ronix

BB COMMITTED TO EXCELLENCE

TEK SPS BASIC
V02/VO2XM
System Software
CP57000/CP57500

Tektronix:

COMMITTED TO EXCELLENCE

TEK SPS BASIC
V02/V02XM
System Software
CP57000/CP57500

INSTRUCTION MANUAL

Tektronix, Inc.
P.0O. Box 500
Beaverton, Oregon 97077 Serial Number

First Printing JAN 1980 PRODUCED BY SPS DOCUMENTATION GROUP 070-2501-00

SOFTWARE SUPPORT POLICY

Unless otherwise provided, Tektronix, Inc., agrees that during the one (1) year period following installation, if the
customer encounters a problem with this software which the customer’s diagnosis indicates is caused by a software defect,
the customer may submit a Software Performance Report to Tektronix, Inc. For problems occurring in current, unaltered
releases of software, Tektronix, Inc., will respondto Software Performance Reports via a software maintenance periodical.
The software maintenance periodical will be provided at no costtothe customer for one year following installation and will
contain information for correcting or bypassing verified problems where possible, and will give notice of availability of
corrected software.

Any software updates released by Tektronix, Inc., to correct problems during the one (1) year period will be provided
to the customer at no charge on the standard distribution media specified in the software documentation. If media other
than the standard distribution media is requested, the customer will only be charged for the current cost of the optional
media.

SOFTWARE LICENSE

This software product, including subsequent improvements or updates, is furnished under a license for use on a
single controller. It may only be copied, in whole orin part (with the proper inclusion of the Tektronix, Inc., copyright notice
on the software), for use on that specific controller.

Specification and price change privileges are reserved.

Although the material inthismanual has been thoroughly edited and checked for accuracy, Tektronix, Inc., makes no
guarantees against typographical or human errors. Also, Tektronix, Inc., assumes no responsibility or liability,
consequential or otherwise, of any kind arising from misinterpretation or misuse of the material in this manual. The
contents of this manual are subject to change without notice.

Copyright © 1980 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved.
U.S.A. and foreign TEKTRONIX products covered by U.S. and foreign patents and/or patents pending.
TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

DEC, LSI-11, PDP, RT-11, and UNIBUS are registered trademarks of Digital Equipment Corporation.

TEK SPS BASIC V@2 System Software

PREFACE

This manual describes the commands, the functions, and the low-level
IEEE 488 Interface driver that are included in the TEK SPS BASIC V@2 and
V@2XM System Software package. The peripheral device drivers that are a
part of this package are discussed in a separate manual. Other TEK SPS
BASIC V@2/V@2XM packages are described in additional manuals which you
should consult when these software packages are added to your system.

All releases of TEK SPS BASIC V@2/V@2XM System Software are documented
by this manual. Any exceptions to a command, function, option, or capability
being supported by a specific release of the software are noted where
appropriate. Information that pertains only to extended memory (XM) systems
is shaded.

This is not a BASIC primer. It is assumed that you are familiar with
a high-level language and need this manual as a reference for TEK SPS BASIC
and its signal processing and waveform handling techniques. It is recommended
that you read the first three sections before you start to program, and
then consult the remainder of the manual as needed. An attempt was made
to make the information more retrievable by using topical footers in
sections 4, 5, 6, and 8 and by printing the error codes on colored paper.
If you have comments on what was done or suggestions for how to improve
future manuals, please write via the "Your Comments Count" form in the
back of the manual.

TEK SPS BASIC V@2 System Software

TABLE OF CONTENTS

SECTION 1 -- INTRODUCTION 1-1
Main Features of TEK SPS BASIC V@2 1-1
Operating Concepts 1-5

The Interpreter 1-5
Two Modes of Operation 1-5
Modules and How They Are Used 1-6
The Scheduler 1-8
Defining the Terms 1-13
Program Structure and Control 1-13
Special Characters 1-14
Elements of Expressions 1-15
Instruments and Peripherals 1-21

SECTION 2 -- EXPRESSION EVALUATION 2-1

Numeric Expressions 2-1
Notation Formats 2-1
Numeric Constants and Variables 2-1
Arithmetic Expression Evaluation 2-2
Array Expression Evaluation 2-5
Array Zones 2-8
Waveform Expression Evaluation 2-9
Binary Number Limitations 2-12

String Expressions 2-14
String Constants and String Variables 2-14
Subscripted String Variables 2-15
Concatenation 2-15
String Expression Evaluation 2-15

SECTION 3 -- GETTING STARTED 3-1

Loading the TEK SPS BASIC 3-1
Booting the System 3-1
Initializing the Software 3-3

How to Enter a Program 3-4
Running a Program 3-5

@ iii

TEK SPS BASIC V@2 System Software

Text Manipulation in Immediate Mode 3-8
Making the Most of Memory Space 3-10
Use Subroutines 3-10
RELEASE Nonresident Commands and Drivers 3-10
Execute GETFREE 3-10
Remove all REM statements 3-11
Break Your Program into Segments 3=-11
Instrument Communication 3-14
Fundamental Operations 3-14
Interrupt-Driven Programs 3-15
Data File Structures 3-17
Sequential Access Files 3-18
Random Access Files 3-20
Adding to a Sequential Access File 3-20
Reading in Arrays 3-22

SECTION 4 —-- TEK SPS BASIC COMMANDS 4-1
Overview of System Commands 42
System Control Commands 42
Program Control Commands -y
Variable Definition Commands 4.5
Program Data Inputs/Output Commands 4.6
Peripheral Housekeeping Commands b7
Instrument Control Commands 4-8
Debugging Commands 4-9
Guide to Notation 4-10
Syntax and Descriptive Forms 4-10
Substitution Guide Lines L1y
ABORT (Nonresident) b7
ATAN2 (Nonresident) 4-19
ATTACH 421
BOOT (Nonresident) 424
CANCEL (Nonresident) 4-26
CHAIN (Nonresident) 4.28
CHANGE (Nonresident) 4-31
CLEAR (Nonresident) 4-34
CLOSE 4-35
COPY (Nonresident) 4-37
DATE (Nonresident) 4-uo
DEFINE (Nonresident) 4-43

iv

TEK SPS BASIC V@2 System Software

DELETE 446
DETACH 449
DIM 4-51
DIR (Nonresident) 454
END 4-56
EOF (Nonresident) 4-57
FOR 4-59
FORMAT (Nonresident) 4-63
GET (Nonresident) 4-66
GETBLK (Nonresident) 4-69
GETFREE (Nonresident) 471
GETLINE (Nonresident) 4-73
GETLOC (Nonresident) 475
GETPRIORITY (Nonresident) 4-78
GOSUB 4-80
GOTO L4-82
HASH (Nonresident) 4-8Yy
HOOK (Nonresident) 4-89
HOOKQ (Nonresident) 4-91
IF 4-93
IGNORE (Nonresident) 4-96
INPREQ (Nonresident) 4-99
INPUT (Nonresident) 4-102
INTEGER 4-106
LET 4-108
LIST 4-113
LISTVAR (Nonresident) 4-115
LOAD 4-119
LOCKKB (Nonresident) 4-121
LST (Nonresident) 4-122
MATCH (Nonresident) 4124
NEXT 4127
OLD 4-128
ONERR (Nonresident) 4-131
OPEN 4-136
OVERLAY (Nonresident) 4-140
OVLOAD (Nonresident) 4-142
OVLSAV (Nonresident) 414y
PRINT (Nonresident) hoqu7
PRIORITY (Nonresident) 4-155
PUT (Nonresident) 4-157

PUTBLK (Nonresident) 4-160

TEK SPS BASIC V@2 System Software

PUTLOC (Nonresident) 4162
RANDOM (Nonresident) 4-165
READ 4-167
READU (Nonresident) 4171
RELEASE 4-178
REM 4-180
RENAME (Nonresident) 4-181
RENUM (Nonresident) 4-182
REPLACE (Nonresident) 4-185
RESCHEDULE (Nonresident) 4-188
RESET (Nonresident) 4-197
RETURN 4-198
REWIND (Nonresident) 4-200
RUN 4-201
SAVE (Nonresident) 4-203
SCHEDULE (Nonresident) 4-205
SETDATE (Nonresident) 4-210
SETTIME (Nonresident) 4212
SQUISH (Nonresident) 4-215
STATUS (Nonresident) 4218
STOP 4222
SYSBLD (Nonresident) 4224
TIME (Nonresident) 4-231
UNSCHEDULE (Nonresident) 4-235
VARTST (Nonresident) 4237
VERSION (Nonresident) 4-239
WAIT (Nonresident) 4-241
WAVEFORM 4243
WHEN (Nonresident) 4246
WRITE (Nonresident) 4-250
WRITEU (Nonresident) 4252
ZERO (Nonresident) 4257
SECTION 5 -- FUNCTIONS 5-1

Numeric Functions 5-1
Absolute Value Function (ABS) 5-2
Arctangent Function (ATN) 5-3
Cosine Function (COS) 5-3
Exponential Function (EXP) 5-4
Integer Part Function (ITP) 5-4

vi

TEK SPS BASIC V@2 System Software

Log Function (LOG)

Random Number Function (RND)
Sign Function (SGN)

Sine Function (SIN)

Square Root Function (SQR)
Task Function (TSK)

Array Functions

Cross Function (CRS)

Maximum Function (MAX)

Mean Function (MEA)

Minimum Function (MIN)
Root-Mean Square Function (RMS)
Size Function (SIZ)

String Functions

ASCII Function (ASC)
Cancel Function (CAN)
Character Function (CHR)
Length Function (LEN)
Position Function (POS)
Segment Function (SEG)
String Function (STR)
Trim Function (TRM)
Value Function (VAL)

SECTION 6 -- IEEE 488 INTERFACE DRIVER

Introduction to the IEEE U488 Bus

A Typical System
Bus Signal Lines
Data Lines
Control Lines
Bus Messages

Introduction to the IEEE 488 Interface Driver

IEEE 488 Interface Function Subsets
Loading the IEEE U488 Interface Driver
Addressing Instruments on the IEEE 488 Bus
Driver Control of the Bus Signal Lines

Transferring Data with PUT or GET

The GET Command
The PUT Command
An Example Using PUT and GET

vii

]
_ 2O WO oI o WU

k‘)'\U'\U'IU'I\ileHLﬂU'IkHU'!
w

TEK SPS BASIC V@2 System Software

Transferring Program Control on Interrupt 6-23
The WHEN Command 6-23
The IGNORE Command 6-25
IEEE 488 Interface Driver Commands 6-27
Requirements 6-27
Expression Evaluation 6-27
Command Summaries ‘ 6-28
GETSTA (Nonresident) . 6-29
GIFES (Nonresident) 6-34
IFDTM (Nonresident) 6-37
POLL (Nonresident) 6-40
PPOLL (Nonresident) 6-U46
RASCII (Nonresident) 6-48
RBYTE (Nonresident) 6-51
READBINARY (Nonresident) 6-53
SIFCOM (Nonresident) 6-59
SIFLIN (Nonresident) 6-63
SIFTO (Nonresident) 6-66
STERMC (Nonresident) 6-68
TIFL (Nonresident) 6-70
WASCII (Nonresident) 6-72
WBYTE (Nonresident) 6-76
SECTION 7 -- GLOSSARY 7-1
SECTION 8 -- UNDERSTANDING ERRORS 8-1
Types of Errors 8-1
Fatal Errors 8-1
Warning Errors 8-2
Error Categories 8-2
Program Control Errors 8-4
Data Errors 8-6
Evaluation Errors 8-8
Hardware/System Errors 8-11
Instrument Errors 8-12
Operating System Errors 8-14
Peripheral Errors ‘ 3-16
Syntax Errors 8-18

viii

TEK SPS BASIC V@2 System Software

APPENDIX A -- ASCII & IEEE 488 (GPIB) CODE CHART

APPENDIX B -~- ARCHIVING YOUR SOFTWARE

Hard-Disk Based Systems
System Software (without Instrument Checkout
Software) on Hard Disk
System Software with Instrument Checkout
Software on Hard Disk
Separate Package or Module on Hard Disk
Separate Package or Module on Floppy Disk
Instrument Checkout Software on Floppy Disk
Floppy-Disk Based Systems
System Software (without Instrument Checkout
Software) on Floppy Disk
TEK SPS BASIC on Minimum Number
of Floppy Disks
Separate Package or Module on Floppy Disk
Instrument Checkout Software on Floppy Disk

APPENDIX C -- POWER FAIL RECOVERY

Dump Program

APPENDIX D -- SOFTIWARE PATCHING

Resident BASIC Patches
Patches to Nonresident Commands or Drivers

APPENDIX E -- DATA DESCRIPTORS

Descriptor Format

A-1

B-3

B-3

B-5

B-6

B-9

B-9

B-10

B-11

B-12

Cc-1

C-2

E-1

TEK SPS BASIC V@2 System Software

APPENDIX F -- STANDARD HARDWARE BOOTING PROCEDURES
FOR TEK SPS BASIC V@2

M9301 Bootstrap ROM Card
M9312 Bootstram ROM Card
Standard ROM Bootstrap on SBT Module in CP4165

APPENDIX G -- A METHOD FOR MORE ACCURATE TIMING WITH
WAIT AND SIFTO

APPENDIX H -- SIZES OF TEK SPS BASIC VO@2/V@2XM
NONRESIDENTS COMMANDS AND DRIVERS

Approximate Size of TEK SPS BASIC V@2 Modules
Approximate Size of TEK SPS BASIC V@2XM Modules

H-1
H-l

SECTION

SECTION 2

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

TEK SPS BASIC V@2 System Software

SELECTION LOCATION GUIDE

INTRODUCTION

EXPRESSION EVALUATION

GETTING STARTED

TEK SPS BASIC COMMANDS

FUNCTIONS

IEEE 488 INTERFACE DRIVER

GLOSSARY

UNDERSTANDING ERRORS

ASCII CODE CHART

ARCHIVING YOUR SOFTWARE

POWER FAIL RECOVERY

SOFTWARE PATCHING

DATA DESCRIPTORS

STANDARD HARDWARE BOOTING PROCEDURES
FOR TEK SPS BASIC V@2

A METHOD FOR MORE ACCURATE TIMING
WITH WAIT AND SIFTO

SIZES OF TEK SPS BASIC V@2/V@2XM
NONRESIDENT COMMANDS AND DRIVERS

xi

E B DREOBSECEENBNEBENE

TEK SPS BASIC V@2 System Software

SECTION 1

INTRODUCTION

TEK SPS BASIC V@2 is a powerful general-purpose programming language
which offers sophisticated tools for the control of instruments plus the
acquisition, processing, storage, and display of data. At the same time,
it retains the easy-to-use, easy-to-learn, user-orientation of traditional
BASICs. This manual describes the features that make TEK SPS BASIC V@2
unique as well as some of the fundamentals of BASIC programming.

Main Features of TEK SPS BASIC V@2

Modular, space-efficient and versatile, TEK SPS BASIC can serve needs
ranging from a new user's five-line arithmetic calculation program to an
experienced assembly-level programmer's specialized device driver or
instrument control system. TEK SPS BASIC is file-compatible with Digital
Equipment Corporations RT-11 software. Running on DEC's PDP-11 family of
minicomputers and the TEKTRONIX CP4165 controller, it gives the programmer
access, through BASIC, to features of the operating system usually accessible
only through assembly-level interaction.

Here are some of the features of TEK SPS BASIC V@2 that make this
language superior to other versions of BASIC:

Choice of standard memory or extended memory versions. For those who
need more than the standard 28K words of memory, TEK SPS BASIC V@2 is
available in an extended memory (XM) version as well as a standard memory
version. Intended for use in systems with the DEC KT11D Memory Management
hardware, the XM version allows up to 96K words of extended memory to be
used for numeric array storage, for a total of 124K words of memory. Yet,
except for timing considerations, most of the differences between the
standard and XM versions are transparent. The full complement of TEK SPS
BASIC software packages is obtainable in either the standard or XM version.

Adaptable and expandable systems. The modular construction of TEK SPS
BASIC gives you the freedom to design a processing system that fits your
needs, rather than a general need. A variety of TEK SPS BASIC V@2 software
packages can be used with the system software. In addition, by using
optional packages you can write your own commands for special applications.
Likewise, you can write software drivers for one-of-a-kind instruments.

TEK SPS BASIC V@2 System Software

Full graphics capability. A graphics package is available to help you
display your results in an easy-to-understand format. These graphics tools
range from powerful commands like GRAPH and DISPLAY, which accept arrays
and waveforms as arguments and draw the data in them with akes and graticules,
to a complete selection of move and draw commands which permit the user
to specify destination locations as absolute or relative, in user or screen
units.

Signal analysis capability. A set of signal analysis commands is also
available that greatly simplify computations such as Fourier transforms,
convolution, correlation, differentiation, and integration. Only one BASIC
statement is needed to perform each of these tasks.

Flexible instrument control. Drivers and/or command packages are
available for Signal Processing Systems instruments such as the TEKTRONIX
Digitizing Oscilloscope (DPO), R7912 Transient Digitizer, T7912AD Programmable
Digitizer, and the 7612D Programmable Digitizer. The system is also designed
to support and control general-purpose instrumentation. User-written drivers
and commands are easy to integrate into TEK SPS BASIC and can be created
by someone competent in assembly language programming, using an optional
command package. Instrument communication commands are clear and general,
efficient at moving data to and from instruments, and sufficiently flexible
to permit control of instrument idiosyncrasies in communication.

GPIB Drivers. For control of devices connected to a General Purpose
Interface Bus (GPIB), TEK SPS BASIC V@2 includes a low-level IEEE 488
Interface driver. This driver gives you control over either a CP4100/IEEE
488 (Q-bus) Interface or a CP1100/IEEE 488 (UNIBUSR) Interface. Commands
range from primitive, line-level controls which accept string arguments
describing interface status to higher level directives which make GPIB
housekeeping details transparent to user programs. Interface time-out
duration is under user control, instrument data can be acquired using
" direct memory access (DMA) protocol, and the driver recognizes error, EOI,
and SRQ conditions directly.

A second GPIB driver, the high-level IEEE 488 Instrument driver, is
available as a separate package. Designed especially for communication
with GPIB devices that conform to the Tektronix codes and formats, it
offers easier control of instruments such as the TEKTRONIX 7912AD Programmable
Digitizer and the TEKTRONIX 7612D Programmable Digitizer.

Scheduling and error-handling capabilities. Designed for optimum
instrument control, TEK SPS BASIC gives you complete control of the system's

1-2 e

TEK SPS BASIC V@2 System Software

response to errors or interrupts, permitting the scheduling of routines
based on real-time instrument events, relative or absolute time delays,

or error conditions at any of 127 software-assigned priorities. Instrument
control functions can be segregated into separate tasks, protecting
individual tasks from being halted by errors or instrument failures in
other tasks. This, plus the ability to respond to an instrument when data
is available and to schedule programs, gives BASIC the power usually
reserved for a time-sharing system.

Maximum control of memory space. TEK SPS BASIC gives the user maximum
control over the controller memory space. Commands, drivers, and arrays
can be deleted to gain memory during program execution, and initial system
configuration parameters such as the number of instruments and peripherals
to be supported and the inclusion of graphics and string handling capabilities
are under user control. Furthermore, programs can be broken into segments
which can be loaded and executed as they are needed and then deleted or
overlaid when done. Even a fast overlay command, OVLOAD, is provided to
speed the execution of overlaid programs.

Ease and accuracy of arithmetic operations. As a programming language
at the BASIC level, TEK SPS BASIC gives you a complete software toolbox
for numeric and string computations. It is accurate to 7.2 decimal digits
and can operate either with or without floating-point hardware, configuring
itself to produce the most space- and time-efficient calculation. TEK SPS
BASIC's eight numeric and six array functions perform frequently needed
operations beyond the standard five operations of addition, subtraction,
multiplication, division, and exponentiation. All numeric operators and
functions accept as arguments virtually any combination of numeric variables,
arrays, segments of arrays, and waveforms. (A waveform is a special data
structure which simplifies signal processing applications by associating
a data sampling interval, a time-units label, and an amplitude-units label
with an array of signal-descriptive data.)

Array, waveform, and subarray processing. A single BASIC statement
is all that is needed to manipulate entire arrays or waveforms. Subarrays
allow you to process only that part of an array you are interested in.
Also, parts of arrays can be extracted from larger arrays or waveforms and
operated on independently.

String processing. String processing, or character manipulation, is
necessary to format output in a clear and easy-to-read manner. Strings in
TEK SPS BASIC can be arbitrarily long and need not have their length
explicitly declared. String variables are supported by a concatenation

TEK SPS BASIC V@2 System Software

operator and nine string functions which include conversions between numeric
and ASCII values of number strings. String arrays, which can be one- or
two-dimensional, can easily be searched (using the MATCH command) and may
have elements of arbitrary and varied lengths.

Peripheral Communication. TEK SPS BASIC communicates easily and
speedily with a complete range of peripherals which include graphic
terminal/keyboard, hard disk, floppy disk, cassette tape, magnetic tape,
paper tape reader and punch, and line printer. Its peripheral interfacing
code, like its instrument interfacing code, is written to be completely
independent of the device with which it communicates. Thus, new peripheral
drivers can be added to the system by TEK SPS BASIC users.

Random access files. Files are accessible and manipulable at any level
from byte to block, can be read or written in ASCII or binary, can be
formatted or unformatted, and can be accessed either serially or randomly.

Live keyboard. Immediate mode commands or program lines can be entered
from the keyboard while a program is executing. This feature can be disabled
by the LOCKKB command.

Unsolicited input. The user can interact with running programs through
either prompted or unsolicited input from the keyboard.

Patching capability. Special BASIC routines are included with your
software which allow you to update or correct errors in Resident BASIC or
nonresident commands.

TEK SPS BASIC V@2 System Software

Operating Concepts

Now, let's briefly discuss some of the operating concepts of TEK SPS
BASIC. Material that the beginning user may pass over is set off in square
brackets.

The Interpreter

BASIC is an interpretive language. That is, as you type a program
line on the terminal, the line is being stored in the controller memory.
Each line is stored in sequence by line number. It doesn't matter in what
order you enter program lines; the interpreter/operating system always
keeps lines of text in line-number order.

When you execute a program, the interpreter/operating system takes
one line at a time from memory, in line number order, and executes the
command(s) in that line.

Interpretive languages are a great advantage when you are developing
programs. If a mistake is found, all you need do is retype the line in
error. New lines can be added at any time, and lines no longer needed can
be deleted in a snap.

When you have a complete, working program it can be saved on a
peripheral storage device, such as a disk or magnetic tape. These saved
programs can be loaded and run again at any time.

Two Modes of Operation

TEK SPS BASIC commands can execute in either immediate mode or program
mode.

Immediate Mode Operation. The BASIC interpreter can execute single
commands immediately, without the command being a part of a program. When
a command is typed at the terminal with no preceding line number, the
command is executed immediately. It is not stored in the controller memory.
Any BASIC statement can be executed in immediate mode, but some, like
PRIORITY or RETURN, have no meaning in this case.

TEK SPS BASIC V@2 System Software

Program Mode Operation. When a BASIC statement is preceded by a line
number, the statement is not executed immediately. Instead, it is stored
in memory and executed when you execute the program or subroutine of which
it is part. RUN, which is used to start program execution, is the only
command that can not be entered in program mode.

Modules and How They Are Used

A key feature of TEK SPS BASIC is its modularity. The heart of the
TEK SPS BASIC interpreter/operating system is called the Monitor/Interpreter
or "Resident" BASIC. This is the software that keeps track of your program
and allows you to add or delete other modules as they are used. These
modules include peripheral drivers (routines that "talk" to the peripherals),
instrument drivers, mathematical modules (such as the Fourier transform,
correlation, differentiation, etec.), and various BASIC commands. The modular
concept frees the greatest amount of memory in the controller for programs ‘
and data storage. Modularity also increases the flexibility of BASIC by
allowing you to add new commands and drivers when necessary. You can even
write your own.

Figure 1-1 is a block diagram of the TEK SPS BASIC V@2 operating
system. Most of Resident BASIC, which includes the system device driver,
is always in memory. [A portion of Resident Basic is an overlay area into
which one of two files that are stored on the system device is automatically
overlaid as it is needed. The two files are TRAN.OVL and UNTRAN.OVL.
TRAN.OVL translates BASIC text into the internal, executable form in which
a program is stored in controller memory. UNTRAN.OVL converts the internal
form back to the BASIC language form that can be displayed with the LIST
command.]

Modules usually reside on the system storage device. They can be
copied to other peripheral devices if necessary. The system storage device
is determined when TEK SPS BASIC is initially brought into memory. It is
the peripheral device from which BASIC is loaded. For most operations
involving data transfers between the controller and a peripheral, the
system device is assumed if no other device is specified.

Modules can be loaded in two ways. One method is with the LOAD command.
When you LOAD a module, it becomes part of Resident BASIC. It is locked
in and can't be released until you specifically free it with the RELEASE
command .

1-6 e

TEK SPS BASIC V@2 System Software

/ TRAN.OVL
RESIDENT
BASIC
s L)

- 4
T / UNTRAN.OVL
]
)

INSTRUMENT NONRESIDENT PERIPHERAL
DRIVERS COMMANDS DRIVERS

2501-01

Fig. 1-1. Simplified diagram of TEK SPS BASIC V@2.

The other method of loading modules is to let BASIC do it for you.
This "auto-loading" works only with nonresident commands (not drivers)
that are stored on the system device. When BASIC encounters a nonresident
command in a program (or in immediate mode) and that command is not in
memory, BASIC automatically fetches the nonresident command from the system
storage device and continues program execution.

When a module is auto-loaded, it is not locked in. It is automatically
released if room is needed later for another nonresident module, data, or
program text. [A tally is kept as to how often these auto-loaded commands
are used. When one has to be auto-released, the one that has had the least
recent use gets released.] One of the nonresident commands, STATUS, tells
you which modules are currently in memory. It also lets you know if they
have been auto-loaded.

[Because of the system overlay files, care must be used if BASIC is
to be executed while the system disk is removed from the system drive.
Before the system device is removed, all the commands and drivers that
will be needed must be in memory, none of the commands may require UNTRAN.OVL
to execute, and TRAN.OVL must be resident. (TRAN.OVL can be made resident
by entering an immediate mode command or by just hitting the RETURN key.)]

TEK SPS BASIC V@2 System Software

Figure 1-2 shows a more detailed diagram of TEK SPS BASIC V@2. Here,
individual elements from acquisition instruments to storage peripherals
are presented. In the center of the diagram is the Monitor/Interpreter,
or Resident BASIC. Next to it are the nonresident commands and the peripheral
and instrument drivers that are loaded as needed. Resident BASIC communicates
with the various peripheral devices and instruments through the drivers.

The Scheduler

As a program executes, Resident BASIC must manage its resources such
as memory space and processing time in response to varying priorities,
task numbers, interrupt conditions, scheduled events, nested subroutines,
and other program operations. The mechanism which performs this resource
management is the Scheduler.

NOTE

An understanding of how the TEK SPS BASIC
Scheduler operates is essential for the
skillful and complete use of the language.
However, a beginning user may want to
return to this material as it becomes
relevant.

The Scheduler consists of three structures and the routines to
manipulate them. The structures are the current-job slot, the queue, and
the stack (see Fig. 1-3). These contain entries, called packets, which
represent the varip
of the next line to be executed in the routine, and the internal address
of the routine. The Scheduler always has two special packets, called idle
packets, which keep the Scheduler functioning even when there are no other
packets in the Scheduler. An idle packet has a priority of -1, a task
number of -1, and a line number of @.

The current-job slot holds the packet of the currently executing
routine, which is called the current job. When no routine is being executed
(e.g., when READY has been printed on the terminal), an idle packet occupies
the current-job slot. It causes Resident BASIC to loop until an entry is
made into the queue. This is called idle mode.

1-8 e

TEK SPS BASIC V@2 System Software

*]
INSTRUMENTS | - I = —
- .
INSTRUMENT OTHER t GPIL.SPS .
DRIVERS TD.SPS DPO.SPS INSTRUMENTS let?gps
PROCESSING NONRESIDENT OTHER
SOFTWARE COMMANDS [+ ™ MONITOR/INTERPRETER <" MODULES
k] ? Frig
Y
Y Y Y Y
PERIPHERAL OTHER t
DRIVERS LP DK DX DL PP PR CT KB PERIPHERALS
Y oD
—
P
PERIPHERALS . .
]I HIGIE
*Instrument drivers can support up to 32 R7912’s, 4
DPOQ’s, and 4 IEEE 488 Interfaces.
1Other instrument and peripheral drivers can be added
when needed to meet system requirements.
2501-13

Fig. 1-2. Block diagram of the TEK SPS BASIC V02 Operating System.

e ‘ 1-9

TEK SPS BASIC V@2 System Software

| |
a |
"IDLE PACKET"
QUEUE <
"PACKET"
TASK | PRIORITY
— NUMBER | NUMBER
3 1 3 |).~ | -NUMBER | NUMBER
R = I/ LINE NUMBER
|
CURRENT
JOB
STACK
[}
] [}
2501-03

Fig. 1-3. The three structures of the Scheduler.

The queue contains packets for routines which are ready to receive
system attention and resources. Its packets are ordered by priority. The
highest priority routine which has not yet begun execution is at the top
of the queue. The queue always holds an idle packet. When the queue is
"empty", the idle packet is at the top of the queue.

The stack contains packets for routines which have begun to execute
but which were "bumped" from the current job by a higher priority routine.
When the idle packet is bumped from the current-job slot (BASIC is no

longer in idle mode), the idle packet is put onto the stack.

Packets enter the Scheduler through the queue. Packets can be put
into the queue in several ways. An immediate mode statement causes packets
to be entered that edit, translate and execute the statement. A WHEN
statement can make the system respond to an interrupt by scheduling an
interrupt-handling routine which is represented by a packet inserted into
the queue. A SCHEDULE statement can cause a particular routine to be

TEK SPS BASIC V@2 System Software

scheduled for execution at a particular time; when that time occurs, a
packet describing that routine is entered into the queue.

The Scheduler manipulates the packets in its three structures using
the priority and task number assigned to each routine as it is entered.

Priority is like a ranking of routines by importance. A higher number
means a particular routine is more important and should be done sooner.
Priorities range from @ to 127, with 50 the default. They can be assigned
by using the PRIORITY command or the WITH keyword in the WHEN or SCHEDULE
commands. Packets for immediate mode commands are entered into the queue
with a priority of 127.

The task number is a numeric name associated with a routine when its
packet is entered into the queue. Unlike priority, it implies no order of
importance, but is used only to identify different parts of the same task.
Task numbers between @ and 126 are assigned by using the AS TASK keywords
in the RUN, WHEN, and SCHEDULE commands. If AS TASK is not specified, WHEN
or SCHEDULE assigns the task number associated with the WHEN or SCHEDULE
command as it executes. Immediate mode commands are put into the queue
with a task number of 127.

The Scheduler uses the priority to monitor the execution of routines
and to determine whether a routine should continue executing or be suspended
to allow another routine to begin executing. At the completion of the
execution of each command of the current job, the Scheduler compares the
priority of the current-job packet against the priority of the packet at
the top of the queue. If the current job has a higher or equal priority,
its next command executes. If not, the packet in the current-job slot is
pushed onto the top of the stack, and the packet at the top of the queue
is moved to the current-job. The first command of the new current job is
executed.

If there is no next command in the current job (e.g., RETURN has just
been executed), the Scheduler compares the priority of the top packet on
the stack with the priority of the top packet on the queue. Whichever
packet has the higher priority is moved to the current-job slot and the
first command of the routine it represents executes. If the packets are
of equal priority, the packet from the stack is selected. (See Fig. 1-L4.)

The task number is used to limit the impact of fatal errors. If a
fatal error occurs and the user has not set up other error-handling

TEK SPS BASIC V@2 System Software

A

EXECUTE
RESIDENT ROUTINE
OR COMMAND
FROM CURRENT JOB

QUEUE PRIORITY
>
CURRENT JOB
PRIORITY

"END","STOP”
OR
“"RETURN"?

YES YES
NO / QUEUE PRIORITY SAVE
- > CURRENT JOB
\ STACK PRIORITY ON STACK
YES A
))
PUT STACK PUT QUEUE PUT QUEUE
INTO INTO INTO
CURRENT JOB CURRENT JOB CURRENT JOB

2194-03

Y
Y

Fig. 1-4. Diagram of the Scheduler's priority-based execution process.

procedures with the ONERR command, the Scheduler removes from its current-job
slot, queue, and stack all packets with the same task number as the task
generating the error. Packets with a different task number remain. This

gives the user the capability of confining the impact of errors to those
program segments which will be affected and permitting other program

segments to continue to execute. (See Section 8 for a complete discussion

of Resident BASIC's default error-handling procedures. Also, for a discussion
of the user's error-handling options, see the ONERR command in Section U4.)

TEK SPS BASIC V@2 System Software

Defining the Terms

Before going further into TEK SPS BASIC programming, it is necessary
to define some terms used throughout this manual. These terms describe the
fundamental parts of BASIC and waveform processing. Further definitions
can be found in the Glossary section of this manual.

Program Structure and Control

Program. A BASIC program is a set of one or more numbered statements
(instructions) that performs some operation when executed. A program can
be made up of one or more parts called subprograms or subroutines.

Statement. A statement is an instruction to the software to take some
action. For example, the statement LET X = 3 tells the software to place
" the value of three into the variable named X. The statement name is LET.
Another statement is PRINT X. It tells the software to print the value of
X on the computer terminal. In TEK SPS BASIC, statements are also called
commands, and the two words can be used interchangeably.

Subprogram. A subset of a program is called a subprogram or routine.
It is a group of statements within a program that does a particular job.

Subroutine. A subroutine is a subprogram that terminates with a RETURN
statement. It can be repeatedly called and/or it can be called from different
parts of a program.

Line Number. Line numbers are used to order the execution of statements
in a program. Line numbers are integers between 1 and 32767, inclusive.
Statements with line numbers can be entered in any order, but they are
always stored and listed in ascending order. Statements are always executed
in line number order unless a GOTO or GOSUB is performed or a higher
priority routine interrupts.

Program Mode. This is one of the two modes under which a statement
can execute. A program-mode statement is preceded by a line number, and
each such statement is stored in the controller memory as it is entered.
Program-mode statements are not executed until the program execution is
begun by a RUN, OLD, CHAIN, GOTO, or SCHEDULE command, or by an interrupt-
driven start-up.

TEK SPS BASIC V@2 System Software

Immediate Mode. This is the second mode of statement execution. An
immediate mode statement has no line number and is not stored. An immediate
mode command is scheduled for execution as soon as it is entered from the
terminal.

Task. A task is a subprogram distinguishable from another subprogram
by the task number associated with it. A fatal error can occur in one task
and halt its execution without halting other tasks.

Task Number. This is the numeric name assigned, either explicitly or
by default, to a routine when it is scheduled for execution (entered in
the Scheduler queue). The name implies no order of importance or priority
of execution. It is only a way of identifying different subprograms in the
Scheduler. A task number between @ and 126 can be explicitly assigned by
RUN, WHEN, or SCHEDULE. Immediate-mode statements always execute as task
number 127.

Priority. Priority is the rating of the relative importance of a task.
It is the basis for deciding in what order tasks execute.

Priority Number. The priority number assigned to a routine determines
in what order it will execute in relation to other routines. Also, a routine
with a high priority number can interrupt a routine with a low priority
number. Programs RUN with a default priority of 5@, but the PRIORITY command
can change the priority number of a currently executing routine. The WHEN
or SCHEDULE command can assign a priority number from @ to 126 to a routine.
Immediate-mode statements execute with a priority number of 127.

Special Characters

Backslash Character. The backslash character (\) is used to define
the end of a command when more than one command appears on a single line.
This character is entered on some terminals by typing shift-L. Several
commands may be entered on one line. For example:

100 PRINT "PROGRAM RUNNING"\GOTO 355
While the use of the backslash may save space when you have a series

of short LET statements, overuse of the backslash can make your programs
hard to read and difficult to debug.

TEK SPS BASIC V@2 System Software

Control Characters. The TEK SPS BASIC control characters are instructions
to BASIC or to the keyboard terminal driver. Control characters are entered
by holding down the CTRL key on the terminal and striking the desired
character. BASIC prints an up arrow (") followed by the corresponding
character when a control character is entered.

Control-0. A Control-0 inhibits the display of most output directed
to the terminal. Error messages are not suppressed. A second Control-0
allows the display of output. Any output sent to the terminal between the
suspension and resumption of the display is lost.

Control-P. This character terminates a program and returns BASIC to
the idle mode. It may be entered at any time. Control-P leaves files open,
disables all WHEN interrupts, and removes any pending tasks from the
Scheduler. During most operations, the Control-P is not recognized until
the operation is complete. This is to insure that the data is not left in
a "half-done" state.

Control-Q. A Control-Q resumes the terminal output that was temporarily
suspended by a Control-S. (Control-Q is not supported by TEK SPS BASIC
vga-g1.)

Control-S. This temporarily suspends terminal output until a Control-Q
is entered. (Control-S is not supported by TEK SPS BASIC V@2-@1.)

Control-U. This control character deletes the line being typed. All
characters back to, but not including the last carriage return are deleted.
BASIC responds to the Control-U by sending a carriage return and a line
feed to the terminal.

Control-Z. Control-Z is used to terminate input to the COPY command
when the source device is the system terminal.
Elements of Expressions

Expressions. An expression is defined by what it evaluates to. There

are four types of expressions in TEK SPS BASIC: numeric expressions, array
expressions, waveform expressions, and string expressions.

TEK SPS BASIC V@2 System Software

Numeric Expression. A constant, a variable, or any legal combination
of constants, variables, waveforms, arrays, arithmetic operators, functions,
and parentheses that evaluates to a single numeric value is considered a
numeric expression.

EXAMPLE: C¥SQR(2) (C is a simple numeric variable)
NOTE

On the following pages, numeric expressions
are referred to simply as "expressions."

Array Expression. An array, an array zone, or any legal combination
of arrays, array zones, waveforms, numeric expressions, functions, arithmetic
operators, and parentheses that evaluates to an array is considered an
array expression. All arrays and arrays associated with specified waveforms
involved in an array expression must be the same size.

EXAMPLE: 4¥A2/5.6+A1 (A1, A2 are arrays of the same size)

Waveform Expression. A waveform or any legal combination of waveforms,
arrays, numeric expressions, functions, arithmetic operators, and parentheses
that evaluates to a waveform is considered a waveform expression. Within
a waveform expression, all arrays and arrays associated with specified
waveforms must be the same size.

EXAMPLE: W1+3¥W2 (W1, W2 are waveforms with associated arrays
of the same size)

String Expression. Any string constant, string variable, or any legal
combination of string constants, string variables, string functions that
return a string, parentheses, and the string operator (&) that results in
a string is considered a string expression.

EXAMPLE: "THIS"&C4$ (CU4$ is a simple string variable)

Numeric Constant. A numeric constant (or simply a constant) is a
number expressed as a decimal value. A constant is entered as one or more
ASCII numeric characters (@#-9) with an optional decimal point and an
optional positive or negative power of ten specification (E notation).

TEK SPS BASIC V@2 System Software

Negative constants are preceded by a minus sign; positive constants may
optionally be preceded by a plus sign. Examples of legal constants are:

232 +33.34 6U23E+5 -.005 10E-13

The E notation in a constant refers to a power of ten. In the third example,
the value expressed is 6423 times 10° or 642300000 .

The values expressible as a constant range from +1.7@141E+38 to
-1.7@141E+38 with the smallest possible fraction expressible as
+2.938TUE-39.

String Constant. A string constant (also called a string literal) is
one or more characters enclosed in single or double quotes. The maximum
length of a string constant is somewhat less than 80 characters (the maximum
length of a line BASIC will accept minus the other characters needed in
the statement). Three control characters, Control-P (returns BASIC to idle
mode), Control-U (deletes line being typed), and Control-M (carriage return)
cannot be included in a string literal. Some examples of string constants
are:

"TWENTY SIX LIONS SLEPT TODAY."
"'STRINGS MAY HAVE EMBEDDED QUOTES, 'HE SAID."

Numeric Variable. Symbols used to represent single numeric values are
called numeric variables. These symbols can be one or two characters in
length. The first character must be an upper case letter (A-Z). The optional
second character may be either an upper case letter or a digit (@-9).
Examples are A, Z1, and JJ. Six variable names are not allowed, as they
are used as parts of statements. These are AS, AT, IF, IS, OF, and TO. A
numeric variable not dimensioned to an array is called a simple numeric
variable. An element of an array is called a subscripted numeric variable.

NOTE

On the following pages, numeric variables
are referred to simply as "variables."

String Variable. String variables are symbols used to represent
strings. The rules for naming string variables are identical to those for

TEK SPS BASIC V@2 System Software

numeric variables, with the addition of a dollar sign ($). Some examples

of string variable names are A$, E5$, K9$, ZZ$. The strings represented

by string variables can be of any length, limited only by the amount of
controller memory available. A string variable not dimensioned to an array
is called a simple string variable. An element of a string array is called
a subseripted string variable.

Arrays. Arrays are variables that represent more than one numeric
value or string. Arrays are defined in DIM, INTEGER, or WAVEFORM statements,
or they can be automatically defined in a program if certain commands are

used. In standard memory systems, array length (the number of elements an
array can have) is limited only by the amount of controller memory available.

) elements., Arrays can be one- or two-dimensional. Two-dimensional
arrays can be thought of as having rows and columns, or as a matrix.

Floating-Point Arrays. These arrays are defined either by a DIM or
WAVEFORM statement or automatically by some commands. Names for floating-point
arrays follow the same rules as names for simple numeric variables. Each
element in a floating-point array requires two words of controller memory.
Values in a floating-point array can range from -1.7@141E+38 to +1.7@141E+38
with the smallest possible expressible fraction being +2.93874E-39.

Integer Arrays. Integer arrays are defined by the INTEGER statement,
or automatically defined in a program if certain commands are used. Rules
for naming integer arrays are the same as for naming simple numeric
variables. Values in an integer array are limited to integers in the range
of -32768 to +32767. Floating-point values stored in an integer array are
truncated to integers. (The number 3.9 is stored as 3; a -9.9 is stored
as -9.) Each element in an integer array requires one word of controller
memory.

String Arrays. String arrays are defined in a DIM statement only.
Each element in a string array is a complete string. The string elements
can be of differing lengths. The length of any element in the string array
is limited only by the amount of memory available in the controller. Names
for string arrays follow the same rules as for naming string variables.

TEK SPS BASIC V@2 System Software

NOTE

On the following pages the term 'array'
refers to floating-point or integer arrays
only, not string arrays.

Array Zone. An array zone is a subarray of either a floating-point
or integer array. It is a contiguous portion of an array that is accessed
independently of the rest of the array. Array zones may appear anywhere
that arrays may appear unless otherwise stated in the command description.
They can be used with either integer or floating-point arrays, but not
with string arrays or waveforms. A colon (:) between two subscripts is
used to specify an array zone. For example, A(@:9) specifies the first ten
elements of array A as an array zone.

In doubly-dimensioned arrays, one dimension may be zoned, but not
both. Legal uses of array zones are shown below:

1. array(n:m,e)
2. array(e,n:m)
3. array(n:m)

Here e, n, and m are all numeric expressions yielding single values
that are rounded to integers. Expression n is the subscript for the start
of the zone, m is the subscript for the end of the zone, and e is a regular
array subscript.

The subarray referenced in (1) above includes the elements
array(n,e), array(n+1l,e),... array(m,e)

The subarray referenced in (2) includes the elements
array(e,n), array(e,n+1),... array(e,m)

The subarray in (3) includes the elements
array(n), array(n+1),... array(m)
As an example of using an array zone, let's assume you want to find
the mean of a part of an array. The statement:

X = MEA(A1(50:99))

would return in variable X the mean of the 50 elements of array A1 starting
at the 51st element, A1(50).

TEK SPS BASIC V@2 System Software

Waveforms. A waveform is a variable that represents a floating-point
or integer array, a simple numeric variable, and two string variables that
have been associated by a WAVEFORM statement. The array contains the data
points of the waveform. The numeric variable contains the data sampling
interval (DSI) which is the time between elements. The strings contain the
horizontal and vertical units ('seconds' and 'volts' for example). The
sampling interval and units information is automatically updated if the
waveform is altered during program execution.

Operators. Operators determine the type of action to be performed on
one or more quantities. Three types of operators are available in TEK SPS
BASIC: arithmetic operators, relational operators, and the string operator.

Arithmetic Operators. The arithmetic operators are:

exponentiation
multiplication
division
addition

- subtraction

+ N W

These operators are used to create an arithmetic expression.

Relational Operators. Relational operators are used in IF statements
to express conditions which can be true or false. The relational operators
are:

= equal to
< less than

> greater than

<= less than or equal

>= greater than or equal
<> not equal

String Operator. There is one string operator, the ampersand (&). It
is used to make a new string by joining (concatenating) two or more separate
strings. For example, the following statement creates string C$ by assigning
it the result of concatenating strings A$ and B$:

C$=A$&B$

1-20 e

TEK SPS BASIC V@2 System Software

Functions. In mathematics, a function defines the value of a dependent
variable based on the value of the independent variable. Similarly, a BASIC
function returns a value (or in some cases, an array of values) that results
from the action of the function using the given argument. A function does
not change the value of this argument.

A function is not like a command. It can only be used as a part of
an expression within a statement (such as LET or PRINT). Three different
function types are available in TEK SPS BASIC:. numeric functions, array
functions, and string functions.

Numeric Functions. Functions that operate on numeric information and
return numeric information are called numeric functions. The argument of
a function may be a numeric expression, an array expression, or a waveform
expression. If the function's argument is a single-valued expression or
constant, the function returns a single value. If the argument is an array
(or waveform), the function computes a value for each element in the array
(or the waveform's array), and returns an array. The numeric functions are
ABS, ATN, COS, EXP, ITP, LOG, RND, SGN, SIN, SQR, and TSK.

Array Functions. Array functions always expect arrays or waveforms
as the argument of the function, and always return a single value. The
array functions are CRS, MAX, MEA, MIN, RMS, and SIZ.

String Functions. Functions that operate on strings or string
expressions, or create strings, are called string functions. Some string
functions return a number, some return an ASCII string. String-function
capability may be deleted at system load time, if desired. The string
functions are ASC, CAN, CHR, LEN, POS, SEG, STR, TRM, and VAL.

Instruments and Peripherals

Device Names. A device name is a two or three letter mnemonic that
is used when referencing peripheral or instrument devices. The mnemonic
may be followed by a device number that represents which unit of the device
group is being specified. For an instrument, the device number is called
a hardware unit number (HUN). For peripherals, the device number is called
the drive number. In the command syntax the device name and the device
number are terminated by a colon. If the device number is not included
with the device name, zero is assumed. For example:

DK: disk drive zero
DK1: disk drive one

e 1-21

TEK SPS BASIC V@2 System Software

The following device names are currently recognized by TEK SPS BASIC:

Name: Device:

KB system keyboard terminal
DK hard disk

DL DEC RLO1 or equivalent hard disk
DX single-density floppy disk
DY dual-density floppy disk
CT cassette tape

PP paper-tape punch

PR paper-tape reader

LP line printer

MT 9-track magtape

VM virtual memory

CLK line frequency clock

TD R7912 Transient Digitizer
DPO Digitizing Oscilloscope

System Device. The system device is that storage peripheral (the
device name and drive number) from which TEK SPS BASIC is loaded. The
system storage device is the default device (the one used if no device is
specified) for most peripheral-oriented commands. It is also the device
from which nonresident commands are auto-loaded.

Instrument Logical Unit Number. Each instrument is referenced by an
instrument logical unit number (ILUN). The ILUN is associated with a
particular instrument by the ATTACH statement. The maximum number of
instruments that can be attached at any one time is defined at system load
time (when the system software is initialized). ILUNs are specified in
instrument commands (GET, PUT, ATTACH, DETACH, WHEN, and IGNORE).

ILUNs may be constants, variables, or expressions. In the command
syntax, they are always preceded by a pound sign (e.g., #K+3). ILUNs
eliminate the need to specify the instrument type and number every time
the instrument is accessed. This speeds program execution and reduces
storage needs. Also, by specifying a variable as the ILUN, subroutines can
be more general purpose. That is, one routine can be used with any instrument
of a specific type.

Peripheral Logical Unit Number. When peripherals are used for the

input or output (I/0) of program data, they are referenced by a peripheral
logical unit number (PLUN). The PLUN is associated with the peripheral

1-22 e

TEK SPS BASIC V@2 System Software

device or a file on the device by an OPEN statement. The maximum number
of PLUNs that can be in use at any one time is defined at system load time
(when the system software is initialized). The PLUN of zero is reserved

by BASIC and is permanently associated with the system keyboard terminal
(KB). PLUNs are specified in the program data I1/0 commands (READ, WRITE,
INPUT, PRINT, READU, WRITEU, and some forms of GET).

