR- are high. By connecting these inputs to Motorola's E and
VMA signals, the analyzer will be clocked on the falling edge of
E if VMA is true. ITCY' goes low whenever RD- or WR- go low, or
both K1- and K2- go low. Clocking in this case occurs at the end
of the WR- or RD- pulse. DTCY is an inverted and 100 ns delayed
version of TCY'. By using this signal to clock the CONTROL
input register (CCK') the source of the clock (eg WR-) can be
captured reliably as an analyzer input.

The ALE input (pin 28) controls transparent latches on the
A0-A19 inputs to the emulator. The outputs of these latches are
internally connected to the emulator and analyzer inputs, so
clocking of the analyzer's address byte inputs can occur any time
after they are stable. An inverted version of ALE is brought out
on pin 38 so that inputs can be clocked by the end of ALE. An
uncommitted inverter is also provided at pins 29-3{) for
processors, like the Z8000 & 16032, which use a low-true ALE
signal.

July 16, 1986 Page D-5 -- Appendix D --

signal.
The emulator output is enabled whenever the OE' signal on

the ROM socket goes low and the 20 address bits satisfy the
=EMSEG and EMENABLE statements which have been made. It is
assumed that address decoding is done in the standard way using
the CE' input to the ROM with OE' as a general memory enable. It
is possible that some systems will make use of the OE' signal for
address decoding. If this is the case, and you want to emulate
several ROMs, you will have to change the jumpering to pin 42 to
connect it to a more general enable' signal (such as MRDC' on
Intel systems).

If there are I/O ports in the system which may have
addresses which fall within the emulated address range, you must
be sure that this enable excludes I/O operations. If no such
signal exists, you can use an unused address input. For example,
if the A19 input is connected to an IO/M' signal, and you specify
7 =EMSEG, the emulation memory will only be enabled when A19 goes
low (memory cycles). Remember that =EMSEG acts as a modifier for
all EMENABLE statements which follow, so if =EMSEG is changed the
EMENABLEs must also be restated.

The descriptions which follow refer to the analyzer cables
whose schematics appear at the end of this chapter.

(a.) Intel 8085, 8088-min mode, 80186, 80188, NSC-800: The
CONTROL byte input register clock (pin 32) is isolated from the
other input clocks and connected to ALE' (pin 38). This causes
S0-2 to be clocked at the end of the ALE signal. All other input
clocks (pins 33-36) are jumpered to ITCY' (pin 36), so that
clocking will occur at the end of a low pulse on RD' or WR' or
INTA'(K1-). Since K2- must be held low, it is connected to RES
OUT on the 8085. C6 is internally connected to K1- to identify
interrupt cycles.

To provide fewer cable variations, the 16-bit Intel
processors all use the K1- & K2- inputs to derive a read and INTA
clock by gating DT/R' and DEN' together. The write clock for the
expanded mode can then come from either IOWC' or MWTC' at the bus
controller. Note also that ~1- is jumpered to C6 at the cable
connector so that (DT/R') can be used both as a clock and an
analyzer input without two separate connecting wires. AO need be
connected only if you have a 16-bit proceEsor, as it is connected
directly by the 8-bit ROM cable.

(b.) Motorola 6800, 6801/3, 6802/8, 6805E2, 6809: The
UniLab address latch enable and CCK' pin are jumpered to the
inverted DTCY signal so that control signals and addresses will
be latched 100 ns after the rise of the E clock signal. This
prevents trouble from the extremely short hold time of the
address signals. Also note that the analyzer is clocked by the
MTCY signal on the fall of E.

-- Appendix D -- Page D-6

(c.) National 3201G, Zilog Z8001, Z8002: The ALE signal is
inverted, using the uncommitted inverter on pins 29 & 30. The
control signals are latched at the end of the address strobe.

(d.) Motorola G8000, G8008, TI 9900, 99000, Z-8 romless,
Intel 808S: A very simple configuration with all analyzer inputs
clocked by ITCY.

(e.) Zilog Z-80, Z-8 piggyback, Intel 80S1, 8031: WR', M1 ',
and IORQ' are all used for clocking and captured by the analyzer
to identify the cycle type. CS, CG, & C7 .are therefore jumpered
to WR-, K1-, & K2- so that a single probe can be used to make
both connections. All analyzer inputs are clocked by DTCY so
that the source of the clock will be captured. The address
latches are enabled by DTCY' to prevent trouble from the short
address hold time on Z-80A' B' & c' instruction fetches.

For the Z-80 only, A19 is connected to MREQ' so that OE' on
the ROM socket needn't include an I/O term. Because of this you
must use "7 =EMSEG" to get enable only when this signal is low.

(f.) Universal ROM-clocked: The OE' signal at the ROM is
jumpered directly to the (RD-) clock input. CS is jumpered to
WR- and CG is jumpered to K1- so that if a clock signal is
connected to either of these leads, the signal will be captured
by the analyzer without a separate connection. To reliably
capture that input, the CONTROL byte input clock (CCK) is
connected to DTCY. The address latch enable is connected to DTCY
through the uncommitted inverter to prevent trouble from short
address hold times. Since CE' at the ROM socket is connected to
A1G, you must use "E =EMSEG" to get enable when this signal goes
low. You can make the UniLab ignore this signal by entering "F
=EMSEG" then the EMENABLE statement, then "ALSO E =EMSEG" then
repeat the EMENABLE statement.

(g.) RCA 1802: The TPB signal is used to clock the control
inputs while the analyzer is clocked by MRD or MWR. Since the
UniLab address latches cannot be separated, the MSB addresses
must be connected to the target address latch outputs.

(h.) Intel 8080: The 02TTL clock signal is taken from pin G
of the 8224 clock generator. The OBIN' signal is inverted and
connected to K1-. The analyzer clock function is thus 02.DBIN +
WR. The MEMWR- signal at the 8228 bus controller is used as an
emulator enable. I/OW-, MEMR-, MEMW-, and INTA- are connected to
C7 thru C4 so that the left digit of the analyzer control column
will identify the cycle types as follows: F=I/OR, B=MEMR, D=MEMW,
E=INTA, 7=I/OW.

(i.) Intel 8028G: The ALE signal from the 82288 is jumpered
to the CONTROL clock input so that SO and S1 will be captured.

July 1G, 198G Page D-7 -- Appendix D --

(k.) Rockwell 65/11 piggyback: Connects C7 to OE' which is
R'/W, inverts CE and connects it to A15. A15 can be jumpered at
the end of the cable to A12-14 for true address display.

(1.) Intel 8088/8086 max mode: Identical to cable A except
that the uncommitted inverter is used to invert DEN signal. This
inverter output is jumpered to the K1- input. Connect the DEN
wire to pin 16 of the 8288 bus controller. AO need be connected
only if you have a 16-bit processor, as it is connected directly
by the 8-bit ROM cable.

(m.) 6805 piggyback: Since no bus clock signal is provided
by the processor, a circuit board is provided that derives clock
from the signal at the crystal. This circuit includes a 74HCT74
CMOS divide-by-4 counter, which is reset whenever a transition
occurs on the AO signal. This reset ensures that the analyzer
clock will be in sync with the internal processor clock.

(n.) 6801 piggyback, 6301: Identical to cable K except that
the clock polarity is reversed.

(p.) 68000, 68008: Identical to cable D except that the
OEE' input is grounded so that emulation will be enabled when
either half of the data bus is read.

Note that some of these diagrams are untested and are
provided only to h~lp you get started. If you find any errors,
please report them to us so that others can benefit from your
discovery.

Also note that, since +5 volts is available at the
connector, it is possible to make cables with logic gates on them
if necessary. If you want to make a more conventional
processor-specific emulator plug that plugs strictly into the
processor socket in the target system, the RDD signal on pin 15
can be used with an OR gate to disable the RD- strobe at the
processor when the emulation memory is active. This makes it
unnecessary to unplug any ROMs that are being emulated, so all
UniLab connections from both connectors could be made directly to
a piggy-back processor with all signals except the RD' strobe
directly connected. Of course this sacrifices universality and
some transparency, but it might be more convenient in some
situations.

-- Appendix D -- Page D-8

The ROM cable

There are 4 types of standard ROM cables:

C8-24. For 8-bit processors and 24-pin PROMS (2716,2732).

C8-28. For 8-bit processors and 28-pin PROMS (2764,128,256).

C16-24. For 16-bit processors and 24-pin PROMS.

C16-28. For 16-bi t processors and 28-bit PROMS.

The C8-24 has an A11 pin, which can be left plugged into the
A11 receptacle on the ROM cable if you are using 2732s or 32K
ROMs. If you are using 16K ROMs, the receptacle must be plugged
into the proper pin on the DIP clip to pick up the A11 signal at
the processor. Other MSB address signals are likewise connected
to the processor. Pin numbers for making these connections to
the major processors are shown in the table in the previous
section. Note that 24-pin cables will work fine in 28-pin ROM
sockets if they are plugged in leaving the pin 1 & 2 end of the
socket open. Extra address signals are simply picked up at the
processor.

To minimize interconnections and signal loading, the
analyzer data and address connections are taken from the ROM
cable also. If your system has a unidirectional buffer between
the ROM socket and the processor, these connections will not show
data during write cycles. You can correct this condition by
cutting the jumper ribbon cable on your ROM cable and installing
a separate ribbon cable to the analyzer inputs on pins 35-42
(also 27-34 for 16-bit). You can order a cable that makes all
connections at the processor by just ordering a C8-D or C16-D.

Note that all ROMs that are simulated must be removed from
their socket to prevent bus contention. The ROM cable plugs into
only one of the sockets-- except in the case of 16-bit systems,
where there must be a second ROM plug in one of the
most-significant-byte ROMs. In 8-bit systems the
most-significant data bits are brought out in a separate cable,
so they can be used as extra general-purpose analyzer inputs.

July 16, 1986 Page D-9 -- Appendix D --

ROM Connector Signals
PIN# SIGNAL REMARKS

1 A14E Direct connect on 256K ROMs. (lower left pin)
2 A12E Direct on 64K or larger ROMs.
3 A13E Direct on 128K or larger ROMs.
4 A7E Emulator address inputs.
5 ABE II

6 A6E "
7 A9E II

8 ASE "
9 A11E Direct on 32K or larger ROMs

10 A4E Emulator address input.
11 OE' To pin 39 on analyzer connector (for jumpering)
12 A3E Emulator address input.
13 A10E II

14 A2E "
15 CE' To pin 41 on analyzer connector (for jumpering)
16 A1E Emulator address inputs.
17 AOE "
18 GND Signal ground. Shields adr inputs from data out.
19 D7E Emulator data output. (odd addresses)
20 D6E
21 DOE
22 D5E
23 D1E
24 D4E
25 D2E
26 D3E
27 D11E (even adr. LSB & MSB byte paralleled for 8-bit)
28 D10E
29 D12E
30 D9E
31 D13E
32 D8E
33 D14E
34 D15E
35 D7A Analyzer data inputs. Usually jumpered to DnE.
36 D6A
37 DOA
38 DSA
39 D1A
40 D4A
41 D2A
42 D3A
43 D15A (LSB & MSB byte paralleled for 8-bit)
44 D14A
45 D8A
46 D13A
47 D9A
48 D12A
49 D10A
50 D11 A

Appendix D -- Page D-10

Note: MSB and LSB are
swapped for Intel

convention. e.g. 08
above is really DO, etc.

UniLa.b Circuitry

This page shows part of the internal schematics of the
UniLab-- the input circuitry. The combination of this schematic
and the diagrams that follow, showing the internal jumpers of all
our standard cables, should give you enough information to
customize a cable.

• Mr--, 8
2 .-.M6' 7 U7

• MS 3
4.-.M4-- 17 MISC

•·. M~ 13(M0A-
5.-.M2- 14 M7A)

• Mr - 18
8 .-.M~ 4 11

• ~ A1q
~

10. 3 2

• A1R 4 5
12. A17

~s7~ • A1~

14~+5v DD

• ._RE~19 (A17E-
A19E)

16 ~9 11 ...-.NM
18~ U19 :I

9-f<_, 8 :::. ~3 5_ U20]

