Al osssss. s=m @ A ——m =
Y . w N . v
AN YW Il N Il S YW D
GE N T N R .
W AN IV BN W S e
U I I N Ty B -
- $ e e e W’ $z"— u-.

Instruments

-

UniLabIl™

Volume Two
Reference Manual

Copyright 1984, 1985, 1986 by Orion Instruments, Redwood City, California
All rights reserved

EPROM Clamp
(Down to connect
EPROM in Socket)

ORION Universal Development Laboratory

Instruments
U niLab n EPROM PROGRAMMER o1
R
| 8/16 BIT IN-CIRCUIT EMULATOR 48 CHANNEL BUS STATE ANALYZER - <) <

[]| (M]e
/ <
) / \ L)) N\
swer On Power Emulator (ROM) Analyzer Cable Oscilloscope Analyzer EPROM Socket Programming
LED On/Off Cable Connector Connector Trigger Output Trigger LED (Also used for Voltage for
Switch (C8-24/28, C16-24/28, (CA-AB,...) (Strobes when trigger Personality Stimulus Cable) EPROM Burner
C8-D, or C16-D) is met. Can be connected Module for EPROM (Vpp)

to oscilloscope to
synchronize scope with

analyzer trigger.)
EPROM PROGRAMMER
upL
PM18
2716
24-pin Package is i
shifted all the way
to the left

24 Pin EPROM in Programming Socket

EPROM PROGRAMMER

28 Pin EPROM in Programming Socket

UniLab Blesk Diagram

7

/

Input ==
Latches EF=Inputs
& BE= (48)
Multiplexer == (;g_p;5
AO-
[Trigger l l Soquence) [rrace | \) Ao-aid
Truth - Emulator
Tabte | |Pass & Butfer Cable)
Delay l Ram J
Ram J L Counts
(2
Host Z-80 CPU Eprom —— stimuli
1/0 Rom/Ram Programmer == oOutputs
PIO / Timers & = (9)
Serial 1/0 Stimulus =
Generator)
\ y
Idle
Register
Enable Emulation Data
Stati AAAZEEE—=—=
Map c 1000 e Lines
Ram Ram (16) (16)
(N\
Address E= Address
Latch E Lines
2 = (20)
\. J (A15-A19
from
Analyzer
Cable)

ALE

Orion Instrumeats 1984

Table of Contents
UniLab Manual

VOLUME ONE
User's Guide

Chapter One: The UniLab IIt® Method

Chapter Two: Installing The UnilLab

For Me?
Introduction
Useful Information
Quick Step-by-Step

Detailed Step-by-Step

1. Connect the UniLab to Host
Find the Correct Port
Serial Port of AT
Connect the Cable
Turn on the UniLab
Trouble?

2. Software Installation
Install the Software
‘ On a Hard Disk

On a Floppy Disk Drive

Reboot Your Computer
Start Up the UniLab Program
Patch Required?

3. Connect the UnilLab to Target Board 2-25

Overview

All About Cables

Take PROM off Board

Put ROM Cable in ROM Socket

Put DIP Clip onto Microprocessor
Attach Proper Wires to the Clip

Attach the RESET Wire
Attach the NMI Wire

Plug Cables into UniLab Connectors

4, Check Out Your Equipment
Load a Sample Program
Run the Program
Compare to Sample Trace
Play Around a Little
How to Exit

Where to Go Next

Special Note: Display Characteristic Commands 2-47

UniLab is a trademark of Orion Instruments, Inc.

July 16, 1986 Page i

-- Contents --

Chapter Three: Guided Demonstration

Overview 3-2
Call Up the Software 3-3
Get the MAIN Menu 3-4
The Five-Step Procedure:
1. Enable Memory 3-5
2. Load a Program 3-6
3. Examine the Program 3-7

Memory Dump
Disassemble from Memory

4, Use the Analyzer 3-9
Get the First Cycles of Program
Sample the Bus
Set a Trigger on an Address

5. Use the Debugger 3-13
Set a Breakpoint to Establish Debug Control
Set Another Breakpoint
Single Step Through Code

Summary 3-16
Chapter Four: Getting Started-- The Menus, the Commands,
and the Special Features

Overview 4-2

1. Menu Mode 4-4

2. Command Mode 4-19
Command Tail and Batch Files 4-20

Using the Command Language 4-23

Trigger Specs: Theory and Conventions 4-24

Trigger Specifications: Examples 4-27

3. Special Features 4-33
Function Keys 4-34

Cursor Keys: Traces and Line History 4-36

Windows 4-41

Viewing Textfiles 4-49

Cursor Key Summary 4-51

-- Contents -- Page ii

Chapter Five: On-Line Help

1. Command Reference 5-2
2. Alphabetical Lookup 5-3
3. Reminders 5-4
4, Function Keys 5-5
5. Mode Panels 5-7
6. Help Screens: By Category 5-10

INDEX for volume one

July 16, 1986 Page iii -- Contents --

VOLUME TWO
Reference Manual

Chapter Six: The UniLab in Detail
A Guide to This Chapter 6-2
1. Interpreting the Trace Display 6-5

What Each Column Means...Sample Traces...Moving
through Trace...Symbolic Names...Toggling Display
Options (Mode Panels)

Readying and Loading Memory 6-34
Emulation ROM...Getting Ready...Loading Programs
.+.+.35aving Programs

Examining and Altering Memory 6-47
Memory Access...Read...Alter...Optional Assembler
Setting up a Trigger (generating a trace) 6-64

Simple Example...NORMx Words...RESETting...General
Purpose Triggers...Real-life Examples...Limits...
Filtered Traces...Qualifying Events...Refining

Saving Information 6-90
Screen History...Log File...Printer...Trace Save...
Symbol Table...Binary Image...SAVE-SYS

Breakpoints and the Debugger 6-100
Establish Debug Control...Breakpoint Display...
Within the Debugger...Trigger-Style Breakpoints
...Exit from Debugger...Disable

Burning Proms 6-125
Personality Modules...Plugging In...Checksums
...Verify...16-bit...Standalone...Macros

Generating Stimuli) 6-135
How to do it

Special Keys 6-140
Function Keys...Cursor Keys

Mode Panels-- easy toggling of options 6-146
Analyzer...Display...Log

Windows 6-151

Histograms 6-152

When to Use...How to Make a Histogram

-- Contents -- Page iv

Chapter Seven: UniLab Command Reference

The Categories 7-2
The Commands 7-9

Chapter Eight: Target Notes
(software order #)

General Information ..ceeecccescccscscecssccsascnscncsnsne 8-2

1802/4/5/6 (disassembler only)ee.eeeeese..(DIS-18)...8-5

6301/3 ceceencecsnsscssnscsssssscssssacsess(DDB-63)...8-7

6500 series where the SYNC output exists..(DDB-65)...8-10
6500 series piggyback devices w/o SYNC....(DDB-65P)..8-14
6800/2/8 with external memory at page 0 ..(DDB-68)...8-18
6801/3 teeeeccocescasscsscasasssscnsassasss(DDB-681)..8-21
6802 without external RAM at page 0(DDB-682)..8-24
6805 teeeececcsscsccssccscosasescassasssss(DDB-685),..8-25
6809 teeeeccssescscscsaccssccsscssassassses(DDB-689)..8-30
68000 .eeeeeeccscacssssscecsssssannscnsns eee.(DDB-68K)..8-32
68008 ceeveeeccosccscsascccccsscccsssocssssss(DDB-688)..8-36
68HCT11 ceeeeccsacccessacsscoscenssnsscssess(DDB-611)..8-38
8048/35/39/40/49/50ccceececccscescsccssess (DDB-48)...8-40
8051/31/32/52 & 8051P .+4ve....(DDB-51) & (DDB-51P)..8-45
8085 Or 8080 scceeecesccscccssssasassecssss(DDB-85)...8-50
8086/186/286 & 8088/188..++....(DDB-86) & (DDB-88)...8-53
8094/5/6/7 <eeerieeecesssvssssscscscsnsseaes(DDB-96)...8-61
SUPER 8 cesscecesccsacscscscsscscsscsscsssssses(DDB-S8)...8-65
Z8 eecacscee cecesscscscssccscsssscsssssscssss(DDB-Z28)...8-68
Z80 and NSC-800 and HD64180 ..e.ceeeeeeees.(DDB-Z80)..8-72
Z8000 ceeeeseccsscscsosssacsssscccsssssssss(DDB-Z8K)..8-76

July 16, 1986 Page v -- Contents --

Chapter Nine: TroubleShooting

Explanation 9-2
Solutions in Depth:
Program hangs up on "Initializing UniLab. . . " message . .
Program hangs on initialization some of the time, not all of
the time . . « ¢ ¢ ¢ ¢ o« o & o o s o o o o e o @
RS-232 error message "RS-232 Error #XX“ e e s s e o o o
STARTUP does not work -- never get to see trace, or see

trace filled with garbage . ¢« ¢ ¢ ¢ ¢« ¢ ¢« ¢ ¢ « o o« &
Error message: '"NO ANALYZER CLOCK" . ¢ ¢ ¢ ¢ ¢ o o o o « @
Program runs, UniLab traces, but reads bad data from stack
Program runs and UniLab traces, but does not disassemble
Properly .« « o o o o o o o o o . e e e o e o
Program runs, UnilLab traces properly, but cannot set a
breakpoint-- gives a Debug Control not Established
MESSATE « o o o o s o s o o o o e o o s s s s s e
Program runs, UniLab traces properly, but cannot set a
breakpoint-- hangs with red light next to Analyzer
socket on until key pressed
Bad Input buffers on the UniLab, as if an IC has been blown.
Screen flickers when you use PgUp key to look at line
hisStOory. « o o o o o o o o o o o o o o s o s o s o o &

APPENDICES:
Appendix A: UniLab Command and Feature List
Appendix B: Sources of Cross Assemblers
Appendix C: Cabling Chart
Appendix D: Custom Cables
Appendix E: UniLab II Specifications
Appendix F: Writing Macros
Appendix G: EPROMs and EEPROMs Supported
Appendix H: Microprocessors Supported
Appendix I: System Messages
Appendix J: .BIN files and .TRC files

INDEX for both volumes

-- Contents -- Page vi

Chapter Six:
The UniLab in Detail

Contents:
A Guide to This Chapter 6-2
1. Interpreting the Trace Display 6-5

10.
11.

12.

What LEach Column Means...Sample Traces...Moving
through Trace...Sympolic Names...Toggling Display
Options (Mode Panels)

Readying and Loading Memory 6-34
Emulation ROM...Getting Ready...Loading Programs
.+.5aving Programs

Examining and Altering Memory 6-47
Memory Access...Read...Alter...Optional Assembler
Setting up a Trigger (generating a trace) 6-64

Simple Example...NORMx Words...RESETting...General
Purpose Triggers...Real-life Examples...Limits...
Filtered Traces...Qualifying Events...Refining

Saving Information X 6-90
Screen History...Log File...Printer...Trace Save...
Symbol Table...Binary Image...SAVE-SYS

Breakpoints and the Debugger 6-100
Establish Debug Control...Breakpoint Display...
Within the Debugger...Trigger-Style Breakpoints
...Exit from Debugger...Disable

Burning Proms 6-125
Personality Modules...Plugging In...Checksuns
«ssVerify...16-bit...Standalone...llacros

Generating Stimuli 6-135
How to do it

Special Keys 6-140
Function Keys...Cursor Keys

iMode Panels-- easy toggling of options 6-146
Analyzer...Display...Log

Windows 6-151

Histograms 6-152

When to Use...low to llake a Histogram

July 15, 1986 Page 6-1 -- In Detail --

A Guide to this Chapter

This chapter covers the capabilities of the UniLab II in
detail. 1It's meant primarily as a reference chapter.

Review: What the UniLab does

The UniLab lets you look at the bus activity on your
microprocessor control board. The UniLab captures a bus cycle in
its trace pbuffer whenever your microprocessor:

writes data to memory,

reads data from memnory,

sends to a port,

reads from a port,

or fetches an opcode from ROM.

Capture bus activity

The UniLab can '"freeze" this trace buffer at any time, and
thus capture a record of bus activity. It then sends this record
to your host computer, where you can:

examine 1it, i
compare it to previous traces,
save 1it,

or print it.

Bach line of the trace display includes the address your
microprocessor is ifetching from, reading from or writing to, and
the data that appeared on the bus. If you have your disassembler
enabled, you will also get the assembly language instructions
that were fetched from ROM.

See: Section One: Interpreting the Trace Display

Program memory

Before you can capture a trace of your program, you have to
load it into the UniLab's emulation memory (except when you run
the program from a PROM chip-- see page 6-38).

See: Section Two: Readying and Loading Memory.

Once you have the program in emulation RO, you can look at
the program, and change it.

See: Section Three: Examining and Altering Memory.

-- In Detail -- 6-2

Capture the activity you need to see

You want to look at only a few of the millions of bus cycles
that happen each second. You tell the UniLab what cycles you
want to see by describing a "trigger event." The Unilab watches
for that event on the bus.

See: Section Four: Setting a Trigger (generating a trace).

Record what you did

You can save any trace, any section of memory, or the
current symbol table. You can also save the current state of the
UniLab software.

While working with the UniLab, you can send all screen
displays to the screen and also a file or a printer or both. You
can also choose a mode which logs on the printer only the
commands that access memory.

See: Section Five: Saving Information.

Look at the Internal State of the Processor
You can set a breakpoint in your program, and then restart
the target board. The program will run to the breakpoint, then
show you the register display when it stops.
After you have gained debug control you can:
continue to another breakpoint,
single step through your program,
examine and change RAM, emulation ROM, and internal
registers,
or leave debug control.

See: Section Six: Breakpoints and the Debugger.

Save your code to silicon

Once you've completed testing your program, you can program
an EPROM or EEPROM with the UniLab. See Appendix G for a list of
PROMs that Orion supports.

See: Section Seven: Burning PROMs.

July 15, 1986 Page 6-3 -- In Detail --

"Mock up" peripheral inputs

Sometimes you need to see how your microprocessor board
responds to an input from a peripheral device. The stimulus
generator of the UniLab allows you to produce any 8 bit signal
you want-- or toggle individual lines.

See: Section Eight: Generating Stimuli.

Make use of special features and shortcuts

The UniLab makes full use of the function keys of your
personal computer, including ALTered, SHIFTed, and CTRLed
function keys, and the keys of the numeric key pad.

Some of the function keys are pre-assigned to help screens
(see On-Line Help chapter) or to commands. The others are left
available for you to assign as you please.

See: Section Nine: Special keys. See also Chapter Four.

Function key 8 has a special effect-it gives you access to
the pop-up panels, where you can easily change many options,
including display and logging features.

See: Section Ten: Mode Panels.

Function key 2 also is special-- it splits the screen,
giving you the ability to look at different parts of your trace
at the same time, or to examine a textfile while looking at a
breakpoint display, or . . .

See: Section Eleven: Windows. See also Chapter Four.

The Software Graphical Performance Measurement option gives
you the ability to generate histograms of your target program's

activity.

See: Section Twelve: Histograms.

-- In Detail -- 6-4

1. Interpreting the Trace Display

Introduction

This section covers the trace display-- the record of bus
activity that the UniLab captures for you.

The trace examples show a 280 processor and an Intel 8096
processor.

Why you care about the trace display:

You want to find the bugs in your system. Bugs cause
undesirable behavior in your system, which you can track down by
looking at the record of bus activity on your board-- the trace
display.

Contents
1.1 Feature Summary 6-6
1.2 The Trace: What Each Column Means 6-8
1.3 Sample Traces 6-10
1.4 Moving through the Display 6-17
1.5 Symbolic Names .in. the Display 6-21
1.6 Toggling Display Options 6-28

July 15, 1986 Page 6-5 -- In Detail --

-- Interpret the Trace --

1.1 Feature Summary

While you are examining a trace, you can turn these options
on and off:

Option Mode Panel Commands
Disassemble code Yes DASM DASM'
Substitute symbolic names

for numbers Yes SYMB SYMB'
Show CONTrol column Yes SHOWC SHOWC'
Show MISCellaneous column Yes SHOWM SHOWM'
Binary number base for MISC Yes 2 =MBASE
Fixed header Yes HDG HDG'
Stop display after each screen Yes PAGINATE PAGINATE'
Define symbolic names NO IS SYMFILE SYMLOAD
Show source lines in trace NO SOURCE SOURCE'

Mode panels: Commands:

1. ANALYZLER modes
DISASSEMBLER DASM DASM'
SYMBOLS SYMB SYMB'

2. DISPLAY modes

MISC COLUMN SHOWM SHOWM'
CONT COLUHMN SHOWC SHOWC'
MISC # BASE =MBASE
PAGINATE PAGINATE PAGINATE'
FIXED HEADER HDG HDG'

O‘l
!
[e)}

-- In Detail --

-- Interpret the Trace --

You can look at any portion of a trace you want:

Feature Cursor key Command
Show trace from top HOME TT
Show next step of trace Down Arrow none
Show next page of trace PgDn TR
Show trace from step <n>

(resets default to n) none <n> TN
Show trace from step <n>, with no

effect upon the default none <n> TNT
bump trace buffer from UniLab none TD

You can save and compare traces (details in Saving
Information):

Fecature Command
Save a trace to a file TSAVE <file name>
Compare last <n> cycles of saved trace to

current trace <n> TCOMP <file name>
Compare saved trace to result of current

trigger specification <count> SC <file name>

July 15, 1986 Page 6-7 -- In betail --

-- Interpret the Trace --

1.2 The Trace: What Each Column Means

The header line of the display labels all but one of the
columns:

cy# CONT ADR DATA HDATA MISC
(unlabeled column)

Each column displays a different piece of information:

cy# shows you what cycle you are looking at, relative to
the trigger event. The trigger event is always labeled
as cycle zero.

This column starts with an £ when you produce a
filtered display.

CONT shows you what the UniLab sees on the control inputs,
and on the upper four bits of the address inputs.

The UniLab uses four of its inputs, labeled as
C7, C6, C5, and C4

to determine whether the bus cycle is a fetch, read, or
write, The first digit of the CONT column shows those
four inputs as a hexadecimal digit. The disassembler
needs this information, but you can ignore it-- except
when you are trouble shooting the wiring of the
connection from your UnilLab to your target board.

The second digit shows the four highest bits of
the 20 bit address inputs to the UniLab, labeled as

A19 through A1l6.

Wwhile working with most 8-bit processors, these
wires are not attached to anything, and so float high,
at logic level one. The z280, 8085, and NSC-800
processors don't follow this general rule-- they have
one of these upper four wires connected to a processor
pin. See the explanation on page 6-13.

You can use the mode panel (hit function key 8) to
hide this column.

ADR shows the first 16 bits of the address bus,
AO0 through A15. See the Disassemnbler Note below.
The highest four bits, A16 to A19, appear as the
right-hand digit in the CONT colunn.

-- In Detail -- 6-8

-- Interpret the Trace --

DATA shows you what data was put on the bus. Depending on
the type of the cycle, that "data" is either a data
value or a machine language instruction. The data is 8
bits or 16, depending on the processor.

The center (unlabeled) column
shows the disassembled instructions. Data reads and
writes are also identified.

This column appears when you are working with the
disassembler enabled, as you usually will.

HDATA shows you what values the UniLab reads on D8 through
D15. This column only appears with 8 bit processors.

The UniLab doesn't use the full 16 bits of data
input when working with processors that have an 8 bit
wide external data bus. That makes these 8 inputs
available to you for gathering more information about
the outputs of other chips or ports on your board.

MISC shows you what values the UniLab reads on MO through
M7, the MISCellaneous inputs. These wires are always
available for you to connect anywhere you want on your
board.

The number base is normally binary, but you can
change it with the mode panel (F8). You can also use
the mode panel to hide this column.

Disassembler note

With a processor-specific disassembler enabled, each line of
the trace shows a complete assembly language instruction, no
matter how many bytes it takes. On those lines that show an
instruction which takes more than one cycle to fetch from memory,
the cy# column contains the cycle number of the first fetch, and
the ADR column contains the address of the first byte of the
instruction (the first word on 16-bit processors).

The MISC and HDATA columns show only the state of those
inputs during the last cycle of the instruction. Use the mode
panel (F8) to turn off the disassembler if you want to see the
state of these inputs during every bus cycle.

July 15, 1986 Page 6-9 -- In Detail --

-- Interpret the Trace --

1.3 Sample Traces

This section shows two sample traces and explains the first
few lines of both in detail.

The 8-bit processor example shows the Orion test program for
a Z80 processor. The 16-bit processor example shows a trace of
the test program for the Intel 8096.

A trace of the test program for your processor appears in

the Target Notes chapter, and also in the Disassembler/Debugger
writeup for your processor,

~- In Detail -- 6-10

-- Interpret the Trace --

An 8 bit processor: Z80 trace

The following display shows a trace of the test program for
the Z80 microprocessor. The test program was first loaded into
the UniLab from disk with LTARG, and then started up with
STARTUP. The STARTUP command captures a trace of the bus cycles
starting at the reset address-- for the Z80, address 0000,

cy# CONT ADR DATA HDATA MISC
0 B7 0000 310019 LD SP,1900 11111111 11111111
3 B7 0003 3E12 LD A,12 11111111 11111111
5 B7 0005 015634 LD BC, 3456 11111111 11111111
8 B7 0008 119A78 LD DE,789A 11111111 11111111
B B7 000B 21DEBC LD HL,BCDE 11111111 11111111
E B7 000E C5 PUSH BC 11111111 11111111
F D7 18FF 34 write 11111111 11111111
10 D7 18FE 56 write 11111111 11111111
11 B7 000F C1 POP BC 11111111 11111111
12 F7 18FE 56 read 11111111 11111111
13 F7 18FF 34 read 11111111 11111111
14 B7 0010 3C INC A 11111111 11111111
15 B7 0011 3C INC A 11111111 11111111
2B B7 0027 3C INC A 11111111 11111111
2C B7 0028 3C INC A 11111111 11111111
2D B7 0029 C30300 JP 3 11111111 11111111
30 B7 0003 3E12 LD A,12 11111111 11111111

infinite loop. It first
starting with the stack pointer.

This simple program is an
initializes several registers, *
value on the stack and pops the
same value, to demonstrate the working stack. Notice the cycles
associated with memory reads and writes. These show you register
and memory locations, just when you most want to know them.

Then the program pushes a

After that come a series of "increment register A"
instructions. The last command in the program, at address 29H,
is an unconditional jump back to address 3, so that the program
goes back to the second instruction.

* You must have a working stack for debugger commands to work.

July 15, 1986 Page 6-11 -~ In Detail --

-- Interpret the Trace --
An examination of the first two lines

This section dissects the first two lines of the Z80 trace.
For the sake of simplicity, the HDATA and MISC columns (which
were not attached to anything on the board) are not displayed.

cy#
0 B7 0000 310019 LD SP,1900
3

B7 0003 3E12 LD A,12

The first line of the display starts with cycle zero, which
means that this cycle was the '"trigger event."

The UniLab trace buffer captured a 31 on bus cycle 0, 00 on
bus cycle 1, and 19 on cycle 2. These hexadecimal numbers were
then translated by the disassembler into LD SP,1900.

The second line is labeled as cycle three, which lets you
know that the Z80 microprocessor required three bus cycles to
read the first instruction from ROM.

CONT
0 B7 0000 310019 LD SP,1900
3 B7 0003 3E12 LD A,12

The CONTrol column shows two different types of information.
The high four bits of the byte (nibble) shows the control inputs,
C4 through C7. The low nibble shows the highest four bits of the
address inputs, A16 through A19., Both nibbles are important to
the proper functioning of the disassembler and emulation ROM.
You will only have to pay attention to this column if you suspect
that the wires carrying these signals are improperly connected.

The high nibble is used by the processor-specific
disassembler to distinguish between cycle types.

If the wires that carry the control signals have been
incorrectly connected, then the disassembler will not work
properly. The disassembler needs these control signals to
classify each bus cycle as a fetch or read or write.

The first two lines both show the microprocessor fetching an
instruction from ROM. With the 280, B in the control column
always indicates an instruction fetch, D marks the write cycles,
and F marks a read.

~- In Detail -- 6-12

-- Interpret the Trace --

CONT
0 B7 0000 310019 LD SP,1900
3 B7 0003 3E12 LD A,12

The low nibble carries information that is used by the
emulation ROM. It is useful while troubleshooting, but otherwise
is only for the curious. If you are curious, read on.

e m

1 nat e th
M will check

ue set by =EMSEG

If the value of this nibb e val
RO whether the address is

then the UniLab's emulation
enabled.

The emulation ROM will put data on the bus only when the low
16 bits of the address fall into an enabled range (EMENABLE) and
the number on inputs A16 through A19 match =EMSEG.

Every line of the Z80 test program display will have 7 as
the upper four bits of the address. Three of the address inputs
to the UniLab, A18, A17, and A16, are left to float high.

A19, however, is connected to the MREQ pin of the
microprocessor. This "active low" output of the Z80 goes low
when the processor Memory is REQuired. The Z80 needs memory
access on all bus cycles,; except when it is writing to or reading
from a port.

Thus, these four inputs to the UnilLab are usually 0111,
which is hexadecimal 7. When the MREQ signal goes high, the 7
becomes F-- for example, when the Z80 is addressing a port
address rather than memory.

If you have a different processor, your UnilLab's inputs will
be connected differently.

ADR
0 B7 0000 310019 LD SP,1900
3 B7 0003 3E12 LD A,12

The first line shows address 0000, the reset address for the
Z80. The Z80 starts executing code from this address whenever
it receives a reset signal. The second line shows address 0003,
since the first instruction occupies bytes at addresses 0, 1,
and 2.

July 15, 1986 Page 6-13 -~ In Detail --

-- Interpret the Trace --

DATA
0 B7 0000 310019 LD SP,1900

The first byte of the first instruction is 31 hex, which
decodes as a command to load an immediate value into the stack
pointer. The stack pointer of the Z80 holds a 16 bit value.

DATA
0 B7 0000 310019 LD sP,1900

That immediate value is 1900. Notice that the two bytes
appear on the bus in reverse order, following the Intel
convention, rather than the one adopted by Motorola.

DATA
0 B7 0000 310019 LD SP,1900
3 B7 0003 3E12 LD A,12

The second instruction loads an immediate value into the A
register. This register of the Z80 only holds an eight bit
value.

DATA
0 B7 0000 310019 LD SP,1900
3 B7 0003 3E12 LD A,12

The whole instruction only takes up 2 bytes, since the Z80
only needs one byte of data for the A register.

-- In Detail -- 6-14

-- Interpret the Trace --
An 8096 trace-- 16-bit processor
The display below shows the trace of the test program for
the 8096. The trace is shown only to highlight the difference
between an 8-bit trace and a 16-bit trace.

Notice that there is no HDATA column in the trace, and that
instead the UniLab shows 16-bits of data for each bus cycle.

The 8096 has a full 16-bit external data bus. With each bus
cycle, the UniLab records a 16-bit word of either opcode or data.

A brief discussion of the trace appears on the following

page.
cy# CONT ADR DATA MISC
0 FF 2080 A1004118 LD SP, #4100 11111111
2 FF 2084 A100A01C LD AX,#A000 11111111
4 FF 2088 A100BO1E LD BX, #B000O 11111111
6 FF 208C A100C020 LD CX,#C000 11111111
8 FF 2090 A100D022 LD DX, #D00O 11111111
A FF 2094 cailc PUSH [AX] 11111111
C EF A000 A000 read 11111111
D CF 40FE A000 write 11111111
B FF 2096 CE1C POP [AX] 11111111
F EF 40FE A000 read 11111111
10 CF A000 A000 write 11111111
E FF 2098 071C INC AX 11111111
11 FF 209A 071C INC AX 11111111
12 FF 209C 071C INC AX 11111111
13 FF 209E 071C INC AX 11111111
14 FF 20A0 071C INC AX 11111111
15 FF 20A2 071C INC AX 11111111
16 FF 20A4 071C INC AX 11111111
17 FF 20A6 071C INC AX 11111111
18 FF 20A8 071C INC AX 11111111
19 FF 20AA 071C INC AX 11111111
1A FF 20AC 071C INC AX 11111111
1B FF 20AE 071C INC AX 11111111
1C FF 20BO0 E7ESFF LIJMP 2098 11111111
1F FF 2098 071C INC AX 11111111
20 FF 209A 071C INC AX 11111111
This simple program functions just about the same as the 280

test program. Both are infinite loops that first initialize
several internal registers, next push and pop a value, and then
go through a series of "increment A" instructions.

The last command of the 8096 test program is a jump back to
the first "increment A" instruction.
July 15, 1986

Page 6-15 -- In Detail --

~- Interpret the Trace --

CONT
0 FF 2080 A1004118 LD SP, #4100

Remember that you can usually ignore the CONT column.
But if you want to pay attention to it, notice that for the 8096,
F marks a fetch, C marks a write and E marks a read cycle.

CONT
0 FF 2080 A1004118 LD SP, #4100

All four of the high address inputs to the UnilLab,
A19 through A16, float high. They are not attached to anything
on the target board.

ADR
0 FF 2080 A1004118 LD SP, #4100

The reset address for the 8096 is 2080. Contrast this to
the Z80, which has a reset address of 0000.

DATA
0 FF 2080 A1004118 LD SP,#4100
2 FF 2084 A100A01C LD AX,#A000
4 FF 2088 A100BO1E LD BX,#B000

The opcode A1 decodes as a load of an immediate value into
an internal register.

DATA
0 FF 2080 A1004118 LD SP, #4100
2 FF 2084 A100A01C LD AX,#A000
4 FF 2088 A100B01 LD BX,#B000

The last byte of the 4 byte instruction tells the 8096 which
register to load the immediate value into.

DATA
0 FF 2080 A1004118 LD SP, #4100
2 FF 2084 A100A01C LD AX,#A000
4 FF 2088 A100BO1E LD BX, #B000

The two-byte immediate value appears on the bus as the
second and third bytes of the instruction. As with the 280, the
bytes appear on the bus in reverse order,

-- In Detail -- 6-16

-~ Interpret the Trace --

1.4 Moving through Your Trace Display

When the UniLab sends its trace buffer to the host machine,
the host displays it starting from either cycle 0 or whatever
cycle number was last set with <n> TN.

You will sometimes see everything you needed to know in the
first screenful of the trace.

But much of the time you will need to look at a different
part of the trace.

A small but complete set of commands moves you through the
trace buffer.

Dumping the trace

Usually the UniLab will automatically dump the trace into
the host computer. But if the trace buffer in the UniLab does
not f£fill (especially when producing aa filtered trace) then you
will need to manually dump the trace to the host, with TD.

Look at next line of trace

Use the Down Arrow key (number 2 on the numeric key pad) to
see the line of the trace that follows the "current" line.

The current line is usually the last one that you displayed
on the screen. However, refer to the discussion of the history
mechanism on the second page following.

Look at the next screen of trace
Use the Pg Dn key (number 3 on the numeric key pad) to see

the next screenful of the trace, starting from the "current'" line
(or use the command TR).

July 15, 1986 Page 6-17 -- In Detail --

-- Interpret the Trace --
Look at the trace, starting from cycle number <N>
Use one of the two commands: <n> TN or <n> TNT.

TN will also reset the default cycle number that T displays
from (normally -5).

Use TNT to look at a particular cycle of the trace, without
changing the default used by T.
To look at the trace starting from the top

The HOME key (number 7 on the numeric key pad) shows you the
trace from the top (or use the command TT).

-~ In Detail -- 6-18

-- Interpret the Trace --

The trace and the "history" mechanism

Everything that goes by on the full screen or the lower
window gets saved by the history mechanism of the UniLab. This
handy feature allows you to review your past actions and past
traces.

The PgUp key (number 9 on the numeric key pad) shows you one
screen full of history.

The Up Arrow key (number 8 on the numeric key pad) shows you
one line of the history.

Cursor Key Assignments for Viewing Trace Buffer Display

Trace Display Previous Line

Trace Display
Top of Buffer

Trace Display
Previous Screen

Toggle between
Upper & Lower
WVindow

Trace Display
Next Screen

Trace Display Down One Line

July 15, 1986 Page 6-19 -- In Detail --

-- Interpret the Trace --
The trace, the history, and the Down Arrow

The UniLab "remembers" the cycle number of the last line of
trace buffer you saw. Whenever you use one of the trace commands
that start displaying from the "current" cycle number
(PgDn, TR, or Down Arrow), the UniLab will normally start the
display from after that last line.

However, if you use the Up Arrow and PgUp keys to look at
the history of your session, you can end up with the cursor
sitting on a line of trace display. The UniLab will temporarily
call that cycle the current cycle.

If that is what you want, then you don't need to worry. But
if instead you want to start displaying from the line of the
trace buffer that you last displayed, first hit ENTER to get the
cursor to a blank line, and then use any display command.

-~ In Detail -- 6-20

v o

&
&

J

-- Interpret the Trace -~

1.5 Symbolic Names in the Trace Display

Most pecple find it convenient to assign symbolic names to
numbers. For example, LOOP.START conveys more information than
address 2098. You will find your traces easier to read if you

have symbolic names assigned to important addresses, ports and
data.

You can load in the symbol table that your assembler

generated, and have the same symbolic names that your source
program assigned.

Or you can assign symbolic names one by one, using the IS
command to give names to numbers.

You should not use a symbol name that is identical to a
UniLab command. That would prevent you from using the command
because the new interpretation of the name takes precedence.

Entering SYMB' tells the Unilab to ignore the symbol
definitions.

Sep To LREATS L ity TRALE e NTEL ACEMAlL
u L€ ALrA 50 LR ek belue 70
s RLE | KBI=.0kT> To <LBIF, AR5
Ths will be~n, A4 LT Pl ki MST BTEwwA

SMEiILe < PleNAnE. ns1) To——dersbefrioT w5
s spaype 70 FNe INEL bevel. FmnmT

Y& == SMLST To maKe s TARkls s oW

uly 15, 1986 Page 6-21 -- In Detail --

CeriERhIE DEAUL LS

IVREF (Ganvprpiel)>

=N

-

€

-- Interpret the Trace --
Choosing symbol file formats

Enter the SYMTYPE command to get the menu of predefined
symbol table formats:

SYMBOL FILE FORMAT MENU

F1 2500AD SOFTWARE

r2 2500AD SOFTWARE (ABBREVIATED)
F3 ALLEN ASHLEY

F4 MANX AZTEC C

F5 AVOCET

F6 OTHER FIXED FORMAT

F10 RETURN TO COMMAND MODE

At this point you can select the desired format from the menu.
If the format you require is not on the menu, see the subsection
on SYMFIX on page 6-27 and in Chapter Seven.

Enter SAVE-SYS to make the selection permanent. (You can
still change it again with SYMTYPE, then save the system again.)

If you don't use SAVE-SYS, the format you choose will only
be used during the current session with the UniLab.
Load symbol table from file
After choosing the symbol file format, use:
SYMFILE <filename>

to load symbols in from a file. You will be prompted for the
file name if you do not include it on the command line.

SYMFILE clears out the symbol table before loading the file.

You can load in several symbol files, by using SYMFILE+ to load
each additional file.

-- In Detail -- 6-22

~-- Interpret the Trace --
Define individual symbols
A single symbol can be defined at any time with:
<n> IS <name> .

For example if you enter 1234 IS DELAYLOOP, then DELAYLOOP will
be displayed instead of the 1234, whenever 1234 occurs on the
trace display.

You can also use DELAYLOOP in trigger specs, or to set
breakpoints. For example:

DELAYLOOP AS

Toggle symbol translation on and off

To turn the symbol translation feature on for the trace
display with SYMB or the Mode Panel (function key 8). Use the
Mode Panel or SYMB' to turn the symbol translation off.

Note that enabling translation of the symbols will not
change anything unless you have some symbols defined.

You can greatly improve readability of a hex trace by
identifying the crucial subroutines and storage areas. If you
are programming in a high-level language you can identify the
run-time routines for improved readability.

Redefine a symbol

You can redefine a symbol at any time, simply by using with
IS to define it again (only the most recent definition will be
found). You cannot clear out only one symbol definition, but you
can forget an entire symbol table with CLRSYM.
Save a symbol table as a file

You can save an existing symbol table as a named file with

SYMSAVE, and reload a previously saved table from disk with
SYMLOAD.

July 15, 1986 Page 6-23 -- In Detail --

-~ Interpret the Trace --
Setting the size of the symbol table

You can allocate up to hexadecimal 80 K (128K decimal) to
the symbol table.

The size of the symbol table is set by giving the command:
<hex # of Kbytes> =SYMBOLS

then saving the newly altered UniLab software with SAVE-SYS. You
must exit the program with BYE and start it again.

The size of the symbol table is allocated when the program
starts up, and cannot be changed on the fly.

Use the command ?FREE to find out how many bytes are

allocated to the symbol table and to the line history. That
display appears in decimal base, not hexadecimal.

-- In Detail -- 6-24

Symbol example

-- Interpret the Trace --

The trace printout below shows a disassembled trace with
symbol translation.