PLUNs may be constants, variables, or expressions, and in the command
syntax, they are always preceded by a pound sign (e.g., #PL+3). PLUNs
eliminate the need to specify the file name or device name and number
whenever the file or device is accessed. This speeds program execution and
reduces storage needs. Also, by specifying a variable as the PLUN, subroutines
can be more general purpose. That is, a single statement can output data
to (or input data from) any peripheral.

File-Structured Device. A file-structured device is a mass storage
peripheral device on which data is referenced (stored and retrieved) by
file name.

Directory. A directory is a table of all the names of the files stored
on a device, including pointers to where these files are stored.

Directory-Structured Device. A directory-structured device is a
file-structured peripheral that has a directory of the files stored on it.
The files are accessed by searching the directory for the file name and
using the associated pointer to find the actual location of the file. These
devices include:

floppy (flexible) disk
hard (cartridge) disk
virtual memory

Serial-Access Device. A serial-access device is a file-structured
peripheral on which the files are stored sequentially with the file name
stored in the beginning of the file rather than in a directory. The files
are accessed by searching the tape linearly (either forwards or backwards),
looking for the file name. These devices include:

magtape
cassette tape

e 1-23

TEK SPS BASIC V@2 System Software

Non-File-Structured Device. A non-file-structured device is a peripheral
on which data cannot be referenced (stored or retrieved) by a file name.
These devices include:

keyboard terminal
line printer

paper-tape punch
paper-tape reader

Files. Any collection of information stored on a peripheral device
is a file. Files stored on file-structured devices must be named. Information
written to a file remains in the file until the file is canceled or the
device is reinitialized. The files created by BASIC are either program
files or data files.

File Names. File names must be string constants or string variables.
A file name consists of up to six-upper case letters or digits. The name
may be followed by an optional file-name extension. The extension consists
of up to three letters or digits, separated from the file name by a period.
You may use a name or extension that is longer than the six or three
character 1limit, but additional characters are ignored by the interpreter.
BASIC expects files containing nonresident commands and drivers to have
the extension SPS. No other types of files should have the extension SPS.
BASIC provides an extension of BAS for program files if no other extension
is specified. Some examples of legal file names are:

"PROG.BAS"
"DATA.DAT"
"A5566 .ABC"
"GIN.SPS"
"TEST.Qu"
"1 5565 'A"

Program File. A program file contains a BASIC program. A regular
program file is created by the SAVE command and updated by REPLACE. The
contents of a program file (the BASIC program) are brought into controller
memory by an OLD, OVERLAY, or CHAIN statement. A fast overlay file, which
contains a BASIC program stored in a pretranslated form, is created by the
OVLSAV command and is brought back into memory with an OVLOAD statement.

Data Files. A data file contains program data. It is classified by
the type of data it holds (binary or ASCII), by how the data is stored
(formatted or unformatted), and by how the data is accessed (sequentially
or randomly).

1-24 e

TEK SPS BASIC V@2 System Software

Data can be stored as either a binary number or an ASCII character
string. Numeric values are usually stored in two-word, floating-point
binary format; but one command (WRITEU) can optionally store numeric values
in 16-bit (one word) binary integer format. BASIC stores strings in ASCII
format with eight bits (one byte) used for each character. Of course, if
numeric characters are part of a string, they too are stored in ASCII
format.

Sometimes other information describing the data (data descriptors)
or delimiters between data elements are written into the file along with
the data. When this is the case, the data file is said to be formatted;
otherwise, the file is said to be unformatted. The data descriptor or
delimiters require space in the file in addition to the data they accompany.

The WRITE command stores and the READ command reads both floating-point
binary and ASCII data that is formatted by data descriptors. The PRINT
command outputs and the INPUT command retrieves only ASCII data which is
formatted by delimiters following the data items. The WRITEU command stores
and the READU command reads unformatted, binary (floating-point or integer)
and ASCII data.

Sequential Access. Sequential access is a method of file access in
which the data is stored serially from the beginning of the file and is
retrieved in the order in which it was stored.

Random Access. Random access is a method of file access in which the
data can be stored or retrieved, in any order, as logical units of data
called records. Each data record may consist of one or more data items,
but all the data records in a file must be the same length. Records are
stored and retrieved by record number. Where a record is written does not
depend on where a previous record was written in the file. Similarly, where
a record is read from does not depend on the position of the previously
read record. In TEK SPS BASIC a random access file is called a record I/0
(input/output) file.

e 1-25

TEK SPS BASIC V@2 System Software

SECTION 2

EXPRESSION EVALUATION

Numeric Expressions

All numeric expressions and arithmetic functions performed in TEK SPS
BASIC software are evaluated in floating-point format. This is true even
for integer arrays and waveforms. All elements in an integer array are
temporarily converted to floating-point numbers before any operation
involving them is performed. Constants appearing in a program are treated
as floating-point values regardless of whether they have a fractional
portion or not.

Notation Formats

Values are expressed in one of two ways. A value between .1 and
999999, inclusive, is printed in its entirety. For other values, the number
is printed in 'E' notation. The E notation may also be used when you input
numbers to a program.

Some examples of numbers in E format are:

1.23E+6 which equals 1230000
25.5E=4 which equals .0@255
-14.02E10 which equals -140200000000

The value following the E is a power of ten which is multiplied by
the given number to produce the result. The plus sign is optional and may
be omitted from the exponent.

Numeric Constants and Variables

Constants and variables are the components which all numeric expressions
are built upon. A constant is simply a number appearing in an expression.
In the following statement, 4.56 is a constant and also the source expression
of the assignment statement:

508 LET X = 4.56

Variables are labels that represent quantities. In the above statement,
X is a variable, and after execution of the statement, X is set equal to

TEK SPS BASIC V@2 System Software

the quantity 4.56. Before this statement is executed, X may have had any
value, or have been previously undefined (a value of zero is assigned to
a variable by BASIC until you give it a different value).

Arithmetic Expression Evaluation

Arithmetic expressions, as found in the LET, PRINT, and other commands
where an expression is valid, are evaluated according to a standard
precedence of operations. To illustrate this, consider the following
expression:

LET J = LOG(X+Y)+V

Given that the values of X, Y, and V have been previously defined,
evaluation of this expression follows in a natural order. That is, V cannot
be added to the LOG(X+Y) until LOG(X+Y) is evaluated. But, LOG(X+Y) cannot
be evaluated until the result of adding X to Y is found. No matter how
complicated an expression may be, it can always be broken down into a
series of operations involving one of the five basic math operators
(addition, subtraction, multiplication, division, and exponentiation) and
functions.

To avoid ambiguity in expression evaluation, TEK SPS BASIC follows a
standard operator precedence. This order is as follows:

1. Expressions within parentheses are evaluated first, using the
operator precedence defined below.

2. Function calls (such as LOG, EXP, etc.) are evaluated second.

3. Arithmetic operations are performed last and occur in the order
defined in Table 2-1.

When several operators of the same precedence occur in sequence (such
as in A+B+C-D), the expression is evaluated from left to right.

2=2 e

TEK SPS BASIC V@2 System Software

TABLE 2-1

Arithmetic Operator Precedence

Precedence Operation BASIC Symbol

1 exponentiation of
a positive value

2 multiplication ®# and /
and division

3 addition and + and -
subtraction or
negation

Notice that in exponentiation, the value being raised to a power (the
root) must be positive. Even though the exponent can be negative, the root
must be greater than zero. If it is not, a warning error is issued and the
absolute value of the root is used. BASIC limits exponentiation to positive
values in order to allow the exponent to be fractional.

The arrangement of operators, subexpressions (expressions within
expressions), and parentheses follows these rules:

1. Two subexpressions must be separated by an operator (”,*,/,+,
or -).

2. Two operators may not be adjacent.

3. Three of the five operators (",*, and /) must always be preceded
and followed by a subexpression. The other two operators (+ and -) may
optionally be preceded by a subexpression but must always be followed by
a subexpression.

y, Parentheses must be used in pairs; for each left parenthesis
there must be a matching right parenthesis, and vice versa.

TEK SPS BASIC V@2 System Software

The following shows some examples of illegal expressions and why they
are illegal:

Illegal Why illegal Correct
(A+B)(C-D) missing operator (A+B)*(C-D)
A/-B two ad jacent operators A/(-B)
A/(*B) missing expression A/(N¥B)
A/(B+C)¥*D) unmatched right parenthesis A/((B+C)¥*D)

When a minus sign is not preceded by a subexpression, BASIC interprets
the minus sign to mean "change the sign of the subexpression that follows."
In each of these expressions:

-A -A+B B¥(-A)

the minus sign in front of the A changes the sign of the subexpression A.
The minus sign in the expression C/(-A"B) changes the sign of the result
of the subexpression A"B, not just A.

You may also omit the subexpression preceding a plus sign, but, if
so, BASIC takes no action with the plus sign. The expression that follows
the plus sign is unaffected by its presence. Though not illegal, such a
plus sign can just as well be omitted.

Let's consider a complex expression and discuss how it is evaluated
in BASIC. The statement is:

LET I = LOG(X+Y) + V / F°G + H

First, the value of X+Y is computed, since this subexpression is in
parentheses. The LOG of this sum is then computed. The next highest operation
is F°G. This evaluation is followed by the division of the variable V by
the result of F"G. The entire expression has now been reduced to LET I =
M + N + H where M is the value of LOG(X+Y), N is the result of V/F"G, and
H is the original value of variable H. Evaluation now proceeds from left
to right, summing the three remaining values to produce the result I.

In some cases, the normal order of operator precedence does not permit
the desired solution for the problem under study. When this occurs, normal
operator precedence can be manipulated by the use of parentheses, since
operations enclosed in parentheses are always evaluated first.

TEK SPS BASIC V@2 System Software

When parentheses are nested (one or more pairs of parentheses enclosed
in an outer pair), the expression within the innermost pair of parentheses
is evaluated before the outer pairs. To help understand this, consider the
following expression:

LET I =(LOG(X+Y) + V) / (F*(G + H))

In this example, evaluation begins with the leftmost, innermost parenthetically
enclosed expression, X + Y. The sum of this expression is then operated
on by the LOG function, and to this result the value of V is added.

Now, the innermost parenthetical expression not yet evaluated is G+H.
This sum is computed and the value of F is raised to this power. This
result (F"(G+H)) is used to divide the result of the expression (LOG(X+Y)+V),
and the final result is placed in variable I.

Here's another way of looking at parentheses, and how they can alter
the normal order of evaluation. Consider the following examples:

1. X = A+B¥*C
2. Y = J*K/L*M
3. Z = A/B/C

In example one, the product of B¥C is added to the value of A. If you
wish to add A and B first, then multiply by C, the statement to use is X
= (A+B)¥*C.

In example two, the product of J¥K is divided by L, and this quotient
is then multiplied by M. If you wanted to divide the product J*K by the
result of L¥M, the statement should be Y=(J¥K)/L*¥M).

In example three, the quotient of A/B is divided by C. If you want
to divide A by the quotient of B/C, use the statement Z=A/(B/C).
Array Expression Evaluation

TEK SPS BASIC allows you to combine simple variables with arrays and

waveforms in expressions. In the following discussion, waveforms may be
substituted wherever arrays appear.

TEK SPS BASIC V@2 System Software

There are three basic forms of array assignments. These are:

Simple numeric variable = array expression. When a simple numeric
variable (a variable that has not been dimensioned) is the destination of
a waveform or array expression, the variable is auto-dimensioned to an
array the size of the source array and set equal to the element-by-element
result of the expression.

Array = expression. Every element in the destination array is set
equal to the value of the expression.

Array = array expression. This is similar to the first case above.
The destination array and all arrays in the source expression must be of
the same size.

For a two-dimensional array, with the first subscript considered to
be the row number of a matrix and the second subscript considered to be
the column number, the array is filled row by row. As an example, consider
this routine that fills an 8-element one-dimensional array, A, with the
numbers @ through 7. (Each element is set equal to its subscript number.)
Then a two-dimensional array B is set equal to A.

1@ DIM A(7),B(1,3)

20 FOR K=@ TO 7

30 A(K)=K

4@ NEXT K

5@ B=A

6@ PRINT "FIRST ROW:"
7@¢ PRINT B(@,0:3)

8@ PRINT "SECOND ROW:"
9¢ PRINT B(1,@:3)

From the output below, you can see that the elements of B were assigned
the values of A, element by element, row by row.

FIRST ROW:

SECOND ROW:

Array expressions are evaluated in the same manner as arithmetic
expressions except the result is an array of numbers -- not a single number.

TEK SPS BASIC V@2 System Software

All the arrays (or array zones) in the expression must contain the same
number of elements because the resultant array's values are calculated in
a linear manner, one element at a time. The first element of the result

is equal to the evaluated combination of the first elements of all the
arrays in the expression and any constants or simple variables in the
expression, and so on for each element. The following program demonstrates
the operation.

108 DIM X(2),Y¥(2),2(2)
110 X(@)=1

120 X(1)=2

130 X(Z):3

140 Y=2

150 Z=X+2%Y

After execution of this program, the arrays X, Y, and Z will have the
following values:

X(@): 1 Y(@): 2 Z(@): 5
X(1): 2 Y(1): 2 Z(1): 6
X(2): 3 Y(2): 2 Z(2): 7

Line 100 of the program defines the four variables (X, Y, and Z) as
one-dimensional floating-point arrays of three elements each.

Lines 110 to 130 set each element in array X equal to the constant
on the right of the equal sign. Line 140 sets all three elements of array
Y equal to two. Since the array is specified as the destination and no
subscript is specified, all elements in the array are operated on.

The expression in line 150 sets all elements in the Z array. This one
statement is the equivalent of the following three statements:

Z(@)=X(@)+2*Y (D)
Z(1)=X(1)+2%Y(1)
Z(2)=X(2)+2%Y(2)

Had array Z not been dimensioned in line 10@, auto-dimensioning would
have occurred at line 150, producing the same results.

TEK SPS BASIC V@2 System Software

Array Zones

An array zone is treated exactly like a regular array but only those
elements in the zoned portion are operated on. A colon is used to delimit
the boundaries of the zone. For example, the following statement creates
a ten-element array (P) whose elements are equal to the first ten elements
of array M:

P = M(0:9)

If variable P had been previously defined as an array, it must have been
dimensioned to ten elements (for example, DIM P(9)). Array M may be
dimensioned to any size equal to or greater than ten.

There are three legal variations of zoned arrays. They are:

1. array (n:m,e)
2. array (e,n:m)
3. array (n:m)

In these examples, e, n, and m are all arithmetic expressions resulting
in a single value. The starting element of a zone is represented by n, and
m represents the end of the zone; e is a regular subscript expression.

Note that when two-dimensional arrays are referenced, only one dimension
may be zoned. Hence, array (n:m,y:z) is not a valid zone.

All the rules of array expression evaluation apply when working with
zoned arrays.

Although waveforms may not be zoned, the array part of the waveform
may be zoned. Consider the following statements:

350 WAVEFORM B IS AB(511),DI,HB$,VB$
360 X=MAX(AB(25:500))

Statement 360, which sets variable X equal to the maximum value in
the zoned portion of array AB is legal, since only the array component of
the waveform is specified. Had this statement been entered as

360 X=MAX(B(25:508))

an error would have resulted because now the waveform name is specified.

2-8 e

TEK SPS BASIC V@2 System Software

Waveform Expression Evaluation

Expressions containing waveforms are treated like array expressions,
except that each waveform's units and data sampling interval (DSI) are
taken into account. A waveform may have a floating-point or integer array,
and may be mixed with floating-point or integer arrays, waveforms, and
variables in the expression.

The automatic units processing provided by TEK SPS BASIC when you use
waveforms can save you time and programming effort. Before using waveform
expressions, you should understand how TEK SPS BASIC processes units and
data sampling intervals.

Table 2-2 shows all the combinations of expression components using
waveforms, with a waveform as the destination. In the table, W1 and W2 are
waveforms, A is an array equal in length to the waveform(s), and V is
either a numeric variable (floating-point or integer) or a numeric constant.
Note that when waveforms are mixed with arrays in waveform expressions,
the result may have no units or invalid units. Invalid units are marked
by a delta (A).

TABLE 2-2

Arithmetic Operations With Waveforms

OPERATION RESULT

W1+V or V+W1 Result is waveform with:

W1-V or V-W1 (1) Horizontal units same as Wi's.

W1*V or V*W1 (2) Vertical units same as W1's.

wW1/v (3) Data sampling interval same as Wi's.

W1°V or V™W1

W1+A or A+W1
W1-A or A-W1
Wi1%¥A or A¥W1
W1/A

W1"A or A"W1

W1 w2

V/W1
A/W1

W1+W2
Wi-w2

TEK SPS BASIC V@2 System Software

Result is waveform with:

(1) Horizontal units same as Wi1's.

(2) Vertical units inverse of Wi's.

(3) Data sampling interval same as W1's.

Result is waveform with:

(1) Horizontal units same as W1's (preceded by
delta if W1's horizontal units and data
sampling interval are not identical to W2's).

(2) Vertical units same as Wi1's (preceded by delta
if W1's vertical units are not same as W2's.)

(3) Data sampling interval same as Wi's.

Result is waveform with:

(1) Horizontal units same as W1's (preceded by
delta if W1's horizontal units and data
sampling interval are not identical to W2's).

(2) Vertical units of W1 concatenated with
those of W2.

(3) Data sampling interval same as W1's.

Result is waveform with:

(1) Horizontal units same as W1's (preceded by
delta if W1's horizontal units and data
sampling interval are not identical to W2's).

(2) Vertical units being Wi's vertical units
concatenated with the inverse of W2's
vertical units.

(3) Data sampling interval same as Wi's.

2-10 e

TEK SPS BASIC V@2 System Software

NOTE

An arithmetic function returns either a
single number or an array -- never a wave-
form. When a waveform is an argument to

an arithmetic function, the function

operates on its array part only; units

and data sampling interval are not

associated with the result. The waveform
itself is, of course, not altered unless

it is the destination of the result of the
function operation.

Since an arithmetic function never return a waveform, if W2 is a
waveform, the statement

W2 = SIN(W2)

will set W2's vertical and horizontal units to null and its data sampling
interval to zero. Similarly, if W3 is a waveform

W3 = SIN(W2)

will nullify W3's units and data sampling interval (DSI), even if they had
been defined prior to the assignment statement. But, this second statement
will not change W2's units or DSI unless they are the same variables
associated with W3.

Here is an example of the automatic processing of waveform units and
data sampling interval in an array expression. Suppose A1, A2 and A3 are
arrays of equal size. A1 and A2 are filled with data; A3 is to hold the
results. The following program associates waveforms with these arrays,
assigns values to the units variables, and performs simple waveform
operations. D1, D2 and D3 are the data sampling intervals. H1$, H2$, and
H3$ are the string variables that hold the horizontal units. V1$, V2$, and
V3$ hold the vertical units.

10 WAVEFORM W1 IS A1,D1,H1$,V1$
20 WAVEFORM W2 IS A2,D2,H2$,V2$
3@ WAVEFORM W3 IS A3,D3,H3$,V3$
4g D1=1E-6/51.2

5¢ D2=D1

TEK SPS BASIC V@2 System Software

6@ H1$="s"
70 H2$=H1$
8¢ Vig="y"
9¢ V2$=V1$

100 W3=W1¥Ww2
110 W1=W3/W2

Line 100 yields the waveform, W3, with units defined as follows:

D3 = D1 = 1E-6/51.2
H3$ = H1$ = ng»
V3$ = V1$&v2$ = "yy»

When line 110 is performed, the data sampling interval size and
horizontal units of W1 are unchanged. However, the vertical units become:

V1$ = V3$&"/V" = "VV/V" = "V"

That is, TEK SPS BASIC software "cancels" the units.

Binary Number Limitations

Numbers in TEK SPS BASIC are represented with about 7.2 decimal digits
(24 binary bits) of accuracy. Many numbers cannot be fully represented by
the internal storage format and must be rounded up or truncated to the
nearest 24-bit binary number.

After execution of the following BASIC statement, the value of the
variable A is not actually @.1.

10 LET A=.1
Because the number must be rounded to 24 bits, the variable A takes
on a value closer to 0.100000@2. For most arithmetic operations, this

deviation in the 8th place is perfectly acceptable. But subtle problems
can develop when these numbers are used to control iterative operations.

In Example 1, you might expect the FOR/NEXT loop to terminate after
eleven iterations. It's a reasonable expectation, but an incorrect one.

2-12 e

TEK SPS BASIC V@2 System Software

Example 1

18 FOR A=1 TO 2 STEP .1

5¢ NEXT A

When the variable A has an accumulated value of about 1.900@8@18 (on
the tenth iteration) and the step value of .10000@@2 is added, A's new
value exceeds the loop limit of 2 and the loop terminates.

When the control elements of a FOR/NEXT loop, or a loop controlled
by an IF statement, can be represented exactly within 24 binary bits, there
is no problem with early loop termination. Numbers that fit exactly include
all integers of 7 digits or less and any negative power of 2 such as
2'1=1/2, 2'2=1/4, 2'3=1/8, Most often, however, the loop control
elements do not meet these criteria or are calculated in the program and
are thus unknown to the programmer.

If the step value in Example 1 is used only to control the number of
iterations of the FOR/NEXT loop, the following method gives good results.

Example 2
10 FOR A=@ TO ITP((2-1)/.1)
5¢ NEXT A
The general form is:

FOR loop counter = @ TO ITP((loop limit - loop start) / step value)

NEXT loop counter

If the loop counter is to be used as data as well as to control the
loop, an additional line provides the required value and avoids potential
inaccuracies that accrue because of rounding or truncation. The 3 lines
of Example 3 should be used instead of the 2 lines of Example 1.

TEK SPS BASIC V@2 System Software

Example 3

10 FOR A=@ TO ITP((2-1)/.1)
20 AA=1+A% .1

.

6¢ NEXT A
The general form is then:

FOR loop counter = @ TO ITP((loop limit - loop start) / step value)
LET data value = loop start + (loop counter ¥ step value)

.

NEXT loop counter

String Expressions

String Constants and String Variables

The main components of a string expression are string constants and
string variables. A string constant appears in an expression as a sequence
of ASCII characters enclosed in single or double quote marks. In the
following statement, "AN 8-BIT BYTE" is a string constant:

100 LET X$="AN 8-BIT BYTE"

String variables are labels that represent strings. They are distinguishe:
from numeric variables by the dollar sign ($). In the above statement, X$
is a string variable. After execution of the statement, X$ is set equal
to the 13-character string "AN 8-BIT BYTE". Before the statement executes,
X$ may be equal to any string of any length, or it may be undefined (not
explicitly assigned a value by a BASIC statement). If an undefined string
variable is used in an expression, BASIC will give it a default value of
the null or empty string, "".

TEK SPS BASIC V@2 System Software

Subscripted String Variables

A one- or two-dimensional string array may be dimensioned in the same
manner as a numeric array. The dimensions refer strictly to the number of
strings in each dimension. There is no assumption or restriction on the
length of any of the elements in the string array. Each element can be
defined as a different number of ASCII characters. A single element of a
string array is referred to as a subscripted string variable and may be
accessed only as such. Only the individual subscripted string variables
of an array can appear in an expression; string array operations are not
allowed.

Concatenation
The ampersand (&) is the only string operator. It specifies the
concatenation of strings. It links strings together without intervening
characters. For example, if A$ equals "THE", the statement
B$=A$&"SIS"

would assign the string "THESIS" to B$.

String Expression Evaluation

The result of a string expression is a single string of ASCII characters.
String expressions basically follow the same order of evaluation as numeric
expressions. This order is:

1. String expressions in parentheses are evaluated first.

2. String function calls (such as CHR, SEG, and STR) are evaluated
next.

3. The concatenation operation is done last, from left to right.

For example, consider the string expression in this statement:

LET X$ = TRM(J$&K$)&SEG(A$,1,20)

TEK SPS BASIC V@2 System Software

The subexpression J$&K$ is evaluated first, forming a new string from the
concatenation of J$ and K$. This new string is then trimmed of trailing
blanks by the TRM function. Next, another new string is formed from the
first 20 characters in A$ by the SEG function. Finally, the two intermediate
strings are concatenated to form the string that defines X$.

TEK SPS BASIC V@2 System Software

SECTION 3

GETTING STARTED
Loading TEK SPS BASIC

In order to load TEK SPS BASIC from a peripheral device, the proper
SPS load module of the operating system (the .LDA file) for that device
must be on the medium. (Not all peripherals are supported by an SPS load
module. Check the individual discussions on each device driver in the

Peripheral Drivers manual to see if an SPS load module exists and what its
name is.) Also, before the software can be booted, an absolute loader must

have been installed on the medium by either the HOOK or HOOKQ command.
(The absolute loader is a stand-alone program which, in this case, loads
the operating system. The absolute loader is brought into memory by the
bootstrap program.) If you follow the archiving procedure in Appendix C
to make working copies of the TEK SPS BASIC System software, the correct
absolute loader is installed. See the discussions on the HOOK and HOOKQ
commands in Section U4 for more information.

The device name and drive number from which BASIC is loaded becomes
the system device. This is the device and drive from which commands are
autoloaded. It is also the default device and drive for many of the
peripheral commands (e.g., BOOT, CANCEL, COPY, DIR, OLD, OPEN, OVERLAY,
OVLOAD, READ, SAVE, WRITE, etc.) The system device driver is loaded with

the operating system; it is included in the SPS .LDA file for that device.

Booting the System

After the hardward system is properly connected and powered-up, insert
the medium with your copy of TEK SPS BASIC into the device for that medium.

If the device has more than one drive, use the drive you perfer.
Next, follow the bootstrap procedure for the ROM bootstrap card in
your controller. Some common hardware bootstrap procedures are briefly

discussed in Appendix F.

When the ROM bootstrap program of the controller issues its prompt,

enter the device name and the drive number from which BASIC will be loaded.

For example, if your software is on a DK hard disk in drive 1, enter:

DK1

TEK SPS BASIC V@2 System Software

Now, depending on which absolute loader has been installed on the
medium for your copy of BASIC, one of three things will happen.

1. If the SPS absolute loader was installed by the HOOK command,
TEK SPS BASIC is loaded automatically. This is the most common situation.

2. If the DEC RT-11 absolute loader was installed by the HOOK
command, the DEC RT-11 Operating System is loaded. To load TEK SPS BASIC,
enter:

RUN LOADER

in response to the RT-11 prompt, a dot (.). When LOADER prints its prompt,
an asterisk (*), enter the name of the SPS .LDA file for your device. (Do
not type the .LDA extension.) For example, if the device is a DK hard disk,
enter:

SPSDK
NOTE

To return to the DEC RT-11 Operating System
from TEK SPS BASIC, enter:

BOOT

This reboots the device with DEC RT-11
as the operating system.

3. If the LDA absolute loader has been installed by the HOOKQ
command, any file with the .LDA extension can be loaded. To load TEK SPS
BASIC, enter the name of the SPS .LDA file for your device in response to
the prompting asterisk (¥)., (Do not enter the .LDA extension.) For example,
if the device is a DK hard disk, enter:

SPSDK

3-2 e

TEK SPS BASIC V@2 System Software

Initializing the Software

Once TEK SPS BASIC has been loaded into the controller memory, an
initialization routine begins. This routine executes only once, and then
deletes itself, turning control over to Resident BASIC. The initialization
process uses a set of parameters to define the size and capabilities of
Resident BASIC.

The initialization routine looks for a file named "SYSBLD.DEF" on the
system device. If the file is there, the user-defined parameters in the
file are used to initialize the system. You can create this file by executing
the SYSBLD command and answering the questions it asks. This allows you
to optimize your system's use of controller memory space to fit your needs.
See the SYSBLD command description in Section 4 for complete documentation.

If the file is not there, an internal list of default parameters is
used to initialize a system which has or allows:

IEEE 488 capabilities

string functions

graphic capabilities

no patch area

peripheral logical unit numbers
instrument logical unit numbers
peripheral drivers

instrument drivers

nonresident commands

clock frequency of 60 Hz

graphics mode keyboard driver

WMk k. ok Ak ok K kK Ok kN
N = = 00O

Extended memory (XM) systems have an additional default parameter which
~allocates all of the extended memory for array storage and none of the
tended memory for use as a peripheral with the VM Virtual Memory driver.

When the initialization process is complete, the version and release
numbers of the BASIC Monitor and the number of words of free memory is
printed on the system terminal. Then, to tell you that BASIC is in idle
mode and ready for your instructions,

TEK SPS BASIC V@2 System Software

READY

is printed on the terminal.
NOTE

Before continuing, it is strongly urged
that you make a complete copy of your

TEK SPS software if you have not already
done so. The original copy should be placed
in a safe location, and used only to
produce additional copies in the event

that your working copy is damaged.

Appendix B contains information about how
to copy TEK SPS BASIC.

How to Enter a Program

BASIC programs are usually entered from the terminal. Programs are a
series of lines of text, each with its own unique line number. Each line
of text contains one or more commands, instructing the system to take some
action. The syntax of all the system commands appears in Section U4 of this
manual.

BASIC is primarily a free-form language. That is, there are no specified
columns or positions in a line set aside for special purposes. Generally,
when a line is entered, the inclusion or omission of spaces is unimportant
except that at least one space must follow the command name and any keywords
in the command (such as THEN, AS, etec.).

If you make a mistake while typing in a line, you can use the RUBOUT
or DELETE key on the terminal to delete the incorrect character. Each time
the RUBOUT key is pressed, one character is deleted from the line.

If you decide it's easier to delete the whole line, type in Control-U.
(Press the CONTROL key and U at the same time.) This deletes the entire
line; everything up to but not including the last carriage return is
deleted.

TEK SPS BASIC V@2 System Software

The maximum number of characters you can enter on a single line (before
typing a carriage return) is T79. If you type more than 79 characters, the
extra ones are not echoed (displayed on the terminal). BASIC waits for you
to enter a carriage return, a Control-U, rubout, or Control-P. Eighty
characters, including the terminating carriage return, is the most you can
put on a single line.

A carriage return must terminate every line entered.

Running a Program

Let's try entering and running a simple program. The sample program
opens a file on the system device and writes out the square roots of values
entered from the terminal. Here's the program:

108 OPEN #1 AS "EXAMPL.TST" FOR WRITE

110 PRINT "ENTER A VALUE, NEGATIVE NUMBER TERMINATES"
120 INPUT X

13¢ IF X<@ THEN 160

149 WRITE #1,X,SQR(X)

150 GOTO 129

160 CLOSE #1

17@ OPEN #1 AS "EXAMPL.TST" FOR READ

180 EOF #1 GOTO 220

190 READ #1,X,3Q

20¢ PRINT "THE SQUARE ROOT OF";X;"™ IS";SQ
21¢ GOTO 19@

22@ CLOSE #1

23@ STOP

This program, while quite simple, demonstrates some of the fundamental
basics of programming: input, computation, and output. Let's go over the
program, line by line, and see what it does.

The first statement prepares a file on the system device to receive
output. The file name is "EXAMPL.TST", and its peripheral logical unit
number (PLUN) is 1. The file name is necessary when storing data on all
peripherals except devices like a line printer or the paper-tape reader/punch.
The name distinguishes this file from any other files on the peripheral.
The FOR WRITE part of the statement tells the software that you will be
sending information to the file, and not reading from it.

TEK SPS BASIC V@2 System Software

Line 110 prints a message on the terminal. Since no PLUN is specified
in the statement, the terminal is assumed to be the destination of the
message. This statement could have been written as

119 PRINT #@, "ENTER...
or
110 PRINT #K, "ENTER...

where variable K is equal to @. In any case, if the PLUN is not specified
or is zero, the output goes to the terminal. The message informs the
operator (you) to enter a number from the keyboard. If a negative number
is entered (a number preceded by a minus sign), it signals the program to
stop accepting numbers from the terminal.

Line 120 is an INPUT statement. When the INPUT statement is executed,
a question mark (?) is printed at the terminal, prompting you to go ahead
and enter the number. Here, the variable X is assigned whatever value you
entered from the terminal. Like the PRINT statement in line 11@, no PLUN
is specified in the INPUT statement. The default device for the INPUT
statement is always the keyboard.

The test to determine whether to continue or end the program is made
in the IF statement at line 13@. Here, the variable X is compared with d.
The characters "X<@" mean "X is less than @". If so, program control
transfers to line number 16@. If the test is false (X is equal to or greater
than @), control goes to the next line in sequence, 14¢ in this case.

The WRITE statement in line 14¢ lists two expressions: X and SQR(X).
The PLUN is specified as #1, telling BASIC that the output of the WRITE
statement should go to PLUN #1, "EXAMPL.TST". No output appears on the
terminal this time. Instead, the floating-point binary representations of
the number you input for X and the results of the square root function
with X as the argument, are output to the file.

Line 15@, a GOTO statement, tells BASIC to transfer control back to
the INPUT statement at line 120, where the sequence starts all over again.
If you enter a negative number at the INPUT statement, control goes to
line 16@. Here, the CLOSE statement ends the file "EXAMPL.TST".

TEK SPS BASIC V@2 System Software

In order to read the contents of the file, line 170 opens the file
again, only this time the keywords FOR READ are used.

We won't know how much data will be output to the file, so we use an
EOF (End of File) statement in line 180 to tell BASIC when to stop reading
from the file. The line number (22@) following the keyword GOTO in the EOF
statement tells BASIC to transfer to line 220 when all the data has been
read from PLUN #1.

Line 190 reads the data. This statement reads two floating-point,
binary numbers from the file (PLUN #1) and stores them in the variables X
and SQ.

After data is input from a file, it can be used by a BASIC program.
All we do here is print a line of output on the terminal with a PRINT
statement in line 20@. (Since no PLUN is specified, the output goes to the
terminal.) The PRINT statement outputs the values of X and SQ (the numbers
read from the file) as ASCII characters representing the decimal values
for those numbers. Besides the X and SQ, line 20@ prints string constants
that label the output. If you had INPUT a 4 in response to line 128, the
floating-point binary equivalent for 4 and 2 (its square root) would have
been stored by line 14# and read into the variables X and SQ by line 194.
So, if a 4 is INPUT in line 120, line 20@ will PRINT the following string
characters:

THE SQUARE ROOT OF 4 IS 2

Line 21@, another GOTO statement, transfers program control back to
line 19@. When the file has no more data, control passes to line 220 which
closes the file.

The STOP statement at line 230 causes the message STOP AT LINE 230
to be printed on the terminal and returns the system to the idle mode.

Try this program yourself. To get it going, simply type RUN (followed
by a carriage return, of course).

TEK SPS BASIC V@2 System Software

Text Manipulation in Immediate Mode
We'll assume that you did enter and RUN the practice program shown
earlier and that it is still in the controller memory. Let's try altering
it some to give you a few ideas about how to manipulate a program with

immediate-mode commands.

For instance, to change one word of the message that is printed by
the program, you could enter:

CHANGE 116 ,"VALUE" ,"NUMBER"
which makes line 118:
11¢ PRINT "ENTER A NUMBER, NEGATIVE NUMBER TERMINATES"
Also, if you prefer to terminate a program with a RETURN instead of a STOP
(to keep pending interrupts active), you could change line 23@. Just reenter
it as:
230 RETURN
The new line 23@ replaces the old 234.
Now suppose you want to save this program in a program file. Typing:
SAVE "ROOT"
writes the program in a program file named "ROOT.BAS" (SAVE supplies the
" _BAS" extension by default) on the system device. Of course, you still
have the program in memory. If you want to look at it just type:

LIST

and the program listing is displayed on the terminal. But now you have a
copy of the program stored in a file as well.

To prove it to yourself, try this. First type:

DELETE TEXT

3-8)

TEK SPS BASIC V@2 System Software

to remove the program from memory. Now if you type:

LIST

no program is listed. All that is displayed is the regular message:

READY
*

meaning that the system is in idle mode waiting for instructions. To bring
a copy of the program back into memory, enter:

OLD "ROOT"

Notice that OLD also assumes a default file name extension of " .BAS". When
you type:

. LIST

the program is once again displayed.

If you try to RUN the program again, however, you will get a message
that there is a P5 error in line 10@. Looking up the meaning of the error
and looking at line 10@, you learn that you can't OPEN the file "EXAMPL.TST"
for WRITE again. Before you can RUN the program another time, you'll have
to CANCEL the file (remove it from the device). You can do this in immediate
mode by typing:

CANCEL "EXAMPL.TST"

but you would have to do this every time you wanted to execute the program
again. A better idea is to add a line to the program, in front of line
108, that CANCELs the file. So, instead type:

9@ CANCEL "EXAMPL.TST"
Now you could run the program repeatedly with no P5 errors. But what of
the copy of the program in the program file named "ROOT.BAS"? It doesn't

have a line 90. To update the copy of the program in the file, enter:

REPLACE "ROOT"

TEK SPS BASIC V@2 System Software

The old file with that name on the system device is canceled and all of
the program in memory is written to a new file with the same name. (REPLACE,
like OLD and SAVE, assumes the default file name extension of " ,BAS".)

To remove both files from the system device, type:
CANCEL "ROOT.BAS", "EXAMPL.TST"
Notice that you must include the .BAS extension for the file "ROOT.BAS".
CANCEL assumes no file name extension.
Making the Most of Memory Space

The less space your program requires, the more room you have for data.
Here are some ways to make a large program take up less memory space.
Use Subroutines

Make redundant lines of code into a subroutine and call the subroutine
with a GOSUB statement as it is needed.
RELEASE Nonresident Commands and Drivers

Memory space can be gained by removing all the nonresident commands
and drivers by executing a RELEASE ALL statement. This releases all
nonresident commands and all drivers except the system device driver and
the keyboard driver. If a driver can't be removed because an instrument
is ATTACHed or a file is OPEN, a warning error is issued, but all modules
that can be RELEASEd are removed.
Execute GETFREE

Before GETFREE calculates the amount of free memory, it compresses

the string storage area. So, just executing GETFREE can make more memory
available. (Executing STATUS also compresses the string storage area.)

TEK SPS BASIC V@2 System Software

Remove all REM statements

If you are careful never to transfer program control to a REM statement,
you can decrease the size of a program by deleting all its REM statements
before executing your program. See the discussion on the CHANGE command
in Section U4 for an example of how to remove all the REM statements.

If you have the storage space, you may want to store two versions of
a program: one with REM statements for documentation and one without, for
execution. As modifications are made to the program, update the program
file with the REM statements. Then, delete the REM statements from a copy
of the updated program before using it to replace the contents of the
program file used for execution.

Break Your Program into Segments

Make only part of your program resident at a time by using CHAIN,
OVERLAY, or OVLOAD (the fast overlay command). With each method, you break
your program into segments. Which method you choose depends on the
application. To help you decide which command to use, the actions of the
program loading commands, including OLD, are compared below.

Results of Program Loading Commands

old text variables Scheduler Clock queue interrupts
OLD deleted deleted cleared cleared ignored
CHAIN deleted remain cleared cleared ignored
defined
OVERLAY unchanged remain unchanged unchanged unchanged
except defined
lines
overlaid
OVLOAD lines in remain unchanged unchanged unchanged
range of defined

fast overlay
file deleted

e 3-11

TEK SPS BASIC V@2 System Software

From the table, you can see that CHAINing program segments together
is generally inappropriate for applications using tasking or instrument
interrupts. It is used when each section is totally independent, except
for the variables. The segments are executed serially, with each segment
CHAINing to (loading) the next segment to be executed. In the example
below, the first program segment executes and then, just before it finishes,
it CHAINs to the second segment, and so on. Here execution continues with
the first line of the second segment.

10 REM FIRST PROGRAM SEGMENT

50@ CHAIN DX1:"PART2"
510 REM END OF FIRST SEGMENT

In this example, the subprogram stored in the program file named
"PART2" is something like:

10@ REM SECOND PROGRAM SEGMENT

L@@ CHAIN DX1:"PART3"
419 REM END OF SECOND SEGMENT

Notice that the range of the line numbers in each segment can be
independent of the range of the line numbers of any other segment. This
is because the old program text is deleted from memory before the new text
is brought in.

Use OVERLAY or OVLOAD when instrument interrupts or pending tasks
must be kept active from one segment to the next. Also use OVERLAY or
OVLOAD when only a portion of the program is to be replaced. Of the many
ways to implement an overlay, this is one of the simplest:

10 REM MAIN PROGRAM

50@ REM OVERLAY A SECTION OF CODE
519 DELETE 100@,1999

TEK SPS BASIC V@2 System Software

52@ OVERLAY DX1:"PART2"
53¢ GOSUB 100¢

T7¢@ REM OVERLAY ANOTHER SECTION
71¢ DELETE 100@,1999

720 OVERLAY DX1:"PART3"

738 GOSUB 1009

100@ REM START OF OVERLAY AREA

1999 REM END OF OVERLAY AREA
2009 RETURN

Here, a block of line numbers (10@@ to 1999) is dedicated as the
program's overlay area. Then, before the main program loads an overlay
file, the old text in the overlay area is deleted because the lines of new
text might not overlay all the lines of o0ld text. After the overlay section
is loaded, the main program calls it as a subroutine which means that a
line 1000 must exist in each overlay file.

For this example, the line numbers in each of the overlay files
("PART2" and "PART3") should lie in the range of the overlay area -- between
1060 and 1999. When using the OVERLAY command you needn't always meet this
condition. You may, in fact, want some lines of an overlay file to replace
or intermix with lines of the existing code, but this requires careful
programming. However, when you use the fast overlay command, OVLOAD, you
should limit the line number range in the overlay file to the range of the
overlay area of the main program. Before it loads the new program segment,
OVLOAD deletes from the main program any lines of text whose line numbers
are in the range of the line numbers in the overlay file.

TEK SPS BASIC V@2 System Software

Instrument Communication

The heart of a signal processing system is the system's ability to
acquire data from instruments. Six instrument commands in TEK SPS BASIC
make data acquisition a straight-forward operation: ATTACH, DETACH, GET,
PUT, WHEN, and IGNORE.

Fundamental Operations

There are four fundamental operations involved in data gathering.
These operations and the corresponding commands are explained below.

Attaching an instrument. Usually, all the instruments are connected
to the controller via hardware data paths. The software, however, has no
means of communication with an instrument until the device has been logically
associated with a driver and an instrument logical unit number (ILUN).
This association is made with the ATTACH statement. Once an instrument is
attached, its ILUN is used when referencing that particular device.

Getting data from the instrument. The actual acquisition of data from
an instrument is accomplished with the GET statement. The GET statement
tells the instrument driver what information to get and where to put the
data it gets. The particular instrument is referenced by its ILUN, assigned
to the device with the ATTACH statement.

The actual arguments used in the GET command vary from instrument
driver to instrument driver. The driver manual for the particular instrument
you are working with describes in detail how to communicate with the device.

With some instrument drivers, the GET command can also be used as a
direct link between an instrument and a peripheral device. Here, the
destination is the peripheral logical unit number (PLUN) of a file on some
peripheral device. The data goes directly from the instrument to the
peripheral. This acquisition procedure is known as data-logging.

Putting data into the instrument. The BASIC command for sending data
or instructions to an instrument is the PUT command. This statement directs
the instrument to take some action. In the case of some digital oscilloscopes,
data in the form of waveforms or messages can be sent to the device for
display. The driver manual for your particular instrument describes what
kinds of data can be sent to the device.

3-14 e

TEK SPS BASIC V@2 System Software

Detaching an instrument. Detaching is the opposite of attaching. When
an instrument is detached, the ILUN is no longer associated with any
instrument, and can be reassigned if necessary. Once an instrument is
detached, no further communications can take place with it until it is
attached again.

Interrupt-Driven Programs

In acquiring information from an instrument, it is sometimes necessary
to wait until some event occurs in the instrument that makes meaningful
information available for processing. A service request from an IEEE 488
device is one such event and the pushing of a call button on a Digitizing
Oscilloscope is another. To avoid making the controller sit idle until
that event occurs, BASIC permits programs to be interrupt-driven, that is,
to let instrument events (interrupts) control the flow of the program.
Efficiency of programs can be greatly increased when the controller can
turn its attention from routine internal processing to instrument communication
on signal from the instrument.

In BASIC, two commands regulate the communication of interrupt
conditions from instruments to the controller. The WHEN command permits
an instrument to interrupt and specifies what should be done when an
interrupt occurs. The IGNORE command disables the interruption.

Enabling an interrupt with the WHEN command. The WHEN command lets
the user tell the controller how to respond to a particular interrupt from
a particular instrument and assigns to that response a priority indicating
its relative importance in the processing being done. The response is
determined by the user with an interrupt-handling subroutine entered as
part of the current BASIC program.

Before control can pass to that subroutine, three things must happen:

1. A WHEN command must be executed which enables the program to
recognise the interrupt from the instrument when the event occurs.

2. The interrupting event must occur.

3. The priority of the running program must be less than the
priority assigned to the interrupt-handling subroutine by the WHEN statement.

TEK SPS BASIC V@2 System Software

When those three requirements are met, the current program finishes
the command that was executing when the interrupt was signaled. Next, the
location of the next command in that part of the program is stored. Control
then passes to the interrupt-handling subroutine's first line, which is
executed.

If no WHEN statement for a given interrupt has been executed, that
interrupt is ignored. If the interrupt specified in a WHEN statement does
not occur, the WHEN does not change the flow of program control. If the
priority of the interrupt-handling subroutine is less than or equal to the
priority of the currently running program, the program continues to run
until it completes or until its priority is lowered to less than the
priority of the interrupt-handling routine.

Once control has been given to the interrupt-handling routine, it
executes either until a RETURN statement is found or until another interrupt
whose routine has been assigned a higher priority occurs. In the first
case, the program which was suspended to let the interrupt-handling routine
execute is resumed. In the second case, the interrupt-handling routine
itself is interrupted, the location of its next command to be executed is
stored, and the higher-priority routine given control. Because WHEN
statements can specify any of several interrupting conditions for each
instrument at different priorities, BASIC is structured to permit more
than a dozen levels of suspended routines to be remembered and restored
in their prioritized order. Of course, if a WHEN has been executed and no
other program is running when the specified condition occurs, the
interrupt-handling routine immediately receives control of the computer's
resources.

Disabling interrupts with the IGNORE command. An IGNORE command
essentially cancels the action of a WHEN statement that specifies the same
instrument and interrupting event.

The ABORT command or a fatal error in a task disables the action of

all WHEN statements associated with that task number. END, STOP and Control-P
cancel the action of all previously executed WHEN statements.

3-16 e

TEK SPS BASIC V@2 System Software

Data File Structures

Files are organized collections of stored information: either BASIC
programs, or data. Files are stored on peripheral devices such as disks,
magnetic tapes, or paper tapes. The potential length of any file is limited
only by the amount of storage available on the selected peripheral.

The types of information that can be written to a data file are: 1)
floating-point or integer numbers, 2) floating-point or integer arrays,
3) floating-point waveforms, 4) ASCII strings, and 5) binary data fetched
directly from a specified instrument. Since these data types can be mixed
in one file, it is necessary for the user to know in what order the different
pieces of information are stored.

There are several ways of getting information to a data file. Three
BASIC commands: WRITE, WRITEU, and PRINT can be used to transfer data from

a program to a file. These commands and their output are summarized below:

Summary of Output Commands

Command Type of Output Format of Output

WRITE numeric expressions, Floating-point binary values
array expressions, and ASCII characters formatted
waveform expressions, by data descriptors.

and string expressions.

PRINT Same as WRITE plus string ASCII characters formatted by
arrays. (Numeric data is a carriage return at the end of
converted to ASCII strings.) each line of output. (Same

format as when printed to
terminal, with spaces as

fillers.)
WRITEU Same as WRITE except Unformatted floating-point and
waveform expressions integer binary values and
are not allowed. ASCII characters.

If data is written to a file with a WRITE statement, it must be read
with a READ statement. Similarly, data output with a PRINT statement must
be read with an INPUT statement, while data output with a WRITEU statement
must be read with a READU statement. The INPUT command can accept data

TEK SPS BASIC V@2 System Software

from either the terminal or a file. The READ and READU command can only
read information from a file. Likewise, PRINT can output data to either
the terminal or a file, while the WRITE and WRITEU commands write only to
a file. The three input commands and what they read are summarized below:

Summary of Input Commands

Command Type of Input Format of Data

READ Numeric variables, Floating-point binary values
arrays, waveforms, and ASCII characters formatted
and string variables. by data descriptors.

INPUT Same as for READ ASCII character strings followed
(Numeric strings are by a carriage return. (Numeric
converted to numeric strings may be followed by a
data.) comma .)

READU Same as READ except Unformatted floating-point and
waveforms are not integer binary values and
allowed. ASCII characters.