~~, 8
22~'° I 7 ,l"'l._.c::r U6

.->W";::I ~
~ 3

24~ Su4 6 17CONT
r---1 13

.-Rv ..- ~ 14 (C0A-
26...C4 ~ 18 C7A)
...-.A1S-

[11 2891\~~ ~
~U4

8 0

30 U4 8 U17.-
~~~ TC ·9~ 

32..CCW U21 
l ~ 

.-HAC I 
T 

349-MCW 
.--;cu• 

-~ 36-WTC.-' • a-¢15 
..-MTC'f-'---1- ~E' A]AL ZER 
38.-.ALE.!..-.- LATCH 
• · ~OLE' 
40 • . r:-:-CE' . ~ 42....-0E I 2 3 
• C3 
44--C2 
• C1-
46.-.C0u~ 
• A19_. 
48.--A18S 
• A17S 
50.-..A16S ~ . 

> 
Internal Circuitry 
of UDL 

~ 

~ 

~ ..... 

~ I 
(ROM ) 

3tp 
4~ 

U1S 17 ~ 14~ 
, 18~ 
,A9E- ~~ 
A16E)13~ 
~ A9 

~2 (R OM) 
11 
~ 

7~ 
8~ 
4 ~ 

U14 3 
.._ 

18 ~ 
~ (A1E-17 

ASE) 14 ~ 
/11-~7..3 13 ~ 1 

OM) 
11 

(R 

i......:::r 

~ 2 A0 
(RO M) 

LDATA 
8~ 

U9 7~ 
3~ 

17.._ 
coes- 13~ 

07$)14 t::: 
18~ 

11 4 00 
~ ~. (R 

HD AT A 
8 ~ 

us 7 ~ 
3 ~ 

17 ~ (DSS-13 ~ 
015$)14 ~ 

18 ~ 
11 4 ~ 

08 
L.:J (ROM) 



-n7 
-n& 
-1'15 
-n4 
-H3 
-n2 
-HI 
-ne 
-GND 
1\19 
•ftl8 
i\17 
1\16 
-+5U 
-ROD 
·RES 
-N111 
·GHO 
-K2 
"C7 
·Kt 
-c6 
-UR 
-cs ICE'i 

-RD ~ 
-c4 
-AIS 
-ALE 
-!HUI" 
-1HUO-
-orcv 
-ccK' 
HACK' 
tlCK' 
TCV' 
ITCY' 
MTCY' 
ALE' 
OE' 
IDLE' 
CE' 
DEE' 

CABLE_I_ 

802.8'­
FOR Cw/IUH) 

-n7 
-ns 
-ns 
-n4 
-h3 
-n2 
-HI 
-ne 
-GND 
1\19 
1\18 
-f\17 
1\16 
-+5U 
-Roo--
·RES 
"Nl11 
·GNO 
·K2 
-c1---, 
·Kt 
-c6 
-I.IA 
-cs 
-RO 
-c4 
·Ats 
-ALE 
-IHUI· 
-1HUO" 
-DTCV 
-CCK' 
HACK' 
t1CK' 
TCV' 
ITCY' 
MTCY' 
ALE' 
OE' 
IDLE' 
CE' 
OEE' 

CABLE_K_ 

FOR 65/11 P•B4c.k. 

-c6 
-I.IA 
-cs 
-RD 
-c4 
-AIS 
-N..E 

1ttQ-
-orcv 
-CCK' 
HACK' 
MCK' 
TCV' 
ITCY' 
MTCY' 
ALE' 
OE' 
IDLE' 
CE' 
DEE' 

CABLE_L_ 

9oec. ....... .-.de 
FOR e.oaa ..... -..1c. 

-n7 
-t16 
-ns 
-n4 
-H3 
-n2 
-HI 
-ne 
-GtlO 
1\19 
·All 
-f\17 
1\t6 
-+5U 
-ROD 
·RES 
·NMI 
·GttO 
·K2 
-c1 
·Kt 
-c6 
-l.IR 
-cs 
-RD 
-c4 
-AIS 
·ALE--:J 
-INVI· 
-1NVO-
-orcv 
-CCK' 
HACK' 
t1CK' 
TCY' 
ITCY' 
MTCY' 
ALE' 
OE' 
IDLE' 
CE' 
DEE' 

CABLE_!::!__ 

EJ80S P-Bac.I(. 
fOR (wfcll(.c.lct.) 

-n7 
-M6 
-MS 
-n4 
-M3 
-n2 
-HI 
-ne 
-GND 
·Al9 
·Al8 
-f\17 
1\16 
-+5U 
-ROD 
·RES 
·NMI 
·GNO 
·K2 
"C7--:> 
·Kl 
-c6 
-UR 
-cs 
-RO 
-c4 
·AIS 
-ALE 
·INVI· 
-INVO-
-DTCV 
-CCK' 
HACK' 
HCK' 
TCY' 
ITCY' 
MTCY' 
ALE' 
OE' 
IDLE' 
CE' 
OEE' 
CJ 
C2 
Cl 
ce 
Al9S 
A18S 
ftl7S 
Al6S 

CABLE_N __ 

E.801 P•Dac:k 
FOR ''o'• c.aos 

-n7 
-H6 
-MS 
-n4 
-M3 
-n2 
-HI 
-ne 
-GND 
1\t9 
1\t8 
-f\17 
1\t6 
-+5U 
-ROD 
·RES 
·NMI 
·GND 
·K2 
-c1 
·Kl 
-c6 
-UR 
-cs 
-RD 
-c4 
-AIS 
-ALE 
-1Nv1· 
-IHUO-
-orcv 
-CCK' 
HACK' 
MCK' 
TCY' 
ITCY' 
MTCV' 
ALE' 
OE' 
IDLE' 
CE' 
OEE' 

CABLE_P_ 

c:.eooo, 
FOR &e.009 

-M7 
-n6 
-MS 
-n4 
-H3 
-M2 
-n1 
-ne 
-GNO 
·Al9 
1\18 
-f\17 
1\16 
-+SU 
-ROD 
·RES 
·NMI 
·GNO 
·K2 
"C7--:> 
·Kt 
-c6 
-UR 
-cs 

KE'( 

-RO 
,., -cs--, 

-RO 
-C4 -c4 
-AIS ·AIS ·ALE 
-INVI· 

-AL 

-INVO· 
-IHUI· 

-orcv 
-1NVO-

·CCK' 
-orcv 

HACK' 
-CCK' 

MCK' 
HACK' 

TCY' 
HCK' 

ITCV' 
TCY' 

MTCV' ITCV' 

ALE' MTCV' 

OE' ALE' 

IDLE" OE' 

CE' IDLE' 

DEE' CE' 

CJ OEE' 

C2 
Cl 
ca 
AHIS 
AISS 
A17S 
Rl6S 

CABLE~ CABLE _E:__ 

FOR ..,sc-100 FOR 909to 



(this page intentionally blank) 

July 16, 1986 Page D-13 -- Appendix D --



-m -MO-__ ,,__.._. 

-M5 
-114--t'---t 
-H3 
-M2---iiJ----t 
-Ml 
-na--1----t 
-GtlD 
1ug---;1'----t 
1\18 
-Al7----­
"AICS 
-+SU--it---t 
-ROD 
"'f\Es--.~--t 

-N111 
-GNO-~.,._--t 

·K2 
-c1----
-K1----
"-C6--:> 
-UR -cs----
-RO 
-C4--~~ 

-AtS -ALE _ __, __ 

-INUI" 
.... l'tUO" 
-OTCY 
-CCK 0 

HACK 0 

MCK• 
rev· 
a rev· 
nrev· 
ALE 0 

OE 0 

IDLE 0 

CE 0 

OEE 0 

C3 
C2 
Cl 
ca 
Al9S 
AISS 
Al7S 
ftl6S 

CABLE_A_ 
eoeS', ao•e&. 
eou~·•• eoeco ,..,n, 

FOR eofi mln 

-M7 
-M6---.i&---t 
-MS 
-M4--f"---t 
-M3 
-112----
-MI 
-11a--1----1 
-GtlD 
'fl 19--i"---t 
1\18 
-ftl7 
1\16 .. su---­
-ROD 
·REs---....--t 
·N111 -GHD----
-K2 
·c1--~--1 

-Kl 
-c6--
-uR 
-C5 
-RO 
-C4 
-AIS 
-ALE--:> 
-INVI" 
-ttlUO-
-OTCV 
-CCK 0 

HACK' 
MCK" 
rev· 
ITCV' 
nrcv· 
ALE 0 

OE 0 

IDLE" 
CE' 
OEE 0 

C3 
C2 
Cl 
ce 
Al9S 
Al8S 
ftl7S 
ftl6S 

CABLE_e_. 
R.H/llQ. 
"eoo,&eo2, 

FOR 6809' 6S02.. 

-M7 -M6----
-M5 
-M4-----
-M3 
-M2-----
-MI 
-ne----
-GND 
·A 1g----;;o.---1 
·All 
·At7---'--t 
1\16 
-+SU--..--
-ROO 
·REs---­
-NHI 
·GND---­
·K2 
·c7--'l.Y---1 
-Kl 
-c&----H---t 
-UR 
-cs--~--+ 

-RO 
-c4--~--t 

-A15 
-ALE 
-INVI" 
-rnuo-
-orev 
-ccK· 
HACK' 
HCK' 
rev· 
nev• 
MTev' 
ALE' 
OE 0 

IDLE 0 

CE 0 

OEE' 
C3 
C2 
Cl 
ce 
Al9S 
RIIS 
ftl7S 
Al6S 

CA'BLE_c __ 

'- Z-8001/Z. 1 

FOR IC.0~\2. 

-M7 
-116----
-MS 
-114----
-Ml 
-M2----
-111 
-110-----
-GtlD 
'fl 1g----,i"--t 
·Al8 
·A 17---'!,...._--t 
1\16 
-+SU----,1-"'---t 
-ROD 
·REs---­
-HMI 
-GND----
·K2 
·c1--~--1 

·Kl 
-c6--~---~ 
-uR 
-cs--.,...___, 
-RO 
-c4--~--t 

-AIS 
-ALE--ii~--' 
-IHUI· 
-IHUO-
-OTev 
-CCK 0 

HACK 0 

HCK• 
rev· 
nev· 
nrev· 
ALE 0 

OE 0 

IDLE' 
CE 0 

OEE 0 

C3 
C2 
Cl 
C0 
A19S 
RISS 
A17S 
Al6S 

CABLE~ 

9900 I 99000, 
FOR -z.·•t-

-117 
-116----
-MS 
-114----
-Ml 
-M2----
-MI 
-110--1----t 
-ONO 
'fl t9---i;&----t 
1\18 
-ftl7----
1\16 
.. su---­
-RDO 
•RES-_,..,.__. 
-tll11 
-otto----
-K2----
"C7---") 
·Kt 
·c&-;a 
-UR 
-cs--, 
-RO 
-c4--..--
-A IS 
·ALE-, 
-INVI" 
-INVD-
-orev 
-ccic• 
HACK' 
MCK' 
rcv· 
nev• 

·11rev· 
ALE 0 

OE 0 

IDLE' 
CE' 
OEE 0 

C3 
C2 
Cl 
ca 
A19S 
A18S 
Al7S 
ft16S 

CABLE_E __ 

z.ao, sos•, 
80"1•, 8019, 

FOR 'Z.·8 P·OO&K 

-111 
-115----,,..._-
-ns 
-114----,--
-113 
-112----
-111 
-110--1----t 
-ONO 
·A 19---;;a----t 
'flt& 
"'11---1,...._--t 
·Al6-:>· -+su-----
-RDD 
·REs---­
·NHI 
-GND-~--

-K2 
-c7--t-~--t 

·K1---.... 
-c6-, 
-UR--+-+ ... 
-cs-, 
-Ro-, 
-C4--++-'-"1--t 
-A1S 
-ALE.., 
-INVI" 
-tttUO-
-orev 
-CCK' 
HACK~ 
HCK• 
rev• 
ITev' 
11rcv· 
ALE 0 

OE' 
IDLE 0 

CE 0 

OEE 0 

C3 
C2 
Cl 
ce 
At9S 
ft18S 
Al7S 
A16S 

CABLE2:...._ 

80+8/35/39/ 
~/lt-9/~0 FOR (ROM C1ock.1d) 

-m 
-116---.--
-MS 
-114---,.._--t 
-113 
-112---'i>---t 
-11t 
-110--f----I 
-GtlD 
1'19---ii"----t 
1\18 
-Al7----­
'flt6 
.. su---...,_ ..... 
-ROD 
•REs-.....ji---t 
-NHI -GN0----
-K2 
-c1--~ ...... 
·Kl 
-c6--'it+--L -MR----
-cs~ 
-RD 
-c4----
-Ats 
-ALE--Z~-+-1--.. 
-INUI" 
-tttVO-
-OTCY 
-ccK· 

HACK 0 

HCK• 
rev· 
1rev· 
nrcv· 
ALE 0 

OE 0 

IDLE 0 

CE 0 

OEE 0 

C3 
C2 
Ct 
ce 
A19S 
RIIS 
A17S 
At6S 

CABLE_Q__ 

FOR __ 11_0_2. __ 

-111--H 
-MG 
-MS -n4----
-M3 
-112-----
-Mt 
-Me--+--, 
-GtlD 
'flt9------
1\18 
i\17-----
1\16 -+Su--­
·RDD 
-REs----
-ttnl -GHD----·K2 
-a--........ -
-K t 
·cG--t-tit+--t-i--... 
-I.I\ 
-cs-+-+~---1 
-RD 
-C4-+-+~---t 

-AIS 
-ALE 
-INUI" 
-ltlUD' 
-OTev 
-CCK 0 

HACK 0 

l1CIC 0 

rev· 
nev· 
11rcv· 
ALE 0 

OE' 
IDLE 0 

CE 0 

OEE 0 

C3 
Cl 
Cl 
ce 
A19S 
RISS 
Al7S 
Al6S 

CABLE~ 

FOR soao 



Appendix E: 
UniLab II Specifications 

Host Computer Interface 

RS-232C connector, 19,200 or 9,600 baud, 
switch selectable. 

Diskette Formats 

IBM PC 5 1/4 11
, MS-DOS 

Emulator 

Download time: 1 second for 2K bytes, including 16-bit block 
error check~ 

195 ns max access time ROM emulation. (145 ns optional) 
32K x 8-bit or 16K x 16-bit standard. Programmable by cable, 

program option. 
Expandable to 128K bytes with optional plug-in board. 

20-bit enable address decoding. 
Individual 2K segments can be selected in any combination 

within 17-bit field. 
Stand-alone operation possible as a ROM emulator. 
16-bit Idle register loops target CPU allowing loading of 

emulation RAM and resumption of program execution. 
Optional, target-processor-specific, software gives full 

debug capability including register and target memory 
display and change, breakpoints, and single-stepping. 

Program loading software: from hex or binary disk files, hex 
serial download, memory image, ROM read. 

Bus-State Analyzer 

48-bit wide Trace Display and Memory. 
48 data inputs. Two groups of 8 can be separately clocked. 
6 clock signal inputs. Gated to form one bus clock: 

Clock edge filter prevents re-trigger before 100 ns. 
395 ns minimum bus cycle (10 MHz 68000). 
297 ns with optional high-speed option. 

Address demultiplexing latches included-- also used by 
emulator. 

July 16, 1986 Page E-1 -- Appendix E --



Analyzer Trigger 

4-step sequential trigger. 
RAM truth tables allow search for any function of 8 bits at 

each 8-bit group, for each step. 
8 truth tables per step x 4 steps = 32 tables, each 256-bit. 
16-bit inside/outside range detection on address lines. 
4-bit segment enable gives 20-bit address capability. 
Pass Counter: wait up to 65,382 events or cycles before 4th 

step. 
Before/After/At Pass count trigger enable. 
Delay Counter: wait up to 65,382 events or cycles to stop 

trace. 
Filter feature: Records only cycles that satisfy trigger. 
Oscilloscope sync output. (Sync on trigger.) 
Interrupt output: Interrupt target on trigger (if enabled). 
LED indicates searching for trigger. Stand-alone 

operation possible while waiting for trigger. 

Software Features 

Menu or command driven with single context for all four 
instruments: 

48-Channel Bus State Analyzer 
In-Circuit Emulator 
PROM Programmer 
Stimulus Generator 

Extensible macro capability. 
Cursor key control of text and trace display. 
Pop-up mode switch panel. 
Split screen displays, user-definable. 
On-line glossary. 
Menu-driven shell displays equivalent command lines. 
40 user-definable soft-keys. 
On-line assembler. 
Bonus features: Calculator, ASCII table, IC pinout library, memo 

message feature, direct DOS access, EGA/ECD support. 

Software Options 

Graphical Software Performance Measurement. 

-- Appendix E -- Page E-2 



EPROM/EEPROM Programmer 

Smart programming algorithm for high speed. 
28-pin Textool zero insertion force socket handles 24 and 

28 pin devices. 
Programs single supply EPROMs and EEPROMs. 
See Appendix G. Programs 2716, TMS2516, 2532, 48016, 2732A, 

2764/128, 27256/64A/128A, 27512. 

Signal .I11puts 

TTL logic levels (74ALS inputs). 
0.1 ma maximum loading includes emulator & analyzer. 

Signal Outputs 

TTL logic levels (74LS244 outputs). 
100 ohms forward terminating resistors on Emulator data 

lines. 
Reset output (RES-): open collector, 7406 thru 47 ohms. 
Interrupt output (NMI-): open collector, 7406, low true. 
9 Stimulus outputs (at EPROM socket): 8255 NMOS outputs. 

Physical 

Size: 2.1" hi x 13" wide x 7.8" deep. 
Weight: 4 lbs. (1.8 kg.) 
Shipping Weight: 11 lbs. (5 kg.) 
Fits easily in a slim-line brief case. 

Power 

100 kHz switching supply built in. 
110V + 10% 50/60 Hz 15 watts (standard) 
220V ~ 10% 50/60 Hz 15 watts (optional) 

July 16, 1986 Page E-3 -- Appendix E --



Accessories Included 

User's Guide. 
Reference Manual. 
40-pin IC clip. 
16-pin IC clip. 
Input stimlus cable. 
Component clip adaptor probes (2). 
Jumper wiring tool. 

Accessory Options 

Personality Paks for most popular microprocessors include: 
ROM Emulator cable. 8-bit, 24-pin version unless otherwise 

specified (C8-24). 
Analyzer cable pre-configured for your targer processor. 
Disassembler/Debugger Software (DDB-xxx). 

ROM Cable options: 
8-bit, 28-pin ROM emulator cable 
8-bit, direct connect emulator cable 