First eight symbol names were entered by hand:

1900 IS Init.Stack

3 1Is Start.Loop

29 IS End.Loop

10 IS First.IncA

3456 IS Init.BC
789A IS INIT.DE
BCDE IS INIT.HL
28 IS LAST.INCA

And then F9 was pressed, to get a trace of the startup:

cy#

START.LOOP

FIRST.INCA

2C
2D
30
32
35
38
3B

LAST.INCA
END.LOOP
START.LOOP

July 15, 1986

ADR
0000
0003
0005
0008
000B
000E
18FF
18FE
000F
18FE
18FF
0010
0011

0026
0027
0028
0029
0003
0005
0008
000B
000E

DATA
310018 LD SP,INIT.STACK
3E12 LD A,12
015634 LD BC,INIT.BC
119Aa78 LD DE,INIT.DE
21DEBC LD HL,INIT.HL
C5 PUSH BC
34 write
56 write
C1 POP BC
56 read
34 read
3C INC A
3C INC A
3C INC A
3C INC A
3C INC A
C30300 JP START.LGOGCP
3E12 LD A,12
015634 LD BC,INIT.BC
119A78 LD DE,INIT.DE
21DEBC LD HL,INIT.HL
C5 PUSH BC

Page 6-25

—-- In Detail --

-- Interpret the Trace --

After these symbols have been loaded in, you can set a
trigger or a breakpoint using the symbolic name:

LAST.INCA AS

The last example, below, shows breakpoint displays with
these same symbols defined:

RESET END.LOOP RB resetting

AF=2B28 (sz-a-pnc)
END.LOOP 0029

SSTEP NMI
AF=2B28 (sz-a-pnc)
START.LOOP 0003

N
AF=1228 (sz-a-pnc)
0005

BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900 PC=0029
C30300 JP START.LOOP (next step) ok

BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900 PC=0003
3E12 LD A,12 (next step) ok

BC=3456 DE=789A HL=BCDE IX=FFFF IY=FDFF SP=1900 PC=0005
015634 LD BC,INIT.BC (next step) ok

-~ In Detail -- 6-26

-- Interpret the Trace --
Reading other symbol table file formats

If the format you need is not included in the SYMTYPE menu,
use SYMFIX to describe the format of other fixed length format
files.

The SYMFIX command is used to define parameters for any
symbol file format which uses fixed length records. The 6
parameters for the SYMFIX command are as follows:

a = offset from start of record to start of name field.
b =1 if address is 4 ASCII digits or 0 if 16-bit binary.
c = offset from start of record to start of addr field.
d = 1 if binary address has most significant byte first.
e = pad characters used to fill between symbols.
f = record length in bytes
Examples

The format of the 2500AD global symbol table is:

0021 10 24 SYMFIX

The format for the ALLEN-ASHLEY symbol table is:

01DO0 21 12 SYMFIX

Variable length format

If you have a variable length format symbol file, use the
AVOCET choice in the menu if the format is NAME followed by
VALUE.

Use the MANX AZTEC C choice if the format is VALUE followed
by NAHE,

July 15, 1986 Page 6-27 -- In Detail --

-~ Interpret the Trace --

1.6 Toggling Display Options On and Off

You can alter the way the trace gets displayed on your
screen. Depending upon what you need, you can do everything from
displaying only machine code to displaying source code lines in
your trace.

You can change these options, either from the mode panels or
with commands, as detailed in the following pages:

Disassemble code

Substitute symbolic names for numbers
Show CONTrol column

Show MISCellaneous column

Binary number base for HDATA and MISC
Fixed header

Stop display after each screen

Show source lines in trace.

-— In Detail ~-- 6-28

-- Interpret the Trace --
Disassembly

When you don't want or don't need to see the assembly
language instructions that each opcode represents, you can turn
off the disassembler and then look at the same trace again. The
disassembler remains off until you turn it on again.

Mode Panel: Command:
1. ANALYZER modes
DISASSEMBLER DASM DASM'
SYMBOLS
RESET

The display below shows the first fourteen cycles of the Z80
test program, with the disassembler on and with the disassembler
off.

The LD A,12 instruction is underlined and the PUSH BC
instruction is highlighted in both traces. The disassembled
display has been extended so that cycle numbers will match up.

DISASSEMBLER ON DISASSEMBLER OFF
cy# ADR DATA + cy# ADR DATA
0 0000 310019 LD SP,1900 ¥ 0 0000 31

+ 1 0001 00O

¥ 2 0002 19

3 0003 3E12 LD A,12 + 3 0003 3E

+ 4 0004 12

5 0005 015634 LD BC, 3456 + 5 0005 01

+ 6 0006 56

+ 7 0007 34

8 0008 119A78 LD DE,789A + 8 0008 11

+ 9 0009 9A

+ A 000A 78

B 000B 21DEBC LD HL,BCDE B 000B 21

+ C 000C DE

+ D 000D BC

E O00E C5 PUSH BC + E O000E C5
F 18FF 34 write 3 F 18FF 34
10 18FE 56 write + 10 18FE 56
11 000OF C1 POP BC + 11 000OF C1
12 18FE 56 read + 12 18FE 56
13 18FF 34 read ¥ 13 18FF 34
14 0010 3C INC A + 14 0010 3C

July 15, 1986 Page 6-29 -- In Detail --

-- Interpret the Trace --
Translate symbols

When you load a symbol table or define a symbol, symbol
translation gets turned on. However, you may want to turn symbol
translation off, to see the numeric values more easily.

Turn symbol translation on and off with the mode panel or
with the commands:

Mode Panel: Commands:
1. ANALYZER modes
DISASSEMBLER
SYMBOLS SYMB SYMB'
RESET

~- In Detail -- 6-30

-- Interpret the Trace --
Show or hide MISCellaneous column
When your MISC wires (MO through M7) are connected to
signals on your board, you will want to see the signals ‘
displayed. Otherwise that display just clutters up the screen.

This also hides the HDATA column on 8 bit processors.

Turn it off and on with the mode panel or with the commands:

Hbde Panel: ; Commands:
2. DISPLAY modes
MISC COLUMN 4 SHOWM SHOWM'

CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER

Show or hide CONTrol column

When you are troubleshooting, you will need to see the CONT
column.

Most of the time it represents needless clutter-- unless you
need to routinely see the full 20-bit address.

Turn it off and on with the mode panel or with the commands:

Mode Panel: Commands:
2. DISPLAY modes
MISC COLUMN
CONT COLUMN SHOWC SHOWC'
MISC # BASE
PAGINATE
FIXED HEADER

July 15, 1986 ~ Page 6-31 -- In Detail --

-- Interpret the Trace --
Change the MISCellaneous display number base

When you have the MISC inputs connected to a port or a
register, you will probably want to display that column in octal
or hexadecimal, rather than in binary.

This feature alters the display base of the HDATA column at
the same time.

Alter this variable with a command, or toggle between binary
and octal with the mode panel:

Mode Panel: Command :
2. DISPLAY modes
MISC COLUMN
N CONT COLUMN
MISC # BASE <n> =MBASE
PAGINATE
FIXED HEADER

-~ In Detail -- 6-32

-- Interpret the Trace --
Stop after each screenful of trace

You usually want the display to stop after each screenful of
display. But sometimes, when you are sending data to a file or
a printer, you might want to have the whole trace scroll on by.

Turn this option off and on-with the mode panel or with
the commands:

Mode Panel: Commands:
2. DISPLAY modes
MISC COLUMN
CONT COLUMN
MISC # BASE
PAGINATE PAGINATE PAGINATE'
FIXED HEADER

Have a fixed header for the display

This little extra allows you to have a fixed header on your
lower display window, if you want.

Turn it off and on with the mode panel or with the commands:

Mode Panel: Commands:
2. DISPLAY modes
MISC COLUMN
CONT COLUMN
MISC # BASE
PAGINATE
FIXED HEADER HDG HDG'

July 15, 1986 Page 6-33 -- In Detail --

Introduction

2.

Readying and Loading Memory

This section covers emulation memory--

how to tell the UniLab what addresses to emulate,
how to load information into emulation ROM,
and how to save the data in emulation ROM.

The UniLab
program memory.
or data from an
(EMENABLE), the

controls your target processor by emulating

When the processor tries to fetch instructions

address that has been emulator enabled
UniLab's emulation ROM responds on the bus.

Remember that the UnilLab replaces your ROM rather than your

microprocessor, and then watches the bus while the processor

runs.

Contents

-- In Detail --

Feature Summary

What is Emulation ROM
Getting Ready

Loading Programs

Saving Programs

6-36

6-38

6-42

-- Loading Emulation ROM --

Commands

ESTAT
<hex digit> =EMSEG

<addr> EMENABLE

HEXLOAD

<from addr> <to addr> BINLOAD

<from> <to> BINSAVE

LTARG
Commands are

available, but the use of
the menus is recommended

DISPLAY CURRENT STATUS OF EMULATION MEMORY
ENABLE ONE BLOCK OF EMULATION MEMORY
ADD ANOTHER BLOCK OF MEMORY

SET A16-A19 MEMORY SEGMENT BITS
DISABLE ALL EMULATION MEMORY

MENU

INTEL HEX FILE

BINARY OBJECT FILE

A BLOCK OF MEMORY TO DISK FILE
A SAMPLE PROGRAM

use
use
use
use
use
use

OR SAVE PROGRAM MENU

2716/48016 - use PM16

PM16
PM32
PM64
PM64 (PM56 for 27128A)
PM56
PM512

2.1 Feature Summary
Feature Menu
Report Emulation STATus Yes
Choose 64K Segment Yes
Enable 2K blocks within
64K segment Yes
Load from an Intel HEX
format file Yes
Load from a binary file Yes
Save a block of memory
to disk Yes
Enable minimal memory and
load test program Yes
Load from a ROM Yes
Commands : Menus:
ENABLE PROGRAM MEMORY MENU
ESTAT F1
<addr> EMENABLE F2
ALSO <addr> EMENABLE F3
=EMSEG F4
EMCLR F5
F10 RETURN TO MAIN
LOAD
HEXLOAD 1 LOAD
<from> <to> BINLOAD F2 LOAD
<from> <to> BINSAVE F3 SAVE
LTARG F4 LOAD
F10 RETURN TO MAIN MENU
PROM READER MENU
<from> <to> RPROM F1 READ
<from> <to> R2532 F2 READ 2532
<from> <to> R2732A F3 READ 2732
<from> <to> RPROM F4 READ 2764
<from> <to> RPROM F5 READ 27128
<from> <to> RPROM F6 READ 27256
<from> <to> R27512 F7 READ 27512
F9

July 15,

1986

F10

Go. .to Prom Programmer Menu
RETURN TO MAIN MENU
See also Appendix G for more info on EPROMs.

Page 6-35

-- In Detail --

-- Loading Emulation ROM -~

2.2 What Is Emulation ROM ?

You use the UniLab to watch the execution of a program on
your microprocessor board. Microprocessors usually run a program
that is loaded into ROM or RAM. While using the UniLab, you load
the program into emulation ROM.

32K or more of emulation memory

The standard UniLab contains 32K bytes of 195 ns static RAM
which functions as emulation ROM. An optional expansion board
can expand this capacity up to 128K bytes. This RAM appears to
the target system as ROM, and cannot be altered by the target
microprocessor.

Cable Connections

Most of the data and address lines are connected by plugging
the emulator cable into a single PROM socket in the target
system, as explained in the Installation chapter (two sockets for
a 16 bit data bus).

Many ROMs can be emulated with one connection socket, but
the sockets of emulated ROM must be empty to prevent bus
contention.

Using the Emulator without the Analyzer

The analyzer cable must be hooked up for the emulator to
operate properly. In the unlikely event that you want to use the
emulation ROM without using the analyzer, you must still connect
the analyzer cable from the UniLab to your board.

The UniLab must see the full address bus to emulate

properly, and some of the address signals are picked up by the
analyzer cable.

-- In Detail -- 6-36

-- Loading Emulation ROM --
20-bit addresses

Since the UnilLab accepts a 20 bit address input, it can
handle target systems with up to 1 megabyte of active memory, or
even more if you connect chip select logic to the A19 input to
the UnilLab.

Emulate throughout a 128K region

Any combination of Z2K byte memory segments can be enabled,
as long as they are all in the same 128K region. That is, you
can emulate 2K chunks scattered throughout the range CC000
through DFFFF, since that forms one 128K region.

However, you would not be able to emulate some memory within
the range 10000 to 1FFFF and other memory in the range 30000 to
3FFFF, since those two 64K segments are not contained within the
same 128K region.

The general rule-- all emulated memory must have the same
value for the upper three bits of the full 20 bit address. You
set this value with =EMSEG. You rarely need to change this
value.

Watch out

Since the 32K Unilab emulates 128K of address space in only
32K of physical RAM, each physical location represents four
emulation ROM addresses. This can cause problems if you are not
aware of it.

For example, the four addresses 00000, 08000, 10000 and
18000 all refer to the same physical memory location.

If you try to enable both 0 TO 7FF and 8000 TO 87FF, then
you will find that both sections of memory always contain the
same data. Those two ranges of emulation ROM both refer to the
same RAM locations in the 32K UniLab.

July 15, 1986 Page 6-37 -- In Detail --

-- Loading Emulation ROM --

2.3 Getting Ready. . .

Before you can start working on your program, you have to
enable the emulation ROM and load your software into the Unilab's
emulation memory.

.When you enable a section of memory, you are telling the
UniLab what addresses you want it to respond to.

The minimal memory necessary

The LTARG command enables a 2K section of memory and loads
in a simple test program (on some packages, such as the 8096, the
LTARG command enables several 2K sections). If you are in doubt
about what memory to enable for your processor, type in LTARG,
and note the values of =EMSEG and EMENABLE.

For example, the Z80 test program sets up the variables as:

LTARG
Emulator Memory Enable Status:
7 =EMSEG
0 TO 7FF EMENABLE

In general, you have to enable the reset address for your
processor. The only exception occurs when you want to analyze a
program running from ROM chips instead of emulated ROM.

The exception: Running a program from ROM chip

When you want to run a program entirely from ROM on your
target board you must first use EMCLR to clear emulation memory,
and then use the Mode Panel option SWI VECTOR (SoftWare Interrupt
VECTOR) or the command RSP' to disable the debugger.

If you don't disable the software interrupt vector under
these circumstances, then the UniLab will give you an error
message when you try to start the analyzer. When the debugger is
enabled, the UniLab writes information into the reserved area
when you start the analyzer. If the reserved area is not being
emulated, you will get the message "Debug Control not
established."

You can use ROM chips for some of your program, and use
emulation memory for the rest of it.

No matter what else you do, you must always either emulate
the reserved area (see appendix H) or disable the debugger.

-- In Detail -- 6-38

-- Loading Emulation ROM -~

The high four address bits

Address bits A16 to A19 are set with <hex number> =EMSEG,
where hex number is the desired digit for A19-A16. With this
command you tell the UniLab which 64K segment of memory you want
to emulate, out of the possible 1 megabyte that a processor with
a 20 bit address bus can access.

S 1

.

ni
e +n
v N\ LA g

e of =EMSEG

u i
bably never ha

Y never n

ed to the correct value.

iz
ar it
N A -

The val

111
AN

tial
wi alt

1

You .

The UniLab uses =EMSEG to decide whether to put data on the
bus., When the processor tries to fetch information from ROM, the
UniLab first checks whether the upper four bits of its address
inputs match the value of =EMSEG.

If the UniLab finds that the upper four bits match, then it
checks whether the lower 16 bits of the address are enabled.

On many 8 bit processors these inputs just float high, so
that the =EMSEG value is usually F (1111 binary).

Emulating two 64K segments

You can emulate address in 128K, as long as the two 64K
segments are neighboring segments (that is, only A16 differs).
Use =EMSEG to set the values of A16 through A19 that the UniLab's
emulation RO will respond to.

For example, 4 is 0100 in hexadecimal,

while 5 is 010i, so that you could give this enable
command:

4 =EMSEG 0 TO 7FF EMENABLE
ALSO 5 =EMSEG 1000 TO 17FF EMENABLE

July 15, 1986 Page 6-39 -- In Detail --

~-- Loading Emulation ROM --
The other 16 bits

You can enable the UniLab's memory 2K at a time. The memory
that you enable will be in the 64K segment that you last set with

_You are telling the Unilab what range of addresses on A0
through A15 you want it to respond to.

To enable ROM from address 0 to 17FF you type:
0 TO 17FF EMENABLE
You could instead enable locations F800 to FFFF by entering:
F800 TO FFFF EMENABLE
The TO is necessary to indicate an address range. If you
enter <16 bit address> EMENABLE the single 2K segment which
includes that address will be enabled. For example,

1000 EMENABLE

will enable the 2K segment 0 to 17FF.

Enabling several areas

Each EMENABLE statement usually clears out the previous
settings. However, if you use ALSO you can have the UnilLab
respond to both the previous setting and the new one.

For example, to enable 0 to 17FF and F800 to FFFF, you type:
0 TO 17FF EMENABLE ALSO F800 TO FFFF EMENABLE

Be careful when enabling several areas with a 32K UniLab.
The 128K area within which you can enable 2K blocks gets mapped
onto the 32K of the UniLab. This means that 0000 addresses the
same memory location as 8000. 2000 refers to the same location
as A000.

Keeping track
Every time you issue the EMENABLE command, the system will
display the complete resulting memory enable status. If you want

to see this enable status display without changing enables, just
enter ESTAT.

~- In Detail -- 6-40

-- Loading Emulation ROM --
Saving the settings

Once you have them set properly for a project, you will want
to can save the enable settings of emulation memory. The
contents of emulation memory can also be saved, with the BINSAVE
comman.

You enter:
SAVE-SYS <filename>

after you enable the memory to save the current state of the
UniLab software, including the emulation memory settings.

From then on, when you start the program by typing in the

filename, the proper area of the UnilLab's memory will already be
enabled.

July 15, 1986 Page 6-41 -- In Detail --

-- Loading Emulation ROM --

2.4 Loading the Target Programs into Memory

You load in your program after you have enabled a section of
memory large enough to contain your program.

You can load opcodes into memory from a disk file, by hand,
from-a ROM chip or from an Orion test program.

Loading from disk files

The UnilLab software provides you with four different ways to
load a program from a file on disk. Depending on your assembler
or compiler, you will chose one of these methods.

1. If you compiled or assembled the code into a binary
file on a disk, then load it with

<from addr> <to addr> BINLOAD <filename>

The filenames usually end in .BIN, .COM, or .TSK. You will
be prompted for the file name if you do not include it on
the command line. You can use the DOS command EXE2BIN if
your assembler produces a .EXE file.

The program will be loaded starting at the address you
gave.

You save memory to a file with the BINSAVE command.

2. Read Intel-format HEX object files from a disk with
HEXLOAD <file name>.

You will be prompted for a file name if you do not include
it on the command line. The addresses will automatically be
converted to the correct ones for the host image of the
target program. This method is much slower than BINLOAD.

If your assembler will only make Intel Hex files, you
can still use the UnilLab command BINSAVE to make a binary
format file. Just load the hex file the first time, and
then use

<from> <to> BINSAVE <filename>

to save the memory as a binary image. From then on you can
use

<from> <to> BINLOAD <filename>
to load the program into memory.

~- In Detail -- 6-42

-- Loading Emulation ROM --

3. Download Intel hex format programs from another
computer system with HEXRCV, if your PC has two serial
ports. The sending computer must support the XON/XOFF
protocol.

After you type this command, your PC will accept hex
through its second port until you press a key or the PC
ives an end of file message.

While this method is useful for interfacing with
existing systems, it makes more sense to use your personal
computer for program development and avoid the bottleneck of
program downloading. See Appendix B for a partial list of
assemblers and compilers for the personal computer.

4, If your assembler or compiler can assemble directly
into memory at a specified location other than the origin,
you can instruct it to leave the object code in some unused
area of host memory (CO00 to E000 is free in most systems).

Then when you enter the UniLab program you can download
from your host's memory to the UniLab's emulation ROM with

<fromadr> <toadr> <targadr> MLOADN.

Note that the first two addresses refer to RAM in your host
machine, the third address is in UnilLab emulation ROM.

Hand enter Code

You can also hand enter a program, poking machine language
instructions into memory. We recommend this only to those
suffering from computer nostalgia.

You hand-enter a short program by using the memory patching
commands of the UnilLab system. Type in <address> ORG, where the
address is the start of the target program, then enter <byte> M
or <word> MM for each byte or word of the program.

July 15, 1986 Page 6-43 -- In Detail --

-- Loading Emulation ROM --
Read a program from ROM

The UniLab software also allows you to read a program from
ROM. We support all of the most popular EPROMs-- see Appendix G:
EPROMs Supported.

Read a'program from a ROM by first placing the chip into the
UniLab's programming socket. Hit function key 10 to get the main
menu, and then function key 9 to get the PROM reader menu.

EPROM PROGRAMMER EPROM PROGRAMMER

Wi, W,

PM16 |lg ® 2 P16 ||o
ane g;;:

o e

28 Pin EPROM in Programming Socket 24 Pin EPROM in Programming Socket

PROM READER MENU

F1 READ 2716/48016 - use PM16

F2 READ 2532 - use PM16
F3 READ 2732 - use PM32
F4 READ 2764 - use PM64
F5 READ 27128 - use PM64 (PM56 for 27128A)
F6 READ 27256 - use PM56
F7 READ 27512 - use PM512

F9 Go to Prom Programmer Menu
F10 RETURN TO MAIN MENU
(Press the Function Key to select item):

Watch out

Avoid leaving any PROM in the socket after you read it or
program it.

2764s and up will sometimes erase location zero when you
turn on the UniLab.

-- In Detail -- 6-44

~-- Loading Emulation ROM --
Loading the sample program

Or instead, you can load a test program, with LTARG (Load
TARGet memory).

LTARG enables emulation memory and loads a simple test
program. Chapter 9 contains a trace of the test program for each
microprocessor, along with examples of debugging operations.

The separate Disassembler/Debugger writeup on your processor

covers the test program and the debugging operations more
completely. _

July 15, 1986 Page 6-45 -- In Detail --

-- Loading Emulation ROM --

2.5 Saving Programs

You can save a program for later use with BINSAVE as
described below. There are at least five situations in which you
will want to save a program:

1) You have changed the program since you loaded it in, by
moving sections of memory or poking in an opcode.

2) You have loaded a program using HEXLOAD, and want to be
able to use BINLOAD instead.

3) You have loaded a program from a ROM.
4) You have '"hand assembled" a program.
5) You want to make a macro that tests equipment by

loading and running a test program.
When you have completed your design, you can "save" a
program to ROM with the PROM programmer menu. See section 7.
Saving with BINSAVE

Any area of emulation memory can be saved to disk as a named
file. Type in

<from address> <to address> BINSAVE <file name>.

The addresses refer to emulated memory. If you leave off the
filename, then you will be prompted for a name.

-— In Detail -- ' 6-46

Introduction

3.

Examining and Altering Memory

After loading a program into emulation memory, you can

immediately run it.

However, you often want to look at the

program first, to refresh your understanding of the code, or to
verify that you have loaded in the correct file.

And as you work on the program, you will want to look at
portions of your code, and perhaps alter the code.

‘You can also examine and alter RAM, but only after you have
established debug control (see subsection 3.2 and section 6).

Contents

July 16,

1986

Feature Summary 6-48

Memory Access 6-49

Read from Memory 6-52
Disassemble

Peek, dump or compare

Alter Memory 6-57
Fill
Move
Poke

On-Line Assembler 6-61

Page 6-47 -- In Detail --

-- Examine and Alter Memory --

3.1 Feature Summary

All memory access commands work both on emulated ROM and on
target RAM. However, to access RAM you have to first establish
debug control. See the next two pages.

Feature Menu Command
Examining Memory
Dump a range of memory Yes <start> <end addr> MDUMP
Disassemble a range of memory Yes <start> <# of lines> DM
Disassemble into right hand window NO <start> DN
Compare two ranges of memory Yes
<start> <end> <comparison addr> MCOMP

Look at one byte NO <addr> M?
Look at one word NO <addr> MM?
Altering Memory
Fill a range of memory with Yes

one byte value <start> <end> <byte> MFILL
Alter a single byte Yes <value> <addr> M!
Alter a single word Yes <value> <addr> MM!
Move a range of memory to a Yes

different place <start> <end> <new start> MMOVE

Set up the address for subsequent NO

M and MM commands <addr> ORG
Store one byte and update ORG NO <byte> M
Store a word and update ORG NO <word> MM
Optional
On-line assembler NO <addr> ASM
Assemble code from NO

FORTH file <addr> <from scr> <to scr> ASM-FILE
Command : Menu:

EXAMINE OR CHANGE PROGRAM MEMORY MENU

MFILL F1 EXAMINE A RANGE OF MEMORY

DM F2 DISASSEMBLE FROM MEMORY

Ml F3 CHANGE ONE BYTE

MM! F4 CHANGE ONE WORD

MFILL F5 FILL A RANGE OF MEMORY WITH ONE VALUE
MMOVE Fé MOVE AN AREA OF MEMORY

MCOMP F7 COMPARE TWO AREAS OF MEMORY

F10 RETURN TO MAIN MENU

-- In Detail -- 6-48

-- Examine and Alter Memory --

3.2 Memory Access: Emulation ROM and RAM

The commands that access memory have two complications:

1) When you access emualtion ROM, you will
cause the program to stop.

2) You cannot access RAM unless you have
first established debug control.

Access to emualtion ROM

When you read from or change emulation ROM, the UniLab has
to take control of the memory chips that emulate ROM. While this
is going on, your processor will not be able to read instructions
from ROM-- which causes your target program to crash.

Be aware that you have to restart the target program after
examining emulation ROM, because you and the processor cannot
look at program memory at the same time.

Access without crashing
While at a breakpoint, you can examine emulation ROM without

crashing your target system. Your processor does not need access
to memory while you have debug control.

July 16, 1986 Page 6-49 -- In Detail --

-- Examine and Alter Memory --
Access to RAM

Normally, all the commands that read and write memory
perform their work on emulation ROM. However, you can examine or
alter RAM once you have established debug control. See section
6 of this chapter to learn how to establish debug control.

If you try to read or write RAM without first establishing
debug control, the attempt will fail, and you will get two
messages:

1) a '"not enabled" message, informing you that you
are trying to access an address that the UniLab is
not emulating,

2) a "Debug Control not established" message, when
the UnilLab software tries to access the RAM.

Since you are trying to access RAM, not emulated ROM, the
address you specify has not been enabled-- that is the meaning of
the first message.

The second message tells you that the routines which alter
RAM will not work, because you have not established debug
control.
Successful Access to RAM

If you first get debug control, then you can access RAM.

You will still get the "not enabled" message, to remind you that
you are working on RAM, not on emulated ROM.

-- In Detail -- 6-50

-- Examine and Alter Memory --
Processors with RAM and ROM in the Same Address Space

With most processors, RAM occupies one range of memory, and
ROM another range.

However, some processors allow you to have RAM and ROM at
the same addresses at the same time, such as:

the 8051 family,
the Z8 family,
and the 64180.

If you have one of these processors or the others that allow
ROM and RAM to simultaneously occupy the same address, you will
not be able to access RAM that occupies the same addresses as
emulated ROM until you have established debug control and have
issued the command TRAM. This command tells the UniLab to try to
access RAM rather than emulation ROM.

It would be wise, after you've used TRAM, to issue the

command TRAM' when you are done with looking at or altering
target RAM.

July 16, 1986 Page 6-51 -- In Detail --

-- Examine and Alter Memory --

3.3 Read from Memory

When you read from memory, you have a choice of
disassembling from memory or just dumping the hexadecimal
opcodes. You will usually disassemble program memory and dump
data memory.

If you don't have a disassembler package for your processor,
you will not, of course, be able to disassemble.

-- In Detail -- 6-52

E-3

-- Examine and Alter Memory --

Disassemble from memory

Two commands allow you to disassemble from memory:
DM and DN

Both commands take as a parameter the starting address to

disassemble from. DM has a second parameter-- the number of
lines of disassembled code to display.

DN outputs until it fills up the right hand window of the
screen, and so does not need a second parameter.

Watch out

On some processors-- those that do not have a signal to mark
the first fetch of a multi-byte opcode-- if you specify an
address that starts the disassembly from anywhere but the first
byte of an instruction, you will see at least a few incorrectly
decoded instructions. Your Orion disassembler simply starts
disassembling from whatever address you give it.

No matter what address you tell the disassembler to start
from, it will try to interpret the hexadecimal code it sees as
the first byte of an opcode. Once the disassembler gets back "in
sync,"”" it will decode properly.

Good disassembly:

0 7 DM
0000 310019 LD SP,1900
0003 3E12 LD A,12

0005 015634 LD BC, 3456
0008 119A78 LD DE,789A
000B 21DEBC LD HL,BCDE
000E C5 PUSH BC
000F C1 POP BC

"Out of Sync" disassembly:

17 DM

0001 00 NOP

0002 19 ADD HL,DE
Back in sync ---> 0003 3E12 LD A,12

0005 015634 LD BC, 3456
0008 119A78 LD DE,789A
000B 21DEBC LD HL,BCDE
000E C5 PUSH BC
000F C1 POP BC

July 16, 1986 Page 6-53 -- In Detail --

-- Examine and Alter Memory --

Peeking at, dumping or comparing memory

You can either "peek" at a byte or two, or dump a range of
memory. You can also compare two ranges of memory.

Peeking
You peek into memory with:

<addr> M?
<addr> MM?

The first command looks at a byte, the second at a word (two
bytes).
Peeking example

13 M? 3C ok

C MM? BCDE ok

-- In Detail -- 6-54

-- Examine and Alter Memory --

Dumping
One command allows you to see the hexadecimal contents of a
range of memory:
<start> <end addr> MDUMP

MDUMP will start dumping from whatever address you specify,
showing 10 (hex) bytes of memory on each line. It always
displays a full line, so that the second address will get rounded
up, if necessary. The right-hand side of the display shows what
ASCII characters, if any, the hexadecimal codes correspond to.

0 14 MDUMP
0 31 00 19 3E 12 01 56 34 11 9A 78 21 DE BC C5 C1 1..>..V4, . x!....

10 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3C 3cC 3cC 3¢ <LK

July 16, 1986 Page 6-55 -- In Detail --

-- Examine and Alter Memory --
Comparing

This command compares two ranges of memory, and reports any
discrepancies it finds:

<start> <end addr> <comparison addr> MCOMP

MCOMP will start comparing from whatever address you
specify. It compares the range that you specify.

You will find this command especially useful for comparing
the contents of a PROM to the expected contents:

1) Put the expected contents in one range of memory,

2) move the actual contents to another range (with
the PROM reader menu), and

3) use MCOMP to compare the two.

Example

Notice how, in this example, MCOMP starts finding bytes that
don't match after comparing five of them. It would continue to
compare bytes until it had compared the data at 120 (hex) to that
at 820 (hex)-- or you can terminate the display by hitting any
key.

105 120 805 MCOMP

Data is 16 at addr 0110 ..but is 5 at addr 0810
Data is 90 at addr 0112 ..but is 80 at addr 0812
Data is 27 at addr 0116 ..but is 23 at addr 0816

—~ In Detail -- 6-56

-- Examine and Alter Memory --

3.4 Alter Memory

You can alter memory in a heavy-handed manner, filling or
moving blocks of memory. You can also alter it byte by byte, or
word by word. .

And with the optional on-line assembler, described in sub-
section 3.5, you can alter memory by entering assembly language
commands rather than poking bytes into memory.

Filling blocks

You generally fill blocks only for test purposes-- putting
into a range of memory a long series of identical instructions.
You move blocks only for patching purpose-- pushing a block of
memory up or down to make room for an extra instruction or block
of code.

Altering bytes or words
You will more often patch code on the fly by altering code a
byte or a word at a time. For example, you can change the value

a program sets the register to, or you can replace one
instruction with another, by pushing in the hexadecimal opcode.

July 16, 1986 Page 6-57 —- In Detail --

-- Examine and Alter Memory --

Fill memory

You fill a range of memory with the MFILL command. It sets
every byte in the range to the same value:

<from address> <to address> <byte value> MFILL

Testing

This is a handy way to test the data and address lines of
your processor board:

1) Fill a range of emulation memory with the opcode
for NOOP, or other simple instruction, starting at
the reset address.

2) Start up the processor and capture a trace, using
the command STARTUP.
3) Examine the trace and verify that the address

lines and data lines work properly.

Example
To £fill 80 bytes of emulation ROM with FA, starting at
address 00:

0 100 FA MFILL

-~ In Detail -- 6-58

-- Examine and Alter Memory --
Move memory

You copy information from one range of memory to another
with:

<start address> <end address> <copy starting at address> MMOVE
You will want to do this to make room for extra instructions
when patching code, or to move large chunks of code or data for
other reasons.
Limitations
You can copy from any address to any other. However,
neither the source range nor the destination range is allowed to

cross over a 32K boundaries.

That is, you can copy from the range 5000-7000 to the range
8000 to 10000.

But you cannot copy from the range 7FFE-8001 to anywhere,
since that range, small as it is, crosses a 32K boundary.
Overlapping ranges

This command is smart enough to decide whether to start
moving from the front or the back when moving into an overlapping
range of addresses.

Example
To copy the code at 100 through 152 into 105 through 157:

100 152 105 MMOVE

To copy from 230 through 370, starting at 220:

230 370 220 MMOVE

July 16, 1986 Page 6-59 ~-- In Detail --

-- Examine and Alter Memory --
Change memory byte-by-byte and word-by-word

There are three ways to alter memory on a small scale:

poking bytes into specific addresses, M!

poking words into specific addresses, MM!

setting up an origin address, and then storing bytes
and words at sequential addresses. ORG M MM

Poking bytes
You poke bytes into specific addresses with:

<byte> <address> M!

Poking words
You poke words into specific addresses with:
<word> <address> MM!
If you have a dissassembler, then the UniLab program knows which
order to store bytes into memory.
Setting up an origin and storing bytes and words
You set up an origin address with:
<address> ORG
and then can store either bytes or words with:
<byte> M
and
<word> MM
These commands both store the value and increment the address.

You will want to use this method whenes/er you need to store
several opcodes at sequential addresses.

-- In Detail -- 6-60

~- Examine and Alter Memory --

3.5 On-Line Assembler

The processor specific on-line assemblers, ASM and ASM-FILE,
allow you to write assembly language patches to your target
program, instead of having to poke hexadecimal codes into memory.

Type <addr> ASM to invoke the assembler on the code that you
type in from the keyboard.

Type <addr> <from screen #> <to screen #> ASM-FILE to
invoke the assembler on code that has already been written into a
FORTH file.

Overvwrite memory locations
Both commands process assembly code instructions and write

machine language codes into memory. You overwrite-- and therefor
lose-~- the data already in memory.

Choose the starting address

If you do not include the address, the assembler will use
the last address stored by the ORG command.

Conventions

The on-line assembler will only accept assembly language
instructions, not ORIGIN statements or EQU statements. (You can
use the UniLab command IS to define symbols.)

Only one instruction per line.

The normal conventions of assembly language apply. For
example, at least one space between the instruction and the
operands.

You can include comments on a screen by putting a semicolon
(;) on a line. The assembler will ignore everything after the
semicolon on that line. The semicolon must either be the first
character on the line, or be preceded by at least one space.

July 16, 1986 Page 6-61 -- In Detail --

-- Examine and Alter Memory --
Entering instructions from the keyboard

When you use ASM you can include an assembly language
instruction on the command line, and assemble only that one
instruction:

1200 ASM INC A

You can enter multiple lines if you do not include an
assembly language instruction on the command line:

1100 AsSM

ASM will give you as a prompt the address to which it is
assembling, and wait for you to give it an instruction followed
by a carriage return.

The assembler will continue to prompt you with an address
and patch assembled code into memory, until you feed a blank line
(hit return on an empty line).

Entering instructions from a FORTH file

If you only have a few lines of code, you can use the screen
that MEMO puts you into, and the two following (screens 1D
through 1F). See the command reference entry for MEMO to get a
few pointers on using the FORTH screen editor. You might also
want to look at Appendix F.

You will want to put the code into a file of its own if you

have many lines of code, or if you want a more convenient way to
archive the code.

-~ In Detail -- 6-62

-~ Examine and Alter Memory --
Putting code in its own FORTH file
First close the current file (UniLab.SCR) with the command:
CLOSE
Next create a new file with:
OPEN-NEW <file name>
and give it a size with:
<# of screens> SCREENS
1K is allocated per screen. Use the command:
<screen #> EDIT

to get into the file. NEVER use screen zero.

Assembling code from FORTH screens

You will then be able to use ASM-FILE to assemble the code
stored in your new file. For example, to assemble screens one
through four into emulation ROM, starting at address 1200:

1200 1 4 ASM-FILE
When you are done with assembling, use OPEN UNILAB.SCR to
close your file and re-open the UniLab.SCR file. If you don't do

this, then some of the on-line help facilities and error messages
will not work.

July 16, 1986 Page 6-63 -- In Detail --

4, Setting a Trigger
(Generating a Trace)

Introduction

This section shows how you describe to the UniLab the bus
activity that you want it to search for. The power of the UnilLab
comes from its ability to capture and display to you only the
program activity that you want to see.

Usually you will be looking at the bus activity when you are
trying to find a bug. But sometimes you will want to look at
your code as it executes just to see what is going on.