Sequential-Access Files

A sequential-access file is a file with data written serially, from
the beginning of the file. The data must be read in the same order in which
it was written. For this reason, a sequential-access file is also called
a serial file, For simplicity, you might think of this type of file as
being written or read, data item by data item.

A TEK SPS BASIC sequential-access file is created by an OPEN FOR WRITE
statement. It is then filled with data by the WRITE, PRINT, or WRITEU
command. Once it is closed, with either a CLOSE or END statement, no more
information can be written to that file. It can only be reOPENed FOR READ.

Let's take a look at the contents of a data file created by the
following program.

10@ OPEN #1 AS "EXAMPL.@3" FOR WRITE

110 DIM A(511)
120 X=5

3-18 e

TEK SPS BASIC V@2 System Software

120 X=5

130 A=RND(A)*X

14¢ WRITE #1,A,X,"END OF FILE"
15@ CLOSE #1

This simple program first opens a file called EXAMPL.@3 on the system
device. It then creates a 512 element array, A. Variable X is given a value
of 5 in line 12@. This variable is used in the expression in line 130 to
fill array A with random numbers between ¢ and 5.

The WRITE statement in line 140 writes the array, variable X, and the
message into the file. The file is closed for further writing by the CLOSE
statement in line 1540.

After this program has executed, the contents of the file can be
pictured as follows:

E1|E2 E3<i..<%512 X|EIN|D| [O|F| |[F[I|L[E

Each box in the picture represents one piece of data. E1 through E512
represent the 512 elements of array A. Each of these entries is a 32-bit
floating-point number. X is the 32-bit value of variable X. The message
is written as a series of ASCII characters, each eight bits in length.

Because the WRITE command is used, as the data is actually written
onto the peripheral, each item of information (such as an array, a number,
or string) is preceded by a data descriptor. These descriptors allow BASIC
to know what type of information is in the file. The descriptors are not
accessible to the BASIC program, however. It is up to the programmer to
know in what order data is stored in the file. Appendix E contains more
information about data descriptors and output formats.

If PRINT is used, all the data is output as ASCII characters. Numeric
data is converted to ASCII strings that represent the decimal equivalent
of the numeric data. These are called numeric strings.

PRINT does not output data descriptors but it does output a carriage
return at the end of each line of output. The INPUT command, which reads
data from a file filled by PRINT, expects each data item (an ASCII string)
to be followed by a carriage return. (Numeric strings may optionally be
followed by a comma instead of a carriage return.) But PRINT is intended
mainly for display of data. It does not automatically output a carriage

TEK SPS BASIC V@2 System Software

return after each data item. It only automatically outputs a carriage

return after each line. For this reason you cannot simply PRINT data to a
file if you intend to later INPUT that data back to a program. The discussion
on the INPUT command in Section 4 shows how to PRINT data to a file if you
intend to INPUT that data.

If WRITEU is used, data descriptors are not written out. This provides
compatibility with DEC RT-11 FORTRAN programs. READU can be used to read
files written using WRITEU and other files containing unformatted binary
and ASCII. See the SYSBLD command in Section 4 for an example of how to
read such a file using READU.

Random Access Files

A random access file is a file in which data is stored as data records
that can be written or read in any order. In TEK SPS BASIC V@2, a random
access file is called a record I/0 (input/output) file.

A record I/0 file is created by a DEFINE statement which determines
the size of the file. Then, when it is OPENed FOR UPDATE, it can be written
to by the record I/0 form of WRITEU or read by the record 1/0 form of
READU. Once it is closed, by either a CLOSE or an END statement, it can
be reOPENed FOR UPDATE to read, change, or even add more data providing
there is room in the file for the record specified.

Since the data is accessed as a collection of data items, called a
data record, and not as single data items, it is up to the user to know
the type, order, and size of the data items in the record as well as the
record number of the record accessed. Programs demonstrating the use of
the record I/0 forms of READU and WRITEU can be found in the command
descriptions of those commands in Section 4,

Adding to a Sequential-Access File

Once a sequential-access file has been closed, no more information
can be added to that file. However, it is possible, through programming,
to create a new file consisting of the old data and any additional information
required. The following program demonstrates how to add data to a numeric
data file.

3-20 €

TEK SPS BASIC V@2 System Software

100 OPEN #1 AS 0$ FOR READ
11¢ OPEN #2 AS "SCRTCH" FOR WRITE WITH 2
120 EOF #1 GOTO 170

13¢ DELETE A

14¢ READ #1,A

150 WRITE #2,A

160 GOTO 130

17¢ WRITE #2,N

180 CLOSE #1

19¢ CLOSE #2

20@ CANCEL 0$%

21¢ RENAME "SCRTCH" TO 0%
220 END

The original file name is stored in the string 0$. Line 100 OPENs
this file for READ. Another file, called "SCRTCH," is OPENed for WRITE at
line 11@. The EOF statement at line 120 sends program control to line 170
when the data in the original file is exhausted. The technique of using
the EOF statement allows you to read a file of any length, without knowing
beforehand the exact length of the file. (The EOF command does not cause
a program branch until the data file is exhausted.)

The DELETE statement at line 130 assures that variable A is not an
array. This is necessary because some of the data in the file might be
arrays. If so, variable A, being a simple numeric variable, will be
automatically dimensioned to the correct size when the array is read.

The READ statement at line 140 reads the next item of information
from the original file. It is immediately rewritten into the scratch file
at line 15@. After the write, control goes back to the DELETE statement
and the read and write process takes place again.

When all the data has been read from the original file, control passes
to line 170 (because of the EOF statement in line 128), and the new
information, N, is written into the new file. Both files are CLOSEd in
lines 18¢ and 19¢, and the original file is deleted from the peripheral
by the CANCEL statement at line 20@. Line 210 renames the scratch file to
the original file name contained in O0%.

Note that these files used the WRITE and READ statements exclusively.

Had the original file been created with one or more PRINT statements, this
program would not work. Likewise, if strings had been output to the original

e 3-21

TEK SPS BASIC V@2 System Software

file, the program would have to know at what point these strings occur,
and specify a string variable in the READ and WRITE statements.

Reading in Arrays

An array can be read into memory from a peripheral device in many
ways. The entire array, zones of the array, or individual elements can be
read at one time. The action taken by BASIC is dependent on where the data
pointer (the position in the file of the next piece of data) is located,
and on the type of variable that will receive the data. Let's look at some
examples.

First, consider a file that contains a ten-element array. The file
has just been opened for read, and the data pointer is positioned at the
beginning of the file. The data descriptor tells BASIC that the information
is an array of ten elements. Now, the following statement is executed:

READ #1,T

After this statement is executed, the simple numeric variable T is
auto-dimensioned to nine (ten elements, subscripts zero through nine), and
the data pointer is positioned at the end of the file. Array T now contains
all ten elements of the array in file #1.

Let's take another example using the same file. Here, two variables
are going to be used in the READ statement, each a five-element array. The
program follows:

DIM A(Y4),B(4)
READ #1,4,B

Assuming that the file has just been opened, and the data pointer is
at the beginning of the file, the execution of these two statements fill
both five-element arrays with data. The first five data elements in the
file go to array A, and the last five elements go to array B.

Reading arrays into subscripted variables. Individual elements of an
array can be read, one at a time, by using a subscripted variable in the
READ statement. Using the same example file, the following statements read
in two elements of the array, leaving the data pointer at the third array

3-22 e

TEK SPS BASIC V@2 System Software

element in the file. C(@) will get the first element of the stored array
and C(3) will get the second element.

DIM C(5)
READ #1,C(@),C(3)

As you can see, there are many ways to read in arrays from a peripheral
file. Giving examples of each possible READ statement is impossible.
However, there are some rules you should know.

End of file conditions. If a READ statement needs more data to assign
to its arguments than is present in the file being read from, a fatal error
is issued. This can happen, for instance, if an array specified in a READ
is dimensioned to a size greater than the number of data elements left in
the file or if there are more variables in the READ statement than elements
in the file. The error can be avoided by executing an EOF statement prior
to the READ. However, the programmer should be prepared to correct the
situation in which some variables which may be used later in the program
have not been assigned values from the file.

Reading single data values as an array. This condition, while by no
means an error, can cause confusion. If a series of numeric expressions
(not arrays or waveforms) is written to a file, it can be read in again
as an array. For example, the following statements write out ten values
to file #1:

OPEN #1 AS "FILE" FOR WRITE
WRITE #1,A,B,C,D,E

WRITE #1,T1,T2,T3,T4,T5
CLOSE #1

When this file is read again, all ten values in the file can be placed
into one array with one READ statement. In the following example, a single
READ statement, referencing one array, is all that is needed to read in
the entire contents of the file:

OPEN #1 AS "FILE" FOR READ
DIM P(9)

READ #1,P

CLOSE #1

e 3-23

TEK SPS BASIC V@2 System Software

After execution of these statements, array P contains all ten values
written to the file in the previous example. Had array P been dimensioned
to fewer than ten elements, the array would have been filled, and the data
pointer would be positioned at the next available entry in the file. If
array P had been dimensioned to more than ten elements, a fatal error would
have been issued. Notice that, since the data items were written out
individually, P would not be autodimensioned by the READ statement.

3-24 e

TEK SPS BASIC V@2 System Software

SECTION 4

TEK SPS BASIC COMMANDS

This section of the manual contains a complete description of the
system commands. It does not discuss optional software modules such as
signal processing, graphics, and instrument drivers. These optional commands
and drivers are described in separate manuals which accompany the optional

software. m

Each command description includes statement examples, syntax information,
and a general discussion of what the command does. Many descriptions include
suggestions for using the commands. Within the descriptions, information
that a beginning user need not read is enclosed in bold-face square brackets;
information that pertains only to extended memory (XM) systems is shaded.

TEK SPS BASIC V@2 System Software

Overview of System Commands

The descriptions of the TEK SPS BASIC V@2 system commands appear in
this section in alphabetical order to make each one easier to find. But
for your assistance, all the system commands, with a brief description,
are listed below by use. Some commands appear in more than one list. An
asterisk indicates a nonresident command.

System Control Commands

Commands in this category allow you to edit and list program text,
load and release modules, change system status and priority, bootstrap
another device, and enter and run programs.

* ABORT

* BOOT

* CHAIN

* CHANGE
DELETE

* GETLOC

* LIST
LOAD

* LOCKKB

* LST

Terminates a single task.

Reloads BASIC system software from a peripheral device.
Deletes the current program and loads and starts
executing the specified new program. Does not delete
variables.

Edits program text in memory.

Removes program lines, waveforms, arrays, and string
arrays from memory.

Obtains the contents of a specified memory location.

Prints all or part of the current program text on the
system terminal or specified peripheral device.

Loads specified drivers or commands into memory.

Limits system input to Control-P while a program is
running.

Prints all or part of the current program text on the
system terminal or specified peripheral device. FOR/NEXT
loops are indented and concatenated statements are
displayed with one command per line.

Y- e

TEK SPS BASIC V@2 System Software

OLD Loads a new program or program segment into memory,
deleting all existing text and variables.

OVERLAY Loads a new program or program segment into memory
without affecting variables. Overlays lines with
matching line numbers, but does not delete other
program text in memory.

OVLOAD Performs a fast overlay of a pretranslated BASIC
program segment from a file created by an OVLSAV
statement.

PRIORITY Changes the priority of a running program.
PUTLOC Assigns a specified value to a memory location.
RANDOM Sets seed value of the random-number generator

or returns seed value.

RELEASE Removes nonresident commands or drivers from memory.
REM Allows inclusion of remarks in program listing.
RENUM Assigns new sequential line numbers to part or all

of program text in memory.

RUN Starts program at line having lowest line number in
memory.

SETDATE Sets the system date.

SETTIME Sets the system time.

SYSBLD Defines the contents of file to set system parameters

at initialization time.

4-3

TEK SPS BASIC V@2 System Software

Program Control Commands

These commands affect and direct program flow.

END Terminates all program execution, closes all files,
disables instrument interrupts, returns to idle mode.

* EOF Designates a program line to receive program control
when data from a peripheral file is exhausted.

FOR Specifies start of program loop and controlling
parameters.
GOSUB Transfers program control to a subroutine or to one

of a list of subroutines.

GOTO Transfers program control to a specified line, or to
one of a list of specified lines.

IF Conditionally transfers control or executes another
command .
* IGNORE Prohibits change of program flow by specified

instrument conditions.

* INPREQ Permits unsolicited input of data from the keyboard
while a program is running.

NEXT Terminates FOR loop.
* ONERR Allows processing of errors in a BASIC program.

* RESCHEDULE Puts either the current task or the task on Scheduler
stack back on Scheduler queue.

RETURN Terminates the execution of a subroutine.

* SCHEDULE Queues a subroutine for execution at a specified time
or after a specified time lapse.

STOP Terminates program execution, disables instrument
interrupts, and returns to idle mode.

TEK SPS BASIC V@2 System Software

* UNSCHEDULE Cancels the actions of a SCHEDULE command if the
specified time has not elapsed.

* WAIT Stops execution of a program until a keyboard interrupt
is received or a specified amount of time has elapsed.

* WHEN Allows specified instrument conditions to change

program flow.

Variable Definition Commands

These commands allocate or reclaim storage space or assign values to

variables.

* ATAN2 Performs double-argument arctangent.

¥ CLEAR Initializes all variables and arrays to zero, string
variables to null strings.

* DATE Obtains system date.

DELETE Removes program lines, waveforms, arrays, and string
arrays from memory.

DIM Assigns floating-point storage space for array
variables or defines string arrays.

* GETFREE Obtains the amount of free memory currently available.

* GETLINE Obtains the line number of the line being executed.

* GETPRI Obtains priority of task being exegquted.

* HASH Converts a string (hash key) to an index number that
can be used to access an indexed list for storing and
retrieving data.

INTEGER Allocates integer-format storage for arrays.
LET Assigns the value of an expression to a variable,

array, waveform, or string variable.

* MATCH
* RANDOM
* TIME

* VERSION

WAVEFORM

TEK SPS BASIC V@2 System Software

Obtains the index of the string array element
containing the search string.

Sets seed value of the random-number generator
or returns seed value.

Obtains system time.

Obtains the version and release numbers of a
nonresident command or driver or of the BASIC monitor.

Associates a data array with its data sampling
interval and units.

Program Data Input/Output Commands

Input/Output (I/0) commands concern data transfers between a program
and a peripheral device or file.

CLOSE
* DEFINE
* EOF
* GETBLK
* INPREQ
* INPUT
OPEN
* PRINT

Terminates I/0 with a device or file.

Creates a Record I/0 file.

Designates a program line to receive program control
when data from a file is exhausted.

Obtains the contents of a block from a directory-
structured device.

Permits unsolicited input of data from the keyboard
while a program is running.

Obtains ASCII values for variables from the keyboard
or other peripheral device or an ASCII file, and if
the variables are numeric, translates those values to
binary form.

Allows access to an existing data file, a new data
file, or a non-file-structured peripheral device.

Outputs ASCII information to the terminal or other
peripheral device or a data file.

4-6 e

TEK SPS BASIC V@2 System Software

* PUTBLK Stores a physical block of data on a directory-
structured device.

READ Obtains formatted binary and ASCII values for
variables from a peripheral device or file.

* READU Obtains unformatted binary and ASCII values for
variables from peripheral device or file.

* RESET Resets a file that is OPEN for READ to the beginning
of that file.

* REWIND Rewinds serial tape devices.

* WRITE Outputs data in formatted binary and ASCII form to a
peripheral device or file.

* WRITEU Transfers unformatted binary and ASCII data to
peripheral device or file.

Peripheral Housekeeping Commands
Housekeeping commands allow you to transfer files between peripherals,

remove files, save programs, print the directory, and in general alter the
files on a device.

* CANCEL Removes specified files from a peripheral storage
device.
* COPY Transfers file from one peripheral device to another

device or file.

* DIR Prints on terminal or specified device a list of files
stored on a peripheral device.

¥ FORMAT Formats a CP110 cartridge disk (a Digital Equipment
Corp. cartridge disk or its equivalent).

* HOOK Writes system bootstrap program on specified peripheral
device.
* HOOKQ Installs an absolute loader for .LDA files on a disk.

TEK SPS BASIC V@2 System Software

* OVLSAV Creates a file containing a pretranslated BASIC
program segment.

* RENAME Changes the name of a file on a directory-structured
device.
* REPLACE Replaces specified file on a peripheral device with

program text currently in memory.

* SAVE Stores program lines on a specified peripheral device.

* SQUISH Compacts files on a disk storage device.

* ZERO Initializes the specified file-structured peripheral
device.

Instrument Control Commands

Instrument control commands make data transfers between a program and
an acquisition instrument. They are also used to control the operation of
the instruments.

ATTACH Allows communication with an instrument.
DETACH Terminates communication with an instrument.
* GET Fetches data or status information from an instrument

and stores it in specified variables or in a specified
peripheral file.

* IGNORE Prohibits change of program flow by specified instrument
conditions.
* PUT Sends data or status information from memory to a

specified instrument.

* WHEN Allows specified instrument conditions to change
program flow.

4-8 @

TEK SPS BASIC V@2 System Software

Debugging Commands
These commands help you find the causes of errors in your programs.
* GETFREE Obtains the amount of free memory currently available.
* GETLINE Obtains the line number of the line being executed.
* GETPRIORITY Obtains priority of task being executed.

* LIST Prints all or part of the current program text on the
system terminal or specified peripheral device.

* LISTVAR Lists on terminal or specified device the names and
dimensions of all arrays, waveforms, variables, string
variables, and string arrays currently defined.

* LST Prints all or part of the current program text on
the system terminal or specified peripheral device.
FOR/NEXT loops are indented and concatenated statements
are displayed with one command per line.

* PRINT Outputs ASCII information to a specified peripheral
device. May be used to output the contents of program

variables or a message to the terminal.

* STATUS Prints the current status of the system on the
terminal or specified peripheral device.

* VARTST Tests for set bits.

e 4-9

TEK SPS BASIC V@2 System Software

Guide to Notation

Syntax and Descriptive Forms

The term syntax refers to the rules for allowable statement structures
in a programming language. The rules for a permissible BASIC statement are
shown in the syntax form for each command. This form indicates the command's
delimiters (punctuation), keywords, and legal arguments plus what is
required and what is optional. In the syntax form, the words describing
the command's arguments tell you what is acceptable but not what is the
meaning or use. To help clarify the meaning of the syntax form, most command
discussions also have a descriptive form, which indicates the purpose of
each syntax component. For example:

Syntax Form:

[line no.] RANDOM floating-point variable, floating-point variable
Descriptive Form:

[line no.] RANDOM high-order part of seed, low-order part of seed

The syntax form and the descriptive form work together to give you
complete information on how to enter the command. However, the descriptive
form is only provided to make the meaning and use of the syntax form more
understandable. It should not be considered as an exact description of the

syntax.

Both the syntax and descriptive forms use these few simple conventions
to convey the legal variations of a command.

1. Items enclosed in square brackets are optional. The statement is
valid if these items are omitted. For example:

Syntax Form:
[line no.] WAIT [expression]
Descriptive Form:

[line no.] WAIT [number of milliseconds]

4-10 e

TEK SPS BASIC V@2 System Software

This command may be entered in any one of the following ways:

WAIT
WAIT 500
100 WAIT
100 WAIT 500

2. Optional entries within optional entries cannot be used by
themselves. For example:

Syntax Form:

[line no.] STATUS [device name[constant]:][string expression]
Descriptive Form:

[line no.] STATUS [device name[drive no.]:][target file name]

The device name and the string expression (target file name) are
independently optional. However, the constant (drive number) may not be
entered unless the device name is entered. Thus, any of these are acceptable.

STATUS
90@ STATUS DX1:"STAT.FIL"
STATUS "STAT.FIL"
75@ STATUS LP:
But,
STATUS 1

is not.

3. Stacked items enclosed in braces make up a selection list
from which one item must be selected. For example:

Syntax Form:
#expression

[line no.] CLOSE ALL

Descriptive Form:
#peripheral logical unit number

[line no.1 CLOSE | s/ eripheral logical unit numbers

e 411

TEK SPS BASIC V@2 System Software

Either the pound sign and expression or the keyword ALL must be specified,
so either of these is legal:

CLOSE i#1
55@¢ CLOSE ALL

But, this is not:
550 CLOSE

y, Stacked items enclosed in square brackets make up a selection
list from which none or one may be selected. For example:

Syntax Form:
variable
[line no.] DATE |array
string variable

Here, legal entries would include:

DATE
100 DATE D
150 DATE DA$

5. Three dots (...) indicate that the preceding item may be repeated.
For example:

Syntax Form:
line number

[line no.] GOTO expression OF line number[,line number]...

When you choose the second form, the quantity of repeatable items (a comma
followed by a line number) is limited only by the length of an input line
(79 characters plus a carriage return).

6. Keywords and command delimiters should be entered as shown. For
clarity, the keywords and delimiters are printed in bold in the syntax and
descriptive forms.

Keywords are alphabetic symbols used in a BASIC statement. Keywords
must be entered as all upper-case characters. They may not be abbreviated
unless they are nonresident command names -- in which case, the first six
letters are all that must be entered. For example, while the resident

TEK SPS BASIC V@2 System Software

command, INTEGER, cannot be abbreviated, the nonresident command, SCHEDULE,
can be abbreviated to SCHEDU. If a command name can be abbreviated, it
will appear that way in the syntax form. The full command name appears in
the descriptive form.

Delimiters are characters which separate the elements in a BASIC
statement. They are the command's punctuation. The following characters
are valid delimiters used by TEK SPS BASIC:

Delimiter Symbol
Space blank
Comma ,
Semicolon H
Colon :

\

Apostrophe (or Single Quote)

Quotation Mark n
Parentheses Q0
Angle Brackets <
Pound Sign #
Equal Sign =
At Sign e

7. A space must precede and follow each keyword. Exceptions are when
another delimiter is required by the syntax. In such cases the space may
be omitted if it would be a redundant delimiter.

Here are some examples of when a space is redundant: 1) The TAB
function keyword in the PRINT command is followed by an open parenthesis
so it is legal to omit the space. 2) The DEL keyword in the CHANGE command
is preceded by a comma. No space is needed here. 3) The CLEAR command has
no arguments and requires no space before the carriage return. Surrounding
such keywords by spaces is not wrong; but, any unnecessary spaces will not
appear in the program LISTing.

8. A line number must be a positive integer between 1 and 32767,

inclusive.

TEK SPS BASIC V@2 System Software

Substitution Guide Lines

To help you make a proper entry for a syntax item, the following
substitution guidelines are provided in Table 4-1. The terms used are
defined in Section 1 and included in the Glossary.

TABLE 4-1
SYNTAX SUBSTITUTION CHART
Specification Allowable Substitution

array ¥ a floating-point array

¥ a floating-point array zone
* an integer array

*

an integer array zone

array expression ¥ an array (see list above)

*® any legal combination of constants,
variables, arrays, waveforms, arithmetic
operators, functions, and parentheses that
evaluates to an array or array zone

constant ¥ only a numeric constant

device name ¥ 3 2 or 3 letter mnemonic that is used to
reference an instrument or peripheral device

drive number ¥ a positive integer (base 10) that
designates which unit of the device
is specified

expression ¥ a constant
¥ a3 variable (see list below)
¥ any legal combination of constants,
variables, arrays, waveforms, arithmetic
operators, functions, and parentheses
that evaluates to a single numeric value

floating-point array *¥ a floating-point array
¥ a floating-point array zone

TEK SPS BASIC V@2 System Software

SYNTAX SUBSTITUTION CHART (cont.)

Specification

floating-point variable

floating-point waveform

integer array

integer variable

integer waveform

line number

simple numeric variable

simple string variable

string array

string constant

Allowable Substitution

*
*
*

a simple numeric variable
an element of a floating-point array
an element of a floating-point waveform

only a waveform associated with a
floating-point array (waveforms may not
be zoned)

¥ an integer array

an integer array zone

¥ an element of an integer array
¥ an element of an integer waveform

only a waveform associated with an
integer array (waveforms may not
be zoned)

an integer between 1 and 32767, inclusive.

only a simple numeric variable (not an
array or waveform element)

only a string variable (not a string
array element)

only a string array (string arrays may
not be zoned)

characters enclosed in single or double
quotes

Specification

string expression

string variable

variable

waveform

waveform expression

TEK SPS BASIC V@2 System Software

SYNTAX SUBSTITUTION CHART (cont.)

Allowable Substitution

L R I

a string constant

a string variable

an element of a string array

any legal combination of string constants,
string variables, string functions,
parentheses, and the string operator

(&) that results in a string

¥ a string variable

L I R B B

an element of a string array

a simple numeric variable

an element of a floating-point array

an element of an integer array

an element of a floating-point waveform
an element of an integer waveform

a waveform associated with a
floating-point array

a waveform associated with an
integer array

a waveform (see list above)

¥ any legal combination of constants,

variables, arrays, waveforms, arithmetic
operators, functions, and parentheses
that evaluates to a waveform

TEK SPS BASIC V@2 System Software

ABORT (Nonresident)

Examples:

ABORT TASK 2
90% ABORT TASK N

Syntax Form:

[line no.] ABDRT [TASK expression]

Descriptive Form:

[line no.] ABORT [TASK task number]

Purpose:

To allow a user to terminate one task without terminating other tasks.

Discussion:

The ABORT command halts execution of the given task. It cancels the
action of all WHEN statements with the specified task number. It removes
any SCHEDULEd routines with that task number from the clock queue. It also
removes any routines with that task number from the Scheduler queue and
stack. Thus, any subprogram associated solely with the stipulated task
number is not executed. (The function and parts of the Scheduler are
explained in Section 1.)

If the program is in the midst of an input/output process, the I/0
finishes before ABORT halts the task. Also, if ABORT is entered in the
immediate mode, the currently executing command finishes before ABORT
executes.

e 4-17 ABORT

TEK SPS BASIC V@2 System Software

Using the Command Syntax:

The optional expression following the keyword TASK specifies the task
number of the task to ABORT. The expression, when evaluated and rounded
to an integer, must be between @ and 126, inclusive. If the keyword TASK
and the expression are omitted, the currently executing task is aborted.
That is, the task associated with the ABORT statement is the task aborted.
If the ABORT command is entered in immediate mode and no task number is
specified, only task 127 (the immediate mode task number) is ABORTed.

ABORT 4-18 e

TEK SPS BASIC V@2 System Software

ATAN2 (Nonresident)

Examples:
150 ATAN2 A,B,C

16@ ATAN2 B,X,Z(J)
17@ ATAN2 A(5:15),B(20@:30),C(d:10)

Syntax Form:

floating-point variable floating-point variable
[line no.] ATAN2 ({floating-point array , {floating-point array ’
floating-point waveform floating-point waveform

floating-point variable
floating-point array
floating-point waveform

Descriptive Form:

[line no.] ATAN2 real source data,imaginary source data,
target for arctangent of imaginary/real

Purpose:

To perform a double-argument arctangent operation.

Discussion:

This command computes the arctangent of the quotient of the second
argument divided by the first argument, and stores the result in the third.
For example, if the three arguments are A, B, and C respectively, the
arctangent of B/A is stored in variable C. The answer is in the range of
+ pi radians. (The arctangent function (ATN) has only half this range, +
pi/2 radians.)

Assuming the statement,

ATAN2 4,B,C

e 4-19 ATAN2

TEK SPS BASIC V@2 System Software

if the third argument (the target, C) is a waveform, its units and data
sampling interval (DSI) are set as follows:

1. If A is a waveform,
C's vertical units = "RAD"
C's horizontal units = A's horizontal units
C's DSI = A's DSI

2. If A is not a waveform and B is a waveform,
C's vertical units = "RAD"
C's horizontal units = B's horizontal units
C's DSI = B's DSI

3. If neither A nor B are waveforms,

C's vertical units = "RAD"
C's horizontal units = null string
C's DSI =1

A warning error is generated if only one of the source arguments is
a waveform (as in the second case above). A warning error is also generated
if the source arguments are waveforms but their units and data sampling
intervals are not identical.

A warning error is issued if both of the source variables are zero.
In this case, the target is set to zero. With A and B the source variables
and C the target, consider these examples. If A,B, and C are floating-point
variables and both A and B equal zero, a warning error is issued and C is
set to zero. If A,B, and C are arrays of the same size, for each array
index, I, where both A(I) and B(I) equal zero, a separate warning error
is issued and C(I) is set to zero.

Using the Syntax Options:

Arrays and waveforms may be used together as arguments. Note, only
floating-point arrays or waveforms containing floating-point arrays may
be specified. All arguments must be of the same length. '

ATAN2 4-20 e

TEK SPS BASIC V@2 System Software
ATTACH

Examples:

10@ ATTACH #N AS DPO3:
210 ATTACH #1 AS INS7,3:WITH 4,5 €¢

Syntax Form:

[line no.] ATTACH #expression AS device name[constant[,constant]]:
[[WITH expression[,expression]...] @expression]

Descriptive Form:

hardware unit numb
[line no.] ATTACH #ilun AS device name[{ araware o }]'

primary address[,secondary address of mainframe]

[[WITH secondary address of plug-in [,secondary address of plug-in]...]
@ IEEE 488 interface number]

Purpose:

To associate an instrument logical unit number (ILUN) with a specific
instrument.

Discussion:

Unless the communication is performed at a low level through the IEEE
488 Interface driver (GPI.SPS), an instrument must be ATTACHed before you
can use BASIC to communicate with it. The ATTACH command associates an
instrument logical unit number (ILUN) with an instrument. After that, only
the ILUN is used to reference the instrument, allowing you to write general
purpose data acquisition and control routines.

For the ATTACH command to function properly, the instrument must be
on-line (electrically connected to the controller) and powered up. Also,
the instrument driver must be in memory and the specified ILUN must not

already be in use (ATTACHed to another instrument).

An ILUN and instrument are dissociated by the DETACH command.

p 421 ATTACH

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

The expression following the pound sign (#) is the ILUN. When evaluated
and rounded to an integer, it must be between 1 and n, inclusive, where n
is the number of ILUNs specified at system initialization (default value
of eight).

The instrument name must be a legal two- or three-letter mnemonic.
The optional constant represents either the hardware unit number (HUN) or
the IEEE U488 primary address of the instrument being ATTACHed. A second
optional constant representing the secondary address of an IEEE 488
instrument may follow the primary address. If the first constant is omitted,
the HUN or primary address is assumed to be zero. Omitting the second
constant implies there is no secondary address.

The expression following the at sign (@) is the number of the IEEE
488 Interface through which the IEEE 488 instrument is addressed. The
expression, when evaluated and rounded to an integer, must be between @
and 3, inclusive.

The optional keyword WITH followed by an expression list is used to
associate a single ILUN with a configuration of instruments that share a
common primary address and interface. Usually, the expression represents
the secondary address of plug-ins, while the constant following the primary
address is the secondary address of the mainframe. For example, a TEKTRONIX
T7912AD Programmable Digitizer with two programmable plug-ins, such as the
TA16P and the 7B90P, can be assigned a single ILUN with a statement such
as line 210 in the examples. In this case, the mainframe is addressed as
#1 or #1;3 and the two plug-ins are addressed as #1;4 and #1;5. Used with
the high-level IEEE 488 Instrument driver, INS.SPS, this form of ATTACH
causes the internal routine which polls an IEEE U488 Interface when an SRQ
is detected to include the plug-ins in the poll of the ATTACHed instruments.
(The optional keyword WITH is not recognized by ATTACH V@2-01.)

Application Example:
The following shows the necessary order of first LOADing the instrument

driver, then ATTACHing the instrument, before referencing it by an ILUN,
which in this case is 2.

ATTACH 422 e

100
110
120
130

200
210

TEK SPS BASIC V@2 System Software

REM LOAD INSTRUMENT DRIVER

LOAD "DPO.SPS"

REM ASSOCIATE ILUN WITH INSTRUMENT
ATTACH #2 AS DPO2:

REM REFERENCE INSTRUMENT BY ITS ILUN
GET WA FROM #2,A$

4-23

ATTACH

TEK SPS BASIC V@2 System Software

BOOT (Nonresident)

Examples:
BOOT

BOOT DX1:

Syntax Form:

[line no.] BOOT [device name[constant]:]

Descriptive Form:

[line no.] BOOT [name of bootable deviceldrive number]:]

Purpose:

To reload system software from the specified peripheral device.

Discussion:

BOOTing is the process of reinitializing the system by reloading the
software. BOOTing also redefines the system peripheral device since the
system device is the device and the drive from which BASIC is loaded.

The BOOT command reads in the absolute loader from the specified
bootable device and passes control to that loader. The absolute loader
then loads TEK SPS BASIC, an .LDA file, or the DEC RT-11 Monitor, depending
on which absolute loader it is and how your system is configured.

BOOT 424 e

TEK SPS BASIC V@2 System Software

NOTE

To BOOT a device you must first install the
appropriate absolute loader in the boot-
strap blocks. Read the discussion on the
HOOK or HOOKQ commands for more information.

What happens when BOOT executes depends on which command -- HOOK or
HOOKQ -- was used to install the absolute loader on the disk. If HOOK
(without the FOR RT11 option) was used, TEK SPS BASIC is automatically
loaded.

If the absolute loader was installed by HOOKQ, BASIC is not automatically
loaded. Instead, a prompt (¥®) is printed on the terminal and the loader
waits for you to enter the name of a file whose extension is .LDA. Entering
SPSxx, where xx is the name of the bootable device (e.g., DX, DK, DL, or
DY), loads BASIC. Notice that you do not enter the .LDA extension or put
the file name in quotes.

[When TEK SPS BASIC is loaded under a DEC RT-11 Monitor, BOOTing loads
the DEC RT-11 Monitor. Running LOADER.SAV and entering SPSxx, where xx is
the name of the bootable device (e.g., DX, DK, DL, or DY), loads BASIC.

See the System Peripherals manual for further discussion.]

Using the Syntax Options:

After the BOOT command executes, the named device and drive number
become the system peripheral device -- the device and the drive number
from which nonresident commands are auto-loaded and (usually) the default
device when the device name is omitted. If the device name is omitted,
the current system device is bootstrapped. If the drive number is omitted,
zero is assumed.

The specified device must be one of the bootable devices such as DX,
DK, DL, or DY. Unless the device is DK or DX, its driver must be loaded
into memory before BOOT executes.

NOTE

The DL and DY drivers are not supported
by TEK SPS BASIC V@2-@1.

e 4-25 BOOT

TEK SPS BASIC V@2 System Software

CANCEL (Nonresident)

Examples:

15¢ CANCEL DK:"TEST.DAT"

16@ CANCEL "PROG.BAS"

170 CANCEL CT:/F,"NEW.BAS" ,"* _DAT" ,"LASER.%*"
20@ CANCEL DX1:A$&" .BAS"

Syntax Form:

[line no.] CANCEL [device namelconstant]:] [/ :t[,]] string expression

[,string expression]...

Descriptive Form:

[line no.] CANCEL [device name[drive number]:][/forward or reverse switch[,]]
file name [,file name)...

Purpose:

To remove unwanted files from a peripheral device.

Discussion:

The CANCEL command logically removes the specified files from a
file-structured device. For a directory-structured device, the CANCELed
file names are deleted from the directory so space on the device is reclaimed
with this command. For a serial tape device, the file names are changed
to "®EMPTY", but no space is reclaimed. (Space on a serial tape device can
be reclaimed by ZEROing all or part of the device.)

Since files are stored in a contiguous manner, unused spaces are left
on the media when files are canceled. These unused spaces can be eliminated
on directory-structured devices with the SQUISH command. SQUISH shifts the
files together, leaving the free space in one contiguous area following
the remaining files.

CANCEL 4-26 e

TEK SPS BASIC V@2 System Software

For a directory-structured device, the files specified must be CLOSEd
when CANCEL executes. All files must be CLOSEd on a serial tape device
when canceling files on it.

The CANCEL command does not issue a warning error if the specified
file cannot be found on the device.

Using the Syntax Options:

The CANCEL command defaults to the system device if no device is
specified. If the device specified is not the system device, its driver
must be LOADed into memory before the command is executed. When the drive
number is omitted, zero is assumed.

[If the peripheral is a serial tape, the /F or /R switch (Forward or
Reverse) may be included to specify the direction of tape motion. Otherwise,
the tape is rewound before a forward search begins. The switches are ignored
with other devices. The switches are also ignored if a wild card specification
(*) is used. Then, the entire tape is searched for matching file names.]

The wild card specification, an asterisk (¥), can be inserted in place
of either the file name, the extension, or both. If a file name is specified,
and an asterisk appears in place of the extension, all files with that
file name are canceled. Likewise, if the wild card appears in place of the
file name, all files with the specified extension are deleted. Asterisks
for both the file name and extension cancel all files on the device.

No default file name extension is provided with the CANCEL command.

@ 427 CANCEL

TEK SPS BASIC V@2 System Software

CHAIN (Nonresident)

Examples:

100 CHAIN 'DECODE.SUB', 1000

150 CHAIN R$,R
270 CHAIN CT:/F,"PART3"

Syntax Form:

[line no.] CHAIN [éevice namel constant]} : [/ ; [,]]][String expression][,expression]

Descriptive Form:

[line no.] CHAIN [device name[drive number]:[/forward or reverse switch{,]]]
[program file name][,line number where execution continues]

Purpose:

To delete all text and bring a new program into memory without
disturbing variables.

Discussion:

This command is used to chain together segments of a large program.
Unlike the OVERLAY command, CHAIN deletes all program text in memory before
reading in the new program. The Scheduler stack and queue are cleared and
the actions of all WHEN and SCHEDULE statements are canceled. However,
like OVERLAY, CHAIN does not alter defined variables. That is, CHAIN is
like OLD except OLD deletes both text and variables; CHAIN deletes text
but not variables. CHAIN (as well as OVERLAY and OLD) does not CLOSE any
OPEN files.

If the optional line number is present, execution continues at that
line number in the new program. If that line does not exist in the new
program, the first line with a higher line number is used. For example,

CHAIN 428 e

TEK SPS BASIC V@2 System Software

in line 10@ above, execution would begin at line 100@ in the program
"DECODE.SUB" if there is a line 1000 in "DECODE.SUB"; otherwise, execution
begins at the first line whose number is greater than 100d.

[The new program executes with a task number equal to the task number
of the CHAIN statement, unless that task number is 127 (the immediate mode
task number). In that case, the task number is set to zero. Thus, the
immediate mode command

CHAIN "NEXT",1
causes "NEXT" to execute as task number zero, not 127.]

If the line number is omitted, what happens depends on if the CHAIN
command is issued in program mode or immediate mode. In immediate mode,
the next command entered in immediate mode is executed. In program mode,
execution continues with the first line of the new program. [Its task
number is equal to the task number of the CHAIN statement, except when
that task number is 127. Then the task number of the new program is zero.]

Since the optional line number in a CHAIN statement is an expression,
it is not altered by the RENUM command.

Using the Syntax Options:

If no device is named, the program is assumed to be on the system
device. If the named device is not the system device, its driver must be
in memory when CHAIN is executed. (The keyboard, KB, may not be specified.)
If no drive number is specified, zero is assumed.

[The Forward or Reverse switches (/F or /R) may be included in the
command if the peripheral is a serial tape device. The switch specifies
the direction of tape movement when searching for a file. If the switch
is omitted, the tape is rewound before a forward search for the file is
begun. The /F or /R switch is ignored when the device is not a serial tape
device.]

A file name must be designated for a file-structured device. If no
extension is present in the file name, .BAS is assumed.

e 4-29 CHAIN

TEK SPS BASIC V@2 System Software

If the optional expression is present, it is rounded to an integer
and used as a line number. It must evaluate to an integer between 1 and
32767, inclusive. What happens when it is included or omitted is explained
above.

CHAIN 4-30 e

TEK SPS BASIC V@2 System Software

CHANGE (Nonresident)

Examples:
100 CHANGE 10@,"XY"
20@ CHANGE "Xy",nzz»

CHANGE 40@,"OLD" ,"NEW"
CHANGE 240,500 ,A$,B$,DEL

Syntax Form:

[line no.] CHANGE [expression[,expression],]string expression[,string expression][,DEL]

Descriptive Form:

[line no.] CHANGE [line number[starting, line number ending],] text to be deleted
[,text to be inserted][,DELete to end of line switch]

Purpose:

To alter or delete program text in memory.

Discussion:

The CHANGE command is used to edit program text. It can operate on
any line of text in controller memory. Text is either altered or deleted
by this command. When the command is executed in the immediate mode, the
changed line or group of lines is printed on the terminal. When the CHANGE
command is executed in program mode, the altered lines are not printed.

A CHANGE command may only appear as the first command in a line; it
may not be preceded by a backslash (\).

If a RENUM command is executed on a program containing a CHANGE

command, the expressions in the CHANGE command representing line numbers
are not altered.

e 4-31 CHANGE

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

Any expression appearing in the command is trumncated to an integer
value.

The optional first argument is the starting line number for the change
and the optional second argument is the ending line number. If the second
argument is not included in the command, only the first occurrence of the
0ld text in the line specified by the first argument is altered. To change
several occurrences of the old text in a single line, specify that line
number as both the starting and ending line number.

When both line numbers are omitted, every occurrence of the old
text in the entire program is altered.

The third argument is a string expression containing the text to be

changed. Text in the specified range of line numbers matching this string

is either deleted by the absence or changed by the presence of the optional
fourth argument (also a string). If two strings are present, every instance
of the third argument (the first string) found within the specified range
of line numbers will be replaced by the fourth argument (the second string).
If only one string appears, every instance of that string found within the
specified range of line numbers will be deleted.

If the keyword DEL appears as the final argument, each time the old
text is encountered within the specified range of text (and replaced or
deleted), the remainder of the line in which it is found is deleted. That
part of the line following the change and preceding the carriage return
at the end of the line is deleted. Note that neither the carriage return
nor any replacement text is deleted.

Application Examples:

The following examples demonstrate some variations of the CHANGE
command :

1) original text: 150 X=B+2.345+X

command : CHANGE 15@,"+2.3","+5.5"
result: 150 X=B+5.5U45+X

CHANGE 4-32 e

TEK SPS BASIC V@2 System Software

2) original text: 150 X=B+2.345+X
command : CHANGE 15@,"+2.3","+5.5",DEL
result: 150 X=B+5.5

3) original text: 150 REM THIS WAS A COMMENT
command : CHANGE 150 ,"REM " ,DEL
result: 150

Notice in example 3 that the text is deleted. If you were to type
"LIST" following such a command, you would find line 150 gone. This
illustrates how you can save controller memory if you are careful never
to transfer control to a REM statement. After you OLD in a program, if you

type:

CHANGE "REM " ,DEL\RELEASE "CHANGE"
all REM statements are deleted from controller memory before you execute
the program. Since both line numbers are omitted, all REM statements are
deleted from the entire program. Be sure to include the space following
the REM so that it is not mistaken for part of a word used elsewhere in

the program. Failure to do so could produce unexpected results. A line
like:

200 PRINT "REMEMBER TO LOAD THE DRIVER"
becomes:

20@ PRINT "

e 4-33 CHANGE

TEK SPS BASIC V@2 System Software

CLEAR (Nonresident)

Example:

10¢ CLEAR

Syntax Form:

[line no.] CLEAR

Purpose:

To initialize all numeric variables to zero; all string variables to
null.
Discussion:

CLEAR sets all defined variables (including arrays and waveforms) to
zero. Strings are set equal to null strings. This command allows the user

to initialize all the variables in a program to zero or null between
successive runs of the same program.

CLEAR 43y P

TEK SPS BASIC V@2 System Software

CLOSE

Examples:

4o@ CLOSE #5
450 CLOSE #J¥2
5@@ CLOSE ALL

Syntax Form:

[line no.] CLOSE

#expression
ALL

Descriptive Form:

[line no.] CLOSE

#plun
ALL pluns

Purpose:

To close the data file or device currently associated with the specified
peripheral logical unit number (PLUN) to further input or output.

Discussion:

Once a file has been CLOSEd, no further reference to that file can
be made by input/output commands such as READ, PRINT or INPUT until it is
OPENed again. The CLOSE statement releases the PLUN for use with other
OPEN files. If no other PLUNs require it, the driver for the device can
be RELEASEd (assuming it is not the system device) freeing the memory for
another purpose.

When a line printer is CLOSEd, a form feed (skip to top of page) is

output. When a paper punch is CLOSEd, a trailer (a blank length of tape
on the end) is punched on the tape.

e 4-35 CLOSE

TEK SPS BASIC V@2 System Software

If the associated file or device is OPEN FOR READ, the CLOSE command
merely dissociates the PLUN from it.

The CLOSE command has no effect if the specified PLUN is not currently
OPEN.

The END statement also closes open files.
NOTE

A sequential-access file can only be
reOPENed for READ. To add data to a

CLOSEd sequential-access file, a new file
must be OPENed for WRITE and the contents
of the original file plus the new data
written to it. However, a record I/0 file
can be reQOPENed for UPDATE allowing access
to it by the record I1/0 form of either

the READU or WRITEU command.

Using the Syntax Options:

When an expression is supplied, it is evaluated and rounded to an
integer. This integer is then used as the PLUN of the file or device to
CLOSE. It must be between 1 and n, inclusive, where n is the number of
PLUNs allowed at initialization (default of six). It is illegal to attempt
to CLOSE the keyboard (PLUN zero).

If the keyword ALL is specified instead of a PLUN, all files and

devices currently OPEN are CLOSEd to further input or output. Each is
individually CLOSEd according to the rules discussed earlier.

CLOSE 4-36 e

TEK SPS BASIC V@2 System Software

COPY (Nonresident)

Examples:

67@ COPY CT1:/F,"PROG.LIST" TO LP:
COPY A$ TO DX1:B$
COPY "BASIC.DAT" TO KB:
COPY DK1:"FILE.*" TO PP:
COPY F$&".%" TO DX1:F$&" . %"
COPY DX1:"FILE.DAT"™ TO "TEST.DAT"™ INTO 5
COPY DX:"#¥ SpS" TO DK:"#* SPS"

Syntax Form:

[line no.] COPY [device name[constant]:] [/ : [,]] [string expression]

T0 [device namefconstant]z][string expression][INTO expression]

Descriptive Form:

[line no.] COPY [device name[drive number]:][/forward or reverse switch[,]]
[source file name] TO [device name[drive number]:][target file name]
[INTO number of blocks].

Purpose:

To transfer data from one peripheral device directly to another, or
to make a second copy of a file on a single peripheral.

Discussion:
This command provides a convenient means of transferring programs or
data from one device to another or of creating additional copies of a file

on the same peripheral.

Transfers between files on the same peripheral are legal only if two
files may be OPEN simultaneously on that peripheral.

e 4-37 COPY

TEK SPS BASIC V@2 System Software

There must be an unused peripheral logical unit number (PLUN) available
when the COPY command is executed because the COPY command temporarily
OPENs the source file. If a Control-P is typed while the COPY command is
executing, this PLUN is left open, preventing future use of that PLUN.
Also, if an error occurs during the COPY command, the source file might
be left OPEN. By executing STATUS you can determine which PLUN is associated
with the source file and then CLOSE that PLUN. Or if you prefer, you can
enter a CLOSE ALL or END instead of using STATUS and explicitly closing
that one file. However, this second method closes all OPEN files.

When COPYing data from the keyboard (KB is the source device), pressing
the Return key outputs only a carriage return -- not the usual carriage
return and line feed. This means that you can use the keyboard to COPY
ASCII data directly to a file. The data -- ASCII strings -- will be
terminated (delimited) by a carriage return each time you press the Return
key. Such data files can be read by the INPUT command. To terminate the
COPY command when the keyboard is the source device, enter a Control-Z.

Using the Syntax Options:

The first device and file name specified is the source. The second
device and file name specified is the target. The keyword TO separates the
two. If the target device is file-structured, no file may already exist
on it with the same name as the target file specified in the COPY command.
If the target device is not file-structured, a file name need not appear
with that device. It must be legal to write to the target device.

The system device is the default device for the COPY command. If the
device specified is not the system device or the keyboard (KB), its driver
must be LOADed into memory before the command is executed. When the drive
number is omitted, zero is assumed.

If the terminal keyboard (KB) is the source device, a question mark
(?) is printed when the system is ready to accept input. Enter your input
after the question mark (?) and terminate the input by entering a Control-Z.

[The Forward or Reverse switches (/F or /R) are used only if the
source device is a serial tape device. These switches specify the direction
of tape movement when searching for the source file. If the switch is
omitted, the tape is rewound before a forward search for this file begins.
For other peripherals, these switches are ignored. These switches are also
ignored if a wild card specification (#*) is used.]

COPY 4-38 e

TEK SPS BASIC V@2 System Software

A wild card specification can be used in place of the file name, the
extension, or both. The wild card specification is indicated by an asterisk
(®). If the source extension is given as an asterisk, each file with the
specified name, regardless of extension, is transferred to the destination.
The file name may also be replaced by an asterisk. This causes all files
with the specified extension to be transferred. If the source has a wild
card in either the file name or extension, the destination must have a
wild card in the corresponding position, or be a device which doesn't
require a file name, such as line printer (LP) or the keyboard (KB).