16-bit, 2 x 24-pin ROM emulator cable 
16-bit, 2 x 28-pin ROM emulator cable 
16-bit, direct connect emulator cable 

RAM Expansion options: 

CB-28 
C8-D 

C16-24 
C16-28 
C16-D 

32K emulation RAM expansion board ( 64K total) EB-32 
96K emulation RAM expansion board (128K total) EB-96 

-- Appendix E -- Page E-4 



Appendix F: 
Writing Macros 

Introduction 

You can combine several UniLab commands and give that 
combination of commands a new name. This is the simplest sort of 
macro you can make-- really more like a convenient abbreviation 
than like a real program. 

The macro language included with the UniLab does 
have control structures that allow you to write more complicated 
macros. These structures are fully explained in several books 
(see page F-5). Fortunately, you don't need the control 
structures to write useful macros. 

Contents 

How to Write a Macro 
Writing Macros on FORTH Screens 
Writing Test Programs 
Control Scructures 
For the Experienced 

How to Write a Macro 

A macro definition begins with a colon (:) and ends with a 
semi-colon (;). The first word after the colon is the name of 
the macro-- the new abbreviation. All the other words are the 
commands that the new abbreviation stands for. 

For example, 

: D10 DUP 10 + MDUMP ; 

creates a macro called D10, as in Dump 10 memory locations. This 
new word takes one argument, the starting address of the range 
that you want to dump. That address gets copied by DUP and then 
has 10 (hexadecimal) added to it. The macro then calls MDUMP on 
the address range. 

Thus, if you were to type in: 

342 D10 

then you would get a dump of addresses 342 through 352. 

July 16, 1986 Page F-1 -- Appendix F --



Writing Macros on FORTH Screens 

The easiest way to test and alter macros is by writing them 
in files using the screen editor, and then loading the macro from 
a screen. Type MEMO to get a screen of the UniLab.SCR file. 

After you type MEMO, press CTRL-Z to get the on-line prompts 
for the screen editor. 

You exit from the screen editor by pressing the ESCape key 
twice in a row, or press ESCape followed by F to save any changes 
you made to the screen. 

Loading macros from a screen 

You can enter your macro onto the screen, and then use 
ESCape followed by L to load the contents of the screen. If you 
keep your macros on screens, you can easily alter or update them 
as the need arises. 

Orion has set aside three screens of the UniLab.SCR file for 
your use-- the one you get with MEMO, and the two following. But 
don't use any screens besides these three, or you may overwrite 
help screens and error messages. 

-- Appendix F -- Page F-2 



Writing Test Programs 

You can use the macro capability of your UniLab system to 
write automatic test programs. In this section we will present 
some specific examples, which you can easily adapt to your 
specific needs. 

A good starting test for a new system is to just let it 
execute no-op instructions. If the address bus has any shorts in 
it, will show as a departure from the normal address count 
sequence. 

For example, let's assume a Z-80 or 8080 system with memory 
locations o to 7FF enabled. You can load the 00 no-op opcode 
into all enabled memory by just entering 0 7FF 0 MFILL. Now if 
you enter STARTUP, you should get a trace showing the first A6 
addresses. By saving this trace with TSAVE and comparing it to 
the trace of an untested system, you can automate system 
checkout. 

STARTUP and S are not suitable for use in automated test 
macros, since they cause the trace to be displayed till a key is 
pressed, another command must be used to start the analyzer 
without displaying the trace. That command is 

<n> SC <file name> 

will start the analyzer, wait n milliseconds, then compare the 
trace to a trace previously saved by TSAVE. It is very useful 
for automatic test sequences. 

For instance, you enter 

: TEST1 0 7FF 0 MFILL NORM A6 DCYCLES RESET 0 SC A:\Test.TRC ; 

to define a startup test. This macro will fill the first 7FF 
memory locations with zeros-- no-op instructions-- then start the 
analyzer and compare the result to a trace that was saved as a 
file on drive A: using TSAVE. 

A technician can then test the system by typing in TEST1. 
The UniLab system will reply with an OK message if the trace 
agrees with the one stored on the disk. 

To define a test that will examine later addresses, you can 
enter 

: TEST2 6FF ADR S 0 SC A:\TEST2.TRC ; 

Of course, you will have to use TSAVE to save a reference trace. 

July 16, 1986 Page F-3 -- Appendix F --



If both tests work properly, we can combine them into a 
single test by entering: 

: TEST ."Test 1:" TEST1 ." Test 2:" TEST2 ; 

This defines a new word TEST that will execute the 2 tests in 
sequence, identify the tests, and display an OK message if they 
pass. (Note that ." message" in a macro definition will print 
"message"). If either test fails, the program will automatically 
abort with the normal TCOMP fault display showing the faulty 
cycle and what it should have been. 

Including messages in macros 

If you want the operator to press a key, just put in a 
message to that effect by starting with ." and ending the message 
with " as we did above. 

You can then use the command KEY to wait for a keystroke. 
This word also leaves the ASCII code for the key on the stack. 
You can either get rid of it with DROP or use it as you wish. 
For example, you could use it to determine the next step to be 
taken: 

: SIMPLE-TEST 
." This is a simple test " CR 
." Do you wish to continue ?(y/n) " KEY 
ASCII y = IF REAL-TEST THEN 
." Bye " . 

I 

This new word, SIMPLE-TEST, will execute the word REAL-TEST 
if the user enters in a "y." Otherwise, it will fall through and 
print out the closing " Bye." 

Removing faulty definitions 

If you define a test that doesn't work, you can erase the 
definition from memory by entering: 

FORGET <macro name> 

FORGET will also forget any words that have been defined since 
the macro that you want to forget. For instance, FORGET TEST2 
will forget TEST2 and any other words you have defined since 
TEST2. (You thus forget a whole sequence of words. Enter VLIST 
for a list of words defined-- last word first.) 

-- Appendix F -- Page P-4 



Control Structures 

Your system's macro capability as described so far is really 
just the tip of the iceberg. 

A complete FORTH system is resident within the UniLab 
software. This language includes constructs such as DO ••• LOOP, 
IF •• THEN ••• ELSE, and BEGIN ••• UNTIL, so you can define macro 
words that are much more complex than the simple examples we have 
covered. 

If you want to learn more about FORTH, the best book by far 
is Starting FORTH, by Leo Brodie. 

If you want to contact other FORTH users, try going through: 

The FORTH Interest Group 
P.O. Box 1105 
San Carlos, CA 94070 
(415) 962-8653 

They have monthly meetings in many locations and publish an 
excellent journal called FORTH Dimensions. 

The UniLab software was all developed using the MVP-FORTH 
PADS (Professional Application Development System). This 
package, and many other FORTH books and programs, is available 
from 

Mountain View Press Inc. 
P.O. Box 4656 
Mountain View, CA 94040 
(415) 961-4103 

The public-domain portion of that system (which is a 
modified 1979-Standard FORTH system) is included with your 
UniLab. Excellent documentation for that system is included in a 
book by Glen Hayden called All About FORTH, which is a complete 
glossary of the FORTH words. 

If you plan to use the FORTH capabilities, you should buy 
the manual for the PADS FORTH system. It is available from 

FORTHKIT 
240 Prince Ave. 
Los Gatos, CA 95030 

The manual includes source screens and documentation for 
many nice utilities included with the system. 

You should also request from Orion the Orion Programmer's 
Guide (available in July 1986). 

July 16, 1986 Page F-5 Appendix F --



For the Experienced 

If you already know FORTH, the rest of this section will 
point out a few useful details for you. If not, you can skip the 
rest of this section, because it probably won't make any sense to 
you. It is not necessary to learn FORTH to use the UniLab. 

Redefinitions 

Three standard FORTH words have been redefined in the UniLab 
system: NOT is used in trigger definitions so the synonym 0= 
must be used: also OUT is redefined to TOUT. CFA has been 
redefined as CFADR to prevent conflicts with the hex number. 
Another difference to bear in mind is that the default number 
base in the UniLab system is Hex, while decimal is usually used 
in book examples. 

Editor 

There is a complete FORTH editor resident in your; system, 
which can be used for writing FORTH programs, then compiling them 
from the screens by using then LOAD command (or escape L). See 
MEMO in the Command Reference chapter for a little more 
information on the use of the editor. 

The editor is a very fast full-screen editor designed for use 
with FORTH screens. To use it you enter 

<n> EDIT 

(where n is a numbered 1K block) at any time when the UniLab 
program is running. A summary of all the editor commands will be 
displayed if you enter control z. 

Normally, UniLab help screens file is open so that is what 
you will see, but if you use 

OPEN <file name> 

you can edit or examine any file in 1K pieces~ 

-- Appendix F -- Page F-6 



Assembler 

There is also a complete; reverse polish, assembler for your 
host processor. We include it because it doesn;t take up much 
space and it is useful if you want to use your system to write 
FORTH programs. Refer to the books listed above for more 
details. 

The assembler is a complete (FORTH) 8086 assembler. It is 
loaded automatically whenever you enter CODE. This version was 
adapted for MVP FORTH by rrom Wempe from Ray Duncan's version 
published in Dr. Dobb's Journal, Number 64, Feb. 1982. 

Decompiler 

Your UniLab software also includes a simple decompiler. This 
is useful if you want to understand the functioning of any of the 
UniLab or FORTH words or recall one of your own word definitions. 
To use it enter 

• <word> XX 

where <word> is any word in the system. The decompiler will print 
the address, contents, and name of each word in the definition in 
sequence each time you enter XX. 

For numbers it will print "Lrr" and then the number in the 
next line with garbage in the 3rd column. Messages defined with 
"."" will give garbage in the name column. Also headerless words 
will show junk in the name column. It's crude but amazingly 
effective for a definition that only occupies 12 bytes of object 
code! 

July 16, 1986 Page F-7 -- Appendix F --



Virtual files (.VIR) 

The UniLab diskette includes three .VIR files: EDIT.VIR, 
ASM.VIR, and UTIL.VIR. These files are not needed to run the 
UniLab but you may find them useful for other work. The EDIT.VIR 
file is required to use the MEMO pad. 

Some other virtual files are also used by the UniLab 