Contents
4.1 Feature Summary 6-65
4,2 Overview 6-67
4.3 A Simple Example 6-68
4.4 The NORMx Words 6-72
4.5 RESETting 6-74
4.6 General Purpose Triggers 6-75
4,7 Real-life Examples 6-78
4.8 The Limits of Triggers 6-80
4.9 Filtered Traces 6-82
4,10 Qualifying Events 6-85
4.11 Stepwise Refinement 6-89

-~ In Detail -- 6~-64

4.1 Feature Summary

Feature

Start the target program and
show first cycles
Show what the program is doing
right now
Sample address lines, twice/second
Sample all lines, once each second

Set a trigger on an address

Set trigger on CONTrol inputs

Set trigger on a data value

Set trigger on high byte of data
Set trigger on high byte of address
Set trigger on low byte of address
Set trigger on MISCellaneous inputs

Set trigger on Range of values
Invert following trigger
Add following trigger to current

Startup Analyzer

Startup Analyzer, capture new trace that

starts where current trace ends
Don't restart target program when
Analyzer starts
Do restart target program when
Analyzer starts

Clear out previous trigger spec

Change Delay Count

Produce a filtered trace, showing only
the cycles that match trigger

Produce a filtered trace, showing one,
two or three following cycles

Set up a "qualifier" for trigger

July 16, 1986 Page 6-65

Menu

Yes
Yes
Yes
Yes
Yes
NO
Yes
NO
NO
NO
NO
Yes
Yes
NO
Yes
NO
Yes
Yes
NO

NO

Yes

NO

NO

-- Set Trigger --

Command

STARTUP

NOW?
ADR?
SAMP

<16 bit addr> ADR
<byte> CONT
<byte> DATA
<byte> HDATA
<byte> HADR
<byte> LADR
<byte> MISC
TO
NOT
ALSO
S
S+
RESET
RESET'
NORMT NORMM

NORMB
<count> DCYCLES

ONLY

1AFTER 2AFTER
3AFTER

AFTER

-- In Detail --

-- Set Trigger --

Command : Menu:

ANALYZER MENU

STARTUP F1 RESET AND TRACE FIRST CYCLES

NOW? F2 TRACE IMMEDIATELY

NORMT <addr> ADR S F3 TRACE FROM A SPECIFIC ADDRESS
<from> <to> CYCLES? F4 COUNT CYCLES BETWEEN TWO ADDRESSES
SAMP F5 SAMPLE THE BUS CONTINUOUSLY

ADR? F6 SAMPLE ADDRESS ACTIVITY

RESET RESET' F7 TURN RESET OFF

F10 RETURN TO MAIN MENU

ANALYZER TRIGGER MENU

NORMT <addr> ADR S F1 TRIGGER ON AN ADDRESS

NORMT <from> TO <to> ADR S F2 TRIGGER ON A RANGE OF
ADDRESSES

NORMT <f> TO <t> ADR <byte> DATA S F3 TRIGGER ON A RANGE OF

ADDRESSES AND
A DATA VALUE
NORMT NOT <f> TO <t> ADR S F4 TRIGGER OUTSIDE A RANGE O
ADDRESSES
ONLY NOT <f> TO <t> ADR AFTER <addr> ADR S
F5 FILTER, EXCLUDING A RANGE
OF ADDRESSES AFTER A
ADDRESS
RESET RESET' F6 TURN RESET OFF OR ON
(reset is now Xxx)
F10 RETURN TO MAIN MENU

-- In Detail -- 6-66

-~ Set Trigger --

4.2 Overview

All the examples show traces of a Z80 program, with the CONT
column and the MISC column turned off.

The first part introduces triggers with a simple example.
The simplest trigger, and the most commonly used, is a trigger on
a program address.

The next part covers general purpose triggers. You can
trigger on several different values and on ranges of values. You
can tell the analyzer to look at the control lines, the address
lines, the data lines, the miscellaneous inputs, or any
combination of them.

The real-life examples whos how you can put trigger specs
commands together to solve specific problems.

Filtered traces, introduced in the following part, allow you
to look at only the cycles that interest you. You use qualifiers
to set up preconditions-- the trigger will not occur until after
the preconditions are met.

July 16, 1986 Page 6-67 ~-- In Detail --

-- Set Trigger --

4.3 A Simple Example

When you use the UniLab, you will most often want to look at
a trace of the bus activity that follows a certain instruction.

For example, if you have a conditional jump instruction at
address 510 of your program and want to see where it jumps to,
type in the command:

510 AS

After you hit a carriage return, the UnilLab will start
searching for address 510 on the target system's bus. The first
time it sees that address, it will "trigger," and then freeze the
trace buffer 165 bus cycles later.

While your target program continues, the UnilLab sends that
trace buffer to the host computer. The top of the trace fills
your screen, showing the five bus cycles that preceded address
510 (labeled -5 to -1), the trigger cycle (labeled 0), and some
of the cycles that follow.

Simple Z80 example

It's easy to understand the test program loaded into the
UniLab's memory by the LTARG command. It initializes some
registers, and then goes into an infinite loop.

Start of
ProTram

\/
Initialize
Stack Pointer

Y
Initialdze
Other Registers <----

\Y
Increment
the A register / 1\
a bunch of

times

~- In Detail -- 6-68

-- Set Trigger --

The program that you work on will, of course, be more
complicated. But no matter how complicated or simple your
program, you can always tell the UnilLab to trigger on the address
of an instruction.

There is only one mildly interesting point in the test
program for the Z280. That is the unconditional jump at address
29, that jumps back to address 3.

Start of
Pro?ram

\Y%
Initialize
Stack Pointer

v
Initialize
Other Registers <----

v
Increment
the A register /1\
a bunch of

times

Set the trigger here --—-->----> T R Y

July 16, 1986 Page 6-69 -- In Detail --

-- Set Trigger --

To get a trace starting at that address, type in:
NORMT 29 ADR S
NORMT clears out all previous trigger specifications,
and tells the UniLab that you want the trigger
event at the Top of the trace.

29 ADR is the trigger specification

S starts the analyzer

Which results in the following display (with MISC, HDATA and

CONT columns removed for the sake of simplicity):
resetting
cy# ADR DATA
-5 0024 3C INC A
-4 0025 3C INC A
-3 0026 3C INC A
-2 0027 3cC INC A
-1 0028 3C INC A
0 0029 C30300 JP 3 ¢{----<¢~---~ Here is the trigger
3 0003 3E12 LD A,12
5 0005 015634 LD BC, 3456
8 0008 119A78 LD DE,789A
B 000B 21DEBC LD HL,BCDE
E 000E C5 PUSH BC
F 18FF 34 write
10 18FE 56 write
11 000F C1 POP BC
12 18FE 56 read
13 18FF 34 read
14 0010 3C INC A
15 0011 3C INC A
16 0012 3C INC A
17 0013 3C INC A
18 0014 3C INC A

-- In Detail ~-- 6-~-70

-- Set Trigger --
Cycle numbers

The analyzer found the trigger event, and then sent to the
host computer a record of bus activity starting five cycles
before the trigger. The trigger event is labeled as cycle 0, the
cycles before it have negative numbers.

Explanation

The rest of the trace is fairly simple-- and very similar to
the display that results from STARTUP with the Z80 test program.

There are only two mysteries to clear up, before continuing
the discussion of trigger specifications:

1) what NORMT does
2) the meaning of the '"resetting" message

that appears just before the trigger
display

July 16, 1986 Page 6-71 -- In Detail --

'RIGGER-->

-- Set Trigger --

4.4 The NORMx Words

The three NORMx commands, NORMT, NORMM, and NORMB, first
clear out all previous trigger settings. They wipe the slate
clean.

And then each one sets up the "display window" to show a
different time portion of the program's execution. The diagram
below shows the effect of each instruction on a program that,
rather boringly, executes instructions starting at address 0
without any jumps or calls or branches:

NORMB NORMT NORMM NORMT 128 ADR
128 ADR S 128 ADR S 128 ADR S 200 DCYCLES
0 0 0 0
cy# adr . . .
"AS 83 [[] L]
. . cy# adr .
: . -54 D3 .
. cy# adr . .
: —9 11A . -
0 128 0 128 0 128 128 <--TRIGGER
__4 12C - L] -
i : 55 17D)
) 20 1C3))
. . . cy# adr
: . B 157 27F

(o))
i

-~

N

-=- In Detail --

-- Set Trigger --

All four displays have the same trigger, and all of them
nunber the trigger cycle as cycle zero. They vary only in the
value of DCYCLES. The Delay CYCLES is the number of cycles that
will pass beteen when the trigger is seen, and when the buffer is
frozen. If this value is small (as happens when you use NORMB),
then most of the trace buffer will show what happened before the
trigger.

The fourth example shows how you can manually set the delay
count. Here the delay is so large that the trigger is not even
in the window. This example uses the NHORMT command to clear out
the previous trigger spec, but then uses DCYCLES to change the
delay count.

Notice how the NORMx commands change the value of DCYCLES in
the following:

NORMT

TSTAT

Analyzer Trigger Status:
RESET

AQ DCYCLES 0 QUALIFIERS

NORMM

TSTAT

Analyzer Trigger Status:
RESET

55 DCYCLES O QUALIFIERS

NORMB

TSTAT

Analyzer Trigger Status:
RESET

4 DCYCLES 0 QUALIFIERS

Summary

The first address you see on the trace display after you
start the analyzer with the S command depends on two things:

1) The trigger address you selected with ADR
2) The delay you selected with NORMT, NORMM,
NORMB, or DCYCLES.

July 16, 1986 Page 6-73 -- In Detail --

-~ Set Trigger --

4.5 RESETting-- Restarting the target program

The UniLab software usually responds with '"resetting" when

you start up the analyzer. This message lets you know that the
UniLab is sending a reset signal to your processor, causing it to
start executing your program from the beginning.

Whenever you start up the analyzer with S, you can either
start analyzing the program running on the target
board, starting from whatever point the program has
reached (RESET') ‘

OR

restart the program at the same time as you restart the
analyzer (RESET).

Turning RESET on and off

The RESET feature gets turned on by STARTUP. You can turn
it on and off yourself with the commands RESET and RESET', or
with the mode panel (function key 8).

Mode Panel:
1. ANALYZER modes
DISASSEMBLER on

SYMBOLS off
RESET enabled

-- In Detail -- 6-74

-- Set Trigger --

4.5 General Purpose Trigger Definitions

While the previous examples were limited to address triggers
for simplicity, the UniLab allows much more complex triggers to
be defined, using all 48 analyzer inputs.

Each of the groupings of inputs can be referred to using the
same descriptive name used to label it on the trace display:

CONT ADR DATA HDATA MISC
Each of these names labels one byte of the inputs into the
UniLab, except for ADR, which labels 2 bytes. LADR and HADR each
label one byte of the address inputs.
Just as we used

<16 bit value> ADR

to define a single address trigger, we can define triggers for
the other input bytes:

<8 bit value> CONT to trigger on cycle type and on A19-Al6.
<8 bit value> DATA to trigger on the data byte.
<8 bit value> HDATA to trigger on the upper byte of data on

16-bit processors, or on anything you
like with an 8-bit processor.

<8 bit value> MISC to trigger on anything you like.

(Usually target system inputs and
outputs.)

July 16, 1986 Page 6-75 -- In Detail --

-~ Se

t Trigger --

Modifying the input group words

diffe

All of the input group words can be altered in several
rent ways, by preceding them with keywords. You can also

combine several input group words, as detailed on the next page.

Alone

Using

Using

A Not

input

will

-- In

enter a single number to trigger on a single value,
12 DATA

NOT and TO

enter a range separated by TO, to trigger on a range of
values, 12 TO 34 DATA

enter the command NOT to trigger on anything but the value
that follows, NOT 10 DATA

use both NOT and TO to trigger outside of a range of values
NOT 10 TO 13 DATA

MASK

or, most complexly, use the MASK command to ignore certain
input lines while triggering on other lines. The following
is identical to 10 TO 13 DATA: FC MASK 10 DATA

Or, in binary: B# 11111100 MASK B# 00010000 DATA
Which tells the UniLab that we are only interested in the
values of the first six wires

1111 1100
and that on those wires we want to see the signals

0001 00
Since we don't care what the lowest two bits are, they can
be any value-- 00 or 01 or 10 or 11.
e on scope

These three words, NOT, TO, and MASK, only affect the first
group word which follows.

For example:
NORMT NOT 12 DATA 400 ADR S

trigger when the data is not 12 and the address is 400.

Detail -- 6-76

-- Set Trigger --
Triggering on combinations

You can set a trigger on several different input bytes, and
the UniLab will search for a bus cycle that satisfies all the
conditions you describe. If you want to search for 12 on the
data lines AND for 100 on the address lines, all you have to do
is type in the command:

12 DATA 100 ADR

Using ALSO

However, declaring a trigger for any group of inputs will
clear the previous settings. If you want to search for 12 on the
data lines or 15 on the data lines, you have to use ALSO:

12 DATA ALSO 15 DATA

which tells the UniLab to trigger on either 12 or 15. If you had
left out the ALSO and just entered 12 DATA 15 DATA, then the
UniLab would watch the data lines for only one value, 15, the
last number specified.

When you make a new description for an input group without
ALSO, you clear out the previous trigger for that group, without
affecting the other groups. For example, if you enter

NORM 123 ADR 45 DATA S

trigger will occur only when the data is 45 during a bus cycle
with 123 address. If you then enter

60 TO 71 DATA S
the analyzer will restart and trigger will occur when data is

between 60 and 71 during a bus cycle with 123 address. You have
altered the DATA specification, but not the ADR spec.

July 16, 1986 Page 6-77 -- In Detail --

-- Set Trigger --

4.7 Real-life Examples:

Catching the program when it goes outside of program memory

One of the nastiest problems you encounter while checking
out hardware or software is when your program "blows up" and
begins executing data or garbage.

These errors not only are troublesome to recover from, but
the mistake that caused the blow up is almost impossible to find-
- until now. Trapping these problems is a pleasure with the
UniLab.

If, for example, your program is supposed to be limited to
addresses 0 to 1234, you can enter

RESET NORMB NOT 0 TO 1234 ADR S

The UniLab will reset the target system and wait for the target
program to access an address outside of the specified range. You
can then look back through the trace memory for the abnormal
operation which caused the program to "blow up."

Whether it is a hardware malfunction or a software bug you
will have trapped it effortlessly.

You can add FETCH to the above example, so that the UnilLab

doesn't trigger on reads and writes outside of memory. Some
processors lack the fetch indicator.

Catching garbage values being written to a single memory location

Another common bug you encounter is when some location in
RAM gets accidentally overwritten.

For example, a variable called STRING_LEN gets written with
the length of a string. But when your program reads the value,
it isn't the same as the value written into it.

One way to catch this bug is to produce a filtered trace
that shows every access to this variable, and the cycles that
immediately follow the access. You can then examine the trace,
and find the region of the program that causes the overwrite:

2AFTER STRING_LEN ADR S
You can then trigger on the address of the bad instruction:

NORMM <address> ADR S

-- In Detail -- 6-78

-~ Set Trigger --
Catching a stack overflow

You can set the UniLab to trigger when your stack grows too
large.

For example, a target board has ROM at locations 0 to 1FFF,
and RAM at 2000 to 3FFF. The program sets the stack pointer to
address 20FF in RAM. This means the stack can grow to FF bytes
before running into ROM.

You can tell the UniLab to trigger when the program makes
reference to some address that the stack will write to when it
grows "too large'-- whatever too large means to you.

Some might want to wait until the stack is about to run
into hardware limitations:

NORMB 2001 ADR S

Others will want to trigger when the stack holds more than
2F bytes:

NORMB 20D0 ADR S

Either way, you get to see what the program was doing just
before the stack grew too large.
Catching bad data going into a string

You can use a combination of a range of data and a range of
addresses to catch the trace of a bug that causes an
inappropriate character to be written into a string.

Of course, you don't want to look at every access to the
memory locations-- you just want to see when the bad data comes
in.

Suppose the string sits at a location with the symbolic name
STRING1 and has a length of 50 (hex) characters. The string
should only contain characters between A (41 hex) and z (7A hex).

The instruction:

NORMM NOT 41 TO 7A DATA STRING1 TO STRING1 4F + ADR S
will cause the UniLab to trigger when any data outside the range

41 to 7A gets written to any of the 50 data locations starting at
STRING1.

July 16, 1986 Page 6-79 -~ In Detail --

-- Set Trigger --

4.8 The Limits of Trigger Complexity

Since the UniLab trigger logic uses high speed truth tables
instead of comparators, there is no limit to the complexity of
triggers within bytes. For example:

12 DATA ALSO 34 DATA ALSO CO0 TO C5 DATA ALSO FF DATA
is perfectly acceptable.

Another way to state the same thing is by entering:

12 34 CO C1 C2 C3 C4 C5 FF 9 NDATA

Note that the 9 is the number of terms listed.

ALSO with ADR

You can run into problems with ADR, since that word actually
describes two bytes. If the high byte of several addresses that
you are using ALSO on don't match, you can produce unanticipated
cross products. For example:

1200 ADR ALSO 1535 ADR

would cause the UniLab to trigger on either 1200 or 1535-- and
also on either 1235 or 1500

These cross products usually are not a problem, but you
should be aware of them.

-- In Detail -- 6-80

-- Set Trigger --
MASKing

You can also specify triggers with a MASK format. For
example,

80 MASK 0 DATA

requires the MSB of the data bus to be 0, but doesn't care about
the other 7 bits. It is identical to entering ¢ TO 7F DATA or
NOT 80 TO FF DATA. All three commands give the same result so
you should simply use the format that seems most natural to you.

Triggering on 20-bit addresses

If your system uses more than 16 bits for addressing, you
can set triggers on 5-digit hex addresses by ending the address
with a period. For example, 12345, ADR will actually set a
trigger on 1 in the right digit of the CONT column (which is
connected to address bits A16-A19) and 2345 on the ADR inputs.

July 16, 1986 Page 6-81 -- In Detail --

-- Set Trigger --

4.9 Filtered Traces

The UniLab's trace buffer stores 170 48-bit samples of bus
activity. Other analyzers need gigantic trace buffers because
they lack the sophisticated triggering and filtering logic of the
UniLab.

Often the majority of bus cycles are not of interest-- for
example when most of the time is spent in a status loop or a
delay loop.

The sledgehammer solution: have a huge trace buffer. Then
you get to look through that buffer, hunting for the relevant
information.

The UniLab approach: have the computer throw away the
boring parts of the program.

With the UniLab you never have to look through thousands of
uninteresting cycles. The UniLab will filter the trace, and
record only the cycles that interest you.

An introduction to ONLY

If you enter:
ONLY 1234 ADR S

the UniLab will record only cycles that address location 1234.
If the instruction at 1234 is the one that reads input samples,
you will end up with a trace recording of nothing but input
samples.

Filter, excluding addresses

More practically, suppose that a boring status loop occupies
program memory from 1020 to 1060. You want to get a trace that
does not include the trace of the opcodes in those addresses.

The command is:
ONLY NOT 1020 TO 1060 ADR S

-- In Detail -- 6-82

-- Set Trigger --
Filter the trace, but don't start until AFTER . . .

You can make a filtered trace even more useful by setting up
a separate trigger that tells the UniLab when to start checking
cycles against the filter specification. For example, the
program might not get interesting until after 30 gets written to
address 3000 of RAM:

ONLY NOT 1020 TO 1060 ADR AFTER 30 DATA 3000 ADR S

Further discussion of AFTER is deferred to the following sub-
section 4.10 on Qualifying Events.

The rest of the filter commands

ONLY is most useful when you want to exclude some type of
operation or some section of the program.

But when you filter to include cycles, you usually want to
see at least one cycle after the trigger.

For example, if you are looking at all the writes to RAM,
you can find out which section of the program performed the write
with

3AFTER WRITE S

which will show you every write along with the three cycles that
follow it.

2AFTER captures the two cycles that follow each trigger, and
1AFTER captures only one cycle after each trigger event.

Filtering and disassembly

Since filtering will produce a trace with partial opcodes,
the disassembler will not be able to interpret the sequence of
cycles properly. You will probably want to turn off the
disassembler when producing a filtered trace. Use DASM' or the
mode panel (F8).

Mode Panel:

1. ANALYZER modes
DISASSEMBLER on
SYMBOLS off
RESET enabled

July 16, 1986 Page 6-83 -- In Detail --

-- Set Trigger --
Filtering and the MISC inputs

The filtering logic of the UnilLab does not look at the MISC
inputs. This lets you tell the UniLab to filter a trace while
waiting for a trigger condition to appear on the MISC inputs.

This is not the same as using AFTER with the filter
commands-- with AFTER you get a filtered trace starting at some
bus event. With the use of the MISC lines, you can get a trace
that shows the bus activity before some event.

For example, if you want a trace with the delay subroutine
at A0-BO removed, but you want to trigger on an active high error
signal, you connect the error signal to one of the MISC inputs
and enter:

ONLY NOT A0 TO BO ADR FF MISC

The filtered trace will exclude cycles accessing addresses AQ to

B0, but trigger will not occur until the error input goes true,
thus causing FF on the MISC inputs.

-- In Detail -- 6-84

-- Set Trigger --

4.10 Qualifying Events

The UniLab can trigger on sequences of events, instead of
just when it sees a single trigger event. For example,

NORMT 78 DATA AFTER 56 DATA S

will not trigger until first 56 appears on the data bus and then,
anytime later, 78 appears.

The 56 is the qualifier, and 78 the trigger.

Up to three qualifiers
You can specify up to three sequential qualifying events.
Use AFTER when you want to start the description of the next
qualifier. For example:
NORMT 10 DATA AFTER 250 ADR AFTER 300 ADR S

will trigger on 10 data, anytime after 300 is immediately
followed by 250 on the address bus.

The UniLab will not start to search for the trigger itself
until after it sees the qualifiers.

The qualifiers must appear on the bus without any
intervening bus cycles. If the sequence does not appear, then
the UniLab starts searching for the first qualifier. However,
once all the qualifiers have shown up, the trigger does not have
to occur immediately.

You can specify a minimum number of bus cycles after the
time the last qualifier is seen, before the UnilLab starts looking
for the trigger. The default is 0 PCYCLES. You can also specify
a number of complete repetitions of the sequence of qualifiers.
The default is 1 PEVENTS.

See the flowchart on the next page.

July 16, 1986 Page 6-85 -- In Detail --

-- Set Trigger --
The big picture

When you start up the analyzer, the UniLab will first search
for qualifier #3, then qualifier #2, and then qualifier #1.

After that, the UniLab waits until PCYCLES pass. Usually
this value will be zero.

Then the UniLab will check whether it has gone through the
qualifier sequence enough times. You specify this with
<value> PEVENTS.

If it requires more qualifier sequences, the UniLab will
start searching for qualifier #3 again. Otherwise, the UniLab
will start searching for the trigger itself.

Qualifier 3 <----—----
1
(immediate) !

\Y
Qualifier 2 /

—

(if PEVENTS
greater
than 1)

1
(immediate) !
Vv

Qualifier 1 /
£

—

(wait PCYCLES.
Default is 0.)

Grm Gt B G G Gom G Sow G Svm fe fem Bo

<0-'—0-0—<'

Trigger

-~ In Detail -- 6-86

-- Set Trigger --
Triggering for a filtered trace

Qualifiers also allow you to set up a trigger that is
different from the filter specification. That way you can
produce a filtered trace that starts after the qualifiers:

ONLY NOT 200 TO 250 ADR AFTER 368 ADR S

This trigger specification will make a filtered trace that
excludes addresses 200 through 250. The UniLab will not start
making the filtered trace until it sees address 368 on the bus.

Triggering on sequential events

You can use qualifiers to trigger on a consecutive sequence.
Suppose there is a conditional branch at address 1010, which will
jump to address 250. Other instructions also cause a jump to
250, but you are not interested in those. You want to see what
happened before the branch at address 1010 is taken-- so you want
to trigger when 250 follows immediately after address 1010.

Using address 1010 as the qualifier and then 250 as the
trigger will not work, because the UniLab would trigger on
address 250 even if it occured hours after address 1010.
Instead, you want to have both addresses as qualifiers, and no
trigger event:

NORMB AFTER 250 ADR AFTER 1010 ADR S
Watch out

Note that the qualifiers must always appear one immediately
after another on the target system bus:

NORMT 10 DATA AFTER 250 ADR AFTER 300 ADR S

In this example, repeated from the previous page, as soon as
the UniLab sees 300 on its address inputs, it will look for
address 250. If that value does not appear on the address bus
immediately after 300, then the UniLab will go back to searching
for 300.

That particular trigger only makes sense if there is a jump,
call or conditional jump at 300, that could cause the next
address to be 250,

A RETurn from 300 to 250 would not qualify, because the
address would have to be pulled off the stack, and so several bus
cycles would appear between address 300 and address 250.

July 16, 1986 Page 6-87 -~ In Detail --

-- Set Trigger --
Delay between qualifiers and trigger

Though the qualifiers must follow one after another, the
trigger can come anytime after the qualifiers.

In fact, you can specify a minimum length to the delay
between the qualifiers and the trigger. This is useful for
avoiding trigger immediately after the qualifiers are seen.

If you want to keep the trigger disabled for 200 cycles
after the qualifying sequence you can simply enter

200 PCYCLES
This is the pass count.
"For example:
NORMB 10 DATA AFTER 250 ADR 200 PCYCLES S
tells the Unilab to trigger when the data is ten. The UniLab
will not start to search for data 10 until 200 bus cycles after
the address appears on the bus.
Repetition of the qualifying events
You can also specify to the UniLab that the sequence of
qualifying events be repeated. This is useful for looking at the

nth pass through a loop, or the nth call to some routine.

If you want the UniLab to wait for 150 complete repetitions
of the qualifiers before starting to search for the trigger enter

150 PEVENTS
For example:
NORMT AFTER 1100 ADR 150 PEVENTS S

causes the UniLab to trigger after address 1100 has appeared on
the bus 150 times.

-~ In Detail -- 6-88

-- Set Trigger --

4,11 Stepwise refinement

The UniLab allows you to build on existing trigger
definitions.

Trigger definitions can be gradually expanded in complexity
as you find limitations in your original idea. If you are trying
to see a subroutine at address 1200, that gets called from a
certain section of code, you might first enter

NORMB 1200 ADR S

only to find that the trace shows a call to the subroutine from a
section of the program that you are not interested in.

You can add a qualifier and restart the analyzer by entering
AFTER 5670 ADR S

This time the UniLab will search for 1200 only after address 5670
(an address in the desired calling routine)} has been detected.

If you had thought of the need for a qualifier in the first
place, you could have entered

NORM 1200 ADR AFTER 5600 ADR S

This ability to polish trigger definitions makes your
interaction with the UniLab conversational. You ask questions
about what the system is doing and receive immediate answers --
all from the same keyboard you use to write and change the
programs.

July 16, 1986 Page 6-89 -~ In Detail --

Introduction

5.

Saving Information

The UniLab software lets you save transcripts of your
sessions, and also lets you save specific information as encoded

DOS files.

Contents

-- In Detail --

5.9

5.10

Feature Summary 6-91
Overview 6-92
Screen History 6-93
Save Record of Session to Text File 6-94
Save Record of Session to Printer 6-95
Save Only Memory Changes to Printer 6-95
Save Trace 6-96
Save Symbol Table 6-98
Save a Range of Memory 6-98
Save the State of UniLab Software 6-99

5.1 Feature Summary

Features

Print out commands that alter memory
Send all screen display to DOS file

Print out everything

Save a trace to a £

+ T

Lig

Compare current trace to one saved as
a file

Save symbol table to a file

Save current state of UniLab program

Save memory to a file

Look at one line of "screen history"
Look at one page of history

July 16,

1986

Mode Panel:

3. LOG modes
LOG TO PRINT
LOG TO FILE
PRINTER

Page 6-91

-~ Saving Information --

Mode

Panel

Yes
Yes
Yes

N
Ly

NO
NO
NO
NO
<from>

NO
NO

Commands

- LOG LOG'

(>

TOFILE TOFILE'
PRINT PRINT'

TSAVE <file>
TSAVE <file>

SYMSAVE <file>
SAVE-SYS <file>

<to> BINSAVE <file>

Up Arrow key

PgUp key
Commands :
LOG LOG'

TOFILE TOFILE'
PRINT PRINT'

In Detail --

~- Saving Information --

5.2 Overview

While using the UniLab software, you can preserve any
information you want about your session.

The software always preserves a history of your screen. You
can save up to 60K in this history, which starts up every time
you begin a session with the UniLab. After the history bufffer
fills, you start losing the oldest information.

You can also turn on features that will save all screen
displays

to a text file TOFILE
or to your printer. , PRINT
You can also log only memory changes to the printer. LOG

Other commands save, as DOS files:

the current trace display, TSAVE
the current symbol table, SYMSAVE
any range of memory, BINSAVE
or the current state of the system. SAVE

~- In Detail -- 6-92

-- Saving Information --

5.3 Screen History

The screen history always preserves the last 20 to 60K of
screen display.

The information that scrolls off the top of either the the
full screen or the lower window gets saved.

You look at the history with the Up Arrow and Pg Up keys,
nnnnnn [o] " +h

Q A 3
NuMoers ¢ ana 7 on 1€ numeric key pad.

f_, ~\ (8 N fg w
\Home/ \’ Y, \Pg%
7 4 A r5 w s 6 N
\‘- / \ _J \-’ J
r] h f2 N 3

End) * Y, kPgDn/

Setting the size of screen history
The size of the history is set by giving the command:
<hex # of Kbytes> =HISTORY

then saving the newly altered UnilLab software with SAVE-SYS. You
must exit the program with BYE and start it again.

The size of the history buffer is allocated when the program
starts up, and cannot be changed on the fly.

The maximum number of kilobytes that you can allocate to
history is 3C (decimal 60K).

Use the command 2FREE to find out how many bytes are
allocated to history and to symbols. That display appears in
decimal base, not hexadecimal.

July 16, 1986 Page 6-93 ~- In Detail --

-- Saving Information --

5.4 Save Record of Session to a Text File

You can save the record of a session with a text log file.
You can only save to one text file per session, but once you have
created a log file you can turn the logging on and off at will,
with the mode panel or with TOFILE and TOFILE':

Mode Panel:
3. LOG modes
LOG TO PRINT inactive
LOG TO FILE off
PRINTER off
NMI VECTOR active
SWI VECTOR active
Creating the log file
You cannot create the file from the mode panel-- you must
use the command
TOFILE <file name>

to create the file in the first place.

This command can be used as a "command tail" when you call
up the UnilLab software from DOS:

A> ULZ80 TOFILE JUNE3
will call up the UniLab program with "june3" as the log file.

You can also name the log file from within the UnilLab
program, with TOFILE <file name>.

You will not be able to turn on logging to a file until you
have named a file.

-- In Detail -- 6-94

-- Saving Information --

5.5 Save Record of Session to a Printer

You can save all screen output to a printer with the Mode
Panel or with the PRINT and PRINT' commands.

Mode Panel:

3. LOG modes
LOG TO PRINT inactive
LOG TO FILE off
PRINTER off
NMI VECTOR active
SWI VECTOR active

5.6 Save Only Memory Changes to Printer

This feature helps make certain that you don't forget any
patches that you make to your program. It keeps a record on your
printer of all commands that alter memory.

You turn it on and off with the Mode Panel, or with the
commands LOG and LOG'.

Mode Panels:

3. LOG modes
LOG TO PRINT inactive
LOG TO FILE off
PRINTER of £
NMI VECTOR active
SWI VECTOR active

In Detail --

July 16, 1986 Page 6-95 -

-- Saving Information --

5.7 Save and Compare Trace

You can save the trace as an encoded file, which can later
be retrieved with TSHOW or compared to the current trace with
TCOMP.

You save the current trace with the command:
TSAVE <file name>

This is very useful for production checkout of systems. You
can save the trace of a program on a known good system, and then
use TCOMP to compare the known good trace to the trace of the
hardware you want to check.

Comparing traces

Enter AA TCOMP <file name> to compare the last AA cycles of
the trace (which is the whole trace) currently in the trace
buffer with the trace previously saved as a file.

If the two traces are identical, the UniLab will respond
with an "OK" message. Otherwise it will display 14 lines of the
trace on disk including the first non-matching bus cycle,
followed by the non-matching cycle in the current trace.

You can completely test a system with a few such trace
comparisons, using programs that exercise the hardware of the
system. The UniLab's macro capability allows you to write a macro
which completely tests a system, automatically. (UniLabs are
given their final test at the factory with just such a macro.)

—— In Detail -- 6-96

-- Saving Information --
Example: Trace compare
This example shows the result of performing TCOMP on a

faulty trace produced by a Z80 board running the simple target
program (LTARG). One of the address lines of the board was

grounded, which pulled it low.

AA TCOMP TESTZ80.TRC

cy# CONT ADR DATA HDATA MISC
3 B7 0003 3E12 LD A,12 11111111 11111111
5 B7 0005 015634 LD BC, 3456 171111111 11111111
8 B7 0008 119A78 LD DE,789A 11111111 11111111
B B7 000B 21DEBC LD HL,BCDE 1T1111111 11111111
E B7 000E C5 PUSH BC 11111111 11111111
F D7 18FF 34 write 11111111 11111111
10 D7 18FE 56 write 11111111 11111111
11 B7 000F C1 POP BC 1T1111111 11111111
12 F7 18FE 56 read 11111111 1111111
13 F7 18FF 34 read 11111111 11111111
14 B7 0010 3C INC A 11111111 11111111
15 B7 0011 3C INC A 1711111171 11111111
16 B7 0012 3C INC A 11111111 11111111
No Good! (Above is correct.) Was:

HDATA MISC
11111111 11111111

cy# CONT ADR DATA
F D7 18DF 34 write

TCOMP reports a discrepancy to you by showing the relevant
section of the trace on disk, and then showing the non-matching
line from the current trace.

You then have to perform a visual comparison of the two
cycles that don't match up.

In this case, you can see that in cycle F of the trace on
disk, the Z80 wrote to address 18FF. In that same cycle of the
new trace, the Z80 wrote to 18DF. Since the program is the same
in both cases, the difference is in the hardware.

ADDRESS LINE: 7654 3210

FF hexadecimal is 1111 1111 binary,
while DF hexadecimal is 1101 1111 binary.
So, obviously, address line A5 has been accidentally
grounded.

July 16, 1986 Page 6-97 -- In Detail --

-- Saving Information --

5.8 Save Symbol Table as DOS File

You can save the symbol table as an encoded file, which can
later be retrieved with SYMLOAD.

You save the current symbol table with the command:

SYMSAVE <file name>

5.9 Save a Range of Memory as DOS file

You can save any range of emulation ROM as an encoded file,
which can later be retrieved with BINLOAD. You can use this
command to save the program you are working on.

You can also save from and load to RAM if you have first
established debug control. See section 6 on Breakpoints and The
Debugger.

You save a range of memory with the command:

<from address> <to address> BINSAVE <file name>

-—- In Detail -- 6-98

-- Saving Information --

5.10 Save the State of the UniLab Software

You can save the current state of the UniLab program to a
command file. This allows you to save the software with a
certain range of memory enabled, and with other variables set up
to your preference. Saving the system will also preserve the
current trace.

You can save to a file with the same name as the current
.COM file, or to a different one.

To save the current state of the system, use the command:
SAVE-SYS <file name>

Unless you specify a different path, the file will get saved to
the Orion directory.

July 16, 1986 Page 6-99 ~-- In Detail --

6. Breakpoints and the Debugger

Introduction

The UniLab emulator includes special hardware that makes

possible virtually all of the traditional processor-pod

development system features. The basic UniLab software includes

all of the processor-independent debug features.

Processor-specific software packages add more features, such
as the ability to change specific registers, or take advantage of

special functions of the processor.

Contents
6.1 Feature Summary
6.2 Overview
6.3 Establish Debug Control
6.4 Interpret the Breakpoint Display
6.5 Within the Debugger
6.6 "Trigger," style breakpoints
6.7 Exit from the Debugger
6.8 Disable Debugger-- How and Why

-~ In Detail -- 6-100

6-101
6-103
6-104
6-109
6-111
6-121

6-122

6.1 Feature Summary

Feature Menu

To enter debugger:
Establish debug control Yes
Gain debug control without setting
a breakpoint. Not supported on
all processors. NO

Within debugger:
All commands for reading and

altering memory work on RAM.,
Resume execution to a breakpoint Yes
Set breakpoint at next

code address Yes
Show the "breakpoint display"
again NO

Execute the next instruction-- use
when single stepping for jumps
and branches. Not supported on

-- The Debugger --

Command

RESET <addr> RB

NMI

<addr> RB
N

R

SSTEP

<New PC> <addr> GB
<addr> <bp #> SMBP
<bp #> RMBP

CLRMBP

RI <trigger spec>

all processors. NO
Alter Program Counter,
then resume to breakpoint Yes
Set Multiple Breakpoints NO
Clear one multiple breakpoint NO
Clear all multiple breakpoints NO
Trigger style breakpoints (Not supported on all processors):
Set up a trigger for debugger NO
Start program and gain debug control
when trigger seen on bus NO

To exit debugger:
Exit immediately-- set program

running again NO
Alter Program Counter, then exit

from debug control NO
Alter Program Counter, then wait

for the analyzer to start NO

ST

RZ

<{New PC>» G

<New PC> GW

Additional (target specific) debugger commands alter register

contents, output values to ports, etc.

July 16, 1986 Page 6-101

—- In Detail --

-- The Debugger --

Command : Menu:
DEBUG MENU
RESET <addr> RB 1 SET A BREAKPOINT TO ESTABLISH DEBUG CONTROL
<addr> RB F2 RESUME EXECUTION TO A BREAKPOINT
N F3 EXECUTE THE NEXT STEP (WON'T FOLLOW JUMPS)
<New PC> <addr> GB F4 GO TO AN ADDRESS WITH A BREAKPOINT SET
<New PC> G F5 GO TO AN ADDRESS AND EXIT THE DEBUGGER

F10 RETURN TO MAIN MENU

~- In Detail -- 6-102

~- The Debugger --

6.2 Overview

The debugger commands of the UniLab software provide you
with the tools traditionally associated with development systems.

With the debugger commands, you can
set single or multiple breakpcints,
single step through code,
read and alter internal registers.

Also, once you have established debug control, you can read
and alter RAM using any of the commands that access memory (see
section three of this chapter).

The Unilab's powerful bus state analyzer replaces most of
the functions of the traditional debugging tools. But when you
have tracked a bug down to a small segment of code, it is handy
to be able to set a breakpoint and single step through the
program.