If a wild card specification (*) is used

in the source file name and a serial tape
device which has more than one file with
that given name is the source device, the
command may not function predictably. The
data from the wrong file may be transferred.

There is no default file name extension provided with the COPY command.

If the target device is directory-structured, the INTO option can be
used. The expression following the keyword INTO stipulates the maximum
number of blocks required by the file being copied. The first sufficient
empty space on the target device is selected for the file. When the INTO
option is not used, one half of the largest empty space on the target
device is opened for the file. In either case if the specified or default
space exceeds the actual number of blocks required by the file, the unused
blocks are returned to an empty status.

Use of the INTO option with the wild card (¥) notation is unnecessary.
The block number stipulation is ignored and as each file is transferred,
the first sufficient empty space on the target device is used for that
file.

When COPYing to a nearly full disk, use the INTO option or the wild

card notation (¥*). Half the remaining free space may not be large enough
for the file.

e 4-39 COoPY

TEK SPS BASIC V@2 System Software
DATE (Nonresident)

Examples:
150 DATE A$
260 DATE A(0:2)

185 DATE D
DATE

Syntax Form:

simple numeric variable
[line no.] DATE | array
string variable

Descriptive Form:

target variable
[line no.] DATE |target array
target string variable

Purpose:

To return the system date.

Discussion:

The DATE command either returns the system date in the specified
argument or prints the date on the terminal if the argument is omitted.
When the argument is supplied, the data is returned either as three array
elements or a string, depending on the type of variable specified.

DATE 4-40 e

TEK SPS BASIC V@2 System Software

When the date is returned as three array elements, they are stored
in the array in this order:

first element month (1-12)
second element day of month (1-31)
third element year (72-99)

When the date is returned in a string variable, it is of the form:

DD-MMM-YY
where:
DD day of month (1-31)
MMM first three letters in name of month
YY year (72-99)

The system date is set by the SETDATE command. When the system is
booted, the date is cleared. Also, since the date is not automatically
updated, it should be reset each day.

Using the Syntax Options:

Specifying either a simple (not subscripted) variable or an array
returns the date in an array. If a simple numeric variable is used, it is
auto-dimensioned to a three-element integer array. If an array is used,
it must be dimensioned or zoned to three elements.

Specifying a string variable returns the date in that string.
Omitting the argument prints the date on the terminal in the string
variable format.
Application Example:

The DATE command can be used to print the date on program runs. A
simple method is to return the date as a string and print it. For example:

100 DATE D$
110 PRINT #N,"RUNDATE: ";D$

e 4-41 DATE

TEK SPS BASIC V@2 System Software

where N is assumed to be the peripheral logical unit number (PLUN) of a
line printer that is OPEN FOR WRITE. To output the date in a different
format, such as "MMM DD, 19YY", you could use the SEG function:

120 PRINT #N,"RUNDATE: ";SEG(D$,4,6);" ";SEG(D$,1,2);",19";SEG(D$,8,

DATE 4oy 6

TEK SPS BASIC V@2 System Software

DEFINE (Nonresident)

Examples:
DEFINE DX1:'RECORD.DAT' AS ARR 10,VAR,STG 2 WITH 1@@

DEFINE A$ AS ARR X*7,STG Z,IAR X WITH A*B/2
DEFINE 'TEST.DAT' AS VAR,VAR,STG 10 WITH 14

Syntax Form:

[line no.] DEFINE [device name[constant]:]string expression

VAR VAR

ARR expression ARR expression .
AS P p

IAR expression(|”) IAR expression - WITH expression

STG expression STG expression

Descriptive Form:

[line no.] DEFINE [device name[drive number]:] file name
VARiable

As (ARRay number of floating-point elements
Integer ARray number of integer elements

STrinG number of characters in string
VARiable

ARRay number of floating-point elements
Integer ARray number of integer elements

STrinG number of characters in string

WITH number of records

Purpose:

To allot space for a record I/0 file on the specified directory-

structured device.

Discussion:

A record I/0 (Input/Output) file is a data file with data can be
accessed randomly -- any logical record at a time -- in order to enter,

e h-y3 DEFINE

TEK SPS BASIC V@2 System Software

retrieve, or update a data record. In this sense, a data record is a set
of related items of data treated as a unit; all the records are the same
length. Instead of being OPENed for either READ or WRITE, a record 1/0

file is OPENed FOR UPDATE, which allows both input and output operations.

The first step in using a record I/0 file is to create a file of
sufficient length on a directory-structured peripheral device. The DEFINE
command does this and even makes it unnecessary for you to count the number
of words or bytes required. You need only describe (with keywords) the
contents of the data record and the number of records desired. The command
determines the size of the file by computing the number of bytes per data
record and multiplying this by the number of requested records. As the
command creates the file on the peripheral, the file is zeroed.

Once the file is created, it can only be written to in TEK SPS BASIC
by a special form of the WRITEU command. [Since the WRITEU command outputs
data to a file in an unformatted binary form, there are no data descriptors
and no logical end-of-record markers written on the file. This gives you
the flexibility to logically restructure the file when accessed.]

See the OPEN, WRITEU, READU, and CLOSE commands for related discussions.

Using the Syntax Options:

The device name is the peripheral on which the file is generated.
Unless this peripheral is a directory-structured device such as a hard or
floppy disk, a fatal error results. If no device is specified, the system
device is used. If the named device is not the system device, its driver
must be in memory when the command is executed. If no drive number is
supplied, zero is assumed.

A file name is required. It must not be the name of a file that already
exists on the peripheral. A fatal error is issued if it is.

The contents of a data record are described with the keywords ARR,
IAR, VAR, and STG. ARR describes a floating-point array with each element
four bytes long; IAR describes an integer array with each element two bytes
long. The experssion following ARR or IAR is the number of elements in the
array (not the dimension, but the size of the array). VAR describes a
single, floating-point variable, while STG describes a string variable.
The expression following STG is the number of characters, and therefore

DEFINE Boyy @

TEK SPS BASIC V@2 System Software

the number of bytes, in the string. (The keyword IAR is not supported by
DEFINE V@2-01.)

The total number of bytes in a logical record is calculated from the
keyword information. This record length is then multiplied by the number
of records requested in the expression following the keyword WITH. This
product determines the minimum size of the file. [The actual size of the
file must be an integral multiple of a block (256 words). Thus, a file,
whose calculated size is 60@ bytes (300 words), is really two blocks long.
Since there are no logical end-of-file markers on record I/0 files, the
entire file space is accessible. Any room between the logical end-of-file
and the physical end-of-file may be used for additional data. The physical
end-of-file is the physical end of the last block.]

All numeric expressions are rounded to integers.

Application Example:

Let's look at a few examples. Suppose you wanted a record I/0 file
named FLOPPY.IO on a floppy disk. Each record is to contain a string
variable 2@ characters long, a floating-point variable, a floating-point
array of 512 elements, another floating-point variable, and finally two
more string variables of 10 characters each. There are to be 25 of these
records. The following DEFINE statement does this for you.

DEFINE DX1:"FLOPPY.IO" AS STG 20,VAR,ARR 512,VAR,STG 1¢,STG 14 WITH 25

[But since the DEFINE command only creates and zeroes a file and does not
section the file, you could also use:

DEFINE DX1:"FLOPPY.IO" AS STG 4¢,ARR 512,ARR 2 WITH 25
or even just:
DEFINE DX1:"FLOPPY.IO" AS STG 4¢,ARR 514 WITH 25
to allot space for the same file. Notice, in the latter two examples, how

the string variables are collected under STG and the numeric variables
under ARR.]

P 4-15 DEF INE

TEK SPS BASIC V@2 System Software

Examples:

150 DELETE C$,677

DELETE ALL

DELETE TEXT,A,DD
575 DELETE 250,300,400

Syntax Form:

[line no.] DELETE %

Descriptive Form:

[line no.] DELETE

DELETE

array array

waveform waveform

string array s { string array e
line number[,1line number] line number[,line number]

TEXT TEXT
ALL

array

waveform

Purpose:

string array

line number[starting,line number ending]
all program TEXT in memory

ALL program text and data in memory

array
waveform

» { string array eeo
line number[starting,line number ending]
all program TEXT in memory

To remove arrays, string arrays, waveforms, or program lines from

memory.

DELETE

4-46 @

TEK SPS BASIC V@2 System Software

Discussion:

This command frees memory space by deleting defined arrays or sections
of program text. Deleting an array changes it to a simple floating-point
or string variable. Thus, deleting an array allows you to redimension it
to different specifications. Once deleted, the arrays or program lines are
not recoverable. Only the DELETE ALL form of the command removes simple
floating-point or string variables.

Since a DELETE ALL removes all program text from memory, a DELETE ALL
statement should not be followed by a backslash (\).

Using the Syntax Options:

An array is removed by explicitly naming it. If a waveform is specified,
the array, data sampling interval, and units strings are dissociated from
each other. But, the array is not deleted unless you specifically name the
array.

Line numbers are treated as single lines or sequential groups. If one
line number is given, that line is removed from memory. If two line numbers
appear in the DELETE statement in sequence, all lines within their range
(inclusive) are removed. Other combinations of line numbers delete either
one line, or a sequence of lines. Let's look at some detailed examples:

10¢ DELETE 50,200,600
200 DELETE 50 ,A, 300,600
300 DELETE 50,200,600,700

Line 100 deletes all text between lines 5@ and 20@, inclusive, and
also line 600@. The statement at 20@ deletes line 5@, array A, and all lines
between 300 and 60@, inclusive. Line 300 deletes all lines between 5@ and
200 and all lines between 600 and 7@@, inclusive.

The keyword TEXT removes all program statements, but does not alter
any variables. The actions of all WHEN, SCHEDULE, INPREQ, and ONERR
statements are canceled and the Scheduler's stack and queue are cleared.

The keyword ALL removes all program lines and all variables from

memory. The actions of all WHEN, SCHEDULE, INPREQ, and ONERR statements
are canceled and the Scheduler's stack and queue are cleared.

P 447 DELETE

TEK SPS BASIC V@2 System Software

Uses:

DELETE can save you work. Suppose you want to use the same section
of program code in a new program that you have in a SAVEd program. OLD in
the program and DELETE the lines you don't wish to keep. Then, if necessary
RENUMber the section of code you retained before you start adding the new
code.

DELETE 4-48 6

TEK SPS BASIC V@2 System Software

DETACH

Examples:

160 DETACH #1

170 DETACH #G
DETACH ALL

Syntax Form:

#expression
[line no.] DETACH
ALL
Descriptive Form:
#ilun
[line no.] DETACH
ALL iluns

Purpose:

To terminate communication with an instrument by dissociating an
instrument logical unit number (ILUN) from its associated instrument.

Discussion:

This command is the opposite of the ATTACH command. It dissolves the
logical connection between an instrument and an instrument logical unit
number (ILUN). When an ILUN is DETACHed, that ILUN is freed for use with
another instrument. The instrument is effectively no longer on line, and
no communication can take place with it until the instrument is again
ATTACHed .

DETACH issues no error if the ILUN is not ATTACHed.

@ 449 DETACH

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

When an expression is given, it is rounded to an integer and used as
an ILUN. It must evaluate to a number between 1 and n, inclusive, where n
is the number of ILUNs requested at initialization (default of eight).
Only that ILUN is DETACHed.

When the Keyword ALL is used instead of an ILUN, every ATTACHed
instrument is dissociated from its corresponding ILUN.

DETACH 4-50 e

TEK SPS BASIC V@2 System Software

DIM

Examples:

1¢ DIM X(99)
2¢ DIM P(511),R(A,B),X$(15)

Syntax Form:

simple numeric variable
simple string variable
floating-point array
string array

[line no.] DIM (expression[yexpression])

simple numeric variable
simple string variable
floating-point array
string array

(expression[yexpression]) | ...

Descriptive Form:

simple numeric variable
simple string variable
floating-point array
string array

[line no.] DIM (first dimension [,second dimension])

simple numeric variable
simple string variable
floating-point array
string array

(first dimension[,second dimension]l)]|...

Purpose:

To allocate storage space for floating-point arrays and string arrays.

Discussion:

An array is a set of variables that are stored (contiguously) under
the same name. Each element is referenced by the array name and its index.
In TEK SPS BASIC, arrays can have one or two dimensions. That is, they can
be thought of as a single column of elements or as a matrix with rows and
columns.

e 4-51 DIM

TEK SPS BASIC V@2 System Software

The array indices are numbered from zero. An array A of DIMension N
has N+1 elements. The first element in A is A(@). The last element is A(N).
Similarly, a matrix B of DIMension I,J has I+1 by J+1 elements. The first
element in B is B(@,@) while the last element is B(I,J).

The DIMension command reserves memory space for floating-point (numeric)
or string arrays. The space is allocated as the DIM statement is encountered.

In standard memory systems, the size of a floatlng p01nt array 1s 11m1ted

array, a fatal error is issued.

When a floating-point array is specified, two words of controller
memory are required for each element. Thus a floating-point array of N
elements needs 2*¥N words of memory. (To dimension an integer array which
requires only one word of memory per element, use the INTEGER command.)

The amount of memory needed for a string array cannot readily be
determined. When a string array is dimensioned, it initially requires one
word for each element. However, each string in the array can be of differing
length and can grow or shrink in length during program execution. In other
words, string length is dynamic. Thus, the amount of memory space required
for a string array depends on the length of each string, not just on the
number of elements in the array.

Auto-dimensioning:

Arrays may also be automatically dimensioned during program execution
of commands such as LET and READ. With such commands, if a simple numeric
variable is the destination of an expression which results in an array,
the simple numeric variable is dimensioned to the size of the source array.

Using the Syntax Options:

The numeric or string variable is the name of the array. Specifying
a simple (not subscripted) numeric variable allocates space for a
floating-point array. Using a string variable assigns storage for a string
array. In either case, if the specified variable is already an array, its
dimension(s) must not be changed. To redimension an array to new specification
you must DELETE the array first.

DIM 4-52 e

TEK SPS BASIC V@2 System Software

The numeric argument in parentheses determines the number of dimensions
(one or two) and the size of the array. An expression is rounded to an
integer and used as the largest index -- not the number of elements -- in
a row or column. Specifying a single argument that evaluates to the integer
N allocates a one-dimensional array of N+1 elements. Supplying two arguments
creates a two-dimensional array. If the expressions evaluate to the integers,
I and J, space is allocated for a matrix of I+1 by J+1 elements.

e 4-53 DIM

TEK SPS BASIC V@2 System Software
DIR (Nonresident)

Examples:

15¢ DIR
DIR WITH BLOCK

160 DIR DX1: TO DX1:"DIRFIL"
DIR DK2:"#* .BAS" TO LP:
DIR EXC

Syntax Form:

EXC [device name[constant]:]]

1i .] DIR
[Line no.] DT [[device name[constant]:]J[string expression]
[WITH BLOCK] [TO [device name[constant]:][string expression]]

Descriptive Form:

EXClude .SPS files [device nameldrive number]:]
[line no.] DIR

[device name[drive number]:] [file name or wild card specification]
[WITH starting BLOCK numbers printed] [TO [device name[drive number]:]
[file name to receive directory information]]

Purpose:

To send a listing of the directory of the files stored on a device
to the terminal, another device, or a file.

Discussion:

The DIRectory command lists the names of the files stored on a file-
structured device. The listing can be sent to the terminal, a device such
as a line printer, or a file. The names of all or part of the stored files
can be selected. For each file listed, the name, size, and creation date
of the file is printed. For a block-structured source device, the starting
block numbers of the files can also be printed. When the source device is
a directory-structured device, the listing includes the unused blocks and
the number of free blocks on the device.

DIR oL e

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

Everything except the command name is optional. Any specification to
the left of the keyword TO describes the source. Any specification to the
right of the TO describes the destination device or file. Omitting all
source specifications lists the directory of the system disk. Omitting the
keyword TO and all the associated destination specifications, sends the
listing to the terminal.

Specifying the keyword EXC lists all files on the source device except
those files with the .SPS extension. (The EXC option is not supported by
DIR V@2-01.)

The source device must be file-structured. If no device is named, the
system device is assumed. If the device is not the system device, its
driver must be in memory before the DIR command is executed. If no drive
number is included, zero is assumed.

When a file name is included in the source, only that file's information
(plus the list of empty blocks for a block-structured device) is listed.
Usually, though, the file name has a wild card asterisk (*) specification
in it in order to print a part of the directory. If an asterisk is used
in the name portion of the file name, every file with the specified extension
is printed. If an asterisk appears as the extension, every file with the
specified name, regardless of extension, is printed. Using an asterisk in
place of both the name and the extension has the same effect as omitting
the file name: the entire device directory is printed.

[If the optional WITH BLOCK keywords are present, the starting block
numbers (in octal) of the files are also printed. If the device is not
block-structured, a warning error is issued and the WITH BLOCK directive
is ignored.]

The optional keyword TO is used to send the listing to some device
other than the terminal. The device following the TO becomes the destination
device. If this device is omitted, output goes to the terminal. The driver
for the destination device must be in memory before the DIR executes. If
the drive number is omitted, zero is used.

A file name must be supplied if the destination device is file-
structured. A file with the same name must not already exist on the device.

e 4-55 DIR

TEK SPS BASIC V@2 System Software

END

Example:

199 END

Syntax Form:

[line no.] END

Purpose:

To end program execution and return BASIC to idle mode.

Discussion:

The END command terminates a running program. It clears the Scheduler
stack and queue of all tasks, returning the monitor to idle mode. END
cancels the action of all WHEN statements and clears the clock queue. It
also disables any INPREQ or ONERR command conditions and CLOSEs any OPEN
files. However, any ATTACHed instruments remain ATTACHed. (Notice that,
unlike STOP, END CLOSEs files.)

END may appear anywhere in a program and may even be omitted from a
program.

Since it clears the Scheduler, executing END halts all tasks, not
just the one in which it appears. To halt the current task and only that
task, use an ABORT statement with the task number omitted. This terminates
only the currently executing task. (ABORT does not CLOSE files. If you
need to free peripheral logical unit numbers (PLUNs), also use an appropriate
CLOSE statement.) To terminate the program, yet leave the Scheduler intact
for processing pending interrupts, use RETURN instead of END. (The function
and parts of the Schedules are explained in Section 1.) .

END 4-56 e

TEK SPS BASIC V@2 System Software

EOF (Nonresident)

Examples:

1009 EOF #3 GOTO 3300
246 EOF #A¥2 GOTO 25699

Syntax Form:

[line no.] EOF #expression GOTO line number

Descriptive Form:

[line no.] EOF #plun GOTO line number

Purpose:

To designate a program line to receive control when data from a
peripheral file is exhausted.

Discussion:

Normally, when you attempt to read beyond the end of a file, a fatal
error is issued and the program (task) stops. However, you may not know
beforehand the length of a file. In such a case, the EOF (End Of File)
command may be used. After this statement has been executed, an attempt
to read past the end of a file causes program control to be transferred
to the line number specified in the command.

More than one EOF command per file may be executed. The last EOF

command executed determines the line number to which control is transferred
when the file is exhausted.

e 4-57 EOF

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

The peripheral logical unit number (PLUN) specified must be a file
OPENed FOR READ or UPDATE before the EOF command can be executed. The
keyboard (PLUN zero) may not be used.

Application Example:

As an example, the following program reads an unknown number of strings
from a file, and displays the number of strings read.

100 OPEN #3 AS DK2:"STRING.FIL™ FOR READ
118 EOF #3 GOTO 900

120 C=0@

130 INPUT #3,A$

1’40 C:C+1

15@ GOTO 130

90@ PRINT "NUMBER OF RECORDS READ IS";C
91@ CLOSE #3

In this sample program, line 10@ prepares a file called STRING.FIL
on disk drive two to be read. The file is assigned to PLUN 3. From then
on, only #3 need be typed to access this file.

Line 110 instructs BASIC to jump to line 90@ when the file has been
completely read. Line 120 sets the string counter to zero. The variable C
is used to keep track of the number of strings in the file.

Line 13¢ does the reading. The INPUT statement reads one string from
the file, and puts it into string A$. (This program assumes the strings
were output by a PRINT command.) Statement 14¢ increments the string counter
by one, thus counting each string as it is read. Statement 150 directs
BASIC back to line 130 to read another string.

When all strings have been read, program control automatically jumps
to line 900, as directed in the EQOF statement. Here, at line 900, the PRINT
statement displays the message "NUMBER OF RECORDS READ IS" and the value
of C. Line 910 closes the file, and dissociates PLUN 3 from the file.

EOF 4-58 e

TEK SPS BASIC V@2 System Software

FOR

Examples:

19 FOR I = @ TO 100
20 FOR P = -9 TO 10 STEP .5
30 FOR Q = X TO Z STEP -N

Syntax Form:

[line no.] FOR simple numeric variable = expression TD expression[STEP expression]

Descriptive Form:

[line no.] FOR index = initial value TO limit [STEP increment]

Purpose:

To provide a program loop when paired with a matching NEXT statement.

Discussion:

The FOR command, paired with a matching NEXT command, forms a program
control loop. The lines within the loop are repeated as many times as the
FOR statement parameters define, using the following algorithm:

When a FOR command is encountered, the parameter expressions are
evaluated and the index variable is set to the initial value (the first
expression). Control then passes to the command following the FOR command.
When the matching NEXT statement (the NEXT statement having the same index
variable) is executed, the increment value (default value of one) is added
to the index. The new index value is compared with the loop limit value
(the second expression in the FOR statement). If the new index value is
less than or equal to the limit (or greater than or equal to the limit if
the increment value is negative), control passes back to the command
immediately following the matching FOR statement. The loop repeats in this
manner until the index is greater than (or less than if the increment is
negative) the limit value.

e 4-59 FOR

TEK SPS BASIC V@2 System Software

The loop always executes at least once, no matter what its parameters
are.

The expressions in the FOR statement are evaluated only on the first
pass through the loop. Thus if variables are used to define the increment
and limit values of the loop, alteration of these variables within the
loop will not change the range of the index variable. The index variable
itself may be altered, however, to change the duration of the loop.

Negative steps are allowed in FOR loops. In this case, the initial
value of the index variable should be greater than the limit value. If it
is not, the loop executes only once.

For each FOR command in a BASIC program, there must be a matching
NEXT command. Loops may be nested (more than one FOR loop in progress at
a time) but an inner loop must be contained completely within an outer
loop. Examples of legal and illegal FOR/NEXT loops follow.

LEGAL ILLEGAL
19 FOR I = 1 TO 5 —10 FOR I = 1 TO 5
[:ZG FOR J = 7 TO 1 STEP -1 20 FOR J = T TO 1 STEP -1
3@ NEXT J —E;3G NEXT I
4@ NEXT I 4g NEXT J

In the legal example, the inner J loop is completely contained within
the outer I loop. In the illegal example, the J loop extends outside the
outer I loop.

Two notes of caution are in order here. When very large numbers are
incremented by very small numbers, unexpected results can occur. For
example, the following FOR loop will never terminate.

FOR I = 100000¢ TO 1000001 STEP .@1

This is because the step value (.@1) is insignificant in relation to the
range values. Also, because of binary number limitations, when the increment
value is a fraction, the loop may not repeat as often as you might expect.
For more information about binary number limitations, see Section 2 of

this manual.

FOR 4-60 e

TEK SPS BASIC V@2 System Software

In order for a FOR/NEXT loop to execute in immediate mode,the entire
loop must be concatenated on one line. For example:

FOR L = @ TO 9\PRINT M$(L)\NEXT L
prints the first ten items of string array M$.
NOTE

Use care if you include within a FOR/NEXT

loop any statements such as those that OVERLAY,
CHANGE, or DELETE lines of program text. If the
actions of a FOR/NEXT loop modify program

text, any line that is added, overlaid,
altered, or deleted must not have a line
number smaller than that of the FOR statement.
A fatal error results if it does.

Using the Syntax Options:

The simple numeric variable is the loop index. The FOR command and
its matching NEXT command must use the same variable name for the loop
index.

The first expression is the initial index figure -- the value of the
index the first time through the loop.

The second expression is the limit value -- the number to which the
index is compared.

The optional expression following the keyword STEP is the increment
value, the number added to the index at the end of each pass through the
loop. The increment may be negative if the initial value is greater than
the limit. When the increment is omitted, the step size is assumed to have
a value of one.

e 4-61 FOR

TEK SPS BASIC V@2 System Software

Application Example:

The following is a classic "bubble sort" routine that arranges the
numbers in array A in ascending order:

100
110
120
130
140
150
160
170
180
190

REM NUMERIC BUBBLE SORT
FOR I=1 TO SIZ(A)-1

IF A(I)>=A(I-1) THEN 19¢
FOR J=I TO 1 STEP -1

IF A(J)>=A(J-1) THEN 190
T=A(J)

A(J)=A(Jd-1)

A(J-1)=T

NEXT J

NEXT I

The outer loop searches down through the array looking for a number

out of order,

an A(I) less than an A(I-1). When one is found, its correct

place in the part of the array already sorted is sought. The inner loop
is used to "bubble" the A(I) value up through the sorted values until it
is in its correct place. A variable, T, temporarily holds the value of
each A(J) when the values of A(J) and A(J-1) are switched.

The bubble sort is a very slow sort routine algorithm. For a fast

sort routine,

FOR

see the example shown in the minimum (MIN) function discussion.

4-62 e

TEK SPS BASIC V@2 System Software
FORMAT (Nonresident)

Examples:

FORMAT DK1:

FORMAT DY:VER

FORMAT DK2:14¢

FORMAT DK1:20,VER
FORMAT DY1:10,SINGLE,VER

Syntax Form:

expression[,SINGLE 1[, VER]
VER

‘ DK
[line no.] FORMAT {DY} [constant]:[SINGLE[,VER]

Descriptive Form:

number of directory segments [,SINGLE density]

DK VERif
[line no.] FORMAT { L]

DY} [drive number]:

SINGLE density [,VERify]
VERify

Purpose:

To format either a DEC RKO5 (or equivalent) hard disk or a DEC RX02
(or equivalent) dual-density floppy disk.

Discussion:

Each disk device driver expects the disk to be formatted in a prescribed
manner (e.g., each sector is expected to contain a particular header
followed by a data space of set size.) These prescribed formats are discussed
in the Peripheral Drivers manual. Although most disks are factory-formatted,
the FORMAT command allows you to format two types of disks: the DEC RKO05
(or equivalent) hard disk and the DEC RX02 (or equivalent) dual-density
floppy disk.

e 4-63 FORMAT

TEK SPS BASIC V@2 System Software

The FORMAT command also allocates room for the device directory and
initializes the disk, logically zeroing the directory and data areas. This
means that a disk which has been formatted by the FORMAT command does not
need to be initialized by the ZERO command before it is used for the very
first time. However, factory-formatted disks do need to be initialized by

ZERO.

The FORMAT command is intended for use on
a blank disk. It initializes the disk after
formatting it, so any data on the disk is
effectively erased and cannot be recovered.

Using the Syntax Options:

This command only formats disks that use the DK Hard Disk driver
(DK.SPS) or the DY Dual-Density Floppy Disk driver (DY.SPS). The appropriate
driver must be in memory when FORMAT executes. If the drive number is
omitted, the disk in drive @ is formatted.

NOTE

The DY driver is not available in TEK SPS
BASIC V@2-@1. Also, FORMAT V@2-@1 does not
format an RX02 (or equivalent) disk.

The optional expression determines the number of directory segments
allocated. The expression, when evaluated and rounded to an integer, must
be between 1 and 31, inclusive. If this number is omitted, a default number
of directory segments are allocated. The default is 8 for the DK driver
and 4 for the DY driver.

The space allotted for the directory must be large enough to hold the
names of all the files to be stored on the disk. If most of the files are
large (ten blocks or more), the default value may suffice. However, if
most of the files are small (about two blocks in length), you may need
several times more than the default number of directory segments. For more
guidance on how many directory segments to allocate, see the Peripheral
Drivers manual.

FORMAT 4-6Y4 @

TEK SPS BASIC V@2 System Software

If the device is DY, the disk can be formatted for either double-or
single-density data storage. Specifying the keyword SINGLE formats the
disk for single-density. Omitting it formats the disk for double-density.
The keyword is ignored if used with DK.

The command can also verify the disk. When the optional keyword VER
is used, the disk is checked for bad blocks after the formatting is done.
If any bad blocks are found, their block numbers (in octal) are prinied
on the terminal. (Even if bad blocks are found, the disk will still be
initialized, but a P18 error is issued after the command finishes executing.)

As an example, the single statement:

FORMAT DK1:15,VER

formats the hard disk in drive 1, allocates 15 directory segments, checks
the disk for bad blocks, and initializes it.

e 4-65 FORMAT

TEK SPS BASIC V@2 System Software

GET (Nonresident)

Examples:

150 GET A1 FROM #3,A$

160 GET B$,C$ FROM #17,"SCAN" ,"GRAT"
170 GET #1 FROM #J,"FAS"

180 GET #3 FROM #1

190 GET A$ FROM @0 ,TA,SA

24 GET AA$ FROM #3;4,"SET?"

Syntax Form:

#expression
variable variable
arra arra
[line no.] GET y , Y ...
wave form { } waveform
string variable ’) Jstring variable

string array string array
#expression[jexpression] [,string expression] ... }

FROM . . :
@expression,expression[,expression]

Descriptive Form:

#target plun to receive data

target variable target variable

[line no.] GET target array , target array .
target waveform .0 target waveform
target string variable ’) J target string variable

target string array target string array
#source ilun [3secondary address]

[,driver-dependent specification of data or status

FROM information to be obtained from instrument]...

@IEEE 488 interface number, talk address [,secondary address]

GET 4-66 e

TEK SPS BASIC V@2 System Software

Purpose:

To acquire data or status information from a specified instrument.

Discussion:

The GET command fetches data or status information from an instrument
and stores it in variables in memory, or sends it directly to a peripheral
storage device.

The GET command is divided into two parts: the target and the source.
The target may be a single peripheral logical unit number (PLUN) or a list
of variables. If the target is a PLUN, data acquired from the instrument
is sent directly to the peripheral device. This method of acquisition is
known as "data-logging" and allows very rapid data acquisition. Not all
instrument drivers support data-logging. When used, only one PLUN can
appear in a GET statement. The PLUN must be OPEN for WRITE at the time the
GET statement is executed.

If the target variable is a simple numeric variable and the GET
acquires a waveform or array, depending on the instrument driver, the
target variable may be auto-dimensioned to an array of the appropriate
length and type.

The second portion of the command indicates the source instrument by
either the instrument logical unit number (ILUN) of the ATTACHed instrument
or the IEEE 488 interface number followed by an address. If the source is
indicated by an ILUN, one or more source strings may follow to communicate
driver-dependent information. Usually a one-to-one relationship exists
between a source string and a target variable. Each instrument driver
recognizes a different set of strings. For any instrument, only those
strings that its driver responds to should be used. Complete documentation
of the driver-dependent strings that a driver responds to can be found in
the manual for the specific instrument driver used.

When the GET command executes, the instrument must be on-line and the
required instrument driver must be LOADed in memory. Also, either the
instrument must be ATTACHed to associate it with the instrument logical
unit number (ILUN), or the communication must be through the low-level
IEEE 488 Interface driver, GPI.SPS, which is discussed in Section 6.

e 4-67 GET

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

No instrument driver uses all the legal syntax variations of the GET
command. The manual for each driver shows which of the forms are allowed
by that driver.

If the target is an expression following a pound sign (#), a peripheral
logical unit number (PLUN) is specified and the acquired data will be sent
directly to that peripheral.

If a list of one or more target variables is used, the data or
information is stored in the controller memory. The list may include numeric
variables, arrays, waveforms, string variables, and/or string arrays
depending on what the particular driver allows. Multiple targets are
separated by commas. Compound targets, which are used by the high-level
IEEE 488 Instrument driver, INS.SPS, contain semicolons. They allow the
transfer of composite data forms such as ASCII and numeric instrument
settings. (INS.SPS is not supported by TEK SPS BASIC V@2-01.)

The specification following the keyword FROM designates the source
instrument. If a pound sign (#) is used, the expression after it is the
instrument logical unit number (ILUN) of the ATTACHed instrument. The
optional semicolon and expression is used by the high-level IEEE 488
Instrument driver, INS.SPS, to specify the secondary address of the source
IEEE 488 instrument. (INS.SPS is not supported by TEK SPS BASIC V@2-@1.)
The optional string expressions are the driver-dependent strings which
determine what data or status information is acquired.

If an at sign (@) is used, the expression following it is the number
of the IEEE U488 interface through which the data or information is acquired.
When the at sign is specified, the low-level IEEE 488 Interface driver,
GPI.SPS is used. The expressions after the interface number are the primary
talk address and the optional secondary address of a device connected to
the IEEE U488 Interface Bus. See Section 6 for complete documentation.

GET 4-68 e

TEK SPS BASIC V@2 System Software

GETBLK (Nonresident)

Examples:

15¢ GETBLK DK1:"TEST.DAT",3,B(@:255)
460 GETBLK X,A
320 GETBLK DX:J¥2,A$

Syntax Form:

[line no.] GETBLK [device name[constant]:]{string expression,]

expression,
array

string variable(

Descriptive Form:

[line no.] GETBLK [device name[drive number]:z][file name,]

target string variable
block number,

target array

Purpose:

To obtain the contents of a block from a directory-structured peripheral
device.

Discussion:

The GETBLK command obtains a block of data from a directory-structured
device. (One block contains 256 16-bit words of data. One word can hold
one 16-bit integer or two 8-bit ASCII characters.) The block obtained can
be specified as an absolute block number of the device or as a block
relative to the start of a file. Depending on the argument used, the data
is returned in either a 256-element array or a 512-character string.

e 4-69 GETBLK

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

The device must be directory-structured. If no device is named, the
system device is used. If the named device does not use the system device
driver, its driver must be LOADed before GETBLK executes. If the drive
number is omitted, zero is assumed.

Which block of data is obtained is determined by the expression and
the presence or absence of a file name. The expression, which must evaluate
to a non-negative number, is rounded to an integer. If the file name is
omitted, that integer is used as an absolute block number of the device
and its contents are obtained. If a file name is given, that integer is
added to the file's starting block number to produce the number of the
block returned. In either case, the resulting block number must be in the
range from zero to the largest block number of the device, inclusive.

The contents are returned in either an array or a string, depending
on which is specified. If an array is used, it must be dimensioned or zoned
to 256 elements to exactly hold the contents of the block. The array may
be either floating-point or integer, but you can save memory space by
specifying an integer array. If a string variable is used, the contents
are returned as a 512-character string.

GETBLK 4-70 e

TEK SPS BASIC V@2 System Software

GETFREE (Nonresident)

Examples:
GETFREE Y

15 GETFREE S,X

Syntax Form:

[line no.] GETFRE variable[,floating-point variable]

Descriptive Form:

[line no.] GETFREE target for amount of free memory
[,target for amount of free extended memory]

Purpose:

To obtain the amount of free memory available.

Discussion:

GETFREE obtains the number of words of controller memory that is free

for program text, data storage nonresident commands, and drivers. The .
*;umberVQf‘wnrds available for array”,torageAin extendsd memory (xM) systems
so‘” ean[fbe obtained using $ETFBEE. Before GETFREE calculates the amount
of free memory, it compresses the string storage area in order to get the
most free memory available. Since this is a nonresident command, the number
of words of memory needed for the GETFREE command reduces the total of

free memory by that amount.

e 4-71 GETFREE

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

The number of words of free memory is returned in the first argument
a variable. ac

If the optional argument is used with standard
memory systems, a zero is returned. (GETFREE V@2-01 does not support the
optional second argument.)

Application Example:

Suppose you have a choice of two routines to do the same thing. One
is fast, but requires a large amount of memory; the other is slow, but
uses much less memory. Assuming you want to use the faster routine if
possible, you put that in your program's overlay section. Then using the
GETFREE command to determine the available free memory space, your program
can OVERLAY the slower routine if necessary.

In the example below, N is the target value for the amount of free
memory; W is the number of words the fast routine requires to execute.
After finding N, the program RELEASEs the GETFREE command to reclaim that
space. Then it compares N, plus S, the size of the GETFREE command, with
W. Thus, only if the remaining memory is too small does it OVERLAY the
fast routine with the slow routine. The fast routine in the overlay area
(lines 1000 to 1999) is DELETEd before the slow routine is brought in
because the slow routine might not OVERLAY all the lines of the fast
routine.

55¢ GETFREE N

560 RELEASE "GETFREE"

57@ IF W<N+S THEN 610

580 REM DELETE FAST ROUTINE; OVERLAY THE SLOW, SMALL ROUTINE
59¢ DELETE 100@@,1999

6@@ OVERLAY DX1:"SMALL"

610 REM CONTINUE

Normally if line 57@ were true, the line it transfers control to would
not be a REM statement but an executable statement beyond the section to
be skipped. A REM statement was used here just to demonstrate a method.

GETFREE 4-72 e

TEK SPS BASIC V@2 System Software

GETLINE (Nonresident)

Examples:
5@ GETLINE Y
60 GETLINE A(I,J+K)

Syntax Form:

[line no.] GETLIN variable

Descriptive Form:

[line no.] GETLINE target variable

Purpose:

To obtain the line number of the currently executing line.

Discussion:

GETLINE is used to determine where program control is when the command
is executing. GETLINE statements are especially useful when you are debugging
a program, since it allows you to follow the flow of program execution by
printing the returned line numbers on the terminal or by storing them in

an array.

If GETLINE is issued in the immediate mode, zero is returned.

Application Example:

To follow program flow from the terminal, you can concatenate two
commands like:

GETLINE L\PRINT L
to each possible destination of a branch statement. Here the line number

is returned in L. For example:

e 4-73 GETLINE

TEK SPS BASIC V@2 System Software

160 GOSUB N OF 100¢,2000
11¢ X=Y+Z\GETLINE L\PRINT L

49@ IF X> 900 THEN L4U55

100@ X=SIN(T*W)\GETLINE L\PRINT L

.

2000 X=SIN(X)\GETLINE L\PRINT L

4455 X=X/CF\GETLINE L\PRINT L

would print the line number of the statement jumped to every time there
was a branch.

To follow the change in a variable along with the line number where
the change occurred, use a similar technique. For example, to follow the
changes in X concatenate something like:

GETLINE A(N)\B(N)=X\N=N+1
to the end of each line that changes X. Here, the line number and the X

value are stored in arrays, A and B, that have been previously dimensioned
to the same size.

After running the program, executing:
FOR I=@ TO SIZ(A)-1\PRINT A(I),"X=";B(I)\NEXT I

would print the line numbers and their corresponding X values on the
terminal.

GETLINE =Tl P

TEK SPS BASIC V@2 System Software

GETLOC (Nonresident)

Examples:

180 GETLOC "17765@",P
19¢ GETLOC X¥*2,M,@,6

Syntax Form:

expression

[line no.] GETLOC ,floating-point variable[,expression,expression]

string expression

Descriptive Form:

decimal address

[line no.] GETLOC ,target variable for contents of address

octal address

[ylow-order bit number for obtaining segment of contents,
high-order bit number]

Purpose:

To allow examination of the contents of any controller memory location
or valid device or register address.

Discussion:

The GETLOC command is used by the PATCH files. This command is not
intended for general use.

The GETLOC command returns the contents of a controller memory location
or a valid interface address (explained below). The contents of the specified
address are returned in a floating-point variable. An even address references
a word (16 bits); an odd address, a byte (8 bits). Optionally, a segment
of the requested word or byte address can be examined.

e 4-75 GETLOC

TEK SPS BASIC V@2 System Software

Valid Addresses:

Standard Memory Systems. One word (16 bits) can produce 216 unique
addresses -- @ to 177777 octal. With byte addressing, this means you can
reference one of 6UK distinect bytes (32K words) with a 16-bit address.
However, the highest UK possible word addresses are reserved as peripheral
address space, leaving a maximum of 28K word addresses to use for controller
memory locations. Thus, for GETLOC, the valid addresses are the controller

memory locations (@ to 157777 octal) plus those addresses in the peripheral
address space to which interfaces are strapped.

If the specified address is not valid for your system or controller,
a fatal error is issued.

Using the Syntax Options:

The first argument is the examined address. If the argument is a
string, it must be the desired octal address. A string expression should
evaluate to a string of no more than eight octal digits. However, in
standard memory systems only the lower 16 binary digits (bits) of the value
represented by the string are used as the address ’ ;‘w'y ‘ @wwmn,A;%
- If the argument 1synumeric; it ﬁaét
be the decimal equivalent to the desired address. A numeric expression is
converted to binary and, if necessary, truncated to a 2U4-bit binary integer.
Again, in standard memory systems only the lower 16 bits are used as the
address;
any case, if the address is even, an entire 16-bit word is referenced, if
the address is odd, only an 8-bit byte.

The second argument must be a floating-point variable. After execution
of the command, it contains the contents of the specified address as a
floating-point number.

GETLOC 4-76 @

TEK SPS BASIC V@2 System Software

The optional third and fourth arguments are used to examine the
contents of a segment of the specified address. The third argument designates
the low-order bit number of the desired memory word or byte; the fourth,
the high-order bit number. The bits are numbered from zero. The range of
the segment must be @ to 15 for an even (word) address and @ to 7 for an
odd (byte) address.

e b-77 GETLOC

TEK SPS BASIC V@2 System Software

GETPRIORITY (Nonresident)

Examples:

15@ GETPRI K
13¢ GETPRI K(VAL(A$))

Syntax Form:

[1line no.] GETPRI variable

Descriptive Form:

[line no.] GETPRIORITY target variable

Purpose:

To obtain the priority of the task being executed.

Discussion:

Statements are executed on the basis of their assigned or default
priority value. (The Scheduler's priority-based execution process is
discussed in Section 1.) Assigned priorities range from @ (lowest) to 126
(highest) . BASIC runs at a default priority of 5@, but the PRIORITY command
can be used to alter the system priority. Also, external interrupt routines
and routines scheduled by the SCHEDULE, RESCHEDULE, and WHEN commands can
have different priorities, either by specification or default.

When the GETPRIORITY command executes, it returns the system priority
in the specified variable. (Since the system priority is the priority of
the currently executing statement, a GETPRIORITY statement returns the
priority at which it executes.) This information can be used when setting
interrupt routine priorities.

GETPRIORITY 4-78 e

TEK SPS BASIC V@2 System Software

Application Example:

This command can be used to insure that an interrupt routine executes
at a higher priority than the current system priority. First, execute the
GETPRI command, then set the interrupt priority one higher than the returned

value. For example:

188 GETPRI N
110 WHEN #1 HAS A$ AT N+1 GOSUB 1000

e 4-79 GETPRIORITY

TEK SPS BASIC V@2 System Software
GOSUB

Examples:
20@ GOSUB 1000
50@ GOSUB X¥*2 OF 1000 ,2200,1200,1500

Syntax Form:

line number
[line no.] GOSUB

expression OF line number[,line number] ...

Descriptive Form:

line number
[line no.] GOSUB

line number selector OF line number list

Purpose:

To transfer program control either unconditionally to a single
subroutine or to one of a list of subroutines.

Discussion:

A subroutine is a sequence of statements terminated by a RETURN
statement. Subroutines are useful when certain program actions must be
repeated several times in a program. The program segment can be written
once and then activated (called) by any part of the main program any number
of times. A subroutine may call another subroutine, or even call itself.
The RETURN statement signals the end of the subroutine. Several RETURN
statements may appear in a subroutine.

The GOSUB command calls (transfers control to) the subroutine. When
the subroutine is finished executing (a RETURN command is encountered),
program control returns to the next command following the GOSUB. (If a
statement follows the GOSUB on the same line as the GOSUB, control returns
to it, not to the next line of code.)

GOSUB 4-80 e

TEK SPS BASIC V@2 System Software

GOSUB calls a subroutine by transferring program control to a line
number which is assumed to be the first line of the subroutine. The transfer
can be either an unconditional GOSUB to a single, specified line number
or a computed GOSUB to one of a list of line numbers. When the computed
GOSUB is used, the current value of the expression is computed and program
control transfers to the line whose position in the list corresponds to
that value. For example, if the expression evaluates to 2, control passes
to the second line number in the list. So in example line 500 above, if
the expression X¥2 equals 2, control goes to the subroutine beginning at
line 22@@. When the current value of the expression is greater than the
number of line numbers in the list or less than 1, the GOSUB is ignored
and control passes to the statement following the GOSUB command. No warning
error is issued.

The line number specified or selected by the value of the expression
must be the line number of a statement in memory when the GOSUB command
executes.

Using the Syntax Options:

When only a line number is specified, program control is unconditionally
transferred to the subroutine indicated by that line number.

When an expression and the keyword OF are specified, the transfer of
program control is to one of a list of line numbers (subroutines). The
value of the expression, when evaluated and rounded to an integer, determines
which subroutine is called. If the value is in the range from 1 to n where
n is the number of line numbers in the list, control transfers to one of
these line numbers -- the line number whose position corresponds to that
value. However, if the value is out of range (i.e., less than 1 or greater
than n) control passes to the statement following the GOSUB.

0 4-81 GOSUB

TEK SPS BASIC V@2 System Software

GOTO
Examples:
5@@ GOTO 675
180 GOTO X/2 OF 500,450,780
Syntax Form:
line number
[line no.] GOTO
expression OF line number[,line number] ...

Descriptive Form:

[line no.] GOTO

line number i

line number selector OF line number list

Purpose:

To transfer program control either unconditionally to a single,
specified line number or to one of a list of line numbers.

Discussion:

Normally, BASIC statements execute in the order of their line numbers
starting with the lowest line number in memory. The GOTO statement overrides
the normal flow of program execution, transferring program control to a
line other than the next sequential line of text. The transfer can be
either an unconditional GOTO to a single, specified line number or a
computed GOTO to one of a list of line numbers. When the computed GOTO is
used, the current value of the expression is computed and program control
transfers to the line whose position in the list corresponds to that value.
For example, if the expression evaluates to 3, control passes to the third
line number in the list. In example line 100 above, if the expression X/2
equals 3, control goes to line 780. When the current value of the expression
is greater than the number of line numbers in the list or less than 1, the
GOTO is ignored and control passes to the statement following the GOTO
command. No warning error is issued.

GOTO 4-82 e

TEK SPS BASIC V@2 System Software

The line number specified or selected by the value of the expression
must be the number of a statement in memory when the GOTO command executes.

Using the Syntax Options:

When only a line number is specified, program control is unconditionally
transferred to that line number.

When an expression and the keyword OF are specified, program control
transfers to one of a list of line numbers. The value of the expression,
when evaluated and rounded to an integer, determines where program control
goes. If the value is in the range from 1 to n where n is the number of
line numbers in the list, control transfers to one of these line numbers
-- the line number whose position corresponds to that value. However, if
the value is out of range (i.e., less than 1 or greater than n) control
passes to the statement following the GOTO.

Application Example:

A computed GOTO can be used in a dispatch routine that sends control
to one of several places in the program depending on the current value of
an expression. For example:

1@ PRINT "ENTER YOUR CHOICE, 1 TO 5"

11@ INPUT N$

120 GOTO ASC(N$)-ASC("g@g") OF 50¢,550,700,400,200
13@¢ PRINT "NUMBER OUT OF RANGE, TRY AGAIN"

140 GOTO 100

.
.

Here the transfer depends on what character is entered from the
keyboard. By allowing the number to be INPUT as a string (line 110), a
nonnumeric response will not cause an error. Then, by using the ASCII
function (ASC) in the expression in line 120, only a correct choice lets
the program continue beyond line 14@. When a string beginning with a
1,2,3,4, or 5 is entered, transfer is made to one of the five line numbers
in the list (line 12¢). With any other character the value of the expression
is out of range and control passes to line 130. There, a message is printed
and then the unconditional GOTO (line 14@) sends control back to line 114¢
where another response is solicited.

e 4-83 GOTO

TEK SPS BASIC V@2 System Software

HASH (Nonresident)

Examples:
95¢ HASH A$(X),LL,P(K)
779 HASH "@2928",197,dJ

Syntax Form:

[line no.] HASH string expression,expression,variable

Descriptive Form:

[line no.] HASH key, table size, target variable for index

Purpose:

To convert a string (hash key) to an index number that can be used
to access an indexed list such as an array or a record I/0 file.

Discussion:

The HASH command can be used when inserting or retrieving data stored
in an indexed list such as an array or a record 1/0 file. It provides a
tool that allows faster access to the data stored in the list than can be
achieved by a simple search of the list.

The concept of hashing is this: Each unit of data (i.e., each array
element or each file record) is assigned its own key, such as an I.D.
number. This key is converted by a hashing function (in this case, the
HASH command) to an index that points to a position in the list. Then the
index is used to store the data unit. To retrieve the data, the same hashing
function (i.e., the same HASH statement) is used to convert the key to the
index again.