software. ULxxx.VIR contains trace routines and other material 
essential for the UniLab system to run. 

MENxxx.VIR contains the menu overlay, the mode panels, and 
the symbol conversion menu. L1Bxxx.VIR and L2Bxxx.VIR contain 
the pinout libraries. 

The names of these files will usually be coded with the 
version number, for example: UL32.VIR, MEN32.VIR, and L1B32.VIR 
for version 3.20. These version numbers must match the version 
number of the UniLab software or the system will crash. 

The utilities are loaded from UTILxxx.VIR when needed by 
words like start end TRIADS or from to copyto COPYSCRNS. All of 
these commands are described in the documentation for the 
Mountain View Press PADS FORTH system. 

-- Appendix F -- Page F-8 



Appendix G: 
EPROMs and EEPROMs Supported 

Part Command 
Number PM Vpp To Read To Program 

EPROMs 
2716 16 RP ROM P2716 
27,.,1t:.. 

I"" I U 
1 t:. 
IV RP ROM PD2716 

2532 16 RP ROM P2532 * 
TMS2532 16 RP ROM P2532 * 

2732 32 21 R2732 P2732A 
2732Ab 32 21 R2732 P2732A 
27C32 32 21 R2732 P27C32 
27C32 32 25 R2732 P27C32 ** 

2764 64 21 RP ROM PD2764 
2764A 56 12.5 RPROM P2764 

TMS2764A 64 21 RP ROM P2764 
27C64 64 21 RPROM P2764 
27C64 56 12.5 RPROM P2764 

27128 64 21 RP ROM PD2764 
27128A 56 12.5 RP ROM P2764 

27256 56 12.5 R27256 P27256 *** 
27256 56-21a 21 R27256 P27256 *** 
27C256C 56 12.5 R27256 P27256 *** 

27512 512a 12.5 R27512 P27512 (8BIT mode needs 64K UniLab 
16BIT mode nees 128K) 

EEPROMs 
4816b 16 RP ROM P48016 
48016b 16 RPROM P48016 

NOTES: 

a Personality modules 56-21 and 512 are optional equipment. 
b Limited support only for 4816, 48016, and 2732A. 
c We do not support the Fujitsu MBM 27C256. 

* The 2532 EPROM does not support the 16-bit mode of 
programming. 

** Must cut prn 8 off of PM-32 for the 25-volt part. 
*** You need a 64K UniLab to use 16BIT mode with the 27256 

PROM. 

July 16, 1986 Page G-1 -- Appendix G 



Appendix H: 
Microprocessors Supported 

The Orion UDL and UniLab can both be used with almost every 
microprocessor on the market. 

Orion supports the more popular microprocessors with pre­
configured cables and with processor specific software packages. 

The information in this appendix is a guide to the level of 
support that we offer, as of November 26, 1 986. It is not, 
however, exhaustive. As the Orion product line grows, we will 
continue to support more processors with cabling and software. 
Contact Orion Applications Engineering for the latest 
information. 

3.20 Software Update: 

All packages, except for Z8000, come with a line-by-line 
assembler. 

All overlay and reserved areas are movable. 

All software packages (except 1 802) support the NMI 
features, some through the use of IRQ pin of the processor. 

All software packages which support multiple processors 
provide you with a "patch menu." The is menu is presented to you 
when you call up the UniLab software, and is also available 
through the command PATCH. 

November 2 6, 1986 Page H-1 -- Appendix H --



1. FULLY SUPPORTED PROCESSORS: 

1.A. NON-PIGGYBACK CHIPS 

Analyzer Software 
PROCESSOR Cable Package Reserved Overlay 

1802 G DIS-18 N/A N/A 
1805 G DIS-18 N/A N/A 
1806 G DIS-18 N/A N/A 
2800 * Q DDB-Z80 38-3D 30-
6301XO+ B DDB-63 FFB9-BA FFBC-EF 
6303X B DDB-63 FFB9-BA FFBC-EF 
6303R B DDB-63 FFB9-BA FFBC-EF 
6305X2 B DDB-685 1FB9-BA 1FBA-E3 
6305Y2 B DDB-685 1FB9-BA 1FBA-E3 
6500/1E B DDB-65 FF AC-BC FFBD-FB 

and 40 
6502 B DDB-65 FF AC-BC FFBD-FB 

and 40 
65C02 B DDB-65 FF AC-BC FF.BD-FB 

and 40 
65C102 B DDB-65 FF AC-BC FFBD-FB 

and 40 
65C112 B DDB-65 FF AC-BC FFBD-FB 

and 40 
6512 B DDB-65 FF AC-BC FFBD-FB 

and 40 
R6511Q B DDB-65P FF AC-BC FFBD-FB 

and 53 
6800 B DDB-68 FFB9-BA FFBC-EF 
6801+ B DDB-681 FFB9-BA FFBC-EF 
6802 B DDB-62 FFB9-BA FFBC-EF 

and 50-53 
6803 B DDB-681 FFB9-BA FFBC-EF 
6805E2 B DDB-685 1FB9-BA 1FBA-E3 
6805E3 B DDB-685 FFB9-BA FFBA-E3 
6808 B DDB-682 FFB9-BA FFBA-F7 

and 50-53 
6809E B DDB-689 FFB9-BA FFBB-
68HC11 B DDB-611 I FF71-73 FF74-BF 

+ designates "expanded mode." * Also called an NSC-800+. 

-- Appendix H -- Page H-2 



1.A. FULLY SUPPORTED NON-PIGGYBACK CHIPS (continued) 

PROCESSOR 
68000 

68HC000 

68008 

68010 ** 
68020 ** 
8031+ 
80C31+ 
8032+ 
8035+ 
8039+ 
8040+ 
8044+ 
8048+ 
8049+ 
8051+ 
8052+ 
8080 
8085 
8086 

80C86 

8088 

80C88 

Analyzer 
Cable 

p 

p 

p 

p 

p 

E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
E 
H 
A 
A 

A 

A 

A 

Software 
Packa e 
DDB-68K 

DDB-68K 

DDB-688 

DDB-68K 

DDB-68K 

DDB-51 
DDB-51 
DDB-51 
DDB-48 
DDB-48 
DDB-48 
DDB-48 
DDB-48 
DDB-48 
DDB-51 
DDB-51 
DDB-85 
DDB-85 
DDB-86 

DDB-86 

DDB-88 

DDB-88 

+ designates "expanded mode." 

Reserved Over la 
07A8-AB 07AC-FC 

and a trap vector 
07A8-AB I 07AC-FC 

and a trap vector 
07A8-AB l 07AC-FC 

and a trap vector 
07A8-AB I 07AC-FC 

and a tra~ vector 
07A8-AB I 07AC-FC 

and a trap vector 
FFCO-C6 FFC7-??? 
FFC0-C6 FFC7-??? 
FFCO-C6 FFC7-??? 
07FA-FF 07DE-FA 
07FA-FF 07DE-FA 
07FA-FF 07DE-FA 
07FA-FF 07DE-FA 
07FA-FF 07DE-FA 
07FA-FF 07DE-FA 
FFC0-C6 FFC7-??? 
FFC0-C6 FFC7-??? 
008-011 012-
008-011 012-
FFFB1-B2 FFFB3-

and 00004-0F 
FFFB1-B21 FFFB3-

and 00004-0F 
FFFB1-B2j FFFB3-

and 00004-0F 
FFFB1-B2j FFFB3-

and 00004-0F 

* Uses a register as well-- SOH. 
** In 68000 mode onlyo 

November 26, 1 986 Page H-3 -- Appendix H --



1.A. FULLY SUPPORTED NON-PIGGYBACK CHIPS (continued) 

Analyzer Software 
PROCESSOR Cable Packa e Reserved Over la 

8086+ L DDB-86 FFFB1-B2 FFFB3-
and 00004-0F 

80C86+ L DDB-86 FFFB1-B21 FFFB3-
and 00004-0F 

8088+ L DDB-88 FFFB1-B21 FFFB3-
and 00004-0F 

80C88+ L DDB-88 FFFB1-B21 FFFB3-
and 00004-0F 

8094 R DDB-96 * 2016-1C 201D-4F 
8095 R DDB-96 * 2016-1C 201D-4F 
8096 R DDB-96 * 2016-1C 201D-4F 
8097 R DDB-96 * 2016-1C 201D-4F 
80186 A DDB-86 FFFB1-B2 FFFB3-

and 00004-0F 
80188 A DDB-88 FFFB1-B21 FFFB3-

and 00004-0F 
80286 I DDB-86 FFFB1-B21 FFFB3-

and 00004-0F 
8344 E DDB-51 FFCO-C6 FFC7-??? 
HD64180 E DDB-Z80 38-3D 3D-
NSC800 Q DDB-Z80 38-3D 3D-
Z8800 D DDB-S8 0781-85 0786-FF 

and 60 
Z8681 D DDB-Z8 07AF-B3 07B4-

and 60 
Z8682 D DDB-Z8 07AF-B3 07B4-

and 60 
Z-80 E DDB-Z80 38-3D 3D-
Z8001 c DDB-Z8K 700-
Z8002 c DDB-Z8K 700-
Z8003 c DDB-Z8K 700-
Z8004 c DDB-Z8K 700-

*** Must use =RAM.SEGMENT and =ROM.SEGMENT with these two chips. 

-- Appendix H -- Page H-4 



1.B. FULLY SUPPORTED PIGGYBACK CHIPS 

PROCESSOR 
6301 
6305Y1 
6500 

R6541 
6801 
68P05V07 
68P05WO * 
8040 
8048 ** 
8049 ** 
8050 ** 
80C51 
Z8822 

Z8603 *** 

Analyzer 
Cable 

N 
M 
K 

K 

K 
N 
M 
M 
F 
F 
F 
F 
E 
D 

E 

Software 
Packa e 
DDB-63 
DDB-685 
DDB-65P 

DDB-65P 

DDB-65P 
DDB-681 
DDB-685 
DDB-685 
DDB-48 
DDB-48 
DDB-48 
DDB-48 
DDB-51P 
DDB-S8 

DDB-ZB 

* 6805 with A/D converter. 

Reserved 
FFB9-BA 
OFB9-BA 
FF AC-BC 

and 40 
FF AC-BC 

and 40 
FF AC-BC 
FFB9-BA 
OFB9-BA 
OFB9-BA 
07FA-FF 
07FA-FF 
07FA-FF 
07FA-FF 
FFC0-C6 
0781-85 

and 60 
071F-B3 

and 60 

Over la 
FFBC-EF 
OFBA-E3 
FFBD-F8 

FFBD-FB 

FFBD-FB 
FFBC-FD 
OFBA-E3 
OFBA-E3 
07DE-FA 
07DE-FA 
07DE-FA 
07DE-FA 
FFC7-??? 
0786-FF 

07B4-

** Also called the 87PSO, by National Semiconductor. 
*** Sarne configuration also supports the Z8612 and Z8613. 

November 26, 1 986 Page H-5 -- Appendix H --



2. OTHER PROCESSORS FOR WHICH ORION PROVIDES ANALYZER SUPPORT 

2.A. NON-PIGGYBACK 
Processor 

2.B. PIGGYBACK 

16032 
9900 
99000 
TMS7000 

Processor 
COP420 
3870 
3873 

-- Appendix H --

Cable 
c 
d 
d 
m 

Cable 
f 
m 
m 

Page H-6 



3. PROCESSORS THAT ORION SUPPORTS INDIRECTLY 

There are some processors that you cannot hook up to the 
UniLab or UDL. However, Orion supports these processors 
indirectly, by supporting processors that are opcode compatible 
with them. 

Thus you can use a processor supported by Orion for the· 
development work. 

Processor 
1804AC 
6301UO 
6301VO 
6301 V1 
63L05F1 
6305VO 
6305XO 
6305X1 
6305YO 
6305Y1 
6500/1 
6500/11 
6500/12 
6500/15 
6500/16 
6500/41 
6500/42 
6503 
6504 
6505 
6506 
6507 
6513 
6514 
6515 
CPD68HC04P2 
MC68HC04P2 
CPD68HC04P3 
MC68HC04P3 
6805F2 
6805G2 
6805S1 
6805S6 
6805U1 
6805V1 
6805W1 
8048 
8051 

November 2 6, 1 986 

Use for develo ment work 
1805 or 1806 
6305X2 
6301 piggyback 
6301 piggyback 
6305EO 
6305X2 
63P05YO 
6305X2 
63P05YO 
6305Y2 
6500/1E 
65/11EB 
65/11EB 
65/11EB 
65/11EB 
6541 
6541 
6502 
6502 
6502 
6502 
6502 
6512 
6512 
6512 
6805 piggyback 
6805 28 pin 
6805 piggyback 
6805 28 pin 
6805 piggyback 
6805 piggyback 
6805 piggyback 
6805 piggyback 
6805 piggyback 
6805 piggyback 
6-805 piggyback with A/D converter 
8048 piggyback 
8050 piggyback 

Page H-7 -- Appendix H --



3. PROCESSORS THAT ORION SUPPORTS INDIRECTLY (Continued) 

Processor 
8393 
8394 
8395 
8396 
8748 
8793 
8794 
8795 
8796 
9761H 
Z8010 
Z8011 
Z8020 
Z8021 
Z8030 
Z8031 
Z8601 
Z8611 
Z86C11 

-- Appendix H --

Use for develo rnent work 
8096 
8096 
8096 
8096 
8048 piggyback 
8096 
8096 
8096 
8096 
80C51 piggyback 
Z8012 piggyback 
Z8013 piggyback 
Z8022 piggyback 
Z8023 piggyback 
Z8032 piggyback 
Z8033 piggyback 
Z8603 piggyback 
Z8613 piggyback 
Z8613 piggyback 

Page H-8 



Appendix I: 
System Messages 

Contents: 

1. ERROR AND STATUS MESSAGES 
2. PARAMETER ENTRY MESSAGES 
3. MENU MESSAGES 

1. ERROR AND STATUS MESSAGES 

<number> ? - PROM programmer error. Usually this means an RS-232 
error • 

••• enter INIT - The UniLab needs to be initialized with the host 
computer. You should enter INIT, then proceed. 

Address entry error. Needs 'address-start address-end' command. 
- Insufficient parameters given to a command. 

bad table file - Your assembler table file has been corrupted 
(the file called xxx.TBL). Try copying it from the distribution 
diskette again. 

beyond blkmax - DOS tried to read a forth screen file beyond the 
limit set in the variable BLKMAX. This is mainly protection 
against accessing files on a hard disk as forth blocks. 

beyond eof - DOS tried to read a file beyond its end of file. 

boundaries for bins overlap - An error message from the 
histogram producer (AHIST or THIST). The program will not 
produce a histogram until this error is fixed. It occurs if any 
two ranges of addresses or times share a region. For example, 

1000 - 2000 and 1500 - 2500 
or even just 

1000 - 2000 and 2000 - 3000. 

bytes truncated, beyond 64K mE!lllory boundary. - A load was 
attempted that tried to load data beyond FFFF. 

July 1 6, 1986 Page I-1 -- Appendix I --



can't call DOS - Attempt to call DOS failed, probably because you 
are in the menu mode. If COMMAND.COM is not on your root 
directory, you will get this message. 
Can also result from having the setting of files= in your 
CONFIG.SYS file too small. See the Installation chapter. 

can't find GLOSS.ORI - The file GLOSS.ORI has to be in the 
directory pointed to by the DOS environment string GLOSSARY in 
order to use LOOKUP and WORDS. See the Installation chapter. 

can't find GLOSS.TXT - The file GLOSS.TXT has to be in the 
directory pointed to by the DOS environment string GLOSSARY in 