July 16, 1986 Page 6-103 -- In Detail --

-- The Debugger --

6.3 Establish Debug Control

Most of the debugger commands will not work until after the
Unilab's special debugger hardware has taken control of your
processor.

You can establish debug control with either RESET <addr> RB,
or, if it is supported by your processor, with NMI.

You cannot invoke the debugger until after your program
initializes the stack pointer. The debugger actually runs code
on your processor, and then uses the RETurn instruction to resume
execution of your program. '

If the stack pointer is not initialized, you will not be
able to establish debug control at all. :

Run to a breakpoint

You can invoke the debugger by setting a breakpoint at a
particular code address.

RESET <address> RB

The address you give must be the first address of an opcode.

In the fragment of Z80 code below, you could set a breakpoint at
any of the addresses that appear in the adr column. But you
would not be able to set a breakpoint on 131 or 132, for example.

Adr Opcode Instruction
012B 012C00 LD BC,2C

012E 7C LD A,H
012F BA CP D

0130 C23801 JP NZ,138
0133 7D LD A,L
0134 BB CP E

0135 CA4201 JP Z,142
0138 7E LD A, (HL)

Use a trace display, or disassemble from memory (with DN or
DM) to determine what addresses you can use for breakpoints.

-~ In Detail -- 6-104

-- The Debugger --
Establish control with NMI

Using the Non-Maskable Interrupt (NMI) command is the other
way to gain debug control. This command will only work if

1) your processor was designed with a pin that lets you
give a non-maskable interrupt signal or some equivalent
feature,

and

2) your hardware does not make use of that feature.
The NMI command of the UniLab software sends a signal to the
NMI pin of your processor, which interrupts your program-- no
matter what it happens to be doing.
Of course, your program has to be running before NMI can
interrupt it, and your program must initialize the stack pointer

or the Orion dbugger will not work.

If you don't know whether your processor supports NMI, look
at Appendix H: Processor Features.

July 16, 1986 Page 6-105 ~- In Detail --

-~ The Debugger --
Commands dependent on NMI

NMI is used by the SSTEP and SI features. If your processor
does not have a non-maskable interrupt feature, then the UniLab
software does not support the commands NMI, SSTEP, nor the
RI & SI combination.

Of course, if you disable NMI, the features that make use of
it will not work.

Disabling NMI

If your hardware does make use of the NMI feature of your
processor, you will need to disable the UniLab software's use of
that feature. Disable the debugger's use of the NMI feature of
your processor with either the Mode Panel option '"NMI VECTOR" or
the command NMIVEC'.

Whichever you use, the result is the same-- NMI and the
commands dependent upon it no longer work, but the rest of the
debugger commands, such as RB and GW, work fine.

However, you can turn off all debugger commands, including
NMI, with either the mode panel option "SWI VECTOR" or the
command RSP'.

Mode Panel:

3. LOG modes
LOG TO PRINT inactive
LOG TO FILE off
PRINTER off
NMI VECTOR active
SWI VECTOR active

~- In Detail -- 6-106

-- The Debugger --
Common pitfalls

1. Watchdog Timer:
Your microprocessor stops executing your program when you are at
a breakpoint.

If you have a watchdog timer, it will then try to restart
your target board. The watchdog thinks that something has gone
wrong with your program.

You must disable the watchdog timer to use the debugger.

2. Stack Pointer:

The Orion overlay routines make use of your processor's stack.
You cannot set a breakpoint until after your program initializes
the stack pointer. Most programs initialize the stack pointer
as one of the first few steps.

3. Opcode Address:
You can only set a breakpoint on the first address of an
instruction, as explained on the previous page.

4, Reserved bytes and the Overlay Area:
Your program cannot make use of the reserved bytes, and you
cannot set a breakpoint in the overlay area.

The addresses of the reserved bytes and the overlay area
appear in Appendix H, or hit CTRL-F3. The reserved area is
between one and six bytes of ROM, and the overlay area is the
area of 30 to 70 bytes above the reserved bytes.

Debug commands referencing addresses in the overlay area may

produce strange results. The safest practice is to not have any
code in there at all.

July 16, 1986 Page 6-107 ~- In Detail --

-~ The Debugger --
Example: Establish debug control with RB

When your program reaches a breakpoint, the UniLab takes
control of your processor. Your program actually stops
executing.

Your processor executes an Orion "overlay routine" that
results in a display of your processor's internal registers. The
display you get will depend on your processor. We can set a
breakpoint in the following 280 code:

Adr Opcode Instruction
012B 012C00 LD BC,2C

012E 7¢C LD A,H
012F BA CP D

0130 C23801 JP NZ,138
0133 7D LD A,L
0134 BB CP E

0135 CA4201 JP Z,142
0138 7E LD A, (HL)

In this example, we set a breakpoint on address 12F. The
UniLab replies with a "resetting" message, to let us know that it
is restarting the target board's program. When the processor
reaches the breakpoint, the register display appears.

RESET 12F RB resetting

AF=02A0 (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00 PC=012:
012F BA CP D (next step) ok

-- In Detail -~- 6-108

-- The Debugger --

6.4 Interpreting the Breakpoint Display

The breakpoint display varies from processor to processor,

but always contains the same two basic parts:
The register display
AF=02A0 (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF
and the display of the next step.

012F BA CP D (next step)

SpP=1C00

ok

PC=012F

Register display

You can show the breakpoint display again with the command

R.

The register display varies from processor to processor, but
always includes the stack pointer (SP), the program counter

(PC), and the flags register (F).

AF=02A0 (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00 PC=012F

All registers are displayed in hexadecimal, and a single

letter abbreviation for each flag is also displayed.

AF=02A0 (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00 PC=012F

Notice how the flags display changes as the value stored in
the F register changes-- a capital letter indicates that the
value is high, a lowercase letter indicates that it is low:

AF=02A0 (Sz-a-pnc) .

AF=0242 (sZ-a-pNc)

July 16, 1986 Page 6-109 -- In Detail -~-

-- The Debugger --

Next step
The display of the next step shows you the address of the

opcode which will execute next,

AF=02A0 (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00 PC=012
012F BA Cp D (next step) ok

and the opcode stored at that address,

012F BA CP D (next step) ok

and the disassembled instruction that the processor is about
to execute:

012F BA CP D (next step) ok

The address of the next instruction is, of course, the same
as the address contained in the Program Counter or Instruction
Pointer register,

-- In Detail -~ £-110

-- The Debugger --

6.5 Within the Debugger

Once you have established debug control, you can:

run to another breakpoint,

single step,

follow jumps while single stepping,

change the program counter and then run to a bp,
set multiple breakpoints,

examine and alter internal registers,

and examine and alter RAM or ROM.

You can also exit from the debugger, and start using
analyzer commands again.

Since your processor is idling, you can safely look at or
change emulated ROM without crashing the program.

If your processor supports NMI, then it also supports
analyzer trigger-style breakpoints, as described in the next
subsection, 6.6.

On some processors, you can also send data to a port, and
examine the contents of a port.

Missed breakpoints

You will lose debug control if you use RB or GB to set a
breakpoint which your program never reaches.

When this occurs you can press any key and NMI will be
executed, regaining debug control-- but only if your processor
supports NMI (see Appendix H). Otherwise, the only way to again
establish debug control is with RESET <addr> RB.

If you accidentally set a breakpoint in the middle of an

instruction, it will probably crash your program, in which case
RESET <addr> RB will be the only way to regain debug control.

July 16, 1986 Page 6-111 -~ In Detail --

-- The Debugger --
Run to another breakpoint

After establishing debug control, you can let the program
run to another breakpoint:

<address> RB

In the transcript below, the UniLab was used to first

establish debug control, and then to run to a second breakpoint.

From the second breakpoint, we let the program run to a third.

RESET 14C RB resetting

AF=786A (sZ-a-pNc) BC=040E DE=0200 HL=1801 IX=FFFF IY=FDFF SP=1C00 PC=014i

014C 0B DEC BC (next step) ok

15E RB

AF=0044 (sZ-a-Pnc) BC=0086 DE=FFFE HL=0000 IX=FFFF IY=FDFF SP=1BFE PC=015
015E 39 ADD HL,SP (next step) ok

177 RB

AF=0044 (sZ-a-Pnc) BC=0086 DE=1BEE HL=0000 IX=FFFF IY=FDFF SP=1BF0 PC=017
0177 C9 RET (next step) ok

Notice that you only enable RESET to establish debug
control, not when running to subsequent breakpoints. If you
enabled RESET each time, your program would start running again
from the beginning, rather than continuing from the breakpoint
where it is stopped.

-- In Detail -- 6-112

5
Pl

-- The Debugger --
Single-Stepping

After you have established debug control, you can step
through your program, executing one opcode at a time.

To step through a series of instructions that do not have
jumps, calls, or branches, use N. This command actually sets a
breakpoint following the next opcode.

You use this command when:
the next instruction is not a jump,

or when it is a jump, call, or branch, but you don't
want to see the program until it reaches the
instruction that comes immediately after the current
instruction.

Example

In the transcript below, we first establish debug control
with RB, and single-step through a series of stack and register
manipulations.,.

Notice that the Program Counter is always the same as the
address of the "(next step)." You can also see the effects of
the register manipulations in this code. The registers that are

about to change are in bold text, and the ones that have just
changed are underlined.

RESET 170 RB resetting

AF=0040 (sZ-a-pnc) BC=00DE DE=0002 HL=0F83 IX=FFFF IY=FDFF SP=1BEA PC=0170
0170 EB EX DE,HL (next step) ok
N
AF=0040 (sZ-a-pnc) BC=00DE DE=0F83 HL=0002 IX=FFFF IY=FDFF SP=1BEA PC=0171
0171 E1 POP HL (next step) ok
N
AF=0040 (sZ-a-pnc) BC=00DE DE=0F83 HL=1BEE IX=FFFF IY=FDFF SP=1BEC PC=0172
0172 F9 LD SP,HL (next step) ok
N
AF=0040 (sZ-a-pnc) BC=00DE DE=0F83 HL=1BEE IX=FFFF IY=FDFF SP=1BEE PC=0173
0173 C1 POP BC {next step) ok
N
AF=0040 (sZ-a-pnc) BC=0086 DE=0F83 HL=1BEE IX=FFFF IY=FDFF SP=1BF0 PC=0174
0174 EB EX DE,HL (next step) ok
e et A B
AF=0040 (sZ-a-pnc) BC=0086 DE=1BEE HL=0F83 IX=FFFF IY=FDFF SP=1BF(0 PC=0175
0175 7C LD A,H (next step) ok

July 16, 1986 Page 6-113 -- In Detail --

-- The Debugger --
Single stepping, following jumps
When the next instruction is a jump, branch, or call, and

you do want to see the program execute it, you should use the
command SSTEP-- if it is included in the debugger package for

your processor.

Otherwise, you will have to manually set a breakpoint on the

address that the code jumps to.

Do not use N, since that command does not follow jumps.

Example: Watch a Jump

Notice how N was used to step up to the jump, and then SSTEP

was used to execute the jump itself.

RESET 134 RB resetting

AF=7842 (sZ-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF

0134 BB CP E (next step)
N

AF=786A (sZ-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF
0135 CA4201 JP 2,142 (next step)

The program executes

SSTEP NMI
AF=786A (sZ-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF
0142 210018 LD HL,1800 (next step)

-~- In Detail -- 6-114

SP=1C00 PC=0134
ok

SP=1C00 PC=0135
ok

the jump to 142.

SP=1C00 PC=0142
ok

~- The Debugger --
Change the program counter and the run to breakpoint

To restart the program at a different address than the one you are
stopped at, use

<New PC> <address> GB
This command takes two arguments. It puts the first value into the
program counter, and sets a breakpoint at the second value. Then the
UniLab releases the processor, so that it runs the program starting at the
new code address pointed to by the program counter.

Note that this can have some unexpected results-- you are interfering
with the program flow.

See the example on the next page.

July 16, 1986 Page 6-115 -- In Detail --

-—- The Debugger --

Example: Change PC, then run

RESET 160 RB resetting

AF=004C (sZ-a-Pnc) BC=0086 DE=

0160 39 ADD HL,SP

170 171 GB

AF=004C (sZ-a-Pnc) BC=0086 DE=

0171 E1 POP HL

RESET 160 RB resetting

AF=004C (sZ-a-Pnc) BC=0086 DE=

0160 39 ADD HL,SP

171 171 GB

AF=004C (sZ-a-Pnc) BC=0086 DE=

0171 E1 POP HL

This

RESET 160 RB resetting

AF=004C (sZ-a-Pnc) BC=0086 DE=

0160 39 ADD HL,SP

171 RB

AF=0040 (sZ-a-pnc) BC=00DE DE=

0171 E1 POP HL

~- In Detail --

to a breakpoint

First, while stopped at a breakpoint
reset the PC and set a breakpoin
on the very next opcode address

1BFE HL=FFFE IX=FFFF IY=FDFF SP=1BFE PC=0160
(next step) ok

FFFE HL=1BFE IX=FFFF I1Y=FDFF SP=1BFE PC=0171
(next step) ok

Of course, you can set the breakpoint
and the new PC to the same address

1BFE HL=FFFE IX=FFFF IY=FDFF SP=1BFE PC=0160
(next step) ok

1BFE HL=FFFE IX=FFFF IY=FDFF SP=1BFE PC=0171
(next step) ok

Notice the difference in the HL register whe
you actually run the program to the nex
breakpoint, instead of changing the PC
is an example of the unexpected results that
come from interfering with program flow

1BFE HL=FFFE IX=FFFF IY=FDFF SP=1BFE PC=0160
(next step) ok

0000 HL=0002 IX=FFFF IY=FDFF SP=1BEA PC=0171
(next step) ok

6-116

-- The Debugger --
Set multiple breakpoints
Traditionally, multiple breakpoints were used when you did
not know where the program was going to go next. You would try
to block all exits by setting a breakpoint at every place the
program could go.

The UniLab's ability to show you program flow makes multiple
breakpoints obsolete. But, if you want to use them, here's how:

After establishing debug control, use
<address> <breakpoint #> SMBP
to set one of the eight numbered breakpoints.

You should set all but one of your breakpoints with SMBP,
and then use

<address> RB
OR
<New PC> <address> GB

to set the last breakpoint and set the processor running again.

Establish debug control
You can also use SMBP before a
RESET <addr> RB

to establish debug control in the first place.

Clear breakpoints
If you want to clear out all multiple breakpoints, use

CLRMBP, The command <breakpoint #> RMBP will clear one of
the breakpoints.

July 15, 1986 Page 6-117 -- In Detail --

-- The Debugger --
Example: Set multiple breakpoints

The transcript below shows an example of the use of the SMBP
command while checking out the following code:

014D 79 LD A,C
014E BO OR B

014F C24A01 JP NZ,14A
0152 C38000 JP 80

The problem to be solved: where does the program go after
executing the code at address 014E. It might jump back to 014a,
it might continue beyond that instruction and jump to 80. So you
have to set two breakpoints:

RESET 14E RB resetting

AF=0D6A (sZ-a-pNc) BC=040D DE=0200 HL=1801 IX=FFFF IY=FDFF SP=1C00 PC=014]

014E BO OR B (next step) ok

14A 1 SMBP

1 $014A 2 $---- 3 $---- 4 $---- 5 $---- 6 $---- T $---- 8 $----
80 RB

AF=0D08 (sz-a-pnc) BC=040D DE=0200 HL=1801 IX=FFFF IY=FDFF SP=1C00 PC=014;
014A 73 LD (HL),E (next step) ok

We find, not surprisingly,
address 014A.
will probably prefer to use the analyzer command

that the program jumps back to
But to find out about how the program flows, you
<addr> AS

as illustrated below.

14E AS resetting

cy# CONT ADR

-1

HUOPOWONOUV A -0

B7
B7
B7
B7
D7
B7
B7
B7
B7
B7
B7
D7

014D
014E
014F
014A
1801
014B
014cC
014D
014E
014F
014A
1802

DATA

79

BO
C24A01
73

00 write
23

0B

79

BO
C24A01
73

00 write

-- In Detail --

The analyzer trace shows you what happens
each time the program reaches the code at 014E.

LD A,C

OR B

JP Nz,14A
LD (HL),E

INC HL
DEC BC
LD A,C

OR B

JP NZ,14A
LD (HL),E

HDATA MISC

11111111
11111111
11111111
11111111
11111111
11111111
11111111
1111111
11111111
11111111
11111111
11111111

6-118

11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111

-- The Debugger --
Examine and alter internal registers

The breakpoint display shows your internal registers. Of
course, this display varies from processor to processor.

You can display all registers again with R.

And you can alter them with commands that follow this
..-\-\-l-tﬂv-n .
yap CTihile

<value> =Name_of_Register

The commands for altering registers are processor specific.
For example, the Z80 package includes:

=AF =BC =DE =HL =IX =IY
Check the glossary section in the Disassembler/Debugger
writeup for your processor, or press CTRL-F3.
Example: Alter the flags register

Notice how, in the example below, we change the flow of the
program by altering the "Zero" Flag.

R shows you the register display again-- very handy for
verification after you've changed a register.

After we alter the flag, we single step, and see that the
program takes the jump, because of the change to the flag.

RESET 12F RB resetting

AF=02A8 (Sz-a-pnc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00 PC=012F

012F BA CP D (next step) ok

N

AF=0242 (sZ-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00 PC=0130
0130 C€23801 JP NZ,138 (next step) ok

0202 =AF ok

R

AF=0202 (sz-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C0C PC=0130
0130 C23801 JP NZ,138 (next step) ok

SSTEP NMI . o

AF=0202 (sz-a-pNc) BC=002C DE=0278 HL=0278 IX=FFFF IY=FDFF SP=1C00 PC=0138
0138 7E LD A, (HL) (next step) ok

July 16, 1986 Page 6-119 -- In Detail --

-~ The Debugger --
Examine and alter RAM

While stopped at a breakpoint, you can use all the memory
access commands to examine and alter either RAM or ROM.

If you have not established debug control, most of these
commands will only work on emulation ROM-- and access to
emulation ROM will cause your program to crash.

For details on the memory commands, see section 3: Examining
and Altering HMemory.

-~ In Detail -- 6-120

-- The Debugger --

6.6 Trigger-Stvle Breakpoints

On some processors you can establish debug control using
trigger-style commands-- and thus establish a breakpoint when
certain conditions appear on the bus. This feature is only’
supported on microprocessors that support NMI (see Appendix H).

You use RI and SI to invoke the debugger on your program a
cvcle or two after the bus conditions appear.

You can use RI and SI either to establish debug control in
the first place, or to run to the next breakpoint after you have
already established control.

RI declares that the trigger spec which follows will be used
to establish debug control. SI then sets the analyzer going.

Like this:
RI <trigger spec> SI

Qualifiers should not be used in this trigger spec. If you
do use them, the result will be that the qualifier and trigger
must occur one immediately after another.

Example: Trigger style breakpoints

Here, as usual in these examples, we are again looking at
the Z80 test program. The example shows the setting of two
breakpoints using analyzer style commands. Note that the
breakpoint occurs one cycle after the trigger event occurs. The
disassembly of the code in which we are setting breakpoints
appears below, for convenience.

0005 015634 LD BC, 3456
0008 119A78 LD DE,789A
000B 21DEBC LD HL,BCDE

000E C5 PUSH BC
000F C1 POP BC
0010 3C INC A
0011 3C INC A

(e.. jump back to address 3 ...)

RI 10 ADR 3C DATA SI resetting
AF=1300 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=E5C1 IY=E5C1 SP=1900 PC=0011
0011 3C INC A (next step) ok

RI 18FF ADR AFTER OE ADR SI
AF=1228 (sz-a-pnc) BC=3456 DE=789A HL=BCDE IX=E5C1 IY=E5C1 SP=18FE PC=000F
000F C1 POP BC (next step) ok

July 16, 1986 Page 6-121 -- In Detail --

-- The Debugger --

6.7 Exit from Debugger

There are four ways to exit from the debugger:

1) RZ immediately releases the program from debug control,
so that it starts running again,

2) <addr> G releases the processor from debug control
after changing the Program Counter,

3) <addr> GW changes the Program Counter, and then waits
to release the processor until you restart the
analyzer,

4) or you can define a trigger spec, and start up the
analyzer.

If you exit from the debugger by starting up the analyzer be
sure to remember that the debugger has disabled reset. If you do
want the program to start over from the beginning, you have to
enable automatic resetting with RESET or the mode panel (function
key 8).

You will definitely want to use NORMx to clear out the
special trigger specifications that the debugger commands use.

A simple alternative is to just use STARTUP, which clears
out the previous trigger and starts the program over from the
beginning.

Exit after a target system crash
If you crash the target system while you are in the

debugger, you will need to start the target program over from the
beginning.

~~- In Detail -- 6-122

-- The Debugger --
Examples: Exiting from the debugger

If you want the processor to start executing the program
again, without restarting the program, use:

<New PC> GW <analyzer trigger spec>
to change the program counter, and then wait for the analyzer to
start up. The analyzer trigger specification can appear on the
same line or on a separate line.

For example:

8 GW 03 AS
Ccy# ADR DATA

-5 0027 3C INC A
-4 0028 3C INC A
-3 0029 C30300 JP 3
0 0003 3E12 LD A,12
2 0005 015634 LD BC,3456
5 0008 119A78 LD DE,789A
8 000B 21DEBC LD HL,BCDE
B O000E C5 PUSH BC

If you want to release the processor and set it running,
without setting any analyzer trigger spec, use:

{New PC> G

July 16, 1986 Page 6-123 -- In Detail --

-- The Debugger --

6.8 Disabling the Debugger: How and Why

Why

The Orion debuggers reserve between one and six bytes of
your ROM, and overlay code into an additional 30 to 70 bytes.

You can put your own code in the overlay area, but never in
the reserved area (CTRL-F3 tells you where the reserved area is
on your processor). If you disable the debugger, then you can
make use of these small areas of memory.

The NMI command makes use of the non-maskable interrupt
feature of your processor. If your target board hardware makes
use of that feature, you will want to disable the UniLab NMI
Vector.

If you want to run a program from a ROM chip on your target
board, you must first clear out emulation memory enables with
EMCLR and then disable the debugger as well-- you will, of
course, still be able to use the analyzer and disassembler.

How: Disable the debugger

If you need to use that reserved area of one to four bytes,
you can turn off all debugger commands with RSP' or with the mode
panel (F8).

Mode Panel:
3. LOG modes
LOG TO PRINT inactive
LOG TO FILE off
PRINTER off
NMI VECTOR active
SWI VECTOR active

How: Disable use of the NMI feature
If you need to disable the Orion software's use of the
hardware interrupt feature of your processor, use NMIVEC' or

the mode panel (F8). This will disable NMI, SSTEP, and
RI and SI.

NMI VECTOR active

-~ In Detail -- 6-124

7. Burning PROMs

Introduction

You can do all your EPROM programming from the menu system.
The menus allow you to program any EPROM with just a few key
strokes. The menus include reminders about which "personality
module" is required.

When your program is working perfectly under emulation, you
can copy it into virtually any single-supply EPROM or EEPROM
directly from the emulator memory. To program a 2716, for
example, from target locations 800 to FFF, you just put an erased
2716 in the socket and choose the appropriate menu option. You
will be prompted for the starting and ending addresses, then the
ROM will be programmed.

Erase check, programming, and verification will immediately
begin, and the LED to the right of the socket will light. The
light goes out when the PROM has been programmed (usually just a
few seconds).

Contents
7.1 Feature Summary 6-126
7.2 Personality Modules 6-127
7.3 Plugging in PROMs 6-129
7.4 Calculate Checksums 6-131
7.5 Verify Your PROM 6-132
7.6 PROMs for 16-bit Processors 6-132
7.7 Programming in Standalone Mode 6-133
7.8 Sample Macro for EPROM Production 6-134

July 16, 1986 Page 6-125 -- In Detail --

-- Burning PROMs --

7.1

Feature Summary

Though there are commands for burning programs into each
type of EPROM we support, we recommend that you use the EPROM

burning Menu whenever possible.
few keystrokes away, and include reminders about which PM
(personality module) you need for each EPROM.

macro.

F1
F2
F3
F4
F5
F6
F7
F9
F10

F1
F2
F3
F4
F5
F6
F9
F10

These menus are always just a

The only time you would really need the command rather than
the menu item,

is when you want to burn a EPROM from within a
See also Appendix G for information on EPROMs.

All the EPROM programming commands are covered by the menus:

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM

Menu:

> P

Next page

RETURN TO MAIN MENU

PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM
PROGRAM

i i

RETURN TO

RETURN TO MAIN MENU

-- In Detail

PROM PROGRAMMING MENU #1

2716
2532
2732A
2764A
27128A
27256A
27512

(use
(use
(use
(use
(use
(use
(use

PM16
PM16
PM32
PM64
PM56
PM56

PM512 personality module)

personality
personality
personality
personality

module)
module)
module)
module)

for A version)

personality

of Prom Programming Menu

PROM PROGRAMMING MENU #2

27C16
48016
27C32
2764

27128
27256

(use
(use
(use
(use
(use
(use

PROM READER MENU

PM16
PM16
PM16
PM64
PM64
PM56

personality
personality
personality
personality
personality
personality

6-126

module)

module)
module)
module)
module)
module)
module)

Command :

P2716
P2532
P2732A
P2764
P2764
P27256
P27512

PD2716
P48016
P27C32
PD2764
PD2764
PD27256

-- Burning PROMs --

7.2 Personality Modules

Whether reading or burning an EPROM or EEPROM, you have to
have the correct Personality Module in the 16 pin socket just to
the left of the EPROM PROGRAMMER socket.

CRIGN Universal Development Laboratory

Instruments

EPROM PROGRAMMER

UniLab I

] -

816 BIT IN-CIRCUIT EMULATOR

— &
o
‘1z
4 =
d =z
z

- m

- -

. o
c

3 R
g
. -
m

1 =
oz
P
. rﬁ-

Jd =
J
| °
£

|-

H

[]
é
®

[X3

........................

PERSONALITY MODULE /

The personality module is necessary because control signals
vary from EPROM to EPROM. The Orion UniLab uses the personality
module to alter the voltage and pin location of control signals.
This makes it possible for one unit to program all the most
popular EPROMs, with a simple change in PM.

CRION Universal Development Laboratory

Instruments

- EPROM PROGRAMMER

— UniLab II

— (ARERINANRENENEL]
— 8116 BIT IN-CIRCUIT EMULATOR 48 CHANNEL BUS STATE ANALYZER o dle

July 16, 1986 Page 6-127 -- In Detail --

-- Burning PROMs --
See Appendix G for full information on EPROMs and
Personality Modules.

The UniLab is shipped with:

For 21 volt EPROMs:
PM16 for programming 2716, 27C16 and 2532 EPROMs.
PM32 for programming 2732 and 2732A EPROMs.

PM64 for programming 2764, 27C64 and 27128 EPROMs.

For 12.5 volt EPROMs:
PM56 for programming 12.5 volt programmed EPROMs
such as 2764A, 27C64, 27128A, 27C128, and
27256.
You can also purchase:

PM512 for programming 12.5 volt 27512 EPROMs.

PM56-21 for programming 21 volt 27256 EPROMs.

-- In Detail -- 6-128

7.3 Plugging in PROMs

-- Burning PROMs --

CRION Universal Development Laboratory
Instruments
- EPROM PROGRAMMER
. UniLab I P
= (]| O
8/16 BIT IN-CIRCUIT EMULATOR 48 CHANNEL BUS STATE ANALYZER] FMis 19 q ol @
® ‘ % || [
Tiriiriiinariininiiiiin IR T P L |

EPROM Programming Socket

Be sure to plug PROMs into the socket with the notch to the

right.

24-pin EPROMs should
be inserted into the socket
shifted as far to the left

as possible:

EPROM PROGRAMMER

PIN 1

—

UpL
PMis ||o

2718

3532
48018

24 Pin EPROM in Programming Socket

EPROM PROGRAMMER

n——PIN|
UbL
PM186 ||g C e
2716
3532
48016

28 Pin EPROM in Programming Socket

July 16, 1986

Page 6-129

28-pin EPROMs will
fill up the whole
socket.

-- In Detail --

-- Burning PROMs --

Never turn power on and off with a PROM in the socket-- this
could erase location 0. The same warning applies to changing the
personality module with the PROM in the socket.

In general, don't leave the PROM in the socket any longer
than necessary to read or program it.

The UniLab's smart programming algorithm guarantees a 4:1
margin on stored charge while taking a minimum amount of
programming time. An erase check is done before programming
starts and all locations are verified during programming.

-- In Detail -- 6-130

-~ Burning PROMs --

7.4 Calculate Checksums

If you want to put checksums in your EPROMs, a CKSUM command
is provided to compute them for you. Enter:

adr toadr CKSUM
to calculate the sum.

Then use the MM! command to put the checksum in the desired
location before burning the PROM.

Be sure to have a known value (such as 0 or 1) in the

location you plan to put the checksum in (usually the top or
bottom of memory) before executing CKSUM,

July 16, 1986 Page 6-131 ~-- In Detail --

~-- Burning PROMs --

7.5 Verify Your PROM

PROMs are verified during the programming process.
However, if you want to separately verify a PROM, you can

read it into another area of memory and use the MCOMP command to
compare to the original data.

7.6 Program PROMs for 16-bit Processors

When the 16-bit mode has been selected (by entering 16BIT)
the prom programmer will automatically select odd or even bytes
to go with the first address you have selected.

1 TO FFF RPROM or 1 TO FFF P2716
will thus read or write odd bytes only, while
0 TO FFF P2716

will write even bytes only.

The same rule applies when programming or reading using the
PROM menus (F9 under the menu system).

-~ In Detail -- 6-132

-- Burning PROMs --

-

7.7 Standalone PROM Programming

Programming a large EPROM can take a significant amount of
time. If you want to use your host computer for some other task
while the UniLab burns the EPROM, you can precede an EPROM
programming command with the word STANDALONE.

You can also type in the command STANDALONE, and then use
one of the EPROM programming menus to start the programming
operation going.

This will cause the UniLab to do its work without needing to
be in contact with the host computer. When the UniLab is
finished programming, the red light next to the EPROM PROGRAMMING
socket will go out. You can then use the command PROMMSG to get
the message that tells you the completion status of the
programming operation.

July 16, 1986 Page 6-133 -- In Detail --

-- Burning PROMs -~

7.8 Sample Macro for Production of EPROMs

It can be tiring, when programming many identical EPROMs, to
keep typing in the same series of instructions to the menu.

Fortunately, you can make a simple macro that will take care
of the EPROM programming for you. For example, if you are
burning a 2764 with the code that starts at 0 and goes to 1300:

: BURN 0 1300 P2764 ;

After that, all you have to do is type in BURN to program
the ROM.

Appendix F tells you more about macros.

If you choose to not use the menus, check Appendix G to find
out more about what commands and PMs you'll need for each EPROM.

-- In Detail -- 6-134

-- Burning PROMs --

8. Generating Stimuli

Introduction

Often in system checkout it is useful to build a switch
panel to allow system inputs to be changed easily. The UniLab
stimulus outputs make this unnecessary by providing eight latched
output bits that are controlled from your keyboard.

Contents
8.1 Feature Summary 6-136

8.2 How to Do It 6-137

July 16, 1986 Page 6-135 -- In Detail --

-- Generate Inputs --

8.1 Feature Summary

Feature Menu Command

Generate a high signal on one wire Yes <wire #> SET
Generate a low signal on one wire Yes <wire #> RESET
Define bit pattern of all 8 wires Yes <hex byte> STIMULUS

Command:

<wire #> SET F1

<wire #> RESET F2

<hex byte> STIMULUS F3
F10

-- In Detail --

Menu:
STIMULUS MENU

SET A STIMULUS BIT

RESET A STIMULUS BIT
DEFINE ALL 8 STIMULUS BITS
RETURN TO MAIN MENU

6-136

-- Generate Inputs --

8.2 How to Do It

The eight stimulus generator signals, asserted at the EPROM
programmer socket, can be individually set or reset from the
keyboard, set and reset as a group, Or programmed to produce a
repeating pattern.

A ninth output (ST-) gives a 4-microsecond low pulse
whenever any of the wires are changed.

Connecting Stimulus Cable

The stimulus cable actually plugs into the EPROM programming
socket and brings the signals out to .025" receptacles, like the
ones used on the analyzer cable. These output signals of the
UniLab can be plugged into wire wrap pins or DIP-CLIPs.

You then connect the signals to the inputs of your target
system, and use the stimulus generator as a "control panel"
during system checkout.

GRIGN Universal Development Laboratory

Instruments

UniLab n EPROM PROGRAMMER

ypL
8/16 BIT IN-CIRCUIT EMULATOR 48 CHANNEL BUS STATE ANALYZER 1| PMe He | sTIMULUS cABLE
"-' s 1
........................ | [roorisooiriiTiooriiiiias aste | o

)
Ié"l *

Stimulus Cable in Programming Socket

July 16, 1986 Page 6-137 -- In Detail --

-- Generate Inputs --
Specify all 8 bits
You can specify the 8 bits of the stimulus signal with
<value> STIMULUS. For example, to make bits 7 and 2 high, while
all other bits are low, type in:
84 STIMULUS
The number 84 hex is, of course, 1000 0100 binary.
bit # 7654 3210
Change one bit at a time

You can also set or reset the bits individually with
<bit #> SET and <bit #> RES. For example,

1 SET
will set bit # 1 high.
You can also use these two commands to "pulse" target system
inputs. For example, to pulse an "active high" signal with

stimulus wire 3:
3 SET 3 RES

~~ In Detail -- 6-138

-- Generate Inputs --
Stimulus generator and macros
You can assign a convenient name to any stimulus configura-
tion by simply preceding the name with a colon, and ending the
definition with a semicolon. For example,

: START1 O SET 1 RES 3 RES ;

will define a word START1, which causes the UniLab to perform
three operations: set stimulus #0 high, then set stimulus #1 low,
last set stimulus #3 low.

You could also define START this way:
: START2 01 STIMULUS ;
though this will have a slightly different effect than the first
definition-- it sets bit 0 high, bits 1 through 7 low, and it
does this all at the same time.
The stimulus generator commands are very useful in test
programs. You can use the generator to change the inputs to the

target system in sequence, and then compare the resulting traces.
See Appendix F for more info on test macros.

July 16, 1986 Page 6-139 -- In Detail --

9. Special Keys

Contents
9.1 Feature Summary ' 6-141
9.2 Function Keys 6-142
9.3 Cursor Keys 6-144

N N Y
1 8 9
(Home | * Peup)
A (= N
4 5 6
->
C‘- J \ PAN Y,
- TN N
| 2 3
@nd y, * Y, \PgD n)

-- In Detail -- : 6-140

-- Special Keys --

5.1 Feature Summary

When you are in command mode, some UniLab features can be
accessed through the function keys and cursor keys.

F1 F2

->
0

Putin
Boli=

[X3
o

F5 F6

F1 | F8 End | ¢ fy0n

Fo | Fr0 L T

Function Keys and Cursor Keys

In the UniLab software, the cursor keys are always used by
themselves. The function keys can be used by themselves, or
while you are holding down any one of:

the ALT key,

the SHIFT key,
the CTRL key.

This means that you really have access to forty function keys.

[+]
[2]

ALT, SHIFT and Control Keys

Often used commands and help screens have been pre-assigned
to many of the 40 function keys. You can change the function
associated with any of the function keys.

You use the cursor keys to move through textfiles, trace
displays, and the line history.

July 16, 1986 Page 6-141 -- In Detail --

-- Special Keys --

9.2 Function Keys

All the commands that you call up with the function keys can
also be executed by typing in the command-- but it is usually
more convenient to use the function key. The only time you would
need to use the command is within a macro definition.

See the commands assigned to the function keys

Function key one tells you the current assignments of the
function keys.

Hit function key one (F1) to find out what commands have
been assigned to the "bare" function keys.

Hit F1 while holding down ALT to see the current assignments
of the ALTered function keys.

Hit F1 while holding down SHIFT to see the current
assignments of the SHIFTed function keys.

Hit F1 while holding down CTRL to get a display of the help
screens assigned to the CONTROLled function keys.

Change the commands assigned to the function keys

You can easily change the command that gets executed by any
function key. You use one of four commands to do this. All of
them take the same parameters:

<# of key> FKEY <command>

<# of key> ALT-FKEY <command>
<# of key> SHIFT-FKEY <command>
<# of key> CTRL-FKEY <command>

Any command that does not take parameters can be reassigned
to a function key-- including any macros that you write.

-— In Detail -- 6-142

Help for using
on-line displays

Help for Debuggers

Help for Emuiation
memory functions

Help for loading/
saving programs

Help for displaying/
altering memory

List Function Key
assignments for Shift

List Function Key
assignments for Alt

HELP with general instructions
for using glossary. Also
Function Key assignments.

Next Step - Execute next

instruction. Will not follow jumps

or branches.
Restore window split to
Default sizes.

TSTAT - Display current
trigger spec.

STARTUP - Issue reset pulse
to target and trace first
cycles of target operation.

July 16, 1986

Help for using windows
Function Key

. i ts

Help for simple analyzer assignmen

triggers (ﬂ‘ﬁ "
More help for analyzer Et—rl key

triggers held down
Help for mode panel

switches
Help for trace display
Memo - Bring up system editor

for use as custom memo pad Funetion Key
Ascii display - Shows ascii values ashs ignments
for keys. when

held down

Set new window split size

Function Key

assignments
—— when
(a1t | key
T held down
SPLIT mode - Enter /Exit split
screen mode, Function Key
assignments
NMI - Issue NMI pulse to target when
to get breakpoint. no other key
Single Step - Execute next held down
instruction. Will follow jumps
and branches. May be same as NMI.
MODE - Bring up pop-up mode
panels for changing display or
system modes.
MENU - Enter /Exit menu mode.
Page 6-143 -- In Detail --

-- Special Keys --

9.3 Cursor keys

You use the cursor keys on the numeric key pad to move
through various displays. The functions of the keys changes as
you change the task you are working on.