HASH 4-84 e

TEK SPS BASIC V@2 System Software

HASH always returns the same index for a given key and indexed-list
length. However, HASH may map more than one key to the same index number.
For this reason, when adding an item to the list, check the contents of
the position pointed to by the index to be sure that it is empty. Likewise,
when retrieving data, check that the data unit pointed to is the one sought.

If, when adding to an indexed 1list, the index returned by HASH points
to a list position that is already in use, the data should be stored using
another method. One of the simplest is to put the data in the next empty
position. (See the example routines.) But, whatever is done in this case,
the same method must be used to retrieve the data when the index does not
point to the desired item.

The HASH command uses an algorithm equivalent to this BASIC routine
where H$ is the hash-key string, N is the number of data units (elements
or records) in the indexed list, and I is the index.

119 I=0

12¢ FOR P=1 TO LEN(H$)

130 I=I+ASC(SEG(H$,P,P))¥*27(P-1)
140 NEXT P

15@0 IF I>=N THEN I=I-ITP(I/N)¥*N
160 RETURN

The index number returned is modulo N (i.e., @ £ I< N-1). Notice that the
longer the hash key is, the longer the execution time will be.

This algorithm results in a reasonably even distribution of index
numbers. The distribution is best when the number of list items (possible
indexes) is a prime number. (For more information on hashing and hashing
functions see a book such as D.E. Knuth's The Art of Computer Programmin
Yolume III.)

NOTE

The HASH command is not available
with TEK SPS BASIC V@2-01.

e 4-85 HASH

TEK SPS BASIC V@2 System Software

Using the Command Syntax:

The string expression specifies the hash key. Each data unit (array
element or file record) should have its own unique key.

The expression is the number of data units in the indexed list (the
number of elements in the array or the number of records in the file).
When evaluated and rounded to an integer, it must be greater than zero.

The index that the hash key maps to is returned in the variable.

Application Example:

Here are two routines that use HASH to determine which record 1/0
file data record to write or to read. Since each data record consists of
a 67 character string (2@ for a name, 44 for an address, and 7 for a phone
number) the data file is created by a statement like:

DEFINE DX:"ADDR.DAT" AS STG 67 WITH 53

In these routines, the hash key for each data unit (record) is the
name stored with the other information. The table size used in the HASH
statement is the number of records in the file, 53.

100 REM STORE A RECORD USING HASH

110 REM

120 REM OPEN THE FILE

130 OPEN #1 AS DX1:"ADDR.DAT" FOR UPDATE
140 REM GET NAME

150 PRINT "ENTER: FIRST NAME, LAST NAME"
160 INPUT NA$

170 REM USE NAME AS HASH KEY

180 HASH NA$,53,I

1990 REM CHECK FOR EMPTY RECORD

20@ READU #1<I>,S$=67

210 IF ASC(SEG(S$,1,1))=@¢ THEN GOTO 36@
220 REM SEARCH FORWARD TO END OF FILE FOR EMPTY RECORD
230 FOR N=I+1 TO 52

240 READU #1<N>,S$=67

25@ IF ASC(SEG(S$,1,1))=0 THEN GOTO 340
260 NEXT N

HASH 4-86 e

270
280
290
300
310
320
330
340
350
360
37¢
380
390
Loo
419
u2g
430
Lug
450
500
510
520
530
540
550
560
57¢
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730

TEK SPS BASIC V@2 System Software

REM SEARCH BACKWARD TO BEGINNING OF FILE FOR EMPTY RECORD
FOR N=I-1 TO # STEP -1

READU #1<N>,S$=67

IF ASC(SEG(S$,1,1))=0 THEN GOTO 340
NEXT N

PRINT "FILE FULL"

GOTO 44g

I=N

REM GET REST OF INFORMATION
PRINT "ENTER: STREET ADDRESS"
INPUT A1$

PRINT "ENTER: CITY, STATE, ZIP"
INPUT A2$

PRINT "ENTER: PHONE NUMBER
INPUT PH$

REM WRITE RECORD IN FILE
WRITEU #1<I>,NA$=20,A1$=20,A2$=20,PH$=T
CLOSE #1

RETURN

REM

REM READ A RECORD USING HASH
REM

REM OPEN THE FILE

OPEN #1 AS DX1:"ADDR.DAT" FOR UPDATE
REM GET NAME

PRINT "ENTER: NAME EXACTLY AS STORED"
INPUT NA$

REM USE NAME AS HASH KEY

HASH NA$,53,1

REM CHECK FOR A MATCH

READU #1<I>,S$=67

IF TRM(SEG(S$,1,20))=NA$ THEN GOTO 770
REM IF NAME DOESN'T MATCH:

REM SEARCH RECORDS TO END OF FILE FOR A MATCH
FOR N=I+1 TO 52

READU #1<N>,S$=67

IF TRM(SEG(S$,1,20))=NA$ THEN GOTO 77@
NEXT N

REM SEARCH BACKWARD TO BEGINNING OF FILE
FOR N=I-1 TO @ STEP -1

READU #1<N>,S$=67

IF TRM(SEG(S$,1,2@))=NA$ THEN GOTO 770
NEXT N

4-87 HASH

TEK SPS BASIC V@2 System Software

T4¢ PRINT NA$;" NOT IN FILE"

75@¢ GOTO 810

760 REM PRINT CONTENTS OF RECORD
770 PRINT NA$

780 PRINT TRM(SEG(S$,21,4d))

79¢ PRINT TRM(SEG(S$,41,6@))

80¢ PRINT SEG(S$,61,67)

810 CLOSE #1

820 RETURN

The first routine (lines 10@ to U45@) stores the data records. If the
index (record number) returned by HASH points to an empty record, the data
is written in that record. If the index points to a nonempty record, the
routine searches for the next empty record and writes the data there. The
search is made from the individual record to the end of the file. If no
empty record is found in this first search, a second search is made from
the indicated record to the beginning of the file. Obviously if no empty
record is found on the second search, the file is full.

As you can see, as the file begins to fill, the speed advantage of
hashing over a sequential search is lost. For that reason, this technique
is seldom used with densely filled files. Instead, HASH is used to access
a hash table that is filled with pointers to where the data is stored.
Data records with hash keys that map to the same hash-table index are
linked together. However, such an example is beyond the scope of this
manual.

The second routine (lines 5@@ to 82@) retrieves the information from
the file. The same kind of logic is used to find the desired record as was
used to store the record, except this time a particular name is sought
instead of an empty record. Thus, if the record pointed to does not contain
the desired name, a serial search is made first forward and then backward

through the file. But, the given name must be exactly as it is stored or
no match will be found.

HASH 4-88 @

TEK SPS BASIC V@2 System Software

HOOK (Nonresident)

Examples:
HOOK
100 HOOK DX1:
HOOK DK: FOR RT11 "MONITR.SYS"

Syntax Form:

[line no.] HOOK [device name[constant]:] [FOR RT11 string expression]

Descriptive Form:

[line no.] HOOK [name of bootable device[drive number]:] [FOR RT11 file name]

Purpose:

To install either the SPS or the DEC RT-11 bootstrap program in the
bootstrap blocks of the specified disk.

Discussion:

The SPS bootstrap program is an absolute loader for a file containing
Resident BASIC, the software initialization routines, and the driver for
the HOOKed device. This file has a name with the form SPSxx.LDA, where xx
is the system device after that file is loaded (e.g., SPSDK.LDA is the
BASIC monitor file with DK as the system device). Such files are called
SPS .LDA files.

The HOOK command (without the FOR RT11 option) installs (writes) the
appropriate SPS bootstrap program into the bootstrap block of the disk in
the specified device. For example:

HOOK DX1:

installs the absolute loader for SPSDX.LDA on the floppy disk in drive 1.

e 4-89 HOOK

TEK SPS BASIC V@2 System Software

After a peripheral device has been HOOKed, the BOOT command or the
ROM bootstrap loader in the controller may be used to bootstrap that device.
However, installing the SPS bootstrap program on a peripheral device does
not automatically assure that TEK SPS BASIC will be loaded the next time
that device is booted as the system device. The appropriate file (e.g.,
SPSDK.LDA, SPSDX.LDA, SPSDL.LDA, or SPSDY.LDA) must be present on the disk
before BASIC can be loaded.

[The DEC RT-11 bootstrap program loads a file with the ".SYS" file
name extension that contains the DEC RT-11 Monitor. This file must be on
the named device before the DEC RT-11 bootstrap program can be installed.
The HOOK command with the FOR RT11 option writes the first blocks of the
.SYS file into the bootstrap blocks of the disk, installing the DEC RT-11
bootstrap program.]

The HOOKQ command installs a general bootstrap program that loads any
.LDA file on the disk. See the HOOKQ command for more discussion.

Using the Syntax Options:

The device being HOOKed must be one of the bootable devices such as
DX, DK, DL, or DY. When no device is named, the system device is used.
Unless the device is DX or DK, the peripheral overlay file for that device
(e.g., DL.OVL or DY.OVL) must be on either the system device or the disk
being HOOKed. If the device being HOOKed does not use the system device
driver, its driver must be LOADed into memory before the HOOK command
executes. If the device number is omitted, zero is assumed.

NOTE

The DL and DY drivers are not supported
by TEK SPS BASIC V@2-@1.

[When the optional keywords FOR RT11 are used, the DEC RT-11 absolute
loader is installed. This feature allows you to recover the DEC RT-11
Monitor on a disk after you have HOOKed it for TEK SPS BASIC. The appropriate
file name with the .SYS extension must follow the keywords FOR RT11. The
named file should be the DEC RT-11 Monitor file. Its name depends on the
version of software. For versions 1 and 2 of the DEC RT-11 Monitor, the
file is "MONITR.SYS"; for version 3, the file is "RKMNSJ.SYS". Omitting
this option installs the proper SPS absolute loader on the disk.]

HOOK 4-90 e

TEK SPS BASIC V@2 System Software

HOOKQ (Nonresident)

Examples:

HOOKQ
HOOKQ DX1:
HOOKQ DK4:

Syntax Form:

[line no.] HOOKQ [device name[constant]:]

Descriptive Form:

[line no.] HOOKQ [name of bootable device[drive number]:]

Purpose:

To install, on a disk, a bootstrap program which loads files that
have the .LDA extension.

Discussion:

The bootstrap program (absolute loader) is installed in the bootstrap
blocks of the designated disk. After a bootstrap is installed by HOOKQ,
the BOOT command or the ROM bootstrap loader in the controller can be used
to bootstrap the device. When the device is booted, a prompt (#) is printed
on the terminal. Any file on the specified device with an .LDA extension
can then be loaded by entering its file name followed by a carriage return.
When entering the file name, do not include the .LDA extension.

The bootstrap program does not provide Rubout or Control-U capabilities.
If you make a mistake while typing the file name, enter a carriage return.
The message "FILE NOT FOUND" will be printed followed by another prompt
for the file name.

e 4-91 HOOKQ

TEK SPS BASIC V@2 System Software

Using the Syntax Option:

The specified device must be one of the bootable devices such as DX,
DK, DL, or DY. When no device is named, the system device is assumed.
Unless the device is DX or DK, the peripheral overlay file for that device
(e.g., DL.OVL or DY.OVL) must be on either the system device or the disk
being HOOKQed. If the specified device is not the system device, its driver
must be LOADed into memory before the HOOKQ command executes. When the
drive number is omitted, the disk in drive @ is HOOKQed.

NOTE

The DL and DY drivers are not supported
by TEK SPS BASIC V@2-01.

HOOKQ 4-92 e

TEK SPS BASIC V@2 System Software

IF

Examples:

16¢ IF A=B THEN GOTO 500
120 IF A$ = "STOP" THEN STOP
130 IF Q¥*5<=P/L THEN 450

Syntax Form:

expression expression

[line no.] IF relational operator

string expression string expression

statement
THEN
line number

Purpose:

To conditionally transfer program control to a specified line, or
conditionally execute a statement.

Discussion:

When an IF statement is executed, the two expressions (or two string
expressions) are evaluated and then compared with each other. Depending
on the relational operator used, the result is either true or false. If
the result is true, the statement following the keyword THEN is executed
or if only a line number is specified, a GOTO to that line number is
performed. If the result is false, the next sequential statement is executed.
The next statement may either be concatenated to the same line of text as
the IF statement or be the next line of text.

The relationship operators used to determine if the condition is true
or false are:

e 4-93 IF

TEK SPS BASIC V@2 System Software

Operator Meaning

= equal

< less than

<= or =< less than or equal

> greater than

>= or => greater than or equal
>< or <> not equal

Strings are compared, character for character, from left to right.
The first inequality determines the result. The string with the higher
ASCII value at that character is considered the larger. Example: SUNRISE
and SUNNY; since R has a larger ASCII value than N, SUNRISE is larger than
SUNNY. If the two strings are of unequal length, and the end of the shorter
string is found before an inequality, the shorter string is assumed to be
the smaller (less). Example: RUN and RUNNING; RUN is less than RUNNING.
(Appendix A contains the complete ASCII character set and the corresponding
decimal values of each character.)

Using the Syntax Options:

The two expressions must be of the same type: either both numeric
expressions or both string expressions. Only single variables may be
compared. Thus, array elements can be specified, but not arrays.

If a command is specified after the keyword THEN, it can be any
resident or nonresident command -- including another IF command. When a
line number is specified, it must be the number of a statement in memory
when the IF command executes.

Application Example:

Since any statement can follow the THEN in an IF statement, several
IF statements can be strung together to perform a logical AND operation.
That is, if the first expression is true, and if the second expression is
true, ... and if the nth expression is true, then and only then perform
the statement following the final THEN. Otherwise, go to the next sequential
statement.

IF 4-94 e

TEK SPS BASIC V@2 System Software

Consider the following IF statement:
10@ IF Y=X THEN IF Y=Z THEN 550

This statement transfers program control to line 55@ if the variable Y is
equal to both the variables X and Z.

To perform a logical OR operation, separate IF statements can f~ w
one another sequentially. For example:

100 IF Y=X THEN 550
110 IF Y=Z THEN 550

These statements transfer program control to line 550 if Y equals either
X or Z.

e 4-95 IF

TEK SPS BASIC V@2 System Software

IGNORE (Nonresident)

Examples:

15¢ IGNORE #N,TASK 2
170 IGNORE #3,A$

90@ IGNORE #5

349 IGNORE €1,"SRQ"
574 TGNORE TASK 2
280 IGNORE ALL

Syntax Form:

TASK expression
@ expression string expression

TASK expression
ALL

ex pression([
?

]

[line no.] IGNORE

Descriptive Form:

TASK task number
driver-dependent interrupt
condition specification

|

ilun
@ TEEE 488 interface number { |’

[line no.] IGNORE
TASK task number
ALL interrupt conditions for all iluns

Purpose:

To cancel the action of WHEN commands so all or specific subsequent
interrupts are ignored.

Discussion:

The WHEN command sets up a structure that allows a program to recognize
an instrument interrupt and to schedule user-written interrupt subroutines
when the interrupt occurs. The IGNORE command cancels (nullifies the action
of) one or more WHEN statements with the result that one or more interrupts
are ignored.

IGNORE 4-96 @

TEK SPS BASIC V@2 System Software

The IGNORE command has no effect on interrupts that have already
occurred and have already caused the interrupt routine to be scheduled for
execution. To ignore all interrupts and clear the Scheduler, use a STOP,
END, or Control-P. (The function and parts of the Scheduler are explained
in Section 1.)

Using the Syntax Options:

The instrument logical unit number (ILUN) following the pound sign
(#) represents a particular instrument. The expression following the at
sign (@) represents an IEEE 488 interface number. This second convention
is used when communication is with the low-level IEEE 488 Interface driver
("GPI.SPS") discussed in Section 6. The ILUN or interface number indicates
from which instruments or interface to IGNORE an interrupt. If no specification
follows either of these, all WHENs specifying that ILUN or interface number
are canceled so all subsequent interrupts from that instrument or interface
are ignored.

The string expression is a driver-dependent interrupt specification.
It must be a string accepted by the driver for the specified ILUN or
interface. When used, the interrupt from the ILUN or interface as specified
by the string is IGNOREd. Other interrupts from that ILUN or interface are
not affected.

The expression following the keyword TASK is the task number of the
interrupt subroutine. This number, when rounded to an integer, must be
between @ and 126, inclusive. If the TASK option is used with either the
ILUN or interface specification, all WHEN conditions associated with that
task number and ILUN or interface number are canceled. If the TASK option
is used alone, all WHEN conditions associated with the task number are
canceled.

When the keyword ALL is used, all WHEN conditions are canceled.

The options and resulting actions of the IGNORE command are summarized
in the table.

e 4-97 IGNORE

TEK SPS BASIC V@2 System Software

Summary of IGNORE Command

Specification Which WHEN is Ignored
#ILUN all WHENs with that ILUN
#ILUN, interrupt the WHEN with that ILUN and that string

specification string

#ILUN, TASK number all WHENs with that ILUN and that task number
@IEEE 488 interface all WHENs with that interface number

number

@IEEE 488 interface the WHEN with that interface number and that
number, interrupt string

specification string

@IEEE 488 interface all WHENs with that interface number and that
number, TASK number task number

TASK number all WHENs with that task number

ALL all WHENs

IGNORE 4-98 e

TEK SPS BASIC V@2 System Software

INPREQ (Nonresident)

Examples:

15¢ INPREQ GOSUB 700@

160 INPREQ CHAR, NOECHO GOSUB 670
17@ INPREQ CHAR GOSUB 4ilg

180 INPREQ

Syntax Form:

CHAR
[line no.] INPREQ NOECHO GOSUB line number
CHAR,NOECHO
Descriptive Form:
CHARacter
[line no.] INPREQ NOECHO GOSUB line number
CHARacter, NOECHO

Purpose:

To permit unsolicited input from the keyboard during program execution.
When the input occurs, program control transfers to a subroutine to INPUT
it.

Discussion:

TEK SPS BASIC offers two ways to enter data from the keyboard to an
executing program via an INPUT statement -- with or without an input request
enabled. The normal (default) condition is that an input request is not
enabled. An input request is enabled by an INPREQ statement.

If an input request is not enabled (the default condition), the INPUT

command is used to solicit program data from the keyboard for a running
program. When an INPUT statement is encountered, a question mark (?) is

e 4-99 INPREQ

TEK SPS BASIC V@2 System Software

printed on the terminal prompting the user to enter data from the keyboard.
Until then, if the keyboard is live (not locked by the LOCKKB command),

any input from the keyboard is interpreted to be new program text or an
immediate mode command.

If an input request is enabled by the INPREQ command, you can enter
unsolicited program data before an INPUT statement is executed. However,
then you cannot enter a line of program text or an immediate mode command
while a program is running. When an input request is enabled, all input
from the keyboard during program execution is interpreted to be program
data. When the data is entered from the keyboard, program control transfers
to a subroutine. The assumption here is that the subroutine which receives
control has an INPUT statement that uses the data, assigning the data to
its variables. That INPUT statement must be set up to expect data from the
keyboard. (The INPUT statement's peripheral logical unit number must be
omitted or be zero for the keyboard.)

The unsolicited input can be either a single character or a full line
of data. When a line of data is required, it must be terminated by a
carriage return. If a single character causes the transfer to the subroutine,
no carriage return is needed.

The data in a line of unsolicited input must follow the same rules
as solicited input. A line may contain several numeric values separated
by commas; but, because strings are terminated by a carriage return, only
one string value is permitted per line. Also, the data types must match
the variables in the INPUT statement. See the INPUT command for a complete
discussion of data types and variables.

If the INPUT statement needs more data than is supplied by the line
(or character), the program waits for additional input from the keyboard.
However, no question mark (?) is printed to tell you that this is the case.
In fact, while an input request is enabled, no INPUT statement in the
program will print a question mark to prompt data input. If a line of
unsolicited input supplies more data than is needed by the first INPUT
statement in the subroutine, the extra data is ignored.

You can also permit or suppress echoing of the character(s) as they

are entered for program input. In other words, you can choose whether or
not to have the data printed on the terminal as it is typed in.

INPREQ 4-100 e

TEK SPS BASIC V@2 System Software

If an INPUT statement is encountered in the program before the input
request is satisfied, the program waits until the input is completed. Then
that INPUT statement gets the data, and program control does not pass to
the subroutine. If more data is entered in a line of input than the INPUT
statement wants, the extra data is discarded.

An input request remains enabled -- even after the data has been
assigned by an INPUT statement -- until cancelled. Executing an INPREQ
statement that has no arguments cancels the input request. Any unassigned
data that had been accepted as unsolicited input is discarded. CHAIN, OLD,
STOP, END, DELETE TEXT, DELETE ALL, or Control-P also cancels any input
requests and discards any unassigned data that may have been entered.

[INPREQ transfers control to the subroutine by scheduling the specified
line number with the same task number as the current task and at a priority
one greater than the current task. However, if the current task's priority
is 126, the subroutine is scheduled with that same priority (126). In that
case, the subroutine does not gain control until after the current task
terminates or the priority of the current task is lowered below 126 by a
PRIORITY statement.]

Using the Syntax Options:

An INPREQ statement with no arguments cancels any previous input
request.

The optional keyword CHAR permits the entering of a single character
(with no carriage return) to cause a transfer to the subroutine. If this
keyword is omitted, entering a line of data (up to 79 characters terminated
by a carriage return) causes the transfer to the subroutine.

The optional keyword NOECHO suppresses the echoing of the input. If
NOECHO is specified, characters are not printed on the terminal when they
are entered. If this keyword is omitted, each character is printed on the
terminal as it is entered.

The line number following the keyword GOSUB is the starting line
number of the subroutine which is transferred to after the INPREQ statement
is satisfied.

e 4-101 INPREQ

TEK SPS BASIC V@2 System Software

INPUT (Nonresident)

Examples:

170 INPUT JJ,BV$

180 INPUT #5+C,OP

Syntax Form:

variable variable

[line no.] INPUT [#expression,] array ’ array
waveform waveform
string variable string variable

Descriptive Form:
target variable target variable
X target array target array
[line no.] INPUT [# sour 1w
] [ce plwn,] target waveform | target waveform

target string variable target string variable

Purpose:

To allow values to be assigned to variables. The values are ASCII
characters, obtained from the terminal or other peripheral device or file.

Discussion:

The INPUT statement is used to enter data to a program while that
program is running. The entry can be from the terminal (the default device)
or from any other peripheral that can be OPENed FOR READ.

INPUT reads data that is in ASCII format rather than binary. Data
entered from the keyboard and data stored on a peripheral device by the
PRINT command are in this format. If a peripheral device other than the
keyboard is used to enter data with the INPUT statement, be sure that the
data is in ASCII format. (You can make a quick check of a file by COPYing
that file to the terminal. If the file is in binary format, the output
will be erratic.)

INPUT 4-102 e

TEK SPS BASIC V@2 System Software

The data entered must match the type of variable specified in the
INPUT statement. If a numeric variable is specified, a numeric string must
be entered. This ASCII string is converted to a number and assigned to the
numeric variable. If you enter an illegal character, such as a letter other
than an E (which is used to signify a power of ten), an error results.

With strings, you can enter any ASCII character except Control-P, Control-U,
and carriage return. The maximum length of a string that can be INPUT from
a file is 388 characters. The maximum length INPUT from the keyboard is

79 characters. (Longer strings can be created by concatenation.)

The INPUT command accesses a file or device by its peripheral logical
unit number (PLUN), not by name. However, before a file or device other
than the keyboard (PLUN zero) can be INPUT from, it must be OPENed FOR
READ in order to assign a PLUN to that file or device. If the peripheral
referenced by INPUT has been OPENed FOR WRITE or UPDATE, a fatal error
results.

INPUT from the Keyboard:

If the INPUT is from the keyboard (and no INPREQ statement has been
executed), a question mark (?) is printed on the terminal as a prompt to
enter a piece of data. After the data is typed, followed by a carriage
return, the data is assigned to the specified variable(s) in the order of
their appearance in the INPUT statement. If more data is required than has
been entered, another prompt (?) is printed. This continues until values
for all the variables in the INPUT statement are obtained. (The question
mark appears only when the terminal is used as the input device.)

When more than one numeric variable is specified in the INPUT statement,
the individual numbers can be separated by either commas or carriage
returns. For example, when the statement:

15@¢ INPUT A,B,C

executes and you want to enter the numbers 1, 2, and 3, to be assigned to
the variable A, B, and C, respectively. You may type either:

21,2,3
or
21
22
73

e 4-103 INPUT

TEK SPS BASIC V@2 System Software

Remember, the question marks are printed on the terminal by the INPUT
command as a prompt. (The entries are shown in bold.)

Strings (strings of ASCII characters, including letters, numbers, and
punctuation) are simply typed in. No quotation marks are necessary (unless
you want the quotation marks included in the string). If a string is the
only argument specified in the INPUT statement, enter the string when the
question mark is printed, and terminate the entry with a carriage return.
If more than one string is specified, the input of each string must be
ended with a carriage return.

String and numeric variables can be mixed in an INPUT statement. But
remember, strings must be terminated with a carriage return. The following
example illustrates how numbers and strings can be mixed. The items in
bold are typed in from the keYboard.

LIST 150\RUN

15¢ INPUT A,B,A$,B$,C
23.45

?4.65,VOLTS
?SECONDS

?2-10 .45E-06

When line 150 executes, BASIC prints the ? on the terminal prompting
you to enter data. After you enter the data, variables A and B are assigned
the values 3.45 and 4.65, respectively. String variables A$ and B$ are
assigned VOLTS and SECONDS, respectively. Variable C equals -10.L45E-@6.

When not using the INPREQ command, be sure
to wait for the prompt (?) before entering
data for an INPUT statement. Failure to

do so may result in incorrect data being
INPUT or even in deletion of program lines
if the premature data is interpreted as

a line number for system input. You will

be able to know if this is the case

because the non-idle mode system input prompt,
an asterisk within parentheses (%), will
be displayed preceding the echo of the data
as the data is typed in.

INPUT 4-104 @

TEK SPS BASIC V@2 System Software

INPUT from a File:

Some of these same rules apply if the data entered is coming from a
device other than the keyboard. INPUT expects data from a file or device
to be as follows:

Values to be assigned to numeric variables must be
terminated (delimited) by a comma or a carriage return.

Values to be assigned to string variables must be
terminated (delimited) by a carriage return.

The discussion on the PRINT command explains how to PRINT data to a file
so that it can be read by INPUT.

INPUT reads a file or device in a sequential manner starting at the
beginning of the file with the first INPUT statement. Subsequent INPUTs

from the same file continue reading data from where the previous INPUT
ended.

Using the Syntax Options:

The expression following the pound sign (#) is the peripheral logical
unit number (PLUN) from which the data is INPUT. The expression, when
evaluated and rounded to an integer, must be between @ and n, inclusive,
where n is the number of PLUNs allowed at initialization time (default of
six). When the pound sign and expression are omitted, the keyboard (PLUN
zero) is assumed.

The list of variables to be assigned values by the INPUT statement
may include integer or floating-point variables, integer or floating-point
arrays, integer or floating-point waveforms, and string variables. String
arrays are not allowed.

e 4-105 INPUT

TEK SPS BASIC V@2 System Software

INTEGER

Example:

123 INTEGER A(50@),TB(9),X(10d,4)

Syntax Form:

simple numeric variable
[line no.] INTEGER (expression[,expression])
integer array

simple numeric variable

(expression[,expression]) | ...
integer array

Descriptive Form:

simple numeric variable
[line no.] INTEGER (first dimension[,second dimension])
integer array

[(simple numeric variable

9,
| integer array

(first dimension[,second dimension])] ces

Purpose:

To allocate integer-format storage for arrays.

Discussion:

The INTEGER command functions like the DIM command except that each
element of the array is defined as a one-word integer instead of a two-word,
floating-point number. Thus, the allocated integer array uses half the
storage required for a floating-point array of the same dimension. An
integer array of dimension N uses N+1 words of storage. An integer array
of dimension N by M uses N+1 times M+1 words of storage.

Storage for an integer array is allocated as the INTEGER statement
is encountered. In standard memory systems, the size of an integer array

INTEGER 4-106 e

TEK SPS BASIC V@2 System Software

is limited only by the amount of available free memory.g;ﬁ%éﬁﬁéﬁ@éﬁimémbbyj
(XM) systems, the maximum size of an integer array is limited to 16384,
(16K) elements. If there is not enough free mehory available to contain
the array, a fatal error is issued.

In TEK SPS BASIC, array indices are numbered from zero. An array A
of dimension N has N+1 elements. The first element is A(@#). The last element
is A(N). Similarly, a matrix of dimension I,J has I+1 rows and J+1 columns
for I+1 times J+1 elements. The first element in B is B(@,@) while the
last is B(I,Jd).

Integer elements have a range of -32768 to +32767 (15 bits and a sign
bit). When floating-point values are stored in an INTEGER array, the values
are truncated to integers. (For example, 5.78 becomes 5 and -10.2 becomes
-10.)

Integer and floating-point arrays may be used together in arithmetic
expressions. However, TEK SPS BASIC does not do integer arithmetic. During
expression evaluation, the elements of an integer array are temporarily
converted to floating-point.

If you want an integer variable, but do not need an array, you can
create an array with one element by using the INTEGER statement with the
expression equal to zero. (Example: INTEGER A(@).) This results in a one
element integer array. Future references to this array as a single variable
must include the subscript of @.

Using the Syntax Options:

The simple numeric (not subscripted) variable is the name of the
integer array after the command executes. If an array is used, it must be
DELETEd if you are attempting to redimension it to new specifications. No
error is issued if it is redimensioned to its current specifications.

The expressions in parentheses determine the size and number of
dimensions (one or two) of the array. An expression is rounded to an integer
and used as the largest index -- not the number of elements -- in a row
or column of the array. Providing a single expression that evaluates to N
allocates a one-dimensional array of N+1 elements. Supplying two expressions
creates a two-dimensional array. If the expressions evaluate to M and N,

a matrix of M+1 by N+1 elements is defined.

e 4-107 INTEGER

TEK SPS BASIC V@2 System Software

LET

Examples:

1@ LET X = 5.7838

110 LET A(K) = X

112 LET B(15:30+J7) = B(5:20+J7)
114 LET X$ = "HELLO SPS"

120 B = P(@:100)%50/(X+Z)

130 A$(15) = "STRING 16"&BT$

179 Y = Y+1

Syntax Form:

expression
array expression
waveform expression

array

[line no.] [LET] waveform
array element = expression
string variable = string expression

simple numeric variable‘

Descriptive Form:

expression
target array
[line no.] [LET] target waveform
target array element = expression
target string variable = string expression

array expression

target simple numeric variablel
waveform expression

Purpose:

To assign a value to a variable, string variable, array, waveform,
array zone, array element, or waveform element.

LET 4-108

TEK SPS BASIC V@2 System Software

Discussion:

The LET command is the workhorse of the Resident BASIC commands. This
is the command that causes BASIC to create and assign value(s) to a new
variable or auto-dimensioned array, or to change the value(s) of an existing
variable. The variable, array, waveform, or string variable on the left
of the equal sign (the target) is set equal to the value of the expression
on the right of the equal sign (the source). Note that the equal sign does
not mean "equal to" in the mathematical sense. Rather, it means "assign
the value of the expression on the right to the variable on the left."

Thus, the target will be equal to the source after the statement executes.
For this reason a LET statement is also called an assignment statement.

The action of the LET command is in two steps. First the expression
is evaluated. The expression, depending on its type, can result in a single
number, an array of numbers, a waveform, or a single string. (The rules
for expression evaluation are covered in Section 2 of this manual.) The
second step is to assign the resultant value(s) to the target variable.
How thigyis done depends on the type of both the target and the expression.
The legal combinations are discussed below. A summary of the action resulting
from the possible legal and illegal combinations are summarized in the
table following the discussion.

Using the Syntax Options:

The word LET is optional. Statements that begin with a variable name
and the equal sign are assumed to be LET statements.

When the target is a simple numeric variable and the source expression
evaluates to a single value, that number is assigned to the variable. If
the expression evaluates to an array or waveform, the variable is auto-
dimensioned to a one-dimensional, floating-point array of the same size
as the source array (or source waveform's array). Even when the source is
a waveform, only an array is created -- not a waveform. This new auto-
dimensioned array is set equal to the source array.

When the target is a floating-point array or array zone and the
expression evaluates to a single value, every element in the array or array
zone is set equal to that value. If the expression evaluates to an array
or waveform, the target array (or array zone) and the source array (or the
source waveform's array) must be the same size. The target array is set
equal to the source array.

e 4-109 LET

TEK SPS BASIC V@2 System Software

When the target is an integer array or integer array zone, the action
is the same as for a floating-point array except that the source values
are truncated before they are assigned.

When the target is a waveform, its array is assigned values by the
rules for target arrays, explained above. If the expression evaluates to
a waveform, the target waveform's data sampling interval (DSI) and horizontal
and vertical units are set to those of the source waveform. If the expression
results in a single value or an array, the target waveform's DSI is set
to zero and its units are set to null strings. This is true even if the
target waveform's DSI or units had been previously assigned.

When the target is an array element, only one value can be legally
assigned to it. Unless the expression evaluates to a single number, an
error is issued. If the target is an integer array element, the source
value is truncated to an integer when it is assigned.

When the target is a string variable, the expression must evaluate
to a string. Notice that a string array may not be the target variable. A
single string array element may be referenced by its subseript, but
string arrays, unlike numeric arrays, cannot be filled with one LET
statement.

LET 4-110 e

Target Variable

simple numeric
variable

floating-point
array or waveform
element

integer array
or waveform
element

floating-point
array or array
zone

TEK SPS BASIC V@2 System Software

Summary of LET Command

Result of
Source Expression

single number

array or
waveform

single number

array,
waveform, or
string

single number

array,
waveform, or
string

single number

array or
waveform

B-111

Action

target set equal to number
target auto-dimensioned, then
set equal to source array (or

waveform's array)

error

target set equal to number

error

target set equal to
truncated number

error

each element of target set
equal to the number

arrays (or array zones) must
be same size, else error;
target set equal to source

array (or waveform's array)

error

LET

integer array
or array zone

waveform

string variable

LET

TEK SPS BASIC V@2 System Software

Summary of LET Command, cont.

single number

array or
waveform

single number

array

waveform

single string

string array

numeric value,
array, or
waveform

4-112

same as for floating-point
array but number truncated

same as for floating-point
array, but values truncated

error

each element of target's array
set equal to the number;
target's DSI set to zero;
target's units set to null

target's array and source must
be same size, else error;
target's array set equal to
source; target's DSI set to
zero; target's units set to

to null

associated arrays must be same

size, else error; target's array,

DSI, and units set equal to
source's array, DSI, and units.

error

target set equal to source

string

error

error

TEK SPS BASIC V@2 System Software
LIST

Examples:

LIST LP:, 100,500
LIST
10@¢ LIST DK1:"PRGM.LST",18,999
LIST DX:A$
LIST 20

Syntax Form:

[line no.] LIST [

expression[,expression]
device name[constant]:z[string expression][,expression(,expression]]

Descriptive Form:

line number [starting,line number ending]
[line no.] LIST
device name [drive number]:[target file name]

[,1ine number[starting,line number ending]]

Purpose:

To list all or part of the current program text on the terminal or
the specified peripheral.

Discussion:

This command allows you to look at all or part of the program text
currently in memory. The text is printed on the terminal (the default
device) or another peripheral, such as a line printer.

When a program is listed, control characters are printed as the ASCII
letter preceded by an up-arrow ("). Because of this, programs LISTed to a
storage peripheral (such as a disk), cannot later be brought into memory
via the OLD, CHAIN, or OVERLAY commands. (The SAVE or REPLACE command must
be used to output a program that will be read into memory again by the OLD

e 4-113 LIST

TEK SPS BASIC V@2 System Software

command.) A program that has been LISTed to a file can be displayed later
by COPYing the file to the keyboard terminal (KB) or a line printer (LP).
But remember, the purpose of LIST is to display, not to SAVE your program.

If a line to be listed contains more than 8@ characters, the entire
line is printed and a warning error is issued. (The error is to tell you
that if you SAVE the line, it cannot be loaded again in its entirety.)

If a program containing a LIST statement is RENUMbered, the expressions
in the LIST command for line numbers are not altered.

Using the Syntax Options:

The named device is the peripheral to which the listing is sent. If
the device is omitted, the terminal is assumed. If the device is not the
system device or the terminal, its driver must be LOADed into memory before
the command is executed. If the drive number is omitted, zero is used.

A file name must be supplied with a file-structured device. A file
with that name must not already exist on the designated device.

The line numbers define the scope of the lisitng. If no line number
is present in the LIST statement, all program lines are printed. If only
one line number is given, only that line is listed. When two line numbers
appear in the command, all lines between and including those lines are
listed.

If there is no text which meets the given line number conditions,

nothing is output. If the target device is file-structured, no file is
created.

LIST 4114 e

TEK SPS BASIC V@2 System Software

LISTVAR (Nonresident)

Examples:
LISTVAR
45 LISTVAR DK:"LIST.FIL"
65 LISTVAR LP:

Syntax Form:

[line no.] LISTVA [device name[constant]:[string expression]]

Descriptive Form:

{line no.] LISTVAR [device name[drive number]:[target file name]]

Purpose:

To list on the terminal or to a specified file or peripheral the names
and dimensions of all arrays, waveforms, variables, string variables, and
string arrays that are in memory.

Discussion:

LISTVAR allows you to see what is currently defined in memory. Every
variable, array, waveform, string variable, or string array name is listed,
either at the terminal or on a specified device.

When the LISTVAR output is directed to a file, it can later be printed
on the terminal by COPYing the file to the keyboard terminal (KB). Also,
it can be read back into memory by INPUTting that file one line at a time
as a string variable.

e 4-115 LISTVAR

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

If no device is specified, output goes to the terminal. Otherwise,
output is directed to the specified device. If the named device does not
use the system device driver, its driver must be in memory before LISTVAR
executes. If the device is file-structured, a file name must be included
in the command. The named file must not already exist on the device. When
the device number is omitted, zero is assumed.

Output Format:

The format of the output is explained below. Here XX stands for a
variable name, ZZZ stands for an array dimension, and spaces that always
appear are shown by a dashed underscore (_).

1) Floating-point arrays:
__XX(222,22Z)_
Five array names are printed per line with 14 characters
per each array. Each array specified includes two spaces
(or three spaces if the name has only one letter), name,
left parenthesis, first dimension, comma and second
dimension (if nonzero), right parenthesis, and spaces to
pad to 14 characters.

2) Integer arrays:
Same format as floating-point arrays.

3) Waveforms:
_XX IS__ XX, XX, _XX$, XX$
One waveform is printed per line with 28 characters per
waveform. The parts of the waveform correspond to the parts
and sequence in the WAVEFORM command. The format is two
spaces (or three spaces if the waveform name has only one
letter), waveform name, four spaces, keyword IS, two spaces
(or three spaces if array name has only one letter), array
name, comma, one space (or two spaces if the name of the
data sampling interval variable has only one letter), the
DSI variable name, comma, one space (or two spaces if the
name of the horizontal units variable has only one letter),
horizontal units variable name with a dollar sign, comma,
one space (or two spaces if name of vertical units variable

LISTVAR 4-116 e

TEK SPS BASIC V@2 System Software

has only one letter), and vertical units variable name with
a dollar sign.

4) Numeric variables:
_XX__
Up to 12 variable names are printed per line with six
characters per each variable. The format is two spaces
(or three spaces if the name has only one letter), name,
and two spaces.

5) String variables:
XX$
Up to 12 string variable names are printed per line with
six characters per each variable. The format is two spaces
(or three spaces if the name has only one letter), name with
a dollar sign, and one space.

6) String arrays:
_ XX$(Z22,772)
Up to five array names are printed per line with 14 characters
per each array. The specification of a string array includes
two spaces (or three spaces if the name has only one letter),
name, with a dollar sign, left parenthesis, first dimension,
comma and second dimension (if nonzero), right parenthesis,
and spaces to pad to 14 characters.

Output Example:

The following is an example of the LISTVAR output.

FLOATING POINT ARRAYS
A(55) B(19,5) JA(511) KA(511)

INTEGER ARRAYS
c(500)

WAVEFORMS

J IS JA, DJ, HJ$, VJ$
K IS KA, DK, HK$, VK$

e 4-117 LISTVAR

TEK SPS BASIC V@2 System Software

NUMERIC VARIABLES
DJ DK

STRING VARIABLES
HJ$ HK$ VJI$ VK$

STRING ARRAYS
ST$(40)

LISTVAR 4-118

TEK SPS BASIC V@2 System Software
LOAD

Examples:

1¢@ LOAD "PP.SPS","USER.SPS"
150 LOAD PR:"GRAPH"
LOAD CT:/F,GR$

Syntax Form:

F
[line no.] LOAD [device name[constant]:] [/’R‘[,:Jstring expression

[,string expression] ...

Descriptive Form:

[line no.] LOAD [device name[drive number]:z][/ forward or reverse switch [,]]
driver or command name [,driver or command name] ...

Purpose:

To bring nonresident commands and instrument and peripheral drivers
into the controller memory from a peripheral device.

Discussion:

The LOAD command is the heart of SPS modularity. Together with the
RELEASE command, LOAD allows you to "customize" controller memory to give
you the most free memory space for a particular job. You may LOAD a
nonresident command or driver as you needed it and RELEASE it when done
with it.

Nonresident drivers cannot be auto-loaded. They must be explicitly
brought into memory by the LOAD command. Nonresident commands, however,
may be either explicitly LOADed or auto-loaded. When a driver or command
has been brought into memory by the LOAD command, it stays resident until
released with the RELEASE command. The LOAD command "locks in" modules;

e 4-119 LOAD

TEK SPS BASIC V@2 System Software

auto-loaded commands are released by BASIC whenever room is needed for
program text, arrays, drivers, or other nonresident commands.

Once nonresident commands are loaded, they can be used in programs
in the same manner as resident commands. LOADing frequently used commands
can shorten program execution time.

If the specified device is a serial access, file-structured device
such as cassette tape, no file may be open on it when LOAD executes.

Using the Syntax Options:

The system storage device is used by the LOAD command as the source
peripheral device if no other device is specified. If the named device is
not the system device, its driver must be LOADed into memory before a
command or driver stored on it can be LOADed. If the drive number is
omitted, zero is assumed.

[When a serial tape device is specified, the /F or /R (Forward or
Reverse) switches may be used. If a switch is not present, the tape is
rewound before a forward search for the file begins. If the device is not
serially structured, the /F or /R switch is ignored. If the end of tape
is reached before a specified file is found, a fatal error is issued.]

The LOAD command will only load files with .SPS extensions. The
extension need not be specified but if it is, it must be .SPS. (The .SPS
extension is reserved for the file names of nonresident commands and
drivers.

[When the specified device is paper tape, any unused command name may
be supplied. That name is then associated with the file loaded. When paper
tape is used, the correct tape must be in the tape reader before executing
the LOAD command.]

LOAD 4-120 e

TEK SPS BASIC V@2 System Software

LOCKKB (Nonresident)

Examples:

1@ LOCKKB
9¢@ LOCKKB OPEN

Syntax Form:

[line no.] LOCKKB [OPEN]

Purpose:

To limit system input to a Control-P while a program is running.

Discussion:

Normally the keyboard is "live". You can enter a line of characters
(terminated by a carriage return) from the keyboard at any time during a
running program. If an input request condition is enabled by the INPREQ
command or an INPUT statement is waiting for data, this line is interpreted
to be program data. Otherwise this line is interpreted to be system input
-- either a new line of program text or an immediate mode command. However,
after a LOCKKB is executed, the keyboard is locked and the only system
input accepted while a program is running is a Control-P. (Of course,
system input is still accepted when no program is running.)

With the keyboard locked, input from the keyboard (while a program
is running) is only accepted if prompted by an INPUT command or allowed
by an INPREQ command.

A locked keyboard can only be made live again by executing a LOCKKB
OPEN statement. END, STOP, and Control-P will not restore the keyboard to
its normal (live) condition.

Using the Syntax Options:

When just the command name LOCKKB is used, the keyboard is locked.
When the keyword OPEN is specified, the keyboard is restored to normal.

e 4121 LOCKKB

TEK SPS BASIC V@2 System Software

LST (Nonresident)

Examples:

525 LST LP:, 100,200

LST
LST 20

76@ LST DK1:"LST.FIL", 100,200
LST DX:A2$

Syntax Form:

. expression[,expression]
[line no.] LST
device namelconstant]z[string expression][,expression[,expression]]

Descriptive Form:

line number[starting, line number ending]
[line no.] LST |device name[drive number]: [target file name]
[,1ine number [starting, line number ending]]

Purpose:

To display all or part of the current program text on the terminal
or the specified peripheral device with indented FOR/NEXT loops.

Discussion:

The LST command is like the LIST command except for the way the program
lines are output. The line numbers are right-justified in a five-character
field and statements that were concatenated with a backslash (\) are output
on separate lines. Also, statements within a FOR/NEXT loop are indented
two print positions from the position of the FOR statement. When FOR/NEXT
statements are nested, the inner loops are indented from the outer loops.
For example, LIST displays a program like this:

LST 4122 e

TEK SPS BASIC V@2 System Software

*LIST

1@ FOR I=1 TO 10

200 B=0

300@ FOR K=1 TO 1000@

400@ c(K)=1 \ FOR J=1 TO 10\A(J)=1\NEXT J
10000 NEXT K

20000 NEXT I

while, LST displays the same program like this:

*LST
1¢ FOR I=1 TO 1@
200 B=0
3000 FOR K=1 TO 1000
4oa0 C(K)=1\
FOR J=1 TO 1@\
A(J)=1\
NEXT J

10008 NEXT K
20000 NEXT I

If a section of a program is listed by LST, the indentations of any
statements within FOR/NEXT loops reflect the nesting from the beginning
of the program. For instance, LST displays lines U40@@ through 20000 of the
example program this way:

*LST 4000,30000
4000 C(K)=1\
FOR J=1 TO 10\
A(J)=1\
NEXT J
10008 NEXT K
20000 NEXT I

See the LIST command for more information.
NOTE

The LST command is not available
with TEK SPS BASIC V@2-@1.

e 4-123 LST

TEK SPS BASIC V@2 System Software

MATCH (Nonresident)

Examples:

100 MATCH A$,B$,N
150 MATCH AR$,"THE",K,M
170 MATCH R$,W$&" .MAC",W(N),W(N+2)

Syntax Form:

[line no.] MATCH string array,string expression,variable[yvariable]

Descriptive Form:

[line no.] MATCH string array, search string, target variable for array index
[,target variable for search string's starting position]

Purpose:

To search a string array for a given search string.

Discussion:

The MATCH command searches a string array (the first argument) for
the first occurrence of the search string (the second argument). A match
is considered found if an element of the string array completely contains
the search string, either as an absolute match or as a substring. If a
match is found, the index of the element containing the search string is
returned in the third argument. If a match is not found, negative one (-1)
is returned instead. Optionally, the starting position of the search string
within the matching array element is also returned.

If the array is two-dimensional, the value returned in the third
argument is equal to the element's first subscript times the quantity, one
plus the maximum value of the array's second subscript, plus the elements
second subscript. For example, if a match is found in element A(I,J) of
an array A dimensioned M by N, the third argument is equal to I¥*(1+N)+J.

MATCH 4-124 e

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

The first argument is the string array to be searched. Remember,
string arrays cannot be zoned. The second argument, a string expression,
is the search string.

If a match is found, the index number of the first array element
containing the search string is returned in the third argument, a variable.
When no match is found, it will contain a -1.

The optional fourth argument is also a variable. When present, the
search string's starting position within the string element is returned
in it. As with the third argument, when no match is found, it will contain
a -1.

Application Example:

The match command can be used to check for a proper input string when
the returned index is used in a computed GOSUB or GOTO statement. In the
example below, the days of the week are entered into the string array, D$.
Then the program asks for a day name to be INPUT. Line 200 compares the
input string with the days of the week. Depending on which day is entered,
a specific subroutine is jumped to via a computed GOSUB statement (line
21¢). If there is no match, the -1 that is returned in N sends the program
back to line 18¢ to ask again for the INPUT. Otherwise, program control
transfers to the desired subroutine.

10¢ DIM D$(6)

110 D$(@)="SUNDAY"

12@ D$(1)="MONDAY"

13¢ D$(2)="TUESDAY"

140 D$(3)="WEDNESDAY"

15¢ D$(U4)="THURSDAY"

160 D$(5)="FRIDAY"

170 D$(6)="SATURDAY"

180 PRINT "ENTER THE DAY OF THE WEEK"
190 INPUT S$

20@ MATCH D$,S$,N

210 GOSUB N+2 OF 18¢,1000,2000,3000¢,4000,5000,6000,7000

e 4-125 MATCH

TEK SPS BASIC V@2 System Software

Notice that since a match is recognized when the search string is a
substring as well as an exact match, entering the first three letters as
an abbreviation works just as well as entering the entire name. However,
just an "S" will always match D$(@) and never D$(6).