order to use LOOKUP and WORDS. See the Installation chapter. 

can't find GNAMES.ORI - The file GNAMES.ORI has to be in the 
directory pointed to by the DOS environment string GLOSSARY in 
order to use LOOKUP and WORDS. See the Installation chapter. 

can't find xxxx - File could not be located on the disk or 
directory. Often caused by not having the proper values assigned 
to ORION and GLOSSARY. See the Installation chapter, Software 
Installation. 

can't open overlay. - Your .COM file and your .OVL file do not 
match up. Probably you have the command file from one version of 
the UniLab software and the overlay file left over on your disk 
from an older version. 

can't R/W non-emulated address without working Debugger control! 
- An attempt to use MDUMP, M, MM!, MCOMP, MFILL etc., on memory 
that is not in emulation memory. Debug control has not been 
established via RB or NMI. Once you have established debug 
control, you can read and alter target system RAM as well as 
emulation ROM. 

can't use ALSO to add another ADR range. - The range trigger 
specs for the UniLab can get very complicated. The low- and 
high- order addresses are not intrinsically linked in the truth 
tables. Multiple ranges would probably yield a lot of triggers 
that would be combinations of wrong high and low address. For 
this reason, multiple ranges are not allowed. 

compile only - See All About FORTH (see page F-5). 

-- Appendix I -- Page I-2 



conditionals not paired - See All About FORTH (see page F-5). 

Data is <data> at addr <adr> •• but is <data> at addr <comp adr>­
Displayed when MCOMP is used and the memory does not match up. 

definition not finished - See All About FORTH. 

Disk full - The disk cannot hold any more files-- use a fresh 
diskette, or remove some files that are no longer needed. 

diskerr I n - There is something wrong with a DOS disk operation. 
Consult your DOS manual for the error number's meaning. 

divide overflow - Arithmetic error caused by dividing a number by 
zero. 

eadr ng - End Address Error. An error in an internal command sent 
to the UniLab. Usually caused by an RS-232 error or a general 
system failure. 

empty stack - The operating system is trying to use a number on 
the FORTH stack, and the FORTH stack is empty. 

Emulator Memory Enable Status - A message displayed before the 
status of emulation ROM is displayed. 

End of DOS file reached before formatted end-of-file. - Your 
Intel hex format file being loaded by HEXLOAD contains bad data, 
or lacks the checksum at the end. 

end of text file - The end of the file being displayed by 
TEXTFILE has been reached. 

End of Trace Buffer - The display has come to the end of the 
trace buffer. Use TT to start from the top, or <n> TNT to start 
from cycle number n. 

Enter <parameter description> - A menu prompt, describing to you 
the number(s) required by that menu item. See Section 3 of this 
appendix. 

July 16, 1986 Page I-3 -- Appendix I --



Eprom programmed and verified, finished ••• - A status message 
from the EPROM programmer. Everything is fine. 

Eprom VERIFY Error !!! - A status message indicating that there 
has been a problem while programming your EPROM. 

file access error - The on-line assembler encountered a problem 
while trying to read or write or close a file. The most likely 
cause: you do not have the .TBL file in the correct directory. 
It should be in the directory pointed to by the DOS environment 
string ORION (SET ORION=????). See the Installation chapter. 

File Name? Prompt requesting the name of the file to be 
opened or saved. This only appears if you do not include the 
file name in the same line as the command to open or save the 
file. 

full-stack - Internal stack is overflowing. If this occurs, it 
might be that there is not enough room in the system. Possible 
cause: many user macros. 

Hardware errors in Emulation Memory - While attempting to 
determine the memory size of your UniLab's emulation memory, the 
software has detected a hardware fault in the UniLab. 

Hit any key to return to menu - If a menu operation uses the 
entire screen, the menu selections will be overwritten. This 
message will be displayed, letting the user return to the menu 
display. 

in protected dictionary - You cannot FORGET words that are in the 
protected dictionary. See All About FORTH. 

Initialization request refused - a check of the UniLab's PROM has 



Initializing UniLab Hardware errors in Emulation Memory - while 
attempting to determine the memory size of your UniLab's 
emulation memory, the software has detected a hardware fault in 
the UniLab. 

input > 255 - see All About FORTH. 

input stream exhausted - see All About FORTH. 

Invalid number - an error message from the histogram producer 
(AHIST or THIST). You produce this error if you try to enter a 
value that is not a number in the base you are using. For 
example, FF is not a number in decimal. You will not be able to 
produce a histogram until you correct the mistake. 

Invalid start and stop address for THIST - an error message 
from the histogram producer THIST. This error tells you that one 
of the two addresses that you gave to THIST is missing or is not 
a number in the base you are using. 

isn't unique - the word used as a macro name is already used. 
This won't hurt anything except you can no longer use the 
previous word. 

ladr ng - Load Address Error. An error in an internal command 
sent to the UniLab. Usually caused by an RS-232 error or a 
general system failure. 

len ng - Length of data transmitted is bad. An error in an 
internal command sent to the UniLab. Usually caused by an RS-232 
error or a general system failure. 

loading only - see All About FORTH. 

Lowbound is larger than highbound - an error message from the 
histogram producer (AHIST or THIST). This error occurs if a bin 
has a starting value that is higher than the ending value. You 
cannot make a histogram until you fix this error. 

max 3 qualifiers - You cannot enter more than three qualifiers 
with the AFTER command. 

July 16, 1986 Page I-5 -- Appendix I --



MISC inputs cannot be used in qualifier or filter specs. - The 
MISC lines are excluded from being used in an AFTER or an ONLY 
trigger specification. 

needs <number> parameters - The command needs more parameters 
than were given. Consult the glossary to see what commands the 
word needs. 

No Analyzer Clock - The UniLab is not receiving a clock signal. 
All clocking is through the RD-, WR-, Kl-, and K2- lines to the 
UniLab (except for the F cable, which gets clock from the 
piggyback rom socket). 
The processor might be stopped, or these four lines might not be 
correctly connected~ 

no drive - The disk drive you tried to access does not exist. 
Usually received if you enter a command such as 
BINLOAD B:myprog.bin when you have no drive B. 

No Good! (Above is correct.) Was: - Message produced by TCOMP 
when it detects a difference between the trace on the diskette 
(which it assumes is correct) and the trace that has just been 
made, which is sitting in host memory. 

No Memory Enabled - No emulation memory is set up to be selected 
as ROM for the target board. This is not an error. 

no room - Dictionary is full and won't hold any more macros. Use 
FORGET to forget unused macros before adding new ones. 

no trigger! - Only shows on a compare trace with the SC command. 
This means that the trigger spec was not reached within the time 
you specified. 

Not a DOS text file - TEXTFILE is trying to read in a file that 
is not a DOS text file. 

Not available in menu mode - Some commands are restricted when 
using menus, such as calling up the HELP displays. These would 
overwrite the menu if they were permitted. 

-- Appendix I -- Page I-6 



Not done till delay count = - The UniLab is waiting for enough 
events to fill up its trace buffer. If too few bus cycles occur, 
or if filtering is being used, this message will be generated. 
You can wait, or you can hit any key to break out of this state. 
You will then need to type TD (Trace buffer Dump) to see the 
filtered cycles or the cycles before the clock was stopped in the 
buffer. Note that the cycles will appear at the end of the trace 
buffer, while there will still be left-over garbage toward the 
beginning of the trace. 

not enb. - Emulation memory is not enabled for this data 
transfer-- not an error message, but a reminder that the address 
you are referencing is not enabled (for example, target system 
RAM). 

Not enough bins available -
producer (AHIST or THIST). 
more than 15 bins using the 
if you already have several 
subdivide one of them among 

An error message from the histogram 
This error occurs if you try to allot 
Subdivide key (F3). This can occur 
bins alloted and then try to 
all the bins. 

not enough memory - The on-line assembler (ASM or ASM.F) can't 
allocate enough RAM to read the table file in. Use ?FREE to 
check on the amount of free RAM available, and then use either 
=HISTORY or =SYMBOLS to reduce the amount of RAM dedicated to 
those two space hogs. You will have to SAVE-SYS and then restart 
the UniLab software before the new settings will take effect. 
Look up the appropriate entries in the Command Reference chapter. 

not found - Word used in macro definition does not exist. Check 
spelling. Note that macros may use other macros, but each word 
in a macro must be already defined. 
Also used to let you know that the file was not found by SYMLOAD, 
or that the file was not the right type. 

not in dictionary - HELP cannot find the word in the UniLab 
glossary. 

not recognized - Command or word not available. This is usually 
a misspelled word. If it is a known word that should exist, type 
BYE to exit the system. Do not SAVE-SYS, since the operating 
system may be damaged. 

ODD or EVEN ? - A prompt to tell the user that either the address 
range must be given (with an implicit odd or even start address) 

July 16, 1986 Page I-7 -- Appendix I --



ODD or EVEN ? - A prompt to tell the user that either the address 
range must be given (with an implicit odd or even start address) 
or the command ODD or EVEN must be used when reading or 
programming a 27512 in the 16-bit mode. 

ok - Word returned by the operating system every time it accepts 
a command. 

out of bounds - Stack underflow-- a catastrophic error. If it 
occurs, exit system and re-boot. Do not SAVE-SYS. 

parse error - The on-line assembler does not recognize your 
assembly language command. 

rev sum ng!! - An error occurred when a HEXFILE was being 
received. This is usually an indication of an RS-232 problem. 

Reading •••• - Message displayed when reading a 27512 prom, since 
it takes a few minutes. 

reading text ••• please wait - TEXTFILE reads in a file to the 
UniLab program and analyzes it for the number of lines. While it 
is creating a line index, this message is printed out. 

Requires <parameter description> - A parameter entry error 