Cursor Key Assignments for Viewing Trace Buffer Display

Trace Display Previous Line

Trace Display
Top of Buffer

Trace Display
Previous Screen

Toggle between
Upper & Lower
WVindow

Trace Display
Next Screen

Trace Display Down One Line

-~ In Detail -- 6-144

-~ Special Keys --
Cursor Key Assignments for Viewing Text Flles

Up One Line

Beginning of File Previous Pege

Toggle between
Upper & Lower
WVindow

Next Page

Down One Line

Other Cursor Key Uses
Split Screen Set Up One Line

SN (a0 4 N
7 8 9
(Home \+ (PeUp)
SplitScreenSet (4 (5 (e | Modeselecttoggle

\) RightOne Column

LeftOne Column | & 'S Split Screen Set
\\ J/
1

More Words
Exit Mode Panel * PeD More HELP
Exit Split Screen Setting \ERd) \¥__) (P800} Next Mode Panel

) (
W

Split Screen Set Down One Line

July 16, 1986 Page 6-145 -- In Detail --

10. Mode Panels

Introduction

The mode panels, available at the press of a button (F8),
let you toggle features on and off without any need to remember
commands.

The Mode Panels are very simple to use, including on-line
help. Each mode panel and its help screens are reproduced here
as a courtesy, as well as in Chapter 5.

Contents
10.1 Feature Summary 6-147
10.2 Analyzer Modes 6-148
10.3 Display Modes 6-149
10.4 Log Modes 6-150

-- In Detail =-- 6-146

-- Mode Panels --

10.1 Feature Summary

Press F2 to get into the Mode Panels. Once you have a mode
panel on the screen, you can run through all of them, by hitting
F2 repeatedly.

Use the UpArrow and DownArrow keys to move around within
each mode panel, from option to*option.

The RightArrow toggles the current option. Press F1 to get
help screen for the current option.

Press END to exit from the Mode Panels.

/ N N\ 7 ~\
K 8 9
Home 3 J \PgUp J
s — N [N\
4 5 6

< -»

\. y, \. J
/ N\ 7

1 2 3
\End) k*) (Pehn)

Equivalent
commands: Mode Panel:

1. ANALYZER modes
DASM DASM' DISASSEMBLER
SYMB SYMB' SYMBOLS
RESET RESET' RESET

2. DISPLAY modes
SHOWM SHOWM' MISC COLUMN
SHOWC SHOWC' CONT COLUMN
<value> =MBASE MISC # BASE
PAGINATE PAGINATE' PAGINATE
HDG HDG' FIXED HEADER

3. LOG modes
LOG LOG" LOG TO PRINT
TOFILE LOG TO FILE
PRINT PRINT' PRINTER —
NMIVEC NMIVEC' NMI VECTOR
RSP RSP' SWI VECTOR

July 16, 1986 Page 6-147 -- In Detail --

-- Mode Panels --

10.2 Analyzer Modes

1. ANALYZER modes
DISASSEMBLER
SYMBOLS
RESET

Help with the DISASSEMBLER option of Mode Panel

This option toggles the processor-specific disassembler.
Turn off when examining most filtered traces.

The equivalent commands are: DASM DASM'

Help with the SYMBOLS option of Mode Panel

Toggles translation of numbers into symbolic names.
Define symbols with IS , or load from file with SYMLOAD
or SYMFILE . The equivalent commands are: SYMB SYMB'

Help with the RESET option of Mode Panel
When enabled, the processor is reset whenever the
analyzer starts up. Turn off to catch trace of program
in progress. The equivalent commands are: RESET RESET'

-- In Detail -- 6-148

-- Mode Panels --

10.3 Display Modes

July 16,

2. DISPLAY modes
MISC COLUMN

CONT COLUMN

MISC # BASE
PAGINATE

FIXED HEADER

Help with the MISC COLUMN option of Mode Panel
When enabled, shows the MISCellaneous inputs to

the UniLab (wires MO through M7) on the trace display.
The equivalent commands are: SHOWM SHOWM'

Help with the CONT COLUMN option of Mode Panel
When enabled, shows on the trace display the CONTrol
inputs (C4 to C7), along with the high four bits of the
address (A16 to A19). The commands are: SHOWC SHOWC'

Help with the MISC #BASE option of Mode Panel
Changes the base in which the MISCellaneous inputs are
displayed. Toggles between binary and octal.

The equivalent command is: <base> =MBASE

Help with the PAGINATE option of Mode Panel
When enabled, stops the trace display when screen fills.
Disable only when you want to log entire trace to a file
or a printer. The commands are: PAGINATE PAGINATE'

Help with the FIXED HEADER option of Mode Panel
Labels the columns of the trace display with a fixed
header, rather than one that scrolls up with the display.
Lower window only. The equivalent commands are: HDG HDG'

1986 Page 6-149 -- In Detail --

-~ Mode Panels --

10.4 Log Modes

3. LOG modes
LOG TO PRINT
LOG TO FILE
PRINTER
NMI VECTOR
SWI VECTOR

Help with the LOG TO PRINT option of Mode Panel
When enabled, logs on the printer any commands that
alter memory, such as M! and MM! . See also PRINTER
option. The commands are: LOG LOG'

Help with the LOG TO FILE option of Mode Panel
Starts logging all screen output to the logfile. Create
the file with TOFILE <name>, which can appear on the
DOS command line. The commands are: TOFILE TOFILE'

-

Help with the PRINTER option of Mode Panel
When enabled, logs all screen output to the printer.
The commands are: PRINT PRINT'

Help with the NMI VECTOR option of Mode Panel
When disabled, turns off the UniLab software's use of
the hardware interrupt feature of your microprocessor.
Disable if your target board needs to use that feature,
or to have nearly transparent emulation. NMIVEC NMIVEC'

Help with the SWI VECTOR option of Mode Panel
When disabled, turns off all the debugger features of the
UniLab software, such as RB and N . Turn off for
completely transparent emulation. The commands: RSP RSP’

-- In Detail -- 6-150

11. Windows

Introduction

A complete discussion of the split screen capabilities of
the UniLab software appears in the third section of the Getting
Started chapter. The material here includes only the summary of
split screen features.

Feature Summary

Function

Feature key Command
Toggle the horizontal split on and off F2 SPLIT
Disassemble into the left-hand window No <addr> DN
Display text file in upper window No TEXTFILE
Change the size of the split screen SHIFT-F8 WSIZE
Return split screen size to the latest setting,

after a help screen has altered it F5 DEF
Switch between top and bottom screens End TOP/BOT

Screen History display
Look at one page of screen history PgUp No

Look at one line of screen history UpArrow No

July 16, 1986 Page 6-151 -- In Detail --

12. Histograms
Graphical Performance Measurement Option
(Advance Information)

Introduction

This optional UniLab feature produces a bar graph that helps
you to assess the performance of your target software.

The histogram points out to you where your program is
spending its time, so that you can decide where to focus your
time and energy.

You can produce two types of histograms, as described in the
following pages.

Before you can use histograms, you must enable them with the
command DOHIST. This word saves the system and then causes you

to exit to DOS. When you invoke the newly saved system, you will
be able to use histograms.

Contents
12.1 Feature Summary 6-153
12.2 When to Use Histograms 6-154
Address HISTograms

Time HISTograms

12.3 Making Histograms 6-157

-- In Detail -- 6-152

-- Histograms --

12.1 Feature Summary

You only need two commands to gain access to the power of
the histogram. After you have typed one of the commands, you are
interacting with the fully menu-driven histogram generator.

You press F10 to exit from the histogram.

In normal operation, you can exit from the histogram
feature, and later in the same UniLab session re-enter the
histogram with all your data preserved. Two additional commands
allow you to save the information about a histogram to a file,
and later reload it.

Feature Command
Produce and display histogram of relative time the AHIST

program spends in each of up to 15 user-specified
address ranges. Address HISTogram.

Produce and display histogram of how often the elapsed THIST
time between two addresses falls into each of up
to 15 user-specified time ranges. Time HISTogram.

Save to a file the data from the most recent HSAVE <file>
histogram
Retrieve from a file the data from a previously HLOAD <file>

saved histogram

July 16, 1986 Page 6-153 -- In Detail --

-- Histograms --

12.2 When to Use Histograms

The two types of histograms share the same screen layout.
Both show bins running down the left-hand side of the screen,
column labels at the top of the screen and the function key menu
at the bottom.

This similarity masks a fundamental difference:
the Address HISTogram (AHIST) shows you a graph based on address
bins, while the Time HISTogram (THIST) shows you a graph based on
time bins.

wWhat the address histogram does

The address histogram helps you find bugs, and discover the
time hogs in your code.

You invoke this feature with the command AHIST, and then
specify up to 15 address bins by filling in the starting and
ending addresses.

When you start the histogram with F1, the UnilLab will count
the number of times your program executes an address that falls
into each bin. This information is automatically sent to your
host computer, which displays a histogram of the results.

How to zero in with the address histogram

The very first thing you will want to do is set up address
bins that cover the entire range of addressable memory-- that way
you will be able to check that your program is executing code
only where you expect it to be. Set the histogram going with
function key 1 (F1). Counts appearing outside of the expected
range indicate possible bugs.

After you've verified that the program is well-behaved, you
will probably want to divide the active range of memory based on
the functional units of your code. For example, the addresses 0
to 200 contain the initialization code, 210 to 400 contains the
main loop, 1500 to 1600 is an error handling routine, etc.

You will then be able to start the histogram and see where
your program is spending most of its time.

-- In Detail -- 6-154

-- Histograms --
What the time histogram does

The time histogram helps you speed up routines and determine
the efficiency of program flow.

You invoke this feature with the command THIST. This
Time HISTogram shows you how frequently the elapsed time between
two addresses falls into each of the time bins that you specify.

You will want to first set up the starting and ending
addresses of the routine or loop that you are interested in
timing (use F7). Then you can fill in the limits of the time
bins.

When you start the histogram, the UniLab will keep a count
of the elapsed time between the single starting address and the
ending address. This information is sent up to your host
computer, which displays a histogram showing how frequently the
elapsed time falls into each bin.

Note that the time histogram functions as a stop watch-- it
starts a time count when the starting address appears on the bus,
and stops the time count when the ending address shows up. This
means that you must choose your address boundaries carefully-- if
the ending address is not executed, then the stop watch will
never stop.

How to zero in with the time histogram

The very first thing you will want to do is set the time
units (F8) to the highest value-- 10 milliseconds. Then set up
time bins that cover the range from 0 to 60000. Time values are
entered in decimal, not in hexadecimal. By starting out with
this "big picture" view, you will be certain to catch all the
information, and then narrow down with confidence.

Start up the histogram and you will be able to see in what
range of time periods the routine falls. By adjusting the time
units (in powers of ten, down to 10 microseconds) and the time
bins, you will be able to get whatever resolution you desire.

Measure, then adjust

Once you have established how long your time-critical
routine takes, you can make modifications to your code or outside
conditions, and then measure the routine again. THIST will show
you how much time has been gained (or lost) by the alterations.

You can also use THIST to determine the efficiency of
program flow. For example, the time histogram might reveal to

July 16, 1986 Page 6-155 -- In Detail --

-- Histograms --

you that a routine takes 40 microseconds 80% of the time, but
requires 10000 microseconds 20% of the time.

You will probably want to write a special routine to correct
this lopsided time performance. THIST will then help you
evaluate your efforts.

-- In Detail -- 6-156

-- Histograms --

12.3 Making Histograms

When you call up the histogram, the cursor and function keys
are reassigned. When you exit from the histogram by hitting F10
you return to the state you were in when you called the
histogram.

Filling in the bin limits

Before you can generate a histogram, you have to fill in the
upper and lower bounds of at least one "bin." When you enter the
histogram, your cursor will be positioned for entering the lower
bound of the first bin. Just type in the number, and then hit
return, the right arrow or the TAB key to move to the next entry
field. See the shortcut below (F3).

Starting display

Once you've filled in as many bins as you want, press F1 to
start the display. You cannot start the display of a time
histogram (THIST) until after you've filled in the address range
(F7).

When you do start the display, you will see the data three
ways: absolute counts, percentage, and a bar graph of the

percentage.

The program will inform you if you've made an error, such as
giving overlapping ranges, or leaving off a limit.

Press any key to stop the display.

Name your bins-- Value/Name toggle

You can name your bins by pressing F2 and then filling in
the name fields that replace the limit field.

Press F2 again to return to the value fields.

July 16, 1986 Page 6-157 -- In Detail --

-- Histograms --
Subdivide-- Shortcut to entering limits
You can divide a bin into a number of bins of equal size.
Place the cursor on the bin you wish to divide and press F3.
Then use the DownArrow key to move down, and press F3 again. The
range contained in the original bin will be divided among the

number of bins that you spanned.

The original bin must already contain a valid range.

Delete entry

Press F4 to delete the bin that the cursor is on.

Clear accumulated values

Press F5 to clear any counts accumulated so far, before
restarting the histogram with F1.

Clear all

Press F6 to clear out all counts and the bin boundaries.

Address limits (THIST) or title (AHIST)

Within THIST you must press F7 to enter the upper and lower
address for the time histogram. You will not be able to start
accumulating and displaying data until you enter this
information. Hit return after you've entered the values.

Within AHIST you can enter a title for your histogram by
pressing F7 and entering the name. Hit return after you've
entered the title.

Time unit (THIST) or Trigger Spec (AHIST)

Within THIST you can display and alter the unit of time in
which your input is interpreted and the output displayed by
pressing F8. The default is 10 (decimal) microseconds, mainly
because it is fairly easy to think in units of 10.

The resolution of the histogram generator is actually 20
microseconds-- don't let the time unit give you a false sense of
accuracy. No matter what value you choose as the time unit, the

-- In Detail -~ 6-158

-- Histograms --
histogram can be cff by as much as 10 microseconds.

Within AHIST press F8 to change the trigger spec, or enter
any other command.

16/20- bit toggle (AHIST only)

Normally vou enter 16 bit addresses as the boundaries of
AHIST bins. That means the largest address you can enter is
FFFF. Press F9 to toggle over to 20-bit addresses-- values up to
FFFFF,

Exit

Press F10 to exit.

July 16, 1986 Page 6-159 ~- In Detail --

Chapter Seven:
UniLab Command Reference

Introduction

This chapter contains the reference material for the UnilLab
command language, a rich, flexible language that you use to work
on your microprocessor control board.

The first, brief, section divides the words into one of five
categories:

1. Beginner words-- the minimal vocabulary you need
to talk to the software.

2. Common words-- commands that you will quickly
learn and use often.

3. Advanced words-- commands that you will find
useful, but can function fine without knowing.

4, Special key and mode panel words-- commands that
perform the same function as one of the mode panel
switches or one of the function or cursor keys.

5. Rarely used words-- commands that you will
probably be able to live without.

The second of the two sections in this chapter contains a
page or so of reference material for each important command. The
format is explained, and then the entries follow.

You can also get the entry for any command on-line by typing

HELP <command>.

An alphabetical listing of all words appears in Appendix A.

Warning

Each disassembler/debugger includes commands that are
specific to that package. These words are not documented in this
chapter. To learn more about target-specific words, look at the
separate writeup for your software package.

Contents

The Categories 7-2
The Commands 7-9

July 16, 1986 Page 7-1 -- Command Reference --

The Categories

The Orion software provides you with access to commands that
let you:

set triggers on any input or combination of
inputs,

alter the display and logging features,

set breakpoints and alter registers.

You will be able to do most of your work with just a few
commands: the beginner and common words, with occasional forays
into the advanced words.

The panel words help you find out more about the features
that you toggle with the Mode Panel.

The rarely used words are provided as a service to those of

you who wish to delve deeper into the capabilities of the
instrument.

-- Command Reference -- Page 7-2

-- The Categories --

1. Beginner words-- the minimal vocabulary you need to talk to
the software.

Get On-Line Help
HELP MENU MESSAGE

PINOUT WORDS

Load the Simple Target Program
LTARG

Trigger on Address
AS

Start Analyzer
S STARTUP

Exit the Program
BYE

Memory Enable
EMENABLE

Memory Reading
DM DN MDUMP

Predefined Triggers
ADR? CYCLES? EVENTS?
NOW? SAMP

Status Enquiry
ESTAT TSTAT

Debugger Words
N RB

July 16, 1986 Page 7-3 -- Command Reference --

-- The Categories --

2. Common words-- commands you will quickly learn and use
often.

Set Trigger

ALSO ADR DATA
NORMB NORMM NORMT
NOT ONLY TO
Set Trigger-- Not supported on all processors
FETCH READ

Start Analyzer

S+

Call DOS

DOS

Trace Reading Commands

TCOMP) TD TMASK
TN TSAVE TSHOW
Debugger Commands

G N NMI
RB SSTEP

Stimulus Generator Commands
RES SET STIMULUS

Memory Reading
M? MM? MCOMP

Memory Writing
ASM and ASM-~-FILE (processor specific on-line assembler)

MFILL M M!

MFILL MM MM!
MMOVE ORG

Define Symbols

IS

Save Information

BINSAVE TOFILE SAVE-SYS
SYMSAVE TSAVE

Load Program From File

BINLOAD HEXLOAD

Examine Text File TEXTFILE
Initialize Instrument INIT

-~ Command Reference -~ Page 7-4

-- The Categories --

3. Advanced words-- commands that you will sometimes find
useful, but can live without.

On-Line Displays
CATALOG ASC

Graphical Performance Measurement (optional feature)
AHIST THIST

Trigger Commands

DCYCLES HADR HDATA
LADR MASK MISC
Start the Analyzer Repeatedly

SR

Filter the Trace

1AFTER 2AFTER 3AFTER
Define a Pre-Qualifier

AFTER PCYCLES PEVENTS
Debugger Commands

GB GW RZ
Multiple Breakpoints

CLRMBP DMBP RMBP
SMBP

Symbol Table manipulation

CLRSYM SYMFILE SYMFILE+
SYMLOAD SYMSAVE SYMTYPE
Disable Emulation Memory

EMCLR

Assign a Function to a Function Key

ALT-FKEY CTRL-FKEY FKEY
SHIFT-FKEY

Calculate a CheckSum CKSUM

Macro Definition
: H BPEX

SOURCE SOURCE'

Display and Change RAM Allocated to Screen History and to Symbols
?FREE =HISTORY =SYMBOLS

July 16, 1986 Page 7-5 -~ Command Reference --

-- The Categories --

4. Special key and mode panel words-- commands that perform the
same function as one of the mode panel switches, or the same
as the cursor keys or a function key.

Mode Panel Access

MODE

Mode Panel 1

DASM DASM'
SYMB SYMB'
RESET RESET'
Mode Panel 2

SHOWM SHOWM'
SHOWC SHOWC'
=MBASE

PAGINATE PAGINATE'
HDG HDG',
Mode Panel 3

LOG LOG'
TOFILE TOFILE'
PRINT PRINT'
NMIVEC NMIVEC'
RSP RSP'
Function Keys

ALT~-FKEY? CTRL-FKEY? DEF
FKEY? MEMO SHIFT-FKEY?
WSIZE

Cursor Keys
TOP/BOT

-- Command Reference --

Page 7-6

-- The Categories --

5. Rarely used words-- commands that you will probably not

often use.

Trigger Commands

ASEG CONT

INT INT'

sC TNT
Standalone Operation

SST TS
PreQualifier Commands
INFINITE Q1

Q3 QUALIFIERS
Filter Commands

FILTER HDAT
Emulation Memory Enable
=EMSEG

Temporary Number Base Change
B# B.

H>D

Special Display Characteristic Commands

CLEAR CLEAR'
SET-COLOR

Serial Port Setting
AUX1 ' AUX2

CONTROL
NDATA

Q2
TRIG

MISC'

D#

COLOR

Receive HEX format file from another system

HEXRCV

Symbol File Format
SYMFIX

PROM Burning Mode
8BIT 16BIT

Loading from Host RAM
Pause for a Few Milliseconds

128K UniLab Only S
PAGEQ PAGE1

Burn PROMs in Standalone Mode
STANDALONE PROMMSG

July 16, 1986 Page 7-7

MLOADN

MS

-- Command Reference --

(this page intentionally left blank)

-- Command Reference -- Page 7-8

THE UniLab COMMANDS

July 16, 1986 Page 7-9 -- Command Reference --

~- The Commands --

Entry format

The First Line

The first item on the first line of each entry is the
command itself, always printed in bold capital letters. The rest
of the line always contains either the phrase "no parameters" or
the command repeated along with its parameters.

The parameters always appear inside <pointy brackets>.

Last, if the word can be called up with a function key, the
name of that function key appears on the far right hand side of
the first line. If the word is rarely used, than the phrase
"RARELY USED" appears on the far right.
The Definition

The first block of text tells you what the command does.

Usage

The next block of text tells you how and when you use the
command-- sometimes warning you that you only want to use the
word in extraordinary circumstances.
Example

Almost every command includes a section showing examples of
how to use the word.

Comments

This optional section includes warnings, historical notes,
and various other bits and pieces of information.

-- Command Reference -- Page 7-10

~- The Commands --

1AFTER TAFTER <trigger spec>

Clears out previous trigger spec and enables trace filtering.
Only the bus cycle that satisfies the trigger spec and one cycle
immediately after will be kept.

USAGE
The UniLab stores the trigger cycle and the one
immediately after, every time it sees conditions that
match the trigger specification. The "trigger status
display line" shows how many cycles have been stored
away.

Note that you have to use S to start the analyzer after
setting this trigger spec.

The UnilLab automatically displays the trace after the
entire trace buffer has been filled.

The disassembler will not work properly on fragments of
code. The disassembler should be disabled with DASM'
while you are looking at the results of any of the
xAFTER commands.

CHECKING THE TRACE
If you want to see the trace before the buffer has been
completely filled, then press any key to stop the cycle
recording. Then type in TD to dump the trace, and
display part of it on the screen.

The trace buffer fills from the bottom, and each new
cycle pushes up the already recorded data. If you end
up with a partially filled buffer, then the cycles you
want to see are in the last part of the buffer.

EXAMPLES
1AFTER 1200 ADR S
shows only those cycles with adr =1200 and one
cycle following.
1AFTER 235 TO 560 ADR S
shows 2 consecutive cycles each time a cycle has
an address between 235 and 560.

(continued on next page)

July 16, 1986 Page 7-11 -- Command Reference --

-- The Commands --
(continued from previous page)

COMMENTS

Do not put a space between the number and AFTER.
1AFTER is a single word, not a word preceded by a
parameter. This command can be used when seeking the
cause of a memory cycle error. It will show the
program address of the cycle after the one that caused
the memory access. XAFTER initializes all trigger
features, so NORMx is unnecessary with these commands.

-- Command Reference -- Page 7-12

-- The Commands --

16BIT no parameters

Selects 16-bit mode for memory emulation and for trace display
and for PROM burning and reading.

USAGE
You will probably not use this command. It sets up the
UniLab to work with processors that have a 16 bit data
bus. If you have purchased a disassembler, then either
this command or 8BIT has been "built-in" to your
software.

COMMENTS
Note that 16BIT is one word with no space after the 16.
The 16BIT command changes both the signals put onto the
target system's bus by the UniLab and the way the
UniLab displays the trace display. That means you need
a 28 pin ROM emulation cable, or the 16 bit emulation
will not work.

The HL and LH commands determine the order in which the
trace displays the bytes. If you have a disassembler
these modes have already been set for you.

July 16, 1986 Page 7-13 -- Command Reference --

-~ The Commands --

2AFTER 2AFTER <trigger spec>

Same as 1AFTER except that two cycles are kept immediately
following each trigger cycle.

USAGE

Enables a filtered trace that gives you a little more
information than 1AFTER does.

COMMENTS
See 1AFTER.

3AFTER 3AFTER <trigger spec>

Same as 1AFTER, except that the three cycles after the trigger
cycle get stored.

USAGE

Enables a filtered trace that gives you a little more
information than 2AFTER does.

COMMENTS
See 1APTER. And notice that this filtered trace will

contain enough information to make a disassembled trace
sensible-- sometimes.

-- Command Reference -- Page 7-14

-- The Commands --

8BIT no parameters
Selects 8-bit mode for trace display and memory emulation and for
PROM burning and reading.

USAGE
You will probably not use this command. It sets up the
UniLab to work with processors that make use of 8 bit
data. If you have purchased a disassembler, then
either this command or 16BIT has been "built-in" to
your software.

COMMENTS
Use the 24 pin ROM cable with this command. Note that
8BIT is one word, with no space between the number 8
and the rest of the command.

July 16, 1986 Page 7-15 -~ Command Reference --

-- The Commands --

H no parameters

The colon character starts a macro definition. The word that
follows the colon is the name of the macro.

USAGE
Once a macro has been defined, you can execute any
lengthy series of commands with a single word. See
Appendix F for further information. See also BPEX.

WHAT A MACRO IS
A macro is a command that you create out of previously
defined commands.

For example,
: LOADUP 0 TO 3FFF BINLOAD A:MYPROG ;

creates a macro called LOADUP, which uses the
previously defined UniLab command BINLOAD.

LOADUP will always load from a file on drive A: called
myprog. You can see how this would be easier than
using BINLOAD every time you wanted to load this file.

HOW TO WRITE MACROS
A macro definition begins with a colon and ends with a
semicolon (;). The first word after the : is the name
of the macro, and all the other words are the
definition of it.

There must be at least one space between the colon and
the name of the macro, and at least one space between
the last word and the semicolon. Like this:

: NAME FIRSTWORD SECONDWORD VALUE THIRDWORD ;

FORTH
When you define a macro, you are actually making use of
the programming language FORTH. With this powerful
language you can define new words that make use of
conditional statements, looping, and more. The best
introduction to the language is Leo Brodie's Starting
FORTH.

(continued on next page)

-- Command Reference -- Page 7-16

~- The Commands --
{continued from previous page)

WHY MACROS
The example below defines a macro called READRAM.
After the new word has been defined, you would just
type in READRAM every time you want to set up the
trigger specification that shows only the cycles that
read from the address range 1000 to 1FFF. This will
save you a lot of keystrokes.

EXAMPLE

¢ READRAM ONLY READ 1000 TO 1FFF ADR S ;
defines a macro called READRAM,

COMMENTS
Whenever the word immediately following : is entered
the result is the same as if the rest of the words up
to ; were entered. After typing in the example above,
the word READRAM will have the same effect as entering
" ONLY READ 1000 TO 1FFF ADR S ." Note that to
preserve the macro definition, you must SAVE-SYS before
leaving the UnilLab program.

See also appendix F.

; no parameters

Ends a macro definition started by : .

July 16, 1986 Page 7-17 -- Command Reference --

-- The Commands --

=BC <word> =BC

Changes the contents of the BC register to n.

USAGE
An example of the type of register control command
available with debuggers. This command addresses the
Z-80 internal register BC. Consult the target notes
for your debugger.

EXAMPLE
1234 =BC
puts 1234 in the BC register.
COMMENTS

You can use the register commands only after the
debugger has gained control of your microprocessor.
See NMI or RB for more information on debug control.

This is a typical register changing instruction format.
A similar command is provided for each of the
processors internal registers (except SP). No space
appears between the = and the register name.

-- Command Reference -- Page 7-18

-~ The Commands --

=EMSEG

<hex digit> =EMSEG

Sets A16-A19 context for subsequent EMENABLE statement(s).
Determines which 64K "bank" of memory the emulated ROM will be

in.

YOU PROBABLY DON'T NEED TO BOTHER

This value must be set properly, or the UniLab will not
put the program opcodes onto the target system bus.
However, if you have a disassembler/debugger, then this
variable is already set properly.

WHY IT MIGHT MATTER

Though the upper 4 bits of our 20-bit address bus are
meaningful only with processors that can address more
than 64K of memory, =EMSEG must always be set.

On some microprocessors, those four lines are floating
high, on other mp's several of the lines are pulled
low.

HOW IT WORKS
This command only sets a variable. EMENABLE is the
command that actually enables memory.

WHEN IT MATTERS
‘The UniLab looks at the upper 4 bits of address (A16
through A19) during fetch and read cycles, to determine
whether your microprocessor wants to fetch an
instruction from emulation ROM. If the upper 4 bits
that the UniLab sees don't match the =EMSEG
specification, then the Unilab will not respond to the
mp's request.
Use ESTAT to see how this command effects the settings
of emulated memory.

EXAMPLES

7 =EMSEG
sets A19 to 0 and Al6, A17, and A18 to one.

(continued on next page)

July 16,

1986 Page 7-19 -- Command Reference --

-- The Commands --
(continued from previous page)

F =EMSEG 0 TO 1FFF EMENABLE
enables addresses F0000 to F1FFF.

E =EMSEG 0 EMENABLE ALSO F =EMSEG (0 EMENABLE
enables emulation of addresses
EQ000 - EO7FF and F0000 - FO7FF.

COMMENTS
The 4 most significant bits of the 20 bit UnilLab enable
addressing are selected with =EMSEG so that subsequent
statements only refer to 16-bit addresses. EMENABLE
commands enable emulation memory in blocks of 2K.

A read or fetch command from the target microprocessor
will reference emulation memory only when the A16-A19
inputs agree with an =EMSEG statement and A11-A15
indicate an enabled 2K block of emulation ROM.

Note that latched inputs A16-A19, displayed on the
trace display as the right-hand digit of the CONT
column, are the values seen by the emulation enable
logic. If the inputs are not connected then they will
"float," and appear as all 1s (hex F).

=EMSEG itself has no effect on the UnilLab until an
EMENABLE or INIT sends the data to the UniLab.

-- Command Reference -- Page 7-20

~- The Commands --

=HISTORY <hex# of Kbytes> =HISTORY

Selects the size of the screen history saved during each session
with the UniLab.

USAGE
Allows you to change the amount of host RAM dedicated
to saving information that scrolls off the top of the
screen. The maximum is hexadecimal 3C Kbytes (decimal
60).

The new setting will not take effect until you SAVE-
SYS, exit from the UniLab software, and start it up
again.

Use ?2FREE to find out how much is allocated right now.
WHY CHANGE

You might want to have a longer history, or you might
want to free up some of the host RAM for other

purposes.
EXAMPLE
3C =HISTORY

allocates the maximum space to the line history.

July 16, 1986 Page 7-21 -- Command Reference --

-~ The Commands --

=MBASE <n> =MBASE F8

Selects number base for the trace display of the MISC inputs to
the UniLab, MO through M7.

USAGE
The miscellaneous inputs (MISC) to the UniLab usually
get displayed in binary format. This format allows you
to easily tell which MISC inputs are receiving a high
signal, and which are receiving a low.

This command also changes the number base for the HDATA
column for 8 bit processors.

However, you might have an application for these
inputs, such as reading the data from onboard RAM,
where a hex or decimal display would be more useful.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

The panel only toggles between binary and hex.

EXAMPLES
10 =MBASE
hexadecimal display, the most space efficient
8 =MBASE
selects octal display mode.
A =MBASE
selects decimal display mode.
2 =MBASE
returns to binary display mode.
COMMENTS
The MISC inputs can be connected to any signals you
like.

Note that A, not 10, must be used to specify decimal
ten.

-- Command Reference -- Page 7-22

-~ The Commands --

=SYMBOLS <hex # of Kbytes> =SYMBOLS

Selects the amount of space allowed for symbol tables within the
UniLab software.

USAGE ' ‘
Allows you to change the amount of host RAM dedicated
to storing the symbol table. The maximum is hexadecimal
80 Kbytes (decimal 128).

The new setting will not take effect until you SAVE-
SYS, exit from the UniLab software and start it up
again.

Use ?FREE to find out how much is allocated right now.
WHY CHANGE

You might want to have a larger symbol table, or you
might want to free up some of the host RAM for other

purposes.
EXAMPLE
80 =SYMBOLS ‘ :
allocate the maximum space you can to the symbol
table.
2FREE no parameters

Displays the amount of host RAM allocated to the screen history
and to the symbol table. Also shows how much host RAM is
currently free.

USAGE
Find out how much you can increase the amount of space
dedicated to history or symbol table, or whether you
need to reduce it. See =HISTORY and =SYMBOLS.

July 16, 1986 Page 7-23 -- Command Reference --

-~ The Commands --

ADR <word> ADR
<word> TO <word> ADR

Sets up the trigger specification for analyzer inputs A0 through
A15. (Sets trigger for A0 to A19 if five-digit address ends in a
period.)

USAGE
Determines which 16 bit addresses the analyzer will
trigger on. Can also trigger on 20-bit addresses.

With TO the trigger will occur on the address range
from ADR1 to ADRZ.

If NOT precedes the value(s) of the address, the UniLab
will trigger outside of the specified address or range
of addresses.

All previous entries to the address trigger spec are
erased unless you precede this spec with the word ALSO.

Note that you can inadvertently produce '"cross
products" when making use of ALSO with ADR. See the
fourth example below.

EXAMPLES

NORMT 1023 ADR S
trigger on address 1023. NORMT causes the trigger
to appear at the Top of the trace.

NOT 120 TO 455 ADR S
trigger if address outside 120-455 range.

12345. ADR S
trigger on 20-bit address 12345. The 1 will
appear in right digit of the CONT column.

1200 ADR ALSO 8 ADR
sets the analyzer to trigger when the
address is 1200 or 0008. Because of cross
products, will also trigger on address 0000 and
1208.

(continued on next page)

-- Command Reference -- Page 7-24

-- The Commands --
{continued from previous page)

COMMENTS
ALSO must be used with caution with ADR. Generally you
can use ALSO once, if the high-order byte of the
previous spec and the new one match. To do more than
that you should work with the two bytes of the address
separately using HADR and LADR.

AS is a convenient abbreviation for NORMT ADR S.
You can define a 20-bit address trigger by ending the

number in a period. See ASEG for another approach to
20-bit addresses.

ADR? no parameters

Displays random examples of the addresses seen on the bus--
approximately two every second.

USAGE
This command displays two of the addresses that appear
on the bus each second. A useful command for getting a
rough-grained idea of how the program behaves.

"Terminate the display by pressing any key.

EXAMPLE
ADR?
This command is never used in combination with
anything else.
COMMENTS

Useful for monitoring program flow in a rough manner.
For example, it will be obvious to you 1r the target
program gets stuck in a loop. ADR? turns RESET mode off
and sets up a trigger spec of its own. Be sure to use
NORMx at the start of the first trigger spec after
using this word.

July 16, 1986 Page 7-25 -~ Command Reference --

-- The Commands --

AFTER AFTER <qualifier specification»

Sets the stage for the description of a qualifying event.
Qualifying events are bus states that must be seen before the
analyzer starts to search for the trigger.

USAGE
When you have specified qualifying events, the UnilLab
will not recognize the trigger until after the
"qualifiers" have been seen.

You can set up to three qualifying events. Each
qualifier spec must start with AFTER.

All the qualifiers must appear on the bus one
immediately after another, without intervening bus
cycles. However, the trigger itself can appear anytime
after all the qualifiers have been satisfied.

You cannot use MISC inputs as qualifiers.

DELAYS AND REPETITIONS
You can specify a minimum number of bus cycles after
the time the last qualifier is seen, before the UniLab
starts looking for the trigger. See PCYCLES. The
default is 0 PCYCLES.

"You can also specify a number of complete repetitions
of the sequence of qualifiers. See PEVENTS. The
default is 1 PEVENTS.

Qualifier 3 <--------
]
(immediate) !

(wait PCYCLES. !
Default is 0.) !

!
!
\" !
Qualifier 2 /\
! ! (if PEVENTS
(immediate) ! ! greater
v ! than 1)
Qualifier 1 /1\
1 !
\'4 !
!
!
|

o—
|
[
i
|

v
|
I
I
1
i
1

v
i
1
I
[

Trigger

-- Command Reference -- Page 7-26

-- The Commands -~--
(continued from previous page)
EXAMPLES

NORMT 100 ADR AFTER 535 ADR S
will trigger on address 100 only after address 535
gets seen on the bus.

AFTER 3F DATA S
You can add a second qualifying event-- which must
occur earlier than the first. Now address 535
must be immediately preceded by data 3F hex before
UniLab will look for address 100 on the bus.

NORMT 100 ADR AFTER 535 ADR AFTER 3F DATA S
a single statement with the same result as the two
above.

NORMT AFTER NOT 345 ADR AFTER 344 ADR S
triggers if any address other than 345 follows
immediately after 344. By starting with AFTER we
are able to describe two events which must follow
one another without intervening bus cycles.

COMMENTS
Equivalent results can be obtained by using
<n> QUALIFIERS to set the number of qualifiers. The
four related commands TRIG, Q1, Q2, and Q3 can then be
used to set the various triggers. But AFTER is the
-more natural way to do it.

You will find Q1, etc., handy when you want to "change
context" to alter the description of an event that you
though you had completed.

July 16, 1986 Page 7-27 -~ Command Reference --

-- The Commands --

AHIST

no parameters

Address HISTogram invokes the optional histogram generator that
allows you to display the relative time your target program falls

into each
THIST.

of up to 15 user-specified address ranges. See also

USAGE

MENU

Allows you to examine the performance of your software.
You can find out where your program is spending most of
its time.

Press F10 to exit from this menu-driven feature.

You must (only once) issue the command DOHIST to enable
this optional feature. DOHIST performs a SAVE-SYS, and
then causes an exit to DOS. The next time you call up
the software, both AHIST and THIST will be enabled.

DRIVEN

SAVE

You produce a histogram by first specifying the upper
and lower limits of each address "bin" that you want
displayed, then starting the display.