MATCH 4-126

TEK SPS BASIC V@2 System Software

NEXT

Example:

10@ NEXT J

Syntax Form:

[line no.] NEXT simple numeric variable

Descriptive Form:

[line no.] NEXT index

Purpose:

To delimit the scope of a FOR/NEXT loop.

Discussion:

The NEXT command is the last statement in a FOR/NEXT program control
loop. See the FOR command documentation.

Using the Command Syntax:

The simple numeric variable is the loop index. The NEXT command and
its corresponding FOR command must use the same variable name.

a 4127 NEXT

TEK SPS BASIC V@2 System Software
OLD

Examples:

OLD "DEMO.BAS"
150 OLD PR:
16¢ OLD DK2:A$
17¢ OLD CT1:/R,"SAMPLE" 200

Syntax Form:

F
[line no.] OLD [device name[constant]:z] [/ R [,]] [string expression][,line number]

Descriptive Form:

[line no.] OLD [device name[drive number]:][/ forward or reverse switch [,]]
[program file name][,line number where execution starts]

Purpose:

To bring a BASIC program from the specified device into memory.

Discussion:

Programs that you have previously SAVEd on a peripheral device are
brought back into the controller memory with this command.

When the OLD command is executed, all currently defined variables,
arrays, waveforms, string variables, and string arrays are deleted, along
with any existing program lines in memory. Files are left OPEN, but actions
of all WHEN, SCHEDULE, INPREQ, and ONERR commands are cancelled and the
Scheduler is cleared. (The function and parts of the Scheduler are explained
in Section 1.) Then the named BASIC program is brought into memory. If the
OLD command encounters a line of text longer than 80 characters, a warning
error is issued, and the extra characters are dropped. Since the OLD command

OLD 4-128 e

TEK SPS BASIC V@2 System Software

deletes all program text in memory, an OLD statement should not be followed
by a backslash (\).

When a line number is specified, execution automatically begins at
the line number (or the next higher line number if the specified one does
not exist). For example, in statement 17¢ in the example above, execution
would begin at line 20@ in the program "SAMPLE".

[The new program executes with a task number equal to the task number
of the OLD statement, unless the OLD statement is in the immediate mode.
In which case, the task number is set to zero. Thus, the immediate mode
command

OLD "PROGRM",1

causes "PROGRM" to execute as task zero, not 127 which is the immediate
mode task number.]

If the line number is omitted, what happens depends on whether the
OLD command is issued in program mode or immediate mode. In program mode,
execution continues with the first line of the new program. [Its task
number is equal to the task number of the OLD statement, except when that
task number is 127. Then the task number of the new program is zero.] In
immediate mode, the next command entered in immediate mode (after the OLD
command executes) is executed.

To execute the new program, a RUN or GOTO (with a line number) can
be entered in immediate mode. [Starting the program with RUN makes its
task number zero unless the task number is explicitly stated. However,
starting the program with an immediate mode GOTO makes its task number
127, the immediate mode task number.]

For other commands that bring a stored program into memory see CHAIN,
OVERLAY, and OVLOAD.
Using the Syntax Options:

When no device is specified, the system device is used. If the named
device does not use the system device driver, its driver must be LOADed

into memory before the OLD command is executed. The keyboard (KB) may not
be specified. If the device is a serial-access, file-structured device,

e 4-129 OLD

TEK SPS BASIC V@2 System Software

no files may be OPEN on it when OLD executes. If no drive number is
specified, zero is assumed.

[The Forward or Reverse switches (/F or /R) may be included in the
command if the peripheral device is a serial tape device. These switches
specify the direction of tape movement when searching for the file. If the
switch is omitted, the tape is rewound before the search for the file is
made. If the device is not a serial tape device, a /F or /R switch is
ignored.]

A file name must be specified for a file-structured device. If no
extension is present in the file name, .BAS is assumed.

If a line number is given, it must be an integer between 1 and 32767,
inclusive. What happens when it is included or omitted is explained above.

OLD 4-130 e

TEK SPS BASIC V@2 System Software

ONERR (Nonresident)

Examples:

15¢ ONERR IA GOTO 758

97@ ONERR RETURN

890 ONERR RETURN GOTO 50@
10@ ONERR NOWARN

50@ ONERR

Syntax Form:

1nt(?ger array GOTO line number
variable

RETURN [GOTO0 line number]
NOWARN

[line no.] ONERR

Descriptive Form:

target for error information GOTO line number
[line no.] ONERR RETURN [B0TO line number]
NOWARNing error messages

Purpose:

To allow the detection and handling of warning and fatal errors in a
BASIC routine.

Discussion:

Usually when an error occurs, an error message is displayed on the
terminal and, if the error is fatal, the task associated with it halts.
However, the ONERR command lets you process errors in your own way instead
of being forced to use BASIC's built-in error procedures. (These procedures
are outlined in "Understanding Errors", Section 8.)

e 4-131 ONERR

TEK SPS BASIC V@2 System Software

With the ONERR GOTO form of the command you can write your own
error-handling routines. The error message is not displayed and, in most
cases, even if the error is fatal, the task committing the error is not
aborted. Instead, program control transfers to the specified line number,
which should be the first line of your error-handling routine.

[When an error occurs with an ONERR GOTO condition active, the specified
line number is entered in the Scheduler queue with a priority of 127 and
a task number equal to the current task number. Since the entered line
number has the highest priority possible, it becomes the current task as
soon as control returns to the Scheduler. Statements that only cause warning
errors finish executing before the user-written error handler is jumped
to via the Scheduler. Also, when errors occur during the execution of an
I/0 command, the input or output finishes before control passes to the
Scheduler and on to the error routine. Otherwise, commands with fatal
errors do not complete execution and control returns to the Scheduler after
the line number is entered.]

[The ONERR GOTO form of the command prevents most fatal errors from
triggering the reset actions that halt a task's execution as outlined in
the section on errors. However, if the error is caused by an overflow of
the Scheduler stack or queue, a system reset is performed. The ONERR is
disabled so the program halts.]

ONERR cannot be used to handle a peripheral hardware I/0 (P18) error.
If a P18 error occurs, any ONERR condition is ignored and the error is
handled as if an ONERR were not set up, but the ONERR remains enabled.

If more than one ONERR GOTO statement appears in a program and an
error occurs, program control transfers to the line number specified in
the most recently executed ONERR GOTO.

After an error is detected, the target array contains the information
about the error normally printed in the error message. The contents of the
array elements have the following meanings:

ONERR 4-132 e

TEK SPS BASIC V@2 System Software

Index Content and Meaning

element @ the line number of the command
where the error occurred (or @
if in immediate mode)

element 1 The decimal equivalent of the
ASCII character in the error code

element 2 The numeric portion of the error code

element 3 A @ or 1 if a fatal error;
a 2 if a warning error

If a fatal error occurs while the user-written error-handling routine
is executing, the ONERR is disabled. The new error is handled as if an
ONERR was not set up and the task is aborted. If a warning error occurs
during the user's error routine, a warning message is printed and execution
continues.

The error-handling routine is terminated by a form of the ONERR RETURN
statement. Program control can either be returned to the statement immediately
following the one that caused the error or be transferred to a specified
line number. In either case, the system priority returns to the priority
of the statement that caused the error. If a form of the ONERR RETURN
command is executed when no error has occurred, an error is issued.

You should use some form of the ONERR RETURN statement to exit the
error routine. If a regular GOTO statement is used, the system priority
remains at the priority of the error-handling routine, which is initially
set to 127. Also, the system will assume that the error routine is still
executing. Another error will either disable the ONERR or cause an error
message to be printed, as explained above.

If all you want to do is suppress the printing of warning error
messages and nothing else, use the ONERR NOWARN form of the command. It
does not cause transfer of control when an error occurs. If a transfer was
set up by a previously executed ONERR GOTO statement, that transfer is not
disabled.

To disable all ONERR conditions set up by previously executed ONERR
statements, execute the ONERR command using no keywords. Control-P, END,

e 4-133 ONERR

TEK SPS BASIC V@2 System Software

STOP, OLD, CHAIN, DELETE ALL, and DELETE TEXT also disable any ONERR
conditions. ONERR is not disabled when an error occurs unless the error
is fatal and the user-written error-handling routine is executing.

Using the Syntax Options:

The keyword GOTO sets up a transfer to the specified line number,
should an error occur. Either a simple numeric variable or an integer array
is used to return the information about the error. If a simple numeric
variable is specified, it is auto-dimensioned to a four-element integer
array. If an integer array is specified, it must contain exactly four
elements.

The keyword RETURN terminates a user-written error-handling routine.
This form of the ONERR command must appear only in the error-handling
routine. If the optional keyword GOTO followed by a line number is used
also, program control passes to the specified line number. If the GOTO and
line number are omitted, program control returns to the statement following
the command that committed the error.

The keyword NOWARN disables the display of warning error messages on
the terminal.

When the ONERR command name is used alone (omitting all keywords),
any previously executed ONERR conditions are disabled.

Application Example:

Suppose a program needs a particular instrument to be ATTACHed, but
doesn't know what instrument logical unit numbers (ILUNs) are free. It may
not even know if the instrument is already ATTACHed. Trying to ATTACH an
instrument to a ILUN that is not free causes an I3 error. Attempting to
ATTACH an already attached instrument to a different ILUN is an 115 error.
Normally, either error is fatal, but with the ONERR command, you can write
a routine to handle both possibilities. To help you understand how to use
ONERR, consider this over-simplified solution.

10 REM SET UP ONERR TRANSFER
2@ ONERR AR GOTO 500
3@ J=1

ONERR 4134 e

TEK SPS BASIC V@2 System Software

L4g K=J

5@ ATTACH #J AS DPO1:

6@ IF J<>K THEN 49

7@ REM DISABLE ONERR TRANFER
8@ ONERR

499 REM IGNORE IF IMMEDIATE MODE ERROR

5@@ IF AR(@)=@ THEN 65¢

51¢ REM TEST FOR EXPECTED LINE NUMBER

52¢ IF AR(@)<>5@¢ THEN 590

53¢ REM TEST FOR INSTRUMENT ERROR

54 IF AR(1)<D>ASC("I") THEN 590

55¢ REM CHECK FOR I3 or I15 ERROR

56@ IF AR(2)=3 THEN 640

57@ IF AR(2)=15 THEN 640

580 REM IF NOT I3 OR I15 ERROR, WRITE MESSAGE

590 PRINT CHR(AR(1));AR(2);"™ ERROR IN LINE";AR(@)
6@0¢ REM IF WARNING ERROR, RETURN; IF FATAL, ABORT
610 IF AR(3)=2 THEN 650

620 ONERR RETURN GOTO 670

63¢ REM INCREMENT ILUN AND TRY AGAIN TO ATTACH
64 J=J+1

65¢ ONERR RETURN

67¢ ABORT

Starting with the ILUN variable J set to 1 and a test variable K set
equal to J, the program tries to ATTACH DPO1. If it works, K still equals
J so the program continues. If ATTACH fails, control transfers to the error
routine which expects an I3 or I15 error in line 5@. By checking the
elements of the array AR, the routine determines if one of the expected
errors triggered the jump. Any other program error in any other line is
reported and, if fatal, ABORTS the current task (line 67¢). (Immediate
mode errors are ignored.)

If the error is as expected, the trial ILUN, J, is incremented and
control passes back to the main program (line 6@). Since J no longer equals
K, the program jumps back to line 4. K is reset to J and another attempt
is made to ATTACH DPO1. This loop continues until a free ILUN is found,
the ILUN already ATTACHed to DPO1 is matched, or the legal range of ILUNs
is exceeded. That last possibility would ABORT the current task because
this error routine cannot recover from that or any other fatal error.

e 4-135 ONERR

TEK SPS BASIC V@2 System Software
OPEN

Examples:

100 OPEN #4 AS PR: FOR READ

110 OPEN #2 AS LP: FOR WRITE

120 OPEN #1 AS CT:/F,"CASSET.FIL" FOR READ

130 OPEN #K+2 AS DK:FL$ FOR WRITE WITH N INTO 10
140 OPEN #N AS DX1:"RECORD.DAT" FOR UPDATE

150 OPEN #3 AS DK1:"LASER.@#@1" FOR WRITE INTO 6

Syntax Form:

[line no.] OPEN #expression AS [device namelconstant]:] |:/

F

R [,]} [string expression]
READ

FOR {WRITE [WITH expression] [INTO expression]

UPDATE

Descriptive Form:

[line no.] OPEN #plun AS [device name[drive number]:]
[/forward or reverse switch[,]][file name]
READ
FOR |WRITE [WITH number of buffers] [INTO number of blocks]
UPDATE

Purpose:

To allow access to an existing data file, a new data file, or a non-
file-structured peripheral device in order for the input or output of data
to take place.

OPEN 4-136 e

TEK SPS BASIC V@2 System Software

Discussion:

The OPEN command makes a data file or device accessible for the input
or output of data by associating it with a peripheral logical unit number
(PLUN). Once the PLUN is assigned, the file or the device is referenced
by that number rather than by its name.

A PLUN may not be associated with a file already OPENed nor may the
same PLUN be assigned to more than one file or device at a time. A PLUN
must be freed by a CLOSE or END statement before it can be reassigned.

The terminal keyboard is permanently assigned to PLUN zero and is
always OPEN for both READ and WRITE. PLUN zero may not be assigned to any
other device or file. The keyboard may not be associated with another PLUN.

Using the Syntax Options:

In the command syntax, the PLUN is preceded by the pound sign (#).
Since the PLUN may be an expression, if it does not evaluate to an integer,
it is rounded to an integer value. The number of PLUNs that may be assigned
at any one time, n, is determined at system initialization. The value
assigned as a PLUN must be an integer between 1 and n, inclusive. The
default number of PLUNs is six. In this case, the numbers 1 through 6 may
be assigned as PLUNs. (To change the number of PLUNs allowed see the SYSBLD
command .)

The device name follows the keyword AS. When no device name is
specified, the system device is assumed. If the named device does not use
the system device driver, the driver for that device must be LOADed into
memory before OPEN executes. When the device named is a serial tape device,
only one file can be OPENed on it at a time. If the drive number is omitted,
zero is used.

[The optional forward or reverse switch /F or /R is for use with a
serial tape device being OPENed FOR READ. It causes a search of the tape
in a forward or reverse direction, respectively. If the switch is omitted,
the tape is rewound before a forward search is begun. The search ends when
the file is found or an end-of-tape is reached. If the device is not a
serial tape device being OPENed FOR READ, the /F or /R is ignored.]

@ 4-137 OPEN

TEK SPS BASIC V@2 System Software

The next argument in the command syntax is the file name. The file
name must be included if the specified peripheral is a file-structured
device such as disk or magtape. The file name is optional when the device
is a non-file-structured device such as a line printer or a paper-tape
reader or punch. (If a file name is included in a statement to OPEN a
paper-tape punch FOR WRITE, the file name is punched on the tape in
humanly-readable alphanumeric characters.) The OPEN command has no default
file name extension.

The OPEN command determines the mode of access to receive or send
data (random or sequential) by the keywords UPDATE, READ, or WRITE.

For random access, a file is OPENed as a record I/0 file by using the
keyword UPDATE. The peripheral must be a directory-structured device, and
the file must already exist on it. (See the DEFINE command for information
on creating a record I/0 file.) Once OPENed FOR UPDATE, a file is accessed
for input or output by using the record I/0 form of the READU or WRITEU
commands, respectively.

To receive data in a sequential manner from a peripheral device or
file you use the keyword READ. If a file name is given, that file must
already exist on the device. Files or devices OPENed for READ are accessed
for input only by the READ, INPUT, or regular form of the READU commands.

The keyword WRITE is used to send data to a peripheral in a sequential
manner., If the device is file-structured, a file is created. A file of the
same name must not already exist on the device or a fatal error results.

If the specified device is a paper-tape punch, leader is punched. (When

the punch is closed with the CLOSE or END command, leader is again punched.)
Files or devices OPENed for WRITE are accessed for output only by the

WRITE, PRINT, or regular form of the WRITEU commands.

[You can increase the speed of throughput to a file or device OPENed
FOR WRITE by using more than one buffer. Multiple buffers are specified
by the expression following the optional keyword WITH. The expression is
rounded to an integer if necessary. Using more than one buffer requires
additional memory for each extra buffer. See the Peripheral Drivers manual
for buffer sizes. If this option is omitted, a default of one buffer is
used.]

[The expression following the keyword INTO allows you to specify the
maximum size in blocks (256 words per block) of a file OPENed FOR WRITE

OPEN 4-138 e

TEK SPS BASIC V@2 System Software

on a directory-structured device. The result of the expression is rounded
to an integer if necessary. If this option is omitted, half of the largest,
contiguous free space on the device is used as the new file.]

[The file created by an OPEN for WRITE statement may be smaller than
the allotted or default space, but it cannot be larger. As your disk begins
to fill, the default (half the available space) may not be large enough,
even for small files. In order to use more than half of the largest,
contiguous free space for a file, you need to include the INTO specification
when OPENing a file FOR WRITE. If the allotted or default space exceeds
the actual number of blocks used by the file, the extra blocks are returned
to a free status when the file is CLOSEd.]

e 4-139 OPEN

TEK SPS BASIC V@2 System Software
OVERLAY (Nonresident)

Examples:

160 OVERLAY DK1:"PROG2.BAS"
120 OVERLAY "NEXT"

150 OVERLAY CT:/R,B$

160 OVERLAY PR:

Syntax Form:

F
[line no.] OVERLA [device name[constant]:z] [/ R

[,]:I [string expression]

Descriptive Form:

[line no.] OVERLAY [device name[drive number]:z][/ forward or reverse switch [,]]
[program file name]

Purpose:

To move a new program segment into memory, overlaying an existing
program segment. Execution continues if the command is executed in program
mode.

Discussion:

When very large programs are written, it is often desirable to break
them into several smaller segments and execute each segment one at a time.
The OVERLAY command allows this flexibility.

If the OVERLAY command is used in a program (not in immediate mode),
execution of the overlaid program is automatic. In this case, a portion
of the current program is overlaid by the program segment stored in the
specified file by a SAVE or REPLACE statement. Statements in the new program
whose line numbers match existing statements in memory replace those

OVERLAY 4-140 e

TEK SPS BASIC V@2 System Software

existing lines. However, unlike CHAIN, OVERLAY deletes no other text.
Execution resumes with the next sequential statement following the OVERLAY
command. No variables are deleted, and files are left open. The line
containing the OVERLAY command must not be overlaid.

All lines read in with the OVERLAY command must have line numbers.
If a line contains more than 8@ characters, a warning error is issued and
the remainder of the line is ignored.

For other commands that allow efficient use of memory space see the
discussions on CHAIN, GOSUB, and OVLOAD.

Using the Syntax Options:

When no device is specified, the system device is used. If the named
device does not use the system device driver, its driver must be LOADed
into memory before the OVERLAY command is executed. The keyboard (KB) may
not be the specified device. If the drive number is omitted, zero is
assumed.

[The /F or /R switches (Forward or Reverse) may be specified for a
serial tape device. The switch indicates the direction of the tape movement
when searching for the file. If the switch is omitted, the tape is rewound
before a forward search is begun. The search stops when the file is found
or an end of tape is reached. When used with other peripherals, the switch
is ignored.]

A file name must be specified if the device is file-structured. If
an extension is not included in the file name, .BAS is assumed.

e h-141 OVERLAY

TEK SPS BASIC V@2 System Software

OVLOAD (Nonresident)
Examples:
15@ OVLOAD "PART2"

780 OVLOAD DK1:A$
17¢ OVLOAD CT:/R,"SECTN.3"

Syntax Form:

F
R

[line no.] OVLOAD [device name[constant]:] [/ [,]] string expression

Descriptive Form:

[line no.] OVLOAD [device name[drive number]:][/ forward or reverse switch [,]]
file name of pretranslated text

Purpose:

To perform a fast overlay of a pretranslated BASIC program segment
from a file created by an OVLSAV statement.

Discussion:

The OVLOAD command allows faster execution of overlaid program segments
than the OVERLAY command. The program text brought into memory by OVERLAY
must be translated as it is loaded. However, the program text loaded by
OVLOAD has been stored in a translated form by an OVLSAV statement.

Before the fast overlay file is loaded, any text in memory with line
numbers in the range of the line numbers in the fast-overlay file are
deleted. The line containing the OVLOAD command must not be in this range.
Because the text is deleted, you cannot use an interleaved overlay technique
with OVLOAD as you can with OVERLAY. (OVERLAY overwrites lines but does
not delete lines.)

OVLOAD 4142 e

TEK SPS BASIC V@2 System Software

When the fast overlay file is loaded, there must be enough free memory
available for one input/output buffer, the translated text, and any extra
information about the text from the file. The size of the I/0 buffer depends

on the type of the device the file is stored on. See the Peripheral Drivers
Manual for buffer sizes.

NOTE

A fast-overlay file created by the
standard memory version of OVLSAV
cannot be brought into memory by the
extended memory (XM) version of
OVLOAD, and vice versa.

Using the Syntax Options:

The named device must be file-structured. When no device is specified,
the system device is used. If the named device does not use the system
device driver, its driver must be LOADed into memory before the OVLOAD
command executes. If the drive number is omitted, zero is assumed.

[The /F or /R switches (Forward or Reverse) may be specified for a
serial tape device. The switch indicates the direction of the tape movement
when searching for the file. If the switch is omitted, the tape is rewound
before a forward search is begun. The search stops when the file is found

or an end-of-tape is reached. When used with other peripherals, the switch
is ignored.]

The string expression is the name of the fast overlay file. If an
extension is not included in the file name, ".BOL" is assumed.

e 4-143 OVLOAD

TEK SPS BASIC V@2 System Software

OVLSAV (Nonresident)

Examples:

450 OVLSAV A$
OVLSAV DK1:"PART23.V11",1000,1500
OVLSAV DX1:"NEXT"
OVLSAV DL2:"FAST2" INTO 5

Syntax Form:

[line no.] OVLSAV [device name[constant]:]string expression [INTO expression]
[,expression[,expression]]

Descriptive Forn:

[line no.] OVLSAV [device name[drive number]:] file name for fast-overlay file
[INTO number of blocks][,line number [starting, line number ending]]

Purpose:

To create a file containing a pretranslated BASIC program segment
that can be loaded into memory by an OVLOAD statement.

Discussion:

As a BASIC program is entered from the keyboard terminal, the text
is translated into an internal form and stored in the controller memory.
Whenever a program in memory is displayed by a LIST statement or stored
on a peripheral by a SAVE or REPLACE statement, the program is converted
back to the familiar BASIC language form. This means that when a stored
program is brought into memory by an OLD, CHAIN, or OVERLAY statement,
time is required to translate the text back into the internal form. In
large, heavily overlaid programs this translation time can represent much
of the total execution time. OVLSAV provides the ability to save portions
of a BASIC program in its already translated (internal) form. When program
segments saved by OVLSAV are later loaded into memory by an OVLOAD statement,

OVLSAV 414y @

TEK SPS BASIC V@2 System Software

the translation process is completely avoided and the time saving is
considerable.

Like SAVE, the OVLSAV can create a file from all or part of the program
text that is in controller memory. Specifying one or two optional line
numbers allows you to save in the given file only part of the program text
that is in memory. If there is text in memory in the range of the line
numbers specified, first, any file with the given file name is canceled
and then a new file is created from the specified text. If there is no
text in the range of line numbers specified or no text in memory at all,
no action is taken.

The starting and ending line numbers specified in the OVLSAV statement
or the starting and ending line numbers for the entire program (if no line
numbers are specified) are saved in the file with the translated text by
OVLSAV. Later, when this overlay file is brought into memory by OVLOAD,
any existing lines within this range of line numbers are deleted from the
program in memory before the fast overlay file is loaded.

Since the optional line numbers in the OVLSAV command are expressions,
they are not altered by the RENUM command.

NOTE

A fast-overlay file created by the
standard memory version of OVLSAV
cannot be brought into memory by
the extended memory (XM) version
of OVLOAD, and vice versa.

Using the Syntax Options:

The named device must be file-structured. If no device is given, the
system device is assumed. If the named device does not use the system
device driver, its driver must be LOADed into memory before OVLSAV executes.
When the device is a serial-access, file-structured device, no files may
be OPEN on it. If the drive number is omitted, zero is assumed.

The file name is required. If no file name extension is specified, a
default extension of ".BOL" is used.

e 4-145 OVLSAV

TEK SPS BASIC V@2 System Software

If the target device is directory-structured (e.g., DK, DL, DY, or
DX), the INTO option can be used. The (rounded) expression following the
keyword INTO stipulates the maximum number of blocks required by the file.
When the INTO option is used, the first sufficient empty space on the
target device is selected for the file. When the INTO option is not used,
one half of the largest empty space on the target device is set aside for
the file. In either case if the specified or default space exceeds the
actual number of blocks needed for the file, the unused blocks are returned
to an empty status. (The INTO option is not supported by the OVLSAV V@2-@1.)

When storing a fast-overlay file on a nearly full disk, use the INTO
option. Half the remaining free space may not be large enough for the file.
In order to use all the available disk space, you will need to specify the
required number of blocks rather than use the default.

The optional expressions are rounded to integers and used as line
numbers to delimit the range of the text in memory to be included in the
fast overlay file. The expressions must evaluate to numbers between 1 and
32767, inclusive. If only one line number is used, only that line is saved.
If two line numbers are used, all program lines between and including those
lines are saved. When both line numbers are omitted, all the program text
in memory is saved in the file.

OVLSAV 4-146 e

TEK SPS BASIC V@2 System Software

PRINT (Nonresident)

Examples:

150
160
180
19¢
200
210
220

PRINT A,B,C$

PRINT
PRINT,,,,DA$
PRINT #N,

Syntax Form:

[line no.] PRINT [#expression,]

Descriptive Form:

[line no.] PRINT [#target plun,]

Purpose:

PRINT #L+2,A+B+C;" IS THE ANSWER"
PRINT TAB(4@);"SUM IS";D
PRINT 100, (A*C+(D*D)),3.45E0@5;

expression

array expression
waveform expression
string expression
string array
TAB(expression)

expression

array expression
waveform expression
string expression
string array
TAB(column number)

g

i

expression

array expression
waveform expression
string expression
string array
TAB(expression)

expression

array expression
waveform expression
string expression
string array
TAB(column number)

To output ASCII data to the terminal, a file, or peripheral device.

4-147

PRINT

TEK SPS BASIC V@2 System Software

Discussion:

The PRINT command outputs constants, strings, variables, string
variables, waveforms, arrays, and string arrays to the terminal or any
peripheral capable of being written to. The information is sent as ASCII
characters.

Formatting Your Output:

The comma and the semicolon. Two delimiters are available for separating
output items -- the comma and the semicolon. The comma divides a line of
printing into fields, 14 print positions wide. It is like hitting the tab
key on a typewriter when the tab-stops have been set at positions 14, 28,
42, An item following a single comma is printed in the next free field
beyond the present position. (In line 280 of the example program below,
the number 54321 is printed in the fifth field because ST$ extends into
the fourth field.) Using two (or more) commas in a row is like hitting a
typewriter's tab key that many times -- one (or more) print fields are
skipped before the item after the commas is printed. If you specify n
commas, n-1 fields are skipped. (Line 290¢ shows this.)

The semicolon causes data to be printed in a concatenated form with
no extra spaces between two items. However, when a positive number is
output following a semicolon, a space does appear. This space is in place
of a plus sign (+). Printing the STR function of the number, instead of
just the number, eliminates this space, as in line 380 below.

Either of these delimiters, when used as the last character in a PRINT
statement, suppresses the carriage return and line feed normally output
by each PRINT statement. The result is that the next PRINT statement starts
printing from the position held by the previous PRINT statement -- the
PRINT statement ending with a comma or semicolon. Remember, however, that
a comma will cause a skip to the beginning of the next field, so, if a
comma is used, the next PRINT statement will start printing in the next
field. (See lines 4@, 20@, and 210 below.)

Tabulation. The TAB function causes the data item following it to be
printed starting at the column number specified. The columns are numbered
from zero. If the value of the TAB function is less than the current column
position or greater than 2@@, the function is ignored. To be effective,
the TAB function must be followed by a semicolon. If a comma is used instead

PRINT 4-148 e

TEK SPS BASIC V@2 System Software

of a semicolon, the data item that follows it is printed in the next
available field (Lines 410 and 420 show this).

Blank lines. When a PRINT statement is used with no list of output
items, only the carriage return and line feed are output. This normally
prints a blank line. An exception to this is if the previous PRINT statement
ended with a comma or semicolon. In that case, the second PRINT statement's
carriage return and line feed finishes the line started by the previous
PRINT statement and no blank line is printed. (In line 150 below, the first
PRINT completes the previous line, but the next two PRINTs produce two
blank lines.)

Array output. When arrays are printed, each element is right justified
in a field 14 characters wide, five fields per line. A positive number is
preceded by a space; a negative number, by a minus sign. Array output
always begins on a new line.

Waveform output. Waveforms are output as four separate data sets.
First, the array is printed using the array output format. Next, the data
sampling interval, the horizontal units, and finally the vertical units
are output, each on a separate line.

String array output. The ability to PRINT a string array has been
included to simplify the handling of data from an IEEE 488 Interface. Each
element of the string array is printed separately, starting in column zero
and is followed by a carriage return and a line feed.

Formatting Example. Here is a sample program that demonstrates some
formatting techniques using PRINT statements. The column numbers at the
top of the sample program's output (Fig. 4-1) represent the fields in the
output line produced by the comma. The first number in each output line
corresponds to the line number of the PRINT statement that produced the
line.

18 REM

20 REM PRINT "COL"™ AT START OF EACH FIELD

3@ REM

4 FOR I=1 TO 6\PRINT "COL",\NEXT I

5@ PRINT

6@ REM

7@ REM PRINT STARTING COLUMN NUMBER FOR EACH FIELD
80 REM

e 4-149 PRINT

TEK SPS BASIC V@2 System Software

99 FOR I=@ TO 7@ STEP 14\PRINT STR(I),\NEXT I

100 PRINT

11¢ REM

120 REM SHOW WIDTH OF EACH FIELD

13¢ REM

14¢ FOR I=@ TO 56 STEP 14\PRINT "FIELD: ";STR(I);"-";STR(I+13),\NEXT I
15¢ PRINT\PRINT\PRINT

16¢ PRINT "LINE NO.","EXAMPLE OUTPUT"

17@0 PRINT\PRINT

180 REM

19¢ PRINT,"A , OR ; AT END SUPPRESSES CARRIAGE RETURN, LINE FEED
200 GETLIN X\PRINT X,"LINES";X;" AND";

210 GETLIN X\PRINT X;" PRINTED ON SAME LINE"

220 GETLINE X\PRINT X,"LINE";X\PRINT,"PRINTED ON TWO LINES"
230 PRINT

249 PRINT,"COMMA PRINTS NEXT ITEM IN NEXT FIELD"

25¢ GETLINE X\PRINT X,\FOR I=1 TO 4\PRINT I,\NEXT I

260 PRINT

270 GETLIN X\PRINT X,123,1234500,-45,-34.9876

280 ST$="19 STRING CHARACTERS"\GETLIN X\PRINT X,"STRING",ST$,54321
29¢ GETLIN X\PRINT X,,,"SKIP TWO FIELDS"

3¢@ PRINT

310 PRINT,"SEMICOLON CONCATENATES ITEMS"

320 GETLIN X\PRINT X,\FOR I=1 TO 4\PRINT I;\NEXT I

33@ PRINT

34@ GETLINE X\PRINT X,1234;765432;-45U6;-1.234567E+08

350 GETLIN X\PRINT X,"THIS IS ";"A BUN";"CH OF STRINGS"

360 PRINT

370 PRINT,"PRINTING STR FUNCTION OF NUMBER REMOVES SPACE"
380 GETLIN X\PRINT X,\FOR I=1 TO U\PRINT STR(I);\NEXT I

39¢ PRINT\PRINT

4@ PRINT,"FOLLOW TAB FUNCTION WITH SEMICOLON, NOT COMMA™
41¢ GETLIN X\PRINT X,TAB(40);"POSITION 4g","POSITION 56"
42¢ GETLIN X\PRINT X,TAB(40),"NOT IN 4¢","IN NEXT FIELD"
43¢ END

PRINT 4-150 e

TEK SPS BASIC V@2 System Software

coL coL coL coL coL coL
] 14 28 42 S6 70
FIELD: ©-13 FIELD: 14-27 FIELD: 28-41 FIELD: 42-55 FIELD: S6-69

LINE NO. EXAMPLE OUTPUT

A , OR ; AT END SUPPRESSES CARRIAGE RETURN, LINE FEED
200 LINES 200 AND 210 PRINTED ON SAME LINE
e20 LINE 220

PRINTED ON TWO LINES

COMMA PRINTS NEXT ITEM IN NEXT FIELD
1 e 3

250 4
2790 123 1.23450E+068 -45 -34.9876
280 STRING 19 STRING CHARACTERS 54321
290 SKIP TWO FIELDS
SEMICOLON CONCATENATES ITEMS
320 1234
340 1234 765432-4546-1.23457E+08
350 THIS 1S A BUNCH OF STRINGS
PRINTING STR FUNCTION OF NUMBER REMOVES SPACE
380 1234
FOLLOW TAB FUNCTION WITH SEMICOLON, NOT COMMA
410 POSITION 40 POSITION S6
420 NOT IN 40 IN NEXT FIELD
READY

2501-04

Fig. 4-1. Output of example program demonstrating the PRINT command.

PRINTing to a File:

When PRINTing to a file, care must be taken so that the data can be
INPUTed correctly. The following statement will provide a file that can
be displayed by the COPY command, but cannot be INPUT:

PRINT #N,A,B
This is because the ASCII characters for A and B will be separated in the
file by spaces, which the INPUT command discards. The INPUT command requires
a carriage return as a delimiter between data items. (A comma is also a

valid delimiter between data items if the first item is numeric.)

The correct way to PRINT multiple data items is as follows:

e 4-151 PRINT

TEK SPS BASIC V@2 System Software

PRINT #N,A\PRINT #N,B
This will place a carriage return between A and B.

When PRINTing arrays, the same care must be taken. Arrays should be
PRINTed to a file using a FOR/NEXT loop.

10 FOR I=@ TO SIZ(A)-1
20 PRINT #N,A(I)
30 NEXT I

Waveforms should be PRINTed to a file by first PRINTing the array
using a FOR/NEXT loop. Then the data sampling interval, horizontal units,
and vertical units should be PRINTed with separate PRINT statements to
allow the waveform to be INPUT back to memory.

Using the Syntax Options:

When the expression following the pound sign (#) is supplied, it is
rounded to an integer and used as the target peripheral logical unit number
(PLUN). The PLUN must be between @ and n, where n is the number of PLUNs
allowed at initialization time (default of six).

When a PLUN is omitted, output goes to the terminal (PLUN zero). If
a nonzero PLUN is used, it must be OPEN FOR WRITE. If it is OPEN FOR READ
or UPDATE, a fatal error results.

Notice that a PLUN of zero is allowed. If you use a variable for the
PLUN, a program's output can be directed to one of several peripherals --
the terminal, a line printer, or a file. To direct output to peripherals
other than the terminal, simply OPEN the desired device or file FOR WRITE
and set the PLUN variable in the PRINT statement to the logical unit number
assigned to the file or device by the OPEN statement. Setting the PLUN
variable to zero sends output to the terminal.

If the PLUN is given, a comma must follow the PLUN, but this comma
does not serve as a formatting delimiter.

Numeric expressions, array expressions, waveform expressions, and

string expressions are permitted. However, string arrays may be neither
used in expressions nor zoned.

PRINT 4-152 e

TEK SPS BASIC V@2 System Software

The keyword TAB specifies the tabulation printing function explained
above. The expression in parentheses is rounded to an integer and used as
the column value at which to start PRINTing the next data item. Columns
are numbered from zero.

Application Example:

If you PRINT to a file in the same manner you do to a terminal or
line printer, you will not be able to INPUT the data from the file back
into memory. To be able to INPUT a PRINTed file, each item in the file
must be separated by a delimiter acceptable to the INPUT command: a carriage
return (or a comma if the items are numeric).

This routine shows some methods for inserting the required delimiters.
To separate the numbers in line 30, commas between the numbers are explicitly
output to the file. By PRINTing the array in a loop (lines 5@ to 88), a
carriage return separates each array element as it is output. Also each
string is printed with a separate statement to delimit it by a carriage
return (lines 9¢ and 100).

1% OPEN #1 AS DK1:"TEST.DAT" FOR WRITE
20 PRINT #1,"THIS IS A PRINTED FILE"
3¢ PRINT #1,10,",",2¢g,"," 3@,"," 4g
4g DIM B(3)

58 FOR I=@ TO 2

6@ B(I)=I%1.44

7@ PRINT #1,B(I)

80 NEXT I

9@ PRINT #1,"THIS IS ONE STRING"

10¢ PRINT #1,"THIS IS A SECOND STRING"
110 CLOSE #1

120 REM

130 OPEN #1 AS DK1:"TEST.DAT" FOR READ
140 INPUT #1 A$,A,B,C,D

15¢ DIM BB(3)

16@ INPUT #1,BB

17@ INPUT #1,B$,C$

18@¢ CLOSE #1

19¢ RETURN

e 4-153 PRINT

TEK SPS BASIC V@2 System Software

Because explicit delimiters are output, after the file is CLOSEd and
OPENed FOR READ, the data can be INPUT into variables (lines 140 to
17¢). If line 3@ changed to:
3@ PRINT #1,10,20,30,40
and line 7@ is replaced by:
85 PRINT #1,B
you would get a data error if you tried to INPUT the file as in lines 130

to 18@. But you could display the contents of the file by COPYing it to
the terminal (KB) or a line printer (LP).

PRINT 4-154 @

TEK SPS BASIC V@2 System Software

PRIORITY (Nonresident)

Examples:
15@ PRIORITY 75

160 PRIORITY X+50

Syntax Form:

[line no.] PRIORI expression

Descriptive Form:

[line no.] PRIDRITY level

Purpose:

To change the priority of a program while it is running.

Discussion:

Routines execute in the order of their priority numbers. In the
Scheduler queue, a routine with a higher priority number executes before
one with a lower number. Also, a routine of higher priority can interrupt
the execution of a routine of lower priority. (The Scheduler's priority-base
execution process is discussed in Section 1.)

A BASIC program RUNs at a default priority value of 5@. With this
command you can assign one of 127 priority levels to a running program,
@ as the lowest and 126 as the highest.

A program maintains the priority of the last PRIORITY statement (or
the default value of 5@) while it is running. If the priority of the system
is changed by a PRIORITY statement in a subroutine, the original priority
(the priority before the transfer caused by the GOSUB) is restored on
RETURN from that subroutine.

e 4-155 PRIORITY

TEK SPS BASIC V@2 System Software

The system's priority can also be altered by WHEN or SCHEDULE command
interrupt routines (those subroutines that receive program control after
an instrument event has occurred or a user-designated time interval has
elapsed). The system takes on the priority specified by the associated
WHEN or SCHEDULE command. After completion of the interrupt routine, the
RETURN command restores the original system priority before returning
program control to the main program (or idle mode, depending on when the
interrupt occurred).

This priority number is not related in any way to the hardware priorit
levels in the processor.

Using the Command Syntax:

The priority level expression is rounded to an integer. It must
evaluate to a number between @ and 126, inclusive.

Uses:

Interrupt routines can be effectively blocked (prevented from executing)
by raising the system priority to 126. Likewise, a scheduled routine that
has not interrupted the system because of a low priority can be forced to
execute by lowering the system priority to zero.

PRIORITY 4-156 e

TEK SPS BASIC V@2 System Software
PUT (Nonresident)

Examples:

12¢ PUT "STO" INTO #N,B$

130 PUT A$,X5 INTO #J,X$,Y$
14¢ PUT "SET?" INTO €@,LA,SA
27@ PUT A$;A INTO #3;1

Syntax Form:

expression expression
array expression array expression
[line no.] PUT { waveform expression {’} waveform expression p |... [3]
string expression 3 string expression
string array string array
#expression[jexpression][,string expressionl ...
array expression
expression[,expression] }
array expression

[’{ex pression[,expression] }] toe

INTO @expression, {

Descriptive Form:

source expression source expression
source array expression source array expression
[line no.] PUT (source waveform expression {’} source waveform expression .o [3]
source string expression 3 source string expression
source string array source string array
r#target ilwn [;secondary address]
[,driver-dependent specification of data
or status information to be sent to instrument] ...
@IEEE 488 interface number,
listen and secondary address pairs }
{listen address [,secondary address]
.{listen and secondary address pairs }]
k [’ listen address [,secondary address]

INTO

—

e 4-157 PUT

TEK SPS BASIC V@2 System Software

Purpose:

To send data to a specified instrument.

Discussion:

This command allows you to control an instrument by setting internal
status in the instrument. With some instruments, data in the form of arrays
and waveforms can be sent to the device for viewing.

Like the GET command, the PUT command is divided into two parts, the
source and the target. The source is the data that is sent to the instrument.
This data may be in many forms, depending on the instrument referenced.
The target instrument is indicated by either the instrument logical unit
number (ILUN) of the ATTACHed instrument or the IEEE 488 interface number
followed by one or more addresses. With the ILUN, one or more driver-
dependent strings may be used. These strings tell the instrument driver
what to do with the source data. Each instrument driver recognizes a
different set of strings. For any instrument, only those strings that its
driver responds to should be used. Complete documentation of the driver-
dependent strings recognized by a driver is found in the manual for that
driver.

When the PUT command executes, the instrument must be on line and the
required instrument driver must be LOADed in memory. Also either the
instrument must be ATTACHed to associate it with the instrument logical
unit number (ILUN), or the communication must be through the low-level
IEEE 488 Interface driver, GPI.SPS, which is discussed in Section 6.

Using the Syntax Options:

No instrument driver uses all the legal syntax variations of the PUT
command. The manual for each driver shows which of the forms are allowed
by that driver.

The list of one or more source expressions may include numeric
expressions, array expressions, waveform expressions, string expressions,
and/or string arrays depending on what a particular driver allows. Multiple
source arguments are usually separated by commas, but the syntax of PUT
also accepts a semicolon. The semicolon option is used by the high-level

PUT 4-158 e

TEK SPS BASIC V@2 System Software

IEEE 488 Instrument driver (GPI.SPS) to suppress the sending of a delimiter
(the ASCII code for a comma) between the multiple source items. (INS.SPS
is not supported by TEK SPS BASIC V@2-@1.)

The specification following the keyword INTO designates the target
instrument. If a pound sign (#) is used, the expression after it is the
instrument logical unit number (ILUN) of the attached instrument. The
optional semicolon and expression is used by the high-level IEEE 488
Instrument driver, INS.SPS, to specify the secondary address of the target
IEEE 488 instrument. (INS.SPS is not supported by TEK SPS BASIC V@2-@1.)
The optional string expressions are the driver-dependent strings which
determine how the data is used.

If an at sign (@) is used, the expression following it is the number
of the IEEE U488 interface through which the data is sent. When the at sign
is specified, the low-level IEEE U488 Interface driver, GPI.SPS, must be
used. The list of expressions after the interface number specifies the
primary listen and optional secondary addresses of devices connected to
the IEEE U488 interface bus. See Section 6 for complete documentation.

e 4-159 PUT

TEK SPS BASIC V@2 System Software

PUTBLK (Nonresident)

Examples:

6@¢@ PUTBLK DK1:"TEST.DAT",3,B(@:255)
150 PUTBLK X,A$
49¢ PUTBLK DX:J%2,A+.5

Syntax Form:

[line no.] PUTBLK [device name[constant]:][string expression,]

string expression
expression,
array expression

Descriptive Form:

[line no.] PUTBLK [device name[drive number]:][file name,]

source string expression
target block number,

source array expression

Purpose:

To store a block of data on a directory-structured peripheral device.

Discussion:

The PUTBLK command stores data in a specified block on a directory-
structured device. (One block holds 256 16-bit words of data; one word can
hold one 16-bit integer or two 8-bit ASCII characters.) The block number
in which the data is stored can be given as an absolute block number of
the device or as a block relative to the start of a file. The data stored
can be either a 256-element array or the first 512 characters in a string.

PUTBLK 4-160 e

TEK SPS BASIC V@2 System Software

Careless use of PUTBLK could overwrite the
contents of the wrong block of information
on the device. With this command, it is
possible to corrupt any file on the device,
including your copy of TEK SPS BASIC.

Using the Syntax Options:

The device must be directory-structured. If no device is named, the
system device is used. If the named device does not use the system device
driver, its driver must be LOADed before PUTBLK executes. If the drive
number is omitted, zero is assumed.

The expression and the presence or absence of a file name determine
in which block on the device the data is stored. The expression, which
must result in a non-negative number, is rounded to an integer. If the
file name is omitted, that integer is used as an absolute block number of
the device, and the data is stored in that block. If a file name is given,
that integer is added to the file's starting block number to produce the
number of the block where the data is stored. In both cases, the resulting
block number must be between @ and the largest block number of the device,
inclusive.

An array or a string can be stored in the specified block. If an array
is given, it must be dimensioned or zoned to 256 elements. When the array
is floating-point, its elements are truncated to integers when stored in
the block. When a string is given, its first 512 characters are stored.

If the string has fewer than 512 characters, the remainder of the block
is filled with nulls.

e 4-161 PUTBLK

TEK SPS BASIC V@2 System Software

PUTLOC (Nonresident)

Examples:

2@@ PUTLOC "1765@6","232"
210 PUTLOC P1+48,A

Syntax Form:

expression expression

[line no.] PUTLOC

9
string expression string epression

Descriptive Form:

decimal address decimal value to be stored at address

[1line no.] PUTLOC

octal address octal value to be stored at address

Purpose:

To deposit a value in a valid controller memory location or in a
device address. '
Discussion:

The PUTLOC command is used by the PATCH files. This command is not
intended for general use.

The PUTLOC command allows a BASIC user to assign a value to a word
of controller memory or to a valid interface address (explained below).
Only even addresses are acceptable to PUTLOC since only a full word (16
bits) can be referenced by this command.

PUTLOC 4-162

TEK SPS BASIC V@2 System Software

Valid Addresses:

Standard Memory Systems. One word (16 bits) can produce 216 unique
addresses -- @ to 177777 octal. With byte addressing, this means one of
6UK distinct bytes (32K words) can be referenced with a 16-bit address.
However, the highest 4K possible word addresses are reserved as peripheral
address space for device and register addresses, allowing a maximum of 28K
words as controller memory space. Thus for PUTLOC, the valid addresses are
the even (word) controller memory locations (@ to 157776 octal) plus
those reserved addresses to which interfaces are strapped.

Extended Memory Systems. Systems with memory-management hardware and

TEK SPS BASIC V@2XM software have 18-bit addresses. This permits 256K byte
(128K word) addresses of which the highest 4K word addresses are reserved
as peripheral address space. (This means, for example, that a peripheral
~status register which is addressed as 1641008 in a standard memory system
must be addressed as T6410@g in an XM system.) For extended memory (XM)
systems, the valid addresses include the possible even (word) controller
memory locations (@ to 757776 octal) plus the addresses in the peripheral
‘address space to which interfaces are strapped. ; '

If the address given is odd or not valid for your system or controller,

a fatal error is issued.

It is possible to corrupt Resident BASIC
with this command, forcing a complete
software reload.

Using the Syntax Options:

The first argument is the address to which the value is assigned. If
the argument is a string, it must be the desired octal address. A string
expression should evaluate to a string of no more than eight octal digits.
However, in standard memory systems only the lower 16 b1nary dlglts are
used as the address. In extended memory (XM) systems ‘the lower 18 bits are

i, If the argument is numeric, it must be the decimal equivalent to the
desired address. A numeric expression is converted to binary and, if
necessary, truncated to a 24-bit binary integer. Again, in standard systems
only the lower 16 bits are used as the address; wh;ie;in i~tended memcry

e 4-163 PUTLOC

TEK SPS BASIC V@2 System Software

In any case the resulting address
else an error results.

The second argument is the assigned value. If it is a string expression,
it should evaluate to a string of no more than eight octal digits. However,
only the lower 16 binary digits are stored in the specified location. If
the argument is an expression, the result is truncated to an integer before
being assigned to the specified address.

PUTLOC 4-164 e

TEK SPS BASIC V@2 System Software

RANDOM (Nonresident)

Example:

155 RANDOM X,Y

Syntax Form:

[line no.] RANDOM floating-point variable,floating-point variable

Descriptive Form:

[line no.] RANDOM high-order part of seed, low-order part of seed

Purpose:

To set the seed value of the random number generator or to obtain the
current seed value.