message. Indicates that the wrong number of parameters was given 
to a command. See Section 2 of this appendix. 

resetting - The analyzer has been started, and the reset line 
toggled low then high again, to reset the target processor. Look 
at, chapter 6, Section 4.5. 

RS232 err # n ••• enter INIT - The RS-232 communication between 
the host and the UniLab is not functioning properly. Check the 
cable hookup. If you have changed baud rate, make sure that the 
software setting corresponds to the switch setting in the UniLab. 

STANDALONE mode.... Use PROMMSG later to communicate with UniLab 
after EPROM is programmed. - Status message after issuing a prom 
programming command in STANDALONE mode. 

-- Appendix I -- Page I-8 



target adr (not EMENABLED) - This is usually not an error 
message. It is a notice that you are addressing a memory location 
that you have not enabled. Either you have made a mistake: or 
you are purposely addressing RAM on your target board rather than 
emulation ROM. A read or write to target memory is only possible 
after you have established debug control. 
This message is always printed out as a reminder that the 
debugger is performing the memory read or write, and that this is 
not a simple transfer of data between the host and UniLab. 

The command is: <command> - This is a menu display to show the 
user what the associated command would be if entered as a command 
rather than as a menu choice. 

This Eprom does not seem to be erased!!! - An error message when 
you try to program an EPROM that is not blank. 

TO address is smaller than FROM address. - A command was given 
which has mismatched parameters-- the second number is too small. 

Too many files - Not enough files have been allocated, so you 
cannot open another. This can be changed by changing the 
CONFIG.SYS file in your root directory to contain the line 
FILES=16. See the Installation chapter. 

unloadable - See All About FORTH. 

Unsupported record type. Types O, 2, & 3 only are supported. -
The Intel hex format file that you are trying to load with 
HEXLOAD is of the wrong record type. Bytes 7 and 8 of each line 
of the file tell what record type the line uses. 

Wrong UNILAB.SCR file - The file named UNILAB.SCR on the disk is 
not the correct version for the ULxxx.COM file. Make sure that 
you copied everything from the master diskette. 

July 16, 1986 Page I-9 -- Appendix I --



2. PARAMETER ENTRY ERRORS 

These messages result when you call a command without giving 
it the proper number of parameters. You can enter any command 
name without the parameters, and get a prompt that tells you what 
the command requires. 

Requires a Goto-Address, and the next Breakpoint-Address 

Requires the From-Address, and the To-Address 

Requires a Number-of-Lines 

Requires the From-Address, the To-Address, and a Value 

Requires Source-From, Source-To, and Destination addresses(1) 

Requires the Start-Address and the #-of-lines 

Requires an Address 

Requires a Word ( 16 bit ) Value 

Requires a Cycle# 

Requires a Byte ( 8 bit ) Value 

Requires an Address or Range ( Address1 TO Address2 ) 

Requires the Cyclel 

Requires a Block-Number 

Requires a Value and a Destination-Address 

Requires an Address and a Block-Number 

Requires a Nibble ( 4 bit ) Value 

Requires 'host-address target-address #bytes' 

-- Appendix I -- Page I-10 



3. MENU MESSAGES 

These messages are generated by entries in the menu! to let 
you know what values that menu item needs. When you get one of 
these messages, enter the value requested. 

Enter the Starting target address: 
Enter the Ending target address: 

Enter the Target address: 
Enter the First value: 
Enter the Last value: 
Enter the Value: 

Enter the Bit# (0-7): 
Enter the desired hex output code (0-FF) 
Enter the Trigger address: 
Enter the Source address: 
Enter the Destination address: 
Enter the number of lines to disassemble (default=5): 
Enter the starting address of the first block to compare: 
Enter the starting address of the second block: 

Enter the breakpoint address in emulation memory: 
Enter address to continue execution: 
Enter next breakpoint address: 
Hit key for next debug function (from above): 

July 16, 1936 Page I-11 -- Appendix I --



Appendix J: 
.BIN Files and .TRC Files 

overview 

Your distribution diskette includes one or more .BIN files, 
the binary image of the simple target program for your 
microprocessor. That file is described in Chapter Three: The 
Guided Demo. 

The chart in this appendix tells you which file to load into 
memory, and where to load it. 

With some packages, we distribute a .TRC file to test your 
cable connection to your processor, as described in section 4 of 
the Installation instructions of Chapter Two. This appendix 
includes the name of the .TRC file, for those processor packages 
that include demonstration traces 

Patches and 3.20 Software Update: 

All software packages which support multiple processors now 
provide you with a "patch menu." The is menu is presented to you 
when you call up the UniLab software, and is also available 
through the command PATCH. Thus, the "patch word" is always 
PATCH • 

• BIN files 

You can load the sample program into memory with the command 
LTARG, which also takes care of enabling memory and any other 
needed details. 

However, loading the .BIN file from disk gives you 
familiarity with the procedure you will have to follow when you 
load your own program from disk. 

Before using BINLOAD 

With most processors, the only preparation you need is 
enabling the 2K segment into which you will load the binary file. 
For example, to load the binary file test65 into emulation memory 
for the 6502: 

FFOO EMENABLE 
FFOO FFFF BINLOAD test65 

With some processors, you might have to enable more than 2K 

November 26, 1986 Page J-1 -- Appendix J 



of memory, or set the value of some variables. 
are noted in the following chart. 

The <to address> arCJUlllent of BINLOAD 

These exceptions 

BINLOAD needs two arguments in addition to the file name: 
the <from address> and the <to address>. These addresses tell 
BINLOAD where to start loading the file, and when to stop. 

Of course, if BINLOAD reaches the end of the binary file 
before it reaches the <to address>, then it will stop loading. 

You should always give as the <to address> the highest 
address in emulation memory. Though the sample programs are 
small, the reset vector is often at the top of memory, pointing 
at an address closer to the bottom of memory • 

• TRC files 

In general, you use the trace file to verify that you have 
the proper connections between your UniLab and target board. 

Co1Dparin9 your trace to the one on diskette 

Load the sample program, either from the .BIN file or with 
LTARG, and use STARTUP to generate a trace. Then use: 

AA TCOMP <trace file name> 

to compare your entire trace to the trace on diskette. 

You can also use: 

TSHOW <trace file name> 

to look at the trace that is stored on diskette. 

Comparing partial traces 

Sometimes the difference 
your trace will be trivial. 
programs contain instructions 
not been initialized-- and so 
will vary. 

between the standard trace file and 
For example, some simple target 
that read RAM locations which have 
the value stored in that location 

The UniLab software stops checking the traces after it finds 
the first difference. If you want to compare your trace starting 
after the trivial difference, then you will use the TCOMP command 
with a different parameter: 

<number of cycles to compare> TCOMP <trace file name> 

-- Appendix J -- Page J-2 



Note that the number of cycles is a count starting from the 
end of the trace buffer. 

You can also use TMASK to specify that only certain columns 
of the trace should be compared. Consult the TMASK entry in the 
Co1DD1and Reference chapter. 

N/A 
Trace files are not available (n/a) for all processors= 

Chart of .BIN and .TRC files 

Load in 
.BIN starting at .TRC 

Processor file address file 
DDB-48 8048 family TEST48 00 DEM048 

members in expanded mode 

DDB-51 8051 family TEST51 00 DEM051 
members in expanded mode 
NOTE: You must also enable F800 to FFFF for the 

overlay area. 

DDB-51P 8051P, 80C51P TEST51P 00 DEM051P 
NOTE: You must also enable 800 to FFF for the 

overlay area. 

DDB-611 68HC11 TEST611 FFOO DEM0611 

DDB-63 6303R TEST63 FFOO DEM063R 
6303X TEST63 FFOO DEM063X 

(obsolete) 63P01 TEST63 FFOO DEM063P 

DDB-65 6502 or 65C02 TEST65 FFOO DEM065 

DDB-65P R65/11EB TEST65P FFOO DEM065EB 
R65/41 TEST65P FFOO DEM06541 
R6511Q TEST65P FFOO DEMOR65Q 

DDB-68 6800 or 6808 TEST68 F800 DEM068 

DDB-681 6801 TEST681 F800 DEM0681 
6803 TEST681 F800 DEM0681 
piggyback TEST681 F800 n/a 

DDB-682 6802 TEST682 F800 DEM0682 

DDB-685 6805E2 TEST685 1FOO n/a 
HD6305 TEST685 1FOO n/a 

piggyback chips TEST685P FOO DEM0685P 
6805E3 TES685E3 FFOO n/a 

November 26, 1986 Page J-3 Appendix J --



DDB-688 

DDB-689 

DDB-68K 

DDB-85 

DDB-86 

DDB-88 

DDB-96 

Processor 

68008 

6809E 

68000 

8085 
8080 

8086 min 
8086+ 
80186 
80286 
NOTE: 

8088 min 
8088+ 
80188 
NOTE: 

.BIN 
file 

TEST688 

TEST689 

TEST68K 

TEST85 
TEST85 

Load in 
starting at 
address 

00 

FFOO 

00 

00 
00 

.TRC 
file 

DEM0688 

DEM0689 

DEM068K 

DEMOBS 
n/a 

TEST86MI F800 DEM086MI 
TEST86MA F800 n/a 
TEST186 F800 n/a 
TEST286 F800 n/a 

With all members of the 8086 family, you 
should use SEG' before loading into emulation 
memory with BINLOAD. After loading, you can 
turn back on the interpretation of addresses 
as offsets from segments, with SEG. 

TEST88MI F800 DEM088MI 
TEST88MA F800 n/a 
TEST188 F800 DEM0188 

With all members of the 8088 family, you 
should use SEG' before loading into emulation 
memory with BINLOAD. After loading, you can 
again turn on interpretation of addresses as 
offsets from segments, with SEG. 

8094, 8095, 
8096, 8097 TEST96 2080 DEM096 
NOTE: You must enable the entire area 0 to 2FFF, 

for the overlay area. 

DDB-8064 HD64180 TESTHD64 00 DEMOHD64 

DDB-SC8 NSC-800 TESTSC8 00 DEMOSC8 

DDB-S8 ROMless members of the super 8 family 
TESTS8 20 DEMOSS 

-- Appendix J -- Page J-4 



DDB-Z8 

DDB-Z80 

DDB-Z8K 
These two 

DIS-18 

Processor 

Z8 
piggyback 
NOTE: 
NOTE 1#2: 

ZBO 
NSC-800 
HD64180 

.BIN 
file 

Load in 
starting at 
address 

TESTZ8 OC 
TESTZ8P OC 

You must enable 00 through FFF. 

.TRC 
file 

n/a 
DEMOZ8P 

Assumes you have pulldown resistors on the 
upper address lines. If you have pull up 
resistors, then ALSO FFOC EMENABLE and then 
OC FF FFOC MMOVE. 

TESTZ80 
TESTZ80 
TESTZ80 

00 
00 
00 

DEMOZ80 
DEMONS CB 
DEMOHD64 

Z8001, Z8003 
processors need two values initialized: 

0 =ROM.SEGMENT 
0 =RAM.SEGMENT 

TESTZ81 00 n/a 
Z8002, Z8004 TESTZ82 00 n/a 

1802 family TEST18 00 DEM018 

November 26, 1986 Page J-5 -- Appendix J --



FULL IlfDEX 

This index covers all chapters 
in both volumes. The index at the 
end of Volume I covers only that 