When you give the command AHIST you get the histogram
screen with the cursor positioned at the first bin.

You can then start typing in the lower and upper limits
of each bin. Use return, tab or an arrow key after you
enter each number, to move to the next entry field.

Press function key 1 (F1) to start displaying the
histogram.

TO A FILE

You can save the setup of a histogram as a file with
the HSAVE <file>. Issue this command after you exit
from the histogram.

You load the histogram back in with HLOAD <file>.
Issue this command before invoking the histogram.

EXAMPLE

AHIST
This command is never used in combination with
anything else.

-- Command Reference -- Page 7-28

-~- The Commands --

ALSO no parameters

Used with both EMENABLE and with trigger specification commands.
Prevents clearing of previous settings.

USAGE
The trigger spec commands, CONT, ADR, DATA, HDATA,
HADR, LADR and MISC, normally cause the UniLab to
trigger on the new conditions instead of the old
conditions. By using ALSO, you can instruct the UniLab
to trigger on the old conditions OR the new conditions.

The memory enable command, EMENABLE, normally enables
only the new settings of memory. By using ALSO, you
can enable both the old range of memory and the new.

Note that you have to use ALSO for each new setting
that you declare. See the second example below.

ALSO is not necessary when you want to trigger on
several different categories. The UniLab will
automatically AND together the specifications in
different categories.

Note that you can inadvertently produce "cross
products" when making use of ALSO with ADR. See ADR.

EXAMPLES

12 DATA ALSO 34 DATA
sets the analyzer to trigger on either 12 or 34
data (without the ALSO only 34 data would remain
set).

10 DATA ALSO 5 DATA ALSO 3 DATA 1200 ADR
sets the analyzer to trigger when the
data is 10 or 5 or 3 and the add. ess is 1200.

0 TO 7FF EMENABLE ALSO 2000 TO 2FFF EMENABLE
enables two ranges of emulation ROM.

COMMENTS .
Applies only to the first EMENABLE or trigger spec
command that follows.

July 16, 1986 Page 7-29 -- Command Reference --

-~ The Commands --

ALT-FKEY <# of key> ALT-FKEY <command>
Assigns a command to an ALTered function key.

USAGE
Reassign the function keys on PCs and PC look-alikes.
Use ALT-FKEY? (or hit F1 while holding down ALT) to
find the current assignments.

The function keys allow you to execute any command or
string of commands with a single keystroke. The
initial assignments represent our best guess at what
you will need. But you might want to change them.

To make your reassignments permanent, use
SAVE-SYS.
EXAMPLE
2 ALT-FKEY WSIZE
assigns WSIZE to ALT-F2.

COMMENTS
To execute a string of commands, define a macro first

(using :) and then assign the macro to the function
“key.

See also FKEY, CTRL-FKEY, and SHIFT-FKEY.

ALT-FKEY? no parameters ALT-F1
Displays the current assignments of the ALT¢<red function keys.

USAGE
Whenever you want to be reminded what command will be

executed when you press a function key while holding
down the ALT key.

See ALT-FKEY to reassign the keys.

-- Command Reference -- Page 7-30

-- The Commands --

AS <addr> AS

An abbreviation for NORMT ADR S.

USAGE
Defines an analyzer trigger spec, and starts the
analyzer working. The trigger event appears near the
top of the trace as cycle zero. A useful abbreviation-
- saves you key strokes. When entering the most common
trigger spec-- triggering on a code address.

Will not work on ranges of addresses (with TO) or with
NOT.

EXAMPLE

1234 AS
triggers when address is 1234

COMMENTS
The macro definition of this command:
: AS NORMT ADR S ;

July 16, 1986 Page 7-31 -- Command Reference --

~- The Commands --

ASC no parameters SHIFT-F4
Displays the handy reference ASCII table.

USAGE

Shows each character, along with its decimal and hex
value.

EXAMPLE

ASC
This command is never used in combination with
anything else.

COMMENTS
This is a bonus feature provided to save you the
trouble of hunting for a printed ASCII table.

-- Command Reference -- Page 7-32

-~ The Commands --

ASEG <hex digit> ASEG RARELY USED

Sets a trigger spec on address bits A16-A19. Note that ASEG
cannot be used with NOT, ALSO, or TO.

USAGE
Normally, you set a trigger address with ADR, either a
16 bit or 20-bit address. This command allows you to
set a trigger on the upper 4 bits of the 20 bit
address. See =EMSEG for a longer discussion of the
addressing scheme of the UniLab.

EXAMPLES
5 ASEG
requires a hex value of 5 on A16-A19 for trigger.
COMMENTS

Normally useful only if you have over 64K of memory in
your target system. Even then, a better way to define
a trigger on a 5-digit address is just to enter the
5-digit address ending in a period followed by ADR.

The command "n ASEG" has the same effect as "F MASK n
CONT."

July 16, 1986 Page 7-33 ~-- Command Reference --

~- The Commands --

ASM

<address> ASM <instruction>

Invokes the processor-specific assembler.

USAGE

Patch assembly language code to the given address in
emulation ROM. Allows you to overwrite locations in
the copy of your target program residing in the
UniLab's emulation ROM, so that you can quickly fix
bugs when you find them. Note that the assembler
writes over memory-- it does not insert instructions.

If you do not include the address, ASM will refer to
the current value stored by the ORG command.

ASSEMBLING MULTIPLE INSTRUCTIONS

If you do not include an assembly language instruction,
then ASM will give you as a prompt the address to which
it is assembling, and wait for you to give it an
instruction followed by a carriage return.

The assembler will continue to prompt you with an
address and patch assembled code into memory, until you
feed a blank line (hit return on an empty line).

CONVENTIONS

The on-line assembler will only accept assembly

" language instructions, not ORIGIN statements or EQU

BASE

statements. (You should use the UnilLab command IS to
define symbols.)

Only one instruction per line.

The normal conventions of assembly language apply. For
example, at least one space between the instruction and
the operands.

The default number base is hexadecimal, as it is
throughout the UnilLab software. You can change the
base by storing a new value in the variable BASE. For
example, to change to decimal base type in:

A BASE !

(continued on next page)

-- Command Reference -- Page 7-34

-- The Commands --

EXAMPLES

0 ASM LD SP,3000
alters the first instruction of the LTARG program

of the Z80 package.

100 ASM
invokes the assembler, starting at address 100.

The assembler will prompt you with that same
address, and wait for you to enter an assembly

language instruction.

July 16, 1986 Page 7-35 -- Command Reference --

-- The Commands --

ASM-FILE <addr> <start screen> <end screen> ASM-FILE

Invokes a version of the on-line assembler that assembles code
contained on the screens of a FORTH file.

USAGE
A way to make large patches to your program, or to
write prototype code without leaving the UniLab
environment-- or just to write a few lines that you
will want to be able to edit and re-enter.

ASM-FILE follows the same conventions as ASM.

You can include comments on a screen by putting a
semicolon (;) on a line. The assembler will ignore
everything after the semicolon on that line. The
semicolon must be the first character on the line, or
be preceded by at least one space.

FORTH FILES AND THE EDITOR
If you only have a few lines of code, you can use the
screen that MEMO puts you into, and the two following
(screens 1D through 1F). See the entry for MEMO to get
a few pointers on using the FORTH screen editor.

OPENING A NEW FILE
You will want to put the code into a file of its own if
you have many lines of code, or if you want a more
convenient way to archive the code.

First close the current file (UniLab.SCR) with the
command CLOSE.

Next create a new file with OPEN-NEW <file name>, and
determine its size with <# of screens> SCREENS (1K
allocated per screen). Use the command <screen #> EDIT
to get into the file. Don't make use of screen zero.

You will then be able to use ASM-I'ILE to assemble the
code stored in your new file.

When you are done with assembling, use OPEN UNILAB.SCR
to close your file and re-open the UniLab.SCR file. If
you don't do this, then some of the on-line help
facilities and error messages will not work.

(continued on next page)

-- Command Reference -- Page 7-36

-- The Commands --
{continued from previous page)
EXAMPLES

1200 1D 1F ASM-FILE
loads assembly code, starting at address 1200,
from screens 1D through 1F of the currently opened
FORTH file.

1 4 ASM-FILE
loads code from screens 1 through 4, starting at
the current value of ORG.

AUX1 no parameters

Tells the host computer to look for the UniLab on serial port 1.
This is the normal default condition.

AUX2 no parameters

Tells the host computer to look for the UniLab on serial port 2.
Use this command if you can't get the UniLab to initialize.

July 16, 1986 Page 7-37 -- Command Reference --

-~ The Commands --

B# B# <binary number>
Interprets the number following as a binary number.

USAGE
Useful when you want to input a number as a binary--
saves time with pencil and paper. Quick, what is the
hex value of a number with 1 at locations 0, 3, 7, 9
and 10?2 Let the computer do that work for you.

EXAMPLES

B# 0101010001001
has the same effect as entering 0A89H

NORMT B# 1111110 MISC S
will trigger when the MISC inputs are 11111110

COMMENTS
Changes the base to binary, just for the next number.
Allows entering numbers in binary format, just as D#
allows decimal format.

B. <hexadecimal number> B.
Displays the hex number as a binary number.
USAGE

When you want to find out the binary equivalent of a
hex number, saves you time with pencil and paper.

EXAMPLE

A89 B.
displays the binary equivalent of A89, which is
0101010001001.

-- Command Reference -- Page 7-38

-- The Commands --

BINLOAD <from addr> <to addr> BINLOAD <filename>

Loads a binary file from disk into emulation memory. Prompts you
for the name of the file if you don't include it on the command
line.

USAGE
Starts loading a binary file into the from addr. Stops
loading at the to addr, or when end of file is reached.
The binary file should contain a program. Can be used
to load the product of a cross compiler into emulation
memory.

This command fully supports DOS pathnames.

You can save a program to a file with BINSAVE.

EXAMPLE

0 400 BINLOAD \ASM\MAIN.BIN
loads a binary DOS file, starting at location 0
and ending at location 400.

COMMENTS
Loads exact binary contents of file until DOS indicates
end of file, or the "to address" is reached. If you
don't know the ending address, you can just enter FFFF
as toadr and loading will stop on end-of-file.

As with all memory writing commands, don't write into
your stack area when loading into RAM.

Use with .COM,.BIN, or .TSK files. See HEXLOAD for
Intel Hex files.

You can use the DOS command EXE2BIN to convert .EXE
files into .BIN files.

The system can load to target RAM-- if debug control
has been established (see RB).

July 16, 1986 Page 7-39 -- Command Reference --

-~ The Commands --

BINSAVE <1st addr> <2nd addr> BINSAVE <file name>

Saves the specified section of memory as a file. Prompts you for
the file name if you do not include it.

USAGE
This command saves the program memory to disk. Saves
everything in memory between the first address and the
second address.

This command fully supports DOS pathnames.

EXAMPLE

100 4FF BINSAVE
saves target locations 100 - 4FF.

COMMENTS
Saves exact binary contents of a range of target memory
as a named file. This file can later be re-loaded with
the BINLOAD command.

Can save from target RAM, but only if debug control has
been established. See RB.

-- Command Reference -- Page 7-40

~- The Commands --

BPEX BPEX <macro name>

Executes the specified macro at each breakpoint, after the
register display.

USAGE
Allows you to automatically execute any command or
group of commands, at every breakpoint. You must first
define a macro, or use one of the pre-defined Orion
command words.

BPEX will not accept a string of commands, only the
first word that follows. This means that only certain
commands are suitable-- those that require no
parameters. In the example below, we first write a
macro that requires no parameters, called SEE-RAM.
Notice that SEE-RAM makes a call to MDUMP, which does
require parameters.

See : for more info on macros.

TURN IT OFF
To turn off the automatic execution use BPEX NOOP.

EXAMPLES

: SEE-RAM 8000 8080 MDUMP ;
defines a macro called SEE-RAM which dumps out 80
memory locations.

BPEX SEE-RAM
executes your macro at every subsequent
breakpoint.

COMMENTS
Available only with debugger packages. Useful if, for
example, you want to watch a memory window as you
single step through the program.

Note that you must define a macro first because BPEX
patches in only the single word following it.

July 16, 1986 Page 7-41 -~ Command Reference --

-~ The Commands --

BYE no parameters
Exits from UniLab program.

USAGE
To return to DOS. Use SAVE-SYS first, if you want to
save the current state of the system.

Use DOS instead if you want to execute just a few DOS
commands and then return to the UniLab program.

EXAMPLE

BYE

This command never used in combination with
anything else,

CATALOG no parameters

Displays a directory of all the available pinouts-- the proper
cable hook-ups for each microprocessor.

USAGE
Once this word is entered, any of the listed pinouts
can be displayed on the screen.

This word "opens" the pinout library. It closes again
as soon as you enter another command.

Until you use this command, the only pinout diagram
available is that of the mp you are using. You get
that with the command PINOUT.

-~ Command Reference -- Page 7-42

~- The Commands --

CKSUM <from addr> <to addr> CKSUM

Calculates the checksum for a given range of memory. Useful for
error-checking.

USAGE
A good way to make a PROM easy to check for burn-in
errors, or corrupted locations. Allows you to record
the checksum of your program-- or better yet, make the
checksum equal to zero.

EXAMPLE

800 FFF CKSUM

prints a 16-bit checksum for the data in addresses
800-FFF

COMMENTS
You may want to patch the complement of this value into
your PROM, You can produce a PROM with a checksum of
zero, using the following method, which sacrifices only
two bytes.

First store zero where the checksum will be

(0 FFE MM! in the above example). Second, find the

o checksum, using CKSUM. Lastly, patch in the complement
’ of the sum.

‘(\:x e

For example, if the sum is 1234, then use the command
-1234 FFE MM!. The resulting PROM will have a checksum
of 0.

July 16, 1986 Page 7-43 -- Command Reference --

-~ The Commands --

CLEAR no parameters

Clears the screen before performing a PgUp. Use with some of the
older color monitor cards, that will otherwise flicker when you
use PgUp.

CLEAR"' no parameters

The normal default condition-- the screen is not cleared before a
PgUp is executed. Use only to restore the default condition
after executing a CLEAR.

-- Command Reference -- Page 7-44

-~ The Commands --

CLRMBP no parameters
Clears all multiple breakpoints.
USAGE

Use to wipe the slate clean, and start out setting
in.

multiple breakpoints aga SMBP sets the breakpoints.

EXAMPLE
CLRMBP
This command never used in combination with
anything else,
COMMENTS

Use to clear all the numbered breakpoints which you set
with SMBP and can clear one at a time with RMBP.

July 16, 1986 Page 7-45 -- Command Reference --

-~ The Commands --

CLRSYM no parameters
Clears out the current symbol table.

USAGE
When you want to get rid of the symbols that you have
defined for your program. It's a good idea to first
save the symbols, just in case you decide you want
those symbols after all. See SYMSAVE.

The symbol table also gets cleared by SYMFILE and
SYMLOAD before they load in the new symbols. SYMFILE+
adds to the existing symbol table.

Unless you save the symbols, you cannot recover them
later. You could instead use SYMB', which turns off
the symbol table without erasing it.

EXAMPLE
CLRSYM
This command never used in combination with
anything else.
COMMENTS

You might want to clear out the table before loading in
a new one from a file., See SYMFILE and SYMLOAD.

-~ Command Reference -- Page 7-46

-- The Commands --

COLOR no parameters
Displays in color. Only has an effect with a color monitor.

USAGE
Turns on color display.

You have to save the system afterward, if you want the
UniLab program to start up with color display.

CHANGING COLORS
Use the UniLab command SET-COLOR, which shows you what
the new settings are as you change them.

You will have to save the system with SAVE-SYS if you
want to preserve the new colors.

EXAMPLES
COLOR

This command never used in combination with
anything else.

July 16, 1986 Page 7-47 -- Command Reference --

-~ The Commands --

CcoM1

no parameters

Enables dumb terminal emulation mode, using serial communications
port 1 of your personal computer. This is the port normally used
by the UniLab.

USAGE
Allows you to use your PC as a dumb terminal while
within the Unilab software. Press the ESCape key to
exit.

COMMUNICATION SETTINGS
The default settings are:
300 baud
8 bits, 2 stop bits, no parity.

CHANGING SETTINGS
You can change these settings by changing the values
stored in two constants, BR2 (Baud Rate) and LCR2 (Line
Control Register: bits per character, etc.).

Put the value 60 into BR2 to change to 1200 baud:
60 ' BR2 !

You may miss characters at 1200 baud, due to the screen
scroll times. Put a 180 into BR2 to change back to

300 baud.
You can change to 7 bits, 2 stop bits with:
6 ' LCR2 !
TABLE OF SETTINGS
bits parity #stop bits value to store at LCR2
7 None 1 2
7 None 2 6
7 odd 1 A
7 odd 2 E
7 Even 1 1A
7 Even 2 1B
8 None 1 3
8 None 2 7
8 0dd 1 B
8 0dd 2 F
8 Even 1 1B
8 Even 2 1F

(continued on next page)

-- Command Reference ~- Page 7-48

-- The Commands --

(continued from previous page)

To change to 5 or 6 bits per character look at the
information on the Line Control Register of the INS8250
in a reference manual on that chip, or in the Hardware
Technical Reference Manual for your computer.

coM2 no parameters

Enables dumb terminal emulation mode, using serial communications
port 2 of your personal computer. See the entry for COM1 for
details.

USAGE
Allows you to use your PC as a dumb terminal while

within the UnilLab software. Press the ESCape key to
exit.

Change the communications settings the exact same way
that you do for COM1.

July 16, 1986 Page 7-49 -~ Command Reference --

-- The Commands --

CONT <byte> CONT
<byte> TO <byte> CONT
<byte> MASK <byte> CONT

Sets up the analyzer trigger spec for the CONT inputs (control
lines C4 - C7, and A16 - A19).

USAGE
The CONT input lines actually represent two different
types of information. The upper four bits represent
the processor cycle type. The lower four bits come
from the four highest address lines, A16 through A19.

When you precede it with one number, CONT causes the
UniLab to trigger when the inputs equal that number.
When you use TO the UniLab triggers on any value from m
to n. NOT causes the UniLab to trigger when the value
falls outside of the specified range or value.

You can use k MASK 1 to examine any subset of the 8
input lines. See Comments below for more details.

Unless you use ALSO the previous trigger spec gets
cleared out.

EXAMPLES

B# 00011111 CONT
requires C7-C5 = 0, C4 & A19-A16 = 1.

70 TO 7F CONT
requires C7=0 and C6-C4 = 1, A19-A16 any value.

F MASK 3 CONT
requires A19 & A18 = 0, A17 & A16
value.

1, C7-C4 any

(continued on next page)

-- Command Reference -- Page 7-50

-- The Commands --
(continued from previous page)

COMMENTS
The low four bits of the CONT lines refer to the
highest four bits of the address-- the same segment
address bits set by =EMSEG.

When you use the command k MASK 1 CONT, the value of k
determines which bits the UniLab will examine-- the
bits with a value of one. The 1 then indicates the
value those lines must have before trigger occurs. For
example, FO MASK FF tells the UniLab to only look at
the upper 4 bits of the CONT lines. The AF tells the
UniLab to trigger when bits 7 and 5 are high while bits
6 and 4 are low. Note that the UniLab will not care
about the value of the lower four bits.

July 16, 1986 Page 7-51 -- Command Reference --

-~ The Commands --

CONTROL no parameters RARELY USED

Used before FILTER to set up a filter spec based only on the CONT
inputs.

USAGE -- RARELY USED
You will probably never use this command. Triggers on
the full specification, but filters based only on the 8
bits of the CONT inputs.

The filter mechanism of the UniLab gets turned on for
you by the xAFTER macros. Those commands set the
filter to MISC' FILTER, which allows you to set up a
trigger spec based on all inputs except for the
MISCellaneous wires.

See also HDAT and MISC.

THE CONT INPUTS
The upper four bits identify processor cycle type,
while the lower four bits identify the address bits
A19-A16.

This command makes it possible to filter on cycle type
and on memory segments.

EXAMPLE

NORMT CONTROL FILTER WRITE 1200 ADR A7 DEVENTS S
triggers on 1200 address, and then records only
writes. Note that you have to use DEVENTS to get
a trace buffer full of the event you are filtering
on,

-- Command Reference -- Page 7-52

-~ The Commands --

CTRL-FKEY <# of key> CTRL-FKEY <command>

Assigns a command to a function key hit while the CTRL key is
held down.

USAGE
Reassign the function keys on PCs and PC look-alikes.
Use CTRL-FKEY? (or CTRL-F1) to find the current
assignments.

The function keys allow you to execute any command or
string of commands with a single keystroke. The
initial assignments represent our best guess at what
you will need. But you might want to change them.

To make your reassignments permanent, use
SAVE-SYS.
EXAMPLE
5 CTRL-FKEY DOS
assigns DOS to CTRL-F5.

COMMENTS
To execute a string of commands, define a macro first
(using :) and then assign the macro to the function
key.

See also FKEY, ALT-FKEY, and SHIFT-FKEY.

CTRL-FKEY? no parameters CTRL-F1
Displays the current assignments of the ConTroLled function keys.
USAGE
Whenever you want to be reminded what command will be
executed when you press a function key while holding
down the CTRL key.

See CTRL-FKEY to reassign the keys.

July 16, 1986 Page 7-53 -- Command Reference --

-~ The Commands --

CYCLES? <from addr> <to addr> CYCLES?
Counts the number of bus cycles between two addresses.

USAGE
Can use to count the number of bus cycles in a loop, as
in the first example below, or the "distance" between
two addresses.

BUS CYCLE COUNT
Not the number of machine cycles, nor the number of
instructions fetched, but instead the number of reads
and writes that occur between one command and another.
The read could be instruction fetches, or could be data
fetches.

EXAMPLES

123 123 CYCLES?
counts cycles between two occurrences of the
address 123.

123 456 CYCLES?
counts cycles between address 123 and address 456.

12300. 12450. CYCLES?
counts cycles between address 12300 and address
12450.

COMMENTS
Useful for checking quickly whether a loop works as you
intended. CYCLES? makes its own trigger spec, so you
will have to start fresh on your trigger after using
this command. Use one of the NORMx commands to clear
out the trigger spec set by CYCLES?.

When specifying a five-digit address, the . which
designates a five-digit address must be used with both
addresses.

-- Command Reference -- Page 7-54

-~ The Commands --

D# D# <decimal number>

Treats the number that follows as a decimal value, rather than as
a hexadecimal, which is the default.

USAGE
Saves you the trouble of converting the number by hand
or with a calculator.

EXAMPLES
D# 16 ADR
equivalent to entering "10 ADR".
D# 32 .
will display 20 (the hex equivalent of 32
decimal).
D# 135 B.
converts a number from decimal to binary.
D# 1000 MS
will pause 1 second.
COMMENTS

See also B# for entering binary numbers.

July 16, 1986 Page 7-55 -~ Command Reference --

-- The Commands --

DASM no parameters F8
Enables the trace disassembler.

USAGE
Turns on the translation of machine code into assembly
language mnemonics. You will usually want to keep this
on, only turning it off for special applications such
as XAFTER. To turn off the disassembler, use DASM'.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

EXAMPLE

DASM
selects disassembled mode for trace display.

COMMENTS
Works only if you have an optional disassembler

installed.

-- Command Reference -- Page 7-56

~- The Commands --

DASM' no parameters F8
Disables the trace disassembler.

USAGE
Turns off the translation of hexadecimal machine codes

into assembly language mnemonics. See DASM above for
more details.

Typically you will use the MODE panel (function key 8)
when you want to change this feature.

EXAMPLE

DASM' selects hex mode for trace display.

July 16, 1986 Page 7-57 -- Command Reference --

-- The Commands --

DATA <byte> DATA
<byte> TO <byte> DATA
<byte> MASK <byte> DATA

Changes the analyzer trigger for the DATA inputs (DO to D7).

THE DATA INPUTS:
The UniLab gets both the address and the data from the
bus during each memory read and write. The "data" that
appears on the bus could be either a value or a machine
code instruction. See COMMENTS below for information
on triggering on a 16-bit data bus.

USAGE
The simplest use sets up a trigger for a single data
value. The UniLab will search for the byte value, and
trigger when it sees that hex number on the bus as
data. See the first example below.

RANGES OF DATA:
TO lets you set up a trigger on any data between two
byte values, inclusive. See the second example below.

NOT
NOT causes the UniLab to trigger when the value falls
outside the specified range or value.

MASKING

You can use k MASK 1 DATA to examine any subset of the
8 data lines. The high bits of k mark which bits will
be examined, while the bit configuration of byte 1
indicates the values the lines must have for a trigger
to occur.

For example, 80 MASK FF DATA selects only the highest
data bit for examination (with binary value 1000 0000).
The UniLab would trigger when this bit has a high
value. Note that the instruction 80 MASK 80 DATA would
have the same effect.

(DATA continued on next page)

-- Command Reference -- Page 7-58

-- The Commands --

EXAMPLES

NORMT 12 DATA S
after clearing all previous settings with NORMT,
sets up a trigger for data input 12, and then uses
S to start the analyzer.

12 TO 34 DATA
requires data value between 12 and 34 hex.

FO MASK 30 DATA
sets a trigger based only on the four highest bits
of data. UniLab will look for a 3 on those lines.

23 DATA ALSO 45 DATA

sets a trigger on cycles where data is either 23
or 45 hex.

COMMENTS
The data inputs (D0-D7) are normally connected via the
emulator cable at the ROM socket. On 16-bit processors
DATA is only half of the data bus, while HDATA is the
other half.

If you need to use a large number of ALSO terms, then
see NDATA.

July 16, 1986 Page 7-59 -- Command Reference --

-~ The Commands --

DCYCLES <number of cycles> DCYCLES

Sets number of cycles the UniLab will continue to record after
the trigger.

USAGE
When the UniLab sees the trigger event on the target
board, it consults the delay cycles variable to
determine how many more cycles to record. Each time a
new cycle enters the trace buffer you lose the oldest
recorded cycle. After the UniLab records the specified
number of cycles, it shows the trace buffer on the
screen.

WHY YOU DON'T NEED TO BOTHER
This command gets executed by a number of other
commands. NORMT, for example, sets the delay value to
A0 (160 decimal). That delay count puts the trigger
event near the top of the trace buffer, after the ten
cycles that came just before it.

WHY YOU MIGHT WANT TO
You might want to see the trace starting 260 cycles
after a known event-- perhaps you don't know where the
program ends up at that time. The DCYCLES command will
do the job perfectly.

EXAMPLE

104 DCYCLES
selects 104 (hex) delay cycles (260 decimal)

COMMENTS
NORMT, NORMM, and NORMB select A0, 55, and 4 DCYCLES
respectively. S+ increases the number of delay cycles
by A6, so you can see what happens after the end of the
current trace.

The maximum possible delay count is FFFF.

-- Command Reference -- Page 7-60

-- The Commands --

DEF no parameters F5

Returns the window to the size last set with WSIZE, or to the
default if you have not changed the window size.

USAGE
The help screens readjust the window size, to make the
lower window as large as possible without overwriting
the information in the upper window. After you have
used a help screen, you might want to return the
DEFault window size. Just press Function key 5.

SAVING A DEFAULT
You can use SAVE-SYS to save all the current settings

at any time. :

EXAMPLES

DEF
This command never used in combination with

anything else.

July 16, 1986 Page 7-61 -- Command Reference --

-- The Commands --

DM <start address> <count> DM

Disassembles <count> number of lines, starting at the given
address.

USAGE
Allows you to check that emulation memory has the
proper data stored in it, and that the trace shows the
same instructions as the stored program.

See also DN.

EXAMPLE
100 10 DM
disassembles 10 lines starting at address 100
COMMENTS

Normally disassembles from ROM. Works only if you have
an optional disassembler. Can disassemble from target
RAM once debugger has control. See RB.

DMBP no parameters
Displays the settings of all eight multiple breakpoints.

USAGE
When you forget the settings of your multiple
breakpoints. Automatically executed whenever you set
one of the 8 multiple breakpoints with SMBP.

EXAMPLES

DMBP
This command never used in combination with
anything else.

-- Command Reference -- Page 7-62

-- The Commands --

DN <start address> DN

Disassembles the number of lines necessary to fill the right-hand
side of current window.

USAGE
When you want to see your code, and keep it on the
screen while looking at a trace. This command is
similar to DM.

EXAMPLES

20F0 DN
Fills the right side of the current window with
assembly language code, starting from address
20F0.

July 16, 1986 Page 7-63 -- Command Reference --

~~ The Commands --

DOS DOS <DOS command>

Execute a DOS command from the UniLab program.
Or, use with no parameters to exit to DOS temporarily. Return to
UniLab program by typing EXIT.

USAGE
When you forget the name of the file where you stored
that program, or have any other reason to use the DOS
utilities. You can either execute a single command, or
you can go to DOS and execute a series of commands.

If you go to DOS, you can re-enter the UniLab program.
Return to the Unilab program by typing EXIT at the DOS
prompt (A> or B> or C»).

If you use BYE to exit the UniLab program, you have to
start it up again by typing ULxx at the DOS prompt.

EXAMPLES
DOS DIR /w
Executes the DOS command "DIR /w."
DOS

Allows you to execute any series of DOS commands,
then return to the UniLab program.

DOS ASMB SOURCE.ASM OBJECT.BIN
Assembles a new version of the program you are
working on.

-~ Command Reference -- Page 7-64

-- The Commands --

EMCLR no parameters

Tells the UnilLab not to emulate ROM-- clears out the emulation
memory settings.

USAGE
Commands the UniLab to not respond to any
microprocessor requests for data or instructions. Use
only when you want to run a program from on-board ROM.

Before you can run a program from a ROM chip on your
board, you will need to disable the debugger. Use the
SWI VECTOR choice on the mode panel(F8) or RSP'.

Note that you can use the PROM READER MENU (F9 from the
MAIN MENU) to read a program into emulation memory from
a ROM chip.

EXAMPLE
EMCLR

This command never used in combination with
anything else.

July 16, 1986 Page 7-65 ~-- Command Reference --

-- The Commands --

EMENABLE <address> EMENABLE
<from address> TO <to address> EMENABLE

Enables emulation memory, needed before you can load in a
program. But first, set =EMSEG properly.

USAGE
With a single address, enables the 2K memory region
that includes the given address. Note that =EMSEG
just sets a variable in the host's memory, while
EMENABLE sends all the information to the UnilLab.

You can use SAVE-SYS to make the current settings
permanent.

ON RANGES OF ADDRESSES
TO enables the emulation memory from the beginning of
the 2K segment that includes the <from> address to the
end of the 2K segment that the <to> address is in.

CLEARING PREVIOUS SETTINGS
Unless you precede emulation statement with ALSO,
clears out previous EMENABLE statements.

WATCH OUT
When you try to emulate two separate ranges of memory,
you can accidentally overlay the two. For example,
with a 32K UniLab, 0 and 8000 reference the same memory
location in the UniLab.

Of course, you can enable areas that do not overlap.
For example, 0 TO 3FFF and also C000 TO FFFF would not
conflict.
EXAMPLES
F =EMSEG O EMENABLE
enables target addresses 0-7FF with A16-19 all set
high.

0 TO 1FFF EMENABLE ALSO FFFF EMENABLE
enables 0-1FFF and F800-FFFF

F =EMSEG O EMENABLE ALSO E =EMSEG O EMENABLE
enables locations FOOOO - FO7FF and EOOQOOO - EQ7FF

{continued on next page)

-- Command Reference -- Page 7-66

-- The Commands --

COMMENTS

The UnilLab's enable logic first compares the A16-A19
value from the most recent =EMSEG statement with the
present bus address. Address inputs A11-A15 then get
compared to an enable map, where each entry corresponds

to a 2K segment of memory. When both the segment and
the 2K block are enabled, the UniLab accepts the

e e T A

address, and puts its data on the bus.

July 16,

1986 Page 7-67 ~-- Command Reference --

-~ The Commands --

ESTAT no parameters
Tells you the current status of emulation memory.
USAGE

When you want to find out what range of addresses is
currently enabled.

EXAMPLES

ESTAT
This command never used in combination with
anything else.

~-- Command Reference -- Page 7-68

-- The Commands --

EVENTS? no parameters

Starts the analyzer and counts occurrences of the currently
defined trigger event.

USAGE
Useful for monitoring occurrences that you don't need a
trace of. An excellent way to see whether the program
does what it should. If the program messes up
spectacularly, or performs flawlessly, then this
command will show you that.

Otherwise, you're left in the dark.

EXAMPLES

NORMT 123 ADR EVENTS?
counts occurrences of address 123.

NORMT 123 ADR FF DATA EVENTS?

counts occurrences of data FF when the address is
123.

NORMT WRITE 78 TO FF DATA 1210 ADR EVENTS?
Counts the number of times a data value greater
than 78 gets written to location 1210.

COMMENTS
You can also count such things as error conditions or
system usage.

You can use this command if you want to sync a scope on
the UniLab's test point output.

July 16, 1986 Page 7-69 -- Command Reference --

~- The Commands --

FETCH no parameters

Tells the UniLab to look for trigger event only during fetch
cycles.

USAGE
To search for a particular opcode. After you give it
this command, the UniLab will not look for the trigger
event during reads or writes.

This command is not available on all processors.

This command is used as part of a trigger spec, as
shown in the examples below.

EXAMPLES

NORMT FETCH 120 ADR S
triggers when the program fetches from address
120.

NORMT FETCH NOT 0 TO 7FF ADR S
triggers if the program tries to fetch an
instruction from outside the 0 to 7FF range.

COMMENTS
This command, loaded with the disassembler, specifies a
range of CONT values corresponding to fetch cycles.

-- Command Reference -- Page 7-70

-- The Commands --

FILTER no parameters RARELY USED

Selects trace filtering mode, according to previous
word: CONTROL, HDAT, or MISC'.

WHY YOU DON'T NEED TO BOTHER
For most filtering of the trace, you will use commands
such as ONLY or xAFTER. These words automatically

select the MISC' filtering mode for you. The NORMx
words turn off filtering.

You can use this command to set up a filter spec that

is different from your trigger spec. This is sometimes
a very useful thing to be able to do.

EXAMPLE

NORMT CONTROL FILTER READ 1200 ADR A7 DEVENTS S
triggers when the processor reads from address
1200-- then produces a filtered trace of the A7
(hex) read cycles that occur after that.

COMMENTS

You would want to bother when inventing your own
filtering command.

July 16, 1986 Page 7-71 -- Command Reference --

-~ The Commands --

FKEY <# of key> FKEY <command>
Assigns a command to a function key.

USAGE
Reassign the function keys on PCs and PC look-alikes.
Use FKEY? (or F1) to find the current assignments.

The function keys allow you to execute any command or
string of commands with a single keystroke. The
initial assignments represent our best guess at what
you will need. But you might want to change them.

Note that you have to use "A" (hexadecimal) as the
number to assign a command to F10.

To make your reassignments permanent, use
SAVE-SYS.

EXAMPLE

2 FKEY STARTUP
assigns STARTUP to the F9 key.

COMMENTS

If you find yourself performing some one action
repeatedly, you can save time by making it into a macro
and then assigning it to a function key. For example

: DUMP100 0 100 MDUMP ;

6 FKEY DUMP100
will allow you to dump locations 0 to 100 by pressing
function key 6.

See also ALT-FKEY, CTRL-FKEY, and SHIFT-FKEY.

-~ Command Reference -- Page 7-72

-~ The Commands --

FKEY? no parameters 1
Displays the current function key assignments.
USAGE
Whenever you want to be reminded what pressing a

function key will do for you.

See FKEY to reassign the keys.

EXAMPLES

FKEY?
This command never used in combination with
anything else.

July 16, 1986 Page 7-73 -- Command Reference --

-~ The Commands --

G <address> G

Goes to the indicated address. Exits debugger, lets the target
run.

USAGE
After you have set a breakpoint, and want to release
debug control and let the target run. G is one of
several ways to do this.

G just gets the target board going. After that, you
can enter a trigger spec and restart the analyzer, or
you can use one of the "big picture" words: ADR?, SAMP,
or NOW?.

You could instead use STARTUP to restart the analyzer
and the board at the same time. Or use NORMx followed
by a trigger specification and S, to restart the
analyzer and give you a trace of the event that you
describe.

EXAMPLE
1030 G
exits from debug control, and resumes the target
program at location 1030.
COMMENTS

Appropriate only if you have an optional debugger and
have established control by entering RESET adr RB, or
NMI. You can return to any point in the program you
like, but debug control will be lost.

Use GB if you wish to resume the program at an address
different from the one you are stopped at but with
another breakpoint set.

-- Command Reference -- Page 7-74

-~ The Commands --

GB <addr to go to> <bpoint addr> GB

Goes to the first address, and starts executing code, with a
breakpoint set at the second address.

USAGE
When you want to move around the program without losing
debug control.

EXAMPLES
1200 330 GB
resumes the program at address 1200, with a
breakpoint set at 330.
COMMENTS

Available only if you have an optional debugger and
have established debug control. See RB to establish
debugger control.

July 16, 1986 Page 7-75 -- Command Reference --

~- The Commands --

GW <address> GW

Goes to the indicated address and waits until the analyzer is
started. Releases the target board from debugger control.

USAGE
To continue the execution of the program, starting at
the given address, after a new trigger spec has been
defined.

A rather specialized but very useful command.

EXAMPLE

1100 GW NORMT 1200 ADR S
Goes to address 1100 and waits for the analyzer to
be started. The trigger spec command sets the
analyzer to capture a trace showing the code at
address 1200.

-- Command Reference -- Page 7-76

-- The Commands --

H>D <hex number> H>D
Displays the decimal equivalent of a hex number.

USAGE
Shows you the decimal equivalent-- compare this with
D#, which allows you to enter a decimal number that
will then be used by the next command.