Discussion:

The seed is the value used by the random number generator to calculate
the next number of the random number sequence. The RANDOM command uses two
variables as the high- and low-order parts of a 32-bit integer seed. The
first variable sets the high-order 16 bits; the second, the low-order 16
bits. The RND function of TEK SPS BASIC (not to be confused with the RANDOM
command) uses the seed value to produce a new psuedo-random number each
time the function is called. The actual sequence length is about 231
different numbers. (It is not necessary, however, to execute the RANDOM
command in order to use the RND function.)

The RANDOM command can also be used to return the value of the seed.

Each time TEK SPS BASIC is loaded, the seed is initialized to 216+3.
(This corresponds to the first and second variables being set to 1 and 3,
respectively, before RANDOM executes.) The initialization process occurs
only at system software load time, not each time the RANDOM command is
brought into memory. A statement such as:

e 4-165 RANDOM

TEK SPS BASIC V@2 System Software

X=1\Y=3\RANDOM X,Y

resets the seed to its value at system load time.

Using the Syntax Options:

To allocate the seed value, each variable should be set to an integer
value that is greater than or equal to -215 but less than or equal to
215-1. One variable must contain a nonzero value. Should a non-integer
value be used when setting the seed, it will be truncated to an integer.
An out-of-range value is set to the nearest in-range integer.

To return the value of the seed, use the RANDOM command with both
variables set to zero. After the command has executed, the two variables

contain the seed value, the high-order part in the first variable and the
low-order part in the second.

NOTE

The RANDOM command érguments must be simple
numeric variables or singly subscripted array
elements, not constants or expressions.

Uses:

The RANDOM command can be used to start the random number generator
at a predetermined point. This allows a program to produce the same random
numbers each time it is run. This is a very convenient tool for debugging
programs or repeating statistical analyses.

Also, continuous, non-overlapping random sequences can be generated
from separate program runs by using the RANDOM command. This is done by
returning the current seed at the end of each run and then setting the
seed variable to those values prior to the next run.

RANDOM 4-166 e

TEK SPS BASIC V@2 System Software

READ
Examples:
100 READ #A,A(10:3@),C$
150 READ #3,A1,C(3)
Syntax Form:
variable variable
. - array array
1 .] READ !
[line no.] #expression, wave form ’}waveform
string variable string variable
Desecriptive Form:
target variable target variable
. target array target array
[line no.] READ #source plin, target waveform ’)target waveform :
target string variable target string variable

Purpose:

To input data from a peripheral device or a data file filled by the
WRITE command, allowing floating-point, integer, or ASCII values to be
assigned to the specified variables.

Discussion:

Although INPUT and READU also input data to a program, READ is the
most commonly used command to input data stored on a peripheral device.
It reads data files filled by the WRITE command or by the GET command whzn
data-logging (sending data directly to a peripheral from an instrument).
READ brings in the data stored on a peripheral, and assigns values to
variables, arrays, waveforms, and string variables.

The READ command accesses a file or device by its peripheral logical
unit number (PLUN), not by name. Thus, before a file or device can be read,
it must be OPENed FOR READ in order to assign a PLUN to it. If the peripheral
is OPEN FOR WRITE or UPDATE, a fatal error results.

e 4-167 READ

TEK SPS BASIC V@2 System Software

The file or device is read in a sequential manner starting at the
beginning of the file with the first READ statement. Subsequent READs to
the same file continue reading data from where the previous READ ended.
(By using a RESET statement you can begin READing from the first of the
file again without closing and reopening the file.)

The variables listed in the READ statement must match the data types
available to read. For example, if you want to define C$, the next piece
of information in the specified file must be a string. (The maximum length
of a string that can be READ is 388 characters.) Likewise, floating-point
and integer variables specified in the READ statement must match the data
coming from the peripheral. For this reason you need to know the order in
which various data types were output to the peripheral.

Array dimensions, however, need not be consistent. Arrays can be read
either as entire arrays, as a series of smaller subarrays, or as individual
elements. You can read the array as two or more smaller arrays by specifying
in the READ statement two or more arrays of smaller dimension than the
source array. You can read an array as individual elements by specifying
array elements, perhaps with a FOR/NEXT loop. (If you specify a simple
numeric variable, it will be auto-dimensioned as explained later.)

[The READ command can tell the type of data in a file by the data
descriptors that are written into the file along with the data by the WRITE
command (or by GET when data logging). The data descriptors delimit the
data in the file and inform the READ command of the size and type of the
data that is next in the file. These data descriptors are not something a
BASIC user needs to be concerned with unless the file being output is to
be accessed by software other than TEK SPS BASIC. (The TEK SPS BASIC data
descriptors are described in Appendix E.) Because the WRITE command writes
data descriptors on a file and stores numbers as well as ASCII characters,
a file output by WRITE and input by READ is sometimes called a formatted
binary file.]

If the size of the data file is unknown, the EOF statement may be
used to cause program control to transfer to a specified line when the end
of the file is reached.

If a Control-P is typed at the keyboard while a waveform or array is

being input, the entire array (or subarray) is read before program execution
terminates.

READ 4-168 @

TEK SPS BASIC V@2 System Software

Auto-dimensioning:

If a simple numeric variable is specified in the READ statement and
the next piece of data to be read is an array or the remainder of a partially
read array, the simple numeric variable is auto-dimensioned to the size
of the array (or the remainder of the array). Auto-dimensioning may cause
auto-loaded, nonresident commands to be released if room is needed for the
array.

Using the Syntax Options:

The expression following the pound sign (#) is the peripheral logical
unit number (PLUN) from which the data is read. The expression, when
evaluated and rounded to an integer, must be between 1 and n, where n is
the number of PLUNs allowed at initialization time (default of six). The
terminal keyboard, PLUN zero, may not be specified.

The list of variables to be assigned values by the READ statement may
include integer or floating-point variables, integer or floating-point
arrays, waveforms, and string variables. String arrays are not allowed.

The type of the variable must match the type of the next value in the file.

Application Example:

READ is often used to retrieve waveforms or arrays stored in a disk
file. For example, the following routine reads in an unknown number of
waveforms from a file.

100 WAVEFORM WA IS A(511),DS,H$,V$

110 OPEN #1 AS DX1:"DATA.FIL" FOR READ
12¢0 EOF #1 GOTO 84¢

130 READ #1,WA

140 REM

15@ REM ROUTINE TO PROCESS EACH

16@0 REM WAVEFORM GOES HERE

170 REM

.

79¢ GOTO 130
800 CLOSE #1
810 RETURN

e 4-169 READ

TEK SPS BASIC V@2 System Software

The desired file is assigned PLUN 1 by an OPEN statement (line 11@).
Then from a loop (lines 130 to 79@), each waveform is individually read
in and processed before the next is read. When the file is empty, the EOF
statement (line 120) transfers program control out of the loop to where
the file is CLOSEd (line 8@@) before the routine terminates.

READ 4-170

TEK SPS BASIC V@2 System Software
READU (Nonresident)

Examples:

15¢ READU #1,A,B

160 READU #N,C,DA,D$=SF,B
170 READU #2<9>,A,A$=10

180 READU #J<K>,X,Y,Z,T$=L,A

Syntax Form:

variable
array
string variable = expression

[line no.] READU #expression[<expression>],

I

variable
array
string variable = expression

Descriptive Form:
[line no.] READU #source plun [<record number>],

target array

,target variable
target string variable = number of characters in string

target variable
target array

I

target string variable = number of characters in string

Purpose:

To read DEC RT-11 FORTRAN-compatible data files (files written without
TEK SPS BASIC data descriptors) and record I/0 files (TEK SPS BASIC
random-access files).

e 4-171 READU

Discussion:

TEK SPS BASIC V@2 System Software

Data files that have been created by a DEC RT-11 FORTRAN program or
by the WRITEU command can be read with this command. The variable names
specified in the READU command determine how much information is transferred
from the file to the program. Waveforms may not be specified in this
command. READU inputs the data in as many bytes (eight bits per byte) as
the data type of the variables requires. The following table describes the
amount of data transferred for the four possible variable types:

Floating-point variable
Floating-point array

Integer array
String variable

The following example demonstrates
to input various data types.

19@ INTEGER I(2)
11¢ DIM A(2)

50@ OPEN #N AS F$ FOR READ
510 READU #N,A,C$=10,I,X

The data will be input as follows:

A(@)
A(1)
A(2)
C$
(@)
I(1)
I(2)
X

Altogether, the READU command

READU

gets
gets
gets
gets
gets
gets
gets
gets

first 4 bytes
next U4 bytes
next 4 bytes

4 bytes

4 bytes per element

2 bytes per element
number of bytes specified
by expression following
equal sign (=).

how the READU command can be used

next 10 bytes (string of length 10)

next 2 bytes
next 2 bytes
next 2 bytes
next 4 bytes

B-172

in line 510 reads in 32 bytes of data.

TEK SPS BASIC V@2 System Software

[The files read by the READU command contain neither the TEK SPS BASIC
data descriptors nor delimiters between data items. Thus, READU cannot
tell the type or size of the data it is to read. For this reason, the files
input by READU are sometimes called unformatted binary files.] Because
BASIC has no means of determining the type of data in the file, it is your
responsibility to read in the data in the same order as it was written.
It is possible, for example, to inadvertently read a string into a
floating-point array.

With the regular form of READU, the data is read sequentially, starting
at the beginning of a file with the first READU statement. Subsequent
inputs from the same file continue reading where the previous READU ended.

When the record I/0 (input/output) form of READU is indicated -- by
the presence of the angle brackets (<>) -- the mode of access is random.
Any data record in the file may be read in any order. The record I/0 form
of READU determines where in the file the data is read from by multiplying
the given record number by the data record length. The length of the data
record is computed by summing the byte count of the variables in the input
list of the READU statement. (The byte count used for each type is discussed
above.) For example, if A is an array of 25 elements, the statement:

READU #N<T7>,A$=10,A

reads in a data record 110 bytes long starting with the 77@th byte of data
in the file assigned PLUN #N. READU calculates this by first computing the
byte count for the given variables (25*4+1¢) and then multiplying this
result of 110 by 7, the given record number.

The data record length is calculated each time a record I/0 form of
READU is executed. So when using record I/0, you must input or output an
entire data record with each READU or WRITEU statement, even if you want
to access only a part of a record.

The READU command accesses a file by its peripheral logical unit
number (PLUN), not by file name. Before executing READU, the file must be
OPEN FOR READ or UPDATE depending on which form of READU is used. When the
regular (sequential-access) form of READU is used, the file must be OPEN
FOR READ. To use the record I/0 (random-access) form of READU, the device
must be directory-structured and the file must be OPEN FOR UPDATE.

e 4-173 READU

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

The expression following the pound sign (#) is the peripheral logical
unit number (PLUN) from which the data is read. The expression, when
evaluated and rounded to an integer, must be between 1 and n, where n is
the number of PLUNs allowed at initialization time (default of six). The
terminal keyboard, PLUN zero, may not be specified.

The optional expression in angle brackets (<>) specifies the record
I/0 form of READU. The expression, when evaluated and rounded to an integer,
is used as the number of the data record to be read. The records are
numbered from zero. When the angle brackets and expression are omitted,
the regular form of READU is assumed.

The list of variables to be assigned values may include floating-point
variables, floating-point or integer arrays, and string variables. String
arrays are not allowed. A string variable must be followed by an equal
sign (=) and an expression indicating the number of characters (bytes) to
assign that string variable.

Application Example:

To illustrate how useful record I/0 is, consider this binary search
routine. Here we assume that there are two data files: a name file and an
information file. In the name file each record consists of only the name
(2¢ bytes long) and a pointer -- the record number of the record in the
information file where the rest of the data about that person is kept. The
first record (record zero) of the name file has a blank name field and
contains the number of names in the file in the pointer field. In the
information file each record is 100 bytes long. The first 4@ bytes is the
person's street address stored as two ASCII strings, 20 characters (20
bytes) each.

To get the data stored in the information file for a given person,
the name file is searched for the desired name. Then the number stored
with the name is used to access the record in the information file where
the rest of the data is stored. Using the record I/0 form of READU allows
random access of the records in both files.

The name file is kept in alphabetical order. Being small, compared
with the information file, it is much faster to sort and much easier to

READU b-174 e

TEK SPS BASIC V@2 System Software

keep in alphabetical order as names are added to or deleted from the file.
By having the file in alphabetical order and by using record 1I/0, a binary
search can be used to find the desired name. [The binary search keeps
dividing the search area in half as it zeros in on the name it is looking
for. So, compared to the number of names in the file, it needs few tries
to find the desired name. In fact, a binary search of a record I/0 file
requires at most p reads of the file where p is the nearest power of 2
greater than or equal to the number of records in the file (i.e., 2P = >
number of records). So, a binary search needs no more than p tries to find
a match.] Depending on the size of the file, a binary search can be
considerably faster than a serial search.

The example below is a subroutine that prints a part of a data record
from the information file -- the street address. It asks for the desired
name (line 53@) and then calls the binary search routine to find the record
number where the data is stored, R, (line 58@). If the name is not in the
file, the search routine returns a negative record number. The address
subroutine, after checking to be sure a match was found (line 610), reads
the entire record pointed to (line 650). It then prints the address which
is stored in the first 4@ bytes of the record (lines 67@ and 680).

50@ REM SUBROUTINE TO FIND ADDRESS

510 REM

520 REM GET SEARCH NAME

53¢ PRINT "WHOSE ADDRESS DO YOU WANT";
540 INPUT S$

550 REM SEARCH NAME FILE FOR NAME

560 REM GET RECORD NUMBER OF DATA

570 REM IN INFORMATION FILE

58¢ GOSUB 1000

590 REM IF RECORD NUMBER NEGATIVE, EXIT
600 REM NAME WAS NOT IN FILE

610 IF R<@ THEN RETURN

620 REM OPEN INFORMATION FILE FOR UPDATE
630 OPEN #2 AS DX1:"INFO.FIL" FOR UPDATE
640 REM READ IN RECORD POINTED TO

650 READU #2<R>,F$=100

660 REM PRINT ADDRESS FROM RECORD

670 PRINT SEG(F$,1,20)

680 PRINT SEG(F$,21,40)

69¢ REM CLOSE FILE, RETURN

700 CLOSE #2

e 4-175 READU

TEK SPS BASIC V@2 System Software

710 RETURN

720 REM

730 REM BINARY SEARCH OF NAME FILE

740 REM

750 REM OPEN NAME FILE FOR UPDATE

1000 OPEN #1 AS DX1:"NAME.FIL" FOR UPDATE

1610 REM READ FIRST RECORD FOR NUMBER OF NAMES
1020 READU #1<@>,NA$=20,N

1030 REM INITIALIZE LOWER,UPPER BOUNDARIES

1040 L=1

105¢ U=N

1060 REM IF UPPER < LOWER, EXIT (NO MATCH)

1070 IF UKL THEN 128¢

1080 REM FIND THE APPROXIMATE MIDDLE RECORD
199@ REM IN SEARCH INTERVAL

1100 M=ITP((L+U)/2)

1110 REM READ MIDDLE RECORD

112¢0 READU #1<M>,NA$=20,R

1130 REM IF MATCH, EXIT SEARCH SUBROUTINE

1140 IF S$=TRM(NA$) THEN 1310

1150 REM IF SEARCH NAME < NAME IN MIDDLE RECORD
1160 REM LOOK IN TOP HALF OF SEARCH INTERVAL
117¢ IF S$<NA$ THEN 1240

118¢ REM IF SEARCH NAME > NAME IN MIDDLE RECORD
1190 REM LOOK IN BOTTOM HALF OF SEARCH INTERVAL
120@ REM ADJUST LOWER BOUNDARY UPWARD TO MIDDLE +1
1210 L=M+1

122¢0 GOTO 1970

1230 REM ADJUST UPPER BOUNDARY DOWNWARD TO MIDDLE -1
1240 U=M-1

125@¢ GOTO 1@7@

1260 REM IF NO MATCH PRINT MESSAGE

127@ REM AND RETURN NEGATIVE RECORD NUMBER

128¢ PRINT "NAME NOT FOUND IN FILE"

1290 R=-1

1360 REM CLOSE FILE AND RETURN

1310 CLOSE #1

1320 RETURN

Before the binary search can start, the routine needs to know how
many names are in the file. Reading the number in the pointer field of the
first record (record zero) gives the number of names, N (line 102@). The

READU 4-176 e

TEK SPS BASIC V@2 System Software

binary search of the names is done by looking at the approximate middle
record, M, of the search interval. If a match is found, you're done. But
if not, the search interval is cut in half and the middle record of the
new interval (line 1100@) is examined for a match. The search continues
until a match is found (line 114@) or the search interval becomes less
than one (line 1074@).

The first search interval is the entire file so the lower boundary,
L, is set to 1 and the upper boundary, U, to N. As the search zeros in on
the name, the interval is made smaller and smaller. Depending on whether
the search name is less than or greater than the name in the currently
examined record, the new search interval is the top or bottom half of the
old search interval. This means, either the upper boundary is decreased
to 1 less than the midpoint (line 124@), or the lower boundary is increased
to 1 more than the midpoint (line 1214).

e 4-177 READU

TEK SPS BASIC V@2 System Software

RELEASE

Examples:

60@ RELEASE ALL

605 RELEASE "FFT","WAIT","CT"
620 RELEASE T$(J),B$

63¢ RELEASE AUTO

Syntax Form:

string expression string expression
[line no.] RELEASE {)AUTO "\Auto T

ALL

Descriptive Form:

driver or command name driver or command name
[line no.] RELEASE all AUTO-loaded commands ’Y all AUTO-loaded commands
ALL drivers and nonresident commands in memory

Purpose:

To remove peripheral and instrument drivers and nonresident commands
from memory.

Discussion:

Modules that have been loaded with the LOAD command, as well as
auto-loaded nonresident commands, are released from memory with this
command. If a module was loaded with the LOAD command, the RELEASE command
is the only way to remove it from memory. (Auto-loaded nonresident commands
are released automatically when room is needed for arrays, program text,
another nonresident command, or a driver.)

RELEASE 4-178 e

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

The string expression must evaluate to the file name of the command
or driver being RELEASEd. An extension need not be specified but if it is,
it must be .SPS. (The .SPS extension is reserved for nonresident command
and driver file names.)

If the keyword AUTO is used, all auto-loaded nonresident commands are
deleted.

If the keyword ALL is used, all nonresident commands and drivers

(except the system device driver, the keyboard driver, and any drivers of
ATTACHed instrument or OPENed peripherals) are deleted from memory.

e 4-179 RELEASE

TEK SPS BASIC V@2 System Software

REM

Examples:

100 REM THIS STATEMENT CAN BE USED
192 REM TO INSERT COMMENTS IN YOUR PROGRAMS

Syntax Form:

[line no.] REM text

Purpose:

To allow insertion of comments in the body of a program.

Discussion:

No action is taken when a REM statement is encountered in a program.
Its purpose is solely to allow textual remarks to be included in a program
for documentation.

No commands may follow the REM statement on a line. This is because
the statement delimiter (\) is considered to be part of the remark. Execution
continues with the next program line.

It should be noted that some processing time (though minimal) is spent
in recognizing and jumping past the REM statement. For maximum efficiency,
REM statements should not be put inside loops in your program.

Also, although it is permitted in BASIC, program control should not

be transferred to a REM statement. That is, a REM statement should not be
the designated statement in a GOTO, GOSUB, IF, EOF, ONERR, SCHEDULE, WHEN,
or other such command. The reason is that you may want to reduce the size
of the program by removing the REM statements with the CHANGE command prior
to execution. (See the CHANGE command for a discussion on how to do this.)
If you have transferred control to a REM statement, you can't later remove
it without rewriting part of your program.

REM 4-180 e

TEK SPS BASIC V@2 System Software

RENAME (Nonresident)

Examples:
50 RENAME "THIS" TO "THAT"

60 RENAME DX1: "BASICF.DAT" TO "NEW.FIL"

Syntax Form:

[line no.] RENAME [device name[constant]z]string expression TO string expression

Descriptive Form:

[line no.] RENAME [device name[drive number]:J]old file name TO new file name

Purpose:

To change the name of a file on a directory-structured device.

Discussion:

The first file name specified is the old name. This name must currently
exist in the directory of the specified device. The second file name is
the new name. This is the name that the file will have after execution of
the command. If a file already exists on the specified device with the new
file name, an error is issued.

Using the Syntax Options:

The device must be directory-structured. If no device is specified,
the system device is assumed. If the specified device does not use the
system device driver, its driver must be LOADed into memory before RENAME
executes. If the drive number is omitted, zero is assumed.

The first string expression is the file name being changed. The string

expression following the keyword TO is the file name it will have after
the RENAME command executes.

e 4-181 RENAME

TEK SPS BASIC V@2 System Software

RENUM (Nonresident)

Examples:

50 RENUM
60 RENUM STEP 5
RENUM 100,20¢ TO 300¢ STEP 5
RENUM 100 ,30@ STEP 20
RENUM 100,200
RENUM 5@@ STEP 20

Syntax Form:

[line no.] RENUM [expression[,expression]] [TO expression] [STEP expression]

Descriptive Form:

[line no.] RENUM [line number[starting,line number ending]]
[TO new line number starting] [STEP increment]

Purpose:

To renumber BASIC program line numbers in memory.

Discussion:

This command renumbers all or part of your program. It does not allow
you to overlay any existing line numbers, or to rearrange the flow of your
program lines. All GOSUB and GOTO statements in memory are updated to point
to the new line numbers, even those outside the range of lines being
renumbered. This includes statements with an implied GOTO or GOSUB such
as WHEN, SCHEDULE, and some UNSCHEDULE, EOF, IF, and ONERR statements.

RENUM 4-182 e

TEK SPS BASIC V@2 System Software

NOTE

RENUM updates explicit line numbers, not
expressions used as line numbers. Thus,
RENUM does not alter the optional line
number expressions in CHAIN, CHANGE, LIST,
OVLSAV, REPLACE, RENUM, or SAVE,

Using the Syntax Options:

All expressions in the command are truncated to integers between 1
to 32767.

The first and second optional arguments delimit the part of a program
to RENUMber. The first expression is the o0ld starting line number -- where
renumbering begins. The second is the o0ld ending line number -- where
renumbering ends. All lines between and including these lines are renumbered.
When the second expression is omitted, renumbering continues to the end
of the program. Omitting both of the first two expressions renumbers the
entire program.

The expression following the keyword TO defines the new starting line
number. When this is omitted, what is used as the new starting line number
depends on what else is specified or not specified. If an old starting
line number is present, it remains as the new starting line number.
Otherwise, the step size (default ten) is used as the new starting line
number.

The expression following the keyword STEP specifies the step (increment)
size between renumbered lines. When omitted, the default is ten.
Application Example:

The RENUM command allows you to expand a section of a program by many
lines. For example, to allow room to insert more than nine lines of code

between line 10@ and line 110@, type:

RENUM 11¢ TO 20@

e 4-183 RENUM

TEK SPS BASIC V@2 System Software

This renumbers all lines from the old line 110 onward (at the default step
size of ten) to 200, 21@.... Now you could insert up to 99 new lines between
lines 100 and 200.

The same technique can be used to make an overlay section from lines
1006 to 1999 in a main program. If, for instance, the section of code to
be overlaid is from 515 to 950, you first make room for more lines beyond
line 950 by typing:

RENUM 951 TO 2000
Then, renumber the overlay section with:
RENUM 515,950 TO 1000

Next, SAVE or REPLACE the main program. Finally, OLD in the overlay program
segment and renumber its starting line number to 1000 with:

RENUM TO 1000
Check the overlay program's new ending line number. If its final line

number is larger than 1999, choose a smaller step size than the default
of ten, or make your overlay area in the main program larger.

RENUM 4-184 e

TEK SPS BASIC V@2 System Software
REPLACE (Nonresident)

Examples:
150 REPLACE "PROG2"
REPLACE DK1:"SUB", 1000 ,2000

REPLACE CT:/R,F$
REPLACE DL2:"MAILST" INTO 10

Syntax Form:

F
[line no.] REPLAC [device name[constant]:] [/{R}[,]] string expression

[INTO expression][,expression[,expression]]

Descriptive Form:

[line no.] REPLACE [device name[drive number]:] [/forward or reverse switch[,]]
program file name [INTO number of blocks]
[,1ine number [starting, line number ending]]

Purpose:

To allow the user to update a previously SAVEd program.

Discussion:

The REPLACE command cancels the specified file and then saves all or
part of the program text that is in memory in a program file of the same
name. If the given file does not exist on the device, the program text is
simply saved.

Specifying the one or two optional line numbers allows you to save
only part of the program text in memory. If there is no text in the range
of the line numbers specified (or no text in memory at all) the REPLACE
command takes no action; no file is canceled and nothing is output to the
device. This situation generates no error.

e 4-185 REPLACE

TEK SPS BASIC V@2 System Software

Since the optional line numbers in the REPLACE command are expressions,
they are not altered by the RENUM command.

If a line of text is longer than 8¢ characters, a warning error is
issued. The line in question should be corrected and the file REPLACEd.
The OLD command, used to load programs that have been SAVEd or REPLACEJ,
does not accept lines longer than 88 characters.

If the device is directory-structured, the SQUISH command may be used
to compact into one area any noncontiguous free (unused) blocks that are
created by the REPLACE and CANCEL commands.

[For a serial tape device, if the old file is located, its name is
changed to "¥EMPTY". No change is made to the data in the file. The new
program file is written after the last file on the tape. Since you cannot
SQUISH a serial tape device, no free space is gained on the device.]

For faster execution of segmented programs use the OVLSAV command
instead of REPLACE and then use the OVLOAD command instead of OVERLAY.

Using the Syntax Options:

The named peripheral must be a file-structured device. If no device
is given, the system device is assumed. If the specified device does not
use the system device driver, its driver must be LOADed into memory before
REPLACE executes. If the device is a serial tape device, no files may be
OPEN on it. If the drive number is not specified, zero is assumed.

[The Forward or Reverse switches /F or /R may be included in the
command if the peripheral is a serial tape device. The switch specifies
the direction of the tape movement when searching for a file. If the switch
is omitted, the tape is rewound before a forward search for the file is
made. Searching stops when the file or an end-of-tape is reached. The /F
or /R switch is ignored when the device is not a serial tape device.]

Since the device is file-structured, a file name is required. Carelessly
specifying the wrong file name can REPLACE a file that you do not want to
alter. If no extension is present in the file name, .BAS is assumed.

If the target device is directory-structured (e.g., DK, DL, DY, or

DX), the INTO option can be used. The (rounded) expression following the
keyword INTO stipulates the maximum number of blocks required by the file

REPLACE 4-186 @

TEK SPS BASIC V@2 System Software

being saved. When the INTO option is used, the first sufficient empty space
on the target device is selected for the file. When the INTO option is not
used, one half of the largest empty space on the target device is set aside
for the file. In either case, if the specified or default space exceeds

the actual number of blocks needed for the file, the unused blocks are

returned

to an empty status. (The INTO option is not supported by REPLACE

When storing a program file on a nearly full disk, use the INTO option.

Half the
order to
required

The
numbers.
one line

are used,

When the
saved.

remaining free space may not be large enough for the file. In
use all the available disk space, you will need to specify the
number of blocks rather than use the default.

optional expressions are rounded to integers and used as line
They must evaluate to numbers between 1 and 32767, inclusive. If
number appears, only that line is saved. When two line numbers
all program lines between and including those lines are saved.
line numbers are omitted, all the program lines in memory are

4-187 REPLACE

TEK SPS BASIC V@2 System Software

RESCHEDULE (Nonresident)

Examples:

15¢ RESCHEDULE

290 RESCHEDULE STACK

170 RESCHEDULE WITH 51

340 RESCHEDULE STACK WITH N+5

Syntax Form:

[line no.] RESCHE [STACK] [WITH expression]

Descriptive Form:

[line no.] RESCHEDULE [STACK] [WITH priority levell]

Purpose:

To put either the current job or the routine at the top of the Scheduler
stack back on the Scheduler queue and to allow the Scheduler to select a
new current job.

Discussion:

The RESCHEDULE command alters the contents of the Scheduler, which
is the mechanism in the BASIC operating system that controls the flow of
program execution. (The function and parts of the Scheduler are explained
in Section I.) RESCHEDULE removes either the current job or the routine
at the top of the Scheduler stack and places it back on the Scheduler
queue. RESCHEDULE then performs a RETURN. This means that after the change
is made, the Scheduler chooses a new current job from between the routine
at the top of the stack and the routine at the top of the queue (the highest
priority routine). The top of the stack is the new current job unless the
top of the queue has a higher priority.

RESCHEDULE 4-188 e

TEK SPS BASIC V@2 System Software

When the routine is RESCHEDULEd, its priority can be optionally
changed. This command does not change the task number associated with the
routine.

Using the Syntax Options:

If the optional keyword STACK is used, the routine at the top of the
stack is removed from the stack and placed back in the queue. Then the
currently executing routine (the routine in which the RESCHEDULE command
appears) is terminated. When this keyword is omitted, the currently executing
routine is suspended and placed back in the queue. The line number associated
with this routine is the line number of the command following the RESCHEDULE
command. When this routine resumes (by its packet being popped off the
queue), execution continues with the command following the RESCHEDULE
command.

The optional keyword WITH and its expression specify the priority
assigned the routine being RESCHEDULEd. The expression when rounded to an
integer must be between @ and 126, inclusive, where 126 has highest priority.
If this keyword and expression are omitted, the priority of the routine
is unchanged.

Application Example:

Time slicing is a method of dividing the use of a device among several
applications. The example below shows how to use RESCHEDULE to produce a
form of time slicing in which three tasks of equal priority take turns
executing. A fourth, high priority task oversees the turn taking by
periodically interrupting the currently executing task. Each time it takes
control, this fourth task SCHEDULEs itself to interrupt again and RESCHEDULEs
the interrupted task, allowing the next task to have a turn.

160 REM TASK @

110 REM

12@ LOAD "CLK"

130 CLOSE #1

140 OPEN #1 AS LP: FOR WRITE

150 SCHEDULE WITH 1 AS TASK 1 GOSUB 1000
160 SCHEDULE WITH 1 AS TASK 2 GOSUB 2000
17¢ SCHEDULE WITH 1 AS TASK 3 GOSUB 300¢

e 4-189 RESCHEDULE

TEK SPS BASIC V@2 System Software

18¢ SCHEDULE AFTER .2 WITH 126 AS TASK 4 GOSUB L4000
19@ RETURN

1000 REM

101¢ REM TASK 1

102¢ REM

1030 PRINT #1,"A";

1040 GOTO 1000

2000 REM

2010 REM TASK 2

2020 REM

2030 PRINT #1,"B";

2040 GOTO 20090

3000 REM

3010 REM TASK 3

3020 REM

3930 PRINT #1,"C";

3040 GOTO 3000

4000 REM

4¢1¢ REM TIME SLICING TASK
4020 REM

4¢3¢ SCHEDULE AFTER .2 WITH 126 AS TASK U4 GOSUB Lg@g
5@U@ PRINT #1," ";

505¢ RESCHEDULE STACK

Typing RUN causes line 100 to start executing as task @#. This task
loads the clock driver needed by the SCHEDULE command and OPENs the line
printer for output. It then puts tasks 1,2, and 3 in the Scheduler queue
and task 4 in the clock queue. The RETURN in line 198 signals the end of
task @. Then task 1 is popped off the Scheduler queue and starts executing
the loop at line 100@.

Approximately two tenths (@.2) of a second after task U4 (the time
slicing task) is put in the clock queue, the clock driver transfers task
4 to the Scheduler queue. Its high priority (126) puts it at the front of
the queue. Then, since its priority is higher than task 1's, it interrupts
task 1. Task 1 is pushed onto the Scheduler stack and task 4 becomes the
current job.

As task U4 executes it SCHEDULEs itself for #.2 of a second later by
putting task 4 (itself) back in the clock queue. Then, just before exiting,
it RESCHEDULEs the task it interrupted. That is, it removes task 1 from
the stack and places it back on the Scheduler queue. Since tasks 1, 2, and
3 have the same priority, task 1 is put into the queue behind task 3.

RESCHEDULE 4-190 e

TEK SPS BASIC V@2 System Software

With task 1 removed, only the idle packet (task -1) is left on the
stack. When task 4 completes, task 2 is popped off the Scheduler queue and
starts executing its loop at line 20@@. It continues until its timed turn
is over -- until the @#.2 of a second has elapsed and task 4 is once again
put in the front of the Scheduler queue by the clock driver. Then task 4
interrupts task 2 and does what it did before, except this time it takes
task 2 from the stack and puts it back on the Scheduler queue (behind task
1). After task 4 finishes, task 3 has its turn as the current job, executing
the loop at line 30@@ until task U4 interrupts again to give task 1 a second
turn, and so on.

The following set of diagrams illustrates the action of the Scheduler
while this time-slicing program runs:

A. In idle mode, BASIC patiently waits with
the idle packet (task -1) occupying both the
queue current task and the front of the queue.
task -1
current task —1
job
stack
B. Typing RUN enters task # into the front of
the queue.
queue task -1
task @
current task -1
job
stack

e 4-191 RESCHEDULE

TEK SPS BASIC V@2 System Software

task -1 C. Task @ replaces task -1 which is pushed onto
task 3 the stack. Task @ puts tasks 1,2, and 3 into
queue task 2 the queue and task 4 into the clock queue.
task 1
current
] task @
job
task -1
stack
D. When a RETURN is encountered, task @
task -1 completes and task 1 is popped off the queue.
queue task 3 Task 1 starts executing its loop.
task 2
current task 1
job
task -1
stack
task -1 E. After approximately @#.2 of a second, task 4
task 3 is put in the queue by the clock driver.
queue task 2 Its high priority puts task 4 at the front
task 4 of the queue.
current task 1
job
task -1
stack

RESCHEDULE 4-192 e

TEK SPS BASIC V@2 System Software

F. Because of its higher priority, task 4
task -1 interrupts task 1. Task 1 is pushed onto
queue task 3 the stack.
task 2
?urrent task U
job
task 1
stack task -1
task -1 G. Task U4 puts itself into the clock queue and
task 1 removes task 1 from the stack -- placing it
queue task 3 back on the queue.
task 2
t
eurren task U
job
task -1
stack
H. When task U4 completes, task 2 is popped off
task -1 the queue. Task 2 starts executing its loop.
queue task 1
task 3
?urrent task 2
Jjob
task -1
stack

e 4-193 RESCHEDULE

TEK SPS BASIC V@2 System Software

I. After approximately another @.2 seconds,
task 4 is again put in the queue by the clock
driver.

J. High priority task 4 interrupts the current
task; task 2 is pushed onto the stack.

K. Task 4 puts itself in the clock queue and
removes task 2 from the stack and places it
back in the queue.

task -1

task 1
queue task 3

task U4
current
. task 2
job

task -1
stack

task -1
queue task 1

task 3
?urrent task U
job

task 2
stack task -1

task -1

task 2
queue task 1

task 3
current task U
job

task -1
stack
RESCHEDULE

4-19Y

TEK SPS BASIC V@2 System Software

queue

current
job

stack

task

task
task

L. When task 4 exits, task 3 is popped from the
queue and starts executing its loop.

task

task

queue

current
Jjob

stack

task
task
task
task

M. After approximately @#.2 seconds, high
priority task U4 is entered at the front of the
queue again.

task

task

queue

current
job

stack

task

task
task

N. Task 4 takes over once more; task 3 is
pushed onto the stack.

task

task
task

4-195 RESCHEDULE

TEK SPS BASIC V@2 System Software

task -1 0. Task 4 puts itself in the clock queue again
task 3 and takes task 3 from the stack and puts it
queue task 2 back on the queue. When task Y4 completes,
task 1 the Scheduler looks like diagram D.
current
. task 4
Jjob
task -1
stack

RESCHEDULE 4-196 e

TEK SPS BASIC V@2 System Software

RESET (Nonresident)

Examples:
RESET #3

5@ RESET #J+2

Syntax Form:

[line no.] RESET #expression

Descriptive Form:

[line no.] RESET #plun

Purpose:

To reset a sequential-access file, which is already OPEN for READ,
to the beginning of that file.

Discussion:

The RESET command performs a CLOSE and OPEN for READ on the specified
file. The file may then be read again. The file must be currently OPEN for
READ.

If the peripheral logical unit number (PLUN) specified is associated
with a paper tape reader (PR), RESET has no effect. The tape is not
repositioned to the beginning of the tape, but is left in its current
position.

Using the Command Syntax:
The expression for the PLUN is evaluated and rounded to an integer.

If it evaluates to zero (the keyboard), a warning error is issued and
nothing is done.

e 4-197 RESET

TEK SPS BASIC V@2 System Software
RETURN

Example:

65@ RETURN

Syntax Form:

[line no.] RETURN

Purpose:

To return program control to the statement following a GOSUB command
or to the statement that was about to be executed when an instrument event
occurred.

Discussion:

The RETURN command has a variety of functions. In its simplest use,
the RETURN command signals the end of a subroutine. When the command is
executed, program control goes back to the command immediately following
the GOSUB command that called the subroutine. The simple program below
demonstrates this function. The subroutine starting at line 10060 sums the
two values A and B, and places the result in variable X. The RETURN statement
sends control back to line 120 (the statement following the GOSUB), and
the result is printed at the terminal.

100 INPUT A,B

11¢ GOSUB 10@¢
12¢ PRINT X

1000 X = A+B
181¢ RETURN

RETURN also serves as the end of an interrupt routine. When an event
occurs, control goes to the line number specified in the associated WHEN

RETURN 4-198 e

TEK SPS BASIC V@2 System Software

or SCHEDULE command. This transfer occurs (depending on the system priority)
after completion of the command that is currently executing (or immediately
if BASIC is in the idle mode). When the interrubt program is complete, the
RETURN command sends program control back to the line that would have been
executed next had the interrupt not occurred. If BASIC was in idle mode
when the interrupt occurred, the RETURN puts BASIC back into the idle mode.

RETURN should be used in place of END or STOP when more than one task
is executing or interrupts are allowed. Both END and STOP clear the Scheduler
stack and queue, clear the clock queue, and cancel the action of any WHEN
statements. RETURN leaves these structures intact to execute any remaining
tasks and process pending interrupts.

[This command functions by returning control to the Scheduler with
an indication that the current job is completed. The Scheduler then selects
the new current job as described in Section 1.]

If the Scheduler stack and queue are empty when RETURN executes,

READY
&

is printed on the terminal to indicate that the system is in idle mode.

e 4-199 RETURN

TEK SPS BASIC V@2 System Software

REWIND (Nonresident)

Examples:

REWIND MT:
170 REWIND CT1:

Syntax Form:

[1line no.] REWIND device name[constant]s

Descriptive Form:

[line no.] REWIND device name[drive number]s:

Purpose:

To rewind a serial-tape device.

Discussion:

If the specified device is not capable of being rewound (such as a
disk), the command is ignored.

Using the Syntax Options:
Since a tape device cannot be the system device, there is no default

device. The device driver must be LOADed into memory before execution of
the REWIND command. If the drive number is omitted, zero is assumed.

REWIND 4-200 e

TEK SPS BASIC V@2 System Software

RUN

Examples:

RUN
RUN AS TASK N

Syntax Form:

RUN [AS TASK expression]

Descriptive Form:

RUN [AS TASK task number]

Purpose:

To start the execution of the program in memory at the lowest numbered
line.

Discussion:

The RUN command transfers control to the program line in memory with
the smallest line number. It automatically sets the program priority level
to the default value of 50@. It also assigns a task number, either the
optionally specified number or the default value of zero.

[Several other commands can be used to start a program executing. For
instance, an OLD or a CHAIN command that designates a starting line number
not only loads a program but also begins execution of it. When the OLD or
CHAIN is a part of a program, the new program is assigned the same task
number as the old program of which the OLD or CHAIN is a part. If the OLD
or CHAIN is entered in immediate mode (has the immediate mode task number
of 127), the task number of the program is reset to zero, the default task
number of the RUN command.]

e 4-201 RUN

TEK SPS BASIC V@2 System Software

[It is desirable that programs not run as task 127 because task 127
cannot be ABORTed under program control. Only a Control-P, an immediate
mode ABORT with no task number specified, or a fatal error in task 127
will halt it. That is why the system will not assign task 127 to programs
started under the RUN, OLD, or CHAIN commands.]

[An immediate mode GOTO can also be used to start a program, but it
does not give this protection. The program runs as task 127. In a debugging
situation, this may be acceptable, since normal termination may not be
expected and a Control-P is often used to halt a program being debugged.
However, because of the task number assignment mechanism, an immediate
mode GOTO statement specifying the lowest numbered program line in memory
is not the same as the RUN command.]

Using the Syntax Option:

RUN must be executed in the immediate mode. It cannot be preceded by
a line number.

The expression following the optional keywords AS TASK is rounded to
an integer and used as the task number. It must evaluate to an integer
between @ and 126, inclusive. When the keywords and expression are omitted,
a task number of zero is assumed.

RUN 4-202 e

TEK SPS BASIC V@2 System Software

SAVE (Nonresident)

Examples:
SAVE "TEST.BAS"
SAVE DK2:"SIGNAL"
130 SAVE CT:NM$,50,500

150 SAVE "ONE.LIN",100
SAVE DL2:"MAILST" INTO 9

Syntax Form:

[line no.] SAVE [device name[constant]:][string expression] [INTO expression]
[,expression[,expression]]

Descriptive Form:

[line no.] SAVE [device name[drive number]:] [program file name]
[INTO number of blocks] [,line number [starting, line number ending]]

Purpose:

To save lines of program text on a peripheral device.

Discussion:

SAVE allows you to save all or part of the program that is in memory
on a peripheral storage device.

Specifying the one or two optional line numbers allows you to SAVE
only part of the program text that is in memory. If there is no text in
the range of the line numbers specified (or no text in memory at all), a
file is not created, and nothing is output to the device.

Since the optional line numbers in the SAVE command are expressions,
they are not altered by the RENUM command.

e 4-203 SAVE

TEK SPS BASIC V@2 System Software

If a line of text to be SAVEd is longer than 8@ characters, a warning
error is issued. The line in question should be corrected and the file
REPLACEd. The OLD statement, used to load programs that have been SAVEd,
does not accept lines longer than 80 characters.

For faster execution of segmented programs, use the OVLSAV command
instead of SAVE and then use the OVLOAD command instead of OVERLAY.

Using the Syntax Options:

If no device is given, the system device is assumed. If the named
device does not use the system device driver, its driver must be LOADed
into memory before SAVE executes. (The keyboard, KB, may not be specified.)
When the device is a serial tape device, no files may be OPEN on it. If
the drive number is not specified, zero is assumed.

A file name is required for a file-structured device. (Non-file-structured
devices are permitted to allow you to output a program to a paper-tape
punch, PP). If no extension is present in the file name, .BAS is assumed.

If the target device is directory-structured (e.g., DK, DL, or DX)
the INTO option can be used. The (rounded) expression following the keyword
INTO stipulates the maximum number of blocks required by the file. When
the INTO option is used, the first sufficient empty space on the target
device is selected for the file. When the INTO option is not used; one
half of the largest empty space on the target device is set aside for the
file. In either case if the specified or default space exceeds the actual
number of blocks needed for the file, the unused blocks are returned to
an empty status. (The INTO option is not supported by SAVE V@2-01.)

When storing a program file on a nearly full disk, use the INTO option.
Half the remaining free space may not be large enough for the file. In
order to use all the available disk space, you will need to specify the
required number of blocks rather than use the default.

The optional expressions are rounded to integers and used as line
numbers. They must evaluate to numbers between 1 and 32767, inclusive. If
one line number appears, only that line is SAVEd. When two line numbers
are used, all program lines between and including those lines are SAVEd.
When the line numbers are omitted, all the program lines in memory are
SAVEd.

SAVE 4-204 e

TEK SPS BASIC V@2 System Software
SCHEDULE (Nonresident)

Examples:

55@¢ SCHEDULE GOSUB 90@

150 SCHEDULE AFTER 360@ GOSUB 1000

T@@ SCHEDULE AT "9:10:0@" GOSUB 1000

160 SCHEDULE AFTER .333 WITH 53 AS TASK 10 GOSUB 500
7@ SCHEDULE AT "18:3@:45" WITH 5 GOSUB 330

Syntax Form:

AFTER expression

[line no.] SCHEDU [][WITH expression][AS TASK expression]

AT string expression

GOSUB 1ine number

Descriptive Form:

AFTER number of seconds

[line no.] SCHEDULE [][WITH priority level][AS TASK task number]

AT time specification

GOSUB line number

Purpose:
To schedule a subroutine for execution after a specified amount of
time has elapsed or at a specified time.
Discussion:
SCHEDULE gives BASIC the ability to perform subroutines at predetermined
times, depending on the priority of the system. The time can optionally

be specified as either a time interval to wait before scheduling a subroutine
or a specific time at which to schedule a subroutine.

e 4-205 SCHEDULE

TEK SPS BASIC V@2 System Software

[When the SCHEDULE command executes, it places the information given
about the subroutine in the clock queue. After the specified time has
elapsed or at the specified time of day, the clock driver removes the
information from the clock queue and enters the subroutine in the Scheduler
queue. The task starts executing according to the rules for the Scheduler
as explained in Section 1.]

This means that the transfer to the subroutine does not take place
until two conditions are met: 1) the specified time elapses or the specified
time of day (according to the system time) is reached, and 2) the priority
of the system is less than the priority assigned to the scheduled subroutine.
(If no priority is specified, a default priority of 51 is assigned. Note
that this is one greater than the default program priority of 5@.) When
these conditions are met, program control passes to the subroutine. The
system assumes the priority level of the subroutine until a RETURN is
encountered, terminating the subroutine (or until it is interrupted by a
higher priority routine). Then control returns to the command that was
about to be executed when the transfer occurred and the priority of the
system reverts to the level of the system prior to the transfer.

The timing is not exact. If a command is executing when the subroutine
is scheduled, the command finishes executing before the priority comparison
is made. If the currently executing command is a complex input/output
statement or a complex math operation, it may be several seconds before
even a high priority subroutine can take control.

Up to 24 routines can be scheduled at a time. If equal priority
routines are ready for execution at the same time, the first routine
scheduled is executed first.

The clock driver "CLK.SPS"™ must be in memory before the SCHEDULE
command executes. If the system has no line frequency clock, executing
SCHEDULE causes an error.

Once a routine has been entered in the clock queue, it can be removed
from the clock queue by the UNSCHEDULE command. This means that the action
of a SCHEDULE statement can be canceled by UNSCHEDULE if the specified
time has not elapsed. END, STOP, and Control-P not only clear the clock
queue but also clear the Scheduler as well, so all pending tasks and
interrupts are cancelled.

SCHEDULE 4-206 e

TEK SPS BASIC V@2 System Software

NOTE

The SCHEDULE command cannot be used with the
PDP 11/03 or the CP4165 standard line time
clock. This command assumes a DEC KW11-L (or
equivalent) line frequency clock.

Using the Syntax Options:

You can specify the time interval to wait either as a relative number
of seconds from the time SCHEDULE executes or as an absolute time of day.
When neither time specification is given, the subroutine is scheduled
immediately.

An expression following the keyword AFTER specifies the time interval
(in seconds) the clock driver is to wait before scheduling the subroutine.
For example:

3600 is one hour
60 is one minute
.333 1is about 1/3 of a second
The best resolution using the AFTER form is 1/60 of a second.

A string expression following the keyword AT specifies the time of
day at which the clock driver is to schedule the subroutine. The string
expression must evaluate to a string of the form:

"HH:MM:SS"

where:

HH is the hour. It can be one or two digits representing
an integer between @ and 23, inclusive.

MM is the minute. It can be one or two digits representing
an integer between @ and 59, inclusive.

SS is the second. It can be one or two digits representing
an integer between 0 and 59, inclusive.

The best resolution using the AT form is 1 second.

e 4-207 SCHEDULE

TEK SPS BASIC V@2 System Software

When this form is used, the time-of-day specification is compared to
the system time, and the difference between the two times is used to
determine when to schedule the subroutine. For this reason, the system
time should be set by the SETTIME command before SCHEDULE is executed. If
the time of day specified is earlier (less) than the system time, the
subroutine is scheduled immediately.

The optional keyword WITH and its expression specify the execution
priority to be assigned to the subroutine. The expression is evaluated and
rounded to an integer. It must be between @ and 126, inclusive, where 126
has highest priority. If this is omitted, a priority of 51 is used (one
higher than the default system priority of 50).