first volume. 

Neither index covers the 
appendices. 

.BIN file 

.TRC file 
• 3-6 
2-42 

. . . . . . . . . . . . 7-16 

7-17 

?FREE 6-24, 6-93, 7-23 

=BC • • • • 
=EMSEG • 

use 
=HISTORY • 
=SYMBOLS • 

•••• 4-7, 6-39, 
7-18 
7-19 
6-13 
7-21 
7-23 

6-93, 
6-24, 

>FILE 
>FILE' 

• ••• 7-176 

\ORION • 

16-bit Systems 
ROM cable • • • • • 

16BIT ••••••••• 
1802 family •••••• 
1AFTER ••••••• 

2AFTER • • • 

32K boundaries 
and MMOVE . . 

32K Uni Lab 
limitations . . 

3AFTER . . . . . . 

•• 7-176 

2-15 

• • • • 2-5 
• • • 7-1 3 
• • • • 8-5 
4-30, 7-11 

7-14 

. . . 6-59 

. 6-37 . . . 7-14 

48 CHANNEL BUS STATE ANALYZER 2-26 

6301 • 
6303R 
6303X 

• • • • • • • • • 8~7 
• • • • • • • • • 8- 7 

• • • • • • • • • • • 8- 7 

July 1 6, 1 986 Page 1 -- Index --



6305 8-25 
65/11EB 8-14 
65/ 41 8-14 
6500 family 8-10 
6502 8-10 
6511Q 8-14 
6800 8-18 
68000 8-32 
68008 8-36 
6801 8-21 
6802 8-24 
6803 8-21 
6805E2 8-25 
6805E3 8-25 
6808 8-18 
6809E 8-30 
68HC11 8-38 

8/16 BIT IN-CIRCUIT EMULATOR • 2-26 
80186 8-53 
80188 8-53 
80286 8-53 
8048 family 8-40 
8051 

reset • 2-34 
8051 family 8-45 
8080 8-50 
8085 8-50 
8086 8-53 
8086/88 family 

NM! 2-38 
8088 8-53 
8096 family 8-61 
8800 8-65 
8822 8-65 
8BIT 7-15 

A11 8-4 
ADR 4-24, 6-68, 6-75, 7-24 
ADR? 4-10, 7-25 
AFTER 4-11 , 7-26 
AH I ST 6-153, 7-28 
ALIGN 8-56 
ALL CY 8-10 
ALSO • 4-29, 7-29 

and EMENABLE 6-40 
ALT-FKEY • 4-34, 7-30 
ALT-FKEY? 7-30 
Analyzer • 2-8 

cable 2-25 
menu 4-10 

Index -- Page 2 



AS ...... ...... 3-12, 7-31, 9-15 
ASC • • • . . • • • • • • 7-32 
ASCII 

codes • • • • • • • • 7-32 
7-33 
7-34 
7-36 
6-61 

ASEG • • • • • • • • • • • • • 
ASM ••••••• 2-43, 6-61, 
ASM-FILE •••••••• 6-61, 
Assembler • • • • • • • • • • 
AT 

serial port • 
AUTOEXEC.BAT 
AUX1 • • • • • • • • • 
AUX2 • • • • • • 

B • • • • • • 
B# • • • • • 
Batch files • • • 

writing ••••• 
Baud rate 

2-7, 2-12 
2-15, 2-16 

• • • • 7-37 
• • 7-37 I 9-3 

• • • • 7-38 
• • • • 7-38 
• • • • • 4-3 
• • • • 4-20 

19,200 • • • • •••• 2-7 
BINLOAD • • • • • • 3-6, 4-8, 7...:39 
BINSAVE •••••• 4-8, 6-46, 7-40 
BPEX • • • • • • • • • • • 7-41 
Breakpoint 

address zero 
setting • • • 

Breakpoint display 

9-14 
3-13 

example • • • • ••• 6-109 
Bus activity •••• • • • • 6-2 
Bus state analyzer • • • • • 1-1 
BYE • • • • • • • • 2-9, 2-45, 7-42 

Cable connection 
verify • • • • • • • • • 

Cable diagrams 
on-line • • • • • • • • • 

CATALOG • • • • • • • • • • • 
Chips 

in UniLab • • • • • • • • 
CHKSUM • • • • • • • • 
Circuit 

2-42 

7-42 
7-42 

9-16 
7-43 

open collector 2-27, 2-33, 2-36 
CLEAR • • • • • • • 2-47, 7-44 
CLEAR I • • • • • • • • • • • • 7 = 4 4 
Clock inputs • • • • • • • • • 2-8 
CLRMBP • • • • • • • • 7-45 
CLRSYM • • • • • • • • • • 7-46 
COLOR • • • • • • • • • 2-47 I 7...:47 
COM1 • • • 2-12, 7-48, 9-3, 9-7 
COM2 • • • • • • • • • • • 7-49 

July 1 6 I 1 986 Page 3 -- Index --



Command file 
• COM • • • • • • • • • • 2-20 
ULxx.COM ••••••••• 2-3 

Command tail ••••••• 4-3, 4-20 
TOFILE • • • • • • • 6-94 

Compare 
traces • • • • ••• 7-173 

CONFIG.SYS •• 2-9, 2-15, 2-17, 2-19 
Connect 

UniLab to host • • • • • 2-11 
Connection 

diagram • • • • • • • • • 2-26 
2-31 
2-36 
2-33 
2-29 
2-42 

DIP CLIP 
NMI- • • • 
RES- • • • • • • • • • • 
ROM cable • • • • • • • • 
verify •• 2-5, 

Connections 
UniLab to host ••• 2-9, 2-11 
UniLab to target •• 2-9, 2-25 

CONT • • • • 4-24, 4-27, 6-75, 7-50 
CONT column • • • • • • • 9-13 
CONTROL • • • • • • • • • 7-52 
Controls • • • • • • • • • • • • 2-3 
CTL-FKEY • • • • • • • • • 7-53 
CTL-FKEY? • • • • • • • • • • 7-53 
CTRL-BREAK • • • • 2-13 
Cursor keys •••• 4-36, 6-144 

chart • • • • • • 4-52 
screen history • • • • • 4-38 

Cy# • • • • • • • • • • • • • ~ 6-8 
Cycle numbers • • • • • • • • 6-71 

"f" • • • • • • • 4-30 
Cycles 

show all 
CYCLES? • • • 

8-10 
4-10, 7-54 

D# • • • • • • • • • • • • • • 7-55 
DASM • • • • • • • • • • 7-56, 9-13 
DASM' • • • • • • • • • • • • 7-57 
DATA • • • • • 4-24, 6-75, 7-58 
Data bus 

. . . . . . 2-5 16-bit 
DB-25 • • .. • • • • • • • 2-12 
DCE • • • 
DCYCLES • • • • 

-- Index --

• • • • 9-3, 9-4 
• • • 7-60 

Page 4 



DDB 
48 
51 
51P 
611 
63 
65 
65P 
68 
681 
682 
685 
688 
689 
68K • 
85 
86 
88 
96 
SB 
za 
zao 
ZBK • 

Debug control 
and RAM • 
establish 
example 
menu 

• 

• 

8-40 
8-45 
8-45 
8-38 
8-7 

8-10 
8-14 
8-18 
8-21 
8-24 
8-25 
8-36 
8-30 
8-32 
8-50 
8-53 
8-53 
8-61 
8-65 
8-68 
8-72 
8-76 

3-13, 8-3 
6-49 

6-104 
• 6-108 

4-13 
Debug Control not established 

and RAM • 6-50 
Debugger 

DEF 

and emulation ROM • 
and stack • 
disable 
exit from • 
menu 
stack • 

Demo program 
.BIN 
trace (.TRC) 

Demo session • 
Development system • 
DIP clip • 

Connection 
DIS-18 
Disassemble 
DISASSEMBLER • 

in sync? 
out of sync • 

DM • 
watch out 

July 16, 1986 

6-38, 

3-8, 

• • 
3-8, 

8-2 
8-2 

6-124 
6-122 

4-13 
6-11 
7-61 

3-6 
2-42 
8-4 
1-1 

2-31 
2-31 
8-5 

6-53 
6-29 
8-18 
6_-53 
7-62 
6-53 

Page 5 -- Index --



DMBP •• ~ . . . . 
DN • • • • • • • 
DOHIST • • • • • • 
DOS • • • • • 
DOS command 

• • • • • • 7-62 
4-44, 7-63 

• 7-28, 7-172 
• • • • • • 7-64 

EXE2BIN • • • • 6-42, 7-39 
TYPE • • • • • • • • • 9-5 
VER • • • • • • • • • • • • 2-2 

Dos command files 
• COM • • • • • • • • • 2-3 

Down Arrow •• 
DTE • • • • • • 
Dumb terminal 

4-36, 4-37, 4-52 
• • • • • • • • 9-4 

PC • • • • • • • • . . . 7-48 

EMCLR ••••••• 2-28, 4-7, 7-65 
EMENABLE • • • 3-5, 4-7, 6-40, 7-66 

and ALSO • • • • • • • • 6-40 
Emulation memory • • • • • • 2-7 
Emulation ROM •••••• 1-1, 6-34 

128K • • • • • • • • 6-37 
access • • • • • • • 6-49 
clear • • • • • • • • 7-65 
compare • • • • • • • 7-100 
crash-free access • • • • 6-49 
disassemble • • • • 7-62, 7-63 
enable • • • • 6-38, 7-66 
explanation • • • • • • • 6-36 
overlap • • • • • • • • • 6-37 
read ••• 7-98, 7-101, 7-112 
status • • • • • • • • • 7-68 
warning • • • • • • • • • 6-49 
write •••• 7-96, 7-97, 7-105, 

7-110, 7-111 
Emulation settings 

save • • • • • • • • • • 4-23 
Emulator • • • • • • • • • • • • 2-8 

cable • • • • • • • • 2-25 
Enable memory • • • • • • 3-2, 3-4 

menu • • • • • • • •• 4-7 
End key • • • 4-42, 4-46, 4-52 
EPROM programmer • • • • 1-4, 6-125 
Error messages • • • • • • • • 2-22 

NG! • • • • • • • • • • • 9-14 
NO ANALYZER CLOCK • • • • 9-10 
RS-232 error #xx •• 2-22, 9-6 

Establish 
debug control •••••• 6-104 

ESTAT • • • • • 4-7, 6-40, 7-68 
EVENTS? • • • • • 7-69 
EXE2BIN • • • • • • 6-42, 7-39 

-- Index Page 6 



Exit •••••••• 2-9, 2-45, 7-42 
Exit from 

debug control •••••• 6-122 

f 
cycle numbers •••• 4-30, 6-8 

F8 • • • • • • • • • • • • • • • 5-3 
FETCH . . . . 4-11, 4-28, 7-70 
Filter •••••• 

cycle numbers • 
Filters 

• • • • 7-71 
• • • 4-30 

trigger specs • • • • • • 
FKEY •• 
FKEY? 
Flicker 
Footer 

. . . . . 

. . . . . . . 
trace display • • • • 

FORTH • • • • • • • 7-16, 
file • • • • • • • • • • 

Function keys 4-34, 5-5, 
set •• 7-30, 7-53, 7-73, 

4-30 
7-72 
7-73 
2-47 

7-82 
7-41 
6-63 

6-142 
7-150 

G • • • • • • • • • • • • • • 7-74 
GB • • • • • • • • • • • 4-13, 7-75 
GLOSSARY • • • • • • • • 2-15, 2-17 
Graphical Performance 

Measurement •••• 6-152 
Guided demo • • • • • • • • • • 3-2 
GW • • • • • • • • • • • • • • 7-76 

H>O • • • • • • • • • • • 7-77 
HAOR • • • • • • • • • 7-78 
H064180 • • • • • • • 8-72 
HOAT • • • • • • • • • • • • • 7-79 
HOATA • • • • 4-24, 6-75, 7-80 
HOG • • • • • 7-82 
HOG' • • • • • • • • • • • 7-82 
Header 

trace display • • • • 7-82 
HELP • • • • • • • • 5-2, 5-3, 7-83 
HEXLOAO ••••••••• 4-8, 7-84 
HEXRCV • • • • • • • • • • 7-86 
High level language 

support • • • • • • • 7-154 
Histogram 

address • • • • • • • • • 7-28 
DOHIST •••••• 7-28, 7-172 
time • • • • • ••• 7-172-

Histograms •••••••••• 6-152 

July 16, 1986 Page 7 -- Index --



History • • • • • • • • 8 6-93 
space alloted • • • • 7-21 

History mechanism • • • • • • 6-19 
HLL 

high level language • 7-154 
HLOAD • • • • • 6-153, 7-28, 7-172 
Home • • • • • • • • 4-40, 4-52 
Host • • • • • • • • • • • • • • 2-7 
HSAVE • • • 6-153, 7-28, 7-172 

INFINITE • • • • • • • • • 7-87 
!NIT •••••••• 2-13, 7-88, 9-3 
Initialize • • • • • • • • 7-37 

stack pointer • • • • 9-12 
Initializing UniLab 2-13, 2-22, 9-3 
Input • • • • • • • • • • • • • 2-8 
INSTALL • • • • • • • • • 2-16 
INSTALL.BAT • • • • • • • 2-14 
Installation • • • • • 2-5, 2-9 
INT • • • • • • 2-37, 7-89 
INT' • • • • • • • • • • • 7-90 
INTEL 

HEX format • • • • • • • 7-84 
reset • • • • • • • • • • 2-33 

Internal state • • • • • • • 1-4 
IRQ • • • • • • • • • • • • • 2-37 
IS • • • • • • • • • 6-23, 7-91 

LADR •••••• 7-92 
Language 

FORTH • • • • • • • 7-16, 7-41 
high level ••••••• 7-154 

Leave • • • • • • • • • 2-45, 7-42 
debug control •••••• 6-122 

Limitations 
32K UniLab 

Line history 
. . . 6-37 

Load 

Load 

LOG 
LOG' 

size . . . 6-93 

binary • • • • • • • • • 7-39 
hexfile • • • • • • • 7-84 
histogram • • • • • • 7-172 
program • • • • • • • • • 6-42 
symbols •••••• 6-22, 7-166 
trace •••••••••• 7-181 
program 
into memory 
menu . . . . . . . . . . . . 

• 3-6 
• 4-8 
7-93 
7-93 

-- Index Page 8 



LP • • • • . . . . . . . . . . 7-94 
LTARG • • • 3-5, 4-37, 6-38, 6-45, 

7-95, 9-1 
flow chart • • • • • • • 6-68 
from menu • • • • • .. .. .. 2-41 

M • • • • • • • • • • • • • • 7-96 
Ml • • •••••• 4-9, 7-97 
M? • • • • • • • • • • • • 7-98 
Macro • • • • • 7-16, 7-41 

example •••••• 4-22, 6-134 
Main menu • • • 2-44, 3-4, 4-6 
MASK • • • • • • • • • • • • • 7-99 
MCOMP • • • • • • • 4-9, 7-100 
MCS-96 • • • • • • 8-61 
MDUMP ••••••• 3-7, 4-9, 7-101 
MEMO • • • • • • • • • • • • • 7-1 02 
Memory (See also Emulation, 

ROM, and RAM) 
emulation . . . . . . . . . 2-7 

Memory access 
menu .. .. . . .. . .. .. . . . 4-9 

MENU . . . . . . . 2-22, 4-4, 7-104 
map . . . . . . . . . . 4-5 

Menu system 
guided demo . . 3-4 

MESSAGE . . . . . . . 7-104 
MF ILL . . . . . . . 4-9, 7-105 
MISC . . . . . 4-24, 6-75, 7-106 
MISC' . . . . . . . . . . . . 7-108 
MLOADN . . . . . . . . . . 7-109 
MM . . . . . . . . . . . . 7-110 
MM! . . . . 2-43, 4-9, 7-111, 9-12 
MM? .. .. .. . . .. . . . . . 7-112 
MMOVE . . . . . . . 4-9, 7-113 

limitations . . . . . . . 6-59 
Mode . . . . . . . . . . . . . 7-114 

CONT COLUMN . 5-8, 6-31, 6-149 
DISASSEMBLER 5-7, 6-29, 6-148 
FIXED HEADER 5-8, 6-33, 6-149 
LOG TO FILE . . . . 5-9, 6-150 
LOG TO PRINT . . . 5-9, 6-150 
MISC # BASE . 5-8, 6-32, 6-149 
MISC COLUMN . 5-8, 6-31, 6-149 
NM! VECTOR . . . . 5-9, 6-150 
PAGINATE . . 5-8, 6-33, 6-149 
PRINTER . . . . . . 5-9, 6-150 
RESET . . . . . . . 5-7, 6-148 
SW! VECTOR ~ 0 0 ~- 5-9, 6_-J5_0 

- -- ·- - ~ ··- -

SYMBOLS . 5-7, 6-30, 6-148 

July 16, 1986 Page 9 -- Index --



Mode panels • • • 5-3, 6-28, 6-146 
help • • • • • • • • • • • 5-7 

MS • • • • •••••••• 7-115 
MS-DOS • • • • • • • • • • • 2-2 

N •••••••••••••• 7-116 
single step • • • • • 3-15 

NDATA • • • • •••• 7-117 
NG! •• ~ • • • • • • • • • • 9-14 