This word is similar to B. which shows you the binary
equivalent of a hex number.

EXAMPLE

10 H>D
will cause "16" to be displayed.

333 133 - H>D
will display "512," which is the decimal

equivalent of 333 minus 133 (hex).

July 16, 1986 Page 7-77 -- Command Reference --

-- The Commands --

HADR

RARELY USED < byte > HADR
< byte > TO < byte > HADR
< byte > MASK < byte > HADR

Changes the analyzer trigger for the high-order byte of the 16-
bit address (A8-A15).

THE ADDRESS INPUTS

You should normally use ADR to set 16 or 20 bits at
once, but there are limits to the use of ALSO in
combination with ADR.

The UniLab gets both the address and the data from the
bus during each bus cycle. The UniLab works with up to
20-bit addresses. You can change the trigger
specification of the least significant byte with LADR,
the second byte with this command, and the high four
bytes with CONT or ASEG.

USAGE

You can use this trigger spec command in the same way
you use DATA, CONT, etc.. However, the most frequent
use of this command is to set up a trigger spec on the
address lines that makes use of many calls to ALSO.

EXAMPLES

NORMT 12 HADR ALSO 34 LADR ALSO 10 LADR ALSO 5 LADR
sets up the analyzer to trigger on any of the
addresses 1234, 1210 or 1205,

COMMENTS

Makes it possible to treat the first two bytes of the
address separately. LADR is the lower half.

-- Command Reference -- Page 7-78

-- The Commands --

HDAT no parameters RARELY USED

Used before FILTER to set up a filter spec based only on the high
byte of the DATA inputs (D8 - D15).

USAGE -- RARELY USED
You will probably never use this command. Triggers on
the full specification, but filters based only on the 8
bits D8 through D15.

The filter mechanism of the UniLab gets turned on for
you by the xAFTER macros. Those commands set the
filter to MISC' FILTER, which allows you to set up a
trigger spec based on all inputs except for the
MISCellaneous wires.

See also CONTROL and MISC.

THE HIGH DATA INPUTS
These lines read from the high byte of the 16-bit data
path of 16-bit processors. On 8-bit processors, the
lines can be left to float, or be used to sense other
logic signals on your target board.

USAGE
Used to show only the cycles that meet your
description. While deciding whether to include the
current cycle in a filtered trace, the UniLab will
check only these 8 bits of the 48 inputs.

A good way to look at all the bus cycles that have some
specific data value as the upper byte of data.

EXAMPLE

NORMT HDAT FILTER 80 TO FF HDATA 3410 ADR A7 DEVENTS S
will give a trace showing only those cycles with
D15 high, starting with the bus cycle that has D15
high and address 3410. Note that you have to use
DEVENTS to get a trace full of the event you are
filtering on.

July 16, 1986 Page 7-79 -~ Command Reference --

—~- The Commands --

HDATA
Changes th
path (D8 t

< byte > HDATA
< byte > TO < byte > HDATA
< byte > MASK < byte > HDATA
e analyzer trigger for the high byte of 16-bit data
hrough D15). Spare inputs on 8-bit processors.

THE DATA INPUTS

The UniLab gets both the address and the data from the
bus during each bus cycle. The "data" that appears on
the bus could be either a value or a machine code
instruction. On 8-bit processors the inputs D8 through
D15 can be hooked up to anything you like.

USAGE

RANGE

The simplest use sets up a trigger for a single value
on the high order byte of the data inputs. The UniLab
will search for the byte value, and trigger when it
sees that hex number on the bus as data.

Note that just looking at the high order byte means
that the UniLab doesn't care about the low order byte,
and so actually searches for a range of values. See
the first example below.

To specify just one full 16 bit wide data value, you
must use both HDATA and DATA.

S _OF DATA

NOT

TO lets you set up a trigger on any data between two
byte values, inclusive. See the third example below.

NOT causes the Unilab to trigger when the value falls
outside the specified range or value.

MASKI

(HDATA co

-- Command

NG

You can use <i> MASK <j> HDATA to examine any subset of
the 8 most significant data lines. The high bits of i
mark which bits will be examined, while the bit
configuration of byte j indicates the values the lines
must have for a trigger to occur.

For example, 01 MASK FF HDATA selects only data bit D8
for examination (with binary value 0000 0001). The
UniLab would trigger when this bit has a high value.
Note that the instruction 01 MASK 01 HDATA would have
the same effect.

ntinued on next page)

Reference -- Page 7-80

-- The Commands --

NORMT 12 HDATA S
after clearing all previous settings with NORMT,
sets up a trigger for data input 12XX -- actually
1200 through 12FF-- then uses S to start the

analyzer,

12 HDATA 80 DATA
sets a trigger for only data 1280.

12 TO 34 HDATA :
requires data value between 12XX and 34XX hex.
That is, 1200 through 34FF.

FO0 MASK 00 HDATA
sets a trigger based only on the four highest bits
of data. UniLab will look for a 0 on those lines.

12 TO 23 HDATA ALSO 45 HDATA
sets a trigger on cycles where the highest byte of
data is either 12 to 23, or 45 hex.

COMMENTS
You must use a special 16-bit cable with processors
that use a 16-bit data bus. That cable has two ROM
plugs-- one for the even byte, one for the odd byte.

If you need to use a large number of ALSO terms, then
see NDATA.

The HDATA inputs are named for their use in the 16BIT
mode. In the 8BIT mode they are displayed as a
separate column and can be used as for anything you
like just like the MISC inputs. On eight- bit systems
they are typically used to look at system inputs and
outputs.

July 16, 1986 Page 7-81 -- Command Reference --

~~- The Commands --

HDG no parameters F8

Has a fixed header for trace displays-- one that does not scroll
up with the rest of the trace.

USAGE
One of the display attributes. Usually you will toggle
this with the mode panel, function key 8.

HDG' no parameters F8

Makes a non-fixed header for trace displays-- one that scrolls
with the rest of the trace.

USAGE
One of the display attributes. Usually you will toggle
this with the mode panel, function key 8.

-—- Command Reference -- Page 7-82

~- The Commands --

HELP HELP <command?> F1

Finds the reference information for a command or feature. With
no word, brings up the help screen, including soft-key prompt
line.

USAGE
Look up information on a command, in the abridged on-
line command reference. See also WORDS.

EXAMPLES

HELP
displays help screen.

HELP BYE
gives information on command "bye."

July 16, 1986 Page 7-83 -- Command Reference --

-~ The Commands --

HEXTL.OAD HEXLOAD <file name>

Loads an Intel HEX format object file into the Unilab's emulation
memory. Prompts you for the file name if you don't include it.

USAGE
Load into emulation memory a program stored in Intel
HEX format. You can then run, debug and alter that
program as you would any other.

Binary format files are more compact and load two to
three times faster. You might want to direct your
assembler to produce binary format files, if it has
that capability. Or you can save your program memory
with BINSAVE to produce a binary format file.

Binary format files are loaded with BINLOAD.

Intel HEX format files contain the information about
where each opcode should be stored. Be certain to have
the proper sections of emulation memory enabled before
loading in the file. See EMENABLE.

LOADING INTO RAM
The UniLab will not load a file into RAM unless you
have first established debug control. To do that you
must first have a program already loaded into emulation
memory (LTARG for example) and then run to a breakpoint
with RESET <address> RB.

If the debugger is not in control, attempts to load
memory that is not enabled will generate an error
message and will not be loaded. Enabled areas in the
same file will be loaded.

EXAMPLE

HEXLOAD MYPROG.HEX
load an Intel HEX format file called MYPROG.HEX.

(continued on next page)

-- Command Reference -- Page 7-84

-- The Commands --

(continued from previous page)

COMMENTS
Only record types 0 to 3 are supported. Bytes 7 and 8
of each line of the file tell what record type that
line uses.

16-bit processor note: If the UniLab detects a type 2
(extended address) record then address bits A16-A19
will be compared to the current =EMSEG and data will
not be loaded if it is intended for some segment other
than the current one. This will be indicated by a
"not enb" message for each invalid address. Enabled
addresses in the file will be properly loaded.

July 16, 1986 Page 7-85 -- Command Reference --

-- The Commands --

HEXRCV no parameters

Loads an Intel HEX file from another computer, via a second
serial port.

USAGE
The serial transmission must be done on a separate
serial channel with the UniLab connected to its normal
serial port. XON and XOFF characters are used to
start and stop the data transmission. Transmission is
normally done on COM2 on IBM PC's while the UniLab is
connected to COM1.

EXAMPLE

HEXRCV
loads a hex file serially

-~ Command Reference -- Page 7-86

-~ The Commands --

INFINITE INFINITE PEVENTS RARELY USED

Used only before PEVENTS, instead of a count, to indicate that
the trigger event must immediately follow the qualifying events.

USAGE
Along with a trigger specification (see ADR, DATA,
READ, WRITE, etc.) and a qualifying event specification
(see AFTER or QUALIFIERS), when you are only interested
in the trigger event if it occurs immediately after the
qualifying events.

BACKGROUND
The default is for the UniLab to search for the
qualifying sequence only once. After the sequence has
been found once, it is discarded and the UniLab looks
for the trigger.

With PEVENTS and a normal count, the UnilLab searches
for the qualifying events until it finds them the count
number of times. Then it discards the qualifiers, and
looks only for the trigger.

WHAT IT REALLY DOES
INFINITE causes the UniLab to search for the qualifying
sequence and then immediately look for the trigger
event. If the trigger event is not the very next
cycle, then the UniLab starts looking for the
qualifiers again.

EXAMPLE

123 ADR AFTER 345 ADR INFINITE PEVENTS
triggers if address 123 follows immediately after
address 345.

COMMENTS

Pretty obscure. But might be highly useful in certain
restricted situations.

Pressing any key stops the search.

July 16, 1986 Page 7-87 -- Command Reference --

~- The Commands --

INIT no parameters
Sends an initialization message to the UniLab.

USAGE
To reset the UniLab after you are in the UniLab
program.

When you start up the program, it tries to initialize
the instrument after the screen has been cleared and
the UniLab version number displayed. If you tap any
key after the screen is cleared, then the automatic
init will not occur. You will then have to use INIT
before you can send any commands to the instrument.

Also, if the UniLab was not properly connected when you
called up the program, or if you turned off the UniLab
at any time during the program, then the UniLab needs
to be initialized.

IF IT FREEZES
If the program stops after printing the
"Initializing UniLab. . . ." message, hit the BREAK key
while holding down the CONTROL key. This breaks you
out of the initializing sequence. Make certain that
you have turned on the UniLab and connected it to the
host computer.

Try INIT again. If it still freezes up, check the
Trouble Shooting Chapter.

EXAMPLES
INIT
This command is never used in combination with
anything else.
COMMENTS

Initializes all of the mode bits, baud rate and
emulation enable map. Sent automatically after PROM
programmer operations to re-initialize the analyzer
modes.

-- Command Reference -- Page 7-88

-~ The Commands --

INT no parameters RARELY USED
Enables NMI- interrupt output when trigger state reached.

USAGE-- RARE
Available only on processors that have a ncn-maskable
hardware interrupt feature. If you want the target
system to execute an interrupt routine when it goes
into trigger search state(i.e., after the "qualifier
has been found). Used to prevent damage to equipment
by branching control to a "soft shutdown" routine when
some error condition occurs.

You must write and install your own shutdown routine.

Note that Orion debuggers use this command internally.
If you want to make use of it, you must disable the NMI
feature of the Orion debugger with the Mode Panel (F8)
or with NMIVEC'.

NORMx disables the INT mode.

EXAMPLES

NORMT INT AFTER 123 ADR S
will interrupt the target processor during the bus
cycle after address 123 is reached, then trigger
immediately.

NORMT INT 12 DATA AFTER 345 ADR S
will interrupt during the bus cycle after address
345 occurs, then the analyzer will trigger when 12
data occurs.

COMMENTS
Note that the interrupt occurs when the qualifying
sequence is complete not on analyzer trigger. This
makes it possible to trigger on something specific
after the interrupt occurs.

July 16, 1986 Page 7-89 -- Command Reference --

-- The Commands --

INT'
Disables the INT mode.
USAGE

Rare.

COMMENTS
Not often used

no parameters RARELY USED

since NORMx also disables the INT mode.

-- Command Reference --

Page 7-90

~- The Commands --

Is <value> IS <name>
Assigns a symbol name to an address or data value.

USAGE
Tc show mnemonic names of memory locations on traces.

If you already have an assembler generated symbol
table, you will prefer to use the symbol table features
of the UniLab. See SYMFIX and SYMFILE.

You can use the IS command to add symbols after you
have loaded in a symbol table. IS turns on symbol
display mode.

EXAMPLE

1234 IS MREGISTER
gives 1234 the symbol name "MREGISTER"

COMMENTS
Used to manually create a symbol table or to add

symbols to an existing table.

Use SYMB to enable the symbol display on trace. See
also SYMB', SYMSAVE, CLRSYM, SYMLOAD, and SYMFILE.
Symbol translation will work with or without a
disassembler.

July 16, 1986 Page 7-91 -- Command Reference --

-- The Commands --

LADR <byte> LADR RARELY USED
<byte> TO <byte> LADR
<byte> MASK <byte> LADR

Sets the truth table for the low order byte of the address
(AO0-A7) separately.

THE ADDRESS INPUTS
You should normally use ADR to set 16 or 20 bits at
once, but there are limits to the use of ALSO in
combination with ADR.

The UniLab gets both the address and the data from the
bus during each bus cycle. The UnilLab works with up to
20-bit addresses. You can change the trigger
specification of the least significant byte with this
command, the second byte with HADR and the high four
bytes with CONT or ASEG.

USAGE
You can use this trigger spec command in the same way
you use DATA, CONT, etc.. However, the most frequent
use of this command is to set up a trigger spec on the
address lines that makes use of many calls to ALSO.

LADR is also useful for setting a trigger on a port
address of the Z80. The ports of the Z80 processor
have only one byte addresses-- and the Z80 puts the
contents of the A register on the upper byte of the
address lines when it outputs to a port.

EXAMPLE

NORMT 12 HADR ALSO 34 LADR ALSO 10 LADR ALSO 5 LADR
sets up the analyzer to trigger on any of the
addresses 1234, 1210, or 1205,

COMMENTS
Makes it possible to treat the first two bytes of the
address separately. HADR is the upper half.

-- Command Reference -- Page 7-92

-- The Commands --

LOG no parameters 8
Enables automatic logging of target program patches on printer.
USAGE
Keeps a record of any program patches you make, but

other operations are not logged to the printer.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

LOG' no parameters F8
Disables logging of program patches to printer. See LOG above.

USAGE

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

July 16, 1986 Page 7-93 -- Command Reference --

-~ The Commands --

LP

no parameters

Goes around a loop once and stops.

USAGE
You must already have established debug control
(see RB), and be stopped at a breakpoint within a loop.
This command allows the program to run once around the
loop and stop at the current address, displaying the
registers as the UniLab does for any breakpoint.

WATCH OUT
Will not work if the program counter register is
pointing above the first instruction or below the last
instruction in the loop. Only works when you are
within the loop.

EXAMPLES
LP
This command never used in combination with
anything else.
COMMENTS

Works by first saving the current breakpoint address,
executing N (a single step without following branches)
and then executing < saved address > RB. Note that
this will not work if you are at the end of the loop.

-- Command Reference -- Page 7-94

-- The Commands --

LTARG no parameters

Loads a simple target program into the UniLab's emulation memory.

USAGE
A good way to gain familiarity with the UniLab. Comes
packaged with the disassembler. This command enables
the proper section of emulation memory and loads a
simple program. A STARTUP command then sets the
analyzer and your target system going.

WATCH OUT: PROCESSORS WITH EXTERNAL STACKS
The LTARG program uses the memory map of the Orion demo
board. If your target system was designed with the RAM
and ROM resources at different addresses, then the
LTARG program might not run on your board without some
patching.

See LTARG in the reference section of your debugger
notes if you have a problem.

EXAMPLE
LTARG
This command never used in combination with
anything else.
COMMENTS

Available only if you have an optional disassembler.
The program loaded by this command is used in the
debugger writeup as a demonstration. This makes it
possible for you to duplicate exactly the demo in the
target-specific notes.

If you are having trouble using the debugger with your
program, try using it with the LTARG program. Note
that the ROM that occupies the addresses used by the
LTARG program must be unplugged to prevent bus
conflicts.

July 16, 1986 Page 7-95 ~-- Command Reference --

-~ The Commands --

M <byte> M
Stores one byte in ROM or RAM and increments reference address.

USAGE
Used after an ORG statement (which sets up address), to
patch program memory. Can only be used to change RAM
after debug control has been established. See RB.

REMEMBERING CHANGES
LOG sends all memory access commands such as M to the
printer, saving a record of any changes you make.

EXAMPLES

3000 ORG 12 M
stores a 12 at 3000

150 ORG 5 M 10 M
stores 5 at location 150, 10 at 151

COMMENTS
Used for entering data tables, program patches, etc.
See also MM, MM!, and M!.

Will store to emulated memory if the address is
enabled, otherwise will attempt to store to target RAM
if the optional debugger is in control (see RB).

As with all memory writing commands, don't write into
your stack area when loading into RAM.

-- Command Reference -- Page 7-96

-~ The Commands --

M! <byte> <address> M!
Stores a byte of data at the specified address.

USAGE
Used to patch program memory. Does not require a
previous ORG command-- instead requires an address as
the second parameter. See M. Can also be used to
change RAM, but only after debug control has been
established. See RB.

REMEMBERING CHANGES
LOG sends all memory access commands, such as M!, to
the printer, saving a record of any changes you make.

EXAMPLES

12 3000 M!
stores a 12 at 3000.

5 150 M! 10 150 M!
stores 5 at location 150, 10 at 151.

COMMENTS
Used for entering small patches-- anything larger than
one byte can be done by one of the other memory patch
commands with fewer keystrokes. See also MM, MM!, and
M,

Will store to emulated memory if the address is
enabled, otherwise will attempt to store to target RAM
if the optional debugger is in control (see RB).

If the debugger is not in control, you will be told:
"Debug Control not established!"

July 16, 1986 Page 7-97 -—- Command Reference --

-~ The Commands --

M? <address> M?
Displays the byte that is stored at the specified address.

USAGE
To find out what is stored at a single memory location,
either ROM or RAM. Use MM? for looking at words, and
MDUMP or DM for larger areas of memory.

EXAMPLES
1210 M?
displays the byte stored at 1210.
COMMENTS

If the address is EMENABLEd then emulation memory will
be displayed, otherwise the UniLab will attempt to use
the debugger to display target RAM contents.

-- Command Reference -- Page 7-98

-~ The Commands --

MASK <byte> MASK <byte>

Specifies a mask for the trigger spec that immediately follows.
A modifier to ADR, CONT, DATA, HADR, HDATA, LADR, or

The first byte describes which of eight wires to pay
attention to-- a one means pay attention, a zero means
don't care.

The second byte tells the UniLab what inputs to look
for on the wires that you care about. The UniLab
ignores the bits for the ‘inputs that the first byte
told it to ignore. Thus 01 MASK 01 has the same affect
as 01 MASK FF.

EXAMPLES

NORMT 2 MASK 2 MISC S
will trigger if input M1 goes high.

NORMT B# 0010 MASK B# 0010 MISC S
has the same effect as the first example-- will
trigger if input M1 goes high.

NORMT 3 MASK 2 MISC S
requires inputs M1=1, MO=O for trigger.

COMMENTS
MASK cannot be used with TO, NOT, ALSO

July 16, 1986 Page 7-99 -- Command Reference --

-- The Commands --

MCOKP <start addr> <end addr> <comp addr> MCOMP
Compares two areas of memory and indicates discrepancies.

USAGE
Compares the two areas of memory, and gives you a
message about each discrepancy. Hit any key to abort.

- For example:

110 117 810 MCOMP
Data is 16 at addr 0110 ..but is 5 at addr 0810
Data is 90 at addr 0112 ..but is 80 at addr 0812
Data is 27 at addr 0116 ..but is 23 at addr 0816

You only need to enter three addresses-- the starting
and ending address of the first block of memory, and
the starting address of the second.

VERIFYING ROMS
If you want to compare a ROM to a program on disk,
first load the program using BINLOAD or HEXLOAD. After
that use the PROM READER MENU to read from the PROM
into a different memory area.

You can then use MCOMP to compare the two target areas.

EXAMPLE

100 300 800 MCOMP
compares data at target addresses 100-300 to the
data at 800-A00.

COMMENTS
Works on any combination of emulated ROM and, if the
debugger is in control, target RAM.

Both areas must be in the same 32K block of memory--
that is, A15-A19 must be the same for both sections.

-- Command Reference -- Page 7-100

~- The Commands --

MDUMP <from addr> <to addr> MDUMP
Display the contents of an area of memory.

USAGE
Allows you to look at any block of memory. For example:

121 131 MDUMP

121 F3 31 00 1C 21 78 02 11 78 02 01 2C 00 7C BA C2 eleelXeeXeaypo oo
131 38 01 7D BB CA 42 01 7E 12 23 13 0B 79 BO C2 38 8.eeB. #eey..8

Press any key to freeze scrolling of display. Press
any key again to continue scrolling. While scrolling
is stopped, press any key twice quickly to stop.

EXAMPLE

1234 1334 MDUMP
displays the contents of locations 1234 to 1334
in hex and ASCII.

COMMENTS
As with all M commands, display will be from emulation
memory if the address has been EMENABLEd. If the
debugger is in control, you can also display target RAM
memory.

July 16, 1986 Page 7-101 -- Command Reference --

-=- The Commands --

MEMO no parameters SHIFT-F2
Displays and allows editing of the on-line memo pad.

USAGE
A handy way to write notes to yourself. Hitting
CONTROL and Z at the same time toggles the on-line
editor help screen on and off. This screen shows you
the ESCape key sequences and ConTRL key combinations
that you use with the editor. See COMMENTS below.

You exit the full screen editor with ESCAPE followed by
F if you want to save the changed memo pad. ESCAPE
followed by ESCAPE allows you to leave the memo pad
without saving your changes.

EXAMPLE
MEMO
This command never used in combination with
anything else.
COMMENTS

This command works only when the EDITxx.VIR file is
present in the same directory as the UniLab program.

The powerful editor allows you to write complicated
macros and enable them at will. If you want to use
this feature to the fullest, order the PADS manual from
Mountain View Press
PO Box 4656
Mountain View, CA 94040

(continued on next page)

-~ Command Reference -- Page 7-102

-- The Commands --
(continued from previous page)
EDITOR HELP (repeated on-line):

Hit SHIFT-F2 to get the editor.
Once in the editor, hit CTRL-Z to get the on-line help.

HIT WHILE HOLDING DOWN THE CONTROL KEY:

CURSOR CONTROL:

S=Left D=Right

E=Up X=Down Q=Home

F=Rtab I=Ltab

F=Forwd A=Bkwrd

CHARACTER CONTROL: LINE CONTROL:
Del=Delete char K=Kill line
J=Jerk-->buffer G=Gobble-->buffer
C=Chars<--buffer Y=Copy-->buffer
V=Insert chars L=Line<--buffer
P=Pullup words N=New lines

HIT THE ESCAPE KEY AND FOLLOW WITH:

ESC=Esc no update F=Updat & Fin edit
W=Word for search B=Updat & Back scr
S=Search screens N=Update & Nxt scr
U=Update now L=Update & Load
R=Restore screen

July 16, 1986 Page 7-103 -- Command Reference --

-- The Commands --

MENU no parameters F10
Selects the menu-driven mode.

USAGE
The menu- driven mode helps first time users by
allowing you to use the UnilLab simply by choosing from
list of options. This command, whether typed in or
picked with function key 10, reassigns the function
keys and shows the menu on the screen. The command
line that you would use gets displayed as it is
executed, so you can learn how to enter the command
directly.

While using the menu, you can also type commands
directly.

Menu mode also comes in handy when you have forgotten a
command.

All PROM programming commands are available under the
PROM menu.

Hitting F10 again from the main menu gets you out of
menu mode.

EXAMPLE
MENU

This command never used in combination with
anything else.

MESSAGE no parameters

Gives a screenful of information on the most recent updates and
additions to the Unilab software.

USAGE
Make certain that you know all the capabilities of the
UniLab software.

-- Command Reference -- Page 7-104

~- The Commands --

MFILL <from addr> <to addr> <byte> MFILL
Fills every location in an area of memory with the same byte.

USAGE
A good way to check that memory address and data lines
connect properly on the target board. You can fill an
area of memory, and then examine it with MDUMP.

One way to find out what is happening on your board
when LTARG test program will not run: f£fill a block of
memory with NOOP instructions, starting at the reset
address, and then use STARTUP. You should see a trace
of consecutive addresses.

Also a heavy-handed way to push a byte into memory.
See also MM, M, MM!, and M!, for more elegant ways to
manipulate memory.
Note that the <from> and <to> addresses must be in the
same 32K block.
EXAMPLE
1200 1300 20 MFILL (
fills locations 1200-1300 with the value 20 hex.
COMMENTS
To fill target RAM a debugger must be in control.

As with all memory writing commands, don't write into
your stack area when loading into RAM.

July 16, 1986 Page 7-105 -- Command Reference --

-- The Commands --

MISC <byte> MISC
<byte> TO <byte> MISC
<byte> MASK <byte> MISC
Changes the analyzer trigger for the miscellaneous inputs.

THE MISCELLANEOUS INPUTS
The UnilLab's 48-bit-wide trace buffer has room for 8
more bits than are used for data, address, and control
lines. These eight input lines are available to you,
for sensing anything on the target board that you want
to know about, or that you want the UniLab to trigger
on.

For example, you might hook them up to an output port,
to trigger when a particular bit configuration gets
asserted on that port.

Note: The qualifier and filter specifications always
ignore the MISC inputs.

USAGE
The simplest use sets up a trigger for a single value
on miscellaneous inputs. The UniLab will search for
the byte value, and trigger when it sees that hex
number on the lines. See the first example below.

RANGES
TO lets you set up a trigger on any input between two
byte values, inclusive, See the second example below.

NOT
NOT causes the UniLab to trigger when the value falls
outside the specified range or value.

MASKING

You can use k MASK 1 MISC to examine any subset of the
8 miscellaneous lines. This is particularly handy when
you only have one or two of the MISC inputs connected
to your board. You don't care about the logic level of
the other 6 lines, since they don't mean anything.

The high bits of k mark which bits will be examined,

while the bit configuration of byte 1 indicates the
values the lines must have for a trigger to occur.

(continued on next page)

-~ Command Reference -- Page 7-106

~-- The Commands --
(continued from previous page)

For example, 03 MASK FF MISC selects only bits MO and
M1 for examination (with binary value 0000 0011). The
UniLab would trigger when both these bits have a high
value. Note that the instruction 03 MASK 03 MISC would
have the same effect.

WITH TRACING
All trace filtering modes and qualifiers ignore the
MISC inputs. Since they still effect triggering, this
makes the MISC inputs particularly useful as trigger
inputs for filtered traces.

EXAMPLES

NORMT 12 MISC S
after clearing all previous settings with NORMT,
sets up a trigger for miscellaneous input 12, then
uses S to start the analyzer.

12 TO 34 MISC
requires miscellaneous input value between 12 and
34 hex.

FO MASK 00 MIsC
sets a trigger based only on the four highest
bits. The UniLab will look for a 0 on those lines.

23 MISC ALSO 45 MISC
sets a trigger on cycles where the misc input is
either 23 or 45 hex.

ONLY 100 TO 400 ADR FF MISC
traces only cycles where ADR is 100-200. Triggers
when MISC is FF. Filtering ignores MISC.

COMMENTS
The MISC inputs can be connected to anything you like.
They are often used to look at system input and output
ports.

July 16, 1986 Page 7-107 -- Command Reference --

-- The Commands --

MISC' MISC' FILTER RARELY USED .

Used only before FILTER to enable trace filtering on all inputs
except the MISCellaneous wires(MO to M7). NORMx turns this mode
off.

WHY YOU DON'T NEED TO BOTHER
Because this is taken care of for you by ONLY and by
XAFTER, so it is unlikely that you will need to use
this command.

See also CONTROL and HDAT.

EXAMPLE

MISC' FILTER
enables filtering on all except M0-M7 inputs.

-~ Command Reference -- Page 7-108

~- The Commands =--

MLOADN <from addr> <to addr> <target addr> MLOADN

Moves a block of memory from the memory of the host to the target
memory.

USAGE
Allows you to assemble or load a program into host
memory, and then move it to UniLab emulation ROM or
target RAM.

Most people will prefer to assemble into a file, and
then load from the file into UniLab emulation memory.

FREE MEMORY
The host memory area that is available generally starts
right above C000. PAD 100 + U. displays the first free
address. SO U. shows you the upper limit of the unused
memory.

EXAMPLE

C000 C800 0O MLOADN
moves data at C000-C800 in the host computer to
target locations 0-800.

COMMENTS
You must have emulation memory enabled to load the
program into ROM (see EMENABLE).

The debugger must be in control if you want to load
into target RAM,

July 16, 1986 Page 7-109 -- Command Reference --

-- The Commands --

MM <word> MM

Stores one 16-bit word in ROM or RAM and increments reference
address.

USAGE
Used after an ORG statement (which sets up address), to
patch program memory. Can only be used to change RAM
after debug control has been established. See RB.

REMEMBERING CHANGES
LOG sends all memory access commands such as MM to the
printer, saving a record of any changes you make.

EXAMPLES

3000 ORG 1210 MM
stores 1210 at 3000.

150 ORG 5000 MM 7001 MM
stores 5000 at location 150, 7001 at 152.

COMMENTS
Used for entering data tables, program patches, etc.
See also M, MM!, and M!.

Will store to emulated memory if the address is
enabled, otherwise will attempt to store to target RAM
if the optional debugger is in control (see RB).

As with all memory writing commands, don't write into
your stack area when loading into RAM.

If you have a disassembler the byte order is set
correctly, otherwise you can set it with HL or LH.

-- Command Reference -~ Page 7-110

-- The Commands --

MM! <word> <address> MM!
Stores a 16-bit word of data at the specified address.

USAGE
Used to patch program memory. Does not require a
previous ORG command-- instead requires an address as
the second parameter. See MM. Can also be used to
change RAM, but only after debug control has been
established. See RB.

REMEMBERING CHANGES
LOG sends all memory access commands, such as MM!, to
the printer, saving a record of any changes you make.

EXAMPLES

1200 3000 MMm!
stores a 1200 at 3000

5000 150 MM! 1000 152 MM!
stores 5000 at location 151, 1000 at 153.

COMMENTS
Used for entering small patches-- anything larger than
one word can be done by one of the other memory patch
commands with fewer keystrokes. See MM and M.

Will store to emulated memory if the address is
enabled, otherwise will attempt to store to target RAM
if the optional debugger is in control (see RB).

As with all memory writing commands, don't write into
your stack area when loading into RAM,

If you have a disassembler the byte order is set
correctly, otherwise you can set it with HL or LH.
Words are stored to emulation memory if it is enabled,
otherwise the debugger is used (if in control) to store
to target RAM,

July 16, 1986 Page 7-111 -- Command Reference --

-~ The Commands --

MM? <address> MM?
Displays the 16-bit word that is stored at the specified address.

USAGE
To find out what is stored at a single memory location,
either ROM or RAM. Use M? to look at bytes and MDUMP
or DM for larger areas of memory.

EXAMPLE
1210 MM?
displays the word stored at 1210.
COMMENTS

If the address is EMENABLEd, then emulation memory will
be displayed. Otherwise the UnilLab will attempt to use
the debugger to display target RAM contents.

If you have a disassembler, the byte order is set
correctly, otherwise you can set it with HL or LH.

-~ Command Reference -- Page 7-112

-- The Commands --

MMOVE <start addr> <end addr> <dest> NMOVE

Moves a block of memory from one area to another in the target
memory space.

USAGE
Good way to make a little more room when you need to
patch some extra code into a program.

You can also use it to relocate a relocatable code
module.

SHMART MOVER
Automatically chooses the order of moving, to prevent
overwriting caused by moving from one area to an area
that overlaps. Starts moving from either the beginninc
or the end of the area to be moved, as necessary. See
the two examples below.

The source and destination range can be anywhere in
memory, but neither range can cross a 32K boundary.
That is, the start and end address of a range must be
within a 32K block.

EXAMPLES

1000 2000 1005 MMOVE
moves the data in locations 1000-2000 up 5 places.
Starts moving from the end.

200 300 125 MMOVE
moves the data in 200-300 down 75 spaces. Starts
moving from the beginning.

COMMENTS
Make certain that the code you moved is relocatable.
If it is not, you might have to patch some of the
absolute address references. In general, exercise
caution, and use DM on the moved memory, to see if the
instructions still do what you want them to do.

As with all memory writing commands, don't write into
your stack area when loading into RAM.

July 16, 1986 Page 7-113 -- Command Reference --

-- The Commands --

MODE no parameters

F8

Gives you the mode panels, which allow you to change mode of

display, mode of debugger functioning, etc.

USAGE
Hit function key 8 (F8) once to get the
panel, which contains the analyzer mode
(F8) again to get the second panel that
trace display mode switches. The third
the log mode switches and debug disable

MOVING AROUND

first mode
switches. Press
contains the
panel contains
switches.

To get from one panel to another, hit F8 repeatedly, or

use PgDn key.
setting.

Use the END key to exit from mode

Once you are in a pop-up panel, you can move around,
selecting different features, with the up arrow and

down arrow keys.
feature on and off.

The right arrow key toggles the

WHAT THEY ALL DO
See the Special Functions section of the manual for the
complete story.
You can also check the listings in the glossary for
each feature:
Panel One DASM SYMB RESET
Panel Two SHOWM SHOWC =MBASE PAGINATE HDG
Panel Three LOG TOFILE PRINT NMIVEC RSP
EXAMPLE
MODE

This command never used in combination with

anything else.

-- Command Reference -- Page 7-114

-~ The Commands --

MS <count> MS
Pauses for count number of milliseconds.

USAGE
In test programs where you need a pause.

Note that 400 hex milliseconds is one second.

EXAMPLE

800 MS
pauses for 2 seconds (800 hex ms)

July 16, 1986 Page 7-115 -- Command Reference --

-~ The Commands --

N

no parameters

Resumes program, with a breakpoint set to the address after the
next instruction.

USAGE

FALL

While stopped at a breakpoint, when you want to execute
only the next instruction pointed to by the Program
Counter. Note, however, that you will "fall through"
loops and branches.

This "falling through" is often very useful. For
example, if the PC is pointing at a subroutine call, N
will show you the state of the processor when it
returns from the call.

Use SSTEP (see the Disassembler/Debugger writeup on
your processor to make certain that your processor
supports this feature) if you want to follow loops and
branches.

THROUGH LOOPS

When you single-step through a program, you will
usually not want to bother going through loops the same
number of times that the microprocessor does. This
command allows you to go through a loop just once.

HOW IT WORKS

This command uses RB to set a breakpoint at the address
just after the disassembled instruction that the PC
points to. So the program runs until it reaches that
address.

WATCH OUT

If the program never reaches the address of the
breakpoint, then the program will run without stopping.
For example, if the program contains an infinite loop,
and you will not want to use N on the last command in
the loop (the jump back up to the top). The program
never reaches the code that follows that last jump.

COMMENTS

Available only when a debugger has control.

-- Command Reference -- Page 7-116

-- The Commands =--

NDATA <byte #1> <byte #2> . . . <byte #N> <N> NDATA
Sets N different bytes as trigger events for the analyzer.

USAGE
A guick way to set triggers on many different data
codes that do not fall into ranges. Easier than using
ALSO again and again, as in:
18 DATA ALSO 32 DATA ALSO 36 DATA ALSO 47 DATA.

RANGES OF DATA
If the data does fall into ranges, then you can use TO
instead. For example, 12 TO 25 DATA sets the analyzer
looking for any data between twelve and 25, inclusive.

EXAMPLE

18 32 36 47 4 NDATA
Does the same thing as the ALSO example in the
text above.

COMMENTS
Really the same as "ORing" together the terms with
ALSO. Any number of terms can be listed, but be sure
to get the count correct.

You can use ALSO in combination with this command to
add a range of values,

July 16, 1986 Page 7-117 -- Command Reference --

~- The Commands --

NMI no parameters F4
Establishes debug control immediately.

USAGE
Only supported on microprocessors that provide a
hardware Non-Maskable Interrupt feature.

Allows you to establish debug control on a program that
is currently running.

See also RB. See Appendix H to find out whether your
processor supports NMI.

DISABLE
If your target board makes use of the non-maskable
interrupt feature of your processor, or you wish to
disable NMI for any other reason, use the Mode Panel
(F8) or NMIVEC'.

Disabling the entire debugger (Mode panel choice "SWI
VECTOR" or command RSP') also disables NMI.

COMMENTS
The hardware interrupt feature is also utilized by
SSTEP and SI. Disabling NMI also disables those two
commands.

-- Command Reference -- Page 7-118

-~ The Commands --

NMIVEC no parameters F8
Enables the Non-Maskable Interrupt vector installation.

USAGE
This command re-enables the Unilab's ability to perform
NMI. You only want to disable this feature when you
want more transparent operation and don't need to use
all the debugger features. See RSP' for complete
transparency.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

NMIVEC' no parameters F8
Disables the Non-Maskable Interrupt vector installation.

USAGE
" This command disables the UniLab's ability to perform
NMI.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

The debugger usually gives you the ability to send a
non-maskable interrupt to the microprocessor. This
interrupt, a standard feature on microprocessors, tells
the processor to jump to whatever code location the NMI
vector register contains. Orion debuggers use this
feature so that you can assert debugger control over
your processor at any time.