The expression following the optional keywords AS TASK specifies the
task number of the subroutine. This expression, when evaluated and rounded
to an integer, must be between @ and 126, inclusive. When this task
specification is omitted, the task number used is the number of the currently
executing task. However, when the AS TASK and task number are omitted from
an immediate mode SCHEDULE statement, the subroutine is scheduled as task
number @.

The line number following the keyword GOSUB indicates the starting
line number of the subroutine.

Application Example:

The following example program demonstrates how the SCHEDULE command
can be used to sample a waveform from an instrument every 3@ seconds and
write that waveform to a peripheral storage device.

10 REM -- LOAD CLOCK DRIVER

20 LOAD "CLK.SPpS"

30 REM -- SCHEDULE THE SUBROUTINE

4y REM -- ASSUME PERIPHERAL DRIVER AND INSTRUMENT DRIVER ARE ALREADY
50 REM -- IN MEMORY, AND THE INSTRUMENT IS ATTACHED AS ILUN #2

60 REM -- FILE ON PERIPHERAL IS OPENED AS PLUN #1

7@ SCHEDULE AFTER 3@ GOSUB 2000

80 REM -- SOME OTHER PROGRAM COULD GO HERE

SCHEDULE 4-208 e

TEK SPS BASIC V@2 System Software

1090 REM -- THIS ROUTINE IS ENTERED EVERY 3@ SECONDS
2000 GET #1 FROM #2

2010 REM -- SCHEDULE THE ROUTINE AGAIN

2020 SCHEDULE AFTER 30 GOSUB 2000

2030 REM -- RETURN TO THE MAIN PROGRAM

2040 RETURN

4-209 SCHEDULE

TEK SPS BASIC V@2 System Software
SETDATE (Nonresident)

Examples:
SETDATE "16-NOV-98"
100 SETDATE A$

25@ SETDATE A$&B$(10)
SETDATE DT

Syntax Form:

array expression
[line no.] SETDAT { y exp }

string expression

Descriptive Form:

[line no.) SETDATE date specification

Purpose:

To set the system date.

Discussion:

The SETDATE command allows the user to specify the date to the BASIC
monitor. Once the date has been set, it can be returned by the DATE command.
Also, any files SAVEd, REPLACEd, OPENed FOR WRITE, or DEFINEd on a
directory-structured device will have that date. If the system date is not
set, the date is null.

If the system software is reloaded, the date is cleared.

Using the Command Syntax:
The system date may be set by either an array expression or a string

expression. (SETDATE V@2-01 does not allow the array expression argument.)
The specified date must be a valid date.

SETDATE 4-210 e

TEK SPS BASIC V@2 System Software

When the date is specified by an array expression, it must result in
exactly three elements. The value of each element is rounded to an integer
and used in this order:

first element is the month. It must be between
1 and 12, inclusive.

second element is the day of the month. It must be
between 1 and 31, inclusive,
and it must be a valid day for the month
specified.

third element is the year. It must be between
76 and 99, inclusive.

When the date is specified by a string expression, it must evaluate
to a string of the form:

"DD-MMM-YY"
where:
DD is the day of the month. It must be one or two
digits representing an integer between 1 and 31,

inclusive, and it must be a valid day for the
specified month.

MMM is the first three characters in the name of
the month.

YY is the year. It must be two digits representing
an integer between 76 and 99, inclusive.

e 4-211 SETDATE

TEK SPS BASIC V@2 System Software
SETTIME (Nonresident)

Examples:

SETTIME "9:33:3¢"
100 SETTIME A$

SETTIME

SETTIME TM

Syntax Form:

[line no.] SETTIM [%rray expression]

string expression

Descriptive Form:

[line no.] SETTIME [time specification]

Purpose:

To set the system time.

Discussion:

The SETTIME command allows the user to specify the time of day to the
BASIC monitor. The system must have a line frequency clock (e.g., a DEC
KW11-L line frequency clock or an equivalent) before SETTIME can set the
system time. If the system has a line frequency clock but the time of day
has not been set, the system time reflects the elapsed time since the
system software was loaded.

The system time can be returned by the TIME command. In addition, the
form of the SCHEDULE command that has the AT time-of-day specification
uses the system time to calculate the time interval to wait before initiating
a subroutine's execution by entering the subroutine into the Scheduler
queue. When using this form of SCHEDULE, the SETTIME command should be
executed prior to the SCHEDULE command. (The function and parts of the
Scheduler are explained in Section 1.)

SETTIME 4-212 e

TEK SPS BASIC V@2 System Software

SETTIME can also be used to turn off the line frequency clock by
executing the command with no arguments. This allows the user to eliminate
the time-keeping routine during time-critical data processing. After the
clock is turned off, the system time remains unchanged until another SETTIME
command resets the time and turns the clock back on.

The system time is not automatically changed from 23:59:59 to @:0:0.
Instead, the time continues to increment. You should reset the time after
midnight.

If the system has no line frequency clock, executing SETTIME causes
an error.

Using the Syntax Options:

Specifying the optional array expression or string expression sets
the system time and turns on the line frequency clock if it has been turned
off. It must be a valid time. (SETTIME V@2-01 does not allow the array
expression argument.)

When the time is specified by an array expression, it must result in
exactly three elements. The value of each element is rounded to an integer

and used in this order:

first element is the hour. It must be between
0 and 23, inclusive.

second element is the minutes. It must be between
0 and 59, inclusive.

third element is the hour. It must be between
0 and 59, inclusive.

When the time is specified by a string expression, it should evaluate
to a string of the general form:

"HH:MM:SS"

e 4-213 SETTIME

TEK SPS BASIC V@2 System Software

where:
HH is the hour. It can be one or two digits
representing an integer between @ and
23, inclusive.
MM is the minute. It can be one or two digits
representing an integer between @ and
59, inclusive.
SS is the second. It can be one or two digits
representing an integer between @ and
59, inclusive.
Other acceptable forms are "HH", "HH:", "HH:MM", and "HH:MM:"

Omitting the string expression turns off the line frequency clock.

SETTIME §-214 e

TEK SPS BASIC V@2 System Software
SQUISH (Nonresident)

Examples:
15@¢ SQUISH DL:

160 SQUISH DK: TO DK1:
17¢ SQUISH DX1:,VER

Syntax Form:

VER
[line no.] SQUISH device name[constant]:z[TO device name[constant]:]{

|

string expression

Descriptive Form:

[line no.] SQUISH source device name[drive number]:[TO target device name[drive number]:]
[,bad block VERification switch]

Purpose:

To compress the directory and files on the target device. All free
(unused) blocks are then located in one area, following the files on the
device.

Discussion:

As files are removed from a directory-structured device, empty spaces
are created. These spaces appear as unused blocks when a directory of the
device is displayed. These canceled files cause two problems: space is
still required in the directory to note the location of the unused blocks
and available free storage space is fragmented. The SQUISH command can
delete these "unused" directory entries, compressing the remaining files
into contiguous locations. This results in one larger area of free storage
space, rather than several smaller areas. Any file with an extension of
.BAD is not moved. (The .BAD extension should be reserved for signaling
the location of damaged blocks.)

@ 4-215 SQUISH

TEK SPS BASIC V@2 System Software

If power to the controller is interrupted
while SQUISH is compressing the files

on a device, all data on that device may
be lost.

The command can also be used to transfer copies of all the files from
one device to another device, leaving the source device unchanged. However,
the target device is zeroed and given a new directory with the same number
of segments as the source device, so any data on the target device prior
to the execution of SQUISH is effectively deleted. This makes it unnecessary
to initialize the target device with the ZERO command beforehand.

When SQUISHing the files from one device
to another, any data previously stored on the
target is lost by the SQUISHing operation.

SQUISH with the VER option is used to verify the source device itself
before any files are moved or transferred. If any bad (physically damaged)
blocks are found, the block numbers (in octal) are printed on the terminal.
The SQUISH is not done if any bad blocks are found.

Using the Syntax Options:

The source device must be specified but the keyword TO and the target
device are optional. If the target device is supplied, the source device's
files are transferred to the target device. If the target device is omitted,
the source device is also the target device so its files are moved to
contiguous locations (compressed) on the device. If the target device is
DY, the disk must be in double-density format. (See the FORMAT command.)
This means that an RX02 (or equivalent) disk formatted for single density
can be SQUISHed to a double-density format RX02 disk, but should not be
SQUISHed to itself, using the DY driver. (If a single density disk is
SQUISHed to itself with the DY driver, the data will remain in single
density format; however, the number of free blocks will be set to the
double density value. This disk will still be usable, but errors may result
from the incorrect number of free blocks.)

SQUISH 4-216 e

TEK SPS BASIC V@2 System Software

The device(s) must be directory-structured. If either device does not
use the system device driver its driver must be LOADed before SQUISH
executes. When a driver number is omitted, zero is assumed.

If the optional keyword VER (or a string expression evaluating to
"VER") is used, the source device is checked for bad blocks.

NOTE
The DL and DY drivers are not
available in TEK SPS BASIC V@2-@1.
Uses:

SQUISHing one disk to another disk is a convenient way of making a
back-up copy of your software. (See Appendix B for details.)

e 4217 SQUISH

TEK SPS BASIC V@2 System Software
STATUS (Nonresident)

Examples:

STATUS

STATUS LP:
250 STATUS DK1:"STAT.FIL"
479 STATUS SCHED

Syntax Form:

device namelconstant]:[string expression][,SCHED]
SCHED

[line no.] STATUS [string expression[, SCHED]

Descriptive Form:

device name[drive number]:[target file name][,SCHEDuler information flag]
[line no.] STATUS | target file name[,SCHEDuler information flag]
SCHEDuler information flag

Purpose:

To print the status of the system on the specified device or file.

Discussion:

STATUS outputs either general information about the system or the
contents of the Scheduler. In either case, the output can be displayed on

the terminal, printed on a device such as a line printer, or sent to an
ASCII format file.

If a target file is named, that file must not already exist on the
device. (The STATUS command opens, fills, and then closes the file.) The
information in the file can later be output to a device such as a line
printer or keyboard terminal with the COPY command.

STATUS 4-218 e

TEK SPS BASIC V@2 System Software

When the keyword SCHED is omitted, the information that is provided
includes:

1. The number of words of free memory. For extended memory (XM)
systems, the number of words of free array-storage memory is also displayed.

2. The names of any peripheral and instrument drivers in memory
plus the maximum number allowed.

3. The names of nonresident commands in memory plus the maximum
number allowed. (Those auto-loaded are designated by the word AUTO.)

4, The maximum number of files that can be open at one time and
the names of each OPEN file including the operation for which it is open
and its peripheral logical unit number (PLUN).

5. The maximum number of instruments that can be attached at one
time and the list of attached instruments. Given with each instrument is
its instrument logical unit number (ILUN) and its interface number for
IEEE 488 devices.

Below is sample output of the STATUS command when the keyword SCHED
is omitted.

%¥STATUS
FREE MEMORY 3090 WORDS

DRIVERS IN MEMORY (6 PERIPH., 2 INSTR. MAX)
DK
KBG
DPO
IV

NONRESIDENT COMMANDS IN MEMORY (12 MAX)
SCHEDU (AUTO)

PRINT (AUTO)

STATUS (AUTO)

DIR

CHANGE (AUTO)

OPEN FILES (4 MAX.)

DK@: FOO IS OPEN FOR WRITE AS PLUN #1
DK@: PWRFAL.DOC IS OPEN FOR READ AS PLUN #4

e 4-219 STATUS

TEK SPS BASIC V@2 System Software

ATTACHED INSTRUMENTS (2 MAX.)
IV@: IS ATTACHED AS ILUN #1
DPO@: IS ATTACHED AS ILUN #2

READY
*

When the optional keyword SCHED is specified, the contents of the
Scheduler queue, the current-job slot, and the Scheduler stack are output.
(The operation and the structures of the Scheduler are described in Section
1.) Four pieces of information about each item on the Scheduler are printed:

1. Its task number.
2. Its priority.

3. The line it came from -- the line that put it on the stack or
queue (or the currently executing line for the current job).

y, Its line number -- the line where execution begins or resumes
when it becomes the current job. (The line number of the current job will
always be the line number of the STATUS SCHED statement.)

The contents of the Scheduler is of interest only when a program is
running. Below is a sample output of a STATUS SCHED statement and the
program in which it was executed:

*¥RUN
TASK PRI FROM LINE
-1 -1 @ @
1 1 19 20000
QUEUE... 2 22 20 20000
CURRENT... @ 5¢ 10000 10000
STACK... @ 50 1000 10190
] 5¢ 100 109
-1 -1 @ /]
HI
1
2
READY

STATUS 4-220 e

TEK SPS BASIC V@2 System Software

¥LIST

10 SCHEDULE WITH 11 AS TASK 1 GOSUB 20060
20 SCHEDULE WITH 22 AS TASK 2 GOSUB 2000@
10@ GOSUB 10@@\PRINT “HI"

116 RETURN

1009 GOSUB 10000@

1010 RETURN

10003 STATUS SCHED

180103 RETURN

20000 PRINT TSK(@)

20010 RETURN

At the time the STATUS SCHED command executes, both line 18 and line
2@ have put line 20000 into the queue. Line 10 SCHEDULEd the subroutine
at line 200@#@ as task 1; line 20 SCHEDULEd it as task 2. Also, the GOSUBs
in lines 100 and 1000 have caused lines 100 and 1010, respectively, to be
pushed onto the stack.

The two idle packets, which always remain in the Scheduler, have task
numbers and priority numbers of -1. They, of course, came from no line
number and have no line numbers, so zeros are assigned to their "come from"
and line number values.

Notice that the next-to-the-last item on the stack, line 1008, came
from line 10@. This is because the GOSUB command in line 100 is followed
by a command in the same line. When the subroutine called by the GOSUB in
line 10@ exits, control returns to the PRINT command in line 104.

Using the Syntax Options:

When you omit both the optional driver name and target file name, the
information is sent to the keyboard terminal. When the target device name
is omitted but a target file is named, the system device is assumed. If
the target device name is stipulated but the target file name is omitted,
the device must not require a file name (e.g., a line printer). If the
named device does not use the system device driver, its driver must be
LOADed into memory before STATUS executes. If the drive number is omitted,
zero is assumed.

Specifying or omitting the keyword SCHED determines what status
information is output. When SCHED is used, the contents of the Scheduler
is output. When SCHED is omitted, the general information about the system
is output.

e 4-221 STATUS

TEK SPS BASIC V@2 System Software

STOP

Example:

105 STOP

Syntax Form:

[line no.] STOP

Purpose:

To stop all program execution and return to idle mode.

Discussion:

The STOP command terminates a running program. It clears the Scheduler
stack and queue of all tasks, returning the Monitor to idle mode. (The
function and parts of the Scheduler are explained in Section 1.) STOP
cancels the action of all WHEN statements and clears the clock queue. It
also disables any INPREQ and ONERR conditions. However, all OPEN files
remain OPEN, and all ATTACHed instruments are left ATTACHed.

The STOP command may appear anywhere in a program. Any number of STOP
commands may be used.

If the command is executed in immediate mode, the message
STOP
is printed on the terminal. If the command is executed in program mode,
STOP AT LINE XXX
is printed, where XXX is the line number of the STOP command.

STOP differs from END in the printing of this message and in that
file are left OPEN. END CLOSEs any OPEN files.

STOP 4222 8

TEK SPS BASIC V@2 System Software

Since it clears the Scheduler, executing STOP halts all tasks, not
Jjust the one in which it appears. To halt the current task and only that
task, use the ABORT command without specifying a task number. This terminates
the currently executing task.

e 4-223 STOP

TEK SPS BASIC V@2 System Software

SYSBLD (Nonresident)

Example:

SYSBLD

Syntax Form:

[line no.] SYSBLD

Purpose:

To allow the user to define the contents of the "SYSBLD.DEF" file.
This file is used by Resident BASIC to set the system parameters at
initialization.

Discussion:

After BASIC is loaded, no dialog takes place between the user and the
Monitor to obtain the parameters to set the capabilities and size of the
system. Instead, the initialization routine searches for a file named
"SYSBLD.DEF" on the system device. If the file is not there, an internal
list of default parameters is used to initialize the system. If the file
is there, the user-defined parameters in the file are used.

The SYSBLD command lets you create or change the "SYSBLD.DEF" file.
Then, the parameters in "SYSBLD.DEF" are used to initialize the system the
next time BASIC is loaded from that disk and every time after that until
the file is CANCELed or SYSBLD is executed again to change them.

To create the file, SYSBLD displays several questions on the terminal
and records your responses. Depending on the question, acceptable answers
are a Y or N, 2 number, or a file name -- followed by a carriage return.
In all cases a carriage return by itself is also acceptable and means that
you choose the default answer. The default answer is given with each
question.

SYSBLD 4224 e

TEK SPS BASIC V@2 System Software

After the questions are answered, if a "SYSBLD.DEF" file already
exists, it is canceled before the new file is written onto the system
device. From then on, whenever you load BASIC from this disk, the parameters
you defined using the SYSBLD command initialize the system.

If the parameters you set require a system to be too large, initialization
will fail when you reboot. Before it dies, however, the Monitor will cancel
the "SYSBLD.DEF" file and display the following message:

REQUESTED SYSTEM EXCEEDS AVAILABLE MEMORY.
ATTEMPTING TO CANCEL 'SYSBLD.DEF' FILE FROM SYSTEM DEVICE.

RELOAD SOFTWARE.

Since the faulty "SYSBLD.DEF" file is canceled, you can reload BASIC and
execute SYSBLD again.

Below are the questions SYSBLD asks and a discussion of the possible
answers. The questions, printed in bold, are just as they are displayed
on the terminal.

RETAIN IEEE 488 (GPIB) CAPABILITIES (Y,N,CR, DEFAULT IS Y)?

The resident portion of the IEEE U488 code is a collection of routines
that handle interrupts and routines that are commonly used nonresident
commands and drivers to communicate with IEEE 488 devices. If you delete
this by responding with an N, you will not be able to use a nonresident
IEEE 488 driver. If you have no need of an IEEE 488 driver, deleting it
saves between 650 and 880 words of controller memory depending on the
version of the BASIC Monitor.

RETAIN STRING FUNCTIONS (Y,N,CR, DEFAULT IS Y)?

The string functions available in TEK SPS BASIC are explained in
Section 5. If your answer to this question is an N, all string functions
are deleted. This saves approximately 360 words of memory. Strings can
still be used, but string functions cannot.

RETAIN GRAPHICS CAPABILITIES (Y,N,CR, DEFAULT IS Y)?

All graphics commands access common routines in Resident BASIC. If
these resident routines are deleted, graphics modules cannot be used. The

e 4225 SYSBLD

TEK SPS BASIC V@2 System Software

affected commands include all the commands in the Graphics Package and
certain instrument-specific graphics commands such as TDPLOT and ADPLOT.
If you have no need of any graphics routines, answering with an N saves
about 1100 to 1300 words of controller memory depending on the version of
the BASIC Monitor.

HOW MANY WORDS DO YOU WANT AS A PATCH AREA?
(DEFAULT IS 0)?

TEK SPS BASIC gives you the ability to alter Resident BASIC, nonresident
commands, and drivers. These modifications are done by the PATCH files
when software updates are released via the SPS Programming Update. If a
nonzero value should be entered here, it will be supplied with the other
information in the SPS Programming Update. Unless this situation applies,
use the default answer -- a @ or just a carriage return. Appendix D contains
software patching information.

HOW MANY PERIPHERAL LOGICAL UNIT NUMBERS DO YOU WANT?
(DEFAULT IS 6)°?

Each file on a file-structured device and each peripheral device (such
as a line printer) OPEN at any one time requires a unique peripheral logical
unit number (PLUN). The number of peripherals you can OPEN at a time is
limited by the number you supply here. If you want to use a line printer
and have two disk files OPEN at the same time, you need at least three
PLUNs. However, 17 words of memory are required for each PLUN requested.

You can save memory by specifying only the number of PLUNs you are actually
going to OPEN at once. See the OPEN command description for more information.

Even if you answer with a @ to this question, PLUNs @ and 1 will still
be set up. This is because PLUN @ is required for the keyboard and some
commands, like COPY, need an extra PLUN to execute.

HOW MANY INSTRUMENT LOGICAL UNIT NUMBERS DO YOU WANT?
(DEFAULT IS 8)?

Your answer here determines the number of instruments you can ATTACH
at one time. Eleven words of memory are required for each instrument logical
unit number (ILUN) requested. You can save controller memory by requesting
only the number of ILUNs you need. If you have only two instruments, 2 is
a good answer here.

SYSBLD 4-226 @

TEK SPS BASIC V@2 System Software

HOW MANY PERIPHERAL DRIVERS DO YOU WANT TO USE AT ONCE?
(DEFAULT IS 4)?

Only four words of memory are required at initialization for each
peripheral driver you request, but remember that additional room will be
needed for the driver when it is LOADed. The number you give here (or the
default of U4) does not include the keyboard terminal driver and the system
device driver that are loaded at initialization. If your only other
peripheral is a line printer, 1 is a sufficient answer.

HOW MANY INSTRUMENT DRIVERS DO YOU WANT TO USE AT ONCE?
(DEFAULT IS 4)?

Each different type of instrument requires its own driver. Four words
of memory are needed for each instrument driver you request (plus room for
the driver when it is LOADed). If you need three different instrument
drivers in memory at the same time, answer this question with a 3.

HOW MANY NONRESIDENT COMMANDS DO YOU WANT RESIDENT AT ONCE?
(DEFAULT IS 6)?

Your answer to this question limits the number of nonresident commands
you can have in memory at one time. Six words of memory will be needed
for each nonresident command requested (plus room for the command itself
when it is brought in). A carriage return response allows six nonresident
commands to be resident at once. If your applications require more nonresident
commands per program and if each command executes often, you should consider
giving a number large enough to meet your programs' needs. If you have the
memory space to spare, this will prevent the continual loading and releasing
of commands and, therefore, speed execution.

ENTER LINE CLOCK FREQUENCY IN HZ.
(DEFAULT IS 60G)?

If you are using TEK SPS BASIC in a location where the electrical
current is 50 Hz, enter 50. Otherwise use the default value (a carriage
return or 60). A meaningless answer such as 75 will be accepted, but your
system will not keep time correctly.

e 4227 SYSBLD

TEK SPS BASIC V@2 System Software

WHICH KEYBOARD DRIVER DO YOU WANT RESIDENT?
(TYPE FILENAME
GRAPHICS KBG (DEFAULT)
NO GRAPHICS. KBN
Weeee... KBT
EHANCED GRAPHICS KBE) ENTER FILE NAME:?

If you answered with a Y (or carriage return) to the graphics
capabilities question, answer this with KBG or KBE. Though slower than
KBG, KBE allows the high resolution graphics available with a TEKTRONIX
4014 Computer Display Terminal. KBE is compatible with any TEKTRONIX
4010-Series terminal, but it provides the high resolution graphics only
when used with a 4014 terminal equipped with the Enhanced Graphics Module.
If your answer to the graphics question was an N, save memory by answering
KBN or KBT. Use the TV mode keyboard driver if you have a TV type terminal.
(The enhanced graphics option is not supported by TEK SPS BASIC V@2-@1.)

The following program will display the contents of your present
"SYSBLD.DEF" file for a standard memory system. Each answer to all but the
keyboard driver question is stored as one word -- the first three as ASCII
characters, the next seven as integers. The answer to the keyboard driver
question is stored as nine ASCII bytes, but this program reads only the
first three. Because there are no data descriptors or delimiters between
data items, READU is used to read the data from the file.

SYSBLD 4-228 e

TEK SPS BASIC V@2 System Software

10 REM READ PARAMETERS FOR 'SYSBLD.DEF'
2¢ REM NO DELIMITERS OR DATA DESCRIPTORS IN FILE
30 REM USE READU COMMAND

4@ OPEN #1 AS "SYSBLD.DEF" FOR READ

5@ DIM A$(3)

6@ INTEGER A(6)

7@ REM FIRST 3 STORED AS 2-BYTE STRINGS
80 FOR N=@ TO 2

9@ READU #1,A$(N)=2

10@ NEXT N

110 REM NEXT 7 STORED AS INTEGERS, READ IN AS ARRAY
120 READU #1,A

130 REM LAST PARAMETER IS STRING

14@ READU #1,A$(3)=3

15@ CLOSE #1

160 REM LABEL AND PRINT CONTENTS

170 DIM S$(3),T$(6)

180 S$(@)="GPIB

190 S$(1)="STRING FUNCTIONS

2008 S$(2)="GRAPHICS

21@ S$(3)="KEYBOARD DRIVER

220 T$(0)="PATCH AREA

230 T$(1)="PLUNS

249 T$(2)="ILUNS

250 T$(3)="PERIPHERAL DRIVERS

260 T$(4)="INSTUMENT DRIVERS

27@ T$(5)="NONRESIDENT COMMANDS

280 T$(6)="CLOCK FREQUENCY

2909 PRINT,"CONTENTS OF 'SYSBLD.DEF'

300 PRINT

310 FOR N=@ TO 2

320 PRINT,S$(N);TAB(36);A$(N)

33@ NEXT N

340 FOR N=@ TO 6

350 PRINT,T$(N);TAB(35);A(N)

360 NEXT N

370 PRINT,S$(3);TAB(36);A$(3)

380 RETURN

From a loop, line 90 reads in two ASCII bytes for the answer to each

of the first three questions and stores them in a string array, A$. Then
line 120 reads an integer array, A, to obtain the answers to the next seven

e 4-229 SYSBLD

TEK SPS BASIC V@2 System Software

questions. Finally, line 140 reads in the keyboard driver file name as the
last item in the string array. The rest of the program produces a labeled
display of the file's contents. If you prefer, you could simply PRINT the
two arrays that hold the information, A$ and A, by replacing lines 160
through 370 with:

160 PRINT A$,A

SYSBLD 4-230 e

TEK SPS BASIC V@2 System Software
TIME (Nonresident)

Examples:

250 TIME T$

310 TIME A(@:2)

160 TIME T
TIME

Syntax Form:

simple numeric variable
[line no.] TIME | array
string variable

Descriptive Form:

target variable
[line no.] TIME |target array
target string variable

Purpose:

To return the system time.

Discussion:

The TIME command either returns the current system time in the specified
argument or prints the time on the terminal if the argument is omitted.
When the argument is supplied, the time is returned either as three array
elements or as a string, depending on the type of the specified variable.

The system time can be set by the SETTIME command. If the time is not
set, the system time reflects the time interval since the system software
was loaded. The system time does not wrap around at midnight from 23:59:59
to @:0:8, but it continues to increment. If the time exceeds 24 hours, it
should be reset by the SETTIME command.

e 4-231 TIME

TEK SPS BASIC V@2 System Software

If the system does not have a DEC KW1-L or equivalent line frequency
clock, executing TIME (or SETTIME) causes an error.

When the time is returned as three array elements, they are stored
in the array in this order:

first element hour (@-23 or higher if the system time
is not reset after 23:59:59)

second element minute (@-59)
third element second (@-59)

When the time is returned in a string variable, it is of the form:

HH:MM:SS
where:
HH is the hour (@-23 or higher if the system time is
not reset after 23:59:59)
MM is the minute (@-59)
ss is the second (9-59)

Using the Syntax Options:

Specifying either a simple (not subscripted) numeric variable or an
array returns the time in an array. If a simple numeric variable is used,
it is auto-dimensioned to a three-element integer array. If an array is
used, it must be dimensioned or zoned to exactly three elements.

Specifying a string variable returns the time in that string.

Omitting the argument prints the time on the terminal in the string
variable format.

TIME 4-232 e

TEK SPS BASIC V@2 System Software

Application Example:

The TIME command can be used to print the current time on program
runs. A simple method is to return the time as a string and PRINT it. For
example:

100 TIME T$
110 PRINT #N,"TIME:";T$

where N is assumed to be the peripheral logical unit number (PLUN) of the
line printer.

TIME can also be used to calculate the running time of a program or
subroutine to the nearest second. For example:

100 TIME T1
116 REM FIRST LINE OF ROUTINE

80@ REM LAST LINE OF ROUTINE

810 TIME T2

820 REM CALCULATE RUNNING TIME

830 REM ASSUME LESS THAN AN HOUR

840 REM SUBTRACT SECONDS, BORROW IF NECESSARY
850 IF T2(2)>=T1(2) THEN 890

860 IF T2(1)=@ THEN T2(1)=60

870 T2(1)=T2(1)-1

880 T2(2)=T2(2)+6@

890 T2(2)=T2(2)-T1(2)

9@@ REM SUBTRACT MINUTES, BORROW IF NECESSARY
91@ IF T2(1)>=T1(1) THEN 930

928 T2(1)=T2(1)+60@

93¢ T2(1)=T2(1)-TI(1)

940 PRINT "RUNNING TIME",T2(1);" MINUTES",T2(2);" SECONDS"
950 RETURN

The first statement of the routine being timed returns the beginning
time in the auto-dimensioned array, T1. Then, just before the routine
terminates, the ending time is returned in another auto-dimensioned array,
T2. The running time is the difference of the two times, but you cannot
just subtract one from the other. Here we assume the running times will

@ 4-233 TIME

TEK SPS BASIC V@2 System Software

be less than an hour and simply subtract, first the seconds and then the
minutes, borrowing when necessary. However, you could, instead, convert
both times to the total number of seconds, subtract, and convert the answer.
The result is printed on the terminal in the form:

RUNNING TIME: MM MINUTES SS SECONDS

TIME 4-234 P

TEK SPS BASIC V@2 System Software

UNSCHEDULE (Nonresident)

Examples:

35@¢ UNSCHEDULE GOSUB 3500
490 UNSCHEDULE TASK 4
51¢ UNSCHEDULE ALL

Syntax Form:

GOSUB line number
TASK expression
ALL

[line no.] UNSCHE

Descriptive Form:

GOSUB line number
TASK task number
ALL scheduled line numbers

[line no.] UNSCHEDULE

Purpose:

To remove a subroutine from the clock queue, preventing it from being
scheduled for execution (entered into the Scheduler queue).

Discussion:

The SCHEDULE command places into the clock queue the information
needed to schedule a subroutine. Then, after the specified time has elapsed
or the specified time of day is reached, the clock driver enters this
subroutine into the Scheduler queue, scheduling it for execution. The
UNSCHEDULE commands allows you to remove the subroutine from the clock
queue before the specified time has passed, preventing the subroutine from
being scheduled for execution. This command has no effect on subroutines
already in the Scheduler queue. (The function and parts of the Scheduler
are explained in Section 1.)

The clock driver "CLK.SPS" must be in memory when UNSCHEDULE executes.

e 4-235 UNSCHEDULE

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

The line number following the keyword GOSUB should be to the beginning
line number of a subroutine specified in a previously executed SCHEDULE
command. When this specification is used, all entries associated with that
line number are removed from the clock queue. If no entries have that line
number, no error results.

The expression following the keyword TASK represents a task number.
When evaluated and rounded to an integer, it must be between @ and 126,
inclusive. When this specification is used, all entries associated with
that task number are removed from the clock queue.

The keyword ALL clears the clock queue.

Application Example:

For demonstration, the following program schedules a routine for
execution 30 seconds from the time line 50 is executed. If the processing
in lines 6@ to 170 is completed before the 3% seconds have elapsed, the
UNSCHEDULE command is used to prevent the routine from executing.

10 REM -- LOAD THE CLOCK DRIVER

20 LOAD "CLK.SPs"

30 REM -- SCHEDULE THE SUBROUTINE AT LINE 10@@ FOR
4@ REM -- EXECUTION 3@ SECONDS FROM NOW

5@ SCHEDULE AFTER 30 GOSUB 1000

60 REM -- PROGRAM GOES HERE

.

170 REM -- PROGRAM COMPLETE IN LESS THAN 3@ SECONDS
180 UNSCHEDULE 1000

19¢ RETURN

980 REM -- EXECUTE THIS ROUTINE IF PROGRAM TAKES
990 REM -- LONGER THAN 3@ SECONDS

10¢@ PRINT "TIME HAS ELAPSED"

.

1100 REM -- RETURN TO THE INTERRUPTED PROGRAM
1110 RETURN

UNSCHEDULE 4-236 e

TEK SPS BASIC V@2 System Software

VARTST (Nonresident)

Examples:

160 VARTST B(I),"2¢",Q
19¢ VARTST A$,J+2,X
750 VARTST B$&C$,"1000",Y

Syntax Form:

expression
[line no.] VARTST ,
string expression

expression

s,variable
string expression

Descriptive Form:

decimal valwe to be tested
[line no.] VARTST

octal value to be tested

decimal specification of bits to be tested

,target for test result
octal specification of bits to be tested

Purpose:

To test if any of the bits set in the second value are also set in
the first value.

Discussion:

The VARTST command converts the results of the first two arguments
into 16-bit binary integers and then compares these two integers. If any
of the bits set in the first converted value are also set in the second,
VARTST returns a 1 in the third argument. If none of the same bits are
set, VARTST returns a @ in the third argument. (A bit is set if it is a 1
and not set if it is a @.)

VARTST does not alter the values of any variables that may appear in
the numeric expressions or string expressions used as the first two
arguments. It changes only the value of the third argument -- to a 1 or @.

e 4-237 VARTST

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

The first argument is the value tested; the second argument is the
value to which the first is compared.

If either of these arguments is a string expression, it is interpreted
as an octal value. This string expression must evaluate to a string of no
more than eight octal digits. However, only the lower 16 binary digits
(bits) are used in the comparison. If either of the first two arguments
is an expression, it is truncated to a 32-bit integer and again only the
lower 16 bits are used.

Application Example:

This command can be used to test the contents of an integer array N
for odd elements. In the sample routine below, any odd values are then
made even by incrementing them by 1.

1000 FOR I=0 TO SIZ(N)-1
1010 VARTST N(I),"™",R
1020 N(I)=N(I)+R

1930 NEXT I

When an array element N(I) is even, R is @. When an element is odd,
a 1 appears in the last bit, so R equals 1. In line 1020 adding a @ to an
even number, keeps it even; adding a 1 to an odd number makes it even.

Also, the result of a VARTST statement can be used to direct program
flow. For example:

100 VARTST A$,B$,R
110 GOTO R+1 OF 1000 ,2000

Here, a program branches one of two ways depending on if any bit set
in the octal value in A$ is also set in the octal value in B$.

VARTST 4-238 e

TEK SPS BASIC V@2 System Software
VERSION (Nonresident)

Examples:

65 VERSION DK1:"UNLOG"

75 VERSION "MOVE.SPS",N$
VERSION "WAIT"
VERSION BASIC

Syntax Form:

F
[device name[constant]:][/{R} [,]] string expression

[line no.] VERSIO [,string variable]
BASIC [,string variable)

Descriptive Form:

;[dev ice name[drive number]:] [/forward or reverse switch[,]]
[line no.] VERSION driver or command name [,target string variable]
lBASIC monitor [,target string variable]

Purpose:

To obtain the version and release numbers of a driver, a nonresident
command or, the BASIC monitor.

Discussion:

All TEK SPS BASIC modules contain version and release information so
that updates can be recognized even though the command or driver name is
the same. This command is used to obtain the version and release numbers
of drivers, nonresident commands, and the BASIC monitor. (The version and
release of Resident BASIC is also displayed each time the system is booted).

e 4-239 VERSION

TEK SPS BASIC V@2 System Software

The information is returned as a string with the format:

Vxx-yy |

where xx is the version number, yy is the release number,
: ndec f gion. It is output to the terminal unless
the optional string variable is included.

Releases of nonresident modules are independent of other modules,
including Resident BASIC. However, all nonresident modules with a given
version number are compatible with all Resident Monitors with the same
version number but not with Monitors with a different version number.

Using the Syntax Options:

The named device is the peripheral on which the module is stored. If
the device name is omitted, the system device is assumed. If the named
device does not use the system device driver, its driver must be LOADed
into memory before VERSION is executed. When the drive number is omitted,
zero is assumed.

[The /F or /R switches (Forward or Reverse) may be specified for a
serial tape device. The switch indicates the direction of the tape movement
when searching for the file. If the switch is omitted, the tape is rewound
before a forward search is made. When used with other peripherals, the
switeh is ignored.]

The string expression is used as a file name of a nonresident command
or driver. If the file name contains an extension, it must be .SPS. When
the name of a module is specified, the version and release numbers of that
nonresident command or driver are returned. When the keyword BASIC is
specified, the version and release numbers of the BASIC monitor are returned.
(The keyword BASIC is not supported by VERSION V@2-@1.)

Using the optional string variable returns the information in the
specified string. Omitting it sends the information to the terminal.

VERSION 4-240 e

TEK SPS BASIC V@2 System Software

WAIT (Nonresident)

Examples:
150 WAIT
160 WAIT 600

Syntax Form:

[line no.] WAIT [expression]

Descriptive Form:

[line no.] WAIT [number of milliseconds]

Purpose:

To halt program execution until a keyboard interrupt occurs, or a
specified amount of time has elapsed.
Discussion:

The WAIT command produces either a timed or untimed pause in execution.
When used with the optional expression, it causes the program to wait the
stated number of milliseconds. For example:

19¢ WAIT 500
halts processing for one-half second.

Omitting the expression produces a pause of indefinite length and
enables an interrupt from the keyboard. Execution halts until a character
is typed at the terminal. Any printing or control character, except

Control-P, may be typed. (Control-P will stop the program completely.)

If an instrument interrupt occurs while the WAIT statement (in either
of its forms) is executing, the task associated with the event is scheduled

e 4241 WAIT

TEK SPS BASIC V@2 System Software

(entered in the Scheduler queue), but no further processing occurs until
the WAIT command has completed execution. (The function and parts of the
Scheduler are explained in Section 1.)

This command is not designed to provide precise timing but to
cause a wait of sufficient length for a particular event to occur.
Its accuracy is dependent upon other operating system functions which are
allowed to take place concurrently such as input/output or interrupt
handling. If the number of these conflicting functions is minimized, the
timing of the WAIT command can be fairly accurate. However, the time that
the system takes to switch from one command to another cannot be readily
determined. It is assumed that the time required to switch from the previous
command to the WAIT command, plus the time taken to evaluate the expression,
is one millisecond. Therefore, the value of the expression is decremented
by one (1) before the timing loop is executed.

Using the Syntax Option:

The optional expression specifies the approximate number of milliseconds
(171000 of a second) that program execution WAITs. The expression, when
evaluated, is rounded to an integer. If the expression is omitted, the
resulting untimed pause must be terminated by a keyboard interrupt.
Application Example:

Sometimes it is necessary to stop a program long enough to adjust an
incoming signal, change equipment setup, or load a new disk. The WAIT

command provides this untimed pause. For example:

2@ PRINT "PRESS RETURN WHEN READY TO CONTINUE"
210 WAIT

would halt a program until a key on the keyboard is pressed.

WAIT 4-242]

TEK SPS BASIC V@2 System Software

WAVEFORM

Examples:

140 WAVEFORM AA IS A,IA,HA$,VA$
150 WAVEFORM W1 IS B1(511),IB,HB$,VB$

Syntax Form:

simple numeric variable
[line no.] WAVEFORM IS

waveform

simple numeric variable(expression[,expression])

array[(expression[yexpression])]

numeric variable, simple string variable,simple string variable

Descriptive Form:

simple numeric variable
[line no.] WAVEFORM IS
wave form

simple numeric variable(first dimension[,second dimension])

array[(first dimension[,second dimension])]

data sampling interval ,horizontal units,vertical units

Purpose:

To associate a name with an array, a related data sampling interval,
and units string variables, for convenience of computation.

e 4243 WAVEFORM

TEK SPS BASIC V@2 System Software

Discussion:

A waveform is a variable name associated with a data array, a data
sampling interval variable, and two string variables for horizontal and
vertical units information. The assumption here is that the array elements
represent a digitized signal and that the data sampling interval (DSI) is
the time between the array's data elements. The first string variable is
for the measurement's horizontal units (typically "S" for seconds), and
the second string variable is for its vertical units (typically "V" for
volts). The array, DSI variable, and the units string variables may be
referenced by other commands besides the WAVEFORM command associates them.
They may be assigned values before and after the association is made.
However, care should be used to insure that the DSI variable is not assigned
a negative value by any prior or shared use of that variable.

The advantage of using a waveform rather than an array is that automatic
units processing is provided with waveform operations. Once a waveform has
been created, it can be used in almost any expression where an array is
valid. For waveform processing rules and results, see the table "Arithmetic
Operations With Waveforms" in Section 2. Also, see the LET command discussion
for information on the results of waveform assignments.

After a waveform has been declared, the array and associated variables
can still be referenced individually, without affecting the other variables.
For example, the array can be used as the destination of an arithmetic
statement and not cause any change to the three associated variables. The
array can even be DELETEd and redimensioned to different specifications
without deleting the waveform. Only when the waveform name is specified
are the other variables altered.

Zones may not be used in conjunction with the waveform name. To use
the zone feature, the associated array name must be used instead.

Waveforms are removed from memory by the DELETE statement. When you
do this, the waveform is deleted, so the array and variables are dissociated
from each other. The individual variables and the array are not deleted,
however.

WAVEFORM 424y a

TEK SPS BASIC V@2 System Software

Using the Syntax Options:

The first argument is the waveform name. Only a simple numeric variable
(not an array element) or a previously declared waveform variable may be
specifed here. If a waveform variable is used, it must be redefined with
the same variables and string variables named in its earlier declaration.
If the array specifications are included, they must not change the array's
previously declared dimensions unless the array has been DELETEd since the
last time it was declared.

The arguments following the keyword IS name the four components of
the waveform association: the array, the DSI, the horizontal units, and
the vertical units.

The array, the first of these four arguments, can be specified by
either a simple numeric variable (not an array element) or an array variable.
If a simple numeric variable is used, it must be explicitly dimensioned
to an array here by supplying its dimension specifications. These dimension
specifications -- the one, or optionally two, expressions enclosed in
parentheses -- are rounded to integers and used to define an array in the
same manner as the DIM command expressions are used. The simple numeric
variable is dimensioned to a floating-point array before the waveform
association is established. If an array is given, its dimension specifications
may be restated, but they may not be changed unless the array is DELETEd
first. The array may be either floating-point or integer.

The second of the four parts of a waveform is the DSI variable. It
is followed by the two units string variables which must be simple string
variables (not string array elements). The first string variable is assumed
to hold the horizontal units; the second, the vertical units.

These four variables need not be unique to a single WAVEFORM command.
For instance, the same DSI variable and units string variables may be used
in several different WAVEFORM statements. However, if the contents of a
DSI variable or a units string variable changes for one of the waveforms,
it changes for any other waveforms that use this same variable.

e y_2u5 WAVEFORM

TEK SPS BASIC V@2 System Software

WHEN (Nonresident)

Examples:

500 WHEN #J HAS T$ AT N GOSUB 2000

600 WHEN #3 HAS "ACQ" GOSUB 5050

T0@ WHEN #2 HAS "CB1" AT 10@ AS TASK 2 GOSUB 1000
800 WHEN €0 HAS "SRQ" GOSUB 3000

Syntax Form:

#

[line no.] WHEN expression [HAS string expression] [AT expression]

[AS TASK expression] GOSUB line number

Descriptive Form:

#ilun
[line no.] WHEN [HAS driver-dependent interrupt specfication]
@IEEE 488 interface number

[AT priority level] [AS TASK task number] GOSUB line number

Purpose:

To allow change in program flow based on an instrument interrupt.

Discussion:

This powerful command gives TEK SPS BASIC the ability to change the
normal flow of program execution if an event (instrument interrupt) occurs.
It allows BASIC to perceive and respond to the specified instrument
interrupt. After the WHEN executes, if the specified event occurs, control
transfers to the specified subroutine -- a user-written interrupt routine
-- as soon as the system priority is lower than the specified priority.

These priority comparisons are made only at the end of the execution of
each command of the currently executing routine; routines can be interrupted,
commands cannot.

WHEN 4246 e

TEK SPS BASIC V@2 System Software

The driver for the specified instrument or interface must be in memory
when the WHEN command is executed. The instrument must be connected and
powered up.

WHEN stores the interrupt information in the required driver. The
information remains there until the proper IGNORE command removes it or
the task associated with the WHEN is ABORTed. However, some or all of this
information can be modified (overwritten) by executing another WHEN
statement. Because the information is stored, BASIC can respond to more
than one occurrence of the same event. (STOP, END, or Control-P nullifies
the actions of all WHEN commands.)

The transfer to the subroutine does not take place until two conditions
are met: 1) the specified event occurs, and 2) the priority of the system
is less than the priority specified in the WHEN command. (If no priority
is specified, an instrument default priority is assigned. This value may
be found in the instrument driver manual.) When these conditions are met,
program control passes to the subroutine. The system assumes the new
priority level of the event until a RETURN statement is encountered. At
that time, the priority of the system reverts to the level the system was
operating at before the transfer took place. Control returns to the command
that was about to be executed when the transfer occurred.

[In terms of the action in the Scheduler, when a WHEN command executes,
the interrupt information is stored in the required driver, permitting
BASIC to recognize the given interrupt. When the event occurs, a packet
with the stored line number, priority number, and task number is entered
into the Scheduler queue. As soon as this packet's priority is higher than
the current job's priority, the current job is interrupted and pushed onto
the Scheduler stack. Then the interrupt routine's packet is popped off the
Scheduler queue and the interrupt routine starts executing. When it finishes
(a RETURN is encountered), the interrupted routine is popped off the stack
and resumes executing. (The function and parts of the Scheduler are explained
in Section 1.)]

The manual for the instrument driver being used gives complete

documentation on possible interrupts and the valid interrupt specification
strings.

6 4247 WHEN

TEK SPS BASIC V@2 System Software

Using the Syntax Options:
Any expression used in a WHEN command is rounded to an integer.

The expression following the pound sign (#) or the at sign (@) indicates
the instrument or interface from which an interrupt will be recognized.
If a pound sign (#) is used, the expression is the instrument logical unit
number (ILUN) to which an instrument is ATTACHed. When evaluated, it must
be between 1 and n, inclusive, where n is the number of ILUNs specified
at system initialization (default value of eight). If an at sign (@) is
used, the expression represents the number of the IEEE 488 interface through
which more than one instrument may be controlled. In this case, instead
of an instrument-specific driver, the low-level IEEE 488 Interface driver
("GPI.SPS") must be used. This driver and its set of special commands are
described in Section 6. When evaluated, the expression for an interface
number must be between @ and 3, inclusive.

The string expression following the keyword HAS is a driver-dependent
interrupt specification. It must be a string accepted by the driver for
the given ILUN (or interface). If the HAS and expression are omitted, the
driver's default string is used. If the driver has no default string, an
error is issued.

The expression following the keyword AT is the priority level for the
interrupt routine. It must evaluate to an integer between @ and 126,
inclusive. If the AT and expression are omitted, a driver-dependent default
value is assumed.

The expression following the keywords AS TASK is the task number for
the interrupt routine. It must evaluate to an integer between @ and 126,
inclusive. If the AS TASK and task number are omitted, the number of the
currently executing task is used. However, if the WHEN is entered in
immediate mode and the AS TASK and task number are omitted, task number
@ is assigned to the interrupt routine.

The keyword GOSUB precedes the line number of the user-written interrupt
routine -- the subroutine to which control is to be passed.

WHEN 4-248 e

TEK SPS BASIC V@2 System Software

Application Example:

Below is a simple example of using the WHEN command. After the
instrument driver is LOADed and the instrument is ATTACHed, the WHEN
statement (line 110) allows the program to recognize the pushing of the
DPO call button as an interrupt. Until the WHEN is executed, you could
push the call button as much as you like, but the program would not respond.
After line 110 executes, however, pushing Call Button 1 causes program
control to transfer to the interrupt routine that GETs data from the
instrument. Because WA is declared as a waveform (line 5@), all four parts
of the waveform -- the array, data sampling interval, horizontal units and
vertical units -- are defined when the data is acquired by line 104@. When
the RETURN is encountered, the subroutine terminates and control returns
to the calling program.

10 REM APPLICATION OF THE WHEN COMMAND

20 REM USING THE DPO

30 REM LOAD THE DRIVER AND

4G REM ATTACH THE INSTRUMENT

5¢ LOAD "DPO.SPS"

6@ ATTACH #1 AS DPO@:

70 REM DECLARE A WAVEFORM

80 WAVEFORM WA IS AA(511),SA,HA$,VA$

90 REM ENABLE CALL BUTTON 1 AS AN INTERRUPT
100 REM WITH A PRIORITY HIGHER THAN DEFAULT
110 WHEN #1 HAS "CB1" AT 6@ GOSUB 102¢

120 REM PROGRAM CONTINUES

90@ RETURN

1003 REM CB1 INTERRUPT SUBROUTINE

101¢ REM STORE SIGNAL IN DPO'S MEMORY LOCATION A
102@¢ PUT "STO"™ INTO #1,"A"

1030 REM ACQUIRE THE WAVEFORM

1040 GET WA FROM #1,"A"

1050 REM REST OF INTERRUPT<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>