NMI • • • • • • • • 7-118, 8-3 

8086/88 family • • • 2-38 
disable/enable ••••• 7-119 

NMI-
circuit • • • • • • • • • 2-26 
connection • • • • • 2-36 

NMIVEC ••••••••• 2-37, 7-119 
NMIVEC' • • • • • •• 7-119 
NO ANALYZER CLOCK • • • • • • 9-10 
NORMB ••••••••• 4-24, 7-120 
NORMM ••••••••• 4-24, 7-121 
NORMT ••••••••• 4-24, 7-122 
NORMx • • • • • 4-25, 6-72 
NOT •••••••••• 4-11, 7-123 

scope • • • • • • • • • • 6-76 
not enabled • • • • • • • • • 6-50 
Not recognized • • • • • • • • 4-26 
NOW? •••••••••• 4-10, 7-124 
NSC-800 • • • • • • • • • 8-72 
Numeric key pad • • • • • • • 4-52 

Object file 
binary format • • • • • • 7-39 
INTEL hex format • • • • 7-84 

On-Line Help 5-1, 7-83, 7-104, 7-182 
ONLY ••••••• 4-11, 4-30, 7-125 
Open collector • • 2-27, 2-33, 2-36 
ORG ••••••••••••• 7-127 
ORION • • • • • • • • • 2-15, 2-17 
Overlay area • • • • • • • • • • 8-2 

disable ••••••••• 7-142 
enable ••••••••• 7-142 

PAGEO •••••••••• 7-128 
PAGE1 • • • • •••••• 7-128 
PAGINATE ••••••••••• 7-129 
PAGINATE' •••••••• 7-129 
Parallel interface • • • a • • • 2-8 
Patch 

stack pointer • • • • 9-12 

-- Index -- Page 10 



Patch word • • • • • 
PC 

2-23 

dumb terminal • • • • • 
PC compatible • • • 

7-48 
• • 2-2 

PCYCLES • • • • • • • • • •• 7-130 
• 6-127 Personality modules 

PEVENTS • • • • • • ••••• 7-131 
4-36, 4-37, 4-52 
4-36, 4-38, 4-52 

PgDn • • • • • 
PgUp • • • • • • • 

flicker • • • • • • • • • 2-47 
history • 

PINOUT • • • 2-9, 
• • • • • • 6-19 
2-26, 2-32, 4-15, 
7-132, 8-3, 9-13 

catalog • 
PRINT • • • • 
PRINT I • • • • 

PROM •••• 

• • • • • • 7-42 
• • • • 7-133 

• • • • 7-133 
• • • • • 4-16 

commands • • • • • • 6-35 
PROM programmer • • • • • 6-125 
PROM programming 

menu 
PROM reading 

menu 
PROMMSG 

•• 4-17, 6-126 

. . . . . . . . . . . . . 4-16 
• 7-133 

Q1 • • • • •••••••• 7-134 
Q2 •••••••••••••• 7-134 
Q3 • • • • • • 7-134 
Qualifiers • • • • • • • • 7-135 

trigger specs 4-31 
Quit • • • • • • • • • 7-42 

RAM 
access • • • • • • • • • 6-50 
access to • • • • • • • • 6-49 
and Debug control • • • • 6-49 
compare • • • • • • • 7-100 
disassemble • • • • 7-62, 7-63 
read ••• 7-98, 7-101, 7-112 
warning • • • • • • • • • 6-50 
write • 7-96, 7-97, 7-105, 

7-110, 7-111 
RB • • • • • • 3-13, 3-14, 7-136 

and RESET •••••••• 6-112 
Read • • • • • • • • • 7-138 

Emulation ROM • • • • 6-49 
RAM • • • • • 6-50 

Reboot -• -. -. • • • • • .- • 2-9, · 2-·+9" 
RES ••••••••••• 7-139 

July 16, 1986 Page 11 -- Index --



RES-
circuit • • • • • • • • • 2-26 
connection • • • • • • • 2-33 

Reserved area • • • • • • • 8-2 
location • ~ •••••• 6-124 

Reserved resources • • 8-2 
Reset • • • 2-8, 2-33, 4-12, 4-14, 

6-74, 7-140 
8051 • • • • • • 2-34 
and RB ••••••••• 6-112 
INTEL • • • • • • • • 2-33 
use • • • • • • • 6-74 

• • • • • • 2-35 z8o • 
RESET I • • • 

resetting 
• ••• 6-74, 7-140 

status message 
RI •• 
RMBP • • • • • • • 
ROM 

ROM 

emulation • 
enable 
reading • • • 

. . . . . 6-74 
2-36 

7-141 
. . . . . 

• • 2-7 
• • • 4-23 

• • • • 6-44 
cable 
16-bit • • • • • • 2-5 
connection • • • • • • • 2-29 

ROM chip 
analyze • • • 

RS-232 • • • • • • 
RS-232 error #xx • 
RSP • • • • • • • 
RSP' ••••••• 
RZ • • • • • • • • 

• • • • 2-28 
••••••• 2-7 
• • • • 2-22, 9-6 
•••••• 7-142 

• 2-28, 7-142 
•••• 7-143 

s . . . . . . . ••••••• 7-144 
S+ • 
SAMP • 
Sample 
Sample 
Save 

. . . . 
program • 
session • 

• • • • • • • 7-145 
• 3-11, 4-10, 7-146 

• • • • • 2-41 
••• 3-2, 8-4 

binary • • • • • • • • • 7-40 
histogram •••••••• 7-172 
history • • • • • • • • • 6-93 
symbols •••••• 6-98, 7-166 
system • 6-41, 6-99, 7-147 
to printer • 6-95, 7-93, 7-133 
trace ••••••• 6-96, 7-180 
transcript •••• 6-94, 7-176 

SAVE-SYS ••••• 2-23, 4-23, 7-147 
SC • • • • • • • • • • 7-148 
Scope of 

NOT and TO • • 6-76 

-- Index Page 12 



Screen Flicker 
fix • • • • • • • • 2-47, 7-44 

Screen history • • • • • 4-38, 6~93 
size • • • • • • • • 6-93 

Serial interface •••••••• 2-7 
Serial port • • • • 2-5, 2-7, 2-12 

9 pin •••••••• 2-7, 2-12 
AT ••••••• 2-7, 2-12 
choose • • • • • 7-37 

SET • • • • • • • • 4-14, 7-149 
Set GLOSSARY • • • • • • 2-15, 2-17 
Set ORION • • • • • • • 2-15, 2-17 
SET-COLOR ••••• 2-47, 7-149 
SHIFT-FKEY • • • • • • 7-150 
SHIFT-FKEY? ••••••••• 7-150 
SHOWC • • • • • • • • • • 7-151 
SHOWC' • • • • • • • • • • 7-151 
SHOWM •• 7-152 
SHOWM' • • • • • • • • • • 7-152 
SI • • • • • • • • • • • • 2-36 
Single step • • • 3-15 
Size 

line history 
symbol table 

6-93 
6-24 

SMBP • • • • • • • • • • 
Soft-keys • • • • • • • • • 
Software 

• 7-153 
• • 5-5 

installation •••• 2-9, 2-14 
SOURCE •••••••••••• 7-154 
Source file 

view 
SOURCE' • • • 
SPLIT • • • • 

7-171 
• • 7-154 

• 7-155 
•• 7-156 SR • • • • • • • • • • • • 

SST 
SS TEP 
Stack 

. . . . . . . 7-157 
• 2-36, 3-15, 4-13, 7-158 

and debugger • • • • • • • 8-2 
debugger • • • • 6-11 

Stack pointer • • • 2-43, 9-12 
patch •••••••••• · 9-12 

STANDALONE • • • ••••• 7-159 
STARTUP • • • 3-10, 4-10, 7-160 
STIMULUS •••••••• 4-14, 7-161 
Stimulus generator • 1-4, 6-137 

menu • • • • • • • • 4-14 
SUPER 8 • • • • • • • • • 8-65 
SWI VECTOR • • • • • • 2-28 
SYMB • • ••••• 7-162 
SYMB' ... ... .. • • • • • • • • • • 7-'i-62 

July 1 6, 1 986 Page 13 -- Index --



Symbol files 
fixed format • • • • 6-27 
variable format • • • • • 6-27 

Symbols • • • • • • • 6-30 
breakpoints • • • 6-26 
clear • • • • • • • • 7-46 
define • • • • 6-23, 7-91 
enable/disable ••• 7-162 
example • • • • • • • 6-25 
files • • • 6-22, 7-163, 7-166 
in trace • • • • • • 6-21 
space alloted • • • • 7-23 
trace display • • • • 6-25 

SYMFILE •••••••• 6-22, 7-163 
SYMFILE+ •••••••• 6-22, 7-164 
SYMFIX •••••••••••• 7-165 
SYMLOAD ••••••••• 7-166 
SYMSAVE • • • • ••• 7-166 
SYMTYPE • • • • 6-22, 7-167 

T • • • • • • • 7-168 
Tail 

command • • • • • • • 4-20 
Target ••••••••••••• 2-7 
Target board 

• • • • • • • • • • • 2-7 
Target memory-- see Emulation, ROM 

and RAM. 
TCOMP • • • 2-5, 2-42, 6-96, 7-169 

mask columns •••••• 7-173 
TD • • • • • • • • •• 7-170 
Terminal 

emulation • • • • 7-48 
TEXTFILE •••••••• 4-49, 7-171 
THIST • • • • • • 6-153, 7-172 
TMASK ••••••••• 2-42, 7-173 
TN • • • • • • • • • • •• 7-174 
TNT • • • • • • • •••• 7-174 
TO ••••••••••• 4-11, 7-175 

scope • • • • • • • • 6-76 
TOP/BOTTOM • • • • • • • • 7-177 
Trace buffer • • • • • • 6-2 

dump •••••••••• 7-170 
Trace compare 

TMASK and TCOMP 2-42 

-- Index -- Page 14 



Trace display • • • • • • • • • 6-5 
16 bit data • • • • • 6-16 
ADR • • • • • .. • 6-8 , 6-1 3 
compare • • • • • •• 7-169 
CONT ••••• 6-8, 6-12, 6-13 
cy# • • • •••• 6-8, 6-12 
DATA •••••••• 6-9, 6-14 
9isassemble • • • • • • • • 6-9 
f • • • • • • • • • • • • • 6-8 
file • • • • 7-180, 7-181 
HDATA • • • • • • • 6-9 
header • • • • • • • 7-82 
MISC • • • • • • • 6-9 
modes • • • • • • • • • • 6-28 
move through 6-17, 7-168, 7-174 
save • • • • • • • • 7-180 

Transcript 
save • • • • • • • • 7-176 

TRIG • • • • • •••••• 7-178 
Trigger •••••••••••• 1-3 

menu • • • • • • 4-11 
Trigger event • • • • • 6-3 
Trigger specs 4-24 

examples • • • 4-27, 6-78 
filtered4-30, 6-82, 7-11, 7-125 
qualifiers • 6-85, 7-26, 7-135 
refinement • • • • • 6-89 
simple • • • • • • • 6-70 
status • • • • • • • 7-182 

TROUBLESHOOTING • • • • • • • • 9-1 
debugger • • • • • • 6-107 

TS • • • • • • • • • • 7-179 
TSAVE ••••••••• 6-96, 7-180 
TSHOW • • • • • • • • 7-181 
TSTAT •••••••••••• 7-182 
TYPE • • • • • • • • • • 9-5 

Uni Lab 
internal !Cs 

Up Arrow • • • • • 

VER 
Verify 

• • • • • • 9-16 
4-36, 4-38, 4-52 

• • 2-2 

cable connection • • • 2-42 
Version • • • • • • • • • • • • 2-2 

July 16, 1986 Page 15 -- Index --



Watch program 
STARTUP • • • • • • • • • 

Windows • 4-41, 6-151, 7-155, 
change size •••• 4-46, 
size • • • • • • • • • • 

WORDS • • • • • 5-3, 
Write 

3-10 
7-177 
7-183 

7-61 
7-182 

Emulation ROM • • • • • • 6-49 
RAM • • • • • 6-50 

WSIZE • • • • • • • • 7-183 

z8 • 
pull-down resistors • 

z00 . . . . . . . . . . . . . 
reset • • • • • • • . . . 

z0000 family • • • • • 

-- Index --

8-68 
8-70 
8-72 
2-35 
8-76 

Page 16 


	0001
	0002
	0003
	001
	002
	003
	004
	005
	006
	6-001
	6-002
	6-003
	6-004
	6-005
	6-006
	6-007
	6-008
	6-009
	6-010
	6-011
	6-012
	6-013
	6-014
	6-015
	6-016
	6-017
	6-018
	6-019
	6-020
	6-021
	6-022
	6-023
	6-024
	6-025
	6-026
	6-027
	6-028
	6-029
	6-030
	6-031
	6-032
	6-033
	6-034
	6-035
	6-036
	6-037
	6-038
	6-039
	6-040
	6-041
	6-042
	6-043
	6-044
	6-045
	6-046
	6-047
	6-048
	6-049
	6-050
	6-051
	6-052
	6-053
	6-054
	6-055
	6-056
	6-057
	6-058
	6-059
	6-060
	6-061
	6-062
	6-063
	6-064
	6-065
	6-066
	6-067
	6-068
	6-069
	6-070
	6-071
	6-072
	6-073
	6-074
	6-075
	6-076
	6-077
	6-078
	6-079
	6-080
	6-081
	6-082
	6-083
	6-084
	6-085
	6-086
	6-087
	6-088
	6-089
	6-090
	6-091
	6-092
	6-093
	6-094
	6-095
	6-096
	6-097
	6-098
	6-099
	6-100
	6-101
	6-102
	6-103
	6-104
	6-105
	6-106
	6-107
	6-108
	6-109
	6-110
	6-111
	6-112
	6-113
	6-114
	6-115
	6-116
	6-117
	6-118
	6-119
	6-120
	6-121
	6-122
	6-123
	6-124
	6-125
	6-126
	6-127
	6-128
	6-129
	6-130
	6-131
	6-132
	6-133
	6-134
	6-135
	6-136
	6-137
	6-138
	6-139
	6-140
	6-141
	6-142
	6-143
	6-144
	6-145
	6-146
	6-147
	6-148
	6-149
	6-150
	6-151
	6-152
	6-153
	6-154
	6-155
	6-156
	6-157
	6-158
	6-159
	7-001
	7-002
	7-003
	7-004
	7-005
	7-006
	7-007
	7-008
	7-009
	7-010
	7-011
	7-012
	7-013
	7-014
	7-015
	7-016
	7-017
	7-018
	7-019
	7-020
	7-021
	7-022
	7-023
	7-024
	7-025
	7-026
	7-027
	7-028
	7-029
	7-030
	7-031
	7-032
	7-033
	7-034
	7-035
	7-036
	7-037
	7-038
	7-039
	7-040
	7-041
	7-042
	7-043
	7-044
	7-045
	7-046
	7-047
	7-048
	7-049
	7-050
	7-051
	7-052
	7-053
	7-054
	7-055
	7-056
	7-057
	7-058
	7-059
	7-060
	7-061
	7-062
	7-063
	7-064
	7-065
	7-066
	7-067
	7-068
	7-069
	7-070
	7-071
	7-072
	7-073
	7-074
	7-075
	7-076
	7-077
	7-078
	7-079
	7-080
	7-081
	7-082
	7-083
	7-084
	7-085
	7-086
	7-087
	7-088
	7-089
	7-090
	7-091
	7-092
	7-093
	7-094
	7-095
	7-096
	7-097
	7-098
	7-099
	7-100
	7-101
	7-102
	7-103
	7-104
	7-105
	7-106
	7-107
	7-108
	7-109
	7-110
	7-111
	7-112
	7-113
	7-114
	7-115
	7-116
	7-117
	7-118
	7-119
	7-120
	7-121
	7-122
	7-123
	7-124
	7-125
	7-126
	7-127
	7-128
	7-129
	7-130
	7-131
	7-132
	7-133
	7-134
	7-135
	7-136
	7-137
	7-138
	7-139
	7-140
	7-141
	7-142
	7-143
	7-144
	7-145
	7-146
	7-147
	7-148
	7-149
	7-150
	7-151
	7-152
	7-153
	7-154
	7-155
	7-156
	7-157
	7-158
	7-159
	7-160
	7-161
	7-162
	7-163
	7-164
	7-165
	7-166
	7-167
	7-168
	7-169
	7-170
	7-171
	7-172
	7-173
	7-174
	7-175
	7-176
	7-177
	7-178
	7-179
	7-180
	7-181
	7-182
	7-183
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	8-57
	8-58
	8-59
	8-60
	8-61
	8-62
	8-63
	8-64
	8-65
	8-66
	8-67
	8-68
	8-69
	8-70
	8-71
	8-72
	8-73
	8-74
	8-75
	8-76
	8-77
	8-78
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	A-00
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	G-01
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	J-01
	J-02
	J-03
	J-04
	J-05
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16