WHEN YOU WILL WANT TO DISABLE NMI
When your system makes use of the NMI, and you want to
preserve that ability while testing the system.

COMMENTS
Either the panel toggle or NMIVEC re-enables the vector
installation.

July 16, 1986 Page 7-119 -- Command Reference --

-~ The Commands --

NORMB no parameters

Clears out (NORMalizes) all trigger descriptions and sets the
trigger event near Bottom of trace buffer.

USAGE
To start a new trigger definition when you want to see
the events that led up Fo the trigger.

Use TSTAT to look at how this command changes the
DCYCLES setting.

When you want to start from scratch with a new trigger
description, always begin with one of the variations of
NORM. The three commands, NORMB, NORMM, and NORMT,
vary only in where within the trace buffer they place
the trigger event-- at the bottom, in the middle or at
the top.

TO SEE WHAT HAPPENS NEXT
S+ restarts the target board with the same trigger
specification, but with 170 (decimal) added to the
delay cycle count, so that you can see what happened
after the current trace window.

HOW THEY WORK
The commands clear out the truth tables the analyzer
used to search for the trigger event, and set the
number of delay cycles that the analyzer will wait
between seeing the trigger and freezing the buffer.
See DCYCLES for more information about delay cycles.

EXAMPLES

NORMB
Sets 4 delay cycles

NORMB NOT 0 TO 1000 ADR S
will show what happened before the address went
outside of the 0-1000 range.

COMMENTS
NORMB should be used where you want to know what
happened before the trigger.

-- Command Reference -- Page 7-120

-- The Commands -~

NORMM no parameters

Clears out (NORMalizes) all trigger descriptions and sets the
trigger event at Middle of trace buffer.

USAGE
To start a new trigger definition when you want to see
the events that led up to the trigger, and alsoc see
what followed.

You will find it very useful when you want to see the
complete context within which the trigger occurred.

Use TSTAT to look at how this command changes the
DCYCLES setting.

See NORMB for more details.

EXAMPLE

NORMM
sets delay cycles to 85 (decimal).

July 16, 1986 Page 7-121 -- Command Reference --

-- The Commands --

NORMT no parameters

Clears out (NORMalizes) all trigger descriptions and sets the
trigger event near Top of trace buffer.

USAGE
To start a new trigger definition when you want to see
the events that followed the trigger.

Use TSTAT to look at how this command changes the
DCYCLES setting.

See NORMB for more details.

EXAMPLE

NORMT
sets delay cycles to 165 (decimal).

-- Command Reference -~ Page 7-122

~- The Commands --

NOT NOT <trigger description»

The trigger description gets interpreted as a description of when
not to trigger.

USAGE
To tell the analyzer to trigger when some byte of the
48-channel input bus goes outside of a certain range or
value. Most commonly used to trap bad data or a bad
address.

EXAMPLES

NORMT NOT 00 TO 4FF ADR S
triggers if the address goes outside the 00 to 4FF
range.

ONLY 127 ADR NOT 12 DATA S
shows only cycles where the data at 127 address is
not 12.

NORMM NOT 12 DATA ALSO NOT 34 TO 56 DATA S
triggers when the data is not either 12 nor
between 34 and 56.

COMMENTS
Sets a flag for the next trigger word (ADR, CONT, DATA,

HADR, HDATA, LADR, and MISC).

Except when used with ALSO, the NOT command causes the
truth table to be cleared to all 1's. Then 0's get
written into the specified areas. This is the opposite
of what happens without NOT.

With ALSO, the NOT command does not clear out the truth
table first.

July 16, 1986 Page 7-123 -- Command Reference --

-~ The Commands --

NOW? no parameters
Shows you what is happening on the target board right now.
USAGE

To see the code the microprocessor executes during the
next 170 bus cycles.

EXAMPLES
NOW?
This command never used in combination with
anything else.
COMMENTS

This command is a simple macro that turns off the
RESET, so that it does not restart the target board,
then sets its own trigger and captures a trace.

~- Command Reference -- Page 7-124

-- The Commands --

ONLY

Gives you

ONLY < trigger description »

a trace buffer filled only with cycles that match your

description.

USAGE

Clears out the previous trigger spec and enables trace
filtering. Only the bus cycles that contain the
trigger cycle will be recorded.

Use this command when you want to see on the trace only
the cycle described in the trigger specification. For
example, only the read cycles, or only the command at
address 0100,

ELIMINATE BORING LOOPS

ONLY

This command is especially useful for filtering out
status and timing loops that hog the trace space. See
the second example below.

Notice that when filtering you have to use AFTER if you
want to start the trace at some particular point in the
program.

AND THE DISASSEMBLER

You will sometimes want to turn off the disassembler
while using this feature. Disassembling partial

instructions will give confusing results. Either the
mode panel (F8) or DASM' turns off the disassembler.

EXAMPLES

ONLY READ
searches for and records only the read cycles.

ONLY NOT 120 TO 135 ADR AFTER 750 ADR S
produces a trace starting at address 750, excludes
from the trace the routine at addresses 120
through 135.

ONLY 0100 ADR
records only the cycle executed at address 0100.

(continued on next page)

July 16,

1986 Page 7-125 -- Command Reference --

~- The Commands --

(continued from previous page)

COMMENTS
The analyzer will run until the trace buffer is full
while keeping you informed of the number of spaces
remaining. You can stop the analyzer at anytime by
pressing a key. Then enter TD to see what you have
captured in the trace buffer.

-- Command Reference -- Page 7-126

-=- The Commands --

ORG <address> ORG

Sets the origin (address at which you will start to poke new
values into memory) for subsequent M and MM commands.

USAGE

To change the information stored in several sequential
bytes of program or data memory.

You can alter emulation ROM at any time. However,

before you can alter RAM, the debugger must be in
control. See RB.

EXAMPLES
101 ORG 12 M 3410 MM

stores 12 to location 101 and 3410 to locations
102 & 103.

COMMENTS
Useful for entering program patches.

See also M! and MM!.

July 16, 1986 Page 7-127 -~ Command Reference --

-~ The Commands --

PAGEO no parameters

Only for UniLabs with 128K of memory. Selects the bottom 64K
page of emulation memory.

USAGE
Addresses that are four hex digits long (16 bit binary
numbers) cover a 64K memory space, but your UniLab has
128K memory space. You must establish a context for
the addresses to follow.

This command sets the offset to 0000, while PAGE1 sets
the offset to 10000. Thus, address 1300 after PAGEO
refers to location 1300. Address 1300 after PAGE1
means location 11300,

EXAMPLE
PAGEO

This command never used in combination with
anything else.

PAGE1 no parameters

Only for UniLabs with 128K of memory. Selects the top 64K page
of emulation memory.

USAGE
See PAGEO above.

Address 1300 after PAGE1 means location 11300.

EXAMPLE

PAGE1
This command never used in combination with
anything else.

-- Command Reference -- Page 7-128

-- The Commands --

PAGINATE no parameters F8
Enables pagination of trace display.

USAGE
The default condition. The trace stops after each

screenful.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

You can turn this off with the pop-up panel, or with
PAGINATE'.

COMMENTS
If you press any key while display is scrolling, trace

display will stop.

PAGINATE" no parameters F8
Disables pagination of trace display.

USAGE
The trace display will scroll by continuously. Not

very useful, unless you want to save an entire trace to
a disk file. See PAGINATE above.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

July 16, 1986 Page 7-129 -- Command Reference --

-- The Commands --

PCYCLES <count> PCYCLES

Sets the number of bus cycles that the analyzer waits between

seeing the last qualifier and starting to search for the trigger
event,

USAGE
The default is zero. Usually you will want the

analyzer to start its search for the trigger event
immediately after the qualifiers.

However, you will sometimes want the UnilLab to wait
some number of cycles after the qualifiers, before it
looks for the trigger.

For example, you know that the program jumps to address
1000 from address 235. What you can't understand is
why the code at address 1000 is being executed again,
later on. So you do not want the UniLab to search for
address 1000 until some time has passed since it saw
address 235.

EXAMPLES

NORMB 1000 ADR 10 PCYCLES AFTER 235 ADR S

triggers if 1000 occurs 10 or more cycles after
address 235.

COMMENTS

A pass cycle count can be used to hold off the search
for a trigger, for whatever reason.

If there are several qualifiers the pass count starts
after the complete sequential qualifier sequence has
occurred.

-- Command Reference -- Page 7-130

-- The Commands --

PEVENTS <n> PEVENTS

Sets the number of times the UniLab will want to see the
qualifying events before starting to search for the trigger
event,

USAGE
The default value is one-- the UniLab will start to
search for the trigger as soon as it has seen the
gqualifying event once.

You would use PEVENTS when you don't want to search for
the trigger until the qualifiers have been seen a
number of times. Useful for catching a trace after the
nth iteration of a sequence.

This command is different from PCYCLES, which delays
searching for the trigger an absolute number of bus
cycles after the qualifiers have been seen.

EXAMPLES

NORMT 12 DATA 4 PEVENTS AFTER 30 DATA S
searches for 12 data anytime after 30 data has
been seen four times

NORMT 100 PEVENTS AFTER 123 ADR S
triggers as soon as address 123 has occurred 100
times.

July 16, 1986 Page 7-131 -- Command Reference --

-~ The Commands --

PINOUT no parameters
Displays pinout of target processor.
USAGE

A handy reference showing signal names and analyzer
cable connections versus pin numbers.

EXAMPLE
PINOUT

This command never used in combination with
anything else.

-- Command Reference -- Page 7-132

-- The Commands -~

PRINT no parameters F8
Logs all screen output to the printer.
USAGE

Normally vou will use the MODE panel (function key 8}
when you want to change this feature.

PRINT' no parameters F8
Turns off logging all screen output to printer.
USAGE

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

PROMMSG no parameters

Use after a STANDALONE EPROM programming command, to display
completion message.

USAGE
You use STANDALONE when you want to make use of your
host computer while the UniLab is programming an EPROM.
After the programming light goes out, you can use
PROMMSG to check the outcome of the programming
operation.

July 16, 1986 Page 7-133 -- Command Reference --

-~ The Commands --

o1 Q1 <trigger spec> RARELY USED

Selects the event description (trigger spec) that follows as
qualifier one.
See QUALIFIERS.

USAGE
When you don't want to use AFTER, which you will find
to be a more natural way to set qualifiers.

You will rarely use this, since AFTER automatically
increments the context from TRIG to Q1 to Q2 to Q3 each
time it is used. You will find these words handy when
you want to change your mind about one of the
qualifying steps without entering the entire definition
again.

EXAMPLES

Q1 15 LADR
Changes qualifier number one, so that the UniLab
looks for 15 on the low byte of the address lines.

Q1 ALSO 28 LADR
Alters qualifier one, so that the UniLab accepts
either 15 or 28 on the low byte of the address.

Q2 Q2 <trigger spec> RARELY USED

Selects the event description that follows as qualifier number
two. See Q1 for details.

Q3 Q3 <trigger spec> RARELY USED

Selects the event description that follows as qualifier number
two. See Q1 for details.

-- Command Reference -~ Page 7-134

~- The Commands -~

QUALIFIERS <1, 2, or 3> QUALIFIERS RARELY USED
Selects the number of qualifying events.

USAGE
Allows you to reduce the number of gualifying events.
Usually you'll use AFTER to set qualifiers, and would
use this command only to reduce the number of
qualifiers if you change your mind.

When there are qualifiers, the UnilLab searches for the
qualifying events before it looks for the trigger.

You will probably prefer to use AFTER, rather than this
command.,

THE ORDER OF QUALIFIERS
If you have defined three qualifiers, the UniLab looks
first for Q3, then for Q2 and lastly for Q1. It must
see the qualifying events one immediately after the
other., If it does not see one of them, it starts
searching for Q3 again.

Of course, if there are only two qualifiers, then the
UniLab looks for Q2 and Q1.

AFTER THE QUALIFIERS
Unless PEVENTS or PCYCLES has been set, the UniLab will
immediately start searching for the trigger after it
finds the last qualifier. OF course, the trigger event
does not have to follow immediately after the last
qualifier.

EXAMPLE

2 QUALIFIERS S
changes the number of qualifiers, so that the
third one is ignored.

July 16, 1986 Page 7-135 -- Command Reference --

-- The Commands --

RB <address> RB

Resumes executing program, with a breakpoint set at indicated
address. Must be used with RESET to establish debug control.

USAGE
The first breakpoint must be in emulated ROM, and come
after the stack pointer has been initialized. If your
program does not initialize the stack pointer, then you
cannot set a breakpoint. However, setting up the stack
pointer usually only takes three or four bytes.

Available only with debugger software for your
processor.

You can also use NMI to establish debug control-- if
your processor supports the Non-Maskable Interrupt
feature.

MISSED BREAKPOINTS
If the breakpoint is not reached, then the program will
continue to run until you hit any key. You must then
use RESET <address> RB to gain debug control. You can
only set a breakpoint on the address of the first byte
of an instruction.

If your processor supports NMI, the UniLab will, after
a missed breakpoint, try to achieve debug control by
asserting NMI.

Make certain that the address you try to set a
breakpoint on gets executed by the program-- set an
analyzer trigger on the same address with

NORMT <address> AS.

And make sure that your program does initialize the
stack pointer to point at RAM. The debugger uses the
stack to save the state of your system.
EXAMPLES
RESET 123 RB
enables reset, and then restarts the target system

with a breakpoint set at address 123

(continued on next page)

-- Command Reference -- Page 7-136

-- The Commands --
{continued from previous page)

1007 RB
without restarting the target system, run the
program with a breakpoint set at address 1007.

COMMENTS
The second example above will work only if you have
already established debugger control. The first
example will establish debug control, as will an NMI
command. RESET does not restart your target board-- it
enables the "reset" flag, so that the RB which follows
restarts the target.

July 16, 1986 Page 7-137 -- Command Reference --

~- The Commands --

READ no parameters
Narrows the trigger specification to read cycles only.

USAGE

Instructs the UniLab to trigger only on read cycles.
Handy when you want to trigger on data memory values,
not program memory opcodes. Or, when you want to
trigger on reads rather than writes to some address
range.

On some disassembler packages, FETCH instructs the
UniLab to trigger only on fetches from program memory.

EXAMPLES

READ 13 DATA
sets up to trigger when microprocessor reads a 13.

NORMT READ 1000 TO 2000 ADR S
triggers when processor reads any data from
address range 1000H to 2000H.

COMMENTS
A simple macro which specifies a range of CONT input
values. This command, like WRITE and FETCH, gets
defined for a particular processor by the optional
disassembler.

-- Command Reference -- Page 7-138

-- The Commands --

RES <n> RES

Clears bit n of the stimulus generator output. The number, of
course, must be between 0 and 7.

USAGE
Simulates a peripheral input going from voltage high to
voltage low. The stimulus generator allows you to test
how your system responds to digital signals on certain
lines.

EXAMPLES

2 RES
resets output S2.

1 SET 1 RES
pulses output S1.

COMMENTS
Used to reset individual bits of the 8 stimulus
outputs. See also SET and STIMULUS.

July 16, 1986 Page 7-139 -- Command Reference --

-- The Commands --

RESET no parameters F8

Selects automatic reset mode, which resets the target system when
you next start the analyzer.

USAGE
Along with RESET', allows you to choose whether to
restart the target board when you start searching for a
trigger, or just watch a program already in operation.

Note that the first time you use RB, this feature must
be enabled. Always type RESET <address> RB to be sure.

Automatic reset gets turned on by STARTUP, and gets
turned off by NOW, ADR?, SAMP, and RB. The status of
reset is not affected by NORMx,

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

EXAMPLE

RESET
selects auto-reset

RESET' no parameters F8
Turns off the automatic reset mode. See RESET above.
USAGE

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

-- Command Reference -- Page 7-140

-= The Commands --

RMBP <break point #> RMBP

Resets (clears) one of the multiple breakpoints and displays new
status of the multiple breakpoints.

USAGE
When you want to get rid of one of the breakpoints that
you set with SMBP,

See also CLRMBP, which clears out all the multiple
breakpoints.

EXAMPLE

3 RMBP
clears multiple breakpoint number 3.

COMMENTS

Multiple breakpoints are used with the debugger to
break on more than one address. There are 8 multiple
breakpoints available in addition to the standard
(unnumbered) breakpoint set by RB or GB.

July 16, 1986 Page 7-141 -- Command Reference --

-~ The Commands -~

RSP

no parameters F8

Re-enables the debugger, after it has been disabled by RSP'.

USAGE

Only when you have turned off the debugger, and now
want to be able to use it again. Not the same as
establishing debug control, which you do with NMI or
RB. However, if you have disabled the debugger, then
you cannot use either of those commands.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

RSP’

Turns off

no parameters F8

the debugger.

USAGE

Enables complete transparency-- no emulation memory is
affected by the UniLab operation.

You will have to disable the debugger if you want to
run a program from a ROM chip on your target board.
See EMCLR.

RESERVED AREA

MODE

Allows you to use for your program the areas that Orion
otherwise reserves for debugger vectors and overlays.
Hit CTRL-F3 to get a help screen that includes
information telling you where the reserved bytes are
for your processor.

PANEL
You will not be able to use the debugger until you turn
it on again from the MODE panel, or with RSP.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

-- Command Reference -- Page 7-142

~- The Commands --

RZ no parameters

Resume program from breakpoint, without any breakpoints set.
Debug control will be lost.

USAGE
When you want to run the program starting from the
current address.

A handy command for exiting from the debugger.
However, a better command is GW which waits until you
start the analyzer, so that you can start the program
from the breakpoint with a trigger set.

EXAMPLE

RZ
Continues the program after a breakpoint.

COMMENTS

Don't try to specify a trigger event before RZ-- it
will not work.

July 16, 1986 Page 7-143 -- Command Reference --

~~ The Commands --

S no parameters

Starts the bus state analyzer. Resets the target system if
automatic RESET is enabled.

USAGE ,
You do not need to start the analyzer on the same line
as the command that sets up the trigger event
specification, though that is the usual practice.

S is a separate command that gets the analyzer going
with whatever spec you created already in place.

You can use TSTAT to see what the trigger has been set
up to (Trigger STATus).

EXAMPLES

S
Starts the analyzer, with whatever trigger was
last defined.

NORMT RESET 123 ADR S
clears out the trigger spec, turns on auto-reset,
and then sets it to address = 123 before starting
the analyzer (and restarting the target board).

~- Command Reference ~- Page 7-144

-~ The Commands --

S+ no parameters

Identical to S, except that it increases the delay cycle count
by A6 counts.

USAGE
Handiest when you find that your current trace just
starts getting interesting at the end. S+ by itself
will trigger on the same event, but with a new trace
window that starts 3 cycles before the end of the
previous one,

You should use this when your trigger spec is an event
that gets regularly repeated during the program, or
with RESET enabled. All S+ does is change the value of
DCYCLES and then start the analyzer again.

So if your trigger spec only happens once in the
program, and RESET is disabled, then the UniLab will be
searching a program in progress for an event that has
already occurred.

EXAMPLE
S+

restarts the analyzer with an increased delay
setting.

July 16, 1986 Page 7-145 -- Command Reference --

~~ The Commands --

SAMP no parameters

Samples the 48 input lines several times a second, and displays
them until any key is pressed.

USAGE
A good way to get a vague idea of what is going on. It
will be clear to you that the program has been stuck in
an infinite loop, or that it has gone far astray. But
you will not be able to tell much, as you only see one
cycle out of every several thousand.

DISASSEMBLY
You will probably want to turn off the disassembler,
with the Mode Panel (F8) or DASM'. When the
disassembler is enabled the isolated cycles will
probably be disassembled incorrectly.

EXAMPLE
SAMP
This command never used in combination with
anything else.
COMMENTS

Useful when you are trying to connect analyzer inputs
to something and you want to continuously monitor their
state. Similar to 1 SR but it runs faster. Gives more
detail on program execution than ADR?. Don't forget to
start from scratch on trigger specs after using SAMP,
because it defines its own trigger.

It also turns off the RESET.

~-- Command Reference -- Page 7-146

-- The Commands --

SAVE-SYS SAVE-SYS <file name>

Saves the entire UnilLab system program in its present state as a
named DOS file. Prompts you for file name if you do not include
it on command line.

USAGE
To save a version of the system with new macros, or
with default drives changed. Or, just to save the
current emulator enable values, the current trace, and
the trigger definition.

Warning-- does not save the symbol table. Do that with
SYMSAVE command.

EXAMPLE

SAVE-SYS B:NEWUL
Saves the system to a new file on the B: drive.

COMMENTS
Note that the target program, which is in the UniLab
itself, is not saved by this command. Use BINSAVE.

This command automatically makes the "file extension"
OCOM.

Since the entire program image is saved including any
unintentional damage to the program, always keep backup
copies.

July 16, 1986 Page 7-147 -~ Command Reference --

-~ The Commands --

SC <count> SC <file name>

Starts the analyzer and waits the specified maximum number of
milliseconds for trigger. When trigger occurs, the trace gets
compared to a previously saved trace.

USAGE
Very useful when writing test programs that compare the
trace to a known good trace that you have stored away.
Save traces with the TSAVE command. If a trace does
not match, the host computer beeps and displays both a
section of the previous trace and the first bad step of
the new trace.

HARDWARE CHECKOUT
Probably most useful for hardware checkout. To get a
vague idea of the capabilities, save a trace right now
(TSAVE test). Then pull the RAM off your target board
and execute the command below. Don't change your
trigger spec between saving the good trace and getting
the new one. See Appendix F for examples.

EXAMPLE
test 400 SC
Starts the analyzer board with a 400H ms trigger
time limit (1 sec.) and compares the trace to the
one saved in file "test."
COMMENTS

If the time limit passes with no trigger, the host
displays a '"NO TRIGGER" message and beeps.

-- Command Reference -- Page 7-148

-- The Commands --

SET <n> SET

Sets bit n of the stimulus generator output. The number, of
course, must be between 0 and 7.

USAGE
Simulates a peripheral input going from voltage low to
voltage high. The stimulus generator allows you to test
how your system responds to digital signals on certain
lines.

EXAMPLES

7 SET
sets stimulus output 7.

1 SET 1 RES
pulses output S1.

COMMENTS
Used to set individual bits of the 8 stimulus outputs.
See also RES and STIMULUS.

SET-COLOR no parameters
Change the display colors for a color monitor.

USAGE
After you have issued the command COLOR to inform the
UniLab software that you have a color monitor, you can
change the display colors with this command.

You use the cursor keys to choose different colors, and
see them displayed as you choose. Press the END key on
the numeric key pad when you have completed your
choices. You will need to save the system with
SAVE-SYS if you want the colors to be permanent.

July 16, 1986 Page 7-149 ~-- Command Reference --

~- The Commands --

SHIFT-FKEY <# of key> SHIFT-FKEY <command>

Assigns a command to a function key hit while the SHIFT key is
held down.

USAGE
Reassign the function keys on PCs and PC look-alikes.
Use SHIFT-FKEY? (or SHIFT-F1) to find the current
assignments.

The function keys allow you to execute any command or
string of commands with a single keystroke. The
initial assignments represent our best guess at what
you will need. But you might want to change them.

To make your reassignments permanent, use
SAVE-SYS,
EXAMPLE

6 SHIFT-FKEY TSTAT
assigns TSTAT to SHIFT-F6

COMMENTS
To execute a string of commands, define a macro first
(using :) and then assign the macro to the function
key.

See also FKEY, CTRL-FKEY, and ALT-FKEY.

SHIFT-FKEY? no parameters SHIFT-F1
Displays the current assignments of the SHIFTed function keys.
USAGE
Whenever you want to be reminded what command will be
executed when you press a function key while holding
down the shift key.

See SHIFT-FKEY to reassign the keys.

-- Command Reference -- Page 7-150

-- The Commands --

SHOWC no parameters F8

Shows the control lines on the trace display (the default
condition).

USAGE

Turn on display of the control lines, C7 through C4, as
well as the high four bits of the address bus, A19
through A1l6.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

SHOWC' no parameters F8
Turns off display of the control lines on the trace display.

USAGE
Turn off display of the control lines, C7 through C4,
as well as the high four bits of the address bus, A19
through A16.

Though the UniLab must always monitor these wires, and
sometimes they give you vital information (such as that
you have the wires hooked up wrong), usually you don't
need to see them.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

July 16, 1986 Page 7-151 -- Command Reference --

-- The Commands --

SHOWM no parameters F8

Shows the miscellaneous lines and the HDATA lines on the trace
display (the default condition).

USAGE
Turn back on display of the miscellaneous lines and the
high data lines (on 8 bit processors).

You will want to see these lines when you have them
hooked up to your board. Otherwise, you can ignore
them.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

SHOWM' no parameters F8

Hides the miscellaneous lines and the HDATA lines on the trace
display (the default condition).

USAGE
Turn off display of the miscellaneous lines and the

high data lines (on 8-bit processors).

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

-- Command Reference -- Page 7-152

~- The Commands --

SMBP <addr> <breakpoint #> SMBP
Sets one of the 8 multiple breakpoints at the given address.

USAGE
Allows setting of up to 8 breakpoints, in addition to
the unnumbered breakpoint that is set by RB or GB. The
status of all 8 breakpoints gets displayed each time
you set or clear one.

You must already have debug control before you issue
this command.

To use multiple breakpoints, set all but one of your
breakpoints with this command, and then use RB or GB to
get the target program going again.

EXAMPLES
123 4 SMBP
sets a breakpoint #4 at address 123,
250 RB
sets a breakpoint at 250 and starts the target
program going again.
COMMENTS

See also N, CLRMBP, RMBP.

Before using multiple breakpoints, you should examine
the possibility of using the more powerful capabilities
of the analyzer to do the same thing.

July 16, 1986 Page 7-153 -- Command Reference --

-- The Commands --

SOURCE SOURCE <file name>

Enables the display of source code interleaved with disassembly.
You must supply the name of your source file.

USAGE
Allows you to have your high-level language source file
displayed in the trace. After you issue this command,
each line of your source code will be displayed just
before the instructions that were generated by that
line of the source code.

DISABLE
You turn this display option off again with SOURCE'.

EXAMPLE

SOURCE C:\ASM\TEST.C
loads in the source file TEST.C and then uses the
symbol table to correlate lines of the source file
to instructions in the binary file.

SOURCE' no parameters

Turns off the display of source code in trace. See SOURCE.

-- Command Reference -- Page 7-154

-- The Commands --

SPLIT no parameters F2
Toggles split screen mode on and off.

USAGE
Gives you the ability to compare traces, or parts of
the same trace. You can also compare a trace to the
assembly code (DN), or to your source text file
(TEXTFILE).

WHAT WINDOWS ARE FOR
The right quadrants are reserved for the output of DN,
and for the pop-up panels (MODE). TEXTFILE only works
in the top window. Help screens are always shown in
the top window.

MOVING AROQUND
The END key moves you from one window to the other.

HISTORY
The history mechanism, which saves a record of what has
happened during your session with the UnilLab, only
records information off of the bottom screen.

EXAMPLES
SPLIT

This command never used in combination with
anything else.

July 16, 1986 Page 7-155 -- Command Reference --

-~ The Commands --

SR <n> SR

ReStarts the analyzer Repeatedly. Displays n lines each time
trigger occurs.

USAGE
Very useful for logging things repeatedly. You should
first set up the trigger and starting point of the
display with S and TN.

STOPPING
You start the infinite loop by entering SR. You break
out by hitting any key.

HARD COPY
Use the Mode Panel (F8) or PRINT to log your output to
the printer. The Mode panel also contains a feature
that allows you to log to a file. See TOFILE.

RESETTING OR INTERRUPTING THE TARGET
If you use RESET, then the target system will be reset
each time the analyzer starts.

WHEN TO USE SOMETHING ELSE
If the events you want to see occur more often than
once per second and you want to see them in sequence,
you can use XAFTER along with A9 SR to log bursts of
the events in filtered format.

EXAMPLES

20 SR
Repeatedly displays twenty lines of trace buffer,
starting the analyzer again after each display.

-- Command Reference -- Page 7-156

~- The Commands -~-

SST <trigger spec> SST
Starts the analyzer in the standalone mode.

USAGE
Set the analyzer looking for a bug that you think will
take a while to find. After you issue this command,
you can disconnect the UniLab from your host, or you
can keep it plugged in but exit from the UniLab program
(BYE) L]

Either way, the LED on the UniLab goes out when it
finds the trigger. You then plug in the UnilLab again,
call up the UnilLab program, and enter TS to display the
trace.

EXAMPLE
NORMB 1200 TO 1300 ADR WRITE 3F TO FF DATA SST

Searches for this trigger in standalone mode.

COMMENTS
Handy when you want to search for an obscure bug
without tying up the host computer.

July 16, 1986 Page 7-157 -- Command Reference --

-~ The Commands --

SSTEP no parameters Fé6

Only on processors that support NMI (see appendix H), this
command allows you to follow jumps, calls, and branches.

USAGE
After you have established debug control with
RESET <addr> RB
or
NMI
you can single-step through your code using a
combination of N and SSTEP.

Both instructions can be used only when you are stopped
at a breakpoint. SSTEP is appropriate when the
instruction pointed to by the program counter is a
jump, call, return, or branch. N is the correct
command at all other times.

Use appendix H to check whether or not your processof
supports NMI.

EXAMPLE
SSTEP

This command never used in combination with
anything else.

-- Command Reference -- Page 7-158

-~ The Commands --

STANDALONE STANDALONE <prom programming command>

Selects the standalone mode for the EPROM programming command
that follows.

USAGE
Allows you to use the host computer for something else
while the UniLab programs an EPROM. Especially handy
when programming large EPROMs,

You can type in STANDALONE and press return, then use
the PROM programming menu to program the EPROM.

When the LED next to the PROM programming socket goes
out, the command has been completed. You can then
enter PROMMSG to get the completion status message.
The UniLab must remain connected to the host computer,
or you will not be able to get the message.

EXAMPLES

STANDALONE
use this command and then make use of the
convenient PROM programming menu to burn an EPROM
in standalone mode.

STANDALONE 0 TO 1FFF P2764
you can also use STANDALONE along with a PROM
burning command, if you know the commands.

July 16, 1986 Page 7-159 -- Command Reference --

-—- The Commands --

STARTUP no parameters F9

Restarts the target system and gives a trace of the first 170
cycles of target system operation.

USAGE
Very useful mode at the first stages of system
checkout. Allows you to check out the first few
instructions, make certain that they execute properly.

The RES- wire from the analyzer cable must be properly
connected to the target system, or the UniLab will not
be able to reset the target processor. See the
INSTALLATION chapter of the manual.

The very first cycle (cycle 0) is particularly
important because if correct data is not fetched (often
due to the address not being properly EMENABLEd), then
the program will immediately "blow up."

MULTIPLE RESET
Some systems with simple R-C reset circuits (no
hysteresis) will appear to reset intermittently many
times before they finally settle down to stable
operation. This is a nuisance if you want to look at a
trace early in the program, but you will be able to see
the program when it does finally settle down.

If your system does this, you might want to consider
putting a logic element-- such as two Schmitt triggers
in a row (part number LS14)-- into your reset circuit.
That way your system will always get a good strong
reset signal.

EXAMPLES
STARTUP
This command never used in combination with
anything else.
COMMENTS

This is a target specific macro that usually looks for
the reset vector address on the bus. If that address
does not show up, system will wait forever. Or if a
HALT instruction is fetched, will give a '"NO ANALYZER
CLOCK" message. See TROUBLE SHOOTING chapter.

-~ Command Reference -- Page 7-160

-~ The Commands --

STIMULUS <byte> STIMULUS

Changes the 8 stimulus outputs (S0-S7) to correspond to the
specified byte. Also pulses the ST- output.

EXAMPLE
10 STIMULUS
makes all stimulus outputs zero, except S4
COMMENTS

Useful for changing all stimulus outputs at once. Use
SET or RES to set and reset individual signals. The
stimulus outputs originate in the PROM socket on the
front of the UnilLab and are normally connected by the
stimulus cable provided with your system. The stimulus

signals are usually used to provide test inputs for the
target system.

July 16, 1986 Page 7-161 -- Command Reference --

-- The Commands --

SYMB no parameters F8
Enables the symbol translation feature.

USAGE
Turns symbol translation back on, after it has been
disabled with SYMB'. Symbols make the trace more
readable, by allowing you to replace data and addresses
with symbolic names.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

Symbols are entered by using IS or SYMFILE, either of
which will turn on symbol translation.

SYMB' no parameters F8
Disables the symbol translation feature.

USAGE
To turn symbol translation off without clearing out the
symbol table. See CLRSYM if you want to clear out the
table.

Normally you will use the MODE panel (function key 8)
when you want to change this feature.

-- Command Reference -- Page 7-162

-- The Commands --

SYMFILE SYMFILE <file name>

Loads a symbol table file produced by a cross assembler or by the
UniLab program. Prompts for a file name if you don't include it
on command line.

USAGE
Capable of loading symbol tables in almost any format.
The first time you use it, SYMFILE presents you with a
menu of predefined formats. You can choose one of
those, and then save the system with SAVE-SYS to make
that the default format.

You can change the default format with SYMTYPE.

After you have defined a format, SYMFILE will prompt
you for a file name and load a symbol file into memory.

Formats not on the menu can be defined using SYMFIX for
fixed length files. Variable length files only come in
two formats: name and then value, or value and then
name.

The AVOCET format on the menu is for symbol files that
are name, then value.

The MANX format on the menu is for symbol files that
are value, then name.

EXAMPLES
SYMFILE C:\ASM\OUT.SYM

Loads into the UniLab a symbol file created by an
assembler.

July 16, 1986 Page 7-163 -- Command Reference --

-~ The Commands --

SYMFILE+ SYMFILE+ <file name>
Appends the contents of a symbol file to the symbol table.

USAGE |

Provides a way of adding to a symbol table that already
exists. SYMFILE, on the other hand, automatically
clears the existing symbol table.

SYMFILE+ allows you to combine several symbol tables.

See also CLRSYM.

EXAMPLES

SYMFILE+ A:EXTRA.SYM

Adds to the symbol table the symbols stored in a
file on the A drive.

-- Command Reference -- Page 7-164

-- The Commands --

SYMFIX <a> <c> «d> <e> <f> SYMFIX

Defines symbol file parameters for formats that use fixed length
records.

USAGE
Use this word to define your own SYMFILE format for
fixed length records, if none of the predefined formats
available on the SYMFILE menu suit your purposes.
There are only two types of variable length record
formats (value then name or name then value) and both
appear in the menu.

The definitions of the 6 parameters:

a = offset from start of record to start of name field.

b = 1 if address is 4 ASCII digits or 0 if 16-bit
binary.

c = address field offset from start of record.

d = 1 if binary address has most significant byte
first.

e = pad characters used to fill between symbols.

f = record length.

EXAMPLES

0 0 B1 0 E SYMFIX
defines the format for 2500AD abbreviated symbol
table files. These tables follow the format:
ten bytes for the symbol name,
two bytes for the symbol value,
two pad bytes.

July 16, 1986 Page 7-165 ~- Command Reference --

-- The Commands --

SYMLOAD SYMLOAD <file name>

Loads a UniLab format symbol table file from the disk. Prompts
for you for file name if you don't include it on command line.

USAGE
Loads up a symbol table that was saved with SYMSAVE.

These files are variable length, allowing symbols up to

255 characters long.

Warning: not compatible with symbol tables saved with

pre-version 3.0 SYMSAVE.

EXAMPLE

SYMLOAD B:oldsyms

Loads into the UniLab a symbol table file from the

B drive.

SYMSAVE SYMSAVE <file name>

Saves the symbol table as a named DOS file. Prompts for file
name.

USAGE
This command saves only the symbol table, which you
will be able to load in later with SYMLOAD.

Use SAVE-SYS to save the entire system.

EXAMPLE

SYMSAVE july3.sym
Saves the current symbol table to a file called
july3.sym.

~-- Command Reference -- Page 7-166

-- The Commands --

SYMTYPE no parameters
Re-defines the file format assumed by the SYMFILE command.

USAGE
Allows you to pick a different predefined file format
after you have chosen one with SYMFILE.

The first time you use the SYMFILE command you are
presented with a menu selection of default formats.
Once you have saved the default format, SYMFILE simply
executes immediately, using the selected format. The
SYMTYPE command allows you to get that menu again so
that you can change your selection.

See also SYMFIX.
EXAMPLE
SYMTYPE

This command never used in combination with
anything else.

July 16, 1986 Page 7-167 -- Command Reference --

-- The Commands --

T no parameters

Displays the trace from its current starting point until any key
is pressed.

EXAMPLE

T
displays the trace.

COMMENTS
The current starting point for the trace display is
defined by the most recent TN command. (STARTUP
usually sets it to -4.)

If the starting cycle # is not actually in the trace
buffer, the trace is started 4 lines from the closest
cycle number which is in the trace buffer.

-- Command Reference -- Page 7-168

-- The Commands --

TCOMP <n> TCOMP <file name>

Compares the present trace buffer to a previously stored trace in
the named file. Compares the last <n> cycles. Aborts and
indicates error if any bit fails to compare.

USAGE
Very useful for writing automatic system test programs.
Use the value AA to compare the entire trace.

Use TSAVE to save the trace of a good system. You can
then use that saved trace to test other systems.

If TCOMP finds a difference between the current trace
and the one in the file, it will display 9 lines of the
stored trace and the first bad line in the trace of the
system under test.

You can use TMASK to tell TCOMP to ignore one or more
of the columns in the trace display. See TMASK for
details.

You can also use SC to compare traces.

EXAMPLE

AA march.2 TCOMP
compares the entire trace to the one stored as
file "march.2."

COMMENTS
If you want to compare only part of the trace, use a
smaller number. TCOMP will then skip over the first
part of the file. This is useful for skipping